

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 01, 2024

Private Authentication with Alpha-Beta Privacy

Fernet, Laouen; Mödersheim, Sebastian

Published in:
Proceedings of the Open Identity Summit 2023

Link to article, DOI:
10.18420/OID2023_05

Publication date:
2023

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Fernet, L., & Mödersheim, S. (2023). Private Authentication with Alpha-Beta Privacy. In Proceedings of the
Open Identity Summit 2023 (pp. 61-72). Gesellschaft für Informatik e.V.. https://doi.org/10.18420/OID2023_05

https://doi.org/10.18420/OID2023_05
https://orbit.dtu.dk/en/publications/5a5a1fd1-87e1-446c-98ea-27ff35df4a3f
https://doi.org/10.18420/OID2023_05

Private Authentication with Alpha-Beta Privacy

Laouen Fernet∗ Sebastian Mödersheim†

Abstract
Alpha-beta privacy is a new approach for security protocols that aims

to provide a logical and intuitive way of specifying privacy-type goals.
Recently the tool noname was published that can automatically analyze
specifications for a bounded number of sessions, but ships only with a few
simple examples. This paper models two more complicated case studies,
namely the ICAO 9303 BAC and the Privacy Authentication protocol
by Abadi and Fournet, and applies the noname tool to analyze them,
reproducing known vulnerabilities and verifying the corresponding fixes,
as well as providing a better understanding of the privacy properties they
provide.

Keywords: Privacy Authentication Unlinkability Security Protocols

1 Introduction
The specification of privacy-type properties in security protocols is quite tricky
and differs from the specification of standard secrecy goals. For a normal secrecy
goal, e.g., secrecy of a key, one can simply specify which protocol parties are
allowed to learn the key, and if the intruder learns the key (while not being one
of the specified parties) it counts as an attack. This works for cryptographically
strong secrets, but not for agent names, because they are at least in principle
public values. The secret here is their relation, e.g., which agent has performed
a particular transaction. The most common way to specify privacy-type prop-
erties for security protocols is based on a notion of observational equivalence
between processes: one specifies two processes that represent two possible re-
alities and the intruder should not be able to distinguish them. For instance,
unlinkability in a protocol between cards and a card reader can be specified by
the indistinguishability of the following two processes: one where a single card
performs any number of sessions (protocol runs) with the reader, and one where
any number of cards perform sessions with the reader. This expresses the goal
that an intruder cannot tell whether it was all the same card or rather different
cards.

Observational equivalence has several challenges: it can be rather unintu-
itive and technical to specify privacy goals as indistinguishabilities, and one

∗DTU Compute, Kgs. Lyngby, Danmark lpkf@dtu.dk ORCID: 0000-0001-9028-1480
†DTU Compute, Kgs. Lyngby, Danmark samo@dtu.dk ORCID: 0000-0002-6901-8319

1

mailto:lpkf@dtu.dk
https://orcid.org/0000-0001-9028-1480
mailto:samo@dtu.dk
https://orcid.org/0000-0002-6901-8319

can hardly be sure that one has not forgotten anything; moreover, automated
verification seems to be only possible under major restrictions, either in what
processes can do or in fixing the number of sessions. For an overview of models
and methods in this area see [1].

(α, β)-privacy [2] is an alternative approach to privacy for security protocols
implemented in the novel noname tool for privacy analysis [3]. Rather than
reasoning about the distinction of two processes, a protocol is represented by a
standard state transition system where every state stands for just “one reality”.
Every state contains two formulas α, expressing what information has been
released to the public, and β, expressing what the intruder can observe. It is a
violation of (α, β)-privacy, if there is a reachable state where the intruder can
deduce anything from β that was not permitted by α. A modeler needs to specify
what information is released in α, but does not specify β directly. Rather, the
modeler specifies a protocol as a set of transactions, i.e., how honest agents
send and receive messages and update their local state. The β of every reached
state is then defined by the semantics of the transaction language and reflects
all observations and deductions the intruder can make. Thus the modeler only
needs to specify the protocol itself and what information is released in α and
that is a positive specification, i.e., what the intruder is allowed to know. Thus,
in the worst case the modeler errs on the safe side: if one forgets to specify
something that the intruder can actually derive, then (α, β)-privacy is violated
and the noname tool presents a violation. Then the modeler can decide whether
the information that the intruder can derive is indeed acceptable, and specify
that by adding an appropriate α release, or otherwise strengthen the protocol.
In this way one can even explore what privacy guarantees a protocol gives by
starting with α containing only what is obviously released and then incrementing
the release until no more violations occur.

