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A B S T R A C T

Spectral X-ray Computed Tomography (CT) exploits advanced photon counting detectors (PCD) to measure a
material’s spectrally resolved linear attenuation coefficient (LAC) with the simultaneous spectral acquisition
at multiple energy thresholds. We present a method for material classification using spectral CT. The method
employs a basis material decomposition model and estimates the effective atomic number (𝑍eff ) from the
spectral LAC measurements. Basis material decomposition builds on the fact that the LAC of any material
can be well approximated by a linear combination of LACs of basis materials, with known 𝑍eff values at the
extremes of the relevant 𝑍eff range. Spectral distortions of the energy spectrum due to the physical interactions
between photons and the multi-energy-bin PCD such as charge sharing and photon pileup are corrected by
a spectral correction algorithm. The validation of the method has been performed with experimental data
acquired with a custom laboratory instrument for spectral CT, examining ‘‘real life’’ phantoms with materials
in the range of 6 ≤ 𝑍eff ≤ 15. The classification performance is estimated for different numbers of projections,
energy bins and basis materials in LAC decomposition. When using just 12 projections, 15 energy bins and
two basis materials, the method gives a relative deviation of 2.2% for 𝑍eff , while this deviation is 5.9% when
spectral correction is not used. The classification method is now ready for use in security screening where
modern spectral CT systems are employed.
1. Introduction

There are different X-ray imaging systems used for material clas-
sifications. One is X-ray radiography that measures a line integral of
the linear attenuation coefficient (LAC) through an object weighted by
the shape of the incoming spectrum, simply called attenuation. Conven-
tional industrial or laboratory based X-ray Computed Tomography (CT)
reconstructs the average LAC within an object (human body, airport
baggage, etc.) under investigation. This is because the X-ray sources
typically produce a polychromatic beam, and conventional CT systems
are equipped with energy-integrating detectors for data acquisition,
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which integrate X-ray photons over a broad energy range and results
in the LAC averaged through multiple energies. Material classification
from conventional CT is based on the contrast between the averaged
LACs of different materials. However, some materials, such as tumor
and fibrous tissues [1], soft tissues [2–4] and liquid and homemade
explosives [5] may have overlapping averaged LACs, which results in
low contrast information and significantly limits the classification per-
formance of single energy CT. Moreover, the extraction of a material’s
LAC is complicated by polychromatic effects like photon starvation
from dense materials or metals [6] and beam hardening [7].
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Dual-energy CT has emerged as a better way to minimize these
limitations, by probing the LAC of materials at low- and high-energy
spectrums and converting them into the energy-independent physical
parameters of electron density 𝜌e and effective atomic number 𝑍eff
[8–11]. Dual-energy CT (DECT) is the state-of-the-art technique for
material characterization in medical and security applications [4,9,12–
19]. Technically, DECT can be performed in three ways. The first
way is rapid kVp switching approach that rapidly modulates the X-ray
tube voltage to different kVp levels, generating spectra of lower and
higher energies. The second way is by employing energy-sensitive
sandwiched detectors with the top-layer and bottom-layer detectors
that are superimposed on the other, absorbing lower and higher energy
X-ray photons, respectively. The third way is a dual-source CT system
with two X-ray tubes and two detectors at an angle of approximately
90◦ [20–22]. X-ray tubes operating at different tube potential (kV)
allow the simultaneous acquisition of dual energy data and the re-
spective applications such as computation of material maps. However,
dual-source CT systems have to cope with some challenges, for ex-
ample, motion artifacts in the two images can be slightly different,
which may affect material decomposition. The images therefore need
to be co-registered before applying any spectral algorithm. This further
increases the complication of the setup.

Quantitative characterization based on 𝜌e and 𝑍eff has been found
to be highly efficient in security screening [5] and medical diagnosis
and radiotherapy [23–27]. Dual-energy CT techniques suffer from the
main limitation that low and high energies are overlapping, resulting
in low energy separation. Moreover, the performance of these systems
is dependent on the selection of the pair of overlapping spectra for
data acquisition and the measurement of the spectral responses of the
corresponding detectors [28].

To overcome the limitations of dual-energy CT, researchers have
recently developed the cadmium telluride (CdTe) photon-counting de-
tectors (PCD) which can discriminate the energy of the detected pho-
tons and set up the energy thresholds to assemble and digitize the
photon counts. Spectral CT (also known as multi-energy X-ray CT) has
emerged as an extension of dual-energy CT, where a single acquisition
collects the data in multiple energy bins by using a PCD [29,30].
Spectral CT is able to retrieve a material’s LAC at multiple energies and
characterize the materials with the presence of K-shell absorption edge
in the LAC. It is worth specifying that the limited energy resolution
of PCDs induces overlaps between the collected energy bins, which are
non-overlapping only in an ideal case. This technique has shown higher
potential to improve material separation than dual-energy CT [31] and
therefore drawn significant research attention from medical [32–42]
and security applications [43,44]. X-ray radiography studies [45–48]
also reported that for material characterization PCDs are superior to
dual-layer sandwich detectors where the spectral separation is poor.

Decomposing the LACs into multiple components is useful for ma-
terial classification. Alvarez and Macovski [8] proposed an attenuation
decomposition in which the LAC is decomposed into photoelectric
absorption and Compton scattering components. Another model is
called basis material decomposition that the LAC of any material can
be expressed as a linear combination of the LACs of basis materials,
typically with very different 𝑍eff values [49–51]. Brambilla et al. [52]
showed a material classification method from spectral X-ray radiogra-
phy acquisition, which estimates material’s 𝑍eff based on basis material
decomposition. They used MultiX ME100 spectrometric PCD.2 The
method uses a calibration step to register the detector’s response for
different combinations of thicknesses of the superposed basis materials.
They employed polyethylene (PE) and polyvinyl chloride (PVC) as
examples of such basis materials. The maximum likelihood function is
used to find a superposition of the two basis materials which produces

2 This detector is now marketed under the name Detection Technology
-card ME
2

an attenuation that matches the measured attenuation of unknown
materials. From the calculated equivalent thicknesses of basis materials,
𝑍eff of the unknown materials is interpolated or extrapolated. How-
ever, from X-ray spectral radiography this method cannot discriminate
the materials without information on the sample thickness. Moreover,
the estimation accuracy appeared to be low for a thinner and lighter
sample behind a thicker and heavier sample, presenting significant
limitations [52].

