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Summary (English)

Large-scale models of ecosystems typically do not include explicit habitat choice.
This is in spite of adaptive habitat choice being known to have a powerful influ-
ence on ecosystems, with indirect effects often being stronger than direct effects.
The importance of behavior is particularly pronounced in the aquatic setting,
where population dynamics are determined by the diel vertical migration. There
is no general toolbox which a working ecologist can apply to add behavior to an
ecosystem model. The goal of this thesis is to develop game-theoretic methods
to address this shortcoming, and apply the tools to model aquatic ecosystems.
This thesis only considers unstructured populations, ignoring the import of on-
togeny.

Paper A develops a general method for implementing optimal habitat choice in
ecosystems of Lotka-Volterra type, both with continuous and discrete habitats.
We apply the method to a predator-prey system, modeling copepods and forage
fish in the water column. Paper B focuses on the ecosystem impact of optimal
behavior on a tri-trophic ecosystem with a refuge, and how behavior changes
the impact of bottom-up and top-down forcing. Finally, the paper investigates
the relationship between the Type II and Type III functional responses. Pa-
per C develops a general method to study optimal habitat choice in population
games. Paper D couples stochastic mean-field games to predator-prey popula-
tion dynamics, revealing the emergence of diel migration patterns as a result of
ecosystem productivity. Finally paper E is included to show the potential of the
methods, but is still a draft. Paper E studies the impact of optimal behavior
on a shelf ecosystem, which support the majority of the worlds fisheries.
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Summary (Danish)

Modeller af økosystemer inkluderer som oftest ikke habitatvalg. Dette er på
trods af at habitatvalg er en af de vigtigste effekter i økosystemer, hvor indirek-
te effekter af habitatvalg ofte er langt vigtigere end direkte interaktioner. Dette
er særligt udtalt i akvatiske økosystemer, hvor populationsdynamikken styres
af den daglige vertikale migration. Der findes p.t. ikke en generel værktøjskasse
som kan benyttes til at tilføje adfærd til en model af et økosystem. Målet med
denne afhandling er at afhjælpe denne mangel gennem udvikling af spilteoretiske
værktøjer, samt at benytte disse værktøjer til at undersøge simple økosystemer.
Bemærk at alle økosystemer i denne afhandling består af ustrukturede popula-
tioner, d.v.s effekten ontogeni er udeladt.

Artikel A udvikler en generel metode til at implementere habitatvalg i økosy-
stemer med Lotka-Volterra populationsdynamik. Metoden tillader både diskrete
og kontinuerte habitater. Artikel B fokuserer på effekten af optimal adfærd i et
tre-trofisk økosystem med et refugie. Artiklen fokuserer særligt på effekten af
optimal adfærd under henholdsvis øget topprædation og produktivitet. Desu-
den undersøger artiklen forholdet mellem funktionelle responser af Type II og
Type III givet optimal adfærd. Artikel C udvikler en generel metode til at stu-
dere optimal adfærd i populations-spil, samt bringer variationelle uligheder ind
i teoretisk økologi. Artikel D undersøger et rovdyr-byttedyr spil i en vandsøjle
henover et døgn, ved at koble middelfelts spil til populationsdynamik. Dette
viser hvorledes den vertikale migration kan forstås som et emergent fænomen
fra produktivitet. Endeligt er det blevet valgt at inkludere artikel E, skønt den
er en kladde. Dette er for at vise potentialet af metoderne fra artikel D. Artikel
E undersøger effekten af optimal adfærd på økosystemer på kontinentalsokler,
der understøtter størstedelen af verdens fiskeri.
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Part I

Summary Report





Chapter 1

Introduction

Behavior plays an inescapable role of shaping ecosystems (Stump and Chesson,
2017; Sih et al., 1985), famously illustrated by the return of wolves to Yosemite
National Park (Ripple and Beschta, 2004; Laundré et al., 2001). The reintro-
duction of wolves changed the behavior of elk as they began avoiding open areas,
leading to a resurgence of young trees. As such, creating models that incorpo-
rate both population changes and behavioral effects while also capturing their
interplay is of paramount importance for ecosystem modeling (Schmitz et al.,
2004). The goal of this thesis is two-fold in this regard; Firstly, to create general
frameworks for modeling population dynamics and behavior, second to study
concrete ecosystems using these approaches. In particular, the focus of this
thesis is to create models and methods to study aquatic ecosystems.

Though behavior is fundamental in describing ecosystem function, it is still not
standard to incorporate it in large-scale ecosystem models. The prime example
of a class of models describing large-scale ecosystems are models determining
fishing quotas (Kindt-Larsen et al., 2011). Having precise and correct mod-
els to determine fishing quotas is of paramount importance as large parts of
the worlds populations depend on food-sources from aquatic ecosystems (Tacon
and Metian, 2013). When modeling complex aquatic ecosystems behavior is not
implemented or implemented indirectly (Ho et al., 2019; van Denderen et al.,
2021; Kindt-Larsen et al., 2011). This is despite the fact that fish have rich and
varied behavioral patterns over a life-cycle, with their behavior depending on
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Figure 1.1: An echogram capturing the diel vertical migration, source: https:
//oceanexplorer.noaa.gov/explorations/17deepsearch/
background/water-column-research/media/fig2-hires.jpg

both the environment, their age and size (Schadegg and Herberholz, 2017; Biro
et al., 2005). A clear example of this is the diel-vertical migration which is the
largest animal migration in the world, taking place at sunset and sunrise every
day across the world, see Chapter 1. As such, the development of methods to
incorporate behavior in ecosystem, particularly aquatic, models is an important
problem, which leads to this thesis. The diel vertical migration rules the interac-
tion between fish of differing sizes, with most predator-prey interactions taking
place at dawn and dusk (Benoit-Bird and McManus, 2014). The diel vertical
migration is a prime example of one of the main behavioral trait in ecological
models, namely habitat choice. Understanding how and why animals are dis-
tributed as they are, is one of the key challenges in theoretical ecology (Morris,
2003; Fretwell, 1969). This can happen at many different resolutions, both in a
fully continuous space and time with explicit movement (Cantrell et al., 2021),
and at the level where a habitat is simply divided into two zones, a foraging
arena and a safe refuge. A wealth of models have been developed to study
the interplay between habitat choice and population dynamics, (Kondoh, 2003;
Lima and Dill, 1990; McNamara and Houston, 1992; Abrams, 2010; Werner and
Anholt, 1993; Abrams, 1984).

There are many ways to create models incorporating habitat choice based on
optimal decision making, one of the primary approaches is to model the interac-
tions as a game and see the emergent effects on the ecosystem, in particular on

https://oceanexplorer.noaa.gov/explorations/17deepsearch/background/water-column-research/media/fig2-hires.jpg
https://oceanexplorer.noaa.gov/explorations/17deepsearch/background/water-column-research/media/fig2-hires.jpg
https://oceanexplorer.noaa.gov/explorations/17deepsearch/background/water-column-research/media/fig2-hires.jpg
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the population levels. The basic rationale for modeling interactions as a game is
inspired by the idea of Darwinian fitness, where those animals with the highest
fitness will outcompete the others (Darwin, 1859). Hence the emergent behav-
ioral strategy of an individual can be expected to lead to fitness maximization.
When multiple animals maximize their fitness simultaneously, a game naturally
emerges. If we in addition consider a population dynamical equilibrium, then
it is reasonable to assume that animals have evolved to follow the strategy that
maximizes their fitness. The situation when the system is out of equilibrium is
more complicated, but we will come back to this later in the thesis. Modeling
behavior by instantaneous optimal habitat choice leads to the emergence of the
ideal free distribution, (Fretwell, 1969). The ideal free distribution has had a
huge theoretical influence and been validated empirically (Bolker et al., 2003).
When movement and population dynamical occur on the same time-scales the
situation is more complex, but an analogue of the ideal free distribution can
still arise (Cantrell et al., 2021). In this work we develop general tools to study
ecosystems with optimal behavior, modeled as optimal habitat choice. Con-
cretely, the contributions consist of the following works:

In print A general approach for studying Lotka-Volterra habitat selection games,
applied to predator-prey system consisting of copopods and forage fish
in the north sea. This paper also studies the impact of limited bounded
rationality on optimal behavior. The motivation behind this work was
expanding the work in (Thygesen and Patterson, 2018) to a multi-species
setting, and incorporating population dynamics.

Resubmitted An idealized predator-prey system of a forage fish and a predator fish,
where we study ecosystem impact of optimal behavior through mean-field
games. The inspiration for this workw was expanding the work in (Kiørboe
et al., 2018) to a multi-species setting, and considering the ecosystem
impact of optimal foraging.

Accepted A theoretical development of tools for studying mean-field habitat selec-
tion games with instantnaous behavior, applied to an ecosystem modeling
the interaction of forage fish and copepods in the arctic summer. The mo-
tivation behind this work was to expand the work done in Paper A to the
case of non-linear fitness proxies, and to find general criteria for proving
uniqueness of Nash equilibria.

Submitted A predator-prey system with a daily variation in light-levels, modeling
copepods and forage fish in the north sea. Using the formalism of tem-
porally extended mean-field games we study the emergent behavior and
population levels at the stable point of the populations. The motivation
behind this work was to couple the mean-field games of Lasry and Lions
(2007) with population dynamics.
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Draft A shelf ecosystem with varying benthic and phytoplankton productivity
on the diel vertical migration and population levels in a shelf ecosystem.
This paper is still in preparation, but we have chosen to include it due to
the results it presents and that it shows the feasibility of modeling complex
ecosystems. The motivation for this work was to show that the methods
developed in the thesis can be applied in real ecosystem models.

1.1 Thesis structure

The dissertation is structured as follows:

• In the first chaper we introduce the motivation and structure of the thesis,
and give a brief motivation for each work.

• In the second chapter we introduce the necessary analytical and game-
theoretical tools that are used in the papers, highlighting the relationships
between the various methods and the problems we face.

• In the third chapter we introduce the problems of modeling interacting
populations and their impact on ecosystems. This allows us to introduce
population games based on the game-theoretical foundation of the previous
chapter. We illustrate the importance of modeling population games as
mean-field games.

• In the fourth chapter we briefly summarize the papers that form the basis
of the dissertation, presenting the key results and highlighting the connec-
tions between the papers.

• In the fifth chapter we conclude on the work that was done in the presented
papers, and proposes future work building on the results we have shown.

Note that the bibliography only contains the works referenced in the main body
of the thesis. The bibliography of the individual papers can be found in the
attached papers.



Chapter 2

Game theory

We use game theory to study ecosystems with optimal behavior in this thesis.
The roots of game theory are ancient, with the first formal games documented
from the dawn of civilization, see Chapter 2. The human interest in games and
how to find the best strategies is one of the oldest documented findings (Katz,
2014).

The study of games has been a main driver in the original development of proba-
bility theory and statistics (Katz, 2014). The beginnings of informal probability
theory was based on studying games of chance (Cardano, 1961). As such, game-
theory and probability were originally two sides of the same coin. Further study
of expected payoffs in games led to the development of the expectation value
(Huygens, 1714), with game-theory and probability theory still intertwined. Fi-
nally the correspondence between Pascal and Fermat on games led to the devel-
opment of discrete probability theory as we know it (Ore, 1960) and the divorce
of game theory from probability.

This divorce led to the decline of interest in game theory as a subject in itself,
almost disappearing entirely with probability theory taking the center stage.
The importance of understanding markets and economic competition increased,
and thus game theory as a study in itself reappeared, (Cournot, 1897). This led
to the development of game-theory as a general tool for modeling economics,
(Von Neumann and Morgenstern, 1947). The paper Von Neumann and Mor-
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Figure 2.1: The oldest known game, The Royal Game of Ur.
Source:https://upload.wikimedia.org/wikipedia/commons/
1/1d/British_Museum_Royal_Game_of_Ur.jpg

genstern (1947) formalized game theory, showing its general applicability in eco-
nomic modeling and kickstarted the development of abstract game theory. The
next step in the development of game theory was to show that every individual
can maximize their utility simultaneously in a wide range of games (Nash Jr,
1950). The final step towards game-theory as a tool for studying ecosystem was
its application as a tool for explaining animal encounters and strategies (Smith
and Price, 1973). Before we can dig into the use of game theory in biology, we
review the game theoretic tools and results that we will use.

2.1 A brief introduction to game theory

An N player game consists of a shared strategy space S and the utility functions
Ui of the players. Each utility function depend both on the individual choices
and the choices of everyone else. Each player i seeks to find the strategy σi ∈ S
which maximize their utility Ui. A collection of strategies σNE

i where each player
maximizes their individual payoff simultaneously is a Nash equilibrium. At a
Nash equilibrium no player gains from deviating from their strategy. Formally,
a Nash equilibrium satisfies:

σNE
i = argmaxσi∈S Ui(σi, (σ

NE
j )Nj=1,j ̸=i), for all i (2.1)

If the strategy set S is finite, the Nash equilibrium does not necessarily ex-
ist. An example where this occurs is the game rock-paper-scissors. In rock-
paper-scissors any strategy can be defeated by the opponent: The key insight
in (Nash Jr, 1950) is to consider the expected payoff of a player, under the
assumption that a player chooses a strategy randomly based on a probability
distribution on the set of possible choices.

https://upload.wikimedia.org/wikipedia/commons/1/1d/British_Museum_Royal_Game_of_Ur.jpg
https://upload.wikimedia.org/wikipedia/commons/1/1d/British_Museum_Royal_Game_of_Ur.jpg
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Figure 2.2: Illustration of the game Rock-Paper-Scissors, source:
https://upload.wikimedia.org/wikipedia/commons/6/
67/Rock-paper-scissors.svg

By recasting the possible strategies as finding a probability distribution, we can
see that there is a Nash equilibrium in Section 2.1 given by playing each option
with probability 1/3.

This introduction of probability distributions leads to the distinction between
mixed and pure strategies. A pure strategy is when the probability distribution
is fully concentrated in a single point, whereas a mixed strategy assigns non-
zero probabilities to more than one outcome. The distinction can be visualized
by thinking in geometric terms. The set of probability measures on a finite
set of size n can be modeled as an n-simplex Sn, with point in the simplex
representing the support of a probability distribution Section 2.1. Changing to
a probabilistic and geometric perspective revealed that Nash equilibria exist in
a general class of games (Nash Jr, 1950).

Theorem 2.1 (Existence of Nash equilibria) Consider a game with
N players each with utilify functions Ui and shared strategy set given by the
n-simplex Sn. Then there exists a Nash equilibrium (σNE

i )Ni=1 satisfying Equa-
tion (2.1).

The theorem was rapidly generalized to the case of compact subsets of metric
spaces with continuous utility functions by Glicksberg (1952).

Theorem 2.2 Assume K is a compact subset of a metric space, define the

https://upload.wikimedia.org/wikipedia/commons/6/67/Rock-paper-scissors.svg
https://upload.wikimedia.org/wikipedia/commons/6/67/Rock-paper-scissors.svg
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Figure 2.3: Visualization of a simplex, with a zero simplex corresponding to
no viable strategies and an n-simplex corresponding to the set of
probability distributions over n distinct choices. Source: https:
//i.stack.imgur.com/O6xtg.png

strategy space S as the set of probability measures over K, S = P (K). Assume
that each player has a continuous utility function Ui. Then there exists a Nash
equilibrium (σNE

i )Ni=1 satisfying Equation (2.1).

These two theorems cover the existence of a Nash equilibrium in the case where
the strategy set is finite or compact. The theorems Lemma 2.2 and Lemma 2.1,
while forming the foundation of game-theory, are not applicable if the payoff
functions are not continuous or the strategy spaces are not compact. Another
caveat is that these theorems only guarantee existence of a Nash equilibrium,
but provide no clue as how to find it. The problem of finding a Nash equilib-
rium is highly non-trivial, in particular with a large amount of players (Savani
and Von Stengel, 2004). Ecosystems typically involve a large amount of ani-
mals interacting, and require a different approach that allow us to handle this.
This is where mean-field games, i.e. games where an individual plays the field,
come into play. The next subsections focus on introducing specific methods to
find Nash equilibria, and determine their existence and uniqueness in a general
setting. After this, we introduce mean-field games formally, demonstraing how
the methods developed for pairwise games can be used in a mean-field setting.

sults of importance, and state the generalization of the folk-theorem via. varia-
tional ienqualities as an additional motivation.

https://i.stack.imgur.com/O6xtg.png
https://i.stack.imgur.com/O6xtg.png
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2.2 Polymatrix games

Game theory was introduced simultaneously with the advent of linear program-
ming. The development of the two was naturally intertwined for a long while,
with a focus on games on simplexes and linear payoff structures. The general
structure of the games that were studied alongside the development of linear
programming are the polymatrix games:

Definition 2.3 Assume we have N players with strategies σi in an m-simplex
Sm. Assume all players interact pairwise, where the interaction between players
i and j can be described by an interaction matrix Aij . The payoff of player i is:

U(σi, (σj)
N
j=1) =

N∑

j=1,j ̸=i

⟨σi, Aijσj⟩ (2.2)

The system (Aij)
m
i,j=1 defines a polymatrix game.

The Nash equilibria of a polymatrix game can be found by interpreting the game
as a linear complementarity problem (Lemke, 1970).

Definition 2.4 (Linear Complementarity Problem) Given an m×
m matrix M and a vector q ∈ Rm the linear complementarity is the problem of
finding entry-wise positive vectors w and z such that:

Mz + q = w

⟨z, w⟩ ≥ 0
(2.3)

The linear complementarity problem originated at the same time as quadratic
programming, which is a special case of the linear complementarity problem.
The linear complementarity has the benefit that when the real matrix M induces
a strictly positive inner product, Lemkes algorithm is guaranteed to terminate
and find a solution to the complementarity problem (Lemke, 1970).

The application of linear complementarity problems to polymatrix games was
based on iteratively solving a sequence of linear complementarity problems
(Eaves, 1973; Rosenmüller, 1971). By shifting all the matrices (Aij) so all pay-
offs are strictly negative, it is possible to solve a polymatrix game as a single
linear complementarity problem (Miller and Zucker, 1991).

Theorem 2.5 Assume we have a polymatrix game with N players and m
strategies and interactions defined by matrices Aij. Define the 1×m matrix E
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consisting of a row of ones. Define the ((N) ·m)× ((N) ·m) matrix R as

R =




0 A21 . . . AN1

A12 . . . AN−12 AN2

...
...

...
...

A1N A1(N−1) . . . 0


 (2.4)

Then define H = R −max(R)− ε. We can then define the final matrix M for
the linear complementarity problem:

M =

[
−H ET

E 0

]
(2.5)

with the vector q = (0, . . . , 0,−1, · · ·−1)T where there are N instances of −1. A
Nash equilibrium can now be found by applying Lemkes algorithm to the problem
specified by (M, q)

The result of Lemma 2.5 is the principal ingredient in Paper A, but as we con-
sider interacting populations the result has to be modified slightly. Specifically,
we had to handle non-zero self-interactions to incorporate density dependence.
Exactly how this is done will be covered in the section on mean-field games
Section 2.4. Though the Nash equilibrium is guaranteed to exist and can be
found through Lemkes algorithm, it does not tell us anything about the number
of equilibria. Even a simple game can have multiple Nash equilibria

Example 2.1 Consider a two-player matrix game with payoff matrices:

A12 =

[
3 1
2 2

]

A21 =

[
3 2
1 2

] (2.6)

This game has two Nash equilibria: (3,3) and (2,2). That these two are Nash
equilibria is readily verified, but the question is how do assure ourselves there
are no others? If player 1 plays the strategy (λ, 1 − λ), the payoff of player 2
playing strategy (1, 0) is 3λ+ (1− λ) = 1 + 2λ. The payoff for playing strategy
(0, 1) is 2λ+2(1−λ) = 2. Hence the best strategy is to play (1, 0) when λ > 1/2,
and (0, 1) otherwise, and a mixed strategyis never a best response. Likewise for
player 1.

