Downloaded from orbit.dtu.dk on: Apr 29, 2024

DTU Library

=
=
—

i

A Naive Prover for First-Order Logic
A Minimal Example of Analytic Completeness

From, Asta Halkjeer; Villadsen, Jgrgen

Published in:
Proceedings of the 32nd International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, TABLEAUX 2023

Link to article, DOI:
10.1007/978-3-031-43513-3 25

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

From, A. H., & Villadsen, J. (2023). A Naive Prover for First-Order Logic: A Minimal Example of Analytic
Completeness. In Proceedings of the 32nd International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods, TABLEAUX 2023 (Vol. 14278, pp. 468—480). Springer.
https://doi.org/10.1007/978-3-031-43513-3_25

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://doi.org/10.1007/978-3-031-43513-3_25
https://orbit.dtu.dk/en/publications/f8574bff-c70a-46a0-9f25-c2782e06d07e
https://doi.org/10.1007/978-3-031-43513-3_25

l‘)

Check for
updates

A Naive Prover for First-Order Logic: A
Minimal Example of Analytic
Completeness

Asta Halkjeer From® and Jorgen Villadsen(®)

Technical University of Denmark, Kongens Lyngby, Denmark
jovi@dtu.dk

Abstract. The analytic technique for proving completeness gives a very
operational perspective: build a countermodel to the unproved formula
from a failed proof attempt in your calculus. We have to be careful, how-
ever, that the proof attempt did not fail because our strategy in finding
it was flawed. Overcoming this concern requires designing a prover. We
design and formalize in Isabelle/HOL a sequent calculus prover for first-
order logic with functions. We formalize soundness and completeness
theorems using an existing framework and extract executable code to
Haskell. The crucial idea is to move complexity from the prover itself to
a stream of instructions that it follows. The result serves as a minimal
example of the analytic technique, a naive prover for first-order logic,
and a case study in formal verification.

Keywords: First-Order Logic - Prover - Completeness - Isabelle/HOL

1 Introduction

We present a sound and complete (naive) prover for classical first-order logic
with functions. There are several ways to prove that a proof system for first-
order logic is complete. Godel’s approach [14], later refined by Henkin [15] is now
known as the synthetic way. This technique abstractly builds maximal consistent
(and saturated) sets of formulas as a bridge between the proof system and the
semantics. This is a useful technique and has been used in formalizations of the
completeness of axiomatic systems for first-order logic [9] and epistemic logic [§],
a tableau system for hybrid logic [7] and more. Unfortunately, as pointed out by
Blanchette et al. [5] in the context of formalization in Isabelle/HOL, there is no
useful connection between this technique and the execution of an actual prover.

The technique by Beth and Hintikka [17] offers a more operational perspec-
tive. Here, we consider unsuccessful proof attempts in the given calculus and
build countermodels from these. Such a countermodel refutes the validity of the
formula that we tried to prove. To build such a countermodel, however, we must
ensure that the proof attempt was sufficiently sophisticated and, essentially, that
it would have found a proof if one existed. In proving this property of the proof
strategy, we are effectively designing a prover based on the calculus. This means
that, in practice, we can extract a prover from our completeness proof.

© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 468-480, 2023.
https://doi.org/10.1007/978-3-031-43513-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_25&domain=pdf
http://orcid.org/0000-0002-3601-0804
http://orcid.org/0000-0003-3624-1159
https://doi.org/10.1007/978-3-031-43513-3_25

A Naive Prover for First-Order Logic 469

Blanchette et al. [5] have made this very concrete by developing a framework
in Isabelle/HOL for analytic completeness proofs. Their paper includes a first-
order logic example, but their entry in the Archive of Formal Proofs [3] only
includes a propositional example. In this paper, we describe a naive prover based
on the framework, designed to be as simple as possible. This augments the
framework with a concrete first-order logic example showcasing the analytic
technique. Moreover it serves as an introduction to automated reasoning by
making explicit the requirements for completeness of a prover for first-order logic.
It also serves as a small case study for formal verification in a proof assistant.

Then the question remains of how to design this proof strategy. We want it
to be sufficiently intricate to be both sound and complete, but we also want it
to be simple enough that we can reasonably demonstrate these properties (in a
proof assistant). We might follow something like Ben-Ari’s tableau algorithm [1]
(essentially sequent calculus), but we discover that it is surprisingly complex.
There are nodes with labels, branches with markings, and concerns about which
kinds of formulas to process first, later or even together. Instead, we will design
a prover with minimal structure that tries to apply sequent calculus proof rules
over and over, in the belief that we will eventually apply the right ones.

