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Abstract: Airtight energy-efficient buildings of today need efficient ventilation to secure high indoor
air quality. There is a need for affordable and reliable sensors to make demand control available in
a broad range of ventilation systems. Low-cost metal oxide semiconductor (MOS) volatile organic
compound (VOC) sensors offer such a possibility, but they are usually non-selective and react to broad
range of compounds. The objective of the present paper was to use cluster analysis to assess the ability
of five commercially available MOS VOC sensors to detect pollutants in a residential setting. We
studied three scenarios: emissions from people (human bioeffluents), furnishing materials (linoleum),
and human activity (surface cleaning with spray detergent). We monitored each scenario with five
MOS VOC sensors and a proton-transfer-reaction–time-of-flight mass spectrometer (PTR-ToF-MS).
We applied an agglomerative hierarchical clustering algorithm to evaluate the dissimilarity between
clusters. Four of the five tested sensors produced signals in agreement with the concentration patterns
measured with the PTR-ToF-MS; one sensor underperformed in all cases. Three sensors showed a
very similar performance under all emission scenarios. The results showed that the clustering could
help in understanding whether a particular sensor matched the intended emission scenario.

Keywords: indoor air quality; MOS VOC sensor; residential ventilation; cluster analysis

1. Introduction

Airtight energy-efficient buildings of today need efficient ventilation to secure high
indoor air quality (IAQ). Current energy-efficient ventilation solutions frequently use the
so-called demand-controlled ventilation (DCV) principle. This means that the system mod-
ulates airflows according to an immediate need expressed by different demand indicators.
Those include, e.g., human presence, temperature and relative humidity, carbon dioxide
(CO2) concentration, or their combinations. It is common to use the CO2 concentration as
an indicator of IAQ. Yet it is often questioned whether it is sufficient, as CO2 concentration
mostly represents occupant-related pollution and is valid only in the presence of building
occupants. The fact that measurements of CO2 do not reveal the full picture regarding
the indoor air pollution and call for other indicators has been discussed by, for example,
Alonso et al. [1]. Recent advances in sensor technology have brought new types of sensors
that can potentially replace or supplement CO2 sensing to control ventilation. Metal oxide
semiconductor (MOS) sensors for measuring volatile organic compounds (VOC) are an
example [2]. When used in DCV systems, MOS VOC sensors do not only account for air
pollution related to occupancy but also for diverse events that worsen IAQ. These events
comprise cleaning by means of different detergents, cooking, use of personal cosmetics, or
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even a sudden release of unwanted chemicals. From the IAQ viewpoint, the advantage is
clear—the ventilation system increases the outdoor air supply rate when the sensor detects
pollutants other than CO2. The MOS technology provides an opportunity to produce
sensors that are more affordable than the state-of-the-art CO2 sensors. That is why they
have become ubiquitous among so-called low-cost sensors (LCS) [3]. Other advantages
of MOS sensors include a low energy consumption, small size, and high durability. As a
result, residential ventilation systems can utilize DCV control strategies at a lower cost.
Large commercial systems can on the other hand utilize a larger number of sensors. Such
possibilities fit very well with the concept of smart ventilation [4]. MOS sensors, like the
one developed by Herberger et al. [5], can integrate the measurement of human-emitted
VOCs and several other typical indoor pollutants so that there is no need for a CO2 sensor.
The interpretation of the signals from the low-cost sensors was extended to include the
CO2 concept. Using data from a study by Burdack-Freitag et al. [6], the measured VOC
signal was correlated with anthropological emissions of CO2. This resulted in the so-called
CO2 equivalent concentration. The reasoning behind this cross-correlation was that the
term “CO2 concentration” had become known to the public as an indicator of IAQ. As a
consequence, VOC sensor signals could be more easily interpreted by building occupants.

The above-mentioned arguments speak in favor of MOS VOC sensor technology in
comparison to the currently used CO2 sensors. However, there are also several research
studies [3,7] stating that MOS VOC sensors suffer from several drawbacks. Authors men-
tion cross-sensitivity to relative humidity, low resolution, and an inability to measure
the concentration of individual chemicals. MOS VOC sensors react to a broad variety of
compounds, which can make their application for ventilation control challenging. As DCV
control was almost exclusively based on CO2 for decades [8], the amount of scientific litera-
ture related to DCV control based on VOCs or other pollutants is rather limited. Despite the
limited research, a VOC-controlled DCV is being offered by an increasing number of venti-
lation producers. Moreover, MOS VOC sensors are frequently installed in internet-enabled
indoor environmental quality monitors. These should still be considered as electronic
gadgets rather than reliable monitoring instruments, but their popularity is increasing,
driven by the general boom in “smart home technologies” [9]. Several studies attempted to
characterize MOS VOC sensors’ performance with respect to ventilation control. However,
these studies focused mostly on the consequences of the MOS VOC-based control in terms
of energy efficiency or IAQ. A study conducted by Kolarik [10] showed that signals from
the VOC and CO2 sensors installed in an office room agreed that ventilation was needed
in the space for 49% of the occupied time, while for an additional 11% of the occupied
time, only the VOC called for more ventilation. These results, together with results by
Laverge et al. [11], indicate that MOS VOC sensors cannot be used directly as an alternative
low-cost replacement for CO2 sensors. Field tests conducted by Merzkirch et al. [12] showed
that with selection of an appropriate ventilation control strategy, application of MOS VOC
sensors decreased the overall ventilation flow (or operation time) and thus led to primary
energy savings while maintaining acceptable IAQ. A study by Abdul-Hamid et al. [13]
demonstrated that the positioning of MOS VOC sensors in ventilated spaces plays a signifi-
cant role in the achieved IAQ. A study by De Sutter et al. [14] showed a notable increase
in ventilation rates (and thus energy consumption) related to the sharp peaks in the MOS
VOC signals when the system used the same set point for both CO2 and MOS VOC control
based on a CO2 equivalent. The use of an MOS VOC sensor will consequently result in
adjustments to the ventilation strategy.

