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Abstract
Local, short-duration extreme precipitation events can cause floodings and have
massive economic consequences. The climate change impact on such events
is of great interest, but due to the small spatio-temporal scales involved, these
are challenging to properly represent in climate models. This study analyses a
new sub-kilometre (750 m) HARMONIE-Climate model simulation driven by
ERA5 reanalysis data. Three convection-permitting models at 750 m, 3 and 5 km
grid distance are analysed and compared with driving reanalyses, intermedi-
ate model simulations and a dense rain gauge network. The representation of
convective events is analysed by a range of metrics categorised as spatial, tem-
poral and event-focused. Precipitation events are analysed at both hourly and
sub-hourly scales and a clear difference between model performance on these
scales is found. Overall, we find a better performance for HCLIM750m for most
metrics, yet the added benefits of the computationally intensive sub-kilometre
scale simulation seems limited compared to the convection-permitting models
at 3 and 5 km.

K E Y W O R D S

climate models, convection-permitting models, extremes, model evaluation, precipitation,
reanalysis, sub-hourly, sub-kilometre

1 INTRODUCTION

Extreme precipitation events with a temporal resolution of
only a few hours and small spatial coverage may cause seri-
ous floodings with massive social and socioeconomic costs
(IPCC, 2022). Such extreme events are often convective
events caused by the uplifting of warm moist air resulting

in heavy precipitation. Convective events can occur as a
part of frontal systems or as an effect of solar-heated air
becoming more buoyant than the surroundings. A recent
attribution study indicates that the observed warming has
already increased the risk of extreme precipitation events
in Denmark (Matte et al., 2022). Climate change will
increase the occurrence and size of precipitation events
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and, as a consequence, further increase the risk of plu-
vial flooding in northern Europe (IPCC, 2021; Christensen
et al., 2022).

Climate models’ ability to represent extreme events at
high temporal and spatial resolution is of great interest to
better understand how convective events are influenced by
climate change. A convective cell has a spatial extent of
1–10 km and may occur as a single cell, multicell or super-
cell clusters (Doswell, 2005). Due to the scale at which
extreme precipitation evolves, climate models struggle to
represent this phenomenon well, as the scale of climate
models often does not match the scale of convective events
(Kendon et al., 2021; Lucas-Picher et al., 2021).

Today, three general types of climate models are pri-
marily used to assess changes in regional extreme precipi-
tation: high-resolution Global Circulation Models (GCMs)
with a typical grid cell scale of approximately 50 km,
Regional Climate Models (RCMs) with a typical scale of
approximately 10 km and so-called Convection-Permitting
RCMs (CPMs) at a typical scale of 2–4 km. RCMs bene-
fit from availability of large ensembles, which give vital
information about uncertainties and variability (e.g. Chris-
tensen and Christensen, 2007; Jacob et al., 2014). Due to
the resolution of RCMs, convection is typically param-
eterised, as the scale of convection is smaller than the
grid cell size. Studies have found that the parameterisa-
tion of convection limits RCMs’ ability to represent intense
rainfall events realistically (Frei et al., 2006; Fowler and
Ekström, 2009). CPMs have a grid cell resolution where
convection can potentially be modelled explicitly, explain-
ing why convective parameterisation is often turned off.
In some models, both shallow and deep convection is
turned off, while others still parameterise shallow con-
vection (Kendon et al., 2017). CPMs have become more
numerous since Kendon et al. (2012) showed the bene-
fits of these models. Nevertheless, a drawback of CPMs is
still the limited number of models and simulations, pri-
marily due to the high computational cost, which results
in only a few CPM ensembles being available for anal-
yses (e.g. Fosser et al., 2019; Coppola et al., 2020; Ban
et al., 2021). Several studies have shown that CPMs often
improve the representation of extreme rainfall compared
to RCMs (Prein et al., 2013; Chan et al., 2014; Lind
et al., 2016; Olsson et al., 2021; Médus et al., 2022). How-
ever, these studies also point out that there is room for
improvement in order to represent hourly and sub-hourly
rainfall events realistically. Few studies have analysed
sub-hourly rainfall, with varying methods and incon-
sistent results (Brisson et al., 2018; Purr et al., 2019;
Meredith et al., 2020; Vergara-Temprado et al., 2021). As
their name indicates, the typical grid cell scale of CPMs

suggests that they are ‘convection-permitting’ but not
necessarily ‘convection-resolving’. Some studies have anal-
ysed the improvement of rainfall statistics in sub-kilometre
CPMs; however, these studies have all focused on single
events or short simulations periods of less than 40 days
(e.g. Hanley et al., 2015; Moseley et al., 2020; Prein
et al., 2021). It has now been more than a decade since
the first CPM was introduced. Recent studies have sug-
gested future research steps with CPMs to overcome
the challenges such as too intense heavy precipitation,
parametrisation of sub-kilometre processes and too small
and few ensembles (Kendon et al., 2021; Lucas-Picher
et al., 2021).

To assess climate models’ ability to represent rainfall,
high-resolution observational data are necessary. Obser-
vational data can be, for example, radar data, rain gauge
data, satellite data or data from microwave links net-
works. Radar data can give information on spatial struc-
tures and movement of rainfall, but the intensity estimates
are less certain as a radar measures reflectivity (Einfalt
et al., 2004; Thorndahl et al., 2017). Rain gauge data are
expected to give a more accurate estimate of intensities
during a rainfall event, and have proven to exhibit the
same spatio-temporal properties as bias-corrected radar
observations (Thomassen et al., 2022). Depending on the
metric analysed and on data availability, one type of
observational data might be preferred over the other. Pre-
vious studies have suggested several metrics to assess
climate models’ ability to represent rainfall (Gregersen
et al., 2013; Sunyer et al., 2017; Médus et al., 2022;
Thomassen et al., 2022). When assessing added benefits,
the conclusion may depend on the selected metric as well
as the temporal and spatial scale at which the metric is
analysed.

