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Summary
We introduce a strategy preventing the occurrence of spurious modes in the
spectrum computed by linearized buckling analysis in the context of topology
optimization. Spurious buckling modes may appear in low density regions, a
well-known and largely discussed phenomenon. However, localized modes may
also appear in solid areas, where stress concentrations occur. This second phe-
nomenon, which is due to the inherent limitations of the linearized buckling
analysis when used for complex stress states, is hardly addressed in the topol-
ogy optimization literature. The remedy we propose makes use of elementary
operations in the topology optimization framework: filtering and erosion, but
now applied to the stress field. We show how this simple strategy helps miti-
gating the occurrence of spurious modes, in turn regularizing the optimization
process towards high performance designs, which are then verified by nonlinear
analysis.

K E Y W O R D S

filtering methods, linearized buckling, stress regularization, topology optimization

1 INTRODUCTION

We introduce a regularization strategy for avoiding, or at least mitigating, the spurious buckling modes phenomenon,
arising when linearized buckling analysis (LBA) is used to enforce structural stability in continuum topology optimiza-
tion (TO).

LBA is a well-established method for computing approximations to the buckling load factors (BLFs) and buckling dis-
placements of a structural assembly.1 When pre-buckling displacements are small, and a structural length scale is defined,
LBA proves very effective. Outside such assumptions, its limitations become apparent, and the accurate evaluation of
structural stability requires explicit modeling of the geometric and material nonlinearities.2,3 This results in a nonlinear
buckling analysis, which, despite its accuracy, is much more time-consuming4 and introduces other complications when
applied to TO.5,6 Therefore, LBA is still the most popular tool for including structural stability criteria within topology
optimization, and to date it is the only one which has been pushed to large-scale applications.7-9

Accounting for buckling inherently complicates the TO problem formulation and solution process.10 Besides the com-
putational burden due to the repeated solution of the buckling eigenvalue problem,9 and the competition between stiffness
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FERRARI and SIGMUND 4119

and stability demands, which complicates the optimization task especially in bending-dominated configurations,11,12 the
most acknowledged difficulty is perhaps the onset of spurious buckling modes during the optimization.

Spurious modes in low-density regions are characterized by having a high amount of the overall strain energy located
over design regions with low relative density.13 This is a well-known issue, both for vibrations and buckling TO problems,
and much research has been devoted to its cure. The most common remedy is to properly tailor the material interpolations
for stiffness and inertia (for vibrations problems), or stress (for buckling problems).14-18 Other proposed remedies are
based on ad-hoc shifting strategies for the eigensolver,11,13 or the removal of low-density elements from the computational
grid.19,20 Non-physical deformations happen also in geometrically nonlinear analysis, where can be solved using linear
modeling for the low-density elements,21,22 or when modelling contact by a “third-medium approach”,23 where can be
solved by penalizing bending-like deformations.24

A more subtle phenomenon is the appearance of very localized buckling modes in solid regions. These, which are by
no means linked to the presence of intermediate densities, further localize as the mesh is refined, and are not observed
in a nonlinear analysis performed with an appropriate hyperelastic material model.25 Also, compared to the low-density
ones, these localized modes are more difficult to characterize. Methods currently used for such identification generally
look at the ratio of the average and maximum values of the modal displacement26,27 (or of its spatial gradient28), as this
will suddenly drop when a mode becomes localized. In reality, these regions will reach a limit stress before the onset of
geometrically-related instabilities, calling for the modeling of the material failure. Therefore, in the linearized modeling of
stability these localized modes should also be treated as non-physical artifacts, originating from the lack of a length scale in
a continuum model, and the resulting stress localization. Until a decade ago, this second phenomenon was not mentioned
by most of the works on buckling TO, likely because it was overshadowed by the earlier-acknowledged, low-density
modes. In recent years, several authors have encountered these localized modes in solid regions while solving buckling
TO problems on very fine discretizations, starting from the 3D cantilever design obtained by Dunning et al.,8 then the
intricate design subjected to shear analyzed by Ferrari and Sigmund,12 and more recently also by Russ and Waisman.26

We aim at retaining the LBA as a cheap analysis, useful for evaluating the stability of a design with well-defined
structural features; thus we propose a strategy that overcomes its limitations when applied to continuum-like material
distributions appearing in the early-stages of TO. The method consists of regularizing the stress field entering the buck-
ling eigenvalue problem, by applying filtering and projection operations. Doing so, we simultaneously alleviate stress
concentrations, and achieve a slight erosion of the stress field within the regions where the stiffness has developed a high
value.

The mitigation of high stress gradients is due to the filtering operation, and this suffices to remove the highly localized
buckling modes happening in the solids, or at least to shift them to higher eigenvalues. However, using stress filtering
alone has some shortcomings when considering a design with intermediate densities, as spreading the stress field over
regions with low stiffness may potentially worsen the phenomenon of low-density modes. Therefore, combining filtering
and projection results in a much more stable and flexible strategy, simultaneously achieving: (1) the removal of highly
localized buckling modes in the solid, due to the stress filtering, (2) the removal of spurious modes in the low-density
regions, by eroding the stress field within the solid boundaries, and (3) mitigates the competition between stiffness and
buckling demands in the early stages of the optimization, thus stabilizing convergence towards a well-defined structural
configuration.

The remainder of the manuscript is organized as follows. Section 2 reviews the density-based TO formulation used,
and in Section 3 we show the occurrence of spurious buckling modes in the solid, introducing a rational measure for their
characterization. The removal of these modes from the computed set, by stress filtering, is demonstrated in Subsection 4.1.
Then, Subsection 4.2 discusses the overall stress regularization idea, combining stress filtering and erosion. The proposed
strategy is tested on the buckling strength maximization problem, considering two popular TO benchmark examples, and
compared to the “standard” procedure. The optimized designs are then post-evaluated by considering geometrical and
material nonlinearities, verifying their good performance, in Subsection 5.3. Final remarks are given in Section 6, and
details about stress filtering, and its shortcomings when used alone in the TO process, are discussed in Appendix A.

2 TOPOLOGY OPTIMIZATION SETUP

We aim at best distributing a given amount of material within a design domainΩ, by using density-based TO.18 The solid
domain geometry is parametrized by the relative density field �̂�(x) ∈ [0, 1], linked to the design field 𝜌(x) ∈ [0, 1] by the
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4120 FERRARI and SIGMUND

two operations

�̂�(x) = (𝜂
𝜌

,𝛽

𝜌

)[�̃�(x)] =
tanh 𝛽

𝜌

𝜂
𝜌

+ tanh 𝛽
𝜌

(�̃�(x) − 𝜂
𝜌

)
tanh 𝛽

𝜌

𝜂
𝜌

+ tanh 𝛽
𝜌

(1 − 𝜂
𝜌

)
(1)

�̃�(x) = r𝜌min
∗ 𝜌(x) = 1

|k(x, 𝝃)| ∫Ω
k(x, 𝝃)𝜌(𝝃) dx (2)

Equation (2) is the so-called density filtering:29,30 a linear convolution of 𝜌(x)with the operator r𝜌min
, which is defined

by the linearly decaying kernel k(x, 𝝃) = max{r𝜌min − ||x − 𝝃||2, 0}, where r𝜌min > 0 is the filter radius. Then, (1) applies
to the filtered field �̃�(x) the relaxed Heaviside function with inflection point at 𝜂

𝜌

∈ [0, 1] and curvature governed by
𝛽
𝜌

∈ [1,∞). Hereafter, this will be referred to as the 𝜂-projection,31 and its effect is to push values �̃�(x) < 𝜂
𝜌

closer to zero,
and values �̃�(x) > 𝜂

𝜌

closer to one, thus obtaining a sharper relative density field �̂�(x).
The material properties of the system depend on the relative density �̂�(x) through interpolation functions.32 For the

application at hand, we need to consider the interpolation of the stiffness, say i
𝜅

[�̂�(x)], and the one for the stresses, say
i
𝜎

[�̂�(x)], whose specific form will be given in Section 5.

