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Gelatinous larvacean zooplankton can
enhance trophic transfer and carbon
sequestration
Cornelia Jaspers ,1,2,* Russell R. Hopcroft ,3 Thomas Kiørboe ,2 Fabien Lombard ,4

Ángel López-Urrutia ,5 Jason D. Everett ,6,7,8 and Anthony J. Richardson 6,7
Highlights
Larvaceans are among the most wide-
spread gelatinous organisms of the zoo-
plankton and have extraordinary growth
rates, on the same time scale as that of
their protozoan prey.

Climate change is expected to favour
picoplankton and the microbial loop.
Larvaceans can directly feed on the
smallest plankton, leading to a competi-
tive advantage. This ‘larvacean shunt’
could counteract elongated food chains
Larvaceans are gelatinous zooplankton abundant throughout the ocean.
Larvaceans have been overlooked in research because they are difficult to col-
lect and are perceived as being unimportant in biogeochemical cycles and
food-webs.We synthesise evidence that their unique biology enables larvaceans
to transfer more carbon to higher trophic levels and deeper into the ocean than is
commonly appreciated. Larvaceans could become even more important in the
Anthropocene because they eat small phytoplankton that are predicted to be-
come more prevalent under climate change, thus moderating projected future
declines in ocean productivity and fisheries. We identify critical knowledge
gaps and argue that larvaceans should be incorporated into ecosystem assess-
ments and biogeochemical models to improve predictions of the future ocean.
that are projected for our future ocean.

Larvaceans produce marine snow that
might sustain carbon export in a future
ocean where primary producers are
smaller.

Larvaceans are food for many fish and
invertebrate species, indicating their im-
portance in trophic transfer. They may
be especially important to mesopelagic
fish, indirectly increasing carbon seques-
tration due to these fishes’ production of
faecal pellets at depth.

Larvaceans are important for
repackaging particles, thereby accelerat-
ing carbon export and sequestration.
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Larvaceans are abundant gelatinous zooplankton with a unique biology
Global change is leading to a reorganisation of food-web structure and functioning. Gelatinous
zooplankton (see Glossary), especially jellyfish, have recently gained considerable attention,
linked to an undesirable ecosystem state during their blooms that can negatively impact higher
trophic levels [1]. Gelatinous zooplankton are pelagic and share the characteristics of a soft,
translucent body texture. But they include groups with different evolutionary histories and ecolog-
ical roles, they feed at a range of trophic levels, and they vary in their carbon content by two orders
of magnitude. Gelatinous zooplankton include pelagic tunicates with larvaceans, doliolids,
pyrosomes, and salps, as well as comb jellies (ctenophores) and true cnidarian jellyfish. Pelagic
tunicates, distributed throughout the worlds’ oceans, are filter-feeders that prey on the smallest
food particles by passing large volumes of water through sheets of mucus [2]. Of all gelatinous
zooplankton, pelagic tunicates of the class Larvacea are often the most abundant after copepods
(crustaceans) from tropical [3] to polar [4] ecosystems (Box 1). Larvaceans show body sizes and
carbon weights similar to those of copepods [5,6], but it is their secondary production potential
that makes them truly remarkable. Larvaceans have faster growth rates and much shorter gen-
eration times than copepods (Box 2). In combination with their ability to feed on the smallest or-
ganisms in the oceans, larvaceans can shunt energy from the microbial loop to fish, particularly to
mesopelagic fish [7,8]. Additionally, larvaceans build themselves a ‘house’ that consists of a
set of filters (Box 1). The houses accumulate carbon, are regularly discarded, and represent an
important contribution to the carbon cycle. These characteristics make larvaceans critical to
our understanding and modelling of how climate change impacts marine ecosystems. Despite
their potentially major role in marine ecosystems, with many experiments documenting their im-
portance (e.g., [2,5]), larvaceans have been largely ignored in biogeochemical and ecosystem
models. Their inclusion could help project changes in fish biomass and carbon cycling under
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climate change. It is therefore timely to review the role of larvaceans in marine ecosystems. In this
review, we first detail several key roles played by larvaceans, then we describe their potential re-
sponse to climate change in the Anthropocene with implications for marine systems, and finally
we identify important questions to further understand their importance in the future ocean.