In this study, the objective is to assess the benefits of
employing sub-kilometre resolution for CPMs with respect
to precipitation extremes at sub-hourly, hourly and daily
durations. We analyse dynamically downscaled reanalysis
data from a set of experiments with HARMONIE-Climate
(HCLIM, Belušić et al., 2020). The sub-kilometre simula-
tion is made specifically for this study and consists of a
reanalysis simulation downscaled to 750 m over Denmark
(nested within 5 km grid spacing intermediate downscal-
ing) for five years of heavy convective precipitation seasons
(April–October). The study will also use data from an exist-
ing reanalysis-driven simulation over Fenno-Scandinavia
run at 3 and 12 km resolution as well as the driving global
reanalysis. To assess the representation of extreme rainfall
in the models, we apply a broad range of metrics which
can be summarised in three main types: spatial analyses,
temporal analyses and event analyses.

 1477870x, 2023, 754, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4488 by D
anish T

echnical K
now

ledge, W
iley O

nline L
ibrary on [05/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



THOMASSEN et al. 1915

2 DATA AND METHODS

2.1 Data

This study compares four simulation produced with the
same climate model but at different resolutions, two
reanalyses and one observational dataset. We limit the
analysis to periods of complete spatial and temporal over-
lap, analysing only land cells over Denmark (see Figure 1).
The analysed datasets consist of five years of data from

April to October, stretching over the period where most
heavy convective precipitation events in Denmark occur.
While heavy convective precipitation events do not nor-
mally occur in April (Åström et al., 2016), and also include
spin-up for the 5-km and the 750-m simulations, we
included it in the analysis anyway due to the limited sim-
ulation length. The available data from April to October
are hereafter referred to as the heavy convective precip-
itation seasons. The five years selected are 2007, 2011,
2014, 2015 and 2017. These years are selected based on

F I G U R E 1 Datasets included in the
study. The data organisation of the two
sets of climate data are shown in the top
left corner, the data description is found in
Table 1. In the rest of the figure, the
selected land cells for each climate model
simulation are coloured. Denmark is
coloured in grey. Three regions in
Denmark: Jutland, Zealand and Bornholm
are marked together with POINT data
[Colour figure can be viewed at
wileyonlinelibrary.com]

 1477870x, 2023, 754, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4488 by D
anish T

echnical K
now

ledge, W
iley O

nline L
ibrary on [05/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


1916 THOMASSEN et al.

some of the most extreme rainfall events observed in Den-
mark, to make sure extreme convective events happen in
all analysed years. The years are therefore not represen-
tative years for a climatology. Denmark is relatively flat,
with altitudes ranging from 0 to 170 m above sea level.
Mean annual precipitation ranges from 550 mm in eastern
Denmark to 950 mm in western Denmark (Madsen et al.,
2017).

The observational dataset (henceforth, POINT) is from
a network of tipping bucket rain gauges from The Water
Pollution Committee of The Society of Danish Engineers
(SVK) (Gregersen et al., 2013; Madsen et al., 2017). The
POINT data have an accuracy of 0.2 mm and one-min
temporal resolution. In the time period of interest, 98 sta-
tions are part of the network. Some stations suffer from
intermittent breakdowns, due to technical problems or
maintenance, and the knowledge of the affected intervals
is used in the analysis to take care of missing data (see
Section 2.2). The quality control procedure is outlined in
Jørgensen et al. (1998). Spatial metrics of POINT have been
validated against radar observations in a previous study
(Thomassen et al., 2022).

The four climate model simulations in this study are
driven at the lateral boundaries by two different reanaly-
sis datasets from the European Centre for Medium-range
Weather Forecasts (ECMWF), see Figure 1 top left and
Table 1. All downscaling simulations have been per-
formed with the HARMONIE-Climate model, cycle 38
(Belušić et al., 2020); two different sets of physical param-
eterisations have been used: ALADIN for intermediate
resolution, and AROME for high resolution (Termonia
et al., 2018).

The global reanalysis ERA-Interim (ERAI) is down-
scaled to 12 km (HCLIM12km) and further downscaled
in a double-nested setup to 3 km (HCLIM3km). ERAI
produced by the ECMWF has a temporal range from
1979 to 2019 and further details can be found in Table 1
and in Dee et al. (2011). HCLIM12km and HCLIM3km
use ALADIN physics and AROME physics, respectively.
The ALADIN physics parameterises all convective pre-
cipitation and makes HCLIM12km a traditional RCM,
whereas HCLIM3km with AROME physics is a CPM with
only shallow convection parameterised. HCLIM12km and
HCLIM3km have been produced in the Nordic Convec-
tion Permitting Climate Projections project (NorCP), and
data cover the entire Fenno-Scandinavia. HCLIM12km
and HCLIM3km are continuous simulations covering the
period 1998–2018. For full documentation of these experi-
ments, we refer to Lind et al. (2020).