The problem changes from working out which rule to apply in a given situa-
tion, to designing a stream of instructions that will cover whatever we encounter
and embedding enough structure into these instructions to keep the prover itself
elementary. This perspective shift greatly simplifies the prover: the rules are
indexed by formulas and specify exactly what the prover should do in each case.
Moreover, the nodes in the proof tree are simply sequents, no additional state
is needed. The rules apply straightforwardly to these sequents to form the next
nodes of the tree. This simplifies the completeness proof and makes it a non-
issue to handle first-order logic with functions, which can otherwise require extra
consideration.

The formalization of the (naive) prover is available in the Archive of Formal
Proofs [11]. It consists of less than 900 lines of Isabelle/HOL listings, the majority
of which are proofs that are not included when exporting Haskell code for the
prover. A short, manually written Main.hs file augments the exported code
with a command line interface and pretty-printed output. The Isabelle theory
Ezport.thy includes instructions on how to export and compile the Haskell code
(which closely resembles the programs listed here). The code in this paper is
exported to BTEX by Isabelle from the formalization, but differs slightly in
names and layout for presentation reasons. Likewise, to focus on essentials, we
often omit the technical commands needed in the formalization.

2 Related Work

Blanchette [2] gives an overview of a number of verification efforts including the
metatheory of SAT and SMT solvers, the resolution and superposition calculi,
and a series of proof systems for propositional logic [18]. The aim is to develop
a methodology for formalizing modern research in automated reasoning and

470 A. H. From and J. Villadsen

the present work points in this direction with a minimal example of a formally
verified prover for classical first-order logic based on the sequent calculus.

The prover is based on the abstract completeness framework by Blanchette,
Popescu and Traytel [4,5]. Their formalization contains a simple example prover
for propositional logic, while their paper contains the ideas for a (naive) prover
for first-order logic. Our prover realizes these ideas by formalizing them in
Isabelle/HOL. Instead of a prover, Blanchette et al. [5] used the framework
to formalize soundness and completeness of a calculus for first-order logic with
equality in negation normal form. From and Jacobsen [10,12] used the framework
to formalize a much less naive prover for first-order logic based on the SeCaV
proof system [13]. Instead of indexed rules, they employ “multi-rules” that apply
to every applicable formula in a sequent at once and they store more than just
the sequent at each node in the proof tree. Their prover performs better, but
the formalization does not enjoy the simplicity of the naive prover, with close to
3000 lines of Isabelle/HOL against 900 lines.

The indexed rules of the naive prover automatically yield readable proofs. In
the same vein, THINKER by Pelletier [21] is a natural deduction proof system
and attached automated theorem prover, designed for “direct proofs”, as opposed
to proofs based on reduction to a resolution system. MUSCADET by Pastre [20]
is another automated theorem prover based on natural deduction. Neither of
these has been formally verified. Schulz and Pease [24] focused on readable code
rather than proofs. They have developed a saturation-based theorem prover in
Python for first-order logic to teach automated theorem proving by example.
They have not formally verified soundness and completeness, but our projects
are similar.

In the world of formalization, Schlichtkrull et al. [23] formalized an ordered
resolution prover for clausal first-order logic in Isabelle/HOL. Jensen et al. [16]
formalized the soundness, but not the completeness, of a prover for first-order
logic with equality in Isabelle/HOL. Villadsen et al. [25] verified a simple prover
for first-order logic in Isabelle/HOL aiming for students to understand both the
prover and the formalization. That work simplified a formalization by Ridge and
Margetson [22]. Neither of the last two provers support functions.

3 Isabelle/HOL Overview

We give a quick overview of the Isabelle/HOL features used in the present paper.
Nipkow and Klein [19, Part 1] give a more complete introduction.

