

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 07, 2024

Programmatic agents and causal state abstractions

Larsen, Rasmus

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Larsen, R. (2021). Programmatic agents and causal state abstractions. Technical University of Denmark.

https://orbit.dtu.dk/en/publications/e4ba9ff9-3983-478f-b4d5-fb9ab28960d8

Ph.D. Thesis
Doctor of Philosophy

Programmatic agents andcausal state abstractions

Rasmus Larsen

Kongens Lyngby, Denmark 2021

DTU Compute
Department of Applied Mathematics and Computer Science
Technical University of Denmark

Matematiktorvet
Building 303B
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary
When people think of artificial intelligence, they might imagine the kind of anthro-
pomorphic robots found in science-fiction literature and films. These robots interact
with the world in a way that comes naturally to humans, and like humans they have
the ability to navigate through new situations by using knowledge and skills that they
have previously acquired.

The methods that we use today for training artificial agents that interact with
their environment lack several key features, which are needed to achieve the men-
tioned generalization ability. These features are composition, communication, and
abstraction; in short, composition is to form a structure from smaller parts, commu-
nication is the ability to be understood by humans and other agents, and abstraction
is the ability to look past details and see the bigger picture. When applied to the
behavior of agents, these features allow for flexible behavior that combines previously
learned skills to new situations, while also being able to tell others about the whys
and hows of the behavior. A lot of this is reflected in the natural languages that
humans use to communicate, and both these and languages used to write computer
programs are structured with composition and communication in mind. The first
contribution is a method for learning a representation of agent behavior encoded in
a computer language, by imitating an existing policy which does not have a language
representation. Since this language representation is composed of smaller parts, and
can be read by people or machines, it is a step towards the features of composition
and communication.

The work towards the third feature, abstraction, is based on the concept of causal-
ity. The basis of causality is straightforward: if event B happens because event A
happened, then we say that A caused B. This concept is useful because it can inform
us about whether something is important or not, either because it has an influence
on something we care about, or because it does not. The second contribution is a
method for learning a function that an artificial agent can use to group a bunch of
distinct yet similar observations into a single state. For example, when opening the
front door of a house, it might be useful for an agent to refer to having a key to the
front door of the house simply as “having a key”, and not “having a key while cooking
dinner in the kitchen”, or “having a key while cleaning the north-west corner of the
living room” – essentially, the causality principle is used to infer what is important
to represent, due to it having a causal impact on the goal of opening the door.

ii

Preface
This thesis was prepared at the department of Applied Mathematics and Computer
Science at the Technical University of Denmark in partial fulfillment of the require-
ments for acquiring a Ph.D. degree in Computer Science.

The research work presented in this thesis was supervised by Mikkel Nørgaard
Schmidt and Lars Kai Hansen.

Kongens Lyngby, Denmark, August 9, 2021

Rasmus Larsen

iv

Acknowledgements
To everyone who supported me throughout the years.

vi

Contents
Summary i

Preface iii

Acknowledgements v

Contents vii

1 Introduction 1
1.1 Contributions . 3

2 Background 5
2.1 Reinforcement learning . 5
2.2 Program synthesis . 12

3 Approaches to program synthesis and structured reinforcement learning 17
3.1 Programs and reinforcement learning 17
3.2 Dimensions in program synthesis . 18
3.3 Genetic programming . 20
3.4 Machine learning . 23
3.5 Other relevant areas . 31

4 Paper 1: Programmatic policy extraction by local search 41
4.1 Lambda calculus and types . 42
4.2 Local search . 46
4.3 Distributed search . 47
4.4 Discussion . 48

5 Paper 2: Reinforcement learning of causal variables 51
5.1 Direct and indirect effects of policies 52
5.2 Optimizing the indirect effect . 54
5.3 Discussion . 55

6 Discussion 57
6.1 Perspective and future work . 58

viii Contents

A Draft of paper 1 61

B Draft of paper 2 71

Bibliography 89

CHAPTER1
Introduction

The holy grail of artificial intelligence is an agent that learns to behave intelligently in
complex, varied settings. Such an agent would need to decompose learned behaviors
and compose new ones, bringing what it has previously learned into new settings.
This is necessary, unless every new environment and behavior must be learned from
scratch. Additionally, a group of intelligent agents can benefit from communicating
about commonly used behaviors. For example, a recipe is nice to have when learning
to cook a meal. However, a recipe is quite abstract – it contains references to other
behaviors that the reader must already know how to perform, such as picking up a
spoon and filling it with sugar. Despite this difficulty, recipes manage to communicate
novel behaviors to humans, who have previously acquired the necessary sub-behaviors.

Reinforcement learning is currently the go-to approach for learning behaviors in
interactive settings. Through modern deep learning methods, the approach has been
scaled to high-dimensional perceptual settings, where state observations are images.
Policies, which are behavioral functions that map state observations to the actions
that the agent takes, are implemented as deep neural networks. In the case of im-
age observations, the neural network will probably have a convolutional structure –
small filters that are repeatedly applied across the entire image, imbuing the network
with an inductive bias towards visual structures such as edges and corners, at a low
level, or entire complex objects, at a high level. The purpose of an inductive bias
is to be informative about the structure of good solutions; images of the world have
structural regularities such as edges, and human brains also perform edge detection
in early stages of visual processing. Deep learning has indeed led to greatly improved
approaches to perception in fields like reinforcement learning, but approaches to be-
havioral structure have not experienced the same level of success. Using deep neural
networks to represent complicated behaviors lacks some key features: composition,
communication, and abstraction.

Composition: Behaviors must be able to be constructed by using other behaviors.
Consider this perspective: at a low level, the movements of all animals consist of
a small set of possible muscle contractions, stitched together to achieve a higher
purpose. The same movement in different contexts can be part of very distinct high-
level behaviors. There is some evidence in mammals of what could reasonably be
called a grammar of behavior, where behavioral syllables are short, stereotypical
movements that when stitched together become the overall movements of the animal.
Even high-level behaviors can be composed, such as what humans do when they plan

2 1 Introduction

their day.
Monolithic neural networks, however, are entangled in a way that makes decompo-

sition very difficult. Due to how outputs are calculated, it is generally not possible to
attribute a behavior to a specific part of the network, and consequently it is difficult
to re-use behaviors and combine them. What is needed is a hierarchical foundation
for constructing behavior. Hierarchical reinforcement learning takes an integrated ap-
proach, where the existing concepts of reinforcement learning are extended in various
ways to support hierarchical structure. As an alternative, entirely different represen-
tations and approaches can be used. It is well known that compositionality is a main
feature of many programming languages, both imperative and functional; programs
can be written and understood in parts, and the meaning of the whole is the com-
bined meaning of the parts. Using programs as structured policies is one of the main
concepts considered in this thesis.

Communication: Abstracted behaviors must be able to be communicated to and
understood by other agents, including humans. Understandable behavioral policies
are important in many applications, for example in safety critical systems where be-
havior must be verified. Envisioning a future where humans will have more and more
interaction with artificially intelligent agents, it could even become a requirement for
certain classes of algorithms to be interpretable. For example, it is critical for an
autonomous vehicle to behave in a safe and predictable manner, and if it happens
not to, being able to understand why is very valuable.

Beyond interpretability to humans, understandable policies can be understood by
other artificial agents. Different agents will experience different settings, and thus will
learn different useful skills. If skills cannot be shared, agents are bound by a common
set of skills that they are “cloned” with, plus any skills subsequently acquired on
their own. A programming language represents a structured, shared foundation that
agents can potentially communicate by – if two agents understand the same language,
and share a set of grounded variables in this language, any related programs can be
shared between them. This grounding of variables is one of the subjects of the last
feature: abstraction.

Abstraction: Behaviors must be able to be used in different settings. A recipe
can be followed at home or in a restaurant kitchen, and it probably does not matter if
one uses a plastic or metal bowl to mix the ingredients. Focusing on certain aspects of
a situation while ignoring others is central to hierarchical reasoning, where concepts
at different levels of the hierarchy can be “hidden” from consideration. In order to call
a function, programmers do not generally have to consider how a CPU works, how the
specific function is implemented, or even how many lines of code the implementation
contains. All such aspects are abstracted away by a hierarchy, and without this
hierarchy the programmer would be overwhelmed by the complexity of even simple
tasks.

Another perspective on abstraction is through concept learning and perceptual
grounding. This is critical to understandability and communication; behavioral poli-
cies should preferably make decisions based on concepts that correspond to things in
the real world, and choosing the right level of abstraction for such concepts is essential.

1.1 Contributions 3

In our recipe example, the correct abstraction would probably tell us that the color
of our bowl is irrelevant. The wrong abstraction, perhaps learned by cooking only
with red bowls, tells us not only that we cannot use a green bowl, but also that a red
shoe will do. One way to make sense of this is through causality – would the outcome
(successfully cooking a meal) be any different, had the policy been to use any color of
bowls instead of only red ones? This perspective leads to the consideration of causal
state abstractions, the other main concept of the thesis.

1.1 Contributions
To this end, I have worked in two directions that are useful for learning to decompose
and compose communicable behaviors in varied settings:

1. Behavioral policies with compositional, programmatic structure.

2. State abstractions obtained through causal analysis.

More specifically, the work described in this thesis combines concepts from rein-
forcement learning, program synthesis, and causal analysis. First, by using program
synthesis through local search in program space to discover programmatic policies
that imitate neural policies. Second, by using causal analysis in a reinforcement
learning setting to learn a causal state abstraction that is both useful for maximizing
an outcome and attainable by an agent.

The structure of the remainder of the thesis is as follows.
Chapter 2 contains a short presentation of some necessary theory for reinforcement

learning, and a discussion of program synthesis basics.
Chapter 3 examines a variety of approaches at the intersection of program syn-

thesis and reinforcement learning. First, some key dimensions of program synthesis
and programmatic policy learning are identified. Methods from the field of genetic
programming are discussed, before machine learning approaches are discussed, both
in relation to the identified dimensions and by expanding each dimension into several
classes of approaches. Finally, a selection research from other related fields is pre-
sented, such as papers on hierarchical reinforcement learning and generalization. The
goal of this chapter is to give both a broad overview of the fields, and some insights
into different important aspects of the fields.

Chapter 4 presents the first paper, “Programmatic policy extraction by iterative
local search”. The paper introduces a neighborhood structure around a given program
under a domain specific language. The neighborhood is used to iteratively search for
programs that optimize an imitation loss between the program and an existing policy,
such as a neural network. The chapter introduces some necessary theory that is not
covered in the paper, before presenting the search method itself.

Chapter 5 presents the second paper, “Reinforcement learning of causal variables
using mediation analysis”. In the paper, a method is described for discovering an

4 1 Introduction

abstract causal state variable by interacting with an environment. The abstract state
variable has a causal interpretation as a mediator of the outcome of the considered
task, and is useful for guiding policy learning and for interpretability. The chapter
explains the reasoning behind the method, describing the used causal principles and
how to optimize the state variable.

Chapter 6 concludes by summarizing the work done and specific contributions,
before discussing some perspectives on the research and potential future work.

Drafts of both papers are included, as part of the thesis, in Appendix A and
Appendix B.

CHAPTER2
Background

This chapter contains necessary background knowledge for the main topics of the
thesis.

2.1 Reinforcement learning
Reinforcement Learning (RL) is a machine learning approach to goal-directed behav-
ior. The following exposition is loosely based on the book by R. S. Sutton and Barto
(2018), plus additional sources cited in the text. Another book I would recommend
is Bertsekas (2011).

2.1.1 Markov Decision Processes
A Markov Decision Process (MDP) is a commonly used formalization of a sequential
decision making problem. Although it is a relatively simple idealized representation,
many problems that occur in real life can be formalized. Commonly, sequential
decision making problems are decomposed into an environment and an agent that
interacts with the environment; here, the environment has a set of states S, and the
agent has a set of possible actions A. When the agent acts, it has the possibility of
receiving a numerical reward from the set of rewards r ∈ R. The environment has a
transition function f : S ×A → S:

St+1 = ft(St, At, Wt), t = 1, . . . , T − 1, (2.1)

and for a given problem in the environment, there is an associated reward function
r : S ×A → R.

In the case of a finite MDP, the state, action and reward spaces are all finite. The
environment transition function is a discrete probability distribution,

p(s′, r|s, a) = Pr{St+1 = s′, Rt = r|St = s, At = a}, (2.2)

in which we combined the state transition function and reward function into a four-
argument probability distribution.

The above also states the Markov property, since p(s′, r|s, a) completely charac-
terizes the environment transition dynamics; as shown, the current state is sufficient
information to calculate (the distribution over) the next state, when given an action.

6 2 Background

The agent chooses actions according to a policy, or more generally a sequence of
policies,

π = {π1, . . . , πT −1}, (2.3)
where each πt : S → A maps a state to an action. Commonly, the agent has a fixed
policy, πt = π. The actions are constrained to a nonempty subset of the action space,
which depends on the current state, πt(st) ∈ Ak.

The goal of the agent is to maximize the expected reward. We define the future
expected reward, or the return Gt from time t,

Gt = Rt+1 + Rt+2 + · · ·+ RT −1 + RT . (2.4)

The steps k = 1, . . . , T constitute an episode. Problems that fit into this descrip-
tion are called episodic, but some problems are better described as an infinite episode,
usually called an infinite horizon. In order to handle both finite and infinite horizons
in the same framework, it is common to introduce a discount rate γ, where 0 ≤ γ ≤ 1,

Gt = Rt+1 + γRt+2 + γ2Rt+2 + · · · =
T∑

k=0

γkRt+k+1, (2.5)

which ensures that even when T = ∞, the return is finite as long as γ < 1. The
discount rate also determines the agent’s time preference, or how much it prefers
reward now over reward later.

Associated to a policy is the state-value function, which maps each state s to the
expected return from following the policy π starting from s,

vπ(s) = Eπ [Gt|St = s] = Eπ

[
T∑

k=0

γkRt+k+1|St = s

]
, ∀s ∈ S. (2.6)

There is also the state-action-value function,

qπ(s, a) = Eπ [Gt|St = s, At = a] = Eπ

[
T∑

k=0

γkRt+k+1|St = s, At = a

]
, ∀s ∈ S,∀a ∈ A,

(2.7)
which maps a state s and an action a to the expected return from following the policy
π after taking action a in state s.

Both the return and the value functions can be written recursively. For the return,

Gt = Rt+1 + γGt+1, (2.8)

it is a straightforward rewrite of (2.5).
Using (2.8), the state-value function becomes

vπ = Eπ [Rt+1 + γGt+1|St = s] (2.9)

=
∑

a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s′)] , ∀s ∈ S, (2.10)

2.1 Reinforcement learning 7

which can be seen as an expectation over the expression in square brackets. The
expression for qπ is similar. (2.10) is usually called the Bellman equation, and it is
the basis for many reinforcement learning algorithms.

For a given problem, there exist (potentially multiple) optimal policies, and their
common property is that they have the same, unique optimal value function,

v∗(s) = max
π

vπ(s), ∀s ∈ S. (2.11)

The same holds for optimal state-action-value functions,

q∗(s, a) = max
π

qπ(s, a), ∀s ∈ S,∀a ∈ A. (2.12)

A central property of optimal policies and value functions is called Bellman’s
principle of optimality.

Theorem 2.1 (Bellman’s Principle of Optimality) If π∗ = {π∗
1 , . . . , π∗

T −1} is
an optimal policy, and the agent is at state st at time t, wanting to maximize the
expected return vπ from time t to time T ,

E∗
π

[
T∑

k=0

γkRt+k+1|St = s

]
.

In this case, the partial policy {π∗
t , . . . , π∗

T −1}, which is identical to π∗ from time t to
time T , is optimal.

Simply, the principle indicates that optimal solutions can be constructed by starting
from smaller, nested “tail subproblems”; the optimal solution for the full problem can
be obtained by recursively solving and combining longer tail subproblems.

2.1.2 Dynamic programming
The optimal value functions can be written recursively, following the principle of
optimality,

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a) [r + γv∗(s′)] , (2.13)

and
q∗(s) = max

a

∑
s′,r

p(s′, r|s, a)
[
r + γ max

a′
q∗(s′, a′)

]
. (2.14)

These recursive forms are used as updates in several dynamic programming algo-
rithms that can be used to solve smaller, finite MDPs when the transition function f
is known.

8 2 Background

The first useful algorithm is called iterative policy evaluation, and it is used to
calculate the value function for a given policy. Calculating the value function is also
called the prediction problem. The policy evaluation update is

vk+1(s) =
∑

a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvk(s′)] , ∀s ∈ S, (2.15)

where k refers to algorithm iterations. The update is a fixed point iteration, converg-
ing to vπ as k →∞.

Policy evaluation can be used in an algorithm called policy iteration, which itera-
tively improves a policy until it is optimal. Learning a policy is often called control.
After evaluating a policy until convergence of the value function, the policy itself can
be updated as

π(s)← argmax
a

∑
s′,r

p(s′, r|s, a) [r + γvπ(s′)] , ∀s ∈ S, (2.16)

which intuitively updates the policy at all states, to select a better action if one is
available according to the value function. After each policy update, the policy is
reevaluated before being updated again until convergence.

A similar algorithm, value iteration, does not iteratively evaluate each policy until
convergence. A single iteration (or sweep, as it is usually called when all states are
involved) of (2.15) is used to update the value function, before a single iteration of
policy improvement by (2.16).

These algorithms are instances of what is called generalized policy iteration (GPI),
where policy evaluation and policy improvement interact, improving until becoming
optimal and therefore consistent. GPI is independent of the details of these two
processes, and so almost all RL algorithms can fit into the GPI framework.

2.1.3 Temporal-difference learning
Let us consider different approaches to the prediction and control problems. Specifi-
cally, we want to learn value functions and policies without knowing the environment
dynamics f . A starting point is the following; After observing a number of episodes
consisting of states, actions and rewards following a policy π, we want to estimate
vπ(s) for the observed states. The conceptually simplest way to do this is by using a
Monte Carlo estimate of the return for each state, which can be done by considering
only the first visit to a given state, or by considering every visit. A Monte Carlo
update might look like

v(st)← V (st) + α [Gt − V (st)] , (2.17)

where α is a learning rate and Gt is the observed return after time t.
The Monte Carlo approaches result in state-value estimates that are completely

independent for each state, which can be a significant drawback in terms of speed

2.1 Reinforcement learning 9

of learning. Instead, temporal-difference (TD) methods bootstrap, using estimates of
other state values when updating the value of a state. In the simplest form, called
one-step TD, take (2.17) and expand the return,

v(st)← v(st) + α [Rt+1 + γv(st+1)− v(st)] , (2.18)

where Rt+1 is an observed reward and v(st+1) is the current estimate of the value of
st+1. Thus, a state-value estimate can be updated based on a single state transition,
while taking advantage of the estimate of another state’s value.

Probably the most well-known TD method is Q-learning (Watkins and Dayan,
1992), which besides learning a state-action-value function q, is an off-policy method.
Being off-policy means that the method learns the optimal value function, even if
actions are being selected according to another policy. The Q-learning update is

q(st, at)← q(st, at) + α
[
Rt+1 + γ max

a
q(st+1, a)− q(st, at)

]
, (2.19)

which converges to the optimal state-action-value function under two conditions: all
state-action pairs must keep getting updated, and the sequence of learning rates must
decrease according to some conditions given by stochastic approximation theory.

Another key aspect of modern reinforcement learning is function approximation;
that is, using some kind of structured functional representation, most commonly a
neural network, to represent value functions and policies. Doing this brings its own
set of challenges, for example because updating the value of one state changes the
represented value of other values in complicated ways. Nonetheless, function approxi-
mation is valuable, allowing for generalisation to unseen states, and also for handling
high-dimensional, continuous spaces, and more. With the Deep Q-Network (DQN)
architecture (Mnih, Kavukcuoglu, Silver, Graves, et al., 2013; Mnih, Kavukcuoglu,
Silver, Rusu, et al., 2015), a lot of new interest was generated towards using TD
methods with function approximation. The DQN uses several tricks to stabilize Q-
learning with function approximation, and was shown to perform well on games in
an Atari 2600 emulator. The Q-network with weights θ is trained by minimizing a
sequence of losses,

Li(θi) = E
[
(yi − q(s, a; θi))2]

, (2.20)

where yi = E
[
r + γ maxa′ q(s′, a′; θ−

i)|s, a
]
is the target, compare to (2.19). Without

delving into too many details, there are two things that help to stabilize the DQN
learning: experience replay, and the target network. Experience replay stores obser-
vations (state, action, reward, next state) in a buffer, and these are sampled during
training to calculate (2.20). The target network contains a copy of the weights θ,
called θ−, and these are only periodically synchronized.

10 2 Background

2.1.4 Policy gradient learning
An alternative to the methods in the previous section, policy gradient methods, as
the name suggests, directly calculate policy updates of the form

θ ← θ + α∇J(θ), (2.21)

where θ ∈ Rd is the parameter vector of the policy π(a|s; θ) = Pr{At = a|St =
s, θt = θ}, and ∇J(θ) is an approximation to the gradient of the cost function J(θ)
that is close to the true gradient in expectation. In the episodic case (which we will
stick to), we can use the true value function as cost function,

J(θ) = vπθ
(s0). (2.22)

The gradient of the value function with respect to the policy parameters, without
involving the derivative of the state distribution, is given by the policy gradient theo-
rem.

Theorem 2.2 (Policy Gradient)

∇J(θ) = ∇vπ(s0)

∝
∑

s

µπ(s)
∑

a

qπ(s, a)∇πθ(a|s)

= ESt,At∼π [qπ(St, At)∇ ln πθ(At|St)] ,

where µπ(s) is the state distribution that follows from choosing actions according to
πθ(a|s).

The first expression for the gradient given by the policy gradient theorem is exactly
proportional to the true gradient, but it contains a sum over all actions. Instead,
the final expression in the theorem gives us an expectation. Using this expression
in an update of the form of (2.21), and using Eπ [Gt|St, At] = qπ(St, At), we get the
REINFORCE update,

θt+1 = θt + αGt∇ ln πθ(At|St). (2.23)

This update can be implemented in an automatic differentiation framework by con-
structing an objective whose gradient is the policy gradient estimator,

L(θ) = Eπ [Gt ln πθ(At|St)] . (2.24)

REINFORCE is perhaps the most simple policy gradient method, but it is not a
very good choice in practice. For example, the gradient estimator can have a very
large variance. It can also be quite expensive to obtain new on-policy experience for
each update. There has been a lot of research on improved policy gradient methods,
including actor-critic methods that also learn a value function, resulting in algorithms

2.1 Reinforcement learning 11

like DDPG (Lillicrap et al., 2015), TRPO (Schulman, Levine, et al., 2015), PPO
(Schulman, Wolski, et al., 2017), and SAC (Haarnoja et al., 2018).

Let us take the related algorithms TRPO and PPO as examples. Trust Region
Policy Optimization (TRPO) maximizes a ”surrogate” objective under a KL diver-
gence regularization constraint which ensures that a single optimization step does not
change the policy too much,

maximizeθ E
[

πθ(At|St)
πθold

(At|St)
Âθold

(St, At)
]

(2.25)

subject to E [KL [πθold
(·|St), πθ(·|St)]] ≤ δ. (2.26)

Instead of the return Gt, the surrogate objective uses the estimated advantage Â,
which has a learned state-dependent baseline subtracted from it to reduce variance.
Also, the surrogate objective uses an importance sampling estimator, allowing mul-
tiple updates with the same data, or outdated asynchronous updates, at the cost of
higher variance.

Proximal Policy Optimization (PPO) simplifies TRPO, retaining its tendency for
monotonic improvement. Instead of the KL divergence constraint, PPO uses a clipped
objective function,

LCLIP (θ) = E
[
min

(
πθ(At|St)

πθold
(At|St)

Âθold
(St, At), clip(πθ(At|St)

πθold
(At|St)

, 1− ϵ, 1 + ϵ)Âθold
(St, At)

)]
,

(2.27)
where ϵ is a hyperparameter that clips the importance ratio to between 1−ϵ and 1+ϵ.
Commonly, a state-value function (critic) is learned simultaneously, and the objective
is further augmented with a policy entropy bonus to ensure exploration, resulting in
an overall objective,

LP P O(θ) = E
[
LCLIP (θ)− c1(Vθ(St)− Vtarget)2 + c2H[πθ](St)

]
, (2.28)

where c1 and c2 are constant hyperparameters.

2.1.5 Hierarchical RL
Many practical problems can be decomposed into subproblems. Doing so has many
advantages, such as faster learning, better generalization, and transfer of knowledge
to new problems by composing already known solutions.

Frameworks that have been studied since the late 90s include: options (R. S.
Sutton, Precup, and S. Singh, 1999), MAXQ (Dietterich, 1999), and hierarchical
abstract machines (HAMs) (Parr and S. J. Russell, 1998). A common theme among
these, is that they are based on a generalization of MDPs called semi-MDPs (SMDPs).
Whereas an MDP has no reference to the time an action takes, in an SMDP the time
an action takes is generally a random variable. Temporally extended, higher-level
actions thus fit into the SMDP framework; for example, a fixed sequence of primitive

12 2 Background

actions (i.e. an open-loop plan) could be a higher-level action that takes time equal to
the number of primitive actions it contains. In all cases, there is an underlying MDP
containing only primitive actions, and all the usual RL algorithms can be extended to
SMDPs. However, more interesting are the hierarchical approaches mentioned before.

The options framework (R. S. Sutton, Precup, and S. Singh, 1999) extends the
set of primitive actions in an MDP with a set of temporally extended policies, called
options. A Markov option is a triple (Io, πo, βo) where Io is the initiation set, a set of
states that the option can be initiated in, πo : S × A → [0, 1] is the stochastic policy
for the option, and βo : S → [0, 1] is the termination condition.

The MAXQ framework (Dietterich, 1999) consists of a decomposition of the MDP
and the state-action-value function q(s, a), into a hierarchy of smaller MDPs and an
additive combination of value functions from the smaller MDPs. An interesting dis-
tinction raised by the original paper is the difference between hierarchically and
recursively optimal policies. Hierarchical optimality refers to policies achieving the
highest reward possible within the hierarchy, essentially the global maximum given
the hierarchical constraints. Recursive optimality is weaker, describing nodes whose
subpolicies are optimal given the fixed policies of their children. This allows subpoli-
cies to be learned without referring to the overall context they’re executed in, which
could make it easier to transfer and re-use these subpolicies in different settings.

Hierarchical Abstract Machines (HAMs) (Parr and S. J. Russell, 1998) are finite
state automatons that partially specify policies. There are four types of machine
states: action states execute a primitive action, call states execute another machine,
choice states select the next machine state according to a probability distribution,
and stop states halts the current machine and returns to the machine that called it, if
any. Learning takes place in the choice states, where it is possible to learn the choice
probability distribution the way a usual stochastic policy is learned in reinforcement
learning.

2.2 Program synthesis
The objective in program synthesis is to generate a program that matches a given
specification. This is a general concept, where aspects such as what the ”programs”
are and how the specification is given varies greatly. Broadly, I would classify the
approaches towards solving this objective into three major fields: Logical methods, ge-
netic programming, and machine learning. While there is certainly overlap, especially
in more modern research, each field has characteristic approaches to synthesizing pro-
grams. A good introductory resource is the book by Gulwani, Polozov, and R. Singh
(2017), which surveys the field as of 2017. In Chapter 3, I survey the field from a
different perspective which includes reinforcement learning, and of course also includ-
ing new research that has been published since 2017. This section serves as a small
introduction into the overall field, before the survey in the next chapter.

The program synthesis problem is in the general case intractable, or even unde-
cideable, such as with a Turing complete language and some arbitrary constraint.

2.2 Program synthesis 13

Search methods are used across pretty much all practical methods, whether they’re
more or less informed about the search space.

2.2.1 Logical synthesis
The logical synthesis methods consist of deductive and inductive methods. Deductive
synthesis is an axiomatic approach, in which the problem description is given by a
logical specification – although some newer frameworks use deductive search with an
example-based specification. Programs are synthesized top-down, by using a theorem
prover or axiomatic transformations to build a proof of the specification, in which the
program is contained. This is generally very efficient and the resulting program will
be correct by design, assuming that the specification is itself correct. Writing the
specification can be as difficult or even more difficult than writing the program itself,
but it might also be easier to reason about or prove properties of. An example of the
deductive approach is Denali (Joshi, Nelson, and Randall, 2002), a code generator
for machine code, whose intended use is to generate critical code in for example
loops that would normally be hand-written. This task is generally referred to as
superoptimization.

Inductive synthesis is not based on axioms, and is sometimes called syntax-guided
synthesis. Instead of a full specification, only partial specifications are used, which
can for example include incomplete program sketches or input/output data. In many
ways, the class of ”inductive synthesis methods” subsumes the other approaches to
program synthesis, but I use the classification specifically to encompass methods based
on formal logical systems and similar. An example of this is counterexample-guided
inductive synthesis (CEGIS), which was first presented in the thesis by Solar-Lezama
(2008); synthesis is split into a solver and a verifier, where the solver produces a
program that satisfies the current partial specification, and the verifier checks whether
the program satisfies a complete specification. If the program does not satisfy the
specification, the verifier produces a counterexample, which is added to the partial
specification before the solver produces another solution candidate. Although the
verifier does need a complete specification, verification is much easier than synthesis.

2.2.2 Genetic programming
The field of genetic programming has a very long history, with the first example
of the approach probably being the book by Holland (1992), the first edition of
which was published in 1975. Appealing to evolution and natural selection in nature,
the fundamental problem of finding structured solutions to a wide variety of well-
defined, complex problems is discussed. The term adaptation is used to encompass
these problems and their solutions, and the way adaptation happens is through an
algorithmic process reminiscent of evolution.

Genetic programming as it is used today, is an evolutionary framework, which is
used to solve problems thaT can be defined by specifying problem-specific: terminals

14 2 Background

(constants etc.), primitive functions, fitness measure, termination criterion, and hy-
perparameters. With a problem specification, the general steps taken by a genetic
programming algorithm are:

1. Sample an initial population of programs, called generation 0.

2. Repeat the following steps, creating a new generation in each iteration, until
termination:

a) Evaluate the fitness of each program in the population.
b) Create a new population by combining and mutating the best individual

programs in the current population.