The second reanalysis employed is ERA5, which is
downscaled first to 5 km (HCLIM5km) and further to
750 m (HCLIM750m) in a so-called double-nested setup
(Table 1). ERA5 currently extends from 1959 to the present

and is the state-of-the-art reanalysis dataset from the
ECMWF (Hersbach et al., 2018, 2020). The simulations
HCLIM5km and HCLIM750m have been produced for this
study, and consist of the five heavy convective precipi-
tation seasons in 2007, 2011, 2014, 2015 and 2017. The
seasonal focus is chosen assuming that periods with low
convection activity will be well represented at coarser res-
olutions (Kendon et al., 2021). HCLIM5km simulations
are started one week before 1 April each of the simulated
years, while HCLIM750m are started on 1 April directly.
Data from 1 April to 31 October are used in the analy-
sis to avoid reducing the limited amount of data, giving
no excluded spin-up period. This is not optimal, since soil
moisture obviously may influence heavy precipitation (e.g.
Hohenegger et al., 2009), but the very heavy computa-
tional load renders multimonth soil spin-up impractical.
Soil moisture and other initial values for the soil scheme
are taken from ERA5 to HCLIM5km and from this sim-
ulation to HCLIM750m, making these as realistic and
balanced as practically possible. Note that heavily convec-
tive precipitation events are not expected to occur in April
(Åström et al., 2016) and we only aim to spin up the atmo-
sphere, since the soil initialisation is expected to have only
small effects on the climate in such a small domain. Note
also, that most weather systems move into the domain
from the sea, which also reduces the importance of soil
initialisation.

HCLIM5km and HCLIM750m are both run with
AROME physics with only shallow convection parame-
terised. The HCLIM750m data span a 480 by 570 km area
over Denmark and southern Sweden. The data domains
for HCLIM5km and HCLIM750m are shown in Figure 2;
for data domains of the other simulations, we refer to the
studies mentioned, in which the simulations are intro-
duced. For HCLIM750m we only include every fourth cell
in each direction, reducing the number of cells analysed
to one every 3 km in each direction. This data-thinning
procedure greatly reduces the computational burden of
the analyses while retaining the full ability to compare
with the other simulations, which are also analysed on
the highest possible resolution. As the map projections
are different between HCLIM750m and HCLIM3km, the
sampling of HCLIM750m does not match the cell cen-
tres of HCLIM3km. Hereafter, HCLIM750m will refer
to the HCLIM750m data with a sampling of every 16th
cell. All analyses have been done on this resampled
dataset.

2.2 Methods

This study is an analysis of the ensemble of opportu-
nity where available simulations were analysed against
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T A B L E 1 Data overview of the observational dataset (POINT) and the two sets of climate model data

ID Name
Spatial
resolution (km)

Temporal output
resolution (min)

Model
time step (s)

Land cells/
stations over
Denmark

Boundary
conditions

POINT SVK rain gauges – 1 – 98 –

ERAI ERA-interim 79 180 1800 18 –

HCLIM12km HCLIM38-ALADIN 12 60 300 338 ERAI

HCLIM3km HCLIM38-AROME 3 15 75 5,183 HCLIM12km (ERAI)

ERA5 ERA5 31 60 720 147 –

HCLIM5km HCLIM38-AROME 5 60 120 2,179 ERA5

HCLIM750m HCLIM38-AROME 0.75 15 20 5,065* HCLIM5km (ERA5)

Note: Temporal resolution is the temporal resolution of the available output. *, after sampling every 16th cell.

F I G U R E 2 Data domain of the two new simulations
presented in this study HCLIM5km and HCLIM750m. Colours refer
to colours on Figure 1. Data domains for HCLIM12km and
HCLIM3km cover Fenno-Scandinavia and can be found in the
reference articles for each of them [Colour figure can be viewed at
wileyonlinelibrary.com]

a new sub-kilometre CPM (750 m). This implies that the
models have different domain sizes and are driven by dif-
ferent reanalysis products. The influence of reanalysis on
the lateral boundaries are not analysed, but discussed in
Section 3.6.

A set of metrics are analysed in order to quantify and
assess the added benefits of higher resolutions. The met-
rics aim at covering temporal, spatial and event-based
aspects of precipitation. Monthly precipitation and fre-
quency of wet days are analysed to understand the repre-
sentation of average precipitation properties in the models.
The diurnal cycle is used to assess the presence of convec-
tive processes during the day. Extreme events are sampled

as exceedance series, to analyse intensities, duration and
spatial variation of extreme events. The spatial correlation
of extreme events is calculated to evaluate their spatial
extent. This is, in turn, used to assess whether the climate
models produce extremes which in spatial size are compa-
rable to observed extremes. The non-central moments are
used to analyse time series’ mean and extreme properties,
which are used to test whether climate models have a ten-
dency to over- or underestimate these properties across dif-
ferent levels of aggregation. The metrics described below
have all been used in previous studies aimed at studying
and quantifying the importance of spatio-temporal resolu-
tion in climate models with a focus on convective precipi-
tation. They are briefly discussed below with reference to
benchmark studies.

To evaluate model performance for each metric and
as an overall performance assessment across all metrics,
a simple error estimate is used. The error estimates com-
pare climate model simulations against observations to
quantify the performance of the models for each met-
ric. We assume perfect observations, despite knowing that
the chosen observational product can influence the con-
clusion (e.g. Sunyer et al., 2013). The error estimate is
calculated as the mean absolute error (MAE):

MAE = 1
n

n∑

i=1
|obsi −modeli| , (1)

where n is the number of points evaluated for the given
metric, obs is the observational value for the given met-
ric and model is the climate model-simulated value for the
metric. For metrics shown as maps, the error estimate is
calculated based on the underlying boxplot. Error statis-
tics on boxplots are calculated for n is the first, second
and third quantile (Q1, Q2, Q3). For metrics shown as
lines, MAE is calculated on the underlying point data, for
example the differences between intensities for different
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simulations for each of the durations analysed. For the
spatial correlation, MAE is calculated on the e-folding
distances for the different durations.

