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ARTICLE OPEN

Rapid mapping of alloy surface phase diagrams via Bayesian
evolutionary multitasking
Shuang Han 1, Steen Lysgaard 1, Tejs Vegge 1 and Heine Anton Hansen 1✉

Surface phase diagrams (SPDs) are essential for understanding the dependence of surface chemistry on reaction condition. For
multi-component systems such as metal alloys, the derivation of such diagrams often relies on separate first-principles global
optimization tasks under different reaction conditions. Here we show that this can be significantly accelerated by leveraging the
fact that all tasks essentially share a unified configurational search space, and only a single expensive electronic structure
calculation is required to evaluate the stabilities of a surface structure under all considered reaction conditions. As a general
solution, we propose a Bayesian evolutionary multitasking (BEM) framework combining Bayesian statistics with evolutionary
multitasking, which allows efficient mapping of SPDs even for very complex surface systems. As proofs of concept, we showcase the
performance of our methods in deriving the alloy SPDs for two heterogeneous catalytic systems: the electrochemical oxygen
reduction reaction (ORR) and the gas phase steam methane reforming (SMR) reaction.

npj Computational Materials           (2023) 9:139 ; https://doi.org/10.1038/s41524-023-01087-4

INTRODUCTION
In the realm of heterogeneous catalysis, the construction of
surface phase diagrams (SPDs) is central for revealing the
relationship between the most stable thermodynamic state of
the catalyst surface and the state variables. In reactive environ-
ments, the surface can often be assumed to be in a thermo-
dynamic equilibrium with the ambient medium, characterized by
its surface free energy1–4. The lowest surface free energy
configuration is relevant as it represents the most thermodyna-
mically favored state of a reaction system, and is hence useful for
deriving the surface structures of all reaction intermediates.
Traditional approaches rely on chemical intuition and brute-force
search to determine the most thermodynamically favored
configuration of surface adsorbates. As a result, the adsorbate-
catalyst configurations under study are often highly if not overly
simplified compared to their experimental counterparts5. In most
cases, however, additional complexity must be introduced in order
to obtain meaningful results that are comparable to experiments.
In general, the complexity of deriving SPDs may stem from 3

main sources – catalyst, adsorbate and reaction condition. In the
simplest case, a SPD can be constructed by performing electronic
structure calculations for a set of adsorbate-catalyst configurations
with representative adsorbate coverage patterns on an
unchanged catalyst surface6,7. However, for alloy systems which
we target in this paper, further degrees of freedom are introduced
to the chemical composition and ordering of the catalyst, and
consequently the chemical environment of the adsorption sites.
Also, a catalyst modelled by a stepped surface or a nanoparticle
(NP) may present a lot more symmetry-inequivalent adsorption
sites than on a flat surface. In the matter of adsorbate effects, a
change in adsorbate coverage can potentially alter the reaction
mechanism due to variations in adsorbate-adsorbate interac-
tions8–13 and potentially adsorbate-induced surface reconstruc-
tion14–21. Under certain reaction conditions (especially phase
transition regions), the thermodynamically favored state may
accommodate a co-adsorption of mixed adsorbate species22–25,
adding further complexity to the surface chemistry. Moreover,

alloy catalysts may undergo dramatic adsorbate-induced segrega-
tion26–31, suggesting that a search for the most stable adsorbate-
alloy configuration must optimize the catalyst and the adlayer
holistically. Finally, different reaction conditions may lead to very
different free energy landscapes, thereby completely different
reaction mechanisms.
Determining the most stable adsorbate-alloy configuration

under a certain reaction condition is already an open question.
A realistic and sophisticated description of the system requires the
account of a plethora of degrees of freedom, e.g., the composition
and ordering of the alloy, the coverage and arrangement of the
adsorbates, and even the composition and ordering of the adlayer
if multiple adsorbate species are considered. All degrees of
freedom jointly contribute to the ‘combinatorial explosion’ of the
search space of all possible adsorbate-alloy configurations. When
searching through such a huge space, the reliability of the
putative global minimum configuration depends on the accuracy
and efficiency of the energy evaluator, as well as the efficiency of
the global optimization algorithm. One can of course use a small
unit cell to limit the search space, but this will inevitably affect the
quality of the alloy SPD that one can obtain, owing to the limited
possible variations of the adsorbate coverage and the surface
chemical ordering.
Despite being challenging, a handful of endeavors have been

made in the past to search for the most stable adsorbate-alloy
configuration under a given condition. The majority of theoretical
studies rely on Monte Carlo (MC) simulations to search for the
stationary states of alloy catalysts in the presence of adsor-
bates32–40. Recently, evolutionary algorithm (EA) emerges as an
alternative solution to search for the most stable adsorbate-alloy
configuration41–43. As a stochastic optimization method, EA is
highly suitable for determining the lowest-energy configuration
since it is not constrained to the sample space according to a
distribution. In the matter of the energy evaluator, coupled-lattice
cluster expansion33,34,44,45 is the conventional approach for
describing the energetics of such adsorbate-alloy systems and
are commonly used in conjunction with MC simulations33–35,37,38.
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Nevertheless, the feasibility of this method is limited by the
number of different adsorbate species it can treat, which is further
exacerbated when various types of adsorption site are consid-
ered46. Moreover, cluster expansion models describe the energy of
a relaxed system as a linear combination of many-body
interactions defined on a fixed ideal lattice, which may yield
spurious predictions for very complex adsorbate-alloy systems,
especially when the atoms undergo drastic displacement during
local optimization47. On the other hand, most EA studies are
coupled with expensive but accurate density functional theory
(DFT) calculations, which becomes intractable when the search
space is too vast.
To study the dependency of alloy stability on reaction

condition, it is important to map out the most stable adsorbate-
alloy configurations to various reaction conditions and illustrate in
alloy SPDs. The research so far has mainly relied on three structure
generation strategies for deriving such diagrams: (i) systematically
enumerating an exhaustive set of adsorbate-alloy configura-
tions3,48,49, (ii) manually selecting a subset of adsorbate-alloy
configurations based on human intuition50–55, or (iii) separately
searching for the most stable adsorbate-alloy configurations
under different reaction conditions32,36–38. The first strategy often
restricts the surface model into a small unit cell, which essentially
excludes many possible (and potentially stable) adsorbate-alloy
configurations. The second strategy is easy to implement but lacks
reliability unless there are strong theoretical or experimental
backing. The last strategy is comparatively more robust, but one
obvious drawback is the waste of computational resources by
repeating the search multiple times with essentially the same total
search space. Although this can be eased by parallelization, the
resolution of a SPD still largely depends on the number of probing
conditions. Moreover, when there are multiple state variables
jointly influencing the chemical potentials, it can become
intractable to perform separate searches for a combinatorial set
of reaction conditions.
In general, the thermodynamic stability of a surface configura-

tion x can be considered as a black-box fitness function f(x)
characterized by n bounded parameters representing the state
variables. The task of deriving a SPD can then be seen as a global
optimization problem with the goal of finding a set of
configurations that contains the fittest (i.e. most stable) candidate
for any combination of the n parameters constrained by their
bounds. This type of optimization problem belongs to the
definition of multifactorial (or multitask) optimization, i.e., to
simultaneously progress multiple optimization tasks (which may
or may not be interdependent) in a unified search space56. Despite
having multiple fitness functions for each individual, this is not to
be confused with a multi-objective optimization where the goal is
to locate the Pareto front of multiple competing objectives. Gupta
et al.56 first proposed the idea of evolutionary multitasking (EM) to
address multifactorial optimization problems by performing
multiple EA tasks in a single population. A canonical EA progresses
a population of evolving candidate solutions by performing
genetic operations including crossover, mutation and selection.
Apart from the efficiency offered by the parallelism of the
population-based EA search, EM can also harness underlying
relationships between different tasks via genetic transfer, which is
a direct benefit offered by the unified search space56,57. The good
thing about the EM application in materials science is that the
search spaces of all tasks are often naturally unified. In the context
of deriving alloy SPDs, genetic transfer can be achieved by a
crossover between the alloy surface of one structure and the
adlayer of another. In particular, a SPD often involves surface
configurations with adsorbate coverages varying from low to high,
and consequently from a small to large number of possible
coverage-specific configurations. Compared to performing a
standard EA search at a condition where high adsorbate coverage
is favored, it can be even faster to find the solution by performing

an EM search at multiple conditions, where the low-coverage tasks
can quickly find superior structural traits (e.g. the favored
adsorption sites, adsorbate species and alloy surface ordering)
and then pass to the higher-coverage tasks successively, all thanks
to the cross-task genetic transfer. In Gupta’s formulation, an EM
algorithm, namely multifactorial EA (MFEA), was devised to limit
the total number of function evaluations by evaluating at only a
single task for each individual based on genetic heuristics56.
However, the problem of deriving SPDs falls into a different
setting, where only a single expensive electronic structure
calculation is required for each observation regardless of the
number of tasks. It is then trivial to calculate fitness for all tasks
thanks to the efficient vectorization on modern CPUs. Hence there
is no need to trade off accuracy for efficiency by evaluating fewer
tasks as is in the MFEA. Instead, we describe in the Methods
section a novel EM algorithm that follows a dynamic niching
routine designed specifically for deriving phase diagrams.
For an adsorbate-alloy system, the magnitude of the total