2.1 Discretization and definition of the response quantities

We consider a uniform discretization of Ω ≈ Ωh = ∪m
e=1Ωe, consisting of m equi-sized elements Ωe, and a centroid-based

discretization for 𝜌, �̃� and �̂�. Equations (1) and (2) read

�̂�e = (𝜂
𝜌

,𝛽

𝜌

)[�̃�e] =
tanh 𝛽

𝜌

𝜂
𝜌

+ tanh 𝛽
𝜌

(�̃�e − 𝜂𝜌)
tanh 𝛽

𝜌

𝜂
𝜌

+ tanh 𝛽
𝜌

(1 − 𝜂
𝜌

)
(3)

�̃�e =
∑

i∈e
kei𝜌i

∑
i∈e

kei
(4)

wheree is the set of points for which ||xi − xe||2 ≤ r𝜌min and kei = k(xe, xi) = r𝜌min − ||xe − xi||2 is the linearly decaying
weighting.

The volume fraction and its sensitivity are given by

vf (�̂�) =
1
m

m∑

e=1
�̂�e, 𝜕

�̂�e vf (�̂�) =
1
m

(5)

whereas the compliance due to a given load vector f, and its sensitivity read

c(�̂�) = fTu, 𝜕
�̂�e c(�̂�) = −uT(𝜕

�̂�e K(�̂�))u = −(𝜕�̂�e i𝜅[�̂�e])uT
e K0ue (6)

where u = K−1(�̂�)f, is the pre-buckling equilibrium displacement. In the rightmost expression of (6) we used that �̂�e is
locally defined on each element Ωe, and that the stiffness matrix K(�̂�) is assembled from the elemental contributions
Ke = i

𝜅

[�̂�e]K0, where K0 is the constant matrix corresponding to the Young modulus E0 and Poissons’ ratio 𝜈, of the solid
material.

The non-dimensional stresses (i.e., strain combinations33) are computed as

𝝈0
e =

E0

1 − 𝜈2

⎡
⎢
⎢
⎢
⎣

1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2

⎤
⎥
⎥
⎥
⎦

Bue (7)

where B is the linearized strain-displacement matrix. Equation (7) gives the physical stress only for �̂�e = 1 (i.e., on solid
regions); otherwise, this must be obtained through interpolation

𝝈e = i
𝜎

[�̂�e]𝝈0
e (8)
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FERRARI and SIGMUND 4121

We remark that also stresses are given a centroid-based discretization, and therefore (7) and (8) imply 𝝈0
e = 𝜎0(xe) and

𝝈e = 𝜎(xe).
The element stress stiffness matrix is computed as

Ge(�̂�e,𝝈e) = i
𝜎

[�̂�e]Ge(𝝈0
e ) = i

𝜎

[�̂�e]
∫Ωe

BT
1 T[𝝈0

e ]B1 dΩe (9)

where we assume that the same interpolation i
𝜎

is used for each stress component. The form of T[𝝈0
e ] is given in Reference

28, and we point out that each element matrix depends on local stresses.
The buckling load factors and the associated buckling modes (𝜆i,𝝋i) are computed by solving the generalized

eigenvalue problem

[G(�̂�,𝝈) + 𝜇iK(�̂�)]𝝋i = 0 , 𝝋i ≠ 0 (10)

where 𝜇i = 1∕𝜆i can be seen as the “wavelength” associated with each buckling mode. The sensitivity of each 𝜇i with
respect to the relative density reads12,34

𝜕
�̂�e𝜇i = −𝝋T

i
[
𝜕
�̂�e G(�̂�, ⋅) + 𝜇i𝜕�̂�e K(�̂�)

]
𝝋i +wT

𝜕
�̂�e K(�̂�)u (11)

where w = K−1[𝝋T
i (∇uG(⋅,𝝈))𝝋i] is the adjoint vector.

Finally, the gradients with respect to the design variables 𝜌e are computed by using the inverse relationship to (2) and
(1), namely

𝜕
𝜌e f =

∑

i∈e

kei(𝜕�̃�e �̂�e)(𝜕�̂�e f )

where f may either be c, 𝜇i or vf , and the expression for 𝜕
�̃�e �̂�e can be found in References 9,35.

3 CHARACTERIZATION OF THE LOCALIZED BUCKLING MODES IN
SOLIDS

In this section, we demonstrate how spurious localized buckling modes appear in a simple solid column, and we introduce
a measure of non-locality for their characterization.

We refer to the column shown in Figure 1A, clamped at the left edge and compressed from the right edge, with
|f| = 0.01, E0 = 1 and 𝜈 = 0.3. The domain is fully solid, thus �̂�(x) = 1 everywhere. In the pre-buckling state, stress peaks
are found at the clamped corners, as we can see from the von Mises stress distribution and its spatial gradient norm in
Figure 1A. In order to enhance the visualization of spatial variations, these and other following plots are scaled as

sign(f ) log10
(
1 + 10−c

𝛼 |f |
)

(12)

valid for both positive and negative f , and in each case we will list the value of c
𝛼

.
In Figure 1B we plot the strain energy density (SED) for some of the buckling modes computed on a discretization of

Ωh = 48 × 192. The lowest three modes are bending-dominated; then, interspersed with other bending modes, some very
localized ones appear close to the loaded and clamped regions. Found on a fully solid design, this is clearly a different
phenomenon than the classical one of spurious modes in low-density regions.13,34

To characterize these spurious solid modes, we here get inspired by the mode-volume concept, commonly
used in electro-magnetics and optics.36,37 We consider the ratio between the average and maximum strain energy
density (SED)

𝜁[𝜑] = 1
dΩ
∫Ω 𝜅(x)𝜖(𝜑(x))

2 dΩ
max
x∈Ω

{𝜅(x)𝜖(𝜑(x))2}
(13)
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4122 FERRARI and SIGMUND

F I G U R E 1 (A) Compressed column setup, with the pre-buckling von Mises stress distribution and its spatial gradient. (B) Strain
energy density 𝜙(x) corresponding to some buckling modes computed on the mesh Ωh = 48 × 192. The white and black lines bound the
regions where 𝜙(x) > 𝜙mean and 𝜙(x) > 1

2
𝜙max, corresponding to the number of elements #e1 and #e2, respectively. Contour plots are scaled

according to (12), for c
𝛼

= 2. (C) Shows the distribution of 𝜁[𝝋], defined in (14), compared with #e1 and #e2, for the mesh Ωh = 48 × 192. (D)
Shows the trend of 𝜁[𝝋]𝜇∕4, and (E) that of the lowest 25 BLFs, computed on three meshes. We recall that 𝜇 = 1∕𝜆 is the inverse of the BLFs.

where 𝜅(x) stands for the system rigidity, 𝜖(𝜑(x)) is the strain associated with a given buckling mode, and dΩ is the smallest
integration volume in the material domain. It is intuitive that (13) goes to zero as the field 𝜙(x) = 𝜅(x)𝜖(𝜑(x))2 becomes
more and more localized. In our discretized setup, (13) becomes

𝜁[𝝋] ≈ 1
|Ωe| max

e=1,… ,m
{𝝋T

e Ke𝝋e}
(14)

as we have assumed the normalization ∫Ω 𝜅(x)𝜖(𝜑(x))
2 dΩ ≈

∑m
e=1𝝋

T
e Ke𝝋e|Ωe| = 1.