2.2.1 Monthly precipitation and frequency
of wet days

Monthly average precipitation is calculated solely based
on precipitation within the five heavy convective precipi-
tation seasons considered in this study. Accumulated rain-
fall within the period is divided by the length of data
(35 months for climate model data, POINT data vary with
missing data).

Wet days are defined as days with a total rainfall of
more than 1 mm for all datasets to exclude drizzling (Kjell-
ström et al., 2010). The average monthly number of wet
days is calculated as the accumulated number of wet days
for the five heavy convective precipitation seasons divided
by the number of months.

2.2.2 Diurnal cycle

Two types of diurnal cycle of precipitation are calculated,
a diurnal cycle of the average rainfall amount and a diur-
nal cycle visualising extreme intensity over the course of
the day. The diurnal cycle is not calculated for the global
reanalysis models (ERA5 and ERAI). The ERAI dataset
does not contain hourly precipitation and is therefore not
used, so for consistency, hourly precipitation rates from
ERA5 are not used either. Only the closest grid cells to
the rain gauge station were selected, in order to increase
intercomparability with datasets of equal sizes.

The first type of diurnal cycle is characterised by the
average rainfall amount (mm) for each hour of the day,
using the method from Olsson et al. (2021). The average
rainfall amount for each hour (h) in mm/hour is given
by:

Rtot(h) =
∑D

d=1Rtot(h, d)
D

, (2)

where d is the day and D denotes the total number of days
in the data. To be able to compare diurnal cycles between
stations Rtot(h) is normalised by the 24-h average (Yin
et al., 2009).

The second type of diurnal cycle is calculated as the
95th percentile hourly intensity in mm/hour. Data are
aggregated into hourly time steps and for each hour of the
day, the 95th percentile is calculated separately (Médus
et al., 2022).

2.2.3 Ranks of exceedances

Extreme events are sampled with a peak-over-threshold
(POT) censoring type II method (Mikkelsen et al., 1995;
Gregersen et al., 2013), that is sampling a fixed number
of the largest events within each grid point. This allows a
flexible threshold and a set number of events within each
dataset. An average of three events per year is chosen in
each grid point. In this study, the heavy convective precip-
itation seasons are treated as full years, since convective
activity is stronger during warmer months, resulting in a
sample of the 15 most extreme events per grid cell. The
intensity of the least intense of the 15 events in each grid
cell or rain gauge station is named the cut-off value, as
this intensity becomes the border between extremes and
non-extremes.

Extreme events are sampled for five individual inten-
sity durations ranging from 15 min to 6 h (15, 30, 60, 180
and 360 min). Events are considered independent if a dry
period between events is at minimum the same length
as the intensity duration period: for example, if 60-min
extreme events are sampled, the dry period must be of min-
imum 60 min between independent events. For climate
model data, an interevent threshold of 0.2 mm/h is set
to ease the separation of precipitation events (Thomassen
et al., 2022). This threshold should not be confused
with the 1 mm/day threshold used earlier to define dry
days. Periods with rainfall intensities below the 0.2 mm/h
threshold are considered dry when selecting extreme
events.

As the dataset only consists of heavy convective pre-
cipitation seasons, the calculation of return periods for
the sampled extreme events will be biased. For sub-hourly
durations, the calculated return period will approximately
represent the annual return period, whereas for the long
durations (∼24 h), the calculated return period will be
more biased because of the lack of information about
heavy frontal storms during the seasons not simulated.
Throughout the study, the rank of the sampled extreme
events will therefore be used to compare intensities across
models. This means each sampled event has an intensity,
a duration and a rank associated with it.

2.2.4 Spatial correlation of extreme events

The unconditional spatial correlation of extremes, 𝜌,
is calculated by applying the framework developed by
Mikkelsen et al. (1996). It is calculated for each dataset sep-
arately and describes the spatial extent of extreme events
within each dataset. The comparison between models is
done by plotting the separate results for each dataset.
The spatial correlation is calculated by sampling extreme
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THOMASSEN et al. 1919

events (Section 2.2.3) and estimating the correlation of
extreme events that are concurrent and therefore inter-
preted as meteorologically dependent. This metric has
been used frequently to assess climate models’ ability to
reproduce the spatial extent of extreme rainfall systems
(Gregersen et al., 2013; Mayer et al., 2015; Thomassen
et al., 2022).

The sampled extreme events (Section 2.2.3) are paired
between all pairs of separate locations. Events are con-
sidered concurrent by considering a lag time relative to
the start time of the events. Introducing a lag time allows
events to be considered concurrent even if the events
do not overlap exactly in time, allowing an event to
travel over the case area. A lag time of 11 h is applied
as in Mikkelsen et al. (1996) and Gregersen et al. (2013).
Thomassen et al. (2022) showed that the results were not
sensitive to the choice of lag time for lag times above 0 h
(events overlap exactly in time).

The correlation is assumed to decay with increasing
distance. We fit a two-parameter generalised exponential
function to the correlation pairs based on the distance, d,
between them:

𝜌(d) = e−
(

d
𝛽

)
𝛼

. (3)

The two parameters of the exponential function (𝛼 and
𝛽) are chosen to secure a correlation of 1 at the distance
d= 0. Finally, the e-folding distance is determined from
the fitted exponential function as the distance at which the
correlation is decreased to 1∕e. This e-folding distance pro-
vides a simple metric to compare spatial correlation across
different durations and datasets.