In this paper we describe exactly this process for two case studies. The first is
the unlinkability in the ICAO 9303 BAC protocol for passport readers [4], where
we replicate known problems in some implementations [5, 6, 7]. The second is
the private authentication in the Abadi-Fournet protocol [8] that hides as far
as possible the identity of participants as well as the fact which participant is
willing to talk to which other participants. To our knowledge this is the tightest
characterization of the privacy goals that this protocol enjoys.

The contributions of this paper are to provide the first models with (α, β)-
privacy of protocols that go beyond the one-step examples and unlinkabil-
ity goals that the noname tool ships with. It also gives a characterization
of Abadi-Fournet that is quite different from previous indistinguishability ap-
proaches and where it is unclear to us how this could be captured as an ob-
servational equivalence of processes. All specifications are available at https:
//www2.compute.dtu.dk/~samo/abp/bac-et-al.tar.gz

2

https://www2.compute.dtu.dk/~samo/abp/bac-et-al.tar.gz
https://www2.compute.dtu.dk/~samo/abp/bac-et-al.tar.gz

2 ICAO 9303 BAC
The BAC protocol [4] is an RFID protocol used for passports with RFID card
readers. We simplify matters for two reasons: it allows us to focus on the actual
issue, avoiding complicated and irrelevant modeling challenges, and moreover,
the noname tool quickly runs into state space explosions otherwise. The full
specification is found in bac.nn.

The first step is that an RFID tag x starts a new session, with a new random
nonce N that it sends to the Tag Reader. There is a unique key sk(x) for each tag
x that is derived from the passport data (that the reader obtains using OCR).
The reader uses sk(x) to encrypt N as a response to the challenge, as well as a
challenge N’ of its own. We omit N’ here for simplicity. Also for simplicity, not
to have to model the exchange of sk(x), we put these two steps into one atomic
transaction:

1 Transact ion Chal lenge :
2 ∗ x in {t1 , t2 } .
3 new N. send s e s s i o n (x ,N) . send N.
4 send s c rypt (sk (x) ,N) . ni l

Here, line 2 means that x is non-deterministically chosen from a set of two tags
{t1,t2} (we have to bound the number of tags tightly for the tool performance).
The ∗ symbol indicates an α-release: at this point the intruder is allowed to know
that x in {t1,t2}, but nothing more. If this transaction is executed repeatedly,
then the variables will all be freshly renamed each time, the intruder obtains an
α formula like x1 in {t1,t2 },..., xn in {t1,t2}, saying that there have been n
transactions performed by some tags x1 ,..., xn and the intruder is not allowed
to learn anything more than that they are tags. In particular the intruder is
not allowed to know whether or not x1=x2 holds. This is indeed all that needs
to be specified to formulate unlinkability as a goal in (α, β)-privacy.

line 3 creates a new random number, sends it out on the network (so the
intruder can see it), and we send also a special pseudo-message session(x,N),
i.e., a message that only exists in our model: it formalizes the session state of
the tag x were session is a private function that the intruder cannot apply. line 4
represents the answer that the server sends: a symmetric encryption (scrypt)
with key sk(x) and content N. The nil command finishes the transaction.

The next step is that the tag receives the messages from the reader, tries to
decrypt it, check that it contains the number N challenged to the server, and
sends an error message otherwise:

1 Transact ion Response :
2 receive Ses s i on .
3 try X = s f s t (Se s s i on) in
4 try N = ssnd (Se s s i on) in
5 receive M.
6 try NN = dscrypt (sk (X) ,M)
7 in State := nonces tate [N] .
8 i f N=NN and State = f r e s h

3

9 then nonces tate [N] := spent .
10 send ok . ni l
11 else send nonceErr . ni l # nonce check f a i l e d
12 catch send formatErr . ni l # decrypt ion f a i l e d
13 catch ni l
14 catch ni l

In line 2, the tag actually tries to retrieve its session state (that we had sent as
a pseudo-message in the other transaction). This is supposed to be of the form
session(X,N) consisting of the tag name and challenge of that session. To check
and extract this information, we have two private functions (i.e., functions not
accessible to the intruder) called sfst and ssnd with the property that they the
return X and N, respectively if the given message has the form session(X,N), and
give an error otherwise. The try−in−catch construct accordingly continues
with the in part if there is no error, and to the catch part otherwise; here that
would be the last two lines where the transaction does nothing.