Major roles of larvaceans in marine ecosystems
Larvaceans sustain higher trophic levels
The common perception that larvaceans are relatively unimportant to higher trophic levels is partly
a consequence of their underestimation in classical gut-content analysis due to their rapid diges-
tion [9,10]. Common databases used by ecologists, fish biologists, and modellers reinforce this
point: an analysis of the diets of 35 000 fish species in FishBase returns only 55 fish species
that eat larvaceans, and an analysis of the 85 000 marine species in SeaLifeBase reports only
seven nonfish species eating larvaceans. This has led to the impression that gelatinous zooplank-
ton, including larvaceans, transfer little carbon up the food-web [1]. However, multiple lines of ev-
idence confirm that larvaceans are important prey items for many marine species, including
commercially important fish.

In a review of the predators of larvaceans, Purcell et al. [11] found that they are consumed by >80
invertebrate species, including chaetognaths, ctenophores, jellyfish, and copepods, as well as by
>350 vertebrates, mainly fish. Calanoid copepods, for example, can exert a significant predation
control on larvacean populations by feeding on their eggs and early life stages, which are in the
same size range as their other prey such as ciliates [12] (Figure 1). At times, larvaceans represent
Box 1. What are larvaceans?

Larvaceans are translucent, free-swimming, highly-specialised, holoplanktonic, pelagic tunicates [87]. The name ‘larvacea’
refers to the close similarity of their adults with the tunicate tadpole larvae. Larvacea is a class synonym for Appendicularia,
but it is preferred to avoid confusion with the genus name Appendicularia.

The larvacean body comprises a trunk, usually 0.5–4 mm long, when adult, with a much longer tail (Figure I). Giant
larvaceans found in the mesopelagic zone (e.g., Bathochordaeus spp.) have total lengths of 40 mm [45].

The class Larvacea (synonyms: Appendicularia, Copelata) has 68 species in three families (Oikopleuridae, Fritillariidae,
Kowalevskiidae). Species number is grossly underestimated, especially for mesopelagic [68] and cosmopolitan species
due to cryptic diversity [69]. There are more warm-water than cold-water species.

Larvaceans are found in coastal and oceanic waters of all oceans, primarily in near-surface waters but also at mesopelagic
and hadal depths [53]. At night, spawning aggregations can occur in surface waters [86]. Density is independent of
chlorophyll concentration (Figure II).

Larvaceans reproduce sexually and are sequential hermaphrodites, although one species,Oikopleura dioica, has separate
sexes. The generation time of O. doica is short, varying from 1 day at 27–29°C [77] to 16 days at 10°C [88]; 50–500 eggs
are produced [5,86].

The tail is used to generate the feeding current and also provides locomotion for escape sprints (maximum 75 mm/s out-
side their house) or upward swimming for spawning (average 47 mm/s) [86]. Larvaceans inside their houses are slow and
thus are common prey [11].

Feeding, house production, and carbon export

Larvaceans secrete a delicate house of cellulose and mucopolysaccharides [89] around themselves like a bubble that
supports a network of filters. This house is about seven times longer than the animal trunk [47] and is usually destroyed
during sampling. Larvaceans optimise their food intake by using different filters within the house to concentrate bacteria
and picophytoplankton, using their tail as pumpii. The fine filters can quickly become clogged. O. dioica has up to three
house rudiments on the trunk, and it discards its house every 3–4 h at 12°C [46], up to 40 houses/day [27]. Fritillariid
larvaceans can deflate their house, swim away, and reinflate it within seconds [90]. Discarded houses, together with heavy
faecal pellets and trapped food particles, help to export carbon, but are also consumed by many predators.
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Figure I. Morphological characteristics of two larvacean families (A,B): Fritillariidae with (B) Fritillaria borealis
(hermaphrodite with eggs/sperm) and (C–F) Oikopleuridae, with (D) Oikopleura dioica (mature female), and
(E,F) the Oikopleuridae house. Arrows indicate water flow (blue) and the junction between tail and trunk (grey) which
represents an identification characteristic. Image credit for (B,D): Anne Aasjord.