2.2.5 Non-central sampling moments

The non-central sampling moments of the observational
dataset and the six climate model and reanalysis datasets
are compared at different temporal aggregations. The
non-central sampling moments of order 1–3 are com-
pared between datasets to evaluate the temporal scaling
behaviour of precipitation (Sunyer et al., 2017), that is, a
comparison of mean, variance, and skewness across the
datasets. The moments are estimated for temporal aggre-
gations of 1–48 h (60, 180, 360, 720, 1,440 and 2,880 min).
The non-central moment of order q (Molnar and Bur-
lando, 2005) is:

M(q)t =
∑N

n=1Xq
t

seasons
, (4)

where Xt is the rain series with the unit mm at the tem-
poral aggregation t and N is the length of data at the
temporal resolution t. The term ‘seasons’ is the number
of heavy convective precipitation seasons. For all model

data, ‘seasons’ is five but for POINT it may be lower due
to missing data. A power law relationship over temporal
resolutions of the non-central sampling moment has often
been identified from daily to hourly scale on observations
and model outputs (Gupta and Waymire, 1993; Molnar and
Burlando, 2005; Onof and Arnbjerg-Nielsen, 2009) and
used to characterise statistical scale-invariance or multi-
fractality (Schertzer and Lovejoy, 1987; Olsson and Niem-
czynowicz, 1996; Mayer et al., 2015; Sunyer et al., 2017). To
the knowledge of the authors, such moment analysis has
not been carried out on CPMs before. Following the nota-
tion in Molnar and Burlando (2005), the temporal scale is
defined as 𝜆 = 2−n where n is the level of subdivision in
the aggregation of data, starting from the highest level of
aggregation (2,880 min.). Given this, n= 0 for 2,880 min,
n= 1 for 1,440 min and n= 5.667 for 60 min. It should be
noted that the power law relationship is not expected to
hold for sub-hourly scale (Nguyen et al., 2007), yet in some
cases it has proven to work (Olsson, 1995).

Moments of order q> 1 are standardised by moment
q= 1, to attempt a fair comparison between point data
and gridded data. The standardised moments have been
defined as (Sunyer et al., 2017):

M(q)
M(1)q

. (5)

3 RESULTS AND DISCUSSION

3.1 Monthly precipitation and wet days

The average monthly precipitation within the consid-
ered five heavy convective precipitation seasons indi-
cates that ERA5 and HCLIM12km are both too wet,
while HCLIM3km seems a bit too dry, especially in east-
ern Denmark (Figure 3). HCLIM750m seems to have
a good representation of the higher monthly precipita-
tion in mid-Jutland and in the northernmost part of Jut-
land, which is also quite well represented in HCLIM5km
while not as clear in HCLIM3km. ERAI also performs
favourably, as confirmed by the small scatterplots compar-
ing rain gauge stations with the corresponding grid cell
in the climate simulations (Figure 3). Here, the best fits
are found for ERAI and HCLIM750m. Analysing the dif-
ference in average monthly precipitation between simula-
tions compared to POINT data, we look at the boxplot of all
data, as described in Section 2.2. The boxplot shows a close
fit between POINT data and HCLIM750m, as well as a
reasonable fit between POINT and ERAI and HCLIM5km
(see Figure 4). While it might seem surprising that ERAI
performs well compared to the finer-resolution climate
models, it is expected that all models would represent
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1920 THOMASSEN et al.

F I G U R E 3 Average monthly
precipitation for each of the seven
datasets. For climate model simulations
a scatter plot between rain gauges (obs)
and grid cell values at the location of
the rain gauge (model) is shown in the
top right corner, with a y= x line
[Colour figure can be viewed at
wileyonlinelibrary.com]

average precipitation well. The important point is that
the HCLIM12km and HCLIM3km simulations exhibit
wet and dry biases, respectively. The wet and dry bias
could be due to the large domains which HCLIM3km and

HCLIM12km are run on, while reanalysis products benefit
from data assimilation.

Looking at the maps and scatter plots of the aver-
age monthly number of dry days, ERAI, ERA5 and
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THOMASSEN et al. 1921

F I G U R E 4 Boxplot of average monthly precipitation for
POINT data and the six simulations. Boxes shows the interquartile
range between Q1 and Q3 (25th to 75th percentile) of all data over
Denmark. The 50th percentile is shown inside the box. Whiskers
extend to the highest/lowest value in the dataset within the range
Q1− 1.5 (Q3–Q1) to Q3+ 1.5 (Q3–Q1), values outside the whiskers
are plotted as separate points. [Colour figure can be viewed at
wileyonlinelibrary.com]

HCLIM12km seem to have too many wet days, while
HCLIM750m seems to represent the number of wet days
in POINT the best (Figure 5). HCLIM3km seems to be
skewed towards fewer wet days and HCLIM5km does not
seem to be able to capture the spatial variation in wet
days.

3.2 Diurnal cycle

The diurnal cycle in European summer is characterised
by a late afternoon peak, due to convective precipitation,
caused by convective processes growing and organising
during the day (Vergara-Temprado et al., 2020). Though,
Médus et al (2022) showed that the afternoon peak was not
very clear in Danish observations. RCMs have generally
failed to reproduce this afternoon peak, as the convective
processes are not well simulated in such models (Kendon
et al., 2021; Lucas-Picher et al., 2021). For the diurnal
cycle of the normalised rainfall amount (Figure 6 left),
all models seem to perform reasonably well. HCLIM12km
and HCLIM750m have a too large mid-day peak, while
HCLIM3km has an evening peak which is not seen in
POINT data. Calculating MAE at each hour, HCLIM750m

performs best for the day as a whole (MAE values not
shown). The diurnal cycle for the 99.5th percentile hourly
intensity is better represented by HCLIM750m than in
the other models (Figure 6 right). HCLIM12km seems to
underestimate the hourly intensity in the diurnal cycle at
the 99.5th percentile, while HCLIM3km has a late evening
peak not seen in the observations (Figure 6 right). Due to
the small simulation period it should be that the 99.5th
percentile only corresponds to the five highest values. In
general, we see that the amplitude of the diurnal cycle is
not very large in the observational data. This is in accor-
dance with the Médus et al. (2022) study of HCLIM3km
and HCLIM12km using eight full years of data, show-
ing a much lower signal of the diurnal cycle in Denmark
compared to Norway and Sweden.