In lines 5 and 6, the tag receives the actual message that (supposedly) the
card reader has sent and tries to decrypt it with its key sk(X) (where X is
the value just retrieved from its session state). The function dscrypt is public,
i.e., also the intruder can apply it with known keys, but the intruder in this
example does not know any sk(X). (One could model that the intruder has
its own passport with tag tI and knows the key sk(tI).) Again the decryption
function either returns the content if this is a symmetric encryption with the
given key, or an error otherwise. In the error case (line 12) the tag responds
with a formatErr code.

The next step is to compare the received nonce NN with the actual nonce
N from the session state. Here we have however a slight challenge in modeling:
since the session state is modeled here as a pseudo-message that was sent in
the first transaction and received back in the second, an intruder can replay an
old session state that was actually already processed by the tag, and we cannot
prevent that in our model. However, (α, β)-privacy transactions have a notion
of long-term state that we can use. Here we use an (infinite) array of memory
cells noncestate [.] that is initialized with fresh. In line 7 we retrieve the State
of the nonce N in question, check that the State is still fresh in line 8, and
then set it to spent in line 9, effectively blocking a nonce from being used twice.
Finally the tag responds with an ok message or a nonceErr.

The Attack A sequence of three transactions is sufficient to get to a vio-
lation of the (α, β)-privacy. We start with two Challenge transactions giving
alpha = x1,x2 in {t1,t2} and respective messages observed by the intruder:

l 1 −> se s s i o n (x1 ,N1) l 3 −> s e s s i o n (x2 ,N2)
l 2 −> scrypt (sk (x1) ,N1) l 4 −> scrypt (sk (x2) ,N2)

Next, we execute the Response transaction where the intruder chooses for
Session the message l1 and for M the message l4. Now there are two possi-
bilities for what can happen: either x1=x2, then the decryption works (line 6

4

of the Response transaction), but the nonce check fails (line 8), or x1/=x2 and
then already the decryption fails. The error message by the tag is nonceErr
in the first case, and formatErr in the second case, so the intruder now knows
whether or not x1=x2. Since this does not follow from α, the observations β of
the intruder violate (α, β)-privacy, and we can find this attack with the noname
tool.

This attack was first reported in [5] and it is interesting that the French im-
plementation of the protocol was vulnerable to this attack, while the British
implementation was not. The ICAO 9303 standard [4] requires the tag to
send error messages when receiving an ill-formed or incorrect message from
the reader, however this standard does not prescribe what the error message
should be. In the French implementation, two different error messages were
used (represented here with nonceErr and formatErr), while the British imple-
mentation uses the same error message in both cases, and in fact, doing so we
can verify the specification with the noname tool (for up to four transactions).

Another Problem [7] actually pointed out that the protocol has another
problem that is here (and in several other models) buried by the fact that the
first exchange between tag and reader, namely the nonce N from the tag and
the response scrypt(sk(x),N) from the reader is merged into one transaction.
This does not allow for a possible confusion that can arise when multiple tags
in parallel are shown to the same or different readers.

We thus split the Challenge transaction into two transactions (see bac-parallel.nn):

1 Transact ion I n i t S e s s i o n :
2 ∗ x in {t1 , t2 } .
3 new N.
4 send s e s s i o n (x ,N) . send N. ni l
5 Transact ion Chal lenge :
6 receive Ses s i on .
7 try X=s f s t (Se s s i on) in
8 receive N.
9 send s c rypt (sk (X) ,N) . ni l

10 catch ni l

Here the InitSession is the part of the tag creating a new nonce and session
state, and this is where the only α-release occurs, thus one may not learn more
than that x is a tag.

The Challenge transaction now receives the pseudo-message Session, which
simply models that the reader receives the (claimed) identity X of the card and
can compute the key sk(X). Note that we would be “cheating” if the server also
received the nonce N from the session state, because that is actually transmit-
ted over a public channel that the intruder can access and manipulate. This
Challenge transaction now allows for the confusion that the reader gets the
claimed identity and shared key from one passport, and the nonce from an-
other.

