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Summary
Understanding and forming new hypotheses about data are two fundamental aspects
shared by many scientific disciplines. When working with surface-based data such
as geometric data, these aspects are largely facilitated by visualization. Visualization
however, becomes more challenging as data complexity increases. To tackle this com-
plexity we need new ways of visualization that simplify data exploration and thereby
arguably aid inductive reasoning. Virtual Reality has the potential to be one such way.

When visualizing complex geometric datasets in Virtual Reality they often end up be-
ing simplified. It is perhaps because of the performance requirements of Virtual Reality
and the use of existing visualization tools, such as game engines. Games engines are
evolving to become more general-purpose tools but have previously prioritized visual-
izing many objects rather than large objects. This has led to a workflow that includes
a data simplification step, creating a paradox for data visualization, where the data we
wish to inspect needs to be simplified first.

In this thesis, we explore the landscape of existing visualization tools, game engines,
and graphics application programming interfaces. Based on our findings we put forth
principles and recommendations for the development of new Virtual Reality-based vi-
sualization tools.

In this process, we developed a bespoke tool for Virtual Reality-based visualization.
We show how this tool can be used with large geometric datasets, forgoing the simpli-
fication step. We likewise explore the perceived difficulties of creating bespoke Virtual
Reality-based visualization tools. In doing so we demonstrate that Virtual Reality has
become a mature alternative to existing solutions for visualization.

An advantage of Virtual Reality is the 6 Degrees of Freedom interface that it provides.
The interface allows for a more intuitive way of interaction but requires new interaction
paradigms if we wish to take full advantage of it. We discuss how to use the affordances
of portals to take advantage of this interface. As well as explore how precise interaction
in Virtual Reality is when compared to desktop solutions.

Finally, we present a novel mesh processing algorithm that is simple to implement and
results in high performance when used in practice on new hardware.
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Danish summary
At forstå og udforme nye hypoteser er to fundamentale aspekter som mange viden-
skabelige discipliner har til fælles. Når man arbejder med overflade-baserede datasæt
som geometriske datasæt, er disse aspekter primært faciliteret via visualisering. Vi-
sualiseringen i sig selv bliver mere udfordrende i takt med at datasættene bliver mere
komplekse. For at kunne håndtere dette har vi brug for nye måder at visualisere datasæt
på. Måder som simplificerer udforskningen af datasættene, hvilket kan siges at under-
bygge en logisk induktiv tænkemåde. Virtual Reality har potentialet til at blive en sådan
ny måde.

Når man visualiserer komplekse geometriske datasæt i Virtual Reality ender det ofte
med at man er nødt til at simplificere datasættene. Det kan blandt andet være fordi der
er strenge krav til ydeevnen i Virtual Reality og på grund af brugen af eksisterende vi-
sualiseringsværktøjer, så som spilmotorer. Spilmotorer er ved at udvikle sig til at blive
mere generelt anvendelige, men har tidligere prioriteret at visualisere mange objekter
frem for et stort, som netop data visualisering har behov for. Det har ført til en proces
inkluderer et data-simplificerings-trin. Dette skaber et paradoks for data-visualisering,
hvor man er nødt til at simplificere den data man gerne vil inspicere.

I denne afhandling udforsker vi landskabet af eksisterende visualiseringsværktøjer,
spilmotorer, og grafik applikations programmerings grænseflader. Vores mål er at bruge
resultaterne til at identificere principper og anbefalinger til at guide udviklingen af Vir-
tual Reality-baserede visualiseringsværktøjer.

Som en del af den proces har vi også udviklet vores eget værktøj til visualisering i
Virtual Reality. Vi viser hvordan dette værktøj kan bruges til at visualisere store ge-
ometriske datasæt, og samtidig springe simplificerings-trinet over. Dermed har vi an-
skueliggjort at forskere med god grund kan anvende Virtual Reality som et alternativ
til eksisterende visualiseringsværktøjer.

En fordel ved Virtual Reality er, at det tilbyder en brugergrænseflade med 6 friheds-
grader. Denne brugergrænseflade tillader en mere intuitiv måde at interagere med data
på. For at udnytte de 6 frihedsgrader fuldt ud har vi brug for nye interaktionsteknikker.
Vi diskuterer derfor i denne afhandling, hvordan portalers egenskaber kan anvendes til
at skabe en sådan ny interaktionsteknik til Virtual Reality-baseret interaktion. Vi ud-
forsker også hvor præcis interaktion er i Virtual Reality sammenlignet med interaktion
på en computer.

Til sidst præsenterer vi en ny algoritme til processering af geometriske datasæt, som er
simpel at implementere og resulterer i en høj ydeevne, når den bliver brugt i praksis på
nyt hardware.
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C H A P T E R 1
Introduction
1.1 Motivation

Visualization is an integral part of almost every step of the scientific method. It allows
us to leverage the visual system to see and explore data. Inspecting data facilitates
inductive reasoning and exploring it is a crucial part of forming new hypotheses about
the underlying phenomena represented by the data.

As the datasets we wish to visualize grow in size and complexity, visualization itself
becomes increasingly demanding. This forces researchers to not only create more ef-
ficient visualization tools, but also explore different ways of visualizing data. Virtual
Reality (VR)-based visualization is one such way, that actually becomes more useful
as the complexity of the data increases (Elden, 2017).

In 1996 Bryson (1996) published a paper on the use of VR for the visualization of scien-
tific data, showing the potential of VR. Three years later F. Brooks (1999) proclaimed
that VR barely worked and had only found application in a few niche industries. In
other words, the computational power of the hardware used for the VR technology was
not powerful enough to make good on the promise of VR. Hardware has continued to
develop, as stated by Koomey’s Law (Koomey et al., 2011), doubling its processing
power every 30 months between 1948 and 2010. Resulting in many times more pow-
erful hardware. The same can be said for VR technology, as large companies have
invested heavily in it. Head-mounted displays (HMD) are now being sold at consumer
prices with features significantly better than the elaborate setups of the early 2000s.
Modern HMDs utilize advances in hardware, computer vision, and machine learning
to provide the user with higher resolution, better refresh rates, and more precise and
faster head and controller tracking of both position and orientation. This development
has matured VR, and we believe that it is at a point where it can live up to its potential.

With the vast improvements of modern HMDs, interaction and navigation with VR be-
comes much more effortless and direct. The six Degrees of Freedom (DoF) tracking of
the controllers and headset can be mapped directly to the six DoF required to navigate
in a 3D Virtual Environment (VE). Because of the fast head tracking the view of the
VE is updated seemingly as the user moves the head, creating a very convincing expe-
rience. Walking in the real world or reaching out with a controller to grab and rotate an
object is directly reflected in the VE, making the interaction much more intuitive than
using a mouse and keyboard. This makes it easy and fast to get the desired view in VR.
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The process is similar to how we inspect and look at objects in the real world, making
VR a good choice for visualization.
Combining this intuitiveness of VR with a HMDs ability to isolate the user in a VE with
no distractions can lead to less mental effort being spent on interfacing with the appli-
cation and more mental effort being available for inspection and exploration (Hutchins,
Hollan and Norman, 1985).

Using VR however, does not come without constraints. VR experiences need to main-
tain low latency between movement tracking and displaying an updated image, reflect-
ing tracked movement in the HMD. This is further exacerbated by the need to render
two new images every time, one for each eye. If the latency, often referred to as the
Motion-to-Photon latency, becomes too great the experience becomes unusable and
the user might experience symptoms of motion sickness. To guarantee low Motion-
to-Photon latency, complex models and datasets are often simplified when used in
conjunction with VR. Jiménez Fernández-Palacios, Morabito and Remondino (2017)
present a visualization pipeline for complex heritage 3D models in VR. The pipeline
has an incorporated step that simplifies the models, reducing models of 1-3 million tri-
angles to less than 1 million triangles each. The high-frequency details of the models
are instead baked into texture maps. These texture maps can then be used to give the
illusion of a more detailed model. Because the textures do not alter the silhouette of
the model, the illusion breaks down when a model is viewed up close or at odd angles,
which is exactly the type of interaction that VR affords. Furthermore, when working
with scientific data, the visualization becomes pointless if the data we wish to inspect
has to be simplified first.

VR technology, in other words, is a great tool for the visualization of large complex
datasets. But because of the hard constraints imposed on VR by the Motion-to-Photon
latency, we cannot take full advantage of VR. For VR to become a viable tool for the
visualization of scientific data we need to have more focus on building visualization
platforms centered around high performance. Only then can we start exploring all the
affordances that VR-based visualization promises.

1.2 Scope

As data can be collected with increasingly finer details, the resulting datasets grow
larger and more complex. Our goal is to be capable of visualizing such large datasets.
Large datasets require longer processing time, which can be challenging when working
with VR. Because of this, we must align ourselves with the core specialty of Graphics
Processing Unit (GPU) hardware, namely with datasets consisting of geometric data.
That way we can leverage the fast processing times afforded by modern GPUs for
processing. Geometric data is of course not the only way to represent data, and not
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always the best. It has certain drawbacks. Geometric data, or surface-based data, is
more often than not a discrete approximation of the underlying continuous phenomenon
that is being measured. Section 2.8 gives a more thorough introduction to geometric
data. Another reason for this choice is that when working with geometric data there is a
tendency to decimate the data before showing it, which is not ideal when visualization
is the goal. Often when geometric data is used, the visualization tool is built on an
existing platform, such as a game engine, which works natively with geometric data.
In section Section 2.10 we explore a cross-section of different VR-based visualization
tools, and 13 out of 15 visualization tools were built on existing platforms. Out of those
13, four tools work with geometric data. They are all built on a game engine. Three of
them had to decimate the data to achieve good performance in VR. The last expresses a
desire to move to a bespoke visualization tool in the future. The practice of decimating
meshes comes from limitations and game engines being built to handle many meshes
rather than a single big one. This is apparent from the fact that Unity did not introduce
the ability to use large meshes until an update at the end of 2017 (Unity, 2017). We aim
to show that the decimation process is not required until meshes become much larger
than what is currently being decimated, and with that, widen the usability of VR.

Section 2.2 gives an introduction to different VR systems. These systems vary in cost
and convenience. In this project, we strictly use consumer-grade HMDs. They are
affordable, easy to set up, and widely used. The VR experience afforded by a HMD
is quite intuitive. Modern HMDs often feature headset tracking in the actual headset
meaning that it is convenient to use even without a dedicated VR space, and because
we aim to collaborate with other scientists, this allows us to bring a headset with us
for easy evaluation. While it is possible to create multi-user VR experiences, we also
restrict this project to single-user VR experiences. We provide the ability to see the VR
user’s point of view on a regular computer screen.

We use geometric data from two different scientific fields. The first is digital heritage
where using scanned 3D models makes it possible to perform what would otherwise
be destructive processes. An example of such a process is landmark annotation which
is done by marking the object. A process that is very reliant on the ability to visu-
alize the objects with as many details as possible. The other scientific field is shape
and topology optimization. Here advanced computer-driven optimization is used to de-
rive load-bearing structures. These structures, while difficult to manufacture, require
inspection for the scientists to identify key areas that can drive future research.

1.3 Goal of the thesis

The goal of this thesis is to investigate the viability of VR-based visualization in the
context of large and complex datasets. Due to the heterogeneity of scientific visualiza-
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tion, we do not constrain ourselves to one field, instead, we focus on geometric data.
Because we find that when working with geometric data, it is quite common to use
existing graphics engines as these widely support geometric data. We aim to inves-
tigate whether existing graphics engines can keep up with the increasingly large and
more complex datasets that emerge, or whether it is necessary to build bespoke VR
applications to ensure a better experience. We aim to investigate this by exploring the
following questions:

• What is the best foundation for a VR-based visualization platform?
• What challenges and benefits are gained by building a bespoke VR-based visu-

alization platform?

Interaction is another crucial part of visualization in VR. If the user is not presented
with an interface to the Virtual Environment that is easy to understand, the user might
end up spending more time getting accustomed to said interface instead of interacting
with the data. Another, and perhaps more interesting aspect of interaction, is the more
practical approach. Namely how well does it work? Can we perform reliable, pre-
cise, and reproducible manipulations of the data in VR, assuring that the platform can
help aid researchers in the visual explorative analysis of their data? This leads to the
following question regarding interaction with large datasets in VR:

• What interaction modalities work best for the purpose of understanding geomet-
ric data in VR?

1.4 Outcome of the thesis

This thesis has had a large focus on investigating the technical feasibility of visualiza-
tion, as well as some preliminary experiments carried out on interaction in VR. This
has led to several academic papers, of which an overview can be found on page vii.
Each paper has been included as a chapter.

The outcome of this thesis can be divided into two parts. The first part focuses on the
technical challenges surrounding the visualization of large geometric datasets. Paper I
dives deeper into the importance of choosing the right platform. Paper III shows how
leveraging state-of-the-art graphics processing hardware has enabled us to widen the
scope of VR applications, namely by allowing visualization of larger geometric data
sets. We show that great performance gains can be had by building bespoke platforms,
but also show that game engines can be utilized to a big extent if care is taken to
optimize the application.

The second outcome of this thesis focuses on exploring the challenges of interaction
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in VR. In Paper II we have conducted experiments that compare how precise a VR
controller is compared to a mouse and find that annotation in VR is indeed no less
precise. This opens up human-in-the-loop annotation-based tasks which are used in
several fields. In Chapter 7 we show our initial findings of how VR interaction can
be done more immersively, directly, and intuitively with the use of portals. We also
discuss how portal-based interaction is a promising technique that can be implemented
for interaction regardless of the data being visualized. This would allow VR users to
rely on previous and conceptual experience with portals when using different VR ap-
plications. Having previous experience to rely on can greatly help increase the learning
rate of new VR experiences.

Overall, our work has widened the application space of VR. Together these two parts
show that VR-based visualization holds great promise to change the way we explore
and visualize geometric data.

1.5 Structure of the thesis

We have divided the thesis into chapters that build on each other, creating a common
thread throughout. In Chapter 2 we go through the background knowledge that is nec-
essary to understand the different parts that go into building VR-based experiences.
The chapter also introduces all the prerequisites for understanding the contributions of
this thesis. Chapter 3, Chapter 4, and Chapter 6 are the 3 papers that have been submit-
ted to peer-reviewed research outlets as a part of this thesis. Chapter 5 Introduces the
visualization platform that has been built for conducting the experiments presented in
this thesis. Chapter 7 introduces portals as a comprehensive tool for VR-based visual-
ization and interaction.
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C H A P T E R 2
Background

2.1 Virtual Reality

Ivan Sutherland (1965) defined the ultimate display as the following: "The ultimate
display would, of course, be a room within which the computer can control the ex-
istence of matter. A chair displayed in such a room would be good enough to sit in.
Handcuffs displayed in such a room would be confining, and a bullet displayed in such
a room would be fatal. With appropriate programming such a display could literally be
the Wonderland into which Alice walked."
Sutherland’s room, wherein a computer manipulates matter, would be real and not vir-
tual. Instead, a virtual room would be in essence but not in fact. That would make the
bullet harmless. It would however be possible to make the virtual bullet seem real, by
making it look like a bullet, sound like a bullet, and submit to physics in approximately
the same way as a real bullet. Despite not being able to manipulate matter, modern
computers can simulate not only a virtual bullet but entire environments. Virtual en-
vironments simulating everything from the familiar forces of the physical world to the
unfamiliar uncertainties of quantum mechanics. Merriam-Webster (2022) defines vir-
tual reality as "an artificial environment which is experienced through sensory stimuli
(such as sights and sounds) provided by a computer and in which one’s actions partially
determine what happens in the environment". In this thesis, these virtual environments
are what constitute the virtual reality.

2.2 Virtual Reality Systems

There are different ways of presenting the user with a virtual environment. Typically
these come with different advantages and disadvantages. One of the first VR systems
was created in 1967 by the same Ivan Sutherland (1968). The system was capable of
showing the user wire-frame objects. The images of these were displayed in stereo on
an optical system attached to the user’s head. The optical system used two cathode-
ray tubes, miniature versions of the screen used in old television sets and computer
screens, for displaying the images. Because of this, the background was transparent.
The perspective view of the objects was updated based on tracking of the users’ head
movement. The headset was rather heavy, resulting in the need for attaching it to a big
robotic arm suspended from the ceiling. The system provided the user with the freedom
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to move around freely, to the extent allowed by the robotic arm. While being far from
the ultimate display, this prototype showed that it was possible to start exploring novel
setups for presenting virtual environments to the user.

Later another approach that sacrificed the freedom of movement for higher fidelity was
the fish tank VR system. The fish tank VR system provided a seated experience in
front of a computer screen, but produced high-resolution images and allowed interac-
tion through mouse and keyboard. The stereoscopic effect was achieved by using a
lightweight active shutter headset, that switched between blocking one of the eyes in
synchronisation with the screen’s refresh rate (M. Deering, 1992; Ware, Arthur and
Booth, 1993). The stationary aspect of the fish tank VR system allowed for precise
head tracking.

The CAVE Automatic Virtual Environment(CAVE) setup, provides a more captivating,
but also more circumstantial VR setup, than the fish tank VR system. It does so by com-
bining the freedom to move around, with a high fidelity system. The CAVE projects
between 4 and 6 views on the insides of a cube. The user, who is inside the cube, can
then freely roam around the cube. Other than requiring projectors and screens, the user
also needs to wear an active shutter headset that is synchronised with the refresh rate
of the projectors (Cruz-Neira et al., 1992). the CAVE system allows for multi-user VR
experiences if the projectors have a high refresh rate and the users are equipped with
active shutter headsets that are synchronized with the projectors refresh rate at a fixed
offset with each other. Unlike the fish tank VR system the CAVE system is still widely
used. Figure 2.1b shows a CAVE setup.

The Fakespace labs Binocular Omni-Orientation Monitor(BOOM) is a way to create a
more seamless multi-user experience without requiring an elaborate setup or a lot of
headset switching, making it more suited for an office-type environment. The BOOM
is a counterbalanced box that contains an immersive stereo display. It is easy to move
in place with the hands, and it is more comfortable to use as it does not require the user
to wear a headset (Bolas, 1994).

The HMD most commonly used for VR today combines the advantages of several of
these predecessors into one system. They provide the freedom to move around from
the CAVE, the high-resolution images and precise tracking of the fish tank. All with a
form factor and portability that makes it almost as comfortable and office-friendly as
the BOOM. Figure 2.1a shows an example of a modern HMD with controllers.
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(a) A picture of a HMD called the VALVE
index

(b) A picture of a CAVE setup(Courtesy of
Davepape)

Figure 2.1: Examples of two different VR systems

2.3 Virtual Environments

A Virtual Environment(VE) is a synthetically created environment that is presented to
the user through a virtual reality system. A synthetic reality is a more natural form
of human-computer interaction. One that has the potential to fundamentally change
the way a person works with a computer because it allows the user to interact with
the computer in a more intuitive and direct format that can potentially increase the
interactions per unit of time (Foley, 1987). A VE can be considered a type of user
interface. Similar to the Graphical User Interfaces(GUI) that desktop applications have.
The big difference between these two types of interfaces is their affordances. The VE is
a direct user interface, whereas the GUI is more often considered an indirect interface.
A direct user interface allows the user to directly interact with the data. An indirect
user interface is one where the user indirectly manipulates the data. This could be
through manipulating values in boxes that then affect the data. Designing good VEs
can be difficult, not only because of their direct nature but also because the user is left
to explore them on their own. This demands some intuitiveness of the environment as
the user is often enclosed in the virtual environment which makes it hard to receive
guidance.

2.4 Spatial Presence and Immersion

Plato’s cave analogy has served as inspiration for some of the earliest philosophical
explorations of perception and has also lent its name to some of the first endeavours into
virtual reality. The CAVE system, which mimics the idea of projecting the virtual world
onto screens that surround the user (Cruz-Neira et al., 1992), takes its name from Plato’s
allegory of the cave. Even though VR systems have come a long way since a lot of the
research could be said to address some of the philosophical questions that were raised
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by Plato. This is primarily the research that surrounds presence and creating immersive
VEs that try to erase the boundary between the real and virtual. Presence in virtual
reality is a big enough research topic to have had its own journal aptly titled Presence:
Teleoperators and Virtual Environments. Presence in general is often described as the
feeling of "being there" (STEUER, 1992). K. M. Lee (2004) decoupled presence from
technology and has established a more abstract explication of presence, intending to
create a common ground for all presence research. Wirth et al. (2007) further extend
this and argue that a commonly accepted model of spatial presence is the only solution
to further interdisciplinary presence research. Spatial presence is then defined by Wirth
et al. as a binary experience, during which perceived self-location and, in most cases,
perceived action possibilities are connected to a mediated spatial environment, and
mental capacities are bound by the mediated environment instead of reality (Wirth et
al., 2007).

It is however quite hard to objectively measure how present the user is. This also goes
for presence in a VE. Because of this a widely adopted view is that a higher feeling
of presence can be achieved through a higher level of immersion. Which has led to
a lot of research into creating more immersive experiences. Slater and Wilbur (1997)
define immersion as something that can be objectively assessed through how Inclu-
sive, Extensive, Surrounding, and Vivid it is. Cummings and Bailenson (2016) have
performed a meta-analysis on studies that test the effect of immersion on spatial pres-
ence, and found a medium-sized effect. All studies in the meta-analysis have been
done using self-reporting through questionnaires. Different questionnaires have been
developed in an attempt to tease out the level of presence experienced by the user,
among these are the Slater-Usoh-Steed Questionnaire (Slater, Usoh and Steed, 1994),
the MEC Spatial Presence Questionnaire (Vorderer et al., 2004), and the Temple Pres-
ence Inventory (Lombard, Ditton and Weinstein, 2009).

2.5 Interacting with Virtual Environments

If we look at the VE relative to the user, we can divide it up into three egocentric cir-
cular volumes, the personal space, the action space, and the vista space (Cutting and
Vishton, 1995). The personal space has a radius of about 2 meters and is the natural
working volume. The action space starts at around 2 meters and extends to 20 meters.
This volume is the public space that we can easily move to, toss objects to, and interact
with others. From 20 meters an beyond we have the vista space, where we have little
control, and binocular vision is almost non-existent (Jerald, 2015). This can be a good
starting point both for VE design but also for discussing interaction with VEs. The
personal space, within arms reach, has many advantages such as proprioceptive infor-
mation, direct mapping between movement in the physical and virtual world, strong
depth perception and displacement cues due to head-movement, as well as small re-
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quirements to the physical VR space (Mark R. Mine, F. P. Brooks and Sequin, 1997).
Because of this we limit the interaction abilities discussed here to those that work in
the personal space.

Mark R Mine (1995) describes three categories within which the fundamental forms
of interaction with a VE fall. Direct User Interaction where the normal movement
and action of the user is mapped to actions in the virtual world in an intuitive manner.
Physical Controls where the user uses a physical interface such as controllers, joysticks,
or a steering wheel. These physical interfaces provide the user with passive or active
haptic feedback that can result in an immersive experience if they are well integrated
into the VE. Virtual Controls, which facilitate interaction through widgets or other
virtual objects that the user can interact with. Since these lack the haptic feedback of
physical controls, they can be harder to interact with. Different fundamental forms of
interaction, such as manipulation, selection, movement, etc. can then be implemented
in a way that fits into one of those categories.

We are especially interested in the Direct User Interaction category. Because we want
to take advantage of the intuitiveness that VR affords when it comes to mapping user
movement in the physical world to navigation in the virtual world. Moving from an
indirect to a direct interface, such as a VE, we can create interactions that require
the commitment of fewer cognitive resources to the interface. Instead, these can be
committed to the actual interaction with the data (Hutchins, Hollan and Norman, 1985).
Direct User Interaction requires that we have the ability to track the user’s movement.
We can do this by using a HMD and a controller attached to each hand. Modern HMDs
and controllers have six DoF tracking. Head movement maps to moving the virtual
camera, while the controllers can move and rotate the object and serve as an annotation
tool as well. Controllers fit into both the Direct User Interaction and Physical Controls
categories. We can track the controllers to get the physical hand position, and we can
make use of the buttons on the controller. The fact that the user has two controllers
also opens up for a bimodal interaction modality that is not really possible when using
a mouse and keyboard. This type of interaction is very straightforward since it for
instance allows you to rotate and manipulate an object with one hand while painting or
annotating it with the other hand. If the same interaction were to be done with a mouse
and keyboard it would turn from a simultaneous interaction into a sequential interaction
where the user first manipulates the camera to find the the desired view point, and then
paints or annotates the object from that view point. See Section 2.9 for more detail on
the navigation techniques and challenges of using a keyboard and mouse for interaction
with a 3D environment.

Portals, two interconnected window-like gateways that exist in the VE as tangible ob-
jects, are an interesting way of facilitating interaction in VR. The user can move be-
tween the two gateways discreetly by entering either portal, as well as see through them.
In Section 2.9 we explore navigation of geometric data with a keyboard and mouse. In
that setting the user is often presented with more viewports, or windows, that show the
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mesh. The viewport-grid mimics the multi-screen setup that has become the standard
on almost all modern desktop computer stations. Affording the user several different
views of the data. This is a quite efficient way of gaining an overview and understand-
ing of the data. In VR, where the camera is directly tied to the user’s head, we cannot in
the same way utilize this multi-screen setup. Portals can however, be utilized in a simi-
lar way. Poros is a very interesting implementation of portals that does this by allowing
the user to interact with distant objects through portals without moving entirely through
the portals, mimicking a multi-screen setup in VR quite well. They also allow the user
to perform the same action through several portals at the same time (Pohl et al., 2021).
Photoportals is a reference-based interaction tool that allows users to collaboratively
investigate a 3D scene in VR (Kunert et al., 2014). Photoportals can be used either as
flat or volumetric portals, and work as a general purpose tool for inspection, teleporta-
tion, and manipulation in a 3D VE. Worlds-in-Wedges introduces comparative analysis
of spatial data to VR with an extension to volumetric portals, where the hemisphere
around the user is divided into wedges. Each wedge is then a portal into a world that
can be visually compared to the worlds in the other wedges (Nam et al., 2019). Instead
of teleportation, the wedges allow the user to move the viewpoints around which allows
exploration of the VE contained within a wedge. Virtual portals have been used for ar-
chitectural visualization to create an immersive way of moving between a miniature
and the real world scale of architectural 3D models (Bruder, Steinicke and Hinrichs,
2009). Reality Portals have been used for augmented VR, where a real world video
feed is shown in a small monitor in a VE (Åkesson and Simsarian, 1999). The robot
that the camera is attached to can be controlled from the VE. Section 7.2 elaborates
more on Portals.

Interaction can also be done through navigation, and in the setting of data visualization,
navigation becomes really important. Navigating in VEs is largely based on a combina-
tion of moving around in a small physical space and moving around in a wide-reaching
virtual environment, putting a large demand on good navigation. In this section we
explore different techniques that can bridge that gap by moveing the user from the
personal space to the surrounding action space. Navigation can have three different
purposes. Exploration which is navigating without an explicit goal, Search which is
navigation to an explicit goal, and Maneuvering which is short-range high-precision
movement used to position the viewpoint better (D. A. Bowman, Kruijff et al., 2001).
Because the camera position is tied to the head movement in VR Maneuvering becomes
effortless. Exploration and Search on the other hand do not.

Navigation can be broken down into two components, Travel and Wayfinding. Wayfind-
ing combines the immersive characteristics of the VR system with environmental cues,
maps, and compasses that are used in real-world wayfinding. Wayfinding is crucial for
Search-based navigation, but we are more interested in Exploration-based navigation,
which is more reliant on the actual mechanics of travel. So in this section we focus
on the Travel component of navigation. We explore this by going through the five
categories that D. A. Bowman, Kruijff et al. (2001) break Travel down into.
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Physical Movement

Physical Movement is where the user moves through the VE by physically moving
the body. This type of movement is by far the most immersive way of travel within
a VE (Usoh et al., 1999; Wilson et al., 2016), but is often dramatically constrained
by the physical space of the VR system. To circumvent this limitation, without dras-
tically expanding the physical space, elaborate locomotion interfaces can be used to
create a setup where the user can essentially walk infinitely. The Cyberith Virtualizer
omni-directional treadmill uses a low friction base and a belt that is fixed at the users
hip (Cakmak and Hager, 2014). The user can then lean into the belt at the hip and
start walking. Another locomotion interface is a walking-pad, a flat platform which
the user stands on, and by stepping, and jumping on it the user can travel around
the VE (Bouguila et al., 2005). This can also be achieved by simply walking in
place (Slater, Usoh and Steed, 1995). Another even more elaborate locomotion in-
terface is the Torus Treadmill (Iwata, 1999). The Torus Treadmill is a 2 meter by 1.8
meter assembly of 12 treadmills, each driven by its own motor. The treadmills are
mounted on an endless rail to allow the user to walk both along and across them.
Instead of using locomotion interfaces, the VR system can also utilize the limited phys-
ical space better by employing redirected walking where the user is walking straight in
the VE but due to visual cues walk in circles in the real world (Razzaque, 2005).

Manual Viewpoint Manipulation

Manual Viewpoint Manipulation is where the users hand motion is used for travel.
Grab & Drag is one way where the viewpoint is moved by grabbing and dragging the
the VE around (C. H. Lee, A. Liu and Caudell, 2009). Another way is to perform
arm swings (McCullough et al., 2015), or hand flapping (Bozgeyikli et al., 2019). Two
approaches that bridge the gab between interaction and navigation by allowing the user
to stay in the personal space but interact with objects in the action space are; the go-go
interaction technique where the user can stretch their arms to grab objects and pull
them close (Poupyrev et al., 1996), and scale-world grab in which the VE scales down
around the hand of the user, by a factor that is determined by how extended the users
arm is. So that when the user has his arm fully extended the objects furthest away
can be grabbed, pulled in, and manipulated (Mark R. Mine, F. P. Brooks and Sequin,
1997). While not technically travel techniques they accomplish the same task by way
of hand motion, which is why they are described in this section. Manual viewpoint
manipulation-based travel does have a higher chance of exerting fatigue in the user.
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Steering

Steering is where the user moves continuously in a direction. A controller can be used
to manipulate translation, independently of the head orientation (Buttussi and Chittaro,
2021). The velocity can be determined simply by the direction the user is leaning in as
well as the extend of the lean (Fairchild et al., 1993). A similar result can be achieved
with a Wii Fit Balance Board (Harris et al., 2014). The steering can also be based on
the orientation of a controller used to point or the orientation of the head (Christou and
Aristidou, 2017). Flying can also be performed along the orientation of the head by
raising an arm (Bozgeyikli et al., 2019). This type of movement runs a large risk of
inducing vection. Vection is an illusion of self-motion, and can cause motion sickness.
Motion sickness will be explained in more detail in section Section 2.6.

Target-Based Travel

Target-Based Travel is where the user specifies the target, and the system then han-
dles the actual movement. One implementation of this allows the user to move their
own miniature in a World-in-miniature(WIM) model, and upon releasing the miniature
the users position is updated with a transition into the miniature (Pausch et al., 1995).
Teleportation, which instantly and discreetly moves the user from one position to an-
other, is another way. Teleportation can be done by having the user point at a location
with their hand for two seconds (Bozgeyikli et al., 2016) or by pointing a controller
and pressing a button on it (Schnack, Wright and Holdershaw, 2021). Both solutions
show the user a circle of where they will end up. Portals or Orbs can be used to create
a transition between the start and end point (Husung and Langbehn, 2019). Orbs are
similar to portals, but instead of being windows, they are small spheres making it pos-
sible to inspect them from any angle providing a 360 degree view of the "other end".
Similarly the Jumper Metaphor allows the user to combine walking with target-based
travel, the target to jump to is automatically detected via the headset orientation, and
the jump animation is activated if the user moves towards the target with a reason-
able speed (Bolte, Steinicke and Bruder, 2011). An elevator metaphor can be used for
vertical movement (Vasylevska, Kaufmann and Khrystyna, 2014).

Target-Based Traveling is very popular in VR because it bridges the gap between the
personal and action spaces well. It also induces less vection than other ways of naviga-
tion. Instant teleportation is often used, but this travel techniques has some drawbacks
too. Not only does it break immersion, because of the abrupt change in location and its
unrealistic nature, the abrupt change of view is also disorienting (D. Bowman, Koller
and Hodges, 1997). Portals and orbs can make the teleportation effect more immersive
and less disorienting, by allowing the user to see the destination through the portal and
by actually walking into the portal combining the locomotion of walking in the physical
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and virtual environment. Walking being an immersive way of travelling in VR (Usoh
et al., 1999). Portals and Orbs scored highest in both presence retention and likability
when compared to other transitions (Husung and Langbehn, 2019). Transitioning by
moving an orb to the headset has even been used in several VR games already, such as
The Lab, Google Earth VR, Accounting, Budget Cuts, and with Photoportals (Kunert
et al., 2014). Portals even facilitate directed movement that allows the user to better
take advantage of the limited size of their physical surroundings (Freitag, Rausch and
Kuhlen, 2014).

Route-Planning

Route-Planning is where the user manipulates icons, maps or other virtual objects to
plan out the route through the VE beforehand. D. A. Bowman, Davis et al. (1999) show
the user a 3D map of the VE and allowing them to place points on it, before they become
immersed in the same VE and automatically move in a straight line between the placed
points. Route-planning for VR experiences is not that useful a tool for the exploration
of scientific data. Mainly because the visualization process is used to explore the data
in search of regions of interest that are unknown before exploration. Similar techniques
could however be used to present the results of exploration to other users.

2.6 Visually Induced Motion Sickness

Motion sickness is the most adverse health effect that virtual reality systems can induce.
Motion sickness can include symptoms such as nausea, dizziness, general discomfort,
disorientation, and headaches. Motion sickness induced by apparent motion, can also
be referred to as cypersickness. Vection can be the result of the travel interfaces used,
such as steering-based techniques, but it can also be induced through miscalibration
or latencies in the VR system. Vection is a major contributor to motion sickness as
well (Jerald, 2015).

If a VR experience induces motion sickness, cypersickness or too much vection it is
quite frankly unusable. Because of this, we should be very mindful of creating expe-
riences in VR that specifically avoid exposing users to conditions that can potentially
cause motion sickness. Here I present a short overview of the theories of motion sick-
ness. For a much more in-depth exploration of the underlying biological processes and
organs that help us perceive motion as well as theories of motion sickness I recommend
Sharif Razzaque’s thesis (Razzaque, 2005) and The VR Book by Jason Jerald (2015).

The Sensory Conflict Theory (Reason and Brand, 1975) revolves around a disagreement
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in the perceived motion across different sensory modalities. Primarily the disagreement
between the visual stimuli and the vestibular system located in the inner ear. Inside
the bony labyrinth of the vestibular system sits the semicircular canals. There are three
canals, sitting at right angles to each other. These are used to sense angular acceleration
or rotation of the head. The utricle and saccule, also in the bony labyrinth of the
vestibular system, both house what is called an otolith. These are used to sense linear
acceleration, similarly to a three-axis accelerometer (Khan and Chang, 2013). When in
VR the visual and auditory stimuli are coming from the virtual world, but vestibular and
proprioceptive cues come from how the body moves in the real world. Proprioception
is the body’s ability to sense movement, action, and location. This disagreement can
result in motion sickness.

The Evolutionary Theory (Treisman, 1977) explains that this happens because of an
evolutionary trait, namely that a conflict among senses is the result of the body having
been poisoned. So because our survival depends on our ability to trust our senses,
the body induces motion sickness to discourage movement while it rids itself of the
toxins through sweating and vomiting. A general feeling of discomfort is then felt to
discourage the incident from happening again.

Three other theories focus more on the comparison of the expected state and the actual
state of self-motion and the world around us. Having a lot of experience interacting
with the real world has conditioned us to expect that things are in a certain way, and
when this is not the case it can cause motion sickness. The Eye Movement Theory (Jer-
ald, 2015) argues that motion sickness arises from the unnatural eye movement that is
required to stabilize an image in VR on the retina. The visual and vestibular systems
are tightly coupled, and the vestibulo-ocular reflex is a reflex that stabilizes eye gaze
during head movement due to activation of the vestibular system. The Postural Insta-
bility (Riccio and Stoffregen, 1991) theory argues that motion sickness can be a result
of a user not maintaining postural stability. Because the virtual environment provides
stimuli that is different from the real world, it forces our body to adjust the small mus-
cles to keep the user in balance. We can see an effect of this when the user is moving
forward in a virtual scene, then the user tends to lean forward in the real world as well.
In fact, the vestibular system also plays a role in keeping our head and body in bal-
ance (Khan and Chang, 2013). Lastly, we have the Rest Frame Hypothesis (Prothero
and D. E. Parker, 2003), which assumes that the brain has an internal model of its sur-
roundings, including which objects are stationary. Movement then becomes relative
to these stationary objects, and when we perceive the stationary objects as moving, it
results in motion sickness.

These theories can be combined into a unified model for VR-induced motion sickness,
which can be seen in figure 2.2. Essentially, it shows how we constantly compare
expectations, predicted changes, and sensory input with a mental model of self-motion
and the world. Central processing takes bottom-up input from the senses and combines
this with top-down processing from our mental model of how the world works. It also
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Figure 2.2: A model showing human perception of motion (Adapted from Razzaque, 2005
and Jerald, 2015

takes into account the predicted change based on our actions. The resulting state is
compared to our mental model. If these are out of sync it results in motion sickness.

2.7 Motion-to-Photon Latency

VR systems are made up of many different components and parts that have to work in
conjunction with each other. We have some form of movement tracking system, that
works at a certain frequency. We have a real-time system that generates images based
on the positions and predicted movement of the user. These often work at different
frequencies, as well as a computer and cables that transmit these to a display that yet
again updates at its own frequency. This can make it quite difficult to measure how
fast a VR system can actually display images. Instead of measuring independent com-
ponents, we can measure the end-to-end time from a user moving their head, to a new
image being presented to the HMD which reflects that movement. This is called the
Motion-to-Photon latency (Jingbo Zhao et al., 2017). For most of our research, we can
narrow this down a bit as we keep the entire VR system constant, and only replace the
render engine.
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2.8 Geometric Data

Throughout this project, we restricted ourselves to the use of geometric data. What we
understand by geometric data, is data with inherent spatial information, i.e. meaningful
width, height, and depth, where the relative size, distance, length, and shape is part of
the data. more importantly we require the data to be "surface-based".

(a) A triangle mesh based on a FEM simulation
of a Boeing wing. The mesh consists of
30 670 121 vertices and 38 629 758 triangles.

(b) A triangle mesh based on a 3D scan of a
seal skull. The mesh consists of 7 252 445
vertices and 14 504 882 triangles.

Figure 2.3: Two examples of geometric data

The surface that is associated with a given dataset is often approximated based on un-
derlying data, rather than being directly present in the data. If we, for instance, look
at the process of 3D scanning, the resulting data is in the form of a point cloud. The
acquisition of this point cloud can be through Structure from Motion (Schonberger and
Frahm, 2016), Structured Light Scanning (McPherron, Gernat and Hublin, 2009), or a
similar process. Afterwards the surface is then approximated through a surface recon-
struction algorithm such as Poisson (Kazhdan, Bolitho and Hoppe, 2006) or Voronoi-
based (Amenta, Bern and Kamvysselis, 1998) surface reconstruction. Figure 2.3b
shows the surface reconstruction of a 3D scanned seal skull. Similarly when we look
at cross-sectional images as acquired through different types of scanning we end up
with a stack of images that we can turn into a volume represented by a voxel grid. We
can approximate the surface of a volume by firstly turning the volume into a voxel grid
and secondly extracting the isosurfaces of each voxel, by using an algorithm such as
Marching Cubes (Lorensen and Cline, 1987). This approach also holds for large voxel-
based simulation methods such as Finite Element Modeling (FEM) (Reddy, 2019). Fig-
ure 2.3a shows an aeroplane wing which is the result of a giga-voxel FEM simulation.
So working with surface-based data often means working with some approximation of
the actual surface.

However, many methods exist for turning most data acquisition methods into a surface
based geometric dataset, and there are many good reasons to be working with surface-
based data, or 3D models. Most real-time rendering applications work with 3D models.
The surface of these models, or meshes, could be formed of triangles. Triangles consist
of three vertices which is the minimum required to define a plane in 3D space. In other
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words, a triangle is always planar. Being planar is incredibly helpful, as it lets us define
a normal vector to the triangle (plane), which is essential when working with surface
representations. Furthermore, it also means that the vertices are coplanar. Using this,
we can define a winding of the triangle, which can be used to determine if we are
viewing it from the front or the back. If we were to use other more complex surfaces
we would lose the coplanarity of the shape, which means we lose the ability to compute
one normal, as well as use winding information to figure out if the shape is visible.
Triangles can also be represented in a great many ways that help reduce the overall
memory footprint of the mesh. Lastly and maybe most importantly GPUs are incredibly
fast at processing triangles.

Working with triangle-based surface meshes is closely tied to how the GPU works,
and is largely motivated by the GPUs ability to hardware accelerate the processing of
triangles, resulting in a high triangle throughput. Because of this, and because Paper
III depends on a deeper understanding of the graphics pipeline, we now dive deeper
into how we can represent triangle meshes in an efficient way, as well as how the real-
time rendering pipeline actually consumes and processes the triangle meshes. Then
we briefly cover the history of real-time computer graphics to gain an understanding
of how the pipeline has evolved in the way that is has, and lastly we briefly explore
some of the existing platforms built on this pipeline that enable us to make VR-based
experiences.

One way of representing a triangle mesh can be seen in Figure 2.4. Essentially the
meshes consist of vertices that are stored in the Vertex Buffer. Another buffer, called
the Index Buffer, is used to store the order and indices of vertices that make up the
triangles. Each triangle T in the figure is found by advancing along the index buffer.
The first triangle is made up of the first three indices, the next triangle is made up
of the two last processed indices, and the next index in the index buffer. That way it
is possible to draw new triangles by just processing one more vertex each time. For
more detail on how the GPU and mesh representations have evolved over the years
see subsection 6.1.1. Each vertex at the very least needs to contain a position in 3D
space, but more often than not each vertex contains a lot more vertex data. Equation 2.1
shows a vertex that, besides its position, also contains a directional vector, which is a
weighted average of the normals of all the triangles that the given vertex is part of
called a normal vector. Oftentimes, a vertex also contains a texture coordinate.

V ertexn =

Positionx Normalx TextureCoordinatex

Positiony Normaly TextureCoordinatey

Positionz Normalz

 (2.1)
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Figure 2.4: This diagram shows how a triangle strip can be converted to an index and vertex
buffer. The index buffer holds indices into the vertex buffer. The vertices are used for processing
triangles. The triangles are processed three vertices at a time, starting with indices 0,1,2. Then
only one new vertex needs to be processed(3) for the next triangle, which is made up of indices
1,2,3.

2.8.1 Real-time Rendering

Real-time rendering is about generating new images fast. Interaction is a big part of
real-time rendering, simply because a high frame rate allows for the perception of inter-
action, by having the subsequent images be affected by the user’s actions and intention
immediately. In fact, introducing as little as a 15 milliseconds delay between image
updates slows and causes errors in interaction (Watson and D. Luebke, 2005), suggest-
ing that we should aim to be at least above 66 frames per second(FPS). In the context
of VR, we are then interested in creating images at a high enough frame rate to ensure
fluid interaction with the VE, as well as a proper reflection of the user’s head move-
ment, and avoid inducing motion sickness. This means that we often require as much
as 90 FPS when developing VR experiences (Akenine-Möller, Haines and Hoffman,
2018). Such a high FPS becomes even more challenging when we take into account
rendering a new image per eye. This doubles the FPS needed to a staggering 180 FPS.

Real-time rendering and computer graphics have since the early 1990s taken advantage
of the GPU for hardware acceleration to increase the frame rate. With modern GPU
architectures, several different approaches to creating real-time computer graphics ap-
plications have become more viable. Hardware rasterization of triangles is however by
far the most common approach when we are aiming at rendering objects at the high
frame rates required by VR. Rasterization is the projection of the triangles in a triangle
mesh to an image plane in which a rectangle is divided into pixels. After projection,
the triangle is rasterized into fragments that each cover a pixel (if any). Another ap-
proach is Ray Tracing (RT). RT is a rendering technique where we trace one or more
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rays through each pixel. Rays can also reflect and refract around the scene and col-
lect colour information for their pixel of origin. GPU RT provides a hierarchical mesh
representation through hardware accelerated Bounding Volume Hierarchy (BVH) that
scales well with large models. Lastly, a combination of either rasterization or RT can be
made in combination with machine learning techniques to increase resolution, fidelity,
or frame rates. A graphics rendering pipeline, or rendering pipeline, is a conceptual
model which is used to describe the different stages that are used for turning a 3D
scene, which is viewed from a virtual camera, into a 2D image. In this thesis, we
primarily use the rasterization pipeline. Two variations of the rasterization pipeline ex-
ist, but common for both is that they consist of a combination of programmable and
fixed function stages. The programmable stages are referred to as shaders. In essence,
shaders are small self-contained programs that are executed by the GPU hardware. De-
pending on the stage in the sequence different types of data may be exposed to that
stage which can be manipulated before it is pushed further down the pipeline. The
fixed function stages of the pipeline have different functionality depending on where in
the pipeline it is, but equal for all of the stages is that they are not programmable. The
rasterization pipeline can be used in conjunction with a primitive type, which is either
triangles, lines, or points. There are two variations of the rasterization pipeline, which
are described below.

