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Learning Generative Models Using Denoising
Density Estimators

Siavash A. Bigdeli , Geng Lin , L. Andrea Dunbar, Member, IEEE, Tiziano Portenier,
and Matthias Zwicker , Associate Member, IEEE

Abstract— Learning probabilistic models that can estimate
the density of a given set of samples, and generate samples
from that density, is one of the fundamental challenges in
unsupervised machine learning. We introduce a new generative
model based on denoising density estimators (DDEs), which are
scalar functions parametrized by neural networks, that are effi-
ciently trained to represent kernel density estimators of the data.
Leveraging DDEs, our main contribution is a novel technique
to obtain generative models by minimizing the Kullback–Leibler
(KL)-divergence directly. We prove that our algorithm for obtain-
ing generative models is guaranteed to converge consistently to
the correct solution. Our approach does not require specific
network architecture as in normalizing flows (NFs), nor use
ordinary differential equation (ODE) solvers as in continuous
NFs. Experimental results demonstrate substantial improvement
in density estimation and competitive performance in generative
model training.

Index Terms— Denoising autoencoders (DAEs), density estima-
tion, energy models, generative modeling, score-matching.

I. INTRODUCTION

LEARNING generative probabilistic models from raw data
are one of the fundamental problems in unsupervised

machine learning. Such models can generate new content,
which has various applications such as image editing [1],
anomaly detection [2], and localization [3]. These models
enable sampling from the probability density represented by
the input data or also perform density estimation and inference
of latent variables. The recent use of deep neural networks
has led to significant advances in this area. For example,
generative adversarial networks (GANs) [4] can be trained
to sample very high-dimensional densities, without explic-
itly providing density estimation or inference. Inference in
Boltzmann machines [5] is tractable only under approxima-
tions [6]. Variational autoencoders [7] provide functionality
for both (approximate) inference and sampling. NF [8] per-
forms all three operations (sampling, density estimation, and
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inference) through highly constrained network architectures.
Denoising diffusion models (DDMs) [9] overcome many of
the challenges of previous approaches, but often require many
iterations for sampling to converge.

In this article, we introduce a novel type of generative model
based on what we call denoising density estimators (DDEs),
which supports efficient sampling and density estimation.
Our approach to constructing a sampler is straightforward:
assuming we have a density estimator that can be efficiently
trained and evaluated, we learn a sampler by forcing its
generated density to be the same as the input data den-
sity via minimizing their Kullback–Leibler (KL) divergence.
In particular, we use the reverse KL divergence, which has
a mode-seeking behavior and is better at avoiding saddle
points when the two distributions have a small overlap. In our
approach, the density estimator is derived from the theory
of denoising autoencoders (DAEs), hence our term DDEs.
Recent nonparametric models that use neural networks [10],
[11] can still perform on the order of 10-D, while our density
estimation model can perform well on 3000-D image datasets.
Compared to normalizing flows (NFs), a key advantage of
our theory is that it does not require any specific network
architecture, except differentiability, and we do not need to
solve ordinary differential equations (ODEs) like in continuous
NFs. In summary, our main contribution is a novel approach
to obtaining a generative model by explicitly estimating the
energy (unnormalized density) of the generated and true data
distributions and minimizing the statistical divergence of these
densities. We also provide extensive experiments to compare
our approach with other techniques for generative modeling
and density estimation.1 We discuss the possibility of scaling
our results to higher resolutions in Section V-H.

II. RELATED WORK

In this section, we discuss prior work on learning generative
modeling and density estimation. Table I summarizes the
differences between our approach to GANs, stein variational
gradient descent, denoising diffusion models, and normalizing
flows.

1Links to online code repositories:
Experiments and results: https://github.com/logchan/dde
DDE example: https://github.com/siavashbigdeli/dde
Generative model example: https://github.com/siavashbigdeli/egm-dde
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TABLE I
COMPARISON OF DIFFERENT DEEP GENERATIVE APPROACHES BASED ON

GANS, SVGD, DDM, NF, AND OUR PROPOSED TECHNIQUE. ADVER-
SARIAL DENSITY ESTIMATION CAN BE ACHIEVED USING THE

APPROACH BY ABBASNEJAD ET AL. [12] USING A SUITABLE
TRAINING OBJECTIVE

A. Maximum Likelihood Estimators

A common approach is to formulate generative models as
mappings between a latent space and the data domain, and
one way to categorize them is to consider the constraints on
this mapping. In NFs [8] and [13], the mapping is invertible
and differentiable, such that the data density can be estimated
using the determinant of its Jacobian, and inference can be
performed via the inverse mapping. NFs can be trained simply
using maximum likelihood estimation (MLE) [14]. The chal-
lenge, however, is to design efficient computational structures
for the required operations [15], [16]. Chen et al. [17] and
Grathwohl et al. [18] derive continuous NFs by parameteriz-
ing the dynamics (the time derivative) of an ODE using a
neural network, but it comes at the cost of solving ODEs
to produce outputs. In contrast, in variational techniques, the
relation between the latent variables and data is probabilistic,
usually expressed as a Gaussian likelihood function. Hence,
computing the marginal likelihood requires integration over
latent space. To make this tractable, it is common to bound
the marginal likelihood using the evidence lower bound [7].
Recently, Li and Malik [19] proposed an approximate form
of MLE, which they call implicit MLE (IMLE), that can
also be performed without requiring invertible mappings.
As a disadvantage, IMLE requires nearest-neighbor queries
in (high-dimensional) data space.

