

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Jun 01, 2024

Recognizing H-Graphs - Beyond Circular-Arc Graphs

Çagirici, Deniz Agaoglu ; Çagirici, Onur; Derbisz, Jan; Hartmann, Tim A.; Hliněný, Petr; Kratochvil, Jan;
Krawczyk, Tomasz; Zeman, Peter

Published in:
Proceedings of the 48th International Symposium on Mathematical Foundations of Computer Science (MFCS
2023)

Link to article, DOI:
10.4230/LIPIcs.MFCS.2023.8

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Çagirici, D. A., Çagirici, O., Derbisz, J., Hartmann, T. A., Hliněný, P., Kratochvil, J., Krawczyk, T., & Zeman, P.
(2023). Recognizing H-Graphs - Beyond Circular-Arc Graphs. In Proceedings of the 48th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2023) (Vol. 272, pp. 8:1-8:14). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.MFCS.2023.8

https://doi.org/10.4230/LIPIcs.MFCS.2023.8
https://orbit.dtu.dk/en/publications/2f974b2e-6a1c-4ecc-80bc-603946d557b3
https://doi.org/10.4230/LIPIcs.MFCS.2023.8

Recognizing H-Graphs – Beyond Circular-Arc
Graphs
Deniz Ağaoğlu Çağırıcı #

Faculty of Informatics, Masaryk University,
Brno, Czech Republic

Onur Çağırıcı #

Toronto Metropolitan University, Canada

Jan Derbisz #

Theoretical Computer Science Department,
Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland
Doctoral School of Exact and Natural Sciences,
Jagiellonian University, Kraków, Poland

Tim A. Hartmann #

CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

Petr Hliněný #

Faculty of Informatics, Masaryk University,
Brno, Czech Republic

Jan Kratochvíl #

Department of Applied Mathematics, Faculty of
Mathematics and Physics, Charles University,
Prague, Czech Republic

Tomasz Krawczyk #

Theoretical Computer Science Department,
Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland

Peter Zeman #

Technical University of Denmark,
Lyngby, Denmark

Abstract
In 1992 Biró, Hujter and Tuza introduced, for every fixed connected graph H, the class of H-graphs,
defined as the intersection graphs of connected subgraphs of some subdivision of H. Such classes
of graphs are related to many known graph classes: for example, K2-graphs coincide with interval
graphs, K3-graphs with circular-arc graphs, the union of T -graphs, where T ranges over all trees,
coincides with chordal graphs. Recently, quite a lot of research has been devoted to understanding
the tractability border for various computational problems, such as recognition or isomorphism
testing, in classes of H-graphs for different graphs H.

In this work we undertake this research topic, focusing on the recognition problem. Chaplick,
Töpfer, Voborník, and Zeman showed an XP-algorithm testing whether a given graph is a T -graph,
where the parameter is the size of the tree T . In particular, for every fixed tree T the recognition of
T -graphs can be solved in polynomial time. Tucker showed a polynomial time algorithm recognizing
K3-graphs (circular-arc graphs). On the other hand, Chaplick et al. showed also that for every fixed
graph H containing two distinct cycles sharing an edge, the recognition of H-graphs is NP-hard.

The main two results of this work narrow the gap between the NP-hard and P cases of H-graph
recognition. First, we show that the recognition of H-graphs is NP-hard when H contains two
distinct cycles. On the other hand, we show a polynomial-time algorithm recognizing L-graphs,
where L is a graph containing a cycle and an edge attached to it (which we call lollipop graphs).
Our work leaves open the recognition problems of M -graphs for every unicyclic graph M different
from a cycle and a lollipop.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases H-graphs, Intersection Graphs, Helly Property

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.8

Related Version Full Version: https://arxiv.org/abs/2212.05433

Funding Deniz Ağaoğlu Çağırıcı: Research of this author is supported by the Czech Science
Foundation project no. 20-04567S.
Jan Derbisz: Research of this author was partially funded by Polish National Science Center
(NCN) grant 2021/41/N/ST6/03671 and by the Priority Research Area SciMat under the program
Excellence Initiative Research University at the Jagiellonian University in Kraków.

© Deniz Ağaoğlu Çağırıcı, Onur Çağırıcı, Jan Derbisz, Tim A. Hartmann, Petr Hliněný, Jan
Kratochvíl, Tomasz Krawczyk, and Peter Zeman;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 8; pp. 8:1–8:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:agaoglu@mail.muni.cz
mailto:cagirici@ryerson.ca
mailto:jan.derbisz@doctoral.uj.edu.pl
mailto:tim.hartmann@cispa.de
https://orcid.org/0000-0002-1028-6351
mailto:hlineny@fi.muni.cz
https://orcid.org/0000-0003-2125-1514
mailto:honza@kam.mff.cuni.cz
mailto:krawczyk@tcs.uj.edu.pl
https://orcid.org/0000-0002-8777-269X
mailto:zeman.peter.sk@gmail.com
https://doi.org/10.4230/LIPIcs.MFCS.2023.8
https://arxiv.org/abs/2212.05433
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Recognizing H-Graphs – Beyond Circular-Arc Graphs

Petr Hliněný: Research of this author is supported by the Czech Science Foundation project no.
20-04567S.
Peter Zeman: Research of this author is supported by the Carlsberg Foundation Young Researcher
Fellowship CF21-0682 - “Quantum Graph Theory”.

1 Introduction

One of the most important and most widely studied types of graph representations is an
intersection model, in which the vertices are represented by sets and the edges by the pairs of
intersecting sets. Due to practical and theoretical applications, intersection graphs of simple
geometric objects are among the most intensively studied. In this paper, we consider a special
kind of intersection graphs, called H-graphs, introduced by Biró, Hujter and Tuza [5]. Since
H-graphs generalize many known geometric intersection graph classes, they form a good
background that allows to study basic computational problems in some systematic way. We
first define H-graphs formally using the terminology we adapt throughout the paper.

Let H be a connected graph. An H-model of a graph G is a pair (Hϕ, ϕ), where Hϕ is a
subdivision of H and ϕ is a mapping from V (G) to the subsets of V (Hϕ), such that:

for every v ∈ V (G), the subgraph of Hϕ induced by the set ϕ(v) is connected,
for every distinct u, v ∈ V (G) we have uv ∈ E(G) iff ϕ(u) ∩ ϕ(v) ̸= ∅.