Example 2.1 illustrates why uniqueness is a desirable trait for a Nash equil-
brium. One thing is enumerating Nash equilibria, another is checking whether
the enumeration is exhaustive, and comparing the payoffs. Uniqueness of Nash
equilibria in polymatrix games can be resolved in part by the theory of P -
matrices . A P-matrix is defined as:
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Definition 2.6 An m ×m matrix is a P -matrix if every principal minor is
positive.

This allows us to state a uniqueness result for Nash equilibria of polymatrix
games (Cottle and Stone, 1983):

Theorem 2.7 If every principal minor of the matrix R defined by a poly-
matrix game is a P -matrix, then there is a unique solution to the polymatrix
game.

This is an abstract result, and uniqueness can also be obtained by analyzing a
specific game as in (Thygesen and Patterson, 2018).

2.3 Non-linear games

If the payoff functions Ui are non-linear as a function of the player strategies, we
need a different methodology than that which we have just presented. Consider
a function f : Rn → R with derivative T . At a minimum x∗ the function T
satisfies:

⟨T (x∗), y − x∗⟩ ≥ 0, for all y ̸= x∗ (2.7)

As an example, we can consider the scalar function

Umon(σ) =
−10σ)

(1 + 10σ)
+

3

10
log(1 + 10σ) (2.8)

Plotting the function and its derivative dσU in Section 2.3, it becomes clear that
the function is not convex but the minimum is unique. The inequality Equa-
tion (2.7) motivates the introduction of variational inequalities, which generalize
Equation (2.7).

Definition 2.8 Let K be a convex subset of a real Hilbert space H, and T
be a mapping T : K → H. The variational inequality defined by T over K is
denoted V I(T,K) and consists of finding an x such that

⟨T (x), y − x⟩ ≥ 0, for all y ∈ K (2.9)

Variational inequalities find broad applications in optimization, and have a rich
and developed theory (Hadjisavvas et al., 2006). With Equation (2.7) in mind
and using Lemma 2.8 we can recast the problem of finding a Nash equilibrium
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Figure 2.4: A non-convex differentiable function with a unique minimum at
the stationary point

as a variational inequality. This allows us to bring the tools of variational
inequalities to bear. Consider an N -player game with payoff functions Ui and
convex strategy space K. A Nash equilibrium of the game (σNE

i )Ni=1 solves the
system of variational inequalities:

〈
−∇σiUi(σ

NE
i , (σj)

N
j=1,j ̸=i), σ

′
i − σNE

i

〉
≥ 0 ∀i, σ′

i ̸= σNE
i (2.10)

The advantage of variational inequalities is that the system Equation (2.10) can
be recast into a single variational ineqaulity, which we can try to solve. Define
the total operator dU = (∇σi

Ui)
N
i=1, a Nash equilibrium can be found by solving

the variational inequality over KN and HN defined by −dU :
〈
−dU((σNE

i )Ni=1), (σ
′
i − σNE

i )Ni=1

〉
≥ 0, ∀(σ′

i)
N
i=1 ̸= (σNE

i )Ni=1 (2.11)

If K is compact, a Nash equilibrium exists by the theorems of Glicksberg and
Nash Lemma 2.1, Lemma 2.2. Variational inequalities allow us to answer the
question of existence in a more general setting (Maugeri and Raciti, 2009).

Theorem 2.9 (Existence of Nash equilibria) The variational in-
equality ⟨−dU(σ), σ′ − σ⟩ has a solution σNE over KN if there exists a point
y0 ∈ KN such that

{σ′ ∈ K : ⟨−dU(σ′), σ′ − y0⟩ < 0} (2.12)

is bounded.
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When we consider an optimization problem, it is preferable the optimal value
is unique so any optimization method will give the same result. Uniqueness is
particularly important for Nash equilibria, as the payoffs in one Nash equilib-
rium can strictly dominate the payoffs at another Nash equilibrium Example 2.1.
Typically, we are only interested in the maximal combination of values. Con-
vex functions have unique minima, and are characterized by having monotone
derivatives. This can be generalized by variational inqeualities.

Definition 2.10 A variational inequality V I(T,K) is strictly pseudomono-
tone if

⟨T (x), y − x⟩ ≥ 0 ⇒ ⟨T (y), y − x⟩ > 0 (2.13)

A strictly pseudomonotone variational inequality has at most one solution.

For a proof, see Hadjisavvas et al. (2006).

That strict pseudomonotonicity generalizes monotonicity is illustrated in Sec-
tion 2.3, as the function Umon has a unique minimum, but its derivative is not
strictly increasing.

Theorem 2.11 (Uniqueness of Nash equilibria) The Nash equilib-
rium of a game defined with the variational inequality ⟨−dU(x), y − x⟩ ≥ 0, ∀y ̸=
x is unique if −dU is strictly pseudomonotone.

For polymatrix games, we could find the Nash equilibrium by using Lemkes algo-
rithm after rephrasing them as linear complementarity problems. By rephrasing
Nash equilibria as variational inequalities, we open up a new set of tools. One
of them is to rephrase the variational inequality in terms of a non-linear com-
plementarity problem and solve that. This is the method we used in articles
B and C. Another method is to apply projection-based methods (Solodov and
Svaiter, 1999). We did not explore the potential of this method in our work, as
there are appears to be a lack of a standard robust implementation.

2.4 Mean-field games

When the number of players in a game grows, the problem of finding Nash
equilibria increases exponentially (Savani and Von Stengel, 2004). The theory
of mean-field games was invented to handle this situation. Assuming we have
multiple types of players the population of each type is very large and the
utility of an individual depends on the average strategy of the other players,
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Figure 2.5: A school of fish coordinating their movement by individual ac-
tions, a situation which can be modeled by a mean-field game.
Source: Christian Holland, https://www.flickr.com/photos/
christianholland/

then the game can be modeled as a one-shot mean-field game (Aumann, 1964;
Carmona, 2004). In the ecological literature, one-shot mean-field games are
typically referred to as "playing the field". The prototypical phenomenon to
model as a mean-field game is flocking, where large amounts of individuals seem
to coordinate their behavior without any central planning as in a school of fish
Section 2.4. In a mean-field game the utility functions Ui of an individual are
functions of both the strategy of an individual σi and the average population
strategies σj , so Ui(σi, (σj)

N
j=1). The theory of whether and in what sense a

mean-field game represents the limit of an N -player is expansive. We have
not gone into details concerning this. An introducton to the theory of which
limits tend to mean-field games may be found in Lacker (2020); Lasry and Lions
(2007); Carmona and Lacker (2015).

At the Nash equilibrium no individual in a mean-field game gains from diverging

https://www.flickr.com/photos/christianholland/
https://www.flickr.com/photos/christianholland/
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from their strategy. As all players in each group are assumed identical, the payoff
of all individuals must be identical. The payoff for an individual is the same
as the payoff from following the population mean strategy. For this reason, the
Nash equilibrium of a mean-field game must be a solution to the fixed-point
problem

σi = argmaxσi∈K Ui(σi, (σj)
N
j=1) (2.14)

With Equation (2.14) in hand, we can expand the usefulness of polymatrix
games to games with density dependent effects.

Theorem 2.12 Assume we have N interacting populations with the interac-
tion of an individual of type i with population j specified by a matrix Aij. Then
the Nash equilibrium of the game can be found by solving the linear complemen-
tarity problem specified as: Define the 1 × m matrix E consisting of a row of
ones. Define the ((N) ·m)× ((N) ·m) matrix R as

R =




1
2A11 A21 . . . AN1

A12 . . . AN−12 AN2

...
...

...
...

A1N A1(N−1) . . . 1
2ANN


 (2.15)

Defining H = R −max(R)− ε we can define the final matrix M for the linear
complementarity problem:

M =

[
−H ET

E 0

]
(2.16)

with the vector q = (0, . . . , 0,−1, · · · − 1)T where there are N instances of −1.
A Nash equilibrium can be found by applying Lemke’s algorithm to the problem
specified by (M, q)

For a proof of this, see Appendix A in paper A. If we consider the more general
case, with N interacting populations and general non-linear utility functions the
criterion for a Nash equilibrium in terms of variational inequalities is given by
the system of variational inequalities

〈
−∇σiUi |σi=σi ((σ

NE
j )Nj=1), σ

′
i − σNE

i

〉
≥ 0 for all σ′

i ∈ K (2.17)

Using the shorthand dUi for ∇σi
Ui |σi=σi

, we can define the operator dU =
(dU1, . . . , dUN ). Finding a Nash equilibrium of a mean-field game is equivalent
to solving a variational inequality.

Theorem 2.13 The Nash equilibrium of the N -player mean-field game with
payoff functions Ui(σi, (σj)

N
j=1) and strategy space K ⊂ H can be found by

solving the variational inequality:
〈
−dU((σNE

j )Nj=1, ((σ
′
j)

N
j=1 − ((σNE

j )Nj=1

〉
≥ 0 for all (σ′

j)
N
j=1 ̸= (σNE

j )Nj=1

(2.18)
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We apply this result for the first time in Paper B expanding on the result in
Paper C.

2.5 General ways of finding Nash equilibria

Though we have theoretical tools establishing the existence of Nash equilbria,
actually calculating them can be very hard. There are two general avenues
of approach to this problem. The first is direct solution, where a system of
equations is posed and then solved. The other is rephrasing the problem as a
dynamical system, where the dynamical system is guaranteed to converge to
the Nash equilibrium. If we start with the direct methods, we can formulate
the Nash equilibrium as a linear or non-linear complementarity problem. This
complementarity problem can then be solved, either by dedicated tools such
as SICONOS Acary et al. (2019) or by posing it as a feasibility problem for a
general purpose optimization algorithm. If we instead consider the variational
inequality, the most popular direct approach is using extra-gradient type algo-
rithms. These have not been explored in this work, but would potentially be
useful in future work with large-scale systems. We did not explore these algo-
rithms as robust and fast implementations are not readily available, in contrast
to the situation for complementarity problems.

The replicator equation is the most well-known approach to finding Nash equilib-
ria in evolutionary games, due to its direct biological interpretation as describing
the population dynamics of a collection of phenotypes, e.g. the distribution of
populations on a finite set of patches. If we describe the mean fitness by E(F (x))
and the fitness at a point i by F (xi), the equation is:

ẋi = xi(F (xi)− E(F (x)) (2.19)

The replicator equation essentially assures that the areas with positive fitness
increase and the areas with negative fitness decrease in relative population, ac-
cording to the game dynamics. The Folk Theorem (Broom and Rychtár, 2013)
in evolutionary game-theory describes the strength of this approach, saying that
every Nash equilibrium is a stable state of the replicator equation, and that the
replicator equation is stable if F is monotone (Sandholm, 2010). The replica-
tor equation is intrinsically linked to variational inequalities, with regularity of
the variational inequality giving stability of the replicator equation (Migot and
Cojocaru, 2021, Theorem 6)

Theorem 2.14 Assume that F is strictly pseudomonotone, and x∗ is a Nash
equilibrium. Then x∗ is globally asymptotically stable for the replicator equation.
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Hence the Folk Theorem has a much wider validitity than is usually assumed,
as the stability holds not only for monotone F but pseudomonotone F .

2.6 Temporally extended games

By assuming the payoff functions for the individual players are given by integrals
over a time-interval constrained by some differential equation, we enter the realm
of differential games. Differential games are riddled with technical assumptions
and formal constructions, for this reason we state the theorems in this section
in a condensed manner neglecting all considerations of domains of definition,
well-posedness and regularity. Stating the theorems in their full generality and
with full precision would bring us too far afield. Instead, we refer to where the
theorems can be found formulated with full mathematical precision. We start
by considering the case of a single player with strategy v in the feasible space
K, i.e. the pure optimization problem:

max
v∈K

∫ T

0

J(x, v)dt

ẋ = f(x, t, , v)

(2.20)

The optimal value V , i.e. the maximal value, and control strategy v for a func-
tional constrained by a dynamical system in Equation (2.20) can be determined
by the Hamilton-Jacobi-Bellman (HJB) equation, see Equation (2.21).

−∂V

∂t
= sup

v∈K

(
∂V

∂x
f(x, v, t) + J(x, v, t)

)
(2.21)

Theorem 2.15 (Hamilton-Jacobi-Bellman) Given a finite-horizon
control problem Equation (2.20) without a terminal reward, the optimal value
and strategy can be determined by solving Equation (2.21).

For a precise version of Lemma 2.15, see (Carmona, 2016). As most motion is
not purely deterministic but involves some randomness, it is suitable to instead
consider dynamics described by stochastic differential equations. The simplest
situation is a deterministic system with a constant noise, leading to the Itô
differential equation:

dXt = f(u,Xt, t)dt+ σdBt (2.22)

For a discussion of well-posedness and existence of the Itô equation see (Car-
mona, 2016). The paths of individual fish in the diel vertical migration Chapter 1
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Figure 2.6: Sample paths from an Itô stochastic differential equation with
f(u, x) = ux, where u = sin(t) and σ = 1, plotted along with
solutions of the deterministic differential equation.

with the night in the middle of the time interval can be modeled using a stochas-
tic differential equation: The trajectories in Section 2.6 look like plausible paths
in a vertical migration, but this mechanistic model has the weakness that it
has no dependence on predator numbers. It is well-documented that the diel
vertical migration is dependent on the risk of predation and the resource levels
(Solberg and Kaartvedt, 2017), so a model of the diel vertical migration should
incorporate this. This is where modeling the diel vertical migration as a game
comes in, as a game-theoretical model allows for an emergent migration based
on the a risk-reward trade-off. Optimizing when the dynamics are given by a
stochastic differential instead of a deterministic one forces a change in perspec-
tive, namely to optimizing the expected value. The optimal strategy is then the
one that maximizes the expected value, this can also be determined by using a
version of the HJB equation:

Theorem 2.16 (Verification) Assume the dynamics of a stochastic pro-
cess can be described by the stochastic differential equation Equation (2.22). A
strategy u and value function V with terminal condition V (xT ) which satisfy

−∂V

∂t
= sup

ui∈K

(
∂V

∂x
f(u, x, t) + J(x, u, t) +

1

2
σ
∂2V

∂x2

)
(2.23)

maximize the functional

E

(∫ T

0

J(Xt, u, t)dt

)
(2.24)

For a precise statement of Lemma 2.16 see (Carmona, 2016) The setup for a
differential game can now be defined. We have multiple players, each with
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dynamics described either by an SDE or ODE and each player seeks to optimize
a functional or the expected value of a functional.

Theorem 2.17 Given N players with dynamics given by Equation (2.22) and
each with value functions Ui = E(

∫ T

0
Ji((X

i
t)

N
i=1, (ui)

N
i=1, t)dt), a Nash equilib-

rium is given by a simultanenous solution to the HJB equations for all players.
Hence a solution can be found by solving the system:

−∂Vi

∂t
= sup

ui∈K

(
∂Vi

∂xi
fi((ui)

N
i=1, (xi)

N
i=1, t) + Ji(x, (ui)

N
i=1, t) +

1

2
σi

∂2Vi

∂x2
i

)

(2.25)
with terminal conditions Vi(T )(x) = Di(x)

For a precise statement of Lemma 2.17 see (Carmona, 2016).

As we can see, solving a differential game with N players amounts to solving N
coupled HJB equations.

2.6.1 Lasry-Lions Mean-Field Games

If we assume that the populations are very large, then the system in Lemma 2.17
becomes intractable. Instead, we are drawn again to the framework of mean-field
games. If we assume that the populations we consider consist of infinitely many
individuals, and that the movement of each individual can be described by a
stochastic differential equation as in Equation (2.22), we can use the mean-field
game framework introduced in Lasry and Lions (2007).

In this framework, each individual uses the optimal strategy as described by the
HJB equation, where we optimize at every instant with respect to the popula-
tion distribution. At the Nash equilibrium, however, no individual gains from
diverging from the population mean strategy. Hence the evolution of the pop-
ulation distribution can be described by the Fokker-Planck equation from the
SDE’s of the individuals. Mean-field games in the sense of Lasry and Lions
(2007) result in the distribution of the population being described by a forward-
backward pair of partial differential equations. The forward equation captures
the dynamics of the distribution, and the backwards equation stems from the
individual optimization. Our interest lies in the periodic migration of animals
in the water column, hence we are interested in these equations with periodic
boundary conditions.

To solve the mean-field game for N populations then entails solving N coupled
HJB equations and N Fokkker-Planck equations.
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Figure 2.7: Sample paths from the mean-field game game solved in paper D,
with a consumer and a predator both at population equilibrium.

Theorem 2.18 Given N populations each distributed according to φi at time
t, an individual of population i has dynamics governed by Equation (2.22) and
utility function

Ui = E

(∫ T

0

J(Xt, ui, (φi)
N
i=1, t)dt

)
(2.26)

then the Nash equilibrium of the mean-field game is given by the solution to the
system of equation pairs:

−∂Vi

∂t
= sup

ui∈K

(
∂Vi

∂xi
fi(ui, (φj)

N
j=1, (xj)

N
j=1, t) + Ji(x, (ui)

N
i=1, t) +

1

2
σi

∂2Vi

∂x2
i

)

∂φi

∂t
= −∂uiφi

∂x
+

1

2
σ
∂2φi

∂x2
i

(2.27)

with terminal conditions Vi(T )(x) = Di(x).

The important aspect of Lemma 2.18 is that the individuals act given the state
of the population, but the state of the population evolves according to the action
of all individuals and these two phenonema are in equilibrium. For a precise
statement of Lemma 2.18 see (Carmona, 2016).

We develop a method to solve mean-field games in Paper D, applying it to the
diel vertical migration. The sample paths based on the work in Paper D can
be seen in Section 2.6.1. Remark that these paths are quite similar to those
in Section 2.6, but arise organically as a result of a mean-field game. This
illustrates that mean-field games can provide emergent behavioral models to
replace mechanistic behavioral models of the diel vertical migration.



Chapter 3

Behavior and ecosystems

In order to understand ecosystems it is instructive to study their response to
forcing of either basal resources or mortality (Hairston et al., 1960). The re-
sponse of a trophic chain to bottom-up forcing led to the classical ecosystem
enrichment hypothesis (Oksanen et al., 1981; Hairston et al., 1960). The ecosys-
tem enrichment hypothesis predicts a population response at every second level
in a food chain (Murdoch et al., 2003). The models underlying the ecosystem
enrichment hypothesis, however, do not incorporate that animals have dynamic
habitat choice. In nature, animals move away from productive zones where
the threat of predation is too high instead preferring less productive safe zones
Schmitz et al. (2004). Modifying the models of population dynamics to include
behavior leads to trophic cascades from indirect effects which dominate the im-
portance of direct effects (Peckarsky et al., 2008; Heath et al., 2014; Wollrab
and Diehl, 2015; Abrams and Vos, 2003), and the collapse of the ecosystem
enrichment hypothesis (Gonçalves et al., 2014).