Following restricted Boltzmann machines, Liu et al. [20],
[21], and [22] propose Hebb-inspired energy models of the
neural network features. This allows to perform Markov chain
Monte Carlo (MCMC) sampling of the joint input-label distri-
bution for various machine learning tasks. Our energy model
uses kernel density estimation (KDE) and does not rely on
Hebb intuitions for learning.

B. Denoising Autoencoders

Not all generative models include a latent space, for
example, autoregressive models [23] or DAEs [24]. In partic-
ular, Alain and Bengio [24] and Saremi and Hyv̈arinen [25]
use the well-known relation between DAEs and the score of
the corresponding data distributions [26], [27] to construct
an approximate Markov chain sampling procedure. Similarly,
many techniques [28], [29], [30] use DAEs to learn the gra-
dient of image densities for optimizing maximum a posteriori
problems in image restoration. In our previous work [31], [32],
[33], we used DAEs to build priors based on the gradient of the
log-likelihood for image restoration. In this work, we instead

directly learn the log-likelihood (not its gradients) and use it to
learn a generator model. We build on DAEs, but formulate an
estimator for the unnormalized, scalar density (DDE), rather
than for the score (a vector field). This is crucial to allow us to
train a generator instead of requiring Markov chain sampling,
which has the disadvantages of requiring sequential sampling
and producing correlated samples.

C. Denoising Diffusion and Score-Matching Models

Diffusion models have been the most successful recently
in generating high-quality samples. They start with a noise
sample and form a Markov chain to produce a sample within
the distribution. For this, they build conditional models that
sample new output based on previously generated ones. Based
on score-matching, Song and Ermon [34] formulate a genera-
tive model using Langevin dynamics, which uses an iterative
sampling procedure for sampling that converges asymptoti-
cally. Similarly, Dai et al. [35] use adversarial training to learn
dynamics for generating samples. Most score-based generative
modeling techniques [34], [36], [37], including denoising dif-
fusion models [9], [38], [39], [40], [41], require iterative steps
with scheduling for noise levels in their sampling algorithms,
which produce samples asymptotically as noise level reaches
zero [42]. Even though we use a denoising score-matching
loss, we learn an explicit sampling model that can be used
in single forward passes and does not require an iterative
sampling scheme in the training or the sampling step.

Instead of using a denoising objective, score-matching can
also be achieved by minimizing Stein’s loss for the true and
estimated density gradients. Kingma and LeCun [43] use a
regularized version of the loss to parameterize a product-
of-experts model for images, and Li et al. [44] train deep
density estimators based on exponential family kernels. These
techniques require computation of third-order derivatives,
however, limiting the dimensionality of their models. Song
and Ermon [34] extend this approach by introducing a sliced
score-matching objective that leads to more efficient training.
Li and Turner [45] learn an energy model using Stein’s score-
matching and propose a gradient-free sampling of this energy
using MCMC. Because of the complexity of computing the
Jacobian of the energy model in the original score-matching
objective, these methods would often fail to scale or produce
visually competitive results [34]. Unlike these techniques,
DDEs are optimized using a denoising objective, hence they
can be optimized without approximations or higher-order
derivatives (with respect to parameters). These properties allow
us to efficiently train an exact generator that scales well with
the data dimensionality.

An alternative approach to using the score in a diffusion
process is the work of Wang et al. [46] that joins a GAN train-
ing with Langevin dynamics using Stein variational gradient
descent (SVGD) to regularize the training by making MCMC
sampling. Similarly, Tao et al. [47] used score-matching to
regularize a GAN model training. Most similar to our work
is the work of Liu and Wang [48] who propose SVGD that
uses the Stein objective to learn gradients for minimizing
divergence between a large set of particles (i.e., samples) and
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a target distribution. Feng et al. [49] realize an amortized
version of the Stein variational gradients and use it to update a
generative model for sampling from a target distribution. These
techniques use kernelized Stein discrepancy [50] to estimate
the gradients (score) of the distribution. The main limiting
factor of these techniques is the parameterization of the Stein
variation gradients estimator that cannot be guaranteed to
follow a conservative vector field. Unfortunately, this could,
and, in practice, will,2 lead to instabilities in the training of
the generator as the gradients do not help find an equilibrium
(inference). Our model guarantees this by forcing the gradients
to be explicit of a scalar field and, therefore, eliminating this
drawback.

D. Energy-Based Models

Other energy-based techniques for generative models
include the work by Kim and Bengio [51], who use directed
graphs to learn densities in latent space and to train their
generator. The approximation in this approach limits their
generalization to complex and higher-dimensional datasets.
Using kernel exponential families, Dai et al. [52] train a
density estimator at the same time as their dual generator.
Similar to other score-matching optimizations, their approach
requires quadratic computations with respect to the input
dimensions at each gradient calculation. Moreover, they only
report generated results on 2-D toy examples. Other energy-
based models include the works of Du and Mordatch [53]
and Nijkamp et al. [54], where they generate samples using
learned energy models. However, they require MCMC sam-
pling of their energy model both during training and inference,
which compromises efficiency. More similar to our work,
Tao et al. [55] used a second parametrization and trained a
generator using their energy model. These techniques require
sample proposals for importance-weighting of their energy
model estimation, which renders them inefficient compared
to our approach. Moreover, we do not need negative proposal
samples to train our DDEs and therefore are not prone to the
quality of such proposals.

E. Generative Adversarial Models

GANs [4] are currently one of the most widely studied types
of generative probabilistic models for very high-dimensional
data. GANs are often difficult to train, however, and they
can suffer from mode-collapse, sparking renewed interest in
alternatives.

