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In fusion plasma physics, the large-scale trajectories of energetic particles in magnetic confinement 
devices are known as orbits. To effectively and efficiently be able to work with orbits, the Orbit Weight 
Computational Framework (OWCF) was developed. The OWCF constitutes a set of scripts, functions and 
applications capable of computing, visualizing and working with quantities related to fast-ion (FI) orbits 
in toroidally symmetric fusion devices. The current version is highly integrated with the DRESS code, 
which enables the OWCF to compute and analyze the orbit sensitivity for arbitrary neutron- and gamma-
diagnostics. However, the framework is modular in the sense that any future codes (e.g. FIDASIM) can 
be easily integrated. The OWCF can also compute projected velocity spectra for FI orbits, which play a 
key role in many FI diagnostics. Via interactive applications, the OWCF can function both as a tool for 
investigative research but also for teaching. The OWCF will be used to analyze and simulate the diagnostic 
results of current and future fusion experiments such as ITER. The orbit weight functions computed 
with the OWCF can be used to reconstruct the FI distribution in terms of FI orbits from experimental 
measurements using tomographic inversion.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

In magnetic confinement fusion devices, such as tokamaks, the 
population of particles can be categorized into two sets; thermal 
and energetic [1]. In tokamaks of size similar to the Joint Euro-
pean Torus (JET, major radius ∼ 3 meters) [2], the following dis-
tinction can be made. If we take three times the thermal velocity 
as a threshold, 3vth, the energetic fast ions are ∼ 10 times more 
energetic than the thermal (bulk) ions. For a typical plasma tem-
perature of 1 − 10 keV (≈ 1 − 11 × 107 K), the lower limit for 
energetic particles should arguably be placed around 10 keV. In 
reality, the transition from thermal to fast is naturally continuous. 
Despite their relatively small population [3], fast ions can cause 
damage to first-wall components [4] and drive plasma instabili-
ties [5,6]. Fast ions also need to be confined for a sufficient length 
of time (several slowing-down times, i.e. slowing down from fast 
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to slow speeds) so as to heat the thermal ions and enable a self-
sustained plasma burn [4].

Because of their relatively low energy, the thermal ions stay 
mostly confined to the magnetic flux surfaces, while the fast ions 
have more exotic large-scale motion [7,3]. This motion is com-
monly referred to as a fast-ion orbit (FIO). Depending on the energy, 
starting position and angle of the particle velocity with respect 
to the magnetic field, the path of the FIOs can vary substantially. 
Therefore, it is of great importance to know how sensitive a di-
agnostic is to different FIOs, since various diagnosable particles 
or quanta (e.g. fusion-born neutrons and γ -rays) might originate 
more strongly from certain FIOs [3]. Depending on the heating 
scheme of the tokamak plasma, certain FIOs will be more popu-
lated than others [3] and the exact shape of the diagnostic signal 
is thus dependent on a multitude of factors, including the mag-
netic equilibrium (which determines the shape of the topological 
FIO regions in phase space) [8] and the heating scheme, as well as 
the density and temperature profiles of the fusion plasma [9].

By knowing the sensitivity of a plasma diagnostic in phase 
space, the diagnostic signal can be directly related to the fast-ion 
(FI) distribution, given the assumption of a linear relationship be-
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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Fig. 1. a) A basic building block of the OWCF. The script has some input data visualized as an ‘IN’ circle in the top-left corner. The script has some output data visualized as an 
‘OUT’ circle in the top-right corner. b) An illustration of script inter-dependency. Dotted circle means ‘optional’. Black dot means ‘depends on’, and the black line shows which 
file that contains required functions. These schematics are similar to the schematics of e.g. the Unified Modeling Language [29], but with the inter-block arrow schematics 
replaced by number ‘bubbles’ for clarity.
tween the signal and the FI distribution [10]. This can be expressed 
as the matrix equation

S = W F (1)