Glossary
Bathochordaeus: a larvacean genus
often referred to as ‘giant
larvaceans’. Living below the
productive surface layer, they can
reach gigantic house diameters of up
to 2 m and could be important for
repackaging marine snow and in
carbon sequestration.
Biological pump: carbon export
mediated by biological processes and
biota in the ocean. It is responsible for
ocean CO2 uptake by exporting
photosynthetically fixed carbon from the
surface ocean.
Carbon export/sequestration: the
process of carbon leaving the sunlit
surface layers and entering the deep
ocean. Once exported from surface
layers, its return may take years to
centuries, or it could be sequestered
and stored in sediments for millennia.
Carbon is typically exported as faecal
material, dead bodies, or shells, but in
the case of larvaceans discarded
houses can be important.
Diel vertical migration (DVM): diel
(daily) vertical migration between
deep and surface waters to avoid
predation.
Gelatinous zooplankton: soft-bodied
or translucent organisms belonging to
evolutionary and ecologically distinct
groups that have varying carbon
contents.
Generation time: time taken for an
organism to complete its life cycle. For
larvaceans, the minimum time from
fertilised egg to new spawning adult is
24 h, of the same order as that of their
protozoan prey.
Growth rate: the rate at which an
animal increases its body mass. It is
generally referenced to its initial weight at
the start of the growth period and
expressed as carbon increase in
percentage per day.
House: external filter structure, unique
to larvaceans, used to feed on the
smallest plankton, including viruses.
Houses are regularly discarded, forming
marine snow.
Jellyfish: transparent
macrozooplankton with low carbon
content from the phylum Cnidaria.
Larvaceans: gelatinous zooplankton
feeding on picoplankton and larger
particles via an external filter, called a
house. Competing taxonomic schema
have used Larvacea, Appendicularia,
and Copelata as synonyms. Larvaceans
are split into three families.
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>90% of the diet of pelagic fish species such as pink salmon (Oncorhynchus gorbuscha) [13] and
are an important prey item for commercial species such as Atlantic mackerel (Scomber
scombrus), Atlantic herring (Clupea harengus), and Atlantic butterfish (Peprilus triacanthus) [14].
An analysis of 450 000 fish stomachs along the USWest Coast confirmed that pelagic tunicates,
including larvaceans, are widely consumed by fish [15]. Some fish species prefer larvaceans, with
positive selection confirmed for larvae and adults of several mesopelagic fish species [7,8,16–18],
larvae of different tuna species [10,19], and adult polar cod (Boreogadus saida) [20]. Bjørdal et al.
[21] found that as mackerel expanded poleward with warming in the North Atlantic, juvenile
mackerel fed predominately on larvaceans, and they were the second most important prey
item for adults. Similarly, environmental warming has induced a diet shift in walleye Pollock
(Theragra chalcogramma), with five times more larvaceans in their diet in warm (2001–2011)
rather than cold (1989–2000) periods [22].

In addition to larvaceans themselves, their discarded carbon-rich houses are often consumed by
zooplankton such as copepods [23], euphausiid larvae [23], and fish [24,25], sometimes even
982 Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10
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Figure II. Selective compilation of larvacean abundances versus chlorophyll (Chl) concentrations. Hatched
box indicates commonly observed abundances, while dark red [88] and orange [91] depict bloom abundances, and
light red mesocosm growth experiments [77]. Abbreviation: ind, individuals. See also [40,41,92–94].

Marine snow: detritus sinking in the
water column that exports carbon from
surface to deeper waters. This carbon is
remineralised through respiration, eaten,
fragmented, or sequestered.
Mesopelagic fish: small fish living in
the mesopelagic zone (200–1000 m),
exhibiting extensive diel vertical
migration.
Pelagic tunicates: holoplanktonic
marine organisms with a rubbery,
translucent outer coat. They feed on
small prey, grow quickly, and exhibit
population outbreaks. Taxonomically,
they include the class Larvacea
(= Appendicularia) and the class
Thaliacea with the orders Salpida,
Doliolida, and Pyrosomida, all within the
phylum Chordata.
Picoplankton: single-celled plankton
with body sizes of 0.2–2 μm. Very
abundant globally, they are expected to
thrive under climate change and play a
critical role in marine food-webs and
carbon cycles. Includes eukaryotic
protists and bacteria.
Salps: barrel-shaped, colony-forming
pelagic tunicates that feed on small
plankton and produce fast-sinking faecal
pellets and carcasses. Some exhibit diel
vertical migration. Colonies can reach
>30 m in length.
Secondary production: biomass
produced by heterotrophic organisms
that consume primary producers. It
includes the biomass produced through
growth, reproduction, and other
products (e.g., houses) of organisms,
and feeds other animals.
Trophic transfer: the amount of matter
or energy that moves from one trophic
level to the one above it.
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selectively [23]. The carbon content of a newly secreted house, without attached particles, repre-
sents ~15% of the body carbon of the animal [26]. Considering that several houses are produced
per day (Box 1), house production corresponds to an expenditure of 75–220% of an individual’s
biomass per day [27]. Houses also accumulate food particles, faecal material, and detritus,
adding many times an individual’s biomass in trapped food particles to the discarded houses
[26]. Thus, houses alone contribute substantial amounts of carbon, both as food for higher tro-
phic levels and as source of marine snow for downward export.