Similar to GANs, we use multiple neural networks to
train a generator. However, our strategy is not based on a
zero-sum game. In the original GANs [4], the generator is
trained to minimize the Jensen–Shannon divergence between
generated and real data distributions. Our model is optimized
to minimize the KL-divergence instead, which has been shown
to achieve better likelihood scores compared to GANs [56].
Moreover, we use the reverse KL-divergence loss in our
training, which compared to forward KL-divergence, avoids

2We have failed to train an MNIST generative model based on learning
only the gradients (scores).

saddle points when the two distributions have a small overlap.
This is because minimizing the reverse KL-divergence can be
formulated as

arg min
q̃

DKL
(
q̃∥ p̃

)
= arg max

q̃
Ex∼q̃

[
log p̃(x)

]
+H

(
q̃(x)

)
which includes a term that attempts to maximize the entropy
H of the generated distribution q̃ . Wasserstein-GANs address
the same issue by using the Wasserstein distance between the
two distributions to formulate their loss. These models, how-
ever, require the discriminator network to guarantee Lipschitz
continuity, which is imposed either by weight-clipping [57] or
gradient penalty methods [58]. Our DDEs explicitly impose
Gaussian smoothness on the data distribution, which guaran-
tees that the density is nonzero everywhere and, therefore,
stabilizes the training [59]. Additionally, the DDEs are trained
to exactly constrain their gradients with respect to their inputs
(5), without requiring additional techniques to control gradient
magnitudes or weight clipping. Another important difference is
that GANs’ objectives are known to form a nonconservative
vector field [60], [61], [62], which breaks the convergence
guarantees when applying gradient-based optimization tech-
niques. DDEs are models of scalar fields, which guarantee by
construction that their gradients are conservative vector fields.

III. BACKGROUND ON ENERGY ESTIMATION USING
SCORE MATCHING

We start by first describing DAEs and second showing how
we estimate a density using a variant of DAEs.

A. Denoising Autoencoders

Score-matching energy models were introduced by Kingma
and LeCun [43], where they used Stein’s objective. The noise-
estimation (or denoising) objective was later shown to be
equivalent to the score-matching objective by Vincent [26]
and used as DAEs by Alain and Bengio [24]. DAEs allow
us to obtain the gradient of the density, smoothed by a
Gaussian kernel, which is equivalent to KDE [63]. Originally,
the optimal DAE r :Rn

→ Rn [24], [26] is defined as the
function minimizing the following denoising loss:

LDAE
(
r; p, ση

)
= Ex,η∼N(0,σ 2

η )

[
∥r(x + η) − x∥

2] (1)

where the data x is distributed according to a density
p over Rn , and η ∼ N (0, σ 2

η ) represents n-dimensional,
isotropic additive Gaussian noise with variance σ 2

η . It has
been shown [27], [64], and [32] that the optimal DAE r∗(x)

minimizing LDAE can be expressed as follows, which is also
known as Tweedie’s formula:

r∗(x) = x + σ 2
η ∇x log p̃(x) (2)

where ∇x is the gradient with respect to the input x , p̃(s) =

[p ∗ k](x) denotes the convolution result of the data and noise
distributions p(x), and k = N (0, σ 2

η ). Inspired by this result,
we reformulate the DAE-loss as a noise estimation loss

LNEs
(

f ; p, ση

)
= Ex,η∼N(0,σ 2

η )

[
∥ f (x + η) + η/σ 2

η ∥
2] (3)
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where f :Rn
→ Rn is a vector field that estimates the noise

vector −η/σ 2
η . This is proportional to the objective in 1, where

r(x) = σ 2 f (x)+x . Similar to [26] and [24], we formulate the
following proposition and provide the proof in the Appendix.

Proposition 1: There is a unique minimizer f ∗(x) =

arg min f LNEs( f ; p, ση) that satisfies

f ∗(x) = ∇x log p̃(x) = ∇x log
[

p ∗ k
]
(x). (4)

That is, the optimal estimator corresponds to the gradient of
the logarithm of the Gaussian smoothed density p̃(x), that is,
the score of the density.

B. Denoising Density Estimators

A key observation is that the desired vector-field f ∗ is
the gradient of a scalar function and is conservative. Hence,
we can write the noise estimation loss in terms of a scalar
function s : Rn

→ R instead of the vector field f , which we
call the denoising density estimation loss

LDDE
(
s; p, ση

)
= Ex,η∼N(0,σ 2

η )

[∥∥∇x s(x + η) + η/σ 2
η

∥∥2
]
.

(5)

A similar formulation has recently been proposed by Saremi
and Hyv̈arinen [25]. Our terminology is motivated by the
following corollary.

Corollary 1: The minimizer s∗(x) = arg mins LDDE(s; p)

satisfies

s∗(x) = log p̃(x) + C (6)

with some constant C ∈ R.
Proof: From Proposition 1 and the definition of

LDDE(s; p) we know that ∇x s∗(x) = ∇x log p̃(x), which leads
immediately to the corollary. □

Following Hyv̈arinen and Dayan [65] and Raphan and
Simoncelli [27], it is straightforward to show that the noise
estimation objective will lead to a consistent DDE estimator.

In summary, we see that modifying the DAEs loss (1)
into a noise estimation loss based on the gradients of a
scalar function (5) allows us to derive a density estimator
(Corollary 1), which we call the DDE.