The datatype command defines a new inductive type from a series of con-
structors, where each can be given custom syntax. The natural numbers are
built from the nullary constructor 0 and unary Suc. The constructors True and
False belong to the built-in type bool. The usual connectives and quantifiers
from first-order logic (—, V, etc.) are available for bool, as well as if-then-else
expressions. The parametric ‘a list is the type of lists with elements of type ‘a.
The type variable ‘a stands in the place of another type. Lists are built from
[, the empty list, and #, an infix constructor that adjoins an element to an

A Naive Prover for First-Order Logic 471

datatype tm datatype fm
= Var nat (#) = Falsity (L)
| Fun nat (tm list) () | Pre nat (tm list) (f)
| Imp fm fm (infixr — 55)
| Unt fm (V)

Fig. 1. The first-order logic syntax in Isabelle/HOL.

existing list. The notation [a, b, ¢] is shorthand for these primitive operations.
The function set turns a list into a set of its elements, map applies a given func-
tion to every element of a list, @ appends two lists, concat flattens a list of lists
and upt j k creates the list [j,7 + 1,...,k — 1]. We use [€] for list membership
and [+] to remove all occurrences of a given element from a list. The two types
'a set and 'a fset form sets and finite sets respectively. The usual operations are
available on sets. On finite sets they are typically prefixed by f as in fimage.
Two additional types are important: sum types with the two unary constructors
Inl and Inr, and option types constructed by the unary Some or nullary None.
Constructors can be examined using case expressions.

The codatatype command defines a new coinductive type from a series of
constructors. The canonical example is the type ‘a stream of “lists with no base
case”, i.e. infinite sequences. The functions shd and st/ return the head and tail
of a stream, respectively, while flat transforms a stream of lists into a stream of
all the elements in the constituent lists, sset returns a set of its elements, smap
applies a function to every element, !! returns the element at a given index and
sdrop-while removes a prefix of a stream that satisfies a given predicate. The
stream nats contains all natural numbers.

The type A = B denotes a function from A to B. Type signatures are
specified after “::”. Types can be shortened using type synonyms. The term
UNIV stands for the set of all values of a given type. In this paper, both = and
= are used to form new definitions. Function application resembles functional
programming languages: f(z,y) is written as f ¢ y and partial application is
allowed. Anonymous functions are built using A-expressions, e.g. An. n + n for
fn) =n+n.

A locale in Isabelle/HOL fixes a number of terms, then assumes a num-
ber of properties about those terms. The meta-logical implication = separates
premises from conclusions in each assumption. The keyword and acts as a sep-
arator. A locale for a group, for instance, fizes a set and a binary operation and
assumes the group axioms.

4 First-Order Logic in Isabelle/HOL

Figure 1 contains a formalization of the syntax of first-order logic as a datatype
in Isabelle/HOL. The syntax is deeply embedded as an object in the meta-logic
so we can manipulate it. We use de Bruijn indices [6] to represent binding: each
variable n is bound by the quantifier that is n quantifiers away, moving outwards.

472 A. H. From and J. Villadsen

type-synonym ’a var-denot = nat = 'a
type-synonym ‘a fun-denot = nat = ‘a list = 'a
type-synonym ’a pre-denot = nat = 'a list = bool

i 'a = (nat = 'a) = nat = 'a
tgs) 0=t
tgs) (Sucn)=sn

(- -) = 'a var-denot = 'a fun-denot = tm = 'a
(E, F) (#n) =En
(E, F) (tfts) = F f (map (E, F|) ts)

[-, -, -] :+ 'a var-denot = 'a fun-denot = 'a pre-denot = fm = bool
[-, -, -] L = False

[E, F, G] (3P ts) = G P (map (E, F)) ts)
IIEvFvG]](p_)Q):(IIEvFvG]]pH[[EvFvGIIQ)

[E, F, G] (Vp)=(Vz. [zg E, F, G] p)

Fig. 2. The semantics of first-order logic in Isabelle/HOL.

A term t, type tm, is then either a variable #n for some de Bruijn index n (a
natural number) or a function application {f [...] for some natural number f
representing the function name and list of argument terms. [...]. A formula p,
type fm, is the constant for falsity, L, a predicate $P [...] for some natural
number P representing the predicate name and list of argument terms |...], an
implication p; — po between two formulas pi,ps or a universally quantified
formula Vp.

Figure 2 contains a formalization of the semantics in Isabelle/HOL. A model
consists of three denotations: one each for variables (E), function symbols (F')
and predicate symbols (G). Terms evaluate to a member of the domain, here
represented as a type variable, while formulas evaluate to truth values in the
higher-order logic. We can use the connectives and quantifiers of Isabelle/HOL
to interpret the first-order logic syntax. For the universal quantifier, we modify
the environment such that we evaluate the quantified variable 0 as every element
of the domain.