The above-mentioned practical issues regarding MOS VOC sensor performance relate
to the more fundamental aspect of their performance—they react to a wide range of
VOCs [15,16]. Thus, they can be considered to produce an aggregated response to the
VOCs present in the air. Several studies; for example, those by Kolarik et al. [15] or
Demanega et al. [17], showed that the sensor response usually strongly correlated with
measurements using laboratory-grade instruments, but for many sensors, there was poor
quantitative agreement. These observations were made despite the fact that the majority of
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producers calibrate their sensors by exposing them to single compounds (e.g., ethanol or
isobutylene) or pre-defined gas mixtures [18,19]).

An objective of the present paper was to study whether several commercially available
MOS VOC sensors can detect VOCs during typical residential pollution emission scenarios.
The aim was to combine detailed VOC measurements using laboratory-grade instruments
with data mining techniques to overcome the fact that MOS VOC sensors react to a group
of compounds rather than to an individual pollutant. Our hypothesis was that it is possible
to use a cluster analysis on detailed VOC data obtained by a laboratory-grade instrument
together with MOS VOC signals obtained under the same experimental conditions to
identify compounds with a dominant influence on the MOS VOC signals. Such performance
characteristics would determine the suitability of a particular MOS VOC sensor for a
concrete application.

Application of a cluster analysis using data from five commercially available MOS
VOC sensors together with pollutant concentration data measured with a PTR-ToF-MS
showed agreement among four sensors. Their signals appeared in the same clusters as
concentration patterns of VOCs characteristic of emission scenarios of human bioeffluents,
linoleum, and cleaning. One of the sensors had significantly different response patterns,
thus it was not suitable to detect pollutants representing the studied scenarios. The cluster
analysis seemed to be useful to identify which compounds triggered the MOS VOC sensor
response in different pollution situations. However, due to the nature of the cluster analysis,
we recommend analyzing the absolute concentration levels for measured pollutants at the
same time. This will ensure that the analysis considers pollutants that play a realistic role
in the studied exposure.

2. Materials and Methods

We created different emission scenarios corresponding to typical polluting activities
in residences. We conducted all measurements in a test room that allowed for controlled
ventilation and thermal environment. We conducted measurements with five commercially
available MOS VOC sensors as well as with a proton-transfer-reaction–time-of-flight mass
spectrometer (PTR-ToF-MS). The PTR-ToF-MS was a laboratory-grade instrument capable
of measuring the real-time concentration of VOC down to ppb levels. We performed a
cluster analysis on the collected data.

2.1. Selected Sensors

During the preliminary market survey, we identified seventeen commercially available
MOS VOC sensors from five different producers. We limited the final selection to sensors
with a delivery time of less than three months and without minimum-order-quantity
restriction. This led to a choice of five sensors that were tested. Table 1 summarizes their
technical parameters. The sensors coded as A, B, D, and E were available as integrated
modules that enabled pre-processing of the sensor signal. This pre-processing included
the built-in algorithms for conversion of the measured sensor resistance change to a signal
for the equivalent concentration of total volatile organic compounds (TVOCs). For some
of the sensors, the pre-processing also included proprietary auto-calibration algorithms.
Such algorithms have two purposes mainly. Firstly, they deal with the cross-sensitivity
of the sensor to the water vapor content in the air. Secondly, they establish a sensor’s
baseline usually based on the lowest measured concentration without a change for a specific
period. As the MOS VOC sensors produce relative measurements, they use the baseline to
characterize “clean air”. We knew such a determination of the baseline could be problematic
from an IAQ standpoint. However, the present work did not deal with this issue, and our
data analysis was not sensitive to the pre-processing algorithms. While sensors A and
B represented integrated modules without casing, and their practical use would require
further integration on a host circuit board providing a power supply and output connectors,
sensors D and E represented the “ready to use” modules that could be directly connected
to building automation system. Sensor C represented solely a sensor element and provided
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a raw voltage signal. Sensors A and B were integrated into a commercially available
indoor climate measurement device, which at the same time measured the temperature
(T), humidity (RH), and CO2 concentration (CO2); for details, see Section 2.3. The device
was GSM-enabled and sent data into a cloud database every 5 min. Sensors C, D, and
E connected to a laboratory data logger that was capable of continuously recording the
voltage signal. We did not perform any additional calibration of the sensors. For sensors
A, B, and C, we checked the intra-unit consistency, which was defined as the variability
between signals from individual sensors < 20% [20].

Table 1. Technical parameters of investigated sensors based on manufacturer data sheets.