Constructing models that can predict where animals forage and population dy-
namics is a major goal in theoretical biology (Abrams, 2010; Morris, 2003).
There are various ways to include habitat-choice dynamics in ecosystem models,
Chapter 3. The simplest way to include the importance of behavior in ecosys-
tems is changing the definitions of the functional responses governing the in-
teractions to include density dependence (Arditi and Ginzburg, 1989; Přibylová
and Berec, 2015; DeAngelis et al., 1975). Another way is to let each individ-
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Figure 3.1: Illustration of the choices involved in habitat selection for a hyena
on the savanna, source: (Périquet, 2014)

ual move in the direction of higher fitness (Abrams, 2007, 2009; Avgar et al.,
2020). Finally, behavior can be modeled by assuming that each animal forages
optimally at each instant (Křivan, 2007; Kiørboe et al., 2018; Křivan et al.,
2008; Thygesen and Patterson, 2018). As soon as multiple animals are present
this approach leads to a game where every animal seeks to optimize its fitness.
This is the approach to model ecosystems with optimal habitat choice we have
followed in papers A, B and C.

Games have been applied to model behavior almost since the advent of game
theory (Smith, 1982), but the general coupling to population dynamics has
not followed suit. Game theory quickly found applications in biology. Matrix
games are used to model mating and aggressiveness (Smith, 1974; Smith and
Price, 1973) and other behavioral patterns with competition (Smith and Price,
1973; Broom and Rychtár, 2013). The next step, which is where the work in
this thesis takes off, is games being applied in the context of habitat selection.
A theoretical explanation was desired to explain e.g. why all animals do not
clump at the most productive spot in a habitat. This led to the development
of the ideal free distribution (Fretwell, 1969). The ideal free distribution clasi-
cally emerged to describe the distribution of a population where all individuals
practice instantanous optimal foraging, where there is no cooperation. It was
formulated theoretically, but has been found empirically in a wide range of set-
tings (Williams et al., 2013). The original defining characteristic of the ideal
free distribution is that each individual seeks the spot that optimizes their in-
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dividual fitness, so the ideal free distribution is naturally coupled to population
dynamics.

Though the ideal free distribution assumes instantaneous movement, in reality
animals move based on potentially limited information about their environment.
The ideal free distribution is, however, still an essential tool as the migration
strategies which are stable are generally those which lead to the ideal free distri-
bution at population equilibrium (Cantrell et al., 2010, 2021; Stephen Cantrell
et al., 2007; Cressman and Křivan, 2010). Likewise, when the migration dy-
namics and the population dynamics are on decoupled time-scales the ideal free
distribution also emerges as an evolutionarily stable strategy (Cantrell et al.,
2020; Cressman and Křivan, 2006), hence following the optimal strategy ev-
ery instant is a reasonable approximation (Cressman and Křivan, 2006; Křivan,
2007; Ma et al., 2003).

When considering interacting populations, there are basically three time-scales
to consider. A slow evolutionary time-scale, in which small changes happen
across generations, a medium population-dynamical describing changes in ex-
isting populations, and a fast behavioral time-scale where the changes in pop-
ulations are small. The evolutionary time-scale is clearly separated from the
other two, while the population-dynamical and the behavioral time-scale can be
intertwined (Abrams, 2007). A full ecosystem model would incorporate all three
time-scales explicitly, but constructing such a model is non-trivial due to the
curse of dimensionality. As population dynamics and behavior are the two levels
which are closest in time-scales and influence each other directly (Abrams, 2010)
models with a time-scale of years or months considering this interaction is the
norm (Gonçalves et al., 2014; Valdovinos et al., 2010). If there is a full time-scale
separation, then behavior, usually movement, can be modeled as instantaneous
(Cressman and Křivan, 2006; Křivan, 2013) in a full dynamical model. Instan-
taneous optimal behavior typically serves to stabilize the population dynamics
(Valdovinos et al., 2010).

If we consider the behavior describing habitat choice at a population equilibrium,
the situation is more complicated. In this setting, the evolutionary, population-
dynamical and behavioral time-scales all interact. If there is no temporal vari-
ation in the environment then the evolutionarily stable dispersal strategies are
those which lead to a habitat dispersal where each animal has optimal fitness
(Cantrell et al., 2010, 2012; Cressman and Křivan, 2010; Křivan et al., 2008). As
such, the resultant distribution from distribution and instantaneous optimiza-
tion are indistinguishable at an evolutionary and population equilibrium. This,
however, is predicated on such a stable state existing, which is not always the
case under certain behavioral dynamics (Abrams and Roth, 1994b). The case
where behavior is either instantaneous or we assume we are at an equilibrium
is what we considered in paper A, B, and C. If the environment is temporally
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varying, such as is the case for the daily cycle in the ocean, the optimal strategy
at equilibrium is no longer the ideal free distribution and movement needs to be
incorporated directly (Cantrell et al., 2021). Studying this requires an entirely
different toolset, and is the focus of papers D and E.

3.1 Population games

The main topic studied in this thesis is the interaction between different pop-
ulations, and how their behavior affects population dynamics. The strategies
that are safe against invasion are those in which an individual seeks to optimize
their fitness, so the definition of a population game should reflect this. This
leads back to the definition of a population game where the behavior is that
which maximizes the individual per capita growth-rate (Křivan, 2013; Vincent
and Brown, 2005; Cressman and Křivan, 2010). An individual in a popula-
tion game maximizes their own fitness at each instant taking the mean strategy
of the population into account, which then modifies the emergent population
dynamics (Cressman and Křivan, 2010). A population game can also be de-
fined when movement and migration are not on decoupled time-scales (Cantrell
et al., 2021). Our definition of a population game needs to be broad enough
to capture population games where each actor has optimal behavior, and the
movement movement can either be instantaneous or explicit. Using the machin-
ery introduced in Chapter 2, we can give a precise definition of a population
game, generalizing the definition given in Paper C.

Definition 3.1 Assume there are N interacting populations with average
strategies σi and each individual has a strategy s, Each individual has fitness
Ui(s, (σj)

N
j=1, (Nj)

M
j=1), where Ui is a functional. Further assume the population

dynamics are of Kolmogorov-type:

Ṅi = NiUi(s
NE
i , (σNE

j )Nj=1, (Nj)
M
j=1) (3.1)

A population game is when all individuals seek to maximize their fitness Ui with
respect to si, leading to a mean-field Nash equilibrium (UNE

i )Ni=1. A population
game equilibrium is a simultaneous population and Nash equilibrium.

The study of population games with instantaneous movement is the main focus
of the first three papers, with Paper A developing a general method for Lotka-
Volterra style games and Paper C generalizing to arbitrary payoff functions.
The study in Paper B illustrates the changes in an ecosystem from introducing
a population game compared to the case with static behavior. The ideal free



3.2 Mean-field and monomorphic games 27

distribution in the single-species case has the attribute that a population follow-
ing this strategy cannot be invaded, but the situation is more complicated in the
multi-species case. The multi-species version of the ideal free distribution should
also be invasion proof, and best-response dynamics should converge to the ideal
free distribution (Křivan et al., 2008). We were able to define a multi-species
version of the ideal free distribution in Section 4.3, based on (Cressman et al.,
2001) and the idea of using variational inequalities to formulate evolutionary
stability (Migot and Cojocaru, 2021).

Definition 3.2 A Nash equilibirum of a population game with total operator
−dU = (−dUi)

N
i=1 is an ideal free distribution if at least one component −dUi

is strictly pseudomonotone at the Nash equilibrium.

Apart from population-games with instantaneous behavior, we also studied pop-
ulation games with optimal behavior with explicit movement. In this context,
we only studied population game equilibria. As we studied populations where
diffusion was part of their movement, they do not exactly follow a simple ideal
free distribution at equilibrium. The impact of this on population dynamics was
investigated in Section 4.1, where we found that a low level of randomness in the
location of an individual did not change the population dynamics to a noticeable
degree compared to when they exactly followed an ideal free distribution.

3.2 Mean-field and monomorphic games

The common assumption throughout the mean-field games studied in this the-
sis is that the key decisions are taken by individuals, acting on the basis of the
average behavior of the population. That is, we assume multiple different pop-
ulations where individuals play the field (Broom and Rychtář, 2014) and have
different, i.e. polymorphic, behavior. The underlying assumption here is that
individuals of the same type do not cooperate, but rather compete. If instead
all individuals have the same behavior and optimize it based on this knowledge,
cooperation naturally emerges. This is the situation when the populations are
monomorphic.

So far the optimal strategy of an individual is determined from the mean strat-
egy of the population. This is what allows us to study non-linear population
games with individual optimization. An alternative is to assume monomorphic
populations when studying non-linear population games. In a monomorphic
game, all individuals in a population a-priori act as one.

The assumption of monomorphic behavior is usually introduced as a simplifying
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assumption in non-linear models (Genkai-Kato, 2007). Incorporating coopera-
tion in models based on fitness optimization increases fitness and causes a diver-
gence from the ideal free distribution (Abrams and Roth, 1994a; Křivan et al.,
2008). In both nature and human society, cooperation is commonly observed,
and explaining the emergence with a game-theoretical model despite the in-built
individual tendencies of Darwinian fitness is non-trivial.

Several key explanatory factors tie directly into the models we consider in this
thesis. The first is that anti-social individual choice is no longer beneficial if
negative density dependence results over a longer time-horizon (Axelrod and
Hamilton, 1981). Another way for cooperation in the sense of monomorphic
behavior to emerge is by optimal individual behavior over a life-time taking the
structure of populations into account (Akçay and Cleve, 2012) . In this thesis,
however, we have only considered unstructured populations. Hence the model
of assuming polymorphic non-cooperating populations is reasonable.

A final approach to incorporating cooperation, while keeping a polymorphic ap-
proach, is to introduce a positive location-specific density dependence. Such ef-
fects lead to the evolution of pro-social behavior (Kimmel et al., 2019). As such,
a sufficiently concentrated population with sufficiently large positive density ef-
fects can be modeled reasonably as monomorphic. This case is not explored in
the thesis.

As noted, in the thesis we have studied non-linear population games based
on the assumption of polymorphic populations, rather than the monomorphic
case. During the research underlying the thesis we invested considerable effort
in investigating the difference between population games with monomorphic
and polymorphic populations. This allowed us to set up a correspondence be-
tween a polymorphic population and a corresponding monomorphic game, which
can be used to directly compare a mean-field game and the same game with a
monomorphic population. The key is that the Nash equilibria of a mean-field
game can often be recovered as the Nash equilibria of a game with monomorphic
populations. Comparing the monomorphic game which leads to the mean-field
game with the naive monomorphic game can lead to insights as to the impact
of assuming a monomorphic population in a given setting is.

Definition 3.3 Consider a mean-field game with populations N1, . . . , NM

with individual payoffs Ui(σi, (Njσj)
M
j=1). Assume ∇σi

Ui |σi=σi
admits a prim-

itive Umon
i such that ∇σiUi |σi=σi= ∇σiU

mon
i . We define the monomorphic

equivalent game as the game with monomorphic populations specified by the
payoff functions Umon

i .

We illustrate the importance of whether a population is assumed to cooperate
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or have individual behavior with an example.

The relationship between monomorphic and polymorphic games is clearest in the
case of matrix games. Consider a population of size N in a two-patch ecosystem.
Assume that the productivity of patch i is b(i) = 2i, and that the population
has a negative density dependence. This could e.g. reflect competition. The
intraspecific competition is described by the matrix

A =

[
−2 0
0 −4

]
(3.2)

In a mean-field game, the payoff for an individual is U(σ,Nσ).

U(σ,Nσ) = N ⟨σ,Aσ⟩+ ⟨σ, b⟩ (3.3)

This defines a mean-field game, where the Nash equilibrium can be determined
by solving a Linear Complementarity Problem by Lemma 2.12. This theorem,
however, also has a second interpreation in light of Lemma 3.3. We can see that
the game defined by Equation (3.3) is equivalent to the monomorphic game

U(σ,Nσ)mon =
N

2
⟨σ,Aσ⟩+ ⟨σ, b⟩ (3.4)

To find the Nash equilibria of this game we need to solve simple optimization
problem, and the Nash equilibrium σN is readily found

σN =

(
(N−1)
3N

1− (N−1)
3N

)
, N > 1

σN =

(
0
1

)
, N ≤ 1

(3.5)

If we consider the naive monomorphic game, the optimal strategy is

σN =

(
(2N−1)

6N

1− (2N−1)
6N

)
, N >

1

2

σN =

(
0
1

)
, N ≤ 1

2

(3.6)

Comparing Equation (3.5) and Equation (3.6), we see a difference in the Nash
equilibria when N > 1

2 . In this case, the population is much more spread out in
the monomorphic game, as they coordinate to avoid one another. Meanwhile the
population is much more concentrated in the mean-field game as each individual
would prefer patch 2. As the populations grow to infinity, the difference between
the two equilibria become more and more pronounced.
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Consider a habitat-choice game where a consumer in a population of size N with
a growth rate given by a Type II functional response. The consumer can either
stay in a refuge or go into a foraging arena. In the foraging arena there is a
population of predators. The predators also have a Type II functional response.
Their satiation level depends on the mean time spent in the the arena by the
consumers. If we use the instantaneous growth as a fitness proxy and let σ
model the time spent in the arena range from [0, 1], this situation is modeled by
the payoff function:

U(σ, σ) =
σr

σc1 + 1
− c2

σ

1 + c3Nσ
(3.7)

We seek an equivalent monomorphic payoff function to Equation (3.7). A can-
didate which fulfills the criteria of Lemma 3.3 is

Umon(σ, σ) =
σr

σc1 + 1
− c2 log(1 +Nc3σ) (3.8)

which we recognize as a function with strictly pseudomonotone derivative from
Equation (2.20). The utiility function in Equation (3.8) can be compared with
the naive monomorphic payoff function in Equation (3.9), where we set σ = σ
in Equation (3.7).

U(σ, σ) =
σr

σc1 + 1
− c2

σ

1 +Nc3σ
(3.9)

We can now directly see the impact of assuming a polymorphic population and
studying a mean-field game. As the growth of c2

σ
1+c3σ

in Equation (3.9) is
smaller than that of c2 log(1 + c3σ) in Equation (3.8), the maximum of U(σ, σ)
will be attained at a larger value of σ. This corresponds to an inherently
monomorphic population being more risk-seeking, as individuals will sacrifice
themselves for the greater good. Equation (3.7) illustrates that maximizing the
individual growth leads to a lower growth rate compared to maximizing the
raw pr. capita growth rate as also shown in (Abrams et al., 1993). This is illus-
trated in the plot below, illustrating density-dependent effects on the population
growth rate as a function of the population size N : The pattern emerges that
the monomorphic individuals are more willing to take risks and work together to
satiate the predator. This stems from the fact that each individual attemps to
maximize the per capita growth of the group as a whole, with the knowledge that
the entire group will have the same behavior. Mean while the mean-field games
induces a risk-aversive behavior, as each individual makes a decision based on
the behavior of the group, with no assumptions on them acting in the same way.
In this way, monomorphic games serve as a model for groups with strong co-
operation and coordination and mean-field games are suitable when individuals
act independently and selfishly. Which is the more suitable for a given situation
depends on the system being modeled, but a reasonable default is going for a
mean-field game when considering habitat choice as these are the ones which
give rise to ideal-free distributions (Fretwell, 1969; Broom and Rychtář, 2014).
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(blue) and mean-field game Equation (3.7) (red)
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Chapter 4

Contributions

This thesis presents five papers. Paper A is published, paper C is accepted,
paper B is in resubmission after a minor revision, and Paper D is in submission.
Paper E is in preparation, and is in a draft state. The first three papers are
based on instantanous optimization, while the fourth and the fifth paper study
temporally extended games. There is an overall trend of increasing complexity
in the papers, with the first paper being based on linear optimization, the second
using variational inequalities to solve mean-field games. The third paper builds
the theoretical foundations for using variational inequalities to solve mean-field
games coupled with population dynamics, rounding off the study of games with
instantanous optimization. The fourth paper considers a predator-prey system
as in the first paper, but now incorporating non-linearities and temporally ex-
tended optimization. The fifth paper then applies the approach of the fourth
paper to a simple model of a shelf ecosystem, studying emergent population
levels and behavioral patterns.
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Figure 4.1: Population dynamics with optimal behavior, behavior with
bounded rationality and a classic Lotka-Volterra model without
behavior. Source: Paper A, figure 1.

4.1 Population games in continuous space and
time (In print)

In this paper we introduce a general approach to finding optimal behavior in
habitat-choice games in a continuous setting given that the payoffs are non-
linear. This is done by introducing a spectral discretization and using the re-
sults on solving polymatrix games to solve the resulting linear complementarity
in the discretized setting. In addition we introduce a notion of bounded ratio-
nality, with a precise description which allows for tuning to real-world data. We
illustrate our approach by studying a predator-prey system modeling forage fish
and copepods in the north sea, where we can see the delicate interplay between
behavior and population dynamics. Our introduction of bounded rationality
does not radically change the population dynamics Section 4.1, providing an
argument for using unbounded rationality though the reality is more complex.
An additional benefit of using bounded rationality is that it produces simu-
lated distributions in the water column that are much more realistic than those
without bounded rationality.
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4.2 Scaling from optimal behavior to population
dynamics and ecosystem function (Minor re-
vision)

In this paper we study a tri-trophic aquatic ecosystem with a resource, a con-
sumer and a predator. The ecosystem is modeled as a mean-field population
game with instantanous behavior, where predators and consumers follow the
Nash equilibrium at every instant. Both consumers and predators are modeled
as having non-linear functional responses, hence non-linear fitness functions.
This increases the sophistication compared to most ecosystem models, as they
typically assume at least one of the two groups has a linear functional response.
We prove that the Nash equilibrium is unique using the theory of variational
inequalities, where we show that the game specified by the payoff functions for
the consumer and predator gives rise to a strictly pseudomonotone operator. In
the paper we show that optimal behavior essentially buffers away the effect of
top-down forcing, and causes bottom-up forcing to result in an increase in all
trophic layers Section 4.2. Further, we show that a Type III functional response
emerges from a Type II functional response when incorporating instantanous
optimal behavior, both for predators and consumers Section 4.2. The article
shows that complex density-dependent effects emerge when incorporating opti-
mal behavior based on non-linear fitness functions.

4.2.1 Additional results

We showed in paper C that the Nash equilibrium was an ideal free distribution,
but as the tools from paper C were not available during the preparation of
paper B we did not show this in paper B. Exploiting the theoretical tools we
developed in paper C, we can now show that the Nash equilibrium is an ideal
free distribution in the game we consider in paper B.

Proposition 4.1 (IFD paper B) The Nash equilibrium of a population
game with payoffs given by:

Fc = −
(
ε

ατcR

(Rτc + α/b)
− αs3/4τcτpP

τ cτpC + α/b

)

Fp = −
(
ε

αs3/4Cτ cτp
(Cτ cτp + α/b)2

− ξτpτp

) (4.1)

is an ideal free distribution if εR ≥ s3/4Pτp.
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Figure 4.2: The Type III functional response arising from a Type II functional
response for consumers (a) and predators (b) when incorporating
fast optimal behavior. The gradient from blue to yellow in (a)
indicates a change in predator populations, and indicates a change
in top-predation in (b). Source: Figure 3, paper B.