A graph G is an H-graph if G admits an H-model. In particular, every graph G is an
H-graph for some graph H, e.g., for H = G.

Many known geometric intersection graph classes are H-graphs for an appropriately
chosen graph H or are H-graphs for some simpler class of graphs H, where by H-graphs we
mean the union of the classes of H-graphs over H ∈ H:

K2-graphs coincide with the class of interval graphs, which are defined as the intersection
graphs of intervals on the line,
K3-graphs coincide with the class of circular-arc graphs, which are defined as the inter-
section graphs of arcs of a fixed circle,
T -graphs, where T contains all trees, coincide with the class of chordal graphs, which are
defined as graphs containing no induced cycles of size ⩾ 4 [14],
P-graphs, where P contains all planar graphs, coincide with the class of string graphs,
which are defined as the intersection graphs of curves in the plane.

The recent research on H-graphs, initiated by Chaplick et al. [10], aims to generalize
efficient optimization algorithms from simple classes of graphs on wider families of H-graphs,
as well as to determine the boundary of “polynomial tractability” for such computational
problems as recognition or isomorphism testing. Here we aim for efficient parameterized
algorithms, whose running time depends on the size n of the input graph and the parameter |H|,
where |H| is the size of the graph H. First, we search for algorithms that work in polynomial
time in n and |H|, then for FPT algorithms working in time f(|H|)nO(1) for some computable
function f , and finally for XP algorithms working in time O(nf(|H|)) for some computable
function f . Various NP-complete problems on H-graphs were studied in the parameterized
setting and shown to admit FPT and XP algorithms, e.g., [1,2,4,8,10,11,13,16]. Some recent
research is also focused on studying the combinatorial properties of H-graphs, which can be
later used to construct efficient algorithms in these classes of graphs (see e.g. [11, 13]).

In this work we are focusing on the recognition problem. For a graph class G, the
recognition problem for G is to decide whether an input graph G belongs to G. For a graph
class G defined in a geometrical way, the recognition problem of G usually boils down to
testing whether the input graph has a representation appropriate for the class G. There
are known linear time recognition algorithms for interval graphs [6] and chordal graphs [21].

D.Ağaoğlu Çağırıcı et al. 8:3

In the context of our research, circular-arc graphs form an important class of graphs. The
recognition problem for circular-arc graphs was initially thought to be NP-hard [7], but since
the 1980s we already know that it admits a polynomial time algorithm [22]. Currently, two
linear-time algorithms recognizing circular-arc graph are known [17,20], but both of them are
rather lengthy and non-trivial. No simple polynomial-time algorithm recognizing circular-arc
graphs is known.

Although the recognition of chordal graphs takes linear time, with a tree T on the input
deciding whether a graph G is a T -graph is NP-complete [18]. On the other hand, Chaplick et
al. [10] gave an XP algorithm parameterized by |T | recognizing T -graphs. It is open whether
the problem can be solved by an FPT algorithm (in [9] it is shown that proper T -graphs can
be recognized in FPT, where a T -graph G is called proper if there exists a T -model (Tϕ, ϕ)
of G such that for no pair u, v ∈ V (G) we have ϕ(u) ⊆ ϕ(v)). Moreover, Chaplick et al. [10]
showed that recognition of H-graphs is NP-complete if H contains a diamond (a cycle on
four vertices with a chord) as a minor [10]. That is, recognition of H-graphs is NP-complete
for every fixed H which contains two distinct cycles sharing an edge.

1.1 Our results
Our first result states the following, which extends the hardness result from [10]:

▶ Theorem 1.1. For every fixed graph H containing two distinct cycles, the recognition of
H-graphs is NP-complete.

Theorem 1.1 raises interests in M -graphs, where M is a unicyclic graph (a connected graph
containing exactly one cycle). In particular, we are focusing on:

the recognition problem for the class of M -graphs, where M is any fixed graph that
consists of a cycle and some trees attached to it,
the recognition problem for the class of medusa graphs, which are defined as M-graphs,
where M is the class that contains all unicyclic graphs. Note that medusa graphs extend
both circular-arc graphs and chordal graphs.

Figure 1.1 From left to right: a unicyclic graph M , an M -graph G, an M -model (Mϕ, ϕ) of G.

An M-model of a graph G is an M -model of G where M ∈ M. Suppose G is a medusa
graph and suppose G admits an M-model (Mϕ, ϕ) for some M ∈ M. A clique C in G

satisfies the Helly property in (Mϕ, ϕ) if
⋂

c∈C ϕ(c) ̸= ∅, and the model (Mϕ, ϕ) of G satisfies
the Helly property if every clique of G satisfies the Helly property in (Mϕ, ϕ). A medusa
graph G is Helly if G admits an M-model that satisfies the Helly property. Figure 1.1 shows
a fixed unicyclic graph M , another graph G which is an M -graph, and an M -model (Mϕ, ϕ)
of G. Since (Mϕ, ϕ) satisfies the Helly property, G is a Helly medusa graph. We show the
following regarding medusa graph:

▶ Theorem 1.2.
1. The problem of recognizing medusa graphs is NP-complete.
2. The problem of recognizing Helly medusa graphs is polynomial time solvable.

MFCS 2023

8:4 Recognizing H-Graphs – Beyond Circular-Arc Graphs

Our most important (and perhaps most difficult) result concerns the class of L-graphs (which
we call lollipop graphs), where L is a unicyclic graph that consists of a cycle with an edge
attached. Note that L-graphs extend the class of circular-arc graphs.

▶ Theorem 1.3. The problem of recognizing L-graphs is polynomial time solvable.

Our research reveals connections between problems we consider and certain problems
related to the Helly property studied in the class of circular-arc graphs. In particular, we
introduce the Helly Cliques problem, in which for a given circular-arc graph G and its cliques
C1, . . . , Ck we need to decide whether G has a circular-arc model in which all the cliques
C1, . . . , Ck satisfy the Helly property. We show that the recognition of medusa graphs is
polynomial time equivalent to the Helly Cliques problem. We refer to [3, 12] for two different
proofs that the Helly Cliques problem is NP-complete. Also, to devise a polynomial algorithm
recognizing L-graphs, we exploit an FPT algorithm for the Helly Cliques problem (for k = 1)
devised in [12].

2 Preliminaries

We refer to the full version of this paper for the full version of this section.