Abbreviation A B C D E

Configuration Sensor module Sensor module Sensor Sensor module Sensor module

Output (units) TVOC eq. (ppb) 1

CO2 eq. (ppm)
TVOC eq. (ppb)
CO2 eq. (ppm) Voltage (V) Voltage (V) Voltage (V)

Sensing range

CO2 eqv.:
400–2000 ppm
TVOC:
0–1000 ppb

CO2 eqv.:
450–2000 ppm
TVOC:
125–600 ppb 2

NH3:
10–300 ppm 3

C6H6:
10–1000 ppm
Alcohols:
10–300 ppm

0–100% VOC 0–100% VOC

Measuring
accuracy N/A N/A N/A ±20% of final

value 5 N/A

Measurement
interval/response
time

1 s/<5 s
for TVOC 1 s/N/A N/A N/A/60 s N/A/ <13 min,

<3.5 min, <1 min 6

Power supply 3.3 V DC ± 5% 3.3 V DC ± 0.1 V 5 V DC or
AC ± 0.1 V

24 V ± 10%
AC/DC 24 V ± 20% AC

Communication I2C bus I2C bus analog 0–10 V or
4–20 mA

Analog: 0–10 V or
0–5 V DC

Warm up time 15 min 5 min >24 h 1 h N/A

Operation
temperature range 0–50 ◦C 0–50 ◦C −10–45 ◦C 0–50 ◦C 0–50 ◦C

Operation
humidity range

5–95%,
non-condensing

5–95%,
non-condensing <95% N/A 0–95%,

non-condensing

Automatic baseline
correction Yes 4 Yes N/A Yes Yes

1 Isobutylene equivalent. 2 Relative measurement; values above the defined sensing range are provided as well.
3 Calibrated using 100 ppm NH3 in clean air (T = 20 ◦C, RH = 65%); O2 concentration 21%. 4 The manufacturer
states that no calibration is needed. 5 The manufacturer specifies that the value refers to the calibration gas, but
the type of calibration gas is not specified. 6 It is possible to define the response time during installation–setup.

2.2. Experimental Design

We exposed the MOS VOC sensors to emission scenarios representing typical activities
in residences: (1) emission of human bioeffluents, (2) emissions from furnishing materials
(linoleum), and (3) emissions from house cleaning with typical detergent. Table 2 sum-
marizes the details regarding each scenario. We tested each scenario on a separate day.
Mechanical ventilation was active both during and between the experiments to eliminate
the accumulation of pollution from previous experiments.

We placed the MOS VOC sensors side by side in the middle of the test room (see
Section 2.3) at a height of approximately 0.85 m above the floor. We powered the sensors
48 h before the first experiment, and they remained connected to electricity during the entire
experimental campaign. We placed the PTR-ToF-MS in the test room with the sampling
point just beside the investigated sensors. We initiated the PTR-ToF-MS measurement
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approximately 30 min before the actual measurement period for each scenario to sample
the background in the test room. We continued the PTR-TOF-MS measurement for several
hours after the measurement period to follow the decay of the released compounds.

Table 2. Summary of emission scenarios.

Scenario Start of PTR-ToF-MS
Measurement Scenario Start Scenario End Description

Human bioeffluents 9:13 a.m. 9:47 a.m. 3:02 p.m.

Six adults were seated in the test
room. They were instructed not to
eat spicy food or use cosmetics
before the experiment. Each
person was equipped with a
laptop and power supply. Persons
performed sedentary work
corresponding to a metabolic
activity of 1.2 met. Persons could
drink water but not consume any
food in the test room. If one of the
persons needed to leave, another
adult was brought in the test room
as a substitute.

Linoleum 9:58 a.m. 10:31 a.m. 1:47 p.m.

Linoleum flooring was used to
represent emissions from typical
furnishing materials. The surface
area of the linoleum was 17 m2,
corresponding to half of the floor
area of the test room. Linoleum
strips were fixed against each
other by the bottom surface so that
only the upper surface of the
material was exposed to air.
Linoleum strips were hung on a
steel rack.

Cleaning 10:03 a.m. 10:37 a.m. 10:52 a.m.

A solution consisting of 60 mL of
universal citrus-scented detergent
was mixed in 5 L of water as
instructed by the manufacturer.
Preparation of the solution took
place outside the test room
immediately before the activity.
One adult washed all wall surfaces
in the room with a cloth soaked
with the solution; 240 mL of the
solution was used. The cleaning
took 15 min, and the remaining
cleaning solution was then
removed from the test room.

2.3. Experimental Facilities and Measuring Conditions

The test room was 7.0 m wide and 4.5 m deep, corresponding to a floor area of 31.5 m2;
the ceiling height was 2.6 m. The outer wall of the room consisted of the building façade
(concrete elements with insulation) with windows, and the opposite wall facing a hallway
area consisted of glass. Painted plasterboard formed the sidewalls of the room. The floor
consisted of a wall-to-wall carpet on top of a vinyl flooring. The ceiling comprised a drywall
suspended ceiling system with acoustic panels and built-in lighting fixtures.

The mechanical ventilation system supplied the fresh air through two chilled beams.
The system worked with an outdoor airflow rate corresponding to 0.5 h−1 in the test room.
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The controller adjusted the supply air temperature between 19 ◦C and 21 ◦C depending on
the heat load in the test room. Five table fans ensured full mixing of the air in the test room
throughout the experimental period. We used exterior perforated textile sunscreens to
reduce the solar heat load on the south-facing façade. We used two thermostat-controlled
electric radiators to ensure a minimum air temperature of 23 ◦C in the test room. We
controlled the relative humidity using two ultrasonic steam humidifiers. The relative
humidity set point was 50%.