5

Now suppose the following transactions: two tags x1 and x2 (possibly the
same) perform the transaction InitSession and the intruder sends the session
message from x1 and the nonce N2 from x2 to the server in the Challenge trans-
action, who thus produces scrypt(sk(x1),N2). The intruder feeds this message
to the second tag, i.e., executing the Response transaction with the session state
of x2. This will give the ok message if and only if x1=x2.

This attack can be found by the noname tool, however due to complexity,
we introduced a “guardrail”, guiding the tool to first execute two InitSession ,
followed by a Challenge and a Response. With this guidance we prune other
interleavings from the search tree, and it is then small enough to find the attack
in a reasonable amount of time. We also verified with the tool under this
guardrail that the attack does not exist when encrypting the responses from the
tag.

We see here a clear advantage of (α, β)-privacy: the attack description in [7]
requires one page of explanation and an understanding of their particular notion
of bi-similarity between processes. It may be impossible to make that intuitive
to non-mathematical readers because it refers to a world in which only one tag
exists, so that the above strategy of the intruder cannot lead to an error. In
contrast our specification of the privacy goal is rather simple (the intruder may
not find out more about the involved tags other than that they are tags) and
also the violation is: confusing the steps of two parallel sessions leads to an
observable error message unless the two sessions are with the same tag.

Finally, one may wonder if this is really an issue, because RFID tags do not
actually really perform multiple sessions at the same time. If every tag works
strictly sequentially, i.e., a new session can only be started once the current
session is finished or timed out, then the attack is also prevented. However, this
opens another can of worms: since the intruder also knows that tags cannot
participate in two sessions at the same time, the successful completion of two
interleaved sessions means that distinct tags are involved. The encryption of all
response messages also prevents this attack, see bac-sequential.nn.

3 Private Authentication
We model the private authentication protocol by Abadi and Fournet, AF for
short [8]. The protocol contains two roles, initiator and responder. The initiator
sends an encrypted message containing a nonce to the responder, who either
replies with a nonce for authentication or with a decoy message. The purpose
of the decoy is to hide the fact that the responder does not want to talk to the
initiator, or that the incoming message does not have the right format. The
intruder should not be able to tell the difference between a decoy message and
a properly encrypted reply. AF is parameterized over a specification of which
agent is willing to talk which other agents. We first look at simple variant AF0
where everybody is willing to talk to everybody.

6

3.1 AF0: Initial attempt
This first version is found in af0-initial.nn. We consider three agents a,b, i
in this specification where a and b are honest, and i is the intruder, all of which
can play as participants here. Each participant x has a public key pk(x) and
the corresponding private key inv(pk(x)). The intruder knows all public keys
(because pk is a public function, and agent names are public constants) and
their own private key inv(pk(i)).

The first transaction describes how an honest agent xA initiates communica-
tion with a (possibly dishonest) agent xB (the case of a dishonest xA is already
covered by the intruder model):

1 Transact ion I n i t i a t o r :
2 ∗ xA in {a , b } .
3 ∗ xB in {a , b , i } .
4 i f xB=i then
5 new NA,R. send crypt (pk (xB) , pa i r (xA,NA) ,R) .
6 ∗ xA=gamma(xA) and xB=gamma(xB) . ni l
7 else
8 new NA,R. send crypt (pk (xB) , pa i r (xA,NA) ,R) .
9 ∗ xB in {a , b } . ni l

Like in the previous case study, lines 2 and 3 specify the non-deterministic
choices of agent names from the respective domains, and thus specify that the
intruder so far is only allowed to know that xA and xB are chosen from these
domains. The initiator sends an encrypted message to the recipient, containing
a pair of their name and a fresh nonce NA. (R is also a nonce for randomized
encryption.) If the recipient is dishonest, then the intruder will learn the values
of xA and xB from this message (knowing the private key to decrypt it). Thus
we get in this case a violation of (α, β)-privacy unless we release this information,
which we do in line 6. Here the formula x=gamma(x) means that we release
the true value gamma(x) of x: gamma(x) will be replaced by the true value
of x when reaching this point. Also in the case that the recipient is honest,
the intruder can learn something from the fact that they cannot decrypt the
message: that xB is honest, which we release in line 9. Releasing means that we
allow this information to be known by the intruder, so that it does not count as
an attack if the intruder finds this out. If we had forgotten any of these releases,
the noname tool would have notified us with an attack. Note that, except for
the α release, the then and else branches are identical: they reflect the steps
that xA indeed performs, while the if−then−else and α-releases are only for
specifying the privacy goal.