3.3 Extreme events

From the intensity–duration curves, we compare the
intensity of the sampled extreme events across datasets
from different ranks. For the most extreme event sampled
(Rank 1=R1), corresponding approximately to a return
period of seven years (when using the median plot-
ting position [Rosbjerg et al., 1992]), the POINT data
have larger intensities than the climate simulations for
durations below 180 min (Figure 7). This is very likely
due to the very intense event which hit Copenhagen
on the 2 July 2011. The event broke the rainfall record
for the period from 1933 to 2016 and has been esti-
mated to have a return period of more than 2000 years
(Arnbjerg-Nielsen et al., 2014; Ziersen et al., 2017). For
more frequent events, the three CPMs (HCLIM5km,
HCLIM3km and HCLIM750m) represent the intensity
of the extreme events in POINT data well for all but
the shortest durations (Figure 7). HCLIM12km, ERA5
and ERAI all have lower intensities than POINT for all
ranks for all durations. This indicates an added bene-
fits of a convection-permitting resolution, corresponding
to previous findings (Chan et al., 2014; Lind et al., 2020;
Thomassen et al., 2021; Médus et al., 2022), but no notice-
able added benefits of a higher resolution between the
CPMs.

The boxplot of the variability in intensities across Den-
mark for cut-off threshold intensity and rank 2 and 6
events for 15, 60 and 360 min shows overall that the
CPMs represent the variability and levels in the intensi-
ties well for durations above 15 min (Figure 8). On the
other hand, HCLIM12km, ERA5 and ERAI struggle to
represent the range in intensities and in general have
too low intensities (Figure 8). For the 15-min duration,
both HCLIM750m and HCLIM3km have too low inten-
sities compared to POINT data for both cut-off level, R6
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1922 THOMASSEN et al.

F I G U R E 5 Average monthly
number of wet days for each of the
seven datasets. For climate model
simulations, a scatter plot between rain
gauges (obs) and grid cell values at the
location of the rain gauge (model) is
shown in the top right corner, with a
y= x line [Colour figure can be viewed
at wileyonlinelibrary.com]

and R2 (Figure 8, first column). For durations of 60 and
360 min, the three CPMs in general represent the variation
in intensities very well across all three levels of extremes
(Figure 8, middle and last column). There are small added

benefits with higher resolutions for HCLIM12km, ERA5
and ERAI and a considerable added benefit for CPM sim-
ulations. Between the CPMs, there seems to be no clear
added benefit of higher resolution. Calculating MAE for
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THOMASSEN et al. 1923

F I G U R E 6 Mean diurnal cycle for simulations and POINT data. The diurnal cycle for normalised rainfall amount (left) and for the
99.5th percentile hourly intensity (right). Note different y-axes. Lines show the mean diurnal cycle over Denmark and bands show the spatial
variation. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 7 Intensity duration
curves for the seven datasets, for the
extreme event with the highest
intensity (R1), second-highest intensity
(R2), sixth-highest intensity (R6) and
the lowest intensity of the sampled
extreme event, the threshold (cut-off).
Intensities are averages over all grid
cells or stations in Denmark [Colour
figure can be viewed at
wileyonlinelibrary.com]

Q1, Q2 and Q3 as described in Section 2.2, shows that
HCLIM3km performs slightly better than the other CPMs
as an average over all three durations and the three levels of
extremes (MAE values not shown). HCLIM3km produces
slightly higher intensities and a better range at 15 min
duration, while excluding this duration, HCLIM750m per-
forms better as an average for durations of 60 and 360 min
together.

The spatial variation in the threshold intensity (cut-off)
for sampled extreme events for POINT data and the six
models for durations 15–360 min is shown in Figure 9.

For the shortest duration, 15 min, the climate models
(HCLIM750m and HCLIM3km) are unable to reproduce
the intensities seen in POINT data (Figure 9, first row).
For the longer durations, there is a better overlap in the
intensity range between POINT data and CPMs, while
HCLIM12km, ERA5 and ERAI have too low intensities.
Across all durations, POINT data show lower thresh-
old intensities in an area in the northern part of Jut-
land, which to some extent is represented in HCLIM3km
and HCLIM750m. Both HCLIM750m and HCLIM3km
show a band of higher intensities up through Jutland,

 1477870x, 2023, 754, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4488 by D
anish T

echnical K
now

ledge, W
iley O

nline L
ibrary on [05/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


1924 THOMASSEN et al.

F I G U R E 8 Boxplot of the variation in intensity of the extreme events over Denmark for the seven datasets. Extreme event intensities
for threshold level (cut-off ∼0.33-year event), rank 6 (R6∼ one-year event) and rank 2 (R2∼ three-year event) are compared for durations of
15, 60 and 360 min (columns). The resampled datasets only contain the grid cells at which a rain gauge station is located. Due to the coarse
resolution of ERA5 and ERAI, there are no resampled datasets for these. For an explanation of boxplot features, please refer to Figure 4.
[Colour figure can be viewed at wileyonlinelibrary.com]

but where HCLIM750m places this band close to the
west coast of Jutland, HCLIM3km places it more inland,
somewhat along the central, more elevated ridge of Jut-
land. This suggests a better performance of HCLIM3km
based on the authors’ knowledge of rainfall distribu-
tion over Jutland. Nevertheless, comparing the correlation
between intensity in POINT data and different climate
model datasets (only selecting the grid cells closest to the
location of POINT data) does not show any correlation
between either of the CPMs and observations (results not
shown).