Figure 3 lists the rules for instantiating a quantifier with a term without cap-
turing any free variables in the process. The operation [ifi-tm increments every
variable in the term ¢ by one. The operation sub-tm s t applies the substitution
s to every variable in term ¢t. The operation sub-fm s p applies the substitution s
to the formula p, taking account of binders. In the case for Vp, the substitution
is augmented using § to preserve the bound variable #0 in p and to lift the
variables in the output of the substitution s to point past the binder. We write
the instantiation of a quantified formula Vp with a concrete term ¢ as (t)p. The
notation (t) represents the simultaneous substitution that maps variable 0 to ¢
and every other variable n + 1 to n to account for the removed binder. Figure 4
lists the operations for generating a variable fresh to a list of formulas, i.e. one
that does not appear in any formula in the list.

A Naive Prover for First-Order Logic

lift-tm =2 tm = tm
lift-tm (#n) = #(n+1)
lift-tm (tf ts) = 1f (map lift-tm ts)

sub-tm :: (nat = tm) = tm = tm
sub-tm s (#n) = sn
sub-tm s (tf ts) = tf (map (sub-tm s) ts)

sub-fm :: (nat = tm) = fm = fm

sub-fm - L = L

sub-fm s (1P ts) = $P (map (sub-tm s) ts)

sub-fm s (p —> q) = sub-fm s p —> sub-fm s q
sub-fm s (V p) = V (sub-fm (#0 § An. lift-tm (s n)) p)

(-) it tm = fm = fm
(t) = sub-fm (t 5 #)

473

Fig. 3. The simultaneous substitution and quantifier instantiation in Isabelle/HOL.

vars-tm :: tm = nat list
vars-tm (#n) = [n]
vars-tm (f- ts) = concat (map vars-tm ts)

vars-fm :: fm = nat list

vars-fm L =]

vars-fm (1- ts) = concat (map vars-tm ts)
vars-fm (p —> q) = vars-fm p @ vars-fm q
vars-fm (¥ p) = vars-fm p

vars-fms = fm list = nat list
vars-fms A = concat (map vars-fm A)

magz-list :: nat list = nat
maz-list [| = 0
maz-list (z # zs) = max z (maz-list xs)

fresh = fm list = nat
fresh A = Suc (maz-list (vars-fms A))

Fig. 4. The rules for generating a fresh variable in Isabelle/HOL.

type-synonym sequent = fm list x fm list

¢ (B, F, G) (A, B) = (Vp [€] A. [E, F, C] p) —> (3q [€] B. [E, F,]

('a var-denot x 'a fun-denot x 'a pre-denot) = sequent = bool

Fig. 5. The syntax and semantics of sequents in Isabelle/HOL.

q))

474 A. H. From and J. Villadsen

A+ B
Axiom P ts
AFB AFB

IDLE

Ir P ts [€] A AND tP ts [€] B

AFB[+] L
AFB

FLsL IF L [e] A FLsR Ir L [€] B
AF B

IMPquAH (pﬁq)Fp#BAF;#AH (p—>q)FBIF(p_>q)] 4

p#AFq# B[] (p—q)

I B
MPR p ¢ 1B IF (p — q) [€]
(typ # A B
UNILtp——————1FVplel A
NI D 1F B IF Vp [€]
Ak h(AQB B [+] V.
UNIR p (#fresh())p # B [+] Vp w p €] B

AFB

Fig. 6. The rules of the sequent calculus presented visually.

The calculus works on two-sided sequents, of type sequent, which are repre-
sented as pairs of lists of formulas (cf. Fig. 5). We can think of the left-hand side
as assumptions and the right-hand side as conclusions. Moreover, the left-hand
side is conjunctive, so we can assume all of the formulas there to be true, while
the right-hand side is disjunctive, so we only need to prove one.

Sequent calculus has the benefit of the subformula property: to prove a for-
mula we only need to look at its subformulas. Contrast this with axiomatic
systems using modus ponens (from p — ¢ and p infer ¢), where we need to
guess a suitable “lemma” formula. However, a sequent calculus may still leave
too much freedom for comfort. In particular, we want to remove the need for
structural rules, since these are too applicable.