We continuously measured the air temperature (accuracy: ±0.3 ◦C), relative humidity
(accuracy: ±2%), and CO2 concentration (accuracy: ±30 ppm ± 3% of reading) in the
test room. We did not conduct any measurements outside the test room. Additionally,
we measured an air change rate in the test room using the decay method according to
ASTM standard E741-11 [21] using tracer gas (R134a). The method provides an average air
change rate over a period of 1–3 h. We used a Brüel & Kjær Photoacoustic Gas Analyzer
(model 1302) to monitor the concentration of the tracer gas.

2.4. PTR-ToF-MS Measurements

We used a proton-transfer-reaction–time-of-flight mass spectrometer (PTR-ToF-MS)
to measure the VOC concentrations during the emission scenarios. A PTR-ToF-MS is an
analytical measurement device that allows for on-line monitoring of VOC concentrations at
low detection limits with a fast response time. A PTR-ToF-MS utilizes a proton transfer reac-
tion from H3O+ to VOC with a proton affinity higher than that of water (166.55 kcal/mol).
The charged VOC molecules are then detected by a ToF mass spectrometer [22]. The PTR-
ToF-MS provides an on-line quantification and, at the same time, formula confirmation of
VOCs. A PTR-ToF-MS in H3O+ ionization mode does not include the detection of alkanes.
Moreover, a PTR-ToF-MS does not allow distinguishing between isomers. The device has
been used with success in IAQ to characterize pollution sources and map chemical reactions
occurring in indoor air [23,24].

The PTR-ToF-MS 8000 (Ionicon Analytik GmbH, Innsbruck, Austria) used in the ex-
periments was operated with hydronium ions (H3O+) as a reagent, a drift tube temperature
of 70 ◦C, a drift pressure of 2.80 mbar, and a drift tube voltage of 650 V leading to an E/N
(electric field/density of the buffer gas in the drift tube) value of around 120 Townsend
(Td). Mass spectra up to m/z = 430 Da were collected at a 5 s scan rate. The instrument
inlet consisted of a PEEK capillary tube heated to 70 ◦C and a built-in permeation unit
(PerMasCal; Ionicon Analytik), which emitted 1,3-diiodobenzene used for continuous mass
scale calibration. Blank measurements were obtained by coupling a charcoal filter to the
instrument’s inlet tube. We processed the data generated by the PTR-ToF-MS with the
software PTR-MS Viewer v. 3.2.12 (Ionicon Analytik). The PTR-MS Viewer automatically
calculated the mass calibrations and the VOC mixing ratio. Compound names were as-
signed based on a comparison with the libraries from the PTR MS Viewer, Pagonis et al. [25]
and the references therein, and a priori knowledge.

2.5. Cluster Analysis and Data Processing

We applied a clustering method to analyze the relationship between the VOC signals
measured by the PTR-ToF-MS and the MOS sensors. Cluster analysis is a data mining
method particularly suitable for the analysis of time series. It belongs to the data mining,
pattern recognition, and statistical machine learning [26] methods. Clustering is an unsu-
pervised data-mining method that is commonly used to discover patterns in data sets by
dividing the data into several subgroups. The objective of clustering is to partition a data
set into several groups with the observations in the same group as similar as possible while
the observations in different groups are dissimilar to a maximum extent [27]. Clustering is
commonly used to analyze time-series energy-consumption data to group similar profiles
into the same subgroups and unveil the most typical load profiles. Clustering algorithms
for time-series data are centroid-based methods such as k-means and k-medoids [28–30],
hierarchical clustering with an agglomerative or divisive approach [28,30], and a self-
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organizing map (SOM) [31,32]. For data with a small sample size, hierarchical clustering
algorithms are suitable [33].

The cloud database stored the data from sensors A and B in 5 min intervals. We
downloaded the data and aggregated them with measurements of temperature, relative
humidity, and CO2. Data from sensors C, D, and E were stored in a laboratory data logger
every 1 min. We processed these data to obtain 5 min mean values corresponding to the
time step of the data from sensors A and B. We applied the same procedure to the data
from the PTR-ToF-MS collected at approximately 1 s intervals.

We applied a clustering method to an aggregated data file comprising measurements
by the MOS VOC sensors and PTR-ToF-MS, temperature, relative humidity, and CO2
concentration. As the MOS VOC sensors provided a signal corresponding to a range of
VOCs, their appearance in the same cluster together with specific VOCs measured by
the PTR-ToF-MS would indicate their ability to detect these compounds. The statistical
software R version 3.4.3 [34] was used for the analysis.

We normalized observations in the aggregated data set to avoid the influence of the
absolute value of each observation. We normalized each observation against the difference
of its maximum value and minimum value (the so-called min–max normalization) as shown
in Equation (1):

y = (x − min(x))/(max(x)− min(x)) (1)

where x is the observation and y is its normalized value.
As the sample size was relatively small, we decided to apply an agglomerative hi-

erarchical clustering algorithm using the R function NbClust [35] to identify the optimal
number of clusters. We compared different cluster agglomeration methods, i.e., linkage
methods to measure the dissimilarity between two clusters of observations. The compari-
son showed that the Ward linkage method [36] was the most suitable with respect to the
analyzed data. The method minimizes the total within-cluster variance as it merges the pair
of clusters with the minimum between-cluster distance at each computation step. As it was
unclear whether the air temperature (T) and relative humidity (RH) could be influential in
the clustering results, we conducted a preliminary analysis including T and RH, excluding
T, excluding RH, and excluding T and RH. The presented results describe only the final
analysis of the data.