where S is the diagnostic signal, W is the weight matrix model-
ing the phase-space sensitivity for each measurement bin and F is 
the fast-ion distribution in phase space. As will be shown, equation 
(1) is one of the problems that our framework will help solve. The 
sensitivity of the FI diagnostic can be expressed with varying di-
mensionality depending on the phase space of interest. For exam-
ple, in velocity-space tomography [11–15], the sensitivity is two-
dimensional and can be expressed as a so-called weight function
of the parallel and perpendicular velocity components (v ||, v⊥) of 
the ion with respect to the magnetic field (or, equivalently, via the 
energy E and pitch p = v ||/v [16]). In terms of computational re-
sources, 2D weight functions are usually possible to compute on 
a regular laptop, for any phase-space grid resolutions of interest; 
in terms of both RAM and CPU power. For example, on an Intel(R) 
Core(TM) i7-8665U CPU @ 1.90 GHz laptop, single-thread comput-
ing 2D weight functions using the DRESS code [9] for the neu-
tron emission spectroscopy diagnostic TOFOR [17] with assumed 
80 measurement bins and a 400x200 (E,p) grid takes about 10 
minutes and requires roughly 1 GB of RAM (including all required 
input data). Assume we add another dimension that we discretize 
into N grid points. Then the computation time would be roughly 
N times as long. The RAM requirement would increase due to sev-
eral factors, e.g. the need to hold more synthetic diagnostic signals 
in memory as well as modeling the sightline of the fast-ion diag-
nostic in position space. This is because 2D weight functions can 
relate a diagnostic measurement to the FI distribution only at a 
single point (R, z) in position space [18,19,15,20–22], where R is 
the major radius cylindrical coordinate and z the vertical coordi-
nate. To be able to relate a measurement to the FI distribution at 
all (R, z) points via FIOs, three-dimensional so-called orbit weight 
functions (OWs) can be used [8,3,19,23]. The (E, pm, Rm) so-called 
orbit space is the 3D coordinate space of choice for the current 
version of the OWCF, due to its semi-bounded space and favora-
bility for tomographic reconstructions [3]. E is the energy of the 
fast ion and pm is the pitch at the maximum major radius position 
Rm of the fast ion as it traverses its orbit. All quantities computed 
with the OWCF can be mapped to the standard (E, μ, Pφ; σ) co-
ordinates (where μ is the magnetic moment, Pφ is the toroidal 
canonical angular momentum and σ is a binary coordinate). This 
provides the user with the flexibility to analyze and export com-
puted results in either (E, pm, Rm) or (E, μ, Pφ; σ) coordinates. 
This is useful for e.g. stability analysis, which is often performed in 
the (E, μ, Pφ; σ) coordinates. It should be mentioned that, in ad-
dition to OWs, other ways of relating a diagnostic signal to the full 
2

FI distribution exist. These include expressing the FI distribution 
in terms of a basis of slowing-down distribution functions [24,25]. 
For orbit-space grid resolutions of interest, 3D OWs usually need 
to be computed using a computational cluster to be able to com-
plete the calculation within a reasonable timeframe, due to both 
RAM and CPU requirements. Naturally, to be able to calculate, an-
alyze and work with these 3D OWs, a speed-optimized framework 
written in a high-performance programming language is useful. To 
this end, the orbit weight computational framework (OWCF) was 
developed.

In short, the OWCF is a collection of scripts, utilities, structures 
and functions written in the Julia programming language [26]. The 
efficient computation of guiding-center FIOs (where the finiteness 
of the Larmor radius is not taken into account), made possible by 
the Julia language, serves as the foundation for the framework. The 
OWCF provides answers to several questions, such as:

• How to compute orbit weight functions efficiently,
• How to analyze orbit weight functions effectively and intu-

itively,
• How to streamline transformations of arbitrary fast-ion distri-

butions into fast-ion orbits,
• How to investigate populatable fast-ion orbits for every (R, z)

point,
• How to compute synthetic diagnostic signals using orbit 

weight functions with an exceptionally large amount of orbit-
space grid points (> 100 × 100 × 100),

• How to decompose diagnostic signals into the contributions 
from fast-ion orbit types,

• How to streamline the possibility of reconstructing fast-ion or-
bit distributions from measurements.

Before being structured into a shareable framework, the tools 
of the OWCF have been used to develop and analyze orbit weight 
functions for neutron emission spectroscopy [8] and one-step 
gamma-ray spectroscopy diagnostics [3]. The tools have also been 
used to facilitate discussion of an optimal fast-ion diagnostics set-
up [27], and to analyze the most likely orbit-type constituents of 
a decrease in neutron measurements during a discharge in the JET 
deuterium-tritium campaign [28].

In addition, even though the OWCF is currently heavily inte-
grated with the DRESS [9] code for computing synthetic diagnostic 
neutron and γ -ray spectra, the OWCF maintains a modular ap-
proach towards synthetic diagnostics codes in general. This enables 
future codes to be easily integrated with the OWCF, for computing 
OWs via synthetic diagnostic FIO spectra.

This paper is structured as follows. In section 2, an overview of 
the OWCF is given. In sections 3 and 4, discussions on topologi-
cal maps and orbit weight functions are provided, respectively. In 
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Fig. 2. A graphical overview of the OWCF. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
5, the capability of the OWCF to transform between (E, pm, Rm)

and (E, p, R, z) is outlined and in section 6 the tools of the OWCF 
for decomposing diagnostic signals in terms of orbit types are pre-
sented. Finally, a conclusion follows in section 7.