Figure 6 lists the underlying rules of the prover in a somewhat idiosyncratic
manner. The reason will become apparent later. Each rule has a name to the left
of the horizontal line. Below the horizontal line is the conclusion and above are
the premises, if any. Any side conditions are given to the right of the line. Note
that each rule is indexed by the exact (sub)formulas it works on: the rule AX1om
0 [] is distinct from the rule AX1oM 1 [] etc. This rigidity means that we do not
need any structural rules. It also means that there is no pattern matching in
any of the rules and that the three primary operations are membership checking
([€]), removal of concrete formulas ([+]) and adding new formulas to a list (#).

The IDLE rule appears for technical reasons (there should always be an
enabled rule). The AX10M rule is indexed by a predicate symbol P and argument
list ts and checks whether such a predicate appears on both sides of the sequent:
if so, the rule applies and there are no child sequents. The FLSL rule checks if L
occurs among the assumptions, in which case the sequent is proved. The FLSR
rule, when it applies, drops all occurrences of L from the conclusions, since we

A Naive Prover for First-Order Logic 475

can never prove any of them. The IMPL and IMPR rules decompose implications
on either side of the sequent in the standard way. The UNIL rule is indexed by
a term t and a formula p. If Vp occurs on the left, then the rule instantiates it
with ¢, adding (¢t)p to the left-hand side of the child sequent. The UNIR rule
is only indexed by a formula p. When Vp occurs on the right, it is instantiated
with a fresh variable and removed.

In order to obtain a prover based on the rules of the sequent calculus we use
the abstract completeness framework for Isabelle/HOL developed by Blanchette,
Popescu and Traytel [3,5]. This framework formalizes the mechanics of sequent
calculus and semantic tableaux provers in an abstract way that we can instantiate
with concrete rules. There are two possible perspectives on the framework: (i)
the proof perspective, where we use the framework to obtain theorems about
proof trees built from our rules and (ii) the code generation perspective, where
we use the framework to generate an executable prover. In this paper, both
perspectives come into play but the two perspectives can be used on their own.

The framework needs: a stream of rules, a function describing their effect, a
proof that some rule is always enabled and a guarantee that rules are persistent.
We formalize the calculus in Isabelle/HOL as a datatype of rules, rule, with
constructors Idle, Aziom, FIsL, FIsR, ImpL, ImpR, UniL and UniR, and an effect
function, eff, that encodes the relationship between premises and conclusions in
the manner expected by the framework.

5 Soundness and Completeness

Soundness requires that we do not prove a sequent without having proper rea-
sons to do so. It is a local property of our calculus that we can easily check.
Completeness, on the other hand, requires that we have sufficient rules avail-
able to prove every valid formula. Thus, proving completeness requires a more
involved strategy.

Lemma 1 (Local soundness). If all premises of a rule are valid, then its
conclusion is valid. In Isabelle, if eff r (A, B) = Some ss and VA B. (A, B)
€| ss — (V(E :: - = "a). sc (E, F, G) (A, B)), then sc (E, F, G) (A, B).

Proof. By induction on the call structure of eff. The induction hypothesis then
applies to the sequents produced by eff. All cases except UNIR are trivial. For
UNIR, by the induction hypothesis, the premise holds under all variable deno-
tations: no matter the assignment to the fresh variable. This justifies forming
the universal quantifier and since the fresh variable does not appear elsewhere
in the sequent, the semantics there are unaffected.

Theorem 1 (Prover soundness). If a proof tree (attempt) is well formed and
finite, then the root sequent is valid. In Isabelle, if tfinite t and wf t, then sc (E,
F, G) (fst (root t)).

Proof. By induction on the finite proof tree using Lemma 1.

476 A. H. From and J. Villadsen

locale Hintikka =

fixes A B :: fm set

assumes
Basic: 1P ts € A = {P ts € B = Fualse and
FlsA: 1 ¢ A and
ImpA: p — g€ A= p € BV g€ Aand
ImpB:p — q€ B=—= p € AN g€ B and
UniA:Vp e A= Vi (t)p € A and
UniB:Vp € B= 3t. (t)p € B

MA=[#, % \Pts. tP ts € A]

Fig. 7. Formalizations of Hintikka sets and the countermodel M A.