In this work, we adapt the classification method, which was origi-
nally proposed by Brambilla et al. [52] for spectral X-ray radiography,
to spectral CT system. The spectral CT method can estimate 𝑍eff of
materials without knowledge on the sample thickness, and does not
depend on location, thickness and density of materials. Experimen-
tal data acquired with a custom laboratory instrument is used to
evaluate the classification performance, which is tested for different
numbers of basis materials in LAC decomposition, energy bins and
projections. The method is tested against another spectral CT clas-
sification method, named system-independent material classification
through attenuation decomposition (SIMCAD) presented in Ref. [53],
for identifying/characterizing a wide range of materials.

2. Theory and methods

2.1. Material feature under investigation

For a compound composed of 𝑁 different elements 𝑖 each with a
number of atoms, 𝛼𝑖, an average atomic number can be calculated and
is referred to as the effective atomic number, 𝑍eff , which depends on
the atomic numbers of the elements in the compound and on their cor-
responding quantities. Mayneord (1937) [54] and Spiers (1946) [55]
proposed a classical parameterization of 𝑍eff , defined as

𝑍eff =
𝑙

√

√

√

√

𝑁
∑

𝑖=1
𝑟𝑖𝑍𝑙

𝑖 , (1)

where 𝑟𝑖 is the relative electron fraction of each element:

𝑟𝑖 =
𝛼𝑖𝑍𝑖

∑𝑁
𝑗=1 𝛼𝑗𝑍𝑗

,

where 𝛼𝑖 is the number of atoms that have the same atomic number
𝑍𝑖, which also applies to 𝛼𝑗 and 𝑍𝑗 . The exponent 𝑙 is a free parameter
that is adjusted depending on the energy range, materials and system
features. This exponent typically varies between 2.94 and 3.8 based
on experimental fits for various CT systems [51]. Although the atomic
number is well defined for chemical elements, there is no single defini-
tion of 𝑍eff for any compound. The reader is referred to the reference
of Bonnin et al. [56] for a review of different definitions of 𝑍eff . In
this work, to be consistent with the previously published works, the
exponent 𝑙 is set to the value of 𝑙 = 3.8 to calculate reference 𝑍eff values
of materials scanned and processed.

2.2. Experimental setup and materials

The experiments were carried out in the 3D Imaging Center at
DTU, Denmark. The X-ray beam was produced by a micro focused
Hamamatsu source of the type L12161–07, with the maximum output
power of 75 W. The acceleration tube voltage and the anode filament
current were set to 150 kV and 0.5 mA, respectively. The focal spot for
these parameters is 75 μm. A 2-mm-thick aluminum filter was inserted
in front of the source to suppress photons with energies under the
detector’s energy range. The incoming beam was collimated to a fan
beam by a JJ X-ray IB-C80-AIR slit. Custom built 5-mm-thick tungsten
carbide blades in front of the detector decrease photon scattering and
fluorescent radiation. The samples were mounted on the rotation stage
and scanned between discrete rotations over a range of 360 degrees.
The source to detector distance is 701 mm while the source to sample

distance is set to 500 mm.
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Table 1
The reference materials used in the calibration step of the classification method. The
mass density values 𝜌 for the plastics were estimated with uncertainties of ± 0.15%.

he remaining mass densities are taken from PubChem database [59].
Material Chemical

formula
Width × length/
diameter (mm)

ρ (g/cm3) 𝑍eff

Graphite C 12.7 1.8 6
N,N-
Dimethylhydrazine

C2H8N2 67 0.791 6.14

Ethylenediamine C2H8N2 67 0.90 6.14
PC (CO3C13H8)𝑛 8.2 × 53.5 1.18 6.48
Acetone 2 C3H6O 54 0.785 6.44
Nitrobenzene C6H5NO2 49 1.20 6.68
PMMA (C5O2H8)𝑛 40 × 42 1.18 6.60
Ethanol 96% C2H6O (96%) 67 × 67 0.798 6.58
Methanol CH3OH 20 0.792 6.86
POM-C (CH2O)𝑛 9 × 53.5 1.41 7.07
Hydrazine solution H4N2 (35%) 54 1.0 7.24
Nitromethane CH3NO2 20 1.14 7.27
Water H2O 20 0.997 7.54
Water 3 H2O 12.7 0.997 7.54
Hyd. Peroxide 2 H2O2 (50%) 73 × 74 1.22 7.65
PTFE (C2F4)𝑛 9 × 53.3 2.16 8.50
Magnesium 2 Mg 18 1.74 12
Aluminum 2 Al 20 × 20 2.70 13

We use MultiX ME-100 v2 PCD for the experiments, manufactured
y Detection Technology S.A.S. in Moirans, France. The detector con-
ists of a system of five detector modules, each module possessing a
× 128 linear array of 0.8 × 0.8 mm2 pixels. The detector captures

the incident photons with energies between 20 and 160 keV, which
are distributed in 128 energy bins each with a width of 1.1 keV. The
detector has an energy resolution of 6.5% (8 keV at 122 keV) at fluxes
under 2 Mph∕s∕mm2, defined by the Full Width at Half Maximum
FWHM) [57]. The detector is built to perform well at high fluxes
above 106 photons∕mm2∕s and up to 107 photons∕mm2∕s) [57,58], while
he flat field flux from the source was 1.23 Mph∕s∕mm2 in this work.
he integration time of the detector ranges between 2 ms and 100 ms
in 10 μs increments).