Proof. To show that the Nash equilibrium of the system in Equation (4.1)
consitutes an IFD, it suffices to show that the functions f1 = −dτcFc |τc=τc and
f2 = −dτpFp |τp=τp are strictly pseudomonotone. Consider

f1 = −
(
ε

α2/bτpR

(Rτc + α/b)2
− αs3/4τpP

τcτpC + α/b

)
(4.2)

To simplify the notation, we consider the equivalent formulation

f1(x) =
k3

x+ k4
− k1

(x+ k2)2
(4.3)

Both terms in f1 are positive at 0, have monotone derivatives and the derivative
of the first term always dominates the derivative of the second term since R ≥
s3/4P . Therefore the two functions cross at most once, if:

k1
k22

>
k3
k4

(4.4)

and f1 has at most one zero, and is positive afterwards. If f1 has no zeros, it is
either strictly positive or negative, and monotonic. With this consideration out
of the way, we can show strict pseudomonotonicity of f1. Assume (y−x)f(y) ≥
0. If f(y) = 0, for x > y, then f(x) > 0, hence (x − y)f(x) > 0. Likewise, if
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4, paper B.
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x < y, then f(x) < 0 and (x − y)f(y) > 0. Strict pseudomonotonicity of f2 is
direct, since f ′

2(x) is strictly positive. □

Note the extra necessary condition for the Nash equilibrium in Lemma 4.1 to
be an IFD, compared to the case where both species are considered in Paper
B. This is due to the fact that an activity level of 0 for the consumer can never
constitute a Nash equilibrium in the predator-prey game. This is because the
corresponding optimal predator activity of can never have an activity level of 0
as a best response.

4.3 Population games with instantaneous behav-
ior and the Rosenzweig-MacArthur model (Ac-
cepted)

We again study a predator-prey system. This time, the focus is on deriving
general theory allowing for the systematic study of a large class of population
games. This is where we introduce the machinery of variational inequalities
to find Nash equilibria of instantaneous mean-field games in a general fashion.
We establish criteria for existence and uniqueness for the fixed-points of popu-
lation games with instantaneous behavior. Having established these, we study
a modified Rosenzweig-MacArthur system with varying intraspecific predator
competition and fast optimal behavior.

4.3.1 Additional results

In paper (C) we studied the Rosenzweig-MacArthur game with optimal behav-
ior, but we neglected to give a proof of Lipschitz continuity of the solution to
the game. The proof follows:

Lemma 4.2 The solution to the behaviorally modified Rosenzweig-MacArthur
system has Lipschitz continuous solution.

Proof. We need to show that fi are locally Lipschitz and that the solution
mappings to the variational inequalities defined by −dUc and −dUp are locally
Lipschitz. The functions Nifi are clearly locally Lipschitz in σc, σp. respectively
and in Nc, Np.
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Figure 4.4: Population dynamics of the behaviorally modified Rosenzweig-
MacArthur system in paper C, the figure also illustrates that the
solution is Lipschitz continuous as shown in Lemma 4.2. Source:
Figure 1, paper C.

Denote the solution function as a function of (Nc, Np) to the variational inequal-
ity V I(−dUc, P2,µ) by Sc. In order to show that Sc is locally Lipschitz, we apply
Robinsons implicit function theorem (Robinson, 1991, Theorem 4.2). Two suffi-
cient criteria for this theorem are Frechet differentiability, and that −dUc(σc, ·)
must be Lipschitz-continuous for every fixed σc. As −dUc has linear growth in
Nc, the Lipschitz criterion is satisfied, and the differentiability is clear. Hence
Sc is locally Lipschitz continuous. □

4.4 A predator-prey system with cost of move-
ment (In submission)

In this paper we study the population dynamics and behavioral dynamics of a
predator-prey system, where there is day-night cycle.

We impose a cost of motion for both consumers and prey, and model each
individual as following an Itô stochastic differential equation. The paper has
three main findings: The most important finding at a conceptual level is the
emergence of the diel vertical migration in a model coupled to population dy-
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Figure 4.5: Distribution of consumers (A) and predators (B) across the day
at the population equilibrium. Source: Figure 5 in paper D.

namics Section 4.4. The second is the rise of different migration patterns as a
result of different carrying capacities, where the magnitude and type of migra-
tion patterns of zooplankton changes with the carrying capacity Section 4.4(a).
Meanwhile forage fish have barely noticeabl migrations Section 4.4(b). This
again illustrates that behavioral patterns are intimately tied to ecosystem pro-
ductivity The third is finding is that the energy budget of zooplankton changes
radically with increasing carrying capacity, with the relative amount of the total
energy going to predation decreasing and the amount going to motion increas-
ing. This results in an increase in both zooplankton and forage fish populations
At the level of model-building, the paper shows that it is possible to couple pop-
ulation dynamics and mean-field games in the sense of Lasry and Lions (2007),
as illustrated by the emergent diel vertical migration where we get both the
distributions Section 4.4 and population levels Section 4.4.

4.5 Optimal behavior in a shelf ecosystem (In
preparation)

In this paper we analyze the impact of benthic and phytoplankton productivity
on a shelf ecosystem modeled as a simple food-web, see Section 4.5. We assume
each population has optimal behavior, which we model by a mean-field game
(Lasry and Lions, 2007). We use the numerical approach as in Paper D. The
preliminary results show the powerful effect of behavior, revealing an emergent
reverse diel vertical migration of zooplankton accompanied by a normal vertical
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Model food-web in a shelf ecosystem

Phytoplankton Zooplankton Small pelagic fish

Benthos

Large pelagic fish

Large demersal fish

Figure 4.8: A simple food-web describing a shelf eco-system including both
benthic and pelagic pathways.

migration of forage fish Section 4.5 The preliminary result also reveal that adap-
tive behavior has a negative effect on the population levels of the higher levels in
the pelagic food-web Benthic productivity, on the other hand, appears to serve
as an accelerant of the effect of the phytoplankton productivity Section 4.5.

4.6 Summary of numerical methods used in the
thesis

Throughout the writing of this thesis, considerable energy was invested in solv-
ing population games, in the sense of resolving a dynamical system and finding
Nash equilibria simultaneously. Finding fixed points of a dynamical system
along the Nash equilibrium is a non-trivial problem. A first approach which
was unsuccessful is modeling the problem as a differential-algebraic equation.
This is problematic as the strategy spaces are constrained, so the algebraic equa-
tions describing the Nash equilibrium do not lead to a smooth solution curve.
Instead, we used three different approaches.
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Figure 4.9: Diel vertical migration of zooplankton (a), forage fish (b), large
pelagics (c) and large demersals (d) at a carrying capacity of R =
20g,B = 0.1g. Source: Paper E, figure 9.

.

Paper A In the first paper, we simulated the population dynamics using an explicit
Newton method, where we solved the inner game at every instant using
Lemkes algorithm. In this paper we worked in continuous space, and also
studied the impact of bounded rationality. For this reason, we chose to use
a spectral discretization (Kopriva, 2009) for the spatial dimension. The
typical drawback of a spectral discretization is that mass and discretiza-
tion matrices become dense, however, this was not a problem as in this
specific case as the mass matrices were not directly used by the optimiza-
tion algorithm. Using a spectral discretization allowed us to solve the
equation with an integral kernel by using the method of images, which led
to smooth dynamics. Such exponential integrators are viable for a wide
variety of otherwise stiff semi-linear systems.

Paper B In the second paper, we used two different approaches to solve the pop-
ulation game. In order to simulate the population dynamics we used an
explicit Newton method, finding the Nash equilibrium with the package
IPOPT (Wächter and Biegler, 2006) via casadi (Andersson et al., 2019)
using the HSL subroutines (HSL, 2007). In order to find the equilibria
of the population dynamics, we used a root-finding procdure from SciPy
where the inner game was solved as in the simulation.
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Figure 4.11: Changing strategies with a changing grid. Figure (A) illustrates
the optimal strategies with a coarse grid with 12 time-steps and 4
spatial locations. The solution has been linearly interpolated to
a 90x30 grid for visual comparison. Figure (B) shows the optimal
strategies at population equilibrium with a 90x30 grid.

Paper C In the third paper, we again used an explicit Newton method to simulate
the population dynamics coupled with finding the Nash equilibrium as in
the previous two papers. In order to find the fix-points of the popula-
tion dynamics, we posed the joint problem as a complementarity problem.
This problem was solved using CasADi ipopt and HSl as in the second
paper. This paper again concerned itself with continuous space. To en-
sure a sparse Hessian matrix for the optimization problem, we used a
finite-element discretization.

Paper D In paper D the migrations are modeled explicitly, leading us to require
an entirely different approach. Solving the equations in Lemma 2.18 for
a mean-field game is notoriusly hard. We solve the system by perform-
ing an iterative grid-refinement using the software package CasADi, get-
ting a better and better solution of the system. See Section 4.6. For
the implementation, see the code on github in the repository https:
//github.com/jemff/multi_species_water. The difference between
figure (A) and (B) in Section 4.6 reveals the benefit of grid refinement
for understanding the optimal migration strategies of animals. Meanwhile
Section 4.6 indicates that in particular the predator population is indicated
by going to a finer grid, with the predator population underestimated on
the coarse grid.

In paper (C) we tested the numerical approach of using CasADi and IPOPT

https://github.com/jemff/multi_species_water
https://github.com/jemff/multi_species_water
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Figure 4.12: Changing populations of resources (green), consumers (blue) and
predators (red) with a changing grid. The fineness of the grid
varies from 8x4 to 64x32 in 15 steps.

by verifying the results with a dedicated non-linear complementarity solver pro-
vided by the package SICONOS (Acary et al., 2019). This produced the same
results as using the interior point method with CasADi, so we stuck to using the
interior point approach. We also experimented with using a fully implicit Euler
method to solve the differential equations with an associated complementarity
problem, again using SICONOS. This was more robust than the explicit Euler
method, and should be used if the explicit Euler method is unstable.



Chapter 5

Summary and perspectives

The main focus of the thesis was studying the impact of behavior, in particular
habitat choice, on aquatic ecosystems and population dynamics. In addition,
the goal of the thesis was to develop general methods to study ecosystems with
optimal behavior. We showed that it is possible to build advanced population-
dynamical models with optimal behavior. Our contributions can be divided into
two parts, methodological and concrete ecosystem models.

Summarizing the findings from concrete models, in Paper A we illustrate the
importance of the interplay of seasonality and population dynamics on behavior
in a North Sea ecosystem, while illustrating the population dynamics are rela-
tively unchanged by adding noise to the behavioral decisions. In paper B our
modeling results show that behavior has a large effect on ecosystem dynamics,
and can fundamentally change the response of an ecosystem to forcing. In addi-
tion, optimal behavior leads to complex phenonema, leading to the emergence
of Type III functional response. Paper C mainly illustrated the importance of
competition in leading to sub-optimal spatial distributions and the impact of
carrying capacity on spatial distributions, with the counter-intuitive effect of
leading to more spread out populations in less optimal habitats. In paper D we
showed that the diel vertical migration can be understood as an emergent be-
havioral phenonenom from forcing, while the zoo of copepod migration patterns
observed in nature can be explained in part by resource loads. In addition, we
found a breakdown of the ecosystem enrichment hypothesis in papers B, C and
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D. Paper E can is a draft, but illustrates how reverse vertical migrations can
emerge in complex food-webs and the negative impact of enrichment on higher
trophic levels.

To briefly sumarize the metholodial contributions, we present a unified approach
to modeling ecosystems with unstructured populations and optimal behavior,
where population interactions can be described by playing the field. Our meth-
ods allow for studying the coupling of behavior and populations with both an
instantanous and explicit models of habitat selection and the papers form a
toolbox to construct an ecosystem model with optimal behavior.

At a more detailed level, the contributions and foci of each paper are:

1. In the first paper a general model for fast optimal behavior in an ecosystem
governed by Lotka-Volterra population dynamics was introduced. We de-
veloped the framework in a discrete setting, expanding it to a continuous
setting. Expanding to a continuous setting allowed us to explicitly study
the impact of bounded rationality on population dynamics. We developed
a fast numerical method to resolve the population game, using it on the
case of a predator-prey system modeling the North Sea with seasonality.
Theoretically, this paper is based on viewing polymatrix games as linear
complementarity problems.

2. The second paper focuses on the ecosystem impact of fast optimal behavior
in a tri-trophic aquatic ecosystem with fast optimal behavior. The paper
is focused on studying the specific ecosystem, and introduces variational
inequalities as a tool to show uniqueness of Nash equilibria in population
games. In this paper we show that behavior buffers top-down forcing,
and that Type III functional responses can emerge from individuals in the
setting of a population game.

3. The third paper is theoretical in nature, developing results for existence
and uniqueness of both Nash equilibria and population equilibria in popu-
lation games with instantanous optimal behavior using variational inequal-
ities. This paper seves to generalize the approach in the first paper, gener-
alizing the approach from Lotka-Volterra models to general Kolmogorov-
type models. As such, the paper, provides a theoretical foundation and
avenue for further work for the models and methods in papers A and
B. We apply the general theoretical results to a behaviorally modified
Rosenzweig-MacArthur game which is then analyzed numerically.

4. The fourth paper studies the interplay between the diel vertical migra-
tion and population dynamics in a tri-trophic predator-prey system. The
fourth paper is also where we begin using coupled Hamilton-Jacobi-Bellman
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equations to solve the problem of coupling individual and population-level
optimization. Hence we expand the scope of the population games we
model to ecosystems with explicit movement, along with fast optimal be-
havior. This means this means we can study the fixed-points of the ecosys-
tem rather than considering the seasonal changes in population as in paper
A. By assuming that movement is modeled as an SDE, we build on the
idea of the bounded rationality from paper A. The diel vertical migration
of forage fish which arises in this paper is quite different in nature from
that observed in Paper A, with essentially no migration. This shows that
the diel vertical migration of forage-fish cannot always be explained as a
bottom-up phenomenon.

5. The fifth paper studies a shelf ecosystem, focusing on the impact on pop-
ulations and behavior of benthic and phytoplankton productivity. The
fifth paper uses the same methodology as the fourth of temporally ex-
tended mean-field games. The paper has three main findings. The first
is behavioral in nature, a reverse diel migration for zooplankton naturally
emerges at a population fixed-point, while forage fish perform both reverse
and normal vertical migrations. These depend on the phytoplankton pro-
ductivity. The second is that optimal behavior serves to move the effect
of enrichment, so only the lower two trophic levels benefit. The third is
that increasing the benthic productivity serves to increase the effect of
changing phytoplankton productivity. These results on the effect of pro-
ductivity supplement the findings in paper D, as the rise in forage-fish
populations seen there are eliminiated by the threat of predation. That
forage fish perform diel vertical migrations again as in paper A compared
to what we found in paper D shows that both bottom-up and top-down
pressures must be incorporated in order to have a workable model of the
diel vertical migration.

The work presented in this thesis has focused on general ecosystem models
and methods. A next step could be to incorporate the methods presented in
this thesis in realistic ecosystem models, incorporating more individual and
population-level effects.

5.1 Complex ecosystem models with behavior

The thesis has focused on simple ecosystems, in particular predator-prey sys-
tems. These serve as a useful starting point for ecosystem modeling, but real-
world ecosystems are complex and consist of a myriad of interacting species in
different environments. By using the tools we have developed in the creation of
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this thesis, more realistic and complex ecosystems can be modeled. As a start-
ing point, a model of a shelf ecosystem could expanded to a full ocean model,
studying how all the main functional groups in the interact (van Denderen et al.,
2021). Such a model could serve as a stepping-stone to integrate behavior ex-
plicitly in complex models of habitat choice, removing the need for heuristics
(van Denderen et al., 2021; Ho et al., 2019).

Another avenue of further development could be in models with a mixture of
discrete and continuous habitats, as the frameworks we developed in papers A
and C readily incorporate such a mixture.

5.2 Better models of individual state

In the models we have considered, the satiation and handling are seen as two
sides of the same coin. In reality, satiation happens over a much longer time-
scale and affects behavior independently of handling (Fiksen and Jørgensen,
2011). To model an ecosystem where the time-scale is on the order of a day,
satiation should be included as a major factor. This would necessitate drawing
mechanistic models of satiation into our behavioral models (Andersen, 1999;
Fiksen and Jørgensen, 2011). Constructing models incorporating behavior, sa-
tiation and population dynamics simultaneously would increase the range of
ecosystems across which our methods can be applied, and allow for modeling
complex terrestrial ecosystems as well.

5.3 Ontogeny

Here we have only concerned ourselves with unstructured populations, while
in reality individual fish start as larvae and go through multiple stages before
reaching maturation and being able to reproduce (Andersen, 2019). The fitness
that a fish maximizes in reality should be its lifetime fitness, and not the instan-
taneous growth rate. In certain situations and at equilibrium these two overlap
(Sainmont et al., 2015), but generally this cannot be expected to be the case,
for example if there are daily variations as is the case in the ocean. Developing
models taking the different choices at different life-stages into account could be
another way of going forward with the methods and models presented in this
thesis. Such models also have the greatest perspectives of being useful for fish-
eries management, as age-cohorts are a vital to keep track of in this context
(Andersen, 2019).
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a b s t r a c t

Game theory has emerged as an important tool to understand interacting populations in the last 50
years. Game theory has been applied to study population dynamics with optimal behavior in simple
ecosystem models, but existing methods are generally not applicable to complex systems. In order
to use game-theory for population dynamics in heterogeneous habitats, habitats are usually split into
patches and game-theoretic methods are used to find optimal patch distributions at every instant.
However, populations in the real world interact in continuous space, and the assumption of decisions
based on perfect information is a large simplification. Here, we develop a method to study population
dynamics for interacting populations, distributed optimally in continuous space. A continuous setting
allows us to model bounded rationality, and its impact on population dynamics. This is made possible
by our numerical advances in solving multiplayer games in continuous space. Our approach hinges
on reformulating the instantaneous game, applying an advanced discretization method and modern
optimization software to solve it. We apply the method to an idealized case involving the population
dynamics and vertical distribution of forage fish preying on copepods. Incorporating continuous space
and time, we can model the seasonal variation in the migration, separating the effects of light and
population numbers. We arrive at qualitative agreement with empirical findings. Including bounded
rationality gives rise to spatial distributions corresponding to reality, while the population dynamics
for bounded rationality and complete rationality are equivalent. Our approach is general, and can easily
be used for complex ecosystems.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Population dynamics emerges from behavior of the animals;
yet many models of population dynamics and ecosystems ignore
behavior. In the past 50 years, game theory has evolved into
an invaluable tool for including animal behavior in ecological
models. Game theory gives a theoretical toolkit for understanding
observed behavior and making predictions for how behavior will
change in response to external changes. Game theory has been
used to model a wide variety of situations where an animal needs
to make a choice, from habitat choice (Křivan, 1997; Kondoh,
2003; Křivan et al., 2008), mating behavior (Rapoport, 1967),
and confrontation strategies (Maynard Smith and Price, 1973).
The game theoretical models have proven successful, with em-
pirical evidence backing up their validity as a model of animal
behavior (Cooper et al., 1989; Bolker et al., 2003; Schmitz et al.,
1997).

✩ This work was supported by the Centre for Ocean Life, a Villum Kann
Rasmussen Centre of Excellence, Denmark supported by the Villum Foundation,
Denmark.