It should be mentioned that the OWCF contains more utilities 
and tools than can be included in this paper. For a complete and 
detailed breakdown of the whole OWCF, the reader is referred to 
the manual included with the OWCF.

2. Overview of the OWCF

The OWCF comprises many scripts and file structures, and it is 
written almost entirely in the Julia programming language. It was 
chosen as a suitable language for the OWCF since it is high-level, 
3

yet maintains high-performance via efficient code compilation and 
execution [26].

To help the reader understand the structure of the OWCF, a ba-
sic building block of the framework has been visualized in Fig. 1a, 
and a basic relationship between different scripts has been visual-
ized in Fig. 1b. We can observe how the inputs and outputs form 
an I/O chain between the scripts, including optional inputs and 
integrated usage of dependencies. Together, this simple example 
serves as a basic illustration of the much larger system that is the 
full OWCF.

A graphical overview of the full OWCF is given in Fig. 2. There 
are four main groups of code (inside dotted lines): main scripts, 
apps, data and misc. The main scripts (colored purple) constitute 
the bulk of the computational tools of the OWCF. The apps pro-
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vide interactive analysis of computed quantities using web-based 
plotting. We shall explore the user interface and capabilities of 
the OWCF main scripts and apps in later sections. Furthermore, 
as we can observe in Fig. 2, there are five forms of basic input 
data for the OWCF: a magnetic equilibrium, a fast-ion (FI) distri-
bution in (E, p, R, z) coordinates, a diagnostic line-of-sight (LOS), a 
.cdf-file with TRANSP [30] discharge (shot) data and a .cdf-file with 
TRANSP NUBEAM [31] FI data. TRANSP is a 1.5D equilibrium and 
transport solver for interpretation and prediction of tokamak dis-
charges. Its simulations and results are widely used in the plasma 
physics community, thus making its output a natural basic data in-
put for the OWCF. NUBEAM is the FI module of TRANSP.

Because of its versatile set of tools, the OWCF can be used in a 
number of ways depending on the needs of the user. One integral 
part of the framework that is likely to be used by almost all users 
is the easy and efficient computation of topological maps.

3. Topological maps

Topological maps enable the user to easily interpret and an-
alyze computed quantities in 3D (E, pm, Rm) orbit space [7,32,
23,19,8] and 4D (E, p, R, z) guiding-center phase space. For each 
(E, pm, Rm) or (E, p, R, z) point, the corresponding guiding-center 
drift orbit is computed by solving the equations-of-motion [33]

Ẋ = p‖
γ m

B∗

B∗‖
+ εE∗ × cb̂

B∗‖
(2)

ṗ‖ = qE∗ · B∗

B∗‖
(3)

where Ẋ is the time derivative of the guiding-center particle posi-
tion, p‖ is the particle momentum parallel to the magnetic field, 
γ is the Lorentz factor, m is the particle mass, ε is an ordering pa-
rameter, c is the speed of light, b̂ is the unit vector in the direction 
of the magnetic field and q is the particle charge. B∗ and E∗ are 
the effective magnetic and electric fields, respectively, defined as

B∗ ≡ B + ε
cp‖
q

∇ × b̂ (4)

E∗ ≡ E − ε

q

(
p‖

∂b̂

∂t
+ mc2∇γ

)
(5)

where B is the magnetic field, E is the electric field and ∂b̂
∂t is 

the time derivative of the unit vector in the direction fo the 
magnetic field. The equations-of-motion are relativistic to enable 
users of the OWCF to work with particles with speeds close to 
c, e.g. runaway electrons [34,35]. Once the equations-of-motion 
have been integrated once poloidally, we can identify the FIO type 
for our phase-space point of interest. By identifying which parts 
of phase space correspond to the six basic types of FIOs (co-
passing, counter-passing, trapped, stagnation, counter-stagnation 
and potato) [8,3,36], we can identify topological regions and use 
them to gain further insight about the phase-space quantities. 
Topological maps also serve as a ‘discrete prism’ when splitting 
synthetic diagnostic signals into their orbit-type constituents, as 
we shall discuss in later sections.