Vertex Shading Pipeline

The Vertex Shading Pipeline is the original rasterization pipeline. It has been in use
since before the first GPU was created. In fact, the old GPUs were made to hardware
accelerate the Vertex Shading Pipeline. A diagram of the pipeline can be seen in fig-
ure 2.5. The diagram shows different stages, which vary between being fixed function,
programmable and optional. For a given collection of vertices that is processed with
this pipeline, it is first specified by the programmer how the mesh data is made available
to the pipeline. This can be done in a couple of different ways. For triangle meshes, it
can be done with a vertex and index buffer. Vertices are then processed one at the time.
The Vertex Shader Stage computes the position of the vertices as well as propagates
any desired vertex information further down the pipeline. After processing the vertices
they can be sent through two optional stages in the pipeline. Because these stages are
not generally used, nor supported, on all GPUs they are optional. The first is the tessel-
lation stage. The stage is used to divide a primitive into smaller primitives. This can be
helpful for automatically increasing or decreasing the complexity of objects depending
on their distance to the virtual camera. The other optional stage is the geometry shader.
The geometry shader takes a primitive as an input, and outputs between zero or more
primitives. This can for instance be used for turning vertices into a quad of two trian-
gles for particle simulation. In the Post-Vertex Processing stage, clipping is performed.
Here it is determined whether a primitive is visible. The vertices of visible primitives
are passed on, while partially visible primitives are clipped before being passed on.
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Figure 2.5: A diagram showing the Vertex(top) and Mesh(bottom) shading pipelines

Clipping is done by creating new vertices as the intersection between the visible part
of the scene and the primitive. These new vertices then replace the vertices that are
not visible from the camera. After all the vertices that are not visible are filtered away,
the pipeline starts rasterization. Rasterization is divided into two steps. First, we have
the primitive assembly, where the primitives are formed from the vertices. Afterward,
for each pixel, the primitives are checked, and if they overlap a fragment, is generated.
This all happens in fixed function hardware before the Fragment Shader Stage, where
the pixel is shaded by a fragment shader.

Mesh Shading Pipeline

The Mesh Shading Pipeline was first introduced in 2018 with NVIDIA’s Turing GPU
architecture. The pipeline can be seen in the bottom diagram in figure 2.5. Mesh Shad-
ing Pipeline differs from the Vertex Shading Pipeline in that it does away with the
vertex processing stages, and instead processes Meshlets. Meshlets are small clusters
of primitives. It does this by introducing two new shader stages, namely the Task and
Mesh Shader Stages. These two shader stages are more dynamic than any of the shader
stages that are associated with the Vertex Shading Pipeline. Meaning that instead of
relying on fixed function hardware for processing the vertex specification, the pro-
grammer is free to define the mesh input to the Mesh Shader Stage. The Mesh Shader
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Stage expects processed vertices, as well as an index buffer for the Meshlet as output
that can be passed on to the Fragment Shader Stage. The pipeline is restricted to the
same primitive types as the Vertex Shading Pipeline. Another welcome addition to this
pipeline is the Task Shader. The Task Shader and Work Generation Stage are optional
stages that can be used to cull entire Meshlets and make new work groups based on the
Meshlets that are passed down the pipeline for processing. Meaning that it is no longer
necessary to process an entire mesh if only part of it is visible. The Mesh Shader Stage
handles all the processing of the vertices and the propagation of the vertex data. It can
also be used for tessellation and other manipulation of the Meshlet, such as level of
detail decisions, and even triangle-based culling.

The biggest difference between these two pipelines is the granularity at which the
shader stages work. For the Vertex Pipeline, the Vertex Shader Stage acts upon a single
vertex, whereas the Mesh Shader Stage acts on a cluster of vertices. In other words,
the vertex shader program is executed on a single thread on a GPU processor, while
the task and mesh shader stage is executed on the entire processor with explicit control
over the threads within that processor. It is this paradigm shift that makes the mesh
shading pipeline much more powerful. It allows the programmer much more freedom
in how the processing is done.

2.8.2 A Brief History of Real-Time Graphics

Very often, bespoke hardware has failed because of Moore’s law which, for a period
of time, almost ensured that any special purpose hardware solution would be overtaken
by general purpose hardware (Leiserson et al., 2020). However, graphics hardware has
been a tremendous success, largely because of the massive parallelism offered by the
task of triangle rasterization is simply not a good match for a traditional CPU, and later,
because the graphics hardware itself turned into a general purpose solution, now widely
used for other tasks than graphics.

There is no doubt that computer games were the main driver of the development of
graphics hardware, and the release of Doom by Id Software in 1993 is an important
milestone. Ironically, while Doom did not exploit hardware acceleration, its popularity
persuaded many consumers to upgrade their computers, making them ready for the first
hardware accelerated 3D graphics PCI expansion card. This card, which was released
toward the end of 1996, was the Voodoo Graphics PCI card created by 3dfx Interactive.
The affordable price of the Voodoo card and the popularity of Doom fueled the advent
of dedicated graphics processing add-on cards (McClanahan, 2010). The Voodoo only
accelerated rasterization, meaning that the programs still did the vertex transformations
on the CPU, and then the graphics card rasterized the triangles into pixels (Haines,
2006).
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While the Voodoo II improved on the performance of its predecessor, the next major
innovation came from NVIDIA which launched the Riva TNT in 1998. This GPU
provided more flexibility during the fragment shading process, allowing for more in-
puts that in turn meant better-looking images (Zeller et al., 2004). Only a year later,
NVIDIA released the GeForce 256, and ATI released the Radeon 7500. These two
GPUs introduced the hardware accelerated vertex processing pipeline and provided
more freedom in the fragment processing stage (McClanahan, 2010). Full programma-
bility came in 2001 when NVIDIA and ATI released the NVIDIA GeForce 3 and the
Radeon 8500, respectively. At this juncture, GPUs offered programmability in both the
vertex and the fragment (pixel) stage but using distinct processing units on the GPU
(Zeller et al., 2004).

The unification of the processing of vertices and fragments came a few years later in
2006 with the release of the Geforce 8000 series and Radeon HD 2000s. This meant
that now the vertex shader and fragment shader both used the same streaming multipro-
cessors on the chip (Lindholm et al., 2008). The unification of the vertex and fragment
shaders increased the GFLOPS of GPUs because the entire GPU hardware could be
used at all times. This increase, along with the flexibility of more general-purpose
streaming multiprocessors, meant that the computing power of the GPU surpassed that
of the CPU for tasks that could exploit the massive parallelism. For this reason, the
GPU started to be used for other types of computation besides generating images of 3D
geometry (Wu and Y. Liu, 2008). To harness the GPU for compute tasks, NVIDIA also
released a new programming API called CUDA (Compute Unified Device Architec-
ture), and a couple of years later OpenCL was released. These two new APIs relieved
specialists in scientific computing from the arduous task of using a graphics API such
as OpenGL for their numerical tasks (Fang, Varbanescu and Sips, 2011).

In 2018 another major shift occurred with the NVIDIA RTX series and the ATI Radeon
RX 5000 series. A large demand for the acceleration of convolutional neural networks
for deep learning made NVIDIA and ATI create support for it through hardware ac-
celerated tensor operations. Moreover, hardware acceleration for RT was introduced
in this generation (Sanzharov et al., 2019) marking the first time a different mode of
rendering than rasterization was directly supported by graphics hardware.

2.8.3 Game Engines and Visualization Tools

Early games were largely written from scratch with very little content and few roles
in the development process other than that of the programmer. However, since games
generally require many similar facilities, software layers emerged between the bespoke
code for the individual game and the APIs for graphics, sound, etc. These layers are
generally called game engines (Mishra and Shrawankar, 2016). Perhaps unsurprisingly,
the first 3D game engine that was made publicly available is associated with the game
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Doom mentioned above. The game was based on the engine later labelled as id Tech 1
and written in large part by John Carmack. It has since been made publicly available
under the GPL license (https://github.com/id-Software/DOOM).

Apart from the id Tech engines, a number of commercial engines have been very influ-
ential. Best known are probably the Unreal engines from Epic Games, e.g. UE4 which
is frequently used for developing VR applications. However, in this thesis, we will fo-
cus on another popular engine, namely Unity3D (https://unity3d.com) which was one
of the first engines that ran well within a web browser as a plugin. Later, Unity became
the go-to tool for developing games on a variety of platforms, recently including VR
games.

Valve is another important contender. They run the biggest online game store, called
Steam, maintain the Source Engine, and have created their own HMD. Valve has also
developed OpenVR and SteamVR which is the current standard used for communicat-
ing with different HMDs (Ripton and Prasuethsut, 2015). OpenXR is a Khronos Group
alternative to OpenVR which promises a unification of both AR and VR into one API.
Most of the available game development has also added VR support through the inte-
gration of OpenVR. This support is in the shape of plugins that can be used on top of
the existing engines.

Several different tools, besides game engines, can be used for creating and viewing geo-
metric datasets. Digital content creation tools such as Blender (https://www.blender.org),
many of Autodesks software packages (https://www.autodesk.dk/),and KeyShot
(https://www.keyshot.com) allow users to create view and edit geometric datasets. These
are more used in the visual effects and film industry to create computationally heavy
high-quality images offline. In the scientific community a lot of researchers work with
ParaView (https://www.paraview.org) or MeshLab (https://www.meshlab.net/), two open
source visualization platform that supports many different data formats. ParaView also
has a plugin that enables VR-based data visualization.

2.9 Scientific Visualization of Geometric Data

Visualization of large and complex datasets are essential for scientists and engineers
to understand, analysis and communicate. Kehrer and Helwig Hauser (2013) made a
survey on visual analysis of multifaceted scientific data. Multifaceted scientific data
considers everything from spatiotemporal to multivariate to multirun data. This survey
proposes six categories for visualization of scientific data, based on a literature review
of 200 papers. The six categories reflect different visualization, analysis, and interac-
tion methods that have been used together with multifaceted scientific data. The six
categories are:

https://github.com/id-Software/DOOM
https://unity3d.com
https://www.blender.org
https://www.autodesk.dk/
https://www.keyshot.com
https://www.paraview.org
https://www.meshlab.net/
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Visual Data Fusion which fuses different facets of the data into a single visualization
with a common frame of reference. Relation and Comparison which is in essence
comparative analysis, where similarities and differences of the data are investigated.
Navigation, which pertains to exploring the data through moving around and within
it. Focus+Context and Overview+Detail, This category can be divided into two, Fo-
cus+Context, which is defined by leveraging computer processing to visualize a region
of interest in more detail with the surrounding context being represent in a more sim-
plistic manner, whereas Overview+Detail is the separation of details and overview into
different views. Interactive Feature Specification enable the user to interactively select
regions of interest and interact with the data. Data Abstraction and Aggregation which
is a collection of regions of interests, or annotations based on algorithmic analysis of
the data.

To gain a better understanding of how these categories can be applied to geometric data
we go through them one at a time. This is by no means an exhaustive list of every scien-
tific visualization paper of geometric data but rather a dive into the techniques that can
be used in conjunction with geometric data and how they fit into the categories. Hope-
fully this will provide the reader with an idea of how visualization tools for geometric
data utilizes aspects from each category.

Visual Data Fusion

When working with explicit surface data, visual data fusion can be done through the use
of texture mapping and surface colouring. Color maps can be used to encode different
scalar values that can be applied onto the surface, and isoluminant maps can be used
to make the 3D structure of the surface easier to perceive (Moreland, 2009). Rocha et
al. (2017) introduce decal-maps. Decal-maps consists of a 2D glyph, pattern, symbol
or text that can be transferred to a surface upon contact. This can be used to map
multivariate data onto arbitrary surfaces, such as rock type, porosity, direction and
magnitude for oil and water flow into a single texture that can be applied to a petroleum
reservoir model. Tang et al. (2006) use textures to map weather data onto a surface
model of China, where the texture encodes temperature, wind speed, precipitation, and
pressure.

Textures can also be used in conjunction with geometric objects for Flow Visualization
(FlowVis) which covers a wide spectrum of industries, such as visualizing aerodynam-
ics, climate and weather simulation, medical visualization and water flow. Typically
the data takes on the shape of a multivariate vector field, and the goal is to visualize
this. One way of visualizing it is through Line Integral Convolution(LIC). LIC creates
a texture-based visualization of a vector field by performing a convolution of the vector
field on a white noise image at each pixel, blurring it in the direction of the vector field’s
integral curves (Cabral and Leedom, 1993). This can be extended from 2D to an arbi-
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trary surface, through a combination of 3D noise textures and the idea of projecting a
piece of the resulting texture onto each triangle, taking advantage of the triangles being
planar (Stalling and Hege, 1997; Battke, Stalling and Hege, 1997). Toledo and Celes
(2011) use this technique to map the 3D flow of oil onto the surface of a black-oil reser-
voir, where they also add colors to the texture depending magnitude and normal vector
of the surface model. Flow can also be visualized as a streamline texture on geometric
objects (R. S. Laramee et al., 2004), while image based flow visualization techniques
can be used to advect a triangle surface along an unsteady vector field (Wijk, 2002; R.
Laramee, Jobard and H. Hauser, 2003).

Relation and Comparison

The general idea of relation and comparison is very similar to that of comparative anal-
ysis. I.e. that data from two different sources are visualized with the intend to either
show similarities or differences (Pagendarm and Post, 1995). Gleicher et al. (2011)
present a taxonomy of visual design for comparison based on the general issues re-
lated to the Information Visualization(InfoVis) community, across different domains.
It divides comparative design into 3 categories. Juxtaposition where two objects are
presented separately. Superposition or superimposition, where two objects are overlaid
in the same space. Explicit Encoding where some visual encoding is used to compute
and visualize the relationship between the objects. In the taxonomy by Gleicher et al.
(2011), 111 visualization systems from the InfoVis community were surveyed. Out
of these only three supported 3D geometric data, while two of these three system per-
formed a dimensional reduction on the data before visualization. This is maybe not so
surprising as abstract data is quite common in InfoVis. The three categories however
can also be used when analysing geometric data, as is more commonly seen in scientific
visualization. Of the 200 visualizations that they survey only 25 fall into the category
of comparative analysis. Out of the 25, eight use some spatial 3D and time-varying
3D data and only two of these are related to geometric 3D data. Weigle and Taylor
(2005) conduct two experiments to explore how an intersection of two meshes are
best visualized. The visualization is rendered offline. Busking et al. (2011) present an
image-based extension to Weigle and Taylor’s intersection visualization, which makes
it applicable for dynamic comparisons. Both of these methods fall into the superpo-
sition category. Kim, Carlis and D. F. Keefe (2017) have made a survey on visual
analysis on spatial 3D and 4D data. They survey visualization tools that support spatial
3D and 4D data, and explore whether or not those tools support comparative analysis
through Juxtaposition, Superimposition, Interchangeable, and Explicit Encoding. The
survey consists of 41 tools that include comparative visualization designs. Out of these
21 use spatial 3D data. Out of those 21, eight use geometric data. Six of these focus on
visual encoding. Three of these are on nested-surface visualization. Two of these are
the same that are present in (Kehrer and Helwig Hauser, 2013), and the last explores
the use of glyphs in combination with transparency (Interrante, Fuchs and Pizer, 1997).
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Two of these present tools that are used for merging different version of the same 3D
models (Doboš and Steed, 2012), and highlighting the differences resulting from differ-
ent surface reconstruction algorithms of point clouds (Schmidt et al., 2014), effectively
using texture to highlight differences. The last paper presents a method called Ensem-
ble Surface Slicing which is used to slice different objects and present them as one
image that it stitches together from slices pertaining to different objects (Alabi et al.,
2012). Another paper presents the user with an interactive interface that allows the user
to edit a mesh resulting from Finite Element Modeling, either by directly manipulating
the geometry or tuning the parameters used to simulate the mesh (Coffey et al., 2013).
The last paper presents a tool for validating a machine learning based triangle segmen-
tation against the ground truth for medical image segmentation (Landesberger, Basgier
and Becker, 2016).

Navigation

The desktop computer which is used to visualize and inspect the 3D data always comes
with a keyboard and mouse. The user interface, keyboard, and mouse are the result of
over 30 years of combined efforts from computer scientists in universities, government
laboratories and corporate research groups working to create the perfect 2D interface
for the desktop computer (Perry and Voelcker, 1989). Because the mouse, specialized
in 2D interfaces, only has two DoF(Three with the mouse wheel), it becomes challeng-
ing to properly navigate in a 3D environment that requires six DoF.

The simplest six DoF interface is to present the user with a 2D interface where they
can manipulate six sliders with the mouse (Zhai, 1998). This does however not work
out very well because people cannot mentally decompose orientation into separate ro-
tational axes (Parsons, 1995). Instead M. Chen, Mountford and Sellen (1988) laid the
foundation for the interaction design that has become the standard, through the adop-
tion in many Digital Content Creation (DCC), Computer-Aided Design (CAD), and
game making software packages, by introducing a virtual sphere around the object
of interest. The mouse can then be used to rotate the sphere by clicking and drag-
ging. Dragging vertically rotates around the Y-axis, while dragging horizontally, rotates
around the X-axis. By dragging along, or outside the edge of the circle it rotates around
the Z-axis. The rotation can be constrained to different axes via a keyboard press. Shoe-
make (1992) introduces the Archball. A similar approach that instead of allowing the
user to click outside the sphere, maps the mouse movement to the ball, rotating the ob-
ject based on the arch drawn by the mouse. While a keyboard press for constrained axis
rotation is also required, it produces a visual cue on the sphere. Namely three mutually
perpendicular half circles on the sphere that, when clicked, constrain rotation. But even
with the Archball and Virtual Sphere, the mouse is still inferior when compared with
a six DoF interaction device when rotating 3D objects (Hinckley et al., 1997). This
covers finding the desired orientation, but the user can move around. This is typically
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done through direct control of the camera. Two different approaches prevail in scien-
tific visualization. Eyeball in Hand, where the user directly manipulates the camera as
if it was in the hand of the user, and World in Hand, where the camera is held still and
the data is manipulated (Christie, Olivier and Normand, 2008).

When working with geometric data in 3D the user is often given control of a virtual
camera that can be used to change the direction from which the data is viewed. Since
the camera is virtual, it can freely fly around the data. This can easily be extended to
several cameras, which allows the user to view the data from different angles at the
same time. The camera is controlled with a combination of inputs from the mouse
and keyboard. Good camera controls are important because geometric data more often
that not are solid, and thus require some maneuvering to get around occluding parts.
The movement required to effectively inspect datasets that have both low and high
frequency details needs to include the ability to change the velocity at which the camera
flies. High velocities are required to quickly cover big distances when inspecting the
data from afar, but at the same time low velocity is required when inspecting the data up
close. Mackinlay, Card and Robertson (1990) implement rapid controlled movement by
having the user pick a target which is used to scale the velocity. Ware and Fleet (1997)
use Depth Modulated Flying (DMF) to adjust velocity. DMF changes the velocity
depending on the distance to the nearest point on screen.

Focus+Context and Overview+Detail

In Section 2.9 we explored the superimposition of different models, but sometimes the
geometric models themselves are made up of many distinct parts occluding each other.
Such models can for instance be found in manufacturing, engineering and medicine.
To visualize these models and explore the distinct parts, inspiration can be taken from
technical drawings that often provide a curated view containing important details, such
illustration use transparency and phantom lines to give context, while focusing on the
inner parts (Diepstraten, Weiskopf and Ertl, 2002). A silhouette can also be used to
outline the transparent objects for context (Gooch et al., 1998). Diepstraten, Weiskopf
and Ertl (2003) show a texture-based approach mimicking cutout and breakaway il-
lustration. W. Li, Ritter et al. (2007) use Constructive Solid Geometry (CSG) to make
cutting volumes for creating interactive cutaway illustrations. Another approach is the
exploded view diagrams, where the distinct parts of the model are moved outside of the
shell to show where they fit and the shell is kept for context (W. Li, Agrawala et al.,
2008). Yang, J. Chen and Beheshti (2005) use a camera model that creates a nonlin-
ear magnifying glass like effect on the screen to enhance part of the image. Depth of
field can be used to blur out parts of the resulting image, while keeping the region of
interest in focus (Miksch and Helwig Hauser, 2001). Level of Detail (LoD) strategies
can be used to give focus and computing power to regions of interest on a geometric
level. Many different ways of including an LoD version of geometric data exist, from
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real-time adaptive sampling to precomputed versions of the data that are exchanged
depending on the distance to the camera (David Luebke et al., 2003).

When working with Overview and Detail, the idea is to separate information into two
distinct views. With 3D geometric data, we can think of this as having multiple virtual
cameras with their own associated viewports. DCC software always has more than one
virtual camera. In fact the user is often presented with four virtual cameras in a grid
and the ability to create new virtual cameras. The cameras can freely be manipulated
independently of each other, providing a good Overview+Detail of the models being
visualized. The use of orthographic projection further helps give an overview, and sim-
plifies the interaction with a two DoF mouse (Mendes et al., 2019). Another example
of this is the YMCA application by (Schmidt et al., 2014), which can be used to com-
pare different mesh reconstruction algorithms. Here the user is presented with small
views that show details of the regions of interest with the most divergence between the
algorithms next to a large view of the entire model.

Interactive Feature Specification

Working with geometric data on a desktop computer typically means using a 2DoF
mouse for navigation, as previously described, and also for interaction. Selection with
a mouse is typically done by ray-casting from the pixel position that the user clicks and
into the 3D scene (Bleisch and Nebiker, 2008). This allows the user to select an object,
a triangle or even a vertex. D. Keefe et al. (2009) use this to create tracers on a geometric
model of a skull used for exploring the biomechanics of chewing in pigs. Creating a
trace on the skull is linked to a 2D view that shows how that point moves throughout
the chewing movement. Extending this to multi-selection can be done by allowing the
user to draw a rectangle, or free-form lasso on the display (North et al., 2009) which
can then be projected out into the 3D scene. These projection-based selection tools
are not always the best, because they also select occluded geometry, so when selecting
vasculature based geometry with a lot of overlap, instead the user can click on a vessel,
and the entire sub-tree is selected (Preim and Oeltze, 2008). A volumetric brush, in the
shape of a box or ellipsoid can also be used for selecting the intersection of the data
and the brush (Weyrich et al., 2004).

Other input devices can also be used for interaction with geometric data, such as gesture
based selection. Bacim, Nabiyouni and D. A. Bowman (2014) use free-hand gesture
tracking to slice-n-swipe a selection. The method works by progressively refining the
selection, by slicing the data, and swiping away the unwanted part until only the desired
region of interest is left. Ulinski et al. (2007) use a bimodal interaction interface, where
the user manipulates a box volume and fits it over the region of interest.
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Data Abstraction and Aggregation

Manually selecting a large number of vertices or triangles to mark a region of inter-
est quickly becomes a tedious task on large datasets and models. Instead automatic
methods can be used. Segmentation of a geometric model is one way of dividing the
model into several regions by breaking a model down into smaller element or seg-
ments. M. Attene et al. (2006) evaluate several algorithms that can be used for mesh
segmentation. In cultural heritage segmentation can be helpful for comparing different
archaeological finds which may help relate them to each other and history (Manferdini
and Remondino, 2010). Segmentation also makes it possible to make more precise
queries when searching through 3D shape repositories (Marco Attene et al., 2007).

Geometric Deep Learning is a field focusing on using deep learning for shape segmen-
tation and annotation. Deep learning methods can be used to automatically find regions
of interest in new datasets, once trained on previously annotated data. Cao et al. (2020)
have made a comprehensive survey on geometric deep learning. The input to these
models can be in the form of 2D images of the desired features (Liebelt and Schmid,
2010), 3D annotation points on the surface (Paulsen et al., 2019), or entire point clouds
of vertices that make up a region or object of interest (Koo, Jung and Y. Yu, 2021).

Yi et al. (2016) use active learning to annotate regions in large 3D shape databases, by
manually annotating a small sample of the database they train a neural network through
human supervision to extend the work to the remaining network. Active Learning,
or Interactive Machine Learning is making deep learning a viable method for small
datasets such as is often found in the biomedical field (Holzinger, 2016; Yimam et al.,
2015). One benefit of this is that it allows deep learning to be used on increasingly
smaller datasets. Another is that it takes the variance out of the annotation and seg-
mentation process that could otherwise arise if several human annotators carry out the
work instead.

2.10 Scientific Visualization in Virtual Reality

In 1999 Brooks assessed that while VR almost worked in 1994, it now barely works,
and is used more throughout different production applications (F. Brooks, 1999). He
surveyed different applications of VR from training astronauts and pilots and psychi-
atric treatment, to design reviews of automobiles and electric boats. In 2000 Dam et al.
(2000) made a paper detailing some of the unresolved technical challenges that keep
VR from becoming more used in scientific visualization. In order for VR to become
more integrated in scientific visualization the display resolution needs to increase, the
interaction needs to be more fast and effective, and the graphics processing capabilities
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need to increase. In essence the Motion-to-Photon latency needs to be dramatically
decreased.

These challenges are being overcome today, by consumer grade VR headsets. With
large companies pushing low latency, high resolution consumer grade HMDs and graph-
ics processing hardware seeing big performance increases. With this democratization
of VR systems and graphics hardware the use of VR for scientific visualization has
once again started to gain traction. In this section we go through some scientific vi-
sualization tools that have been built for VR. We aim to provide the reader with an
overview of different tools and applications. This is not meant to be an exhaustive lit-
erature review of all applications, but to rather give an idea of what is possible when
working with scientific visualization in VR.

Data from many different data sources is being explored in VR, and while 3D data
seems like the ideal candidate to be treated with VR, higher dimensional abstract data
can also be explored in VR. Donalek et al. (2014) have built a VR-based visualiza-
tion tool called iViz to help support the discovery process in exploration of big datasets.
The Tool encodes high-dimensions data into a 3D coordinate system, by utilizing opac-
ity, shape and color to encode dimensions beyond the XYZ-axis. This approach can
help users explore and look for groupings of data that might not otherwise be appar-
ent. SphereViz is another VR-based visualization tool for searching through multi-
dimensional image data sets. The user is immersed in a sphere where the images are
embedded into the interior of the sphere (Soldati, Doulis and Csillaghy, 2007). Moran
et al. (2015) built a VR-based visualization tool that juxtaposes geo-tagged Twitter
posts onto a 3D model of MIT’s campus. The user can explore these Twitter posts and
their connections to other Twitter posts.

Cross-sectional imaging techniques are widely used in medical and biomedical imag-
ing, as well as neuroscience. These techniques are used to capture internal organs,
bones and vasculature information. This results in a model with many nested surfaces.
Explicit surface representations of nested surfaces are not ideal because of occlusion.
Because of this and the difficulties of handling many semi-transparent surfaces in ras-
terization volume rendering is frequently used with this type of data. So it is not sur-
prising the VR visualization platforms that work with medical image data are based
on different volume representations. DIVA is a visualization platform for microscopy
data (El Beheiry et al., 2020). DIVA equips the user with a controller manipulated
clipping plane that can be used in real-time to remove portions of the displayed data,
making it easier to extract information from the data. Like DIVA ConfocalVR is a
visualization tool by Stefani, Lacy-Hulbert and Skillman (2018) which is used for vi-
sualizing image stack data from confocal microscopes. It is used for exploring and
understanding the 3D structure of cell architecture. TeraVR is a VR-based visualiza-
tion tool used to explore and annotate teravoxel-scale whole brain imaging data (Yimin
Wang et al., 2019). This has successfully shown that tracing intermingled axon clus-
ters was 50-80% faster in TeraVR, when compared to a non-VR approach. Usher et al.
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(2018) have also built a VR-based visualization tool for tracing neurons in large-scale
microscopy data, and even find that neuroanatomists become less physically and men-
tally fatigued when performing the tracing in VR, when compared to the none-VR state
of the art.

VR has been used in design and manufacturing since before the turn of the century as
surveyed by F. Brooks (1999). This is still the case today. VR allows people to find
more faults when presented with the design of power units in VR, but more importantly
allowing people who are not well-versed in computer aided inspection to rely on real
world experience (Wolfartsberger, 2019). Marks, Estevez and Connor (2016) did a case
study where a designer form a company called Stimson Yachts inspected his yacht de-
sign in a VE with wave sounds and a realistic ocean surface. The experience has the
potential to replace a process where clients inspect fully built prototypes of yachts that
often end up being scrapped as changes are made. NOMAD VR is a bespoke VR visu-
alization tool which is based on a the largest database of materials science compounds
called NOMAD García-Hernández and Kranzlmüller (2019). It is an elegant solution
that scales well across different VR systems, from a CAVE setup to a mobile phone.
They explore a couple of different datasets, and find that VR promotes an inside-out
style exploration of data that leads to faster detection of the space between chemical
groups in drugs, mistakes in nanoparticles simulation and the evolution of propene as
it travels through porous material.

Cultural heritage is another good use case for visualization VR, where fragile artifacts
and objects can be digitized and then explored in a more natural setting within a VE.
It also makes it possible to relive ancient times. Kim, Jackson et al. (2015) made a
visualization tool called Bema that together with a CAVE Setup allows the user to
visit ancient Greece. More specifically the hill of Pnyx, which was used for political
assemblies. The user can explore the hill at three different points in time, with as
many as 14,000 Athenian citizens in attendance and explore how well they hear and
see the speakers. Gonizzi Barsanti et al. (2015) scan old Egyptian artefacts to make
them more widely available for inspection and analysis without risking damage to the
original artefacts. Similarly Jiménez Fernández-Palacios, Morabito and Remondino
(2017) built a pipeline for visualizing and exploring large and complex cultural heritage
sites in VR. They add hotspots to indicate regions of interest in the form of text that
help translate old text and describe the region. These can be found while exploring
different case studies.

Scientific visualization in a multi user setting is also possible in VR. Either through
CAVE systems where more people can be in the CAVE together. With NOMAD VR the
researchers observed that some people need some guidance to navigate to the regions
of interest, and more optimal areas of exploration. Or where each user has their own
HMD. Both ConfocalVR and TeraVR allows multiple users each with their own HMD,
to collaborate on annotation tasks via the internet. A test conducted in TeraVR had
three annotators in three different cities(two different countries) co-annotate in real-
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time. When compared to a single annotator it reduced the annotation time to 20%
while not sacrificing much in terms of the quality of the annotation. NOMAD VR also
found great success in experienced users guiding new users while exploring data in a
CAVE setting.



C H A P T E R 3
Annotation in Virtual Reality
When working with scientific visualization, it is typically desired to not only inspect
but also interact with the data. With the keyboard and mouse, interaction is typically
comprised of a combination of direct and indirect manipulation. The user can indirectly
manipulate the data through a graphical user interface, or directly manipulate it with
the mouse. The mouse is held in a precision grip, meaning that the finer motor skills of
the fingers can be used quite precisely to manipulate the position of the mouse on the
screen. Furthermore, the user can let go of the mouse, leaving it in a specific onscreen
position. Mapping the three DoF afforded by the mouse to the six DoF required in VR
is not easy nor desirable. Instead, either hand-tracking or tracked controllers are used
for interaction in VR. This is an entirely different modality when compared to using the
mouse. Not only because the tracking itself can introduce artifacts or latency that can
reduce precision, but also because the interaction with the VE is tied to the users’ hands.
This can introduce fatigue in the user as they might need to keep their hands and arms
elevated for prolonged times because it is not possible to leave the virtual controllers
at a fixed position in the virtual space and let go of the physical controllers to get a
brief respite. Controllers are held in the palm and thus held in a power grip instead
of a precision grip. In the power grip, most movement of the controller is performed
by moving the wrist. The tripodal finger position of the precision grip affords more
precision than the power grip (Batmaz, Mutasim and Stuerzlinger, 2020).

The differences between mouse-based and controller-based interaction are quite big, so
while inspection in VR might in many cases be superior to desktop-based inspection, it
is not entirely clear if interaction can be made at the same precision in VR. When inter-
action is used to annotate data it is typically done with the desire to use the annotation
points for further analysis of the data, and if VR-based interaction is indeed less precise
than desktop-based precision, then that process will introduce unnecessary noise into
the subsequent analysis. VR however allows for a much simpler way of interacting
with data, because of its 6 DoF tracking. Because manipulation of the data is very
straightforward it might be the case that the inspection in VR allows the user to place
the annotation points more easily. As such it is not clear which interaction modality is
best suited for annotation. This raises a quite vital question for interaction in VR, does
visualization in VR come at the cost of precision?

In this chapter, we investigate this in the setting of geometric morphometrics, where
the shape variation of biological objects is studied through the use of landmark anno-
tation. We compare landmarks placed in state-of-the-art software with Unity3D-based
VR software. In the pilot study, five operators place landmarks using both types of soft-
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ware on a series of 3D scanned seal skulls. I took part in designing the Unity3D-based
VR software, writing the paper, the design of the pilot study as well as being the first
participant in the study. Since the study aims to analyze the precision and accuracy of
the annotations, it serves well as a use case that can be generalized to other forms of
interaction in VR that require precision.

3.1 Introduction

Geometric morphometrics is a powerful approach to study shape and is widely used to
capture and quantify shape variation on biological objects such as skulls (F. Rohlf and
Marcus, 1993; Bookstein, 1998; Dean C. Adams, F. J. Rohlf and Slice, 2004; Slice,
2005; P. Mitteroecker and Gunz, 2009). In geometric morphometrics, shapes can be
described by locating points of correspondences in anatomically meaningful landmark
positions that are easily identifiable (Bookstein, 1991). An acknowledged and widely
used practice is to obtain landmarks directly from a physical specimen through a tactile
3D digitizer arm (Sholts et al., 2011; Waltenberger, Rebay-Salisbury and Philipp Mit-
teroecker, 2021). However, collecting landmarks digitally from a 3D scanned model of
the physical specimen is also a viable and widely accepted alternative that has found in-
creased use in recent times (Sholts et al., 2011; Robinson and Terhune, 2017; Bastir et
al., 2019; Messer et al., 2021; Waltenberger, Rebay-Salisbury and Philipp Mitteroecker,
2021). Annotation of a 3D digital model is typically done using a software tool based
on mouse, keyboard, and 2D display (Bastir et al., 2019), and hence placing landmarks
can be a tedious task since the perception of shape in a 2D environment is limited as
compared with the real world. When a landmark is placed, e.g., a landmark on a 3D
tip, small rotations are needed to verify the position, otherwise there might be a sig-
nificant distance between the actual and the desired landmark coordinates. Annotation
of 3D landmarks on a 2D display is more time-consuming than when using a digitizer
arm (Messer et al., 2021). On the other hand, having landmarks placed on a 3D scan
of a model carries a number of advantages in terms of data sharing and repositioning
of landmarks compared to stand-alone landmarks from a 3D digitizer (Waltenberger,
Rebay-Salisbury and Philipp Mitteroecker, 2021). We argue that virtual reality (VR)
provides a closer-to-real-world alternative to desktop annotation that retains the multi-
ple benefits of having the landmarks on a 3D scanned model, including the ability to
easily share the digital 3D model, examine it from all angles and accurately place land-
marks. The user interaction afforded by the VR head-mounted display allows naviga-
tors to move the virtual camera while the controllers can move and rotate the object and
serve as an annotation tool as well. All in all, the head-mounted display and controllers
exhibit six degrees of freedom (DOF), which map directly to the six DOF needed to
intuitively navigate in a 3D environment. This should significantly ease the annotation
process and hence make 3D models more useful in biological studies that often require
large sample sizes to obtain robust statistics. Indeed, the process of annotating in VR
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might ultimately be as fast as or faster than desktop annotation. To investigate the use
of VR for digitally annotating landmarks on animal 3D models, we present a prototype
VR annotation system and study the impact of VR on annotation performance as com-
pared with a traditional system using 2D display and user interaction by mouse and
keyboard.

When comparing a desktop interface to a VR interface, some aspects of VR should
be considered. Both latency and tracking noise is higher in VR than with a standard
computer mouse. This can degrade performance and precision (Teather et al., 2009).
Furthermore, most VR controllers are held in a power grip (clutching the fingers around
the object, thereby using the strength of the wrist), as opposed to holding a mouse
in a precision grip (holding an object with the fingertips, such as when using a pen,
thereby enabling the finer motor skills of the fingers). This makes it more difficult to
be precise when annotating objects using most VR controllers (Pham and Stuerzlinger,
2019). Using the mouse on the other hand allows for more controlled and more precise
movements, all while allowing the user to let go of the mouse without loosing the
position on the 3D model. While the mouse only has three DOF that need to be mapped
to the six DOF, it still allows for direct manipulation of either the object or the camera.

The benefits of digital 3D representation of biological specimens (such as skulls) was
discovered more than two decades ago (Recheis et al., 1999). This developed into
the more inclusive field of digital or virtual morphology (Weber, 2015), and the work-
flows in a virtual morphology lab is now a topic of considerable interest (Bastir et al.,
2019). Bastir et al. (2019) discuss the various databases and the key software tools
available for geometric morphometrics. One of the discussed software tools is Land-
mark editor (Wiley et al., 2005), which is the predecessor of Stratovan Checkpoint. It
seems that none of the software tools in this area employ virtual reality.

VR allows an operator to virtually annotate landmarks in 3D models in a way that re-
sembles real-world annotation of physical specimens (D. A. Bowman, McMahan and
Ragan, 2012; Mendes et al., 2019). The directness of this interaction produces a short
distance between thought and physical action, making for a simple and straightforward
interaction modality. More direct interaction demands a lower cognitive load (Hutchins,
Hollan and Norman, 1985). More cognitive effort can then be invested in understand-
ing and interacting with the data that are presented. Jang et al. (2017) showed that direct
manipulation in VR provides a better understanding, and that it benefited students with
low spatial ability the most. Bouaoud et al. (2020) found that students gain a better
understanding of craniofacial fractures by inspecting 3D models based on CT scans in
VR.

In a recent study, Cai et al. (2020) found that using VR to teach about deformities in
craniovertebral junctions would improve the ability of the students when afterwards
placing landmarks in radiographs of craniovertebral junctions with deformities. This
was an improvement as compared with students receiving teaching with physical mod-
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els. We consider this an indicator that perhaps the act of placing landmarks in digital
morphology could be improved too if performed in VR. We follow up on this indica-
tion and compare precision and accuracy in placing landmarks on virtual 3D represen-
tations of skulls when using our VR system and when using the traditional 2D display
and mouse interface.

The possibility of haptic feedback is an important aspect of VR input devices. Haptic
pertains to the sense of touch, and we can broadly distinguish between two types of
haptic feedback. Purely tactile feedback simply means that nerves in your skin are
stimulated when you touch something. Standard VR controllers support this through
the expedient of vibration, and this is often called vibrotactile feedback. The word
kinesthetic is used about the sense of how limbs of a person’s body are positioned in
space. Thus, a device which provides force feedback, thereby preventing your hand
from going through a virtual surface, is often described as kinesthetic.

Within the area of placing medical landmarks, Z. Li et al. (2021) performed a com-
parison of the traditional 2D display and mouse interface with two variants of the VR
interface, one using standard VR controllers held in a power grip, and one using kines-
thetic controllers held in a precision grip. Note that this study differs from ours in
another important respect: They show markers which the participants are supposed to
target when annotating, whereas we consider the task of deciding where to place the
point to be integral to the annotation task (i.e. there is no ground truth). The improve-
ment in marking accuracy was found to be statistically significant when the kinesthetic
input device was employed. The task completion time and difficulty of use was how-
ever higher for the kinesthetic VR device as compared with the standard vibrotactile
controller. The latter was thus easier to use and had as good overall accuracy as the
2D display and mouse interface. Interestingly, the results of Z. Li et al. (2021) suggest
that marking accuracy in VR is less affected by marking difficulty than when using a
2D interface. The task performance was thus more stable in VR than when using the
traditional 2D tool. This is another motivation behind our test of the performance of
placing landmarks in VR as compared with a traditional 2D tool. Z. Li et al. (2021)
show that when mouse and VR interfaces are used in a similar way, the haptic feed-
back helps improving marking accuracy. They do so by having the users interact with
the virtual world through an asymmetric bimanual (i.e. using both hands) interface,
where one hand holds the controller or mouse which is used to both manipulate and
annotate the virtual objects, while the other hand can press the spacebar to place the
annotation point. Because the same hand is used both for manipulation and marker
placement, their interface does not follow the theoretical framework for designing an
asymmetric bimanual interface by Guiard (1987). Kabbash, Buxton and Sellen (1994)
show that carefully designed asymmetric bimanual interfaces can improve task per-
formance, while inappropriately designed interfaces lower performance. Balakrishnan
and Kurtenbach (1999) show that using an asymmetric bimanual interface designed
with the theoretical framework proposed by Guiard (1987) leads to a 20% performance
increase over a unimanual interface. Our study employs an asymmetric bimanual inter-
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face that follows the theoretical framework by Guiard (1987), and investigates whether
combining this interface with regular VR controllers will lead to similar improvements
in annotation performance, saving the users from having to acquire special purpose
haptic devices.

In geometric morphometrics studies, the presence of measurement error can influence
the results of the performed analysis by increasing the level of noise, which can obscure
the biological signal, and/or by introducing bias (Fruciano, 2016). Fruciano (2016)
discusses the different sources of measurement error. Several studies in geometric
morphometrics quantified measurement error in a situation where landmark data were
collected using different devices, and 3D capture modalities (e.g. micro CT, surface
scanner, photogrammetry), involving several operators (Robinson and Terhune, 2017;
Shearer et al., 2017; Fruciano et al., 2017; Giacomini et al., 2019; Messer et al., 2021).
Different systems for annotation of digital 3D models were however not compared in
these studies.

To investigate whether annotation in VR is a viable alternative to mouse and key-
board for digital annotation of landmarks on 3D models, we compare our VR pro-
totype to Stratovan Checkpoint (Stratovan Corporation, Davis, CA, USA; https://
www.stratovan.com/products/checkpoint), a commonly used software for dig-
itally annotating landmarks on 3D models using mouse and keyboard. We note that
Stratovan Checkpoint comes with many features, but we focus only on the placing of
anatomical landmarks. We study the impact of VR on annotation performance. In
a first step, we assess overall and landmark-wise precision and accuracy. Moreover,
we investigate different sources of measurement error (between systems, between and
within operators) in an overall and landmark-wise explorative analysis. Finally, we in-
vestigate differences in annotation time between systems and operators, and over time.

3.2 Materials and Methods

VR annotation system

The VR annotation system was developed at the Technical University of Denmark us-
ing Unity 2019 (Unity Technologies, San Francisco, CA, USA; https://unity.com)
and the Oculus Rift hardware released in 2016 (Facebook Technologies, LLC, Menlo
Park, CA, USA; https://www.oculus.com). Users in the virtual environment are
presented with an asymmetric bimanual interface, which adheres to Guiard (1987)’s
three high-order principles: Assuming a right-handed subject, 1) The system uses a
right-to-left reference where motion of the right hand finds its spatial reference relative
to the left hand. The user manipulates and orients the skull by grabbing it with the left

https://www.stratovan.com/products/checkpoint
https://www.stratovan.com/products/checkpoint
https://unity.com
https://www.oculus.com
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controller. The skull can be scaled by pressing buttons on the left controller. The right
controller is then used to place the annotation point, this is done with a ray-gun. The
ray-gun shoots out a virtual red laser-line that is intersecting with the surface of the
3D model. Landmark annotation is mimicking the gesture of shooting a gun: The user
aims by pointing the controller at the landmark location, and presses the index trigger
of the controller. An annotation gun is chosen since it fits well with the power grip that
the VR controllers are held in. 2) The actions of the left and right hand are on asymmet-
ric scales of motion where the left hand performs large scale movements adjusting the
skull and the right hand performs small scale movements to set the annotation point.
3) This workflow means that the left hand moves before the right hand, adhering to the
principle of left-hand precedence. The VR annotation system supports both right- and
left-handed subjects.

3D models are rendered opaque. It is possible to move the viewpoint such that the
inside of a 3D model is visible. As opposed to the desktop software Stratovan Check-
point, the inside of a 3D model is not rendered. Only 3D models are rendered, with no
additional information being shown, i.e. unlike other systems, we do not show cross
sections.

A comprehensive description of the VR annotation system, and a detailed comparison
of the VR system to the desktop software Stratovan Checkpoint and a 3D digitizer arm
are provided in the Supplemental Article S1. A demonstration of the VR annotation
system, and Stratovan Checkpoint, are shown in Supplemental Videos S1, and S2,
respectively.

Landmark data collection

Our study investigates how precisely, accurately and fast a user can place landmarks
using our VR annotation system compared to Stratovan Checkpoint, a mouse and key-
board based desktop system. To carry out this experiment, we scanned, reconstructed,
and annotated grey seal skulls.