∗ Corresponding author.
E-mail addresses: jaem@dtu.dk (E.F. Frølich), uhth@dtu.dk (U.H. Thygesen).

We focus on one specific instance of behavior and how to
incorporate it into population games, namely habitat choice for
interacting populations. A reasonable assumption for interacting
populations in an inhomogenous habitat, is that all animals seek
to find the best spot simultaneously. For a single population this
leads to the ideal free distribution (Fretwell, 1969). The popula-
tion dynamics of a model where every individual is always at
the best location is a population game (Křivan and Cressman,
2009). The instantaneous population growth rates in a population
game are determined by the instantaneous Nash equilibria of the
individual habitat-choice game. Population games have emerged
as a powerful tool to incorporate behavior in simple popula-
tion models (Křivan, 1998; Genkai-Kato, 2007; Cressman and
Křivan, 2010; Pinti et al., 2021; González-Olivares and Ramos-
Jiliberto, 2003). However, the approach used in these models is
not scalable to larger number of species or continuous habitats.

Population games are often simplified by only considering one
or two trophic levels, (Křivan, 2007) and (Sadowski and Grosholz,
2019). This is in spite of e.g. mating behavior being influenced by
the risk of predation, (Carranza and Valencia, 1999) and (Lima,
2009), naturally leading to a game with at least three types
of players. Going to games with larger number of players can
explain complex phenomena, which cannot be modeled with only

https://doi.org/10.1016/j.tpb.2022.06.002
0040-5809/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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two types (Pinti et al., 2019). Another simplification concerns
the representation of space in habitat selection games. Natural
habitats often have continuous fitness gradients (Kawecki and
Ebert, 2004), yet population games typically simplify this com-
plex reality to a small finite number of patches, (Valdovinos et al.,
2010).

The reason for these simplifications is that finding Nash equi-
libria is prohibitively hard (Bolker et al., 2003; Pinti et al., 2019),
which is why the main focus has been on simple games that are
solvable analytically (Křivan, 2007) or with very nice structures,
such as the ideal free distribution (Cressman and Křivan, 2010).
Because of the general issues with finding Nash equilibria effi-
ciently in large games, complex ecosystems models in continuous
space with multiple trophic levels have been beyond the scope of
previous models. Creating numerical and theoretical approaches
that can resolve the issues of computing Nash equilibria quickly
for large numbers of interacting species in continuous settings
is essential for extending the success of population games from
toy-examples to real-world models. If the issue of finding Nash
equilibria quickly and efficiently can be resolved, the question
of whether to include behavior in a model or not becomes a
question of relevance to the model rather than feasibility.

A critique of game-theoretical models is the assumption that
players have perfect information and act in a perfectly rational
manner, (Jones, 1999). Perfect information seems unreasonable,
as animals do not have perfect state information (Simon, 1955). In
addition the minor gain in fitness from the almost-perfect choice
to the perfect choice is often outweighed by the higher cognitive
or sensorial cost of finding the perfect strategy (Simon, 1956; Co-
hen et al., 2019). Though these concerns are well-founded, most
models end up incorporating perfect rationality and information
anyway. Classical satisficing models of bounded rationality can-
not be verified empirically (Nonacs and Dill, 1993), and with other
attempts (Sih, 1992; Thuijsman et al., 1995) the complexity has
prevented the models from being implemented at the population
level.

We introduce a method that allows the incorporation of be-
havior and imperfect decision making in population games in
continuous space and time. The approach we introduce can
readily be applied to study multi-species population dynamics
emerging from a habitat-choice game in both continuous and
discrete habitats. Our basic approach is to rephrase a continu-
ous habitat selection game as a single linear complementarity
problem (Miller and Zucker, 1991). We incorporate bounded
rationality by requiring the strategies solve a diffusion equation,
picking the strategy that maximizes the payoff with a given level
of noise.

To illustrate the potential of the framework, we apply the
method to diel vertical migration in the ocean. At dawn, billions
of small fish and zoo-plankton migrate from the upper layers
of the ocean to the deeper, darker layers, which can be directly
measured as the deep scattering layer, (Sutton, 2013) and (Wang
et al., 2014). At dusk, the small fish and zoo-plankton migrate
upwards. Here, we study the seasonal interplay between popu-
lation dynamics and behavior. The model is an extension of the
model studied in Thygesen and Patterson (2018) to a population
game. We couple the time scales of population dynamics and be-
havioral time scales, which allows us to examine how the vertical
distribution of predators and prey change throughout the seasons
and how this influences the population dynamics. We investigate
the length and magnitude of the feeding rates of predators and
consumers at throughout the day in spring, summer, and autumn
of a single year. We examine how the optimal behavior with
noise differs from that without noise, and how noise changes the
population dynamics.

2. Method

2.1. General continuous model and the discrete motivation

Our general model is that of a population-game (Křivan and
Cressman, 2009) where the populations can migrate in a con-
tinuous habitat on a much faster time-scale than population
dynamics (Cressman and Křivan, 2006). We build up the general
approach in a discrete setting, and then translate the structures
we have built up into the continuous setting.

2.1.1. Developing a discrete population game
To understand the intrinsic coupling of patch-choice models

with population dynamics, start by considering a Lotka–Volterra
model with M patches and T types. Assume the interactions of
animals of type i with type j at patches k and l is given by the
entry (k, l) in the matrix Aij. This general formulation allows for
non-local interactions, allowing e.g. for simultaneous modeling
of the patch choice of birds prey and mice, where a hawk can
equally well prey on many different patches in a field (Bechard,
1982; Tew et al., 2000). The intrinsic growth of type i at patch
k is given by a function Gi(k) on {1, . . . ,M}. Assuming that the
populations are distributed according to probability distributions
(pi)Ti=1 on the patches {1, . . . ,M}, such that Nipij is the number of
individuals of type i at patch j. The population dynamics of type
i with total abundance Ni and distribution pi becomes:

Ṅi = Ni

⎛⎝ M∑
k=1

pi(k)

⎛⎝ T∑
j=1

Nj(Aijpj)(k)

⎞⎠ + Gi(k)

⎞⎠ (1)

We define the fitness proxy for an individual of type i at patch k
by Hi(k), as the growth of an individual of type i at patch k given
that all types are distributed according to (pi)Ti=1.

Hi((Njpj)Tj=1)(k) =

⎛⎝ T∑
j=1

Nj(Aijpj)(k)

⎞⎠ + Gi(k) (2)

If migrations are very fast and the habitat is highly intercon-
nected (Cressman and Křivan, 2006; Abrams et al., 2007), it is
reasonable to assume all animals of any type simultaneously seek
to find the optimum patch in the sense of seeking k to maximize
Eq. (2). The result of this is a Nash equilibrium, where no ani-
mal has an advantage in moving. As a consequence, the specific
growth rate Hi((Njp∗

j )
T
j=1)(k) of each animal type i is constant

across all patches k where this type is found, and no greater in
any patch l that is void of this type (pi(k) = 0). In the single-
species case, the resulting patch distribution p∗,NE is the ideal
free distribution (Fretwell, 1969). The approach of using popu-
lation dynamics determined by Eq. (1) with optimal strategies
determined by the Nash equilibrium defines a population game
on discrete patches, and is a successful approach to coupling
optimal behavior with population dynamics (Valdovinos et al.,
2010; Mougi, 2019; Pinti et al., 2021).

The game specified by Eq. (2) is affine in pj, and finding the
Nash equilibrium is equivalent to finding the Nash equilibrium
in a polymatrix game (Howson, 1972; Eaves, 1973). A poly-
matrix game has so-called polymorphic–monomorphic equiva-
lence (Broom and Rychtár, 2013; Eaves, 1973), so an individual of
type j cannot determine whether it is playing against a polymor-
phic population i with pure strategies, or a monomorphic popu-
lation with a mixed strategy. The benefit of studying games with
polymorphic–monomorphic equivalence is that it is irrelevant
how a distribution arises, whether through a single population
having following a strategy or the existence of multiple subpopu-
lations (Pinti and Visser, 2019). The monomorphic interpretation
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is that all individuals of type i choose their positions randomly
according to the distribution pi, instead of having players pick
fixed position pi(k). Finding the Nash equilibrium (pi)∗,NE of Eq. (2)
becomes equivalent to finding the Nash equilibrium of the game:

Fi(pi, (Njpj)Tj=1) =

⟨
pi,

T∑
j=1

Eijpj

⟩
(3)

For simplicity, we restrict ourselves to the case Aii = 0, the case
Aii ̸= 0 is covered in the Appendix, where Eii is constructed. We
can construct Eij explicitly if we define Γi as a matrix where every
column is Gi, so (Γipj)(k) = G(k). The total payoff matrices Eij for
the interaction between type i and j when in Eq. (3) when Aii = 0
then become:

Eij = NjAij +
1
T

Γi (4)

We recognize Eq. (3) as the growth rate in Eq. (1). Therefore, opti-
mizing the population growth for each type and at the individual
level are the same when there is no density dependence (Aii = 0).
An advantage of this approach to population dynamics is that fol-
lowing the Nash equilibrium of the game Eq. (3) at every instant
is an evolutionary stable strategy, i.e. the populations cannot be
invaded by mutants (Křivan and Cressman, 2009). These consid-
erations resolve the discrete case, but in nature many habitats
are continuous and cannot be described well by discrete patches.
However, having a fully-developed discrete model sets the stage
for the continuous generalization, and giving us a toolbox of ideas
for constructing a population game in continuous space.

2.1.2. The continuous model
The insight of using the monomorphic–polymorphic equiva-

lence is essential in generalizing to the continuous case, since
it highlights that the important factor in the individual patch
choice Eq. (2) is the overall distribution on patches pi. To ex-
tend population games to continuous space and facilitate the
incorporation of imperfect decision making, we consider a habitat
described by an interval [0, z0]. We again assume we have T
different types. To avoid pathological population interactions, we
need to take more care with the possible population distributions
in the continuous case. We define the continuous analogues of
population distribution across patches by:

K = {ϕ ∈ L2([0, z0]) : ϕ ≥ 0,
∫

ϕdz = 1} (5)

i.e. K is the set of square-integrable probability distributions
on [0, z0], and ϕi ∈ K corresponds to a patch distribution pi.
The quantity Niϕi(z) gives the population density of type i at
z. Interactions between animals of type i and j are given by
bounded linear operators Uij : L2([0, z0]) → L2([0, z0]), where we
again assume Uii = 0. A bounded linear operator on L2([0, z0])
can be thought of as an infinite-dimensional matrix. In case the
interactions are local, the operators Uij reduce to multiplication
by bounded functions, corresponding to diagonal matrices. This
consideration explains why we require square-integrability, since
we want to be able to consider purely local interactions. As in the
discrete case, we define the local intrinsic growth by a bounded
function Bi. Using Bi, K , and Uij we can define the fitness proxy
Fi of an individual of type i playing strategy ϕi in the continuous
setting:

Fi(ϕi, (Njϕj)Tj=1) =

T∑
j=1

∫
ϕi(z)(NjUijϕj)(z)dz +

∫
ϕi(z)Gi(z)dz (6)

The game given by maximizing all Fi with respect to ϕi is the
continuous analogue of a polymatrix game. Since the game again

has polymorphic–monomorphic equivalence, the Nash equilib-
rium for the individual habitat selection game is also given by
finding the Nash equilibrium of the game specified by Eq. (6).

Modeling the population dynamics, we assume that at every
instant the animals are distributed according to the Nash equi-
librium of Eq. (6). That is, no animal can increase their fitness
by unilaterally deviating from their strategy. Denoting the Nash
equilibrium by (ϕ∗,NE

i )Ti=1, the population dynamics in the general
continuous model are:

Ṅi = NiFi((ϕ
∗,NE
j ,Nj)Nj=1) (7)

The model we use can theoretically be used for other situa-
tions than habitat-choice and population dynamics. As long as
the population dynamics can be formulated in way where they
are proportional to sums of bilinear payoffs in the strategies, our
approach can be used.

2.1.3. Noisy strategies
Our model incorporates that animals are not necessarily per-

fectly rational: The animal may not be a perfect decision-maker
and may choose a slightly sub-optimal habitat, due to imperfect
information or limited capacity of information processing, but it
can also model errors in our perception of the animal’s objectives,
or inability to actuate a decision perfectly, for example due to
turbulence in the water column. Our model of imperfect ratio-
nality is as follows: Say that an animal of type i aims to play the
strategy fi(·), which is a probability density function on [0, z0].
Then our model posits that the animal actually plays a strategy
ϕi(·, σ ), which is a smoothed version of fi(·) obtained by solving
the initial value problem for

∂sϕi =
1
2
∂2
z ϕi

∂zϕi |z=0 = 0
∂zϕi |z=z0 = 0

ϕi(z, 0) = fi(z) .

(8)

on the interval s ∈ [0, σ ]. Thus, the parameter σ determines
the degree of smoothing: With σ = 0, the animal is perfectly
rational (ϕi(z, 0) = fi(z)) while with σ = ∞, we have a com-
pletely random decisions where ϕi(z, ∞) is a constant function
of z, corresponding to a uniform distribution on [0, z0]. Note that
s or σ are not connected to time; this smoothing takes place
instantaneously at each point in time.

Numerically, this smoothing is performed by first determining
the fundamental solution to this initial value problem, ignoring
boundaries, which is a Gaussian kernel. Then the boundary con-
ditions are implemented using the method of images (Stakgold
and Holst, 2011), resulting in a kernel S(x). Finally, the initial
condition is convolved with the kernel S(x).

2.1.4. Spatial discretization
In order to calculate the Nash Equilibrium efficiently, and

perform numerical integration precisely we discretize the in-
terval [0, z0] with a spectral scheme based on Legendre poly-
nomials, (Kopriva, 2009). This allows precise integration and
differentiation of piece-wise smooth functions with only rela-
tively few points. Working on a grid with M points, a strategy
is a linear combination of normalized hat-functions, where the
hat functions are given by:∫ zi+1

zi−1

eidz = 1

ei(zi−1) = 0, ei(zi+1) = 0
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where the overall strategy becomes:

ϕi =

M∑
j=1

aj,iej, i ∈ {1, . . . ,N}

M∑
j=1

aj,i = 1 i ∈ {1, . . . ,N}

The strategy of a player, or type, is fully determined by the ai’s.
When considering non-optimal actors, we need to implement

the convolution with G(x), which also assures that the result-
ing distribution is smooth. An added benefit of incorporating
bounded rationality then becomes that our strategy profiles are
guaranteed to be smooth, decreasing the number of points re-
quired for numerically exact evaluation of the integrals determin-
ing the fitness equation (6).

2.1.5. Finding the Nash equilibrium
Finding the Nash Equilibrium in a game in continuous space

is usually a hard task, requiring the development of bespoke
methods, (Thygesen and Patterson, 2018; Pinti and Visser, 2019).
We develop a general method which does not rely on the specific
structure of the interactions or habitat, by combining a result on
linear complementarity problems (Miller and Zucker, 1991) with
an efficient solver.

By discretizing space, we have reduced an uncountable strat-
egy set to a more manageable finite set, with pure strategies
ek. The gain of type k playing strategy ek against type j playing
strategy el can be determined as Uij(ek, el), Eq. (6). Evaluating
these integrals reduces the continuous game to a discrete habitat
choice game equation (2) with payoff matrices Aij determined
through the numerical integration Aij(k, l) =

⟨
ek,Uijel

⟩
, k, l ∈

{1, . . .M}. The location-specific growth is discretized by defining
Gi(k) =

∫
Bi(z)ek(z)dz. We construct the total payoff matrices Eij

for the game between types i and j as in the discrete case Eq. (4).
Our discretization has reduced the problem to a polymatrix game,
where finding the Nash equilibrium is tractable.

It does not appear to have diffused through the literature, but a
Nash equilibrium of a polymatrix game can be found by solving a
single linear complementarity problem (Miller and Zucker, 1991).
We give a short proof of this using a modification of the argument
from Miller and Zucker (1991), specialized to the case of two-
player (bimatrix) games but easily generalizable to the general
T -player case. Assume that (s∗1, s

∗

2) constitute a Nash equilibrium
in mixed strategies with fitnesses γ1 =

⟨
s∗1, E1s

∗

2

⟩
and γ2 =⟨

s∗2, E2s
∗

1

⟩
to the first and second player, respectively. Then

⟨s1, 1n⟩ = ⟨s2, 1n⟩ = 1

since these mixed strategies are probability distributions on strat-
egy space. Here 1n is a vector of ones. In addition the Nash
equilibrium dictates

E1s2 = 1nγ1 − w1, E2s1 = 1nγ2 − w2

w1 and w2 are non-negative ‘‘slack variables’’ that state that
the payoff for the first player can be no greater than the ex-
pected payoff γ1, but can be smaller for some fixed strategies.
These non-optimal strategies, where the slack w1 is positive, must
then be chosen with probability 0, and as a consequence the
complementarity condition⟨
s∗1, w1

⟩
=

⟨
s∗2, w2

⟩
= 0

holds. Assume for convenience that all elements in E1 and E1
are negative; this can always be obtained without changing the
Nash equilibrium by subtracting a constant from E1 and E2. Con-
sequently, the payoffs γ1 and γ2 are also negative and thus the

vector z = (s1, s2, −γ1, −γ2) satisfies the Linear Complementarity
Problem (LCP)

z ≥ 0, w ≥ 0,Hz +

⎛⎜⎝ 0
0

−1
−1

⎞⎟⎠ = w, ⟨z, w⟩ = 0. (9)

where

H =

⎡⎢⎣ 0 −E1 −1n 0
−E2 0 0 −1n
1n 0 0 0
0 1n 0 0

⎤⎥⎦
Conversely, assume that z = (s1, s2, γ1, γ2) and w solve the LCP,
then it is straightforward to see that the mixed strategies (s1, s2)
form a Nash equilibrium with fitnesses at the Nash equilibrium
of (γ1, γ2). The assumption that E1 and E2 have negative elements
imply that the matrix H is copositive plus (meaning, for all z ≥ 0
with z ̸= 0 it holds that ⟨z,Hz⟩ > 0) which assures that the LCP
to has a solution, in particular through Lemke’s algorithm.

Solving Eq. (9) was done through two different methods.
The interior-point method as implemented in IPOPT, (Wächter
and Biegler, 2006), called via. the auto-differentiation software
CasADi (Andersson et al., 2019), and Lemkes Algorithm imple-
mented in the Numerics package in Siconos, (Acary et al., 2019).
Experience showed that Lemkes algorithm was the fastest.

3. Modeling population dynamics and the diel vertical migra-
tion

We apply our method to the diel vertical migration of oceanic
animals where the game is well-understood, but the interplay be-
tween the daily variations and the population dynamics have not
been properly investigated. We consider a food-chain in a water
column, consisting of a resource R, a consumer C , and a predator
P . The resource is thought of as phytoplankton, the consumer
as copepods and the predator as forage fish. The predators and
consumers are each distributed in the water column according
to probability distributions, ϕc(z, t), ϕp(z, t), and the resource is
distributed according to r(z, t).

Forage fish are visual predators, so their predation success is
heavily light dependent. The available light decreases with depth
in the water column, and varies with the time of day. The light
intensity I at depth z is approximately I(z) = I0 exp(−kz), and
the light-dependent clearance rate of a predator is βp,0. However,
even when there is no light available there is still a chance of
catching a consumer if it is directly encountered, so the clearance
rate, βp(z, t), of forage fish never goes to 0 even at the middle of
the night or at the deepest depths.