search space is tantamount to the number of variations for
distributing K different adsorbate species and vacancies on S
adsorption sites while also distributing M different metal species
in an N-atom surface, which leads to (K+1)S ⋅MN possible
configurations. If we consider a typical adsorbate-alloy system
consisting of 3 possible adsorbate species, 2 possible metal
components and a 4 × 4 × 4 surface slab with 64 high-symmetry
adsorption sites, the total search space then comprises 6.3 × 1057

configurations. Although the configurational search space is
unified in an EM search for the SPD, a premature convergence is
still likely to happen when searching through such an enormous
space. With the implementation of symmetry-constrained genetic
operators, we have recently made it possible to search for the
ground-state 5 nm nanoalloy in a high-symmetry subspace under
vacuum condition58. In this work, we have extended the concept
of symmetry constraints to the genetic operations that involves
adsorbates, taking the assumption that the most stable surface
configuration will likely have adsorbates arranged in a somewhat
ordered manner. Based on the same idea of grouping, we describe
in the Supplementary Information (SI) a new set of symmetry-
constrained genetic operators that are specifically designed to
reduce the search space of adlayer patterns by exploiting the
lattice symmetry of adsorption sites. Besides, the search space can
be further reduced by constraining the minimum adsorbate-
adsorbate distance and eliminating duplicates. In this work, we
have devised a structure comparator based on graph automorph-
ism to prevent duplicate adsorbate-alloy configurations from
entering the EA population, as discussed in the Methods section.
Surrogate models have been employed in EAs to minimize the

number of expensive electronic structure calculations required in
a global structural optimization59,60. Bayesian EA (BEA) is a typical
type of surrogate-assisted EA that uses a Gaussian process (GP)
model to perform Bayesian inference based on the a posteriori
knowledge of the evaluated observations59–62. Importantly, GP
provides the benefit of uncertainty quantification, which can be
readily incorporated into the fitness function of a BEA to balance
between exploration and exploitation59. To efficiently obtain
mean prediction and uncertainty of the relaxed energy for each
surface structure, we consider using a GP model that can perform
the so-called direct initial structure to relaxed energy (IS2RE)
tasks63. Such a model requires encoding adsorbate-alloy config-
urations into unique fingerprints that are invariant to the small
coordinate changes resulting from the geometry relaxation. In the
Methods section, we describe a GP model that employs a graph
kernel to directly predict the relaxed energies without the need of
explicitly encoding each structure.
In the present work, we propose a Bayesian EM (BEM)

framework (see Fig. 1), serving as a new strategy for finding
the most stable adsorbate-alloy configurations under various
reaction conditions ‘once and for all’. By leveraging graph
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theory, lattice symmetry constraints, Bayesian active learning
and EM, our framework is capable of tackling all aforementioned
complexity ascribed to alloys, adsorbates and reaction condi-
tions, thereby deriving alloy SPDs with good efficiency and
accuracy. In particular, the combination of Bayesian active
learning and EM brings an additional benefit of balancing
between exploration and exploitation automatically. The works
most related to ours are probably those of Ulissi et al.64 and
Ghanekar et al.49, in which they both derived surface Pourbaix
diagrams through active learning. Specifically, they considered
the problem of selecting a minimum subset from thousands of
candidate adsorbate-catalyst configurations to be evaluated by
DFT. Although the BEM framework also uses the concept of
active learning, we would like to underline that it is designed to
solve a much more complex problem, i.e., to let the algorithm
automatically search in an unknown space and generate the
structures that contribute to the SPD with as few energy
evaluations as possible. Another notable difference is that we
not only consider the variation of the adlayer patterns, but also
the change of the alloy catalyst itself, which often results in a
search space comprising an astronomical number of adsorbate-
catalyst configurations.
The ability of our BEM method is demonstrated by two binary

alloy systems in the context of two heterogeneous catalytic
reactions. The first case study involves the construction of the
surface Pourbaix diagram for the electrochemical oxygen
reduction reaction (ORR) on a Pd-doped Ag(111) catalyst. A
semi-empirical effective medium theory (EMT) potential65, as
implemented in the Atomic Simulation Environment (ASE)66, is
used as a toy calculator to first benchmark our methods. This is
followed by a DFT-based study on the same system. In the
second case, we consider a Pt-doped Ni nanocatalyst in contact
with the gas phase under various steam methane reforming
(SMR) conditions. This case is of special interest since it has been
reported experimentally that doping Ni NPs with a tiny amount
of Pt can lead to a significant boost in the catalytic activity for
SMR67–69. Compared to the extended surfaces, NPs introduce
additional complexity of size and shape, making this study even
more challenging. In reactive environments, the shape of a NP

can change drastically due to the presence of adsorbates on
different facets, which is a phenomenon known as ‘NP reshaping
upon ligand adsorption’70. Our goal is then to study how the
shape of the Pt-Ni nanoalloy changes as a function of the
reaction condition. Global optimization of nanoalloys in reactive
environment is a daunting task due to the large length scale of
NPs. Instead, one can derive the phase diagram of a nanoalloy
by first determining the SPD of each low-index facet, then
predicting the equilibrium shape using the Gibbs-Wulff con-
struction71,72 that takes the surface free energies of the lowest-
energy adsorbate-alloy configurations for all facets into account.
Specifically, we consider the two most dominant low index
facets – (111) and (100) – as well as a stepped (311) facet
representing the step-edge interface of (111) and (100). To test
the robustness of our BEM framework, we consider a wide range
of SMR conditions. From the DFT-based SPDs derived by the
BEM, we are able to show the effects of coking and sulfur
poisoning which are known to be the main causes for the
deactivation of SMR73.

RESULTS AND DISCUSSION
BEM active learning workflow
The general BEM active learning (BEM-AL) workflow for deriving
SPDs is shown in Fig. 2. The active learning starts by generating an
initial population of surface configurations (with adsorbates). A
fraction of the initial population are then relaxed by electronic
structure calculations to construct an initial dataset. In each BEM
iteration, a GP surrogate first learns from the latest dataset
(consisting of relaxed structures and the corresponding electronic
energies), then acts as a high-throughput function evaluator in the
EM to efficiently suggest a set of fittest surface configurations that
contribute to the fitness upper envelope. Only the newfound
fittest configurations are sent to be further evaluated by electronic
structure calculations. Every time a new set of data points is
obtained, the GP model can benefit from re-tuning the
hyperparameters and retraining the model. We can then restart
the BEM with the final population of the previous run while
employing an improved GP surrogate. The whole BEM-AL scheme

Fig. 1 Schematic illustration of the BEM framework. Constructing an alloy SPD can be seen as performing k global optimization tasks with a
unified search space of all possible adsorbate-alloy configurations, where k represents the number of sampled reaction conditions. The goal of
each task is to optimize an expensive black-box function derived from the first-principles potential energy surface (PES). The BEM framework
takes in knowledge of graph theory, lattice symmetry, Bayesian active learning and EM to perform all k tasks simultaneously, and to eventually
find the most stable adsorbate-alloy configuration for every task.
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terminates when the BEM cannot suggest any new configurations
on the fitness upper envelope, or there is no progression in the
lower envelope of the calculated surface free energies for a
successive number of BEM iterations.

The BEM-AL scheme mainly involves two alternating tasks –
electronic structure calculations and BEM global optimization.
Typically, an EA-based global optimization of alloy catalysts
requires the generation of an initial pool of alloy configurations
and a set of genetic operators to generate new configurations.
When coupled with adsorbates, the generation of the initial
catalyst configurations requires additional automated identifica-
tion of the adsorption sites to allow placing adsorbates. Mean-
while, the optimization now also requires automated surface
analysis of adsorbate-catalyst configurations to derive their fitness.
As for genetic operations, the imposition of symmetry constraints
can significant accelerate the global optimization of alloy catalysts
with or without adsorbates58. To this end, we have developed
computational tools for automating structure generations and
accelerating EAs (including EM), which are integrated into a
general workflow as presented in Fig. 3. The integration is done by
packing all the tools into an open-source Python package named
Alloy Catalysis Automated Toolkit (ACAT), which is freely
accessible at https://gitlab.com/asm-dtu/acat. The code is written
for general use with the support of a wide variety of crystal
structures, which should be broadly useful for the community of
computational heterogeneous catalysis. A detailed description of
ACAT can be found in the SI.

Pd-Ag SPDs for ORR
To benchmark our methods, we have used an efficient EMT
calculator to carry out different types of EA for deriving the Pd-
Ag(111) surface Pourbaix diagram for ORR. In detail, we consider a
reversible hydrogen electrode potential (URHE) window from -0.5
to 0.5 V and a fixed temperature of 300 K. We also consider a pure
Nernstian shift in potential with pH, which means the lowest-
energy surface configurations are independent of the concentra-
tion of protons6. First, we have separately performed standard EAs
using EMT at 11 different electrode potentials (0.1 V apart). The
results are then compared with the EMT-based EM, where the
global optimization is performed at all 11 electrode potentials
simultaneously. With the goal of minimizing the number of energy
evaluations by EMT, we have tested our BEM-AL approach in four
different hyperparameter settings: the exploration factor κ taking
values at 0, 1, 2 and multitasking at all three values (i.e.
‘exploration-exploitation-balanced’ sampling). To avoid anomalies,
all EA runs start with the same initial population and use the same
stopping criterion, and each run is repeated five times. Besides,

Fig. 3 Schematic of the workflow for a global optimization task of an adsorbate-alloy system automated by ACAT. The two main features
of ACAT are (a) structure generation and (b) EA (including EM). ACAT is generalized for various surfaces and NPs, and offers complementary
features such as adsorption site identification and symmetry constraints.