Sample

The sample consisted of six grey seal (Halichoerus grypus) skulls. Of these, five skulls
were held by the Natural History Museum of Denmark and originated from the Baltic
Sea population, whereas one skull originated from the western North Atlantic popula-
tion and was held by the Finnish Museum of Natural History in Helsinki (Table A1).
We selected the skulls based on size in order to cover a large span: In our sample,
skull length ranges from about 18 to 28 centimetres. All the selected specimens were
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intact, and did not have any abnormalities in size, shape or colour variation. We did not
include mandibles.

Generation of 3D models

The 3D models of the specimens were generated as previously described in Messer
et al. (2021). In a first step, the skulls were 3D scanned in four positions using a
3D structured light scanning setup (SeeMaLab (Eiriksson et al., 2016)). On the basis
of geometric features, the point clouds from the four positions of a given skull were
then globally aligned using the Open3D library (Q.-Y. Zhou, Park and Koltun, 2018),
followed by non-rigid alignment as suggested by Gawrilowicz and J. A. Bærentzen
(2019). The final 3D model was reconstructed on the basis of Poisson surface re-
construction (Kazhdan, Bolitho and Hoppe, 2006; Kazhdan and Hoppe, 2013) us-
ing the Adaptive Multigrid Solvers software, version 12.00, by Kazhdan (Johns Hop-
kins University, Baltimore, MA, USA; https://www.cs.jhu.edu/~misha/Code/
PoissonRecon/Version12.00).

In a last step, we used the Decimate function with a ratio of 0.1 in the Blender soft-
ware, version 2.91.2, (Blender Institute B.V., Amsterdam, the Netherlands; https:
//www.blender.org) to downsample the final meshes of all specimens, thereby re-
ducing the number of faces to about 1.5 million. The average edge length, which is
a measure of 3D model resolution, is between 0.312 millimetres (smallest skull) and
0.499 millimetres (largest skull). Original meshes consist of about 15 million faces,
and we performed downsampling to ensure that our hardware could render the meshes
with a frame rate suitable for VR. By using the same resolution 3D model for both the
VR and traditional desktop system, we ensured that observed differences in precision
and accuracy were not due to differences in resolution. Supplemental Fig. S1 shows
the six final 3D models. A comparison of the original with the downsampled 3D model
is illustrated in Supplemental Fig. S2 using specimen C7.

Annotation of landmarks

For each of the six skulls, Cartesian coordinates of six fixed anatomical landmarks
(Fig. 3.1; Table A2) were recorded by four operators. Each operator applied two differ-
ent systems to place the landmarks on the reconstructed 3D digital models of the grey
seal skulls: 1) Stratovan Checkpoint software, version 2018.08.07, (Stratovan Corpo-
ration, Davis, CA, USA; https://www.stratovan.com/products/checkpoint),
without actively using the simultaneous view three perpendicular cross-sections, and
2) our own virtual reality tool (Supplemental Article S1). To assess within-operator
error, each operator annotated the same skull six times with both systems. In total, 288

https://www.cs.jhu.edu/~misha/Code/PoissonRecon/Version12.00
https://www.cs.jhu.edu/~misha/Code/PoissonRecon/Version12.00
https://www.blender.org
https://www.blender.org
https://www.stratovan.com/products/checkpoint
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landmark configurations were collected.

Our choice of landmarks is a subset of six out of 31 previously defined anatomical
landmarks on grey seal skulls (Messer et al., 2021). We chose the landmarks with
indices 2, 3, 11, 18, 24, 28 to have landmarks both of Type I (three structures meet, e.g.
intersections of sutures) and Type II (maxima of curvature) (Bookstein, 1991; Brombin
and Salmaso, 2013). Moreover, we excluded symmetric landmarks, and landmarks not
well defined on all skulls. We selected landmarks located at points that are spread over
the whole skull while exhibiting different characteristics.

Experience in placing landmarks, and experience in annotating digital models are two
important factors that are likely to influence operator measurement error. Thus, our
chosen operators differ from each other with respect to these two relevant factors: Two
operators (A and D) were biologists, both of them having experience annotating land-
marks using a Microscribe® digitizer, but only operator D had experience placing land-
marks on 3D models using Stratovan Checkpoint. The other two operators (B and C)
had a background in virtual reality. Operator B had previously annotated landmarks
on one grey seal specimen in both systems and was the developer of the virtual reality
annotation tool presented in this study. Operator C was the only one having no expe-
rience in placing landmarks and was collecting the landmark data in a test run prior to
other data collection. Operators A, B and D spread data collection over two to three
days, whereas operator C annotated all 3D models on the same day.

All operators recorded the landmark configurations in the same pre-defined, random-
ized order (Supplemental Table S1), making them switch between systems and spec-
imens. The primary goal was to prevent the operators from memorizing where they
previously had placed the landmarks on a particular skull using a specific system. Op-
erator A slightly changed the order by swapping specimen 223 and 96 using the vir-
tual reality tool, and specimen 323 and 664 using Stratovan Checkpoint, both for the
third replica. Moreover, Operator A accidentally skipped skull 323 once (virtual re-
ality, third replica) during data collection, and thus annotated this skull three months
later. In each annotation round, operators sequentially placed the landmarks in the
order (2, 3, 11, 18, 24, 28). Operator C, however, collected landmark coordinates in a
different order (18, 2, 3, 24, 28, 11).

In addition to collecting landmark coordinates, the annotation time was recorded for
each measurement of six landmarks. In case of the virtual reality tool, annotation time
was automatically recorded, whereas the operators had to manually record the time
using a small stopwatch program that ran in a console window when they annotated
landmarks in Stratovan Checkpoint. The operators were instructed to use as much time
as they needed for a satisfactory annotation.
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Figure 3.1: Landmark definition. (A) For our study, we selected the six landmarks marked in
red based on the set of 31 anatomical landmarks on grey seal skulls as defined by Messer et al.
(2021).Note: Adapted from Messer et al. (2021). Reprinted with permission. (B) The six
landmarks placed on the 3D model of skull 96. Square/Arrows indicate the camera view for
taking images (C) – (G), which show the placed landmarks on the 3D model of skull 96 and
highlight their respective features. (C) Landmarks 2 and 3: Intersections of sutures; (D)
Landmark 11: Apex along a margin; (E) Landmark 18: Medial point of a margin; (F) Landmark
24: Posterior/saddle point; (G) Landmark 28: 3D tip.
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Statistical data analysis and outliers

All statistical analyses were conducted in the R software version 3.5.3 (R Core Team,
2020). For geometric morphometric analyses, we used the package geomorph (Dean
C. Adams and Otárola-Castillo, 2013).

There were three different types of outliers present in the raw landmark coordinates
data: 1) swapped landmarks, 2) obviously wrongly placed landmarks (4-9 mm away
from all corresponding replicas; mean Euclidean distance between corresponding repli-
cas was 0.02-0.31 millimetres)1, and 3) landmarks localized at two distinct points,
for several replicas at each point, or distributed between two distinct points. We put
swapped landmarks into the correct order, and replaced the two obviously wrongly
placed landmarks by an estimate based on the remaining five replicas using geomorph’s
function estimate.missing (thin-plate spline approach). There were two cases of
outliers of type 3): Landmark 18 annotated by operator C on specimen C7, and land-
mark 28 annotated by operator A on specimen 42.11, in both cases when using Stra-
tovan Checkpoint as well as the VR annotation system (Supplemental Fig. S3). As-
suming that in these two cases, the operators were in doubt where to clearly place the
landmarks, we decided to include outliers of type 3) in all our analyses to not confound
the results.

In our design, the repetitions were performed in a randomized order to avoid obvious
sources of autocorrelations between repeated measurements on the same landmarks.
This justifies ignoring the longitudinal aspects of the landmarking by modelling devia-
tions between measurements as random errors.

For a specific specimen, annotation both in Stratovan Checkpoint and VR is based
on the same 3D model, and digitization happened in the same local reference frame.
Thus, the 48 landmark coordinate sets measured on the same specimen were directly
comparable without first having to align them.

We further note that there is no ground truth landmark position in geometric morpho-
metrics. For this reason, we focused on consistent landmark placement in our data
analysis.

Annotation time

We sorted the recorded annotation times by system and operator in the order (Supple-
mental Table S1) the operators were annotating the skulls, and computed trend lines

1The two outliers of Type 2) were replica 3 of landmark 11 on NHMD specimen 664, and replica 6 of
landmark 28 on FMNH specimen C7, both placed in VR by operator C.
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using a linear model including quadratic terms. This allowed us to investigate differ-
ences in annotation time between systems and operators, and over time.

Landmark-wise measurement error

We assessed landmark-wise annotation precision by computing the Euclidean distance
between single landmark measurements and the corresponding landmark mean. In a
first step, we visually compared the precision between systems and operators for each
landmark. For that purpose, we computed the landmark means by averaging over repli-
cas. In order to test landmark-wise whether medians across operators within one system
were significantly different from each other, we used the pairwisePercentileTest
function in the R package rcompanion (Mangiafico, 2021) to perform pairwise permu-
tation tests based on 10’000 permutations. Additionally, we compared landmark-wise
median overall precision between the two systems.

In a second step, to test whether the landmark-wise precision depends on the anno-
tation system, we performed a three-way exploratory Analysis of Variance (ANOVA)
with the factors System, Operator and Specimen separately for each landmark. Since
we have a crossed data structure, we included all interaction terms. We note that our
data are balanced, and that we only considered fixed effects models. Precision was
computed from landmark means, which were obtained by averaging over replicas, sys-
tems and operators. Since the Euclidean distances between landmark measurements
and means had right-skewed distributions, Euclidean distances were log-transformed
to approximate a Gaussian distribution.

Since there is no ground truth involved in geometric morphometrics, we assessed ac-
curacy by investigating how closely replicate landmarks were placed in VR compared
to the traditional desktop system. For this purpose, we computed landmark means
by averaging over replicas, followed by computing Euclidean distances between land-
mark means obtained from the two systems (for given operators and specimens). This
allowed us to visually compare landmark-wise overall accuracy, and investigate differ-
ences in accuracy between operators for each landmark. For each landmark, we tested
differences in operator median accuracy by performing pairwise permutation tests. We
note, however, that the statistical power of these tests is limited due to the small sample
size of six annotated specimens per operator.

Overall measurement error

We assessed overall measurement error similarly as previously described in Messer
et al. (2021). In a first step, we computed Procrustes distances between devices, be-
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tween operators, and within operators (i.e. between landmark replica) to investigate
overall measurement error. Here, we define Procrustes distance as the sum of distances
between corresponding landmarks of two aligned shapes. This allowed us to investi-
gate the extent of differences in the total shape of the same specimen in various ways:
measurement by (a) the same operator using a different system (between-system er-
ror), (b) different operators using the same system (between-operator error), and (c)
the same operator using the same system (within-operator error). Since all measure-
ments from a specific specimen were in the exact same coordinate system, we did not
have to align the landmark coordinates prior to the computation of Procrustes distances.
Note that we computed Procrustes distances between all possible combinations, which
introduces pseudoreplicates. For each error source, we tested differences in median
Procrustes distances between operators, systems, or system-and-operator by perform-
ing pairwise permutation tests. We also compared median Procrustes distance between
the error sources.

In a second step, we ran a Procrustes ANOVA (Goodall, 1991; Klingenberg and McIn-
tyre, 1998; Klingenberg, Barluenga and Meyer, 2002; Collyer, Sekora and D. C.
Adams, 2015) to assess the relative amount of measurement error resulting from the
different error sources System, Operator, and Specimen simultaneously. With this
approach, Procrustes distances among specimens are used to statistically assess the
model, and the sum-of-squared Procrustes distances are used as a measure of the sum
of squares (Goodall, 1991). As opposed to a classical ANOVA, which is based on
explained covariance matrices, Procrustes ANOVA allowed us to estimate the relative
contribution of each factor to total shape variation, which is given by the R-squared
value. Prior to Procrustes ANOVA, the landmark configurations had to be aligned to
a common frame of reference using a generalized Procrustes analysis (GPA) (Gower,
1975; Ten Berge, 1977; Goodall, 1991), in which the configurations were scaled to unit
centroid size, followed by projection to tangent space. GPA eliminates all geometric
information (size, position, and orientation) that is not related to shape. Since we have
a crossed data structure, we used the following crossed model for the full Procrustes
ANOVA: Coordinates ∼ Specimen × System × Operator.

3.3 Results

Annotation time

Fig. 3.2 shows that all operators became faster at annotating a specimen over time, es-
pecially during the initial period of data collection. We observe that the two trend lines
representing operator C’s annotation times are exhibiting a minimum around annota-
tion 20 (VR) and 25 (Stratovan Checkpoint). We point out that this is not an artefact
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Figure 3.2: Annotation time by system and operator over time. The x-axis represents the
skulls in the order the operators were annotating them. Trend lines suggesting a learning effect
were estimated using a linear model including quadratic terms. Operator A’s annotation time in
Stratovan Checkpoint was not recorded properly for annotation 11 and 13.

due to the quadratic trend, but that operator C’s annotation times were actually increas-
ing towards the end of data collection. This might be explained by the fact that C was
the only operator collecting all data on the same day. The biologists A and D seemed
to be equally fast in both systems over the whole data collection period. Operators B
and C, that have a background in virtual reality, started out being much faster in VR,
but were approaching VR annotation times in Stratovan Checkpoint over time.

Landmark-wise measurement error

The boxplots of Euclidean distances between single landmark measurements and land-
mark means (Fig. 3.3) reveal that on an overall basis, a similar annotation precision
was obtained for all six landmarks in VR compared to Stratovan Checkpoint. There
were substantial differences between operators: Operator A, for example, was gener-
ally significantly less precise than the other operators. This might be explained by the
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Figure 3.3: Landmark-wise precision. Precision is measured as the Euclidean distance
between single landmark measurements and the operator landmark mean. For each landmark, we
compared median overall precision between systems, and median precision between operators
within each system for test of significance. For each of these 18 comparison rounds, groups
sharing the same letter are not significantly different. The thick bars represent the median, boxes
display the interquartile range, and the whiskers extend to 1.5 times the interquartile range.
Circles represent outliers. Note that the vertical axis is logarithmic.

fact that operator A, who is experienced in physical annotation, was not zooming in
as much on the 3D models as the other operators during data collection. Moreover,
operator B was significantly more precise in VR than other operators. Operators A
and C appeared to be more precise in Stratovan Checkpoint compared to VR. Finally,
operator D was much more consistent than the other operators, which is demonstrated
by a similar obtained precision for all landmarks.

We obtained corresponding results in our ANOVA, which we ran separately for each
landmark (Table 3.1): The factor System was only significant in case of landmark 11,
but not for the five other landmarks. Computing the means of the Euclidean distance
between measurements and mean of landmark 11 separately for each system (VR:
0.57 mm; Stratovan Checkpoint: 0.69 mm) revealed that annotation of landmark 11
was more precise in VR compared to Stratovan Checkpoint. There was no strongly
significant interaction between System and Operator, nor between System and Spec-
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Table 3.1: ANOVA, separately for each landmark. Dependent variable is log-transformed
Euclidean distance between single landmark measurements and landmark means. We applied the
following crossed structure: System × Operator × Specimen. Residuals reflect landmark
replica, and have 240 degrees of freedom.

Variables Df F Pr(>F) F Pr(>F) F Pr(>F)

LM 2 LM 3 LM 11
System 1 2.32 0.129 0.54 0.461 9.53 0.002
Operator 3 21.15 0.000 76.02 0.000 57.56 0.000
Specimen 5 2.36 0.041 42.54 0.000 9.95 0.000
System:Operator 3 0.89 0.445 1.34 0.261 3.65 0.013
System:Specimen 5 2.16 0.059 0.43 0.825 3.01 0.012
Operator:Specimen 15 1.73 0.047 4.20 0.000 5.87 0.000
System:Operator:Specimen 15 0.82 0.657 2.45 0.002 3.01 0.000

LM 18 LM 24 LM 28
System 1 1.73 0.190 0.98 0.324 0.23 0.635
Operator 3 31.91 0.000 51.97 0.000 17.27 0.000
Specimen 5 21.60 0.000 12.32 0.000 183.35 0.000
System:Operator 3 0.42 0.741 2.01 0.113 7.69 0.000
System:Specimen 5 0.91 0.476 4.24 0.001 1.84 0.105
Operator:Specimen 15 2.64 0.001 6.18 0.000 8.01 0.000
System:Operator:Specimen 15 1.59 0.077 3.42 0.000 1.56 0.086

imen for five landmarks (System and Operator: 2,3,11,18,24; System and Specimen:
2,3,11,18,28). As in Fig. 3.3, we detected major, significant differences between oper-
ators for all landmarks, which were expressed in large F-values. This was also true for
interaction terms involving the factor Operator. Finally, we found that the variability in
precision was larger between operators than between specimens, except for landmark
28. This exception can be explained by the fact that landmark 28 was subject to large
outliers of type 3), measured by one operator (A) on one specimen, which were not
excluded from the analysis. A similar effect is observed in Fig. 3.3. Examination of
Q-Q-plots of the residuals showed that for most of the landmarks, the distribution of
the residuals has heavier tails than the Gaussian distribution. However, since balanced
ANOVAs are fairly robust to deviations from the Gaussian distribution, we decided not
to investigate this further in this explorative study.

We note that we obtained corresponding F-values and significance levels when includ-
ing outliers of type 2) in our ANOVA (Supplemental Table S2). However, annotation
of landmark 11 seemed to be more precise in Stratovan Checkpoint compared to VR
(VR: 0.93 mm; Stratovan Checkpoint: 0.77 mm), which can be explained by the fact
that the outlier of type 2) at landmark 11 was placed in VR.

With respect to accuracy (Fig. 3.4), we found that landmarks were generally placed at
similar coordinates in both VR and Stratovan Checkpoint, for all landmarks. For our
sample, the Euclidean distance between system means, averaged over specimens and
operators, ranged from 0.165 millimetres (LM 3) to 0.465 millimetres (LM 28), which
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Figure 3.4: Landmark-wise accuracy. Accuracy is measured as the Euclidean distance
between system means. For each landmark, median accuracies of operators sharing the same
letter are not significantly different. Jittered data points correspond to the six specimens. The
labelled two specimens correspond to the outliers of type 3). The thick bars represent the median,
boxes display the interquartile range, and the whiskers extend to 1.5 times the interquartile range.

is of the same magnitude as the resolution of the 3D models. Similarly to precision,
accuracy varied substantially between operators: In particular for landmarks 2, 11,
and 28, operator A was less accurate than the other operators. However, this was
only significant in case of landmark 2 when comparing the medians (based on the
limited sample size of six specimens per operator). We note that the two specimens for
which we had outliers of type 3), did not show the lowest accuracies for that particular
landmark.

Overall measurement error

The permutation significance test revealed that the median of the Procrustes distances
within operators was not significantly different for both systems (Fig. 3.5), providing
evidence that Stratovan Checkpoint and the VR annotation system exhibited similar
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precision for the group of operators participating in this study. The distribution of Pro-
crustes distances between systems is comparable to that within operators, however, the
median of the Procrustes distances between systems is significantly larger than that
within operators. In general, Procrustes distances between operators exhibited larger
values than those between systems or within operators, with a significant difference
in median, which validates the landmark-wise analysis. The median Procrustes dis-
tance between operators using the VR annotation system was significantly smaller than
when using Stratovan Checkpoint. As in the landmark-wise analysis, we observed sig-
nificant systematic differences between operators: For operators B and D, who were
the only operators having experience in digitally placing landmarks, we found smaller
measurement differences between systems than for operators A and C. A similar pat-
tern was observed for within-operator error. Moreover, operator A was more precise
in Stratovan Checkpoint, whereas operators B and D were more precise using the VR
annotation system.

An analysis of the outliers revealed that they were almost exclusively measured on
specimens 42.11 and C7, where we observed outliers of type 3) (Supplemental Fig. S3),
and on specimen 664. The largest outliers are connected to measurements by operator
A, and measurements in VR. Landmark 28 contributed substantially to the large Pro-
crustes distances. This is line with the results on landmark-wise annotation precision
(Fig. 3.3).

Running a Procrustes ANOVA on the whole dataset, again, validated the landmark-
wise analysis (Table 3.2). The factor System did not seem to contribute much to total
shape variation (0.04%), and a comparable result was obtained for the interaction terms
involving the factor System. The main contributing factor of the two measurement er-
ror sources was Operator, which accounted for 1.6% of total shape variation. As in the
landmark-wise ANOVAs, the interaction between Operator and Specimen is of impor-
tance and explained 1.7% of total shape variation, indicating that the operators were not
experienced. As in Fig. 3.5, the results indicate that between-operator error was larger
than between-system error. Most of the total shape variation (94.2%) was explained
by biological variation among grey seal specimens. We note that our findings do not
change when including outliers of type 2) in our Procrustes ANOVA (Supplemental
Table S3).

3.4 Discussion

We developed a VR-based annotation software to investigate whether VR is a viable
alternative to mouse and keyboard for digital annotation of landmarks on 3D models.
For this purpose, the VR annotation system was compared to the desktop program
Stratovan Checkpoint as a tool for placing landmarks on 3D models of grey seal skulls.
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Figure 3.5: Boxplots of Procrustes distances. Computation of Procrustes distances between
systems; between systems for a given operator; between operators; between operators for a given
system; within operators; and within operators for a given system/operator/system-and-operator.
Within an error source, we compared operator/system/system-and-operator medians with
significance tests. Moreover, we compared median overall Procrustes distance between error
sources. For each of these six comparison rounds, groups sharing the same letter are not
significantly different. The thick bars represent the median, boxes display the interquartile range,
and the whiskers extend to 1.5 times the interquartile range. Outliers are represented by circles.
The boxplot colours indicate whether a boxplot is based on all Procrustes distances for a given
error source (blue), on a subset (red), or on a subset of a subset (green).

Table 3.2: Procrustes ANOVA on shape. We applied the following crossed structure:
System × Operator × Specimen. Residuals reflect landmark replica. The R-squared values
(Rsq) give estimates of the relative contribution of each factor to total shape variation.

Variables Df MS Rsq F Pr(>F)

System 1 0.00035 0.0004 3.909 0.013
Operator 3 0.00527 0.0163 59.592 0.001
Specimen 5 0.18275 0.9421 2065.941 0.001
System:Operator 3 0.00022 0.0007 2.526 0.003
System:Specimen 5 0.00012 0.0006 1.372 0.140
Operator:Specimen 15 0.00107 0.0166 12.114 0.001
System:Operator:Specimen 15 0.00010 0.0015 1.101 0.281
Residuals 240 0.00009 0.0219
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The two systems were compared by means of overall and landmark-wise precision
and accuracy, as well as annotation time. We used a carefully chosen setup, where
four operators were placing six well-defined anatomical landmarks on six skulls in
six trials, which allowed the investigation of multiple sources of measurement error
(between systems, within and between operators, and between specimens).

On a desktop computer, an operator is forced to place landmarks through the point-
of-view of their display. This is in contrast to VR, where an operator may annotate
landmarks from angles different than their point-of-view, since the point-of-view is
tracked using the head-mounted display and the controllers can be used to annotate
landmarks from an arbitrary direction.

Another benefit of the VR system compared to Stratovan Checkpoint is that it allows
the user to scale the specimen. Hence the application is agnostic to specimen size,
which is especially helpful in annotating smaller specimens. In Stratovan Checkpoint,
the specimen cannot be resized, but the camera can be placed closer. However, when
placed too closely, the camera’s near-plane will clip the specimen, thereby setting a
limit on how closely one can view the specimen. In real-time rendering, two clipping
planes are used to delimit the part of the scene that is drawn. The depth buffer has
limited precision, and the greater the distance between these two planes, the more
imprecise the depth buffer and the greater the risk of incorrectly depth sorted pixels.
Unfortunately, the need to move the near plane away from the eye entails that if we
move the camera very close to an object, it may be partially or entirely clipped by the
near plane.

All in all, our analysis showed that annotation in VR is a promising alternative to desk-
top annotation. We found that landmark coordinates in VR were close to landmark
coordinates in Stratovan Checkpoint. Taking mouse and keyboard annotation as the
reference, this implies that landmark annotation in VR is accurate, which is in line with
the findings of Z. Li et al. (2021). The accuracy achieved is of the same magnitude as
the resolution of the 3D models. Furthermore, when investigating precision, both in
landmark-wise ANOVAs, and a Procrustes ANOVA involving all landmarks at once,
the factor System was not significant, in contrast to the factors Operator and Specimen.
This demonstrated that the measured annotation precision in VR was comparable to
mouse and keyboard annotation, whereas precision significantly differed between op-
erators and specimens. These results are in line with previous studies on measurement
error which found a larger between-operator compared to between-system or within-
operator error (e.g., Shearer et al., 2017; Robinson and Terhune, 2017; Messer et al.,
2021). However, we obtained a much smaller between-system error when comparing
annotation in VR with desktop annotation than Messer et al. (2021), who compared
physical and digital landmark placement on grey seal skulls.

Our results revealed that VR was significantly more precise than Stratovan Checkpoint
for one landmark. A possible explanation is that the location of this landmark (no 11)
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on an apex along a margin (Fig. 3.1D) required an operator to observe the approximate
location on a skull from various angles to decide on the landmark position. This might
have been easier in VR because of the direct mapping between head and camera move-
ment. The operators might also have benefited from the ability to look at landmark 11
independently of the angle used for landmark placement, allowing the operators to view
the silhouette of the apex while pointing the annotation gun at the apex, perpendicular
to the camera direction.

We found a weak indication that both precision in VR, and precision in general seemed
to be positively linked to an operator’s experience in placing landmarks on 3D models,
and not necessarily to an operator’s knowledge of VR or experience in placing land-
marks on physical skulls. This result highlights the importance of annotation training
on 3D models prior to the digital annotation process in order to obtain a higher preci-
sion. However, we have to keep in mind that the group of operators participating in this
study is not a representative sample of professional annotators. Some of the operators
in this study were not experienced in annotating landmarks. This was reflected in the
interaction between Operator and Specimen, which was significant for all landmark-
wise ANOVAs and in the Procrustes ANOVA.

We did not find any evidence that annotation in VR is faster compared to desktop anno-
tation, which is in line with Z. Li et al. (2021). However, we did not include difficult to
place landmarks, for which Li et al. found a significantly shorter annotation time in VR
than on the desktop. Even though Z. Li et al. (2021) conducted a similar experiment,
there are three major differences to our setup: 1) In their study, the point the user was
supposed to annotate was actually shown during data collection. This is different from
the real-life annotation of landmarks we simulate, as the latter includes interpretation
of the specimen’s anatomy under the respective constraints and advantages of the two
interfaces. 2) They used an in-house 2D annotation tool, whereas our study involves
an industry standard 2D annotation software. 3) In our study, the user manipulates the
model with the non-dominant hand and annotates with the dominant hand. This is sim-
ilar to how one adjusts the paper with the non-dominant hand and writes on it with the
dominant hand. We compare this to Stratovan Checkpoint’s unimanual interface where
the mouse is used both for manipulation and annotation and the keyboard is used to
change the mode of the mouse.

3.5 Conclusions

To sum up, annotation in VR is a promising approach, and there is potential for fur-
ther investigation. The current implementation of the VR annotation system is a basic
prototype, as opposed to Stratovan Checkpoint, which is a commercial desktop soft-
ware. Nevertheless, we did not find significant differences in precision between the
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VR annotation system and Stratovan Checkpoint. For one landmark, annotation in VR
was even superior with respect to precision compared to mouse and keyboard annota-
tion. Accuracy of the VR annotation system, which was measured relative to Stratovan
Checkpoint, was of the same magnitude as the resolution of the 3D models. In addition,
our study is based on a non-representative sample of operators, and did not involve any
operator with a background both in biology and VR.

3.6 Future work

The VR controllers in our study are held in a power grip and do not provide haptic
feedback although they can provide vibrotactile feedback (i.e. vibrate) when the user
touches a surface. Z. Li et al. (2021) employ the Geomagic Touch X which, as men-
tioned, is a precision grip kinesthetic device that does provide haptic feedback. Unfor-
tunately, the haptic feedback comes at the expense of quite limited range since the pen
is attached to an articulated arm. On the other hand, there are precision grip controllers
which are not haptic devices and hence not attached to an arm. Thus, a future study
comparing power grip, precision grip, and the combination of precision grip and haptic
feedback would be feasible. Such a study might illuminate whether the precision grip
or the haptic feedback is more important.

An interesting extension of the current VR system would be to add a kind of nudging
to help the user make small adjustments to the placed landmarks. A further extension
could be use of shape information through differential geometry to help guide annota-
tion points toward local extrema.

Improvement of the VR system in terms of rendering performance would be beneficial
as it would enable display of the 3D scan in all details (Jensen et al., 2021). This would
potentially improve the user’s precision when placing landmarks. Further improve-
ments of the VR annotation system could be customizable control schemes, camera
shortcuts to reduce annotation time, manipulation of the clipping plane to see hidden
surfaces, rendering cross sections, and more UIs with information on the current anno-
tation session.

In this study, we focused on clearly defined landmarks. It would be interesting to inves-
tigate (as in the work of Z. Li et al. (2021)) whether VR might be superior to desktop
annotation in the case of landmarks that are more difficult to place. Furthermore, most
operators had no experience with one or both types of software. It would be very in-
teresting with a longer term study to clarify the difference between the learning curves
associated with the different annotation systems: how quickly does proficiency increase
and when does it plateau? Such a study might also help illuminate whether habitually
wearing an head mounted display is problematic. There is some fatigue associated



56 Annotation in Virtual Reality

with usage of a head mounted display, and this could become either exacerbated or
ameliorated with daily use, something we could not address in this study.

3.7 Appendix

Table A1: List of original 3D models of grey seal (Halichoerus grypus) skulls used in this
study and their source. NHMD: Natural History Museum of Denmark; FMNH: Finnish Museum
of Natural History. Skull length was approximated by the average Euclidean distance between
landmarks 7 and 18 (Fig. 3.1) based on eight repeated measurements by Messer et al. (2021).

Institution Specimen Skull length [cm] Source (MorphoSource identifiers)

NHMD 42.11 19.3 https://doi.org/10.17602/M2/M357658
NHMD 96 23.8 https://doi.org/10.17602/M2/M364247
NHMD 223 21.3 https://doi.org/10.17602/M2/M364279
NHMD 323 18.2 https://doi.org/10.17602/M2/M364263
NHMD 664 21.5 https://doi.org/10.17602/M2/M364287
FMNH C7-98 28.1 https://doi.org/10.17602/M2/M364293

Table A2: List of the six anatomical landmarks used in this study (L = left, R = right). Four
landmarks are of Type I, and two of Type II.

Landmark description Name Type

Caudal apex of nasal 2 I
Intersection of maxillofrontal sutureand nasal (L) 3 I
Anterior apex of jugal (R) 11 II
Dorsal apex of foramen magnum 18 II
Posterior point of last molar (L) 24 II
Ventral apex of orbital socket (L) 28 II

3.8 Retrospective

The experiment that was carried out in this paper was telling. Different operators with
different backgrounds adopt quite distinct workflows in VR, despite being given the
same instructions and introduction to the application before the start of the experiment.
So it is important to consider the workflow of VR-based applications as the affordances
of VR can have a big impact on how the user acts when immersed in a VE. Operator
A, who was generally significantly less precise than the other operators, and had a
background in physical annotation was a good example of this. Since the VE presented
him with an interface that was similar enough to the physical annotation process, he
fell back to that workflow forging the ability to zoom in completely. In Chapter 7
we build on this realization and discuss one way of creating an interaction metaphor
that integrates the affordances of VR with a workflow that helps guide the user when
interacting with geometric data.

https://doi.org/10.17602/M2/M357658
https://doi.org/10.17602/M2/M364247
https://doi.org/10.17602/M2/M364279
https://doi.org/10.17602/M2/M364263
https://doi.org/10.17602/M2/M364287
https://doi.org/10.17602/M2/M364293
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The VR prototype developed for this paper, ran into performance issues when using
the full-resolution versions of the Seal Skulls. Leading to the realization that it was
probably not as simple as relying on existing tools if we wanted to keep up with big
and complex datasets. Marking a shift in focus from interaction to developing a high-
performance VR-based visualization platform. The following three chapters detail the
exploration, development, and optimization of that platform.
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C H A P T E R 4
Tools for Virtual Reality
Visualization of Highly
Detailed Meshes
In the Annotation paper II presented in chapter 3, we worked with decimated versions
of the Seal Skulls. We did this because the combination of hardware and Unity3D out-
of-the-box did not produce high enough frame rates for VR. We required a high frame
rate to avoid motion sickness, so the choice of decimating the meshes made sense.
It did however lead to a general concern about visualization in VR. Decimating the
meshes removed the high-frequency details. Such details could be of great importance
when doing annotation, and of great interest when being visualized. It is exactly those
high-frequency details that we hoped to understand better by using VR.

When building VR-based annotation applications, and real-time rendering applications
in general, we realized that this could be accomplished in many different ways. We
could rely on existing real-time rendering engines, such as Unity3D or Unreal Engine.
We could also code up our own using one of the many different graphics APIs, such
as Vulkan, OpenGL, Metal, or DirectX12. Another possibility still was to use an ex-
isting visualization tool such as ParaView. The ramifications of picking one over the
other were not entirely clear to us, and we went with Unity3D because of our previous
experience with it, and its accessibility to all the functionality that we might require
when building our prototype. It turned out however that Unity3D, by default, is not
set up to prioritize high performance, but instead to allow the user to easily implement
everything from global illumination to physics.

There is no doubt that we are constrained by performance when developing for VR,
meaning that we cannot attain the same performance that we can on desktop. As data
collection and generation are getting more detailed the resulting models become bigger
and more complex. So for a VR-based visualization tool to stay relevant, it needs
to consider this. Whether the best performance is achieved by building on top of an
existing game engine or starting from scratch with a graphics API is not entirely clear.
Because of that, we set out to explore this in Paper I, which is presented in this chapter.

We aim to build a good starting point for a platform that can later be adapted to specific
tasks. So in this chapter, we investigate the different starting points for building a
visualization platform that has high performance at its core. The results of the paper
help shed some light on which approach to building a visualization application for VR
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is the most promising. I worked on every aspect of this paper, except for the Ray
Tracing section.

4.1 Introduction

As of 2020, more than 2.5 quintillion (1018) bytes of data are generated daily (Bu-
lao, 2021). Thus, we have truly entered the Age of Big Data, and we need good tools
for analysis now more than ever. In the field of visual analytics, interactive user in-
terfaces assist analytic reasoning (Thomas and Cook, 2006) and Virtual Reality (VR)
has been explored for better dealing with and analyzing big data (Moran et al., 2015).
The use of extended reality for visual analytics has led to the notion of immersive an-
alytics (Chandler et al., 2015), where a head-mounted display (HMD) offers many ex-
ploration modes that can improve task performance (Wagner, Stuerzlinger and Nedel,
2021). However, this comes at the cost of significant rendering performance require-
ments (80+ frames per second) to avoid cybersickness issues (Wagner, Stuerzlinger
and Nedel, 2021). In many applications, a modern graphics processing unit (GPU)
will likely provide adequate performance, but in areas like Earth science, where the
main concern is exploration of details in very large geospatial datasets, rendering per-
formance becomes highly important as it determines whether or not the user can im-
mersively inspect the details of interest (Jiayan Zhao et al., 2019).

Apart from use in visualization of geospatial data (Kreylos et al., 2006; Jiayan Zhao
et al., 2019), it seems that VR is rarely employed for visualization of large scale geo-
metric data. We find this unfortunate since VR simplifies data exploration and thereby
arguably aids inductive reasoning. For visualization purposes, a crucial benefit of VR
is that the mapping from user movement to the virtual space is very intuitive. Head
motion maps directly to camera movement, and both translation and rotation of an ob-
ject can be achieved directly with completely analogous hand gestures. Simply put, the
user controls both more degrees of freedom and does it in an more intuitive manner
than if interacting with a mouse and keyboard while looking at a computer screen. Ef-
fectively, VR changes the role of the user from passively inspecting images to actively
investigating data.

Using VR is not without its challenges, however. In particular, we are motivated by
the concern that if frame rates drop or vary significantly, it will negatively impact the
motion-to-photon latency (the time between a movement being registered by the HMD
and the corresponding frame being rendered (Jingbo Zhao et al., 2017)) and this car-
ries a real risk that users become cybersick (Stauffert, Niebling and Latoschik, 2020).
Clearly, this issue puts a limit on the size of the datasets that we can visualize in VR
without a latency level that is too high.
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Figure 4.1: The rocking horse (a) consists of 2.2 million triangles. We reduce it to 10% of the
original number of triangles (b) and further to 1% (c). While this fairly large reduction has
almost no effect on the silhouette, the fine scale geometric details are clearly impacted by the
reduction to 10% and almost completely erased at 1%. Below, a 3D scan of a seal skull is shown
with vertex colours (d). Looking at a close-up (e) and reducing to 1% (f), it is clear that the
overall shape is completely unscathed, but the vertex colours are significantly blurred.

In this regard, it is unfortunate that datasets grow rapidly in size in many scientific
fields. Topology optimization (albeit on a supercomputer) now allows for discretiza-
tion of models into more than 1 billion voxels (Aage, Andreassen et al., 2017). In
3D scanning, object surfaces can be scanned with a measurement sampling density
(MSD) of 10,000 points per square millimeter (Bunsch, Sitnik and Michonski, 2011),
and scanning a 39.3 × 28 cm2 woodcut with a MSD at just 2500 points per square
millimeter resulted in 277 GB of data (Bunsch and Sitnik, 2014). Smooth surfaces
can be simplified with little perceptual impact, but we often have unsmooth data and a
need to inspect the details. The mentioned woodcut is an example of such data where
lower MSD would make analysis hard (Bunsch, Sitnik and Michonski, 2011). Some
examples of meshes with details at varying scales are shown in Figure 4.1. The seal
skull (4.1d–4.1f) is an example of a 3D scanned surface that includes per vertex colour
information. A reduction in vertices therefore not only reduces the detail of the mesh
but also means the loss of colour information. Moreover, many types of data might
have a complexity that makes it infeasible to perform significant reductions to the level
of detail in the first place (4.1a–4.1c). If we want the ability to interactively visualize
the small details of large meshes in VR, we have to ensure that our visualization tools
deliver high rendering performance, which means high and stable frame rates.

Our goal is to guide the choice of rendering technologies for interactive VR-based
visualization of highly detailed meshes. We do this by comparing three visualization
tools using a common benchmark. The compared tools are: Jinsoku, our own VR
visualization engine based on C++/Vulkan; ParaView, which supports VR and is one of
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Table 4.1: Test Meshes
Seal Skull Wing Nobby

no. triangles 14,504,882 38,629,758 32,905,214
no. vertices 21,757,335 92,010,363 16,970,666
model size 1.154GB 3.819 GB 1.723GB

the most popular visualization tools; and Unity, which is a game engine and a popular
tool for VR-based visualization (Donalek et al., 2014; Sicat et al., 2019; Cordeil et
al., 2019). Our aim is not simply to find out which of these three solutions is fastest
but also to identify the choices of rendering pipeline and geometry-preserving mesh
optimization that seem to have a big impact on performance. We discuss the underlying
technologies in Section 4.2, the tested platforms in Section 4.3, and we present and
analyze our results in Section 4.4.

We use three different large and detailed 3D models for our investigation. The three
models are examples from natural heritage preservation (Seal Skull), topology opti-
mization (Wing), and additive manufacturing (Nobby). Table 4.1 provides some mesh
complexity info for the three models and example visualizations are in Figure 4.2
(rightmost column). The Seal Skull has been 3D scanned into a point cloud and dig-
itally reconstructed as a triangle mesh. The topology optimized airplane wing (Aage,
Andreassen et al., 2017; Aage, Sigmund et al., 2020) is the largest model in our com-
parisons. The third mesh was created with PrusaSlicer (https://www.prusa3d.com/) us-
ing a model called Nobby (https://www.prusaprinters.org/prints/35338-nobby-octopus-
sculpt). The three models are interesting case studies as they all have several orders of
magnitude between the extent of the model and the size of the details that would be of
interest in a VR-based inspection of the model.

In addition to the main study, we also investigated the use of hardware accelerated
ray-tracing for the purpose of visualization of large scale geometry. This study and its
results are presented in Section 4.5. While all the results are discussed in Section 4.6.

4.2 The Graphics Pipeline

Traditionally, the graphics pipeline was easy to describe as a machine for processing
and rasterizing triangles. Much of the performance of the graphics pipeline was derived
from the fact that it was both data and task parallel, allowing processing of multiple
vertices in parallel with multiple fragments (Haines, 2006). During this period, it was
important to optimize meshes for the so-called post transform and lighting (post-T&L)
cache which is a global cache that stores the transformed vertices, i.e. the output from
the vertex shader (Sander, Nehab and Barczak, 2007). On average a vertex is shared
by six triangles. Thus, if a triangle needs a vertex that has already been transformed,

https://www.prusa3d.com/
https://www.prusaprinters.org/prints/35338-nobby-octopus-sculpt
https://www.prusaprinters.org/prints/35338-nobby-octopus-sculpt
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it can simply be picked from the post-T&L cache, assuming the mesh is rendered with
indexed primitives. Since the size of the cache might not be known - for instance if the
mesh is to be used on a variety of graphics processors - meshes were often simply op-
timized to promote locality (Forsyth, 2006). If a vertex that is used by a given triangle
is also used soon after, it is likely to be in the cache, and the result of vertex shading
can be reused.

Modern graphics hardware has a different not-so-pipelined design: vertices and pixels
are processed by the same streaming multiprocessors (SMs) imbued with local storage.
If a modern GPU were to have a shared post-T&L cache, it would have to be outside
the local storages of the SMs. In fact, it seems that modern GPUs do not have a post-
T&L cache (Kerbl et al., 2018). Instead each SM processes a small patch of the mesh
at a time. Importantly, this means that mesh optimization which promotes locality is
still highly beneficial but now for a different reason. If the triangles that share the same
vertex are close in the stream of triangles, they are also likely to be in a patch processed
at the same time on a given SM.

With the Turing architecture, NVIDIA also introduced a mechanism which directly ex-
poses the way that meshes are processed by the GPU, namely mesh shaders (Kubisch,
2018a; Kubisch, 2020). Mesh shaders bring a programming model similar to that of
compute shaders to the graphics pipeline: a workgroup of individual threads on the
GPU are tasked with collaboratively producing both transformed vertices and triangle
connectivity. To exploit this feature, one needs to break the mesh into smaller patches
called meshlets. Essentially, this is automatic if the traditional vertex shader pipeline is
used, but taking charge of meshlet generation affords additional freedom as described
below.

The mesh shader based pipeline is highly flexible. While a meshlet is usually associated
with a group of triangles, it can be seen simply as a descriptor that can carry any kind
of information. Furthermore, the inputs and outputs between the shader stages can be
decided by the programmer. A so-called task shader orchestrates the work and can
generate workgroups that process meshlets, or decide that a meshlet is not visible and
that resources should not be spent on its processing. This is very important since it
allows the mesh shader to cull meshlets which are either outside the view frustum or
backfacing. A meshlet is considered backfacing if all its faces are backfacing. This is
easy to test if we store a cone that contains all face normals for each meshlet.

The Turing architecture also saw the introduction of the so-called RT cores which allow
for much faster hardware accelerated ray tracing on the GPU than previously (Burgess,
2020). It has also recently become possible to mix ray tracing and rasterization using
the Vulkan API (Koch et al., 2020). While ray tracing makes it far easier to imple-
ment shadows, non-planar reflections, ambient occlusion and other global effects, it is
not likely to lead to faster rendering if only local illumination (e.g. Phong shading) is
required.
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4.3 VR Visualization Tools

ParaView is a tool designed for visualization and analysis of extremely large datasets (Ahrens,
Geveci and Law, 2005). Paraview is built on the Visualization Toolkit (VTK), and it in-
cludes easy-to-use VR-based visualization (Martin et al., 2016, updated 2018), making
it a good choice for our purposes.

Unity is a game engine that includes VR support. In previous work, it has been re-
ferred to as “a standard platform for developing immersive environments” (Cordeil et
al., 2019). However, in our initial testing, we experienced surprisingly poor perfor-
mance with Unity when rendering our large meshes: average render times per frame
ranging from 20 to 140 milliseconds. To remedy this, we optimized the application by
switching to Unity’s Universal Render Pipeline and by allowing Unity to optimize the
mesh without decimating it. This means that Unity is free to reorder the index buffer to
increase performance, but it is not allowed to change the number of vertices. These op-
timizations led to significantly better render times. However, Unity does not implement
the new mesh shading pipeline described above (Unity Graphics Team, 2020).