Equation (14) can be bounded as #e1 ≥ 𝜁[𝝋] ≥ #e2, where #e1 is the number of elements where the SED field exceeds
its mean value (see white contour lines in Figure 1B), and #e2 is that corresponding to the so-called full width at half
magnitude (see black contour line in Figure 1B). Most importantly, comparing Figure 1C with the SED plots shown in
(B), we clearly see that highly localized modes are reflected by small values of 𝜁[𝝋], meaning that high SED values occur
over a few elements only.

For a few modes we have 𝜁[𝝋]𝜇 < 1 (see the below purple line in Figure 1C). This clearly proves their non-physical
nature, as 𝜇 = 1∕𝜆 formally represents the mode “wavelength”, which is then not captured on the current mesh, mak-
ing the mode a numerical artifact. Moreover, whenever 𝜁[𝝋]𝜇 < 4, the corresponding mode would become an artifact
if referred to the one-level coarser mesh, having elemental volume 4|Ωe|. Therefore, the condition 𝜁[𝝋]𝜇 < 4 can be
used for identifying the mesh-dependency, and corresponding non-physical character, of these highly localized modes.
This is shown in Figure 1D, for the modes computed on three finer grids. We acknowledge that, as the mesh is refined,
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FERRARI and SIGMUND 4123

more and more mesh-dependent modes appear, starting from lower eigenvalues. On Ωh = 12 × 48 we have two artificial
modes, the first being𝜑5, whereas for finer discretizations, already𝜑4 is artificial, and many more appear in the computed
spectrum.

4 STRESS REGULARIZATION STRATEGY

We now describe the strategy for avoiding the spurious buckling modes characterized in the previous section. The idea
is to replace the stress field used in the stress stiffness matrix G(�̂�,𝝈) from the local one, computed by (7) and (8), with a
regularized one, obtained by filtering and projection operations.

We start by discussing the case when only linear filtering is applied to the stress field, in a similar fashion as density
filtering (2), showing how this effectively removes the spurious modes in solid regions. Then, in Subsection 4.2 we discuss
the whole stress erosion idea, which makes the regularization strategy more flexible and robust when applied to designs
with intermediate densities.

We refer to Appendix A, for an in-depth discussion of some of the variants of the stress filtering, highlighting their
merits and shortcomings, and their performance in the TO process.

4.1 Filtering of the stress field

We first consider filtering the original (non-physical) stress field 𝝈0(x) according to

�̃�0(x) = [𝜔,r𝜎min] ∗ 𝝈
0(x) ∶= 1

|k(x, 𝝃)𝜔(𝝃)|∫
Ω

k(x, 𝝃)𝜔(𝝃)𝝈0(𝝃) d𝝃 (15)

where k(x, 𝝃) = max{r𝜎min − ||x − 𝝃||2, 0} is the same as the kernel used for density filtering, now depending on the radius
r𝜎min > 0, possibly different from r𝜌min. Equation (15) is a component-wise operation: each component {𝜎0

xx(x), 𝜎0
yy(x) and

𝜎

0
xy(x)} is filtered separately.

The term 𝜔(x) allows for a non-uniform spatial weighting of the filter, and choosing 𝜔(x) as a function of the relative
density will modify the kernel, unless we have a uniform design. On a fully solid design we can apply (15) to either 𝝈0 or
𝝈, and setting𝜔(x) = 1 results in a smoothing of the physical stress field. However, if solid/void interfaces or intermediate
densities are present, we must distinguish which quantity is filtered. Since non-physical stresses are large on low-density
regions, applying (15) with 𝜔(x) = 1 would increase the stresses on the solids, which must be avoided. Thus, we will use
𝜔(x) = �̂�(x) to restore the correct, low weighting of the low-density regions in the filtering operation. We remark that this
still allows the application of the material interpolation to recover the physical stresses (i.e., �̃� = i

𝜎

[�̂�]�̃�0), since the result
of (15) is still a non-dimensional stress, due to the kernel normalization.

Further details about the filter behaviour when using different, non-uniform weightings 𝜔(x), both considering
discrete 0/1 designs and designs with grayscales are given in Appendix A.

On the discretization grid, (15) is implemented as

�̃�

0
e =

∑
j∈ 𝜎

e
kej𝜔j𝜎

0
j

∑
j∈ 𝜎

e
kej𝜔j

(16)

where 𝜔i depends on the weighting function adopted, and 𝜎

e is the set of points affecting element e, based on the radius
r𝜎min. A PDE-based equivalent implementation is also possible,38 perhaps allowing a more flexible choice of the boundary
conditions.39 However, our testing has not shown any relevant difference between the two forms, thus we do not discuss
the PDE option any further.

We now apply stress filtering to the uniform column discussed in the previous section (thus, 𝝈 = 𝝈0). Figure 2 shows
the field distribution of the relative difference in the von Mises measure for the filtered and original stresses

rdVM(x) =
VM[�̃�(x)]
VM[𝝈(x)]

− 1 (17)
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4124 FERRARI and SIGMUND

F I G U R E 2 Relative difference between the filtered and original von Mises stress, considering Neumann (top) and zero Dirichlect
(bottom) boundary conditions for the filter operator and increasing values of the filter radius. See Figure 1 for the original distribution of the
von Mises stress. Contour plots are scaled according to (12), for c

𝛼

= 2.

F I G U R E 3 Modification of the buckling modes and corresponding load factors due to the stress filtering, considering different filtering
radii r𝜎min. We consider N-BCs for the filter operator and the results are referred to the discretization Ωh = 48 × 192. (A) Shows the
modification of the computed BLFs, and (B) the effect on the localization measure. (C) Displays the BLFs surviving, after the artificial ones
(i.e., those having 𝜁[𝝋]𝜇∕4 < 1) have been purged from the plot in Figure 1C. The BLFs computed according to filtered stresses are also
shown and are all physical. The contour plots in (D) show the SED for the localized modes shown in Figure 2, using the same scaling.

considering the two choices of boundary conditions for the filter operator: Neumann (N-BCs) and zero Dirichlect (D-BCs).
In the latter case, volume-preserving N-BCs must be maintained at the loaded and clamped boundaries, otherwise the
modification of the stress induced by the zero D-BCs would violate the equilibrium.

As a result of the filtering operation, high stress gradients are removed, whereas regions where the stress is nearly
uniform are left untouched. The peak stress is reduced as r𝜎min is enlarged, and the D-BCs give a much higher stress
reduction, as for this example the original stress peak was found near the boundaries. Stresses may slightly increase over
the regions where they were originally low; however, just in the order of a few percent.

Figure 3 shows how the filtering affects the results of the LBA. Already for the radius r𝜎min =
1

24
, many spurious modes

are removed, and those with 𝜁[𝝋]𝜇∕4 < 1 are shifted to higher eigenvalues (i.e., 𝝋13 and 𝝋24). Then, for r𝜎min =
1

12
all

spurious localized modes are purged from the spectral range of interest, and the surviving modes are bending waves with
shorter and shorter wavelength (see Figure 3B,D). BLFs associated with localized modes are changed the most, whereas
the low order ones increase a few % only (see Figure 3A). However, we should not choose a too large smoothing radius,
as this would increase the magnitude of the BLFs too much.
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FERRARI and SIGMUND 4125

Plot (c) displays only the BLFs associated with modes deemed as physical, that is, for which 𝜁[𝝋]𝜇∕4 > 1, based on
Figure 1D. Taking the BLFs computed on Ωh = 12 × 48 as reference, we see that only a few of those computed on finer
meshes survive as physical. However, these match closely together, which further proves their physical character, and
the discrepancies are due to the larger approximation error on higher parts of the spectrum.40 For example, the last two
physical modes on the mesh Ωh = 192 × 768 correspond to the 18th and 21st originally computed (see Figure 1C), and
therefore are affected by a higher approximation error. With the stress filtering, all the computed BLFs match almost
exactly the physical ones computed on the coarsest grid without loosing accuracy, as they remain in lower regions of the
spectrum.