3. When terminated, the best individual across all generations is usually desig-
nated as the result of the algorithm.

While the general structure described above usually holds, there are of course
many variations across different algorithms. One major direction of variation is in
the combination and mutation operators used to generate new programs. Commonly
used operators are, as usual, somewhat biologically inspired, at least by name; re-
production, crossover, and mutation are three such operations. Reproduction simply
copies a program to the next generation, while crossover combines random, consis-
tent parts of two programs, and mutation makes random changes to a single program.
Many other operators can be defined. Clearly, there is a lot of stochasticity involved
in almost every algorithmic step and operator. This is usually necessary due to the
combinatorial program space, with the drawback that the result of any particular run
could be quite suboptimal.

2.2.3 Machine learning
The successes of deep learning in pattern recognition led to renewed interest in ap-
plying it to other problems, such as program synthesis. There are a couple of quite
different approaches emcompassed by what is here called machine learning. The first
approach is based on guiding the search in program space, by learning a probability
distribution over programs or something similar. Another approach which compli-
ments the guided search is to learn new language primitives, resulting in a language
with a stronger bias towards good solutions. There are also approaches based on
neural program interpreters (NPIs), although this is usually called program induc-
tion instead of synthesis. The programs are continuous vectors, such as weights in a
neural network, and they are executed by a neural network architecture that might
resemble a Turing machine or similar. The programs are usually learned end-to-end
from example data. Another approach is to learn program representations with useful
features. An example might be to learn a function that maps different programs that
are semantically equal to the same vector. Finally, there are differentiable program-
ming languages, which have a lot in common with neural interpreters. The program

2.2 Program synthesis 15

representation is closer to code, such as a probabilistic programming language with
differentiable control flow. This can be a great advantage, since interpretability often
is one of the reasons we would use program synthesis methods at all.

The next chapter examines, in much further detail, common approaches to pro-
gram synthesis, programmatic policies and more.

16

CHAPTER3
Approaches to

program synthesis and
structured

reinforcement learning
The field of program synthesis is very broad and varied. Unlike a field such as rein-
forcement learning, where there is some very useful, fundamental theory, there are
many completely different approaches to the program synthesis problem. While I
believe that general fundamentals might be established eventually, the current state
of the art is distributed over an intersection of logical methods, genetic programming
and machine learning methods. The purpose of this chapter is to review a relatively
broad set of more or less modern approaches to program synthesis, with a focus to-
wards reinforcement learning, through the lens of some key dimensions described in
Section 3.2. This is by no means an exhaustive list of approaches, but hopefully
it serves as an overview of some major approaches and an analysis of interesting
variations between these.

3.1 Programs and reinforcement learning
Not much research actually tackles reinforcement learning with programs, but the
more popular approach of hierarchical reinforcement learning is in many ways simi-
lar to a programmatic approach. An example is the Hierarchical Abstract Machine
(HAM) method (Parr and S. J. Russell, 1998), where policies are state machines that
can take low-level actions, call other state machines, choose the next state dynam-
ically, or return to the calling state machine. The advantages of a programmatic
approach have been mentioned multiple times, and the hierarchical RL methods are
essentially a different, perhaps more weakly structured, approach to achieving some

18 3 Approaches to program synthesis and structured reinforcement learning

of the same advantages. Accordingly, the following covers a good deal of interesting
hierarchical RL research.

Even when the hierarchical RL methods do use more explicit program representa-
tions, such as in the HAM extension called Programmable HAMs (PHAMs) (Andre
and S. J. Russell, 2001), they do not perform program synthesis. In PHAMs, learn-
ing happens in the joint semi-MDP induced by the program specification and the
environment. It’s possible to use variations of the Bellman equation, as described in
Section 2.1, to learn the choice points of such a programmatic policy. The program-
matic specification is then merely a prior specification of hierarchical structure, and
what is learned must follow the specified structure. Other approaches have differ-
ent tradeoffs, but the integration of program synthesis with reinforcement learning is
needed to reap the full benefits of a programmatic representation.

The complication, then, is finding the right program structure. The Bellman equa-
tion is unfortunately not directly helpful, and neither is the policy gradient theorem.
Program semantics (i.e. behavior) is generally quite sensitive to syntactical changes,
in the sense that a small change to a program’s syntax can have large effects on its
behavior. Reasoning about the effects of such changes to programs is traditionally the
domain of logical methods, but the integration of logic and reinforcement learning is
itself a significant challenge. The intractability of applying program synthesis naively
to reinforcement learning can be understood through a simple example. Consider the
GPI framework described in Section 2.1.2; we could attempt to define program evalu-
ation and improvement operators. If the improvement operator is a (local) search in
program space, and the evaluation operator runs the programmatic policies that the
search in the environment, then we have an iterative algorithm for program improve-
ment. However, the evaluation operator does not use the current program, it uses all
programs that are searched. Since evaluation is a process of environment interaction,
the algorithm just described requires environment interaction proportional to the size
of the program space per improvement step.

3.2 Dimensions in program synthesis
Gulwani (2010) defines three “dimensions”, which captures a lot of the variation
between different program synthesis methods. These are:

Program representation Can vary from full Turing complete, high-level program-
ming languages, through low-level machine code, to more or less limited Domain
Specific Languages (DSLs), decision trees, state machines, and so on. In some
cases, the representation can also be something that isn’t normally thought of
as a program, but which has program-like properties, such as a neural network
with specific structure.

Intent specification Synthesizing a program requires a description of the requested
program. This ranges from formal logical specifications to input-output exam-
ples, or even just properties of the output.

3.2 Dimensions in program synthesis 19

Search method The way in which the program space is explored varies from enumer-
ation of a well-defined space of programs, through biologically inspired functions
that combine and mutate programs, to sampling from a learned distribution over
programs.

Each of these dimensions contain multiple categories of approaches, some of which
are dependent across dimensions. One example of this is a logically specified intent
and a search method based on deduction; as mentioned previously, the deductive
methods usually require a formal specification. Consequently, the space of possi-
ble methods is certainly not to be seen as some sort of cartesian product over the
dimensions.

It is of course possible to consider further dimensions, although these might have
diminishing returns in terms of explanation. For example, it could be worthwhile to
consider the fitness measure as a dimension, especially in certain applications. Many
approaches only consider correct programs, ones that fully satisfy either a partial or
complete specification, as viable solutions. However, it can be a good idea in some
cases to also include partially correct programs, at the very least as intermediary
steps towards a solution. One reason for this is that partially correct programs can be
useful stepping stones towards correct programs; this is often encountered in genetic
programming. A related concept is to sometimes accept worse solutions than the
current one while searching, for example to help escape local maxima.

Another related concept, which could be considered a dimension, is the source
of intent. Although the overall intent probably always stems from a human, that
perspective seems too reductive. Certainly, the intent is commonly sourced directly
from a human user of the system. Sometimes the intent is an initially complete spec-
ification, sometimes it is a human-in-the-loop situation. There are however settings
where the intent is not directly sourced from a human. Even settings where it might
on the surface seem like a human is the source, the human is not always the immediate
source. An example is when supplying input-output data as a specification, and the
data is obtained by running an existing program; while one or several humans might
have written the program, the immediate source of the intent specification is then the
program. This dimension is very much related to the partial correctness dimension,
since the source of the intent might also inform us of how we should treat the intent.
It is possible that the specified intent is not actually what is wanted. It could be that
observed input-output pairs are noisy, or even faulty. Humans can make mistakes
in creating such data manually, or in creating the program that outputs the data.
Machine learning commonly deals with such noisy data, but the concept is not often
considered when applied to program synthesis.

Both of the above mentioned new dimensions will be considered in addition to the
usual three that were listed.

20 3 Approaches to program synthesis and structured reinforcement learning

3.3 Genetic programming
Genetic programming (GP) has been used to generate many kinds of programs, includ-
ing policies for games and controllers for industrial systems. The most distinguishing
feature of these approaches is that they maintain a population of candidate solutions.
The population is evolved in an explorative, non-greedy fashion, which is therefore
able to overcome locally optimal solutions.

In terms of the directions, the search space or program representation can vary
greatly. Since the search does not rely on specific properties of the representation, but
merely on operations that modify and combine them, any structured representation
is possible. Intent specification is also flexible, although in the case of control it is
common to use a system model to evaluate policies. This has implications for the
fitness measure and source of intent, since a simulated system, whether predefined or
learned, is likely to be inaccurate or wrong in some ways.

3.3.1 Program representation
Program representation is indeed a major axis of variation, with one overall distinc-
tion being the genotype-phenotype representation. As in most other methods, there
are GP algorithms that directly represent and manipulate programs as abstract syn-
tax trees. The programs in GP are called the phenotype, as an obvious reference
to the “observed characteristics” in biological organisms. Some GP methods instead
manipulate a genotype, which is an encoding of the program into a simpler, sepa-
rate form. Using a genotype-phenotype mapping, a genotype is translated into a
phenotype: an executable program.

An example of the separation of genotype and phenotype is Cartesian Genetic
Programming (CGP) (Miller, 2011). The genotype is a string of integers, called
genes. The genes encode a partially connected feed-forward graph of a program, with
the associated functions of the nodes, connections between nodes, and so on. One
benefit of this separation is that the genotype can be significantly more simple than
the phenotype, while only the genotype is passed on to future generations. Another
benefit of this representation is that the genotype can contain genes that are not used
in creating the phenotype, but their modification can impact future generations if
they become used, which can lead to solutions that otherwise wouldn’t be found.

Montana (1995) found that types were useful in GP. The basic GP methods as-
sume that nonterminals can accept any terminal or nonterminal as arguments, which
essentially means that everything must be the same type. By using multiple types,
the efficiency and interpretability of the search can be improved. Harding et al. (2012)
extend CGP with types. Their method, Mixed Type CGP (MTCGP), supports scalar
reals and vectors of real numbers, as it is described in the paper. It should be possible
to extend the method to additional types if needed.

Wilson et al. (2018) use (MT)CGP to synthesize policies for Atari 2600 games.
The program input is the game screen, which at a pixel level is quite a lot of inputs
even with downscaling. By using a vector or matrix type, it becomes possible to

3.3 Genetic programming 21

add functions to the library that process the entire image instead of single pixels.
Although it is mentioned in the text that computer vision functions were not used,
it seems like it would be useful to include functions such as edge and blob detection.
Not only would this be entirely possible with a type system, the efficiency could be
improved by having more specific types for different kinds of vectors and matrices
such as images.

Another genotype-phenotype representation is Gene Expression Programming
(GEP) (Ferreira, 2001). Like in CGP, programs are encoded in genes. Each gene
is a string consisting of a head and a tail, encoding a syntax tree in level order. Each
symbol in the head represents a terminal or non-terminal in the syntax tree, while
each symbol in the tail can only represent a terminal. This structure ensures that
a gene always encodes a proper syntax tree, as long as the tail is long enough to
fill in any needed terminals at the bottom of the tree. A gene can contain a coding
part, called the open reading frame (ORF), and a non-coding part following it. This
means that a fixed-length gene can code for syntax trees of different sizes, containing
a number of nodes up to the length of the head plus the tail. As in CGP, non-coding
parts of genes can be useful during program search. An advantage of the GEP rep-
resentation is that any gene following the simple head-tail grammar described will
result in a valid phenotype. This simplifies mutation and crossover operators because
constraints aren’t necessary as with CGP genes.

Multiple genes can be used to solve a problem with GEP, and several kinds of
linking functions can be used to combine multiple genes into an overall solution. By
letting genes code for subprograms, it becomes possible to hierarchically learn and
combine solutions to subproblems, reusing previous solutions if they are found to be
useful. For example, each gene could code for a part of a sequential policy, and when
combined each part of the sequence solves a sub-problem leading towards an overall
solution.

In terms of application, GEP has not been used much for synthesizing controllers
in the literature. In his thesis, Mwaura (2010) describes the synthesis of modular
robot behaviors with GEP. An obstacle avoidance controller is synthesized, using a
simple language consisting of a single predefined function, if less than or equal to,
and a number of sensor variables and motor outputs. More complicated controllers
are also evolved, such as a wall-following controller consisting of multiple linked sub-
behaviors.

3.3.2 Program evaluation
Evaluation of programs in GP is another area of variation. Miller (2011) uses prob-
abilistic tournament selection, where a winner is selected among a small set of com-
peting individuals.

Sipper (2011) describes evolutionary algorithms and genetic programming through
the lens of games. Using both classical board games such as checkers and chess,
and more involved game environments such as Robocode, a number of evolutionary

22 3 Approaches to program synthesis and structured reinforcement learning

algorithms are described. These algorithms can produce high-performing agents, in
some cases even winning Robocode competitions against complicated hand-coded
agents. Pawlak, Wieloch, and Krawiec (2015) in some way inverts the execution
of programs, in order to make it easier to discover useful intermediate states that
lead to the wanted program state. Kelly and Heywood (2017) learn to play multiple
Atari games by evolving what they call Tangled Program Graphs. These graphs
organize what the authors describe as teams of programs, which is a concept where
each program describes a context in which an action could be taken, and a bidding
process decides which action to actually take in each state. The graph emerges
through evolution, since programs can generate either an atomic action, or a reference
to another team. As a follow-up, Kelly and Heywood (2018) evaluate the Tangled
Program Graphs on more Atari games, with a single evolved policy showing good
multitask performance on up to 5 games. The algorithm is also simplified, using an
elitism objective instead of a Pareto objective.

3.3.3 Search methods
The search methods used in GP are usually quite similar, with mutation and crossover
operators progressing the search in combination with the selection criteria. Still, there
are approaches that differ, while retaining the evolutionary approach that is unique
to GP.

An example of this is to introduce derivative information. Differentiable CGP
(Izzo, Biscani, and Mereta, 2016) extends CGP by using a generalized dual num-
ber representation to calculate derivatives of programs. The output of a program in
dCGP is a truncated Taylor polynomial, containing information about the program
input and all derivatives up to the truncation order with respect to chosen parameters.
One application of this is to discover the values of numerical constants used in the
programs, something that is traditionally a difficulty when using GP. The usual ap-
proach involves ephemeral constants, which is forming new constants from functions
applied to pre-defined constants.

Salomon (2003) discusses an inefficiency arising from resampling when using ge-
netic algorithms. Especially, algorithms that have a high crossover probability and
a low mutation probability have this deficiency, since they tend to stay in the same
part of the search space for longer. An algorithm that only uses mutations suffers a
constant runtime complexity increase due to resampling, while crossover algorithms
have a runtime increase that is logarithmic in the dimension of the search space.
Since this is not due to the operators themselves, but rather the random application
of them, the author presents a deterministic genetic algorithm that does not apply
the operators randomly.

Kamio, Mitsuhashi, and Iba (2003) attempt to integrate reinforcement learning
and GP, using GP to synthesize programs that solve the required task in a robotic
simulator. Afterwards, the GP solutions are used to initialize a reinforcement learning
approach, where the state space is divided according to the programs. While it can

3.4 Machine learning 23

be said that their actual approach is not much of an integration of RL and GP,
the authors do describe a more general iterative framework in which reinforcement
learning happens on the results of GP, and the results from reinforcement learning
affect the next round of GP synthesis.

3.3.4 Source of intent & fitness function
In GP, the source of intent is usually encoded in a selection function, giving a compu-
tational criteria for selecting the individuals from the population that will be involved
when applying the evolutionary operators. The selection function is usually proba-
bilistic, although it can take many different forms, allowing for programs that do not
perform as well as others to still have a chance at propagating to future populations.
Schmidt and Lipson (2009) identify nontrivial physical equations from observed data.
The authors argue that finding invariances is not enough to find good conservations
laws; the key point is that synthesized equations should link the derivatives of differ-
ent groups of variables over time. The authors call this concept the predictive ability,
and while GP has often been used for symbolic regression tasks, it seems that this
insight is very useful for finding mathematical expressions of natural laws.

An interesting variation on the usual fitness or selection function is multi-objective
GP. Multiple objectives can be combined into a scalar fitness function, for example to
achieve a tradeoff between accuracy and program size (B.-T. Zhang and Mühlenbein,
1995). Alternatively, objectives can be kept separate, in which case the concept of
Pareto dominance is relevant. If a solution is not worse than another solution on any
objective, while being better on at least one objective, the former solution is said to
Pareto dominate the latter. Jong and Pollack (2003) optimize for both performance,
size, and diversity using a Pareto approach.

There are many approaches that utilize information beyond whether a particular
example is correctly solved or not. The difficulty of various tests can vary, and
compensating for this by weighing the different tests can be useful (McKay, 2000).
This is especially the case when tests are automatically generated by for example
sampling from a distribution; a uniform distribution over tests is unlikely to result
in a constant difficulty, or even a uniform distribution of difficulty. Krawiec and
Lichocki (2010) consider non-additive effects that occur due to the composition of
skills. If multiple, separate learned capabilities are more useful in combination, the
fitness function should reflect this.

3.4 Machine learning

3.4.1 Program representation
Due to the large variety of machine learning methods applied to program synthesis,
there are also quite a few different program representations. Some of these represen-

24 3 Approaches to program synthesis and structured reinforcement learning

tations can even be very different from what is usually thought of as a program; for
example, some methods represent programs as vectors in Rn. Still, such represen-
tations must retain some properties of what would more straightforwardly be called
programs, such as a well-defined semantics or composability. This is also the case for
the other approaches, such as those that attempt to learn a program representation.

Of course, many approaches use concrete syntax, abstract syntax, or similar, as
their representation. A particular instance of this is “natural” code (Hindle et al.,
2016), which is written by humans, and has structure reminiscent of written natural
languages. Many “big code” methods use statistical language models like n-grams or
RNNs, requiring large amounts of training data, in order to learn a distribution over
natural code (Allamanis, Barr, et al., 2018). This can be useful for many tasks such
as code similarity, decompilation, and static analysis. However, big code methods
have not found much application to program synthesis; because of this, it is worth
distinguishing between methods whose main representation is simply some form of
syntax, and the big code methods. One reason for this is how difficult obtaining the
right training data is. Although it is possible to obtain billions of lines of natural code,
such as the data the Codex model uses from GitHub (Chen et al., 2021), the appli-
cation of this approach to inductive program synthesis seems difficult. Nonetheless,
in experiments the Codex model managed to generate functionally correct docstring-
conditioned code. It should be noted that, in such a setting, it is up to the human
end-user of the system to verify correctness of the code; this is discussed further in
the section on intent specification. This approach has also raised concerns about
the legal implications of training a model on code of unknown origin and licensing.
Parts of the training data could be reproduced by the model, and used in ways not
permitted by the original license.

Regarding the syntax representations, the main variation consists of the choice
of language and related features. These range from low-level computer code, such
as the RISC-V assembly in Simmons-Edler, Miltner, and Seung (2018), to high-level
general purpose languages, such as Python in Yin and Neubig (2017). DreamCoder
(Ellis, Morales, et al., 2018) uses the abstract syntax of the lambda calculus as a rep-
resentation, and learns a probabilistic context-free grammar from which task-relevant
programs can be sampled.

A large set of methods take advantage of gradient information to guide program
search. While this is not possible directly in the space of (abstract) syntax, various
code-like representations make this possible. Gaunt et al. (2016) present a DSL for
describing inductive program synthesis problems. This allows separating the prob-
lem specification from the solver, which can be gradient descent, linear program relax-
ations, satisfiability modulo theory solvers, or Sketch (Solar-Lezama, 2008). Although
one of the described optimization methods is gradient descent, the final program rep-
resentation can be natural, readable code. However, an intermediate representation
based on a differentiable interpreter is used during synthesis, which is similar to the
method in Bošnjak et al. (2016). The continuous representation can be discretized
into source code, at least if the discovered representation converges to something
that is almost deterministic; as shown in their analysis, this is not always the case for

3.4 Machine learning 25

the gradient descent method, which can converge to a suboptimal, stochastic solution.
Shah et al. (2020) introduce the idea of using neural networks as permissible heuristics
for searching the space of differentiable programs. Their method substitutes neural
networks for missing expressions in partial programs, and because the programs are
differentiable the network can be trained on the problem-specific end-to-end loss.
Pierrot et al. (2020) train a set of neural policies, and associated predictive models.
This representation allows the primitive policies to be composed into programs, which
sequentially execute several policies, and furthermore these programs can be used by
a planning algorithm to create a sequential plan towards a given goal state. Tian et al.
(2019) learn to generate graphics programs that draw 3D shapes. The programs are
both generated by and executed by neural networks, and interestingly the program
structure is defined by a grammar instead of continuous embeddings.

Some methods take the approach of extending recurrent neural networks with
external memory, turning them into differentiable interpreters. This concept was in-
troduced with Neural Turing Machines (Graves, Wayne, and Danihelka, 2014), which
uses attention-based indexing to interact with the external memory, while programs
are represented by the weights of the neural network. The idea of controlling an
external memory with a neural network is much older (Das, Giles, and G.-Z. Sun,
1992), and was used to learn context-free grammars. Many papers extend this ap-
proach, such as Neural RAM (Kurach, Andrychowicz, and Sutskever, 2015), which
uses a more advanced external memory model where memory cells can be interpreted
as pointers to other memory cells. The architecture is shown to be able to learn
several low-level computational tasks, such as reversing an array or searching a list.
Bošnjak et al. (2016) describe a differentiable interpreter for the Forth programming
language. The interpreter allows one to write program sketches before optimizing the
programs with gradient descent. This is achieved with a continuous representation
of the machine stack, heap, and program counter, along with differentiable read- and
write-operations and differentiable implementations of Forth “words”, which is what
Forth calls subroutines. Essentially, everything is implemented with an attention-
like architecture, with vectors indexing into the memory representations. D. Xu et al.
(2017) learn neural programs, represented as a set of “APIs” which can be called by a
meta-controller. Complicated tasks are thus decomposed into a set of neural modules,
which in turn consist of a set of problem-specific low-level APIs. Specifically, the used
low-level robotic primitives can move the gripper, activate the gripper, and release
the gripper. The method takes advantage of many of the properties of a hierarchical
task decomposition, such as learning to hide information that isn’t useful for a given
subtask.

Another class of methods take the approach of learning a program or similarly
structured representation. This kind of representation is often used as a form of
knowledge representation (Davis, Shrobe, and Szolovits, 1993), for which the pur-
pose is to reason about the underlying structure of the programs. While many of
these methods were not applied to program synthesis problems, learned representa-
tions could potentially be very useful for program synthesis. A good example of this
is found in Allamanis, Chanthirasegaran, et al. (2017), where representations of se-

26 3 Approaches to program synthesis and structured reinforcement learning

mantic equivalence are learned. The difficulty is that small syntactic changes can
result in large semantic differences. Such a model might beneficially be applied to
program synthesis, where semantical understanding of syntactical transformations is
often missing in machine learning methods. Jetchev, Lang, and Toussaint (2013) learn
to extract relational symbols from continuous observations. These symbols must be
useful for an agent (robot) in terms of abstractly modelling the environment, and
also for goal-directed planning in the resulting world model.

Some relevant methods do not learn a program representation, but instead an-
other structured representation such as an object-based one. They are interesting to
consider jointly, if not just because structured visual learning methods present a vi-
able link between high-dimensional visual observations and structured, program-like
representations. Steenkiste, M. Chang, et al. (2018) describe a method for learning
to discover objects and their interacting physics in visual scenes. By learning to de-
compose the scenes in an unsupervised manner, the algorithm also directly learns to
predict future frames of the scenes, even generalizing to scenes with more objects.
Greff et al. (2019) describe a related model, learning to decompose static scenes by
segmenting and representing objects jointly. The scenes are more complicated than
demonstrated in Steenkiste, M. Chang, et al. (2018), but while the authors do apply
their method to dynamic scenes, it is done by setting the number of “refinement” itera-
tions to the number of timesteps in the data, which seems somewhat limited. Zuidberg
Dos Martires et al. (2020) learn to anchor perceptions in an object-based probablistic
model. This model is coupled to a rule system based on statistical relational learning,
in which rules are learned for reasoning about the objects. Experiments demonstrate
that the system can learn to reason about the perceived objects, such as maintaining
belief about the existence of previously seen, but now occluded, objects.

There are methods which use less powerful formalisms than general programs.
They can be easier to use and train, since the space of possible structures is much
smaller. An example of this is Inala et al. (2020), where policies are represented
as small state machines, with each state containing a separate neural policy and
transitions between states consisting of predicate functions. Topin and Veloso (2019)
also use state machines, in the form of Markov chains, to represent policies over an
abstracted state space. The purpose is to learn a simple, explainable policy, not only
by extracting the state machine structure, but also by grouping MDP states into
abstract states.

3.4.2 Intent specification
Machine learning enables some unique ways of specifying intent. More abstract spec-
ifications are possible, due to advances in areas such as natural language and image
processing. Input/output examples are also very relevant, since they are often the
most readily available specification. Also, abstract specifications like natural lan-
guage descriptions can run into issues such as ambiguity or synthesized programs
being difficult to verify.

3.4 Machine learning 27

Nonetheless, text descriptions can be very end user friendly, since they are easier
to write than the code itself. Yin and Neubig (2017) use natural language descriptions
together with a neural syntax-guided model to synthesize Python programs. Chen et
al. (2021) use Python docstrings to condition a language model to generate relevant
code snippets. Ling et al. (2017) synthesize programs that operate over multiple-
choice math problems, outputting both a choice and a text rationale for the choice.

Specification by input/output examples is, as in GP, probably the most common
approach. Most of these approaches are straightforward – the intent is to find a
program whose outputs match the given outputs on the given inputs. For example,
Bošnjak et al. (2016) optimize a cross-entropy loss between program output and
target output. DeepCoder (Balog et al., 2016) also uses input/output examples,
feeding them to a neural network that predicts useful properties of the program that
produced the examples. Specifically, the neural network is trained to predict the
probability of a set of functions appearing in the code of the relevant program, and
this can be used to guide the search. Lázaro-Gredilla et al. (2019) describe a visual-
cognitive architecture, which is used for learning concepts represented as programs to
be run by a robot. The architecture consists of an interpreter for a specially designed
language that handles visual attention, robot hand control and indexing scene objects.
Concepts are specified by pairs of schematic drawings, showing a configuration of
objects before and after the concept is applied.

It is also possible to give the synthesis more supervision than just inputs and
outputs, by also using intermediate states as targets. This is usually referred to as
program or execution traces, and the purpose is usually to make learning more data
efficient. One example is the method by D. Xu et al. (2017), which uses program traces
to train a neural interpreter for hierarchical policies. Additionally, their approach uses
meta learning in order to obtain additional intent at test time, where a single expert
demonstration is used to condition the generation of the policy. Ellis, Ritchie, et
al. (2017) use hand-drawn images as specifications, and learn to generate graphics
programs whose outputs resemble these images. These programs do not take inputs,
and therefore a single image corresponds to the output of a single program. Young,
Bastani, and Naik (2019) extend this approach to generate more complicated images
that have repetitive structure, such as photos of building facades. Burke, Penkov,
and Ramamoorthy (2019) describe a hybrid robotic architecture, first fitting several
proportional gain controllers. Then, a sequence of controllers (a trace) that solves the
relevant task is used as intent in a simple search-based program synthesis approach,
generating a program with loops and conditionals. The authors show that their
system can learn visuomotor reaching tasks from demonstrations.

An interesting approach is to consider programs as intent. The intent could be
given by a partial program, such as in Sketch (Solar-Lezama, 2008), but it could
also be a complete program. It could even be something less structured, such as a
reward function; Natarajan et al. (2020) introduce a variation on the Programming
By Example framework, called Programming By Rewards. Similarly to reinforcement
learning, the framework uses a black-box reward function that describes a problem-
specific preference of behavior. Given a set of inputs, the objective is to synthesize a

28 3 Approaches to program synthesis and structured reinforcement learning

program that maximizes the reward obtained by executing the program on the inputs.
Specifically, programs from a language for decision trees based on simple if-then-else
expressions are synthesized by using continuous optimization methods. The opposite
of using a black-box reward, Christakopoulou and Kalai (2017) use a programmatic
scoring function, calling these glass-box loss functions. Having access to all details of
the scoring function is obviously more informative than a black-box scoring function
which can only be observed at given inputs. The authors demonstrate an approach for
taking advantage of this information, by learning PCFGs to solve glass-box synthesis
problems.

A similar approach is to use a control policy or dynamical system as intent. For
example, Penkov and Ramamoorthy (2017) perform program synthesis to discover
programmatic system dynamics or programmatic policies, with the goal being that
generated programs are more interpretable than the source of intent. Superoptimiza-
tion methods also use programs as intent. Here, the idea is to find an optimized
implementation of the given program. STOKE (Schkufza, Sharma, and Aiken, 2013)
uses stochastic local search from a prototype non-optimized, compiled x86 binary,
and sometimes discovers implementations that outperform fully optimized compiler
outputs. Inala et al. (2020) describe a method for synthesizing state machine policies
for sequential decision problems. Although state machines are quite simple, they are
more structured than for example neural networks, which could lead to better induc-
tive generalization. The state machines are constructed using an adaptive teaching
approach, in which a teacher learns to solve problems by being parameterized as a
state machine with a fixed sequence of states, each running for a fixed amount of time.
The student then imitates the teacher as a probabilistic state machine, finally pro-
ducing a deterministic state machine Topin and Veloso (2019) describe an algorithm
for generating what the authors call Abstract Policy Graphs, the purpose of which is
to explain a complicated neural policy through an abstracted state space. The Ab-
stract Policy Graph is a state machine-like graph structure where nodes are abstract
states that map to a number of low-level states, and edges are abstract actions that
transition between abstract states. States are grouped based on a feature importance
function, which can for example be a learned value function.

3.4.3 Search method
Machine learning methods approach program search by either directly searching the
program space, or by learning to search.

Sometimes the program representation also makes it clear what search method to
use. Continuous representations such as the neural interpreters can take advantage
of gradient methods, which might reduce the computational cost of finding a good
solution. D. Xu et al. (2017) propose Neural Task Programming, a method that
learns to learn in order to generate a hierarchical policy from a single demonstration
at test time. The architecture consists of an LSTM neural interpreter, running pro-
gram embeddings. Bošnjak et al. (2016) optimize an end-to-end loss based on the

3.4 Machine learning 29

cross-entropy between program output and target output, with a mask that ignores
irrelevant components on the stack. Shah et al. (2020) substitute neural networks
for holes in partial programs. The authors show that the networks can learn a close-
to-admissible heuristic, and by using a heuristic search algorithm such as A*, this
can speed up program synthesis. Pierrot et al. (2020) combine a number of methods
in order solve continuous control problems containing hierarchical structure. Their
approach uses Monte Carlo tree search in the form of AlphaZero, to learn a neu-
ral interpreter for programs consisting of compositions of previously learned neural
policies. Critically, learned models of the primitive policies enables the tree search
planning in the interpreter. R. Singh and Kohli (2017) discuss a meta-approach to
program synthesis, consisting of two parts: a specification encoder, and a program
generator. The spec encoder learns to understand partial input-output specs from
examples, and the program generator learns to search the program space conditioned
on spec vectors from the encoder. They are jointly trained on a large set on samples
of programs from a DSL with corresponding specifications.