We compare these two solutions to our own (bespoke) VR visualization application
implemented in C++ using the Vulkan API (Sellers and Kessenich, 2017). We refer to
our own application as Jinsoku. Since Jinsoku is white box, it is easy to analyze and
well-suited as a benchmark when comparing the different tools. Jinsoku incorporates
two pipelines: one based on vertex shading and one based on mesh shading. This
enables us to better analyze the practical importance of mesh shaders.

As an additional experiment, we implemented a VR ray tracer. While we found that
GPU ray tracing scales well with an increasing polygon count, the ray tracer was a
factor of two slower than Jinsoku and Unity. We therefore focus on rasterization tech-
niques. Ray Tracing is however becoming more viable and will continue to do so as
the recently introduced hardware acceleration matures.

4.3.1 Auxiliary Tools

We use SteamVR to interface with the headset for all the applications. SteamVR is a
runtime API that interfaces with the backend of OpenVR. As such, SteamVR enables
developers to interface with a broad range of different HMDs. SteamVR has several
options for analyzing the performance of an application and is capable of recording
frame data and saving it to a file. We use these data for our comparisons (except in the
case of ray tracing, see Section 4.5). This means that applications are subject to the
same asynchronous time warping implementation.
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Table 4.2: Meshlets

meshlets Skull Skull opt Wing Nobby Nobby opt
cullable 170,400 156,930 274,589 16 16

total 229,043 163,264 1,699,388 307,774 307,774

The three test meshes have an increasing number of triangles and vertices. The Seal
Skull mesh and the Nobby mesh were optimized using Tootle (https://github.com/-
GPUOpen-Archive/amd_tootle). This program greedily reorganizes the mesh so that
triangles using a given vertex are as close as possible in the list of triangles. Tootle was
created for the vertex shader pipeline where locality is useful for vertex caching (Ne-
hab, Barczak and Sander, 2006), but it also makes the meshlets more compact. Unfor-
tunately, this software could not handle the topology optimized Wing mesh, presum-
ably because of its size. For the skull, the optimized version has not only increased
locality but also reduced the overall number of meshlets needed to represent the mesh.
For Nobby, the optimization has not changed the number of cullable meshlets nor has
it changed the total number of meshlets. The optimized version is however still used
since it might have changed the vertex order. Table 4.2 shows the total and cullable
number of meshlets for each mesh.

The ability to process only the parts of the mesh that can be seen by the camera is often
very powerful when dealing with large amounts of data. We used the meshlet builder
from the official NVIDIA github (https://github.com/nvpro-samples/gl_vk_meshlet_cad-
scene) when implementing Jinsoku. Because the mesh optimization in Unity is a black
box, we also implement a vertex shading pipeline in Jinsoku to directly compare the
traditional vertex shading pipeline with the mesh shading pipeline.

4.4 Experiment Setup and Results

For our experiments, we set up the three visualization tools as follows.

• In Jinsoku, we used Phong shading with a fixed light position. Texture mapping
was not employed. Hence, each vertex carries only one attribute in addition to
its position, namely the surface normal.

• In Unity (UnityURP in Figure 4.1), we also used Phong shading with a fixed
light position. The Phong shading is implemented with a so-called unlit shader,
meaning that no shadows are cast from the light source. Texture mapping was
not employed. The out-of-the-box version of Unity (UnityNoop in Figure 4.1)
uses a deferred rendering pipeline and includes shadows.

• ParaView uses flat shading and has no options for changing this in VR.

https://github.com/GPUOpen-Archive/amd_tootle
https://github.com/GPUOpen-Archive/amd_tootle
https://github.com/nvpro-samples/gl_vk_meshlet_cadscene
https://github.com/nvpro-samples/gl_vk_meshlet_cadscene


66 Tools for Virtual Reality Visualization of Highly Detailed Meshes

(a) Render times for Seal Skull
on Quest.

(b) Render times for Seal Skull
on Index.

(c) Seal Skull visualized in
Jinsoku.

(d) Render times for Wing on
Quest.

(e) Render times for Wing on
Index. (f) Wing visualized in Unity.

(g) Render times for Nobby on
Quest.

(h) Render times for Nobby on
Index.

(i) Nobby visualized in
ParaView.

Figure 4.2: Test results as bar plots (a,b,d,e,g,h). Each bar plot has render time in milliseconds
on the vertical axis and shows two test cases for one mesh on one platform. The crosshatched bar
is for close-up inspection while the flat-coloured bar is for far-away inspection. The whiskers
show the variance of the render time. In the right column, we visualize the Seal Skull in Jinsoku
(c), the Wing in Unity (f), and Nobby in ParaView (i). Explanation of abbreviations: Jinsoku -
Vulkan-based vertex shading pipeline; UnityNoop - none-optimized Unity; UnityURP - Unity
when using its Universal Render Pipeline and its mesh optimization; JinMesh - Jinsoku when
using its mesh shading pipeline; JinOpt - Jinsoku with mesh shading and mesh optimized by
Tootle; ParaView - the VR support of ParaView.
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Inspection from far away Inspection up close

Figure 4.3: The two test conditions.

When measuring the render time with SteamVR we get the time between each update
to the HMD. Each update requires that two frames are rendered and presented to the
HMD. By using these SteamVR render times, we obtain times that are comparable to
those that you would get during an actual inspection of the meshes.

Performance plots are in Figure 4.2. The bar charts are all plots of average render times
for each application. The whiskers show the variance of the render time for each frame.
For all plots, the vertical axis is time in milliseconds. Each mesh has been visualized
under two different conditions, on two different hardware setups. In the first condition,
the entire mesh is visible, and in the second, the mesh is inspected up close (this is
exemplified in Figure 4.3).

The same transformations are applied to the meshes in both Unity and Jinsoku. Since
ParaView does not allow for the same precision in placing meshes the objects are in-
spects in approximately the same positions. The first hardware platform uses an Ocu-
lus Quest which has a pixel resolution of 1440 × 1600 for each eye and runs with a
refresh rate of 72 Hz. The Quest is tethered to a 2019 Razer Blade 15 with an NVIDIA
GeForce RTX 2080 with Max-Q Design and 8GB GDDR6 VRAM, a 9th Gen Intel
Core i7-9750H 6-Core, 16GB of RAM and a 512GB SSD (NVMe). The second hard-
ware platform uses a Valve Index which has a pixel resolution of 1440 × 1600 for
each eye and can run with a refresh rate of up to 144 Hz. The Index is connected to a
desktop that has an Intel Core i9-9900k, 64GB of DDR4-2666 RAM, and one NVIDIA
GeForce RTX 2080 Ti Turbo OC with 11GB of GDDR6 RAM.

When converting the average render times to frames per second (FPS) and comparing
to a target of 80+ FPS (Wagner, Stuerzlinger and Nedel, 2021), we observe that this is
only achieved consistently for the Seal Skull. For the Seal Skull we get low variance
and average render times of 3.7–5.0 ms (∼200–270 FPS) for UnityURP and 2.7–4.5
ms (∼222–370 FPS) for Jinsoku with mesh shading and the Tootle-optimized meshes.
For the Wing, we see a different picture with UnityURP timings in the range of 10.2–
16.4 ms (∼61–98 FPS) on both platforms. Here the mesh shading pipeline does really
well when inspecting the wing up close getting between 4.9–8.5 ms (∼118–204 FPS).
The variance on the Quest platform is however quite high. For Nobby, we get good
results for UnityURP and ParaView. However, this is only on the Index platform with
average rendering times around 8.1–10.2 ms (∼98–123 FPS) while inspecting the mesh
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Figure 4.4: Nobby meshlets.

from afar. All other tests show average rendering times from 16–223.9 ms (∼4.5–62.5
FPS) while exhibiting large variance across the board. Rendering performance is thus
still a major concern when it comes to visualization of some types of large meshes.
We suggest future development of better optimization of meshes for the mesh shading
pipeline to avoid discomfort in VR visualization of such meshes.

4.4.1 Vertex Shading vs Mesh Shading

We can compare the vertex and mesh shading pipeline by inspecting the blue and red
bars in Figures 4.2a, 4.2b, 4.2d, 4.2e, 4.2g, 4.2h. When we are inspecting the mesh up
close the mesh shading pipeline performs better in 5 out of 6 test cases. When inspect-
ing the mesh from afar the mesh shading pipeline performs better in 3 out 6 cases. We
see that the mesh shading pipeline exhibits larger variance in render time for the wing
and Nobby but not the skull. For Nobby the normal vertex shading pipeline performs
better on the Index but worse on the Quest. This can be seen in Figure 4.2g and 4.2h.
Figure 4.4 shows the Nobby mesh up close with a visualization of the meshlets. This
gives some insight into why the mesh shading pipeline exhibit these high render times.
The mesh is comprised of elongated cylinders, and since the meshlets are not generated
so as to combine faces with similar normals, it is likely that no meshlets can ever be
culled because they all contain faces that are visible from almost any direction. On
the other hand, the mesh shading pipeline is extremely efficient on the largest data set.
Figure 4.2e and 4.2d show that the quest and index mesh shader pipeline produces the
smallest average render times across headsets when inspecting the mesh up close.
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4.4.2 Index Buffer order and Mesh shaders

Allowing Unity to optimize the mesh is in part what resulted in the performance that
can be seen in Figure 4.2. This motivated us to try and see if the mesh shading pipeline
would also benefit from similar treatment. It is clear that meshlets also benefit from
locality optimizing the index buffer, not only does it produce more cullable meshlets
but it also decrease the total number of meshlets and the variance in the render time.
This indicates that less vertices are shared across meshlets. Figures 4.2a and 4.2b also
reflect this by showing improvements when comparing the mesh shading pipeline with
(purple bars) and without (red bars) the optimized mesh. The mesh shading pipeline
even edges out Unity when inspecting the skull up close. Nobby on the other hand
exhibits a case where the optimization algorithm fails to optimize the mesh.

4.5 Ray tracing

Hardware rasterization of triangles is by far the more common approach when we are
aiming at rendering of objects at the high frame rates required by VR. Rasterization
is the process of drawing a triangle by first projecting it into the image plane and then
shading the pixels covered by the triangle. Instead of projecting triangles to an image
plane, we could trace a ray from a position in each pixel into the scene and figure out
what triangle the ray hit (if any). This is the ray tracing paradigm.

Ray tracing eases rendering of shadows in general and rendering of multiple reflections
and refractions in specular surfaces. Since we can place our triangle mesh in a spatial
data structure, we can find the closest triangle that a ray might intersect in logarithmic
time. If the number of triangles is very large, this is a great advantage. However, it
becomes more expensive if the digital object is interactively modified, as the spatial
data structure must then be updated. This can be done in parallel on the GPU, but
still incurs some overhead. Conventional ray tracing also requires that we consider all
pixels, which means that performance depends more directly on the screen resolution.
In rasterization, we need only consider the pixels where fragments end up, but then in
return we have to process each triangle.

Use of ray tracing for VR became tractable on consumer platforms only with recently
introduced hardware support. To employ this hardware support, we used NVIDIA Op-
tiX (S. G. Parker et al., 2010; Wald and S. G. Parker, 2019): a CUDA-based API that re-
quires CUDA to Vulkan/OpenGL interoperability to efficiently interact with OpenVR.
The ray tracer renders directly to textures that OpenVR can access. This unfortunately
has the effect that the HMD cannot directly measure render times (as it can always
use the texture whether it was updated or not). For this reason, we did not include ray
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△: 300,603, t: 9.43 ms △: 15,740,813, t: 9.80 ms

Figure 4.5: VR ray tracing with one sample ambient occlusion (reason for the noise) rendered
using an NVIDIA RTX 2080 graphics card. Here, △ is number of triangles and t is render time.

Figure 4.6: Performance of our GPU VR ray tracer when rendering the Blender
monkey (Wikipedia, 2021) with increasing number of subdivisions. We compare with the two
shading pipelines in Jinsoku (left) and with a GPU architecture from before RTX (right). The
horizontal axes are logarithmic, meaning that the development in performance should be a
straight line for logarithmic time complexity. This is not quite obtained, but RTX is getting there.

tracing in Figure 4.2. Instead, we discuss the prospects of ray tracing for VR.

We designed our ray tracer to provide a frame for each vertical synchronization (vsync)
of the HMD. When measuring render times, everything was kept unchanged except that
we did not connect an HMD to avoid this vsync lock. As in our results for rasteriza-
tion, we tested our VR ray tracer using a GPU on a stationary computer (Figure 4.5)
and on two GPUs on laptop computers (Figure 4.6) with models of different complex-
ity (numbers of triangles). We tested performance for GPUs with different hardware
architectures. The ones called RTX have special RT cores dedicated to hardware accel-
eration of ray tracing (Burgess, 2020).

The RTX graphics card almost achieves the logarithmic time complexity with increas-
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ing number of triangles (Figure 4.6). The difference in performance as a function of the
number of triangles is very small across several orders of magnitude (Figures 4.5 and
4.6). Even so, GPU ray tracing is still significantly slower than Jinsoku when it comes
to the visualization with local illumination that we are testing in this work (Figure 4.6).
RTX cards for stationary computers are fast enough to support the frame rates needed
for ray traced virtual reality (Figure 4.5). We could even afford a so-called ambient
occlusion ray, which is a shadow ray traced in a random direction. Ambient occlusion
is a visual effect that is expensive to compute in rasterization. In ray tracing, we can get
a noisy version of it at low cost. Since the RTX architecture has special tensor cores
dedicated to hardware acceleration of deep learning techniques (Burgess, 2020), the
future will see very efficient denoising that can also exploit temporal correspondences
between frames (Hasselgren et al., 2020). GPU accelerated denoising is however still
too expensive for the time budget allowed by VR.

Interestingly, ray tracing was recently made available as a core extension in Vulkan (Koch
et al., 2020) (released in December 2020). This provides the first open, cross-vendor,
cross-platform standard for hardware accelerated ray tracing. In addition, Vulkan ray
tracing enables use of a hybrid between rasterization and ray tracing. Unreal Engine
4 integrated the ray tracing functionality in DirectX 12 (which is similar to the one
in Vulkan) in combination with learning-based denoising into their rasterization-based
framework to enable real-time rendering of cinematic quality (E. Liu et al., 2019). This
is an indicator that a hybrid of rasterization and ray tracing will likely become an option
in the VR graphics engines of the future. Since Jinsoku is based on the Vulkan API,
it directly supports extension to include ray traced shading effects that can potentially
enhance the inspection of geometric details.

4.6 Discussion and Conclusion

Unsurprisingly, our tests show that performance is very dependent on mesh connectiv-
ity. This lends a great advantage to Unity in comparison to Jinsoku when rendering
an unoptimized mesh, since Unity’s proprietary optimization step seems to greatly im-
prove performance. This is particularly true for the Nobby mesh.

Thus, while ParaView is the easiest way to get started on inspection of meshes in VR,
ParaView only supports flat shading and lacks the straight forward programmatic ex-
tensibility of Unity. Perhaps the biggest limitation of Unity is the lack of support (so
far) for the latest features of graphics hardware. The mesh shading pipeline has two
vast advantages, namely frustum and backface culling on the granularity of meshlets.
Having the ability to only process the parts of the mesh that can be seen by the camera
can be really powerful when dealing with large amounts of data and when zooming
in on models. Figure 4.2e shows this clearly. In fact, this indicates that a mesh shad-
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ing pipeline could very well be the best choice for visualization of large and complex
meshes in VR. For the skull, our tests show that a largely unoptimized Jinsoku is capa-
ble of performing on par with an optimized version of Unity, and that optimizing the
mesh further increases performance while decreasing variance in the render time.

Unfortunately, reaping the benefits of the mesh shading pipeline is largely contingent
on having cullable meshlets, and our tools for mesh optimization (e.g. Tootle) are gen-
erally still aimed at the vertex shading pipeline. This means that the methods for opti-
mization largely aim to structure the output such that it is suitable for a global cache as
opposed to a parallel architecture where vertex locality is made explicit. Moreover, we
face the problem that meshes are very different. Given a naïve optimization, the Nobby
mesh would contain no meshlets cullable by backface culling for instance. Thus, go-
ing forward, a key to good VR performance on arbitrary geometry seems to be mesh
pre-processing algorithms which analyze and adapt to the particular inputs.

In conclusion, our paper compared a minimal Vulkan render engine (Jinsoku) with
Unity and ParaView. Jinsoku used little optimization but managed to keep up with an
optimized Unity application in some of the more interesting cases. Moreover, the mesh
shading pipeline is very flexible which can be utilized to gain performance in some
of the situations explored in this paper. We admit that this comes at the cost of some
additional development time compared to Unity, but the mesh shading pipeline is in
itself a compelling argument for building an engine when performance is an overriding
concern. More research is needed to quantify the potential performance gains from
using mesh optimization algorithms that are specifically tailored to the mesh shading
pipeline.

Combining a well optimized engine with a mesh optimization algorithm for a mesh
shading pipeline holds a lot of promise for a VR-based visualization platform. In fact,
we have seen in our study that it is possible to visualize a mesh containing more than
14.5 million triangles while still achieving render times of 222-370 FPS. This is sig-
nificantly more than the required 80+ FPS. Not only this, but when investigating a
mesh containing more than 38.6 million triangles, we are just around the 80 FPS, and
while investigating details, the FPS climbs as high as 204 when using a mesh shad-
ing pipeline. With numbers like these, it is safe to say that VR should more often be
considered a viable modality for visualization, even of large datasets.

In this paper, our focus has been on rendering efficiency since efficiency limits what
data sets we can effectively investigate in VR. As discussed above, we are able to
visualize geometric data sets on the order of tens of millions of triangles with a frame
rate sufficient for VR if we make the right technical choices. With this in place, we
plan to turn our investigations to more application specific problems pertaining to the
visualization of large geometric data sets. Tools for explorative analysis of geometric
data would appear to benefit from a greater use of virtual reality platforms, but, in
many cases, these types of data are either hard to simplify effectively, or important
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information would be lost by doing so. Thus, going forward, we hope this investigation,
and specifically the Jinsoku engine, will be helpful in facilitating the use of VR as a
tool for visualization and exploration of these types of geometric data.

4.7 Retrospective

The experiments carried out in this paper were done early in the project. They reflect
the start of the project well. We started this project with no Vulkan experience and
no visualization platform to build our experiments on. So we explored our options
and found out that there were indeed many. We decided to compare a bespoke Vulkan
engine with different existing solutions, creating a good cross-section of the options.
The earliest version of Jinsoku was the culmination of a lot of reverse engineering of
other Vulkan-based applications, and the performance numbers in this paper reflect
that. Parallel to the publication of this paper, Jinsoku was refined with some VR-
specific features and some general optimization. In the next chapter, we present these
features, as well as new measurements that are more indicative of Jinsoku’s actual
performance.
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C H A P T E R 5
Jinsoku: A bespoke
Visualization Platform for
Virtual Reality
We started this project with the hypothesis that it would be possible to get better perfor-
mance from a bespoke visualization engine compared to using a standard game engine.
Simply because the game engine needs to pack more functionality to make games,
than we require for building a visualization tool. More functionality adds complex-
ity which can affect performance. We only had two requirements when starting out,
namely that the underlying platform needed to support VR and rasterization, with the
goal being to deliver the best performance possible. In Paper I we found that a be-
spoke Vulkan-based visualization platform, using the Mesh Shading Pipeline, held the
biggest potential. This chapter details the further development and optimization of that
bespoke Vulkan-based visualization platform, named Jinsoku.

5.1 Introduction

Throughout the evolution of graphics hardware, a few APIs have afforded access to
the resources provided by the GPUs. OpenGL, which was originally based on Silicon
Graphics’ IRIS GL API, was one of the early contenders and, thanks to its far-sighted
extension mechanism, managed to keep up for many years. However, with the com-
pounding changes, it became apparent that OpenGL did not reflect the operation of the
GPU hardware, and concerns about driver overhead emerged. This led to the develop-
ment of modern graphics APIs, specifically Apple’s Metal API, Microsoft’s DirectX
12, and Vulkan. Vulkan being the appointed successor to OpenGL. Because these
APIs better reflect the GPU hardware, they pose considerable challenges for the aspir-
ing graphics developer. Vulkan, in particular, requires numerous lines of code devoted
to the marshalling and management of GPU resources, making it much more verbose
and explicit, while also providing less hand-holding (Bailey, 2018). In light of this, it
is perhaps unsurprising that APIs which operate largely in the same way as traditional
OpenGL still remain. Indeed, OpenGL itself is still widely used. As is OpenGL ES for
embedded systems which is also used on the web via the WebGL Javascript bindings.

With modern graphics APIs being more verbose and challenging to work with, other
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solutions have gained in popularity. Instead of working directly with graphics APIs,
graphics engines and visualization tools that abstract these APIs are being favored.
This has led to a decrease in knowledge, and an increase in the perceived difficulty, of
working with modern graphics APIs. While it no doubt has become more challenging
to build bespoke graphics and visualization applications, it is perhaps not as challeng-
ing as it is perceived to be. It is however exacerbated by the increasingly fragmented
graphics space, with many different APIs and approaches to choose from. This makes
it more difficult for scientists, requiring them to spend increasingly more time formu-
lating requirements, exploring the available options, and developing the platform. In
this chapter, we discuss our experiences and provide an overview of our bespoke VR-
based visualization engine. Some of the features that have helped make it perform well
are highlighted. Lastly, we discuss the perceived and actual difficulty of working with
Vulkan.

5.2 Jinsoku

Jinsoku is a real-time visualization engine built from scratch using the 1.1 version of
the Vulkan API. It is built with performance in mind, so it is fitting that it is named after
the Japanese word for swiftness and speed. Vulkan has become notorious for requiring
1000 lines of code "just" to be able to rasterize a triangle. This is no exaggeration, but
there is more to the story. Those 1000 lines serve as boilerplate code which not only
goes into rasterizing the triangle but also makes it possible to expand on the engine
more easily. Every subsequent feature that is implemented in a Vulkan engine can take
advantage of the boilerplate code. In the end, the codebase for two equivalent rendering
engines in OpenGL and Vulkan is roughly at parity. In a presentation from GDC, titled
"Getting explicit: How hard is Vulkan Really?" 1, the codebase of an OpenGL version
and Vulkan version of a game called Doom 3 is compared in terms of lines of code. The
Vulkan version has around 5000 lines of code compared to the 7000 lines of code in the
OpenGL version. The catch is that the Vulkan version is missing debug functionality
that is present in the OpenGL version.

The benefits of Vulkan come through its explicit programming style which allows the
programmer to micromanage the GPU to a greater extent than OpenGL. This means
that the programmer can make more informed decisions concerning the specific appli-
cation. These decisions can result in better performance. This also means there are
more opportunities for making poor decisions when using Vulkan. Too many poor
decisions and the potential performance increase gained by the explicit programming
style will vanish.

1https://www.khronos.org/developers/library/2018-gdc
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Figure 5.1: This diagram shows the difference between deferred and forward rendering.

5.2.1 Architecture

Some architectural design choices were influenced by Jinsoku being built with perfor-
mance in mind. The first is that we decided to go with a forward rendering path. The
forward rendering path processes each object that we wish to render, one at a time, for
each light source in the scene. For most visualization tools one light source is enough,
and it is possible to access more light sources than in the fragment shader. Too many
light sources, however, can become a bottleneck when rendering a scene with many
light sources. When a scene has many light sources it makes sense to defer the light
calculations instead. This is what a deferred rendering path does. It goes through all
the objects and creates a depth map, normal map, and color map which it stores in a
G-buffer. Then it goes through each pixel and uses the information from the G-buffer
and the light sources to calculate the lighting. Since Jinsoku only has one light source,
we stick to the simpler and faster forward rendering path.

The second choice is to use simple surface illumination models. Jinsoku only uses two
different surface illumination models. The first is a Phong shader. The Phong lighting
model is a very commonly used surface lighting model. It approximates a diffuse
material with a specular highlight, according to Lambert’s cosine law and the law of
reflection (Phong, 1975). The second is a Material Capture(MatCap) shader. Based
on The lit sphere by Sloan et al. (2001), a method developed for non-photorealistic
rendering. The lit sphere, allows artists to create textures that focus on conveying form
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without having to take material or lighting properties into account. The created texture
is used for the full appearance of a mode. These textures are in the shape of a circle, as
a sphere viewed from any angle resembles a circle, which allows for a texture look-up
that is based on the screen-space normal of the object, which essentially projects it into
the texture. MatCaps is an extension of the lit sphere that is more focused on capturing
plausible materials rather than artistic textures. With a MatCap shader, there is no need
for lighting the scene. The light is already captured, or baked, into the texture. It fits
very well with Jinsokus Forward Rendering Path. This shader also allows the user to
pick the materials that they want to use themselves. Figure 5.2 shows a MatCap texture
and how it looks when applied to the seal skull in Jinsoku.

Figure 5.2: A visualization of the seal skull with a MatCap shader. The actual MatCap texture
is made with(https://cables.gl/p/pDCOCw) and shown in the left corner.

The actual architecture of Jinsoku is presented in figure 5.3. It gives an overview of the
components that make up Jinsoku, and how they fit together. The architecture is made
around the Vulkan API’s ability to enable extensions. The user can request extensions
that the user wants Jinsoku to enable. Jinsoku then checks if these are available on the
hardware platform, and enables them if they are. Examples of such features are the
Mesh Shading Pipeline, Multi-View Rendering, and Variable Rate Shading. The two
latter are described in detail in Section 5.3. If the user requests extensions that are not
supported then Jinsoku falls back to a setup that is supported. Moving through the dia-
gram in figure 5.3, we start with the Main function which executes Jinsoku. It loads a

https://cables.gl/p/pDCOCw
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configuration file that is passed to a Jinsoku Factory that, based on the settings in the file
instantiates the desired instance of Jinsoku. Several different instances exist, Compute
pipeline only, Desktop only, and an OpenVR version. Each instance of Jinsoku can use
between zero and two presentation platforms. The Jinsoku and presentation instances
are implemented with an interface-style program to assure compatibility. In C++ we
implement interfaces via abstract classes. Each instance of Jinsoku also has a Vulkan
Context. This handles all Vulkan logic. Based on the Configurations passed to Jinsoku
the Vulkan Context enables the desired extensions, and sets up the correct resource
strategy, renderer, and rendering context. The Scene Logic contains collision detection
between controllers and objects as well as portals which are described more in Chap-
ter 7. Input Handler handles the inputs either from the keyboard or the controllers used
in VR. Jinsoku is built with a couple of external dependencies. These include code
from the NVIDIA mesh shader code example (Kubisch, 2018b), Arseny Kapoulkine
(2017) library, and Valve’s OpenVR API. GLFW and OpenVR is used to present im-
ages to desktop and HMDs. GLM and Eigen are used for the calculations, processing,
and data representation that mirrors the datatypes used in shader programs on the GPU.
Lua is used for scripting. STB and TinyObjLoader are used for texture and mesh load-
ing. MeshletMaker is a library that we have developed. It is used to load meshes from
disk, and process them into one of the many different meshlet generation strategies that
we explore more in-depth in Chapter 6 and Paper III.

The development of Jinsoku has followed this project closely. It has been refactored
twice. It has been used for a couple of student projects. It has evolved with this project,
and it is as much a product of this project as the published papers are. Jinsoku contains
15.415 lines of code, and while that is not a particularly meaningful metric, it reflects
the time that has gone into its development. Jinsoku currently has eight different re-
source strategies. These are all around 1200-1400 lines of code and contain duplicate
code since only one of them is used at runtime. So the actual codebase is more likely
around 10.000 lines of code.

5.2.2 General optimizations

Jinsoku follows the best practices of programming with Vulkan (Subtil, Rusch and
Fedorov, 2019). The first one involves reducing the number of small allocations on the
GPU in favor of a few big allocations, which can then be sub-allocated for the desired
resources. Jinsoku does this by first collecting all the resources and calculating their
memory requirements before performing any allocations on the GPU side. It is also
necessary to distinguish between what type of memory is needed, and whether it needs
to be visible on the host (CPU), device (GPU), or both. So one memory block of each
type is allocated according to the needed size.

When the actual rendering is performed each object is associated with a pipeline, a
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Figure 5.3: This diagram shows an overview of Jinsoku’s architecture. The Green block shows
the program logic, being the actual functionality of Jinsoku. The purple block contains all the
external dependencies and libraries that were used in the development of Jinsoku. The two red
blocks show the parts of Jinsoku that are built as interfaces. Jinsoku Instance is a factory that
spits out the required instance of Jinsoku, containing the features requested in the configuration
file. The Presentation Instance provides an interface that defines where the rendered images are
presented and depends on the instance of Jinsoku is running.
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shader layout, and some data. This all needs to be bound before the draw call is made.
If the objects are rendered in a random order this can lead to a lot of binding and
unbinding of resources. The best practice is to group objects together based on pipeline
and layouts to minimize rebinding. Which we do in Jinsoku.

All the instructions for the GPU are recorded into static Command Buffers, which are
created once at start-up. Command Buffers are essentially small collections of prere-
corded instructions that are recorded on the CPU side, before being sent to the GPU
for execution. Two kinds of Command Buffers exist, secondary and primary buffers.
A primary buffer can include secondary buffers. In Jinsoku we have one dynamically
created primary Command Buffer, which we use to include static secondary buffers.
That way we only have to record our drawing instructions once, at start-up into sec-
ondary buffers, and then dynamically add them at runtime. With this method, we can
add more secondary buffers to the primary as new features are added to Jinsoku. This
functionality can for instance be used to prerecord portals into buffers but only add the
visible portals’ buffers to the primary buffer at render time.

5.2.3 Static Registration

Since Jinsoku is made first and foremost for testing the performance of different raster-
ization pipelines and optimization strategies, it is important that it works in a modular
way. We need to be able to ask for different pipelines and optimization strategies at
start up, allowing us to record their performance and compare them to each other. We
do this by use of the Static Registration programming pattern. This is a pattern that is
often used when building plugin architectures, where it is impossible to predict how
many plugins might be created during the life cycle of the program. In our case we
have two types of "plugins". We have rasterization pipelines and resource allocation
strategies.

We implement the Static Registration pattern by taking advantage of the fact that static
variables are initialized before the main function is run in C++. For each rasterization
pipeline and resource allocation strategy we instantiate a static variable that holds an
instance of a Registry Class that is associated with it. On instantiation, this class calls
a static method which adds it to the C++ equivalent of a list. This approach is heav-
ily inspired by NVIDIAs Mesh Shader demo on github (Kubisch, 2018b). That way,
when setting up Jinsoku, we can go through this list and pick a rasterization pipeline,
and based on that, a resource allocation strategy. Each registry has a priority and a list
of requirements that need to be fulfilled for it to work on the current hardware. This
allows Jinsoku to automatically pick the right combination of rasterization pipeline
and resource allocation strategy for getting the best performance possible given the
hardware that it is running on. Each renderer needs to support at least one resource
strategy. Currently, we have two different rasterization pipelines, we have a pipeline
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that implements the Vertex Shading Pipeline, and one that implements the Mesh Shad-
ing Pipeline. We have a couple of resource allocation strategy permutations for the
Mesh Shading Pipeline that implements different storage strategies. The Mesh Shad-
ing Pipeline allows the rasterization pipeline to process Meshlets instead of individual
vertices (Section 2.8). Chapter 4 and Chapter 6 go into more details on Meshlets and
the Mesh Shading Pipeline. Meshlets are small clusters of triangles. The Task Shader
Stage allows the pipeline to cull invisible Meshlets before they are processed. The in-
put to the Mesh Shading Pipeline is definable by the programmer. This is the reason
for our many resource strategies. These resource strategies have been used when doing
research for Paper III.

5.2.4 Scripting

To make Jinsoku more accessible and usable for scientists that wish to use it for visu-
alization we have set up a configuration file that is read when Jinsoku is executed. The
configuration file is written in a scripting language called Lua 2. The configuration file
can be used to set the model, texture, pipeline, and resource strategy that one wishes
to use with Jinsoku. We have decided to use Lua instead of a text file because enforc-
ing syntax on the configuration file minimizes the risk of errors being introduced when
editing the file. When Jinsoku starts up it feeds the configuration file to a Lua virtual
machine. Lua is a powerful scripting language that can interact with Jinskou at runtime
and potentially develop into a way of scripting scenes for Jinsoku.

5.3 Rendering For VR

Making Jinsoku VR-based means that we need to use an API for interfacing with a
HMD. It just so happens that almost all HMD manufacturers have an API, and using
these either ties you to one company or forces you to implement different APIs if you
wish to support more than one HMD manufacturer. Valve has made an API, called
OpenVR, which is somewhat cross-headset, and works with many of the big HMD
manufacturers. The downside is that the documentation of the API is scarce, and gain-
ing familiarity with it is primarily done by reverse-engineering a demo made by Valve.
Despite this, we have implemented the OpenVR API.

Jinsoku is VR first. This means that Jinsoku runs naively in a headless mode. Headless
means that we do not waste processing power presenting images to the desktop screen.
Of course, it can be handy to present the images shown in VR to the desktop in certain
scenarios, so we have included a setting in the configuration file that can be used to

2https://www.lua.org/
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Figure 5.4: A render of the seal skull with VRS anabled. The VRS pattern is circular and
moves outwards from the middle of the image, reducing the number of fragment calls as we
move further out. This is indicated by the change in color.

enable presentation to the desktop. Other than this, arguably small, optimization we
have implemented two big VR-specific features to optimize performance. These are
detailed in the following subsections

5.3.1 Variable Rate Shading

We have implemented Variable Rate Shading (VRS) in our engine, this feature es-
sentially allows us to render images to a frame buffer that emulates a varying pixel
resolution. Ideally, this feature would be used together with eye tracking so that the
part of the image that the user looks at is always rendered at the correct resolution, with
a circular fall-off as we move out towards the periphery of the eye. None of our HMDs
had eye tracking so instead, we made the circle at the center of the image, expecting
users to always look straight ahead, and move the head instead of the eyes when ex-
ploring the VE. That way we focus our rendering efforts on the foveal area and spend
less computational power on the part of the image that is only visible to the peripheral
vision. We can get away with this because the peripheral vision is less acute. If the
eyes are moved instead of the head, then the effect breaks down. Figure 5.4 shows an
example of the skull rendered with VRS. We have overlaid a color onto the geometry
to show how we have created different zones in the image that vary the number of frag-
ment calls per pixel. In Figure 5.5 we see the Valve Index controllers in VR, where one
controller stands out sharply in the center of the image, and the other is more jagged
and pixelated. This is a result of the VRS pattern.
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Figure 5.5: Two Valve Index controllers viewed in VR with with VRS turned on. Notice how
the left controller has become more pixelated due to the lower resolution in the peripheral area of
the image

5.3.2 Multi-View Rendering

Multi-View Rendering (MVR) is an optimization strategy that lets the graphics pipeline
change the order in which vertex and fragment shaders are called, for consecutive
views. The normal way to render two views is to go through the pipeline twice i.e.
calling the vertex shader and then fragment shader for the first view, and then again for
the second view. When MVR is enabled, the pipeline runs the vertex shader for both
views at the same time, and then the fragment shader for each view. This reduces some
overhead when loading shader programs but more importantly, it allows the pipeline to
take advantage of reusing vertices that are already processed and in memory. This can
provide a good performance increase when a lot of the geometry that is being rendered
is visible in both views. This is an ideal feature for increased performance in VR, since
we always need to render two views instead of one, and the views are almost identical
meaning that almost all of the visible geometry is visible in both views.

Figure 5.6 shows how MVR works. For the Mesh Shading Pipeline we have to take
into account that we only call the Task Shader once at the start, so we need to expand
the meshlet culling abilities to take both views into account.

An interesting little hack that we had to make use of is that when you work with MVR
you essentially only use one image buffer twice as wide so that it can hold two images
next to each other. This is clever because by having the two images in the same memory
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Figure 5.6: The difference between rendering a frame with and without multi-view enabled for
the vertex pipeline and the mesh shading pipeline.

block it becomes more efficient when writing to it at render time. The OpenVR API
however expects you to deliver two distinct images every time, so you cannot just give
it one large image instead. These images are Vulkan objects. Each Image Object is
first created and then backed by memory via an allocation process. To get around this
you first create one Image Object, and back it with a memory allocation for the entire
multi-view image. For the second Image Object you create it, but do not allocate any
memory for it. Instead, you let it point to the middle of the memory allocation of the
first Image Object.

5.3.3 Performance

We recreated the experiment that we performed for Paper I, with a version of Jinsoku
that has been optimized after the publication of the paper. This version of Jinsoku fea-
tures a Manual Viewpoint Manipulation interface where the user can drag themselves
around the VE. Rotation around a controller can be done simply by grabbing the air
and rotating the physical controller. Scaling the VE up or down is done by grabbing
the air with both controllers and moving them closer together or further apart. We use
four different versions of Jinsoku. The first just has the general optimizations, and
refactoring of the engine, the second adds MVR, the third adds MVR and VRS, and
the fourth one adds MVR, VRS, and our best-performing meshlet clustering algorithm
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from Paper III. We use the Valve Index and desktop setup in this experiment. All the
versions of Jinsoku that are used in this figure use the Mesh Shading Pipeline. The
results are measured in milliseconds and can be seen in figure 5.7. We see that the
general optimizations bring the average render time when inspecting the wing in VR,
down when compared to the version of Jinsoku used for Paper I. The average render
times from the version of Jinsoku used in the paper, for inspecting the wing from afar is
∼20 ms and ∼5.0 ms when inspecting it up close (Paper I). When using MVR and in-
specting the wing from afar we decrease the render time by roughly ∼2.0 ms compared
to the general optimizations. When inspecting the wing up close we drop down to an
average render time of ∼2.5 ms from ∼4.0 ms. Adding VRS provides a small decrease
in render time, when inspecting the mesh from far away, which is not enough to justify
the deterioration in the image quality. Of course, the improvement may be larger if the
surface illumination model used is more complex than the Phong shader. Lastly, we
add our novel clustering algorithm to shave another ∼ 0.5 ms of the average render
time for inspecting the wing from afar, bringing it down to ∼7.5 ms. The optimized
version of Unity had an average render time of ∼10.0 ms for inspecting the wing from
both afar and close (Paper I). We now outperform both Unity and our previous version
of Jinsoku. When inspecting the wing from afar we render the images ∼ 25% faster
than Unity and ∼ 62.5% faster than the previous version of Jinsoku. When inspecting
the wing from up close we render the images ∼ 75% faster than Unity and ∼ 50%
faster than our previous version of Jinsoku. We observe that the render time does not
decrease when inspecting the mesh up close for any of our three most optimized solu-
tions. This is most likely because we have managed to shift the bottleneck in rendering
elsewhere in the pipeline.

5.3.4 Conclusion

In this chapter, we have highlighted some of the optimizations and features that have
been implemented in Jinsoku, as well as shown the performance that we can get out
of a bespoke visualization engine. While working with Vulkan is indeed more time-
consuming than working with an existing visualization platform, it has allowed us to
leverage state-of-the-art hardware features, such as the Mesh Shading Pipeline, VRS,
and MVR. These features have made it possible for us to gain a big boost in perfor-
mance, where we not only outperform the other solutions that we compared it with but
also shift the performance bottleneck to another part of the pipeline when inspecting
the mesh up close. It is also worth noting that beyond implementing the Mesh Shad-
ing Pipeline, we have mostly adhered to best practices and reverse-engineered existing
solutions when creating Jinsoku. The learning curve was steep in the beginning, but
not as steep as it may be perceived to be, so if state-of-the-art features are desired then
it might well be worthwhile to build a bespoke solution. The Mesh Shading Pipeline,
despite being introduced in hardware four years ago, has not been available in com-
mercial game engines before Unreal Engine 5 which has come out this year. Control
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Figure 5.7: Comparison of rendering performance of Jinsoku when rendering the wing model,
with different optimization strategies implemented.
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over which features are implemented first, instead of having to wait for a third party to
prioritize and implement them, can make a big difference in the final application.



C H A P T E R 6
Efficient Rendering of
Large-Scale Geometric Data
using Meshlets.
In chapter 4, based on paper I, we compared different starting points for a VR-based
visualization platform. We identified the bespoke Vulkan engine, based on the Mesh
Shading Pipeline, to hold the most promise. The fact that the Mesh Shading Pipeline
allowed us to only process the visible parts of the mesh, by using the Task Shader to
cull Meshlets before processing, was indeed very convenient when working with very
large meshes. Especially in VR where we would expect the user to get close to the
mesh. While the Vertex Shading Pipeline also culled triangles that were not visible, it
did not do so until after the vertices were processed.

Meshlet generation is essentially just clustering of triangles. The formation of these
clusters is of great interest. Everything from the compactness and shape of the Meshlet,
to the direction, that the triangles within the Meshlets are facing has an impact on how
easy they are to cull. Not only this, but it also has an impact on how many Meshlets
a mesh is divided into. It is however not entirely clear how big the impact of different
meshlet collections is on the rendering performance. So to investigate if we ought to
optimize after one of these parameters, all of them, or none of them we explore different
ways of building meshlet collections and compare their render times. Clustering is
a well-established method for exploratory analysis, so we take inspiration from the
existing literature and compare existing methods against novel methods. This is done
in our bespoke rendering engine, Jinsoku, as it gives us full control over the entire
process. This work has resulted in paper III, currently in review, which is presented in
this chapter.

I have worked on all aspects of this paper. Some of the initial investigations of using
the k-medoids method were made by two master’s students, but in the end, I had to
re-implement their work as we started working with bigger meshes.
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0.1207 ns/triangle 0.1057 ns/triangle

0.1114 ns/triangle 0.1037 ns/triangle

Figure 6.1: Different methods for organizing the triangles of the Stanford Bunny into meshlets.
Each colored patch is a meshlet. From top left to bottom right: NVIDIA (Kubisch, 2018b),

k-medoids (Kaufman and Rousseeuw, 1990), greedy (ours), bounding sphere (ours), Kapoulkine
(2017). We describe the details of the methods in Section 6.3. Each image shows the render time
in nanoseconds per triangle. The time is based on a linear regression fitted to the render time of
six meshes as a function of the their triangle count. Because k-medoids has too few datapoints

we omit its time.
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6.1 Introduction

Rasterization is fast and highly parallelized on the graphics processing unit (GPU). In
extended reality (xR) applications, where too low a frame rate breaks the immersion
and potentially causes motion sickness (Rebenitsch and Owen, 2016), rasterization is
the method of choice. Rasterization is however triangle bound, which means that every
triangle must be processed for every frame. This can be prohibitively expensive if we
want to visualize massive triangle meshes in xR applications. On the other hand, it is
especially in xR applications that we need massive triangle meshes, because the user is
free to closely inspect the geometry from arbitrary points of view.

To facilitate a higher triangle throughput, which helps uphold high frame rates even for
massive meshes, the rasterization pipeline was recently modified to enable clustering
of triangles into meshlets (Kubisch, 2018a; Kubisch, 2020). Meshlets improve perfor-
mance by enabling us to process and cull geometry at a coarser level of granularity
than triangles (Jensen et al., 2021). This relaxes the triangle boundedness, because
the pipeline no longer needs to process all the triangles that are submitted to it. This
modified pipeline is called the mesh shading pipeline.

Mesh shading is now directly exposed in Vulkan, DirectX 12, and OpenGL (Kubisch,
2018a). This gives rise to the question of how to best create the meshlets, i.e. the tri-
angle clusters. Some developers, notably Kapoulkine (2017) and NVIDIA (Kubisch,
2018b), have released code for organizing triangle meshes into meshlets, but the ques-
tion of how to form meshlets that deliver good rendering performance has received
limited attention. In this paper, we evaluate the rendering performance when using dif-
ferent approaches for organizing triangle meshes into meshlets. Our tests include six
different meshes consisting of 70 thousand to 39 million triangles. We evaluate perfor-
mance by rendering the meshes from many randomly selected views while measuring
render time per triangle. To our surprise, we find that meshlet collections produce lower
render times when using local and greedy algorithms.

We also conduct a small explorative study into different meshlet descriptors in order to
investigate how they affect render times. A meshlet descriptor is a small structure that
keeps track of the meta data surrounding a meshlet. Apart from describing different
algorithms for forming meshlet collections and reporting their rendering times, our
main contribution is to identify the most important metrics to consider when assessing
the quality of a meshlet collection.
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6.1.1 Related Work

The GPU was originally introduced as special purpose hardware for triangle rasteri-
zation. Over the past few decades, GPUs have evolved into highly efficient and very
general architectures for parallel computation (Haines, 2006; Dally, Keckler and Kirk,
2021). GPUs are discrete cards, which means that all data needs to be send to the GPU
if it is to be processed on the GPU. This can become a bottleneck (Hoppe, 1999) when
working with large datasets, such as very big triangle meshes. A mitigation strategy
for big triangle meshes is to use mesh representations that minimize the data footprint.
One such widely used mesh representation is triangle strips. Triangle strips minimize
the data footprint by feeding triangle strips to the GPU with consecutive triangles shar-
ing an edge. In this way, the next triangle is simply described by processing one more
vertex, as the two vertices from the shared edge with the previous triangle have al-
ready been processed. An index buffer can be used to represent the triangle strip. This
is filled with indices to a vertex buffer and replaces vertex duplication with the less
memory consuming duplication of vertex indices.