4.2 Erosion of the stress field

We now combine linear and nonlinear filtering, the latter achieved by the 𝜂-projection (1). Using the notation (𝜂
𝜎

,𝛽

𝜎

),
to distinguish from the density projection, the whole stress regularization strategy is summarized in Figure 4. Start-
ing from the same intermediate field, �̃�, we project two different relative density fields. The first, �̂�(𝜅) = (𝜂

𝜌

,𝛽

𝜌

)[�̃�] is
used to interpolate the Youngs’ modulus, E = i

𝜅

[�̂�(𝜅)]. Then, setting 𝜂
𝜎

> 𝜂
𝜌

, we project another relative density field,
�̂�

(𝜎) = (𝜂
𝜎

,𝛽

𝜎

)[�̃�], which is used for the interpolation of the physical stress, �̂� = i
𝜎

[�̂�(𝜎)]�̃�0, starting from the filtered,
non-dimensional one.

To show the effect of this strategy, we consider the two intermediate designs of a cantilever optimized for minimum
compliance, shown in Figure 5. We obtain �̂�(𝜅) by using r𝜌min =

1
30

, 𝜂
𝜌

= 0.5 and 𝛽
𝜌

= 4, whereas for the stress filtering and
projection we use r𝜎min =

1
30

, 𝜂
𝜎

= 1 and 𝛽
𝜎

= 4. The black continuous lines in the plots of Figure 5 bound the regions where
�̃�e ≥ 0.75; using the SIMP interpolation with penalization p = 3,32 this corresponds to E(�̂�e) ≥ 0.5E0. By looking at the
maximum principal stress 𝜎I , and its gradients’ magnitude ||∇x𝜎I(x)||2, we can discuss the effect of the stress projection
alone, and of the combination of filtering and projection.

We first look at the top row, referring to an early optimization stage, where we still have much grayscale in the design.
The original stress field, computed from (8) using �̂�(𝜅), attains high values also on regions with low stiffness, potentially
causing artificial buckling modes (cf. column (a)). If we apply the projection alone, thus computing 𝝈 = i

𝜎

[�̂�(𝜎)]𝝈0, all
stresses outside the structural boundaries are projected to zero. However, the stress and stress gradient peaks are only
mildly reduced, as they occur in a region with almost solid material (cf. column (b)); thus, spurious buckling modes
are still likely to occur in the solids. The overall regularization strategy we propose combines filtering and projection.
Filtering the non-dimensional stresses �̃�0 = [

𝜌,

1
30

] ∗ 𝝈0 is responsible for reducing both the stress and stress gradient

F I G U R E 4 (A) Stress erosion strategy adopted in the TO procedure. The field of design variables is filtered by the density filter; then
subjected to two projections with different 𝜂-values. The relative density �̂�(𝜅) is used for interpolating the stiffness, whereas �̂�(𝜎) is used for
interpolating physical stresses. (B) Influence of the parameters governing the erosion (r𝜎min∕r𝜌min, 𝜂𝜎), setting 𝛽

𝜎

= 4. We consider a 0/1 design
variables field 𝜌, where the interface is marked by the magenta continuous line. The dashed vertical lines mark the points where the filtered
field �̃� goes to 0 and 1. The stress profile shown may be obtained with a uniformly compressed column (see Appendix A.1).
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4126 FERRARI and SIGMUND

F I G U R E 5 Effect of the nonlinear stress filtering on an evolving design. In all the above plots �̂�(𝜎) is computed from the nonlinear
projection (1), for 𝜂

𝜎

= 1 and 𝛽
𝜎

= 4. The colormap shows the distribution of the maximum principal stress 𝜎I (top), and of its spatial gradient
norm ||∇x𝜎I||2 (bottom). (A) Shows the original stress field, computed by (8), (B) the field obtained using the nonlinear projection alone, (C)
the field obtained using filtering and then projection. The two rows, separated by a dotted line, refer to an early-stage and almost discrete
design, respectively. Contour plots are scaled according to (12), for c

𝛼

= 4.

peaks, as discussed in the previous section. Then, by using the projected density to interpolate the physical stress,
�̂� = i

𝜎

[�̂�(𝜎)]�̃�0, all the stresses that have propagated outside the structural boundaries are projected to very low values
(cf. column (c)).

The bottom row of Figure 5 shows the same comparison for a much later design stage, where �̃� is close to a discrete
0/1 distribution. On such a design, the projection operation has little influence, and the noticeable effect is that of the
stress filtering, reducing the stress concentrations over the solid domains and thus preventing spurious buckling modes
in the solids.

We remark that the limit value 𝜂
𝜎

= 1 was used here for illustration purposes. When applying the strategy in the
TO process, we always choose 𝜂

𝜎

∈ (0, 1), which also makes the approach compatible with the PDE filter, as this never
allows �̃�e = 1. The extent of the stress erosion clearly depends on the parameters r𝜎min, 𝜂

𝜎

and 𝛽
𝜎

, in combination with the
corresponding parameters used for �̂�(𝜅). To summarize, we may refer to Figure 4B, showing the stress distribution across a
0/1 interface (marked by the vertical magenta line), where the original stress field is represented by the black continuous
line. The number between parentheses in the legend correspond to the pair (r𝜎min∕r𝜌min, 𝜂𝜎). We notice how, for a fixed 𝜂

𝜎

,
increasing the filter radius beyond r𝜌min does not help pushing the stress curve into the region where �̃� ≥ 0.5. Also, using
large values of r𝜌min leads to a too big reduction in the stresses, which is unwanted. A more practical choice is therefore to
set r𝜎min ≤ r𝜌min, and to set a higher value for 𝜂

𝜎

. A quantitative relationship between 𝜂
𝜎

and the extent of the erosion, for a
given radius r𝜎min, can be obtained from the analysis in References 41,42. Setting 𝜂

𝜎

= 0.75 is sufficient to erode the stress
field from roughly 10% of the elements within the solid boundaries, whereas for 𝜂

𝜎

= 0.9, the eroded stress occupies only
half of the material width.
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FERRARI and SIGMUND 4127

5 NUMERICAL EXAMPLES

We focus on maximizing the fundamental BLF of a design, computed from the generalized eigenproblem (10), by
minimizing the following function12,43 (recall that 𝜆1 = 1∕𝜇1)

JKS[𝜇i(�̂�,𝝈)] = 𝜇1 +
1
𝛼KS

ln

(
∑

i∈
e𝛼KS(𝜇i−𝜇1)

)

(18)

which provides a smooth upper bound to 𝜇1. In (18), 𝛼KS is the aggregation parameter, governing the tightness of the
bound, and  is the set of buckling modes included in the optimization. In order to check the occurrence of artificial
modes within this set, we use the following criteria:

• Low-density modes are characterized according to Gao and Ma,13 checking the ratio between the strain energy
on low density regions, ΠL[𝝋] = {

∑m
e∈L𝜙e}, where L = {e|�̂�e > �̂�L}, and the total one, Π[𝝋] =

∑m
e=1𝜙e. Here, 𝜙e =

i
𝜅

[�̂�e]𝝋T
e K0𝝋e, denotes the strain energy density on each element. Following,13 we set �̂�L = 0.1 and we consider the

modes for which ΠL[𝝋]∕Π[𝝋] > 0.6 to be artificial.
• Highly localized solid modes are characterized with the help of the ratio in Equation (13). In this case, the modes for

which 𝜁[𝝋]𝜇∕4 < 1 are considered artificial.