For completeness we must now show that, for every valid sequent, the prover
finds a proof. We do so contrapositively: if the prover does not find a proof,
we produce a countermodel to the sequent. To do so, we characterize saturated
escape paths syntactically using Hintikka sets and show that such sets induce
countermodels. Figure7 characterizes Hintikka sets in our setting. There are
two perspectives on these: one, that they characterize saturated escape paths
and two, that they characterize the semantics of the countermodel.

To understand the first perspective, read the set A as consisting of all formu-
las that appear as assumptions on the saturated escape path (on the left-hand
side of sequents) and the set B as consisting of all formulas that appear as con-
clusions (on the right-hand side of sequents). The Isabelle/HOL functions treeA
and treeB collect these sets, respectively.

Lemma 2 (Hintikka sets characterize saturated escape paths). Let A
and B be sets of assumption and conclusion formulas on a saturated escape
path. Then they fulfill all Hintikka requirements. In Isabelle, if epath steps and
Saturated steps, then Hintikka (treeA steps) (treeB steps).

Proof. We check each condition separately.

Basic states that a predicate cannot appear as both assumption and con-
clusion on the epath. Otherwise the AXIOM rule would have terminated the
(infinite) epath.

FlsA states that L does not appear among the assumptions. Similar to the
above, the FLSL rule would have terminated the epath if so.

ImpA and ImpB break down implications in accordance with the IMPL and
IMPR rules. For a given p, ¢, if p — ¢ appears in A (respectively B), then at
some point in the proof tree attempt, the rule IMPL p ¢ (respectively IMPR p
q) becomes enabled. Since the epath is saturated, any enabled rule is eventually
taken and the effect matches the thesis.

UniA states that any universally quantified formula Vp on the left is instan-
tiated with all possible terms. Fix an arbitrary term ¢. Since Vp occurs as an
assumption, the specific rule UNIL p t is eventually enabled, taken, and has the
desired effect.

A Naive Prover for First-Order Logic 477

UniB is similar, except the witnessing term is the fresh variable.

Remark 1. We see the usefulness of indexed rules in the above proof. If we
simply had an IMPR rule, rather than an IMPR p ¢ rule for each formula p and
q, we would have to further argue that this rule eventually applies to exactly the
implication p — ¢ we need it to. Perhaps we need to argue first that p — ¢
eventually reaches the front of the sequent or similar delicate reasoning. This is
where fairness concerns would show up. We have sidestepped the issue by using
very specific rules.

Consider now the second perspective. The countermodel in Fig.7 uses the
term universe (also called Herbrand universe) where every variable and function
symbol evaluates to itself. Thus, the universal quantifier, which ranges over a
given domain, ranges over terms. Now, read the sets A and B as formulas we
wish to satisfy and falsify, respectively.

Lemma 3 (A Hintikka set induces a countermodel). Let A and B be sets
of formulas fulfilling the Hintikka requirements. Then M A satisfies formulas in
A and falsifies formulas in B. In Isabelle, if Hintikka A B then (p € A — M
Ap)AN(p€B— - MAp).

Proof. By well founded induction on the size of the formula, such that the induc-
tion hypothesis applies to subformulas and instances of universally quantified
formulas.

For L € A, this contradicts FlsA so the thesis holds vacuously. For L € B,
the thesis holds trivially since L is falsified by every model.

For tP ts € A, the thesis holds by the definition of M. For §P ts € B, we
cannot have P ts € A due to Basic and so the thesis holds by the definition of
M.

For p — ¢ € A and p — ¢ € B the theses hold by the induction hypothe-
ses at p and ¢ and the conditions ImpA and ImpB, respectively.

For Vp € A and Vp € B the theses hold by the induction hypotheses at (¢)p
for all ¢ and by the conditions UniA and UniB, respectively.

Any saturated escape path induces a countermodel, contradicting validity.

Theorem 2 (Prover completeness). For any valid sequent, the prover ter-
minates.

Proof. If the prover does not find a proof, then by the framework, the proof
attempt contains a saturated escape path. By Lemma 2, this epath fulfills the
Hintikka requirements. By Lemma 3, we can build a model that satisfies every
assumption formula and falsifies every conclusion formula. This model contra-
dicts the validity of the sequent.

We join the soundness and completeness theorems in a corollary on formulas.

Corollary 1. The prover terminates if, and only if, the given formula is valid.
In Isabelle, fix p :: fm and let t = prover ([], [p]), then tfinite t A wft «—— (V(FE
w-=1tm) FG. [E, F, G] p).