Tree search and enumeration are common approaches, and statistical methods
are useful, for example, for learning to guide the search. DreamCoder (Ellis, Morales,
et al., 2018) is one such example, consisting of a probabilistic model for programs
given a DSL. The algorithm learns not only a probabilistic grammar, but also a
neural network recognition model which produces a posterior over programs given in-
put/output data. Given a set of program synthesis problems, it also learns to expand
the initial DSL with new functions, composed of functions already in the language;
this is an alternative way of making the search more efficient, by acquiring functions
that have a good problem-specific inductive bias. A precursor to DreamCoder, the
Explore-Compress algorithm (Dechter et al., 2013) also learns both a distribution over
programs from a DSL, and new programs for the DSL that maximally compress pre-
vious solutions. Yin and Neubig (2017) use a neural generative model to synthesize
programs in a general purpose language, such as Python. Programs are generated in
steps, applying a single production rule or generating a single token at a time, and
the generation probabilities are conditioned by a natural language description of the
requested program.

The setting in Ling et al. (2017) is interesting, because not only must a succesful
program answer the given multiple-choice question, but it must also output a natu-
ral language rationale, including math, for the correct choice. The model generates
programs by sampling sequences of instructions that output words or perform calcu-
lations. Young, Bastani, and Naik (2019) apply a neural generative model to images,
using programs to describe repetitive spatial structure. Sampled graphics programs
are used to generate training data with known spatial structure, and a generative
model is learned that infers the structure of a given image. Odena, Shi, et al. (2021)
demonstrate a method for learning bottom-up program synthesis, by training a classi-
fier that predicts whether an intermediate value produced by executing a subprogram
is going to be part of the overall solution. Such a model needs to be quite fast, quite
reliable, or a mix of both, since evaluating a neural model is generally orders of mag-
nitude slower than executing a small (sub-)program. Thus, the model is batched

30 3 Approaches to program synthesis and structured reinforcement learning

across hundreds of subprograms, also called intermediate values, and property signa-
tures (Odena and C. Sutton, 2020) are also employed. This combination allows the
classifier to be both performant and accurate enough at the same time, in order to
speed up synthesis.

It is also possible to learn to guide the search for programs by reinforcement
learning. For example, Zaremba and Sutskever (2015) use a reinforcement learn-
ing algorithm to train Neural Turing Machines that interact with discrete memory
interfaces. This differs from the original Neural Turing Machines (Graves, Wayne,
and Danihelka, 2014), where attention-based memory was used in order to make the
interaction differentiable. Simmons-Edler, Miltner, and Seung (2018) frame the syn-
thesis of RISC-V machine code as an MDP, with actions corresponding to lines of
code. Hence, the “agent” must output a program that maximizes the reward, which
is based on input/output examples.

Meta-learning approaches generally perform learning-to-learn, discovering models
that can use additional problem-specific data at test time to condition the synthesis
of a solution. D. Xu et al. (2017) describe a meta-learning algorithm, where task
demonstrations are used to condition policy generation at test time. During train-
ing, a hierarchical task decomposition is learned, such that new tasks can be solved
compositionally in testing.

Some approaches combine machine learning with another method for program
synthesis. Quite commonly, Sketch (Solar-Lezama, 2008) is integrated with other
methods. One example of this is found in Ellis, Ritchie, et al. (2017), where the
method learns to generate LATEXgraphics programs from hand-drawn illustrations
containing simple shapes. Their method uses a neural network to generate a trace,
which in this case is a set of graphics commands, then uses the Sketch framework to
synthesize the trace into a program. However, they also train a simple probabilistic
search policy and show that it outperforms Sketch when searching for the minimum
cost program.

3.4.4 Source of intent & fitness function
It is common to use differentiable loss functions in machine learning, and this has
mostly translated to fitness functions in program synthesis. Sources of intent are a
bit more varied, and some interesting approaches to source intent can be found.

An interesting source of intent can be found in papers that automatically gener-
ate specifications, usually for training purposes. Especially neural models can benefit
greatly from such an approach, since they require a lot of training data, which in some
cases can be automatically generated. Young, Bastani, and Naik (2019) sample pro-
grams whose outputs are used as training data with known programmatic structure.
Since structural generative information isn’t available for real images, sampling rich
graphical programs with known structure is a valuable source of data for the neural
model. Ellis, Ritchie, et al. (2017) synthesize minimum-cost programs for their set of
hand-drawn images, using the programs as a training set for a search policy over such

3.5 Other relevant areas 31

graphics programs. Similarly, Ellis, Morales, et al. (2018) use program samples that
they call “fantasies” to learn a task-conditional distribution over programs. These
programs should represent tasks that could realistically be encountered, in order to
contribute meaningful information to the training. R. Singh and Kohli (2017) sample
a large set of programs from a DSL, and use these together with their correspond-
ing specifications to train a neural specification encoder and accompanying neural
program generator.

Another source of intent is an existing control policy. This could be a neural
policy obtained through reinforcement learning, or it could have another form and be
obtained in another manner. Usually, the purpose of these methods is interpretability
of the resulting programmatic policy, but generalization ability can also be a goal.
The main reason that the source of the policy matters, is that a trained policy is
likely to be suboptimal, especially in off-policy states. However, a policy defined in
some other way could be optimal, or otherwise have desired properties. This should
probably be considered when designing synthesis methods that deal with existing
policies, and the consideration applies to most if not all the approaches that specify
intent as previously learned policies. For example, Penkov and Ramamoorthy (2017)
combine gradient descent and structure search in order to find functional programs
that can explain e.g. a reinforcement learning policy. Their structure search uses A*
search guided by gradient information in order to select program proposals.

Somewhat similar to having a policy, is having a programmatic reward function as
intent. This does not seem to have been used much, but Christakopoulou and Kalai
(2017) present such reward functions as “glass-box” loss functions, since it is possible
to look inside the reward function and understand it. The authors experiment with
manually defined glass-box loss functions, but it seems interesting to consider if it
could be useful to synthesize glass-box loss functions.

One distinction for the fitness function is whether syntax or similarity is used
for learning. This is for example discussed by R. Singh and Kohli (2017), where
it is argued that while syntactic similarity measures offer rich supervision and are
thus easy to optimize, they can penalize many good programs that are semantically
similar, but syntactically distinct. Meanwhile, input/output measures are consistent
with semantic similarity, but offer less supervision, for example due to not being
defined for partial programs. Methods based on language models often use syntactic
similarity. For example, Alon et al. (2020) learn to generate missing pieces of source
code with a structured language model operating on abstract syntax trees.

3.5 Other relevant areas
This section is less structured than the previous ones, but includes many important
topics that are of relevance. A lot of the following research is not less relevant to the
topics considered in this thesis than the research described in the previous sections,
but it does not fit into the same descriptive framework.

32 3 Approaches to program synthesis and structured reinforcement learning

3.5.1 Logical methods
There is a lot of important and interesting work combining logical reasoning, program-
ming language theory, and program synthesis. Since it has not been a major focus of
my studies, however, it has been relegated to a small subsection, that is nonetheless
included for the sake of mentioning the topic. The methods are very relevant for the
program synthesis field as a whole, but they seem difficult to apply to realistic rein-
forcement learning settings, at least because it is common to only consider programs
valid if they perfectly satisfy the constraints given by e.g. input/output examples.

Sketch (Solar-Lezama, 2008) uses a verifier, which produces counterexamples.
During synthesis, a candidate produced by the synthesizer is put through a verifi-
cation process. If verification fails, a counterexample is produced, which is an input
on which the candidate fails to produce the correct output; in that case, synthesis is
performed again, with the additional information from the counterexample. Polozov
and Gulwani (2015) introduce a methodology that they call data-driven domain-
specific deduction. The most interesting thing is the program search strategy, which
is deductive search combined with enumerative search – potentially very relevant!
Deduction is quite efficient, but I think it requires fitting all the i/o data perfectly.
They also view their work as a unification of much previous work on PBE/inductive
synthesis. Feser, Chaudhuri, and Dillig (2015) describe λ2, a method that first gener-
alizes i/o data to hypotheses, before synthesizing programs matching the hypotheses
by combining deduction and best-first enumerative search. Osera and Zdancewic
(2015) demonstrate a method for synthesizing recursive functional programs given
input/output data and type information. The paper contains a good walk-through
of how types can guide synthesis and formalizes many of the concepts in doing so.

3.5.2 Automated code feedback
Keuning, Jeuring, and Heeren (2018) review approaches to automatically generating
feedback for programming exercises. Generating feedback on code requires deep un-
derstanding of how task descriptions relate to code structure, which would also be
very useful knowledge to apply to program synthesis. Piech et al. (2015) learn to
embed so-called Hoare triples, describing how a piece of code changes the program
state, as a feature vector which can then be used as a “one-step” predictor of program
behavior.

3.5.3 Other reviews and resources
Besold et al. (2017) review the field of neuro-symbolic learning, in which the goal is
to integrate connectionist neural models with symbolic reasoning methods such as
logic based systems. A wide array of researchers in the field present their personal
thoughts on the topic. S. Zhang and Sridharan (2020) review methods for doing
sequential decision making under uncertainty (e.g. reinforcement learning) while
leveraging (reasoning with) declarative knowledge. Several issues in the intersection

3.5 Other relevant areas 33

of these fields are discussed, such as which representations to use, how to learn declar-
ative knowledge incrementally, and how to combine reasoning, learning, and control.
The program synthesis book by Gulwani, Polozov, and R. Singh (2017) is a nice in-
troduction to the field as a whole, and contains information on several approaches
that are only superficially considered here.

3.5.4 Model-based reinforcement learning
An alternative to model-free reinforcement learning, which is just called reinforcement
learning in this thesis, is model-based reinforcement learning. The approaches are
mostly based on supervised learning, and by learning a model of the world, decisions
can be made by planning in the model instead of using a trained policy.

Chiappa et al. (2017) learn recurrent predictive models for visual environments,
including models that do not need to predict the high-dimensional observations at
every step. M. B. Chang et al. (2016) introduce a Neural Physics Engine, factorizing a
visual scene into objects and showing that it can predict object movement. Kipf et al.
(2018) describe a neural architecture for learning to predict trajectories of systems of
interacting objects, such as a set charged particles. Jaques, Burke, and Hospedales
(2019) describe a combined neural inverse-graphics and differentiable physics engine.
The approach structures prediction by decomposing scenes into objects and their
interactions, which for example is promising in terms of higher quality long-term
predictions. Hasselt, Hessel, and Aslanides (2019) explore nuances in using an explicit
(parametric) model, versus using experience replay. While experience replay is often
seen as being a model-free method, it can in fact be viewed as a model. It is argued
that experience replay methods are at least as good as model-based methods, when
the model is used to generate ”imaginary” training data. However, a model might be
better used for forwards or backwards planning.

3.5.5 Evolutionary strategies and reinforcement learning
Salimans et al. (2017) experiment with using a black-box optimization algorithm
instead of RL methods such as temporal differences or policy gradients. By sam-
pling random policies nearby the ”current” policy, and performing rollouts with these
slightly varied policies, an approximate gradient can be obtained. Wang et al. (2019)
simultaneously learn progressively more difficult environments and their correspond-
ing policies. They use continuous parametrizations of both environments and policies,
but it might be neat for one or both of them to be programs. Mania, Guy, and Recht
(2018) demonstrate how a local search algorithm in the space of policies can be com-
petitive with policy gradient methods that explore in the space of actions. Small
perturbations of a policy can be used to estimate an unbiased gradient, and the
basic algorithm can also be seen as a simple variant of Evolutionary Strategies (Sali-
mans et al., 2017). Barreto et al. (2020) present a generalization of policy evaluation
and iteration to multiple tasks and policies at once. The generalization allows for

34 3 Approaches to program synthesis and structured reinforcement learning

composition of policies in a natural way, solving multiple tasks with less experience.
The generalized equations can be seen as a framework which can be implemented
in extended in multiple ways. Diuk, Cohen, and Littman (2008) introduce an MDP
representation based on objects and their relations. Inspired by object-oriented pro-
gramming, the state representation is a set of objects, each an instance of a class
from a set of problem-dependent classes. The purpose of such a representation is
to improve several aspects of reinforcement learning, such as sample complexity and
generalization ability. Guo et al. (2014) demonstrate an alternative way to use plan-
ning in solving sequential decision problems; namely, to generate training data. The
best results were obtained by training a classifier to predict the actions found through
planning, and by running the planner on experience obtained in the environment by
the partially-trained classifier, in order to better match the data distributions ob-
served by the planner and the classifier. Justin Fu et al. (2019) explore the problem
of describing reward functions in RL through natural language. By using inverse
RL, the method allows language-conditioned reward functions to be represented by a
neural network, which doesn’t work by naively conditioning the policy on the natural
language description.

3.5.6 Causality and reinforcement learning
Dasgupta et al. (2019) demonstrate that causal reasoning can emerge from training
agents using traditional, model-free reinforcement learning. Bengio et al. (2019) de-
scribe a method for meta-learning causal structures. Through the assumption that
the right causal structure leads to faster adaptation to distributional changes, it is
shown to be possible to learn continuously parametrized causal structures in an end-
to-end manner. Shalizi and Crutchfield (1999) describe a fundamental theory for
representing and learning causal state representations, called ϵ-machines. The rep-
resentation has several good properties, and the authors describe relations to other
fields such as time series modeling and decision theory.

3.5.7 Hierarchical reinforcement learning
Hierarchical structure is a central concept of this thesis, and there exists an entire
field of research that incorporates modularity and hierarchy into mostly traditional
reinforcement learning methods. Some of this research even uses programs or program-
like structures, but it does not contain what I would describe as actual program
synthesis.

S. P. Singh (1992) describes Compositional Q-learning, one of the earliest attempts
at combining Q-learning with a modular architecture that achieves transfer learning.
This method learns solutions to a set of elemental (not decomposable) and composite
decision problems, while being more efficient than learning to solve each problem
separately. Another early approach to modular reinforcement learning is Karlsson
(1997), where each module has its own state space and reward function. In order to

3.5 Other relevant areas 35

select actions, modules are arbitrated by a central algorithm which can be defined
in different ways, such as selecting the action with the greatest combined expected
utility. The main difficulty in using this approach is that useful state spaces and
reward functions have to be defined for each module. There are attempts to alleviate
aspects of this, such as Rothkopf and Ballard (2013), where an algorithm is presented
for learning the individual modules and how to use them. Their algorithm allows
learning the modules despite only observing a global reward, which is the sum of
each module reward. Schmid (1999) describes a system for integrating planning with
inductive program synthesis, in order to solve tasks with recursive structure. Planning
is used to generate a program that solves an instance of the problem of small size,
and a synthesis algorithm is then applied which results in a program that generalizes
to larger instances of the recursive problem.

The MAXQ framework introduced by Dietterich (1999) decomposes decision prob-
lems by defining local termination predicates and reward functions. The presented
MAXQ-Q learning algorithm learns recursively optimal policies, even under state
abstraction. However, as noted in the paper, recursive optimality is weaker than
hierarchical or global optimality, where solutions might need to be locally recursively
suboptimal. Andre and S. J. Russell (2001) present an extension to Hierarchical Ab-
stract Machines (Parr and S. J. Russell, 1998), which is a framework for specifying
partial policies as state machines with learnable policies in certain states. The ex-
tension adds more general programming language constructs, including parametrised
policies which could lead to better generalisation. Learning is achieved with standard
reinforcement learning methods, while the programs merely specify prior knowledge
about the structure of the problems.

In theory, modular policies allow for state abstraction, using only relevant state
variables in each module. Andre and S. J. Russell (2002) demonstrate an approach
to state abstraction in the setting where a program sketch is given, describing a par-
tial policy. Specifically, the paper discusses safe state abstraction under hierarchical
optimality, which means that the ignored state variables are indeed irrelevant. Barto
and Mahadevan (2003) reviews the major approaches to hierarchical reinforcement
learning, including the frameworks and approaches still being researched today. Also
included is a discussion of relevant future work, which included (dynamic) representa-
tions, learning of hierarchies, and application to larger, realistic problems. Silver and
Ciosek (2012) introduce a method for recursively composing option models, which
enables planning over multiple layers of hierarchy. Using their generalized Bellman
equation, it is possible to simultaneously learn option models and plan over these
options to solve additional tasks.

Liu and Jie Fu (2019) propose a combination of options with temporal logic; for
example, given two options that maximize the probability of two separate outcomes,
what are the options that maximize the probability of outcome 1 and 2, or outcome
1 or 2. Beyond the conjunction and disjunction operators, their temporal logic also
includes ”next” and ”until” operators. Bagaria, Crowley, et al. (2020) introduce an
algorithm called Deep Skill Graphs, which constructs hierarchical skills to navigate
the state space in an unsupervised manner. S.-H. Sun, Wu, and Lim (2019) specify

36 3 Approaches to program synthesis and structured reinforcement learning

tasks/goals as programs containing control flow and learnable behavioral subtasks.
The subtasks correspond to neural network policies, and are trained using standard
reinforcement learning after being selected by evaluating the current program state.

Simpkins and Isbell (2019) describe a method for enabling composition of reinforce-
ment learning modules, by solving the problem of misaligned reward scales between
different modules. Their Arbi-Q algorithm for action arbitration consists of another
reinforcement learner, which learns the arbitration policy on a state space that is po-
tentially separate from the modules’ state spaces. Andreas, Klein, and Levine (2016)
present a method for describing prior procedural information, in form of a policy
sketch containing a sequence of named subtasks. The subtasks are solved by con-
structing a policy corresponding to each named subtask, and learning these policies
across multiple tasks at once. More complicated sequences are solved by using cur-
riculum learning, which allows some of the subtasks in the complicated sequences to
be solved before having to solve a full complicated sequence. Lin, Mausam, and Weld
(2016) describe a programming language for implementing POMDPs; essentially, it
is a language with choice points – language states where the behavior of the program
can be optimized. A program is compiled into a set of states and a HAM (Parr and
S. J. Russell, 1998), after which the POMDP is constructed from these. Running a
program requires solving the POMDP, which can for example be done with an online
Monte-Carlo planner.

Verma, Murali, et al. (2018) introduce the Programmatically Interpretable Re-
inforcement Learning framework, an approach to using programmatic policies. The
main difficulty with programmatic policies is learning them, and the framework thus
takes an indirect approach; by first learning a neural policy with standard algorithms,
it becomes possible to synthesize a programmatic policy (supervised) imitation learn-
ing. This is demonstrated by using a neurally guided search method for policy imita-
tion. Following up on this framework, Verma, Le, et al. (2019) demonstrate a method
for learning programmatic policies by iteratively learning a neural policy with a policy
gradient method, and imitating the learned policy with a program through program
synthesis. The authors analyze this approach under the framework of mirror descent,
viewing the imitation step as a projection operator. One practical application of this
approach is the REVEL method (Anderson et al., 2020), which uses the programmatic
policies to allow for provably safe exploration in reinforcement learning, avoiding the
expensive verification of neural policies.

Moerman (2009) mainly presents the HABS algorithm, which modifies an earlier
algorithm called HASSLE. Both algorithms are based on a set of uncommitted sub-
policies, but they differ in how these subpolicies are learned and used. HASSLE has a
set of high-level states or subgoals which abstracts the actual, lower-level state space,
and by using an uncommitted set of subpolicies, subgoals are reached by dynamically
assigning subpolicies to subgoals. In a sense, HASSLE uses subgoals as high-level
actions. HABS does not keep these high-level states, but organizes itself dynamically
by classifying subpolicies into behaviors, which however complicates training, since
in HASSLE the subgoals are used in calculating rewards. HABS solves this by us-
ing a self-organization principle, learning an abstract state representation and using

3.5 Other relevant areas 37

clustering to find similar behaviours that are needed to solve the overall task. Devin
et al. (2019) introduce compositional plan vectors, a way to represent trajectories as
compositions. The vectors enable an agent to learn to solve sequential tasks consist-
ing of several subtasks, and to then compositionally reuse solutions to the subtasks
without any additional supervision.

Levy et al. (2017) introduce the Hierarchical Actor-Critic, an approach to learning
multiple layers of behavioral hierarchy simultaneously. It is argued that this is im-
portant in order to best make use of hierarchical learning, but that it is difficult due
to instabilities occuring from training the different levels. Higher-level policies are
trained as if lower levels are already optimal, which reduces the instability. Bagaria
and Konidaris (2020) present a method for learning options in high-dimensional con-
tinuous state spaces, by combining skill chaining (i.e. the termination condition of an
option is the initiation condition of another option) with deep reinforcement learning.
Their deep skill chaining method is compared to the method in Levy et al. (2017),
generally outperforming it in a set of simulated continuous tasks. Eppe, Nguyen, and
Wermter (2019) present an integration of symbolic planning with reinforcement learn-
ing which is quite different from hierarchical approaches. The integration requires
hand-engineering of predicate-subgoal mappings, which grounds the planning in the
low-level observations. However, such hand-engineering could be well worth it, since
the method shows good performance in some simulated environments that require
some level of causal reasoning.

In Hangl et al. (2020), skills are learned by autonomous playing, while simul-
taneously learning an environment model. Initially, narrow skills are learned from
demonstrations, and their domain is then extended through active playing, guided
by the model. Holtz, Guha, and Biswas (2020) demonstrate an approach for syn-
thesizing high-level policies that compose lower-level policies by selecting one (also
called arbitration). The approach uses a specific DSL that includes physical dimen-
sions in the type system, and which otherwise consists of a sequence of if-then-else
statements with a set of simple numerical predicates and some mathematical func-
tions. The synthesis algorithm is quite complex and layered, for example using an
SMT solver in order to solve contraints for parameter synthesis. Lyu et al. (2018)
describe their Symbolic Deep RL (SDRL) framework, integrating symbolic logic with
hierarchical deep reinforcement learning, for the explicit purpose of explainability of
subtasks. The framework consists of a planner, a controller, and a meta-controller,
which respectively performs subtask scheduling, subtask learning, and subtask evalu-
ation. The symbolic representations consist of manually defined domain knowledge
based on the action language BC. Extending SDRL, Ma et al. (2021) replace the sym-
bolic planning meta-controller with an inductive logic programming controller. The
method seems complicated, employing Transformer networks for attention together
with a manually designed symbolic space in order to represent and extract objects in
the tested environments. First-order logic rules extracted from the system are used
for action selection, and these rules also constitute the explainability element of the
approach.

38 3 Approaches to program synthesis and structured reinforcement learning

3.5.8 Generalization and abstract reasoning
Bahdanau et al. (2018) compare two different models by how they systematically
generalize on natural language (VQA) tasks. Finding that modular architectures
generalize better, they try to learn the layout or the parametrization end-to-end,
which doesn’t work well. Different ways to learn layouts seem necessary. Uesato
et al. (2018) demonstrate a method for evaluating safety critical policies, by learning
adversarial evaluation settings while still being able to estimate failure probabilities.
This demonstrates the difficulty of properly evaluating black-box policies when safety
is critical. Barrett et al. (2018) explore the capability of neural networks to learn and
perform abstract, symbolic reasoning. Popular deep neural architectures generalize
poorly on Raven matrices, a kind of IQ test. A new relational architecture performs
better, especially if also trained to provide symbolic explanations. Similarly, Hill et
al. (2019) explore learning analogical reasoning in neural networks. Using a visual
analogy domain that is quite similar to Raven matrices used in intelligence tests, they
find that it’s important to choose the right data, and to present it to the model in the
right manner, which they call ”learning analogies by contrasting abstract relational
structure”.

Steenkiste, Greff, and Schmidhuber (2019) discuss generalization in model-based
agents, arguing that structured models should be inferred on the fly. A key part of
this structure is decomposing the world into objects, which should be represented
in a way that fulfills a number of requirements in order to facilitate generalization.
Indeed, with such a representation, it is argued that compositional reasoning can lead
to powerful generalization beyond what current models can achieve. Gerstenberg and
Tenenbaum (2017) explore the flexibility of human thinking, through what the au-
thors call intuitive theories. These theories are domain-specific concepts and causal
laws relating them. The theories do not simply describe what happens, they are
more abstractly interpreting evidence through the lens of the intuitive theory. They
are modelled through generative models, and supported by causal reasoning such as
counterfactuals. T. Xu, Li, and Yu (2020) analyze the error associated with imitation
learning of reinforcement learning policies. As would be expected, simple behavioral
cloning has worse bounds on the value gap between expert and imitation policy, as
compared to an approach that tries to correct the compounding errors associated
with behavioral cloning (in this case generative adversarial imitation learning). In-
terestingly, it is also seen that such imitation learning approaches could be useful for
model learning, since most methods use a behavioral cloning-like approach to model
learning.

3.5.9 Natural behavioral hierarchies
Wiltschko et al. (2015) provide evidence of and a method for identifying simple mod-
ules of animal behavior. It is hypothesized that overall, complex animal behavior
is hierarchical and consists of these simpler modules. Using 3D imaging of mouse
behaviors together with an autoregressive hidden Markov model, behavioral mod-

3.5 Other relevant areas 39

ules are identified and a grammar of behavior is described for mouse body language.
Additional evidence is presented by Berman, Bialek, and Shaevitz (2016), where a
behavioral hierarchy in fruit flies is identified. Through an algorithm that decom-
poses images into a low-dimensional basis, a set of behavioral states and transitions
between these states are discovered. Overall, the results show that behaviors consist
of a deep hierarchy of many time scales, displaying memory for up to approximately
20 minutes.

40

CHAPTER4
Paper 1:

Programmatic policy
extraction by local

search
Learning programmatic policies is challenging, as shown by the many methods de-
scribed in Chapter 3. Genetic programming approaches the problem heuristically,
using evolutionary operators that amount to random search and recombination of
high-fitness solutions. While GP has been shown to perform well in many cases, it
seems unsatisfactory to rely on heuristics when reinforcement learning enables in-
formed policy updates and thereby efficient policy learning. Accordingly, it would be
beneficial to integrate a programmatic policy representation with existing modern re-
inforcement learning algorithms. Many methods take an approach where environment
interaction is reduced, since this is the main bottleneck; in general, every candidate
program must be evaluated through potentially expensive environment interaction.
Approaches that reduce environment interaction include learning a parametric en-
vironment model (Hein, Udluft, and Runkler, 2017), evaluating fewer programs by
learning to search more efficiently (Ellis, Morales, et al., 2018), and imitating an
existing policy (Verma, Murali, et al., 2018; Bastani, Pu, and Solar-Lezama, 2018).
The work presented here takes the idea of imitation, and proposes a search method
that takes advantage of being able to search through a large number of programs.

As a starting point, consider the methods described in Verma, Murali, et al. (2018)
and Verma, Le, et al. (2019). The former involves imitating a previously learned
policy, turning programmatic policy learning into a supervised imitation problem.
The paper contains a description of an algorithmic framework, and experiments with
an instantiation of this framework where programs consistent with a predefined sketch
are searched through iteratively. While a neighborhood is mentioned both in the
pseudocode and in the text, it is either left open how to define it, or in the case of
the mentioned instantiation, loosely defined as a set of program templates that are

42 4 Paper 1: Programmatic policy extraction by local search

structurally similar.
The latter paper extends the setting to one where the oracle policy is not trained

first, but instead trained in steps that alternate reinforcement learning and program
synthesis. By considering a joint policy space where the RL policy and program-
matic policy are combined by adding them together, and by considering program
synthesis a projection operator from this joint space to program space, the method
is analyzed as a variant of mirror descent. While the former method is mostly useful
for interpretability, since the starting point is a successfully trained policy, the latter
iterative framework could have many more advantages. Due to the integration of
programmatic and neural policy learning, I argue that it could be possible for pro-
gram synthesis to speed up learning, or even to help discover better solutions; while
this requires more research on the integration of knowledge obtained from program
synthesis in the subsequent RL step, this work could be considered a step in that
direction. The authors again instantiate the suggested framework, but in a quite
limited manner that one could argue is not actually program synthesis. Using a lan-
guage whose main construct is a PID controller, the projection step is performed by
either fitting a regression tree (Breiman et al., 2017) or by finding some weights using
Bayesian optimization (Snoek, Larochelle, and Adams, 2012).

The work described here is an attempt to define and implement a policy imitation
method, which is more powerful because it can synthesize potentially complicated pro-
grams from typed domain specific languages by using the neighborhood heuristic. The
point is that such a method would be very useful in the iterative RL setting described
above, by discovering useful programs in a language with a strong problem-specific
inductive bias. This chapter is based on work done for the paper “Programmatic
policy extraction by iterative local search”, of which a draft version is in Appendix A.
Some additional topics that are not fully covered in the paper are also discussed.

The contributions in this work consist of: a complete definition of a neighbor-
hood structure for programs from DSLs in a polymorphic lambda calculus, using the
Hindley-Milner type system; discussion of relations to (deterministic) GP and Very
Large-Scale Neighborhood search; initial experiments with the defined neighborhood
structure for policy imitation; and (here) also a critique concerning aspects of pro-
grammatic policy imitation.

4.1 Lambda calculus and types
Before getting into the contents of the paper, an introduction to the topic of the
lambda calculus seems necessary. Since this topic is readily found in dedicated text-
books (e.g. Pierce, 2002; Barendregt, Dekkers, and Statman, 2013), it is only briefly
mentioned in the included draft. Nonetheless, the necessary aspects are covered here
in a quite compact manner, with contents inspired by the textbook by Pierce (2002).
I leave out many subtleties that are comprehensively covered by textbooks.