βp(z, t) = βp,0
I(z, t)

1 + I(z, t)
+ βp,min

We model the light-levels at the surface via the python pack-
age pvlib (Holmgren et al., 2018) in the North Sea. The light
levels are given by the direct horizontal light intensity at the
sea-surface, neglecting more complicated optic effects. The model
takes the precipitable water wa, and aerosol optical depth, aod.
We model light decay throughout the water column as exp(−kz).

In contrast to forage fish, copepods are olfactory predators,
and their clearance rate, βc , is essentially independent of depth
and light levels.

βc(z, t) = βc,0

The interactions between the consumer and resource are local,
as are the interactions between a predator and a consumer. The
local encounter rate between consumers and resources is given
by Cβc(z, t)ϕc(z, t)r(z, t), and the local encounter rate between
predators and consumers is CPβp(z, t)ϕc(z, t)ϕp(z, t).
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3.1. Population dynamics

The resource cannot move actively, so its time dynamics are
naturally specified locally. The growth of the resource is modeled
with a logistic growth, with a loss from grazing by consumers
and diffusion from the natural movement of the water. We as-
sume interactions can be described with a Type I functional
response, allowing us to eventually use the method developed in
Section 2.1. The resource dynamics become:

∂t r(z, t) = r(z, t)
(
1 −

r(z, t)
rmax(z)

)
− βc(z, t)ϕc(z, t)C(t)r(z, t)

+ k∂2
z r(z, t) (10)

The total population growth of the consumer population is
found by integrating the local grazing rate over the entire water
column multiplied by a conversion efficiency ε, subtracting the
loss from predation. The growth of the predators is given by the
predation rate integrated over the water column. The instanta-
neous per capita population growth without metabolic losses, of
the consumer Fc and predator Fp become:

Fc(ϕc, ϕp) =

∫ z0

0
εβc(z, t)ϕc(z, t)r(z, t)dz

− P(t)
∫ z0

0
βp(z, t)ϕc(z, t)ϕp(z, t)dz

Fp(ϕc, ϕp) = C(t)
∫ z0

0
εβp(z, t)ϕc(z, t)ϕp(z, t)dz

(11)

Using Eq. (11) we arrive at equations for the predator–prey
population dynamics:

Ċ = C(t) (Fc − µC )

Ṗ = P(t)
(
Fp − µP

) (12)

We use Fc, Fp, Eq. (11), as our fitness proxies.

3.2. Simulating the model

As in Section 2.1 at any instant, all consumers and predators
simultaneously seek to find the strategy that maximizes their
fitness (Fc, Fp) Eq. (6). A strategy in our case is a square-integrable
probability distribution in the water column, i.e. an element in K ,
Eq. (5).

Using the notation of Section 2.1, the Nash equilibrium of the
instantaneous game is:

ϕ∗,NE
c = argmax

ϕc∈K
Fc(ϕc, ϕ

∗,NE
p )

ϕ∗,NE
p = argmax

ϕp∈K
Fp(ϕ∗,NE

c , ϕp)
(13)

We apply the method of Eq. (9) to find the Nash equilibrium of
the discretized system. Using the Nash equilibrium Eq. (13) we
are able to solve the time-dynamics for the predator–prey system
Eq. (12) by a Euler scheme. The dynamics of the resource are more
complicated due to the diffusion term, Eq. (10). We solve the
partial differential equation for the resource using the method of
exponential time-differencing (Hochbruck and Ostermann, 2010)
with a first-order approximation of the integral. Using exponen-
tial time-differencing guarantees a stable solution, though the
system may be stiff (Hochbruck and Ostermann, 2010).

3.3. Model parameters

Following Yodzis and Innes (1992), we parameterize the clear-
ance and loss rates in a metabolically scaled manner following
Kleiber’s law, (Yodzis and Innes, 1992), using scaling constants

Fig. 1. Total populations of consumers (blue), predators, (red) and resources
(purple) from 1st of April to 1st of October. We vary the rationality, from total
rationality (A), bounded rationality (σ = 10), (B) and fully irrational, σ = ∞,
(C), corresponding to a simple Lotka–Volterra model.

from Andersen (2019, Table 3). We use the default parameters
in the clear-sky model, modeling a sequence of moonless nights.
This is a bit of a simplification, but it should not have a great effect
on our results as moonlight at full moon has an intensity 10−6

of sunlight at noon (Biberman, 1971). The North Sea is modeled
with a rather high attenuation coefficient k, ( Table 1). We use
the notation N (0, σ 2) for the normal distribution with mean 0
and variance σ 2 (see Table 1).

4. Results

We study a tri-trophic system over a period of time from
spring to fall, in order to capture the seasonal variations in pop-
ulation levels and vertical migrations. We restrict ourselves to
a single seasonal cycle so we do not have to take the radically
changed resource dynamics during winter into account, and can
avoid questions of hibernation and other seasonal adaptations for
low-resource environments. We compare three different cases of
behavioral optimization: perfect rationality, (σ = 0 m2), bounded
rationality (σ = 10 m2), and a fully irrational system with a
uniform distribution throughout the water column (σ = ∞ m2)
as a reference. The system with a uniform distribution reduces
our dynamic to Lotka–Volterra dynamics and is included as a
reference system, to showcase the dynamics without behavior.

4.1. Population dynamics

Fig. 1 shows the seasonal-term population dynamics for the
system we consider, comparing the population levels for the
models with perfect rationality (Fig. 1(A)), bounded rationality
(Fig. 1(B)) and full irrationality (Fig. 1(C)).

In the system with full irrationality Fig. 1(C) we see very
unstable population dynamics, with the consumer population
having crashed and stabilized again and the predator popula-
tion rapidly decreasing at the end of the simulation. In contrast,
both bounded and perfect rationality result in stable population
dynamics (Fig. 1(A,B)). All three models have an initial large pop-
ulation growth, but the behavioral optimization rapidly dampens
the population dynamics, as the increase in predator populations
leads to a corresponding decrease in the willingness of consumers
to take risks (Fig. 1(A,B)). In the summer, the effect of a much
shorter night is visible in the resource dynamics on the long term
(Fig. 1(A,B, (J, J), purple)), since the resource population increases,
leading to more risk-willing consumers and a higher predator-
population (Fig. 1(A,B, (J, J), red)). Surprisingly this is not enough
to counter the rise in consumer numbers (Fig. 1(A,B, (J, J), blue)).

The population levels for the model with bounded and perfect
rationality are essentially indistinguishable, so the decrease in
fitness from the decrease in optimality is not that great. Viewed
on a long time-scale the underlying daily variation is practically
invisible.
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Table 1
Parameter values used in the model of the diel vertical migration.
Name Abbreviation Value Source

Precipitable water wa 1 g m−3 Gueymard et al. (1995)
Aerosol optical depth aod 0.1 Gueymard et al. (1995)
Light decay k 0.1 m−1 Gueymard et al. (1995)
Ocean depth z0 90 m McGlade (2002)
Predator mass mp 20 g Appx. Wheeler (1975)
Consumer mass mc 0.05 g 1

400mp (Andersen, 2019, Table 3)
Consumer clearance rate βc 32 m3 yr−1 Andersen (2019, Table 3)
Predator clearance rate βp,0 2800 m3 yr−1 Andersen (2019, Table 3)
Consumer metabolic rate µc 0.24 yr−1 Andersen (2019, Table 3)
Predator metabolic rate µp 21 yr−1 Andersen (2019, Table 3)
Minimal attack rate βp,min 5 · 10−3βp Thygesen and Patterson (2018)
Phytoplankton growth λ 100 yr−1 Arin et al. (2002)
Phytoplankton max rmax 10N (0, 6) g m−3 Assumed
Irrationality σ 10 m2 Assumed
Diffusion rate k 500 m2 yr−1 Schaechter (2009, Marine Habitats)
Initial consumers C0 4 g m−2 Assumed
Initial predators C0 0.04 g m−2 Assumed
Initial resources r0 4N (0, 6) g m−3 Assumed

Fig. 2. Daily distribution of consumers blue and predators red at noon (A,D),
dusk (B,E) and at midnight, (C,F) with full (A–C) and bounded rationality (D–F)
on the 22nd June (Summer solstice). Remark that the purple color indicates an
overlap in ranges.

4.2. Bounded rationality and perfect rationality

The plots in Fig. 2 show snapshots of consumer and predator
distributions in the water column at dawn, midday and dusk on
summer solstice. Fig. 2(A–C) show the distributions with perfect
rationality, and Fig. 2(D–F) show the migration with bounded
rationality. Any significant differences in behavioral choices be-
tween our model of bounded rationality and perfect rationality
become visible when viewing the resulting distributions simul-
taneously. As expected, a pattern of vertical migration emerges
with the emergence of a deep scattering layer of fully rational
consumers at noon Fig. 2(A, blue). Most of the predators are also
present in this layer Fig. 2(A, red), excepting a few hanging out
higher in the water column deterring upward consumer migra-
tion, corresponding to the modeling results of Pinti and Visser
(2019). At dusk, Fig. 2(B) the predators have a greater concen-
tration near the surface, while the consumer ‘‘box’’ is beginning
to form, yet still with a continuous drop-off to the surface due
to the risk from the light. At midnight Fig. 2(C) the consumers
are concentrated near the surface, with a discontinuous drop
to nothing. The predators follow the consumers, albeit with a
continuous shape, both distributions being similar to the results
of Thygesen and Patterson (2018).

The behavioral choices with bounded and perfect rationality
are strikingly similar, especially at noon (Fig. 2(A, D)). At dusk
the consumers with perfect rationality have a large discontinuous
peak in their distribution, which declines continuously towards
the top of the water column due to the risk from light (Fig. 2(B,
blue)), while the consumers with bounded rationality follow the

same overall pattern of moving towards the surface, (Fig. 2(E,
blue)). The increased concentration of consumers with bounded
rationality at the top of the water column (Fig. 2(E, blue)) must
be balanced by the wider breadth of the consumer distribution.
Due to the slightly higher concentration of bounded rationality
consumers at the top, predators with bounded rationality have
a peak in their distribution slightly higher in the water column
than the fully rational ones (Fig. 2(B, E, red)). Apart from the
location, the predator distributions are otherwise quite alike,
with the rational predators having an emergent almost-smooth
distribution. At midnight the distribution of fully rational con-
sumers has a discontinuous dropoff (Fig. 2(C, blue)). Due to the
forced dispersion, the consumers with bounded rationality are
more spread out (Fig. 2(F, blue)), but the distribution looks like a
smoothed version of the fully rational distribution. In contrast to
the consumers, the fully rational predators and the predators with
bounded rationality have almost the same distribution, where
they spread out at night, with the highest concentration in the
top of the water column (Fig. 2(C, red)).

4.3. Seasonal variation

The heatmaps in Fig. 3 illustrate the seasonal variation of
the daily migration of consumers (Fig. 3(A–C)) and predators
(Fig. 3(D–F)), by focusing on the equinoxes and the summer
solstice.

The vertical migration (Fig. 3) is apparent throughout the
seasons. Both consumers and predators are highly concentrated
at the top of the water column during nighttime, and at day they
scatter to the deep, with a transition during dusk as illustrated
in Fig. 2(B,D). Looking at the consumers (Fig. 3(A–C)), there is
a clear seasonal variation in the speed of the migration and the
size of the consumer ‘‘box’’ at nighttime. In the spring, (Fig. 3(A))
the consumer migration is very fast, due to a relatively large
predator population from the initial boom, so each individual
consumer is at very high risk in the spring. In addition, the day–
night transition is quite fast during the equinox. Predators follow
the consumers (Fig. 3(D)), but with a continuous distribution. At
the summer solstice, (Fig. 3(B,D)) the migration has changed char-
acter with a more protracted duration, occasioned by a slower
change in light levels than in the spring. In addition the predator
population has declined a bit from its spring high, and is slowly
rising again (Fig. 1), leading to a less risky environment for
the consumers. The shape of the distributions of predators and
consumers is the same as in the spring, with the only major
difference being the shape of the migration.
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Fig. 3. Vertical distribution of consumers (A–C) and predators (D–F) at spring equinox (March 22), summer solstice (June 22) and fall equinox (September 23).

Fig. 4. Seasonal comparison of consumer (blue) and predator, (red) feeding
patterns on March 22 (spring equinox) (A), 22 June (summer solstice) (B) and
23 of September (fall equinox) (C).

Moving the hands on the clock forward to the fall equinox,
we see a different pattern (Fig. 3(C,F)) compared to the spring
equinox. The vertical migration is slower in the fall than the
spring, which can be seen by the width of the intermediate states
in Fig. 3(C,F). The change in speed comes from an individual
consumer being in less danger than in the spring, due to the
decline in predator populations and rise in consumer populations
(Fig. 1).

4.4. Feeding rates

Fig. 4 shows the seasonal variations in the daily feeding pat-
terns of consumers (blue) and predators (red), by zooming in on
the spring equinox, summer solstice and fall equinox.

At all three points in time, consumers have a constant feeding
level throughout the night (Fig. 4), due to the vertical migration

(Fig. 3). In spite of the predator and consumer populations being
overlaid at night (Fig. 3(A,C)), the predators have practically no
feeding activity at night (Fig. 4). This illustrates the advantage of
the diel vertical migration for the consumers.

The main feeding time for predators is at dawn and dusk,
Fig. 4, again illustrating the efficacy of the diel vertical migration
as a predator-avoidance strategy for the consumers. In the spring,
there is a large amount of predators and not that many con-
sumers, so the individual consumers get to eat more as evidenced
by the high peaks (Fig. 4(A, blue)), while the individual predators
go hungry (Fig. 4(A, red)). The duration of predator feeding is
largest in the summer (Fig. 4(B, red)), where we also see the
slowest migration (Fig. 3(B,D)). That individual predator feeding
is slightly larger in the summer than in the fall is surprising, since
there are more predators in the summer (Fig. 1(J,J vs. S,O, red)).
Consumers’ increased risk avoidance must also be occasioned
indirectly by the increased consumer population from summer
to fall leading to less available food, both pr. capita and in total
(Fig. 1(A, purple)), and by the longer day–night transition. As
the consumer population increases through the seasons, each
consumer gets less food during the night (Fig. 4(A–C, blue)) due
to intraspecific competition, while the predator feeding level
stabilizes Fig. 4(B, D, blue) after the famine (Fig. 4(A, red)).

5. Discussion

Our study of a Lotka–Volterra system with optimal behavior
in the water column focuses on both the emergent behavior and
population dynamics. The population dynamics were stabilized
dramatically by the introduction of optimal behavior, and a slight
seasonal dependence appeared. The short-term dynamics show a
clear distinction between predator and consumer feeding modes,
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where prey feed during night while predators feed at dusk and
dawn. By comparing the results for bounded rationality and un-
bounded rationality on the long and short time scales, we see
two different pictures emerge. The behavior predicted by the
two different models is similar, but still visibly different. Though
the behavior is different, the difference becomes negligible at
long-time scales. Of course, the specific effect is a result of the
value of the bounded rationality we use. This value was chosen
heuristically to smooth the distributions, but not too much. The
results illustrate the strength of our numerical approach to study-
ing population games, and underline the importance of robust
algorithms and discretization schemes.

Our results illustrate the interplay between population dy-
namics, seasons, and behavior. Though light levels may be the
same at two different times of the year, the migration patterns
can differ radically due to the differences in population abun-
dances. Bounded rationality appears to change the population
dynamics imperceptibly compared to the results with perfect
rationality. Behavior is probably not completely rational in reality,
but the change from complete rationality to slightly bounded
rationality does not appear important for population dynamics.
Assuming perfect rationality appears much more reasonable than
full irrationality. At first sight, the intensity of predator–prey
interactions at dawn and dusk seem to indicate that models need
to be very fine-grained in time to capture population dynam-
ics accurately. Zooming out to the long-term dynamics lends
hope that the same dynamic could be captured with a rougher
time-discretization.

In terms of the specific case of diel vertical migrations, large-
scale geographical studies of the vertical migration indicate that
population levels are a driving factor in the diel vertical migra-
tion (Klevjer et al., 2016), not just light. This corresponds to the
predictions of our model, and shows the importance of modeling
behavior explicitly. Our qualitative results on the seasonal vari-
ation of the vertical migration tentatively appear to correspond
with empirical findings (Wang et al., 2014; Beaugrand et al., 2001;
Colebrook, 1979). This agreement is, it must be emphasized, qual-
itative in nature. If the model was tuned through empirical data
to an ecosystem, perhaps it could be used to forecast seasonal
changes in vertical migrations.

At the level of general population games, ocean population
dynamics are driven by feeding at dusk and dawn (Benoit-Bird
and McManus, 2014), and our model provides a purely behavioral
justification for this phenomenon. At the same time, our results
show that the discontinuous feeding patterns gives rise to smooth
long-term population dynamics. The population-level results sup-
port the usual approach of assuming perfect rationality in popu-
lation games with interacting populations, though the behavior
of each individual is most likely slightly sub-optimal (Hurly and
Oseen, 1999). Slight sub-optimality in the vertical distribution is
not that important for overall population levels, so at the popu-
lation level complete rationality provides almost no evolutionary
benefit.

Bounded rationality as we introduce it is potentially testable,
contrasting e.g. satisficing models, (Nonacs and Dill, 1993). Empir-
ical studies of copepod vertical migration patterns indicate that
their distribution in the water column can be closely approxi-
mated by the smooth distribution we get from the model with
bounded rationality (Hay et al., 1991; Visser et al., 2001). Our
model of bounded rationality passes the first test, but must be
compared with more data.

Our approach for solving games in continuous space repre-
sents a significant advance over the current state-of-the art (Mar-
iani et al., 2016; Pinti et al., 2021). Interpreting strategies as
distributions in space forms one of the two pillars of our ap-
proach. This interpretation is heavily inspired by that of static

mean field games (Lasry and Lions, 2007; Blanchet and Carlier,
2016), rather than classical evolutionary game-theory (Hofbauer
et al., 1998). Thinking of the strategy of a population as a dis-
tribution for each individual rather than each individual being
at specific locations turns out to be a powerful tool. Thinking
in terms of distributions is what allows us to reformulate the
game between predators and prey into a continuous polymatrix
game, where the Nash equilibrium can theoretically be found. A
theoretical reformulation of the population game cannot stand
alone, leading to the second pillar of our project: The intro-
duction of efficient numerical methods. A necessity for efficient
numerical methods is stating the problem in a form that is easily
solvable, and an efficient algorithm to solve that form. Using a
spectral scheme allows us to only use relatively few points for
high precision, (Kopriva, 2009), giving half the problem state-
ment. Together with a tractable method of solving polymatrix
games (Miller and Zucker, 1991), we have the full restatement
of the problem. We then apply fast algorithms from modern
optimization software (Andersson et al., 2019; Acary et al., 2019)
to solve the restated problem. This combination is fundamentally
what allows us to solve a population game in both continuous
time and space. In essence, by using the philosophy of mean-
field games applied through modern numerical methods we have
constructed a general feasible approach to incorporating behavior
in models of interacting populations in continuous habitats.