The response is now described from the perspective of an honest xB:

1 Transact ion Responder :
2 ∗ xB in {a , b } .
3 receive M.
4 try DEC = dcrypt (inv (pk (xB)) ,M) in
5 try A = pro j1 (DEC) in

7

6 i f A=i then
7 new NB,R. send crypt (pk (A) ,NB,R) .
8 ∗ xB=gamma(xB) . ni l
9 else

10 new NB,R. send crypt (pk (A) ,NB,R) . ni l
11 catch new NB. send NB. ni l
12 catch new NB. send NB. ni l

It may be surprising that xB is here also non-deterministically chosen. The ex-
ample protocol actually leaves the communication model abstract and just mod-
els that a message may arrive at any participant, since this may be caused by
the intruder. xB receives a message M that they try to decrypt with their private
key. The operator dcrypt satisfies the equation dcrypt(inv(K),crypt(K,M,R))=M.
If the decryption succeeds, the result DEC must be a pair of a sender name A
and a nonce. To obtain A, the responder uses proj1 which satisfies the equa-
tion proj1(pair(X,Y))=X. If this succeeds, xB sends an answer encrypted for A
containing a fresh nonce NB and randomization R (lines 7 and 10). As before,
we must take into account what the intruder can learn if A=i: since then the
answer is decipherable for them, they learn the name of xB (in case they did not
know already). If anything goes wrong (if decryption fails or the content is not
a pair) then the recipient sends a decoy message, a random nonce NB that is
not distinguishable from an encrypted message that the intruder does not have
the decryption key for.

The Attack The noname tool reports an attack on this specification. In this
attack, only the Responder transaction was executed where the intruder pro-
vided as input for message M the following message: crypt(pk(a),pair(i ,R48),R38)
where R48 and R38 are recipe variables that stand for arbitrary messages. The
intruder has thus sent a message to recipient a under their true name i. We
have thus two cases. First, xB=a and thus the message is correctly decrypted
by xB and the intruder receives as an answer crypt(pk(i),NB,R) for some fresh
values NB and R. Second, xB/=a and the decryption fails and xB sends a
decoy message NB. This is of course observable for the intruder, since they
can decrypt in the first case, but not in the second. The concrete state that
the noname tool presents is the latter case, and the intruder thus learns xB/=a
without that being released.

This illustrates how we may forget something that the intruder might find
out and we may then decide that this is completely benign: the intruder here acts
under their real name and just finds out that xB who did answer the message was
not the intended recipient. Without a basic change of communication model,
this information release is unavoidable and the solution is thus to release just
this information in this case.

8

3.2 AF0: Corrected release
We update the responder transaction to add the information being released
in the case that the decryption fails, i.e., the catch branch following line 12,
see af0-corrected.nn:

1 Transact ion Responder :
2 ∗ xB in {a , b } .
3 receive M.
4 try DEC = dcrypt (inv (pk (xB)) ,M) in
5 try A = pro j1 (DEC) in
6 i f A=i then
7 new NB,R. send crypt (pk (A) ,NB,R) .
8 ∗ xB=gamma(xB) . ni l
9 else

10 new NB,R. send crypt (pk (A) ,NB,R) . ni l
11 catch new NB. send NB. ni l
12 catch
13 try C = r e c i p i e n t (M) in
14 try DEC = dcrypt (inv (pk (C)) ,M) in
15 try A = pro j1 (DEC) in
16 i f A in {a , b , i } and C in {a , b} then
17 new NB. send NB.
18 ∗ not (C=xB and A=i) . ni l
19 else new NB. send NB. ni l
20 catch new NB. send NB. ni l
21 catch new NB. send NB. ni l
22 catch new NB. send NB. ni l