The lambda calculus is a formal system which can be used to describe computa-
tions, by using the operations of function definition and function application. While

4.1 Lambda calculus and types 43

the basic lambda calculus only uses these two operations, which makes it simple but
also quite impractical, it is possible to extend the calculus with various convenient
features such as numbers, tuples, standard library functions, and so on. Starting
with the most basic, untyped lambda calculus, everything is constructed out of three
different kinds of terms: a variable x; an abstraction of a variable x in a term t, λx. t;
and an application of a term t1 to another term t2, t1 t2. These terms are part of
the abstract syntax as described in Table 4.2. There is no need for considering any
concrete syntax here, as synthesis happens directly in the abstract syntax.

In the untyped lambda calculus, with no extensions, running a program amounts
to rewriting terms by applying functions to arguments. This is done by a substitution,
written as (λx. t12) t2 −→ [x 7→ t2]t12. The meaning of this notation is to substitute
all free occurences (free meaning not bound by an abstraction) of x in t12 by t2.
This rule is usually called the β-reduction rule, and a term matching the form on
the left hand side is called a redex. Depending on the evaluation strategy, several
other congruence rules are defined to fully specify the evaluation order. In the case
of call-by-value evaluation, as used here, a redex is only reduced if the t2 part is a
value. Values are syntactical elements which by definition cannot be reduced further,
and in the pure lambda calculus, abstractions are the only values. With extensions,
things such as numbers and other built-ins are likely to be considered values as well.
The call-by-value rules are (E-App1), (E-App2) and (E-AppAbs) in Table 4.2.

4.1.1 Simple types
Programs in the untyped lambda calculus are not always able to be evaluated. Eval-
uation can get stuck, or it can continue forever. Especially the latter is an issue in
program synthesis, but getting stuck on an invalid program is also a waste of compu-
tation. A solution to this problem is the simply typed lambda calculus, also called
λ→, where valid programs are guaranteed to be able to be evaluated. The simply
typed lambda calculus extends the untyped lambda calculus with base types, such as
booleans (Bool) and natural numbers (Nat), and a type constructor → that is used
to construct function types by combining base types or other function types. For
example, Bool→ Nat is a type describing a function that takes a boolean argument
and produces a natural number as a result. The base types are inhabited by constant
values, such as true and false for Bool. Using these types, it is possible to statically
determine whether a program can be evaluated, that is, without actually evaluating it.
Although this is considered a feature, it does limit the terms that are typeable; even
if a program can be evaluated to a consistent type, the type might not be statically
determined. A term t having type T means that it definitely evaluates to a value of
type T.

While constants have their associated type, variables bound by abstractions must
be annotated with types. This means that every leaf of an abstract syntax tree
has a type, since it is either a constant or an annotated variable. Given a term
containing constants, variables, abstractions, applications, and corresponding type

44 4 Paper 1: Programmatic policy extraction by local search

annotations, we can calculate the type of the term. The rules for this type checking are
somewhat obvious, essentially checking that applied arguments match the annotated
type, and so on. The first typing rule is for variables, (T-Var) in Table 4.2. There is
a convention of using a type environment (or context) which is called Γ, consisting of
a set of variables and corresponding types. The comma operator Γ, x : T extends the
environment with a new variable x and its type T. The typing rules for abstractions
and applications, (T-Abs) and (T-App), are also in Table 4.2. Evaluation is performed
the exact same way in the typed calculus, and it is even possible to perform type
erasure by removing everything type-related, since it is only used for type checking.

4.1.2 Type inference
In the above, explicit type annotations were described, but they are not strictly neces-
sary. Type inference or reconstruction makes it possible to calculate the most general
type, called the principal type, for a term with missing annotations. For example, the
term λx. x 1, which takes an argument x and applies it to the number 1, must obvi-
ously have a type of the form (Nat→ X)→ X. Here, X is a type variable, which can take
on the value of any type. Similarly to variables in terms, a type substitution is defined
as a mapping from type variables to types. For example, the mapping σ = [X 7→ Bool]
is applied to the previous type to obtain σ((Nat→ X)→ X) = (Nat→ Bool)→ Bool.

There are two views of type variables, which lead to different concepts. In the
first view, any type can be substituted for a type variable. When concrete types are
not substituted for type variables during typechecking, different types can eventually
be substituted into the variables, and the term can be used in different type contexts.
This is called parametric polymorphism and is described in the next section. In the
second view, we instead ask if there even exists a substitution that makes a term
well-typed. If it is possible to choose a substitution which makes the term well-typed,
we will find the principal type that does so. This is type inference, and it can be
described in two parts: constraint generation, and unification.

x : T ∈ Γ
Γ ` x : T |∅ {}

(CT-Var)

Γ, x : T1 ` t2 : T2 |X C
Γ ` λx : T1. t2 : T1 → T2 |X C

(CT-Abs)

Table 4.1: The constraint typing rules for variables and abstractions.

Constraint generation involves generating a set of equations that must necessarily
be satisfied for any solution to the type inference. This is similar to type checking,
except constraints are recorded instead of checked. For the sake of intuition, gener-
ating constraints amounts to generating equations between two trees, where leaves
can contain constants, variables, or the slightly more complicated case of a subtree.

4.1 Lambda calculus and types 45

For example, the constraint typing rules for variables and abstractions are shown in
Table 4.1. There are additional constraint typing rules for other parts of the lan-
guage, such as applications and language extensions. The notation is a bit involved,
but Γ ` t : T |X C should be read “term t has type T given context Γ when constraints
C are satisfied.” Further, the notation |X is essentially a notice that type variables
in each derivation must be freshly generated – they must be distinct from the type
variables in other derivations. It might be easiest to read the constraint typing rules
bottom-up, since in this direction, they describe the algorithm that produces T, C and
X such that Γ ` t : T |X C, given t and Γ – furthermore, this algorithm does not fail,
since it is always possible to generate the constraints.

Unification is a method for calculating the most general solution for the constraint
set. For a constraint set C = {Si = Ti}, a substitution σ unifies an equation S = T if
the instances σS and σT are equal, and σ unifies C if it unifies every equation in C.
The algorithm is shown in Listing 4.1. Here, FV (T) is the set of type variables used
in T, and it is used as an occurs check, ensuring that an infinite type isn’t created by
a substitution like [X 7→ X→ X].

1 function unify(C)
2 if C = ∅ then []
3 else let {S = T } ∪ C′ = C in
4 if S = T then unify(C′)
5 else if S = X ∧ X /∈ FV (T) then unify([X 7→ T]C′) ◦ [X 7→ T]
6 else if T = X ∧ X /∈ FV (S) then unify([X 7→ S]C′) ◦ [X 7→ S]
7 else if S = S1 → S2 ∧ T = T1 → T2 then unify(C′ ∪ {S1 = T1, S2 = T2}
8 else no solution exists

Listing 4.1: Unification

4.1.3 Polymorphism
The simply typed lambda calculus that was described can be too restrictive, since
every type T is either a type constant or a function T1 → T2 composed of these. The
second view of type variables, where they are held abstract, can be used to gain more
flexibility. When using the same function in multiple parts of a program, it might be
applied to different types. Even if the type of this function is a variable, conflicting
constraints would be generated for the same type variable; instead, what we need
is universal quantification. Then, for the identity function id = λt. t, we can say
that it has the type ∀X. X→ X. Here, X is called generalized, and it is important to
be careful about which type variables are generalized. Commonly, a let expression
is introduced of the form let x = t1 in t2, which can be used anywhere a term is
expected. Allowing types to be generalized in functions defined by let expressions is
called let-polymorphism, and when used in this manner in the lambda calculus it is
often referred to as the Hindley-Milner type system.

46 4 Paper 1: Programmatic policy extraction by local search

Syntax
t ::= terms:

x variable
λx : T. t abstraction
t t′ application
let x = t′ in t let binding

v ::= values:
λx : T. t abstraction value

T ::= types:
X type variable
T → T function type

Γ ::= contexts:
∅ empty context
Γ, x : T variable binding

Evaluation (call-by-value) t −→ t′

t1 −→ t′
1

t1 t2 −→ t′
1 t′

2
(E-App1)

t2 −→ t′
2

v1 t2 −→ v1 t′
2

(E-App2)

(λx : T11. t12) v2 −→ [x 7→ v2]t12 (E-AppAbs)

let x = v1 in t2 −→ [x 7→ v1]t2 (E-LetV)

t1 −→ t′
1

let x = t1 in t2 −→ let x = t′
1 in t2

(E-Let)

Typing Γ ` t : T

x : T ∈ Γ

Γ ` x : T
(T-Var)

Γ, x : T1 ` t2 : T2

Γ ` λx : T1. t2 : T1 → T2
(T-Abs)

Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
(T-App)

Γ ` [x 7→ t1]t2 : T2 Γ ` t1 : T1

Γ ` let x = t1 in t2 : T2
(T-LetPoly)

Table 4.2: Definition of the lambda calculus with Hindley-Milner type system, in
which we construct DSLs and synthesize programs. Some simple extensions are left
out, such as natural or floating point number values, which can be easily implemented
depending on application. Note that while let-expressions are not synthesized in the
presented method, types of functions in the DSL are generalized, and this is considered
during synthesis.

4.2 Local search
The paper (Appendix A) defines the neighborhood structure, but I also describe some
details here. A DSL D is defined in the typed lambda calculus, containing: a set of
base types, constants associated with the base types, and functions annotated with
base types or type variables. The DSL could be implemented in any way necessary,
such as by extending the lambda calculus with additional features. The main ben-
efit of the Hindley-Milner type system is obtained here, since the DSL can contain
generically typed functions, while neighborhood generation takes advantage of the
annotated types to limit the search space.

4.3 Distributed search 47

The neighborhood for a program P from the DSL D is obtained by exhaustively
applying all possible edits at all paths of the AST of the program. An edit replaces a
term with a newly generated term from the DSL, ensuring that the program remains
well-typed. The set of all possible edits to a term is limited by a predicate, based
on the newly generated term. The predicate used in the paper limits the size of the
new term, resulting in a depth-limited search. It is important to note that “all paths”
indeed means all paths, including paths to internal nodes of the AST. With this
definition, all subtrees of the AST, including the entire program itself, are considered
for edits. For this reason, the term to be replaced by an edit is temporarily added
to the DSL, allowing the search an opportunity to construct a program not only by
refactoring small parts of it, but also by reusing an existing term as part of something
new.

4.2.1 Synthesizing function types
A perhaps surprising aspect of the method is that it does not synthesize lambda
abstractions. This is not due to a theoretical limitation; abstractions could straight-
forwardly be synthesized by the presented method. To synthesize an abstraction when
a function of type T1 → T2 is requested, simply generate λx : T1. t and recursively syn-
thesize t with the requested type T2. However, in ad-hoc testing this was not found
to produce useful programs, despite adding significantly to the neighborhood size.

Instead, functions can be synthesized from the DSL, using any available functions
that can yield the requested type. This could either be an exact match, a polymorphic
match (e.g. ∀X. X→ X can be used if Bool→ Bool is requested), or even a partially
applied polymorphic match: if the requested type is Bool→ Int, a function in the
DSL with type ∀X.∀Y. X→ Y→ X will work, by applying it to a single Int which can
be recursively synthesized. While this approach was found to produce fewer, more
relevant candidates, it seems unsatisfactory to completely disregard the synthesis of
abstractions. Finding a way to synthesize useful abstractions is a challenging, but
probably worthwhile, future endeavor. Synthesizing abstractions with generalized
types, such as through let expressions, is probably more difficult but would take full
advantage of the type system.

4.3 Distributed search
Since the local search algorithm is a very large tree search, obtained by viewing
neighborhood enumeration as the application of edits to terms and then recursively to
terms in the edits, it is possible to parallelize the search using strategies for searching
trees. Naively, we could try to decompose the search by expanding the search tree
up to some depth and then parallelizing across subtrees. Unfortunately, the search
trees were observed in experiments to be very irregular; when decomposed in this
way, a majority of valid programs were observed to belong to only one or a few

48 4 Paper 1: Programmatic policy extraction by local search

subtrees. What is needed is an algorithm that adaptively allocates computation to
expand nodes, irrespective of their location in the tree. It’s also possible to use an
algorithm that adaptively searches through subtrees, namely the Distributed Tree
Search algorithm in Ferguson and Korf (1988), which could be slightly more efficient
by reducing overhead. The decomposition at a node level is more straightforward,
however, and unlike the application to branch-and-bound as presented in that paper,
deciding to evaluate a node does not depend on information in other parts of the
search tree.

The algorithm used to parallelize neighborhood generation and search works by
distributing node expansion across a set of processes, which can exist on the same
physical machine, or across several physical machines on the same network. There
is a main process which coordinates the search, and worker processes only need to
be connected by the network to the master process. The search consists of node
expansion and program evaluation, and both are distributed as follows. Given a
program, the main process calculates all paths in the AST, and submits a job for
each path. Worker processes that are idle can take an available job, with each job
consisting of the algorithm in Listing 4.2. The function editCandidates(s) generates
the next level of the search tree from the current node s, by selecting all candidates
from the DSL for which a constraint between the type of s and the type of the
candidate can be unified. Since the node is only expanded one level, arguments
in the candidates are not recursively synthesized yet, but are left as typed holes,
corresponding to the nodes at the next level of the search tree. Programs without
any holes are complete, and can be evaluated.

1 function expandAndEvaluate(s)
2 leaves = []
3 for ns ∈ editCandidates(s)
4 if complete(ns)
5 add ns to leaves
6 else if depth(ns) < maxDepth
7 create a new job expandAndEvaluate(ns)
8 else
9 skip ns

10 evaluate leaves and return

Listing 4.2: Expand a node and evaluate programs

4.4 Discussion
As presented, the neighborhood structure is essentially a suggestion for further exper-
imentation and research. To my knowledge, only some very basic experiments have
been performed with the imitation-projection framework. Performing policy projec-
tion in the typed lambda calculus would be interesting, since it represents a major
upgrade to the expressive power of the language compared to the PID controllers or
decision trees that have been used previously. One challenge in this regard is to select

4.4 Discussion 49

a task of suitable interest and complexity, and to design a corresponding DSL that
is also interesting and expressive enough. The most interesting kinds of task/DSL
combinations would be ones where with some sort of programmatic structure to the
optimal solution, and where multiple different base types are involved in order to
fully take advantage of the type system.

An aspect of the presented method that needs work is the synthesis of functions.
I do believe that the method for synthesizing functions strictly using the DSL can be
valuable, but also that the generation of new functions should not be ignored. Specifi-
cally, I imagine that it might not be very important to synthesize abstractions during
a single iteration – not much reusable code can be discovered in just one iteration.
Across iterations however, acquisition of new functions could play a more important
role, by reducing the effort needed to generate similar concepts subsequently.

Several methods that were discussed in the survey treated the acquisition of new
functions. While enumerating a neighborhood is another way to approach the search
for programs, many aspects are at least somewhat independent of the search method.
For example, an existing method for acquiring useful functions could likely be in-
tegrated, at least in between synthesis iterations. Other machine learning methods
could also be integrated with the neighborhood search, such as learning a distribution
over programs in the neighborhood, which could be used for enumeration and instead
of the depth limit.

Finally, the idea of policy imitation needs to be discussed. It seems to me that
there is fundamental problem in treating a neural policy as an oracle, notably in early
stages of learning when it is practically guaranteed that no part of the policy is optimal.
If the goal is to discover simple programs that are interpretable, or that generalize
beyond the current performance of a neural policy, then it seems counterproductive to
treat the neural policy as an oracle while attempting to imitate it as well as possible.
Interactive imitation does not help; adding more data to overfit on only exacerbates
the problem, and reinforcement learning algorithms tend to learn mostly on-policy,
even if they are capable of learning from off-policy data. The experiments described in
the paper did show a glimmer of hope, such as discovering the simple but performant
program in iteration 4 of the neural imitation. Further iterations demonstrate the
problem, though, by the program getting more complicated while fitting the neural
policy increasingly well despite little gain in performance. Based on this, it seems
likely that the problem should be framed differently, such that whatever program
synthesis algorithm is used, it is not rewarded for fitting arbitrarily bad parts of a
supposed oracle. Neighborhood search does not strictly depend on imitation learning;
any approach where a very large number of programs can be evaluated at low cost
can be used, such as learning a cheap model of the environment in which programs
are evaluated.

50

CHAPTER5
Paper 2:

Reinforcement
learning of causal

variables
This work differs a bit from other topics considered in this thesis, since no program
representations are involved. Nonetheless, causality and models thereof are similar
to programs, in that simple but structured representations can contribute in impor-
tant ways to the learning of intelligent behavior. There is a well-known discrepancy
between the noisy, limited observations humans receive about the world, and the pow-
erful, general models humans nonetheless manage to construct to guide their behavior
(Tenenbaum et al., 2011). In reinforcement learning, this discrepancy can be seen as
the difference between learning at the level of individual states of an MDP, and ac-
quiring abstract knowledge which can be applied across states or even across MDPs.
There is probably only one way to actually learn generalizations beyond observed
data: obtain additional information from another source. One approach to learning
abstract knowledge in reinforcement learning is state abstraction, which has been
researched under the guise of function approximation since the inception of the field.
In its basic form, the purpose of function approximation in reinforcement learning is
to allow learning to scale to large state spaces, for which tabular representations are
unrealistic. This makes function approximation of some kind practically necessary
when applying reinforcement learning to larger, more realistic tasks.

Of more relevance here is the abstract knowledge dimension of function approxi-
mation. Whether it is simple state aggregation, or a value function represented by a
deep neural network, the state space is abstracted. The potential benefits and disad-
vantages are well known; for example, although observed data can be used to update
many similar states that are grouped together, this can also destabilize learning if the
update does not fit some of the grouped states. There is also an obvious connection
to hierarchical reinforcement learning, where, for example, abstracted states become

52 5 Paper 2: Reinforcement learning of causal variables

states in a semi-MDP related to the original MDP (R. S. Sutton, Precup, and S.
Singh, 1999).

This chapter is based on work done for the paper “Reinforcement learning of
causal variables using mediation analysis”, and a draft of the paper can be found in
Appendix B. I worked on this paper with Tue Herlau, who had been working on the
idea for a while before we collaborated on completing it. The main contribution of
the paper is an approach to learning an abstract state variable, which is in a causal
relationship with the outcome (i.e. the reward). The variable can be learned online
using a stochastic approximation algorithm, while simultaneously training a standard
reinforcement learning policy to reach the causal state.

5.1 Direct and indirect effects of policies

The basis for this work is the definition of direct and indirect effects by Pearl (2001).
That paper also defines more general path-specific effects, where only a selected set of
paths instead of nodes remain active, but the conditions for identification are much
stricter than in the case of the direct and indirect effects. Specifically, we consider the
simplest possible mediation model, containing the paths X → Y and X → Z → Y , as
seen in Figure 5.1a. In this model, the direct effect of X on Y quantifies how changing
X changes Y only through the path X → Y , while the indirect effect quantifies how
changing X changes Y only through the path X → Z → Y . The natural indirect
effect (NIE) in this model, if X had the value x′ instead of x, is (Pearl, 2001)

NIEx′(Y) =
∑

z

E[Y |x, z] (P (z|x′)− P (z|x)) . (5.1)

In order to use this model, we take the view shown in Figure 5.1b. Thus, X = Π
denotes the choice of a policy, Y = G0 is the return (2.5), and Z is some unknown
variable that can be identified in the underlying MDP. To keep it as simple as possible,
we consider two policies Π = {πa, πb}, and Z is binary. The interpretation of Z here
is that it is an indicator of whether some underlying condition has been made true in
the state space of the underlying MDP, and for that reason we define it as a stopped
process,

Z = max (Z0, Z1, . . . , ZT) , (5.2)

where Zt = {0, 1} for t = 0, 1, . . . , T . Hence, Z = 1 if, during an episode, the condition
defined by the Zts happens. In this simple case, where the variables are binary, the

5.1 Direct and indirect effects of policies 53

X

Z

Y

(a) Simple mediation model.

Π

Policy ∈ {a, b}

Z

Mediating variable ∈ {0, 1}

Y

Reward

(b) Binary policy mediation model.

Figure 5.1: The mediation model used in the paper.

NIE simplifies as

NIEx′(Y) =
E[Y |Z = 0, πa] (P (Z = 0|πb)− P (Z = 0|πa))

+E[Y |Z = 1, πa] (P (Z = 1|πb)− P (Z = 1|πa))

=
E[Y |Z = 0, πa] ((1− P (Z = 1|πb))− (1− P (Z = 1|πa)))

+E[Y |Z = 1, πa] (P (Z = 1|πb)− P (Z = 1|πa))

=
E[Y |Z = 0, πa]− E[Y |Z = 0, πa]P (Z = 1|πb)
−E[Y |Z = 0, πa] + E[Y |Z = 0, πa]P (Z = 1|πa)
+E[Y |Z = 1, πa] (P (Z = 1|πb)− P (Z = 1|πa))

=
E[Y |Z = 0, πa](P (Z = 1|πa)− P (Z = 1|πb))

+E[Y |Z = 1, πa] (P (Z = 1|πb)− P (Z = 1|πa))

= (E[Y |Z = 0, πa]− E[Y |Z = 1, πa])(P (Z = 1|πb)− P (Z = 1|πa)). (5.3)

The expression in (5.3) is a bit easier to interpret. The first term of the product
is the change in expected outcome, keeping X at the reference level x while changing
Z from z = 0 to z′ = 1, while the second term is the change in probability of seeing
Z = 1 when changing X from the reference of x = πa to x′ = πb. Thus, the NIE has
the property that it attains a large value only when 1) observing z′ leads to a larger
reward and 2) the policy πb is able to act such that z′ is more consistently achieved
than under πa. This is the motivation for using the NIE, since the right choice of Z
(read: that attains a large value of the NIE) should be an identifiable condition in
the MDP that is both useful and achievable.

54 5 Paper 2: Reinforcement learning of causal variables

5.2 Optimizing the indirect effect
Our goal is to discover a useful mediating variable Z, which we find by maximizing the
NIE with respect to Z. To do so, we define the distribution of Z as Bernoulli(Φ(s))
using the parameterized function Φ(s). Thus, for each state s in the MDP, Φ(s) is
the probability of z′. Additionally, we define the combined policy

π(st) =

{
πa, if Π = a

(1− Z0:t)πb + Z0:tπa, if Π = b,
(5.4)

where Z0:t = max{Z0, . . . , Zt}. This choice is made in an attempt to decompose the
trained behavior of πb, which is discussed below.

Learning Z by optimizing the NIE can be made pretty similar to standard rein-
forcement learning, by introducing recursions similar to the Bellman equation (2.10)
which converge to the terms in (5.3). First, we need the value of Z from time t,
Z∞

t = max{Zt, Zt+1, . . . }, while using the convention Zt = 0 ∀t /∈ {0, . . . , T}, and
we can then define the “value functions”

v∞
t (st) = P (Z∞

t = 1|St = st, Zt−1 = 0), (5.5)
vz

t (st) = E [Gt|St = st, Z∞
t = z, Zt−1 = 0] , (5.6)

which are both conditional on Zt−1 = 0. These should be interpreted as follows,
starting from a state st: v∞

t is the probability that Z happens in the future given
that it hasn’t happened yet, and vz

t is the expected return given that Z has not
happened yet, and that it either will (z = 1) or won’t (z = 0) in the future. That is,
vz

t is actually two value functions v1
t and v0

t . Importantly, vz
0 = E [G0|Z = z, s0] and

v∞
0 = P (Z = 1|s0) correspond to terms in (5.3).

The value functions satisfy the recursions

v∞
t (st) = Φ(st) + Φ̄(st)E

[
v∞

t+1(St+1)|st

]
, (5.7)

v1
t (st) = vπ(st)Φ(st)

v∞
t (st)

+ Φ̄(st)
v∞

t (st)
E

[
v∞

t+1(St+1)
(
Rt+1 + γv1

t+1(St+1)
)
|st

]
, (5.8)

v0
t (st) = Φ̄(st)

¯v∞
t (st)

E
[¯v∞

t+1(St+1)
(
Rt+1 + γv0

t+1(St+1)
)
|st

]
, (5.9)

where x̄ = 1 − x and vπ(st) is the value function as usually defined (2.6). The
supplementary material in Appendix B contains a proof of the corresponding Bellman
operators being contraction mappings.

These recursions all have the familiar form

vt(st) = Eµ [Ht(st, St+1) + Gt(st, St+1)vt+1(St+1)|st] , (5.10)

where the expectation is over the observed behavior generated by a policy µ. These
updates could be used directly, but practically we chose to use the n-steps V-trace

5.3 Discussion 55

1 input: initial policy πa(s) and πb(s)
2 input: initial value vπ(s), v∞

π (s), v1
π(s), and v0

π(s)
3 input: initial causal variable Φ(s)
4 repeat
5 collect experience using πa

6 train πa using e.g. an actor-critic method
7 train πb using the reward from (5.11)
8 train value functions vπ(s), v∞

π (s), v1
π(s), and v0

π(s) using (5.7)
9 train causal variable Φ(s) by maximizing (5.3)

10 until convergence

Listing 5.1: Learning a causal mediating variable

target (Espeholt et al., 2018), which should lead to better off-policy updates when
sampling experience from a replay buffer.

To estimate the NIE, we parameterize vπ(s), v∞(s), v1(s), and v0(s). Then, the
NIE is obtained by plugging the relevant values into (5.3). The parametrized Z (i.e.
Φ) can be trained to maximize the NIE, for example using gradient ascent. The
policy πb is trained directly to maximize P (Z = 1), but P (Zt) is multiplicative across
steps. In order to obtain an additive value that can be used directly as a reward, we
decompose it using a stick-breaking construction,

rb
t+1 = Φ(st)

t−1∏
k=0

(Φ̄(sk)), (5.11)

which results in
∑∞

t=0 rt+1 = P (Z = 1|τ) where τ is any trajectory of states and
actions. The overall approach is described algorithmically in Listing 5.1. Results
from some basic settings are included in the draft of the paper in Appendix B.

5.3 Discussion
The presented method is an alternative way of learning a simple, abstracted state
variable, which isn’t a latent part of a generative model, but instead is in a descriptive
relationship to some underlying phenomenon. This results in a qualitatively different
model, by making a different set of ontological commitments (Davis, Shrobe, and
Szolovits, 1993). As mentioned in the introduction, it is necessary to obtain additional
information beyond observed data, in order to also generalize beyond it. Our approach
obtains a bit of extra information through a simple causal graph, which allows the
discovery of a mediating variable that is both useful and achieveable according to the
NIE.

There is some relation between this work and work on dynamic treatment regimes
in medicine. The field of optimal dynamic treatment regimes is related to reinforce-
ment learning in general, and Q-learning is commonly applied in this field, even on
observational data (Schulte et al., 2014). Further, work on optimizing a dynamic

56 5 Paper 2: Reinforcement learning of causal variables

treatment regime only with respect to a path-specific effect instead of the overall
outcome (Nabi, Kanki, and Shpitser, 2018) is similar to optimizing the indirect ef-
fect. To be clear, the setting here is quite different since learning is performed online,
on a larger problem, while the mediating variable is simultaneously learned. The
main similarity is thus the learning of a policy, but in our work this is achieved with
reinforcement learning on a reward defined by using the mediating variable.

Hopefully, learning such a descriptive causal variable can be useful in learning
intelligent behavior. Mediation analysis is popular in fields such as medicine and psy-
chology, where it can be used to gain additional insight into interventions (Whittle
et al., 2017; Agler and De Boeck, 2017). At minimum, an intermediate causal state
can act as an interpretable goal by which an MDP can be decomposed. Several such
abstracted states can facilitate planning, in a fashion similar to hierarchical reinforce-
ment learning (Silver and Ciosek, 2012; Bagaria and Konidaris, 2020). Extending the
method to discover multiple causal states would be interesting, and would perhaps
help in making the approach more practically viable. There are several ways in which
multiple causal states could be incorporated, for example as sequences of causal states
obtained by iteratively discovering a new causal state using the previously discovered
one as the new outcome.

An aspect of the method that needs further research is the training procedure
itself. While running experiments for the paper, we found that it could be difficult to
learn some of the functions depending on parameterization and other tricks. These
should be mostly described in the paper, such as not directly optimizing (5.3), but
instead optimizing an alternate form of it which is also regularized. When published,
the code will be available as well, and all the more minor things that might not be
mentioned in the paper can of course be found there.

Finally, a critical aspect of the method is that the optimal mediating variable
cannot be identified if πa is optimal. This fact can be understood by considering that
an optimal mediating variable Z by definition is highly associated with the optimal
outcome E [Y |Z = 1]. If πa is optimal, it already optimizes P (Z = 1|πa) because
it is needed to achieve the optimal outcome. As discussed in the paper, depending
on the perspective we choose to take on causality, this could be seen as a natural
consequence of how we define causality. When considering an MDP at the lowest
level, it is difficult to consider anything as a cause except the actions that lead to the
following states. Similarly, at a molecular level it would not be straightforward to link
smoking to cancer; the immediate low-level cause of cancer would be, for example,
the particular chemical interaction that causes a genetic mutation, transforming a
normal cell into a cancer cell. Only at a much higher, abstracted level can we call
this cause “smoking”. Considerations such as this are not just philosophical, but have
a direct influence on how we can apply causal principles, as this issue demonstrates.
Interestingly, the very basics of causality are still being discussed by philosophers (B.
Russell, 1912; Ross and Spurrett, 2007).

CHAPTER6
Discussion

The presented research tackles the key features of intelligent agents that were iden-
tified in the introduction. Programmatic policies are extracted from existing neural
policies by applying multiple steps of a greedy search algorithm over a neighborhood
structure defined in a typed programming language. Specifically, the neighborhood
is defined based on a given program and domain specific language (DSL), and con-
tains all the well-typed programs obtained by substituting terms from the DSL for all
possible sub-terms of the program. Since a DSL can generate an unlimited number
of larger and larger terms, the size of the neighborhood is limited by, for example,
considering only small terms from the DSL and a small number of simultaneously
substituted terms. Despite these limits and the greedy search, it was demonstrated
that the method can discover useful programmatic policies that are too complicated
to discover in one iteration of search. Even when the required program contains dis-
crete structures that cannot be found in one step, it is at least sometimes possible
to discover them. For example, an if-expression with branches that are too com-
plicated to be contained in a single neighborhood, can be discovered in two ways:
by first discovering the code for the branches before finding the if and condition
in a subsequent step, or alternatively by finding an if with simplified terms in the
branches first. Interestingly, both of these approaches to the synthesis problem come
naturally from the definition of the neighborhood.