478

A. H. From and J. Villadsen

References

1.

2.

10.

11.

12.

13.

Ben-Ari, M.: Mathematical Logic for Computer Science. Springer, Cham (2012).
https://doi.org/10.1007/978-1-4471-4129-7

Blanchette, J.C.: Formalizing the metatheory of logical calculi and automatic
provers in Isabelle/HOL (invited talk). In: Mahboubi, A., Myreen, M.O. (eds.)
Proceedings of the 8th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2019, pp. 1-13. ACM (2019). https://doi.org/10.1145/
3293880.3294087

Blanchette, J.C., Popescu, A., Traytel, D.: Abstract completeness. Archive of For-
mal Proofs (2014). https://isa-afp.org/entries/Abstract_Completeness.html. For-
mal proof development

Blanchette, J.C., Popescu, A., Traytel, D.: Unified classical logic completeness. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562,
pp. 46-60. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_4
Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness proofs by
coinductive methods. J. Autom. Reason. 58(1), 149-179 (2016). https://doi.org/
10.1007/s10817-016-9391-3

. de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool for auto-

matic formula manipulation, with application to the Church-Rosser theorem. In:
Nederpelt, R., Geuvers, J., de Vrijer, R. (eds.) Selected Papers on Automath,
Studies in Logic and the Foundations of Mathematics, vol. 133, pp. 375—-388.
Elsevier (1994). https://doi.org/10.1016/S0049-237X(08)70216-7, reprinted from:
Indagationes Math, 34, 5, pp. 381-392, by courtesy of the Koninklijke Nederlandse
Akademie van Wetenschappen, Amsterdam

From, A.H.: Synthetic completeness for a terminating Seligman-style tableau sys-
tem. In: de’Liguoro, U., Berardi, S., Altenkirch, T. (eds.) 26th International Con-
ference on Types for Proofs and Programs, TYPES 2020, University of Turin, Italy,
2-5 March 2020. LIPIcs, vol. 188, pp. 5:1-5:17. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik (2020). https://doi.org/10.4230/LIPIcs. TYPES.2020.5

From, A.H.: Formalized soundness and completeness of epistemic logic. In: Silva,
A., Wassermann, R., de Queiroz, R.J.G.B. (eds.) WoLLIC 2021. LNCS, vol. 13038,
pp. 1-15. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88853-4_1
From, A.H.: A succinct formalization of the completeness of first-order logic. In:
Basold, H., Cockx, J., Ghilezan, S. (eds.) 27th International Conference on Types
for Proofs and Programs, TYPES 2021, Leiden, The Netherlands, 14—-18 June 2021
(Virtual Conference). LIPIcs, vol. 239, pp. 8:1-8:24. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik (2021). https://doi.org/10.4230/LIPIcs. TYPES.2021.8
From, A.H., Jacobsen, F.K.: Verifying a sequent calculus prover for first-order
logic with functions in Isabelle/HOL. In: Andronick, J., de Moura, L. (eds.) 13th
International Conference on Interactive Theorem Proving, ITP 2022, Haifa, Israel,
7-10 August 2022. LIPIcs, vol. 237, pp. 13:1-13:22. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik (2022). https://doi.org/10.4230/LIPIcs ITP.2022.13
From, A.H.: A Naive prover for first-order logic. Archive of Formal Proofs (2022).
https://isa-afp.org/entries/FOL_Seq_Calc3.html, Formal proof development
From, A.H., Jacobsen, F.K.: A sequent calculus prover for first-order logic with
functions. Archive of Formal Proofs (2022). https://isa-afp.org/entries/FOL_Seq-
Calc2.html, Formal proof development

From, A.H., Jensen, A.B., Schlichtkrull, A., Villadsen, J.: Teaching a formalized
logical calculus. Electron. Proc. Theor. Comput. Sci. 313, 73-92 (2020). https://
doi.org/10.4204/EPTCS.313.5

https://doi.org/10.1007/978-1-4471-4129-7
https://doi.org/10.1145/3293880.3294087
https://doi.org/10.1145/3293880.3294087
https://isa-afp.org/entries/Abstract_Completeness.html
https://doi.org/10.1007/978-3-319-08587-6_4
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1016/S0049-237X(08)70216-7
https://doi.org/10.4230/LIPIcs.TYPES.2020.5
https://doi.org/10.1007/978-3-030-88853-4_1
https://doi.org/10.4230/LIPIcs.TYPES.2021.8
https://doi.org/10.4230/LIPIcs.ITP.2022.13
https://isa-afp.org/entries/FOL_Seq_Calc3.html
https://isa-afp.org/entries/FOL_Seq_Calc2.html
https://isa-afp.org/entries/FOL_Seq_Calc2.html
https://doi.org/10.4204/EPTCS.313.5
https://doi.org/10.4204/EPTCS.313.5