3.4 Spatial correlation of extreme
events

For the unconditional spatial correlation of extreme
events, we see clear added benefits when moving to
convection-permitting models, yet no clear differences
between the three CPMs (HCLIM750m, HCLIM3km
and HCLIM5km, Figure 10). The e-folding distances
show a slight improvement in HCLIM750m and
HCLIM3km compared to HCLIM5km (Table 2). The
improved representation of the spatial correlation with
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THOMASSEN et al. 1925

F I G U R E 9 Spatial variation of threshold level (cut-off intensity) across Denmark for the seven datasets (columns) and for durations
(d) of 15, 30, 60 and 360 min (rows). [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 10 Unconditional spatial
correlation of extreme events for the seven
datasets across durations from 15 to
360 min. HCLIM5km, HCLIM12km and
ERA5 available from 60 min and ERAI
available from 180 min. [Colour figure can
be viewed at wileyonlinelibrary.com]
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1926 THOMASSEN et al.

T A B L E 2 E-folding distances (km) for the seven datasets (rows) and duration of extreme events between 15 and 360 min (columns)

15 min 30 min 60 min 180 min 360 min

POINT 4.6 7.6 9.7 9.2 11

HCLIM750m 8.6 11 12 14 17

HCLIM3km 8.6 10 12 16 17

HCLIM5km – – 13 17 18

HCLIM12km – – 55 52 46

ERA531km – – 90 106 113

ERAI79km – – – 187 153

the increasing resolution is in accordance with previous
studies (Gregersen et al., 2013; Thomassen et al., 2022),
which could have suggested an improvement between
HCLIM750m and HCLIM3km. However, such improve-
ment is only limited, and all models show longer
correlation distances in extreme events compared to
observed data, with larger disagreement between model
and observations at coarser resolution. While rain gauges
do not per se give information on spatial properties,
Thomassen et al. (2022) showed that rain gauge data
very well represented the spatial correlation structure of
measured rainfall when compared to radar data.

3.5 Non-central sampling moments

The average non-central sampling moments show that
the CPMs (HCLIM750m, HCLIM3km and HCLIM5km)
are very similar to POINT (Figure 11). HCLIM12km,
ERA5 and ERAI are also very similar to each other, but
for q> 1 they are distinctly different from the POINT
data and CPMs. For the mean precipitation (q= 1), all
models except HCLIM12km underestimate this, while
HCLIM12km overestimates it but also has the smallest
error compared to POINT. For q> 1, HCLIM750m has the
lowest absolute error over the six aggregation levels. The
CPMs all overestimate the variance (q= 2) and the skew-
ness (q= 3) which can be interpreted as these models over-
estimating extreme precipitation for longer durations. The
ERA products and the traditional RCM (HCLIM12km)
underestimate q= 2 and q= 3, meaning that these models
underestimate extreme precipitation. All models perform
increasingly better with higher aggregation level for q> 1,
yet for HCLIM750m and HCLIM5km, there are smaller
biases between POINT and model for 60 min aggregation
level than for 180 min, with decreasing bias for aggrega-
tion levels above 180 min. The trend is only the case for
HCLIM3km for q= 2, whereas for q= 3 biases are decreas-
ing for all aggregation levels. This small bias suggests
that HCLIM750m and HCLIM5km have an improvement

F I G U R E 11 Non-central sampling moments, for moments of
order q= 1–3. Moments are averages over Denmark. [Colour figure
can be viewed at wileyonlinelibrary.com]

 1477870x, 2023, 754, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4488 by D
anish T

echnical K
now

ledge, W
iley O

nline L
ibrary on [05/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


THOMASSEN et al. 1927

T A B L E 3 Overview of error estimates for the metrics used in the study

HCLIM 750m HCLIM 3km HCLIM 5km HCLIM 12km ERA5 ERAI

Monthly precipitation (Figure 4) ++ + +

Wet days (Figure 5) ++ ++ +

Diurnal cycle (Figure 6) ++ + +

Cut-off threshold (Figure 8) + ++ +

R2 and R6 intensities (Figure 8) + ++ +

Spatial correlation (Table 2) ++ + +

Moments (Figure 11) ++ + +

Note: The model with the best performance (MAE) for each metric is coloured green (++), the second- and third-best models are coloured yellow (+), and the
rest is coloured red. The ERA products were not analysed for the diurnal cycle and are therefore not coloured. The figure or table where the metric is shown is
stated. Figures 7–9 contain overlapping information visualised differently to emphasise different aspects of the data. Performance estimates are based on the
box plots shown in Figure 8 as referred to in the table [Colour can be seen in the online version].