Abstract causal state variables are learned by maximizing the causal effect of
a policy on the reward through the state variable. That is, the optimal function
mapping states to an abstracted variable is identified. By optimizing this so-called
indirect effect of the policy, the abstract variable corresponds to a situation which is
causally linked to the agent’s reward function, while simultaneously being something
that the agent can obtain through its actions. We argue that this interpretation of the
indirect effect is qualitatively different from other ways of learning state abstractions,
such as predictive latent variable models, since it is not associated with a generative
model of the world. For example, in a simple setting where an agent has to pick up a
key to open a door before obtaining a reward, it was demonstrated that the method
identified the key as a causal variable, despite obtaining no reward from it directly.

58 6 Discussion

6.1 Perspective and future work

6.1.1 Programmatic policy search
Extracting programmatic policies from neural policies is a straightforward way to
attain composition while using standard, state of the art reinforcement learning algo-
rithms. Programs discovered in this way are communicable, and have several other
potential advantages to neural policies: for example, simple programs with a good
inductive bias are likely to generalize better to states that have not been observed
during training, and they are cheaper to evaluate and use at test time. Of course,
these advantages are by no means free to obtain; designing a good DSL is, as the
name suggests, domain specific and must currently be done by a human expert. Addi-
tionally, searching through a large program space is computationally expensive, and
happens after an also expensive reinforcement learning phase. This last point was
discussed in the paper, and it is not strictly the purpose of the method to be used
after reinforcement learning. Rather, the point is to jointly learn a neural and a pro-
grammatic policy. For example, programmatic policy extraction could be performed
at some interval during reinforcement learning, while first making sure that the neural
policy behaves well on the chosen imitation states. As a result, structured policies
that generalize could be discovered in early stages of learning, taking advantage of
inductive bias in the DSL.

There is no reason to expect that the search can generally find the right program;
local optima are always a main consideration in local optimization. Due to the greedy
search, it is necessary that useful structures can be discovered within the limits of
the neighborhood iterations, if they are to be discovered at all. When and how this is
possible should be examined further, in order to maximize the potential of program
search. One point, perhaps a bit obvious, is that the search depth as defined must
be at least the maximum arity of functions in the DSL. Even then, this results in
the function(s) with highest arity only being synthesized with simple constants or
variables as arguments. This is merely due to the way the search depth is limited,
and could be changed; the question is simply how. One approach could be to train a
probabilistic model over edits, and enumerate all programs above a given probability.
However, one of the benefits of the neighborhood as defined is that no model is trained,
which could be expensive in itself, and a different model would be needed for each
DSL, and probably even for each setting that the same DSL is applied to.

6.1.2 Causal state abstraction
Learning a causal state abstraction seems like a good fit for the kind of abstraction
that was discussed in the introduction. The purpose of such an abstraction is to not
only ignore irrelevant aspects of the world (relative to the current task), but also to
act as a concept that can be communicated, and that can be used in a wide variety of
scenarios. Since causal states are linked to outcomes, and can be manipulated by an

6.1 Perspective and future work 59

agent, it seems that they would also be useful for other agents. In terms of generaliza-
tion to unseen states, however, the method still depends on a good parameterization
of the function mapping states to abstract states. It would be interesting to explore
how well the causal state representation can actually generalize in commonly used
environments, and to explore ways in which this generalization could be improved.

6.1.3 Combined approaches
Ideally, an agent would be able to compose skills, communicate with others, and
abstract skills and knowledge. The presented methods address these three aspects,
but not jointly. The programmatic policies operate with a small set of input variables,
and although a DSL could be designed to handle high-dimensional perceptions, this
seems less than ideal. Instead, it would be useful if program inputs could be discovered
with a method such as causal state abstraction. One possibility is to search directly
for programmatic policies that maximize the indirect effect as described. One concern
in this regard is that abstracted state variables are not useful for low-level control.
Programs with abstracted state inputs would essentially operate at a different level
of the skill hierarchy, and a different representation, or at least an entirely different
set of inputs, would have to be used for low-level policies. From my perspective, this
modularity could be seen as a strength of the approach – low-level control policies are
likely to vary between different agents, and only programs operating over abstract,
grounded variables make sense across agents and situations.

60

APPENDIXA
Draft of paper 1

This paper, with the tentative title “Programmatic policy extraction by iterative
local search”, is at the time of writing under review for the AAIP workshop at IJCLR
2020-21.

Programmatic policy extraction by iterative local search
Rasmus Larsen and Mikkel N. Schmidt

Department of Applied Mathematics and Computer Science,
Technical University of Denmark.

Abstract
Reinforcement learning policies are often represented by neural networks, but programmatic

policies are preferred in some cases because they are more interpretable, amenable to formal
verification, or generalize better. While efficient algorithms for learning neural policies exist,
learning programmatic policies is challenging. Combining imitation-projection and dataset ag-
gregation with a local search heuristic, we present a simple and direct approach to extracting a
programmatic policy from a pretrained neural policy. After examining our local search heuris-
tic on a programming by example problem, we demonstrate our programmatic policy extraction
method on a pendulum swing-up problem. Both when trained using a hand crafted expert policy
and a learned neural policy, our method discovers simple and interpretable policies that perform
almost as well as the original.

1 Introduction
While neural policy representations are by far the most common in modern Reinforcement Learning
(RL), other representations are worth considering. Programmatic policies provide a number of
potential benefits: For example, a program might be read and understood by a human, something
that generally is not possible with a neural network. Programs are also inherently compositional,
which allows for not only reuse of policies in new combinations, but also compositional reasoning
about their behavior.

However, learning programmatic policies is challenging. The structured, discrete space of pro-
grams does not allow for the gradient based optimization that neural policies benefit greatly from.
Compared to a more standard inductive synthesis setting, programmatic policies must be evaluated
in an environment that, whether simulated or real, is expensive to interact with. Several approaches
exist that attempt to handle this interaction issue, such as learning a parametric environment model
(Hein et al., 2017), imitating an existing policy (Bastani et al., 2018; Verma et al., 2018), or eval-
uating fewer programs by learning to search more efficiently (Ellis et al., 2018). Furthermore,
Verma et al. (2019) extend the imitation setting by providing a framework for intertwining RL and
programmatic policy imitation.

This imitation-projection framework brings us a step closer to programmatic RL, where pro-
grams can be learned gradually through interaction with the environment. Essentially, this allows
similar sample efficiency when compared to policy gradient methods, since the imitation-projection
step is performed offline by scoring programs according to an imitation learning objective. One
could even plausibly imagine that the inductive bias in a problem-specific policy language could
lead to improved learning.

The framework leaves many choices open in terms of how the policy update and programmatic
policy projection steps are performed, as well as in terms of defining the program space. Verma et al.

1

62 A Draft of paper 1

(2019) perform experiments with a specific choice of update and projection, using two tailored pro-
gram spaces based on PID controllers with either decision tree regression or Bayesian optimisation
over some parameters as the projection operator.

In this paper we experiment with a more general program space based on Domain Specific Lan-
guages (DSLs) implemented in a typed lambda calculus. We demonstrate a method for re-using
projections by local search around a previous projection, potentially reducing the required com-
putational effort while allowing much longer programmatic policies to be found. Since imitation-
projection greatly reduces environment interaction, the presented method takes advantage of this
and performs relatively large searches in program space. Demonstrating the method on the pen-
dulum swing-up task, we show that a simple and effective programmatic policy can be found by
imitating a learned neural policy.

2 Methods
Our framework is based on previous work on imitation-projected and programmatically interpretable
reinforcement learning (Verma et al., 2018, 2019). In contrast to previous work, our program space
is a DSL defined in a general typed lambda calculus, that allows us to do program synthesis by a
local type-directed search.

2.1 Program synthesis by type-directed search
In this paper, we represent programs in the polymorphic lambda calculus, also called System F
(Pierce, 2002). This choice allows for quite expressive programs, without requiring too complicated
code for defining, executing or synthesizing them. One especially useful feature of this program
representation is the type system, which can reduce the space of programs to be searched. While
other program representations could also be used, a powerful type system makes the program search
more scalable, by pruning candidate subtrees that do not type check. Using this representation,
DSLs can be defined as a set of typed functions and constants, which together represent the space
of possible programs to be searched.

Our starting point for program synthesis is enumerative search. The space of all programs in a
DSL forms a tree, with the empty program at the root. Internal nodes are partial programs, with
each branch being a candidate substitution for a hole in a partial program. Enumerating through
this search tree results in generating all valid programs, according to the DSL grammar, as the
leaves of the tree. Since the search tree for most DSLs will be infinite, we limit the search by
defining a stop criterion for the search. Here, we choose the stop criterion to be a maximum search
depth, resulting in a depth-limited search algorithm.

We can take advantage of the typed language to reduce the search space. Instead of yielding
all syntactically valid programs, as explained above, we want to yield only well-typed programs.
The enumerative type-directed search algorithm is the same as used by e.g. Ellis et al. (2018) to
draw programs from a prior distribution, but it does not include probabilities over the grammar
productions. To expand a node in the search tree, a typed hole (an empty program with a type
annotation) in the corresponding partial program is selected for synthesis. Then, valid candidates
are selected from the set of all DSL candidates by type unification; the resulting context of the type
unification is propagated to the following synthesis, ensuring that any constraints are satisfied. All
candidates that can produce the correct type are considered, even if they would need arguments
applied to them first.

2

A Draft of paper 1 63

Algorithm 1 Iterative local programmatic policy imitation
1 input: oracle policy f
2 optional input: initial program pinit = ∅
3 output: program pT
4 collect N on-policy trajectories using f:
5 τ0 =

((
s00, f(s

0
0), s

0
1, f(s

0
1), . . .

)
, . . . ,

(
sN0 , f(sN0), sN1 , f(sN1), . . .

))
6 create supervised dataset Γ0 = {(s, f(s)) |s ∈ τ0}
7 derive p0 from Γ0 by local search from pinit // algorithm 2
8 for i = 1, . . . , T
9 collect M on-policy trajectories using pi−1:

10 τi =
((
s00, pi−1(s

0
0), s

0
1, pi−1(s

0
1), . . .

)
, . . . ,

(
sM0 , pi−1(s

M
0), sM1 , pi−1(s

M
1), . . .

))
11 create supervised dataset Γ′ = {(s, f(s)) |s ∈ τi}
12 aggregate datasets:
13 Γi = Γi−1 ∪ Γ′ // or Γi = Γ0 ∪ Γ′, which is cheaper
14 derive pi from Γi by local search from pi−1 // algorithm 2
15 end

Algorithm 2 Depth-limited local search (typed neighborhood)
1 input: domain specific language D
2 input: imitation dataset Γ
3 input: initial program P
4 output: best program in typed neighborhood p∗

5 function Nd
n(D, P, l) // generates the neighborhood for location l in P

6 return ∅ if d = 0
7 T = type(P, l) // type of expression at l
8 C = {e | e : t ∈ D ∧ T can unify with yield(t)} // everything valid from DSL
9 P ′ = {edit(P, l, c)) | c ∈ C}

10 // return all complete programs, and recursively generate remaining partial ones
11 return {p ∈ P ′ | p is complete} ∪Nd−1

n (D, p′, l′) ∀p′ ∈ {p′ ∈ P ′ | p′ is partial}
12 where l′ is the location of the first hole in p′

13 end
14 p∗ ← ∅, v∗ ←∞ // best program and imitation loss
15 foreach l ∈ set of all paths in P
16 El = expression(P, l) // expression at location
17 D′ = D ∪ (El, type(El)) // extend DSL
18 foreach p ∈ Nd

n(D′, P, l)
19 evaluate p on Γ and update p∗ and v∗

20 end
21 end

2.2 Local policy imitation
We frame the policy synthesis problem as imitation learning. Like previous policy imitation meth-
ods, an interactive dataset aggregation method such as DAgger (Ross et al., 2010) is used: Instead
of imitating only on states that the expert experiences, which is called behavioral cloning, some ex-
perience from the imitation policy is periodically added to the set of states considered. This allows
subsequent imitation iterations to correct mistakes that otherwise wouldn’t be observed, since the
expert policy never experiences these mistakes. However, it is possible that the expert also makes
mistakes on states that are not usually observed, and for this reasons it is not always a clear benefit.
The iterative imitation approach is described with pseudocode in alg. 1.

The described iterative imitation algorithm can employ different program synthesis methods.
Basic enumerative search, as described in section 2.1, searches through a tree with the empty
program at the root. To construct an enumerative search that is able to synthesize much larger
programs, while also benefiting from work performed in previous iterations of the search, we propose
a local search heuristic. Here, the local search is defined by a neighborhood around a given program,

3

64 A Draft of paper 1

Algorithm 3 Imitation-Projected Programmatic Reinforcement Learning with Local Synthesis
1 input: initial policy π0

2 optional input: initial program p0 = ∅
3 output: trained policy πT, program pT
4 for t = 1, . . . , T
5 πt ← Update(πt−1) // reinforcement learning, e.g. policy gradient
6 pt ← Project(πt, pinit = pt−1) // program synthesis by algorithm 1
7 end

more specifically by a parametric neighbourhood based on a tree edit operation.
Define the edit operation edit(P, l, P ′) as replacing the subexpression at location l in program P

with the expression P ′. Given a typed DSL D, containing functions, constants, and their (potentially
polymorphic) types, the neighborhood of the program P at location l is the set of programs obtained
by generating all well-typed expressions P ′ contained in D, written Nd

n(D, P, l). The definition of
a location is the root-to-expression path in the abstract syntax tree (AST) of the program. Here,
we use the concept of a location in a generalized manner that can encompass multiple simultaneous
locations, that is, a location l can represent multiple paths in the AST that are to be simultaneously
replaced with independent expressions. The neighborhood of a program P is thus the union of the
neighborhoods at all locations, Nd

n(D, P) =
∪

l∈L(P)N
d
n(D, P, l), where the neighborhood has been

parameterized with a maximum depth d of the replacement expressions, and with the number of
simultaneous edits n.

Furthermore, in practice, the expression being edited is dynamically added as a candidate to the
DSL, and for the depth evaluation this candidate counts as having a depth of 1. This allows an edit
not just to replace an expression, but to also extend an expression by using it as part of the new
expression despite the result being too large otherwise. The size of the neighborhood |Nd

n(D, P)| is
quite sensitive to all involved parameters D, P , n, and d, but these can be flexibly chosen based on
the problem and available computational resources. The neighborhood search algorithm is given as
pseudocode in alg. 2.

One purpose of this search algorithm is to fit into the full imitation-projection framework from
Verma et al. (2019). A simple, modified version of this framework is shown in alg. 3. The difference
consists of the projection step, which now also depends on the previous projection.

3 Experiments
We present three different program synthesis experiments: The first is a programming by example
(PBE) task with sampled ground truth programs, demonstrating the efficacy of our local search
heuristic. The second is a policy extraction task where the ground truth is a hand-coded policy. In
these two first experiments, the DSL used for the search contains the true program used to generate
observational data. Finally, in our third experiment we examine if we can learn learn a simple yet
effective policy by imitation from a more complicated neural network policy which is trained using
an existing reinforcement learning algorithm.

3.1 Programming by example with local program search
As a first evaluation of the method, we used a straightforward PBE task, whose purpose is to
show that the described iterative local search is capable of synthesizing nontrivial programs from
input-output specifications.

4

A Draft of paper 1 65

105 106 107

programs evaluated

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
 i/

o
ab

so
lu

te
 e

rr
or

2 4 6 8
Imitation iteration

mean
median
±1 std. dev

Figure 1: Experiment on 100 sampled programs. Left: For each program, the absolute error
(normalized wrt. first iteration) by number of programs evaluated. Right: Mean, median, and
standard deviation by search iteration.

DSL: We defined a language containing the set of constants {−1, 0, 0.5, 0.8, 1, 3, 5, 6, true},
which are all Floating point numbers except true which is Boolean, and the functions with associ-
ated type signatures {if : Bool ⇒ T0 ⇒ T0 ⇒ T0, > : Float ⇒ Float ⇒ Bool, ∧ : Bool ⇒ Bool ⇒
Bool, ⊕ : Bool ⇒ Bool ⇒ Bool, − : Float ⇒ Float ⇒ Float), ∗ : Float ⇒ Float ⇒ Float,
·2 : Float ⇒ Float}.

Data: The observation space (i.e. input) to these programs consists of three Floats, which
are distinct variables that can be used just like constants. 10 sets of these numbers were randomly
sampled as inputs to be used during synthesis. Ground truth programs of some length, as a simple
proxy for complexity, were sampled from a weighted distribution over the DSL. In order to obtain
samples that have a reasonable length, we designed a distribution on the abstract syntax of our
DSL that puts more probability on higher-arity functions. Further, the probability of sampling true
was weighted significantly down, while the probability of sampling an input variable was weighted
higher. Since program length is not the best measure of complexity, samples were rejected on other
criteria too. Programs were discarded if: the length of the program (number of tokens) was less
than 8, program output was constant, or an input-output equivalent program, on some randomly
chosen inputs, existed within a depth 4 search of the DSL.

Results and discussion: Results from d = 4 local search on 100 sampled ground truth
programs can be seen in fig. 1, which shows that for many of the programs an exact fit is found
on the given inputs. Even for programs where an exact solution is not found, most of the searches
show significant progress through the iterations, although a few make no progress at all. Since the
search is deterministic, if no improvement is made in an iteration, further iterations will not lead
to better results. It should also be noted that a single iteration of search with d = 5 in this setting
corresponds to evaluating about as many programs as 20 iterations with d = 4.

3.2 Imitation of a programmatic pendulum swing-up policy
Next we examined if we were able to discover a ground truth programmatic policy by imitation
learning.

Task: We based the experiment on a simple, classical control problem, the pendulum swing-
up task. The state space consists of the angle and angular velocity of the pendulum, and the

5

66 A Draft of paper 1

action space is the torque applied to the base of the pendulum, normalized to the interval [-1, 1].
This two-dimensional state space allows us to easily display and visually compare policies. The
simulator is discretized with a time step of 0.05s, and an episode is 200 steps long. The reward
function is r(θ, θ̇, a) = ((θ+π (mod 2π))−π)2+0.1θ̇+0.001a2, which results in a reward of 0 if the
pendulum is perfectly balanced with no torque applied, and a reward of −π2 when the pendulum
is pointing straight down while not moving. While the state space of the pendulum task is (θ, θ̇),
the observation space supplied to policies is (sin θ, cos θ, θ̇).

DSL: We used a simple DSL with primitives suitable for solving the RL task, containing the
constants {−6,−1, 1, 0.5, 0.6, 8, 10}, and the functions {if : Bool ⇒ T0 ⇒ T0 ⇒ T0, > : Float ⇒
Float ⇒ Bool, − : Float ⇒ Float ⇒ Float, + : Float ⇒ Float ⇒ Float, ∗ : Float ⇒ Float ⇒
Float, sign : Float ⇒ Float, ·2 : Float ⇒ Float}.

Ground truth: We hand crafted a ground truth policy in the DSL, capable of swinging up the
pendulum from any starting state. The policy achieves an average reward of approximately -211
and a maximum of -113.

Synthesis: At each iteration of the local search we used a search depth of d = 4 which was
found to be enough to discover the if expression that switches between swing-up and balancing. As
training data we used N = 5 state trajectories from the ground truth policy and M = 2 trajectories
from the latest programmatic imitation policy. All training states were expert labelled with actions
from the ground truth policy. As test we simulated 100 rollouts from uniformly random states in
the range π

2 ≤ θ ≤ 3π
2 , −1 ≤ θ̇ ≤ 1, which is the pendulum below horizontal with relatively low

velocity.
Results and discussion: The results of the experiment is shown in fig. 2 (left column). After

four iterations of imitation learning a simple policy was found, capable of balancing the pendulum
and swinging up from some states. After approximately ten iterations the policy could effectively
swing up and balance the pendulum from any state. The imitation learning did not find the ground
truth programmatic policy by iteration 10, likely due to the small number of observations in certain
areas of the state space. Nonetheless, it managed to synthesize an effective policy which is quite
similar to the ground truth.

3.3 Imitation of a neural pendulum swing-up policy
Finally, we examined if we were able to discover a simple, interpretable policy in a more realistic
setting, where we synthesized by imitation learning from a neural policy. The task, DSL, and
synthesis procedure were as described in the previous experiment, with the ground truth policy as
the only difference.

Ground truth: The neural ground truth policy was found by TD3 (Fujimoto et al., 2018),
using feed-forward neural networks with 2 hidden layers of 24 neurons for both the actor and
critic. Training was run for 5 million steps with a learning rate of 10−4 to ensure relatively good
convergence.

Results and discussion: The results of the experiment is shown in fig. 2 (right column).
After four iterations of imitation learning, a simple imitating policy capable of swinging up and
balancing the pendulum is found. After several more iterations, a significantly more complicated
programmatic policy was found which resembles the neural policy more closely but yields only a
minor performance improvement.

6

A Draft of paper 1 67

Imitation from programmatic policy Imitation from neural policy

a)

b)

c)

d)

Figure 2: Pendulum swing-up imitation learning of a programmatic policy from a ground truth
programmatic (left) or neural (right) policy. Policies are visualized as a heat map; the state space
is pendulum angle, θ, and angular velocity, θ̇, and the action is pendulum torque. The goal state
is θ = 0 (mod 2π), θ̇ = 0. a) Cumulative reward of test trajectories. b) Ground truth program-
matic/neural policy. Points indicate all states seen during training. c) Programmatic policy found
after four iterations of imitation learning, with five test trajectories shown. d) Programmatic policy
found after several more iterations, with five test trajectories shown.

7

68 A Draft of paper 1

4 Discussion
We have presented and evaluated our method with simple experiments, and much remains to be
done. As mentioned, one goal is to integrate the local search with reinforcement learning as described
by alg. 3. While simple, we believe that the presented results show potential, especially through
the programs that were discovered in only a few iterations. In particular, it would be interesting
to evaluate this approach on more structured tasks, where neural networks might struggle with
generalization while a program could be found that immediately generalizes. In such a setting, we
could also take better advantage of type-directed search, with more complicated DSLs containing
e.g. logic, matrix or computer vision functions potentially still remaining computationally tractable.

It should also be mentioned that local, iterated synthesis as a concept remains orthogonal to
several other improvements in program synthesis; for example, enumerating or sampling programs
according to a learned probability distribution as in e.g. Ellis et al. (2018) is possible. Instead of
depth-limited search, it would be possible to limit the search to programs above a certain likelihood.
However, it seems unclear how this distribution would be effectively learned for policies.

4.1 Related work
There has been previous work on synthesizing programmatic policies at the intersection of RL
and GP, such as GPRL (Hein et al., 2017). Their method is based on offline GP, performed in a
previously learned parametric model of the system of interest. Indeed, they include a comparison
with behavioral cloning, which is simply imitating the actions of a trained policy directly. Their
method performs better on the actual (simulated, but not learned) system. It is well known that
behavioral cloning can lead to poor performance, e.g. Ross et al. (2010), which could lead to the
observed performance gap. The authors do not analyze why the model-based method performs
better when given the same training data as behavioral cloning, but it seems likely that interaction
with the model can overcome some of the distributional issues arising from behavioral cloning.

In RL, it might be preferable to not learn a parametric model if it is used for credit assignment
(i.e. policy learning) (van Hasselt et al., 2019). How these results might impact programmatic
policy learning is an open question, but it seems possible that similar considerations could be made.

Gupta et al. (2020) proposed a method for using program repair in neural program synthesis.
After neural synthesis, the resulting program might not be correct or even satisfy the input-output
relation. The authors propose to learn a neural debugger that outputs so-called edits which correct
potential errors in the program. The relation to this work is apparent in how we use an edit operator
to define the neighborhood of a program.

Kamio et al. (2003) describe a way to integrate GP, RL and simulated systems. By first synthe-
sizing a policy using GP in the simulated system, it can later be adapted and fine-tuned through
RL, allowing the policy to function on a real robot.

The presented neighborhood search method can be considered an instance of the (Very) Large-
Scale Neighborhood Search framework (Pisinger and Ropke, 2010). The discussion surrounding
these methods is very relevant, such as choice of neighborhood structure, determining a good size of
the neighborhood, finding more efficient ways to search the neighborhood, and so on. Deterministic
versions of genetic algorithms have been considered before, such as in Salomon (2003).

8

A Draft of paper 1 69

References
Bastani, O., Pu, Y., and Solar-Lezama, A. (2018). Verifiable reinforcement learning via policy

extraction.

Ellis, K., Morales, L., Meyer, M. S., Solar-Lezama, A., and Tenenbaum, J. B. (2018). Dream-
coder: Bootstrapping domain-specific languages for neurally-guided bayesian program learning.
In Neural Abstract Machines & Program Induction Workshop at NIPS.

Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing function approximation error in
actor-critic methods.

Gupta, K., Christensen, P. E., Chen, X., and Song, D. (2020). Synthesize, execute and debug:
Learning to repair for neural program synthesis. In Advances in Neural Information Processing
Systems.

Hein, D., Udluft, S., and Runkler, T. A. (2017). Interpretable policies for reinforcement learning
by genetic programming.

Kamio, S., Mitsuhashi, H., and Iba, H. (2003). Integration of genetic programming and reinforce-
ment learning for real robots. In Genetic and Evolutionary Computation — GECCO 2003, page
470–482. Springer Berlin Heidelberg.

Pierce, B. C. (2002). Types and Programming Languages. MIT Press.

Pisinger, D. and Ropke, S. (2010). Large Neighborhood Search, page 399–419. Springer US.

Ross, S., Gordon, G. J., and Andrew Bagnell, J. (2010). A reduction of imitation learning and
structured prediction to No-Regret online learning.

Salomon, R. (2003). The deterministic genetic algorithm: implementation details and some results.
In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
IEEE.

van Hasselt, H. P., Hessel, M., and Aslanides, J. (2019). When to use parametric models in rein-
forcement learning? In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,
and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc.

Verma, A., Le, H., Yue, Y., and Chaudhuri, S. (2019). Imitation-Projected programmatic reinforce-
ment learning. In Wallach, H., Larochelle, H., Beygelzimer, A., dÁlché-Buc, F., Fox, E., and
Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages 15752–15763.
Curran Associates, Inc.

Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri, S. (2018). Programmatically inter-
pretable reinforcement learning.

9

70 A Draft of paper 1

APPENDIXB
Draft of paper 2

This paper, with the tentative title “Reinforcement learning of causal variables using
mediation analysis”, is at the time of writing in preparation for submission to the
AAAI 2022 conference.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Reinforcement learning of causal variables using mediation analysis

Anonymous Authors1

Abstract
We consider the problem of acquiring causal rep-
resentations and concepts in a reinforcement learn-
ing setting. Our approach defines a causal vari-
able as being both manipulable by a policy, and
able to predict the outcome. We thereby obtain a
parsimonious causal graph in which interventions
occur at the level of policies. The approach avoids
defining a generative model of the data, prior pre-
processing, or learning the transition kernel of the
Markov decision process. Instead, causal vari-
ables and policies are determined by maximizing
a new optimization target inspired by mediation
analysis, which differs from the expected return.
The maximization is accomplished using a gener-
alization of Bellman’s equation which is shown to
converge, and the method finds meaningful causal
representations in a simulated environment.

1. Introduction
Hard open problems in reinforcement learning, such as dis-
tributional shift, generalization from small samples, disen-
tangled representations and counter-factual reasoning, are
intrinsically related to causality (Schölkopf, 2019). Fur-
thermore, causal representations have been emphasized as
central to concept acquisition and knowledge representa-
tion (Tenenbaum et al., 2011).

Statistical causal analysis, as developed and popularized
by Judea Pearl, assumes the data arises as transforma-
tions of independent noise sources according to the causal
graph (Pearl, 2009). From a practical perspective, the ap-
proach of describing data generatively, as arising from non-
linear transformations of i.i.d. noise, underlies the most
successful machine learning models today (Shrestha & Mah-
mood, 2019). That same approach has been successfully
applied for fast concept acquisition (Tenenbaum et al., 2011;
Lake et al., 2015), as well as control (Deisenroth & Ras-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

mussen, 2011; Levine et al., 2016). However, there are two
key differences: First, the causal graph cannot be learned
from observational data alone (Pearl, 2009); secondly, and
more important for our purpose, these approaches differ
from causal analysis in the scale of modeling, a term coined
by Peters et al. (2017):

Traditional examples of causal modeling, such as the
SMOKING → TAR DEPOSITS → CANCER example (Pearl
& Mackenzie, 2018), do offer a generative process of the
few variables included in the analysis, but they do not offer
a generative process of the underlying temporal phenomena
(patient history). The variables are said to be in a descriptive
relationship to the underlying phenomena, to emphasize that
they are not identified as high-level variables in a generative
process. The reduction of the data-generating process to a
few abstract primitives in a causal relationship, is central
to concept acquisition (Tenenbaum et al., 2011), and more
broadly to knowledge representation (Davis et al., 1993).

In this article, we aim to answer the following question: Can
we automatically learn a parsimonious causal model which
is descriptive, rather than generative, of the underlying prob-
lem, yet still embodies relevant causal knowledge?

As an illustration, consider the DOORKEY environment,
fig. 1. The agent must pick up the key, open the door and go
to the goal state in order to receive the reward. Instead of
identifying a generative process of the maze, our approach
identifies a binary causal variable (for instance, whether
the door is opened or not) and builds a small causal graph
representing the causal relationship between the identified
variable, policy choice and return. The agent is thereby im-
bued with the causal knowledge that the identified variable
is in a causal relationship with the return.

Our approach1 has two central features: First, that we do not
identify a causal variable as a latent variable in a generative
model of the data, or as a latent factor which arises from
maximizing the expected return Eπ [Gn | Sn = sn] with re-
spect to the policy. Instead, we replace the expected return
with an alternative maximization target, the natural indirect
effect (NIE), which is maximized to identify a causal vari-
able. Second, the approach naturally ensures a candidate
causal variable represents a feature of the environment the

1Code available at ...

72 B Draft of paper 2

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Reinforcement learning of causal variables using mediation analysis

Actions

Observation

General causal agent

Internal causal model

Policy goal

Figure 1. In the DOORKEY environment, the agent (red) must learn
to pick up a key to open the door and get to the goal. Our causal
agent learns a small, coarse-grained causal network, and uses it
when training its policy.

agent can manipulate, thereby ensuring the information is
relevant for the agent. This distinguishes between relevant
causal concepts and irrelevant ones. In the DOORKEY exam-
ple (fig. 1), a variable corresponding to being one step away
from the goal would be a necessary cause for completing the
environment. However, it would be no easier to manipulate
such a variable than simply reaching the goal state.