Our parametrization of DDEs is different from prior works
that use score-matching. We approximate the DDE using
a neural network s(x; θ) trained using gradient-based opti-
mizers. In other words, we look for a neural network sw

parameterized with weights w, such that ∇wi ∇x sw(x) exists
for all input x and network parameters wi . We omit the
subscript w in future references. This requires us to use neural
network architectures (or other parameterization) that are twice
differentiable everywhere, for example, with using SoftPlus
activations. For illustration, Fig. 1 shows 2-D distribution
examples, which we approximate using a DDE implemented
as a multilayer perceptron (MLP).

We provide quantitative experiments for DDEs in
Section V-F, where we make comparisons for estimating
log-likelihoods on real datasets.

IV. LEARNING GENERATIVE MODELS USING DDES

By leveraging DDEs, our key contribution is to formulate
a novel training algorithm to obtain generators for given
densities, which can be represented by a set of samples or
as a given continuous function. In either case, we denote the
smoothed data density p̃, which is obtained by training a DDE
in case the input is given as a set of samples as described in
Section III. We express our samplers using mappings x =

g(z), where x ∈ Rn , and z ∈ Rm (usually n > m) is a latent
variable, which typically has a standard normal distribution.
In contrast to NFs, g(z) does not need to be invertible. Let
us denote the distribution of x induced by the generator as
q , that is, q ∼ g(z), and also its Gaussian smoothed version
q̃ = q ∗ k.

A. Optimizing a Generative Model Using Gradients

We obtain the generator by minimizing the KL divergence
DKL(q̃|| p̃) between the density induced by the generator q̃ and
the data density p̃. Our algorithm is based on the following
observation.

Proposition 2: Given a scalar function 1 : Rn
→ R that

satisfies the following conditions.

⟨q̃, log q̃ − log p̃⟩ > ⟨q̃ + 1, log
(
q̃ + 1

)
− log p̃⟩ (7)

⟨1,1⟩ = 0 (8)

12 < ϵ, (pointwise exponentiation) (9)

then DKL(q̃|| p̃) > DKL(q̃ + 1|| p̃) for small enough ϵ.
Proof: We will use the first-order approximation log(q̃ +

1) = log q̃ + 1/q̃ + O(12), where the division is pointwise.
Using < ·, · > to denote the inner product, we can write

DKL
(
q̃ + 1|| p̃

)
=

〈
q̃ + 1, log

(
q̃ + 1

)
− log p̃

〉
=

〈
q̃ + 1, log q̃ + 1/q̃ + O

(
12)

− log p̃
〉

=
〈
q̃, log q̃ − log p̃

〉
+

〈
1, log q̃ − log p̃

〉
+

〈
q̃, 1/q̃

〉
+

〈
1, 1/q̃

〉
+ O

(
12). (10)

This means

DKL
(
q̃ + 1|| p̃

)
− DKL

(
q̃|| p̃

)
=

〈
1, log q̃ − log p̃

〉
+

〈
q̃, 1/q̃

〉
+

〈
1, 1/q̃

〉
+O

(
12) < 0

(11)

because the first term on the right-hand side is negative [first
assumption in (7)], the second term is zero [second assumption
in (8)], and the third and fourth terms are quadratic in 1 and
can be ignored for 1 < ϵ when ϵ is small enough [third
assumption in (9)]. □

The gradients of our KL-divergence objective satisfy the
assumptions in the proposition with a small enough step size.
Therefore, if we take steps using these gradients, we reduce
the KL-divergence between the generated and real distributions
q̃, p̃. Because KL-divergence is bounded from below by zero,
then by iterating over these gradient steps our density q̃ will
converge to the desired density p̃ with small enough steps.
This requires that at any step of computing the gradient
densities q̃ and p̃ to be optimal with respect to the data. p̃
can be estimated once and used during the optimization, but q̃
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Algorithm 1 Training Steps for the Generator. The Input to
the Algorithm Is a Pretrained Optimal DDE on Input Data
log p̃(x) and a Learning Rate δ

1: Initialize generator parameters φ

2: Initialize DDE s q̃
= arg mins LDDE(s; q, ση) with q ∼

g(z; φ), z ∼ N (0, 1)

3: while not converged do
4: φ = φ − δ∇φEx=g(z;φ)+η[s q̃(x) − log p̃(x)], with z ∼

N (0, 1), η ∼ N (0, σ 2
η )

5: // q ∼ g(z; φ) now indicates the updated density using
the updated φ

6: s q̃
= arg mins LDDE(s; q, ση) // In practice, we only take

few optimization steps
7: // s q̃ is now the density (up to a constant) of g(z; φ)+η

8: end while

changes after taking each gradient step. Therefore, we have to
re-estimate q̃ after the gradient step by optimizing its objective,
which we do using few steps in practice.

Proposition 2 shows that one can minimize KL diver-
gence by taking a step 1 with given properties to change
the generated distribution (that is the exact KL and not an
upper bound). Note that the step 1 is with respect to the
generated distribution and not the generator model parameters.
Algorithm 1 shows our approach to finding the gradient steps
to minimize the generator model and satisfy the conditions of
the proposition for minimizing the divergence.

Based on the above observation, Algorithm 1 mini-
mizes DKL(q̃|| p̃) by iteratively computing updated densities
q̃ + 1 that satisfy the conditions from Proposition 2, hence
DKL(q̃|| p̃) > DKL(q̃ + 1|| p̃). This is guaranteed to converge
to a global minimum because DKL(q̃|| p̃) is convex in q̃.