3.1. (E, pm, Rm) orbit space

The computation of topological maps in orbit space is done by 
integrating equations (2), (3) for all of (E, pm, Rm) orbit space un-
til the particle has completed its orbit poloidally and then inferring 
the orbit type. The vertical starting point of the integration, zm is 
found by finding the minimum poloidal flux (or maximum, if the 
4

poloidal flux is decreasing towards the edge, depending on defini-
tion) for a given R = Rm . That is

zm = maxz(ψp(Rm, z)) ∀z ∈ [zaxis − dz, zaxis + dz] (6)

where ψp(R, z) is the poloidal flux as a function of R and z, zaxis is 
the vertical coordinate value of the magnetic axis and dz is an ar-
bitrary length within which the maximum ψp value is to be found 
with certainty. dz naturally varies depending on machine.

In addition to the six basic orbit types mentioned in the previ-
ous section, the OWCF also defines ‘lost’, ‘incomplete’ and ‘invalid’ 
orbits. Lost orbits are particle trajectories that, when obtained via 
integration of equations (2), (3), intersect the wall of the machine. 
Incomplete orbits are orbits that the integration algorithm cannot 
complete (for any reason e.g. numerical errors). Invalid orbits are 
(E, pm, Rm) coordinates that do not correspond to physically pos-
sible orbits. When examining the orbit-space topology, it makes 
most sense to look at slices of constant energy E , and not pm or 
Rm . This is because only slices of constant E contain all orbit types 
[8,3]. An overview of how the OWCF computes topological maps in 
(E, pm, Rm) orbit space is shown in Fig. 3.

In addition to topological maps, the OWCF also allows the 
user to compute maps of the poloidal and toroidal transit time 
in (E, pm, Rm) orbit space. This can be useful for e.g. examining 
magnetic equilibria in detail or resonances between particles and 
Alfvén eigenmodes [6,36].

The orbitsWebApp.jl (A4 in Fig. 2) can be used to interactively 
visualize the (E, pm, Rm) topological maps, poloidal and toroidal 
transit times. A screenshot of the web application can be seen in 
Fig. 4. We can see how the web application also visualizes the cur-
rent pm , as well as a top-view and a poloidal projection of the 
orbit trajectory for the current (E, pm, Rm) coordinate. In the plot 
of the toroidal transit time τt (middle-left plot), it is interesting 
to note the narrow curved region of relatively large values of τt . 
This corresponds to trapped orbits that, due to the specific mag-
netic equilibrium, precess toroidally approximately as much in the 
co-current as in the counter-current direction. With the orbitsWe-
bApp.jl web application, the user can change the values of the 
E , pm and Rm sliders interactively and analyze (E, pm, Rm) orbit 
space in real-time. (E, μ, Pφ; σ) constants-of-motion space (where 
μ is the magnetic moment, Pφ is the toroidal canonical angular 
momentum and σ is a binary coordinate) can be examined via a 
toggle button. This switch has been illustrated in Fig. 5.

3.2. (E, p, R, z) phase space

The OWCF can also compute maps for the orbit topology, 
poloidal and toroidal transit time in (E, p, R, z) phase space, via 
the calcEpRzTopoMap.jl main script (M1 in Fig. 2). Topological 
maps for (E, p, R, z) phase space are useful when the user would 
like to know which orbit types pass through a certain (R, z) point, 
what the (E, p) topological map looks like and how that changes 
from one (R, z) point to another.

Data computed in (E, p, R, z) phase space can be visualized 
using the EpRzWebApp.jl (A3) web application, as illustrated in 
Fig. 6. We can observe how, at the (R, z) point of interest, the valid 
orbits consist mostly (> 80%) of co- and counter-passing orbits. At 
pitch values close to zero, the valid orbits are exclusively trapped 
orbits for all energies.

The EpRzWebApp.jl web application is envisioned to assist fast-
ion diagnostics that observe small (compared with minor radius) 
measurement volumes, e.g. fast-ion D-α diagnostics, in determin-
ing which orbit types are able to produce signals at given (R, z)
points. Several other usage areas can also be imagined, such as for 
teaching and a deeper insight into the populated orbits for a fast-
ion distribution given in (E, p, R, z) coordinates. For example, it 
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Fig. 3. A graphical overview of the process by which the OWCF computes topological maps for the (E, pm, Rm) coordinate space. All the energy slices (E1, E2, ..., En) are 
computed sequentially and then put together into a 3D topological map of the whole (E, pm, Rm) coordinate space.
can be imagined how students can use the OWCF apps to perform 
numerical experiments by modifying the orbit parameters interac-
tively. This could provide a quick and effective way of teaching FIOs 
and orbit-space topologies, and help the students faster develop an 
intuition for FIOs and FIO-related quantities.

4. Orbit weight functions

Orbit weight functions (OWs) quantify how sensitive a diagnos-
tic is to different fast-ion drift orbits. OWs are arguably one of the 
main features of the OWCF. Hence, the discussion concerning OWs 
will be given extra care, and it has therefore been split into two 
subsections: computation and visualization.