To organize a mesh into triangle strips, we need a path through the mesh where each
triangle is only visited once. This is equivalent to finding a Hamiltonian circle in the
dual graph of the mesh, which is an NP-complete problem (Dillencourt, 1996). As a
result, greedy approaches for creating triangle strips have been explored instead. Arkin
et al. (1996) generate triangle strips by greedily adding triangles with fewest adjacent
triangles to the strip. This approach avoids leaving behind isolated triangles (triangle
islands). The algorithm is made for a graphics API that predates OpenGL, called Iris
GL. Iris GL has a command that makes it possible to change the vertex order of the last
processed triangle. That makes it possible to change the direction of a triangle strip.
Since OpenGL does not have this command degenerate triangles are added to the trian-
gle strip in order to stitch strips together, at the cost of one extra vertex. Evans, Skiena
and Varshney (1996) seek to minimize this use of degenerate triangles by generating
triangle strips based on a global heuristic that looks for large patches that can easily be
converted into large strips.

The generalized triangle mesh introduced by M. Deering (1995) relies on a special
purpose hardware accelerated cache called the mesh buffer. This buffer stores vertices
through explicit commands. Using a mesh buffer makes it possible to exploit that
vertices are on average connected to six triangles, which is hard to fully utilize with
triangle strips (M. F. Deering and Nelson, 1993). Chow (1997) introduces an algorithm
for converting meshes into generalized triangle meshes.

Hoppe (1999) relies on the post transform and lighting cache (post-T&L cache). The
post-T&L cache is part of the vertex shading pipeline. The vertex shading pipeline is
the traditional rasterization pipeline which is used to process geometric data and turn it
into rasterized images. The post-T&L cache holds the most recently processed vertices
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that have not yet been converted into primitives. Using this, he optimizes triangle strips
by reusing the vertices in the cache as much as possible. Several others have built
on this principle to further improve rendering performance (Lin and T.-Y. Yu, 2006;
Forsyth, 2006; Sander, Nehab and Barczak, 2007). In 2006, with the introduction of
the unified shader model (Lindholm et al., 2008), the GPU became massively parallel,
allowing for all shader stages to be run on all the generic processors on the GPU. This
led Kerbl et al. (2018) to question whether the post-T&L cache is still a part of the GPU
architecture. Based on empirical evidence obtained through vertex shader invocations,
they show that modern GPUs turn the index buffer into smaller batches and process
these in parallel.

A new rasterization pipeline called the mesh shading pipeline was introduced with
NVIDIA’s Turing architecture (Kubisch, 2018a). This pipeline lets the GPU process
small parts of the mesh called meshlets instead of individual triangles. The pipeline
no longer has the fixed function batching that Kerbl et al. (2018) found in the vertex
shading pipeline. Instead, this is done by the programmer, providing the opportunity
to make more informed decisions on how the mesh is batched into meshlets. Since
each meshlet is processed in parallel, there is no longer a post-T&L cache to hold
processed vertices, instead each processor has a cache of shared memory that all the
threads on that processor can access. Since the batching is done before rendering, it
does not need to take place again every time a new frame is rendered, removing some
overhead. The pipeline expects a local index buffer for each meshlet as an output
from the mesh shader stage, so this can either be precomputed or generated in the mesh
shader. An optional task shader stage can run before the mesh shader to control culling,
tessellation, and other things before it dispatches meshlets. The fragment shader stage
is unchanged. Kubisch (2018a) provides an excellent overview of the hardware limits,
built-in variables, and recommendations for the mesh shading pipeline.

The mesh shading pipeline has received surprisingly little academic attention. This is
arguably because both the vertex and mesh shading pipeline benefit from triangle strips
that are arranged spatially to increase vertex locality. This becomes quite apparent
knowing that batching takes place on both pipelines, and both the post-T&L cache as
well as the processor shared memory can take advantage of vertex reuse. Furthermore,
real-time graphics is no longer exclusively about rasterizing triangles as efficiently as
possible since real-time ray tracing and methods based on machine learning have be-
come hardware accelerated and – often in combination – lead to a more diverse set of
viable methods for efficient, high quality graphics.

Wihlidal (2016) shows how the graphics pipeline can benefit from clustering of tri-
angles, and compute-based culling of these clusters. Jensen et al. (2021) show that
the mesh shading pipeline has great potential for visualizing large geometric datasets,
an Unterguggenberger et al. (2021) show how the mesh shading pipeline can be used
for dynamic meshes. Mesh shaders work well for rendering large terrain (Santerre, Abe
and Watanabe, 2020), and can be used for continuous level of detail (Englert, 2020). In
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the gaming industry the mesh shading pipeline has been adopted and is now part of Un-
real 5’s virtualized geometry pipeline called Nanite (Karis, Stubbe and Wihlidal, 2021).
It is also possible to find Github repositories with mesh processing tools for the mesh
shading pipeline (Walbourn, 2014; Kapoulkine, 2017; Lempiainen, 2020). Neff et al.
(2022) investigate texture atlases to reduce meshlet overdraw. In this paper, we explore
different clustering strategies for meshlet generation and distill two key principles that
lead to better real-time rendering performance when generating meshlets.

6.2 Meshlets Descriptors

The buffer setup that we use with the mesh shading pipeline has three buffers, see Fig-
ure 6.2. A local index buffer is divided into one section for each meshlet, and the local
indices start from 0 in each section. The indices are all 8-bit because they refer to the
local indices within a single meshlet. The hardware limit for vertices in a single mesh-
let is 256, so 8 bits suffice. The global index buffer is also divided into sections, one
for each meshlet. This buffer differs from the traditional index buffer in the sense that
index duplication is reduced. If one meshlet uses a vertex several times, the local index
that points to the same global index is duplicated instead. The last buffer is simply the
vertex buffer, which is the same as the one used for the vertex shading pipeline. With
these buffers, all we need is a small descriptor for each meshlet providing information
about it for the multiprocessor. NVIDIA suggests keeping the size of the meshlet de-
scriptors to 128 bits which, on their hardware, is equivalent to the minimum amount of
data that is fetched on a GPU-side load instruction. The meshlet descriptor is a small
structure that keeps track of the meta data surrounding a meshlet. It needs to at least
hold offsets into the global and local index buffers, as well as the number of primi-
tives and vertices used in the meshlet. Other than this, the descriptor can also store
a bounding box, an average normal for the meshlet, or any other information that the
programmer wants to have associated with a meshlet.

The layouts of four different descriptors are in Tables 6.1 and 6.2. All descriptors use
at most 128 bits. All descriptors pack a bounding box into 48 bits, namely 8 bits for
the minimum and maximum coordinate on the x-, y- and z-axis. The bounding box
coordinates are relative to the extent of the mesh bounding box. They all use 8 bits
for describing the number of primitives and vertices in the meshlet. The normal cone
is represented by a normal and an angle packed into 24 bits. The normal and cone
angles are mapped into octants based on Cigolle et al. (2014). All data in a descriptor
is packed into four 32-bit unsigned integers. The NVIDIA descriptor A packs the 8 bit
cone angle partially into two 32 bit unsigned integers. The 4 upper bits in one and the 4
lower bits in the other. The remaining 3 descriptors pack the 8 bit cone angle together,
which saves some unpacking within the mesh shader. The biggest point of divergence
between the 4 descriptors lies in how they store the offsets required for the global and
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Figure 6.2: The three buffers used by the GPU when processing meshlets: local index buffer,
global index buffer, and vertex buffer. The meshlet descriptor has offsets into these buffers. Note
that global indices (re)appear in all meshlets they are used in.

Table 6.1: The memory layout of two meshlet descriptors proposed by NVIDIA (Kubisch,
2018b). Meshlet descriptors are 128 bit data structures that are used in task and mesh shaders.

NVIDIA descriptor A
Bits

Bounding Box 48
No. Vertices 8
No. Primitives 8
Global idx offset 20
Local idx offset 20
Normal Cone 24

NVIDIA descriptor B
Bits

Bounding Box 48
No. Vertices 8
No. Primitives 8
vertexPack 8
Index buffer offset 32
Normal Cone 24

local index buffers.

The NVIDIA descriptor A has 20 bits left for indexing into both the local and the global
index buffer. This means that meshes that require an offset which is larger than 220 will
need to be broken into several draw calls.

The NVIDIA descriptor B takes these same 40 bits and uses 32 of them for offsetting
which allows for much larger meshes. The downside of this is that the offsets into the
global and local index buffers need to be aligned, as the same offset is used in both
buffers. The remaining 8 bits are used to describe how the global indices are packed,
i.e. if they are 16 bit or 32 bit numbers. This effectively means that the global indices
can be packed into 16 bits for meshlets that only use global indices that are smaller
than 216.

The third descriptor separates the task and meshlet descriptors, this means that it uses
256 bits for each meshlet instead of 128. But it only loads 128 bits per shader stage. By
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Table 6.2: A descriptor for the task shader stage (left) and another descriptor for the mesh
shader stage (right). Use of different descriptors for task and mesh shaders is an alternative to
using the same descriptor for both shaders.

Task Shader meshlet descriptor
Bits

Bounding Box 48
Normal Cone 24

Mesh Shader meshlet descriptor
Bits

No. Vertices 8
No. Primitives 8
Global idx offset 32
Local idx offset 32

Figure 6.3: A monolithic version of the buffer setup used by the GPU when processing
meshlets. Using only two buffers: local index buffer and vertex buffer. The monolithic meshlet
descriptor has offsets into these. Note that vertices (re)appear in all meshlets they are used in.

doing that we can get rid of the task shader related data in the mesh shader descriptor
and vice-versa. That way we can allow 32 bits for both the global and local index buffer
offsets. So here we require no alignment between the buffers. We refer to this as the
split descriptor.

Figure 6.3 shows an alternative buffer setup for a monolithic meshlet descriptor. The
monolithic descriptor is also divided into two descriptors, to allow for 2x32 bits off-
setting. One offsets into the local index buffer, and instead of using a global index
buffer, the second offsets directly into the vertex buffer, which is divided into sections
for each meshlet. The trade off here is memory, since some vertices will be duplicated
and appear in several sections. On the other hand, no global index buffer is needed.
The duplication is required for all vertices that live on the border of a meshlet. So, the
four different descriptors all come with different memory footprints as well as some
variations in how much GPU side unpacking they require.

Each meshlet can only contain a certain number of vertices and primitives. These
numbers dependent on the GPU hardware. In the case of NVIDIA’s 2000 RTX series,
the hardware limits are 256 vertices and 256 primitives. Lower values can be set as
well. NVIDIA suggests using either 32 or 64 vertices and 40, 84 or 126 primitives for



6.3 Meshlet Clustering Methods 97

each meshlet. In this paper, we use 64 vertices and 126 primitives throughout, which is
the same as NVIDIA use in their meshlet sample (Kubisch, 2018b).

We use NVIDIA descriptor B when comparing the rendering performance of different
meshlet generation methods because it allows us to process large meshes with one draw
call. For our descriptor comparison, we compare all four descriptors while using the
meshlet clustering method with best performance.

6.3 Meshlet Clustering Methods

The following paragraphs describe the different methods for organizing a mesh into
meshlet collections (clusters) that we compare. Figure 6.1 exemplifies the differences
between the meshlets generated by the different methods.

NVIDIA On behalf of NVIDIA, Kubisch (2018b) provides an example of organizing
a mesh into meshlets. The meshlets are created one at the time by going through the
index buffer. New primitives and vertices are added to the current meshlets as long
as there is room for more. When it is full, a new meshlet is created. This process is
repeated until the algorithm has gone through the entire index buffer. Every time a
primitive is added to a meshlet it generates local 8-bit indices for the vertices, or reuses
existing local indices if the vertices are already in the meshlet. It de-duplicates the
global vertex indices, meaning that the global index of a vertex is only stored once, in
each meshlet that uses the vertex, instead of being stored once for each triangle that
it is part of. Instead the local indices are stored for each triangle. Because the local
index buffer is 8-bit and the global index buffer is 16-or 32-bit this save spaces. The
approach has a dependency on the original connectivity of the index buffer, and the
resulting number of meshlets, as well as the vertex reuse within the meshlets is highly
dependant on the structure of the index buffer. Figure 6.1 shows an example of the
resulting meshlets. The index buffer appears to not be very optimized, which results in
a lot meshlets being generated.

Kapoulkine Arseny Kapoulkine (2017) maintains a widely used and popular library
called meshOptimizer. The library has several functions that improve, pack, and opti-
mize meshes for better render performance, and it includes a meshlet generation strat-
egy. First, the library creates a data structure based on triangle and vertex adjacency. A
centroid and a normal is then calculated for each triangle, and the area of the mesh is
also calculated. The area is used to create an expected meshlet area, assuming square
flat patches. In addition, a kd tree is created from the triangle structure. All this is used
to create the meshlets. The kd tree is used to pick the starting triangle for a meshlet,
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and the adjacency structure is then used to look up the nearest triangles. Each triangle
gets two ratings: one based on vertex reuse, another based on how much it increases
the area of the meshlet. Regarding triangle reuse, triangles that already have vertices in
the meshlet get a higher rating. Triangles islands also get higher importance. Should
it happen that there is room for more triangles in the meshlet but none available on the
border, the algorithm uses the kd tree to look up the nearest available triangle. The
meshlet generation algorithm allows one to set a weight for the triangle normals, that
will make it weigh these more when picking the next triangle for the current meshlet.
We set it to 0.0, 0.5 and 1.0, and found that 0.0 produced the best results for the large
meshes while the difference between the weights only had a very small impact on the
small meshes. Because of this, we report our results with the weight set to 0.0.

Greedy We have developed a greedy algorithm that uses a list of vertices, where each
vertex contains information about which triangles it is part of. The algorithm takes the
first vertex, and then from that, grows out the triangle cluster until a meshlet is full. If
a meshlet hits the vertex max before the primitive max, we look at the border of the
meshlet for triangles that already have all vertices in the meshlet, and add these. A
new meshlet is then started from a vertex on the border of the meshlet that was just
completed, and the process is repeated. If a meshlet runs out of available triangles on
its border, we go back to the list and picks the next available one. Because of this, the
algorithm is sensitive to the order of the vertex list. We therefore use a heuristic to sort
the list before running the algorithm. We find that half the time sorting according to the
biggest bounding box axis length gives the best result. In particular, this is the case for
the three biggest meshes. We also developed a version using a triangle list instead of a
vertex list, but found that the vertex based algorithm always outperformed the triangle
based. This is most likely because the meshlet border for vertices is based on all the
triangles that the vertices in the meshlet touch, while the border in the triangle version
is based on all triangles that share an edge with triangles that are already in the meshlet.
This effectively means that the border is "larger" for the vertex version which results in
fewer meshlets overall. Moving forward we only report on the vertex based algorithms,
and use the heuristic of sorting the vertex list based on the longest bounding box axis
of the mesh, from low to high.

Bounding sphere Our more advanced strategy is similar to the greedy one, except
we here grow a bounding sphere around the starting vertex and use an algorithm by A.
Bærentzen and Rotenberg (2021) to add triangles that minimize the radius of this
bounding sphere. In addition to striving for a mimimal bounding sphere radius, we
also (inspired by Kapoulkine) prioritize triangles with vertices already in the meshlet
and triangle islands.
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k-medoids One way to create clusters of triangles is by turning a mesh into smaller
partitions using k-medoids (Kaufman and Rousseeuw, 1990). While this is an algo-
rithm normally used for unsupervised learning, to investigate if and how many clusters
a dataset might have, we use it to obtain balanced clusters. We chose the k-medoids ap-
proach because it works along the mesh surface, whereas the more commonly known
k-means clustering would use a centroid, the cluster mean, to represent a cluster. A
centroid detached from the surface easily results in clusters with triangles that are not
connected. A medoid on the other hand is an actual datapoint within the cluster that is
most suited to represent that cluster. These can be found by minimizing the dissimilar-
ity within a partition. The k-medoids method partitions the mesh into k clusters and
finds the medoid for each of these clusters. The medoid is the triangle with the short-
est distance to all other triangles in the cluster. The algorithm runs in two steps after
creating an initial clustering of the mesh. First the medoids of all clusters are found.
All triangles are then compared to these medoids and assigned to the cluster with the
most similar medoid. These two steps are repeated until convergence (Kaufman and
Rousseeuw, 1990). The dissimilarity can be expressed through a distance metric be-
tween triangles. We run the algorithm on a triangle data structure, where the distance
between two triangles is equal to the number of adjacent triangles we have to walk
through to get from one to the other. The convergence criterion is to have an average
distance close to zero between the new and old cluster centers, meaning that cluster
centers moved very little in the last iteration. We start the algorithm with a number
of clusters found by dividing the total number of triangles with the maximum number
of triangles in a meshlet. After convergence we check if the clusters fit into meshlets.
If not, then we add one new cluster and repeat. By only adding one new cluster we
minimize the total number of clusters at the cost of longer processing times.

The five methods just mentioned vary quite a bit in implementation complexity. With
NVIDIA’s algorithm arguably being the simplest to implement, as it just directly works
on the index buffer. After this comes the greedy algorithm that uses a triangle and
vertex adjacency structure in a sorted list instead of the index buffer, with the bounding
sphere version adding a little complexity in terms of a triangle scoring function. Then
we have Kapoulkine’s which requires both a triangle and vertex adjacency structure,
a kd tree, and two scoring functions. Lastly, we have the k-medoids algorithm which
not only requires a triangle adjacency structure, but also two iterative steps based on
the breadth first algorithm, and to even be applicable it needs to be optimized and
parallelized.

6.4 Experimental Setup

We compare the five different algorithms to see which one performs best, and why.
Our hope is that this comparison allows us to distil more general principles for mesh-
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Bunny Happy Dragon Skull Nobby Wing

V: 34 817 V: 543 652 V: 3 609 600 V: 7 252 445 V: 16 960 045 V: 30 670 121
T: 69 630 T: 1 087 716 T: 7 219 045 T: 14 504 882 T: 32 905 214 T: 38 629 758
Figure 6.4: The six meshes used in our experiment and their numbers of vertices (V) and
triangles (T).

let generation that transcend the specific hardware, and numbers used. To make sure
that no bias is introduced into the experimental process we have set up a Vulkan vi-
sualization engine which visualizes all the objects from a new random point in space
each frame. Our efforts to randomize the view point is to average out the effect of
overdraw. By setting the random seed we make sure that all algorithms are tested
with the same sequence of view points, we do this for a total of 100.000 frames and
record different statistics for each method that will be presented below. The frames
are rendered at a resolution of 1280x720 pixels. We perform the analysis on 99.999
of the 100.000 frames. The first frame shows a significantly higher render time, pre-
sumably because of some data transfer between the CPU and the GPU, which is not
evident for the subsequent 99.999 frames. All experiments were run on a desktop
with an Intel Core i9-9900k, 64GB of DDR4-2666 RAM, and one NVIDIA GeForce
RTX 2080 Ti Turbo OC with 11GB of GDDR6 RAM. We report our results in aver-
age render time per frame in milliseconds, while also exploring different other metrics
surrounding the meshlets that impact the render timer. We use five different mod-
els for our tests in this paper. The vertex and triangle count of each model can be
seen in Figure 6.4. The Stanford Bunny, Happy Buddha and Asian Dragon are from
The Stanford 3D Scanning Repository (https://graphics.stanford.edu/data/3Dscanrep/).
The Seal Skull has been 3D scanned into a point cloud and digitally reconstructed as a
triangle mesh (https://www.morphosource.org/projects/000355763). The topology op-
timized airplane wing (Aage, Andreassen et al., 2017; Aage, Sigmund et al., 2020) is
the largest model in our comparisons. The last mesh has been created with PrusaSlicer
(https://www.prusa3d.com/) using a model called Nobby (https://www.prusaprinters.org-
/prints/35338-nobby-octopus-sculpt). We use the same experimental set up when test-
ing the different meshlet descriptors, using the best performing meshlet generation
algorithm.

6.5 Results

We are interested in finding a good clustering algorithm for meshlet generation. To
investigate this, we plot the render times of the different algorithms as a function of
triangle count in Figure 6.5. We see a fairly linear trend. The solid lines show render

https://graphics.stanford.edu/data/3Dscanrep/
https://www.morphosource.org/projects/000355763
https://www.prusa3d.com/
https://www.prusaprinters.org/prints/35338-nobby-octopus-sculpt
https://www.prusaprinters.org/prints/35338-nobby-octopus-sculpt
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Table 6.3: Render times.

Method Bunny Happy Dragon Skull Nobby Wing
NVIDIA 0.15 0.28 0.87 1.70 4.21 4.68
Kapoulkine 0.13 0.22 0.79 1.33 4.09 4.10
greedy 0.13 0.23 0.76 1.36 4.11 3.74
bounding sphere 0.13 0.22 0.74 1.25 4.15 3.58
k-medoids 0.13 0.23 0.77 N/A N/A N/A

Table 6.4: Slope of a linear regression fitted to the six mesh render times based on the four
different algorithms with and without culling. The slope shows how much an algorithm increases
in render time as more triangles are rendered. The time is given in nanoseconds.

Method without culling with culling

NVIDIA 0.1246 0.1207
Kapoulkine 0.1179 0.1114
greedy 0.1109 0.1057
bounding sphere 0.1091 0.1037

times without meshlet culling, while the dashed lines include meshlet culling. Fig-
ure 6.6 shows how many percent of the meshlets are culled on average, each frame.
The actual render times can be seen in Table 6.3. Here it becomes evident that for
the two smallest meshes there is not really any difference in performance between the
best performing algorithms, but clearly, for the larger methods there is a difference in
performance. Given the linear trend we also fit a regression line to each algorithm,
and report the resulting slope in Table 6.4. The slopes are reported in nanoseconds per
triangle, with and without culling, and we consider these slopes an overall measure of
the performance of the different methods.. The k-medoids method is omitted in this
table due to the few data points. The smaller the slope is the less an algorithm grows
in render time as more triangles are rendered. The bounding sphere algorithm achieves
the smallest slope, so extrapolating from our six meshes, it increases the least in render
time as the number of triangles grow. Since the difference between the algorithms is
evident both with and without culling of meshlets, it means that the clustering within
the meshlets themselves also contribute to the difference in render times. When we
compare the render times to the implementation complexity of the algorithm, we have
NVIDIA’s algorithm which is the simplest to implement, but this comes with a perfor-
mance hit. On the other hand we have Kapoulkine’s algorithm which achieved good
render times but is rather complicated to implement. Right in the middle we have the
greedy algorithm. This has the second smallest slope while also being quite simple to
implement.

Each meshlet has a maximum number of vertices and a maximum number of primitives
that it can contain. We find that all methods (except k-medoids) have a very high
average vertex count. For each meshlet collection, we find the average vertex fill (ratio
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Figure 6.5: Average render time as a result of triangles based on the six meshes. Render times
with meshlet culling are presented with a dashed line and render times without culling are
presented with an opaque line.
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Figure 6.6: The average percent of meshlets that are culled for each frame when using the five
different clustering algorithms. The culled meshlets are divided into two, the back face culled
meshlets are represented by the fully opaque bars, while the frustum culled meshlets are
represented by the semi-transparent bars.
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Figure 6.7: The distribution of the number of vertices and the number of triangles in each
meshlet across four meshlet generation algorithms. The top row shows the vertices and bottom
row is triangles. The meshlet collections are based on the Stanford Bunny mesh.

of vertices in a meshlet to the maximum number it can hold). All other collections
have an average above 0.99 (except for k-medoids with Bunny: 0.812, Happy: 0.770,
Dragon: 0.811). With all algorithms achieving close to vertex-complete meshlets, i.e.
meshlets that are filled with vertices to the limit, the vertex completeness does not help
us explain the differences in render times.

To see why k-medoids generates meshlet collections with a lower average vertex com-
pleteness, we compare its distributions to the other algorithms in Figure 6.7. Since the
nature of the k-medoids algorithm is to balance out the clusters we get a distribution
of the number of vertices with two fat tails. This means that we will always be below
capacity, and when we compare it to NVIDIA’s, and especially Kapoulkine’s, we see
high peaks and only a tail to one side. Kapoulkine’s algorithm performs better than
both NVIDIA’s and the k-medoids, and produces quite few meshlets when compared
to the two. The numbers of meshlets produced by the different methods for the differ-
ent meshes are listed in 6.6. Since the k-medoids algorithm is trying to distribute the
triangles and not the vertices the distribution of the number of triangles show the same
two tailed distribution. NVIDIA’s and Kapoulkine’s distributions are more interesting.
Kapoulkine’s has a peak at a high number of triangles, and a tail that falls off towards
smaller numbers, while NVIDIA’s is opposite. This is most likely because of the index
buffer, and how it does not promote locality as well as Kapoulkine’s adjacency based
method, resulting in less locality and more unique vertices. These results informed us
that greedy strategies ensure more vertex- and triangle-complete meshlets.

Since vertex completeness did not help differentiate the algorithms, we instead inspect
triangle completeness. Table 6.5 shows the average primitive fill (ratio of primitives
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Table 6.5: The average primitive fill for meshlet collections.

Method Bunny Happy Dragon Skull Nobby Wing
NVIDIA 0.238 0.370 0.459 0.503 0.849 0.488
Kapoulkine 0.747 0.767 0.753 0.756 0.906 0.699
greedy 0.731 0.706 0.739 0.718 0.910 0.723
bounding sphere 0.756 0.744 0.759 0.755 0.911 0.751
k-medoids 0.600 0.568 0.597 N/A N/A N/A

to the maximum number of primitives). Unlike the vertex count, the primitive count
varies quite a bit more across the different algorithms and meshes. If we compare this
Table 6.3, we see a correlation between the methods that perform the best and their
primitive fill being high (although not as simple as saying that the highest primitive fill
yields the best render times). The primitive fill number also explains the variance in the
meshlet collection sizes. If we look at NVIDIA’s algorithm for instance, it produces
more meshlets than the other algorithms. Since each meshlet holds fewer primitives,
we need more meshlets to represent the meshes. The k-medoids algorithm does not
achieve a high primitive fill for any of its three meshes. Since it fails to produce high
vertex fill, it becomes even more difficult to achieve a high primitive fill. NVIDIA’s
algorithm has the lowest primitive fill, and also performs the worst, which indicates
that it is difficult to build meshlets directly from the index buffer.

The NVIDIA and k-medoids algorithms both generate meshlet collections with a some-
what wide distribution of vertices and primitives (Figure 6.7). To investigate how this
impacts the performance of meshlet collections, we sort the meshlets with respect to
number of vertices and number of primitives. We only do this for the NVIDIA-based
meshlet collections as the other algorithms generate more uniform meshlets. As seen
in Figure 6.8, the order of the meshlets do play a role. The plot shows the render
time when not culling any meshlets and using the NVIDIA descriptor B without index
packing. We clearly see that sorting after vertex fill yields the best results. This is
most likely due to the fact that vertices need to be loaded and transformed in the mesh
shader, whereas primitives are represented by an index list that just requires loading
in data. The reason why the render times are affected is that the GPU resources are
used better. Meshlets are dispatched in groups to be processed in parallel, and if these
groups are done processing at the same time, a new group can be dispatched without
idle time. If the meshlets are of varying sizes, some will finish before others and will
end up having to wait for the biggest meshlet to finish processing before a new group
can be dispatched.

Since cullability increases performance of the meshlet collections, we find it interesting
to explore the importance of the cullability of the meshlets. To test this we tweak our
bounding sphere technique for generating meshlets. When a meshlet runs out of new
triangles to add from its border, we finish the meshlet instead of going back to the vertex
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Figure 6.8: The average render times for the NVIDIA meshlet collections for each mesh as a
result of sorting the meshlet list that is send to the GPU. The list is sorted based on number of
vertices and primitives. The resulting render times are compared to sending the meshlet list as is.
The hatched bar for each mesh show the best performing ordering.

Table 6.6: Number of meshlets.

method Bunny Happy Dragon Skull Nobby Wing
NVIDIA 2 321 23 321 124 797 229 043 307 774 628 686
Kapoulkine 740 11 246 76 127 152 261 288 230 438 582
greedy 756 12 231 77 538 160 436 286 956 424 325
bounding sphere 731 11 605 75 457 152 501 286 767 408 302
k-medoids 921 15 210 95 953 N/A N/A N/A
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Figure 6.9: Comparison between the bounding sphere vertex meshlet collections with and
without spatially coherent meshlets.The top plot shows the average render time, as a function of
the size of the meshlet collections. The bottom plot shows the average percent of meshlets that
are being culled per frame for each method.

list to look for new candidates. This enforces spatially coherent meshlets. By doing this
we create more compact meshlets, making them more likely to be frustum culled. This
also reduces the chance of adding a triangle with a normal that deviates too much from
the meshlet normal. The increased cullability comes at the cost of a larger meshlet
collection. In Figure 6.9, we see that the more cullable spatially coherent meshlet
collections are offset to the right of the normal meshlet collection because they contain
more meshlets. For smaller meshes, the spatially coherent meshlet collections show
better performance, despite having more meshlets. The increased number of meshlets
seems to be offset by the larger amount of culling. The increased culling is however
not sufficient to hide the larger loading and processing times for the big meshes. Here,
the difference in render times between the two meshlet collections is small.

Meshlet Descriptor Comparison We use our bounding sphere algorithm to test the
four different meshlet descriptors described in Section 6.2. Results are in Figure 6.10.
The type of descriptor that has the best performance varies from mesh to mesh. Only
for Nobby we see a really big difference in render times. Here, the NVIDIA pack
descriptor outperforms the other descriptors with as much as 1 ms. The Nobby model is
a representation of a 3D print, because of this it consists of tubes. These tubes will have
normals that point in all directions making it impossible to form meshlets with well
defined normal cones, meaning that no or very little back face culling is taking place.
Because of this, all visible meshlets are processed which gives an interesting insight
into how much the meshlet culling affects performance. The high average render time
for the NVIDIA descriptor A is most likely a result of overdraw, because the mesh has
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Figure 6.10: Performance comparison across the six mehses for the four different meshlet
descriptors described in Section 6.2. For each mesh, the hatched bars highlight the descriptor
with best performance.

almost no cullable meshlets, and is divided into several chucks. NVIDIA descriptor B
has some (680) meshlets that can be compressed.

6.6 Discussion

Most of our experiments show that vertex completeness is important. Exploring the
meshlets generated from k-medoids show this the best. The distributions from Fig-
ure 6.7 and render times from Table 6.3 shows that one should prioritize vertex com-
plete meshlets over balanced meshlets. Our investigation into spatially coherent mesh-
lets show the same, albeit with a weaker signal. Spatially coherent meshlets results
in better cullable meshlets at the cost of generating more meshlets. Generating more
meshlets means having a bigger distribution of vertices and primitives. The differences
here are small when compared to the k-medoids results because the portion of meshlets
with lower vertex completeness is small, but for bigger meshes it starts to affect perfor-
mance more. More vertex complete meshlets also means more uniform meshlets, and
more uniform meshlets reduce render times. We saw this when sorting the NVIDIA
meshlet collections in Figure 6.8.

Inspecting Table 6.3 in conjunction with Table 6.5 revealed the correlation between
high primitive fill and better performance. It is interesting to explore the interaction
between average primitive fill and vertex completeness by inspecting the k-medoids
and the NVIDIA meshlet collections. For the Bunny mesh, we see an example where
the average primitive fill on the NVIDIA meshlet collection is so low that the high
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average vertex fill cannot compensate for it. This demonstrates that one should not
only optimize around one heuristic but take both into account. For the Happy mesh, the
NVIDIA collection performs better than k-medoids, showing that vertex completeness
is more important. For the Dragon mesh, the tables have turned and the k-medoids
collection, with a better balance between the two, preforms best. This interaction tells
us that it is important to prioritize both vertex completeness and primitive fill. We
also observe that it is hard to have a high primitive fill without having nearly vertex
complete meshlets.

Striving for cullable meshlets is the third heuristic. Our experiments show that cul-
lable meshlets can help balance out larger meshlet collections. Figure 6.9 exemplifies
how meshlet collections slightly enlarged to increase cullablity can indeed result in
better performance. It does however not seem to affect performance as much as vertex
completeness or maximizing the primitive fill.

The Skull and Nobby meshes produce some surprising results for some of the meshlet
generation strategies. It is surprising that Kapoulkine’s algorithm does not perform best
on the Skull, as the data show more culling, and less meshlets. Perhaps the difference
is that our method builds meshlets along the z-axis of the skull as opposed to from the
middle and out, this could affect vertex loading, overdraw, and cache misses on the
GPU.

Nobby shows that some meshes will be exceptions to the rule. It will be possible to
find meshes where these heuristics and metrics break down. In fact, tuning one aspect
of meshlet generation affects all the other aspects. The metrics, and indeed most of
the factors we explore in this paper are highly correlated, and this can make it hard to
isolate different aspects as they affect each other. Two collections of meshlets might
differ in efficiency even if almost all meshlets are packed to capacity in both collections.
Because of this, it becomes even more desirable to have an algorithm that is simple to
implement. The greedy algorithm proves to be quite useful in practice as it achieves
good render times across the meshes while also being simple to implement.

Lastly we conducted a small exploratory experiment which compared different ways of
packing the meshlet descriptor data. Interestingly, we find that the monolithic descrip-
tor performs quite well. This is certainly interesting. The monolithic descriptor uses a
simpler buffer setup, and by using one descriptor per shader stage, it becomes possible
to add more meta data if desired.
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6.7 Conclusion

We find, quite simply, that the more compact the meshlet collections become the bet-
ter they perform. Meshlets have vertex and primitive limits, in this paper we used the
suggested 64 vertices and 126 triangles. Since each triangle requires 3 vertices, the
meshlets always hits the vertex limit before the triangle limit. In other words, it is ab-
solutely paramount that a meshlet collection achieves a high average vertex fill. In this
way, it becomes possible to also have a high average primitive fill. Because of this, we
recommend the following strategy for optimizing meshlet generation: make the mesh-
lets vertex complete first and then maximize the primitive fill. The combination of these
two will create meshlets with large vertex reuse and locality, while also minimizing the
total number of meshlets that are required to represent a mesh. Finally, we of course
recommend to strive for cullable meshlets, but not at the cost of a too big increase
in meshlet collection size. We found that performance rather quickly drops when the
meshlet collections grow in size.

We also explored other properties of both the mesh shading pipeline and the meshlet
collections. We found that high uniformity in the meshlet collections promotes even
workload across processors on the GPU which yields better render times. Different
meshlet descriptors do not have the biggest impact on render times, so working with
monolithic meshlets could prove to be a good choice for scientific visualization where
rendering is done on distributed systems. As an interesting topic for future work, de-
scriptors that require less data unpacking in the mesh shader could yield improved
render performance, and since dividing descriptors into two also did not affect perfor-
mance too much, it could be interesting to explore whether new useful meta data could
be added.

6.8 Retrospective

The results of Paper I made it quite clear that our bespoke Vulkan-based visualization
engine attained the upper hand when inspecting meshes up close by leveraging the
Mesh Shading Pipeline and its ability to cull meshlets before processing them. An
important feature for exploring the use of portals for interaction in VR.

Simply put, one portal in VR requires the visualization engine to render two new im-
ages, one for each eye. Meaning that for each portal that is added, the entire VE needs
to be rendered two more times. That would simply not be possible while maintaining
a high frame rate without the results of this paper. Without the results of this paper, we
would probably have abandoned the portal-based interaction prototype that is explored
more in the next chapter.



C H A P T E R 7
Portals: A Swiss Army Knife
for Scientific Visualization
The work presented in this chapter is based on the work made during the external stay
in the Dynamic Graphics Project laboratory at the University of Toronto. The work ties
into the second part of the thesis and lays the foundation for a way to better interact with
complex geometric datasets. During the external stay, a prototype of a portal-based
navigation tool was made. The tool was implemented in our bespoke engine, Jinsoku.
Because the prototype does not include all the desired functionality, part of this chapter
outlines that missing functionality. As well as argue how that would not only improve
the prototype but make portal-based interaction a welcome addition to the visualization
of scientific data in VR. We strongly believe that portal-based interaction can become
the standard interaction tool for scientific visualization in VR. We are also aware that
what we present in this chapter is our reasoning for why we believe that portals have
the potential to become the standard interaction tools rather than a complete solution
that is ready to be used. Deciding and refining the interface and input devices for
the desktop computer took more than 30 years of collaborative effort across different
industries (Perry and Voelcker, 1989). Similarly, so will the establishment of portals as
a standard interaction tool take time and require collaboration. We hope that our efforts
can mark the starting point for finding a standard way of interacting in VR, that will
help make VR more accessible.

7.1 Introduction

Scientific Visualization is a largely heterogeneous discipline, with specialized visu-
alization tools being tailor-made for each project to support specific data types and
interaction modalities (Kehrer and Helwig Hauser, 2013). This means that switching
from one visualization tool to another requires learning a new interaction modality.
This creates a barrier. Desktop visualization tools have lowered this barrier because
Digital Content Creation (DCC) and Computer-Aided Design (CAD) software, which
is used for making visual effects, construction planning, and video games, has driven
a default way of interacting with 3D data. VR-based scientific visualization, however,
is a newer field and does not enjoy the same standardized interaction interface. So for
VR-based visualization tools to become more widely adopted they need to break down
this barrier through a standardized interaction interface (El Beheiry et al., 2019).
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We propose the use of portals as a standardized tool for the immersive visualization of
scientific data. Portals hold the potential of becoming the only interface required for
all our needs, lowering the barrier of switching to new visualization tools. We believe
that VR applications can use portals similarly to how DCC and CAD software uses the
same navigation and interaction modalities across application, allowing users to rely
on previous experiences when trying out new software. Drawing further inspiration
from people’s understanding of portals, as well as their representation in media, can
help further lower the barrier. Permitting users who have previous experience with
portals to rely on that to faster and more efficiently adapt to VR applications. Just as
good gameplay and tight controls are dependent on a great implementation, so will the
successful use and adaptation of portals depend on it.

7.2 Portals

When we hear the word portal, we think of two connected doorway- or window-like
gateways. These gateways are not physically connected but instead create a discontinu-
ity in space-time that allows for things to pass discretely from one gateway to the other,
and back again. The movement between the two gateways happens instantaneously,
no matter the distance between them, and can be seen as a form of teleportation. It is
possible to see through the portals. One gateway will show what is visible at the other
gateway.

The window-like metaphor for portals is very reminiscent of the multi-view setup that
has become omnipresent in desktop-based 3D software. When working with 3D data
in a multi-view grid setup, the user interacts with the data through one window while
inspecting it through all of the windows. Inspecting the data through several windows
at the same time helps understand the shape and curvature of the data, ultimately guid-
ing the interaction and making it more precise. Portals are quite frankly the natural
extension of this setup, from desktop to VR. Instead of having a grid of windows, we
have portals, physical objects that exist in the VE, with the same affordances, but bet-
ter. Better because the ability to perform Maneuvering in VR is effortless, allowing the
user to make small viewpoint corrections by moving their head. What makes portals
better is that these small movements are reflected in the portals, changing the view of
the data with the head movement revealing different details. The analogy is easy to
understand because it follows so naturally. We find that existing literature fails to make
this observation, perhaps because it follows so naturally, but this is exactly why por-
tals hold the potential to become a unified interaction metaphor for VR-based scientific
visualization.
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7.3 Portal-Based Interaction with Scientific Data in VR

In Section 2.10 we went through the different VR-based visualization tools, and in
Section 2.9 we explored the different techniques that could be used for desktop-based
scientific visualization of geometric data. We also explored the use of portals in VR
in Section 2.5.
We now aim to combine the knowledge that we have gained from exploring these three
sections, to build a portal-based interaction metaphor for VR-based scientific visualiza-
tion of geometric data. One that can combine the required interaction and visualization
techniques from scientific visualization of geometric data with the definition of a portal
that we made in the previous section. To keep consistent with Section 2.9, we divide
this section into the same six categories.

Visual Data Fusion

Visual Data Fusion can clutter up the geometric data, making it difficult to comprehend
the underlying shape. Here the window analogy of portals can help users inspect a
version of the geometric data with the abstract information encoded into the texture,
next to a version of the geometric data with a surface shading that highlights its shape.

Relation and Comparison

Portals can be used interchangeably to look through one, and then another behind it,
either by moving the portals around or by changing the opacity of the portal in front,
making it transparent. One could also perform post-processing on the portal images to
facilitate the superimposition of objects onto each other, but we do not find it wise to
support this because it inherently changes how the portal works by essentially merging
different worlds and portals into one. It would be more appropriate to show portal
Slices as that will most likely cause less cognitive dissonance in the user. Inspired by
vertically slicing objects in a dataset and subsequently stitching the slices, one from
each object in the dataset, together for comparison (Alabi et al., 2012). In fact portal
Slices may enhance the experience of using Slices because Maneuvering means that the
visible view through the portal slices simply moves with the head.
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Navigation

Since the camera is attached to the head in VR, we cannot rely on the techniques for
changing the velocity of the camera. That and flying around in VR is very prone to
cause motion sickness, so instead, the primary mode of transportation in VR is telepor-
tation. As we can see from the literature on portals in VR, navigation is the primary use
for them, and here portals truly do shine. They allow for teleportation in a more im-
mersive manner, that does not require the user to reorient themselves after teleporting.
They allow for a more immersive way of navigating a vast VE, by supporting redirec-
tion to utilize the small physical space better. They can even be used to curate routes
through the data by being placed in advance, allowing the user to move from portal to
portal experiencing just the regions of interest. A WIM-like view can be achieved with
the use of portals by adding a transfer function to the portals that affect the scale of
the VE. Allowing the user to get an overview of the model or inspecting it up close.
Simply by moving through portals.

Focus+Context and Overview+Detail

Viewing geometric data through a multi-view grid is a common part of the workflow
when working with a desktop setup. As discussed earlier, portals are a very natural
extension of the multi-view grid to VR. This allows for a multi-view setup in VR that
can easily be used for Focus+Context, by having the view through the portal show the
data in a higher resolution, or with a more complex surface representation for a better
understanding of the geometry, while also having the context available. Essentially
using portals identical to how one would use a magnifying glass. Similarly, a multi-
view portal setup can be used to zoom in on details in one portal, while the other
shows the entire data from far away, allowing for a very intuitive way to facilitate
Overview+Detail.

Interactive Feature Specification

The user might be able to interact with the data too, either by changing it, annotating it,
or marking regions of interest. This type of interaction is necessary if the user wishes
to share their findings with other scientists or perform subsequent analysis on the data.
The view into the data that is visible through a portal can be used for this. Not only
that, but by presenting all of the portals that previous users have placed, subsequent
users can get a quick overview of all regions of interest, and even navigate to them. It
is further possible to extend this region of interest by associating an annotation point
on the data with a portal.
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Another way to handle Annotation could be by first placing a portal and then annotating
through it. Annotation through a portal, while looking at the data, is an interesting use
case that might be more cognitively demanding, depending on how this is implemented.
One way would be to rely on partial teleportation and allow the user to put one con-
troller through a portal while viewing the object. This might cause some confusion due
to the conflict between proprioception and visual stimuli of a hand or controller floating
detached in space. Another way to handle this could be through action at a distance,
where some item held by the user extends into the portal and gets teleported (Singh,
2021).

Data Abstraction and Aggregation

The portal itself can be the annotation. The visible vertices, the image from the por-
tal, or even the center point of the portal projected onto the geometric data can act as
the annotation. As the portal can be seen as a virtual camera, the surface shader or
other rendering parameters can be changed post-annotation to produce different im-
ages. These different ways of representing the same annotation point can be helpful
in Geometric Deep Learning (GDL) because they can be used as different input for-
mats. This can help explore the landscape of formats for inputs to a network, without
requiring annotators to create new annotation points. As GDL is being used for more
complex geometric datasets, we also need better annotations, because the neural net-
work cannot get rid of the variance of the same landmark across different objects and
annotators, already present in the dataset. Lifting the multi-view interface into VR
could be one way of reducing that variance, especially if combined with Interactive
Machine Learning.

If desired, the portal views can also be used to export images of the regions of interest
to show others an aggregation of the most interesting parts of the data. This would also
allow collaborators who do not have access to VR to see the discoveries that have been
made.

7.4 Case Study

We developed a prototype in Jinsoku that uses portals for navigation. It does this by
presenting the user with two portals at the center of the VE. The user can see the data
that has been loaded into the VE through the two portals. The Overview Portal has a
transfer function applied to it that scales the data down when the user steps through
it, allowing the user to get an overview of the data. The Details Portal has a transfer
function applied to it that scales the data up when the user steps through it, allowing



116 Portals: A Swiss Army Knife for Scientific Visualization

the user to inspect the details of the data up close. If the user goes back through either
Portal End the scale is reset. The user can move and rotate the Portal Ends simply by
moving them.