Table 1 lists the reference materials and Table 2 lists the test materi-
ls, which are employed in the calibration and material property
alculation steps of the classification method described in Section 2.6.
he reference 𝑍eff values shown in the tables are computed by Eq. (1)
nd the exponent 𝑙 = 3.8. Sample dimensions are described through
idth × length for rectangular samples and diameter for circular

amples. The plastics are polycarbonate (PC), polymethyl methacry-
ate (PMMA), polyoxymethylene-C (POM-C), polytetrafluoroethylene
PTFE), polyethylene terephthalate (PET), polyoxymethylene-H (POM-
) and polyvinylidene fluoride (PVDF). These plastics were selected

or the characterization because their chemical compositions closely
esemble several explosives, e.g. POM can be regarded as an explosive
imulant [46]. 𝑍eff values of most organic materials range between 7
nd 8 [5]. None of the materials used have absorption edges in the
etector’s energy range.

The measured raw data undergoes a spectral detector correction
riefly described in the next subsection. The results of a classification
erformance investigation with and without spectral correction are
hown in Section 3.1. The samples were mounted on the rotation stage
nd scanned between discrete rotations with certain increments over a
ange of 360 degrees. The magnitude of increments is set depending on
he number of projections taken during the CT scan. The classification
erformance is also estimated for different numbers of projections such
s 360, 36, 12 and 7, for which the results are given in Section 3.2.
his analysis step is followed by an energy bins rebinning into different
umbers of bins, exploring the classification performance as a function
f the number of bins, for which the results are presented in Section 3.3.
pectral LACs are extracted after image reconstruction step and then
3

ndergo basis material decomposition. The results of classification
Table 2
The test materials used in the material property calculation step of the classification
method. The mass density values 𝜌 for the plastics were estimated with uncertainties
of ± 0.15%. The remaining mass densities are taken from PubChem database [59].

Material Chemical
formula

Width × length/
diameter (mm)

ρ (g/cm3) 𝑍eff

2-Butanone C4H8O 83 0.805 6.29
Acetone C3H6O 20 0.785 6.44
PET (C10H8O4)𝑛 9 × 53.5 1.39 6.74
Methanol 2 CH3OH 81 0.792 6.86
POM (CH2O)𝑛 12.7 1.42 7.07
POM-H (CH2O)𝑛 15.5 × 53.3 1.43 7.07
Ethanol 40% C2H6O (40%) 67 × 67 0.947 7.19
Water 2 H2O 51 × 51 0.997 7.54
Nitric acid HNO3 (65%) 83 1.39 7.67
Hyd. Peroxide H2O2 (50%) 20 1.22 7.65
PVDF (C2H2F2)𝑛 9 × 53.5 1.79 8.01
PTFE 2 (C2F4)𝑛 12.7 2.2 8.50
Magnesium Mg 12.7 1.74 12
Aluminum Al 25 2.70 13
Silicon Si 12.7 2.33 14

performance as a function of the number of basis materials are given
in Section 3.4. In this work, the total exposure time per projection is set
to 8 s (i.e. 80 repeated acquisitions are recorded with the integration
time of 100 ms and averaged) to obtain all the results, except those
presented in Fig. 8(b) and 8(c).

2.3. Data correction and energy bins rebinning

The next steps in the material classification pipeline after data
acquisition are data correction and energy bins rebinning. The energy-
dependent physical interactions inside the PCD such as (flux-
independent) charge sharing, weighting potential cross-talk, fluores-
cence radiation (escape peaks), Compton scattering radiation and elec-
tronic noise, and (flux-dependent) photon pile up and incomplete
charge collection severely distort the measured spectra. These effects
decrease the detector’s energy resolution and lead to large deviations
of the extracted LACs from expected values, especially at low and
high energies, which in turn significantly decreases material classi-
fication performance. The importance of the spectral correction for
detector response artifacts in material identification using spectral
CT was presented in Ref. [60]. In this work, we therefore use the
correction algorithm proposed by Dreier et al. [58] to correct the
spectral distortions in the PCD used. The correction algorithm has
been implemented successfully in the used PCD for fluxes up to 5
Mph∕s∕mm2. The comprehensive semianalytical interpretations based
on the physical reason of the different interactions are used for the
correction of the measured flat field and attenuated spectra. Since the
detector effects are energy and flux dependent, different samples give
different spectral distortions, and thus, different errors in their LAC
extraction.

Fig. 1 compares the spectral LACs derived from the raw data and
data corrected for spectral distortions, exemplified for a water sample.
The LAC mean value and respective standard deviation within a region
of interest (ROI) are calculated for each energy bin. The correction
algorithm shows significant restoration of the distorted LACs towards
the reference curve, except for the low and high energies. The reason
for this is photon starvation (i.e. complete attenuation of photons)
at low energies and low source intensity at high energies. Therefore,
the energy bins below the low-energy threshold (𝐸l = 33.2 keV) and
above the high-energy threshold (𝐸h = 132.4 keV) are excluded in
the characterization of materials. The low energy bins have very low
photon counts because of the aluminum filter with high absorption
which was placed in front of the source. Since the LAC is calculated
based on the Beer–Lambert’s law to account for X-ray attenuation, a
step in the correction algorithm sets the LAC to 0 for the low energy
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Fig. 1. Spectral LACs extracted from the raw data and data corrected for the
spectral distortions, for a water sample. The reference LACs were taken from NIST
database [61]. The error-bars represent the respective standard deviation values. The
vertical black dash-dotted lines show the low- and high-energy thresholds denoted by
𝐸l and 𝐸h, respectively, which are set to exclude bins in which the LACs cannot be
fully restored.

bins to avoid the consequence of NaNs, Infs, and very low counts. Fig. 1
therefore shows the corrected LAC curve with a sharp drop-off around
25 keV.