in hourly precipitation regarding variance and extreme
precipitation. Furthermore, this hourly improvement is
not seen for the three-hour resolution or could even com-
promise the performance for higher aggregation levels. For
HCLIM750m, this results in biases for 60-min aggregation
levels comparable to the biases for 1,440- and 2,880-min
aggregation levels. From q> 1 the power law behaviour
does not seem to hold, as a negative curvature can be
seen for all datasets (including POINT). Especially for the
ERA products and HCLIM12km, a clear negative curva-
ture is seen. Previous studies have shown increasingly
better moments (compared to observational data) with an
increasing spatial resolution (Mayer et al., 2015; Sunyer
et al., 2017), which is confirmed here, yet the difference
between the CPMs is minimal. When moments have been
applied on precipitation time series from across the world,
it generally showed that the mean value (q= 1), the vari-
ance (q= 2), and the skewness (q= 3) varied smoothly as
a (near) log–log linear function of the temporal resolution.
The graphs in Figure 11 thus show that, in contrast to the
CPM data, both the reanalysis datasets and HCLIM12km
simply do not exhibit the variation and skewness in the
time series that observations have. This may be interpreted
as that the actual temporal resolutions of these datasets are
much lower than the nominal resolution.

3.6 Performance assessment

Based on the metrics analysed in this study, we apply
a simple performance diagnostic (MAE, see Section 2.2)
to give an overview of the overall performance of each
model simulation. Considering all metrics as a whole,
HCLIM750m clearly has the best performance in MAE
across all model simulations and added benefits can be
found moving to the vsub-kilometre scale in this setup

(Table 3). However, such added benefits are, in this setup
and for the metrics currently studied, rather low and
for most applications most likely not worth the higher
computational and storage costs. It is thus questionable
whether long-term projections in this setup would be
worth the higher computational and storage costs. While
HCLIM750m performs best for most metrics, HCLIM3km
is often very close in performance to HCLIM750m, in
turn followed closely by HCLIM5km. This shows clear
added benefits of CPMs over traditional RCMs, but little
added benefit with higher resolutions within the CPMs.
Regarding the intensity estimates of the extremes (R2 and
R6) and the threshold level, HCLIM3km has the best
performance (Table 3). As seen in Figure 8, the better
performance of HCLIM3km is due to higher intensities
in HCLIM3km for 15-min duration, which is closer to
observations. For durations from one hour and above
(d= 60, 180 and 360 min), HCLIM750m performs better
than HCLIM3km (30-min duration shows better perfor-
mance for HCLIM3km, results not shown). Many studies
have found that CPMs tend to have too intense heavy rain-
fall (e.g. Kendon et al., 2017; Prein et al., 2017), which
has not been found in this study for sub-hourly resolu-
tions. An explanation could be that sub-hourly precipi-
tation extremes are rarely assessed in these papers (due
to limitations in available temporal output resolution or
observations). Another explanation could be the selection
of years studied here, which are not representative of a
classical 30-year climatology. The selected years contain
some of the most severe extreme events observed, which
are less likely to be overestimated in the simulations. The
better performance for sub-hourly extreme event inten-
sities in HCLIM3km might thus not have been found if
the same analysis was performed on a more representative
time period. As stated in Section 2.2, this study does not
analyse the influence of the different reanalyses driving
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1928 THOMASSEN et al.

the simulation — ERA5 and ERAI. We acknowledge that
the different reanalyses may influence the results, and
therefore we have included the reanalysis products in
our analysis. However, we believe that the behaviour of
extreme precipitation is largely a property of the inner-
most model and that our results suggest that the choice
of driving model does not appear to be the dominant
influence. We build this upon the fact that our results
show the best-performing simulations (HCLIM750m and
HCLIM3km) are driven by two different reanalyses and
HCLIM5km, driven by the same reanalysis as HCLIM750,
does not outperform HCLIM3km. Finally, it should be
stressed that this analysis is based on a small geographi-
cal area with a low variation in topography. Therefore the
results cannot necessarily be generalised to other region-
s/climates.

4 CONCLUSION

The six simulations are nested in a way that to some
extent makes it difficult to disentangle differences due
to resolution and due to driving data. Nevertheless, the
differences are sufficient to conclude that this study
has identified added benefits in sub-kilometre resolu-
tion convection-permitting climate models. Nevertheless,
the added benefits of moving to sub-kilometre resolu-
tion seem surprisingly limited, given earlier studies of the
added value of higher resolutions (Prein et al., 2013; Chan
et al., 2014; Lind et al., 2016; Olsson et al., 2021; Médus
et al., 2022). The limited added benefits could be due to
the details of the model setup, which is similar to the
model setup for the HCLIM3km apart from the higher res-
olution. To obtain more significant added benefits with
sub-kilometre resolution, one might need to consider the
vertical resolution, the parametrisation of shallow convec-
tion or the need for an even higher horizontal resolution.
Vergara-Temprado et al. (2020) suggest that the explicit
modelling of deep convection works better for resolutions
coarser than expected and that grey-zone resolution might
extend to even sub-kilometre resolution. On the other
hand, HCLIM750m has also shown lower intensities than
HCLIM3km for sub-hourly extreme events. This might
indicate a lower tendency towards too intense extreme
events, although, in this study, the lower intensities also
result in worse performance when compared to observa-
tions.

The study furthermore found differing conclusions
for hourly and sub-hourly extreme events regarding the
performance of CPMs. The CPMs in general repre-
sented hourly extreme events much better than sub-hourly
extreme events. This indicates that some precipitation
processes are still not well represented and emphasises

the importance of analysing sub-hourly precipitation in
climate model simulations. This study concludes that
added benefits from sub-kilometre simulations must be
further assessed. HCLIM750m does perform better than
HCLIM3km, but in light of the limited added value found
here, sub-kilometre model setups would benefit from a
more detailed evaluation to assess the trade-off between
improved performance and the additional computational
cost.
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