To optimize the NIE in a reinforcement learning setting, we
apply suitable generalizations of Bellman’s equation. This
allows us to apply most actor-critic methods, and specifi-
cally, use an off-policy method based on the V -trace estima-
tor (Espeholt et al., 2018).

Related work: Determining causal variables has previ-
ously been examined in image data from a latent-variable
perspective (Besserve et al., 2020; Lopez-Paz et al., 2017)
and time-series signals, using (temporal) state aggrega-
tion (Zhang et al., 2015). However, these approaches apply
a latent-variable criteria which is distinct from ours. The
problem of determining causal variables has also been inves-
tigated from a fairness-perspective, see (Zhang & Barein-
boim, 2018).

In a reinforcement-learning setting, the option-critic archi-
tecture considers state-dependent policies similar to ours,
but from a non-causal perspective Bacon et al. (2017), and
Zhang et al. (2019) learn a state representation using suf-
ficient statistics criteria. Determining latent states to best
explain the observations is closely related to the reward
machine architecture (Camacho et al., 2019; Icarte et al.,
2018), which learns binary feature-vector representations
in a logical, rather than causal, relationships. Our approach
is different, since we learn both the causal variables and
manipulation policies jointly using a causal criteria.

In recent work, reinforcement learning has been applied
for causal discovery in graphs with pre-defined variables,
using meta-learning (Dasgupta et al., 2019) and active learn-
ing (Amirinezhad et al., 2020), for example. Wang et al.
(2020) consider confounded observational data in a rein-

forcement learning setting, and their approach is noteworthy
as they suggest a modified Q-learning update. These ap-
proaches, however, consider just a handful of variables that
can be observed (and manipulated), which is a different
setup than the one considered herein.

2. Methods
We consider a general γ-discounted episodic Markov de-
cision problem in which states/actions at time steps t =
0, 1, . . . , T are denoted St/At, and the goal is to maximize
the expectation of the return vπ(s) = Eπ [Gt | St = s].
The expectation is with respect to the behavior policy
π(a|s) = Pr(At = a|St = s). For easier interpretation,
the examples involve sparse reward +1, given at the end of
the episode in case of successful termination.

2.1. Mediation analysis

Mediation analysis (Alwin & Hauser, 1975; Pearl, 2012)
deals with decomposing the total causal effect, p(Y =
y|do(X = x)), a treatment variable X exerts an outcome
variable Y into different causal pathways, which may pass
through intermediate mediating variables.

In the simplest setting (see fig. 2, left), X could be whether
a school pupil received extracurricular studies, while Y is
their academic performance at the end of the year, and the
mediating variable Z could correspond to extra study time.

Mediation analysis allows us to quantify the extent to which
a third variable, such as Z, mediates the effect of X on
Y . The most important measure is the natural indirect
effect (Pearl, 2012; 2001), which measures the extent to
which X influences Y , solely through Z. For a transition of
X = x (starting value) to X = x′ (manipulated value), it
is defined as expected change in Y , affected by holding X
constant at its natural value X = x, and changing Z to the
value it would have attained had X been set toX = x′. This
quantity involves a nested counter-factual, and cannot be
estimated in general; however, for specific causal diagrams,
it has a closed-form expression. For instance, in the simple
case given in fig. 2 (left), it is defined as (Pearl, 2001):

NIEx→x′(Y) =
∑
z

E [Y |x, z] [P (z|x′)− P (z|x)]. (1)

The NIE has intuitively appealing properties: It is large
when Z is highly influenced by our choice of manipulation
X = x, x′, meaning that Z is easy to manipulate, and the
first term reflects that Z should influence the outcome Y .
The product implies a trade-off between these two effects.
In our application, we let X = Π denote our choice of
policy, and then use the NIE to index good (versus bad)
choices of the observable variable Z and policies Π. Hence,
we hypothesize that by maximizing the NIE (rather than

B Draft of paper 2 73

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Reinforcement learning of causal variables using mediation analysis

Manipulated variable Response variable

Mediating variable

Policy Reward

Mediating variable
(learned)

?

Start Goal

Start Goal

Time

Figure 2. Left: Example of a mediation analysis diagram, in which a cause/effect X → Y is being mediated by a variable Z. Center:
Application to reinforcement learning: The manipulating variable X corresponds to a choice between two policies, whereby the effect
Y is the return, and Z is a (learned) variable which influences Y . We wish to quantify how the policy choice influences Y through the
variable Z. Right: The value Π = a indicates that we follow a baseline policy πa. This is compared to a policy Π = b obtained by
following the policy πb until the first time t where Zt = 1 occurs, in which case we follow πa. Both πa, πb, and the distribution of Zt,
have to be learned.

expected return) we can determine relevant causal variables,
which correspond to useful concepts for the agent.

2.2. Causes and effects in reinforcement learning

The most natural causal variable to include in a causal di-
agram is the expected return Y = G0, since manipulating
Y , and therefore learning which variables are relevant for
manipulating Y , should remain the eventual goal of the
agent.

Since we consider causal variables as aggregates of many
individual states, no single action can reasonably be consid-
ered a treatment variable. Rather, we consider a treatment
equivalent to the choice to follow policy Π = a rather than
Π = b.

In the following, we will focus on the simplest possible
case, in which the mediating variable Z is binary, with the
meaning that Z = 1, if the event which Z corresponds to
took place during an episode (and otherwise Z = 0). This
is analogous to how SMOKING is true if the person was
smoking at some point in the period covered by a study. We
therefore define Z as a stopping process

Z = max{Z0, Z1, . . . ZT . . . }. (2)

where Zt ∈ {0, 1} for n = 0, 1, . . . , T denotes whether Z
became true at time t. Zt is assumed to only depend on
the state, and have distribution Bern (Φ(st)). With these
definitions, the causal pathway Π→ Z → Y denotes that
the choice of policy Π influences Y by obtaining or making
true Z, whereas Π→ Y means the choice of policy alone
influences Y , regardless of Z.

Example: Consider the DOORKEY environment from
fig. 1. The graphs Π → Z → Y or Π → Y would reflect
either that our choice of Π affects the reward Y through
Z, or that the variable Z is irrelevant, and only the choice
of policy matters. The outcome depends on the choice of
policy and definition of Z.

The combined policy Inspired by the traditional relation-
ship between X and Z in mediation analysis, we assume
that if Π = a then the agent follows a policy πa which is
trained to simply maximize Y , and that otherwise, if Π = b,
the agent follows a policy πb which attempts to make Z true
(i.e. it is trained with Z as the reward signal). To obtain a
well-defined policy for all states, the Π = b policy switches
back to πa once Z = 1, see fig. 2 (right). In other words,
we assume that the agent at time step t follows the policy:

π =

{
πa if Π = a

(1− Z0:t)πb + Z0:tπa if Π = b.
(3)

where Z0:t = max{Z0, . . . , Zt}. Since Z and Π are binary,
the NIE from eq. (1) simplifies to (Pearl, 2001):

NIE = (E [Y |Z = 1, πa]− E [Y |Z = 0, πa])

× (P (Z = 1|πb)− P (Z = 1|πa)) . (4)

Conditioning on πa or πb means that the actions are gener-
ated from the given policy.

The NIE has the intuitively appealing property of being
separated into a product of two simpler terms, which must
both be large for the NIE to be large. The first involves the
return, but only conditional on policy πa. A high value of the
NIE implies an increased chance of successful completion
of the environment, when Z = 1 relative to Z = 0.

The second term involves both policies, but uses Z as a re-
ward signal, which is computed during the episode, and will
therefore often be known before the episode is completed.
Since this is the only term which involves πb, it induces a
modular policy, in which πb is trained on a simpler problem.

The NIE excludes certain trivial definitions of Z. For in-
stance, if Z = Y in the DOORKEY example, the first term
would be maximal. However, in this case, πa and πb would
be trained on the same target, and so the second term should
be zero. On the other hand, if Z is trained to match states

74 B Draft of paper 2

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Reinforcement learning of causal variables using mediation analysis

visited by πb, which are incidental to the reward, it will not
result in a high NIE, due to the first term.

Optimizing the NIE involves two challenges unfamiliar from
traditional reinforcement learning: (i) The first term involves
expectations conditional on Z. (ii) The NIE is optimized
both with respect to Z and to πb.

We overcome these by combining two ideas. First, we
express the conditional terms using suitable generalizations
of Bellman’s equation. Secondly, since we optimize policies
based on data collected from other policies, we use V -trace
estimates of the relevant quantities (Espeholt et al., 2018).

2.3. Bellman-like equations

The value function satisfies the Bellman equation vπ(s) =
E [Rt+1 + γvπ(St+1) | St = s]. On comparison with the
terms in eq. (4), we see that the NIE involves conditional
expectations.While we could attempt to simply divide the
observations according to Z and train two value functions,
this method would not provide a way to learn Z itself. To do
so, we consider an alternative recursive relationship between
the conditional expressions.

For times t /∈ {0, . . . , T} we define Zt = 0. This allows us
to introduce the variables

Z∞t = max{Zt, Zt+1, . . . , } (5)

which are true, provided Zt′ = 1 occurs at a time step
following t. Note that Z = Z∞0 .

Analogous to vt, we define the value functions:

v∞t (st) = P (Z∞t = 1|St = st, Zt−1 = 0), (6)
vzt (st) = E[Gt|St = st, Z

∞
t = z, Zt−1 = 0]. (7)

Note that the expressions are conditional on Zt−1 = 0.
The first denotes that the event Z will happen in the future,
starting from st, and the second the expected return, given
that Z has not happened yet, and either will not z = 0,
or will z = 1 occur in the future. Note that vz0(s0) =
E [G0|Z = z, s0] and v∞0 (s0) = P (Z = 1|s0) corresponds
to the terms in eq. (4). The value functions satisfy the
recursions (Supplementary Material appendix A):

v∞t (st) = Φ(st) + Φ̄(st)E
[
v∞t+1(St+1)|st

]
, (8a)

v1t (st) =
V (st)Φ(st)

V∞t (st)
(8b)

+
1−Φ(st)

V∞t (st)
E
[
v∞t+1(St+1)

(
Rt+1 + γv1t+1(St+1)

)
| st
]
,

v0t (st) =
1− Φ(st)

1−v∞t (st)
(8c)

×E[(1−v∞t+1(St+1))(Rt+1 + γv0t+1(St+1)) | st].

The new recursions have the same structure as Bellman’s
equation, but contain mutually dependent terms. If v∞t and
vt were exactly estimated, the iterative policy evaluation
methods corresponding to eqs. (8b) and (8c) would easily
be found to be contractions with constant γ, but the updates
also converge when vz , v∞ and v are all bootstrapped. For
proof, see Supplementary Material theorem A.1.

Theorem 2.1 (Convergence, informal). Assuming γ < 1
and 0 < Φ < 1, all states/actions are visited infinitely often,
and vπ, v∞π , v

z
π in eq. (8) are all replaced by randomly ini-

tialized bootstrap estimates. Then, (i) the operators eqs. (8b)
and (8c) converge at a geometric rate to the true values vzπ ,
and (ii) the corresponding online method obtained by re-
placing the expectations with sample estimates, converges to
the true values, provided the learning rates satisfy Robbin-
Munro conditions.

2.4. Off-policy learning using V -trace estimators

The overall approach is to learn neural approximations of
v∞, v and vz , as defined in eq. (8). This is most easily done
by observing that the Bellman-like recursions in eq. (8) all
have the form:

vt(st) = Eµ [Ht(st, Sn+1) +Gt(st, St+1)vt+1(St+1))|st]
(9)

where actions are generated using a behavioral policy µ.
Expanding the right-hand side n times, allows us to define
the n-step return (Espeholt et al., 2018):

vt(st) = E

[
t+n−1∑
i=t

Hi

i−1∏
`=t

G` + vt+n(St+n)

t+n−1∏
`=t

G`

∣∣∣∣∣sk
]
,

(10)

which reduces to eq. (9) if n = 1. Supposing the current
target policy is π, experience is collected from the behavior
policy µ, and then eq. (10) can be used as an estimate of the
return, corresponding to π, by using importance sampling.
To reduce variance, we use a V -trace type estimator, inspired
by Espeholt et al. (2018):

Vt(st) = v(st) +
t+n−1∑
i=t

(
i−1∏
`=t

c`G`

)
δi (11a)

δi = ρi [Hi(si, si+1) +Giv(Si+1)− v(Si)] (11b)

where c` and ρk are truncated importance sampling
weights:

ρt = min

{
ρ̄,
π(at|st)
µ(at|st)

}
, ct = min

{
c̄,
π(at|st)
µ(at|st)

}
,

and ρ̄ ≥ c̄ are parameters of the method. In the on-policy
case, where µ = π, the V -trace estimate eq. (11a) reduces to

B Draft of paper 2 75

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Reinforcement learning of causal variables using mediation analysis

Algorithm 1 Causal learner

1: Initialize policy networks πa and πb (and corresponding
critic networks)

2: Initialize networks v, v0, v1, v∞ to estimate vπ , vzπ , and
V∞π

3: Initialize causal variable network Φ
4: repeat
5: Collect experience from πa and add to replay buffer
6: Sample experience from replay buffer τ
7: Train πa (and critic) using AC2
8: Calculate reward signal for πb from τ using eq. (14)

and train πb (and critic)
9: Train v, vz , v∞ using n-step V -trace estimates

eq. (11a), computed using eq. (13), using definitions
of Ht and Gt implied by eq. (8) and experience τ

10: Train parameters in causal variable network Φ by
maximizing eq. (4), where each term has been re-
placed by the respective V -trace estimate computed
using eqs. (8) and (11a)

11: until forever

∑t+n−1
i=t Hi

∏i−1
`=t G` + vt+n

∏t+n−1
`=t G`, and is therefore

a direct estimate of eq. (9). In the general case, the method
provides a biased estimate, when ρ̄, c̄ <∞, but analogous
to Espeholt et al. (2018), the stationary value function can be
analytically related to the true value function. The result is
summarized as: (see Supplementary Material theorem A.2)

Theorem 2.2 (V -trace convergence, informal). Assume that
experience is generated by a behavior policy µ, that γ < 1,
0 < Φ < 1, all states/actions are visited infinitely often,
and that vπ, v∞π , v

z
π in eq. (8) are all replaced by randomly

initialized bootstrap estimates. Then, if we apply eq. (11a)
iteratively 2 on the bootstrap estimate of V z

V z(s)←α V
z(s) +

∞∑
t=0

t−1∏
`=0

c`G
z
`δ`, (12)

where Hz
` and Gz` are computed using V -trace estimates of

vπ and v∞π , it implies that V z converges to a biased estimate
of vzπ , and if ρ̄, c̄→∞, then V z → vzπ .

To practically compute the V -trace estimates, we start from
T and proceed to t:

Vt = vt + δt +Gtct(Vt+1 − vt+1). (13)

2.5. Combined method

The policy πb in eq. (3) is trained in an episodic environ-
ment to maximize Z. Since the variable Z is multiplicative
over individual time steps, we train πb by decomposing the

2x←α y is equivalent to x = x(1− α) + αy

multiplicative cost using a stick-breaking construction:

rbt+1 = Φ(st)
t−1∏
k=0

(1− Φ(sk)), (14)

which satisfies
∑∞
t=0 rt+1 = P (Z = 1|τ). Training on

this reward signal means that the policy πb will attempt to
maximize the term P (Z = 1|πb)−P (Z = 1|πa) in eq. (4).
We can therefore train both πa and πb with an actor-critic
method, using their respective reward signals, whereby the
critics estimate of the return are trained against the V -trace
estimate, as computed using eq. (13).

To maximize the NIE with respect to Φ, we introduce net-
works v, vz and v∞, to approximate vπ , v∞π and vzπ . These
are trained using ordinary gradient descent against their
V -trace targets, computed by eq. (13). The same V -trace
estimates can be used to re-write the NIE in eq. (4), to
an expression which directly depends on Φ, and can there-
fore be trained using stochastic gradient descent. For in-
stance, E[Y |Z = 1,Π = a, s0] = v1πa

(s0) is equivalent to
V z=1
t (s0), computed using eq. (13), and the definitions of
Ht and Gt implied by eq. (8b), and E [Z = 1|Π = a] can
be replaced by V∞0 , computed using eq. (8a). The pseudo-
code of the method can be found in algorithm 1. Note that
to prevent premature convergence, and speed up conver-
gence when both factors in the NIE are small, we train on
a surrogate cost function which includes entropy terms for
Φ, πa and πb. Full details can be found in Supplementary
Material appendix B.

3. Experiments
We first test the value function recursions in eq. (8) on a
simple Markov reward process, which we call TWOSTAGE.
TWOSTAGE corresponds to an idealized version of the
DOORKEY environment, in which the states are divided
into two sets SA and SB . The initial state is always in
SA, and the environment can either transition within sets
(SA → SA, SB → SB) with a fixed probability, or from
set SA to SB , with a fixed probability. From SB , there is a
chance to terminate successfully with a reward of +1, and
from all states there is a chance to terminate unsuccessfully
with a reward of 0.

The transition from states in SA to SB , creates a bottle-
neck distinguishing successful and unsuccessful episodes,
much like unlocking the door in the DOORKEY environ-
ment. The transition probabilities are chosen such that
p(R = 1|s ∈ SB) = p(s ∈ SB |s ∈ SA) = 2

3 and
p(R = 1|s ∈ SA) = 4

9 , see Supplementary Material ap-
pendix B for further details.

76 B Draft of paper 2

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Reinforcement learning of causal variables using mediation analysis

3.1. Tabular learning

As a first example, we will consider simple estimation of the
conditional expectations, using the Bellman recursions. We
condition on whether the state enters SB at a later time, i.e.
E[Y |st ∈ SB for some t > 0, S0 = s0], which is equiva-
lent to v1(s0), since we define Φ(s) = 1SB

(s). In this case,
the Bellman updates from eq. (8)) for a transition St = s to
St+1 = s′, Rt+1 = r are

V (s)←
α
r + γV (s′)

V∞(s)←
α

Φ(s) + (1− Φ(s))V∞(s′) (15)

V 1(s)←
α

V (s)Φ(s)+(1−Φ(s))V∞(st)
(
r+γV 1(s′)

)
V∞(s)

As anticipated by theorem 2.1, iterating these updates, the
value functions converge to their analytically expected val-
ues, as can be seen in figs. 3a and 3b, in which we plot v1

and v∞. The dashed lines represent the true (analytical)
values, and the different colored lines represent the different
states. In the case of v1, the expectation estimated is the
probability of successful completion, given that we begin
in any state and at some point enter SB ; in other words, the
information we condition on is something which only oc-
curs at a later point in the episode, from the perspective of
an observation s ∈ SA, and therefore the correct estimation
of this probability is not simply a matter of computing the
return for a state starting in SB .

3.2. Learning Φ using V -trace estimation

The second example extends the TWOSTAGE example to
also learn the causal variable Φ using algorithm 1. Since the
environment is a MRP, we discard terms involving πb, and
the objective therefore becomes:

∆Y = E [Y |Z=1]−E [Y |Z=0]

= Es0
[
V 1(s0)−V 0(s0)

]
. (16)

The expectation is unrolled, using the V -trace approxima-
tion, and directly optimized with respect to the parameters
of Φ, using the parameterization Φ(s) = 1

1+exp(−ws)
, as

described in section 2.5. Further details can be found in
Supplementary Material appendix B.

The value function approximation is quickly learned (see
fig. 3c), showing convergence to the analytical values. The
quantities V∞ and V z both depend on Φ, and will there-
fore only begin to converge after Φ begins to converge (see
fig. 3d). Since the conditional expectations V z depend on
V∞, they will converge relatively slower, but both will even-
tually converge to their expected value when the learning
rate is annealed, see fig. 3e.

3.3. Causal learning and the DOORKEY environment

To apply algorithm 1 to the DOORKEY environment, we
first have to parameterize the states. The environment has
|A| = 5 actions, and we consider a fully-observed variant of
the environment. We choose the simplest possible encoding,
in which each tile, depending on its state, is one-hot encoded
as an 11-dimensional vector. This means that an n × n
environment is encoded as an n×n×11-dimensional sparse
tensor, and we include a single one-hot encoded feature
to account for the player orientation. Further details can
be found in Supplementary Material appendix B. Episode
length is capped at 60 steps.

Since the environment encodes orientation, player position
and goal position separately, and since specific actions must
be used when picking up the key and opening the door, the
environment is surprisingly difficult to explore and gener-
alize in. We train an agent using A2C (Mnih et al., 2016)
with 1-hidden-layer fully connected neural networks, which
results in a completion rate of about 0.25 within the episode
limit. We also attempted to train an agent using the Option-
Critic framework (Bacon et al., 2017), since it is a quite rele-
vant comparison to our method, but failed to find parameters
for which the learned options could solve the environment
better than chance.

After an initial training of πa, we train Φ and πb by maxi-
mizing the NIE, using algorithm 1. We use a batch size of
100, buffer size of 1000, gradient normalization and a learn-
ing rate of 0.01, see Supplementary Material appendix B for
additional details.

To obtain a fair evaluation on separate test data, we simu-
late the method on 200 random instances of the DOORKEY
environment, and use Monte-Carlo roll-outs of the poli-
cies πa and πb to estimate the quantities E [Z = 1 | Π = a],
E [Z = 1 | Π = b]. This then allows us to estimate the NIE
on a separate test set.

To examine whether the obtained definition of Z is non-
trivial, we compare it against a natural alternative that learns
Z by maximizing the cross-entropy of Z and Y ,

−Eτ [Y (τ) logP (Z = z|τ)] . (17)

Since Y is binary, this corresponds to determining Φ as
the binary classifier which separates successful (Y = 1)
episodes from unsuccessful episodes (Y = 0), i.e. ensures
that the first factor of the NIE eq. (16) is large.

The results of both methods can be found in table 1 (results
averaged over 10 runs). The causal learner obtains a value
of the NIE that is significantly different from zero in all runs.
While the absolute value is small, this can be attributed to
the NIE being a product of two factors which are both small.

B Draft of paper 2 77

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Reinforcement learning of causal variables using mediation analysis

0 5000 10000 15000 20000 25000 30000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

V
z

=
1 (

s)

Vz = 1(0)
Vz = 1(1)
Vz = 1(2)
Vz = 1(3)
Vz = 1(4)
Vz = 1(5)

(a)

0 5000 10000 15000 20000 25000 30000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

V

V (0)
V (1)
V (2)
V (3)
V (4)
V (5)

(b)

0 2500 5000 7500 10000 12500 15000 17500 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

V(
s)

V(0)
V(1)
V(2)
V(3)
V(4)
V(5)

(c)

0 2500 5000 7500 10000 12500 15000 17500 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

(s
)

(0)
(1)
(2)
(3)
(4)
(5)

(d)

0 2500 5000 7500 10000 12500 15000 17500 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

V
z

=
1 (

s)

Vz = 1(0)
Vz = 1(1)
Vz = 1(2)
Vz = 1(3)
Vz = 1(4)
Vz = 1(5)

(e)

0 2500 5000 7500 10000 12500 15000 17500 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

V

V (0)
V (1)
V (2)
V (3)
V (4)
V (5)

(f)

Figure 3. (a-b) Trace plots of v1 and v∞ for the tabular TWOSTAGE environment obtained using eq. (10), with a given Φ. (c-f) Estimates
with neural function approximators for the value functions in the TWOSTAGE environment, while Φ is being learned.

Table 1. Performance of causal agent on the DOORKEY environment and standard deviation of the mean.

Method E[Y | Z = 1] E[Y | Z = 0] ∆Y Eπa
[Z] Eπb

[Z] NIE

Causal Learner 0.410(30) 0.000() 0.410(30) 0.550(20) 0.790(20) 0.098(10)
Cross-entropy 0.560(80) 0.130(30) 0.430(100) 0.270(40) 0.270(30) 0.011(8)

Considering the first two terms, we observe that the causal
variable Z = 1 is a necessary condition for completing
the environment, while the corresponding variable for the
cross-entropy target can be false, yet the agent is still able
to successfully complete the environment.

We also notice that the cross-entropy based learner outper-
forms the causal target, in terms of obtaining a proper sep-
aration between good versus bad trajectories, i.e. a higher
value of ∆Y . This is expected, since cross-entropy is an
efficient cost-function for a binary classification problem.

However, the causal variable Z, which is learned by the
cross-entropy learner, does not present a suitable target for
the policy πb. Indeed, the variable Z becomes true at the
same rate under πa and πb (all policies are trained using the
same settings). This can be accounted for by recalling that
the environment is random, and that the variable Z learned
by the causal learner represents a relatively stable feature
of the environment (such as picking up the key, opening
the door, etc.), whereas the cross-entropy trained variable Z

corresponds to a combination of features in the environment
which presents a less suitable optimization target.

To obtain insight in the causal variable we learn, we plot
P (Z = 1) both against the reward, and whether the door
was opened in this particular run (jitter added for easier vi-
sualization). The results can be found in fig. 4. As indicated,
the learned causal variable correlates well with whether the
door is opened or not, and not as well with the total reward.
In other words, the method is able to learn that the feature of
whether the agent has opened the door acts as a mediating
cause in terms of completing the environment. This is a
natural result, considering this task is necessary in order for
the agent to complete the environment.

The fact that the causal variable corresponds to a meaning-
ful objective, is reinforced by examining the total reward
obtained from either following policy Π = a, or the joint
policy Π = b (see table 2). Although the difference is slight,
we observe a small increase in accumulated reward for the
joint policy.

78 B Draft of paper 2

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Reinforcement learning of causal variables using mediation analysis

Table 2. Total reward obtained in the DOORKEY environment.
Method E[Y |Π = a] E[Y |Π = b]

Causal Learner 0.240(20) 0.300(30)
Cross-entropy 0.230(20) 0.240(10)

4. Conclusion
Every causal conclusion depends on assumptions that are
not testable in observational studies (Pearl et al., 2009).
In all methods of causal discovery, therefore, the question
arises of why we are justified in believing that a particular
method finds a causal representation of the environment.

In work involving pre-defined variables, such justification
can be found either through external distributional assump-
tions about the relationship between the structure of the
model and the data it generates (Spirtes et al., 2000), or in
the model belonging to a class of models of which so many
examples have been observed, that meta-learning allows the
structure to be identified (Dasgupta et al., 2019).

In our work, we assume a specific causal diagram, and this,
along with the definition of Z and Y , ensures that Z is
automatically imbued with a natural interpretation as a me-
diating factor in the reason Y became true: Our approach
identifies causal variables exactly by searching for defini-
tions of variables which meet the definition of mediating
cause.

A far more difficult and fundamental question is why a
parsimonious model of causal knowledge, such as the
SMOKING/CANCER example, is preferable to a detailed
causal model of patient history. In our view, human inter-
pretability is not a sufficient case for parsimonous causal
models. Additionally, if we adopt the view that a model
should best fit the MDP (i.e. a generative view), it is difficult
to see why parsimony would be preferred.

Although we cannot claim a definite answer, our approach
differentiates situations in which it can obtain causal knowl-
edge, from those in which it cannot, without referencing a
generative/best fit criteria. For a variable Z to be identified,
it must always occur relative to a policy πa, as something
the agent could potentially do, and is associated with a high
reward (E[Y |Z = 1] > E[Y |Z = 0]), but it might not do it
under its baseline behavior πa. In light of that, the policy
must be sub-optimal in order for the agent to determine a
causal model. Though at a first glance this may seem like
a flaw in our method, the idea that causation is ill defined
when one has a precise description of the physical world is
not new (Russell, 1913), and it closely matches every day
reasoning about causal mechanism. When a child learns
to ride a bicycle, for example, he tries to do so as best as
possible (but not optimally). A potential causal explanation

0.0 0.5 1.0
P(Z = 1)

0.0

0.5

1.0

U
nl

oc
ke

d

0.0 0.5 1.0
P(Z = 1)

0.0

0.5

1.0

R
ew

ar
d

Figure 4. Scatter plot of P (Z = 1) and (left) chance of unlocking
the door, and (right) chance of successfully reaching the goal state.
The causal variable Z appears to correspond to opening the door.

for a subsequent fall, such as steering too far from the center
of the lane, Z = 0, and for hitting the curb Y = 0, is only
relevant in case the child can actively take actions to keep
near the center of the lane Z = 1. To put this in a different
way, if the agent knows so much about the environment it
has an optimal policy, a coarse-grained causal model can-
not offer the agent any benefits because there are no policy
decisions to optimize.

We have argued that the NIE offers an interesting alternative
way to define coarse-grained causal knowledge. In order to
identify a causal variable, our method must have also learn a
policy to manipulate it, and the variables are learned directly
from experience without first requiring specification of a
generative process. Although the method depends on esti-
mating conditional expectations, we have shown these can
be estimated using an n-step temporal different methods,
and we have shown the method has provable convergence
guarantees comparable to TD learning (but with worse con-
stants). We found that the method was able to learn a causal
variable which was both sensible and relevant for solving
a simple task, and did so better than a natural (non-causal)
alternative method. An independent experiment on a test-
set indicated the causal representation is associated with an
increased NIE, and that the causal representation is relevant
for the task in that it resulted in a performance increase.
An alternative causal variable trained on a discriminative
criteria did not offer similar benefits.

Future work should focus on identifying a larger network
of causes, for instance by letting Z play the role of Y and
repeating the analysis, or to use ideas from mediation analy-
sis with multiple mediators (VanderWeele & Vansteelandt,
2014). It would likewise be of interest to extend the conver-
gence analysis to the case where Φ is learned.

References
Alwin, D. F. and Hauser, R. M. The decomposition of

effects in path analysis. American sociological review,

B Draft of paper 2 79

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Reinforcement learning of causal variables using mediation analysis

pp. 37–47, 1975.

Amirinezhad, A., Salehkaleybar, S., and Hashemi, M. Ac-
tive learning of causal structures with deep reinforcement
learning. arXiv preprint arXiv:2009.03009, 2020.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic
architecture. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31, 2017.

Besserve, M., Mehrjou, A., Sun, R., and Schölkopf, B.
Counterfactuals uncover the modular structure of deep
generative models. In Eighth International Conference
on Learning Representations (ICLR 2020), 2020.