Our population model with the vertical migration shows that
transient phenomena and continuous fitness gradients (Kawecki
and Ebert, 2004) are naturally at home in a continuous population
game. Incorporating these features allows a more fine-grained
biological analysis and greater predictive power in models of real-
world systems than typical finite-patch models (Křivan et al.,
2008; Sadowski and Grosholz, 2019). Our focus has largely been
on the interplay between temporal and spatial transients in the
vertical migration. If one of these is averaged out, e.g. the time-
varying habitat, the model can be adapted to find the equilibrium
populations and distributions in inhomogenous habitats. We have
used our approach for a one-dimensional habitat, but it can
readily be used to accommodate a two-dimensional habitat. More
generally, our approach only depends on the bilinearity of the
fitness proxy and the population-game setup.

Though intraspecific competition is often more important in
shaping behavior than the risk of predation (Křivan and Sirot,
2002), we did not consider the effect in the case we considered
for simplicity and to keep the case aligned with (Thygesen and
Patterson, 2018). Including the effect of intraspecific competi-
tion on population dynamics and behavior could be a next step
for a deeper investigation of the case. Performing a multi-year
simulation could also reveal interesting patterns, but doing so
would complicate the model since it would need to take low-
resource adaptations during winter into account. Since our model
is in large part a proof-of-concept, we found it best to neglect
such phenomena. We consider the case where the equilibrium is
unique, but in general there might be many Nash and population
equilibria (Křivan and Sirot, 2002). A specific Nash equilibrium
can be tracked across changing population levels, if it is used as
starting point for finding the Nash equilibrium with a slightly
different population, but we are not aware of any method to
guarantee that the correct Nash equilibrium is found apart from
enumerating all equilibria (Mangasarian, 1964). Hence there can
also be no guarantee which equilibrium our method converges
to without this procedure. As such, our method is best suited to
models with a unique Nash and population equilibrium.
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6. Conclusion

Simulating the population dynamics of a predator–prey sys-
tem through half a year reveal a complex interplay between
seasons, behavior and population dynamics. Though our model is
simple in nature, it can catch essential features of the seasonal
dependence of the diel vertical migration. Though the primary
trophic interactions happen abruptly and in a very short time
frame when introducing optimal behavior, optimal behavior still
serves to stabilize the system. We show that it is possible to in-
clude bounded rationality in a systematic fashion, allowing it as a
tuning parameter in future models. The usual assumption of per-
fect rationality seems to be reasonable for population dynamics,
but bounded rationality appears to be better at predicting specific
distributions. These results are fundamentally only possible due
to one of the major contributions of our approach, namely the in-
troduction of efficient numerical methods for solving continuous
population games. Whether to include behavior in a model or not
reduces to a question of relevance to the model, not feasibility.
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Appendix. The density dependent case

We expand on the game defined by Eq. (3), in the case where
Aii ̸= 0. We remark that strategy of an individual is pi, but the
individual and the population do not follow the same strategy a-
priori. Instead the individual plays the field (Fretwell, 1969), and
we denote the population strategy by pi. Hence the payoff for an
individual of type i playing against its conspecifics in the notation
of Eq. (3) is given by

⟨pi,NiAiipi⟩ (A.1)

The optimal strategy for an individual of type i against a popula-
tion playing pi can therefore be found as a optimization problem,
where the Karush–Kuhn–Tucker conditions are:
NiAiipi + µi = λi

pi, µi ≥ 0
T∑

i=1

pi(t) = 1

⟨pi, µi⟩ = 0

(A.2)

At the Nash equilibrium, no individual gains from deviating from
the population strategy (Lasry and Lions, 2007). This implies that
at the Nash equilibrium pi = pi. Inserting this in Eq. (A.2), we
arrive at

NiAiipi + µi = γi (A.3)

As such, the Nash equilibrium for the game specified by Eq. (A.1)
is the same as the equilibrium for the game specified by:
1
2

⟨pi,NiAiipi⟩

In conclusion we arrive at an expression for Eii in the case where
Aii ̸= 0

Eii =
1
2

⟨pi,NiAiipi⟩ +
1
T

Γi (A.4)
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Abstract

While behavioral responses of individual organisms can be predicted with opti-
mal foraging theory, the theory of how individual behavior feeds back to popu-
lation and ecosystem dynamics has not been fully explored. Ecological models
of trophic interactions incorporating behavior of entire populations commonly
assume either that populations act as one when making decisions, that behavior
is slowly varying or that non-linear effects are negligible in behavioral choices
at the population scale. Here, we scale from individual optimal behavior to
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tors adapt their behavior in response to food availability and predation risk.
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behaving optimally at every instant basing their choices on the average pop-
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it numerically. By modeling the interactions as playing the field, we can per-
form instantaneous optimization at the individual level while taking the entire
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sumption rate, corresponding to a partial satiation. In addition, we find that a
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efficient and can be used to account for behavior in population dynamics with
fast behavioral responses
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1. Introduction

Animal behavior plays an essential role in shaping ecosystems (Ripple and
Beschta, 2004; Laundré et al., 2001; Stump and Chesson, 2017; Sih et al., 1985).
While classic ecosystem models ignore behavior (Hairston et al., 1960; Oksanen
et al., 1981), by now a wealth of models have considered the impact of adaptive
foraging (Kondoh, 2003; Lima and Dill, 1990; McNamara and Houston, 1992;
Abrams, 2010; Werner and Anholt, 1993; Abrams, 1984). One of the central
mechanisms is risk-sensitive foraging, e.g. the ability of an animal to retreat to a
refuge when under risk of predation. Examples of such behavior are abundant,
e.g. juvenile fish prefer the littoral zone over the pelagic despite lower food
availability (Biro et al., 2005), and tits prefer the interior of forests (Suhonen,
1993). These behaviors are adaptive and can change rapidly in response to
changes in perceived predation risk. In both these cases the behavior of the
prey acts to reduce the encounter of prey with predators at the expense of
feeding.

There are two common approaches to introducing adaptive behavior reflect-
ing risk-sensitive foraging in ecosystem models. First, through direct modifica-
tion of encounter terms to reflect predator interference, (Arditi and Ginzburg,
1989; Přibylová and Berec, 2015; DeAngelis et al., 1975). Second, by intro-
ducing a fitness proxy which the prey or predator optimize individually. This
can happen based on instantaneous optimization based on the current state
(Křivan, 2007; Kiørboe et al., 2018), over longer time-intervals through dy-
namic programming (Houston et al., 1999; Thygesen et al., 2016) or through
a gradient-climbing approach (Abrams, 2007, 2009a). The instantaneous opti-
mization is suitable for ecosystems where the behavior is habitat choice with
highly-interconnected habitats, where the migrations are much faster than the
population dynamics (Cressman et al., 2004; Ma et al., 2003). A canonical ex-
ample of such a system is the ocean with the diel vertical migration (Iwasa,
1982; Pinti et al., 2019). The model of instantaneous shifts in behavior is also
justified when considering activity level as the behavioral variable, e.g. swim-
ming speeds (van Someren Greve et al., 2019; Sutton, 2013). When there are
multiple animals or species present, the instantaneous optimization approach
leads to a game at every instant.

Models studying the impact of refuge use on ecosystems based on instan-
taneous choice typically assume that both species have linear fitness proxies
(Křivan, 2007; Cressman et al., 2004; Malone et al., 2020), or at least that
predators have linear fitness proxies (Genkai-Kato, 2007). In the cases when
non-linear fitness proxies are included, the model is often simplified by assum-
ing that populations are monomorphic, that is, the entire population always acts
as one, (Genkai-Kato, 2007), i.e. they cooperate. By cooperating individuals in
a monomorphic population can obtain a higher population growth rate than if
each individual plays the field, i.e., optimizes its individual fitness in competition
with conspecifics rather than cooperation (Abrams et al., 1993). If the number
of individuals in each population is very large and they do not cooperate, the
instantaneous population game is naturally modeled as playing the field (May-
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nard Smith, 1982). When playing the field each individuals behavior is based on
the average strategy of the populations (Parker, 1978; Maynard Smith, 1982),
e.g. their distribution in a spatial habitat (Fretwell, 1969). This leads to a Nash
equilibrium where all individuals follow the same behavioral strategy (Křivan
et al., 2008) rather than assuming it from the start as in a game with monomor-
phic populations. Population games modeled as playing the field also allow for
non-linear fitness proxies in asymmetric games (Křivan and Eisner, 2006; Vin-
cent and Brown, 2005). The monomorphic structure is, however, often imposed
due to a lack of a general method to study population dynamics and behavior
simultaneously when playing the field. A modeling approach allowing for easy
evaluation of Nash equlibria when individuals play the field games is a step-
ping stone for an integration of behavior into ecosystem ecology (Schmitz et al.,
2008).

An important question in community ecology is to predict the response of
the system to (slowly) varying forcing. Here, we distinguish between “bottom-
up forcing”, such as varying the basal resources available to the system, and
“top-down forcing”, such as varying the mortality of the highest trophic levels
e.g. by human harvest. According to the ecosystem enrichment hypothesis (Ok-
sanen et al., 1981; Hairston et al., 1960) consumer abundances at equilibrium
respond weakly to bottom-up forcing due to top-down control by predators.
Top-down forcing classically results in an increase in consumer populations in
response to higher mortalities induced on the predator (Oksanen and Oksanen,
2000). Predators eventually go extinct due to the mortality, potentially af-
ter increasing in abundance first (Abrams, 2009b). Behavioral adaptations are
known to fundamentally change the responses of ecosystems to forcing. Preda-
tors can choose to reduce their foraging activity when they are satiated or
subjected to predation or harvesting themselves. These non-consumptive ef-
fects lead to trophic cascades (Peckarsky et al., 2008; Heath et al., 2014) which
are often stronger than those caused by direct effects (Abrams, 2004, 2010). In
addition, non-consumptive effects can fundamentally change the nature of the
cascade (Wollrab and Diehl, 2015; Abrams and Vos, 2003). A general trend is
that bottom-up forcing causes a change in all in population levels when behav-
ioral adaptation is incorporated (Valdovinos et al., 2010; Abrams, 2010; Schmitz
et al., 2004). In contrast, predator adaptation attenuates the effect of top-down
forcing (Loeuille and Loreau, 2004) while consumer adaptation can either atten-
uate or accelerate top-down forcing (Abrams, 2009b; Abrams and Vos, 2003).
The results for top-down forcing when both predators and consumers are adap-
tive are more complex, without an overall trend (Abrams, 1992b; Křivan and
Cressman, 2009). Generally, the co-adaptive situation has not been investigated
in as much depth, especially not with fast behavior and where the behavioral
choices take non-linear effects into account (Barbosa and Castellanos, 2005,
Chapter 13, p. 292-294), (Pinti et al., 2021; Abrams, 2010).

An ecosystem modeled as a trophic chain has been examined before with
delayed behavior, (Abrams, 1992a; Abrams and Roth, 1994b) or with only lin-
ear effects (Abrams, 2010; Pinti et al., 2021). A tri-trophic chain with fast
adaptive behavior where both predators and consumers play the field and have
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to take non-linear effects such as satiation into account has not been studied
before. That is, the impact of fast adaptive behavior has not been studied in
entire classes of models. In particular, models of systems where choices are
made instantaneously based on both individual satiation, (Křivan and Eisner,
2006), and the satiation of their predator, e.g. models of aquatic ecosystems
(Heath et al., 2014; Iwasa, 1982; van Someren Greve et al., 2019) have not been
investigated.

Here, we develop a modeling approach which allows us to analyze ecosystems
where both predators and consumers have instantaneous behavior, where the
choices are made by each individual playing the field with their decisions taking
individual satiation into account. Assuming that both consumers and predators
play the field, allows us to couple individual choices and the behavior of the
overall population. We first present a tri-trophic food-chain consisting of a re-
source, a consumer, and a predator under risk of top-predation. Consumers and
predators both adapt their behavior instantaneously according to a behavioral
game. Our work examines the individual, the population, and ecosystem level
of this system. We investigate the food chain with optimal behavior at equilib-
rium as a function of resource carrying capacity and mortality of the predator,
i.e., the response to bottom-up and top-down forcing. At the population level
we compare the consequences of the top-down and bottom-up forcing to both
the classical results and other models with optimal behavior. At the individ-
ual level, we examine the consumption rate out of equilibrium, investigating
the relationship between Type II and Type III functional responses when both
consumers and predators have optimal behavior. In addition, we consider the
individual consumption rate at equilibrium as an ecosystem feature when fast
optimal behavior is included in the model.

2. Methods

Our model is based on the concept of a “foraging arena” where feeding
encounters occur under the risk of predation. Individuals may choose to retreat
to a refuge to avoid predation risk at the cost of forgone feeding (Gause et al.,
1934). An example of a foraging arena is the upper levels of the ocean during
the day where visual predators can detect prey at distance. In this case the
anti-predator response is vertical migrations of prey towards a refuge in deeper
and darker water (e.g. Iwasa, 1982). Another example of a refuge is the shelter
offered small birds by trees and bushes from birds of prey. In the following we
implement arena-refuge behavioral dynamics in a tri-trophic consumer-resource-
predator system where the predator is further exposed to predation from a
top-predator or harvester which does not have population dynamics explicitly
included in the model (Figure 1). Instead, this population is represented by a
parameter. In this way, we can explicitly study the sensitivity of the system
to the top-predator population. This models a migratory population of apex-
predators with the predators as preferred food-source (Furey et al., 2018; Block
et al., 2011).
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The presence of a top-predator creates a tradeoff for the predator, as it is un-
able to feed in the refuge, but by staying in the refuge it avoids the top-predator.
Predators and consumers simultaneously and instantaneously maximize their
fitness by choosing behavior to form a Nash equilibrium.

We consider a tri-trophic food chain with biomass densities of a resource
(R), a consumer (C), and a predator (P ). We have in mind a system where
individuals move in and out of the arena independently and instantaneously.
The population dynamics are:

Ṙ = λ · (R−R)−R ·Mr(τc, C,R),

Ċ = C · (Gc(τc, R)−Mc(τc, τp, P, C)− µc),
Ṗ = P · (Gp(τc, τp, C)−Mp(τp, ξ)− µp) ,

(1)

where the time derivative of a function f is represented as ḟ . We ignore the time
argument t in the notation, but R,C, P and τc, τp are implicitly time-dependent.

The behavioral variables τc and τp take values between 0 and 1 and describe
the fraction of time consumers and predators are present in the arena; the
resource is described as a chemostat with carrying capacity R and renewal rate
λ. Mr is the mortality of the resource due to predation by the consumers.
For consumers and predators the specific growth rates are Gc and Gp, their
mortalities are Mc and Mp, and metabolic losses are µc and µp. The growth and
mortality rates depend on abundances as well as the instantaneous behaviors τp
and τc.

Resource           
        R

Consumer   
        C

Predator
       P

Top predator

τc

1- τc

τp

1- τp

Arena

Refuge

Figure 1: Sketch of the system (Equation (1)) and the arena-refuge concept. Feeding events
and predator-prey encounters only occur in the arena. Resources are always in the arena
where consumers and predators spend τc, respectively τp, of their time. This means that e.g.
the fraction of the consumer populations which is present in the area at a given instant is also
τc. The top-predator tracks the behavior of the predator, and is in the arena τp of the time.
The population dynamics of the top predator is not represented in the model but acts as an
external risk for the predator’s foraging.

A type II functional response is our starting point for describing the growth
rates of consumers (Gc) and predators (Gp). With conversion efficiency ε and
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without behavior this would be:

Gc = ε
acβcR

βcR+ ac
. (2)

Here, βc is the consumer clearance rate and ac is the maximum consumption
rate. For many animals handling time is not the limiting factor for growth
but rather prey encounters (Jeschke et al., 2002; Giske and Salvanes, 1995)
and to a limited degree processing capacity of the gut. Clearance of resources
is only possible in the arena, so the effective consumer clearance becomes τcβc.
Adjusting for the conversion efficiency the consumer growth rateGc and resource
mortality Mr become (Werner and Anholt, 1993).

Gc(τc, R) = ε
acβcτcR

βcτcR+ ac
.

Mr(τc, C,R) =
acβcτc

βcτcR+ ac
C

(3)

Note that if the feeding rate is limited by prey-handling as often assumed
(Abrams, 1982, 1990; Prowe et al., 2012), with 1/ac being the handling time
the correct form of Gc instead becomes

ε
acβcτcR

βcR+ ac
. (4)

We only consider a per capita growth rate given by Equation (3).
The consumers suffer a constant metabolic loss, µc independent of the time

in the arena τc. Similarly for the predator, where prey encounters are also
limited to the arena:

Mc(τc, τp, C, P ) =
apβpτcτp

βpτcτpC + ap
P

Gp(τc, τp, C, P ) = ε
C

P
Mc(τc, τp, R, C, P ) =

apβpτcτpC

βpτcτpC + ap
,

(5)

We now use subscript p on the parameters to indicate the predator. The product
τcτp enters in the encounter rate between predators and consumers because we
assume that individual consumers and predators move in and out of the arena
independently. Movement in and out of the arena is instantaneous, correspond-
ing to a slow-fast system where the population dynamics are much slower than
migrations.

The behavior-dependent mortality of the predator emerges from pressure
from a top-predator or harvesting. We include the maximal pressure from the
top-predator population or maximal harvesting pressure as a parameter ξ. A
common feature for apex predators is migrating quickly for food and having
diverse food sources (Thygesen et al., 2016; Furey et al., 2018). For these rea-
sons we model that the proportion of apex-predators present in the arena is
proportional to the presence of their food, i.e. predators, in the arena. Hence
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the top-predator presence can be described by ξτp. The per capita mortality of
the predators Mp is then described by their encounters with the proportion of
top-predators in the arena, i.e.

Mp = ξτ2p . (6)

2.1. Focal individual and playing the field

We consider the specific growth rate Fi for an individual as a fitness proxy.
The environment an individual consumer or predator faces is not only shaped
by the consumer or predator populations, but also their behavior. Denoting
the average of the population behavioral strategies by τ i where i ∈ {c, p} the
average proportion of consumers and predators in the arena are Cτ c and Pτp,
respectively. The growth rate for an individual then depends on both τ c and τp.
Hence each individual plays the field at every instant (Maynard Smith, 1982;
Křivan et al., 2008), as they are playing against the habitat choices of the rest
of the population.

The growth of a consumer is not impacted by the choices of the rest of the
population, but the threat from predation is influenced by the behavior of other
consumers and the average predator strategy. The encounter rate of a consumer
with an average predator is apβpτcτp, and the satiation of the average predator
is

1

βpτ cτpC + ap
. (7)

With these considerations in mind, the specific growth rate of an individual
consumer becomes:

Fc(τc, τ c, τp) = Gc(τc, τp)−
apβpτcτpP

βpτ cτpC + ap
. (8)

As the top-predator or harvester tracks the average predator time in the arena
τp, an individual predator will experience the loss ξτpτp. Hence the specific
growth of an individual predator becomes:

Fp(τp, τp, τ c) = Gp(τp, τ c)− ξτpτp. (9)

For reference we also consider the model where the behaviors τc and τp are
constant in time and equal to 1. This entails that the average behavior is also
constantly equal to 1. We refer to this as static behavior, in contrast to the
optimal behaviors that continuously maximize the fitness proxy.