This facilitates a WIM-inspired workflow, where the user can walk through the Overview
Portal, to get an overview of the data, and then move the Portal End belonging to the
Details Portal to a region of interest before moving back through the Portal End they
came from and into the Details Portal to explore the region of interest. Figure 7.1
shows the Overview Portal and the Details Portal.

While developing the prototype we had to consider a couple of portal attributes. We
could have made the portals unidirectional, which has the major benefit that we only
need to implement the portal entrance. However, making the portals bidirectional
makes it easy to use them for navigation. To save on computational power, we dis-
allow portals from being visible through portals. This means that we do not have to
deal with the potential of wasting resources on rendering many recursive images for
scenarios where one portal entrance is visible through the other portal entrance.

We allow portals to represent the VE seen through them in a variety of different ways.
As such we can think of stepping through a portal as applying a transfer function that
can change the VE, or connect different VEs. The change will be visible through the
portal, so it will not be confusing to the user. In the scenario where two VEs are
connected, a portal may lead to a VE with a different dataset. This can for instance be a
different simulation of the same data or a different object within the same dataset. That
way the user can have several portals that show different datasets, which allows them
to step through a portal and inspect one of the datasets in more detail. It can also be
helpful to display the same data through a portal with a different surface representation,
or at a different scale.

We tested this prototype with one of the creators of the giga-voxel simulation-based
wing (Aage, Sigmund et al., 2020). It is immediately apparent that this type of nav-
igation has the advantage that the user does not need to constantly scale the mesh up
and down to navigate around it. The imprecision that comes with a direct interaction
interface, such as VR, can make it a chore to constantly scale the model up and down,
simply because it is hard to hit the same scale that you were previously inspecting the
mesh at. Being able to instead travel through portals that teleport the user to VEs that
are already scaled to the appropriate sizes greatly smooths out this part of the workflow.
It was also less fatiguing compared to the previous drag-and-grab interface. The navi-
gation felt very intuitive and straightforward. Going into the Overview Portal with the
miniature version of the wing, allowed the user to grab the Details Portals Portal End
and move it around to the desired position before moving back through the Overview
Portal and into the Details Portal with the scaled-up version of the wing. This type of
navigation quite easily bridged the gap between the large space of the VE and the small
physical space allowing the user to freely explore the wing, rather than constantly be
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Figure 7.1: The Overview Portal (left) and the Details Portal (right), that allow the user to enter
two different worlds. One where the Stanford Bunny is very large, and one where it is very small.

wary of moving beyond the physical space dedicated to the VR setup. All in all, it was
the best way the creators had ever inspected their wing (Aage, 2022).

7.5 Discussion

Several aspects of the portal-based interaction tool have yet to be implemented, and
this means that there are still several questions that need to be explored and addressed
in future work, these questions are discussed here, together with a re-envisioning of
how the experiment in Paper II could have been made with the use of portals.

Shape Morphology

When looking back on the experiment we carried out in Paper II, and the VR prototype
that was used for annotation, some interesting observations can be made. The prototype
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facilitated the placement of annotation points on the surface of seal skulls with an
annotation gun. The annotation gun had a red laser sight to help the user aim. The
annotation points were to be placed based on a description given to the participants.
For most participants, the annotation workflow in VR included rotating and moving
the skull around until the desired viewpoint was found. From there the skull was scaled
up to help place the annotation point. After placing the annotation point the participants
would inspect it to make sure that they were happy with the placement. Sometimes this
would lead to a refinement of the placed annotation point. Post-placement refinement
happened more often in VR, simply because it was easy for the participants to find
a new vantage point that showed that the annotation point was slightly off from the
local extrema. From this, we can see that placing annotation points at local extrema
often requires viewing the mesh from different vantage points. Portals facilitate this by
allowing the user to inspect the mesh from one vantage point and also see it through a
portal from another vantage point. Portals also allow the user to place the annotation
points independently of the viewing directions.

Using portals allows for other changes to the annotation process, such as facilitating
automatic scaling of the mesh. One of the participants did not scale the skull up at all,
which greatly affected his precision when working with the VR prototype. By having
two portals dedicated to a WIM-inspired workflow, working with the skull at different
scales would automatically have been integrated into his workflow. Another way to
automatically enforce scaling could be to have users first place a portal before putting
their hand through the portal to annotate the mesh. The placed portal would then show
a scaled-up version of the mesh.
Since portals are essentially different virtual cameras, one of the portals can also be
used to render the seal skull with a different shader that helps highlight curvature, or,
even better, a more detailed version of the mesh could be annotate-able and viewable
through a portal by combining portals with the mesh shading pipeline.

The Portal Room

Placing many portals begs the question of how to keep an overview of all the portals.
The overview of the placed portals could be given to the user through a Portal Room
that exists independently of what else is being visualized. The user can then walk
through a Portal End to reach the room, inspect all portals and pick one that leads
back to the data or even change the data that is being visualized from that room. A
room could also allow for a small "holographic" version of the data to be displayed,
which could include small representations of portals that have been placed. In fact, this
room could very well tie into the presentation of the visualization application, always
starting the user in familiar surroundings. From a scientific standpoint, there are some
interesting benefits from using a Portal Room. Users have a tendency to underestimate
distances in the personal space while immersed in a VE (Bruder, Steinicke, Wieland



7.5 Discussion 119

et al., 2012). This can to some extent be minimized by starting off the user in a room
that is a replica of the physical environment that the user is located in (Interrante, Ries
and Anderson, 2006). Another added benefit is that this way of starting off a VR-based
application also increases presence (Steinicke et al., 2009). It seems plausible that a
more correct estimation of distance, combined with being more present in the virtual
environment, allows for better analysis of spatial 3D data.

The Portal Compass

Another implementation that allows for a different experience, is to have an object at
hand which has all portal entrances projected onto it. Similar to a compass the user can
take the Portal Compass "out of the pocket" and inspect the portals. This object can
then be left hanging in the air at which point it can be used as a viewport that shows the
model from another angle. By utilizing a 3D object such as a sphere, the portals can
be projected onto it based on their location relative to the model, which would reside
in the middle of the sphere. This would also automatically disallow the user to view
all portals at once, which could potentially put a lot of stress on the frame rate. The
solution could be a combination, where the Portal Room is used to start the application
and to facilitate the WIM-based navigation, while the Portal Compass contains the
portals that are placed throughout the inspection of the data.

Partial Teleportation

When working through a grid of viewports in DCC and CAD applications, the user can
manipulate data through the different viewports without "going" through them. They
can choose to maximize one viewport, which could be considered "going through" that
viewport, but often the desire to do so depends on the task being carried out. This
task-dependent interaction poses an interesting question for our portal implementation.
Namely, should it be possible to only move the users’ hands through a portal to interact
with the data being visualized, while remaining in a position where the user can see all
portals? Or, should the user carry around some device that shows the portals and only
be allowed to fully teleport through portals? If the physical space is much smaller than
the space from the portal to the data that the user wishes to interact with, then it would
not work to simply teleport the hand. This should be explored more. Another approach
could be to provide the user with tools that let them interact at a distance, forgoing the
entire discussion, such as the annotation gun in our previous study. This could work
well through a portal without teleporting anything through it.
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Portal Placement

Another very important aspect is how the user interacts with the portals. More specifi-
cally how the user places and manipulates the portals. This is no trivial task in VR. Di-
rect interaction suffers from a lack of precision compared to indirect interaction where
numbers can be tweaked in boxes. Here ray casting gives a very strong visual indica-
tion of where a user is pointing, but portal placement along the ray needs to be enabled
through some input. Placement along the ray could be done in a stepped manner, to in-
crease precision, while the user observes a small preview of the final view through the
portal. Another approach could be to directly tie portals to annotation points, allowing
the user to move them along a line perpendicular to the surface that the annotation is
placed on, or along the surface of a sphere with the annotation point at the center.

7.6 Conclusion

Portals have the potential to be much more than just a single-purpose navigational tool
for moving about the VE. Portals are a great match for VR because they act as a direct
tangible interface that exists in the environment. The successful adaptation of portals
as a direct interaction and navigation interface for VR is however reliant on marrying
the expectations they elicit with mechanics that stay consistent across different appli-
cations. This is no easy task and will require a lot of research and exploration. Con-
tradictions or ambiguous functionality can result in a frustrated or confused user. If
however, the underlying functionality is well defined it becomes possible to use portals
for a wide variety of tasks in VR without having to change them in a context-aware
way, which could lead to portals becoming an omnipresent addition to our VR toolset.
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Conclusion
The work in this thesis has led to several scientific publications. The publications aim
to help guide the process of building VR-based visualization tools. They widen the
scope of applications that can use VR by enabling the visualization of more complex
geometric datasets. The results show that VR is a mature technology and that it, in
combination with modern hardware, should be considered more often for visualization.
Using VR can lead to discoveries within many scientific fields that rely on visualization.

Setting out to build a VR-based visualization tool for scientific data formed the base of
the research carried out in this project. It has resulted in a common thread throughout
the project. The obstacles we faced along the way became the questions we addressed
in our publications. Starting with a blank slate, but a specific use-case for annota-
tion, posed the simple yet important question of whether precision would be affected
by using VR. Building the prototype for annotation revealed that Unity3D had trou-
ble working with the full resolution of the seal skulls. Begging the question of what
a good starting point for a high-performance VR-based visualization platform would
be. A natural extension of this was to explore more hardware-oriented optimization
strategies for better performance in VR. Having built a high-performance VR-based
visualization platform allowed us to explore interaction more in detail through portals,
a very computationally heavy method.

In Paper II, we compared annotation for morphology in VR and on desktop. The com-
parison was between the state-of-the-art desktop-based solution and a VR-based pro-
totype. We conducted a pilot study with participants that covered the entire spectrum
of potential users well, with expert users well-versed in using desktop annotation and
VR applications. We found no loss in precision when going from desktop-based to
VR-based annotation. We also discovered performance issues when visualizing the
seal skulls in VR, forcing us to decimate them in the pilot study to ensure that the VR
experience did not cause motion sickness.

We were confronted with the need for high performance because we had to decimate
the seal skulls. This led to us exploring the different approaches to building VR appli-
cations: Paper I. It was evident that there were many different ways to accomplish this.
We addressed this by picking a cross-section of different approaches and comparing
them in terms of performance with a bespoke VR-based visualization platform named
Jinsoku. We found that Jinsoku held the most potential because it could leverage new
hardware features. It used the Mesh Shading Pipeline to cull large parts of the mesh
when viewing it up close, resulting in high performance.
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In Chapter 5, we continue the work on Jinsoku because we did not manage to take full
advantage of its potential in Paper I. We further optimize and implement the necessary
features to make Jinsoku performant enough to support further research. Part of this
process was published in Paper III, where we explored different clustering methods for
Meshlets. We found that compact clusters that minimized the cluster boundary resulted
in high performance while being simple to implement.

Having used a Manual Viewpoint Manipulation interface for both Paper I and Paper II,
we experienced the fatigue of navigating the VE by dragging and scaling. In Chapter 7,
we explored a different way of navigation. One that could be more beneficial for visual-
izing geometric data in VR, facilitating navigation and interaction. We built a prototype
that used portals, a Target-Based Travel interface. Using portals was made possible by
the time spent optimizing Jinsoku for performance because portals are computationally
heavy when used in VR. We further discussed how a portal-based interaction metaphor
covers all the types of interactions we require.

At the beginning of the project, we set out to answer three questions with our work.
We have investigated and explored different venues that help answer these questions.
Below we sum up our contributions:

• We have shown how different VR-based visualization platforms can be opti-
mized to yield better performance in VR.

• We implemented a bespoke Vulkan engine to tackle the perceived difficulty of
working with Vulkan.

• We showed that direct access to state-of-the-art GPU features can be worth the
time spend building bespoke solutions.

• We have shown that the need for decimating large geometric datasets in VR is
no longer required.

• We have shown that a user working with controllers in VR can be just as precise
as a user working with a mouse on a desktop.

• We have explored a portal-based interaction metaphor that works well for under-
standing geometric data.

• We have presented a novel meshlet clustering algorithm that is both fast and
simple to implement.

These contributions underpin the story that larger geometric datasets can comfortably
be inspected in VR. That in itself has helped increase the usability of VR. Scientific
fields with larger geometric datasets can now, based on our results, consider VR-based
visualization as a possible venue to explore.
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Abstract
The number of polygons in meshes acquired using 3D scanning or by computational methods for shape generation is rapidly
increasing. With this growing complexity of geometric models, new visualization modalities need to be explored for more
effortless and intuitive inspection and analysis. Virtual reality (VR) is a step in this direction but comes at the cost of a tighter
performance budget. In this paper, we explore different starting points for achieving high performance when visualizing large
meshes in virtual reality. We explore two rendering pipelines and mesh optimization algorithms and find that a mesh shading
pipeline shows great promise when compared to a normal vertex shading pipeline. We also test the VR performance of commonly
used visualization tools (ParaView and Unity) and ray tracing running on the graphics processing unit (GPU). Finally, we find
that mesh pre-processing is important to performance and that the specific type of pre-processing needed depends intricately
on the choice of rendering pipeline.

CCS Concepts
• Human-centered computing → Visualization toolkits;

1. Introduction

As of 2020, more than 2.5 quintillion (1018) bytes of data are gen-
erated daily [Bul21]. Thus, we have truly entered the Age of Big
Data, and we need good tools for analysis now more than ever.
In the field of visual analytics, interactive user interfaces assist
analytic reasoning [TC06] and Virtual Reality (VR) has been ex-
plored for better dealing with and analyzing big data [MGHK15].
The use of extended reality for visual analytics has led to the no-
tion of immersive analytics [CCC*15], where a head-mounted dis-
play (HMD) offers many exploration modes that can improve task
performance [WSN21]. However, this comes at the cost of signifi-
cant rendering performance requirements (80+ frames per second)
to avoid cybersickness issues [WSN21]. In many applications, a
modern graphics processing unit (GPU) will likely provide ade-
quate performance, but in areas like Earth science, where the main
concern is exploration of details in very large geospatial datasets,
rendering performance becomes highly important as it determines
whether or not the user can immersively inspect the details of inter-
est [ZWL*19].

Apart from use in visualization of geospatial data [KBB*06;
ZWL*19], it seems that VR is rarely employed for visualization
of large scale geometric data. We find this unfortunate since VR
simplifies data exploration and thereby arguably aids inductive rea-
soning. For visualization purposes, a crucial benefit of VR is that
the mapping from user movement to the virtual space is very in-
tuitive. Head motion maps directly to camera movement, and both
translation and rotation of an object can be achieved directly with
completely analogous hand gestures. Simply put, the user controls

both more degrees of freedom and does it in an more intuitive man-
ner than if interacting with a mouse and keyboard while looking
at a computer screen. Effectively, VR changes the role of the user
from passively inspecting images to actively investigating data.

Using VR is not without its challenges, however. In particular,
we are motivated by the concern that if frame rates drop or vary
significantly, it will negatively impact the motion-to-photon latency
(the time between a movement being registered by the HMD and
the corresponding frame being rendered [ZAVJ17]) and this carries
a real risk that users become cybersick [SNL20]. Clearly, this issue
puts a limit on the size of the datasets that we can visualize in VR
without a latency level that is too high.

In this regard, it is unfortunate that datasets grow rapidly in size
in many scientific fields. Topology optimization (albeit on a super-
computer) now allows for discretization of models into more than
1 billion voxels [AALS17]. In 3D scanning, object surfaces can be
scanned with a measurement sampling density (MSD) of 10,000
points per square millimeter [BSM11], and scanning a 39.3× 28
cm2 woodcut with a MSD at just 2500 points per square millimeter
resulted in 277 GB of data [BS14]. Smooth surfaces can be sim-
plified with little perceptual impact, but we often have unsmooth
data and a need to inspect the details. The mentioned woodcut is
an example of such data where lower MSD would make analysis
hard [BSM11]. Some examples of meshes with details at varying
scales are shown in Figure 1. The seal skull (1d–1f) is an example
of a 3D scanned surface that includes per vertex colour informa-
tion. A reduction in vertices therefore not only reduces the detail of
the mesh but also means the loss of colour information. Moreover,
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Figure 1: The rocking horse (a) consists of 2.2 million triangles. We reduce it to 10% of the original number of triangles (b) and further
to 1% (c). While this fairly large reduction has almost no effect on the silhouette, the fine scale geometric details are clearly impacted by
the reduction to 10% and almost completely erased at 1%. Below, a 3D scan of a seal skull is shown with vertex colours (d). Looking at a
close-up (e) and reducing to 1% (f), it is clear that the overall shape is completely unscathed, but the vertex colours are significantly blurred.

many types of data might have a complexity that makes it infeasi-
ble to perform significant reductions to the level of detail in the first
place (1a–1c). If we want the ability to interactively visualize the
small details of large meshes in VR, we have to ensure that our vi-
sualization tools deliver high rendering performance, which means
high and stable frame rates.

Our goal is to guide the choice of rendering technologies for
interactive VR-based visualization of highly detailed meshes. We
do this by comparing three visualization tools using a common
benchmark. The compared tools are: Jinsoku, our own VR visu-
alization engine based on C++/Vulkan; ParaView, which supports
VR and is one of the most popular visualization tools; and Unity,
which is a game engine and a popular tool for VR-based visualiza-
tion [DDC*14; SLC*19; CCB*19]. Our aim is not simply to find
out which of these three solutions is fastest but also to identify the
choices of rendering pipeline and geometry-preserving mesh opti-
mization that seem to have a big impact on performance. We dis-
cuss the underlying technologies in Section 2, the tested platforms
in Section 3, and we present and analyze our results in Section 4.

We use three different large and detailed 3D models for our in-
vestigation. The three models are examples from natural heritage
preservation (Seal Skull), topology optimization (Wing), and ad-
ditive manufacturing (Nobby). Table 1 provides some mesh com-
plexity info for the three models and example visualizations are in
Figure 2 (rightmost column). The Seal Skull has been 3D scanned
into a point cloud and digitally reconstructed as a triangle mesh.
The topology optimized airplane wing [AALS17; ASLA20] is
the largest model in our comparisons. The third mesh was cre-

Table 1: Test Meshes

Seal Skull Wing Nobby
no. triangles 14,504,882 38,629,758 32,905,214
no. vertices 21,757,335 92,010,363 16,970,666
model size 1.154GB 3.819 GB 1.723GB

ated with PrusaSlicer (https://www.prusa3d.com/) using a model
called Nobby (https://www.prusaprinters.org/prints/35338-nobby-
octopus-sculpt). The three models are interesting case studies as
they all have several orders of magnitude between the extent of the
model and the size of the details that would be of interest in a VR-
based inspection of the model.

In addition to the main study, we also investigated the use of
hardware accelerated ray-tracing for the purpose of visualization
of large scale geometry. This study and its results are presented in
Section 5. While all the results are discussed in Section 6.

2. The Graphics Pipeline

Traditionally, the graphics pipeline was easy to describe as a ma-
chine for processing and rasterizing triangles. Much of the perfor-
mance of the graphics pipeline was derived from the fact that it was
both data and task parallel, allowing processing of multiple vertices
in parallel with multiple fragments [Hai06]. During this period, it
was important to optimize meshes for the so-called post transform
and lighting (post-T&L) cache which is a global cache that stores
the transformed vertices, i.e. the output from the vertex shader
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[SNB07]. On average a vertex is shared by six triangles. Thus, if
a triangle needs a vertex that has already been transformed, it can
simply be picked from the post-T&L cache, assuming the mesh is
rendered with indexed primitives. Since the size of the cache might
not be known - for instance if the mesh is to be used on a variety of
graphics processors - meshes were often simply optimized to pro-
mote locality [For06]. If a vertex that is used by a given triangle is
also used soon after, it is likely to be in the cache, and the result of
vertex shading can be reused.

Modern graphics hardware has a different not-so-pipelined de-
sign: vertices and pixels are processed by the same streaming mul-
tiprocessors (SMs) imbued with local storage. If a modern GPU
were to have a shared post-T&L cache, it would have to be outside
the local storages of the SMs. In fact, it seems that modern GPUs
do not have a post-T&L cache [KKI*18]. Instead each SM pro-
cesses a small patch of the mesh at a time. Importantly, this means
that mesh optimization which promotes locality is still highly ben-
eficial but now for a different reason. If the triangles that share the
same vertex are close in the stream of triangles, they are also likely
to be in a patch processed at the same time on a given SM.

With the Turing architecture, NVIDIA also introduced a mech-
anism which directly exposes the way that meshes are processed
by the GPU, namely mesh shaders [Kub17; Kub20]. Mesh shaders
bring a programming model similar to that of compute shaders to
the graphics pipeline: a workgroup of individual threads on the
GPU are tasked with collaboratively producing both transformed
vertices and triangle connectivity. To exploit this feature, one needs
to break the mesh into smaller patches called meshlets. Essentially,
this is automatic if the traditional vertex shader pipeline is used, but
taking charge of meshlet generation affords additional freedom as
described below.

The mesh shader based pipeline is highly flexible. While a mesh-
let is usually associated with a group of triangles, it can be seen
simply as a descriptor that can carry any kind of information. Fur-
thermore, the inputs and outputs between the shader stages can be
decided by the programmer. A so-called task shader orchestrates
the work and can generate workgroups that process meshlets, or
decide that a meshlet is not visible and that resources should not
be spent on its processing. This is very important since it allows
the mesh shader to cull meshlets which are either outside the view
frustum or backfacing. A meshlet is considered backfacing if all
its faces are backfacing. This is easy to test if we store a cone that
contains all face normals for each meshlet.

The Turing architecture also saw the introduction of the so-called
RT cores which allow for much faster hardware accelerated ray
tracing on the GPU than previously [Bur20]. It has also recently be-
come possible to mix ray tracing and rasterization using the Vulkan
API [KHBW20]. While ray tracing makes it far easier to imple-
ment shadows, non-planar reflections, ambient occlusion and other
global effects, it is not likely to lead to faster rendering if only local
illumination (e.g. Phong shading) is required.

3. VR Visualization Tools

ParaView is a tool designed for visualization and analysis of ex-
tremely large datasets [AGL05]. Paraview is built on the Visualiza-

tion Toolkit (VTK), and it includes easy-to-use VR-based visual-
ization [MDJA18], making it a good choice for our purposes.

Unity is a game engine that includes VR support. In previous
work, it has been referred to as “a standard platform for develop-
ing immersive environments” [CCB*19]. However, in our initial
testing, we experienced surprisingly poor performance with Unity
when rendering our large meshes: average render times per frame
ranging from 20 to 140 milliseconds. To remedy this, we optimized
the application by switching to Unity’s Universal Render Pipeline
and by allowing Unity to optimize the mesh without decimating it.
This means that Unity is free to reorder the index buffer to increase
performance, but it is not allowed to change the number of ver-
tices. These optimizations led to significantly better render times.
However, Unity does not implement the new mesh shading pipeline
described above [Uni20].

We compare these two solutions to our own (bespoke) VR
visualization application implemented in C++ using the Vulkan
API [SK17]. We refer to our own application as Jinsoku. Since
Jinsoku is white box, it is easy to analyze and well-suited as a
benchmark when comparing the different tools. Jinsoku incorpo-
rates two pipelines: one based on vertex shading and one based on
mesh shading. This enables us to better analyze the practical im-
portance of mesh shaders.

As an additional experiment, we implemented a VR ray tracer.
While we found that GPU ray tracing scales well with an increas-
ing polygon count, the ray tracer was a factor of two slower than
Jinsoku and Unity. We therefore focus on rasterization techniques.
Ray Tracing is however becoming more viable and will continue to
do so as the recently introduced hardware acceleration matures.

3.1. Auxiliary Tools

We use SteamVR to interface with the headset for all the applica-
tions. SteamVR is a runtime API that interfaces with the backend of
OpenVR. As such, SteamVR enables developers to interface with
a broad range of different HMDs. SteamVR has several options
for analyzing the performance of an application and is capable of
recording frame data and saving it to a file. We use these data for
our comparisons (except in the case of ray tracing, see Section 5).
This means that applications are subject to the same asynchronous
time warping implementation.

The three test meshes have an increasing number of triangles and
vertices. The Seal Skull mesh and the Nobby mesh were optimized
using Tootle (https://github.com/GPUOpen-Archive/amd_tootle).
This program greedily reorganizes the mesh so that triangles us-
ing a given vertex are as close as possible in the list of triangles.
Tootle was created for the vertex shader pipeline where locality is
useful for vertex caching [NBS06], but it also makes the meshlets
more compact. Unfortunately, this software could not handle the
topology optimized Wing mesh, presumably because of its size.
For the skull, the optimized version has not only increased locality
but also reduced the overall number of meshlets needed to repre-
sent the mesh. For Nobby, the optimization has not changed the
number of cullable meshlets nor has it changed the total number of
meshlets. The optimized version is however still used since it might
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Table 2: Meshlets

meshlets Skull Skull opt Wing Nobby Nobby opt
cullable 170,400 156,930 274,589 16 16

total 229,043 163,264 1,699,388 307,774 307,774

have changed the vertex order. Table 2 shows the total and cullable
number of meshlets for each mesh.

The ability to process only the parts of the mesh that can
be seen by the camera is often very powerful when dealing
with large amounts of data. We used the meshlet builder from
the official NVIDIA github (https://github.com/nvpro-samples/-
gl_vk_meshlet_cadscene) when implementing Jinsoku. Because
the mesh optimization in Unity is a black box, we also implement
a vertex shading pipeline in Jinsoku to directly compare the tradi-
tional vertex shading pipeline with the mesh shading pipeline.

4. Experiment Setup and Results

For our experiments, we set up the three visualization tools as fol-
lows.

• In Jinsoku, we used Phong shading with a fixed light position.
Texture mapping was not employed. Hence, each vertex carries
only one attribute in addition to its position, namely the surface
normal.
• In Unity (UnityURP in Figure 1), we also used Phong shading

with a fixed light position. The Phong shading is implemented
with a so-called unlit shader, meaning that no shadows are cast
from the light source. Texture mapping was not employed. The
out-of-the-box version of Unity (UnityNoop in Figure 1) uses a
deferred rendering pipeline and includes shadows.
• ParaView uses flat shading and has no options for changing this

in VR.

When measuring the render time with SteamVR we get the time
between each update to the HMD. Each update requires that two
frames are rendered and presented to the HMD. By using these
SteamVR render times, we obtain times that are comparable to
those that you would get during an actual inspection of the meshes.

Performance plots are in Figure 2. The bar charts are all plots of
average render times for each application. The whiskers show the
variance of the render time for each frame. For all plots, the vertical
axis is time in milliseconds. Each mesh has been visualized under
two different conditions, on two different hardware setups. In the
first condition, the entire mesh is visible, and in the second, the
mesh is inspected up close (this is exemplified in Figure 3).

The same transformations are applied to the meshes in both
Unity and Jinsoku. Since ParaView does not allow for the same pre-
cision in placing meshes the objects are inspects in approximately
the same positions. The first hardware platform uses an Oculus
Quest which has a pixel resolution of 1440×1600 for each eye and
runs with a refresh rate of 72 Hz. The Quest is tethered to a 2019
Razer Blade 15 with an NVIDIA GeForce RTX 2080 with Max-Q
Design and 8GB GDDR6 VRAM, a 9th Gen Intel Core i7-9750H
6-Core, 16GB of RAM and a 512GB SSD (NVMe). The second
hardware platform uses a Valve Index which has a pixel resolution

of 1440×1600 for each eye and can run with a refresh rate of up to
144 Hz. The Index is connected to a desktop that has an Intel Core
i9-9900k, 64GB of DDR4-2666 RAM, and one NVIDIA GeForce
RTX 2080 Ti Turbo OC with 11GB of GDDR6 RAM.

When converting the average render times to frames per second
(FPS) and comparing to a target of 80+ FPS [WSN21], we observe
that this is only achieved consistently for the Seal Skull. For the
Seal Skull we get low variance and average render times of 3.7–
5.0 ms (∼200–270 FPS) for UnityURP and 2.7–4.5 ms (∼222–
370 FPS) for Jinsoku with mesh shading and the Tootle-optimized
meshes. For the Wing, we see a different picture with UnityURP
timings in the range of 10.2–16.4 ms (∼61–98 FPS) on both plat-
forms. Here the mesh shading pipeline does really well when in-
specting the wing up close getting between 4.9–8.5 ms (∼118–
204 FPS). The variance on the Quest platform is however quite
high. For Nobby, we get good results for UnityURP and ParaView.
However, this is only on the Index platform with average render-
ing times around 8.1–10.2 ms (∼98–123 FPS) while inspecting
the mesh from afar. All other tests show average rendering times
from 16–223.9 ms (∼4.5–62.5 FPS) while exhibiting large vari-
ance across the board. Rendering performance is thus still a ma-
jor concern when it comes to visualization of some types of large
meshes. We suggest future development of better optimization of
meshes for the mesh shading pipeline to avoid discomfort in VR
visualization of such meshes.

4.1. Vertex Shading vs Mesh Shading

We can compare the vertex and mesh shading pipeline by inspect-
ing the blue and red bars in Figures 2a, 2b, 2d, 2e, 2g, 2h. When
we are inspecting the mesh up close the mesh shading pipeline per-
forms better in 5 out of 6 test cases. When inspecting the mesh from
afar the mesh shading pipeline performs better in 3 out 6 cases. We
see that the mesh shading pipeline exhibits larger variance in ren-
der time for the wing and Nobby but not the skull. For Nobby the
normal vertex shading pipeline performs better on the Index but
worse on the Quest. This can be seen in Figure 2g and 2h. Figure 4
shows the Nobby mesh up close with a visualization of the mesh-
lets. This gives some insight into why the mesh shading pipeline
exhibit these high render times. The mesh is comprised of elon-
gated cylinders, and since the meshlets are not generated so as to
combine faces with similar normals, it is likely that no meshlets can
ever be culled because they all contain faces that are visible from
almost any direction. On the other hand, the mesh shading pipeline
is extremely efficient on the largest data set. Figure 2e and 2d show
that the quest and index mesh shader pipeline produces the smallest
average render times across headsets when inspecting the mesh up
close.

4.2. Index Buffer order and Mesh shaders

Allowing Unity to optimize the mesh is in part what resulted in
the performance that can be seen in Figure 2. This motivated us to
try and see if the mesh shading pipeline would also benefit from
similar treatment. It is clear that meshlets also benefit from local-
ity optimizing the index buffer, not only does it produce more cul-
lable meshlets but it also decrease the total number of meshlets and
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(a) Render times for Seal Skull on Quest. (b) Render times for Seal Skull on Index. (c) Seal Skull visualized in Jinsoku.

(d) Render times for Wing on Quest. (e) Render times for Wing on Index. (f) Wing visualized in Unity_noop.

(g) Render times for Nobby on Quest. (h) Render times for Nobby on Index. (i) Nobby visualized in ParaView.

Figure 2: Test results as bar plots (a,b,d,e,g,h). Each bar plot has render time in milliseconds on the vertical axis and shows two test cases
for one mesh on one platform. The crosshatched bar is for close-up inspection while the flat-coloured bar is for far-away inspection. The
whiskers show the variance of the render time. In the right column, we visualize the Seal Skull in Jinsoku (c), the Wing in Unity (f), and
Nobby in ParaView (i). Explanation of abbreviations: Jinsoku - Vulkan-based vertex shading pipeline; UnityNoop - none-optimized Unity;
UnityURP - Unity when using its Universal Render Pipeline and its mesh optimization; JinMesh - Jinsoku when using its mesh shading
pipeline; JinOpt - Jinsoku with mesh shading and mesh optimized by Tootle; ParaView - the VR support of ParaView.

the variance in the render time. This indicates that less vertices are
shared across meshlets. Figures 2a and 2b also reflect this by show-
ing improvements when comparing the mesh shading pipeline with
(purple bars) and without (red bars) the optimized mesh. The mesh
shading pipeline even edges out Unity when inspecting the skull up
close. Nobby on the other hand exhibits a case where the optimiza-
tion algorithm fails to optimize the mesh.

5. Ray tracing

Hardware rasterization of triangles is by far the more common ap-
proach when we are aiming at rendering of objects at the high frame
rates required by VR. Rasterization is the process of drawing a tri-
angle by first projecting it into the image plane and then shading
the pixels covered by the triangle. Instead of projecting triangles to
an image plane, we could trace a ray from a position in each pixel
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Inspection from far away Inspection up close
Figure 3: The two test conditions.

Figure 4: Nobby meshlets.

into the scene and figure out what triangle the ray hit (if any). This
is the ray tracing paradigm.

Ray tracing eases rendering of shadows in general and rendering
of multiple reflections and refractions in specular surfaces. Since
we can place our triangle mesh in a spatial data structure, we can
find the closest triangle that a ray might intersect in logarithmic
time. If the number of triangles is very large, this is a great advan-
tage. However, it becomes more expensive if the digital object is
interactively modified, as the spatial data structure must then be up-
dated. This can be done in parallel on the GPU, but still incurs some
overhead. Conventional ray tracing also requires that we consider
all pixels, which means that performance depends more directly on
the screen resolution. In rasterization, we need only consider the
pixels where fragments end up, but then in return we have to pro-
cess each triangle.

Use of ray tracing for VR became tractable on consumer plat-
forms only with recently introduced hardware support. To employ
this hardware support, we used NVIDIA OptiX [PBD*10; WP19]:
a CUDA-based API that requires CUDA to Vulkan/OpenGL in-
teroperability to efficiently interact with OpenVR. The ray tracer
renders directly to textures that OpenVR can access. This unfortu-
nately has the effect that the HMD cannot directly measure render
times (as it can always use the texture whether it was updated or
not). For this reason, we did not include ray tracing in Figure 2.
Instead, we discuss the prospects of ray tracing for VR.

We designed our ray tracer to provide a frame for each verti-
cal synchronization (vsync) of the HMD. When measuring render
times, everything was kept unchanged except that we did not con-
nect an HMD to avoid this vsync lock. As in our results for raster-
ization, we tested our VR ray tracer using a GPU on a stationary
computer (Figure 5) and on two GPUs on laptop computers (Fig-
ure 6) with models of different complexity (numbers of triangles).

4: 300,603, t: 9.43 ms 4: 15,740,813, t: 9.80 ms
Figure 5: VR ray tracing with one sample ambient occlusion (rea-
son for the noise) rendered using an NVIDIA RTX 2080 graphics
card. Here,4 is number of triangles and t is render time.

Figure 6: Performance of our GPU VR ray tracer when rendering
the Blender monkey [Wik21] with increasing number of subdivi-
sions. We compare with the two shading pipelines in Jinsoku (left)
and with a GPU architecture from before RTX (right). The hori-
zontal axes are logarithmic, meaning that the development in per-
formance should be a straight line for logarithmic time complexity.
This is not quite obtained, but RTX is getting there.

We tested performance for GPUs with different hardware archi-
tectures. The ones called RTX have special RT cores dedicated to
hardware acceleration of ray tracing [Bur20].

The RTX graphics card almost achieves the logarithmic time
complexity with increasing number of triangles (Figure 6). The dif-
ference in performance as a function of the number of triangles is
very small across several orders of magnitude (Figures 5 and 6).
Even so, GPU ray tracing is still significantly slower than Jinsoku
when it comes to the visualization with local illumination that we
are testing in this work (Figure 6). RTX cards for stationary com-
puters are fast enough to support the frame rates needed for ray
traced virtual reality (Figure 5). We could even afford a so-called
ambient occlusion ray, which is a shadow ray traced in a random
direction. Ambient occlusion is a visual effect that is expensive to
compute in rasterization. In ray tracing, we can get a noisy ver-
sion of it at low cost. Since the RTX architecture has special ten-
sor cores dedicated to hardware acceleration of deep learning tech-
niques [Bur20], the future will see very efficient denoising that can
also exploit temporal correspondences between frames [HMS*20].
GPU accelerated denoising is however still too expensive for the
time budget allowed by VR.

Interestingly, ray tracing was recently made available as a core
extension in Vulkan [KHBW20] (released in December 2020). This
provides the first open, cross-vendor, cross-platform standard for
hardware accelerated ray tracing. In addition, Vulkan ray tracing
enables use of a hybrid between rasterization and ray tracing. Un-
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real Engine 4 integrated the ray tracing functionality in DirectX
12 (which is similar to the one in Vulkan) in combination with
learning-based denoising into their rasterization-based framework
to enable real-time rendering of cinematic quality [LLCK19]. This
is an indicator that a hybrid of rasterization and ray tracing will
likely become an option in the VR graphics engines of the future.
Since Jinsoku is based on the Vulkan API, it directly supports ex-
tension to include ray traced shading effects that can potentially
enhance the inspection of geometric details.

6. Discussion and Conclusion

Unsurprisingly, our tests show that performance is very dependent
on mesh connectivity. This lends a great advantage to Unity in
comparison to Jinsoku when rendering an unoptimized mesh, since
Unity’s proprietary optimization step seems to greatly improve per-
formance. This is particularly true for the Nobby mesh.

Thus, while ParaView is the easiest way to get started on in-
spection of meshes in VR, ParaView only supports flat shading and
lacks the straight forward programmatic extensibility of Unity. Per-
haps the biggest limitation of Unity is the lack of support (so far) for
the latest features of graphics hardware. The mesh shading pipeline
has two vast advantages, namely frustum and backface culling on
the granularity of meshlets. Having the ability to only process the
parts of the mesh that can be seen by the camera can be really pow-
erful when dealing with large amounts of data and when zooming
in on models. Figure 2e shows this clearly. In fact, this indicates
that a mesh shading pipeline could very well be the best choice for
visualization of large and complex meshes in VR. For the skull, our
tests show that a largely unoptimized Jinsoku is capable of perform-
ing on par with an optimized version of Unity, and that optimizing
the mesh further increases performance while decreasing variance
in the render time.

Unfortunately, reaping the benefits of the mesh shading pipeline
is largely contingent on having cullable meshlets, and our tools for
mesh optimization (e.g. Tootle) are generally still aimed at the ver-
tex shading pipeline. This means that the methods for optimization
largely aim to structure the output such that it is suitable for a global
cache as opposed to a parallel architecture where vertex locality is
made explicit. Moreover, we face the problem that meshes are very
different. Given a naïve optimization, the Nobby mesh would con-
tain no meshlets cullable by backface culling for instance. Thus,
going forward, a key to good VR performance on arbitrary geome-
try seems to be mesh pre-processing algorithms which analyze and
adapt to the particular inputs.

In conclusion, our paper compared a minimal Vulkan render en-
gine (Jinsoku) with Unity and ParaView. Jinsoku used little opti-
mization but managed to keep up with an optimized Unity appli-
cation in some of the more interesting cases. Moreover, the mesh
shading pipeline is very flexible which can be utilized to gain per-
formance in some of the situations explored in this paper. We ad-
mit that this comes at the cost of some additional development time
compared to Unity, but the mesh shading pipeline is in itself a com-
pelling argument for building an engine when performance is an
overriding concern. More research is needed to quantify the poten-
tial performance gains from using mesh optimization algorithms
that are specifically tailored to the mesh shading pipeline.

Combining a well optimized engine with a mesh optimization
algorithm for a mesh shading pipeline holds a lot of promise for a
VR-based visualization platform. In fact, we have seen in our study
that it is possible to visualize a mesh containing more than 14.5
million triangles while still achieving render times of 222-370 FPS.
This is significantly more than the required 80+ FPS. Not only this,
but when investigating a mesh containing more than 38.6 million
triangles, we are just around the 80 FPS, and while investigating
details, the FPS climbs as high as 204 when using a mesh shading
pipeline. With numbers like these, it is safe to say that VR should
more often be considered a viable modality for visualization, even
of large datasets.

In this paper, our focus has been on rendering efficiency since ef-
ficiency limits what data sets we can effectively investigate in VR.
As discussed above, we are able to visualize geometric data sets on
the order of tens of millions of triangles with a frame rate sufficient
for VR if we make the right technical choices. With this in place,
we plan to turn our investigations to more application specific prob-
lems pertaining to the visualization of large geometric data sets.
Tools for explorative analysis of geometric data would appear to
benefit from a greater use of virtual reality platforms, but, in many
cases, these types of data are either hard to simplify effectively,
or important information would be lost by doing so. Thus, going
forward, we hope this investigation, and specifically the Jinsoku
engine, will be helpful in facilitating the use of VR as a tool for
visualization and exploration of these types of geometric data.
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ABSTRACT
To study the shape of objects using geometric morphometrics, landmarks are
oftentimes collected digitally from a 3D scanned model. The expert may annotate
landmarks using software that visualizes the 3D model on a flat screen, and
interaction is achieved with a mouse and a keyboard. However, landmark annotation
of a 3D model on a 2D display is a tedious process and potentially introduces error
due to the perception and interaction limitations of the flat interface. In addition,
digital landmark placement can be more time-consuming than direct annotation on
the physical object using a tactile digitizer arm. Since virtual reality (VR) is designed
to more closely resemble the real world, we present a VR prototype for annotating
landmarks on 3D models. We study the impact of VR on annotation performance
by comparing our VR prototype to Stratovan Checkpoint, a commonly used
commercial desktop software. We use an experimental setup, where four operators
placed six landmarks on six grey seal (Halichoerus grypus) skulls in six trials for both
systems. This enables us to investigate multiple sources of measurement error.
We analyse both for the configuration and for single landmarks. Our analysis shows
that annotation in VR is a promising alternative to desktop annotation. We find that
annotation precision is comparable between the two systems, with VR being
significantly more precise for one of the landmarks. We do not find evidence that
annotation in VR is faster than on the desktop, but it is accurate.

Subjects Zoology, Data Science
Keywords Virtual morphology, Virtual reality, Stratovan checkpoint, 3D annotation, Geometric
morphometrics, Measurement error, Halichoerus grypus

INTRODUCTION
Geometric morphometrics is a powerful approach to study shape and is widely used to
capture and quantify shape variation of biological objects such as skulls (Rohlf & Marcus,
1993; Bookstein, 1998; Adams, Rohlf & Slice, 2004; Slice, 2005; Mitteroecker & Gunz,
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2009). In geometric morphometrics, shapes can be described by locating points of
correspondences in anatomically meaningful landmark positions that are easily
identifiable (Bookstein, 1991). An acknowledged and widely used practice is to obtain
landmarks directly from a physical specimen through a tactile 3D digitizer arm (Sholts
et al., 2011; Waltenberger, Rebay-Salisbury & Mitteroecker, 2021). However, collecting
landmarks digitally from a 3D scanned model of the physical specimen is also a viable and
widely accepted alternative that has found increased use in recent times (Sholts et al., 2011;
Robinson & Terhune, 2017; Bastir et al., 2019; Messer et al., 2021; Waltenberger,
Rebay-Salisbury & Mitteroecker, 2021). Annotation of a digital 3D model is typically done
using a software tool based on mouse, keyboard, and 2D display (Bastir et al., 2019), and
hence placing landmarks can be a tedious task since the perception of shape in a 2D
environment is limited as compared with the real world. When a landmark is placed, e.g., a
landmark on a 3D tip, small rotations are needed to verify the position, otherwise
there might be a significant distance between the actual and the desired landmark
coordinates. Annotation of 3D landmarks on a 2D display is more time-consuming than
when using a digitizer arm (Messer et al., 2021). On the other hand, having landmarks
placed on a 3D scan of a model carries a number of advantages in terms of data sharing and
repositioning of landmarks compared to stand-alone landmarks from a 3D digitizer
(Waltenberger, Rebay-Salisbury & Mitteroecker, 2021). We argue that virtual reality (VR)
provides a closer-to-real-world alternative to desktop annotation that retains the multiple
benefits of having the landmarks on a 3D scanned model, including the ability to easily
share the digital 3D model, examine it from all angles and accurately place landmarks.
The user interaction afforded by the VR head-mounted display allows navigators to move
the virtual camera while the controllers can move and rotate the object and serve as an
annotation tool as well. All in all, the head-mounted display and controllers exhibit six
degrees of freedom (DOF), which map directly to the six DOF needed to intuitively
navigate in a 3D environment. This should significantly ease the annotation process
and hence make 3D models more useful in biological studies that often require large
sample sizes to obtain robust statistics. To investigate the use of VR for digitally annotating
landmarks on animal 3D models, we present a prototype VR annotation system and
study the impact of VR on annotation performance as compared with a traditional system
using 2D display and user interaction by mouse and keyboard.

When comparing a desktop interface to a VR interface, some aspects of VR should
be considered. Both latency and tracking noise is higher in VR than with a standard
computer mouse. This can degrade performance and precision (Teather et al., 2009).
Furthermore, most VR controllers are held in a power grip (clutching the fingers around
the object, thereby using the strength of the wrist), as opposed to holding a mouse in a
precision grip (holding an object with the fingertips, such as when using a pen, thereby
enabling the finer motor skills of the fingers). This makes it more difficult to be precise
when annotating objects using most VR controllers (Pham& Stuerzlinger, 2019). Using the
mouse on the other hand allows for more controlled and more precise movements, all
while allowing the user to let go of the mouse without loosing the position on the 3D
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model. While the mouse only has three DOF that need to be mapped to the six DOF, it still
allows for direct manipulation of either the object or the camera.