4.1. Computation

The computation of OWs is done via the calcOrbWeights.jl
main script (M2 in Fig. 2). As has been discussed in [8,3,23], the 
process of computing orbit weight functions in (E, pm, Rm) orbit 
space can be mathematically expressed as

w(E1,d, E2,d)

= 1

4π2τp

2π∫ 2π∫ τp∫
S(E1,d, E2,d, E, pm, Rm, t, γ ,φ0)dtdγ dφ0 (7)
0 0 0

5

where w(E1,d, E2,d) is the orbit weight function for the diagnos-
tic measurement bin with lower and upper limits E1,d and E2,d

respectively. τp is the poloidal transit time of the orbit, S is the 
expected measurement signal of the orbit, t is time, γ is the gyro-
angle and φ0 is the initial toroidal angle of the orbit. The orbit 
weight function is the expected signal of an orbit averaged over all 
reducible coordinates [23,19].

The calcOrbWeights.jl main script computes orbit weight func-
tions using equation (7) while also taking the geometry of the 
diagnostic line-of-sight (LOS) into account. When computing OWs 
for e.g. neutron emission spectroscopy [37] or gamma-ray spec-
troscopy [38,39] by coupling the OWCF to the DRESS code, there 
are several fusion reactions for the user to choose between. The 
following fusion reactions are currently supported by the OWCF 
(via DRESS) [40,41]:

• D + D → n (2.45 MeV) + 3He (0.82 MeV)
• D + T → n (14.1 MeV) + 4He (3.5 MeV)
• D + 3He → p (14.7 MeV) + 4He (3.6 MeV)
• T + p → γ (19.8 MeV) + 4He

Please note however, that any other fusion reaction can be 
added to the list, by simply implementing the required cross-
sectional data. Also, please note that the fusion-product proton 
from the D(3He,p)4He reaction has a non-zero charge. The pro-
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Fig. 4. A screenshot of the orbitsWebApp.jl web application for interactively visualizing FIOs, topological maps, poloidal and toroidal transit time maps in (E, pm, Rm) orbit 
space and (E, μ, Pφ; σ) constants-of-motion space. ‘τp(7.6, 0.26) = 13.5 microseconds’ means that τp at (Rm, pm) = (7.6 m, 0.26) is 13.5 microseconds.
ton trajectory would therefore have to be followed post-fusion to 
enable diagnostic investigation. As of the current version of the 
OWCF, this is not implemented. Instead, the resulting proton en-
ergy distribution for the plasma as a whole is returned (assuming 
4π emission, i.e. ignoring any diagnostic LOS input). In future ver-
sions of the OWCF, implementation could utilize e.g. the methods 
developed in [42].

When computing OWs numerically, the temperature and den-
sity profiles of the thermal (slow) particle species in the fusion 
reaction must be specified. With the OWCF, they are specified as 
functions of ρpol ,

ρpol =
(

ψp − ψp,axis

ψp,sep − ψp,axis

)1/2

, (8)

where ψp is the poloidal magnetic flux function, ψp,axis is the 
value of ψp at the magnetic axis and ψp,sep is the value of ψp

at the plasma separatrix. If no profiles are specified, the OWCF will 
use default (re-scalable) profiles. These are illustrated in Fig. 7.

Continuing, calcOrbWeights.jl also gives the user the option of 
computing weights binned into projected velocities u instead of 
6

e.g. neutron or gamma-ray energies. The projected velocity of a 
fast-ion can be written as [11]

u = v || cosφ + v⊥ sinφ cos�, (9)

where v || and v⊥ are the fast-ion velocity components parallel and 
perpendicular to the magnetic field, respectively. φ is the observa-
tion angle between the line-of-sight and the magnetic field vector 
and � is the gyrophase [43]. The projected velocity is a good proxy 
for spectral fast-ion diagnostics since it reflects essential features 
of the spectrum formation, due to the conservation of energy and 
momentum in a fusion reaction [11]. u is an analytic measure of 
the sensitivity of a diagnostic in the sense that u does not require 
any thermal density and temperature data. When u has been com-
puted, a value of w is added to its corresponding velocity bin. The 
binning weights w are

w = τp

τp

�φ

2π
, (10)

where τp/τp is the fraction of the total poloidal transit time for 
the FIO spent at the point of interest, � is the solid angle of the 



H. Järleblad, L. Stagner, M. Salewski et al. Computer Physics Communications 294 (2024) 108930

Fig. 5. An example of how the OWCF can be used to map a) topological regions and b) poloidal transit times (τp ) from (E, pm, Rm) orbit coordinates to (E, μ, Pφ; σ)

constants-of-motion coordinates. The slices in b) correspond to the same energy slices as in a). We can observe how the apparent size of the topological regions change 
between the phase spaces. σ = −1 corresponds to counter-going (counter-current) orbits and σ = +1 corresponds to co-going (co-current) orbits. The lost region (brown) 
was not included for the poloidal transit times.