The energy region is thus truncated to exclude bins for which
there is still a large deviation of the corrected LAC from the reference
curve, because of incomplete restoration of the original spectrum by
the correction algorithm. The energy bins rebinning is performed af-
ter the spectral correction step and setting the low- and high-energy
thresholds. The rebinning procedure groups together neighboring bins
with widths that are considerably smaller than the detector’s energy
resolution. This will serve a twofold purpose, while preserving the
advantages of multiple bins. Firstly, the signal-to-noise ratio (SNR) in
each bin is increased since the SNR is proportional to the square root of
the expected number of photons [62]. Secondly, the computation time
required for image reconstruction decreases linearly with the reduction
in the number of bins. Thus, in this work we use cases that reduce the
energy bins to 2, 6, 15 and 90 energy bins without and with introduced
energy gaps in the spectra. A source spectrum is sampled for the 2 bins
case such that the bins are separated by a spectral gap between the
boundaries of 60.8 and 69.6 keV. The gap width was selected such that
it is slightly larger than the detector’s resolution, supposing a constant
energy resolution of 8 keV (FWHM) [57], and the gap is approximately
at the center of the source spectrum. In the cases of 6 and 15 bins,
the bins are uniformly distributed across the spectrum. Independent
energy bins with no overlaps are expected to enhance the effectiveness
of spectral algorithms. If so, the optimal rebinning should be provided
by 6 bins (from 33.2 to 132.4 keV) with 8.8 keV widths and with inter-
gaps of 8.8 keV. This configuration, which can be easily adapted to the
case of study with discrete bins of width 1.1 keV, should provide the
highest number of independent bins. The case of 15 bins has bins with
3.3 keV widths and inter-gaps of 3.3 keV. The 90 bins case involves no
rebinning since the number of bins between the low- and high-energy
thresholds is equal to 90.

2.4. Reconstruction algorithm and LAC extraction

The next step in the pipeline after data correction and energy
bins rebinning is image reconstruction. The results presented in the
Sections 3.3 and 3.5 are obtained with filtered backprojection (FBP)
4

and the simultaneous iterative reconstruction technique (SIRT) [63]
algorithms, respectively. The results presented in the other subsections
are produced with L∞ norm-based vectorial total variation (L∞-VTV)
regularization that employs correlations between multiple energy bins.
The L∞-VTV uses a weighting parameter 𝜆 between the regulariza-
tion term and the data fidelity terms, determining the strength of
the regularization. The joint regularization term is added to the data
fidelity terms to more accurately reconstruct images from noisy or few
projections. This regularization norm jointly penalizes the violation of
the inter-bin relations, leading to strong couplings between the image
gradients over multiple energy bins. The algorithm can therefore effi-
ciently minimize the influence of outliers in the gradient magnitudes.
The joint reconstruction thus augments the available data with extra
information from other energy bins. The classification performance is
explored as a function of 𝜆 in this study. More details regarding the
L∞-VTV can be found in Jumanazarov et al. [64].

After the reconstruction is performed, for each energy bin the mean
LAC within an ROI is extracted from the LAC histogram which is fitted
to a normal distribution. Each ROI is manually segmented in the recon-
struction as shown in Fig. 6(a) . The reconstruction algorithms used in
this work can also be applied to heterogeneous materials. It requires
more efforts to segment heterogeneous materials than homogeneous
ones, but with the correct segmentation the classification accuracy is
expected not to be greatly influenced.

2.5. Basis material decomposition and basis materials used

In X-ray CT, materials are differentiated thanks to their LAC 𝜇. The
LAC of any scanned material can be decomposed into a linear combi-
nation of LACs of multiple basis materials with respective magnitudes,
and this is the so-called basis material decomposition (BMD) model and
represented as [49–51,65–67]

𝜇(𝐸𝑘) = 𝑎1𝜇1(𝐸𝑘) + 𝑎2𝜇2(𝐸𝑘) +⋯ + 𝑎𝑁𝜇𝑁 (𝐸𝑘), (2)

where 𝜇𝑖(𝐸𝑘) (𝑖 = 1, 2,… , 𝑁 ; 𝑘 = 1, 2,… , 𝐾) denotes LAC of the
basis material 𝑖 for the energy bin 𝐸𝑘, with 𝑁 and 𝐾 being the total
numbers of basis materials and energy bins, respectively. 𝑎𝑖 represents
an adimensional magnitude without a physical unit for the basis mate-
rial 𝑖.

We reformulate Eq. (2) as a linear system of equations to compute
the 𝑎𝑖 magnitudes for the basis materials:

(

⃖⃗𝜇1 … ⃖⃗𝜇𝑁
)

⎛

⎜

⎜

⎝
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𝜇(𝐸1)
⋮

𝜇(𝐸𝐾 )

⎞

⎟

⎟

⎠

(3)

where ⃖⃗𝜇𝑖 = (𝜇𝑖(𝐸1),… , 𝜇𝑖(𝐸𝐾 ))𝑇 . The number of basis materials cannot
be greater than the number of energy bins, otherwise the above sys-
tem of equations will be under-determined. We employ a linear least
square solver called lsqnonneg function in MATLAB® with the posi-
tivity constraint on the solution, which gives the vector of (𝑎1,… , 𝑎𝑁 )
magnitudes that minimizes the norm.