3. Results
3.1. Environmental Conditions in the Test Room

Table 3 summarizes the measurements of the air temperature, relative humidity, and air
change rate. The average room temperature was about 1.7 ◦C higher in the case of human
bioeffluent activity. The intensive internal heat loads associated with the persons who
emitted bioeffluents and their personal computers were likely the cause for the elevated air
temperature. The relative humidity stayed in a relatively narrow range independent of the
temperature in the test room. We measured the air change rate once during the scenario
involving exposure to linoleum. During scenarios in which the test room door was opened
several times (human bioeffluents and cleaning), we measured the air change repeatedly.

Table 3. Indoor environmental conditions. The values for air temperature and relative humidity rep-
resent the mean (min–max) corresponding to the period from the start of PTR-ToF-MS measurement
until 10 p.m. each experimental day. The air change rate measurement was performed 1 to 3 times
per activity.

Activity Temperature (◦C)
Mean (Min–Max)

Relative Air Humidity (%)
Mean (Min–Max) Air Change Rate (h−1)

Human bioeffluents 24.4 (22.6–25.7) 45.5 (43.5–47.2) 0.7; 0.7; 0.6

Linoleum 22.8 (22.4–23.4) 45.1 (43.1–46.8) 0.7

Cleaning 22.7 (22.3–23.0) 45.1 (43.1–48.2) 0.7; 0.8
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3.2. Compounds Identified by the PTR-TOF-MS

The following section summarizes the results of measurements made with the PTR-
ToF-MS. We present additional details regarding the measured compounds in Appendix B.
Table 4 presents compounds measured during the human bioeffluent emission scenario. It
summarizes compounds whose concentration increased more than 50% compared with
the background concentration prior to occupancy. The compound names are according to
the libraries from the PTR-ToF-MS software v. 3.2.12 (Ionicon Analytik), and references
are listed in Table 4. Acetone and methanol accounted for the majority of the total VOC
concentration. Both compounds can be associated with metabolic processes and are mainly
emitted during breathing by humans [37]. Additionally, the oxidation of squalene, a
compound present on human skin [38], can also produce acetone. Alkyl fragment/propyne
and propanol fragment/propene constituted about 23% of the total VOC concentration. The
last two compounds may originate from in-source fragmentation of longer chain alkenes.
Isoprene and the acids contributed slightly above 2% to the total VOC concentration during
this emission scenario.

Table 4. Compounds detected and identified via PTR-ToF-MS measurements during the human
bioeffluent emission scenario; the compounds whose concentration increased by ≥50% compared to
the background concentration are presented. The VOCs are ranked according to their contribution
to the total VOC concentration. References relate to association of the compound with the studied
emission scenario.

Compound Contribution to TVOCs (%) Reference

Methanol 24.8 [39,40]

Acetone 23.1 [40]

Propanol fragment
(-H2O)/propene/cyclopropane 12.8 [40,41]

Alkyl fragment or propyne 9.8 [40,41]

Octanal 0.9 [38]

6-Methyl-5-hepten-2-one (6-MHO) 3.6 [38]

Formaldehyde 1 2.6 -

Unsaturated carbonyl (e.g., methyl vinyl ketone) 0.6 [40,41]

Isoprene 2.3 [39,40]

Hydroxyacetone/propionic acid 2.2 [38,40,41]

1-Octen-3-ol fragment (-H2O) + others 0.4 [40,41]

C6-carboxylic acid 0.4 [40]

C8 saturated carbonyl + 1-octen-3-ol 1.3 [40,41]

1,2-Propendiol 1 0.2 -

Anisaldehyde + others 1.1 [40,41]

Acetylpropionyl + others 1.0 [40,41]

cis-3-Hexen-1-ol + others 1.0 [40,41]

Butyric acid <0.1 [40,41]

C12-carboxylic acid <0.1 [40]
1 These compounds were detected during the human bioeffluent scenario, but there is no reference relating them
to human presence.
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Table 5 summarizes the compounds measured with the PTR-ToF-MS during the
emission scenario with linoleum. Organic acids—from acetic and formic acid to hexanoic
acid—characterized the profile of the linoleum emissions. The contribution of organic
acids to the total VOCs was about 50%, and the relative contribution decreased with an
increasing number of carbon atoms. The remaining part of the total concentration consisted
mostly of isoprene, aldehydes, and ketones.

Table 5. Compounds detected and identified via the PTR-ToF-MS measurements during the linoleum
emission scenario; the compounds whose concentration increased by ≥50% compared to the back-
ground concentration are presented. The VOCs are ranked according to their contribution to the
total VOC concentration. References relate to the association of the compound with the studied
emission scenario.

Compound Contribution to TVOCs (%) Reference

Acetic acid 28.0 [42–44]

Ketene 1 15.3 -

Formic acid 13.7 [44]

Acetone 1 13.1 -

Acetaldehyde 1 12.8 -

Propionic acid 4.4 [44,45]

Propenal 1 1.5 -

Isoprene 1 1.4 -

Butyric acid 0.9 [43,44]

Pentanoic acid 0.6 [43,44]

C8-alkane 1 0.3 -

Cyclohexane diones 1 0.3 -

Cyclopentane carboxylic acid 1 0.3 -

C7 aldehyde/ketone 1 0.2 -

Cycloheptanone 1 0.2 -

Heptanal 1 0.2 -

Propanol fragment
(-H2O)/propene/cyclopropane 1 <0.1 -

Hexanoic acid <0.1 [44,45]
1 These compounds were detected during the linoleum scenario, but there is no reference relating them to emission
from linoleum.