-

diagnostic viewing cone voxel and φ/2π is the toroidal angle 
fraction that the diagnostic viewing cone voxel of interest occu-
pies. As mentioned earlier, the finiteness of the Larmor radius is 
not taken into account by the OWCF. The process of creating the 
resulting projected velocity spectrum has been illustrated in Fig. 8. 
Let ui, j denote the projected velocity of sample j from gyro-center 
i. In Fig. 8: A© Two samples (yellow), with projected velocities u1,1
and u1,2, along the gyro-orbit of the same guiding-center (red) end 
up in the same u-bin, even though u1,1 = u1,2. This is because of 
the finite discretization of u, and u1,1 ≈ u1,2 so the samples end up 
in the same bin. B© A sample with u = v‖,1 cosφ. Because of cos �

in eq. (9), not many samples end up here. C© Samples from both 
gyro-centers can end up in this bin. From the first point because 
of up-shift from v‖,1 cosφ and from the second point because of 
down-shift from v‖,2 cosφ, where v‖,1 < v‖,2. D© Again, because of 
cos� a lot of samples will end up here, from both gyro-centers. 
E© A sample with v‖,2 cosφ. F© Even though this sample is out-

side of the LOS, the OWCF still includes it in the binning, since its 
guiding-center is inside of the LOS.
7

4.2. Visualization

The orbit weight functions can be visualized with the weightsWe
bApp.jl web application (A7 in Fig. 2). With the OWCF, the orbit 
weight functions can be visualized both as a (Ed, E, pm, Rm) 4D 
matrix or as an equivalent (Ed, E, μ, Pφ; σ) 5D matrix. In Fig. 9, 
we can see a screenshot of the weightsWebApp.jl (A7) web appli-
cation. We can observe how the S and WF signals match, verifying 
that the orbit weight functions are an accurate model of the di-
agnostic [11]. We can also observe how the product of the weight 
function (top-right plot) and the fast-ion distribution (middle-left) 
result in a detailed view of where the diagnostic signal is likely to 
have originated in orbit space (middle-right).

Another way of thinking about OWs is: given an orbit with the 
coordinate (E, pm, Rm), what is the expected signal? What signal is 
that particular orbit likely to produce? To answer these questions, 
the user can employ the weightWebApp.jl web application (A8 in 
Fig. 2, also please note the singular form weight in the name). The 
user can scan the valid orbits of orbit space and examine what 
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Fig. 6. A screenshot of the EpRzWebApp.jl web application for interactively visualizing FIOs and topological maps in (E, p, R, z) orbit space. The app controls have been 
omitted for brevity. The top right bar plot shows the populatable orbits at (R, z) as fractions. The bottom right plot shows the evolution of pitch as the fast ion traverses the 
FIO. JET discharge 96100 at 13 s.
Fig. 7. The default bulk temperature and density profiles used by the OWCF, in case 
the user provided none. ρpol is the normalized poloidal flux coordinate as defined 
in (8). The profiles are based on the temperature and density profiles of JET shot No 
96100 at 13 seconds.

their expected signals look like. In Fig. 10, we can observe how 
the user can examine the expected signals for various orbits and 
orbit types by changing the (E, pm, Rm) coordinate with the slid-
ers. In Fig. 10, the trapped orbit in focus has both its ‘banana tips’ 
inside the vertical sightline of the diagnostic, resulting in a double-
humped expected signal, plotted in the top-left plot.

5. Transforming to orbit space

A guiding-center fast-ion distribution f can be equivalently pa-
rameterized in several different sets of coordinates. The fast-ion 
data from TRANSP (D5 in Fig. 2) is given on an irregular grid spi-
raling outwards from the magnetic axis, as shown in Fig. 11. To 
ultimately transform the fast-ion distribution to (E, pm, Rm) orbit 
space, the OWCF first transforms the data onto a rectangular grid 
in (E, p, R, z) coordinates by creating a Delaunay tessellation for 
the spiral (R, z) grid [44,19] and then utilize linear barycentric in-
terpolation [45]. The barycentric weights used by the OWCF has 
been chosen as suggested by [46]. That is,
8

Fig. 8. An illustration of the computation of projected velocity u spectrum by the 
OWCF. The orbit trajectory is depicted as a pink line.