Fig. 2 BEM-AL workflow for deriving SPDs. As specified in the text,
the convergence of the BEM-AL scheme is governed by the
predicted fitness upper envelope and the lower envelope of the
calculated surface free energies.
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symmetry constraints are applied to all adsorbate-related genetic
operations for all EAs in order to explore the configurational space
more efficiently (see Fig. 4c for comparison).
According to the EMT-based surface Pourbaix diagram dis-

played in Fig. 4a, the Pd-Ag(111) surface favors a 1 monolayer (ML)
H* coverage at all hcp sites within the URHE window from -0.5 to
-0.1 V, while a 1 ML O* coverage with the same pattern is favored
at higher electrode potentials. Also, diamond-shaped Pd clusters
are found at the surface and the subsurface for both structures. As
shown in Fig. 4b, the standard EAs struggle to find these two
structures at almost all electrode potentials while 3 out of 5 EM
runs have found them, which may be attributed to the fact that
EM can benefit from knowledge transfer across tasks. In regard to
the BEM-AL, setting κ= 0 results in a premature convergence in all
5 runs, which is as expected since the GP surrogate only learns
from the initial training data. By setting κ to 1 and 2, we are able to
obtain similar results as in the EMT-based EM. The best
performance is found with the ‘balanced’ BEM-AL strategy, where
all 5 runs are able to reproduce the true EMT-based Pd-Ag(111)
surface Pourbaix diagram. Efficiency-wise, we have found that an
EM run on average takes a comparable number of energy
evaluations to converge w.r.t. a standard EA. In general, a larger
population size is recommended for EM, so that every task has
sufficient good candidates present in the population. For the BEM-

AL, although the ‘balanced’ runs sample more configurations in
each BEM iteration, they end up costing a similar number of
energy evaluations as in the κ= 1 and κ= 2 runs due to the fewer
iterations required to converge. In particular, the ‘balanced’ BEM-
AL takes an average of 94 energy evaluations to converge, which
is a 27-fold reduction compared to a ‘brute-force’ EM using the
EMT potential.
We have also obtained the DFT-based surface Pourbaix diagram

of the Pd-Ag(111) surface by performing the ‘balanced’ BEM-AL,
taking only 76 DFT relaxations in total. Here we have considered
11 URHE values ranging from 0.5 to 1.5 V. As shown in Fig. 5a, water
oxidation starts at URHE= 1.29 V, forming a single-atom alloy (SAA)
surface structure due to the O-induced surface Pd segregation.
The adsorption of oxygen atoms first leads to the formation of a
c(2 × 4) orthogonal overlayer pattern (0.25 ML coverage) and
quickly stabilizes at 0.38 ML coverage when increasing the
electrode potential. Considering the dissolution of Ag, the
desirable reaction condition for the Pd-Ag(111) electrocatalyst is
probably at pH = 14 with a standard hydrogen electrode (SHE)
potential window from 0.46 to 0.61 V (see Fig. 5b). Note that here
we have not considered the hydrogen bonds between the surface
and the water layer which may potentially stabilize the surface
OH* species6.

Fig. 4 EMT benchmark results for EM and BEM-AL. a depicts the putative EMT-based Pd-Ag(111) surface Pourbaix diagram at pH = 0
according to all calculations. b shows the EMT-based Pd-Ag(111) surface Pourbaix diagram at pH = 0 found by different EAs (including
standard EA, EM and BEM-AL with different hyperparameter settings). c compares the evolution of the global minimum surface free energy in
a standard EA search at URHE= 0 V with and without symmetry constraints. d shows the average number of EMT energy evaluations required
in different EAs. The error bars in (b, d) and the shaded areas in (b) represent the standard deviations from five repeated searches.
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Pt-Ni SPDs for SMR
We have performed the ‘balanced’ BEM-AL to derive the DFT-
based Pt-Ni(111), (100) and (311) SPDs under a large set of SMR
conditions that are both experimentally and industrially relevant.
Specifically, we consider four S/C ratios (β) ranging from 1 to 4,
seven total pressures (P) ranging from 1 to 30 bar, eight
temperatures (T) ranging from 573 to 1273 K, and seven H2S
concentrations (c) ranging from 0 to 2000 ppm, which are
combined into a total number of 1568 tasks. This set is further
expanded to 15,253 tasks by taking into account the CH4

conversion (a) ranging from 0 to equilibrium with a binning
interval of 0.05 for each task.
As a big picture, we showcase in Fig. 6 the ‘balanced’ BEM-AL

workflow for constructing the Pt-Ni(111) SPD. To provide an
intuitive view of how the most stable adsorbate-alloy configura-
tion evolves as the SMR reaction moves toward equilibrium, we
keep track of the lower envelope of the DFT-calculated surface
free energies as a function of the CH4 conversion under a common
lab-scale SMR condition of c= 0, β= 2, P= 1 bar and T= 973 K.
We have performed 8 iterations of BEM, coupled with 9 DFT
iterations (345 DFT relaxations in total). A relatively large initial
training set of 100 DFT-relaxed configurations is used to ensure
that adequate data are collected before updating the GP posterior,
so that the surrogate model can describe the high-dimensional
PES of such complex system decently well to begin with. The
‘balanced’ sampling strategy is illustrated in Fig. 6g, where the
pure exploitative (κ= 0) tasks return configurations that are
predicted to be the most stable according to the mean predictions
of the current GP model, while the more explorative tasks
(κ= 1, 2) look for configurations that have higher uncertainty. The
progress of each BEM search is reflected by the constant elevation
of the fitness upper envelope until convergence. After each DFT
iteration, we estimate the predictive power of the graphical GP
model by comparing the GP-predicted energies and the actual
DFT-evaluated energies. As can be seen in Fig. 6d, the mean
absolute error (MAE) trends down from 46.9 to 8.6 meV/atom over
the course of the BEM-AL. Note that since all surface free energies
are calculated by DFT, the accuracy of the GP surrogate only
reflects the confidence of finding the actual most stable
adsorbate-alloy configurations. As the GP model is constantly
improved, the fittest configurations suggested by the BEM also
become more and more stable with increasing number of
iterations. This is reflected by the constant descent of the lower
envelope of the calculated surface free energies, while the adlayer

patterns displayed by the on-envelope configurations also
become visibly more ordered.
According to the Pt-Ni(111) SPD w.r.t. CH4 conversion, as

depicted in Fig. 6c, a CO* coverage of 0.5 ML is strongly favored by
the Pt-Ni(111) surface when the conversion is below 0.45. The Pt
atoms are not present on the surface, but instead form a c(2 × 4)
orthogonal pattern in the subsurface. As the reaction progresses, a
lower CO* coverage of 0.25 ML with the c(2 × 4) pattern is favored,
while the Pt atoms start to segregate to the surface to form the
same c(2 × 4) pattern. As the reaction approaches equilibrium, the
c(2 × 4) pattern of surface Pt remains stable, while only a small
amount of H* is present on the surface. In general, CO* always
prefers binding to all-Ni 3-fold hollow sites. The CO* coverage
trends down as the reaction progresses, which makes room for the
subsurface Pt to segregate to the surface. Interestingly, both the Pt
and CO* prefer to form orthogonal lattices despite the fact that a
hexagonal unit cell is used. A previous study has reported that
coke is unlikely to form on the Ni(111) surface74. We have shown
that this is likely also the case for the Pt-doped Ni(111) surfaces.
The SPDs and the most stable adsorbate-alloy configurations

obtained by the BEM-AL for the Pt-Ni(100) and (311) surfaces are
depicted in Supplementary Fig. 11. Severe coking is observed on
the Pt-Ni(100) surface, where C* gradually replaces CO* at the
surface 4-fold hollow sites and forms a distorted 0.5 ML all-C*
adlayer pattern (known as the ‘clock’ reconstruction75) for CH4

conversions above 0.5. Pt atoms tend to abandon the surface as
the C* coverage increases. Coke is also found on the Pt-Ni(311)
surface at the beginning of SMR, blocking half of the 4-fold sites.
The coke formation targets the 4-fold sites due to the high valency
of C, while low valency species such as CO* tends to adsorb on the
bridge and hcp sites, which is in good agreement with a previous
theoretical study on the stepped Ni(211) surface74. Pt segregation
is observed at the surface terrace sites as the CH4 conversion
reaches 0.1, while a stable 0.5 ML hexagonal CO* adlayer pattern is
formed on the surface step sites. At higher conversion, Pt atoms
further segregate to the step sites, while the CO* coverage
stabilizes at 0.25 ML with a triangular pattern.
Next, we illustrate the effect of sulfur poisoning on the Pt-Ni

SPDs in Supplementary Fig. 12. As can be seen, a small amount of
H2S impurity (100 ppm) can lead to the poisoning of all 3 Pt-Ni
surfaces at the early stage of SMR. S* are found to block 25% of
the fcc sites on the (111) surface, 50% of the 4-fold hollow sites on
the (100) surface and 50% of the B5 sites on the (311) surface. This
blocking effect is detrimental for the (311) surface since the B5
sites are reported to be the most active step-edge sites for SMR on