Larvaceans are more nutritious as food than other gelatinous zooplankton. Typically, larvaceans
have a carbon content (5% of wet weight) that is ten times higher than that of cnidarians (jellyfish
0.5%), 100 times higher than lobate ctenophores (comb jellies, 0.05%) and six times higher than
salps (0.8%) [5,6]. With their relatively high carbon content, larvaceans are more similar to cope-
pods (9.5%) and fish (10%) [6,28] than to other gelatinous zooplankton.

The ‘larvacean shunt’ short-circuits traditional food-webs
The ability of larvaceans to feed upon the smallest phytoplankton cells [2,29–31], heterotrophic
bacteria [31], and even some viruses [32] means that they can access prey unavailable to most
crustacean zooplankton such as copepods and krill (Figure 1). While similar in body size to cope-
pods, larvaceans have prey-to-predator size ratios equivalent to a baleen whale eating krill
(Figure 1) [33–35]. Although the smallest particles are cleared with lower efficiencies [31,33], het-
erotrophic bacteria constitute ~20% of the diet of larvaceans [31], and they can remove >60% of
the picoplankton standing stock per day [36]. Larvaceans can thus ‘short-circuit’ the
Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10 983
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Box 2. Larvacean abundance, growth, and secondary production
Abundance

Several large-scale studies suggest that larvaceans are the second most abundant zooplankton group [4,72], after cope-
pods. Based on 659 samples using a 100-μm mesh net around Australia, Richardson et al. [3] found larvaceans were the
second most abundant zooplankton group, averaging 10% of the abundance of copepods. Reanalyses of the Continuous
Plankton Recorder (CPR) database [95] show that, globally, larvaceans make up ~7.1% of all zooplankton, and 8.2% of
copepods, while around Australia larvaceans make up 14.2% of all zooplankton, and 19% of the abundance of copepods.
In the Pacific Arctic, net samples show that larvaceans represent ~31%of the total zooplankton abundance [72]. Larvaceans
are also more abundant and ubiquitous than other filter-feeding gelatinous zooplankton such as salps, doliolids, and
pyrosomes (Figure I), which are patchy in their distribution [87].

Growth

Larvaceans grow faster than any other metazoan on a carbon-specific basis (Figure II). Zooplankton growth rate exhibits a
strong allometric relationship with biomass, with larvaceans consistently above the mean relationship. Their growth rate is
an order of magnitude faster than that of copepods and cnidarians, two orders of magnitude faster than that of euphau-
siids, and generally faster than the growth rates of other gelatinous filter-feeding zooplankton such as salps and doliolids.
Although orders of magnitude larger in size, growth rates of larvaceans often rival those of the unicellular flagellates and
ciliates. Larvacean growth rates are also relatively insensitive to food limitation, because they can access picoplankton
and bacteria that are ubiquitous [96], and thus their prey concentration is generally satiating [31] (Figure II). This contrasts
with most other mesozooplankton, which are often food-limited. Their consistently fast growth rates enable them to
quickly build up biomass and outcompete other zooplankton groups.

Secondary production

Their relatively high abundances and fast growth rates mean that larvaceansmake a substantial contribution to ocean pro-
ductivity (secondary production). Larvaceans can exceed copepod production by two to five times [37,41], and their
houses represent an additional source of production [27], including the food and faecal material trapped within discarded
houses. Therefore, the role of larvaceans in the ecosystem is much greater than that represented by their somatic produc-
tion alone [75], fuelling trophic transfer and carbon sequestration. Hence, larvacean production, rather than their abun-
dance, reveals the true ecosystem importance of larvaceans.

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Gelatinous zooplankton (GZ) groups. GZ combine the phyla (A) Cnidaria (including true jellyfish), (B)
Ctenophora (comb jellies), and (C–F) pelagic Tunicates within the classes (C) Larvacea and (D–F) Thaliacea with (D)
salps, (E) doliolids, (F) pyrosomes. Image credits: (A) Fabrizio Marcuccio, (C) Anne Aasjord.
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Figure II. Specific growth rates of marine life, corrected to 15°C, covering protists to fish (grey) and
gelatinous zooplankton (GZ) (coloured), including larvaceans (red). From [97] supplemented with GZ data
from [5,74,98].
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‘traditional’ crustacean-dominated food-web of copepods and krill, efficiently transferring energy
from the microbial loop directly to the mesozooplankton size range, where they can then be
ingested by fish (e.g., [21,22]). Larvaceans' secondary production estimates can exceed that of
crustacean zooplankton [37], especially when small phytoplankton dominate, as is common
over most offshore, tropical, and oligotrophic regions [37–41]. The ability of larvaceans to shorten
food chains is called the ‘larvacean shunt’ (Figure 1).