2.1 Graphs and posets
All graphs considered in this paper are simple, that is, they have no multiedges and no loops.
We denote a complete graph and a cycle on n vertices by Kn and Cn, respectively. A hole in
a graph is an induced cycle on at least four vertices.

A unicyclic graph is a connected graph that has exactly one cycle. For a unicyclic
graph M , we denote by MO the set of vertices of the unique cycle of M .

We assume that the reader has some basic knowledge on partially ordered sets (posets).

2.2 M -graphs
Suppose M is a fixed unicyclic graph. Let (Mϕ, ϕ) be an M -model of a graph G. If the
subdivision Mϕ of M is not relevant for our considerations, we denote the model (Mϕ, ϕ)
simply by (M,ϕ) or even by ϕ (if M is clear from the context). In this case we treat (M,ϕ)
as the intersection model of G in which every set ϕ(v) forms an arcwise connected subset of
some fixed plane drawing of the unicyclic graph M . Then MO is the part of the drawing
which contains the points of the drawing corresponding to the vertices and contained in the
curves representing the edges from the unique cycle of M .

Let M be a unicyclic graph. We say that a graph G is a saturated M -graph if G has an
M -model and has no M∗-model for any proper minor M∗ of M .

▶ Observation 2.1. Suppose M∗ is a minor of M . If G has an M∗-model, then G has an
M -model.

2.3 Interval and Circular-Arc Graphs
We assume that the reader has some basic knowledge of interval and circular-arc graphs. In
our context we can define them as K2-graphs and K3-graphs.

Given an interval graph H and an interval model ϕ of H, for every x ∈ R we denote by
C(x) the set {v ∈ V (H) : x ∈ ϕ(v)}. A sector S of ϕ is a maximal interval in R such that
C(x) = C(y) holds for every x, y ∈ S. Given a sector S of ϕ, the clique set C(S) of S is

D.Ağaoğlu Çağırıcı et al. 8:5

equal to C(x), where x is any point inside S. Clearly, every two sectors of ϕ are disjoint
and the union of all sectors of ϕ covers R (note that ϕ has at least two sectors S such that
C(S) = ∅). We say that a sector S of ϕ is:

maximal if C(S) is a maximal clique in H,
minimal if C(S) ⊊ C(S′) for any sector S′ adjacent to S.

An interval model ϕ of H is normalized if ϕ has exactly 2c+ 1 sectors (we count also the
sectors with the empty clique set), where c is the number of maximal cliques in H. We refer
to the full version of this paper for more details on the relations between normalized interval
models of H and consecutive orderings of maximal cliques of H represented by the PQ-tree
of H (see Figure 2.1).

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

P1

P2

P3Q1

C(L1) C(L2) C(L3) C(L4) C(L5) C(L6)

(a) A normalized interval model ϕ of H. Sectors of ϕ are
separated by dashed lines.

P1

P2 P3

L1 L2 Q1 L6

L3 L4 L5

(b) P Q-tree T of H with leaf
order L1,L2,L3,L4,L5,L6 cor-
responding to consecutive clique
ordering C1, C2, C3, C4, C5, C6.

Figure 2.1

Observe that we can obtain any interval model of H in the following way: first we choose
a normalized model ϕ of H (which is equivalent to picking a consecutive ordering of maximal
cliques of H) and then for each maximal sector S of ϕ we shift (by a little) the endpoints of
the intervals of ϕ that lie on the borders of S (see Figure 2.2).

Since the definition of normalized models for circular-arc graphs is technical, we refer to
the full version of this paper for the details. Here we only mention that in such models the
relative relation between intersecting arcs (containment, covering the circle, or overlapping)
depends on the relative relation between the closed neighbourhoods of the corresponding
vertices of the graph.

3 (Helly) Medusa Graphs

We refer to the full version of this paper for the full version of this section.
Recall that an M-model of a graph G is an M -model of G where M ∈ M. We introduce

normalized M-models, based on the following partition of V (G) into the circle part VC and
the tree part VT . Start with VC = ∅ and repeatedly add to VC :

V (C), if C is a hole in G,
V (P), if P is an induced path in G joining two non-adjacent vertices from VC .

Finally, let VT = V ∖ VC . Such a partition VC ∪ VT of V (G) is unique and polynomial time
computable. We call an M-model (M,ϕ) of G normalized if:

MFCS 2023

8:6 Recognizing H-Graphs – Beyond Circular-Arc Graphs

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

P1

P2

P3Q1

C(L1)C(L2)C(L3)C(L4)C(L5) C(L6)

(a) An interval model ϕ of H. Sectors of ϕ are separated by
dashed lines.

P1

P2P3

L1L2Q1 L6

L3L4L5

(b) P Q-tree T of H with leaf
order L5,L4,L3,L6,L2,L1 cor-
responding to clique ordering
C5, C4, C3, C6, C2, C1.

Figure 2.2

ϕ(v) ∩MO ̸= ∅ for every v ∈ VC ,
ϕ(v) ∩MO = ∅ for every v ∈ VT ,
{ϕ(v) ∩MO : v ∈ VC} is a normalized circular-arc model of G[VC].

▶ Lemma 3.1. Every M-graph G has a normalized M-model ψ.

Sketch of the proof: Let VC ∪ VT be a partition of V (G) into the circle part VC and the
tree part VT of G. Let (M,ψ) be an M-model of G. The model (M,ψ) already satisfies
ψ(v) ∩ MO ̸= ∅ for every v ∈ VC . Let T1, . . . , Tk be a partition of VT into connected
components of G[VT]. Let NC(Ti) be the neighbourhood of Ti in the cycle part of G,
i.e. NC(Ti) = N(Ti) ∩ VC . First we prove that for every i ∈ [k] the graph G[Ti ∪ NC(Ti)]
is chordal and the set NC(Ti) forms a clique in G[VC]. In particular, each G[Ti ∪NC(Ti)]
has an Fi-model ψi for some tree Fi. Next, we note that ψ|VC restricted to MO forms a
circular arc model of G[VC] in which each clique NC(Ti) is Helly. We normalize this model.
Finally, we obtain a normalized M-model (M ′, ϕ) of G by joining a point of Fi contained in⋂
ψi(NC(Ti)) to a point of MO contained in

⋂
ϕ(NC(Ti)) and then by merging the models

ψ and ψi for i ∈ [k] appropriately. ◀

This yields our main theorem characterizing medusa graphs.