Table 6 gives an overview of the compounds detected with the PTR-ToF-MS during the
cleaning emission scenario. The compounds we could directly relate to the use of cleaning
detergent were the monoterpenes and their fragments, which increased substantially (about
20× in comparison to the background concentration prior to this emission scenario) during
the cleaning activity. As is clear in Table 6, we also detected compounds related to human
presence, as there was a researcher performing the cleaning in the test room. The total
concentration was dominated by the bioeffluents.
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Table 6. Compounds detected and identified via PTR-ToF-MS measurements during the clean-
ing emission scenario; the compounds whose concentration increased by ≥50% compared to the
background concentration are presented. The VOCs are ranked according to their contribution to
the total VOC concentration. References relate to association of the compound with the studied
emission scenario.

Compound Contribution to TVOCs (%) Reference

Acetone 1 35.3 -

Methanol 1 29.4 -

Formaldehyde 1 7.7 -

Propanol_fragment_(-H2O)/propene/cyclopropane 1 5.6 -

Alkyl_fragment_or_propyne 1 5.5 -

Monoterpene fragment 4.6 -

Monoterpene 3.1 [40,46]

Isoprene 1 1.6 -

Cis-3-hexen-1-ol_+_others 1 1.3 -

Toluene 2 1.2 -

Phenol 2 0.9 -

Acetonitrile 2 0.9 -

Benzene 2 0.9 -

C7H10H+ 2 0.8 -

Nonanal 2 0.5 -

Decanal 2 0.4 -

1,2-propendiol 0.3 -
1 These compounds had a high probability of being related to the presence of a human subject conducting the
cleaning in the test room; see Table 4. 2 These compounds were detected in the cleaning scenario, but there is no
reference relating them to the emissions from cleaning products.

3.3. MOS VOC Sensor Signals

Figure 1 shows the normalized MOS VOC signals for the different examined emission
scenarios. There were rather consistent signals from all sensors, but sensor C characterized
the exposure to human bioeffluents (Figure 1a). Most of the signals followed the build-up
of the human bioeffluent concentration in the test room as well as the consequent decay
when persons left the test room. The signal from sensor C had somewhat the same build-up
pattern, but there seemed to be a certain delay in its second part. In the decay period, the C
signal was noisier, and the decay was not as obvious as it was for the remaining sensors.

For the emission scenario with linoleum (Figure 1b), the sensor signals were much
more dispersed than in the case of bioeffluents, suggesting that their response to the
pollutants emitted from linoleum was different. Yet, all sensors but sensor C could be
characterized by immediate build-up and decay. Sensor C again underperformed, and this
time it was not responsive to the pollutants emitted from linoleum (a short visit from the
experimenter in the test room probably caused the peak and consequent decay in signal of
sensor C during the exposure). Sensor B presented the least noisy signal.
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The emission scenario with air cleaning (Figure 1c) provided a sharp response and
build-up immediately after starting the cleaning. All sensors reacted to the sudden release of
pollutants. After the cleaning was finished, sensors A and B presented the most consistent
decays. Decays of the signals from sensors D and E were noisier, with sensor E first
presenting a very shallow decay followed by a steeper decay. The signal from sensor C was
rather scattered with no clear decay pattern. Moreover, there was a sudden increase in the
C signal during the later period of decay.

3.4. Cluster Analysis

First, we ran a cluster analysis including the T and RH signals. This preliminary
analysis showed that neither the number of generated clusters nor the distribution of
measured compounds and MOS VOC sensor signals changed when we added or removed
the T and RH from the data set. We therefore concluded that the T and RH did not influence
the clustering and excluded them from further analysis.

Figure 2 shows the results of the cluster analysis for the human bioeffluent emission
scenario. The results are shown in the form of a dendrogram, which is a common practice
to present clustering results displaying a close arrangement of observations with similar
patterns; the colors indicate the different clusters. The dissimilarity or distance between
clusters is shown as the height on the vertical axis. The data obtained during this scenario
formed three clusters. The analysis placed sensors A, B, D, and E in the first cluster (marked
with blue) together with compounds like acetone, isoprene, formaldehyde, and propyne
(alkyl fragment; see Table 4). The second cluster (marked with a grey color) contained the
signal from sensor C together with methanol, toluene, and benzaldehyde. The third and
largest cluster (marked with an orange color) did not include any of the sensor signals,
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suggesting that the compounds identified in the orange cluster had concentration patterns
that could not be associated with any signals obtained from the sensors. In other words,
this result suggested that the sensors did not react to changes in concentrations for these
compounds.
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Dendrograms for the emission scenarios with linoleum and cleaning are presented in
the Appendix A as Figures A1 and A2, respectively.

The dendrogram for the emission scenario with linoleum (Figure A1) showed that
the clustering divided the data into two clusters, with the signal from sensor C being the
only one in the first cluster (grey). The second cluster (blue) accommodated signals from
sensors A, B, D, and E as well as all compounds measured by the PTR-ToF-MS. The main
compounds appearing in this cluster were acetone, ketone, and acetic acid.