Larvacean houses and the biological pump
Larvaceans play a unique yet underappreciated role exporting carbon from the surface ocean. The
biological pump includes the passive sinking of various particles such as phytoplankton, marine
snow, faecal material, and carcasses, and is further facilitated by the active migration by zooplank-
ton and mesopelagic fish with carbon release at depth (Figure 2A). The biological pump ensures
that oceans keep absorbing CO2 by continually removing photosynthetically fixed carbon from
the surface ocean to its interior, sequestering carbon for years to centuries, and thereby regulating
the pace of climate change [42,43]; without it, atmospheric CO2 would be twice as high [42].

Larvaceans build themselves a ‘house’ that consists of a set of filters to concentrate and feed on
the smallest plankton components (Box 1). Discarded larvacean houses are an important source
of marine snow [23] and thus key contributors to the biological pump. Houses not remineralised
by bacteria or consumed by predators in surface waters exit the sunlight zone aided by their rapid
sinking rates. Houses can sink with velocities of up to 300m/day for surface-dwelling species [44]
Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10 985
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Figure 1. Planktonic trophic relationships with (A) a conceptual food-web including the larvacean shunt,
(B) predator sizes, and (C) prey-to-predator size ratios. (A) Pathways illustrating general energy flows in marine
environments, including selected gelatinous zooplankton groups, with feeding interactions indicated by orange arrows and
autotrophic (green), mixotrophic (brown), and heterotrophic (blue) food-web members, differentiated into microbial and
classical food-webs as well as higher trophic levels. The neglected larvacean shunt (left) shortcuts the classical food-web
channelling energy from the microbial food-web to higher trophic levels, including different life stages of fish (larval, juvenile,
adults). Predation by calanoid copepods counteracts this shortcut [12] as they consume young larvaceans and their eggs,
with >5.5 calanoids/l suggested to limit population outbursts [12]. All biological processes leak dissolved organic carbon
(DOC), fuelling the microbial food-web (blue arrow). The larvacean shunt links DOC back to higher trophic levels. (B) Size
ranges of primary predators covering protists to larvaceans in the ocean along with (C) their relative clearance rate as a
function of prey-to-predator size ratios (modified from [33,34] with permission). Larvaceans can feed on organisms >10 000
times smaller than themselves, similar to Baleen Whales eating krill. While respiration is usually related to organism carbon
weight (hence body size), feeding and filtration are more strongly correlated with the wet weight of an organism [99],
including their feeding apparatus. Given that the house diameter is typically seven times the trunk length [47], the predator-
to-prey size ratio is even more extreme (140 000:1). The enlarged house makes larvaceans more vulnerable to visual
predators [11].
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and 800 m/day for deeper-living, mesopelagic ones [45]. In a temperate ecosystem along the
northwest coast of the USA, abandoned houses are exported from surface waters within 2–3 h,
with their standing stock turned over four to five times per day [46]. Although houses leak particles
during sinking and deflation [47], they remain carbon-rich and can contribute up to 83–100% of the
carbon flux to the seafloor, equivalent to an export of 1200 mgC/m2/day [48,49].

Larvaceans living in the twilight zone of deeper waters (mesopelagic, 200–1000 m) can further
accelerate carbon export/sequestration. In particular, larvacean species of the genus
Bathochordaeus, often referred to as ‘giant larvaceans’ (Box 1), repackage marine snow into
larger fast-sinking particles due to their large houses of up to 2 m in diameter [45]. Giant
larvaceans are distributed from the base of the epipelagic throughout the mesopelagic
zone, with peak abundance at ~200 m depth [50]. Giant larvaceans can feed on particles of
10–600 μm [35], they clear large water volumes, and thus they concentrate considerable
amounts of carbon. In situ experiments document average filtration rates of 1000 l/individual/
day (maximum 1830 l/ind/d), representing the highest filtration rates for any zooplankton [50].
Giant larvaceans in the California Current Ecosystem have the potential at times to clear the entire
200 m depth layer (between 100 and 300 m depth) in <2 weeks, while on average it is grazed
986 Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10
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within 500 days [50]. Further, Robison et al. [51] found that the carbon export of giant larvacean
houses was high, with 7.6 gC/m2/y off California, which matched the missing carbon demand of
the benthic community [52]. Hence, discarded larvacean houses can nourish deep-sea biota and
help export carbon from surface waters, although its magnitude remains highly uncertain
(Figure 2). So far, most of our knowledge about giant mesopelagic larvaceans is based on the
California Current Ecosystem, but large larvaceans and deep-dwelling giant larvacean species
are widespread [53].