▶ Theorem 3.2. (see the full version of this paper for the full proof) Let G be a graph, let
V (G) = VC ∪ VT be a partition of V (G) into the circle part VC and the tree part VT of G,
and let T1, . . . , Tk be a partition of VT into connected components of G[VT]. Then:
1. G is a medusa graph if and only if G[VC] is a circular arc graph in which for every i ∈ [k]

the set NC(Ti) induces a clique in G[VC], and G[VC] admits a normalized circular-arc
model in which every clique NC(Ti) is Helly.

2. G is a Helly medusa graph if and only if G[VC] is a Helly circular arc graph.
The conclusions of Theorem 3.2 bring our attention to the Helly Cliques problem.

▶ Lemma 3.3. (see the full version of this paper for the full proof) Recognition of medusa
graphs is poly-time equivalent to the Helly Cliques problem.

We can summarize the section with the following theorem (which extends Theorem 1.2).

D.Ağaoğlu Çağırıcı et al. 8:7

P

LO

LS
ϕ(c)

ϕ(a)

ϕ(b)

I1
I2

I3

I4
I5

I6

I7

I1 I2 I3 I4 I5

ϕ∗(b)

ϕ∗(c)

ϕ∗(a)

ϕ∗(b)

ϕ∗(c)ϕ∗(a)

I1

I2 I3 I4

I5

Figure 4.1 Above: {a, b, c}-centered L-model ϕ of G. Below left: Intervals ϕ∗(a), ϕ∗(b), ϕ∗(c): for
x ∈ {a, b, c}, ϕ∗(x) is the shortest interval in LO ∖ P that contains (LO ∖ ϕ(x)) and every interval⋃

ϕ(I) which has a non-empty intersection with (LO ∖ ϕ(x)). Below right: schematic view of ϕ∗

with the components I1, . . . , I5. Our second key step should output H containing H such that
V (H) = {a, b, c} and E(H) = {ab, bc}.

▶ Theorem 3.4.
1. The problem of recognizing medusa graphs is NP-complete.
2. The problem of recognizing medusa graphs parameterized by the number k of components

in the tree part G[VT] of the input graph is FPT.
3. The problem of recognizing Helly medusa graphs is polynomial time solvable.

Proof. The statements of the theorem follow from Lemma 3.3, from the fact that the Helly
Cliques problem is NP-complete [3, 12] and can be solved in time 2O(k log k)poly(n) [12], and
from the fact that Helly circular-arc graphs recognition can be solved in linear-time [19]. ◀

4 Lollipop Graphs

In this section we derive a polynomial time algorithm for recognizing L-graphs, where L is the
graph which consists of the clique K3 and an edge attached to one vertex of K3 (L is called
a lollipop and L-graphs are called lollipop graphs). Since there are known polynomial-time
algorithms recognizing K1,3-graphs [10] and K3-graphs [17, 20], we assume that an input
graph G = (V,E) is not an L∗-graph for any proper minor L∗ of L. Hence our goal is to test
whether G is a saturated L-graph.

We fix a plane drawing of L which consists of the circle LO and the stick LS attached to
LO in the point P (see Figure 4.1 for an illustration). Then we treat an L-model ϕ of G as
the intersection model of G in which every set ϕ(v) forms an arcwise connected subset of the
drawing of L. We call the arcs contained in LO ∖ P as intervals and we introduce left-right
orders of the points in LO ∖ P (consistent with the clockwise order) and in LS ∖ P .

Let C be a clique of G. An L-model ϕ of G is C-centered if C = {v ∈ V : P ∈ ϕ(v)}
and G is C-centered if G admits a C-centered L-model. For example, the model ϕ shown in
Figure 4.1 is {a, b, c}-centered.

Our approach consists of three key steps. The first step is summarized as follows.

MFCS 2023

8:8 Recognizing H-Graphs – Beyond Circular-Arc Graphs

▶ Theorem 4.1. There is a polynomial time algorithm that, given a graph G, either decides
that G is a saturated L-graph, or outputs a set of cliques C of G such that, if G is a saturated
L-graph then G is a C-centered L-graph for some C ∈ C.

Given the above theorem it remains to efficiently decide whether G is a C-centered graph for
some fixed clique C of G. Let I denote the set of components of G[V ∖ C]. Note that for
every I ∈ I the set I induces an interval graph in G if G is C-centered.

Suppose ϕ is a C-centered model of G. To describe our second step, for every c ∈ C let
ϕ∗(c) denote the shortest interval in LO ∖ P containing the interval LO ∖ ϕ(c) and every
interval

⋃
ϕ(I) whenever LO ∖ϕ(c) intersects

⋃
ϕ(I), for I ∈ I. Let Hϕ be an interval graph

with the vertex set C ′ = {c ∈ C : ϕ∗(c) ̸= ∅} and with the intersection model given by the
intervals {ϕ∗(c) : c ∈ C ′}.

Let C ′ ⊆ C and let H be an interval graph on the vertex set C ′. A C-centered L-model
ϕ of G is (C,H)-centered if Hϕ = H and G is (C,H)-centered if G admits a (C,H)-centered
model. For example, the model ϕ from Figure 4.1 is ({a, b, c}, H)-centered, where H is such
that V (H) = {a, b, c} and E(H) = {ab, bc}. Our second step comes down to the following.

▶ Theorem 4.2. There is a polynomial time algorithm that, given a graph G and a clique
C ⊆ V (G), outputs a set of interval graphs H such that, if G is a C-centered L-graph, then
G is a (C,H)-centered L-graph for some H ∈ H.

Our final step, which is the most technical and probably most difficult, can be summarized
as follows:

▶ Theorem 4.3. There is a polynomial time algorithm that, given a graph G, a clique
C ⊆ V (G), and an interval graph H on a subset C ′ of C, decides whether G is a (C,H)-
centered graph.

The algorithm from Theorem 4.3 exploits dynamic programming along the PQ-tree of H
to test whether there is a partition (J ,J ′) of the components of I together with a total
ordering ≺ of J such that there is a (C,H)-centered model ϕ of G that places the interval
graphs of J on LO ∖ P in the order ≺ and the interval graphs of J ′ on the stick LS .

4.1 Sketch of the proof of Theorem 4.1 (the first key step)
We refer to the full version of this paper for the full proof.