Fig. 5 DFT-based Pd-Ag(111) surface Pourbaix diagrams derived by BEM-AL. a shows the DFT-based Pd-Ag(111) surface Pourbaix diagram
at pH = 0. b shows the DFT-basd 2-dimensional Pd-Ag(111) surface Pourbaix diagram (USHE vs. pH) including Ag dissolution effects. Different
on-envelope configurations are shown in different colors.
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Ni catalysts74,76. Notably, the surface Pt and S* both favor a
hexagonal (2 × 2) lattice on the Pt-Ni(111) surface instead of the
orthogonal lattice observed without H2S.
For a more holistic view of the high-dimensional Pt-Ni SPDs

obtained by the BEM-AL, we map CH4 conversion onto other state
variables such as S/C ratio, total pressure and temperature, as
illustrated in the 2-dimensional phase diagrams for the three
surfaces (see Fig. 7a–c, Supplementary Fig. 13 and 14). The stable
Pt-Ni(111) and (311) surfaces are predominantly covered by pure
CO* under a wide range of reaction conditions, while the Pt-
Ni(100) surface favors either a mixture of CO* and C*, or the
carbon-induced ‘clock’ reconstruction phase as noted in Supple-
mentary Fig. 13. The stability of the Pt-Ni alloy surfaces is generally
less sensitive to the S/C ratio and the pressure than to the CH4

conversion and the temperature. Besides, an earlier poisoning is
observed on the Pt-Ni surfaces when increasing the H2S
concentration.
Based on the lower envelopes of the calculated surface free

energies of the Pt-Ni(111), (100) and (311) surfaces obtained by
the BEM-AL, we are able to perform Gibbs-Wulff constructions
(using the Wulffpack package77) under various reaction conditions
to understand how the nanoalloy shape changes in response to
the chemical environment. As depicted in Fig. 7d and e, the
equilibrium shape of the Pt-doped fcc Ni NP is probed at two CH4

conversions (0.1 and 0.6) under the SMR conditions of 0 and 100
ppm H2S. Without the presence of H2S, the close-packed (111)
facet dominates at higher CH4 conversion, while the higher
adsorption energies at the more open facets such as (311) lead to

Fig. 6 BEM-AL workflow for deriving the DFT-based Pt-Ni(111) SPD. The blue block shows the evolution of the lower envelope of the DFT-
calculated surface free energies w.r.t. CH4 conversion after (a) 1, (b) 2 and (c) 9 DFT iterations. d shows the MAE between the GP-predicted
potential energies and the DFT-evaluated potential energies of the fittest structures derived in each iteration. The red block shows the BEM
global optimization process in the first BEM iteration, where the evolution of the fitness upper envelope is depicted for the pure exploitative
task from (e) the initial generation to (f) the 104th generation, and (g) depicts the `balanced' sampling strategy for 3 tasks with a= 0.5 and
κ= 0, 1, 2. Different on-envelope configurations are shown in different colors. The perspective is fixed at the SMR condition of c= 0, β= 2,
P= 1 bar, T= 973 K.
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a rounding of the crystallite at low conversion. In contrast to the
rather low stability of the (100) facet under c= 0 condition, the
sulfur-poisoned (100) facet quickly becomes so stable that the NP
is reshaped into almost a cube with the presence of only 100 ppm
H2S in the gas phase. This reshaping phenomenon, which has
already been reported experimentally78, indicates that the sulfur
poisoning not only deactivates reactions by blocking the active
sites, but also by faceting the active Ni crystal planes into less
active ones.
We conclude this section with a discussion of the limitation of

our BEM method. First, despite the fact that the graphical GP
model is always trained on the relaxed structures and a
discrepancy in the graph representation is allowed between the
relaxed and the unrelaxed structures, the hope is that the
discrepancy is not too large so that the model training can still
benefit the predictions on the unrelaxed structures generated
automatically during the BEM. However, this may become
problematic if there are drastic events happening at the surface,
e.g. dealloying and leaching79,80. Furthermore, the accuracy of the
BEM approach depends on the thermodynamic formulation of the
fitness function. The thermodynamic equilibrium assumption
directly affects the results one can get from the BEM. Also, since
the role of configurational entropy becomes increasingly impor-
tant as the temperature elevates, an alloy surface (including
adsorbates) may favor disordered configurations over ordered
ones at sufficiently high temperatures. In the SMR case study, we
have used a mean-field approximation for the configurational
entropy which only distinguishes between different compositions.
This means that our BEM will favor mixed compositions at higher

temperatures, but still tends to find the most ordered configura-
tion at that composition. An accurate estimation of the config-
urational entropy, however, requires a prohibitively large number
of energy calculations to evaluate the configurational density of
states81, which is intrinsically incompatible with our BEM high-
throughput global optimization scheme.

METHODS
Evolutionary multitasking via dynamic niching
Let f(x) denote the general fitness function that describes the
thermodynamic stability of a configuration x, let θ1,…, θn denote
the n continuous state variables, the construction of a phase
diagram then requires finding a set of solutions X* that maximizes
a global fitness function F(X), defined as the multiple integral of
the upper envelope (i.e. pointwise maximum) of the set of fitness
functions given by configurations X over the n-dimensional
domain of all bounded state variables:

FðXÞ ¼
Z

D1

� � �
Z

Dn

max
x2X

f x; θ1; ¼ ; θnð Þ dθ1 � � �dθn (1)

where D1; ¼ ;Dn are the bounded domains of the n state
variables θ1,…, θn, respectively. As it is intractable to solve for X*

directly in the whole configurational space, we resort to EM
heuristics to derive a set of ‘good enough’ solutions for all possible
combinations of the n bounded state variables.
For multifactorial optimization problems with continuous

parameters, one can achieve multitasking by binning the
parameters into B1,…, Bn discrete points over the corresponding

Fig. 7 DFT-based Pt-Ni alloy SPDs concerning various state variables, derived by BEM-AL. The most stable Pt-Ni(111) surface configurations
obtained after 9 DFT iterations are plotted in different colors in (a) β-a, (b) P-a and (c) T-a phase diagrams under the SMR condition of c= 0
with 2 of the 3 other state variable values: β= 2, P= 1 bar, T= 973 K. In the bottom half of the figure, the lower envelopes of the calculated
surface free energies w.r.t. CH4 conversion under the SMR conditions of (d) c= 0 and (e) c= 100 ppm (both with β= 2, P= 1 bar, T= 973 K) are
shown for the Pt-Ni(111), (100) and (311) surfaces after 9, 8 and 8 DFT iterations, respectively. The equilibrium nanoalloy shapes are obtained
at CH4 conversions of 0.1 and 0.6 by Gibbs-Wulff constructions, where the facet colors are consistent with the corresponding lower envelopes.
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domains of D1; ¼ ;Dn. This will generate k ¼ Qn
i¼1 Bi tasks in

total, where each task represents a unique condition. The binning
can be applied evenly or unevenly, but the choice of the interval
directly affects the resolution of the final result. A general rule is to
bin each parameter based on the sensitivity of the fitness function
to that parameter. Binning with small intervals can potentially find
more solutions while inevitably slows down the search.
Given the multimodality of our multifactorial global optimiza-

tion problem, it is natural to apply niching82 in EM to maintain the
diversity of the population. In a niching scheme, each task t can be
conveniently assigned to a unique niche represented by an n-
dimensional vector nt ¼ ðθt1; ¼ ; θtnÞ. By assigning equal fitness to
the fittest candidates across k niches, we can end up locating a set
of solutions that covers all possible conditions irrespective of their
relative fitness82. A classical niche EA, however, is no longer
suitable for multifactorial global optimization problems due to the
fact that there is no intrinsic property (e.g. composition) for
classifying the individuals. Instead, we introduce a maximum-gain
dynamic niching (MGDN) algorithm for EM, as described in
Supplementary Algorithm 1.
Given k niches, there are also k tiers of fitness evaluation

associated with each individual x. The gist of the MGDN algorithm is
to assign each new individual to only one dominating niche that has
undergone the maximum gain in raw fitness w.r.t. the upper
envelope before adding the individual to the database, and then
apply a standard niching routine. To generate offsprings, parents are
selected based on the individual ranking within the niche they are
assigned to. After adding a new individual, the assigned niche of
every existing individual is renewed by its maximum-gain niche (or,
more precisely, minimum-loss niche) w.r.t. the updated upper
envelope. The existing individuals are also subject to niche
migration, depending on whether the assigned niche is a
dominating niche. An effective fitness, given by the minimum
difference between the raw fitness of the assigned niche and the
updated upper envelope, is then used as the criterion for evaluating
individual merits. In a MGDN-EM, we track the number of individuals
in the database, d, and store the raw fitness of each individual at

each niche in a d × kmatrix F. Subsequently, we use a d × k dynamic
matrix that only allows one entry per row, namely Feff, to record the
effective fitness and the assigned niche for each individual x. Similar
to a standard EA, the MGDN-EM converges when the population is
stagnated for a number of generations successively.
To exemplify, we illustrate in Fig. 8 the evolution of the assigned

niches and the effective fitness during the consecutive addition of 3
individuals x1, x2 and x3 when applying the MGDN algorithm. Once
the first individual x1 enters the database, it is assigned to the
maximum-gain niche n1, where the effective fitness is calculated to
be 0. Likewise, the next added individual x2 is assigned to n3 with an
effective fitness of 0. The addition of x2 does not change the
effective fitness of x1 since they both contribute to the upper
envelope. After adding x3, however, the fitness of x1 and x2 are
completely dominated by x3 over all 3 niches. As a result, x3 is
assigned to n3 with an effective fitness of 0, while the effective
fitness of x1 and x2 are now calculated to be negative at n1 – the
niche with the minimum fitness loss. Finally, we apply fitness sharing
by forcing the assigned niches of x1 and x2 to both migrate to the
dominating niche assigned with x3. This ensures that the merits of
the 3 individuals are compared within a same niche n3, i.e.,
comparing all effective fitness scores in the third column of Feff.