The case where the actual recipient xB could not decrypt the given message
is complicated. To even talk about who is the intended recipient C (if the
message is even an encryption) we need to model a function that agents in
reality cannot perform, namely extracting the name of the recipient from the
message, if it exists (line 13). That is the purpose of the private function
recipient which satisfies the equation recipient (crypt(pk(B),M,R))=B. These
steps do not correspond to actions an agent would do and which we only need in
order to determine whether the intruder is allowed to learn something. This is
the case if the message is indeed encrypted for some agent C and contains a pair
of an agent name A (the claimed sender) and a nonce. We can even restrict this
to an honest C, as the intruder can otherwise already decrypt the given message
and learn A and C. If A is an agent and C is honest, then the intruder learns
that at least one of two things must be true: C is not the actual recipient xB
or A is honest, for if C=xB and A dishonest, then the intruder could decipher
the answer.

In the case where the first specification had the attack, the intruder knew
that A=i and C=a by construction. The released formula α in the updated
specification is thus not(a=xB and i=i) or simply a/=xB. We can indeed verify

9

with the noname tool that there are no more violations of (α, β)-privacy under
a bound of three transactions.

3.3 AF
We now lift the simplification of AF0 that everybody is willing to talk to ev-
erybody, see af.nn. We define a binary relation talk, where talk(x,y) means
that x is willing to talk to y. The noname tool requires to give a fixed inter-
pretation of such a relation. We choose for our experiments the interpretation:
talk : (a,b),(a, i),(b,a) which specifies that talk is true for the listed tuples
and false otherwise. The aim of the protocol is that privacy holds for every
interpretation of talk, but we cannot encode this in the noname tool and in
fact the definition of (α, β)-privacy requires a fixed interpretation of all relation
symbols [9].

The initiator now checks that the given xA really wants to talk to the given
xB in line 4:

1 Transact ion I n i t i a t o r :
2 ∗ xA in {a , b } .
3 ∗ xB in {a , b , i } .
4 i f t a l k (xA, xB) then
5 i f xB=i then
6 new NA,R. send crypt (pk (xB) , pa i r (xA,NA) ,R) .
7 ∗ t a l k (xA, xB) and xA=gamma(xA) and xB=gamma(xB) . ni l
8 else
9 new NA,R. send crypt (pk (xB) , pa i r (xA,NA) ,R) .

10 ∗ t a l k (xA, xB) and xB in {a , b } . ni l
11 else ∗ not t a l k (xA, xB) . ni l

In the positive cases the intruder learns that talk(xA,xB) (in case xB=i the
intruder learns also the concrete agent names, in case xB/=i the intruder learns
that xB is honest), in the negative case, the intruder learns not talk(xA,xB).
This case is a bit artificial, because if xA does not want to talk to xB, they
would not even start this transaction in reality, but here we need to non-
deterministically choose the agent names first and then abort if not talk(xA,xB),
and then the intruder learns that because no message goes out.

This has an interesting consequence: suppose we are in a state where the
intruder, as part of α, has learned that agent a talks to every other agent, and
now observes not talk(xA,xB). From xA in {a,b} follows that xA=b. This is
not a violation of (α, β)-privacy, since this xA=b holds in every model of α. In
general, it is completely acceptable that the intruder learns the value of privacy
variables like xA, as long as this is a consequence of α.

1 Transact ion Responder :
2 ∗ xB in {a , b } .
3 receive M.
4 try DEC = dcrypt (inv (pk (xB)) ,M) in

10

5 try A = pro j1 (DEC) in
6 i f A=i then
7 i f t a l k (xB ,A) then
8 new NB,R. send crypt (pk (A) ,NB,R) .
9 ∗ xB=gamma(xB) and ta l k (xB ,A) . ni l

10 else
11 new NB. send NB.
12 ∗ not t a l k (xB ,A) . ni l
13 else i f A in {a , b} then
14 i f t a l k (xB ,A) then
15 new NB,R. send crypt (pk (A) ,NB,R) . ni l
16 else new NB. send NB. ni l
17 else new NB. send NB. ni l
18 catch new NB. send NB. ni l
19 catch
20 try C = r e c i p i e n t (M) in
21 try DEC = dcrypt (inv (pk (C)) ,M) in
22 try A = pro j1 (DEC) in
23 i f A in {a , b , i } and C in {a , b} then
24 new NB. send NB.
25 ∗ not (C=xB and A=i and ta l k (xB ,A)) . ni l
26 else new NB. send NB. ni l
27 catch new NB. send NB. ni l
28 catch new NB. send NB. ni l
29 catch new NB. send NB. ni l

New is here the case split on whether talk(xB,A) in lines 7 and 14: if not, we
get into the decoy cases. Observe that only in the dishonest cases the intruder
learns whether talk(xB,A) or not in lines 9 and 12. In case the message is a valid
message to some different agent C, the intruder learns a bit less as compared to
the AF0 version in line 25: it basically says that now the reason for not being
able to decipher the reply could be that not talk(xB,A).