Let G be a graph which is neither K1,3-graph nor K3-graph. Let VC ∪VT be the partition
of V (G) into the circle part VC and the tree part VT of G, and let T be the set of all maximal
cliques of the chordal graphs G[T ∪ NC(T)], where T runs over the components of G[VT]
(see Section 3). The algorithm for Theorem 4.1 works as follows. For every C∗ ∈ T :

output C∗ and denote by I∗ the components of G[V ∖ C∗],
for every component I ∈ I∗ let C ′ = {v ∈ C∗ : v has a neighbour in I},

accept G as saturated L-graph if G[I ∪ C ′] admits a circular arc model with C ′ Helly
(we use a poly-time algorithm for the Helly Cliques problem with k = 1) and G[V ∖ I]
admits an interval model with C∗ as the leftmost maximal clique,
if G[I] is an interval graph, then for every maximal clique D of G[I] output the clique
C(D) = C ′ ∪ {v ∈ D : C ′ ⊆ N(v)}.

Now we give a sketch of the proof that this algorithm is correct. Assuming G is a saturated
L-graph, we first argue G admits an L-model ϕ such that:

there is a clique C∗ from T such that the set
⋂
ϕ(C∗) is contained in LS ∖P and

⋂
ϕ(C∗)

is as close to P as possible,

D.Ağaoğlu Çağırıcı et al. 8:9

for every component I ∈ I∗ we have either
⋃
ϕ(I) ⊆ LO or

⋃
ϕ(I) ⊆ (LS ∖ P).

As we show in the full version of this paper, such properties are satisfied by so-called saturated
L-models of G. Given such ϕ, we fall into one of the following cases:

P is not covered by
⋃
ϕ(I) for any I ∈ I∗. Then ϕ can be easily turned into C∗-centered

L-model of G (since the algorithm adds C∗ to C, Theorem 4.1 is satisfied).
P is covered by

⋃
ϕ(I) for some I ∈ I∗. The algorithm accepts G if I is the only

component on LO (which possibly induces a circular-arc graph and covers the whole
circle LO). Otherwise, if two components from I∗ are represented on LO, then all the
components in I∗ induce interval graphs in G. In this case we argue that ϕ can be turned
into a C(D)-centered model, where D is a maximal clique in G[I] with

⋂
ϕ(D) next to P

(since the algorithm adds C(D) to C, Theorem 4.1 is satisfied).
Given the previous, the algorithm for Theorem 4.1 either accepts G, or outputs C of size at
most O(n2) (T has size O(n) and for every C∗ ∈ T the total number of maximal cliques in
the interval components of G[V ∖ C∗] is O(n)).

4.2 Sketch of the proof of Theorem 4.2 (the second key step)

We refer to the full version of this paper for the full proof.
Consider a graph G and a clique C of G. Let I be the set of components of G[V ∖ C].

For now, consider a C-centered model ϕ. Then every I ∈ I induces an interval graph and
{ϕ(v) | v ∈ I} is an interval model for G[I]. We partition I ∈ I according to the intersection
with LO and LS in the model ϕ:

Iϕ
O =

{
I ∈ I :

⋃
ϕ(I) ⊆ LO

}
and Iϕ

S =
{
I ∈ I :

⋃
ϕ(I) ⊆ LS

}
.

For I ∈ I, let C(I) = {c ∈ C : c is not adjacent to some vertex in I}. Let ϕ be a C-
centered model of G. Note that the graph Hϕ, defined in Section 4, can be equivalently
defined such that

C ′ = V (Hϕ) =
⋃

I∈Iϕ
O

C(I) and E(Hϕ) =
{

{c, c′} : there is I ∈ Iϕ
O such that c, c′ ∈ C(I)

}
.

Similarly, the model ϕ∗ of Hϕ can be equivalently defined such that for every c ∈ C ′ the set
ϕ∗(c) is the shortest interval that contains

⋃
ϕ(I) for every I ∈ Iϕ

O such that c ∈ C(I) – see
Figure 4.1 for an illustration. Note that every non-minimal sector of ϕ∗ contains at least one
component from Iϕ

O and every I ∈ Iϕ
O occupies a sector of ϕ∗ with the clique set C(I).

We distinguish the interval graphs I ∈ I as follows:
I ∈ I is called ambiguous if G[C ∪ I] has an interval model with C as its left-most clique
(hence, I might be placed on the stick); otherwise I is called circle.
An ambiguous component I ∈ I is simple if N(u) ∩ C = N(v) ∩ C for all u, v ∈ I.

We denote the sets of the circle, ambiguous, ambiguous simple, and ambiguous non-simple
components by Ic, Ia, Ias, and Ians, respectively. Clearly, Ic ⊆ Iϕ

O, for every C-centered
model ϕ. Moreover, we show that for every I ∈ Ic and every C-centered model ϕ of G
the component I occupies a maximal sector of ϕ∗ and no other component occupies this
sector – see the circle component I2 in Figure 4.1. We additionally assume that C(I) ̸= C(J)
for every two simple components I ̸= J since otherwise we may simply consider the input
without J .

MFCS 2023

8:10 Recognizing H-Graphs – Beyond Circular-Arc Graphs

We order I based on their subset relation on {C(I) : I ∈ I} and their classification into
Ia, Ias, and Ians. We define ⊂t for I, J ∈ I as

I ⊂t J if
(
C(I) ⊊ C(J)

)
or(

C(I) = C(J) and I ∈ Ic and J ∈ Ia

)
or(

C(I) = C(J) and I ∈ Ians and J ∈ Ias

)
.

Then (I,⊆t) is a poset, where ⊆t is the reflexive closure of ⊂t.

▷ Claim 4.4. For every C-centered model ϕ we have Iϕ
S ⊆ Ia, the components from Iϕ

S form
a chain in (I,⊆t), and the left-right order of the components on LS coincides with (Iϕ

S ,⊆t).

Let D ⊆ I be defined as follows. For every J ∈ Ia,
(D1) if C(I) ⊆ C(J) for some I ∈ Ic, add J to D.
(D2) if J ∈ I is such that the downset of J has the width at least 4 in (I,⊆t), add J to D.
We show that the components from D need to be represented on the stick in any C-centered
model of G.