Graphical Gaussian process surrogate
Given an adsorbate-alloy configuration x, we can represent it as a
graph G by converting the atoms into nodes V and assigning
unweighted edges E between nodes that are not apart more than
a cutoff. We can then assign an initial label to each node by a label
function ℓ0 : V ! L0 based on the type of the corresponding
atoms. In the next iteration h= 1, a new label function ℓ1 is
obtained by performing a procedure named color refinement
(also known as the 1-dimensional Weisfeiler-Lehman algorithm)83,
shown in Supplementary Algorithm 3. This procedure is then
reiterated until reaching the maximum iteration H, where the
nodes in each graph are labeled with distinct ‘colors’ in each
iteration h. This approach was originally proposed as a test of

Fig. 8 Illustration of the MGDN-EM algorithm. The raw fitness, effective fitness and the niche assignment are depicted as 3 new
configurations, (a) x1, (b) x2 and (c) x3, being added consecutively into the database in a 1-factorial (i.e. θ) global optimization employing the
MGDN-EM algorithm. Different on-envelope configurations are depicted in different colors. The dominating niche with the maximum gain
after adding each configuration is indicated by the red arrow. F and Feff are the matrices storing the raw fitness and the effective fitness,
respectively.
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graph isomorphism83, but was recently implemented as graph
kernels in kernel-based models for mainly classification tasks84.
Since the color refinement takes the neighborhood (i.e. the

1-hop neighbors) of each node into consideration, the node labels
after each iteration can thus serve as fingerprints of the local
chemical environment of the corresponding atoms. With more
iterations, the local environment can be refined by message
passing from longer distances. We hereby generalize a feature
vector x for the graph in each iteration by counting the nodes in
each ‘color’. For each iteration h > 0, we adapt the feature vector
to our regression task by assigning a weight wh bounded between
0 and 1. The kernel function between two configurations x and x0
can then be defined as a linear combination of the inner products
of the feature vectors x and x0 at all iterations:

Kðx; x0Þ ¼ xT0x
0
0 þ

XH
h¼1

whxThx
0
h (2)

Since the weights are all non-negative, the kernel still returns an
inner product of the transformed feature vectors and therefore is a
valid Mercer kernel85.
Using Eq. (2) as the kernel function, we employ a graphical GP

regression model as the surrogate in our BEM. Given some DFT-
relaxed adsorbate-alloy configurations X and the corresponding
electronic energies y, we can estimate directly the relaxed electronic
energy of a new configuration x by the mean function of the GP,

μðxÞ ¼ kTxX KXX þ λIð Þ�1y (3)

with an uncertainty quantification given by the variance

σ2ðxÞ ¼ Kðx; xÞ � kT
xX KXX þ λIð Þ�1kxX (4)

where kxX is the covariance vector between the new configuration x
and the training configurations X, KXX is the Gram matrix of X, λ is a
regularization term accounting for the noise of the training
observations. Both λ and the weighting factors w1,…,wH are
treated as hyperparameters θ and are jointly optimized by

maximizing the log marginal likelihood of the N training data (X, y):

log pðyjX; θÞ ¼ � 1
2 y� μðXÞð ÞT KXX þ λIð Þ�1 y� μðXÞð Þ

� 1
2 log KXX þ λIj j � N

2 log 2π
(5)

Given the unit cell size of our surface atomistic models, we find
that a maximum iteration H= 3 is sufficient to distinguish
between any non-automorphic adsorbate-alloy configurations.
This suggests that the automorphic duplicates generated
throughout the BEM can be easily identified by checking the
following equality for every pair of configurations:

Kðx; x0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðx; xÞKðx0; x0Þ

p
(6)

Besides, this also gives the important implication that our
graphical GP model is able to describe any adsorbate-adsorbate
interactions. As an example, we illustrate in Fig. 9 how the color
refinement process generates different feature vectors for two
adsorbate-catalyst configurations with slightly different adsorbate-
adsorbate interactions. At iteration 0, the feature vectors are
identical for both configurations as they both contain 9 Ni atoms
and 2 O atoms. After one color refinement step, the feature
vectors start to deviate, and become more disparate at higher
iterations. With an increasing number of different adsorbate
species, the feature vectors will be prolonged in each iteration, but
the dimensionality of the general kernel function will not be
affected thanks to the form of inner product.

Fitness function for alloy surface stability
For a binary alloy system consisting of a dopant metal A and a
host metal B, we can model the alloy surface by an asymmetric
periodic slab with the bottom layer fixed to the positions and
composition of a bulk reference. The surface can then be assumed
to be in equilibrium with underlying bulk and liquid/gas phase
reservoirs3. In this 3-component system, the alloy surface is
allowed to exchange metal atoms with the bulk reservoirs,

Fig. 9 Illustration of the color refinement. The graph representations and feature vectors after 0, 1 and 2 iterations of color refinement are
depicted for 2 similar adsorbate-catalyst configurations (a) and (b). Different types of atoms are encoded into different integers and are
represented as differently colored nodes. In each color refinement iteration, all nodes and their 1-hop neighbors are further compressed into
new integers to refine the colors of the nodes.
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meanwhile the adsorbates can exchange atoms with the liquid/
gas phase reservoirs. This formulation allows an explicit assess-
ment of the thermodynamic stability of an A-B alloy surface
structure x in reactive environments using the surface free energy
at a given reaction condition (θ1,…, θn):

γðx; θ1; ¼ ; θnÞ ¼ 1
Asurf

Gads=slabðxÞ � NAðslabÞðxÞ � μA � NBðslabÞðxÞ � μB
�

�P
i

NiðadsÞðxÞ � μiðθ1; ¼ ; θnÞ
� ��� γref

(7)

where Asurf is the cross-sectional surface area of the slab’s unit cell,
Gads/slab(x) is the total Gibbs free energy of the adsorbate-covered
slab, NA(slab)(x) and NB(slab)(x) are the numbers of dopant and host
metal atoms in the slab, μA and μB are the corresponding metal
chemical potentials, Ni(ads)(x) is the number of non-metal atom i
present in the surface adsorbates, μi(θ1,…, θn) is the chemical
potential of this atom at the given reaction condition, and γref is
the surface free energy of the reference clean slab (representing
the bottom surface) which needs to be subtracted from the total
surface free energy. We can calculate γref as

γref ¼
1

2Asurf
GrefðslabÞ � NslabμrefðbulkÞ

� �
(8)

where Gref(slab) is the Gibbs free energy of the reference slab, Nslab

is the total number of atoms in the slab, μref(bulk) is the chemical
potential of the bulk reference.
In this work, we use the pure host metal B as the reference. To

relate the chemical potentials of both metals to the underlying bulk
B reservoir, we can rewrite Eq. (7) by replacing the chemical
potentials of every metal atom in the surface with that of the bulk B,
then accounting for the free energy change arisen from doping A:

γðx; θ1; ¼ ; θnÞ ¼ 1
Asurf

Gads=slabðxÞ � NslabμBðbulkÞ � NAðslabÞðxÞ � ΔμA�B

h

�P
i

NiðadsÞðxÞ � μiðθ1; ¼ ; θnÞ
� ��� γB

(9)

where ΔμA−B= μA− μB is the chemical potential difference
between A and B. According to the derivation in Ref. 3, the value
of ΔμA−B essentially reflects the changing rate of the chemical
potential of the bulk B in response to an increment of A content.
In this work, since we consider doping A at low levels into B, the A
content in the bulk is assumed to be no higher than 25%. This
allows us to approximate ΔμA-B by referencing to the chemical
potentials of the bulk B and the stoichiometric AB3 bulk alloy
(which serves as another stable bulk reservoir):

ΔμA�B ¼ �
μAB3ðbulkÞ � μBðbulkÞ

3=4� 1
¼ 4 μAB3ðbulkÞ � μBðbulkÞ

� �
(10)

Next, the Gibbs free energy of the surface, including the
adsorbates, can be written as

Gads=slab ¼ Eelecads=slab þ Fvibads þ Fvibslab � T Sconfads þ Sconfslab

� �þ PV (11)

where Eelecads=slab is the electronic energy of the adsorbate-covered
slab, Fvibads and Sconfads are respectively the vibrational free energy
term (including zero-point energies) and the configurational
entropy of the adsorbates, Fvibslab and Sconfslab are those of the surface,
and PV is the volume term that can be neglected for transition
metal alloy systems86. Combining Eqs. (8) to (11), we arrive at

γðx; θ1; ¼ ; θnÞ ¼ 1
Asurf

Eelecads=slabðxÞ þ FvibadsðxÞ þ FvibslabðxÞ � NslabμBðbulkÞ
h

� 4NAðslabÞðxÞ � μAB3ðbulkÞ � μBðbulkÞ
� �

�P
i

NiðadsÞðxÞ � μiðθ1; ¼ ; θnÞ
� �� T Sconfslab ðxÞ

�

þ Sconfads ðxÞ
�� 1

2 EelecBðslabÞ þ FvibBðslabÞ � NslabμBðbulkÞ
� �i

(12)