The dendrogram of the clustering result for the emission scenario with cleaning
(Figure A2) revealed three clusters. The first cluster (blue) accommodated all sensor signals
except sensors C and E. The most important compounds in this cluster were monoterpenes,
formaldehyde, and methanol. The second cluster (grey) accommodated only the signal
from sensor C, as no other measured signal had a pattern similar to the sensor C response.
We found the signal from sensor E in the third cluster (orange), and the other major
compounds in that cluster were acetone, propene, and propyne (akryl fragment).

4. Discussion

The studied MOS VOC sensors do not offer absolute and selective measurements of
individual compounds but rather an indication of the relative change in concentration of a
VOC mixture. As mentioned in the Introduction, several research studies have elaborated
on this matter and presented it as a main limitation of using MOS VOC sensors. In
the present paper, we did not focus on the fact that MOS VOC sensors provide relative
measurements and not absolute concentrations. This certainly represents a challenge when
the sensors are applied for ventilation control, but sensor manufacturers deal with this
issue (with variable success) by post-processing the sensor signal to establish a “clean air”
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baseline. However, even if they manage to tune the baseline algorithm, the problem with
non-selectivity of the MOS VOC sensor remains unsolved. All reputable producers present
the calibration data indicating the change in sensor signal in relation to some reference
gas, usually ethanol, isobutylene, or even gas mixtures according to ISO 16000-29:2014 [19].
They conduct these tests in laboratory conditions somewhat far from the exposures in real
environments.

Our approach was to mimic the realistic exposures and make a connection between
the detailed analytical measurements and MOS VOC signals. We selected three emission
scenarios that could be typical for residential environments but also occur frequently in
commercial buildings such as schools and offices. Cluster analysis was the method used to
analyze the performance of the MOS VOC sensors. Table 7 provides a general summary of
the cluster analysis. The PTR-ToF-MS identified many compounds during the investigated
scenarios; however, concentrations of some of them were rather low, hence their impact on
the IAQ was considered negligible. As the cluster analysis used normalized data, it did not
account for the absolute values of concentrations. We do not regard this as a limitation of
our approach because we aimed at studying comparable concentration patterns. Including
compounds at very low concentrations makes a practical interpretation of results more
difficult. This is because it leads to clusters “crowded” with compounds that may have the
same concentration pattern as the investigated sensors, but their actual concentrations are
negligible. Consequently, in Table 7, we present only those compounds that contributed
more than 5% to the total volatile organic compound (TVOC) concentration as measured
by the PTR-ToF-MS (see Tables 4–6).

Table 7. Relations among MOS VOC sensor signals and compounds contributing > 5% to the TVOC.
The signal and compound concentration profile were related if they appeared in the same cluster
under a particular scenario: h—human bioeffluents; l—linoleum; c—cleaning.

Sensor A Sensor B Sensor C Sensor D Sensor E

Acetone h/l h/l - 2 h/l h/l/c
Methanol c c h c -
Acetic acid l l - l l
Ketene l l - l l
Formic acid l l - l l
Propanol fragment 1 h h - h h/c
Acetaldehyde l l - l l
Alkyl
fragment/propyne h h - h h/c

Formaldehyde c c - c -
CO2 h/l/c h/l/c - h/l/c h/l

1 (-H2O)/propene/cyclopropane. 2 The dash indicates that the sensor and the compound never appeared in the
same cluster.

Table 7 reveals that sensor C performed very differently from the rest of the tested
sensors. The pattern of its signal was similar to methanol in the case of the emission
scenario with the human bioeffluents. In the other scenarios, the signal of sensor C could
not be linked to a change in the concentration of any compound listed in Table 7. Sensor
E was shown through the cluster analysis as sensitive to acetone in all three scenarios.
Sensors A, B, and D had a very comparable performance under different emission scenarios
if the pollutants measured were considered. The signals from sensors A, B, and D also
appeared in the same cluster as the CO2 concentration in all tested scenarios. This suggests
that sensors A, B, and D were responsive to pollutants whose concentration correlated
with the concentration of CO2 and could be used for control in case the human bioeffluent
concentration was a determining factor. In the linoleum emission scenario, all sensors but
sensor C could detect emissions of organic acids that dominated the emissions related to
linoleum. More tests would be necessary to clarify whether this indicates suitability to
track emissions from building materials in practice or that it is a salient feature for linoleum
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emissions. In our experiment, the linoleum was brought into the test room on a rack.
Thus, the emission characteristics were a step-change rather than a slow, continual increase,
which is typical for material emissions in real buildings.

Identification of the dominant compounds that influenced the response of MOS VOC
sensors was also a focus of other studies. A recent study by Schultealbert et al. [47]
showed that alcohols—especially ethanol—played a major role in TVOC measurements
with low-cost MOS VOC sensors. The authors concluded that these sensors need to be
scientifically validated because of their broad response; which methods should be used
for such validation remains a question. The methodology used in our study as well as the
one used by Schultealbert et al. offer possibilities. Both require advanced laboratory-grade
instrumentation.