The benefits of digital 3D representation of biological specimens (such as skulls) was
discovered more than two decades ago (Recheis et al., 1999). This developed into the more
inclusive field of digital or virtual morphology (Weber, 2015), and the workflows in a
virtual morphology lab is now a topic of considerable interest (Bastir et al., 2019). Bastir
et al. (2019) discuss the various databases and the key software tools available for geometric
morphometrics. One of the discussed software tools is Landmark editor (Wiley et al.,
2005), which is the predecessor of Stratovan Checkpoint. It seems that none of the software
tools in this area employ virtual reality.

VR allows an operator to virtually annotate landmarks in 3D models in a way that
resembles real-world annotation of physical specimens (Bowman, McMahan & Ragan,
2012; Mendes et al., 2019). The directness of this interaction produces a short distance
between thought and physical action, making for a simple and straightforward interaction
modality. More direct interaction demands a lower cognitive load (Hutchins, Hollan &
Norman, 1985). More cognitive effort can then be invested in understanding and
interacting with the data that are presented. Jang et al. (2017) showed that direct
manipulation in VR provides a better understanding, and that it benefited students with
low spatial ability the most. Bouaoud et al. (2020) found that students gain a better
understanding of craniofacial fractures by inspecting 3D models based on CT scans in VR.

In a recent study, Cai et al. (2020) found that using VR to teach about deformities in
craniovertebral junctions would improve the ability of the students when afterwards
placing landmarks in radiographs of craniovertebral junctions with deformities. This was
an improvement as compared with students receiving teaching with physical models.
We consider this an indicator that perhaps the act of placing landmarks in digital
morphology could be improved too if performed in VR. We follow up on this indication
and compare precision and accuracy in placing landmarks on virtual 3D representations of
skulls when using our VR system and when using the traditional 2D display and
mouse interface.

The possibility of haptic feedback is an important aspect of VR input devices. Haptic
pertains to the sense of touch, and we can broadly distinguish between two types of haptic
feedback. Purely tactile feedback simply means that nerves in your skin are stimulated
when you touch something. Standard VR controllers support this through the expedient of
vibration, and this is often called vibrotactile feedback. The word kinesthetic is used about
the sense of how limbs of a person’s body are positioned in space. Thus, a device which
provides force feedback, thereby preventing your hand from going through a virtual
surface, is often described as kinesthetic.

Within the area of placing medical landmarks, Li et al. (2021) performed a comparison
of the traditional 2D display and mouse interface with two variants of the VR interface,
one using standard VR controllers held in a power grip, and one using kinesthetic
controllers held in a precision grip. Note that this study differs from ours in another
important respect: They show markers which the participants are supposed to target when
annotating, whereas we consider the task of deciding where to place the point to be integral

Messer et al. (2022), PeerJ, DOI 10.7717/peerj.12869 3/23

136
Using virtual reality for anatomical landmark annotation in geometric

morphometrics



to the annotation task (i.e. there is no ground truth). The improvement in marking
accuracy was found to be statistically significant when the kinesthetic input device was
employed. The task completion time and difficulty of use was however higher for the
kinesthetic VR device as compared with the standard vibrotactile controller. The latter was
thus easier to use and had as good overall accuracy as the 2D display and mouse interface.
Interestingly, the results of Li et al. (2021) suggest that marking accuracy in VR is less
affected by marking difficulty than when using a 2D interface. The task performance was
thus more stable in VR than when using the traditional 2D tool. This is another motivation
behind our test of the performance of placing landmarks in VR as compared with a
traditional 2D tool. Li et al. (2021) show that when mouse and VR interfaces are used in a
similar way, the haptic feedback helps improving marking accuracy. They do so by having
the users interact with the virtual world through an asymmetric bimanual (i.e. using
both hands) interface, where one hand holds the controller or mouse which is used to both
manipulate and annotate the virtual objects, while the other hand can press the spacebar to
place the annotation point. Because the same hand is used both for manipulation and
marker placement, their interface does not follow the theoretical framework for designing
an asymmetric bimanual interface by Guiard (1987). Kabbash, Buxton & Sellen, 1994
show that carefully designed asymmetric bimanual interfaces can improve task
performance, while inappropriately designed interfaces lower performance. Balakrishnan
& Kurtenbach (1999) show that using an asymmetric bimanual interface designed with the
theoretical framework proposed by Guiard (1987) leads to a 20% performance increase
over a unimanual interface. Our study employs an asymmetric bimanual interface that
follows the theoretical framework by Guiard (1987), and investigates whether combining
this interface with regular VR controllers will lead to similar improvements in annotation
performance, saving the users from having to acquire special purpose haptic devices.

In geometric morphometrics studies, the presence of measurement error can influence
the results of the performed analysis by increasing the level of noise, which can obscure
the biological signal, and/or by introducing bias (Fruciano, 2016). Fruciano (2016)
discusses the different sources of measurement error. Several studies in geometric
morphometrics quantified measurement error in a situation where landmark data were
collected using different devices, and 3D capture modalities (e.g. micro CT, surface
scanner, photogrammetry), involving several operators (Robinson & Terhune, 2017;
Shearer et al., 2017; Fruciano et al., 2017; Giacomini et al., 2019; Messer et al., 2021).
Different systems for annotation of digital 3D models were however not compared in these
studies.

To investigate whether annotation in VR is a viable alternative to mouse and keyboard
for digital annotation of landmarks on 3D models, we compare our VR prototype to
Stratovan Checkpoint (Stratovan Corporation, Davis, CA, USA; https://www.stratovan.
com/products/checkpoint), a commonly used software for digitally annotating landmarks
on 3D models using mouse and keyboard. We note that Stratovan Checkpoint comes
with many features, but we focus only on the placing of anatomical landmarks. We study
the impact of VR on annotation performance. In a first step, we assess overall and
landmark-wise precision and accuracy. Moreover, we investigate different sources of
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measurement error (between systems, between and within operators) in an overall and
landmark-wise explorative analysis. Finally, we investigate differences in annotation time
between systems and operators, and over time.

MATERIALS AND METHODS
VR annotation system
The VR annotation system was developed at the Technical University of Denmark using
Unity 2019 (Unity Technologies, San Francisco, CA, USA; https://unity.com) and the
Oculus Rift hardware released in 2016 (Facebook Technologies, LLC, Menlo Park, CA,
USA; https://www.oculus.com). Users in the virtual environment are presented with an
asymmetric bimanual interface, which adheres to Guiard (1987)’s three high-order
principles: Assuming a right-handed subject, (1) The system uses a right-to-left reference
where motion of the right hand finds its spatial reference relative to the left hand. The user
manipulates and orients the skull by grabbing it with the left controller. The skull can
be scaled by pressing buttons on the left controller. The right controller is then used to
place the annotation point, this is done with a ray-gun. The ray-gun shoots out a virtual red
laser-line that is intersecting with the surface of the 3D model. Landmark annotation is
mimicking the gesture of shooting a gun: The user aims by pointing the controller at
the landmark location, and presses the index trigger of the controller. An annotation gun
is chosen since it fits well with the power grip that the VR controllers are held in.
(2) The actions of the left and right hand are on asymmetric scales of motion where the left
hand performs large scale movements adjusting the skull and the right hand performs
small scale movements to set the annotation point. (3) This workflow means that the left
hand moves before the right hand, adhering to the principle of left-hand precedence.
The VR annotation system supports both right- and left-handed subjects.

3Dmodels are rendered opaque. It is possible to move the viewpoint such that the inside
of a 3D model is visible. As opposed to the desktop software Stratovan Checkpoint, the
inside of a 3D model is not rendered. Only 3D models are rendered, with no additional
information being shown, i.e. unlike other systems, we do not show cross sections.

A comprehensive description of the VR annotation system, and a detailed comparison
of the VR system to the desktop software Stratovan Checkpoint and a 3D digitizer arm
are provided in the Article S1. A demonstration of the VR annotation system, and
Stratovan Checkpoint, are shown in Videos S1 and S2, respectively.

Landmark data collection
Our study investigates how precisely, accurately and fast a user can place landmarks using
our VR annotation system compared to Stratovan Checkpoint, a mouse and keyboard
based desktop system. To carry out this experiment, we scanned, reconstructed, and
annotated grey seal skulls.

Sample

The sample consisted of six grey seal (Halichoerus grypus) skulls. Of these, five skulls were
held by the Natural History Museum of Denmark (NHMD) and originated from the Baltic
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Sea population, whereas one skull originated from the western North Atlantic population
and was held by the Finnish Museum of Natural History in Helsinki (FMNH) (Table A1).
We selected the skulls based on size in order to cover a large span: In our sample,
skull length ranges from about 18 to 28 cm. All the selected specimens were intact, and did
not have any abnormalities in size, shape or colour variation. We did not include
mandibles.

Generation of 3D models
The 3D models of the specimens were generated as previously described in Messer
et al. (2021). In a first step, the skulls were 3D scanned in four positions using a 3D
structured light scanning setup (SeeMaLab (Eiriksson et al., 2016)). On the basis of
geometric features, the point clouds from the four positions of a given skull were then
globally aligned using the Open3D library (Zhou, Park & Koltun, 2018), followed by
non-rigid alignment as suggested by Gawrilowicz & Bærentzen (2019). The final 3D model
was reconstructed on the basis of Poisson surface reconstruction (Kazhdan, Bolitho &
Hoppe, 2006; Kazhdan & Hoppe, 2013) using the Adaptive Multigrid Solvers software,
version 12.00, by Kazhdan (Johns Hopkins University, Baltimore, MA, USA; https://www.
cs.jhu.edu/~misha/Code/PoissonRecon/Version12.00).

In a last step, we used the Decimate function with a ratio of 0.1 in the Blender software,
version 2.91.2, (Blender Institute B.V., Amsterdam, the Netherlands; https://www.blender.
org) to downsample the final meshes of all specimens, thereby reducing the number of
faces to about 1.5 million. The average edge length, which is a measure of 3D model
resolution, is between 0.312 mm (smallest skull) and 0.499 mm (largest skull). Original
meshes consist of about 15 million faces, and we performed downsampling to ensure that
our hardware could render the meshes with a frame rate suitable for VR. By using the same
resolution 3D model for both the VR and traditional desktop system, we ensured that
observed differences in precision and accuracy were not due to differences in resolution.
Figure S1 shows the six final 3D models. A comparison of the original with the
downsampled 3D model is illustrated in Fig. S2 using FMNH specimen C7-98.

Annotation of landmarks
For each of the six skulls, Cartesian coordinates of six fixed anatomical landmarks (Fig. 1;
Table A2) were recorded by four operators. Each operator applied two different systems to
place the landmarks on the reconstructed digital 3D models of the grey seal skulls:
(1) Stratovan Checkpoint software, version 2018.08.07, (Stratovan Corporation, Davis, CA,
USA; https://www.stratovan.com/products/checkpoint), without actively using the
simultaneous view of three perpendicular cross-sections, and (2) our own virtual reality
tool (Article S1). To assess within-operator error, each operator annotated the same skull
six times with both systems. In total, 288 landmark configurations were collected.

Our choice of landmarks is a subset of six out of 31 previously defined anatomical
landmarks on grey seal skulls (Messer et al., 2021). We chose the landmarks with indices 2,
3, 11, 18, 24, 28 to have landmarks both of Type I (three structures meet, e.g. intersections
of sutures) and Type II (maxima of curvature) (Bookstein, 1991; Brombin & Salmaso,
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2013). Moreover, we excluded symmetric landmarks, and landmarks not well defined on
all skulls. We selected landmarks located at points that are spread over the whole skull
while exhibiting different characteristics.

Experience in placing landmarks, and experience in annotating digital models are two
important factors that are likely to influence operator measurement error. Thus, our
chosen operators differ from each other with respect to these two relevant factors: Two
operators (A and D) were biologists, both of them having experience annotating
landmarks using a Microscribe� digitizer, but only operator D had experience placing
landmarks on 3D models using Stratovan Checkpoint. The other two operators (B and C)
had a background in virtual reality. Operator B had previously annotated landmarks on

Figure 1 Landmark definition. (A) For our study, we selected the six landmarks marked in red based on
the set of 31 anatomical landmarks on grey seal skulls as defined by Messer et al. (2021). Note: Adapted
from Messer et al. (2021). Reprinted with permission. (B) The six landmarks placed on the 3D model of
NHMD specimen 96. Square/Arrows indicate the camera view for taking images (C)–(G), which show
the placed landmarks on the 3Dmodel of NHMD specimen 96 and highlight their respective features. (C)
Landmarks 2 and 3: Intersections of sutures; (D) Landmark 11: Apex along a margin; (E) Landmark 18:
Medial point of a margin; (F) Landmark 24: Posterior/saddle point; (G) Landmark 28: 3D tip.

Full-size DOI: 10.7717/peerj.12869/fig-1
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one grey seal specimen in both systems and was the developer of the virtual reality
annotation tool presented in this study. Operator C was the only one having no experience
in placing landmarks and was collecting the landmark data in a test run prior to other
data collection. Operators A, B and D spread data collection over 2 to 3 days, whereas
operator C annotated all 3D models on the same day.

All operators recorded the landmark configurations in the same pre-defined,
randomized order (Table S1), making them switch between systems and specimens.
The primary goal was to prevent the operators from memorizing where they previously
had placed the landmarks on a particular skull using a specific system. Operator A slightly
changed the order by swapping NHMD specimens 223 and 96 using the virtual reality
tool, and NHMD specimens 323 and 664 using Stratovan Checkpoint, both for the third
replica. Moreover, Operator A accidentally skipped specimen 323 once (virtual reality,
third replica) during data collection, and thus annotated this skull 3 months later. In each
annotation round, operators sequentially placed the landmarks in the order (2, 3, 11, 18,
24, 28). Operator C, however, collected landmark coordinates in a different order (18, 2, 3,
24, 28, 11).

In addition to collecting landmark coordinates, the annotation time was recorded for
each measurement of six landmarks. In case of the virtual reality tool, annotation time was
automatically recorded, whereas the operators had to manually record the time using a
small stopwatch program that ran in a console window when they annotated landmarks in
Stratovan Checkpoint. The operators were instructed to use as much time as they needed
for a satisfactory annotation.

Statistical data analysis and outliers
All statistical analyses were conducted in the R software version 3.5.3 (R Core Team, 2020).
For geometric morphometric analyses, we used the package geomorph (Adams &
Otárola-Castillo, 2013).

There were three different types of outliers present in the raw landmark coordinates
data: (1) swapped landmarks, (2) obviously wrongly placed landmarks (4–9 mm away
from all corresponding replicas; mean Euclidean distance between corresponding replicas
was 0.02–0.31 mm)1, and (3) landmarks localized at two distinct points, for several
replicas at each point, or distributed between two distinct points. We put swapped
landmarks into the correct order, and replaced the two obviously wrongly placed
landmarks by an estimate based on the remaining five replicas using geomorph’s function
estimate.missing (thin-plate spline approach). There were two cases of outliers of
type (3): Landmark 18 annotated by operator C on FMNH specimen C7-98, and landmark
28 annotated by operator A on NHMD specimen 42.11, in both cases when using
Stratovan Checkpoint as well as the VR annotation system (Fig. S3). Assuming that in
these two cases, the operators were in doubt where to clearly place the landmarks, we
decided to include outliers of type (3) in all our analyses to not confound the results.

In our design, the repetitions were performed in a randomized order to avoid obvious
sources of autocorrelations between repeated measurements on the same landmarks. This

1 The two outliers of Type (2) were replica
3 of landmark 11 on NHMD specimen
664, and replica 6 of landmark 28 on
FMNH specimen C7-98, both placed in
VR by operator C.
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justifies ignoring the longitudinal aspects of the landmarking by modelling deviations
between measurements as random errors.

For a specific specimen, annotation both in Stratovan Checkpoint and VR is based on
the same 3D model, and digitization happened in the same local reference frame. Thus, the
48 landmark coordinate sets measured on the same specimen were directly comparable
without first having to align them.

We further note that there is no ground truth landmark position in geometric
morphometrics. For this reason, we focused on consistent landmark placement in our data
analysis.

Annotation time

We sorted the recorded annotation times by system and operator in the order the
operators were annotating the skulls (Table S1), and computed trend lines using a linear
model including quadratic terms. This allowed us to investigate differences in annotation
time between systems and operators, and over time.

Landmark-wise measurement error
We assessed landmark-wise annotation precision by computing the Euclidean distance
between single landmark measurements and the corresponding landmark mean. In a first
step, we visually compared the precision between systems and operators for each
landmark. For that purpose, we computed the landmark means by averaging over replicas.
In order to test landmark-wise whether medians across operators within one system
were significantly different from each other, we used the pairwisePercentileTest
function in the R package rcompanion (Mangiafico, 2021) to perform pairwise
permutation tests based on 10,000 permutations. Additionally, we compared
landmark-wise median overall precision between the two systems.

In a second step, to test whether the landmark-wise precision depends on the
annotation system, we performed a three-way exploratory Analysis of Variance (ANOVA)
with the factors System, Operator and Specimen separately for each landmark. Since we
have a crossed data structure, we included all interaction terms. We note that our data
are balanced, and that we only considered fixed effects models. Precision was computed
from landmark means, which were obtained by averaging over replicas, systems and
operators. Since the Euclidean distances between landmark measurements and means had
right-skewed distributions, Euclidean distances were log-transformed to approximate a
Gaussian distribution.

Since there is no ground truth involved in geometric morphometrics, we assessed
accuracy by investigating how closely replicate landmarks were placed in VR compared to
the traditional desktop system. For this purpose, we computed landmark means by
averaging over replicas, followed by computing Euclidean distances between landmark
means obtained from the two systems (for given operators and specimens). This allowed us
to visually compare landmark-wise overall accuracy, and investigate differences in
accuracy between operators for each landmark. For each landmark, we tested differences in
operator median accuracy by performing pairwise permutation tests. We note, however,
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that the statistical power of these tests is limited due to the small sample size of six
annotated specimens per operator.

Overall measurement error
We assessed overall measurement error similarly as previously described in Messer et al.
(2021). In a first step, we computed Procrustes distances between devices, between
operators, and within operators (i.e. between landmark replica) to investigate overall
measurement error. Here, we define Procrustes distance as the sum of distances between
corresponding landmarks of two aligned shapes. This allowed us to investigate the
extent of differences in the total shape of the same specimen in various ways: measurement
by (a) the same operator using a different system (between-system error), (b) different
operators using the same system (between-operator error), and (c) the same operator
using the same system (within-operator error). Since all measurements from a
specific specimen were in the exact same coordinate system, we did not have to align
the landmark coordinates prior to the computation of Procrustes distances. Note that we
computed Procrustes distances between all possible combinations, which introduces
pseudoreplicates. For each error source, we tested differences in median Procrustes
distances between operators, systems, or system-and-operator by performing pairwise
permutation tests. We also compared median Procrustes distance between the error
sources.

In a second step, we ran a Procrustes ANOVA (Goodall, 1991; Klingenberg & McIntyre,
1998; Klingenberg, Barluenga & Meyer, 2002; Collyer, Sekora & Adams, 2015) to assess
the relative amount of measurement error resulting from the different error sources
System, Operator, and Specimen simultaneously. With this approach, Procrustes distances
among specimens are used to statistically assess the model, and the sum-of-squared
Procrustes distances are used as a measure of the sum of squares (Goodall, 1991).
As opposed to a classical ANOVA, which is based on explained covariance matrices,
Procrustes ANOVA allowed us to estimate the relative contribution of each factor to total
shape variation, which is given by the R-squared value. Prior to Procrustes ANOVA, the
landmark configurations had to be aligned to a common frame of reference using a
generalized Procrustes analysis (GPA) (Gower, 1975; Ten Berge, 1977; Goodall, 1991), in
which the configurations were scaled to unit centroid size, followed by projection to
tangent space. GPA eliminates all geometric information (size, position, and orientation)
that is not related to shape. Since we have a crossed data structure, we used the
following crossed model for the full Procrustes ANOVA: Coordinates ∼ Specimen ×
System × Operator.

RESULTS
Annotation time
Figure 2 shows that all operators became faster at annotating a specimen over time,
especially during the initial period of data collection. We observe that the two trend lines
representing operator C’s annotation times are exhibiting a minimum around annotation
20 (VR) and 25 (Stratovan Checkpoint). We point out that this is not an artefact due to
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the quadratic trend, but that operator C’s annotation times were actually increasing
towards the end of data collection. This might be explained by the fact that C was the
only operator collecting all data on the same day. The biologists A and D seemed to be
equally fast in both systems over the whole data collection period. Operators B and C, that
have a background in virtual reality, started out being much faster in VR, but were
approaching VR annotation times in Stratovan Checkpoint over time.

Landmark-wise measurement error
The boxplots of Euclidean distances between single landmark measurements and
landmark means (Fig. 3) reveal that on an overall basis, a similar annotation precision was
obtained for all six landmarks in VR compared to Stratovan Checkpoint. There were
substantial differences between operators: Operator A, for example, was generally
significantly less precise than the other operators. This might be explained by the fact that
operator A, who is experienced in physical annotation, was not zooming in as much on the
3D models as the other operators during data collection. Moreover, operator B was
significantly more precise in VR than other operators. Operators A and C appeared to be
more precise in Stratovan Checkpoint compared to VR. Finally, operator D was much
more consistent than the other operators, which is demonstrated by a similar obtained
precision for all landmarks.

We obtained corresponding results in our ANOVA, which we ran separately for each
landmark (Table 1): The factor System was only significant in case of landmark 11, but not
for the five other landmarks. Computing the means of the Euclidean distance between

Figure 2 Annotation time by system and operator over time. The x-axis represents the skulls in the
order the operators were annotating them. Trend lines suggesting a learning effect were estimated using a
linear model including quadratic terms. Operator A’s annotation time in Stratovan Checkpoint was not
recorded properly for annotation 11 and 13. Full-size DOI: 10.7717/peerj.12869/fig-2
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measurements and mean of landmark 11 separately for each system (VR: 0.57 mm;
Stratovan Checkpoint: 0.69 mm) revealed that annotation of landmark 11 was more
precise in VR compared to Stratovan Checkpoint. There was no strongly significant
interaction between System and Operator, nor between System and Specimen for five
landmarks (System and Operator: 2, 3, 11, 18, 24; System and Specimen: 2, 3, 11, 18, 28).
As in Fig. 3, we detected major, significant differences between operators for all landmarks,
which were expressed in large F-values. This was also true for interaction terms
involving the factor Operator. Finally, we found that the variability in precision was
larger between operators than between specimens, except for landmark 28. This exception
can be explained by the fact that landmark 28 was subject to large outliers of type
(3), measured by one operator (A) on one specimen, which were not excluded from the
analysis. A similar effect is observed in Fig. 3. Examination of Q–Q-plots of the residuals
showed that for most of the landmarks, the distribution of the residuals has heavier
tails than the Gaussian distribution. However, since balanced ANOVAs are fairly robust to
deviations from the Gaussian distribution, we decided not to investigate this further in this
explorative study.

Figure 3 Landmark-wise precision. Precision is measured as the Euclidean distance between single
landmark measurements and the operator landmark mean. For each landmark, we compared median
overall precision between systems, and median precision between operators within each system for test of
significance. For each of these 18 comparison rounds, groups sharing the same letter are not significantly
different. The thick bars represent the median, boxes display the interquartile range, and the whiskers
extend to 1.5 times the interquartile range. Circles represent outliers. Note that the vertical axis is
logarithmic. Full-size DOI: 10.7717/peerj.12869/fig-3
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We note that we obtained corresponding F-values and significance levels when
including outliers of type (2) in our ANOVA (Table S2). However, annotation of landmark
11 seemed to be more precise in Stratovan Checkpoint compared to VR (VR: 0.93 mm;
Stratovan Checkpoint: 0.77 mm), which can be explained by the fact that the outlier of type
(2) at landmark 11 was placed in VR.

With respect to accuracy (Fig. 4), we found that landmarks were generally placed at
similar coordinates in both VR and Stratovan Checkpoint, for all landmarks. For our
sample, the Euclidean distance between system means, averaged over specimens and
operators, ranged from 0.165 mm (LM 3) to 0.465 mm (LM 28), which is of the same
magnitude as the resolution of the 3D models. Similarly to precision, accuracy varied
substantially between operators: In particular for landmarks 2, 11, and 28, operator A was
less accurate than the other operators. However, this was only significant in case of
landmark 2 when comparing the medians (based on the limited sample size of six
specimens per operator). We note that the two specimens for which we had outliers of type
(3), did not show the lowest accuracies for that particular landmark.

Overall measurement error
The permutation significance test revealed that the median of the Procrustes distances
within operators was not significantly different for both systems (Fig. 5), providing
evidence that Stratovan Checkpoint and the VR annotation system exhibited similar
precision for the group of operators participating in this study. The distribution of
Procrustes distances between systems is comparable to that within operators, however, the

Table 1 ANOVA, separately for each landmark. Dependent variable is log-transformed Euclidean
distance between single landmark measurements and landmark means. We applied the following crossed
structure: System × Operator × Specimen. Residuals reflect landmark replica, and have 240 degrees of
freedom.

Variables Df F Pr(>F) F Pr(>F) F Pr(>F)

LM 2 LM 3 LM 11

System 1 2.32 0.129 0.54 0.461 9.53 0.002

Operator 3 21.15 0.000 76.02 0.000 57.56 0.000

Specimen 5 2.36 0.041 42.54 0.000 9.95 0.000

System:Operator 3 0.89 0.445 1.34 0.261 3.65 0.013

System:Specimen 5 2.16 0.059 0.43 0.825 3.01 0.012

Operator:Specimen 15 1.73 0.047 4.20 0.000 5.87 0.000

System:Operator:Specimen 15 0.82 0.657 2.45 0.002 3.01 0.000

LM 18 LM 24 LM 28

System 1 1.73 0.190 0.98 0.324 0.23 0.635

Operator 3 31.91 0.000 51.97 0.000 17.27 0.000

Specimen 5 21.60 0.000 12.32 0.000 183.35 0.000

System:Operator 3 0.42 0.741 2.01 0.113 7.69 0.000

System:Specimen 5 0.91 0.476 4.24 0.001 1.84 0.105

Operator:Specimen 15 2.64 0.001 6.18 0.000 8.01 0.000

System:Operator:Specimen 15 1.59 0.077 3.42 0.000 1.56 0.086
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median of the Procrustes distances between systems is significantly larger than that within
operators. In general, Procrustes distances between operators exhibited larger values
than those between systems or within operators, with a significant difference in median,
which validates the landmark-wise analysis. The median Procrustes distance between
operators using the VR annotation system was significantly smaller than when using
Stratovan Checkpoint. As in the landmark-wise analysis, we observed significant
systematic differences between operators: For operators B and D, who were the only
operators having experience in digitally placing landmarks, we found smaller
measurement differences between systems than for operators A and C. A similar pattern
was observed for within-operator error. Moreover, operator A was more precise in
Stratovan Checkpoint, whereas operators B and D were more precise using the VR
annotation system.

An analysis of the outliers revealed that they were almost exclusively measured on
NHMD specimen 42.11 and FMNH specimen C7-98, where we observed outliers of type
(3) (Fig. S3), and on NHMD specimen 664. The largest outliers are connected to
measurements by operator A, and measurements in VR. Landmark 28 contributed

Figure 4 Landmark-wise accuracy. Accuracy is measured as the Euclidean distance between system
means. For each landmark, median accuracies of operators sharing the same letter are not significantly
different. Jittered data points correspond to the six specimens. The labelled two specimens correspond to
the outliers of type (3). The thick bars represent the median, boxes display the interquartile range, and the
whiskers extend to 1.5 times the interquartile range. Full-size DOI: 10.7717/peerj.12869/fig-4
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substantially to the large Procrustes distances. This is in line with the results on
landmark-wise annotation precision (Fig. 3).

Running a Procrustes ANOVA on the whole dataset, again, validated the landmark-wise
analysis (Table 2). The factor System did not seem to contribute much to total shape
variation (0.04%), and a comparable result was obtained for the interaction terms
involving the factor System. The main contributing factor of the two measurement error
sources was Operator, which accounted for 1.6% of total shape variation. As in the
landmark-wise ANOVAs, the interaction betweenOperator and Specimen is of importance
and explained 1.7% of total shape variation, indicating that the operators were not
experienced. As in Fig. 5, the results indicate that between-operator error was larger than
between-system error. Most of the total shape variation (94.2%) was explained by

Figure 5 Boxplots of Procrustes distances. Computation of Procrustes distances between systems;
between systems for a given operator; between operators; between operators for a given system; within
operators; and within operators for a given system/operator/system-and-operator. Within an error
source, we compared operator/system/system-and-operator medians with significance tests. Moreover,
we compared median overall Procrustes distance between error sources. For each of these six comparison
rounds, groups sharing the same letter(s) are not significantly different. The thick bars represent the
median, boxes display the interquartile range, and the whiskers extend to 1.5 times the interquartile
range. Outliers are represented by circles. The boxplot colours indicate whether a boxplot is based on all
Procrustes distances for a given error source (blue), on a subset (red), or on a subset of a subset (green).

Full-size DOI: 10.7717/peerj.12869/fig-5
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biological variation among grey seal specimens. We note that our findings do not change
when including outliers of type (2) in our Procrustes ANOVA (Table S3).

DISCUSSION
We developed a VR-based annotation software to investigate whether VR is a viable
alternative to mouse and keyboard for digital annotation of landmarks on 3D models.
For this purpose, the VR annotation system was compared to the desktop program
Stratovan Checkpoint as a tool for placing landmarks on 3D models of grey seal skulls.
The two systems were compared in terms of overall and landmark-wise precision and
accuracy, as well as annotation time. We used a carefully chosen setup, where four
operators were placing six well-defined anatomical landmarks on six skulls in six trials,
which allowed the investigation of multiple sources of measurement error (between
systems, within and between operators, and between specimens).

On a desktop computer, an operator is forced to place landmarks through the
point-of-view of their display. This is in contrast to VR, where an operator may annotate
landmarks from angles different than their point-of-view, since the point-of-view is
tracked using the head-mounted display and the controllers can be used to annotate
landmarks from an arbitrary direction.

Another benefit of the VR system compared to Stratovan Checkpoint is that it
allows the user to scale the specimen. Hence the application is agnostic to specimen size,
which is especially helpful in annotating smaller specimens. In Stratovan Checkpoint,
the specimen cannot be resized, but the camera can be placed closer. However, when
placed too closely, the camera’s near-plane will clip the specimen, thereby setting a limit on
how closely one can view the specimen. In real-time rendering, two clipping planes are
used to delimit the part of the scene that is drawn. The depth buffer has limited precision,
and the greater the distance between these two planes, the more imprecise the depth
buffer and the greater the risk of incorrectly depth sorted pixels. Unfortunately, the need to
move the near plane away from the eye entails that if we move the camera very close to an
object, it may be partially or entirely clipped by the near plane.

Table 2 Procrustes ANOVA on shape. We applied the following crossed structure: System × Operator
× Specimen. Residuals reflect landmark replica. The R-squared values (Rsq) give estimates of the relative
contribution of each factor to total shape variation.

Variables Df MS Rsq F Pr(>F)

System 1 0.00035 0.0004 3.909 0.013

Operator 3 0.00527 0.0163 59.592 0.001

Specimen 5 0.18275 0.9421 2,065.941 0.001

System:Operator 3 0.00022 0.0007 2.526 0.003

System:Specimen 5 0.00012 0.0006 1.372 0.140

Operator:Specimen 15 0.00107 0.0166 12.114 0.001

System:Operator:Specimen 15 0.00010 0.0015 1.101 0.281

Residuals 240 0.00009 0.0219
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All in all, our analysis showed that annotation in VR is a promising alternative to
desktop annotation. We found that landmark coordinates annotated in VR were close to
landmark coordinates annotated in Stratovan Checkpoint. Taking mouse and keyboard
annotation as the reference, this implies that landmark annotation in VR is accurate, which
is in line with the findings of Li et al. (2021). The accuracy achieved is of the same
magnitude as the resolution of the 3D models. Furthermore, when investigating precision,
both in landmark-wise ANOVAs, and a Procrustes ANOVA involving all landmarks at
once, the factor System was not significant, in contrast to the factors Operator and
Specimen. This demonstrated that the measured annotation precision in VR was
comparable to mouse and keyboard annotation, whereas precision significantly differed
between operators and specimens. These results are in line with previous studies on
measurement error which found a larger between-operator compared to between-system
or within-operator error (e.g., Shearer et al., 2017; Robinson & Terhune, 2017;Messer et al.,
2021). However, we obtained a much smaller between-system error when comparing
annotation in VR with desktop annotation than Messer et al. (2021), who compared
physical and digital landmark placement on grey seal skulls.

Our results revealed that VR was significantly more precise than Stratovan Checkpoint
for one landmark. A possible explanation is that the location of this landmark (no 11)
on an apex along a margin (Fig. 1D) required an operator to observe the approximate
location on a skull from various angles to decide on the landmark position. This might
have been easier in VR because of the direct mapping between head and camera
movement. The operators might also have benefited from the ability to look at landmark
11 independently of the angle used for landmark placement, allowing the operators to
view the silhouette of the apex while pointing the annotation gun at the apex,
perpendicular to the camera direction.

We found a weak indication that both precision in VR, and precision in general
seemed to be positively linked to an operator’s experience in placing landmarks on 3D
models, and not necessarily to an operator’s knowledge of VR or experience in placing
landmarks on physical skulls. This result highlights the importance of annotation training
on 3D models prior to the digital annotation process in order to obtain a higher precision.
However, we have to keep in mind that the group of operators participating in this
study is not a representative sample of professional annotators. Some of the operators in
this study were not experienced in annotating landmarks. This was reflected in the
interaction between Operator and Specimen, which was significant for all landmark-wise
ANOVAs and in the Procrustes ANOVA.

We did not find any evidence that annotation in VR is faster compared to desktop
annotation, which is in line with Li et al. (2021). However, we did not include difficult to
place landmarks, for which Li et al. (2021) found a significantly shorter annotation time in
VR than on the desktop. Even though Li et al. (2021) conducted a similar experiment,
there are three major differences to our setup: (1) In their study, the point the user was
supposed to annotate was actually shown during data collection. This is different from the
real-life annotation of landmarks we simulate, as the latter includes interpretation of
the specimen’s anatomy under the respective constraints and advantages of the two
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interfaces. (2) They used an in-house 2D annotation tool, whereas our study involves an
industry standard 2D annotation software. (3) In our study, the user manipulates the
model with the non-dominant hand and annotates with the dominant hand. This is similar
to how one adjusts the paper with the non-dominant hand and writes on it with the
dominant hand. We compare this to Stratovan Checkpoint’s unimanual interface where
the mouse is used both for manipulation and annotation and the keyboard is used to
change the mode of the mouse.

CONCLUSIONS
To sum up, annotation in VR is a promising approach, and there is potential for further
investigation. The current implementation of the VR annotation system is a basic
prototype, as opposed to Stratovan Checkpoint, which is a commercial desktop software.
Nevertheless, we did not find significant differences in precision between the VR
annotation system and Stratovan Checkpoint. For one landmark, annotation in VR was
even superior with respect to precision compared to mouse and keyboard annotation.
Accuracy of the VR annotation system, which was measured relative to Stratovan
Checkpoint, was of the same magnitude as the resolution of the 3D models. In addition,
our study is based on a non-representative sample of operators, and did not involve any
operator with a background both in biology and VR.

FUTURE WORK
The VR controllers in our study are held in a power grip and do not provide haptic
feedback although they can provide vibrotactile feedback (i.e. vibrate) when the user
touches a surface. Li et al. (2021) employ the Geomagic Touch X which, as mentioned, is a
precision grip kinesthetic device that does provide haptic feedback. Unfortunately, the
haptic feedback comes at the expense of quite limited range since the pen is attached to an
articulated arm. On the other hand, there are precision grip controllers which are not
haptic devices and hence not attached to an arm. Thus, a future study comparing
power grip, precision grip, and the combination of precision grip and haptic feedback
would be feasible. Such a study might illuminate whether the precision grip or the haptic
feedback is more important.

An interesting extension of the current VR system would be to add a kind of nudging to
help the user make small adjustments to the placed landmarks. A further extension
could be use of shape information through differential geometry to help guide annotation
points toward local extrema.

Improvement of the VR system in terms of rendering performance would be beneficial
as it would enable display of the 3D scan in all details (Jensen et al., 2021). This would
potentially improve the user’s precision when placing landmarks. Further improvements
of the VR annotation system could be customizable control schemes, camera shortcuts to
reduce annotation time, manipulation of the clipping plane to see hidden surfaces,
rendering cross sections, and more UIs with information on the current annotation
session.
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In this study, we focused on clearly defined landmarks. It would be interesting to
investigate (as in the work of Li et al. (2021)) whether VR might be superior to desktop
annotation in the case of landmarks that are more difficult to place. Furthermore, most
operators had no experience with one or both types of software. It would be very
interesting with a longer term study to clarify the difference between the learning curves
associated with the different annotation systems: how quickly does proficiency increase
and when does it plateau? Such a study might also help illuminate whether habitually
wearing an head mounted display is problematic. There is some fatigue associated with
usage of a head mounted display, and this could become either exacerbated or ameliorated
with daily use, something we could not address in this study.
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Table A1 List of original 3D models of grey seal (Halichoerus grypus) skulls used in this study and
their source. NHMD: Natural History Museum of Denmark; FMNH: Finnish Museum of Natural
History. Skull length was approximated by the average Euclidean distance between landmarks 7 and 18
(Fig. 1) based on eight repeated measurements by Messer et al. (2021).

Institution Specimen Skull length (cm) Source (MorphoSource identifiers)

NHMD 42.11 19.3 https://doi.org/10.17602/M2/M357658

NHMD 96 23.8 https://doi.org/10.17602/M2/M364247

NHMD 223 21.3 https://doi.org/10.17602/M2/M364279

NHMD 323 18.2 https://doi.org/10.17602/M2/M364263

NHMD 664 21.5 https://doi.org/10.17602/M2/M364287

FMNH C7–98 28.1 https://doi.org/10.17602/M2/M364293

Table A2 List of the six anatomical landmarks used in this study (L = left, R = right). Four landmarks
are of Type I, and two of Type II.

Landmark description Name Type

Caudal apex of nasal 2 I

Intersection of maxillofrontal sutureand nasal (L) 3 I

Anterior apex of jugal (R) 11 II

Dorsal apex of foramen magnum 18 II

Posterior point of last molar (L) 24 II

Ventral apex of orbital socket (L) 28 II

Messer et al. (2022), PeerJ, DOI 10.7717/peerj.12869 19/23

152
Using virtual reality for anatomical landmark annotation in geometric

morphometrics



ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Dolores Messer conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

� Michael Atchapero conceived and designed the experiments, performed the
experiments, authored or reviewed drafts of the paper, designed and implemented the
VR annotation system, and approved the final draft.

� Mark B. Jensen conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the paper, designed the VR annotation system, and
approved the final draft.

� Michelle S. Svendsen performed the experiments, authored or reviewed drafts of the
paper, and approved the final draft.

� Anders Galatius conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the paper, and approved the final draft.

� Morten T. Olsen conceived and designed the experiments, authored or reviewed drafts
of the paper, and approved the final draft.

� Jeppe R. Frisvad conceived and designed the experiments, authored or reviewed drafts of
the paper, designed the VR annotation system, and approved the final draft.

� Vedrana A. Dahl conceived and designed the experiments, authored or reviewed drafts
of the paper, and approved the final draft.

� Knut Conradsen conceived and designed the experiments, authored or reviewed drafts
of the paper, and approved the final draft.

� Anders B. Dahl conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.

� Andreas Bærentzen conceived and designed the experiments, authored or reviewed
drafts of the paper, designed the VR annotation system, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The landmark data is available at DTU Data: Messer, Dolores; Atchapero, Michael;
Jensen, Mark Bo; Strecker Svendsen, Michelle; Galatius, Anders; Tange Olsen, Morten;
et al. (2021): 3D Landmark data on grey seal skull measured on 3D surface models using
the Stratovan Checkpoint software, and a VR annotation system. Technical University of
Denmark. Dataset. https://doi.org/10.11583/DTU.14977353.v1.

The 3D models (not downsampled) are available at MorphoSource (Table A1).

Messer et al. (2022), PeerJ, DOI 10.7717/peerj.12869 20/23

153



Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.12869#supplemental-information.

REFERENCES
Adams DC, Otárola-Castillo E. 2013. Geomorph: an R package for the collection and analysis of

geometric morphometric shape data. Methods in Ecology and Evolution 4(4):393–399
DOI 10.1111/2041-210X.12035.

Adams DC, Rohlf FJ, Slice DE. 2004. Geometric morphometrics: ten years of progress following
the ‘revolution’. Italian Journal of Zoology 71(1):5–16 DOI 10.1080/11250000409356545.

Balakrishnan R, Kurtenbach G. 1999. Exploring bimanual camera control and object manipulation
in 3d graphics interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’99, New York: Association for Computing Machinery, 56–62.

Bastir M, García-Martínez D, Torres-Tamayo N, Palancar CA, Fernández-Pérez FJ,
Riesco-López A, Osborne-Márquez P, Ávila M, López-Gallo P. 2019. Workflows in a virtual
morphology lab: 3d scanning, measuring, and printing. Journal of Anthropological Sciences
97:107–134 DOI 10.4436/JASS.97003.

Bookstein FL. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge:
Cambridge University Press.

Bookstein FL. 1998. A hundred years of morphometrics. Acta Zoologica Academiae Scientiarum
Hungaricae 44:7–59.

Bouaoud J, El Beheiry M, Jablon E, Schouman T, Bertolus C, Picard A, Masson J-B,
Khonsari RH. 2020. DIVA, a 3D virtual reality platform, improves undergraduate craniofacial
trauma education. Journal of Stomatology, Oral and Maxillofacial Surgery 122(4):367–371
DOI 10.1016/j.jormas.2020.09.009.

Bowman DA, McMahan RP, Ragan ED. 2012. Questioning naturalism in 3D user interfaces.
Communications of the ACM 55(9):78–88 DOI 10.1145/2330667.2330687.

Brombin C, Salmaso L. 2013. A brief overview on statistical shape analysis. In: Permutation Tests
in Shape Analysis, New York: Springer, 1–16.

Cai S, He Y, Cui H, Zhou X, Zhou D, Wang F, Tian Y. 2020. Effectiveness of three-dimensional
printed and virtual reality models in learning the morphology of craniovertebral junction
deformities: a multicentre, randomised controlled study. BMJ Open 10(9):e036853
DOI 10.1136/bmjopen-2020-036853.

Collyer ML, Sekora DJ, Adams DC. 2015. A method for analysis of phenotypic change for
phenotypes described by high-dimensional data. Heredity 115(4):357–365
DOI 10.1038/hdy.2014.75.

Eiriksson ER, Wilm J, Pedersen DB, Aanæs H. 2016. Precision and accuracy parameters in
structured light 3-D scanning. International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences W8:7–15 DOI 10.5194/isprs-archives-XL-5-W8-7-2016.

Fruciano C. 2016. Measurement error in geometric morphometrics. Development Genes and
Evolution 3(3):139–158 DOI 10.1007/s00427-016-0537-4.

Fruciano C, Celik MA, Butler K, Dooley T, Weisbecker V, Phillips MJ. 2017. Sharing is caring?
Measurement error and the issues arising from combining 3D morphometric datasets. Ecology
and Evolution 7(17):7034–7046 DOI 10.1002/ece3.3256.

Messer et al. (2022), PeerJ, DOI 10.7717/peerj.12869 21/23

154
Using virtual reality for anatomical landmark annotation in geometric

morphometrics



Gawrilowicz F, Bærentzen JA. 2019. Optimal, non-rigid alignment for feature-preserving mesh
denoising. In: Proceedings of the International Conference on 3D Vision (3DV), Piscataway: IEEE,
415–423.

Giacomini G, Scaravelli D, Herrel A, Veneziano A, Russo D, Brown RP, Meloro C. 2019. 3D
photogrammetry of bat skulls: perspectives for macro-evolutionary analyses. Evolutionary
Biology 46(3):249–259 DOI 10.1007/s11692-019-09478-6.

Goodall C. 1991. Procrustes methods in the statistical analysis of shape. Journal of the Royal
Statistical Society. Series B (Methodological) 53(2):285–339
DOI 10.1111/j.2517-6161.1991.tb01825.x.

Gower JC. 1975. Generalized procrustes analysis. Psychometrika 40(1):33–51
DOI 10.1007/BF02291478.

Guiard Y. 1987. Asymmetric division of labor in human skilled bimanual action. Journal of Motor
Behavior 19(4):486–517 DOI 10.1080/00222895.1987.10735426.

Hutchins EL, Hollan JD, Norman DA. 1985. Direct manipulation interfaces. Human-Computer
Interaction 1(4):311–338 DOI 10.1207/s15327051hci0104_2.