Regarding the vibrational free energy terms for the adsorbates,
since there is no significant variation between different types or
chemical environment of the sites, we will only distinguish
between different adsorbate species. For each species considered,
we calculate the vibrational free energy term in the harmonic limit
with the adsorbate bound to a representative site (see SI for DFT-
calculated terms). At high coverages, the total vibrational free
energy of all adsorbates is simply approximated by summing all
individual terms. For the vibrational free energy terms of the
surface and the bulk structures, we here assume they do not vary
much with different metal compositions. Moreover, pairs of terms
involving vibrational free energy calculations, e.g.,
FvibslabðxÞ � NslabμBðbulkÞ, μAB3ðbulkÞ � μBðbulkÞ and FvibBðslabÞ � NslabμBðbulkÞ,
can cancel out one another to a large extent. Therefore, we decide
to neglect all vibrational free energy terms for the surface and the
bulk structures to avoid computationally expensive phonon
calculations. This gives us the final working equation for the
surface free energy of a dilute A-B alloy system:

γðx; θ1; ¼ ; θnÞ ¼ 1
Asurf

Eelecads=slabðxÞ þ FvibadsðxÞ � NslabEelecBðbulkÞ � 4NAðslabÞðxÞ �
h

EelecAB3ðbulkÞ � EelecBðbulkÞ
� �

�P
i

NiðadsÞðxÞ � μiðθ1; ¼ ; θnÞ
� �

�T Sconfslab ðxÞ þ Sconfads ðxÞ
� �� 1

2 EelecBðslabÞ � NslabEelecBðbulkÞ
� �i

(13)

where EelecBðbulkÞ and EelecAB3ðbulkÞ are the per-atom electronic energies of
the bulk structures.
Under the assumption that the surface is in equilibrium with the

liquid/gas phase, one can directly link the surface free energy to
the reaction condition, (θ1,…, θn), through the chemical potential
of each type of non-metal atom i, μi. Details of how we relate these
chemical potentials to various reaction conditions in ORR and SMR
can be found in the SI. We also provide discussions in the SI
regarding the treatment of configurational entropy and the
equivalence of our thermodynamic formulation to a semi-grand
canonical MC.
In our BEM scheme, we ascribe a probability distribution of the

relaxed electronic energy, Eelecads=slabðxÞ, to each adsorbate-alloy
configuration x. This enables us to formulate the fitness function
of the BEM using a Bayesian acquisition function commonly used
in Bayesian optimization. Here we combine the Upper Confidence
Bound (UCB) acquisition function with the surface free energy
formulation in Eq. (13), and arrive at our task-dependent raw
fitness function in the form of

f ðx; κ; θ1; ¼ ; θnÞ ¼ � 1
Asurf

μðxÞ � κσðxÞ þ FvibadsðxÞ � NslabEelecBðbulkÞ � 4NAðslabÞðxÞ �
h

EelecAB3ðbulkÞ � EelecBðbulkÞ
� �

�P
i

NiðadsÞðxÞ � μiðθ1; ¼ ; θnÞ
� �

�T Sconfslab ðxÞ þ Sconfads ðxÞ
� �� 1

2 EelecBðslabÞ � NslabEelecBðbulkÞ
� �i

(14)

where κ is the trade-off parameter that determines the weight of
uncertainty over the predicted mean. Note that when the search
space is not completely shared by all tasks, a large penalty must
be imposed to the fitness function for tasks that represent a
mismatch between the queried configuration and the correspond-
ing search space, e.g. the presence of S* under zero H2S
conditions.
As has been discussed in ref. 59, one can control the balance

between exploiting more stable configurations and exploring
uncertain configurations by varying κ. A BEA run with a low κ
value tends to stagnate its population much faster than those with
higher κ values, while it also has a propensity to stuck in a local
optimum and consequently suffering from a premature conver-
gence. Since it is non-trivial to know the optimal κ beforehand, the
common practice is to perform multiple BEA runs with various κ
values ranging from low to high. However, learning from the idea
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of EM, we can simply consider κ as an additional ‘state variable’
and perform an ‘exploration-exploitation-balanced’ BEM in a
single run by incorporating a vectorized κ with different values.
Any other acquisition function with a trade-off parameter, e.g.,
expected improvement (EI), would also be applicable in such a
multitasking setup.

Computational details
All DFT calculations have been performed using VASP87,88 with the
spin-polarized revised Perdew-Burke-Ernzerhof89 (RPBE)
exchange-correlation functional. The force convergence criterion
for relaxation tasks is set to 0.05 eV/Å. The valence electrons are
treated explicitly and the ionic cores are described by the
projector augmented wave (PAW) potentials90. A plane-wave
basis set is used with a kinetic energy cutoff of 500 eV and a
Gaussian smearing with a width of 0.1 eV. The energy
convergence criterion is set to 10−6 eV. For each adsorbate-alloy
configuration, we model the system by a 4 × 4 × 4 periodic slab
with a 10 Å vacuum layer in the z-direction and sample the first
Brillouin zone by a 5 × 5 × 1 Monkhorst-Pack k-point mesh91.
Vibrational frequencies for gas phase molecules and surface
bound adsorbate species are calculated using the finite difference
method with a step size of 0.01 Å.
We have carried out BEM searches using our ACAT implementa-

tion in conjunction with ASE66. To generate unweighted graph
representations for the graphical GP model, we use a cutoff of
rc= r1+ r2+ 0.75 Å, where r1 and r2 are the covalent radii of two
neighboring atoms. When training the graphical GP model, we
also jointly optimize all hyperparameters (w1, w2, w3 and λ) using a
GP hyperparameter tuning implementation (A. L. Vishart, personal
communication, August 9, 2021). All structure generation and BEM
runs are performed with symmetry constraints using ACAT. In
detail, we use the RandomOrderingGenerator (for alloy
surfaces) and OrderedPatternGenerator (for adlayer pat-
terns) to generate the initial population, the RandomSlabPer-
mutation and RandomCompositionMutation operators to
mutate respectively the chemical ordering and the composition of
alloy surfaces, the AdsorbateGroupSubstitute, Adsorba-
teGroupPermutation and ReplaceAdsorbateSpecies
operators to mutate adlayer patterns with symmetry constraints,
and the CatalystAdsorbateCrossover operator to mate
between the catalyst of one structure and the adlayer of another.
To ensure the symmetry constraints can be applied to all
adsorbate-alloy configurations generated during the BEM, we
search and predict energetics strictly on the unrelaxed structures,
whereas the graphical GP surrogate is always trained w.r.t. the
relaxed structures. A WLGraphComparator is used to identify
duplicate adsorbate-alloy configurations. Optimally, the hyper-
parameters of a BEM run, in particular the task settings and the
population size, should be chosen according to the solution space
of the system. However, one would not know the actual solutions
without completing the full BEM-AL. Here we instead heuristically
set the hyperparameters based on the solutions found in the first
BEM iteration (i.e. employing the initial GP model). The parameters
of the tasks are set to their most chemically-relevant ranges and
the tasks are generated by binning evenly with a predefined
resolution. As for the population size, we start from testing a large
population size of 400, and then gradually reduce the size until
the BEM cannot find the same number of solutions. Using this rule,
we have set the population size to 50 and 300 in the BEM search
of the alloy SPDs for ORR and SMR, respectively. H*, O* and OH*
are considered as possible adsorbate species in the ORR case,
while H*, C*, O*, S*, CH*, OH* and CO* are considered in the SMR
case. In both cases, only a maximum of two different adsorbate
species are allowed to present on each surface. We also set the
minimum adsorbate-adsorbate distance allowed in the BEM
search to 2 Å by removing all neighboring sites within a 2 Å

radius (e.g. 1 neighboring shell for fcc(111) sites and 2
neighboring shells for fcc(100) sites), which effectively sets the
coverage upper bound to 1 ML. Note that the minimum coverage
is set to 0, i.e., clean slabs are still allowed. No bridge sites are
considered for fcc(111) surfaces, as they are found to be unstable
when binding the considered adsorbate species. The dopant is
only allowed to enter the top 3 surface layers and its content is
limited to be no higher than 25% in each layer considering the
low dopant loading. This is also to prevent the surface energy
from being strongly affected by the strain effect. Each EA run
(including standard EA, EM and BEM) converges after the whole
population stagnates for 2 consecutive generations. The BEM-AL
for the ORR and the SMR case studies proceeds until there is no
update to the lower envelope for 5 and 2 consecutive iterations,
respectively.

DATA AVAILABILITY
The scripts for running BEM and the data generated in this study are available at
https://doi.org/10.5281/zenodo.7862096.

CODE AVAILABILITY
The ACAT code and the graph kernel used in the graphical GP model are available at
the following GitLab repository: https://gitlab.com/asm-dtu/acat.

Received: 5 August 2022; Accepted: 19 July 2023;

REFERENCES
1. Reuter, K. & Scheffler, M. Composition and structure of the RuO2(110) surface in

an O2 and CO environment: Implications for the catalytic formation of CO2. Phys.
Rev. B 68, 045407 (2003).

2. Reuter, K. & Scheffler, M. Oxide formation at the surface of late 4d transition
metals: insights from first-principles atomistic thermodynamics. Appl. Phys. A 78,
793–798 (2004).

3. Kitchin, J. R., Reuter, K. & Scheffler, M. Alloy surface segregation in reactive
environments: First-principles atomistic thermodynamics study of Ag3Pd(111) in
oxygen atmospheres. Phys. Rev. B 77, 075437 (2008).