At the beginning of each iteration in Algorithm 1 (line 3),
by definition q is the density obtained by sampling our
generator x = g(z; φ), z ∼ N (0, 1) (n-dimensional standard
normal distribution), and the generator is a neural network
with parameters φ. In addition, q̃ = q ∗ k is defined as
the density obtained by sampling x = g(z; φ) + η, z ∼

N (0, 1), η ∼ N (0, σ 2
η ). Finally, the DDE s q̃ correctly esti-

mates q̃, that is, log q̃(x) = s q̃(x) + C . In each iteration,
we update the generator such that its density is changed by
a small 1 that satisfies the conditions from Proposition 2.
We achieve this by computing a gradient descent step of
Ex=g(z;φ)+η[s q̃(x)− log p̃(x)]+C with respect to the generator
parameters φ (line 4). A small enough learning rate guarantees
that condition one (7) in Proposition 2 is satisfied. The second
condition (8) is satisfied because we update the distribution
by updating its generator, and the third condition (9) is also
satisfied under a small enough learning rate (and assuming the
generator network is Lipschitz continuous). After updating the
generator, we update the DDE to correctly estimate the new
density produced by the updated generator (line 6). Note that,
in practice, we perform a fixed number of iterations (5)-ten
steps similar to GANs) to optimize the DDE, which did not
lead to any instabilities.

Note that it is crucial in the first step in the iteration in
Algorithm 1 that we sample using g(z; φ)+η and not g(z; φ).

This allows us, in the second step, to use the updated g(z; φ)

to train a DDE s q̃ that exactly (up to a constant) matches the
density generated by g(z; φ)+η. Even though in this approach,
we only minimize the KL divergence with the “noisy” input
density p̃, the sampler g(z; φ) still converges to a sampler of
the underlying density p in theory (exact sampling).

B. Normalizing Constant C in the DDE Estimator

The constant C depends on the parameters of DDE because
it indicates the drift of our estimate from the partition func-
tion. However, this constant is independent of the generator
parameters as it can vary for a fixed generator parametrization,
without influencing the DDE loss. The key result is that this
constant can be ignored during the training of the generator
because it does not influence the gradients of the loss wrt
the generator parameters. Therefore, the estimated q̃ always
integrates to one after any generator update in Algorithm 1.

C. Consistency of the Distribution Estimation

DDE s is a consistent estimator (Section III-B), and we
assume that p̃ and q̃ remain optimal during the training
of the generator (Section IV-A). Following the law of large
numbers, as the number of samples increases, the expected
KL divergence loss converges asymptotically to the true
KL divergence between the two distributions. Therefore, the
generated distribution will converge to the true distribution.
Assuming the existence of a unique solution for the generator,
the generator has weak consistency. The generator will have
strong consistency assuming the compactness of its parameter
space. We refer the reader to Wald [66] for a formal proof of
the consistency with assumptions.

D. Exact Sampling

Our objective involves reducing the KL divergence between
the Gaussian smoothed generated density q̃ and the data
density p̃. This also implies that the density q obtained
from sampling the generator g(z; φ) is identical with the
data density p, without Gaussian smoothing, which can be
expressed as the following corollary:

Corollary 2: Let p̃ and q̃ be related to densities p and q ,
respectively, via convolutions using a Gaussian k, that is, p̃ =

p ∗ k, q̃ = q ∗ k. Then the smoothed densities p̃ and q̃ are
the same if and only if the data density p and the generated
density q are the same.

This follows immediately from the convolution theorem and
the fact that the Fourier transform of Gaussian functions is
nonzero everywhere, that is, Gaussian blur is invertible.

E. Gradient Computation Complexity

The second-order derivatives needed to solve the DDE
objective in (5) are only wrt the DDE input x and not its
parameters. This is unlike approaches where one needs the
Hessian wrt the parameters (e.g., in some normalizing flow
techniques). A similar operation is used for the “gradient
penalty” in the WGAN-GP model where the model is regu-
larized by the norm of its gradients wrt. the input. In practice,
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Fig. 1. Density estimation in 2-D, showing that we can accurately capture these densities with few visual artifacts. The rightmost column shows samples
generated using our generative model training.

this costs no more than O(2N ) and is negligible in the training
of the DDEs. Additionally, the second-order derivatives do not
take part in the gradient step in Algorithm 1 (line 4) where
we take gradients of DDE output and not their loss objective.

V. EXPERIMENTS

We include the results of our generative sampling approach
and compare quantitative results with state-of-the-art models.
We also show the competitiveness of our DDE density esti-
mation approach and provide evaluation on real datasets.

A. Two-Dimensional Dataset Comparisons

Similar to Grathwohl et al. [18], we perform experiments for
2-D density estimation and visualization over three datasets.
Additionally, we learn generative models. For our DDE net-
works, we used MLPs with residual connections. All networks
have 25 layers, each with 32 channels and Softplus activation.
For training, we use 2048 samples per iteration to estimate the
expected values. Fig. 1 shows the comparison of our method
with Glow [16], BNAF [67], and FFJORD [18]. Our DDEs
can estimate the density accurately and capture the underlying
complexities of each density. Due to inherent smoothing as
in KDE, our method induces a small blur to the density
compared to BNAF. To demonstrate this effect, we show DDEs
trained with both small and large noise standard deviations
ση = 0.05 and ση = 0.2. However, our DDE can estimate the
density coherently through the data domain, whereas BNAF
produces noisy approximation across the data (these artifacts
are visible in close-up zoom of two spirals data in Fig. 1).