Given the volume fraction vf , the optimization problem reads

⎧
⎪
⎪
⎨
⎪
⎪
⎩

min
𝜌

JKS[𝜇i(�̂�,𝝈)]

s.t. gV = vf (�̂�)∕vf − 1 ≤ 0
gC = c(�̂�)∕(coptc%) − 1 ≤ 0
𝝆 ∈ [0, 1]

(19)

where the link between 𝝆 and �̂� is given by (1) and (2), copt is the compliance of the stiffest design with the same volume
fraction, and c% ≥ 1 the allowed compliance increase.

The compliance constraint may be inactive for the optimized design. However, we recall the inherent difficulty in
reaching a well-defined structural configuration only with buckling and volume as driving criteria, especially when bend-
ing and shear effects are dominant. Therefore, we will always specify a compliance constraint, and show how the stress
erosion described in Subsection 4.2 will promote its enforcement, helping the optimizer to proceed towards a well-defined
design.

In the following subsections we consider two popular benchmark problems, comparing the results obtained by using
the “original” approach, that is, using the original stress field, or the regularization strategy described in Section 4 for the
LBA. In all cases, the interpolation functions for stiffness and stress used are

i
𝜅

[�̂�(𝜅)e ] = 10−6 + (1 − 10−6)(�̂�(𝜅)e )pE0

i
𝜎

[�̂�(𝜎)e ] = (�̂�(𝜎)e )pE0 (20)

where p is the penalization parameter and �̂�(𝜅)e = �̂�(𝜎)e for the original approach, whereas these two are distinct when using
the strategy sketched in Figure 4. We use a continuation approach and start with p = 3, increasing it by Δp = 0.25 every
25 re-design steps, up to p = 6. Similarly, we start with 𝛽 = 2 and, after step 400, we increase it by Δ𝛽 = 1 every 25 steps,
up to 𝛽 = 16.

The design update is performed by the standard MMA routine,44 and the parameters governing the asymptotes
evolution are set as suggested in Reference 28.

5.1 Compressed column

We consider the compressed column sketched in Figure 6A, discretized by Ωh = 480 × 240, and we solve problem (19)
for vf = 0.3 and c% = 2.5, starting from the minimum compliance design. Other dimensions, loads, boundary conditions,
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4128 FERRARI and SIGMUND

�

(A) (B) (C)

F I G U R E 6 (A) Setup for the compressed column example and design obtained starting from the minimum compliance one, without
stress regularization. The BLF, computed on the 0/1 design and using local stresses is 𝜆1 = 12.49. (B) Shows the evolution of the (inverse)
objective function, the lowest four BLFs, and volume and compliance constraints. (C) Tracks the appearance of low-density buckling modes
(red dots) and modes highly localized in the solid (blue dots), according to the definitions given in the opening of Section 5.

and optimization parameters are chosen as in Reference 28. In particular, the lowest 24 buckling loads and modes are
included in the optimization, and we set 𝛼KS = 150. Figure 6A displays the optimized design obtained for r𝜌min =

1
60

, and by
using the original stress field in the LBA (i.e., without stress regularization). This design attains the BLF value 𝜆1 = 12.49
and compliance c = 1.37copt, well below the imposed upper bound.

Starting from the minimum compliance design the optimization history is very smooth, and even if some of the
higher modes are switching in the first iterations, this never affects the smooth increase of the lowest one (see Figure 6B).
Low-density modes appear in four iterations only, and in the high part of the spectrum. Localized modes in solid regions
happen more often, as we do not apply any stress filtering here; however, these very rarely affect one amongst the lowest
five modes (see Figure 6C).

The optimization task becomes more challenging when starting from a uniform gray design, especially as we consider
a loose compliance constraint. If we start from the uniform design with vf = 0.3 and set c% = 3, such that gC is violated in
the beginning, the fulfillment of the compliance constraint initially drives the material towards a uniform column shape.
Then, when gC is met, the design starts to increase its buckling resistance, reaching the BLF of 𝜆1 = 7.89, which is far
lower than that of the design in Figure 6 (see Figure 7A). The compliance value is again well below the imposed bound
(c = 1.162copt). Increasing the compliance upper bound to c% = 10 the optimization is never really driven by compliance,
and this makes it very hard for the optimizer to navigate from the gray distribution to a well-defined design (see Figure 7B).
Even if we reach a final design with high buckling resistance (𝜆1 = 12.05), the optimization history becomes very unstable,
as grayscales are very persistent and cause the onset of low-density modes in most of the optimization iterations. From
the rightmost plots of Figure 7, we clearly see that more and more spurious modes are developing in the spectrum as we
start from a weak initial guess and we consider a loose compliance constraint. This both increases the computational cost,
as we need to compute more eigenpairs to keep the same set of meaningful ones, and slows down the convergence due to
the contribution of the spurious modes in the objective sensitivity. For instance, we point out that we needed to increase
the number of modes included in (18) from 24 to 96, in order to converge to the design of Figure 7B.

On the other hand, even if using a tight compliance constraint is a way for regularizing the problem, this clearly
shrinks the design space, and potentially drives the optimization towards a sub-optimal design from the beginning. This
motivates the application of the regularization strategy discussed in Section 4, in the optimization process.

5.1.1 Use of the stress regularization strategy in the TO process

Starting again from the same setting of Figure 7B (i.e., vf = 0.3, and c% = 10), we now solve the problem by applying
the stress regularization summarized in Figure 4. Following the terminology of Subsection 4.2, we compute the physical
stresses as �̂� = i

𝜎

[�̂�(𝜎)]�̃�0, where the filtered non-dimensional stresses are computed according to (16), for r𝜎min = r𝜌min =
1

60
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FERRARI and SIGMUND 4129

(A)

(B)

F I G U R E 7 Final design, optimization history and tracking of the artificial buckling modes for the compressed column example, solved
starting from the uniform gray material distribution with vf = 0.3. (A) The compliance constraint is set to c% = 3. The convergence plots’
x-axis is log-scaled, to highlight the objective and constraints behavior in the first iterations (𝜆1 = 7.89). (B) The compliance constraint is set
to c% = 10. In this case we need to take into account 96 buckling modes, in order to reach the design shown within the prescribed number of
iterations (𝜆1 = 12.05).

and𝜔 = �̂�(𝜅). The relative density �̂�(𝜎)e , used in the physical stress interpolation, is obtained with the projection parameters
𝜂
𝜎

= 0.75 and 𝛽
𝜎

= 𝛽
𝜌

. All the other parameters are as before.
The optimized design is shown in Figure 8A, and attains the BLF value, 𝜆1 = 12.94. Projecting the design obtained to a

0/1 distribution, and post-evaluating the buckling strength according to the original, local stresses, we obtain 𝜆1 = 13.51,
which is almost 10% higher than the value attained by the design in Figure 6A.

This design is clearly efficient from the buckling perspective, consisting of two main struts braced by inner bars, and
with a hierarchy of short linking members. Figure 8B,C, highlight the effect of the stress erosion strategy on the design and
response evolution. The BLF starts from the very high value 𝜆#1 ≈ 18, as the design domain is initially filled with grayscales,
and stresses are projected to zero almost everywhere. This quickly drives the design to activate the compliance constraint,
and to develop a sparse truss structure. As the truss-like bars develop, and �̃� > 𝜂

𝜎

, stresses are smoothly “activated” on
them by the projection operation, and the buckling resistance of the bars enter the optimization. In this way, buckling
influences the optimization in a more gradual way, simultaneously avoiding the competition of compliance and buckling
and the appearance of the artificial modes, which would get the optimization process stuck, or to converge slowly.