4. Medford, A. J., Vojvodic, A., Studt, F., Abild-Pedersen, F. & Nørskov, J. K. Ele-
mentary steps of syngas reactions on Mo2C(001): Adsorption thermochemistry
and bond dissociation. J. Catal. 290, 108–117 (2012).

5. Cao, J. et al. In situ observation of oscillatory redox dynamics of copper. Nat.
Commun. 11, 3554 (2020).

6. Hansen, H. A., Rossmeisl, J. & Nørskov, J. K. Surface pourbaix diagrams and oxy-
gen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem.
Chem. Phys. 10, 3722–3730 (2008).

7. Vinogradova, O., Krishnamurthy, D., Pande, V. & Viswanathan, V. Quantifying
confidence in DFT-predicted surface pourbaix diagrams of transition-metal
electrode-electrolyte interfaces. Langmuir 34, 12259–12269 (2018).

8. Lausche, A. C. et al. On the effect of coverage-dependent adsorbate–adsorbate
interactions for CO methanation on transition metal surfaces. J. Catal. 307,
275–282 (2013).

9. Yang, N. et al. Intrinsic selectivity and structure sensitivity of rhodium catalysts for
C2+ oxygenate production. J. Am. Chem. Soc. 138, 3705–3714 (2016).

10. Zhou, M. & Liu, B. First-principles investigation of adsorbate–adsorbate interac-
tions on Ni(111), Ni(211), and Ni(100) surfaces. Ind. Eng. Chem. Res. 56, 5813–5820
(2017).

11. Bohra, D. et al. Lateral adsorbate interactions inhibit HCOO− while promoting CO
selectivity for CO2 electrocatalysis on silver. Angew. Chem. Int. Ed. 58, 1345–1349
(2019).

12. Wu, T., Vegge, T. & Hansen, H. A. Improved electrocatalytic water splitting reaction on
CeO2(111) by strain engineering: A DFT+U study. ACS Catal. 9, 4853–4861 (2019).

13. Wu, T., López, N., Vegge, T. & Hansen, H. A. Facet-dependent electrocatalytic
water splitting reaction on CeO2: A DFT + U study. J. Catal. 388, 1–10 (2020).

14. Somorjai, G. & Hove, M. V. Adsorbate-induced restructuring of surfaces. Prog. Surf.
Sci. 30, 201–231 (1989).

15. Myshlyavtsev, A. V. & Zhdanov, V. P. The effect of adsorbate-induced surface
reconstruction on the apparent Arrhenius parameters for desorption. J. Chem.
Phys. 92, 3909–3916 (1990).

S. Han et al.

12

npj Computational Materials (2023)   139 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.5281/zenodo.7862096
https://gitlab.com/asm-dtu/acat


16. Somorjai, G. A. The structure sensitivity and insensitivity of catalytic reactions in
light of the adsorbate induced dynamic restructuring of surfaces. Catal. Lett. 7,
169–182 (1991).

17. Hopkinson, A., Bradley, J. M., Guo, X. & King, D. A. Nonlinear island growth
dynamics in adsorbate-induced restructuring of quasihexagonal reconstructed
Pt{100} by CO. Phys. Rev. Lett. 71, 1597–1600 (1993).

18. Gardner, P., Tüshaus, M., Martin, R. & Bradshaw, A. M. The adsorbate-induced
removal of the Pt{100} surface reconstruction Part I: NO. Surf. Sci. 240, 112–124
(1990).

19. Martin, R., Gardner, P. & Bradshaw, A. The adsorbate-induced removal of the
Pt{100} surface reconstruction. Part II: CO. Surf. Sci. 342, 69–84 (1995).

20. Harrison, M. J. et al. Adsorbate-induced surface reconstruction and surface-stress
changes in CO(100)/O: Experiment and theory. Phys. Rev. B 74, 165402 (2006).

21. McCrum, I. T., Bondue, C. J. & Koper, M. T. M. Hydrogen-induced step-edge rough-
ening of platinum electrode surfaces. J. Phys. Chem. Lett. 10, 6842–6849 (2019).

22. Honkala, K., Pirilä, P. & Laasonen, K. CO and NO adsorption and co-adsorption on
the Pd(111) surface. Surf. Sci. 489, 72–82 (2001).

23. Wallace, W. T. & Whetten, R. L. Coadsorption of CO and O2 on selected gold
clusters: Evidence for efficient room-temperature CO2 generation. J. Am. Chem.
Soc. 124, 7499–7505 (2002).

24. Ma, Z.-Y. et al. Density functional theory study of CO and hydrogen co-adsorption
on the Fe(111) surface. J. Phys. Chem. C 111, 4305–4314 (2007).

25. Qian, J., An, Q., Fortunelli, A., Nielsen, R. J. & Goddard, W. A. Reaction mechanism
and kinetics for ammonia synthesis on the Fe(111) surface. J. Am. Chem. Soc. 140,
6288–6297 (2018).

26. Greeley, J. & Mavrikakis, M. Alloy catalysts designed from first principles. Nat.
Mater. 3, 810–815 (2004).

27. Menning, C. A., Hwu, H. H. & Chen, J. G. Experimental and theoretical investiga-
tion of the stability of Pt-3d-Pt(111) bimetallic surfaces under oxygen environ-
ment. J. Phys. Chem. B 110, 15471–15477 (2006).

28. Tao, F. et al. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nano-
particles. Science 322, 932–934 (2008).

29. Andersson, K. J., Calle-Vallejo, F., Rossmeisl, J. & Chorkendorff, I. Adsorption-driven
surface segregation of the less reactive alloy component. J. Am. Chem. Soc. 131,
2404–2407 (2009).

30. Mayrhofer, K. J. J., Juhart, V., Hartl, K., Hanzlik, M. & Arenz, M. Adsorbate-induced
surface segregation for core-shell nanocatalysts. Angew. Chem. Int. Ed. 48,
3529–3531 (2009).

31. West, P. S., Johnston, R. L., Barcaro, G. & Fortunelli, A. The effect of CO and H
chemisorption on the chemical ordering of bimetallic clusters. J. Phys. Chem. C
114, 19678–19686 (2010).

32. Christoffersen, E., Stoltze, P. & Nørskov, J. Monte Carlo simulations of adsorption-
induced segregation. Surf. Sci. 505, 200–214 (2002).

33. Han, B. C., Van der Ven, A., Ceder, G. & Hwang, B.-J. Surface segregation and
ordering of alloy surfaces in the presence of adsorbates. Phys. Rev. B 72, 205409
(2005).

34. Kerscher, T. C., Landgraf, W., Podloucky, R. & Müller, S. Adsorbate-induced seg-
regation: First-principles study for C/Pt25Rh75(100). Phys. Rev. B 86, 195420 (2012).

35. Wang, L.-L., Tan, T. L. & Johnson, D. D. Configurational thermodynamics of alloyed
nanoparticles with adsorbates. Nano Lett. 14, 7077–7084 (2014).

36. Zhu, B., Creuze, J., Mottet, C., Legrand, B. & Guesmi, H. CO adsorption-induced
surface segregation and formation of Pd chains on AuPd(100) alloy: Density
functional theory based Ising model and Monte Carlo simulations. J. Phys. Chem.
C 120, 350–359 (2015).

37. Cao, L., Li, C. & Mueller, T. The use of cluster expansions to predict the structures
and properties of surfaces and nanostructured materials. J. Chem. Inf. Model 58,
2401–2413 (2018).

38. Ekborg-Tanner, P. & Erhart, P. Hydrogen-driven surface segregation in Pd alloys
from atomic-scale simulations. J. Phys. Chem. C 125, 17248–17260 (2021).

39. Liu, M., Yang, Y. & Kitchin, J. R. Semi-grand canonical Monte Carlo simulation of
the acrolein induced surface segregation and aggregation of AgPd with machine
learning surrogate models. J. Chem. Phys. 154, 134701 (2021).

40. Doležal, T. D. & Samin, A. J. Adsorption of oxygen to high entropy alloy surfaces
for up to 2 ML coverage using density functional theory and monte carlo cal-
culations. Langmuir 38, 3158–3169 (2022).

41. Lysgaard, S.Computational analysis of gas-solid interactions in materials for energy
storage and conversion. Ph.D. thesis (2013).

42. Liu, S., Zong, J., Zhao, Z.-J. & Gong, J. Exploring the initial oxidation of Pt, Pt3Ni,
Pt3Au (111) surfaces: a genetic algorithm based global optimization with density
functional theory. Green. Chem. Eng. 1, 56–62 (2020).

43. Deshpande, S., Maxson, T. & Greeley, J. Graph theory approach to determine
configurations of multidentate and high coverage adsorbates for heterogeneous
catalysis. npj Comput. Mater. 6, 79 (2020).

44. Tepesch, P. D., Garbulsky, G. D. & Ceder, G. Model for configurational thermo-
dynamics in ionic systems. Phys. Rev. Lett. 74, 2272–2275 (1995).

45. Chang, J. H. et al. CLEASE: a versatile and user-friendly implementation of cluster
expansion method. J. Phys. Condens. Matter 31, 325901 (2019).

46. Herder, L. M., Bray, J. M. & Schneider, W. F. Comparison of cluster expansion
fitting algorithms for interactions at surfaces. Surf. Sci. 640, 104–111 (2015).

47. Nguyen, A. H., Rosenbrock, C. W., Reese, C. S. & Hart, G. L. W. Robustness of the
cluster expansion: Assessing the roles of relaxation and numerical error. Phys. Rev.
B 96, 014107 (2017).