Larvaceans in the Anthropocene
Multiple lines of evidence suggest that larvaceans are likely to be favoured with climate change,
with profound repercussions for trophic transfer and carbon cycling.

‘Larvacean shunt’ in a warmer ocean
Climate change is projected to cause a 4–11% decrease in global marine net primary production by
2100 (relative to 2006–2015), in a low- and high-emission future, although there could be much
greater declines in some areas [43,54]. Concomitant with this decline in primary production, the
abundance of small phytoplankton cells is expected to increase relative to larger phytoplankton
cells because of increased stratification and nutrient limitations [55–58]. Similar trends of smaller pri-
mary producers during warmer conditions were observed from paleo data over the past 65 million
years [58,59], a response further supported by experiments [57,58] and field observations [60].
Globally, however, declines in phytoplankton biomass could be offset by a projected increase in
the contribution from faster-growing picoplankton such as Prochlorococcus and Synechococcus
[55,61], which could benefit the larvacean shunt.

Larvaceans can consume prey <1 μm – including Prochlorococcus [31], the most widespread
picoplankton genus –whereas other filter-feeders such as salps cannot [62]. Therefore, under cli-
mate change, the ‘salp shunt’ could be less efficient than the ‘larvacean shunt’ in warm-water
areas where Prochlorococcus is expected to dominate the picoplankton biomass [61]. A
model resolving nine zooplankton groups, including larvaceans, showed that a shift towards
smaller primary producers led to only a slight increase in food-web length and a potential compet-
itive advantage for larvaceans [39]. Hence, larvaceans could moderate the impacts of smaller
phytoplankton on the trophic position of fish by stabilizing food chain length [39].

Carbon export in a warmer ocean
The common paradigm is that climate change with increasing temperatures, enhanced stratifica-
tion, and nutrient limitation will shift primary production towards smaller phytoplankton [55,58,61]
which will reduce the carbon export and thereby the biological carbon pump [43]. However,
Figure 2. Major ecosystem contributions of larvaceans (A) now and (B) in the Anthropocene. (A) Present role of
larvaceans. Marine snow primarily arises from larvacean houses, phytoplankton aggregates, and faecal pellets that are
impacted by physical (compression, sinking) and biological (decomposition, fragmentation, recycling) processes. Marine
snow sinking below 200 m is likely to be sequestered to the deep sea. Giant larvaceans in the mesopelagic can further
repackage marine snow into large, fast-sinking particles, providing carbon that feeds deep-sea communities. Diel vertical
migration (DVM) by mesopelagic fish that feed upon larvaceans in surface waters at night [7] further increases indirect and
direct carbon flux. In the future: (B) climate change stressors (warming, higher CO2, lower pH) with subsequent decreased
nutrients (increased stratification) are expected to favour picoplankton and the microbial loop [58], changing food-web
interactions. As a consequence, larvaceans could profit due to their competitive advantage in directly utilising small prey and
their positive population responses to warming and low pH [100]. However, expected reduced predation from calanoid
copepods and pelagic fish due to longer food-webs and increased fishing-mortality could enhance larvacean densities. This
translates to higher marine snow production, increased carbon export/sequestration, and provides food for mesopelagic
organisms. Larvaceans could also transport microplastic to the deep sea [35], but microplastic changes buoyancy and could
decrease sinking speed and carbon export. Increase: red up arrow; decrease: blue down arrow. Schematic not to scale.
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larvaceans might complicate this picture. Field data have documented that picoplankton is
exported [63,64] and that despite a shift towards smaller phytoplankton, carbon export at
depth can remain unchanged [64]. Such sustained export was hypothesised to be a result of a
grazer community that shifted towards gelatinous plankton [64]. A recent climate model compar-
ison highlighted that models disagree whether or not there will be a net particulate organic carbon
(POC) export by 2100 [65]. We also challenge the unconditional acceptance of the reduced ex-
port paradigm, as larvaceans might provide a feedback loop to counteract negative climate
change impacts on food-web structure, leading to sustained fish production and carbon seques-
tration; this deserves further investigation. While surface POC export is important, carbon se-
questration is also governed by processes occurring in the mesopelagic [42] where 70–85% of
the POC flux is recycled [66]. Increased prevalence of larvaceans in both surface and deeper
layers due to climate change could offset projected changes in the biological pump. The addition
of larvaceans in ecosystem and biogeochemical models is needed to help solve this question.