Since every maximal sector of ϕ∗ contains a component from Aϕ and the components
from Aϕ occupy maximal sectors of ϕ∗, the set Aϕ determines the set of all maximal cliques
of Hϕ. Hence, the interval graph Hϕ is uniquely determined by the antichain Aϕ containing
the maximal components from (Iϕ

O,⊆t). Therefore, we refer to Hϕ as to H(Aϕ).
Let I ′ = I ∖ D. Let A be the set of the maximal components in (I ′,⊆t). Let ϕ be a

C-centered L-model of G. Since A forms an antichain and Iϕ
S forms a chain, their intersection

contains at most one element. If A ∩ Iϕ
S = ∅, then Aϕ = A and we output H(A) as a

candidate. If |A ∩ Iϕ
S | = {A}, then Aϕ = (A ∖ {A}) ∪ A3, where A3 is an antichain in the

downset of A. Hence we try all of the O(n) maximal components in A ∈ A combined with
all antichains in DS(A). Since A /∈ D, its downset has the width at most 3 and there are
O(n3) antichains in DS(A) which can be enumerated in polynomial time.

4.3 Sketch of the proof of Theorem 4.3 (the third key step)
We refer to the full version of this paper for the full proof.

First, we reduce the input instance G,C,H, so as there is no component I ∈ I such that
C(I) is the clique set of a minimal sector of an interval model of H (the set of cliques of
minimal sectors of an interval model of H is independent on the model of H).

Let T be the PQ-tree of H, let V (T) be the nodes of T, and let R be the root of T. For
N ∈ V (T), let L(N) denote the set of all leaves of T which descend N in T. We set L = L(R).
For L ∈ L let C(L) denote the clique of H represented by L. We refer to the full version of
this paper for more about PQ-trees.

Our main task is to find a partition (J ,J ′) of I ′ = I ∖ D together with a total ordering
≺ of J such that there is a model ϕ that places the interval graphs of J on the circle LO in
the order ≺ and the interval graphs of J ′ on the stick LS .

The easy part is to check whether J ′ ⊆ I ′ can be placed on the stick. We need to check
whether (J ′ ∪ D) forms a chain in the poset (Ia,⊑), with ⊑ being the reflexive closure of
the following binary relation ⊏, defined for distinct I, J ∈ Ia:

I ⊏ J if C(I) ⊆ Cs(J), where
Cs(J) = {c ∈ C : c is not adjacent to every vertex in J}.

Now, let us consider how to test whether J ⊆ I ′ together with an ordering ≺ allows a
model that places the interval graphs of J in the order of ≺ on the circle. We will denote such
an ordering (J ,≺) as a good order for R. Our final dynamic program then determines the

D.Ağaoğlu Çağırıcı et al. 8:11

good orderings in a bottom up fashion. Hence we will define a good order (K,≺) with respect
to some node N of T and with respect to some left and right borders, (BL, BR), which are
cliques in H. Since this definition is technical (see the full version of this paper), we describe
some properties of good orderings that occur in (Iϕ

O,≺ϕ), where ϕ is a (C,H)-centered model
of G and (Iϕ

O,≺ϕ) is the left-right order of the components from Iϕ
O on LO ∖ P .

Let ϕ be a (C,H)-centered model of G. For L ∈ L let inner(L) = {I ∈ I ′ : C(I) = C(L)}
and let innerϕ

O(L) = inner(L) ∩ Iϕ
O, and innerϕ

S(L) = inner(L) ∩ Iϕ
S . Additionally, assume the

maximal cliques of H appear in ϕ∗ in the order C(L1), . . . , C(Ln). For every Li ∈ L we define
the left zone zoneϕ

L(Li) of Li as an interval of (Iϕ
O,≺ϕ) including the components from the

sectors of ϕ∗ contained strictly between the maximal sector S(Li) with the clique set C(Li)
and the minimal sector of ϕ∗ preceding S(Li) in ϕ∗. We define the right zone zoneϕ

R(Li)
of Li analogously and we set zoneϕ(Li) = zoneϕ

L(Li) ∪ innerϕ
O(Li) ∪ zoneϕ

R(Li). For a non-leaf
node N, let zoneϕ(N) =

⋃
L∈L(N) zoneϕ(L). Figure 4.2 shows the zones for some example

model ϕ∗. Components from the sets zoneϕ
L(Li), innerϕ

O(Li), and zoneϕ
R(Li) are illustrated

as red, black, and blue dots, respectively. We have, for example, zoneϕ
L(L3) = {I9, I10, I11},

zoneϕ
R(L2) = {I8}, and innerϕ

O(L2) = {I5, I6, I7}. We have zoneϕ(Q1) = {I9, . . . , I18} as
L(Q1) = {L3,L4,L5}.

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

zoneϕ(L1) zoneϕ(L2) zoneϕ(L3) zoneϕ(L4) zoneϕ(L5) zoneϕ(L6)

I1

I2

I3

I4 I5 I6 I7

I8

I9

I10

I11

I12

I13I14 I15I16

I17

I18

I19

I20

I21

I22
P1

P2 P3

L1 L2 Q1 L6

L3 L4 L5

Figure 4.2 Zones in ϕ∗.

Among others, we show that for every i ∈ [n] (below we assume C(L0) = C(Ln+1) = ∅):
the set zoneϕ

L(Li) forms a chain in (Ia,⊑), (zoneϕ
L(Li),⊏) is equal to (zoneϕ

L(Li),≺ϕ) and
zoneϕ

L(Li) respects the border C(Li−1)∩C(Li), which means C(Li−1)∩C(Li) ⊏ zoneϕ
L(Li),

the set zoneϕ
R(Li) forms a chain in (Ia,⊑), we have (zoneϕ

R(Li),⊏) is equal to the reverse
of (zoneϕ

R(Li),≺ϕ) and zoneϕ
R(Li) respects the border C(Li) ∩ C(Li+1), which means

C(Li) ∩ C(Li+1) ⊏ zoneϕ
R(Li).