Generator training and sampling are demonstrated in Fig. 1
on the right. The sharp edges of the checkerboard samples
imply that, due to the invertibility of a small Gaussian blur, the
generator learns to sample from the sharp target density even
though the DDEs estimate noisy densities. While the generator
update in theory requires DDE networks to be optimal at
each gradient step, we take a limited number of ten DDE
gradient descent steps for each generator update to accelerate
convergence.

B. Stability of Convergence

Alternating optimization with a few steps of training for
DDE in the Algorithm 1 might lead to some instabilities.

Fig. 2. Convergence of the generator model with respect to varying DDE
optimization steps for generating a 1-D data distribution (a symmetric mixture
of eight Gaussian). We show the KL-divergence of the generator network
parameters during the training steps for each model trained with a different
number of inner DDE optimization steps (data are smoothed for clarity using
a moving average filter with a width of five iterations).

We have performed an ablation test to analyze the best tradeoff
for the number of inner iterations of DDE. We have synthe-
sized a 1-D data distribution using a mixture of eight Gaussian
densities (the common eight Gaussians 2-D dataset projected
to 1-D). And we tested the convergence of Algorithm 1
by varying the number of inner optimizations for the DDE
optimization.

Fig. 2 bottom shows the results of these optimizations where
we tested the algorithm for 1, 2, 5, 10, and 20 inner iterations.
We show the KL-divergence as a means of understanding the
convergence and possible instabilities during training. Note
that time scales proportionally with respect to the number of
inner iterations of DDE training. All models reduce the KL-
divergence. The cases with 1 and 2 inner iterations are fast
but have instabilities in the earlier iterations. The cases with
10 and 20 inner iterations take proportionally longer time to
estimate the correct density. We can see that using five inner
iterations leads to a good tradeoff in terms of convergence
stability, quality, and time.

C. MNIST Dataset

Fig. 3 illustrates our generative training on MNIST [68]
using Algorithm 1. We use a dense block architecture with
fully connected layers here and refer to the Appendix for
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Fig. 3. Generated MNIST (a), from the dataset (b), and latent space interpolation (c).

Fig. 4. Generated results on 32 × 32 images from the CelebA dataset [70].
(a) Generated samples. (b) Real samples.

the network and training details, including additional results
for Fashion-MNIST [69]. Fig. 3 shows qualitatively that our
generator can replicate the underlying distributions. In addi-
tion, latent-space interpolation demonstrates that the network
learns an intuitive and interpretable mapping from normally
distributed latent variables to samples of the data distribution.

D. CelebA Dataset

Fig. 4 shows additional experiments on the CelebA
dataset [70]. The images in the dataset have 32 × 32 × 3
dimensions and we normalize the pixel values to be in the
range [−0.5, 0.5]. To show the flexibility of our algorithm
with respect to neural network architectures, here we use

a style-based generator [71] architecture for our generator
network. Refer to the Appendix for network and training
details. Fig. 4 shows that our approach can produce natural-
looking images, and the model has learned to replicate the
global distribution with a diverse set of images and different
characteristics.

E. Quantitative Evaluation With Stacked-MNIST

We perform a quantitative evaluation of our approach based
on the synthetic Stacked-MNIST [72] dataset, which was
designed to analyze mode-collapse in generative models. The
dataset is constructed by stacking three randomly chosen digit
images from MNIST to generate samples of size 28 × 28 × 3.
This augments the number of classes to 103, which are
considered distinct modes of the dataset. Mode-collapse can
be quantified by counting the number of nodes generated
by a model. Additionally, the quality of the distribution can
be measured by computing the KL-divergence between the
generated class distribution and the original dataset, which has
a uniform distribution in terms of class labels. Similar to prior
work [72], we use an external classifier to measure the number
of classes that each generator produces by separately inferring
the class of each channel of the images.

Fig. 5 reports the quantitative results for this experiment
by comparing our method with well-tuned GAN models.
DCGAN [73] implements a basic GAN training strategy
using a stable architecture. WGAN uses the Wasserstein
distance [57], and WGAN+GP includes a gradient penalty
to regularize the discriminator [58]. For a fair comparison,
all methods use the DCGAN network architecture. Since our
method requires two DDE networks, we have used fewer
parameters in the DDEs so that in total we preserve the same
number of parameters and capacity as the other methods.
For each method, we generate batches of 512 samples per
training iteration and count the number of classes within each
batch (i.e., the maximum number of different labels in each
batch is 512). We also plot the reverse KL-divergence to
the uniform ground-truth class distribution. Using the two
measurements we can see how well each method replicates
the distribution in terms of diversity and balance. Without
fine-tuning and changing the capacity of our network models,
our approach is comparable to modern GANs such as WGAN
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Fig. 5. Mode-collapse experiment results on Stacked-MNIST as a function of
training iterations (for discriminator or DDE). (a) Number of generated modes
per batch of size 512. (b) Reverse KL-divergence between the generated and
the data distribution in the logarithmic domain.

and WGAN+GP, which outperform DCGAN by a large mar-
gin in this experiment.