48. Sun, D., Zhao, Y., Su, H. & Li, W. An atomistic thermodynamics study of the
structural evolution of the Pt3Ni(111) surface in an oxygen environment. Chinese
J. Catal. 34, 1434–1442 (2013).

49. Ghanekar, P. G., Deshpande, S. & Greeley, J. Adsorbate chemical environment-
based machine learning framework for heterogeneous catalysis. Nat. Commun.
13, 5788 (2022).

50. Saadi, S. et al. First-principles investigations of Ni3Al(111) and NiAl(110) surfaces
at metal dusting conditions. Surf. Sci. 605, 582–592 (2011).

51. Herron, J. A. & Mavrikakis, M. On the composition of bimetallic near-surface alloys
in the presence of oxygen and carbon monoxide. Catal. Commun. 52, 65–71
(2014).

52. Liu, Y., Duan, Z. & Henkelman, G. Computational design of CO-tolerant Pt3M
anode electrocatalysts for proton-exchange membrane fuel cells. Phys. Chem.
Chem. Phys. 21, 4046–4052 (2019).

53. Svenum, I.-H., Herron, J. A., Mavrikakis, M. & Venvik, H. J. Pd3Ag(111) as a model
system for hydrogen separation membranes: Combined effects of CO adsorption
and surface termination on the activation of molecular hydrogen. Top. Catal. 63,
750–761 (2020).

54. Ke, H., Li, T., Lu, P., Frankel, G. S. & Taylor, C. D. First-principles modeling of the
repassivation of corrosion resistant alloys: Part II. surface adsorption isotherms for
alloys and the chloride susceptibility index. J. Electrochem. Soc 167, 111501
(2020).

55. Trindell, J. A., Duan, Z., Henkelman, G. & Crooks, R. M. AuxPd300−x alloy nano-
particles for the oxygen reduction reaction in alkaline media. ChemElectroChem 7,
3824–3831 (2020).

56. Gupta, A., Ong, Y.-S. & Feng, L. Multifactorial evolution: Toward evolutionary
multitasking. IEEE Trans. Evol. Comput. 20, 343–357 (2016).

57. Ong, Y.-S. & Gupta, A. Evolutionary multitasking: A computer science view of
cognitive multitasking. Cognit. Comput. 8, 125–142 (2016).

58. Han, S. et al. Unfolding the structural stability of nanoalloys via symmetry-
constrained genetic algorithm and neural network potential. npj Comput. Mater.
8, 121 (2022).

59. Jørgensen, M. S., Larsen, U. F., Jacobsen, K. W. & Hammer, B. Exploration versus
exploitation in global atomistic structure optimization. J. Phys. Chem. A 122,
1504–1509 (2018).

60. Jennings, P. C., Lysgaard, S., Hummelshøj, J. S., Vegge, T. & Bligaard, T. Genetic
algorithms for computational materials discovery accelerated by machine
learning. npj Comput. Mater. 5, 46 (2019).

61. Zhang, B.-T. A bayesian framework for evolutionary computation. In Proceedings
of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1,
722–728 (1999).

62. Buche, D., Schraudolph, N. & Koumoutsakos, P. Accelerating evolutionary algo-
rithms with Gaussian process fitness function models. IEEE Trans. Syst. Man
Cybern. 35, 183–194 (2005).

63. Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and community chal-
lenges. ACS Catal. 11, 6059–6072 (2021).

64. Ulissi, Z. W., Singh, A. R., Tsai, C. & Nørskov, J. K. Automated discovery and
construction of surface phase diagrams using machine learning. J. Phys. Chem.
Lett. 7, 3931–3935 (2016).

65. Jacobsen, K., Stoltze, P. & Nørskov, J. A semi-empirical effective medium theory
for metals and alloys. Surf. Sci. 366, 394–402 (1996).

66. Larsen, A. H. et al. The atomic simulation environment—a Python library for
working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

67. Pawelec, B., Damyanova, S., Arishtirova, K., Fierro, J. & Petrov, L. Structural and
surface features of PtNi catalysts for reforming of methane with CO2. Appl. Catal.
A: Gen 323, 188–201 (2007).

68. Özkara Aydınoğlu, Ş. & Aksoylu, A. E. CO2 reforming of methane over Pt–Ni/Al2O3

catalysts: Effects of catalyst composition, and water and oxygen addition to the
feed. Int. J. Hydrog. Energy 36, 2950–2959 (2011).

69. Jaiswar, V. K., Katheria, S., Deo, G. & Kunzru, D. Effect of Pt doping on activity and
stability of Ni/MgAl2O4 catalyst for steam reforming of methane at ambient and
high pressure condition. Int. J. Hydrog. Energy 42, 18968–18976 (2017).

70. Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in sup-
ported copper nanocrystals. Science 295, 2053–2055 (2002).

71. Wulff, G. Zur frage der geschwindigkeit des wachsthums und der auflösung der
krystallflächen. Z. fur Krist. - Cryst. Mater. 34, 449–530 (1901).

72. Herring, C. Some theorems on the free energies of crystal surfaces. Phys. Rev. 82,
87–93 (1951).

S. Han et al.

13

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   139 



73. Gao, X., Wang, Z., Ashok, J. & Kawi, S. A comprehensive review of anti-coking,
anti-poisoning and anti-sintering catalysts for biomass tar reforming reaction.
Chem. Eng. Sci.: X 7, 100065 (2020).

74. Wang, Z., Cao, X.-M., Zhu, J. & Hu, P. Activity and coke formation of nickel and
nickel carbide in dry reforming: A deactivation scheme from density functional
theory. J. Catal. 311, 469–480 (2014).

75. Klink, C. et al. Interaction of C with Ni(100): Atom-resolved studies of the “clock”
reconstruction. Phys. Rev. Lett. 71, 4350–4353 (1993).

76. Bengaard, H. S. et al. Steam reforming and graphite formation on Ni catalysts. J.
Catal. 209, 365–384 (2002).

77. Rahm, J. & Erhart, P. WulffPack: A Python package for Wulff constructions. J. Open
Source Softw. 5, 1944 (2020).

78. Xia, Y., Xia, X. & Peng, H.-C. Shape-controlled synthesis of colloidal metal nano-
crystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 137,
7947–7966 (2015).

79. Strasser, P. & Kühl, S. Dealloyed Pt-based core-shell oxygen reduction electro-
catalysts. Nano Energy 29, 166–177 (2016).

80. Roongcharoen, T. et al. Oxidation and de-alloying of PtMn particle models: a
computational investigation. Faraday Discuss. 242, 174–192 (2023).

81. Sutton, C. & Levchenko, S. V. First-principles atomistic thermodynamics and
configurational entropy. Front. Chem. 8, 757 (2020).

82. Sareni, B. & Krahenbuhl, L. Fitness sharing and niching methods revisited. IEEE
Trans. Evol. Comput. 2, 97–106 (1998).

83. Weisfeiler, B. Y. & Leman, A. A. A reduction of a graph to a canonical form and the
algebra which appears therein. NTI 2 9, 12–16 (1968).

84. Shervashidze, N., Schweitzer, P., van Leeuwen, E. J., Mehlhorn, K. & Borgwardt, K.
M. Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011).

85. Mercer, J. Functions of positive and negative type, and their connection the
theory of integral equations. Philos. Trans. R. Soc. A 209, 415–446 (1909).

86. Reuter, K. & Scheffler, M. Composition, structure, and stability of RuO2(110) as a
function of oxygen pressure. Phys. Rev. B 65, 035406 (2001).

87. Kresse, G. & Furthmüller, J. Efficient iterative schemes for abinitio total-energy
calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

88. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector
augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

89. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within
density-functional theory using revised Perdew-Burke-Ernzerhof functionals.
Phys. Rev. B 59, 7413–7421 (1999).

90. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979
(1994).

91. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys.
Rev. B 13, 5188–5192 (1976).

ACKNOWLEDGEMENTS
The authors thank the financial support from the BIKE project: BImetallic catalysts
Knowledge-based development for Energy applications. The BIKE project has
received funding from the European Union’s Horizon 2020 Research and Innovation
program under the Marie Skłodowska-Curie Action – International Training Network

(MSCA-ITN), grant agreement 813748. The authors also thank the Villum Fonden for
funding through the project V-sustain (No. 9455) and the Niflheim Linux super-
computer cluster installed at the Department of Physics at the Technical University of
Denmark for providing computational resources.

AUTHOR CONTRIBUTIONS
S.H. designed the BEM method, wrote the code, ran the calculations, analyzed the
results and wrote the initial manuscript. S.H. and H.A.H. conceived the research. S.L.
assisted with the code writing. T.V. and H.A.H. supervised the research and helped
analyze the data and revise the manuscript. All authors discussed and commented on
the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41524-023-01087-4.

Correspondence and requests for materials should be addressed to Heine Anton
Hansen.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

S. Han et al.

14

npj Computational Materials (2023)   139 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-023-01087-4
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Rapid mapping of alloy surface phase diagrams via Bayesian evolutionary multitasking
	Introduction
	Results and discussion
	BEM active learning workflow
	Pd-Ag SPDs for ORR
	Pt-Ni SPDs for SMR

	Methods
	Evolutionary multitasking via dynamic niching
	Graphical Gaussian process surrogate
	Fitness function for alloy surface stability
	Computational details

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