Key research is needed to quantify the role of larvaceans
Filling basic knowledge gaps combining traditional and new technology
One reason why larvaceans remain neglected is that estimating their abundance is difficult and
often biased with the use of large-meshed nets (Box 2). Net samples also integrate over long dis-
tances, averaging over a patchy environment, and often destroy fragile specimens beyond recog-
nition, especially deep-living ones. Advances in in situ imaging systems [67] now allow for larger
water volumes to be analysed that better represent the entire zooplankton community, including
fragile larvaceans and their houses, and record their spatial heterogeneity. Including traditional net
samples in in situ imaging surveys will further allow for species identification [68] and molecular
analyses [69] to confirm species identifications of damaged animals or describe species that are
new to science [68]. With the advent of innovative field-based tools – including next-generation se-
quencing [69], new in situ imaging [67], and underwater robots with video and laser-based
analyses systems [29] – we are entering a new era of underwater sampling and understanding
[70] for larvaceans.

Another reason for the underrepresentation of larvaceans is the belief that they are only warm-water
taxa; however, they can be important components in both subpolar and polar waters [71–73] as well
as in oligotrophic and eutrophic regions [37,41,74]. Notably, high-latitude species are large-bodied
but can still consume small particles [30]. Their seasonal occurrence and often high abundance at
ice-edge blooms and in upwelling areas supported by high primary production demonstrate that
larvaceans can also consume some of the same particle sizes typically exploited by crustacean zoo-
plankton [34,71,72]. This is suggested to lead to direct competition, especially as larvaceans have
been shown to attain much higher community biomasses than copepods during periods [71,72]. A
better consideration of larvaceans in highly productive polar waters is overdue.

Finally, field studies are currently biased towards abundance measurements. But larvaceans
grow so quickly that even at relatively modest abundances they can make a substantial contribu-
tion to secondary production [37,41] and carbon export [75]. Researchers need to move beyond
a focus on abundance data alone to consider secondary production as more important than
simple standing stock estimates, and explicitly consider their house production as well. Note:
Secondary production can also be approximated from species abundances, sizes, and environ-
mental data such as temperature and chlorophyll [41,74].

Evaluating the importance of larvaceans in supporting mid-water fish biomass
It is being debated how the large populations of mesopelagic fish are sustained in the open ocean
[76]. One hypothesis is that they are supported by a higher-than-expected trophic transfer
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efficiency [76]. If correct, one key mechanism could be the ‘larvacean shunt’ and direct feeding of
mesopelagic fish on larvaceans and their discarded houses containing a large variety of food
items from viruses to ciliates. Measurements are needed of the amount of carbon that is trans-
ferred via the ‘larvacean shunt’ through the direct feeding by fish on both larvaceans and their
discarded carbon-rich houses. This will require growth experiments with different larvacean spe-
cies (e.g., [5,37,77]) and estimation of their house production (e.g., [26,27]). Additionally, a more
realistic representation of carbon content of discarded houses in different ecosystems is needed,
which requires in situ collection of large-sized particles: for example, via remotely operated vehi-
cles for offshore waters [29] or scuba diving in coastal areas [46]. Mesopelagic fish have been
shown to select for larvaceans during night foraging in surface waters [7,8,16–18]. Though diffi-
cult with mesopelagic fish, we need controlled feeding experiments in the laboratory to establish
functional response curves and digestion times in order to assess the importance of larvaceans
as food for fish. As larvaceans are not food-limited in oligotrophic oceans (Box 2) [74], and the
production of larvaceans can exceed copepod production in oligotrophic waters by several
times [37,41], larvaceans could be an important but so far unrecognised food source to sustain
(especially) mesopelagic fish and tuna. Focused research on the ‘larvacean shunt’ could illumi-
nate how mesopelagic fish, squid, and tuna stocks in oligotrophic waters are supported.

Quantifying the role of larvaceans in the biological pump
A key gap in our understanding of the carbon cycle is that estimated particle export from the upper
ocean is only 30–50% of that needed to sustain midwater animals [78], suggesting that our current
models miss critical carbon pathways [42]. Larvaceans could help to resolve this disparity. Currently,
larvaceans are ignored in the biological pump; of the 21 primary biological feedback loops in the
Earth’s climate [79], three feedback cycles involve phytoplankton and none involves zooplankton.