Fig. 2 shows the basis material decomposition of the LACs of a water
2 sample, obtained by using two basis materials, PE and PVC, and 15
energy bins. The plot shows that using Eq. (2) the spectral LACs of the
scanned material can be reproduced accurately based on a combination
of the LACs of the basis materials computed from Eq. (3).

An unknown material can also be expressed as a linear combi-
nation of the two physical contributions resulting from photoelectric
absorption and Compton scattering forming a reference basis. With this
approach, Alvarez and Macovski [8] originally proposed a method for
the discrimination of materials based on atomic numbers and mass
densities, which is mainly employed in luggage inspection. The BMD
model has an advantage over the photoelectric absorption-Compton
scattering model that it can be used to reproduce the spectral LACs of
materials with K-edge discontinuities. This could be done by including
a basis material that presents a K-edge discontinuity within the energy
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Fig. 2. Basis material decomposition of the LACs of a water 2 sample introduced in
able 2. The LACs of the basis materials, PE and PVC, and reference LACs of water
ere obtained from NIST database [61]. Note logarithmic scale in the y-axis.

Table 3
The basis materials used in the estimation of classification performance as a function
of the number of basis materials in LAC decomposition. The mass densities are taken
from in PubChem data [59].

Basis material Chemical
formula

ρ (g/cm3) 𝑍eff

Polyethylene (PE) (C2H4)𝑛 0.93 5.56
Polyacetylene (PAc) (C2H2)𝑛 0.4 5.76
Polypyrrole (PPy) (C4H5𝑁)𝑛 0.97 6.03
Polymethyl
methacrylate
(PMMA)

(C5O2H8)𝑛 0.94 6.60

Polyoxymethylene
(POM)

(CH2O)𝑛 1.42 7.07

Polyvinyl Chloride
(PVC)

(C2H3𝐶𝑙)𝑛 1.406 14.44

range of interest, but the use of a basis material for each of the possible
K-edge energies may be a necessity [52,68].

The classification performance is also estimated for different num-
bers of basis materials in the basis material decomposition model.
Table 3 introduces the basis materials used to estimate the classification
performance as a function of the number of basis materials in the
decomposition, i.e. the dimensionality of LAC space. Table 4 tabulates
the basis materials used for each of the different numbers of basis
materials in the classifications. Note that only theoretical LAC values of
the basis materials, taken from the NIST database [61], are used in the
classifications. Each classification always uses PE and PVC as the basis
materials with the lowest and highest 𝑍eff value in the decomposition,
respectively.

2.6. Calibration and calculation of the material property

The next step in the pipeline after LAC extraction and basis material
decomposition of LAC is a calibration step in which a set of reference
materials is measured and finally calculation of a material’s 𝑍eff . A
polynomial curve fitting technique can be used for the estimation of
𝑍eff based on X-ray spectral CT acquisition. The so-called volume
fraction for the basis material 𝑁 with the highest 𝑍eff value among the
basis materials in the decomposition, denoted by 𝑓N, is a monotonically
increasing function of 𝑍eff value of materials. 𝑍eff can be fitted by a
polynomial function of degree 3:

2 3
5

𝑍eff = 𝑐0 + 𝑐1 ⋅ 𝑓𝑁 + 𝑐2 ⋅ 𝑓𝑁 + 𝑐3 ⋅ 𝑓𝑁 , (4)
Fig. 3. 𝑍eff values of the reference materials (listed Table 1) as a function of PVC
volume fraction defined in the basis material decomposition of LAC, for which PE and
PVC are used. The calibration data can be fitted by a polynomial function of degree
3, shown by the red crosses. The plot was reproduced with 15 energy bins.

Table 4
The basis materials used for the classifications with the
different numbers of basis materials in LAC decomposition.
Number of basis
materials

Basis materials

2 PE, PVC
3 PE, PPy, PVC
4 PE, PPy, POM, PVC
5 PE, PAc, PPy, POM,

PVC
6 PE, PAc, PPy, PMMA,

POM, PVC

where 𝑐 is a set of polynomial regression coefficients depending on the
numbers of basis materials and energy bins in the decomposition, and
parameters of the experimental setup, as obvious from Eq. (3). The
volume fraction 𝑓N is defined as

𝑓𝑁 =
𝑎𝑁

∑𝑁
𝑖=1 𝑎𝑖

, (5)

where the magnitudes 𝑎𝑖 and 𝑎𝑁 , computed by Eq. (3), correspond to
he basis material 𝑖 (𝑖 = 1, 2,… , 𝑁) and basis material 𝑁 with the

highest 𝑍eff value in the decomposition, respectively.
In this work, we apply the polynomial curve fitting technique for the

estimation of 𝑍eff , defined in Eq. (4), to spectral CT. Since each clas-
sification always uses PVC as the basis material with the highest 𝑍eff
value in the decomposition, for the remainder of the paper we denote
its volume fraction as 𝑓PVC. Fig. 3 illustrates that 𝑍eff value of the ref-
erence materials listed in Table 1 indeed monotonically increases with
PVC volume fraction in LAC decomposition into the basis materials of
PE and PVC. This calibration process of the conversion between the
volume fraction and 𝑍eff is needed for further classification of unknown
materials, using at least two different basis materials. As this calibration
step finds relations between 𝑍eff and volume fractions by using a group
of reference materials, Eq. (4) can also be employed to deduce the 𝑍eff
values of other materials from the measured volume fraction values,
like the test materials tabulated in Table 2. Note that the method will
be more accurate for a group of estimated materials within a range of
𝑍eff values of basis materials, otherwise, the estimated PVC volume
fraction will be larger than one which may lead to lower accuracy in
fitting 𝑍 through extrapolation.
eff
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Fig. 4. The relative deviations for 𝑍eff as a function of weighting parameter 𝜆, obtained
with the raw and corrected data. The graphs show the mean absolute values of relative
deviations calculated from the test materials listed in Table 2. The calibration step was
performed using the reference materials listed in Table 1. Corrected data collected from
12 projections and rebinned into 15 energy bins, and PE and PVC as basis materials,
were used to obtain the results presented. Note the logarithmic scale in the 𝑥-axis.