Figure 8E shows the computed spectrum, when using both the original 𝝈 and regularized �̂� stresses. For the design
obtained from the optimization (i.e., having a non-discreteness measure mND ≈ 0.22%), there is a gap in the high order
eigenvalues corresponding to the two different stress distributions. However, for the design projected to a 0/1 distribution,
this gap is significantly reduced, and it is entirely due to the stress filtering effect. In both cases, the lowest three BLFs are
essentially not modified by the stress regularization. The performance of the design in Figure 8A has also been evaluated
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4130 FERRARI and SIGMUND

F I G U R E 8 (A) Compressed column design, obtained starting from the uniform gray material and with the proposed stress
regularization strategy. The buckling modes in (A) are computed on the 0/1 design, and using the local stress field. (B) Shows the distribution
of the maximum principal stress 𝜎I (which depends on �̂�(𝜎)) at three representative optimization steps. The black and magenta contour lines
bound regions where �̂�(𝜅) > 0.75 and |𝜎I| > 10−6, respectively. (C) Shows the evolution of the objective and constraints as the optimization
progresses, (D) shows the spectra computed in the post-processing, either in our framework or by COMSOL, and (E) shows the non-locality
measure based on (14).

in COMSOL,45 by using a body-fitted mesh. The critical load factor computed in COMSOL (𝜆1 = 14.19) is about 5% higher
than that predicted in our fixed-grid framework (see Figure 8D), whereas the larger overestimation of the higher load
factors is due to the better resolution of the boundaries given by the body-fitted mesh. Importantly, the buckling modes
computed in the two frameworks match very well.

From the plot in (e), showing the trend of the parameter used for measuring the mode localization for the 0∕1 design,
we see that all the modes are involving large portions of the domain. The two modes𝝋16 and𝝋17, which attain the lowest
value of 𝜁[𝝋]𝜇∕4, are also clearly physical, involving the buckling of one bar (see Figure 8A).

5.2 MBB beam

We consider the MBB beam discretized by Ωh = 480 × 160 elements, and a load of magnitude | f | = 2 ⋅ 10−3. Compared
to the compressed column, this example is more challenging, as the large shear and bending stresses in the pre-buckling
state introduce a tough competition between buckling and compliance. Also, this configuration is very sensitive to the
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FERRARI and SIGMUND 4131

F I G U R E 9 Evaluation of the buckling strength for the compliance-optimized MBB beam with vf = 0.35 and different density filter
radii. (A,B) Show the the distribution of the maximum principal stresses 𝜎I , the fundamental buckling mode, and the most localized one
among the lowest 24 computed. The BLF for these two design is 𝜆1 = 0.438 and 0.615, respectively. Contour plots here are scaled according to
(12) and c

𝛼

= 2. (B) plots the localization measure, based on the ratio given in (14). Here we also plot data corresponding to the design
r𝜌min =

1
20

, for comparison.

specific modeling of the boundary conditions.46 To avoid stress concentrations, both the load and the support at the lower
right corner are distributed over 16 nodes, and the support condition is enforced as a multi-point constraint through
penalization, that is, prescribing the mean vertical displacement to be zero.47

Figure 9 shows the compliance designs corresponding to vf = 0.35, obtained for the filter radii r𝜌min =
1

40
and 1

8
, and

starting with p = 3 and 𝛽
𝜌

= 2, then raising these up to 6 and 12, respectively, with a continuation scheme. The compliance
and BLF of these two designs are (c, 𝜆1) = (8.955 ⋅ 10−4

, 0.438) and (9.224 ⋅ 10−4
, 0.615), respectively. To larger r𝜌min values

correspond both higher compliance and BLFs; this is expected, since a design with thicker bars moves away from the
stiffness optimal, and increases the buckling resistance of the individual members.

In both cases, there is a stress concentration in the upper left corner, near to the applied load. For the design with r𝜌min =
1

40
all the lowest 24 modes involve the deformation of one or more thin compressed bars. For the design with r𝜌min =

1
8
, the

first six modes involve a physical buckling of the three compressed bars. Then, many artificial modes, localized in regions
with stress concentrations, appear in the computed spectrum, as captured by the quantity 𝜁[𝝋]𝜇∕4 (see Figure 9C).

Using the compliance design with r𝜌min =
1
8

as initial guess, we now solve (19) allowing a compliance increase of 10%

(thus, c% = 1.1), and with the density filter radii r𝜌min =
{

1
20
,

1
40
,

1
80

}

. By reducing r𝜌min, the optimizer should arrange the
material to attain lower compliance, and have more freedom to improve buckling strength. The designs shown in Figure 10
are obtained using the original stress field in the LBA. In all three cases the compliance constraint is active and the buckling
strength is significantly improved (𝜆1 = {3.805, 3.907, 3.925}). However, these design are very similar, and preserve the
main features of the compliance one: (1) there are three main bars subjected to compression and three subjected to tension,
and (2) the upper compressed bar runs almost horizontal for about 2/3 of the design domain. Compressed parts are just
made thicker, and reinforcing bars appear in the upward triangular hole. However, the region near to the lower right
support is weakly reinforced, and the compressed struts hardly develop any holes.

The middle row of Figure 10 shows the fundamental buckling mode corresponding to each design (𝝋1). As soon as the
buckling mode shown in Figure 9B is prevented by the reinforcing bars in the central hole, the stress concentration close
to the upper left corner becomes dominant, and the physical modes are shifted to higher eigenvalues. This causes the
optimization process to stall. The bottom row shows the buckling mode (𝝋#1), computed in a post-processing phase using
the filtered stresses �̃�. Removing the stress concentration by filtering, the fundamental buckling mode involves bending
of the rightmost bar, with a slightly higher BLF. This further proves that we are in a local minimum, and the optimizer
progresses are inhibited by a very local phenomenon.

Figure 11 shows the designs obtained by using the stress erosion strategy, with r𝜎min = r𝜌min, 𝜔 = �̂�(𝜅), 𝜂
𝜎

= 0.75 and
𝛽
𝜎

= 4. These designs show an overall reinforcement of the structure, and their fundamental BLF (𝜆1 =
{3.936, 4.157, 4.428}), outperform those in Figure 10 by 3.5%, 6.4%, and 16.7%, respectively. In all three cases, the
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4132 FERRARI and SIGMUND

F I G U R E 10 Design obtained for maximum BLF, considering c% = 1.1, vf = 0.35 and three different density filter radii, starting from
the compliance design of Figure 9B and using the original stresses in the LBA. The first row shows the final design, with contour plot of the
maximum principal stress 𝜎I . The second row shows the fundamental buckling mode corresponding to the original stress distribution (𝝈),
which is the one used in the optimization. The third row shows the fundamental buckling mode computed, in a post-processing phase, using
the filtered stresses (�̃�).

compressed upper edge quickly tilts towards the supports, in a shallow arch-like configuration. The buckling of this upper
arch is restricted by a truss-like set of bars, connected to the lower tension edge. This is a very efficient solution, compared
with those in Figure 10, since making the upper edge more shallows both reduces the compression close to the support
regions, and shortens the vertical bracing bars, thus avoiding the need to make them thicker. The bottom row of Figure 11
shows the designs obtained using the same set of parameters, but starting from the uniform gray design. The shear and
bending-dominated pre-buckling stress state in the uniform material distribution complicates the task of the optimizer,
as the trade-off between compliance and buckling strength makes the optimization task non trivial. Indeed, pushing too
much on buckling strength from the beginning may drive towards a configuration with very poor pre-buckling stiffness,
potentially leading to material disconnection. However, the designs in Figure 11 prove the ability of the stress regular-
ization strategy to achieve a good design also when starting from a challenging situation. The BLFs reached here is even
higher than before (𝜆1 = {4.157, 4.538, 4.825}), and we end up with designs having a slightly higher hierarchy, splitting
some bars and introducing a few holes in the compressed struts.