Camacho, A., Icarte, R. T., Klassen, T. Q., Valenzano, R. A.,
and McIlraith, S. A. Ltl and beyond: Formal languages
for reward function specification in reinforcement learn-
ing. In IJCAI, volume 19, pp. 6065–6073, 2019.

Dasgupta, I., Wang, J., Chiappa, S., Mitrovic, J., Ortega,
P., Raposo, D., Hughes, E., Battaglia, P., Botvinick,
M., and Kurth-Nelson, Z. Causal reasoning from meta-
reinforcement learning. arXiv preprint arXiv:1901.08162,
2019.

Davis, R., Shrobe, H., and Szolovits, P. What is a knowledge
representation? AI magazine, 14(1):17–17, 1993.

Deisenroth, M. and Rasmussen, C. E. Pilco: A model-based
and data-efficient approach to policy search. In Proceed-
ings of the 28th International Conference on machine
learning (ICML-11), pp. 465–472. Citeseer, 2011.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In Interna-
tional Conference on Machine Learning, pp. 1407–1416.
PMLR, 2018.

Icarte, R. T., Klassen, T., Valenzano, R., and McIlraith, S.
Using reward machines for high-level task specification
and decomposition in reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2107–2116.
PMLR, 2018.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end
training of deep visuomotor policies. J. Mach. Learn.
Res., 17(1):1334–1373, January 2016. ISSN 1532-4435.

Lopez-Paz, D., Nishihara, R., Chintala, S., Scholkopf, B.,
and Bottou, L. Discovering causal signals in images. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 6979–6987, 2017.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937. PMLR, 2016.

Pearl, J. Direct and indirect effects. In Proceedings of
the Seventeenth conference on Uncertainty in artificial
intelligence, pp. 411–420, 2001.

Pearl, J. Causality: Models, Reasoning and Inference. Cam-
bridge University Press, USA, 2nd edition, 2009. ISBN
052189560X.

Pearl, J. The mediation formula: A guide to the assessment
of causal pathways in nonlinear models. Wiley Online
Library, 2012.

Pearl, J. and Mackenzie, D. The book of why: the new
science of cause and effect. Basic Books, 2018.

Pearl, J. et al. Causal inference in statistics: An overview.
Statistics surveys, 3:96–146, 2009.

Peters, J., Janzing, D., and Schölkopf, B. Elements of Causal
Inference - Foundations and Learning Algorithms. Adap-
tive Computation and Machine Learning Series. The MIT
Press, Cambridge, MA, USA, 2017.

Russell, B. On the notion of cause’, reprinted in mysticism
and logic and other essays [1917], 1913.

Schölkopf, B. Causality for machine learning. arXiv
preprint arXiv:1911.10500, 2019.

Shrestha, A. and Mahmood, A. Review of deep learning
algorithms and architectures. IEEE Access, 7:53040–
53065, 2019.

Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman,
D. Causation, prediction, and search. MIT press, 2000.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., and Goodman,
N. D. How to grow a mind: Statistics, structure, and
abstraction. Science, 331(6022):1279–1285, 2011. ISSN
0036-8075. doi: 10.1126/science.1192788.

VanderWeele, T. and Vansteelandt, S. Mediation analysis
with multiple mediators. Epidemiologic methods, 2(1):
95–115, 2014.

Wang, L., Yang, Z., and Wang, Z. Provably efficient causal
reinforcement learning with confounded observational
data. ArXiv, abs/2006.12311, 2020.

Zhang, A., Lipton, Z. C., Pineda, L., Azizzadenesheli, K.,
Anandkumar, A., Itti, L., Pineau, J., and Furlanello, T.
Learning causal state representations of partially observ-
able environments. arXiv preprint arXiv:1906.10437,
2019.

80 B Draft of paper 2

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Reinforcement learning of causal variables using mediation analysis

Zhang, J. and Bareinboim, E. Fairness in decision-
making—the causal explanation formula. In Proceedings
of the... AAAI Conference on Artificial Intelligence, 2018.

Zhang, K., Gong, M., and Schölkopf, B. Multi-source
domain adaptation: A causal view. In AAAI, volume 1,
pp. 3150–3157, 2015.

B Draft of paper 2 81

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Supplementary Material

A. Properties of the method
To simplify the analysis, we will assume there is a φ such that 0 < φ ≤ Φ(s) < 1 − φ < 1 and the reward is bounded
|Rt| ≤M . The Bellman operators corresponding to eqs. (8a) to (8c) are:

T ∞V∞(s) = Φ(s) + (1− Φ(s))E [V∞(S′)|s] (1a)

T 1V 1(s) =
V (s)Φ(s)

V∞(s)
+

1− Φ(s)

V∞(s)
E
[
V∞(S′)

(
R+ γV 1(S′)

)
| s
]

(1b)

T 0V (s) =
1− Φ(s)

1− V∞(s)
E[(1− V∞(S′))(R+ γV 0(S′)) | s] (1c)

where s is the current state and S′ is the state we immediately transition to under policy π. Note T ∞ is a contraction with
constant φ and we let α = max{γ, 1 − φ} for simplicity. To avoid repetitive algebra, we will first focus on the V -trace
operator from eq. (11)

T V (s) = V (s) + Eµ

[∑
t=0

(
t−1∏
`=0

c`G`

)
ρt (Ht +GtV (st+1)− V (st))

∣∣∣∣∣S0 = s

]
(2)

Where ρt = min
(
ρ̄, π(at|st)

µ(at|st)

)
and ct = min

(
c̄, π(at|st)
µ(at|st)

)
are the truncated IS weights.

Note both of the operators T 0, T 1 are instances of the T for appropriate choices of Ht = H(Rt+1, St, St+1) and
Gt = G(St, St+1) and assuming the specific case where ρ0 = 1, 0 = ρ1, ρ2, . . . , and ct = 1 for all t.

We first show T is a contraction when H and G are fixed:

Lemma A.1. Assuming for all s that 0 ≤ E[Gt | s] ≤ κ < 1, the policy has full support in the first step π0(a0|s0) > 0, and
c̄ ≤ ρ̄ then T defined in eq. (2) is a contraction and the fixed point Vφ̄ is the value function

Vπ̄(s) = Eπ̄

[∞∑
t=0

Ht

t−1∏
`=0

Gt

∣∣∣∣∣ S0 = s

]
(3)

of the policy

π̄(a|s) =
min{ρ̄µ(a | s), π(a | s)}∑

a′∈Amin{ρ̄µ(a′ | s), π(a′ | s)}
(4)

Proof. Using the shorthand ck:m =
∏m
i=k ci we can re-write eq. (2) as

T V (s) = E

[∞∑
t=0

c0:t−2G0:t−1 [(ρt−1 − ct−1ρt)V (st) + ct−1ρtHt]

∣∣∣∣∣ s
]

(5)

where we use the convention c0:−2 = c0:−1 = G0:−1 = 1. Applying the operator on two value functions V1 and V2 gives us

T V1(s)− T V2(s) = E

[∞∑
t=0

c0:t−2G0:t−1(ρt−1 − ct−1ρt)(V1(st)− V2(st))

∣∣∣∣∣ s
]

(6)

=
∞∑
t=0

E
[
c0:t−2G0:t−1(ρt−1 − ct−1Eat|stρt)(V1(st)− V2(st))

∣∣ s] (7)

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Causal variables and generalized Bellman equations

In the last expression, we could peel off the expectation wrt. the last action and move it inside the parenthesis. Note that
ρt−1 − ct−1Eatρt ≥ ρt−1 − ct−1Eat

π(at|st)
µ(at|st) = ρt−1 − ct−1 > 0. The expression is therefore a sum of weighted terms

V1 − V2 where all the weights are non-negative, and therefore we obtain the bound:

|T V1(s)− T V2(s)| ≤
∞∑
t=0

E [c0:t−2G0:t−1(ρt−1 − ct−1ρt) | s] ‖V1 − V2‖∞ (8)

The constant can in turn be easily bounded by noting that the 0 ≤ E[Gt|s] ≤ κ ≤ 1 and only subtracting the first term of the
sum:

∞∑
t=0

E [c0:t−2G0:t−1(ρt−1 − ct−1ρt) | s] = 1−
∞∑
t=0

E [ρtc0:t−1G0:t−1 (1−Gt) | s]

≤ 1− E[ρ0|s](1− κ) < 1 (9)

Remark: Both eq. (1b) and eq. (1c) are instances of eq. (2):

G1
t = γ

(1− Φ(st))V
∞(st+1)

V∞(st)
, G0

t = γ
(1− Φ(st))(1− V∞(st+1)

1− V∞(st)
(10a)

H1
t =

V (st)Φ(st) + (1− Φ(st))V
∞(st+1)Rt+1

V∞(st)
, H1

t =
(1− Φ(st))(1− V∞(st+1)Rt+1

1− V∞(st)
(10b)

And they are easily seen to satisfy the conditions of lemma A.1:

E[G1
t] = γ

(1− Φ(st))EV∞(st+1)

Φ(st) + (1− Φ(st))EV∞(st+1)
< γ(1− φ) (11)

E[G0
t] = γ

(1− Φ(st))(1− E[V∞(st+1)]

1− Φ(st)− (1− Φ(st))EV∞(st+1)
≤ γ(1− φ) (12)

A.1. Convergence of V -trace

The next lemma is cumbersome to state, but simply says that if we plug the V -trace estimates of V∞ and V into the
expression for V z , eq. (10), and then use the V -trace to learn all terms online, then the method still converges.

Lemma A.2 (Convergence of joint updates under V -trace). Suppose we initialize V , V∞ and V z arbitrarily. Let (Hz
t , G

z
t)t

be defined as in eq. (10) and correspond to the Bellman operator eqs. (1b) and (1c) for V z and assume the conditions of
lemma A.1 are met.

Suppose we apply the V -trace operator eq. (2), adapted to the particular expressions for Gt and Ht implied in eqs. (1a)
to (1c), a well as the regular V -trace updates for V . Then, provided the conditions of lemma A.1 are met, V z will converge
to the unique fixed point given in lemma A.1 for the problem H̄z

t and Ḡzt corresponding to Hz
t , G

z
t but with the value

functions of V∞ and V replaced by their V -trace fixed points given in lemma A.1 at a rate:

‖T (T)V z1 − V̄ z‖∞ < ξT ‖V z1 − V̄ z‖∞ +
C

1− ξ
(1− φ)T (13)

for constants 0 ≤ ξ < 1 and 0 < C.

Proof. Let V̄ and V̄∞ and V̄ z be the fixed points arising from using lemma A.1 on eqs. (1a) to (1c) using the definitions of
(Ht, Gt)t in eq. (10).

Suppose Ĥt and Ĝt be the current estimates of Ht and Gt arising by plugging in the current expression of V∞ and V into
eq. (10).

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Causal variables and generalized Bellman equations

Since V∞ is the result of evaluating π̄ it must satisfy φ ≤ V̄∞ ≤ 1− φ. Similarly we can assume V z is initialized to satisfy
‖V z‖∞ < RM . Then eq. (5) allows us to bound the difference between the current value function V z1 and the fixed point
V̄ z as:

|T V z1 (s)− T V̄ z(s)| (14)

=

∣∣∣∣∣E
[∞∑
t=0

c0:t−2

[
(ρt−1 − ct−1ρt) (V z1 (st)Ĝ0:t−1 − V̄ z(st)Ḡ0:t−1) + ct−1ρt(Ĝ0:t−1Ĥt − Ḡ0:t−1H̄t)

]∣∣∣∣∣ s
]∣∣∣∣∣

≤ E

[∞∑
t=0

c0:t−2 (ρt−1 − ct−1ρt)
[
Ḡ0:t−1|V z(st)− V̄ z(st)|

]∣∣∣∣∣ s
]

(15)

+

∣∣∣∣∣E
[∞∑
t=0

c0:t−2 (ρt−1 − ct−1ρt)
[
Ĝ0:t−1 − Ḡ0:t−1

]
V z1 (st)

∣∣∣∣∣ s
]∣∣∣∣∣ (16)

+

∣∣∣∣∣E
[∞∑
t=0

c0:t−1ρt

[
Ĝ0:t−1Ĥt − Ḡ0:t−1H̄t

]
|

∣∣∣∣∣ s
]∣∣∣∣∣ (17)

The first term is recognized as an instance of eq. (7) and the lower bound in eq. (9) applies. For the second term, when
δt = V̄∞t (st)− V̂∞t (st), and focusing on V 1, then

Ḡt − Ĝt = (1− Φt)

[
δt+1

V̄∞t + δt
−

δtV̄
∞
t+1

V̄∞t (V̄∞t + δt)

]
= ∆t. (18)

The next step is to expand the difference in the product and obtain a linear combination of non-negative terms. We expand
the difference in the product Ĝ0:t−1 − Ḡ0:t−1 in orders of ∆`:∣∣∣E [c0:t−2 (ρt−1 − ct−1ρt)

[
Ĝ0:t−1 − Ḡ0:t−1

]
V z1 (st)

∣∣∣ s]∣∣∣ (19)

≤
t∑
`=0

|E

c0:t−2 (ρt−1 − ct−1ρt) (
∏
i 6=`

Gi)(∆`V
z
1 (st))

 |+ t∑
`,s=0
6̀=s

|E

c0:t−2 (ρt−1 − ct−1ρt) (
∏
i 6=`,s

Gi)(∆`∆sV
z
1 (st))

 | · · ·
(20)

By an argument similar to lemma A.1, eq. (9) each term in the sum is a linear combinations with positive weights of the
terms involving products of ∆ and V z . We can therefore upper-bound it as

≤
t∑
`=0

E

c0:t−2 (ρt−1 − ct−1ρt) (
∏
i 6=`

Gi)

 ‖∆`V
z
1 ‖∞ +

t∑
`,s=0
` 6=s

E

c0:t−2 (ρt−1 − ct−1ρt) (
∏
i 6=`,s

Gi)

 ‖∆`∆sV
z
1 ‖∞ + . . . ,

(21)

Since the expectation of Gi is bounded by γ(1− φ), all terms are positive. Each term ‖∆`‖ can be bounded by ∆, and we
obtain the bound

≤
(
t+ 1

1

)
(γ(1− φ))t∆RM +

(
t+ 1

2

)
(γ(1− φ))t−1∆2RM + . . . = RM (γ(1− φ) + ∆)

t −RM (γ(1− φ))t.

(22)

Since the Bellman update for V∞ is a contraction with constant at most 1 − φ, and using that the bounds on V∞

imposes restrictions on the possible values of δt and δt+1, we can in the case of V 1 upper-bound ∆t in eq. (19) by
|∆t| ≤ |δt+1|

φ ≤ (1−φ)T

φ where T are the number of Bellman updates of V∞.

Therefore, eq. (19) can be bounded by
∞∑
t=0

RM (γ(1− φ) + ∆)
t
< RM

[
1

1− γ(1− φ)−∆
− 1

1− γ(1− φ)

]
(23)

=
RM
φ

(1− φ)T

(1− γ(1− φ))((1− γ(1− φ))− φ−1(1− φ)T
(24)

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Causal variables and generalized Bellman equations

The last term eq. (17) can be bounded using similar techniques. All in all we obtain:

‖T V z1 − V̄ z‖∞ ≤ C(1− φ)T + (1−min
s

E[ρ0|s](1− γ(1− φ)))︸ ︷︷ ︸
=ξ<1

‖V z1 − V̄ z‖∞. (25)

Finally, assuming π has a minimal support wherever the behavioral policy µ has support, it holds that ξ < 1. Applying the
operator T times we obtain:

‖T (T)V z1 − V̄ z‖∞ < ξT ‖V z1 − V̄ z‖∞ +
C

1− ξ
(1− φ)T . (26)

Theorem A.1 (Convergence of online updates of V z). Assume a finite state and action space and suppose a list of
trajectories s0, a0, r1, . . . are generated by following a policy π. Assume each state is visited infinitely often and (αk)k is a
sequence of learning rates satisfying the Robbins-Munro conditions and φ < Φ < 1− φ is bounded. If we iteratively apply
the updates corresponding to eq. (8), for all states/rewards in the trajectory k:

Vk+1(st)←αk
rt+1 + γVk(st+1) (27a)

V∞k+1(st)←αk
Φ(st) + Φ̄(st)V

∞
k (st+1) (27b)

V 1
k+1(st)←αk

Vk(st)Φ(st)

V∞k (st)
+

1− Φ(st)

V∞k (st)
V∞k (st+1)

(
rt+1 + γV 1

k (st+1)
)

(27c)

V 0
k+1(st)←αk

1− Φ(st)

1− V∞k (st)
(1− V∞k (st+1))(rt+1 + γV 0

k (st+1)) (27d)

using learning rate αk then V z →
∞
vπ a.s.

Proof. As already remarked, the updates are an online approximation of the operators eq. (1), where we only include the
t = 0 term of the V -trace operator eq. (2). Assuming Ht and Gt were available for the converged value functions V̄π and
v̄∞π this operator is by lemma A.1 a contraction with constant (see eq. (9))

|T V z1 (s)− T V z2 (s)| ≤ γ(1− φ)‖V z1 − V z2 ‖∞ (28)

and therefore converge to fixed points V̄ 0 and V̄ 1. When the quantities V∞ and V are estimated online, and we only have
approximations V̂∞ and V̂ available, we re-use the argument in lemma A.2 once more truncating the sum at t = 0. We
obtain:

|T V z(s)− V̄ z(s)| ≤ EḠ0|V z(s′)− V̄ z(s′)|+ E|Ḡ0 − Ĝ0)||V z(s′)|+ E|H̄0 − Ĥ0)||V z(s′)| (29)

The terms can be bounded to obtain a similar result but with simpler constants:

|T V z(s)− V̄ z(s)| ≤ γ(1− φ)|V z(s′)− V̄ z(s′)|+ 2∆0RM (30)

≤ γ(1− φ)|V z(s′)− V̄ z(s′)|+ 2RM
φ

(1− φ)T (31)

where T is the number of times the contraction operator has been applied to V∞ and we therefore once more obtain:

|T V z(s)− V̄ z(s)| ≤ γ(1− φ)|V z(s′)− V̄ z(s′)|+ 2∆0RM (32)

≤ γ(1− φ)|V z(s′)− V̄ z(s′)|+ 2RM
φ

(1− φ)T (33)

and therefore

‖T (T)V z1 − V̄ z‖∞ < (γ(1− φ))T ‖V z1 − V̄ z‖∞ +
2RM

φ(1− γ(1− φ))
(1− φ)T . (34)

The updates in eq. (27) are simply an online stochastic relaxation of these expressions and therefore converge (Kushner &
Yin, 2003)

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Causal variables and generalized Bellman equations

Theorem A.2 (Convergence V -trace updates of V z). Under the same assumptions as in theorem A.1, and assuming the
weights satisfy ci = min

{
c̄, π(ai|si)
µ(ai|si)

}
, ρi = min

{
ρ̄, π(ai|si)

µ(ai|si)

}
with ρ̄ ≥ c̄ and π has a minimal support where the behavior

policy µ has support so that E[ρt] can be lower bounded. Suppoose we iteratively apply the V -trace updates

Vk(s)←αk

∑
t=0

(
t−1∏
`=0

c`G`

)
ρt (Ht,k +Gt,kVk(st+1)− Vk(st)) (35)

with Ht,k, Gt,k being those choices of Ht, Gt appropriate for estimating V , V∞ and V z (but with values at iteration k
inserted). Then, provided the learning rates αk satisfying Robbin-Munro conditions then V z will converge to a unique fixed
point which becomes identical to the true values V̄ z when c̄, ρ̄→∞.

Proof. Under the assumptions the derivation in lemma A.2 applies and we obtain the exponential contraction to the
unique fixed point V̄ z given in eq. (34). The update eq. (35) is a stochastic relaxation of these expressions and therefore
converge (Kushner & Yin, 2003).

B. Simulation Details
Since the NIE is a product of two terms which are each close to zero when initialized we found it beneficial to train using an
augmented objective of the form:

λ1NIE + λ2 (E [Z = 1|Π = a]− E [Z = 0|Π = a]) + λ3 (E [Z = 1|Π = b]− E [Z = 1|Π = a]) + λ4H[Z] (36)

where in typical fashion we include an entropy termH[Z] to prevent trivial definitions of Z.

B.1. Twostage details

We use a learning rate schedule for the neural parameters while learning Φ in section 3.2. The schedule was chosen such
that reasonable convergence could be shown in the plots in figure 3. We use an RMSprop optimizer, with an initial learning
rate of 0.003 which is reduced to 0.001 after 800 parameter updates, and again to 0.0003 after 2400 parameter updates.

B.2. Doorkey details

The doorkey environment is distributed as part of gym minigrid (Chevalier-Boisvert et al., 2018). We used the
Minigrid-Doorkey5x5-v0 environment with the following modifications:

• The environment was fully observed and the outer wall was clipped to reduce state size.

• The number of actions was reduced to the minimal necessary to complete the environment (pick up, use, up, right,
down, left).

• The reward is sparse and given upon completion.

To encode the board, we start with a game board given as a n× n× 3 tensor. The first slice indicates object type (wall, free
square, key, agent, etc.), the second indicates the color (and is discarded as irrelevant), and the last indicates state (i.e. player
orientation and whether the door is opened or not). We selected a simple one-hot encoding scheme which consists of:

• Removing the player orientation and encoding it as a one-hot vector.

• Forming a n× n×m representation corresponding to a one-hot encoding the first slice concatenate with a one-hot
encoding of the last slice.

• Concatenating these two.

For the experiments, we divided the training into the following steps:

• Training the policy network πa.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Causal variables and generalized Bellman equations

Table 1. Overview of parameters for twostage

Name Value

γ 0.999
Learning rate 0.001
Gradient normalization No
Optimizer Adam
Network layers 0
Buffer size 500
Batch size 50
On policy steps 1
Off policy steps 5
Episodes 10’000

• Training the causal variable Φ.

• Training the policy network πb.

To train the policy πa, we used the parameters in table 1

For the causal variable Φ we used the modified cost function eq. (36) with λ2 = 1, λ4 = 0.1 and otherwise 0. The batch size
was increased to 100 and buffer size to 1000 and the method was trained for 5000 episodes. We found gradient normalization
to be important and in that case a learning rate of 0.01 was suitable. For µb we decreased the learning rate to 0.00025 and
trained for an additional 5000 episodes starting from the same weights as πa.

References
Chevalier-Boisvert, M., Willems, L., and Pal, S. Minimalistic gridworld environment for openai gym. https://github.
com/maximecb/gym-minigrid, 2018.

Kushner, H. and Yin, G. G. Stochastic approximation and recursive algorithms and applications, volume 35. Springer
Science & Business Media, 2003.

88

Bibliography
Agler, Robert and Paul De Boeck (November 2017). “On the Interpretation and

Use of Mediation: Multiple Perspectives on Mediation Analysis.” In: Frontiers in
psychology 8, page 1984. issn: 1664-1078.

Allamanis, Miltiadis, Earl T. Barr, et al. (July 2018). “A Survey of Machine Learning
for Big Code and Naturalness.” In: ACM Comput. Surv. 51.4, pages 1–37. issn:
0360-0300.

Allamanis, Miltiadis, Pankajan Chanthirasegaran, et al. (June 2017). “Learning Con-
tinuous Semantic Representations of Symbolic Expressions.” In: Proceedings of the
34th International Conference on Machine Learning. Edited by Doina Precup and
Yee Whye Teh. Volume 70. Proceedings of Machine Learning Research. PMLR,
pages 80–88. url: http://proceedings.mlr.press/v70/allamanis17a.html.

Alon, Uri et al. (2020). “Structural Language Models of Code.” In: Proceedings of
the 37th International Conference on Machine Learning. Edited by Hal Daumé Iii
and Aarti Singh. Volume 119. Proceedings of Machine Learning Research. PMLR,
pages 245–256.

Anderson, Greg et al. (September 2020). “Neurosymbolic Reinforcement Learning
with Formally Verified Exploration.” In: NeurIPS. url: http://arxiv.org/abs/
2009.12612.

Andre, David and Stuart J. Russell (2001). “Programmable Reinforcement Learning
Agents.” In: Advances in neural information processing systems. Edited by T. K.
Leen, T. G. Dietterich, and V. Tresp. MIT Press, pages 1019–1025.

— (2002). “State abstraction for programmable reinforcement learning agents.” In:
Aaai/iaai. aaai.org, pages 119–125.

Andreas, Jacob, Dan Klein, and Sergey Levine (November 2016). “Modular Multitask
Reinforcement Learning with Policy Sketches.” url: http://arxiv.org/abs/
1611.01796.

Bagaria, Akhil, Jason Crowley, et al. (June 2020). “Skill Discovery for Exploration and
Planning using Deep Skill Graphs.” url: https://openreview.net/pdf?id=-
mvAo5hWNp.

Bagaria, Akhil and George Konidaris (2020). “Option Discovery using Deep Skill
Chaining.” In: ICLR. url: https://openreview.net/pdf?id=B1gqipNYwH.

Bahdanau, Dzmitry et al. (November 2018). “Systematic Generalization: What Is
Required and Can It Be Learned?” url: http://arxiv.org/abs/1811.12889.

http://proceedings.mlr.press/v70/allamanis17a.html
http://arxiv.org/abs/2009.12612
http://arxiv.org/abs/2009.12612
http://arxiv.org/abs/1611.01796
http://arxiv.org/abs/1611.01796
https://openreview.net/pdf?id=-mvAo5hWNp
https://openreview.net/pdf?id=-mvAo5hWNp
https://openreview.net/pdf?id=B1gqipNYwH
http://arxiv.org/abs/1811.12889

90 Bibliography

Balog, Matej et al. (2016). “Deepcoder: Learning to write programs.” In: arXiv preprint
arXiv:1611.01989.

Barendregt, Henk, Wil Dekkers, and Richard Statman (June 2013). Lambda Calculus
with Types. Cambridge University Press. isbn: 9780521766142.

Barreto, André et al. (December 2020). “Fast reinforcement learning with generalized
policy updates.” In: Proceedings of the National Academy of Sciences of the United
States of America 117.48, pages 30079–30087. issn: 0027-8424.

Barrett, David G. T. et al. (July 2018). “Measuring abstract reasoning in neural net-
works.” url: http://proceedings.mlr.press/v80/santoro18a/santoro18a.
pdf.

Barto, Andrew G. and Sridhar Mahadevan (January 2003). “Recent Advances in Hi-
erarchical Reinforcement Learning.” In: Discrete Event Dynamic Systems: Theory
and Applications 13.1, pages 41–77. issn: 0924-6703.

Bastani, Osbert, Yewen Pu, and Armando Solar-Lezama (May 2018). “Verifiable Re-
inforcement Learning via Policy Extraction.” url: http://arxiv.org/abs/1805.
08328.

Bengio, Yoshua et al. (January 2019). “A Meta-Transfer Objective for Learning to
Disentangle Causal Mechanisms.” url: http://arxiv.org/abs/1901.10912.

Berman, Gordon J., William Bialek, and Joshua W. Shaevitz (October 2016). “Pre-
dictability and hierarchy in Drosophila behavior.” In: Proceedings of the National
Academy of Sciences of the United States of America 113.42, pages 11943–11948.
issn: 0027-8424.

Bertsekas, Dimitri P. (2011). “Dynamic programming and optimal control.” In: Bel-
mont, MA: Athena Scientific. url: https://www.academia.edu/download/
52019115/Dynamic_programming_optimal_control.pdf.

Besold, Tarek R. et al. (November 2017). “Neural-Symbolic Learning and Reasoning:
A Survey and Interpretation.” url: http://arxiv.org/abs/1711.03902.

Bošnjak, Matko et al. (May 2016). “Programming with a Differentiable Forth Inter-
preter.” url: http://arxiv.org/abs/1605.06640.

Breiman, Leo et al. (2017). Classification and regression trees. Routledge.
Burke, Michael, Svetlin Penkov, and Subramanian Ramamoorthy (February 2019).

“From explanation to synthesis: Compositional program induction for learning
from demonstration.” url: http://arxiv.org/abs/1902.10657.

Chang, Michael B. et al. (December 2016). “A Compositional Object-Based Approach
to Learning Physical Dynamics.” url: http://arxiv.org/abs/1612.00341.

Chen, Mark et al. (July 2021). “Evaluating Large Language Models Trained on Code.”
url: http://arxiv.org/abs/2107.03374.

Chiappa, Silvia et al. (April 2017). “Recurrent Environment Simulators.” url: http:
//arxiv.org/abs/1704.02254.

Christakopoulou, Konstantina and Adam Tauman Kalai (September 2017). “Glass-
Box Program Synthesis: A Machine Learning Approach.” url: http://arxiv.
org/abs/1709.08669.

Das, Sreerupa, C. Lee Giles, and Guo-Zheng Sun (1992). “Learning context-free gram-
mars: Capabilities and limitations of a recurrent neural network with an external

http://proceedings.mlr.press/v80/santoro18a/santoro18a.pdf
http://proceedings.mlr.press/v80/santoro18a/santoro18a.pdf
http://arxiv.org/abs/1805.08328
http://arxiv.org/abs/1805.08328
http://arxiv.org/abs/1901.10912
https://www.academia.edu/download/52019115/Dynamic_programming_optimal_control.pdf
https://www.academia.edu/download/52019115/Dynamic_programming_optimal_control.pdf
http://arxiv.org/abs/1711.03902
http://arxiv.org/abs/1605.06640
http://arxiv.org/abs/1902.10657
http://arxiv.org/abs/1612.00341
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1704.02254
http://arxiv.org/abs/1704.02254
http://arxiv.org/abs/1709.08669
http://arxiv.org/abs/1709.08669

Bibliography 91

stack memory.” In: Proceedings of The Fourteenth Annual Conference of Cogni-
tive Science Society. Indiana University. Volume 14. Citeseer. url: https://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.8599&rep=rep1&
type=pdf.

Dasgupta, Ishita et al. (January 2019). “Causal Reasoning from Meta-reinforcement
Learning.” url: http://arxiv.org/abs/1901.08162.

Davis, Randall, Howard Shrobe, and Peter Szolovits (March 1993). “What is a knowl-
edge representation?” In: AI magazine 14.1, pages 17–17. issn: 0738-4602.

Dechter, Eyal et al. (2013). “Bootstrap Learning via Modular Concept Discovery.” In:
IJCAI, pages 1302–1309.