In this work, the classification performance is estimated as the
relative deviation based on the reference values of 𝑍eff , defined as

𝛥𝑍rel
ef f = 100% ⋅

𝑍est
ef f −𝑍ref

ef f

𝑍ref
ef f

, (6)

here superscripts est and ref indicate the estimated and reference
alues, respectively.

. Results and discussions

.1. Classification from the raw and corrected data

As described in Section 2.3, the effect of the spectral distortion
egrades the performance of the detector for extracting the spectral
ACs, which can largely be recovered by the correction algorithm.
6

ig. 4 shows how the spectral correction can significantly improve the
lassification performance computed as a function of the weighting
arameter 𝜆 of the L∞-VTV, which was used in this subsection. The raw
ata gives the relative deviation of 5.9% (at 𝜆 = 8), while the deviation
ecreases to 2.2% (at 𝜆 = 60) for the corrected data. Moreover, for
aw data the evolution of deviations are not stable with variations in
. Instead slight changes result in very different deviations for 𝑍eff . The
orrection for the detector’s spectral distortions is thus required for the
lassification, and therefore we use the corrected data for the estimates
resented in the other subsections.

The correction algorithm will work in the same way for higher
eff materials of interest in medical imaging, such as iodine, calcium,
adolinium or tantalum [58], even though they may have K-edges
ithin the energy range of the X-ray source. The materials tested in

his work are relevant to the security applications but also resemble the
ensity and atomic number of organic tissues. Human organs are mostly
omposed of H, C, N, and O [27], and body tissues change between
≤ 𝑍eff ≤ 15 within the detector’s energy region [69–72].

3.2. Evaluation of classification performance for different numbers of pro-
jections

We tested the classification performance for different numbers of
projections evenly distributed between 0 and 360 degrees. The collec-
tion of the projections enables a reconstruction of the sample by using
the reconstruction algorithm. To combat the heavy sparse-view arti-
facts due to the use of decreasing number of projections and improve
denoising performance of spectral CT with low SNRs, we use the L∞-
VTV joint reconstruction algorithm in this subsection. Fig. 5(a) shows
the mean relative deviations for 𝑍eff as a function of 𝜆 for different
datasets collected from 360, 36, 12 and 7 projections, with 2.2% (at
𝜆 = 1.2) for 360, 2.0% (at 𝜆 = 16) for 36, 2.2% (at 𝜆 = 60) for 12
and 2.0% (at 𝜆 = 1000) for 7 projections. The relative deviations for
different materials corresponding to the optimal 𝜆 values are shown in
Fig. 5(b). As the number of projections decreases, the optimal 𝜆 giving
the maximal classification performance increases, because the number
of sinogram elements in the data fidelity term for each energy bin
decreases while the regularization term is independent of the number of
projections (see definitions of the data fidelity and regularization terms
for the reconstruction algorithm in Ref. [64]). The optimal range of the
weighting parameter therefore appears to be quite different from each

other for different numbers of projections.
Fig. 5. The mean relative deviations for 𝑍eff as a function of weighting parameter 𝜆 (a) and relative deviations for different materials (b), obtained with 360, 36, 12 and 7
projections. ∗The mean deviation was calculated from absolute values of relative deviations for the test materials listed in Table 2. The calibration step was performed using
the reference materials listed in Table 1. Corrected data rebinned into 15 energy bins, and PE and PVC as basis materials, were used to obtain the results presented. Note the
logarithmic scale in the 𝑥-axis in (a).
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Fig. 6. Reconstructions from different numbers of projections, corresponding to data from the energy bin at 48.7 keV. The polypropylene (PP) material is not included in the
classifications because it is contaminated with chemical colorants, resulting in a higher 𝑍eff value than the clean PP. The selected ROIs for each material are indicated by blue
dashed lines in the frame (a).
Fig. 6 shows the image reconstructions of the sample performed
from different numbers of projections. Even though the reconstruction
quality decreases with decreasing number of projections, the mean
relative deviation shown in Fig. 5(b) does not decrease. This is be-
cause we manually segment the inner materials within the samples
by using the reconstructions from 360 projections, and the LACs are
then extracted for all numbers of projections. We expect that using
an automatic segmentation from 7 projections will significantly reduce
the classification performance, since the image edges of different ma-
terials in the 7-projection reconstruction are not well preserved. The
reconstructions quality in Fig. 6 implies that manual segmentation
can be performed from 12 projections, below which the reconstruc-
tion quality is significantly deteriorated and it becomes more difficult
even for manual segmentation. Therefore, we use just 12 projections
for the estimates presented in the subsequent subsections, except for
Section 3.5. Using fewer projections enables a faster scan and a lower
dose, important for security and medical applications. Note that the
weighting parameter used for each reconstruction shown in Fig. 6 was
selected based on image quality perceived by human eyes, and can
be significantly different from a weighting parameter which gives the
optimal results in terms of overall classification performance for all
the samples. It is still an unsolved question how to set the optimal
weighting parameter automatically, which changes significantly with
the type of sample in terms of reconstruction quality and classification
performance. Also note that full automatic segmentation of objects in
images represents an obvious problem to be solved before industrial
implementation, while a manual segmentation scheme is used in this
work.
7