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

A Naive Prover for First-Order Logic 479

Godel, K.: Die Vollstandigkeit der Axiome des logischen Funktionenkalkiils. Monat-
shefte fiir Mathematik und Physik 37(1), 349-360 (1930). https://doi.org/10.1007/
BF01696781

Henkin, L.: The discovery of my completeness proofs. Bull. Symb. Log. 2(2), 127-
158 (1996). https://doi.org/10.2307/421107

Jensen, A.B., Larsen, J.B., Schlichtkrull, A., Villadsen, J.: Programming and ver-
ifying a declarative first-order prover in Isabelle/HOL. AT Commun. Eur. J. Artif.
Intell. 31(3), 281-299 (2018). https://doi.org/10.3233/AIC-180764

Kleene, S.C.: Mathematical Logic. Courier Corporation (2002)

Michaelis, J., Nipkow, T.: Formalized proof systems for propositional logic. In:
Abel, A., Forsberg, F.N., Kaposi, A. (eds.) 23rd International Conference on Types
for Proofs and Programs (TYPES 2017). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 104, pp. 5:1-5:16. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs. TYPES.
2017.5

Nipkow, T., Klein, G.: Concrete Semantics - With Isabelle/HOL. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10542-0

Pastre, D.: Muscadet 2.3: a knowledge-based theorem prover based on natural
deduction. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol.
2083, pp. 685-689. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45744-5_56

Pelletier, F.J.: Automated natural deduction in THINKER. Stud. Logica. 60(1),
3-43 (1998). https://doi.org/10.1023/A:1005035316026

Ridge, T., Margetson, J.: A mechanically verified, sound and complete theo-
rem prover for first order logic. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005.
LNCS, vol. 3603, pp. 294-309. Springer, Heidelberg (2005). https://doi.org/10.
1007/11541868-19

Schlichtkrull, A., Blanchette, J.C., Traytel, D.: A verified prover based on ordered
resolution. In: Proceedings of the 8¢h ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2019, pp. 152-165. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3293880.3294100

Schulz, S., Pease, A.: Teaching automated theorem proving by example: PyRes
1.2. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 158-166. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1_9

Villadsen, J., Schlichtkrull, A., From, A.H.: A verified simple prover for first-order
logic. In: Konev, B., Urban, J., Riimmer, P. (eds.) Proceedings of the 6th Workshop
on Practical Aspects of Automated Reasoning. CEUR Workshop Proceedings, vol.
2162, pp. 88-104. CEUR-WS.org (2018). https://ceur-ws.org/Vol-2162/paper-08.
pdf

https://doi.org/10.1007/BF01696781
https://doi.org/10.1007/BF01696781
https://doi.org/10.2307/421107
https://doi.org/10.3233/AIC-180764
https://doi.org/10.4230/LIPIcs.TYPES.2017.5
https://doi.org/10.4230/LIPIcs.TYPES.2017.5
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/3-540-45744-5_56
https://doi.org/10.1007/3-540-45744-5_56
https://doi.org/10.1023/A:1005035316026
https://doi.org/10.1007/11541868_19
https://doi.org/10.1007/11541868_19
https://doi.org/10.1145/3293880.3294100
https://doi.org/10.1007/978-3-030-51054-1_9
https://doi.org/10.1007/978-3-030-51054-1_9
https://ceur-ws.org/Vol-2162/paper-08.pdf
https://ceur-ws.org/Vol-2162/paper-08.pdf

480 A. H. From and J. Villadsen

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	A Naive Prover for First-Order Logic: A Minimal Example of Analytic Completeness
	1 Introduction
	2 Related Work
	3 Isabelle/HOL Overview
	4 First-Order Logic in Isabelle/HOL
	5 Soundness and Completeness
	References