Devin, Coline et al. (2019). “Compositional Plan Vectors.” In: Advances in Neural
Information Processing Systems. Edited by H. Wallach et al. Volume 32. Curran
Associates, Inc. url: https://proceedings.neurips.cc/paper/2019/file/
00989c20ff1386dc386d8124ebcba1a5-Paper.pdf.

Dietterich, Thomas G. (May 1999). “Hierarchical Reinforcement Learning with the
MAXQ Value Function Decomposition.” url: http : / / arxiv . org / abs / cs /
9905014.

Diuk, Carlos, Andre Cohen, and Michael L. Littman (July 2008). “An object-oriented
representation for efficient reinforcement learning.” In: Proceedings of the 25th in-
ternational conference on Machine learning. ICML ’08. Association for Computing
Machinery, pages 240–247. isbn: 9781605582054.

Ellis, Kevin, Lucas Morales, et al. (2018). “Dreamcoder: Bootstrapping domain-specific
languages for neurally-guided bayesian program learning.” In: Proceedings of the
2nd Workshop on Neural Abstract Machines and Program Induction. url: https:
//uclmr.github.io/nampi/extended_abstracts/ellis.pdf.

Ellis, Kevin, Daniel Ritchie, et al. (July 2017). “Learning to Infer Graphics Programs
from Hand-Drawn Images.” url: http://arxiv.org/abs/1707.09627.

Eppe, Manfred, Phuong D. H. Nguyen, and Stefan Wermter (November 2019). “From
Semantics to Execution: Integrating Action Planning With Reinforcement Learn-
ing for Robotic Causal Problem-Solving.” In: Frontiers in robotics and AI 6,
page 123. issn: 2296-9144.

Espeholt, Lasse et al. (February 2018). “IMPALA: Scalable distributed deep-RL with
Importance Weighted Actor-learner architectures.” url: http://proceedings.
mlr.press/v80/espeholt18a/espeholt18a.pdf.

Ferguson, Chris and Richard E. Korf (1988). “Distributed Tree Search and Its Appli-
cation to Alpha-Beta Pruning.” In: AAAI. Volume 88. aaai.org, pages 128–132.

Ferreira, Candida (February 2001). “Gene Expression Programming: a New Adaptive
Algorithm for Solving Problems.” url: http://arxiv.org/abs/cs/0102027.

Feser, John K., Swarat Chaudhuri, and Isil Dillig (June 2015). “Synthesizing data
structure transformations from input-output examples.” In: Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. Volume 50. ACM, pages 229–239. isbn: 9781450334686.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.8599&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.8599&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.8599&rep=rep1&type=pdf
http://arxiv.org/abs/1901.08162
https://proceedings.neurips.cc/paper/2019/file/00989c20ff1386dc386d8124ebcba1a5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/00989c20ff1386dc386d8124ebcba1a5-Paper.pdf
http://arxiv.org/abs/cs/9905014
http://arxiv.org/abs/cs/9905014
https://uclmr.github.io/nampi/extended_abstracts/ellis.pdf
https://uclmr.github.io/nampi/extended_abstracts/ellis.pdf
http://arxiv.org/abs/1707.09627
http://proceedings.mlr.press/v80/espeholt18a/espeholt18a.pdf
http://proceedings.mlr.press/v80/espeholt18a/espeholt18a.pdf
http://arxiv.org/abs/cs/0102027

92 Bibliography

Fu, Justin et al. (February 2019). “From Language to Goals: Inverse Reinforcement
Learning for Vision-Based Instruction Following.” url: http://arxiv.org/abs/
1902.07742.

Gaunt, Alexander L. et al. (August 2016). “TerpreT: A Probabilistic Programming
Language for Program Induction.” url: http://arxiv.org/abs/1608.04428.

Gerstenberg, Tobias and Joshua B. Tenenbaum (2017). “Intuitive theories.” In: Oxford
handbook of causal reasoning, pages 515–548.

Graves, Alex, Greg Wayne, and Ivo Danihelka (October 2014). “Neural Turing Ma-
chines.” url: http://arxiv.org/abs/1410.5401.

Greff, Klaus et al. (March 2019). “Multi-Object Representation Learning with Itera-
tive Variational Inference.” url: http://arxiv.org/abs/1903.00450.

Gulwani, Sumit (July 2010). “Dimensions in program synthesis.” In: Proceedings of
the 12th international ACM SIGPLAN symposium on Principles and practice
of declarative programming. PPDP ’10. Association for Computing Machinery,
pages 13–24. isbn: 9781450301329.

Gulwani, Sumit, Oleksandr Polozov, and Rishabh Singh (July 2017). Program Synthe-
sis. Foundations and Trends in Programming Languages. now. isbn: 9781680832921.

Guo, Xiaoxiao et al. (2014). “Deep Learning for Real-Time Atari Game Play Using
Offline Monte-Carlo Tree Search Planning.” In: Advances in Neural Information
Processing Systems. Edited by Z. Ghahramani et al. Volume 27. Curran Associates,
Inc., pages 3338–3346.

Haarnoja, Tuomas et al. (January 2018). “Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor.” url: http://
arxiv.org/abs/1801.01290.

Hangl, Simon et al. (April 2020). “Skill Learning by Autonomous Robotic Playing
Using Active Learning and Exploratory Behavior Composition.” In: Frontiers in
robotics and AI 7, page 42. issn: 2296-9144.

Harding, Simon et al. (July 2012). “MT-CGP: mixed type cartesian genetic program-
ming.” In: Proceedings of the 14th annual conference on Genetic and evolutionary
computation. GECCO ’12. Association for Computing Machinery, pages 751–758.
isbn: 9781450311779.

Hasselt, Hado van, Matteo Hessel, and John Aslanides (June 2019). “When to use
parametric models in reinforcement learning?” url: http://arxiv.org/abs/
1906.05243.

Hein, Daniel, Steffen Udluft, and Thomas A. Runkler (December 2017). “Interpretable
Policies for Reinforcement Learning by Genetic Programming.” url: http://
arxiv.org/abs/1712.04170.

Hill, Felix et al. (January 2019). “Learning to Make Analogies by Contrasting Abstract
Relational Structure.” url: http://arxiv.org/abs/1902.00120.

Hindle, Abram et al. (April 2016). “On the naturalness of software.” In: Communica-
tions of the ACM 59.5, pages 122–131. issn: 0001-0782.

Holland, John H. (July 1992). Adaptation in natural and artificial systems: An in-
troductory analysis with applications to biology, control and artificial intelligence.
Complex Adaptive Systems. MIT Press. isbn: 9780262082136.

http://arxiv.org/abs/1902.07742
http://arxiv.org/abs/1902.07742
http://arxiv.org/abs/1608.04428
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1903.00450
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1906.05243
http://arxiv.org/abs/1906.05243
http://arxiv.org/abs/1712.04170
http://arxiv.org/abs/1712.04170
http://arxiv.org/abs/1902.00120

Bibliography 93

Holtz, Jarrett, Arjun Guha, and Joydeep Biswas (August 2020). “Robot Action Selec-
tion Learning via Layered Dimension Informed Program Synthesis.” url: http:
//arxiv.org/abs/2008.04133.

Inala, Jeevana Priya et al. (2020). “Synthesizing Programmatic Policies that In-
ductively Generalize.” In: ICLR. url: https : / / openreview . net / pdf ? id =
S1l8oANFDH.

Izzo, Dario, Francesco Biscani, and Alessio Mereta (November 2016). “Differentiable
Genetic Programming.” url: http://arxiv.org/abs/1611.04766.

Jaques, Miguel, Michael Burke, and Timothy Hospedales (May 2019). “Physics-as-
Inverse-Graphics: Unsupervised Physical Parameter Estimation from Video.” url:
http://arxiv.org/abs/1905.11169.

Jetchev, Nikolay, Tobias Lang, and Marc Toussaint (2013). “Learning Grounded Re-
lational Symbols from Continuous Data for Abstract Reasoning.” In: url: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.360.6567.

Jong, Edwin D. de and Jordan B. Pollack (September 2003). “Multi-Objective Meth-
ods for Tree Size Control.” In: Genetic Programming and Evolvable Machines 4.3,
pages 211–233. issn: 1389-2576.

Joshi, Rajeev, Greg Nelson, and Keith Randall (May 2002). “Denali: a goal-directed
superoptimizer.” In: SIGPLAN Not. 37.5, pages 304–314. issn: 0362-1340.

Kamio, Shotaro, Hideyuki Mitsuhashi, and Hitoshi Iba (2003). “Integration of Genetic
Programming and Reinforcement Learning for Real Robots.” In: Genetic and Evo-
lutionary Computation — GECCO 2003. Springer Berlin Heidelberg, pages 470–
482.

Karlsson, Jonas (1997). “Learning to Solve Multiple Goals.” PhD thesis. University
of Rochester.

Kelly, Stephen and Malcolm I. Heywood (July 2017). “Multi-task learning in Atari
video games with emergent tangled program graphs.” In: Proceedings of the Ge-
netic and Evolutionary Computation Conference. GECCO ’17. Association for
Computing Machinery, pages 195–202. isbn: 9781450349208.

— (June 2018). “Emergent Solutions to High-Dimensional Multitask Reinforcement
Learning.” In: Evolutionary computation 26.3, pages 347–380. issn: 1063-6560.

Keuning, Hieke, Johan Jeuring, and Bastiaan Heeren (September 2018). “A System-
atic Literature Review of Automated Feedback Generation for Programming Ex-
ercises.” In: ACM Trans. Comput. Educ. 19.1, pages 1–43.

Kipf, Thomas et al. (February 2018). “Neural Relational Inference for Interacting
Systems.” url: http://arxiv.org/abs/1802.04687.

Krawiec, K. and P. Lichocki (2010). “Using Co-solvability to Model and Exploit Syn-
ergetic Effects in Evolution.” In: Parallel Problem Solving from Nature, PPSN XI.
Springer Berlin Heidelberg, pages 492–501.

Kurach, Karol, Marcin Andrychowicz, and Ilya Sutskever (November 2015). “Neural
Random-Access Machines.” url: http://arxiv.org/abs/1511.06392.

Lázaro-Gredilla, Miguel et al. (January 2019). “Beyond imitation: Zero-shot task
transfer on robots by learning concepts as cognitive programs.” In: Science robotics

http://arxiv.org/abs/2008.04133
http://arxiv.org/abs/2008.04133
https://openreview.net/pdf?id=S1l8oANFDH
https://openreview.net/pdf?id=S1l8oANFDH
http://arxiv.org/abs/1611.04766
http://arxiv.org/abs/1905.11169
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.360.6567
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.360.6567
http://arxiv.org/abs/1802.04687
http://arxiv.org/abs/1511.06392

94 Bibliography

4.26. issn: 2470-9476. doi: 10.1126/scirobotics.aav3150. url: http://dx.doi.
org/10.1126/scirobotics.aav3150.

Levy, Andrew et al. (December 2017). “Learning Multi-Level Hierarchies with Hind-
sight.” url: http://arxiv.org/abs/1712.00948.

Lillicrap, Timothy P. et al. (September 2015). “Continuous control with deep rein-
forcement learning.” url: http://arxiv.org/abs/1509.02971.

Lin, Christopher H., Mausam, and Daniel S. Weld (August 2016). “A Programming
Language With a POMDP Inside.” url: http://arxiv.org/abs/1608.08724.

Ling, Wang et al. (May 2017). “Program Induction by Rationale Generation : Learn-
ing to Solve and Explain Algebraic Word Problems.” url: http://arxiv.org/
abs/1705.04146.

Liu, Xuan and Jie Fu (July 2019). “Compositional planning in Markov decision pro-
cesses: Temporal abstraction meets generalized logic composition.” In: 2019 Amer-
ican Control Conference (ACC). IEEE, pages 559–566. isbn: 9781538679265.

Lyu, Daoming et al. (October 2018). “SDRL: Interpretable and Data-efficient Deep
Reinforcement Learning Leveraging Symbolic Planning.” url: http://arxiv.
org/abs/1811.00090.

Ma, Zhihao et al. (March 2021). “Learning Symbolic Rules for Interpretable Deep
Reinforcement Learning.” url: http://arxiv.org/abs/2103.08228.

Mania, Horia, Aurelia Guy, and Benjamin Recht (March 2018). “Simple random
search provides a competitive approach to reinforcement learning.” url: http:
//arxiv.org/abs/1803.07055.

McKay, Robert I. (2000). “Fitness Sharing in Genetic Programming.” In: GECCO,
pages 435–442.

Miller, Julian F. (2011). “Cartesian Genetic Programming.” In: Cartesian Genetic
Programming. Edited by Julian F. Miller. Springer Berlin Heidelberg, pages 17–
34. isbn: 9783642173103.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, et al. (December
2013). “Playing Atari with Deep Reinforcement Learning.” url: http://arxiv.
org/abs/1312.5602.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, et al. (Febru-
ary 2015). “Human-level control through deep reinforcement learning.” In: Nature
518.7540, pages 529–533. issn: 0028-0836.

Moerman, W. (2009). “Hierarchical reinforcement learning: Assignment of behaviours
to subpolicies by self-organization.” PhD thesis. Utrecht University.

Montana, David J. (June 1995). “Strongly typed genetic programming.” In: Evolu-
tionary computation 3.2, pages 199–230. issn: 1063-6560.

Mwaura, Jonathan (July 2010). “Evolution of robotic behaviours using Gene Expres-
sion Programming.” PhD thesis. University of Exeter. isbn: 9781424469093. doi:
10.1109/cec.2010.5586083. url: https://ore.exeter.ac.uk/repository/
bitstream/handle/10036/3493/MwauraJ.pdf?isAllowed=y&sequence=2.

Nabi, Razieh, Phyllis Kanki, and Ilya Shpitser (August 2018). “Estimation of Per-
sonalized Effects Associated With Causal Pathways.” In: Uncertainty in artificial
intelligence: proceedings of the... conference. Conference on Uncertainty in Arti-

https://doi.org/10.1126/scirobotics.aav3150
http://dx.doi.org/10.1126/scirobotics.aav3150
http://dx.doi.org/10.1126/scirobotics.aav3150
http://arxiv.org/abs/1712.00948
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1608.08724
http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/1811.00090
http://arxiv.org/abs/1811.00090
http://arxiv.org/abs/2103.08228
http://arxiv.org/abs/1803.07055
http://arxiv.org/abs/1803.07055
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1109/cec.2010.5586083
https://ore.exeter.ac.uk/repository/bitstream/handle/10036/3493/MwauraJ.pdf?isAllowed=y&sequence=2
https://ore.exeter.ac.uk/repository/bitstream/handle/10036/3493/MwauraJ.pdf?isAllowed=y&sequence=2

Bibliography 95

ficial Intelligence 2018. issn: 1525-3384. url: https://www.ncbi.nlm.nih.gov/
pubmed/30643490.

Natarajan, Nagarajan et al. (July 2020). “Programming by Rewards.” url: http:
//arxiv.org/abs/2007.06835.

Odena, Augustus, Kensen Shi, et al. (2021). “Bustle: Bottom-up program synthesis
through learning-guided exploration.” In: ICLR. url: https://openreview.net/
pdf?id=yHeg4PbFHh.

Odena, Augustus and Charles Sutton (February 2020). “Learning to Represent Pro-
grams with Property Signatures.” url: http://arxiv.org/abs/2002.09030.

Osera, Peter-Michael and Steve Zdancewic (June 2015). “Type-and-example-directed
program synthesis.” In: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation. Volume 50. ACM, pages 619–
630. isbn: 9781450334686.

Parr, Ronald and Stuart J. Russell (1998). “Reinforcement learning with hierarchies
of machines.” In: Advances in neural information processing systems. url: https:
//axon.cs.byu.edu/Dan/778/papers/Hierarchical%20Reinforcement%
20Learning/Parr*.pdf.

Pawlak, T. P., B. Wieloch, and K. Krawiec (June 2015). “Semantic Backpropagation
for Designing Search Operators in Genetic Programming.” In: IEEE Transactions
on Evolutionary Computation 19.3, pages 326–340. issn: 1941-0026.

Pearl, Judea (2001). “Direct and Indirect Effects.” In: Proceedings of the Seventeenth
Conference on Uncertainty in Artificial Intelligence. url: https://ftp.cs.ucla.
edu/pub/stat_ser/R273-U.pdf.

Penkov, Svetlin and Subramanian Ramamoorthy (May 2017). “Explaining Transition
Systems through Program Induction.” url: http://arxiv.org/abs/1705.08320.

Piech, Chris et al. (2015). “Learning Program Embeddings to Propagate Feedback on
Student Code.” In: Proceedings of the 32nd International Conference on Machine
Learning. Edited by Francis Bach and David Blei. Volume 37. Proceedings of
Machine Learning Research. PMLR, pages 1093–1102.

Pierce, Benjamin C. (2002). Types and Programming Languages. MIT Press. isbn:
9780262162098.

Pierrot, Thomas et al. (July 2020). “Learning Compositional Neural Programs for
Continuous Control.” url: http://arxiv.org/abs/2007.13363.

Polozov, Oleksandr and Sumit Gulwani (October 2015). “FlashMeta: a framework for
inductive program synthesis.” In: Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications. Volume 50. OOPSLA 2015. Association for Computing Machinery,
pages 107–126. isbn: 9781450336895.

Ross, Don and David Spurrett (2007). “Notions of Cause: Russell’s thesis revisited.”
In: The British journal for the philosophy of science 58.1, pages 45–76. issn: 0007-
0882.

Rothkopf, Constantin A. and Dana H. Ballard (November 2013). “Learning and Co-
ordinating Repertoires of Behaviors with Common Reward: Credit Assignment
and Module Activation.” In: Computational and robotic models of the hierarchi-

https://www.ncbi.nlm.nih.gov/pubmed/30643490
https://www.ncbi.nlm.nih.gov/pubmed/30643490
http://arxiv.org/abs/2007.06835
http://arxiv.org/abs/2007.06835
https://openreview.net/pdf?id=yHeg4PbFHh
https://openreview.net/pdf?id=yHeg4PbFHh
http://arxiv.org/abs/2002.09030
https://axon.cs.byu.edu/Dan/778/papers/Hierarchical%20Reinforcement%20Learning/Parr*.pdf
https://axon.cs.byu.edu/Dan/778/papers/Hierarchical%20Reinforcement%20Learning/Parr*.pdf
https://axon.cs.byu.edu/Dan/778/papers/Hierarchical%20Reinforcement%20Learning/Parr*.pdf
https://ftp.cs.ucla.edu/pub/stat_ser/R273-U.pdf
https://ftp.cs.ucla.edu/pub/stat_ser/R273-U.pdf
http://arxiv.org/abs/1705.08320
http://arxiv.org/abs/2007.13363

96 Bibliography

cal organization of behavior. Edited by Gianluca Baldassarre and Marco Mirolli.
2013th edition. Springer. isbn: 9783642398742.

Russell, Bertrand (1912). “On the Notion of Cause.” In: Proceedings of the Aristotelian
Society 13, pages 1–26. issn: 0066-7374.

Salimans, Tim et al. (March 2017). “Evolution Strategies as a Scalable Alternative
to Reinforcement Learning.” url: http://arxiv.org/abs/1703.03864.

Salomon, R. (2003). “The deterministic genetic algorithm: implementation details and
some results.” In: Proceedings of the 1999 Congress on Evolutionary Computation-
CEC99 (Cat. No. 99TH8406). IEEE. isbn: 9780780355361. doi: 10.1109/cec.
1999.782001. url: http://ieeexplore.ieee.org/document/782001/.

Schkufza, Eric, Rahul Sharma, and Alex Aiken (March 2013). “Stochastic superopti-
mization.” In: SIGARCH Comput. Archit. News 41.1, pages 305–316. issn: 0163-
5964.

Schmid, Ute (1999). Iterative macro-operators revisited: Applying program synthesis
to learning in planning. url: https : / / pdfs . semanticscholar . org / 174e /
692a8164d71c79776ddab573be8798f90579.pdf.

Schmidt, Michael and Hod Lipson (April 2009). “Distilling free-form natural laws
from experimental data.” In: Science 324.5923, pages 81–85. issn: 0036-8075.

Schulman, John, Sergey Levine, et al. (February 2015). “Trust Region Policy Opti-
mization.” url: http://arxiv.org/abs/1502.05477.

Schulman, John, Filip Wolski, et al. (July 2017). “Proximal Policy Optimization Al-
gorithms.” url: http://arxiv.org/abs/1707.06347.

Schulte, Phillip J. et al. (November 2014). “Q- and A-learning Methods for Estimating
Optimal Dynamic Treatment Regimes.” In: Statistical science: a review journal of
the Institute of Mathematical Statistics 29.4, pages 640–661. issn: 0883-4237.

Shah, Ameesh et al. (July 2020). “Learning Differentiable Programs with Admissible
Neural Heuristics.” url: http://arxiv.org/abs/2007.12101.

Shalizi, Cosma Rohilla and James P. Crutchfield (July 1999). “Computational Me-
chanics: Pattern and Prediction, Structure and Simplicity.” url: http://arxiv.
org/abs/cond-mat/9907176.

Silver, David and Kamil Ciosek (June 2012). “Compositional Planning Using Optimal
Option Models.” url: http://arxiv.org/abs/1206.6473.

Simmons-Edler, Riley, Anders Miltner, and Sebastian Seung (June 2018). “Program
Synthesis Through Reinforcement Learning Guided Tree Search.” url: http://
arxiv.org/abs/1806.02932.

Simpkins, Christopher and Charles Isbell (July 2019). “Composable Modular Rein-
forcement Learning.” In: Proceedings of the AAAI Conference on Artificial Intel-
ligence 33.01, pages 4975–4982. issn: 2374-3468.

Singh, Rishabh and Pushmeet Kohli (2017). “AP: artificial programming.” In: 2nd
Summit on Advances in Programming Languages (SNAPL 2017). Volume 71.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Singh, Satinder Pal (May 1992). “Transfer of learning by composing solutions of
elemental sequential tasks.” In: Machine learning 8.3, pages 323–339. issn: 0885-
6125.

http://arxiv.org/abs/1703.03864
https://doi.org/10.1109/cec.1999.782001
https://doi.org/10.1109/cec.1999.782001
http://ieeexplore.ieee.org/document/782001/
https://pdfs.semanticscholar.org/174e/692a8164d71c79776ddab573be8798f90579.pdf
https://pdfs.semanticscholar.org/174e/692a8164d71c79776ddab573be8798f90579.pdf
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2007.12101
http://arxiv.org/abs/cond-mat/9907176
http://arxiv.org/abs/cond-mat/9907176
http://arxiv.org/abs/1206.6473
http://arxiv.org/abs/1806.02932
http://arxiv.org/abs/1806.02932

Bibliography 97

Sipper, Moshe (2011). Evolved to Win. Lulu.com. isbn: 9781470972837.
Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams (2012). “Practical Bayesian

Optimization of Machine Learning Algorithms.” In: Advances in Neural Infor-
mation Processing Systems. Edited by F. Pereira et al. Volume 25. Curran As-
sociates, Inc. url: https://proceedings.neurips.cc/paper/2012/file/
05311655a15b75fab86956663e1819cd-Paper.pdf.

Solar-Lezama, Armando (2008). “Program synthesis by sketching.” PhD thesis. Uni-
versity of California, Berkeley. isbn: 9781243994462. url: https : / / people .
csail.mit.edu/asolar/papers/thesis.pdf.

Steenkiste, Sjoerd van, Michael Chang, et al. (February 2018). “Relational Neural
Expectation Maximization: Unsupervised Discovery of Objects and their Interac-
tions.” url: http://arxiv.org/abs/1802.10353.

Steenkiste, Sjoerd van, Klaus Greff, and Jürgen Schmidhuber (June 2019). “A Perspec-
tive on Objects and Systematic Generalization in Model-Based RL.” url: http:
//arxiv.org/abs/1906.01035.

Sun, Shao-Hua, Te-Lin Wu, and Joseph J. Lim (September 2019). “Program Guided
Agent.” url: https://openreview.net/pdf?id=BkxUvnEYDH.

Sutton, Richard S. and Andrew G. Barto (November 2018). Reinforcement Learning,
second edition: An Introduction. MIT Press. isbn: 9780262352703.

Sutton, Richard S., Doina Precup, and Satinder Singh (August 1999). “Between
MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement
learning.” In: Artificial intelligence 112.1, pages 181–211. issn: 0004-3702.

Tenenbaum, Joshua B. et al. (March 2011). “How to grow a mind: statistics, structure,
and abstraction.” In: Science 331.6022, pages 1279–1285. issn: 0036-8075.

Tian, Yonglong et al. (January 2019). “Learning to Infer and Execute 3D Shape
Programs.” url: http://arxiv.org/abs/1901.02875.

Topin, Nicholay and Manuela Veloso (May 2019). “Generation of Policy-Level Expla-
nations for Reinforcement Learning.” url: http://arxiv.org/abs/1905.12044.

Uesato, Jonathan et al. (December 2018). “Rigorous Agent Evaluation: An Adversar-
ial Approach to Uncover Catastrophic Failures.” url: http://arxiv.org/abs/
1812.01647.

Verma, Abhinav, Hoang Le, et al. (2019). “Imitation-Projected Programmatic Re-
inforcement Learning.” In: Advances in Neural Information Processing Systems.
Edited by H. Wallach et al. Curran Associates, Inc. url: http://papers.nips.
cc/paper/9705-imitation-projected-programmatic-reinforcement-learning.
pdf.

Verma, Abhinav, Vijayaraghavan Murali, et al. (April 2018). “Programmatically In-
terpretable Reinforcement Learning.” url: http://arxiv.org/abs/1804.02477.

Wang, Rui et al. (January 2019). “Paired Open-Ended Trailblazer (POET): Endlessly
Generating Increasingly Complex and Diverse Learning Environments and Their
Solutions.” url: http://arxiv.org/abs/1901.01753.

Watkins, Christopher J. C. H. and Peter Dayan (May 1992). “Q-learning.” In: Machine
learning 8.3, pages 279–292. issn: 0885-6125.

https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://people.csail.mit.edu/asolar/papers/thesis.pdf
https://people.csail.mit.edu/asolar/papers/thesis.pdf
http://arxiv.org/abs/1802.10353
http://arxiv.org/abs/1906.01035
http://arxiv.org/abs/1906.01035
https://openreview.net/pdf?id=BkxUvnEYDH
http://arxiv.org/abs/1901.02875
http://arxiv.org/abs/1905.12044
http://arxiv.org/abs/1812.01647
http://arxiv.org/abs/1812.01647
http://papers.nips.cc/paper/9705-imitation-projected-programmatic-reinforcement-learning.pdf
http://papers.nips.cc/paper/9705-imitation-projected-programmatic-reinforcement-learning.pdf
http://papers.nips.cc/paper/9705-imitation-projected-programmatic-reinforcement-learning.pdf
http://arxiv.org/abs/1804.02477
http://arxiv.org/abs/1901.01753

98 Bibliography

Whittle, R. et al. (April 2017). “Applying causal mediation methods to clinical trial
data: What can we learn about why our interventions (don’t) work?” In: European
journal of pain 21.4, pages 614–622. issn: 1090-3801.

Wilson, Dennis G. et al. (June 2018). “Evolving simple programs for playing Atari
games.” url: http://arxiv.org/abs/1806.05695.

Wiltschko, Alexander B. et al. (December 2015). “Mapping Sub-Second Structure in
Mouse Behavior.” In: Neuron 88.6, pages 1121–1135. issn: 0896-6273.

Xu, Danfei et al. (October 2017). “Neural Task Programming: Learning to Generalize
Across Hierarchical Tasks.” url: http://arxiv.org/abs/1710.01813.

Xu, Tian, Ziniu Li, and Yang Yu (2020). “Error bounds of imitating policies and
environments∗.” In: NeurIPS. url: https://proceedings.neurips.cc/paper/
2020/file/b5c01503041b70d41d80e3dbe31bbd8c-Paper.pdf.

Yin, Pengcheng and Graham Neubig (April 2017). “A Syntactic Neural Model for
General-Purpose Code Generation.” url: http://arxiv.org/abs/1704.01696.

Young, Halley, Osbert Bastani, and Mayur Naik (January 2019). “Learning Neu-
rosymbolic Generative Models via Program Synthesis.” url: http://arxiv.org/
abs/1901.08565.

Zaremba, Wojciech and Ilya Sutskever (May 2015). “Reinforcement Learning Neural
Turing Machines - Revised.” url: http://arxiv.org/abs/1505.00521.

Zhang, Byoung-Tak and Heinz Mühlenbein (1995). “Balancing accuracy and parsi-
mony in genetic programming.” In: Evolutionary computation 3.1, pages 17–38.
issn: 1063-6560.

Zhang, Shiqi and Mohan Sridharan (August 2020). “A Survey of Knowledge-based
Sequential Decision Making under Uncertainty.” url: http://arxiv.org/abs/
2008.08548.

Zuidberg Dos Martires, Pedro et al. (July 2020). “Symbolic Learning and Reasoning
With Noisy Data for Probabilistic Anchoring.” In: Frontiers in robotics and AI 7,
page 100. issn: 2296-9144.

http://arxiv.org/abs/1806.05695
http://arxiv.org/abs/1710.01813
https://proceedings.neurips.cc/paper/2020/file/b5c01503041b70d41d80e3dbe31bbd8c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/b5c01503041b70d41d80e3dbe31bbd8c-Paper.pdf
http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1901.08565
http://arxiv.org/abs/1901.08565
http://arxiv.org/abs/1505.00521
http://arxiv.org/abs/2008.08548
http://arxiv.org/abs/2008.08548

	Summary
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Reinforcement learning
	2.2 Program synthesis

	3 Approaches to program synthesis and structured reinforcement learning
	3.1 Programs and reinforcement learning
	3.2 Dimensions in program synthesis
	3.3 Genetic programming
	3.4 Machine learning
	3.5 Other relevant areas

	4 Paper 1: Programmatic policy extraction by local search
	4.1 Lambda calculus and types
	4.2 Local search
	4.3 Distributed search
	4.4 Discussion

	5 Paper 2: Reinforcement learning of causal variables
	5.1 Direct and indirect effects of policies
	5.2 Optimizing the indirect effect
	5.3 Discussion

	6 Discussion
	6.1 Perspective and future work

	A Draft of paper 1
	B Draft of paper 2
	Bibliography