3.3. Classification performance as a function of the number of energy bins
used

How a source spectrum is sampled for the cases of 2, 6, 15 and
90 energy bins with and without gaps was described in Section 2.3. In
this subsection, since large datasets are processed due to different cases
of energy bins rebinning procedures, we use fast image reconstruction
algorithm of the FBP. The calibration step was performed using the
reference materials listed in Table 1. Fig. 7 shows the relative devi-
ations for 𝑍eff for different numbers of energy bins. The results are
shown for all the test materials. In the case of 2 bins, the mean relative
deviation decreases from 5.2% to 3.7% when a 8.8-keV-wide gap is
introduced. In the case of 6 bins, the mean relative deviation decreases
from 2.7% to 2.1% when 8.8-keV-wide gaps are entered. In the case of
15 bins, the deviation increases from 2% to 2.9% when there are gaps
of 3.3 keV width between the bins. The case of 90 bins yields the mean
relative deviation of 2.6%. Thus, the deviation can be reduced if the
width of the input gaps is approximately larger than the intrinsic energy
resolution of the detector, assuming a constant energy resolution of
8 keV (FWHM) [57]. When energy gaps were introduced in the 15-
bin case, a noticeable increase in deviations was observed instead of a
decrease in deviations as in the cases of 2 and 6 bins. We can assume
that there are 2 reasons for this finding. First, since the gap widths are
smaller than the detector’s energy resolution, the bins are still in a state
of intersection with each other. Second, the decrease in the number
of received photons in bins of reduced width increases the amount of
noise in them. This reduces the accuracy in measuring the spectral
LACs of materials. This variation in measurement can be particularly
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Fig. 7. Plots of 𝑍eff estimation accuracy for all the test materials scanned, obtained with different numbers of energy bins. Note that to show the given values more clearly, a
agnified version of the frame (a) is displayed in the frame (b). ∗The mean deviation was calculated from absolute values of relative deviations for each material. Corrected data

ollected from 360 projections, and PE and PVC as basis materials, were used to obtain the results presented. The abbreviation w/o. stands for ‘without’. The absolute values of
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ignificant at lower energies. This is especially evident for the cases of
5 bins with gaps and 90 bins for aluminum. The 2-bin cases with and
ithout gap give the largest deviations. Hence, the cases of 6 bins with
aps and 15 bins without gaps show almost identical and minimum
eviations, and yield no outliers by their large deviations greater than
%. Considering the computation time, which mainly depends on the
mage reconstruction step for each energy channel, the case of 6 bins
ith inter-gaps can be considered as optimal rebinning, as expected.
owever, in the following sections, we use the 15 bins with no gaps,
hich performed very slightly better, for our calculations.

.4. Classification performance as a function of the number of basis mate-
ials

The different basis materials used in the classifications are in-
roduced in Table 4. The calibration step was performed using the
eference materials listed in Table 1. Fig. 8(a) shows the plots of the
elative deviation for 𝑍eff as a function of the weighting parameter 𝜆
or different numbers of basis materials in LAC decomposition. The case
f 2 basis materials gives the lowest point with deviation of 2.2% (at
= 60), while the cases of 5 and 6 basis materials yield the highest

oints both with same deviations of 4.3% (at 𝜆 = 12). The deviations
t the lowest points for the cases of 3 and 4 basis materials are almost
he same, with the approximate value of 2.8% (at 𝜆 = 40). Thus, the
lassification performance decreases with an increased number of basis
aterials. According to Eq. (3), when the number of basis materials
increases, the BMD model faces more noise challenges to compute 𝑎𝑖
agnitudes for the basis materials (𝑖 = 1, 2,… , 𝑁). This finding is also

eported in several research papers [73,74].
To experimentally explore the reason behind the performance degra-

ation with increasing number of basis materials in LAC decomposition,
he sample illustrated in Fig. 8(c) was scanned with different integra-
ion times per projection of the detector such as 2, 10, 50 and 100
s. The PVC volume fractions are calculated for each basis material
ecomposition of spectral LACs of the materials within the sample
nd for each integration time. Fig. 8(b) shows the mean value of the
VC volume fractions from the different integration times and the
orresponding maximum deviation from the mean for the different
umber of basis materials. One observes that the mean value decreases
8

hile the respective maximum deviation increases significantly as
he number of basis materials increases for both materials. For PEEK
polyetheretherketone) within the sample (in Fig. 8(c)), the mean value
f the PVC volume fractions for each number of basis materials is
elatively much smaller than those of aluminum and magnesium 2. The
ean value for PEEK with relatively lower 𝑍eff and density values is

equal to 1.3 × 10−2 with the maximum deviation of 21% and 0.3 × 10−2

ith 38% for 2 and 6 basis materials, respectively. Therefore, the
esults for this material are excluded in Fig. 8(b). Thus, the use of a
igher number of basis materials makes the LAC decomposition more
usceptible to noise. Therefore, we use just two basis materials (PE and
VC) for the estimates presented in the other subsections.

.5. Method comparison

Table 5 lists the relative deviations for different materials obtained
rom the BMD and SIMCAD methods. The BMD method yields results
ith an overall mean relative deviation of 3% for 𝑍eff obtained using

he approach of 15 energy bins without inter-gaps, while the SIMCAD
ives mean deviations of 1.6% for 𝜌e and 3.1% for 𝑍eff obtained

with optimized bi-energy bins [53]. To be consistent with Ref. [53]
in comparing the performance, the 2D reconstructions were carried
out from 360 projections with the SIRT in this subsection. The BMD
has significantly reduced the 𝑍eff relative deviation for PMMA, PC,
POM-H, hydrogen peroxide solution, water and silicon compared to
the SIMCAD, however the former has acetone as an outlier with a
relative deviation of −7.2%, while the latter shows a deviation of
−1% for acetone. Overall, the BMD method shows better robustness
for plastics classification, which indicates a higher robustness to the
spectral distortions in the measured LACs for plastics.