Using the method for examining the performance of low-cost sensors presented in
our paper, one could perform an evaluation of many sensors without dedicating time to
their calibration. The fact that the clustering worked with normalized signals eliminates
the problem of the response shift among sensors from the same producer as well as the
difference in output signals among sensors from different producers (voltage, ppb TVOC,
“VOC index”, etc.). Our results show that a majority of the tested sensors had a comparable
performance. We could also clearly identify the sensor that did not detect the changes in
IAQ at all (sensor C). As there are dozens of different MOS VOC sensors available on the
market, a method allowing the screening of their basic detection capabilities seems to be
necessary. Our method can be used for preliminary examination of the sensors, filtering
out the sensors that underperform (in our case, it was sensor C), identifying sensors with a
similar performance (in our case, these were sensors A, B, and D), and identifying sensors
that specifically respond to a certain emission scenario (in our case, it was sensor E). Our
method thus provides a simple yet very useful step in examining low-cost sensors before
they are even examined for other features describing their performance.

Our work also had limitations. Firstly, the long-term performance of MOS VOC
sensors is of high importance with respect to their suitability for ventilation control. Our
experiments did not include any long-term exposures. At the same time, it is our judge-
ment that long-term exposures would influence sensors’ drift with respect to a “clean air”
baseline or a factory calibration rather than the results of the cluster analysis. Secondly,
the timeline and budget of the project did not allow the repetition of pollution scenarios
or testing of a higher number of sensors. Nevertheless, we consider our study robust
enough to demonstrate the application of a data-clustering approach to evaluate MOS
VOC performance. Further experiments should cover more sensor types as well as more
emission scenarios (e.g., cooking) in residences as well as other indoor environments.

5. Conclusions

• We used a cluster analysis to detect which of the five selected commercially available
MOS VOC sensors produced signals in agreement with the concentration patterns of
VOCs characteristic of three emission scenarios (human bioeffluents, cleaning, and
linoleum) as measured by a laboratory-grade analytic instrument (PTR-ToF-MS).

• Four of the five tested sensors produced signals in agreement with the concentration
patterns of characteristic VOCs. One sensor underperformed in all cases and was not
able to detect the characteristic concentration patterns.

• Three sensors showed a similar performance, reacting in agreement to all emission
scenarios.

• The compounds characteristic of human presence dominated the emission scenarios
with human bioeffluents and cleaning. In the cleaning emission scenario, monoter-
penes and their fragments characterized the emissions from the cleaning detergent.
Organic acids dominated the emissions related to linoleum.

• We showed that a cluster analysis is a useful tool for examining the performance of
low-cost MOS VOC sensors regarding their response to different emission scenarios.
Consequently, even if the underlying pollutants responsible for the response are not
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known, the sensors that are responsive to typical pollutant generating activities can
be identified. Further studies supporting this observation and advancing the method
would be useful.
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Clustering dendrograms for all tested pollution scenarios.
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Appendix B

Mass-to-charge ratios for compounds detected and identified via PTR-ToF-MS mea-
surements in all emission scenarios.

Table A1. Mass-to-charge (m/z) ratios for compounds detected and identified via PTR-ToF-MS
measurements in all emission scenarios; the compounds whose concentration increased by ≥50%
compared to the background concentration are presented.

Compound Possible Empirical Formula Detected Ions (m/z)

Formaldehyde CH2OH+ 31.0178

Methanol CH4OH+ 33.0335

Alkyl fragment or propyne C3H4H+ 41.0386

Acetonitrile C2H3NH+ 42.0346

Ketene C2H2O 43.01784

Propanol fragment (-H2O)/propene/cyclopropane C3H6H+ 43.0542

Acetaldehyde C2H4OH+ 45.03349

Formic acid CH2O2H+ 47.0127

Propenal C3H4OH+ 57.0335

Acetone C3H6OH+ 59.0491

Acetic acid C2H4O2H+ 61.0284

Isoprene C5H8H+ 69.0699

Unsaturated carbonyl (e.g., methyl vinyl ketone) C4H6OH+ 71.0491

Hydroxyacetone/propionic acid C3H6O2H+ 75.0440

1,2-Propendiol C3H8O2H+ 77.0597
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Table A1. Cont.

Compound Possible Empirical Formula Detected Ions (m/z)

Benzene C6H6H+ 79.05423

Toluene C6H5CH3 79.0548

Phenol C6H6O 95.04914

Monoterpene fragment C6H8H+ 81.0699

cis-3-Hexen-1-ol + others C6H10H+ 83.0855

Butyric acid C4H8O2H+ 89.0597

Cyclopentylacetylene C7H10H+ 95.08553

Acetylpropionyl + others C5H8O2H+ 101.0597

Pentanoic acid C5H8O2H+ 101.0597

Octanal C7H10OH+ 111.0804

C7 aldehyde/ketone C7H10OH+ 111.0855

1-Octen-3-ol fragment (-H2O) + others/C8-alkane C8H14H+ 111.1168

Cyclohexane diones C6H8O2H+ 113.0597

Cycloheptanone C7H12OH+ 113.0961

C6-carboxylic acid/Cyclopentane carboxylic acid C6H10O2H+ 115.0753

Heptanal C7H14OH+ 115.1117

Hexanoic acid C6H12O2H+ 117.0916

Anisaldehyde + others C8H8OH+ 121.0670

6-Methyl-5-hepten-2-one (6-MHO) C8H14OH+ 127.1150

C8 saturated carbonyl + 1-octen-3-ol C8H16OH+ 129.1295

Monoterpene C10H16H+ 137.1325

Nonanal C9H18O 143.14360

Decanal C10H20O 157.157

C12-carboxylic acid C12H22O2H+ 199.16953
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