μ(R, z, R j, z j) = λ(R, z, R j, z j)

3∑
j=1

λ(R, z, R j, z j)

(11)

with

λ(R, z, R j, z j) = 1

(R − R )2 + (z − z )2
, (12)
j j
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Fig. 9. A screenshot of the weightsWebApp.jl web application for interactively visualizing orbit weight functions. The app controls have been omitted for brevity.

Fig. 10. A screenshot of the weightWebApp.jl web application for interactively visualizing orbit weight functions. The top left-hand plot shows the expected signal for the 
orbit visualized in the bottom plots. The app controls have been omitted for brevity.
9
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Fig. 11. An example of a Delaunay tesselation performed on TRANSP fast-ion dis-
tribution data known only at discrete, irregular (R, z) points. The energy E and 
pitch p dependency of the distribution was integrated out to enable illustrative 
plotting, i.e. f (Ri , zi) =

∫
f (E, p, Ri , zi)dEdp. f (Ri , zi) was then normalized so that 

max( f (Ri , zi))= 1.0 to enable clean plotting. The true maximum value of f (Ri , zi)

is shown in the plot title as max( f (Ri , zi))=1.0.

where (R j, z j) are the individual coordinates of the three vertices 
of the Delaunay triangle containing the query point (R, z). Query 
points outside of the Delaunay tessellation will be treated with 
nearest neighbor extrapolation, followed by forcing all f (E, p) out-
side of the separatrix to be identically zero.

With f (E, p, R, z) obtained from the TRANSP data, the fast-ion 
distribution in (E, pm, Rm) orbit space can be obtained via Monte-
Carlo sampling. This is done as follows. The 4D (E, p, R, z) array is 
‘spaghettified’ into a 1D vector. The cumulative sum vector is then 
computed and an evenly distributed random number between 0
and the last cumulative sum vector element is drawn. The corre-
sponding element in the vector is identified, as well as the per-
taining (E, p, R, z) coordinate. The FIO is then computed and the 
(E, pm, Rm) coordinate of the FIO is identified. This is done for a 
sufficient number of Monte-Carlo samples and the f (E, pm, Rm)

distribution is obtained. The f (E, p, R, z) → f (E, pm, Rm) process 
has been visualized in Fig. 12. Other methods of transforming 
f (E, p, R, z) → f (E, pm, Rm) might be integrated in the OWCF in 
updated versions of the framework. This is discussed in the future 
work section of this paper.

6. Orbit constituents of diagnostic signals

With the OWCF, the user can also decompose synthetic di-
agnostic signals into orbit type constituents, to investigate what 
fractions of orbit types are most likely to have produced a certain 
diagnostic measurement. Mathematically, this can be expressed as 
[3]

W F =
∑

h

Wh Fh, (13)

where ‘h’ stands for the different orbit types (co-passing, trapped 
etc). To investigate the dependency on (E, pm, Rm) in terms of or-
bit types, we can further expand (13) as

∑
Wh Fh =

∑∑
Wh,E Fh,E (14)
h h E

10
=
∑

h

∑
pm

Wh,pm Fh,pm (15)

=
∑

h

∑
Rm

Wh,Rm Fh,Rm (16)

where e.g. Fh,E is the fast-ion distribution for a particular orbit 
type h at a certain fast-ion energy E .

To compute these kinds of signal splits, the user can employ 
the ps2WF.jl (M6 in Fig. 2) main script. In addition to being able 
to compute orbit split signals, the ps2WF.jl tool can also compute 
W F signals for ultra high-resolution grids in orbit space. That is, 
grids that consist of tens of millions of valid orbits and that require 
a computational cluster to compute within a reasonable timeframe 
(minutes instead of hours, assuming one orbit takes ∼ 1 ms to 
compute). These kinds of grids can be useful when the S = W F
identity needs to be validated. S is the synthetic signal from e.g. a 
regular Monte-Carlo code and the validity of the OWs depends on 
the perfect match between the W F vector and the S vector. For 
too coarse grids, the identity S = W F will likely not hold. This is 
because accurate representation of the orbit-space sensitivity (i.e. 
W ) of the diagnostic requires a discretization of (E, pm, Rm) orbit 
space with a sufficiently high resolution.