SIMCAD has the main advantage that it can estimate both mate-
rial properties, 𝜌e and 𝑍eff , suggesting a complete way to distinguish
materials. Since this method uses an attenuation decomposition model
based on photoelectric absorption and Compton scattering interactions,
for which energy-dependent basis functions are smooth and cannot
approximate K-edge discontinuities [8], the energy bins below the edge
are truncated to make K-edge materials compatible with this method.
However, this will limit the energy range, and therefore may decrease
the classification performance. The BMD method, on the other hand,
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Fig. 8. Investigation of the classification performance with respect to the number of basis materials in LAC decomposition. (a) The relative deviations for 𝑍eff as a function of
weighting parameter 𝜆, obtained with different numbers of basis materials 𝑁 . The plot shows the mean absolute values of relative deviations calculated from the test materials
listed in Table 2. Note the logarithmic scale in the 𝑥-axis. (b) The mean PVC volume fractions and the corresponding maximum deviations from the mean for the different numbers
of basis materials, each calculated from 4 measurements which used integration (acquisition) times of 2, 10, 50 and 100 ms. (c) Image reconstruction of the sample used to obtain
the results presented in the frame (b), corresponding to 100 ms and the energy bin at 48.7 keV. Corrected data collected from 12 projections and rebinned into 15 energy bins
were used to obtain the results presented.
Table 5
The relative deviations of measured material properties relative to reference values. To compare, values for SIMCAD, another material characterization method using spectral CT
data, are taken from Ref. [53]. aThe mean values are computed from the absolute values of each column.

Material 𝑍 ref
ef f BMD 𝛥𝑍 rel

ef f (%) SIMCAD 𝛥𝑍 rel
ef f (%) 𝜌refe SIMCAD 𝛥𝜌rele (%)

PMMA 6.60 1.3 5.1 0.636 −2.0
PTFE 8.50 4.6 4.5 1.035 −2.7
PVDF 8.01 4.1 3.5 0.896 −0.8
PC 6.48 1.0 2.0 0.610 −1.6
POM-C 7.07 3.2 3.6 0.753 −0.6
PET 6.74 1.2 1.1 0.721 −1.4
POM-H 7.07 2.7 5.5 0.763 −2.0
Acetone 6.44 −7.2 −1.0 0.432 1.6
Hyd. Peroxide 7.65 −1.9 4.6 0.661 2.4
Methanol 6.86 −4.5 5.6 0.446 1.1
Water 7.54 −2.6 4.4 0.554 0.5
Nitromethane 7.27 −3.2 −2.3 0.597 2.6
Aluminum 13 3.2 −2.5 1.3 0.9
Silicon 14 −0.1 −1.2 1.161 3.4
Magnesium 12 −3.6 −2.4 0.859 0.03
Meana – 3.0 3.1 – 1.6
can be used to classify materials with a K-edge in their LACs, as
mentioned in the Section 2.5, however none of the materials estimated
in this study have a K-edge within the detector’s energy region.

4. Conclusion

We have presented the BMD method for material characterization
with the physical parameter 𝑍eff using a spectral CT instrument. The
results were demonstrated experimentally with a wide range of materi-
als, with focus on security screening applications. The method requires
a calibration step employing reference materials, from which 𝑍eff is
interpolated or extrapolated through polynomial curve fitting. Correc-
tion of the detector’s spectral response eliminates significant spectral
artifacts from the LAC, and classification even with just two basis
materials is demonstrated to require the correction. We explored the
classification performance as a function of the number of projections,
the number of energy bins and the number of basis materials in LAC
decomposition. We found the method to be most accurate employing
two basis materials, and 6 energy bins with inter-gaps and 15 bins
without gaps. The number of projections for reconstructions can be
significantly decreased while image segmentation still can be achieved
to extract the LACs and thereby maintain a desired level of classification
accuracy. The BMD method shows better robustness to plastic materials
than the SIMCAD method in terms of estimating 𝑍eff , even though they
give comparable results in mean classification accuracy.

The method presented in this work is thus valid only for 𝑍eff
extraction. The 𝑍 sensitivity alone is not a sufficient parameter for
9

eff
full classification capability. Complete characterization can be achieved
with a (𝜌,𝑍eff ) couple since some materials may have noticeably dif-
ferent density values, while having similar 𝑍eff values. However, this
method can be employed in the presence of materials with K-edges,
where standard techniques are hampered. The optimization procedures
of energy bins rebinning and inter-gaps have been presented as a major
source of novelty in this paper. Future extensions of this work will focus
on investigating materials with K-edges.

For energy-resolving PCDs, there is the need to take energy res-
olution into account to measure the detector performance. Energy
resolution is a key parameter to represent the capability of an en-
ergy resolved detector to separate photons in different energy bins.
Physical effects in PCDs such as photon pileup, K-fluorescence, charge
sharing and cross-talk degrade the energy resolution of the PCDs,
decreasing the reliability of the spectral information and leading to
a deterioration of material classification accuracy with the BMD. The
ability of the imaging system to identify the material composition of
the imaged object is generally dependent on energy resolution of the
detector [33,35]. Different CdTe spectral detectors, such as Medipix-3
and Pixirad/Pixie-III, have been developed for spectral CT applications.
Compared to the detector used in this work, detectors such as Medipix-
3 and Pixirad/Pixie-III feature significantly sharper energy resolutions
around 3–4 keV FWHM [75,76]. Even though these detectors have a
limited number of energy thresholds in the range of 2–8, it is easy
to implement different acquisition modes and threshold values. Such
detectors are being further developed to enhance energy resolution,
which depends on the properties of the CdTe crystal, the source and
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the readout electronics, and at the same time to increase the high flux
capability. As next steps we also plan measurements with more ad-
vanced detectors with sharper energy resolutions, which are expected
to potentially improve material classification performance.
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