We have verified privacy with the noname tool up to four transactions, both
for the above interpretation of talk, and when everybody talks to everybody.

4 Conclusion
Using (α, β)-privacy, we can write specifications of protocols and express pri-
vacy properties in a more intuitive way by writing explicitly what information
the intruder is allowed to learn. This declarative way of specifying privacy
goals allows for a better understanding of what information a protocol is re-
vealing. For instance, in our study of the Abadi-Fournet protocol, we adapted
the information released until there were no more violations. This gives a novel
characterization of the privacy guarantees provided by the protocol, which is
not based on formulating indistinguishabilities between different scenarios but

11

rather on what deductions the intruder can make from observing a concrete
execution.

Similarly, our model of the BAC protocol not only demonstrates how the
unlinkability analysis with noname is declarative and simple, but also allows for
an easier understanding of the known vulnerabilities: while [7] needs to refer
to a non-trivial notion of bisimilarity to demonstrate that BAC violates their
model of unlinkability, we can simply give an attack trace. It is also noteworthy
that an early analysis of BAC [5] failed to notice the problem that [7] pointed
out: this may be due to the fact that the intricacy of specifying unlinkability
with indistinguishability notions forced the authors to make simplifications that
simply bury the attack. Thus more declarative models can be very helpful for
avoiding false negatives.

One limitation of the noname tool is the state space explosion, since all
traces with different sequences of atomic transactions are explored (up to a
fixed number of transactions). This can be partially addressed by “guiding” the
tool to consider relevant traces, where some transactions need to be executed
before others. Indeed this study could thus also provide ideas for the future de-
velopment of the tool, such as search heuristics based on partial-order reductions
(exclusion of redundant interleavings) to quickly find attacks.

References
[1] Stéphanie Delaune and Lucca Hirschi. A survey of symbolic methods for

establishing equivalence-based properties in cryptographic protocols. J. Log.
Algebraic Methods Program., 87:127–144, 2017.

[2] S. Mödersheim and L. Viganò. Alpha-beta privacy. ACM Trans. Priv.
Secur., 22(1):1–35, 2019.

[3] L. Fernet, S. Mödersheim, and L. Viganò. A decision procedure for alpha-
beta-privacy for a bounded number of transitions. Technical report, DTU
Compute, 2023. Together with noname tool available at https://www2.
compute.dtu.dk/~samo.

[4] ICAO. Machine readable travel documents. Doc Series, Doc 9303. https:
//www.icao.int/publications/pages/publication.aspx?docnum=9303.

[5] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability
and anonymity using the applied pi calculus. In CSF 2010, pages 107–121.
IEEE, 2010.

[6] T. Chothia and V. Smirnov. A traceability attack against e-passports. In
FC 2010, volume 6052 of LNCS, pages 20–34. Springer, 2010.

[7] I. Filimonov, R. Horne, S. Mauw, and Z. Smith. Breaking unlinkability of
the ICAO 9303 standard for e-passports using bisimilarity. In ESORICS
2019, volume 11735 of LNCS, pages 577–594. Springer, 2019.

12

https://www2.compute.dtu.dk/~samo
https://www2.compute.dtu.dk/~samo
https://www.icao.int/publications/pages/publication.aspx?docnum=9303
https://www.icao.int/publications/pages/publication.aspx?docnum=9303

[8] M. Abadi and C. Fournet. Private authentication. Theor. Comput. Sci.,
322(3):427–476, 2004.

[9] S. Gondron, S. Mödersheim, and L. Viganò. Privacy as reachability. In CSF
2022. IEEE, 2022.

13

	Introduction
	ICAO 9303 BAC
	Private Authentication
	AF0: Initial attempt
	AF0: Corrected release
	AF

	Conclusion