5.3 Post-evaluation by geometric nonlinear analysis

The column designs are now post-evaluated considering geometric and material nonlinear modeling, in the commer-
cial software COMSOL.45 To avoid non-physical compressive stresses at large rotations,25 we adopt the hyperelastic,
neo-Hookean material law, and we trace the equilibrium path for the load parameter 𝜆∕𝜆(LBA)

1 , normalized by the value
predicted by the LBA. The critical load parameter is reached when the nonlinear iteration fails to converge, due to
singularity of the tangent matrix.

At each equilibrium point u∗, we also compute the nonlinear buckling load factor 𝜆(NL)
1 , from the eigenvalue problem

[Km(u∗) + 𝜆(NL)
1 G(𝝈∗)]𝝋1 = 0, 𝝋1 ≠ 0 (21)

where G(𝝈∗) linearly depends on the current stresses, and Km(u∗) represents the material contribution to the current
tangent stiffness matrix.48

The results of the analysis, for the column design of Figure 8A and for the reference designs of Figure 6A, are sum-
marized in Figure 12. The nonlinear force-displacement paths are plotted in log-log scale to enhance their variations, and
the mean axial and transversal displacements at the loaded tip (

⟨
uTip

⟩
and

⟨
vTip

⟩
) are used as control deformations. For

the reference design, the nonlinear critical point is attained for 𝜆 = 14.937, a value 16.6% higher than predicted by the
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FERRARI and SIGMUND 4133

F I G U R E 11 Design obtained for maximum BLF, considering c% = 1.1, vf = 0.35, and applying the stress erosion discussed in Section 4.
The two rows, above the dashed black line, refer to the compliance initial guess of Figure 9, and we reach 𝜆1 = 3.936, 4.157, and 4.428,
respectively. The designs in the bottom row are obtained starting from a uniform gray initial guess and we reach 𝜆1 = 4.157, 4.538, and 4.825,
respectively.

LBA. For the design obtained using the stress erosion, the critical point is 𝜆 = 16.801, 14.5% higher than predicted by the
LBA. The black curves plotted in Figure 12 show the evolution of the ratio 𝜆(NL)

1 ∕𝜆(LBA)
1 , which starts from one, as we do

not have any nonlinear contribution at zero load. Then, nonlinear effects provide some stiffening, and at the critical point
we reach the values 𝜆(NL)

1 ∕𝜆(LBA)
1 = 1.166 and 1.145, respectively.

Figure 12 also shows the deformed configuration in the last converged equilibrium point, and the fundamental buck-
ling modes 𝝋1 predicted by (21), which are matching those predicted by the LBA. Therefore, the performance of the two
columns, and the superior buckling strength of the design obtained by the stress erosion strategy, is confirmed also in the
context of a full geometric and material nonlinear modeling.

6 FINAL REMARKS

We have presented a strategy for avoiding non-physical buckling modes when using linearized buckling analysis (LBA)
for topology optimization.

First, we introduced a measure, based on the mode-volume concept,36,37 to characterize highly localized modes in
solid regions. Then, we showed how these non-physical modes can be purged from the computed spectrum by filtering
the stress field used in the LBA. Finally, by combining filtering and projection operations, we achieved the erosion of
the stress field within the design regions that have already developed high stiffness. This prevents the onset of spurious
buckling modes both in the solid and in the low density regions, and mitigates the competition between stiffness and
buckling demands in the early stages of the optimization.

The numerical tests presented show the effectiveness of the method, and its ability to drive the optimization towards
designs with higher buckling strength, even starting from a challenging situation, such as a uniform gray initial guess and
a loose compliance constraint. In conclusion, the method makes the LBA more effective, for continuum TO, preserving its
low computational cost, compared to the nonlinear buckling analysis. This latter, also accounting for material yielding,
is a topic of ongoing research, and still poses several challenges.

The strategy can be easily extended to the 3D setting. In this context, it has been already observed that multigrid
preconditioned iterative solvers, if not run to a fully accurate solution, provide an implicit smoothing of displacements
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4134 FERRARI and SIGMUND

F I G U R E 12 Evaluation of the nonlinear response for the reference column design (A) and for the design optimized considering the
stress erosion strategy (B). The vertical load (Fu) is scaled by the factor 𝜆∕𝜆(LBA)

1 , normalized by the linearly predicted BLF, and a perturbation
Fv = 10−6Fu is applied at the tip. We consider to reach the critical point when the Newton solver fails to converge. Next to the
load-displacement curves, we plot the deformation at the last converged step, and the fundamental buckling mode computed by the
extrapolated eigenvalue problem (21).

and stresses.9 However, the method proposed here has more general validity, and the stress regularization is explicitly
controlled by combining the filtering and projection parameters.
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APPENDIX A. FURTHER DETAILS ON SOME VARIANTS OF THE STRESS FILTERING

We elaborate on the effect of some different choices for the kernel weighting𝜔 in the stress filtering. An approach entirely
relying on stress filtering has shortcomings when applied to more general designs than the uniform one: (1) a uniform
weight 𝜔 increases the stress on low-density regions, potentially making the low-density modes phenomenon worse; (2)
to avoid this, we may modify the filter operator. However, for designs with intermediate densities such modifications
make the stress field non-smooth across the design boundaries. This motivates the projection discussed in Subsection 4.2
to achieve stress erosion. We also show a compressed column design, obtained with stress filtering alone, and achieving
a sub-optimal solution, compared with the design in Figure 8.

A.1 Testing of different weightings on the stress filtering operation
The factor 𝜔(x) in Equation (15) can be used to apply non-uniform stress filtering. For instance, by setting 𝜔 = �̂� the
stresses on high density regions have more influence than those on low density ones, whereas 𝜔 = 1 − �̂� has the opposite
effect. On a discrete design (i.e., �̂� = {0, 1}), these choices correspond to dilation and erosion filters, excluding voids and
solid regions from the kernel, respectively (see Figure A1).

On a design with intermediate densities, the erosion effect is achieved by 𝜔(𝝃) = 𝜒|𝜌, where

𝜒|𝜌 =

{
1 if �̂�(𝝃) ≥ 𝜌
0 if �̂�(𝝃) < 𝜌

(A1)

and 𝜌 is a user-defined threshold. In this way, only points where �̂� > 𝜌 contribute to the filtering. Equation (A1) can also
be used to modify the outcome of the filtering operation as

�̃�(x) =

{
[𝜔,r𝜎min] ∗ 𝝈(x) if �̂�(x) ≥ 𝜌
𝝈(x) if �̂�(x) < 𝜌

(A2)

such that the stresses are not modified over regions where �̂�(x) < 𝜌. By combining 𝜔(𝝃) = 𝜒|𝜌 and (A2), we apply a stress
redistribution within the high density regions: stresses get smoothed on high density regions only, by a filter kernel
involving high density regions only (see Figure A1D).
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F I G U R E A1 Influence of some choices of the weight 𝜔 on the filter kernel, for a discrete design. The evaluation point x is marked by a
circle, whereas the points in the neighborhood 𝝃 ∈ (x) are marked by squares. An empty circle means that the evaluation point itself is not
considered in the filter kernel. We have three situations: both x and (x) lie in the solid region (black); x is in the solid region and (x) is
partly in the solid and partly in the void region (blue); x is in the void region and (x) is partly in the solid and partly in the void region (red).