Currently, larvacean houses are underestimated by conventional sediment traps [75], hampering
our understanding about the contribution of larvaceans to the biological pump. Improved mea-
surements of larvacean house production and sinking rates are needed (e.g., see [26,44,47]).
Combining remotely operated vehicles and in situ experiments can be used to estimate house
production, sinking, and feeding rates on different particle size ranges especially of large-sized
larvacean species, as documented by experiments in the California Current Ecosystem
[29,35,50]. Despite the growing evidence of the importance of discarded larvacean houses for di-
rect carbon export [50,51], their magnitude and spatial variation remain uncertain. Furthermore,
an open question is whether small or large larvacean species contribute more to carbon export.
Due to the extraordinary production of larvaceans (Box 1), changes in the abundance and com-
munity composition of phytoplankton can quickly translate into high larvacean abundances (see
Figure II in Box 2), with consequent high marine snow formation that further fuels the biological
pump [46]. Larvaceans have diverse roles in both active and passive vertical carbon transport,
and their climate response is a key uncertainty in the biological pump [65]. Filling this knowledge
gap is important, as even small changes in the efficiency of the biological pump can have large
climate impacts [80,81].

Incorporating larvaceans in models
Despite the extraordinary growth and production of larvaceans (Box 2), and their active and pas-
sive transport of carbon in the biological pump (Box 1), they are rarely included in biogeochemical
or ecosystem models. There are several ways that the inclusion of larvaceans in such models
could be increased. First, it is important to convince modellers that larvaceans are a key compo-
nent of the carbon cycle, and that there is sufficient information available to model them. In recent
years, there has been an increase in functional complexity for phytoplankton in models (e.g.,
[55,61]) and in zooplankton [39,82]. Many models that already include gelatinous zooplankton
990 Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10

CellPress logo


Outstanding questions
How do larvacean abundance and
species composition respond to
climate change, and how does this
impact biological carbon pump
efficiency and harvest consequences
of epipelagic and mesopelagic fish in
the future?

How does the abundance of
larvaceans and their houses change
across environmental gradients? Can
we standardise investigation efforts
using small-meshed nets and combine
this with in situ imaging? What are the
distribution patterns of mesopelagic
larvaceans globally, and do oxygen
minimum zones impact their depth
distribution?

To what extent do larvaceans provide
a feedback loop to counteract
negative climate change impacts on
food-web structure to sustain fish pro-
duction and carbon sequestration?
What are the feeding rates and diges-
tion times of larvaceans for different
fish species?

What are the key physiological rates of
mesopelagic larvaceans?
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focus on cnidarian jellyfish [83], but only a few include larvaceans [82,84], which currently miss
key processes such as house formation. Second, the entire size range of larvaceans – including
the giant mesopelagic species – should be included in models (Box 2). For example, Luo et al. [82]
included only larvaceans <3 mm in length, missing larger surface-dwelling and deep-water
species. Third, model validation against empirical abundance and biomass data from nets
should be undertaken with care. For example, net data are often sourced from the
COPEPOD databasei, which is often standardised to a mesh size of 330 μm [82] and could
thus miss most larvaceans (Box 2). This valuable dataset could be better standardised using
statistical models (e.g., [84]), or researchers could use data sources that more appropriately re-
port larvacean abundances (e.g., [41,72,85]). Fourth, many models use a single common pa-
rameter value for all zooplankton processes such as grazing or temperature dependence [81],
rather than different ones for different zooplankton groups. Although this is sometimes neces-
sary because of the lack of information, there are many physiological data available for
larvaceans (e.g., [2,5,26,27,30,31,35,37,38,44,51,75,77,86]). Fifth, as the fastest-growing multi-
cellular animals (see Figure II in Box 2), assessing modelled against observed growth rates for
larvaceans is critical to ensure that model ingestion and assimilation parameters are reasonable
(see [84] for an example). Lastly, manymodels assume a common sinking rate for plankton detritus
(for phytoplankton, zooplankton carcasses, zooplankton faeces, larvaceans), despite observations
that the sinking rate of gelatinous detritus is much faster than that of other detritus [45,47,48,51]. In
short, future models have considerable scope for better modelling the role of larvaceans.

Concluding remarks
This review highlights the understudied but important role of larvaceans in supporting fisheries
and regulating the biological pump. Novel avenues are suggested to incorporate this fascinating
group into future research initiatives and modelling exercises. Larvaceans are an abundant
mesozooplankton group in the ocean, have extraordinary growth rates, short-cut the food-web
to feed higher trophic levels, and sequester carbon. Technological innovations hold great promise
for elucidating the role of larvaceans in the oceans (see Outstanding questions). To understand
how climate change impacts marine ecosystems, it is now time for larvaceans and other gelati-
nous zooplankton to be widely recognised as key members of the marine ecosystem, so that
we can assess their potential to counteract the negative impacts of climate change and thus sus-
tain ocean productivity and carbon sequestration in the future.
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