The next step is to define when (K,≺) is a good order for N and borders (BL, BR).
Roughly speaking, (K,≺) is defined such that it allows to derive an admissible order
L1, . . . ,Lm of the leaves from L(N) and to define the zones for Li in (K,≺) for all i ∈ [m].
Moreover, it is required that the left zone of L1 respects the border BL, the right zone of
Lm respects the border BR, and the right zone of Li and the left zone of Li+1 respect the
border C(Li) ∩C(Li+1) for i ∈ [m− 1]. For example, in Figure 4.2 (zoneϕ(L3),≺ϕ) is a good
order for L3 and the borders ({v1, v2}, {v1, v2, v7, v8, v9}), (zoneϕ(Q1),≺ϕ) = (I9, . . . , I18) is
a good order for Q1 and for the borders ({v1, v2}, {v1, v2, v7}). Finally, the full definition of
good orders allows us to prove Theorem 4.6, which boils down the problem of searching for a
(C,H)-centered model of G to the problem of testing whether there is a “good triple” for the
set I ′ and the node R.

MFCS 2023

8:12 Recognizing H-Graphs – Beyond Circular-Arc Graphs

▶ Definition 4.5. Let N be a node of T and I⋆ ⊆ I ′. A triple (J ,J ′,≺) is good for the
set I⋆, the node N, and the borders (BL, BR), if:

{J ,J ′} is a partition of I⋆.
(J ,≺) is a good order for the node N and the borders (BL, BR),
J ′ ∪ D is a chain in (Ia,⊑).

If (BL, BR) = (∅, ∅), we simply say (J ,J ′,≺) is good for the set I⋆ and the node N.

With the notion of a good triple we obtain the following theorem that characterizes all
(C,H)-centered models of G.

▶ Theorem 4.6 (see the full version of this paper for the full proof). Let G be a graph.
1. For every (C,H)-centered model ϕ of G the triple (Iϕ

O, I
ϕ
S ∖ D,≺ϕ) is good for I ′ and

the node R.
2. For every triple (J ,J ′,≺) that is good for I ′ and the node R, there is a (C,H)-centered

model ϕ of G such that (J ,≺) = (Iϕ
O,≺ϕ) and J ′ ∪ D = Iϕ

S .

Our algorithm needs to test whether there exists a good triple for the set I ′ = comp(R).
Roughly speaking, this technical part is done as follows: first, we carefully define the sets
comp(N) ⊆ I ′ for every node N ∈ V (T) and then we compute good triples1 for every set
comp(N) using dynamic programming over T.

5 Butterfly-Graphs

Here we sketch an approach to proving Theorem 1.1. The main task is to show NP-hardness
of recognizing butterfly-graphs, where a butterfly is the graph consisting of two K3’s joined
on one vertex.

▶ Theorem 5.1. Butterfly-Graph Recognition is NP-complete.

It is easy to see NP-membership [10]. To show NP-hardness, we reduce from the Bipartite
2-Track; that is to decide whether a given bipartite graph G is 2-track. A graph G is
2-track if there are sets E1, E2 whose union is E(G) such that (V (G), E1) and (V (G), E2)
are interval graphs. Gonçalves & Ochem proved NP-hardness of this problem [15].

Construction: For a given bipartite graph G we construct a graph G′ that is a butterfly-
graph if and only if G is 2-track. Let S be a star K1,4 where every edge is subdivided once.
The vertex set V (G′) consists of V (S), a vertex wv for every vertex v ∈ V (G), an edge-vertex
wuv for every edge uv ∈ E(G) and V (S). The edge set E(G′) consists of

(
V (G)

2
)
, E(S) and

the edges of making wuv adjacent to w ∈ V (G) ∖ {u, v} for every edge uv ∈ E(G). Finally,
we add every edge between V (G) and V (S).

Given G the graph G′ can be constructed in polynomial time. It remains to show that G is
2-track if and only if G′ is a butterfly-graph. For the formal proof we refer to the full version
of this paper. Here we only sketch how we construct a butterfly-model of G′ provided G is a
bipartite 2-track (witnessed by interval models ϕ1 and ϕ2 of (V (G), E1) and (V (G), E2)). A
butterfly-model of G′ is obtained as follows (see Figure 5.1 for an illustration):

we embed ϕ1 and ϕ2 into a subdivision Hϕ of the butterfly as shown in Figure 5.1,
we represent the vertices of S in the center of Hϕ,
for v ∈ V (G) we represent wv by the set V (Hϕ) ∖ (ϕ1(v) ∪ ϕ2(v)) (see green set w2)
for uv ∈ E(G), we represent wuv by the set ϕi(u) ∩ ϕi(v) if uv ∈ Ei (see red set w23).

1 Since these sets might have exponential size, the algorithm calculates only their “fingerprints”.

D.Ağaoğlu Çağırıcı et al. 8:13

1

23

4

5

6 7

8

ϕ1

ϕ2

1

2

3

4

5

6

7

8

1 2 3

4 5

6

7

8

w78 w18 w12 w23 w36 w34 w45

w14 w27 w67 w56 w58

2 3

2

S

w2

Figure 5.1 A bipartite graph G (to the left) as a 2-track (red and blue edges) witnessed by
interval models ϕ1 and ϕ2 (in the middle), and a butterfly-model of G′ (to the right).

6 Conclusions

The question whether for a fixed graph H the class of H-graphs can be recognized in
polynomial time was posed by Biro, Hujter, and Tuza over 30 years ago [5]. The main results
of our work show that the boundary between polynomial and NP-hard cases of H-graphs
recognition lies somewhere between unicyclic graphs H, strictly above the class of circular-arc
graphs. The research carried out so far reveals connections between the H-graphs recognition
problems for unicyclic graphs H and certain problems related to the Helly property of
circular-arc graphs. The latter problems are now intensively studied [12] and the positive
results achieved so far allow us to state the following conjecture.

▶ Conjecture 6.1. The recognition of H-graphs is polynomial-time solvable if and only if H
is a unicyclic graph or H is a tree.

In particular, we believe that the techniques introduced in our work, suitably extended, can
be used to devise polynomial algorithms for the cases where H consists of a cycle and some
edges attached to it. The situation might be different when we allow to have trees attached
to the cycle in H. The difficulty might be caused by the lack of a data structure maintaining
all representations of a T -graph, where T is a tree different than a path (counterparts of
PQ-trees for interval graphs).

References

1 Deniz Ağaoğlu Çağırıcı and Petr Hliněný. Efficient isomorphism for Sd-graphs and T -graphs.
Algorithmica, 2022. doi:10.1007/s00453-022-01033-8.

2 Deniz Ağaoğlu Çağırıcı and Petr Hliněný. Isomorphism testing for T-graphs in FPT. WALCOM:
Algorithms and Computation, pages 239–250, 2022.