Jang S, Vitale JM, Jyung RW, Black JB. 2017. Direct manipulation is better than passive viewing
for learning anatomy in a three-dimensional virtual reality environment. Computers &
Education 106(3):150–165 DOI 10.1016/j.compedu.2016.12.009.

Jensen MB, Jacobsen EI, Frisvad JR, Bærentzen JA. 2021. Tools for virtual reality visualization of
highly detailed meshes. In: Gillmann C, Krone M, Reina G, Wischgoll T, eds. VisGap - The Gap
between Visualization Research and Visualization Software. Geneve: The Eurographics
Association.

Kabbash P, Buxton W, Sellen A. 1994. Two-handed input in a compound task. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’94, New York:
Association for Computing Machinery, 417–423.

Kazhdan M, Bolitho M, Hoppe H. 2006. Poisson surface reconstruction. In: Eurographics
Symposium on Geometry Processing, SGP ’06, Geneve: Eurographics Association, 61–70.

Kazhdan M, Hoppe H. 2013. Screened poisson surface reconstruction. ACM Transactions on
Graphics 32(3):1–13 DOI 10.1145/2487228.2487237.

Klingenberg CP, Barluenga M, Meyer A. 2002. Shape analysis of symmetric structures:
quantifying variation among individuals and asymmetry. Evolution 56(10):1909–1920
DOI 10.1111/j.0014-3820.2002.tb00117.x.

Klingenberg CP, McIntyre GS. 1998. Geometric morphometrics of developmental instability:
analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution
52(5):1363–1375 DOI 10.1111/j.1558-5646.1998.tb02018.x.

Li Z, Kiiveri M, Rantala J, Raisamo R. 2021. Evaluation of haptic virtual reality user interfaces for
medical marking on 3D models. International Journal of Human-Computer Studies
147(1):102561 DOI 10.1016/j.ijhcs.2020.102561.

Mangiafico S. 2021. rcompanion: functions to support extension education program evaluation. R
package version 2.4.6. Available at https://cran.r-project.org/web/packages/rcompanion/.

Mendes D, Caputo FM, Giachetti A, Ferreira A, Jorge J. 2019. A survey on 3D virtual object
manipulation: from the desktop to immersive virtual environments. Computer Graphics Forum
38(1):21–45 DOI 10.1111/cgf.13390.

Messer D, Svendsen MS, Galatius A, Olsen MT, Dahl VA, Conradsen K, Dahl AB. 2021.
Measurement error using a SeeMaLab structured light 3D scanner against a Microscribe 3D
digitizer. PeerJ 9(4):e11804 DOI 10.7717/peerj.11804.

Messer et al. (2022), PeerJ, DOI 10.7717/peerj.12869 22/23

155



Mitteroecker P, Gunz P. 2009. Advances in geometric morphometrics. Evolutionary Biology
36(2):235–247 DOI 10.1007/s11692-009-9055-x.

Pham D-M, Stuerzlinger W. 2019. Is the pen mightier than the controller? A comparison of input
devices for selection in virtual and augmented reality. In: 25th ACM Symposium on Virtual
Reality Software and Technology, VRST ’19, New York: ACM.

R Core Team. 2020. R: a language and environment for statistical computing. Vienna:
The R Foundation for Statistical Computing. Available at http://www.R-project.org/.

Recheis W, Weber GW, Schäfer K, Knapp R, Seidler H, zur Nedden D. 1999. Virtual reality and
anthropology. European Journal of Radiology 31(2):88–96
DOI 10.1016/S0720-048X(99)00089-3.

Robinson C, Terhune CE. 2017. Error in geometric morphometric data collection: combining data
from multiple sources. American Journal of Physical Anthropology 164(1):62–75
DOI 10.1002/ajpa.23257.

Rohlf F, Marcus L. 1993. A revolution in morphometrics. Trends in Ecology & Evolution 8:129–132
DOI 10.1016/0169-5347(93)90024-J.

Shearer BM, Cooke SB, Halenar LB, Reber SL, Plummer JE, Delson E, Tallman M. 2017.
Evaluating causes of error in landmark-based data collection using scanners. PLOS ONE
12(11):1–37 DOI 10.1371/journal.pone.0187452.

Sholts SB, Flores L, Walker PL, Wärmländer SKTS. 2011. Comparison of coordinate
measurement precision of different landmark types on human crania using a 3D laser scanner
and a 3D digitiser: implications for applications of digital morphometrics. International Journal
of Osteoarchaeology 21(5):535–543 DOI 10.1002/oa.1156.

Slice DE. 2005. Modern morphometrics. In: Modern Morphometrics in Physical Anthropology,
Boston: Springer US, 1–45.

Teather R, Pavlovych A, Stuerzlinger W, MacKenzie I. 2009. Effects of tracking technology,
latency, and spatial jitter on object movement. In: Symposium on 3D User Interfaces (3DUI
2009), Piscataway: IEEE, 43–50.

Ten Berge JMF. 1977. Orthogonal procrustes rotation for two or more matrices. Psychometrika
42:267–276 DOI 10.1007/BF02294053.

Waltenberger L, Rebay-Salisbury K, Mitteroecker P. 2021. Three-dimensional surface scanning
methods in osteology: a topographical and geometric morphometric comparison. American
Journal of Physical Anthropology 174(4):846–858 DOI 10.1002/ajpa.24204.

Weber GW. 2015. Virtual anthropology. American Journal of Physical Anthropology
156(Part 2):22–42 DOI 10.1002/ajpa.22658.

Wiley DF, Amenta N, Alcantara DA, Ghosh D, Kil YJ, Delson E, Harcourt-Smith W, Rohlf FJ,
St. John K, Hamann B. 2005. Evolutionary morphing. In: Visualization Conference (VIS 05),
Piscataway: IEEE, 431–432.

Zhou Q-Y, Park J, Koltun V. 2018. Open3D: a modern library for 3D data processing. ArXiv.
Available at arXiv:1801.09847v1.

Messer et al. (2022), PeerJ, DOI 10.7717/peerj.12869 23/23

156
Using virtual reality for anatomical landmark annotation in geometric

morphometrics



P A P E R III
Efficient Rendering of
Large-Scale Geometric Data
using Meshlets
Mark Bo Jensen, Jeppe Reval Frisvad, and Jakob Andreas Bærentzen. 2022.

In review for the Journal of Computer Graphics Tools. 21 pages.



Submitted to the Journal of Computer Graphics Techniques September 27, 2022

Efficient Rendering of Large-Scale Geometric
Data Using Meshlets

Mark Bo Jensen
Technical University of Denmark

Jeppe Revall Frisvad
Technical University of Denmark

J. Andreas Bærentzen
Technical University of Denmark

0.1207 ns/triangle 0.1057 ns/triangle

0.1114 ns/triangle 0.1037 ns/triangle

Figure 1. Different methods for organizing the triangles of the Stanford Bunny into mesh-
lets. Each colored patch is a meshlet. From top left to bottom right: NVIDIA [Kubisch
2018b], k-medoids [Kaufman and Rousseeuw 1990], greedy (ours), bounding sphere (ours),
Kapoulkine [2017]. We describe the details of the methods in Section 3. Each image shows
the render time in nanoseconds per triangle. The time is based on a linear regression fitted to
the render time of six meshes as a function of the their triangle count. Because k-medoids has
too few datapoints we omit its time.
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Abstract

Mesh shaders were recently introduced for faster rendering of triangle meshes. Instead of
pushing each individual triangle through the rasterization pipeline, we can create triangle
clusters called meshlets and perform per-cluster culling operations. This is a great opportunity
to efficiently render very large meshes. However, the performance of mesh shaders depends on
how we create the meshlets. We test rendering performance after use of different methods for
organizing triangle meshes into meshlets. To measure the performance of a method, we render
meshes of different complexity from many randomly selected views and measure the render
time per triangle. Based on our findings, we suggest guidelines for creation of meshlets. Using
our guidelines, we propose two simple methods for generating meshlets with good rendering
performance. Our objective is to make it easier for the graphics practitioner to organize a
triangle mesh into high performance meshlets.

1. Introduction

Rasterization is fast and highly parallelized on the graphics processing unit (GPU). In
extended reality (xR) applications, where too low a frame rate breaks the immersion
and potentially causes motion sickness [Rebenitsch and Owen 2016], rasterization
is the method of choice. Rasterization is however triangle bound, which means that
every triangle must be processed for every frame. This can be prohibitively expensive
if we want to visualize massive triangle meshes in xR applications. On the other hand,
it is especially in xR applications that we need massive triangle meshes, because the
user is free to closely inspect the geometry from arbitrary points of view.

To facilitate a higher triangle throughput, which helps uphold high frame rates
even for massive meshes, the rasterization pipeline was recently modified to enable
clustering of triangles into meshlets [Kubisch 2018a; Kubisch 2020]. Meshlets im-
prove performance by enabling us to process and cull geometry at a coarser level of
granularity than triangles [Jensen et al. 2021]. This relaxes the triangle boundedness,
because the pipeline no longer needs to process all the triangles that are submitted to
it. This modified pipeline is called the mesh shading pipeline.

Mesh shading is now directly exposed in Vulkan, DirectX 12, and OpenGL [Ku-
bisch 2018a]. This gives rise to the question of how to best create the meshlets, i.e.
the triangle clusters. Some developers, notably Kapoulkine [2017] and NVIDIA [Ku-
bisch 2018b], have released code for organizing triangle meshes into meshlets, but
the question of how to form meshlets that deliver good rendering performance has
received limited attention. In this paper, we evaluate the rendering performance when
using different approaches for organizing triangle meshes into meshlets. Our tests
include six different meshes consisting of 70 thousand to 39 million triangles. We
evaluate performance by rendering the meshes from many randomly selected views
while measuring render time per triangle. To our surprise, we find that meshlet col-
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lections produce lower render times when using local and greedy algorithms.
We also conduct a small explorative study into different meshlet descriptors in

order to investigate how they affect render times. A meshlet descriptor is a small
structure that keeps track of the meta data surrounding a meshlet. Apart from describ-
ing different algorithms for forming meshlet collections and reporting their rendering
times, our main contribution is to identify the most important metrics to consider
when assessing the quality of a meshlet collection.

1.1. Related Work

The GPU was originally introduced as special purpose hardware for triangle rasteri-
zation. Over the past few decades, GPUs have evolved into highly efficient and very
general architectures for parallel computation [Haines 2006; Dally et al. 2021]. GPUs
are discrete cards, which means that all data needs to be send to the GPU if it is to be
processed on the GPU. This can become a bottleneck [Hoppe 1999] when working
with large datasets, such as very big triangle meshes. A mitigation strategy for big
triangle meshes is to use mesh representations that minimize the data footprint. One
such widely used mesh representation is triangle strips. Triangle strips minimize the
data footprint by feeding triangle strips to the GPU with consecutive triangles sharing
an edge. In this way, the next triangle is simply described by processing one more
vertex, as the two vertices from the shared edge with the previous triangle have al-
ready been processed. An index buffer can be used to represent the triangle strip. This
is filled with indices to a vertex buffer and replaces vertex duplication with the less
memory consuming duplication of vertex indices.

To organize a mesh into triangle strips, we need a path through the mesh where
each triangle is only visited once. This is equivalent to finding a Hamiltonian circle
in the dual graph of the mesh, which is an NP-complete problem [Dillencourt 1996].
As a result, greedy approaches for creating triangle strips have been explored instead.
Arkin et al. [1996] generate triangle strips by greedily adding triangles with fewest
adjacent triangles to the strip. This approach avoids leaving behind isolated triangles
(triangle islands). The algorithm is made for a graphics API that predates OpenGL,
called Iris GL. Iris GL has a command that makes it possible to change the vertex
order of the last processed triangle. That makes it possible to change the direction
of a triangle strip. Since OpenGL does not have this command degenerate triangles
are added to the triangle strip in order to stitch strips together, at the cost of one
extra vertex. Evans et al. [1996] seek to minimize this use of degenerate triangles by
generating triangle strips based on a global heuristic that looks for large patches that
can easily be converted into large strips.

The generalized triangle mesh introduced by Deering [1995] relies on a special
purpose hardware accelerated cache called the mesh buffer. This buffer stores vertices
through explicit commands. Using a mesh buffer makes it possible to exploit that
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vertices are on average connected to six triangles, which is hard to fully utilize with
triangle strips [Deering and Nelson 1993]. Chow [1997] introduces an algorithm for
converting meshes into generalized triangle meshes.

Hoppe [1999] relies on the post transform and lighting cache (post-T&L cache).
The post-T&L cache is part of the vertex shading pipeline. The vertex shading
pipeline is the traditional rasterization pipeline which is used to process geometric
data and turn it into rasterized images. The post-T&L cache holds the most recently
processed vertices that have not yet been converted into primitives. Using this, he op-
timizes triangle strips by reusing the vertices in the cache as much as possible. Several
others have built on this principle to further improve rendering performance [Lin and
Yu 2006; Forsyth 2006; Sander et al. 2007]. In 2006, with the introduction of the
unified shader model [Lindholm et al. 2008], the GPU became massively parallel, al-
lowing for all shader stages to be run on all the generic processors on the GPU. This
led Kerbl et al. [2018] to question whether the post-T&L cache is still a part of the
GPU architecture. Based on empirical evidence obtained through vertex shader invo-
cations, they show that modern GPUs turn the index buffer into smaller batches and
process these in parallel.

A new rasterization pipeline called the mesh shading pipeline was introduced with
NVIDIA’s Turing architecture [Kubisch 2018a]. This pipeline lets the GPU process
small parts of the mesh called meshlets instead of individual triangles. The pipeline
no longer has the fixed function batching that Kerbl et al. [2018] found in the vertex
shading pipeline. Instead, this is done by the programmer, providing the opportunity
to make more informed decisions on how the mesh is batched into meshlets. Since
each meshlet is processed in parallel, there is no longer a post-T&L cache to hold
processed vertices, instead each processor has a cache of shared memory that all the
threads on that processor can access. Since the batching is done before rendering,
it does not need to take place again every time a new frame is rendered, removing
some overhead. The pipeline expects a local index buffer for each meshlet as an
output from the mesh shader stage, so this can either be precomputed or generated
in the mesh shader. An optional task shader stage can run before the mesh shader
to control culling, tessellation, and other things before it dispatches meshlets. The
fragment shader stage is unchanged. Kubisch [2018a] provides an excellent overview
of the hardware limits, built-in variables, and recommendations for the mesh shading
pipeline.

The mesh shading pipeline has received surprisingly little academic attention.
This is arguably because both the vertex and mesh shading pipeline benefit from tri-
angle strips that are arranged spatially to increase vertex locality. This becomes quite
apparent knowing that batching takes place on both pipelines, and both the post-T&L
cache as well as the processor shared memory can take advantage of vertex reuse.
Furthermore, real-time graphics is no longer exclusively about rasterizing triangles
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as efficiently as possible since real-time ray tracing and methods based on machine
learning have become hardware accelerated and – often in combination – lead to a
more diverse set of viable methods for efficient, high quality graphics.

Wihlidal [2016] shows how the graphics pipeline can benefit from clustering of
triangles, and compute-based culling of these clusters. Jensen et al. [2021] show that
the mesh shading pipeline has great potential for visualizing large geometric datasets,
and Unterguggenberger et al. [2021] show how the mesh shading pipeline can be
used for dynamic meshes. Mesh shaders work well for rendering large terrain [San-
terre et al. 2020], and can be used for continuous level of detail [Englert 2020]. In
the gaming industry the mesh shading pipeline has been adopted and is now part of
Unreal 5’s virtualized geometry pipeline called Nanite [Karis et al. 2021]. It is also
possible to find Github repositories with mesh processing tools for the mesh shading
pipeline [Walbourn 2014; Kapoulkine 2017; Lempiainen 2020]. Neff et al. [2022]
investigate texture atlases to reduce meshlet overdraw. In this paper, we explore dif-
ferent clustering strategies for meshlet generation and distill two key principles that
lead to better real-time rendering performance when generating meshlets.

2. Meshlets Descriptors

The buffer setup that we use with the mesh shading pipeline has three buffers, see
Figure 2. A local index buffer is divided into one section for each meshlet, and the
local indices start from 0 in each section. The indices are all 8-bit because they refer
to the local indices within a single meshlet. The hardware limit for vertices in a
single meshlet is 256, so 8 bits suffice. The global index buffer is also divided into
sections, one for each meshlet. This buffer differs from the traditional index buffer
in the sense that index duplication is reduced. If one meshlet uses a vertex several
times, the local index that points to the same global index is duplicated instead. The
last buffer is simply the vertex buffer, which is the same as the one used for the vertex
shading pipeline. With these buffers, all we need is a small descriptor for each meshlet
providing information about it for the multiprocessor. NVIDIA suggests keeping the
size of the meshlet descriptors to 128 bits which, on their hardware, is equivalent to
the minimum amount of data that is fetched on a GPU-side load instruction. The
meshlet descriptor is a small structure that keeps track of the meta data surrounding
a meshlet. It needs to at least hold offsets into the global and local index buffers, as
well as the number of primitives and vertices used in the meshlet. Other than this, the
descriptor can also store a bounding box, an average normal for the meshlet, or any
other information that the programmer wants to have associated with a meshlet.

The layouts of four different descriptors are in Tables 1 and 2. All descriptors use
at most 128 bits. All descriptors pack a bounding box into 48 bits, namely 8 bits for
the minimum and maximum coordinate on the x-, y- and z-axis. The bounding box
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Figure 2. The three buffers used by the GPU when processing meshlets: local index buffer,
global index buffer, and vertex buffer. The meshlet descriptor has offsets into these buffers.
Note that global indices (re)appear in all meshlets they are used in.

Table 1. The memory layout of two meshlet descriptors proposed by NVIDIA [Kubisch
2018b]. Meshlet descriptors are 128 bit data structures that are used in task and mesh shaders.

NVIDIA descriptor A
Bits

Bounding Box 48
No. Vertices 8
No. Primitives 8
Global idx offset 20
Local idx offset 20
Normal Cone 24

NVIDIA descriptor B
Bits

Bounding Box 48
No. Vertices 8
No. Primitives 8
vertexPack 8
Index buffer offset 32
Normal Cone 24

coordinates are relative to the extent of the mesh bounding box. They all use 8 bits
for describing the number of primitives and vertices in the meshlet. The normal cone
is represented by a normal and an angle packed into 24 bits. The normal and cone
angles are mapped into octants based on Cigolle et al. [2014]. All data in a descriptor
is packed into four 32-bit unsigned integers. The NVIDIA descriptor A packs the 8
bit cone angle partially into two 32 bit unsigned integers. The 4 upper bits in one and
the 4 lower bits in the other. The remaining 3 descriptors pack the 8 bit cone angle
together, which saves some unpacking within the mesh shader. The biggest point of
divergence between the 4 descriptors lies in how they store the offsets required for the
global and local index buffers.

The NVIDIA descriptor A has 20 bits left for indexing into both the local and the
global index buffer. This means that meshes that require an offset which is larger than
220 will need to be broken into several draw calls.
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Table 2. A descriptor for the task shader stage (left) and another descriptor for the mesh
shader stage (right). Use of different descriptors for task and mesh shaders is an alternative
to using the same descriptor for both shaders.

Task Shader meshlet descriptor
Bits

Bounding Box 48
Normal Cone 24

Mesh Shader meshlet descriptor
Bits

No. Vertices 8
No. Primitives 8
Global idx offset 32
Local idx offset 32

The NVIDIA descriptor B takes these same 40 bits and uses 32 of them for off-
setting which allows for much larger meshes. The downside of this is that the offsets
into the global and local index buffers need to be aligned, as the same offset is used
in both buffers. The remaining 8 bits are used to describe how the global indices are
packed, i.e. if they are 16 bit or 32 bit numbers. This effectively means that the global
indices can be packed into 16 bits for meshlets that only use global indices that are
smaller than 216.

The third descriptor separates the task and meshlet descriptors, this means that it
uses 256 bits for each meshlet instead of 128. But it only loads 128 bits per shader
stage. By doing that we can get rid of the task shader related data in the mesh shader
descriptor and vice-versa. That way we can allow 32 bits for both the global and local
index buffer offsets. So here we require no alignment between the buffers. We refer
to this as the split descriptor.

Figure 3 shows an alternative buffer setup for a monolithic meshlet descriptor.
The monolithic descriptor is also divided into two descriptors, to allow for 2x32 bits
offsetting. One offsets into the local index buffer, and instead of using a global index
buffer, the second offsets directly into the vertex buffer, which is divided into sections
for each meshlet. The trade off here is memory, since some vertices will be duplicated
and appear in several sections. On the other hand, no global index buffer is needed.
The duplication is required for all vertices that live on the border of a meshlet. So, the
four different descriptors all come with different memory footprints as well as some
variations in how much GPU side unpacking they require.

Each meshlet can only contain a certain number of vertices and primitives. These
numbers dependent on the GPU hardware. In the case of NVIDIA’s 2000 RTX series,
the hardware limits are 256 vertices and 256 primitives. Lower values can be set as
well. NVIDIA suggests using either 32 or 64 vertices and 40, 84 or 126 primitives for
each meshlet. In this paper, we use 64 vertices and 126 primitives throughout, which
is the same as NVIDIA use in their meshlet sample [Kubisch 2018b].

We use NVIDIA descriptor B when comparing the rendering performance of dif-
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Figure 3. A monolithic version of the buffer setup used by the GPU when processing mesh-
lets. Using only two buffers: local index buffer and vertex buffer. The monolithic meshlet
descriptor has offsets into these. Note that vertices (re)appear in all meshlets they are used in.

ferent meshlet generation methods because it allows us to process large meshes with
one draw call. For our descriptor comparison, we compare all four descriptors while
using the meshlet clustering method with best performance.

3. Meshlet Clustering Methods

The following paragraphs describe the different methods for organizing a mesh into
meshlet collections (clusters) that we compare. Figure 1 exemplifies the differences
between the meshlets generated by the different methods.

NVIDIA On behalf of NVIDIA, Kubisch [2018b] provides an example of organizing
a mesh into meshlets. The meshlets are created one at the time by going through the
index buffer. New primitives and vertices are added to the current meshlets as long
as there is room for more. When it is full, a new meshlet is created. This process
is repeated until the algorithm has gone through the entire index buffer. Every time
a primitive is added to a meshlet it generates local 8-bit indices for the vertices, or
reuses existing local indices if the vertices are already in the meshlet. It de-duplicates
the global vertex indices, meaning that the global index of a vertex is only stored once,
in each meshlet that uses the vertex, instead of being stored once for each triangle that
it is part of. Instead the local indices are stored for each triangle. Because the local
index buffer is 8-bit and the global index buffer is 16-or 32-bit this save spaces. The
approach has a dependency on the original connectivity of the index buffer, and the
resulting number of meshlets, as well as the vertex reuse within the meshlets is highly
dependant on the structure of the index buffer. Figure 1 shows an example of the
resulting meshlets. The index buffer appears to not be very optimized, which results
in a lot meshlets being generated.
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Kapoulkine Arseny Kapoulkine [2017] maintains a widely used and popular library
called meshOptimizer. The library has several functions that improve, pack, and op-
timize meshes for better render performance, and it includes a meshlet generation
strategy. First, the library creates a data structure based on triangle and vertex ad-
jacency. A centroid and a normal is then calculated for each triangle, and the area
of the mesh is also calculated. The area is used to create an expected meshlet area,
assuming square flat patches. In addition, a kd tree is created from the triangle struc-
ture. All this is used to create the meshlets. The kd tree is used to pick the starting
triangle for a meshlet, and the adjacency structure is then used to look up the nearest
triangles. Each triangle gets two ratings: one based on vertex reuse, another based
on how much it increases the area of the meshlet. Regarding triangle reuse, triangles
that already have vertices in the meshlet get a higher rating. Triangles islands also
get higher importance. Should it happen that there is room for more triangles in the
meshlet but none available on the border, the algorithm uses the kd tree to look up
the nearest available triangle. The meshlet generation algorithm allows one to set a
weight for the triangle normals, that will make it weigh these more when picking the
next triangle for the current meshlet. We set it to 0.0, 0.5 and 1.0, and found that
0.0 produced the best results for the large meshes while the difference between the
weights only had a very small impact on the small meshes. Because of this, we report
our results with the weight set to 0.0.

Greedy We have developed a greedy algorithm that uses a list of vertices, where
each vertex contains information about which triangles it is part of. The algorithm
takes the first vertex, and then from that, grows out the triangle cluster until a meshlet
is full. If a meshlet hits the vertex max before the primitive max, we look at the border
of the meshlet for triangles that already have all vertices in the meshlet, and add these.
A new meshlet is then started from a vertex on the border of the meshlet that was just
completed, and the process is repeated. If a meshlet runs out of available triangles on
its border, we go back to the list and picks the next available one. Because of this, the
algorithm is sensitive to the order of the vertex list. We therefore use a heuristic to sort
the list before running the algorithm. We find that half the time sorting according to
the biggest bounding box axis length gives the best result. In particular, this is the case
for the three biggest meshes. We also developed a version using a triangle list instead
of a vertex list, but found that the vertex based algorithm always outperformed the
triangle based. This is most likely because the meshlet border for vertices is based on
all the triangles that the vertices in the meshlet touch, while the border in the triangle
version is based on all triangles that share an edge with triangles that are already in
the meshlet. This effectively means that the border is ”larger” for the vertex version
which results in fewer meshlets overall. Moving forward we only report on the vertex
based algorithms, and use the heuristic of sorting the vertex list based on the longest
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bounding box axis of the mesh, from low to high.

Bounding sphere Our more advanced strategy is similar to the greedy one, except
we here grow a bounding sphere around the starting vertex and use an algorithm by
Bærentzen and Rotenberg [2021] to add triangles that minimize the radius of this
bounding sphere. In addition to striving for a mimimal bounding sphere radius, we
also (inspired by Kapoulkine) prioritize triangles with vertices already in the meshlet
and triangle islands.

k-medoids One way to create clusters of triangles is by turning a mesh into smaller
partitions using k-medoids [Kaufman and Rousseeuw 1990]. While this is an al-
gorithm normally used for unsupervised learning, to investigate if and how many
clusters a dataset might have, we use it to obtain balanced clusters. We chose the k-
medoids approach because it works along the mesh surface, whereas the more com-
monly known k-means clustering would use a centroid, the cluster mean, to represent
a cluster. A centroid detached from the surface easily results in clusters with triangles
that are not connected. A medoid on the other hand is an actual datapoint within the
cluster that is most suited to represent that cluster. These can be found by minimizing
the dissimilarity within a partition. The k-medoids method partitions the mesh into
k clusters and finds the medoid for each of these clusters. The medoid is the trian-
gle with the shortest distance to all other triangles in the cluster. The algorithm runs
in two steps after creating an initial clustering of the mesh. First the medoids of all
clusters are found. All triangles are then compared to these medoids and assigned to
the cluster with the most similar medoid. These two steps are repeated until conver-
gence [Kaufman and Rousseeuw 1990]. The dissimilarity can be expressed through a
distance metric between triangles. We run the algorithm on a triangle data structure,
where the distance between two triangles is equal to the number of adjacent triangles
we have to walk through to get from one to the other. The convergence criterion is
to have an average distance close to zero between the new and old cluster centers,
meaning that cluster centers moved very little in the last iteration. We start the algo-
rithm with a number of clusters found by dividing the total number of triangles with
the maximum number of triangles in a meshlet. After convergence we check if the
clusters fit into meshlets. If not, then we add one new cluster and repeat. By only
adding one new cluster we minimize the total number of clusters at the cost of longer
processing times.

The five methods just mentioned vary quite a bit in implementation complexity.
With NVIDIA’s algorithm arguably being the simplest to implement, as it just directly
works on the index buffer. After this comes the greedy algorithm that uses a trian-
gle and vertex adjacency structure in a sorted list instead of the index buffer, with
the bounding sphere version adding a little complexity in terms of a triangle scoring
function. Then we have Kapoulkine’s which requires both a triangle and vertex adja-
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cency structure, a kd tree, and two scoring functions. Lastly, we have the k-medoids
algorithm which not only requires a triangle adjacency structure, but also two itera-
tive steps based on the breadth first algorithm, and to even be applicable it needs to be
optimized and parallelized.

4. Experimental Setup

We compare the five different algorithms to see which one performs best, and why.
Our hope is that this comparison allows us to distil more general principles for mesh-
let generation that transcend the specific hardware, and numbers used. To make sure
that no bias is introduced into the experimental process we have set up a Vulkan vi-
sualization engine which visualizes all the objects from a new random point in space
each frame. Our efforts to randomize the view point is to average out the effect of
overdraw. By setting the random seed we make sure that all algorithms are tested
with the same sequence of view points, we do this for a total of 100.000 frames and
record different statistics for each method that will be presented below. The frames are
rendered at a resolution of 1280x720 pixels. We perform the analysis on 99.999 of the
100.000 frames. The first frame shows a significantly higher render time, presumably
because of some data transfer between the CPU and the GPU, which is not evident for
the subsequent 99.999 frames. All experiments were run on a desktop with an Intel
Core i9-9900k, 64GB of DDR4-2666 RAM, and one NVIDIA GeForce RTX 2080
Ti Turbo OC with 11GB of GDDR6 RAM. We report our results in average render
time per frame in milliseconds, while also exploring different other metrics surround-
ing the meshlets that impact the render timer. We use five different models for our
tests in this paper. The vertex and triangle count of each model can be seen in Fig-
ure 4. The Stanford Bunny, Happy Buddha and Asian Dragon are from The Stanford
3D Scanning Repository (https://graphics.stanford.edu/data/3Dscanrep/). The Seal
Skull has been 3D scanned into a point cloud and digitally reconstructed as a triangle
mesh (https://www.morphosource.org/projects/000355763). The topology optimized
airplane wing [Aage et al. 2017; Aage et al. 2020] is the largest model in our compar-
isons. The last mesh has been created with PrusaSlicer (https://www.prusa3d.com/)
using a model called Nobby (https://www.prusaprinters.org/prints/35338-nobby-octo-
pus-sculpt). We use the same experimental set up when testing the different meshlet
descriptors, using the best performing meshlet generation algorithm.

5. Results

We are interested in finding a good clustering algorithm for meshlet generation. To
investigate this, we plot the render times of the different algorithms as a function
of triangle count in Figure 5. We see a fairly linear trend. The solid lines show
render times without meshlet culling, while the dashed lines include meshlet culling.
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Bunny Happy Dragon Skull Nobby Wing

V: 34 817 V: 543 652 V: 3 609 600 V: 7 252 445 V: 16 960 045 V: 30 670 121
T: 69 630 T: 1 087 716 T: 7 219 045 T: 14 504 882 T: 32 905 214 T: 38 629 758

Figure 4. The six meshes used in our experiment and their numbers of vertices (V) and
triangles (T).

Table 3. Render times.

Method Bunny Happy Dragon Skull Nobby Wing
NVIDIA 0.15 0.28 0.87 1.70 4.21 4.68
Kapoulkine 0.13 0.22 0.79 1.33 4.09 4.10
greedy 0.13 0.23 0.76 1.36 4.11 3.74
bounding sphere 0.13 0.22 0.74 1.25 4.15 3.58
k-medoids 0.13 0.23 0.77 N/A N/A N/A

Figure 6 shows how many percent of the meshlets are culled on average, each frame.
The actual render times can be seen in Table 3. Here it becomes evident that for the
two smallest meshes there is not really any difference in performance between the
best performing algorithms, but clearly, for the larger methods there is a difference in
performance. Given the linear trend we also fit a regression line to each algorithm,
and report the resulting slope in Table 4. The slopes are reported in nanoseconds per
triangle, with and without culling, and we consider these slopes an overall measure
of the performance of the different methods.. The k-medoids method is omitted in
this table due to the few data points. The smaller the slope is the less an algorithm
grows in render time as more triangles are rendered. The bounding sphere algorithm
achieves the smallest slope, so extrapolating from our six meshes, it increases the
least in render time as the number of triangles grow. Since the difference between
the algorithms is evident both with and without culling of meshlets, it means that the
clustering within the meshlets themselves also contribute to the difference in render
times. When we compare the render times to the implementation complexity of the
algorithm, we have NVIDIA’s algorithm which is the simplest to implement, but this
comes with a performance hit. On the other hand we have Kapoulkine’s algorithm
which achieved good render times but is rather complicated to implement. Right in
the middle we have the greedy algorithm. This has the second smallest slope while
also being quite simple to implement.

Each meshlet has a maximum number of vertices and a maximum number of
primitives that it can contain. We find that all methods (except k-medoids) have a very
high average vertex count. For each meshlet collection, we find the average vertex fill
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Figure 5. Average render time as a result of triangles based on the six meshes. Render times
with meshlet culling are presented with a dashed line and render times without culling are
presented with an opaque line.

Table 4. Slope of a linear regression fitted to the six mesh render times based on the four dif-
ferent algorithms with and without culling. The slope shows how much an algorithm increases
in render time as more triangles are rendered. The time is given in nanoseconds.

Method without culling with culling

NVIDIA 0.1246 0.1207

Kapoulkine 0.1179 0.1114

greedy 0.1109 0.1057

bounding sphere 0.1091 0.1037
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Figure 6. The average percent of meshlets that are culled for each frame when using the
five different clustering algorithms. The culled meshlets are divided into two, the back face
culled meshlets are represented by the fully opaque bars, while the frustum culled meshlets
are represented by the semi-transparent bars.

(ratio of vertices in a meshlet to the maximum number it can hold). All other collec-
tions have an average above 0.99 (except for k-medoids with Bunny: 0.812, Happy:
0.770, Dragon: 0.811). With all algorithms achieving close to vertex-complete mesh-
lets, i.e. meshlets that are filled with vertices to the limit, the vertex completeness
does not help us explain the differences in render times.

To see why k-medoids generates meshlet collections with a lower average vertex
completeness, we compare its distributions to the other algorithms in Figure 7. Since
the nature of the k-medoids algorithm is to balance out the clusters we get a distribu-
tion of the number of vertices with two fat tails. This means that we will always be
below capacity, and when we compare it to NVIDIA’s, and especially Kapoulkine’s,
we see high peaks and only a tail to one side. Kapoulkine’s algorithm performs bet-
ter than both NVIDIA’s and the k-medoids, and produces quite few meshlets when
compared to the two. The numbers of meshlets produced by the different methods
for the different meshes are listed in 6. Since the k-medoids algorithm is trying to
distribute the triangles and not the vertices the distribution of the number of triangles
show the same two tailed distribution. NVIDIA’s and Kapoulkine’s distributions are
more interesting. Kapoulkine’s has a peak at a high number of triangles, and a tail that
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Figure 7. The distribution of the number of vertices and the number of triangles in each
meshlet across four meshlet generation algorithms. The top row shows the vertices and bottom
row is triangles. The meshlet collections are based on the Stanford Bunny mesh.

falls off towards smaller numbers, while NVIDIA’s is opposite. This is most likely be-
cause of the index buffer, and how it does not promote locality as well as Kapoulkine’s
adjacency based method, resulting in less locality and more unique vertices. These
results informed us that greedy strategies ensure more vertex- and triangle-complete
meshlets.

Since vertex completeness did not help differentiate the algorithms, we instead
inspect triangle completeness. Table 5 shows the average primitive fill (ratio of prim-
itives to the maximum number of primitives). Unlike the vertex count, the primitive
count varies quite a bit more across the different algorithms and meshes. If we com-
pare this Table 3, we see a correlation between the methods that perform the best
and their primitive fill being high (although not as simple as saying that the highest
primitive fill yields the best render times). The primitive fill number also explains
the variance in the meshlet collection sizes. If we look at NVIDIA’s algorithm for in-
stance, it produces more meshlets than the other algorithms. Since each meshlet holds
fewer primitives, we need more meshlets to represent the meshes. The k-medoids al-
gorithm does not achieve a high primitive fill for any of its three meshes. Since it fails
to produce high vertex fill, it becomes even more difficult to achieve a high primitive
fill. NVIDIA’s algorithm has the lowest primitive fill, and also performs the worst,
which indicates that it is difficult to build meshlets directly from the index buffer.

The NVIDIA and k-medoids algorithms both generate meshlet collections with a
somewhat wide distribution of vertices and primitives (Figure 7). To investigate how
this impacts the performance of meshlet collections, we sort the meshlets with respect
to number of vertices and number of primitives. We only do this for the NVIDIA-
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Table 5. The average primitive fill for meshlet collections.

Method Bunny Happy Dragon Skull Nobby Wing
NVIDIA 0.238 0.370 0.459 0.503 0.849 0.488
Kapoulkine 0.747 0.767 0.753 0.756 0.906 0.699
greedy 0.731 0.706 0.739 0.718 0.910 0.723
bounding sphere 0.756 0.744 0.759 0.755 0.911 0.751
k-medoids 0.600 0.568 0.597 N/A N/A N/A

Figure 8. The average render times for the NVIDIA meshlet collections for each mesh as a
result of sorting the meshlet list that is send to the GPU. The list is sorted based on number of
vertices and primitives. The resulting render times are compared to sending the meshlet list
as is. The hatched bar for each mesh show the best performing ordering.

based meshlet collections as the other algorithms generate more uniform meshlets. As
seen in Figure 8, the order of the meshlets do play a role. The plot shows the render
time when not culling any meshlets and using the NVIDIA descriptor B without index
packing. We clearly see that sorting after vertex fill yields the best results. This is
most likely due to the fact that vertices need to be loaded and transformed in the mesh
shader, whereas primitives are represented by an index list that just requires loading
in data. The reason why the render times are affected is that the GPU resources are
used better. Meshlets are dispatched in groups to be processed in parallel, and if these
groups are done processing at the same time, a new group can be dispatched without
idle time. If the meshlets are of varying sizes, some will finish before others and will
end up having to wait for the biggest meshlet to finish processing before a new group
can be dispatched.

Since cullability increases performance of the meshlet collections, we find it in-
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Table 6. Number of meshlets.

method Bunny Happy Dragon Skull Nobby Wing
NVIDIA 2 321 23 321 124 797 229 043 307 774 628 686
Kapoulkine 740 11 246 76 127 152 261 288 230 438 582
greedy 756 12 231 77 538 160 436 286 956 424 325
bounding sphere 731 11 605 75 457 152 501 286 767 408 302
k-medoids 921 15 210 95 953 N/A N/A N/A

Figure 9. Comparison between the bounding sphere vertex meshlet collections with and
without spatially coherent meshlets.The top plot shows the average render time, as a function
of the size of the meshlet collections. The bottom plot shows the average percent of meshlets
that are being culled per frame for each method.

teresting to explore the importance of the cullability of the meshlets. To test this we
tweak our bounding sphere technique for generating meshlets. When a meshlet runs
out of new triangles to add from its border, we finish the meshlet instead of going
back to the vertex list to look for new candidates. This enforces spatially coherent
meshlets. By doing this we create more compact meshlets, making them more likely
to be frustum culled. This also reduces the chance of adding a triangle with a normal
that deviates too much from the meshlet normal. The increased cullability comes at
the cost of a larger meshlet collection. In Figure 9, we see that the more cullable
spatially coherent meshlet collections are offset to the right of the normal meshlet
collection because they contain more meshlets. For smaller meshes, the spatially co-
herent meshlet collections show better performance, despite having more meshlets.
The increased number of meshlets seems to be offset by the larger amount of culling.
The increased culling is however not sufficient to hide the larger loading and process-
ing times for the big meshes. Here, the difference in render times between the two
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Figure 10. Performance comparison across the six mehses for the four different meshlet
descriptors described in Section 2. For each mesh, the hatched bars highlight the descriptor
with best performance.

meshlet collections is small.

Meshlet Descriptor Comparison We use our bounding sphere algorithm to test the
four different meshlet descriptors described in Section 2. Results are in Figure 10.
The type of descriptor that has the best performance varies from mesh to mesh. Only
for Nobby we see a really big difference in render times. Here, the NVIDIA pack
descriptor outperforms the other descriptors with as much as 1 ms. The Nobby model
is a representation of a 3D print, because of this it consists of tubes. These tubes will
have normals that point in all directions making it impossible to form meshlets with
well defined normal cones, meaning that no or very little back face culling is taking
place. Because of this, all visible meshlets are processed which gives an interesting
insight into how much the meshlet culling affects performance. The high average
render time for the NVIDIA descriptor A is most likely a result of overdraw, because
the mesh has almost no cullable meshlets, and is divided into several chucks. NVIDIA
descriptor B has some (680) meshlets that can be compressed.

6. Discussion

Most of our experiments show that vertex completeness is important. Exploring the
meshlets generated from k-medoids show this the best. The distributions from Fig-
ure 7 and render times from Table 3 shows that one should prioritize vertex complete
meshlets over balanced meshlets. Our investigation into spatially coherent meshlets
show the same, albeit with a weaker signal. Spatially coherent meshlets results in
better cullable meshlets at the cost of generating more meshlets. Generating more
meshlets means having a bigger distribution of vertices and primitives. The differ-
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ences here are small when compared to the k-medoids results because the portion of
meshlets with lower vertex completeness is small, but for bigger meshes it starts to
affect performance more. More vertex complete meshlets also means more uniform
meshlets, and more uniform meshlets reduce render times. We saw this when sorting
the NVIDIA meshlet collections in Figure 8.

Inspecting Table 3 in conjunction with Table 5 revealed the correlation between
high primitive fill and better performance. It is interesting to explore the interaction
between average primitive fill and vertex completeness by inspecting the k-medoids
and the NVIDIA meshlet collections. For the Bunny mesh, we see an example where
the average primitive fill on the NVIDIA meshlet collection is so low that the high
average vertex fill cannot compensate for it. This demonstrates that one should not
only optimize around one heuristic but take both into account. For the Happy mesh,
the NVIDIA collection performs better than k-medoids, showing that vertex com-
pleteness is more important. For the Dragon mesh, the tables have turned and the
k-medoids collection, with a better balance between the two, preforms best. This in-
teraction tells us that it is important to prioritize both vertex completeness and prim-
itive fill. We also observe that it is hard to have a high primitive fill without having
nearly vertex complete meshlets.

Striving for cullable meshlets is the third heuristic. Our experiments show that
cullable meshlets can help balance out larger meshlet collections. Figure 9 exempli-
fies how meshlet collections slightly enlarged to increase cullablity can indeed result
in better performance. It does however not seem to affect performance as much as
vertex completeness or maximizing the primitive fill.

The Skull and Nobby meshes produce some surprising results for some of the
meshlet generation strategies. It is surprising that Kapoulkine’s algorithm does not
perform best on the Skull, as the data show more culling, and less meshlets. Per-
haps the difference is that our method builds meshlets along the z-axis of the skull as
opposed to from the middle and out, this could affect vertex loading, overdraw, and
cache misses on the GPU.

Nobby shows that some meshes will be exceptions to the rule. It will be possible
to find meshes where these heuristics and metrics break down. In fact, tuning one
aspect of meshlet generation affects all the other aspects. The metrics, and indeed
most of the factors we explore in this paper are highly correlated, and this can make it
hard to isolate different aspects as they affect each other. Two collections of meshlets
might differ in efficiency even if almost all meshlets are packed to capacity in both
collections. Because of this, it becomes even more desirable to have an algorithm that
is simple to implement. The greedy algorithm proves to be quite useful in practice as
it achieves good render times across the meshes while also being simple to implement.

Lastly we conducted a small exploratory experiment which compared different
ways of packing the meshlet descriptor data. Interestingly, we find that the mono-
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lithic descriptor performs quite well. This is certainly interesting. The monolithic
descriptor uses a simpler buffer setup, and by using one descriptor per shader stage,
it becomes possible to add more meta data if desired.

7. Conclusion

We find, quite simply, that the more compact the meshlet collections become the bet-
ter they perform. Meshlets have vertex and primitive limits, in this paper we used the
suggested 64 vertices and 126 triangles. Since each triangle requires 3 vertices, the
meshlets always hits the vertex limit before the triangle limit. In other words, it is
absolutely paramount that a meshlet collection achieves a high average vertex fill. In
this way, it becomes possible to also have a high average primitive fill. Because of
this, we recommend the following strategy for optimizing meshlet generation: make
the meshlets vertex complete first and then maximize the primitive fill. The combi-
nation of these two will create meshlets with large vertex reuse and locality, while
also minimizing the total number of meshlets that are required to represent a mesh.
Finally, we of course recommend to strive for cullable meshlets, but not at the cost
of a too big increase in meshlet collection size. We found that performance rather
quickly drops when the meshlet collections grow in size.

We also explored other properties of both the mesh shading pipeline and the mesh-
let collections. We found that high uniformity in the meshlet collections promotes
even workload across processors on the GPU which yields better render times. Dif-
ferent meshlet descriptors do not have the biggest impact on render times, so working
with monolithic meshlets could prove to be a good choice for scientific visualization
where rendering is done on distributed systems. As an interesting topic for future
work, descriptors that require less data unpacking in the mesh shader could yield im-
proved render performance, and since dividing descriptors into two also did not affect
performance too much, it could be interesting to explore whether new useful meta
data could be added.
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