We also report results for sampling techniques based on
Score-Matching. We trained a noise conditional score net-
work (NCSN) parameterized with a UNET architecture [74],
which is then followed by a sampling algorithm using the
annealed Langevin dynamics (ALD) as described by Song
and Ermon [34]. We refer to this method as UNET+ALD.
We also implemented a model based on our approach called
DDE+ALD, where we used our DDE network in combination
with iterative Langevin sampling. While our training loss is
equivalent to the score-matching objective, the DDE network
outputs a scalar and explicitly enforces the score to be a
conservative vector field by computing it as the gradient of
its scalar output. DDE+ALD uses the spatial gradient of the
DDE for iterative sampling with ALD [34], instead of our
proposed direct, one-step generator as described in Section IV.
We observe that DDE+ALD is more stable compared to the
UNET+ALD baseline, even though the UNET achieves a
lower loss during training. We believe that this is because
DDEs guarantee conservativeness of the distribution gradients
(i.e., scores), which leads to more diverse and stable data
generation as we see in Fig. 5. Furthermore, our approach
with direct sampling outperforms both UNET+ALD and
DDE+ALD.

F. Real Data Density Estimation

In this section, we evaluate the DDE models, excluding the
generative models, and compare their performance in learning

the densities and generalize to test sets for estimating log-
likelihoods. We follow the experiments in BNAF [67] for
density estimation, which includes the POWER, GAS, HEP-
MASS, and MINIBOON datasets [75]. Since DDEs estimate
densities up to their normalizing constant, we approximate
the constant using Monte Carlo estimation here. Similarly,
Li et al. [44] use sampling to estimate the normalizing con-
stant. We show average log-likelihoods over test sets and
compare them to state-of-the-art methods for normalized den-
sity estimation in Table II. Average log-likelihood refers to
the average density values of the test set (in log-domain) and
measures the generalization performance of a density estima-
tion model, where higher indicates better fitting to the test set.
We have omitted the results of the BSDS300 dataset [76] since
we could not estimate the normalizing constant reliably (due
to the high dimensionality of the data).

In this experiment, we only use the DDE trained on the
training dataset to evaluate the density, and we do not train a
second DDE or a generator. To train our DDEs, we used MLPs
with residual connections between each layer. All networks
have 25 layers, with 64 channels and Softplus activation,
except for GAS and HEPMASS, which employ 128 channels.
We trained the models for 400 epochs using a learning rate
of 2.5 × 10−4 with linear decay with a scale of 2 every
100 epochs. Similarly, we started the training by using noise
standard deviation ση = 0.1 and decreased it linearly with the
scale of 1.1 up to a dataset-specific value, which we set to
5 × 10−2 for POWER, 4 × 10−2 for GAS, 2 × 10−2 for
HEPMASS, and 0.15 for MINIBOON.

For evaluation, we use the original, noise-free, test dataset.
We estimate the normalizing constant via importance sampling
using a Gaussian distribution with the mean and variance
of the DDE input distribution. We average five estimations
using 51 200 samples each (we used ten times more samples
for GAS), and we indicate the variance of this average
in Table II. The average log-likelihood results indicated in
Table II shows better generalization using our trained DDEs
for high-dimensional datasets HEPMASS and MINIBOON,
and competitive values for POWER and GAS datasets.

As indicated by the results in the table, DKEF [44] (2019)
does not generalize well compared to DDEs. While both
approaches use score-matching for density estimation, their
use of Stein’s objective makes their estimator only asymp-
totically equal to our noise-estimation loss for learning the
unnormalized KDEs. Moreover, they require other smooth-
ness terms in their optimization that adds more bias to the
estimation.

G. Discussion on Parametrization of KDEs
Using Neural Networks

Nonparametric KDEs are known to perform poorly for
high-dimensional data [82], [83]. This is mostly due to larger
distances in higher dimensions and failure to calculate accurate
kernel weights for samples in the database. Recent nonpara-
metric models that use neural networks [10], [11] can still
perform on datasets with around 10-D. In our experiments,
DDEs where successfully trained on CelebA image datasets

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on September 25,2023 at 12:31:06 UTC from IEEE Xplore.  Restrictions apply. 



BIGDELI et al.: LEARNING GENERATIVE MODELS USING DENOISING DENSITY ESTIMATORS 9

TABLE II
AVERAGE LOG-LIKELIHOOD COMPARISON IN FOUR DATASETS [75]. THE TOP ROWS INCLUDES DATASET SIZE AND DIMENSIONALITY, BOTTOM

ROWS ARE NORMALIZED BY SAMPLING. THE UPPER SECTION INCLUDES METHODS THAT ESTIMATE NORMALIZED DENSITIES. RESULTS OF
LI ET AL. [44] ARE READ FROM THE BAR PLOTS REPORTED IN THEIR ARTICLE. BEST PERFORMANCES ARE IN BOLD

with 3000 dimensions. In our experiments, we observe that
our model can mitigate this problem using the neural network
parametrization with no instabilities during training and reli-
able results while testing. We know that neural networks can
generalize well due to their implicit regularities. This will in
turn make more stable density estimates for unlikely samples.
Moreover, in our model, we are not computing the KDE
explicitly using our model, but only regressing to its estimate
using out network and ignoring the normalizing constant. This
property also allows us to mitigate further issues regarding the
overflow of floating point variables and therefore instabilities
of nonparametric methods.

The DDE model, however, is constrained to output a
single scalar value, that is the log-probability. We enforce
this constraint in the network architecture by setting the last
layer to map its features to one output value. This, in turn,
makes the model very restrictive in capacity. Note that this
is not the case as in the discriminator in GANs, where the
discriminator must only learn the difference between the two
distributions, whereas, in the case of DDEs, they must learn
the full data distribution and its complexities. Therefore, DDEs
require models with much higher capacity, in practice, with
the increasing dimensions of the input domain. An alternative
would be to use product-of-experts to reduce this effect as in
the work of Saremi and Hyv̈arinen [25].