3 Deniz Ağaoğlu Çağırıcı and Peter Zeman. Recognition and isomorphism of proper U-graphs
in FPT-time. CoRR, abs/2206.13372, 2022. doi:10.48550/arXiv.2206.13372.

4 Vikraman Arvind, Roman Nedela, Ilia Ponomarenko, and Peter Zeman. Testing isomorphism
of chordal graphs of bounded leafage is fixed-parameter tractable (extended abstract). In
Michael A. Bekos and Michael Kaufmann, editors, Graph-Theoretic Concepts in Computer
Science - 48th International Workshop, WG 2022, Tübingen, Germany, June 22-24, 2022,
Revised Selected Papers, volume 13453 of Lecture Notes in Computer Science, pages 29–42.
Springer, 2022. doi:10.1007/978-3-031-15914-5_3.

5 Miklós Biró, Mihály Hujter, and Zsolt Tuza. Precoloring extension. i. interval graphs. Discret.
Math., 100(1-3):267–279, 1992. doi:10.1016/0012-365X(92)90646-W.

MFCS 2023

https://doi.org/10.1007/s00453-022-01033-8
https://doi.org/10.48550/arXiv.2206.13372
https://doi.org/10.1007/978-3-031-15914-5_3
https://doi.org/10.1016/0012-365X(92)90646-W

8:14 Recognizing H-Graphs – Beyond Circular-Arc Graphs

6 K. Booth and G. Lueker. Testing for the consecutive ones property, interval graphs, and
graph planarity using P Q-tree algorithms. J. Comput. System Sci., 13(3):335–379, 1976.
doi:10.1016/S0022-0000(76)80045-1.

7 K. S. Booth. Pq-tree algorithms, November 1975. URL: https://www.osti.gov/biblio/
7189564.

8 Steven Chaplick, Fedor V. Fomin, Petr A. Golovach, Dusan Knop, and Peter Zeman. Ker-
nelization of graph hamiltonicity: Proper H-graphs. SIAM J. Discret. Math., 35(2):840–892,
2021. doi:10.1137/19M1299001.

9 Steven Chaplick, Petr A. Golovach, Tim A. Hartmann, and Dusan Knop. Recognizing proper
tree-graphs. In Yixin Cao and Marcin Pilipczuk, editors, 15th International Symposium on
Parameterized and Exact Computation, IPEC 2020, December 14-18, 2020, Hong Kong, China
(Virtual Conference), volume 180 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.IPEC.2020.8.

10 Steven Chaplick, Martin Töpfer, Jan Voborník, and Peter Zeman. On H-topological intersection
graphs. Algorithmica, 83(11):3281–3318, 2021. doi:10.1007/s00453-021-00846-3.

11 Steven Chaplick and Peter Zeman. Combinatorial problems on h-graphs. Electron. Notes
Discret. Math., 61:223–229, 2017. doi:10.1016/j.endm.2017.06.042.

12 Jan Derbisz and Tomasz Krawczyk. Circular-arc graphs and the Helly property.
13 Fedor V. Fomin, Petr A. Golovach, and Jean-Florent Raymond. On the tractability of

optimization problems on H-graphs. In Yossi Azar, Hannah Bast, and Grzegorz Herman,
editors, 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018,
Helsinki, Finland, volume 112 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.30.

14 Fănică Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974. doi:10.1016/0095-8956(74)
90094-X.

15 Daniel Gonçalves and Pascal Ochem. On star and caterpillar arboricity. Discrete Mathematics,
309(11):3694–3702, 2009. doi:10.1016/j.disc.2008.01.041.

16 Lars Jaffke, O-joung Kwon, and Jan Arne Telle. Mim-width II. the feedback vertex set problem.
Algorithmica, 82(1):118–145, 2020. doi:10.1007/s00453-019-00607-3.

17 Haim Kaplan and Yahav Nussbaum. A simpler linear-time recognition of circular-arc graphs.
Algorithmica, 61(3):694–737, 2011. doi:10.1007/s00453-010-9432-y.

18 Pavel Klavík, Jan Kratochvíl, Yota Otachi, and Toshiki Saitoh. Extending partial rep-
resentations of subclasses of chordal graphs. Theor. Comput. Sci., 576:85–101, 2015.
doi:10.1016/j.tcs.2015.02.007.

19 Min Chih Lin and Jayme L. Szwarcfiter. Characterizations and linear time recognition of
Helly circular-arc graphs. In Computing and combinatorics, volume 4112 of Lecture Notes in
Comput. Sci., pages 73–82. Springer, Berlin, 2006. doi:10.1007/11809678_10.

20 Ross M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica, 37(2):93–147,
2003. doi:10.1007/s00453-003-1032-7.

21 Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM J. Comput., 5(2):266–283, 1976. doi:10.1137/0205021.

22 Alan Tucker. An efficient test for circular-arc graphs. SIAM J. Comput., 9(1):1–24, 1980.
doi:10.1137/0209001.

https://doi.org/10.1016/S0022-0000(76)80045-1
https://www.osti.gov/biblio/7189564
https://www.osti.gov/biblio/7189564
https://doi.org/10.1137/19M1299001
https://doi.org/10.4230/LIPIcs.IPEC.2020.8
https://doi.org/10.1007/s00453-021-00846-3
https://doi.org/10.1016/j.endm.2017.06.042
https://doi.org/10.4230/LIPIcs.ESA.2018.30
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1016/j.disc.2008.01.041
https://doi.org/10.1007/s00453-019-00607-3
https://doi.org/10.1007/s00453-010-9432-y
https://doi.org/10.1016/j.tcs.2015.02.007
https://doi.org/10.1007/11809678_10
https://doi.org/10.1007/s00453-003-1032-7
https://doi.org/10.1137/0205021
https://doi.org/10.1137/0209001

	1 Introduction
	1.1 Our results

	2 Preliminaries
	2.1 Graphs and posets
	2.2 M-graphs
	2.3 Interval and Circular-Arc Graphs

	3 (Helly) Medusa Graphs
	4 Lollipop Graphs
	4.1 Sketch of the proof of Theorem 4.1 (the first key step)
	4.2 Sketch of the proof of Theorem 4.2 (the second key step)
	4.3 Sketch of the proof of Theorem 4.3 (the third key step)

	5 Butterfly-Graphs
	6 Conclusions