The resulting output of the ps2WF.jl script can be visualized 
using the signalWebApp.jl (A6 in Fig. 2) web application. This has 
been illustrated in Fig. 13. We can observe how the OWCF predicts 
that about 60% of the measurement signal in the 2500 keV mea-
surement bin (indicated by a red dot in the top row left-hand plot) 
is likely to have originated from co-passing orbits (top row right-
hand plot)and about 20% from stagnation orbits. The OWCF also 
shows that stagnation orbits are more likely to have contributed 
to the measurement signal than trapped orbits, for fast-ion en-
ergies above approximately 250 keV (second row plot). This is 
because the fast-ion distribution is likely to consist of more stagna-
tion orbits than trapped orbits above that energy (third row plot), 
and because this particular diagnostic sightline (oblique sightline 
in JET) is more sensitive to stagnation orbits than trapped orbits 
above the same energy level, approximately (bottom row plot).

Furthermore, if a simple overview of the orbit-type constituents 
of a diagnostic signal is sought, the OWCF provides quick and easy-
to-use tools in gui.jl (E3 in Fig. 2) that can decompose a synthetic 
diagnostic signal into orbit-type origin, as shown in Fig. 14. We 
can observe how the diagnostic signal is likely to have originated 
mostly from co-passing orbits and about a third from trapped or-
bits. To know the likely orbit-type origin of diagnostic signals can 
be useful when e.g. verifying certain heating schemes, such as the 
three-ion heating scheme [47]. It can also be useful when inves-
tigating the likely orbit types of the birth distribution of alpha 
particles in future burning plasmas.

7. Conclusion

The OWCF is a framework of scripts, functions, routines and 
apps that combine to enable computation, visualization and 
analysis of fast-ion orbits and quantities in (E, pm, Rm) (or-
bit space) (E, μ, Pφ; σ) (constants-of-motion) and (E, p, R, z)
(guiding-center) coordinates, such as orbit weight functions and 
fast-ion distribution functions. It is written in the Julia program-
ming language to enable efficient computation of fast-ion orbits, 
pushing the computation time down to ∼ 1 ms (deeply passing 
∼ 1 ms, marginally trapped ∼ 3 ms). With the OWCF, the user can 
compute topological maps of the different orbit types and view 
them in any of the supported coordinate spaces. The topological 
boundaries can then be superimposed onto e.g. orbit weight func-
tions to analyze the sensitivity of fast-ion diagnostics to different 
orbit types. The orbits and orbit-space quantities can be visualized 
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Fig. 12. An example of f (E, p, R, z) → f (E, pm, Rm). In a) the f (R, z) distribution has been illustrated, where the E- and p-dependences have been integrated out. In b) the 
opposite is shown, i.e. f (E, p). In c) the resulting fast-ion distribution in orbit-space f (E, pm, Rm) has been split into slices of constant E .
interactively via the OWCF web applications, where fast-ion or-
bits are computed in real-time based on the user’s controls, made 
possible by highly optimized guiding-center codes [44,48].

The OWCF has been designed to be modular in terms of syn-
thetic diagnostics codes. In addition to the already integrated 
DRESS code, future codes such as FIDASIM can be added to the 
OWCF framework by simply altering a few lines of code in the 
OWCF.

Furthermore, the OWCF also contains tools for splitting syn-
thetic diagnostic signals into their likely orbit-type constituents. 
This can be analyzed at varying levels of detail, depending on the 
needs of the user.

Tools that allow for transforming quantities between (E, pm,

Rm), (E, μ, Pφ; σ) and (E, p, R, z) are incorporated into the OWCF. 
This enables the user to compute orbit-related quantities in one 
coordinate space and analyze them in any of the other supported 
spaces.

Future work for the OWCF includes continuing to make the 
scripts and apps more user-friendly by improving their efficiency 
and speed, making the OWCF compatible with additional forward 
models and computational cluster architectures, as well as adding 
further transformation capabilities to be able to transform more 
efficiently back and forth between (E, pm, Rm), (E, μ, Pφ; σ) and 
(E, p, R, z). Such capabilities include the methods developed by 
[49] and [50], that transforms via grid-optimized automatic dif-
ferentiation and marker distributions, respectively.

Finally, the versity and standard of the OWCF will provide a 
useful and easy-to-use toolbox for understanding the complexity 
of fast-ion orbits in tokamaks. It will help pave the way for future 
tomographic reconstructions of the fast-ion distribution using orbit 
11
weight functions, and contribute to the realization of fusion as a 
virtually limitless source of sustainable energy.
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Fig. 13. An example screenshot of the signalWebApp.jl (A6) web application. The user controls have been omitted for brevity. JET shot 94701 at 10.8 seconds, TRANSP ID V01.

Fig. 14. An example of a) a diagnostic signal W F split into its orbit-type constitutents. In b) the signal amplitude has been set to 1.0 for all diagnostic measurement bins, to 
allow the orbit-type fractions to be examined in detail. The absolute and normalized diagnostic signal has been superimposed for reference in a) and b), respectively.
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