H. Discussion and Future Work

Our approach relies on a key hyperparameter ση that deter-
mines the training noise for the DDE, which we currently
set manually. In the future, we will investigate strategies to
determine this parameter in a data-dependent manner.

Another challenge is to obtain high-quality results using
complex, higher-dimensional data such as CIFAR or high-
resolution images. In practice, one strategy is to combine
our approach with latent embedding learning methods [84],
in a similar fashion as proposed by Hoshen et al. [85].
The robustness of our technique with very high-dimensional
data could potentially also be improved by leveraging slicing
techniques [86], [87]. We use three networks to learn a
generator (a DDE each for the input and generated data, and
the generator) and it would be more efficient if one could

use a single model for estimating both DDEs. Finally, our
generator training approach is independent of the type of
density estimator, and techniques other than DDEs could also
be used.

VI. CONCLUSION

We presented a novel approach to learning generative
models using DDEs, and our theoretical analysis proves that
our training algorithm converges consistently to a unique
optimum. Furthermore, our technique does not require specific
neural network architectures or ODE integration. A quan-
titative evaluation using the stacked MNIST dataset shows
that our approach avoids mode collapse similarly to state-of-
the-art Wasserstein GANs. Finally, our DDE parameterization
achieves state-of-the-art results on a standard log-likelihood
evaluation benchmark compared to recent techniques based
on NFs, continuous flows, and autoregressive models, and we
demonstrate successful generators on diverse image datasets.

APPENDIX

A. Proof of Score Matching via Noise Estimation

This is a proof for Proposition 1 in the main article.
Proof: Clearly, LNEs is convex in f hence the minimizer

is unique. We can rewrite the noise estimation loss from (3)
as

LNEs
(

f ; p, ση

)
=

∫
Rn

Eη∼N(0,σ 2
η )

[
p(x)∥ f (x + η) + η/σ 2

η ∥
2]dx (12)

which we minimize with respect to the vector-valued function
f : Rn

→ Rn . Substituting x̃ = x + η yields

LNEs
(

f ; p, ση

)
=

∫
Rn

Eη∼N(0,σ 2
η )

[
p
(
x̃ − η

)
∥ f

(
x̃
)
+ η/σ 2

η ∥
2]dx̃ . (13)

We can minimize this with respect to f (x̃) by differentiating
and setting the derivative to zero, which leads to

Eη∼N(0,σ 2
η )

[
p
(
x̃ − η

)
f
(
x̃
)]

= −
1
σ 2

η

Eη∼N(0,σ 2
η )

[
p
(
x̃ − η

)
η
]

(14)
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Fig. 6. Fashion-MNIST samples from our generator (a), the dataset (b), and latent space interpolation using our generator (c).

and hence

f
(
x̃
)

= −
1
σ 2

η

Eη∼N(0,σ 2
η )

[
p
(
x̃ − η

)
η
]

Eη∼N(0,σ 2
η )

[
p
(
x̃ − η

)] (15)

= ∇x̃ log
[

p ∗ k
](

x̃
)

= ∇x̃ log p̃
(
x̃
)

(16)

which follows from basic calculus and has also been used
by Raphan and Simoncelli [27]. □

B. Visual Results on Fashion-MNIST

For the experiments on MNIST and Fashion-MNIST,
we used the Dense Block architecture [88] with 15 fully
connected layers and 256 additional neurons each. The last
layer of the network maps all its inputs to one value, which
we train to approximate the density of input images. For
the generator network, we used Dense Blocks with 15 fully
connected layers and 256 additional neurons each. The last
layer maps all outputs to the image size of 28 × 28 = 784. For
the input of the generator, we used noise with a 16-D standard
normal distribution. In addition, the DDEs were trained with
noise standard deviation ση = 0.5, where pixel values were
scaled to range between 0 and 1.

In addition to the MNIST results, here we include visual
results on the Fashion-MNIST dataset, where we have used
the exact setup as in our experiments on MNIST for training
our generator. Fig. 6 shows our generated images and inter-
polations in the latent space of Fashion-MNIST.

C. Network and Training Details for Experiments on CelebA

For our experiments on CelebA, we use a style-based
generator [71] architecture. We use Swish activations [89] in

all hidden layers of our networks except for their last layer,
which we set to be linear. Additionally, we normalized each
output of the generator to be in the accepted range [−0.5, 0.5].
We used equalized learning rate [90] with a learning rate
5 × 10−3 for the DDEs, and a slightly lower learning rate
for the generator 3 × 10−3. We trained our DDEs using
ση = 0.5 and set the truncation parameter in the style-based
generator to φ = 0.7 when feeding the generator with random
noise [71] at test time.

D. Network Models and Training for
Stacked-MNIST Experiment

In our experiments with Stacked-MNIST, our generative
networks are trained using a learning rate of 2 × 10−2, the
Adam optimizer with β1 = 0.9, and the generator updates took
place after every 10th DDE step. We use standard parameters
for the other methods (DCGAN, WGAN, and WGAN+GP),
including a learning rate of 2 × 10−4, the Adam optimizer with
β1 = 0.5, and we trained the generator every fifth iteration of
the discriminator training.

The NCSN models are trained to remove Gaussian noise
at ten different noise standard deviations within the range
[1.0, 0.01] (geometric interpolation). The input to the NCSN
models includes also the noise level. To further improve the
quality of the networks, we use separate last layers for each
noise standard deviation for training and testing. This way we
can increase the capacity of the network significantly, while
we keep the same order of parameters as in the other methods.
We used the Adam optimizer with original parameters and a
learning rate of 1 × 10−4.
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