F I G U R E A2 Effect of the stress filtering on the 0∕1 compressed column design. The 0∕1 interface is marked by the continuous
magenta line in plot (A), and by the grey dotted line in plots (B,C). (A) Shows the von Mises stress for the original field 𝝈 and for the filtered
fields �̃�, for different choices of the kernel weight 𝜔. The contour plots are scaled according to (12) and c

𝛼

= 2. For each case, (B,C) show the
cross section stress distributions at the mid-length and near the tip, respectively. Only half section is shown, due to symmetry.

Let us consider a compressed column, discretized by Ωh = 240 × 120 elements. First, we consider a discrete design,
where �̂�e = 1 only over the central strip of 40 elements. The load is applied on the 24 elements symmetric to the midpoint,
at the tip. We use N-BCs when applying (15); however, the solid-void interface is an internal boundary, not modeled in
the filter operator, and therefore the boundary conditions influence only the loaded and clamped ends.

The effect of different choices of the weighting 𝜔, considering r𝜎min =
1

15
, is summarized in Figure A2. The maximum

stress, attained away from the solid-void interface, is reduced of about 4%, in all the cases. Figure A2B shows the cross
section stress distribution at the mid span (i.e., at ex = 120). The uniform weight 𝜔 = 1 reduces the stress inside the solid
boundary, but propagates it on the void region; this effect is exacerbated by the weight 𝜔 = �̂�, giving a stress propagation
within a reach of r𝜎min in the void region. The weight 𝜔 = 1 − �̂� has the opposite effect, halving the stress within a reach
of r𝜎min inside the solid boundary. The last two contour plots in (a) and the two bottom plots in (b,c) show the effects of
the filter modification (A2), either keeping the kernel weight 𝜔 = 1, or setting 𝜔 = 𝜒|0.5. In the first case (cyan lines) we
obtain the same result as with uniform filtering, inside the solid boundary, whereas the stress on the voids is zero. The
second case (purple lines) corresponds to stress re-distribution in the solids, and has no effect on regions of uniform stress,
whereas stress gradients are reduced near the tip. We point out that these two latter approaches introduce a non-smooth
point in the stress field across the boundary.
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4138 FERRARI and SIGMUND

F I G U R E A3 Effect of stress filtering on the column design with intermediate densities. The information shown in the three plots are
the same as for Figure A2, but now (A) displays the relative difference between the von Mises measures of the filtered and original stress
fields (see Equation 17). The contour plots are scaled according to (12) and c

𝛼

= 2. For these plots, we have set 𝜌 = 0.5 when using the
filtering strategies (A1) and (A2).

F I G U R E A4 Post-evaluation of the design in Figure 6A, reduced to the 0/1 �̂� distribution. (A) Shows the BLFs computed according to
the original stress field, and to the filtered one, for r𝜎min =

1
60

and comparing some different kernel weights. The bottom plot shows the
corresponding values of the localization measure, defined based on (13). Filtering on the solid purges all artificial modes, whereas the stress
redistribution (purple line) still retains two of them, on the high part of the spectrum. (B) displays some representative buckling modes
corresponding to the original stress field and to the one filtered using 𝜔 = 1 and the filter modification (A2). The colormap is scaled
according to (12) and c

𝛼

= 4.
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FERRARI and SIGMUND 4139

F I G U R E A5 (A) Optimized design for the compressed column, obtained starting from a uniform gray material distribution and the
stress filtering. The corresponding buckling modes are computed on the discrete 0/1 design, and using the local stress field. (B) Shows the
evolution of the objective and constraints in the optimization progresses, (C) and (D) summarize the post-processing results, performed
either in our framework and by using COMSOL.

For the same configuration, we now introduce a transition between solid and void by applying density filtering (2)
with r𝜌min =

1
15

. Now all the choices of the filter weight 𝜔 amount to a stress increase somewhere in the intermediate
density region (see Figure A3). Moreover, setting𝜔 = �̂� or𝜔 = 1 − �̂� does not correspond to dilation and erosion operators
anymore, and the filter modification of (A2) may even introduce a stress discontinuity in the transition region, at points
where 𝜌 > �̂�.

We now test the effect of these stress filtering alternatives on the modes and BLF computed by the LBA. We consider
the design of Figure 6A, projected to a discrete 0/1 �̂� distribution, and evaluate its buckling response for to the original
and filtered stress fields, for r𝜎min = r𝜌min =

1
60

.
The results are summarized in Figure A4. For 𝜔 = 1 (and for 𝜔 = �̂� as well), the stresses propagate outside the solid

boundaries, leading to the onset of hundreds of buckling spurious modes in void regions, associated with zero BLFs. The
weight 𝜔 = 1 − �̂� avoids this issue, and also removes the spurious solid modes. However, all the BLFs are substantially
increased and one may argue against the overestimation of the lowest one (see green curve in Figure A4A). Filtering
with 𝜔 = 1 and using the stress modification (A2) seems the best compromise, as the localized modes are effectively
removed, and the lowest BLFs are not significantly changed (cf. cyan lines in Figure A4A and modes in Figure A4B).
The stress re-distribution, achieved by combining (A2) with 𝜔 = 𝜒|0.5 gives a similar result; however, some local modes
survive at high frequencies, because excluding the voids from the kernel weight gives a smaller smoothing effect along
the boundaries (cf. purple lines in Figure A4A).

A.2 Performance of stress filtering in the TO procedure
Figure A5 summarizes the outcomes of the TO process, when using stress filtering alone. The setup and all the parameters
are the same as given in Subsection 5.1, and for the stress filtering we set r𝜎min = r𝜌min =

1
60

. The kernel weight is 𝜔 = �̂�
for the first 400 iterations. Then, when 𝛽

𝜌

is increased, we switch to the filter modification (A2), setting 𝜌 = 0.75. This
is motivated by the previous discussion, since the choice of the threshold 𝜌 may be arbitrary in the early optimization
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4140 FERRARI and SIGMUND

stages, whereas, once the main structural features have emerged, we need to avoid the back propagation of stresses on
low-density regions.

The buckling loads start from a high value due to the stress reduction caused by the filtering, and all the eigenvalues
evolve smoothly, apart from small jumps in correspondence of continuation steps (see Figure A5B). In the end, the BLF
attains 𝜆#1 = 8.80 according to the filtered stresses, whereas using the local stresses we have 𝜆1 = 8.36, about 5.2% lower.
When post-evaluating the pure 0∕1 design, we obtain 𝜆1 = 9.76 and the BLF corresponding to the original and filtered
stresses essentially coincide (see Figure A5C). The buckling modes computed by COMSOL, using a body-fitted mesh,
match those computed in our framework, and the critical load 𝜆1 = 10.06 is about 7% higher. Moreover, from Figure 8D
all the modes qualify as physical, and the ones that look localized still involve the failure of single, well-formed structural
members.

The optimized design consist of two main struts, and a hierarchy of inner bars providing reinforcement against lateral
bending. A narrowing of the struts at about 1/3 of the height resembles a hinged support with the clear effect of shortening
the struts’ inflection length, as we can see from the fundamental buckling mode (see Figure A5A). Despite its sound
structural configuration, this design shows poor stability compared to those of Figures 6 and 7B, due to the lack of inner
bracing elements, which would substantially increase the lateral stability of the struts. The inhibition in the development
of inner bars is a downside of the stress filtering; in the early optimization stages, the smearing of the stress field caused
by the filtering prevents the formation of bars close to the centerline, thus forcing the optimizer to take another path.
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