2.2. Optimal behaviors, games, and Nash equilibria

We now detail how the individuals at each instant choose their behavior, τc
and τp, to maximize the fitness proxy Fi. Subtleties arise because the fitness
depends both on the individual behavioral choice, and average behavior of the
population. A key assumption that allows us to resolve this problem is that the
populations of both consumers and predators are assumed to be large. If the
populations are large, the action of an individual does not change the average
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population behavior. With this assumption, the game becomes a game where
all individuals play the field. Since no consumer or predator can gain from
deviating from the Nash equilibrium, each consumer or predator must follow
the average behavior at the Nash equilibrium (Aumann, 1964; Křivan et al.,
2008). We refer to this game as the “inner” game, since it is played at every
instant and defines the population dynamics.

We consider the Nash equilibrium of the inner game and define the best
responses:

τ∗c (τp, τ c) = argmaxτc∈[0,1] Fc(τc, τ c, τp).

τ∗p (τc, τp) = argmaxτp∈[0,1] Fp(τp, τ c, τp).

As we assume individuals play the field, we get that τ∗c = τ c at the Nash
equilibrium of the game. Hence the Nash equilibria τNEi of the respective games
where individuals are:

τ∗c (τp, τ
NE
c ) = τNEc

τ∗p (τ c, τ
NE
p ) = τNEp .

(10)

Then the the Nash equilibrium of the overall game is defined as the pair of
decisions (τNEc , τNEp ) such that we are at the Nash equilibrium of both games
simultaneously:

τ∗c (τNEp , τNEc ) = τNEc .

τ∗p (τNEc , τNEp ) = τNEp .
(11)

The Nash equilibrium of the inner game depends on the abundances R, C, P ,
but our notation omits this dependence for compactness. At the Nash equi-
librium, no single player has an advantage in changing strategy unilaterally.
We show uniqueness of the instantaneous Nash equilibrium in Appendix A.
As τi = τ i, i ∈ {c, p} at the Nash equilibrium, we will henceforth just write
τNi , i ∈ {c, p} when considering the Nash equilibrium.

2.3. Emergent functional response

The time in the arena of both consumers and predators depend on the Nash
equilibrium as defined in Equation (11), found by optimizing the fitness proxies
given in Equation (8). The optimal time in the arena depends on both the avail-
able food, the concentration of the same type, and the threat from predation.
This leads to risk-sensitive foraging behavior, hence risk-sensitive consumption
rates.

The consumption rates of a consumer and of a predator as a function of the
threat-level and total available resources are of special interest. Given a state
(R, C, P ), we can find the corresponding Nash equilibrium (τNc (R,C, P ), τNp (R,C, P ))
from Equation (11). Based on the Nash equilibrium and the growth functions
(Equation (3) and Equation (5)), we define the dynamical emergent functional
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Table 1: Metabolic scaling of parameters with respect to body mass mi, where i ∈ {c, p}.
Metabolic costs are a fraction v of maximum growth rate, and the mass of predators is s times
larger than the mass of their prey.

Parameter Symbol Mass scaling

Max growth ai αm
3/4
i

Clearance rate βi bm
3/4
i

Conversion efficiency ε -
Metabolic cost µi vai
Predator mass mp smc

response for a consumer with fixed consumer and predator level C0, P0, with a
top predation rate ξ0:

GE,c(R) = Gc(τ
N
c , τ

N
p , R, C0, P0, ξ0). (12)

and analogously GE,p(C) for the predator. While the functional response in
Equation (12) also depends on the abundance of consumers C0 and of predators
P0, we are particularly interested in its dependence on the resource level R. This
functional response describes how consumption rates respond instantaneously to
variations in the resource, i.e. before the dynamic states of the system change.

The consumption rate at equilibrium describes the consumption at the time-
scale where the dynamics have stabilized. We refer to this is as the equilibrium
consumption rate. Focusing on the consumer, we vary the basic nutrient loading
R, and seek the equilibrium in which all abundances are stationary and behav-
iors are optimal. Denoting the equilibrium point R∗, C∗, P ∗ as a function of a
varying carrying capacity R by (R∗, C∗, P ∗)(R), we define:

G∗E,c(R) = Gc(τ
N
c (R∗, C∗, P ∗, τNp (R∗, C∗, P ∗), R∗(R), C∗(R), P ∗(R)). (13)

The emergent equilibrium consumption rate for a predator is defined in the same
terms as a function of the carrying capacity. As the behavior is expected to
change due to top-down pressure, we define analogous equilibrium consumption
rates for varying top-predation G∗E,c(ξ) and G∗E,p(ξ). The question is how the
classical functional responses, given in our notation as (Gc(1, 1, R), Gp(1, 1, C)),
the equilibrium consumption rate, and the emergent functional responses differ.

2.4. Model parameters and symbols

We parameterize the system by assuming that size-specific constants scale
metabolically with mass in accordance with Kleiber’s law (Yodzis and Innes,
1992); see table 1.

With the metabolic scaling introduced, the model Equation (1) can be
rewritten in terms of half-saturation α/β and consumer-specific mass (See Ap-
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Table 2: Numerical value of model parameters used in the sensitivity analysis, simulation and
exploration of the relationship between the Type II and Type III functional response.

Symbol Value Meaning
α 1.25 mc

1/4/month Max growth
s 100 Predator:prey mass ratio

b 27.5 m
1/4
c m3/month Clearance rate coefficient

v 0.07 Ratio between max growth and respiration
R 0.5 mc ·m−3 (simulation), 1 mc ·m−3 (sensitivity), Carrying capacity
λ 0.1/month Replacement rate
ε 0.3 Efficiency

ξ 1.8 month−1 (simulation), 4.8 month−1 (sensitivity) Top-predation rate

pendix B: Metabolic model) as:

Ṙ = λ(R−R)− ατcCR

τcR+ α/b
(14)

Ċ = C

(
ε

ατcR

τcR+ α/b
− αs3/4τcτpP

τpτcC + α/b
− vα

)
(15)

Ṗ = P

(
ε
αs3/4τcτpC

τcτpC + α/b
− vαs3/4 − ξpτ2p

)
. (16)

A predator is usually about 100 times larger than its preferred food-source
(Trebilco et al., 2013) giving a predator:prey mass ratio of s = 100. We model an
aquatic ecosystem, with the values in Table 2, taken from [Table 2.2](Andersen,
2019) with the consumer fish modeled as an anchovy with a mean wet mass of
10 g (Roe Hunter and Leon, 1981). The main impact of this choice is choosing
the time-scale.

We summarize the symbols referring to states and specific functions used
throughout the paper in Table 3.

2.5. Numerical methods

The Nash equilibrium of the inner game is found with a complementarity-
based approach for finding the Nash equilibrium, (Friesz, 2010, Chapter 5). This
is implemented as a feasibility problem using IPOPT (Wächter and Biegler,
2006) with the HSL libraries (HSL, 2007) through the framework CasADi (An-
dersson et al., 2019). In order to perform sensitivity analysis we use a gradient-
based continuation method in the state variables, with a fallback to a first-order
approximation of the state variable if the continuation fails. This approach is
robust, as long as the step size is kept small enough.

3. Results

We analyze the system on three levels: the individual level functional re-
sponse, the population/ecosystem dynamics, and the ecosystem functions.
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Table 3: Summary of notational convention, state variables, symbols and functions used
throughout the paper.

Symbol Meaning
R Resource concentration
C Consumer concentration
P Predator concentation
R∗ Resource concentration at equilibrium
C∗ Consumer concentration at equilibrium
P ∗ Predator concentration at equilibrium
Gi i ∈ {c, p} consumer or predator per capita growth rate.
Mi i ∈ {c, p} resource, consumer or predator per capita mortality.
GE,i Emergent per capita consumption rate.
G∗E,i Emergent equilibrium per capita consumption rate.

τi i ∈ {c, p} consumer or predator individual strategy.
τ i i ∈ {c, p} consumer or predator average strategy.
NE Denotes the Nash equilibrium.
∗ Denotes the optimum.

The dynamics of the tri-trophic chain differ markedly between the fixed
and optimal behavior (Figure 2). Most striking is how the adaptive behavior
stabilizes the system. Early in the simulation, where the population sizes vary
the most, the behavior is constantly being adjusted. The system was found to
be stable in the range of parameters explored in this study, but no Lyapunov
function could be found to show this analytically as in the Lotka-Volterra case
(Křivan, 2007).
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Figure 2: Population dynamics (a, c, e) and behavior (b, d, f) in the system with optimal
behavior (red) compared to the system with static (no) behavior (blue). The carrying capacity
R is 0.5 mc ·m−3 and the maximal predation pressure ξ is 1.8 month−1.
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3.1. Emergent functional responses
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Figure 3: Emergent functional responses, Equation (12), (dash-dotted lines) compared with
static functional responses (full blue) for the consumer, GE,c(C)/ac and Gc(1, 1, C)/ac (a);
and the predator GE,p(R)/ap and Gp(1, 1, R)/ap (b). In (a) we vary the predator population
level, from 0 (blue) to 0.16 mcm−3 (red) with a fixed top-predation pressure ξ of 1.6 month−1.
In (b) we vary the top predation ξ from 0 (dotted blue line) to 15 mc month−1 (dotted red)
with a fixed resource population of 0.1 mcm−3. The transition between no threat and the
maximal threat level is indicated by a transition from blue via. purple to red in both (a) and
(b).

The emergent functional responses differ from classical functional responses
(Figure 3). We see a continuous transition between prototypical Type III and
Type II functional responses for the consumer (Figure 3(a)), emerging from
the instantaneous game between predator and consumer. We use the term
“fear-based” for this emergence of a type III response, because the consumers
respond to increased predator concentration by using the refuge and thereby
reducing their intake. Without any predators, we recreate the expected Type
II functional response. Notice that some of the curves follow the Type II curve
for intermediate resource levels. In this region, the consumer strategy at the
Nash equilibrium is at the boundary (τc = 1) where consumers are fully active.
In contrast, at low resource levels consumers reduce time in the arena as the
reward does not justify the risk, while at high resource levels they reduce time in
the arena since they can do so without reducing uptake much due to satiation.

The predators also have an emergent Type III functional response (Fig-
ure 3(b)), where the slope varies continuously with the maximum predation
pressure. Since the Type III-type functional response appears even with no
top-predation (Figure 3(b, dotted blue line)) where τp = 1, it is also driven by
the behavior of the consumers, and does not emerge solely from the predators
’fear-response’. Instead, the curve reflects that the consumers also increase their
time in the arena as their population increases, when the risk to the individ-
ual consumer decreases. The phenomenon is clearest at low consumer numbers
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where the predator consumption rate does not vary with top-predation pressures
(Figure 3(b, full red line, (0-0.05)). In this interval, low consumer numbers driv-
ing low a time in the arena for the consumers is the main determining factor.

3.2. Behavior and population levels under top-down and bottom-up forcing

We explore the system response to bottom-up and top-down forcing by vary-
ing the carrying capacity of the resource and the maximal risk of predation from
top predators (Figure 4) by determining the equilibrium for each parameter
value.
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Figure 4: (a-f) Response of the system to bottom-up forcing at the fixed-point under optimal
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Under varying bottom-up forcing the population levels are similar in the
static and optimal models until the resources’ carrying capacity is above 0.4
mcm

−3 (Figure 4(a)). Up to this point the predator exerts top-down control
on the consumer and keeps its population constant, independent of resource
carrying capacity.

Increasing the carrying capacity beyond 0.4 mcm
−3 changes the trade-off be-

tween risk and reward for the consumer towards favoring staying in the refuge.
This means that the consumer’s consumption stops increasing with the resource
productivity (Figure 4(a)). The reduction in time in the arena – and the accom-
panying reduced predation – makes it possible for the consumer to increase its
population in concert with the increase in resource productivity. The predators
face a consumer who is less active in the arena (Figure 4(b)). However, the lower
availability is more than compensated by the increased consumer population,
leading to a constant predator time in the arena (Figure 4(f)). The predator
is therefore also able to increase its population. Beyond a carrying capacity
of 0.4 mcm

−3 we therefore have bottom-up control of all populations in the
ecosystem. In contrast, in the static case, the top-predator effectively controls
the populations of both consumer and predator, and only the resource responds
to the bottom-up forcing.

Increasing predation pressure on the predator decreases the time in the
arena of the predator (Figure 4(l)), and the resulting decreased predator pop-
ulation causes an increase in consumer time in the arena, (Figure 4(h)). In
(Figure 4(l,h)) the time in the arena move in counterpoint. Comparing the
trophic-effects of this movement to the model with static behavior, Figure 4(g,
i, k), this behavioral dynamic serves to lessen the strength of the trophic cas-
cade from top-down control. Summing up, optimal behavior lets the predators
behave more cautiously and the consumers to act more adventurously resulting
in resilience from top-down pressure.
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Figure 5 shows the time in the arena of consumers and predators at equi-
librium for different combinations of carrying capacity R and top predation
pressure ξ. (For comparison, Figure 4 only varied one parameter at a time).
Figure 5 confirms that it is a general pattern that predator time in the arena
only decreases due to top-down forcing (Figure 5(b)), while consumer time in the
arena (Figure 5(a)) increases from top-down forcing and decreases from bottom-
up forcing. This pattern, which was also suggested by Figure 4, appears to be
general across parameter space.
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Figure 6: Consumption rates at equilibrium (R∗, C∗, P ∗), for predators and consumers with
optimal behavior or static behavior with the equilibrium functional responses (Equation (13))
for consumers (a,c) and predators (b,d) as a function of bottom-up (a,b). and top-down
forcing (c,d). We use the color code of Figure 4.

Since the fundamental change in the model is the trade-off between risk
and satiation that has been introduced from modifying the Type II functional
responses, the behavioral phenomena at equilibrium in (Figure 4) may be inter-
preted as arising from the equilibrium consumption rate levels (Equation (13))
in the model.

Under an increasing carrying capacity with optimal behavior, the consump-
tion rate of the consumers corresponds to a Type II functional response with a
lower individual satiation point (Figure 6(a)). The predators again follow the
static model, but also have a consumption rate corresponding to a lower satia-
tion (Figure 6(b)). This is quite surprising in light of the change in consumer
time in the arena, (Figure 4(b)), and shows that the change is exactly balanced
with the increase in consumer population (Figure 4(c)).

When the top-predation pressure is increased, the per capita consumption
rate of the predators with and without optimal behavior initially follow the
same curve (Figure 6(d)), but the decrease in predator time in the arena (Fig-
ure 4(l)) causes a lower maximum. It is a departure from models with only
an adaptive consumer (Abrams and Vos, 2003), and indistinguishable from the
static paradigm (Oksanen et al., 1981). Without optimal behavior, an increas-
ing consumer population (Figure 4(i),blue) causes the per capita consumption
to decrease. Though the consumer time in the arena increases (Figure 4(h)),
this causes constant satiation (Figure 6(c,red)). The model appears to have
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constant satiation as the underlying property. When the predator time in the
arena decreases, the consumer time in the arena increases just enough to keep
the predator and consumer satiation constant.

4. Discussion

We have explored the effects of resolving dynamic optimal behavior on pop-
ulation dynamics and behavior in a tri-trophic chain model. The model reveals
important differences in population structure and ecosystem function compared
to classic models, without fast co-adaptive behavioral responses. The model we
consider is one where both consumers and predators optimize, rather than only
allowing one trophic level to optimize (Abrams, 1984; Křivan, 2013; Abrams,
2010). This simultaneous time-optimization is implemented by letting both con-
sumers and predators play the field, in the framework of (Vincent and Brown,
2005). The behavioral adaptation makes the system more resilient towards top-
down forcing. An increase in populations across all trophic levels was seen under
bottom-up pressure. We found that a constant equilibrium consumption rate
appears to be the underlying driver of the ecosystem changes. Finally, we have
shown that type III functional responses appear as an emergent phenomena for
consumers and predators when playing an instantaneous behavioral game.

4.1. Ecosystem response to forcing

Behavior almost entirely absorbs the top-down trophic forcing at each trophic
level. In effect, the populations in the system with optimal behavior are almost
unaffected by top-down forcing. With static behavior when the top predation
pressure is increased, the consumer population grows and the resource popu-
lation declines (Abrams and Roth, 1994b) while the predator population ini-
tially increases before declining to extinction, a so-called hydra effect (Abrams,
2009b). When only the consumers are adaptive the effect of predator mortality
is controlled by the response of the consumer (Abrams and Vos, 2003; Abrams,
2009a), and also eventually leads to extinction. In contrast, we see a resilience of
the abundances to top-down forcing, and the removal of the hydra-effect. The
resilience at all levels is unexpected, as an increase in consumer populations
and a distinct change in predator populations was expected (Abrams, 1992b).
The non-linear community effects from each individual playing the field are the
probable cause of this change, as decreasing the time in the arena for an indi-
vidual predator does not change its fitness much due to the Type II response
while it drastically reduces the loss from top-predation.

It is commonly observed in nature that top-down forcing changes the behav-
ior of the middle species in tri-trophic chains (Heath et al., 2014; Pace et al.,
1999; Schmitz et al., 2008). We elaborate on this phenomenon (Abrams and
Vos, 2003), as the emergent behavior of the adaptive predator foraging varies
counter to the consumer. Density dependence of predator foraging is known
to buffer the effect of top-down forcing, (Heath et al., 2014; Schmitz et al.,
2004; Abrams, 1992b) e.g. through evolution (Loeuille and Loreau, 2004). Our
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model provides a direct behavioral explanation for this damping, instead of
a directly introduced density dependence (Heath et al., 2014). Rather than
simply damping the population effect of top-down forcing, including optimal
behavior through assuming that both consumers and predators play the field
seems to eliminate the population effect of top-down forcing entirely, an indirect
density-dependence which is hard to model explicitly (Heath et al., 2014). Thus
flexible behavior allows greater resilience than evolutionary changes (Loeuille
and Loreau, 2004).

When considering bottom-up forcing, all three trophic levels increase their
population sizes. The behavior of the predators is constant, while the consumers
reduce their time in the arena from the increased availability of resources. These
results correspond to the four-trophic model in Abrams (1992b) and the tri-
trophic model in Abrams and Roth (1994a).

4.2. Consumption rates

Varying the threat level and keeping all other variables constant reveals
a clear risk-sensitivity in the emergent functional response for the consumers,
following a classical Type II curve when there is no threat, transitioning to a
Type III curve when the threat is high. Previously, a Type III response has
been shown to emerge from optimal consumer behavior when predators have
static behavior (Abrams, 1982, 1990; Beckerman, 2005; Křivan, 2013; Geritz and
Gyllenberg, 2014; Kiørboe et al., 2018), but the addition of risk-averse predators
could have attenuated this emergence. Instead, we see that the risk-avoidance of
the consumers still drives a Type III response. The situation for the predators
is more interesting, as the functional response of adaptive predators preying on
adaptive consumers has not been investigated in an as in-depth way. Here, the
consumers decrease their time in the arena when the predators increased theirs
at low population levels in accordance with predictions (Abrams, 1984) leading
to a Type III curve. At higher consumer population levels density-dependent
effects, essentially safety in numbers, outweigh the consumer caution, so the
continuous transition between the Type II and Type III curves appears as for
the consumers. These results reveal that a Type III response of a a predator can
appear from the predator avoidance of the prey in a behavioral game, rather
than being due to an avoidance strategy of the predator itself. The emergence
of the Type III curve from a Type II curve is thus a general phenomenon,
which also appears when the predators are dynamic. The underlying mechanism
for the emergent Type III curve in our model is the trade-off between risk-
willingness and foraging, where the gain in foraging becomes less and less due
to the satiation inherent in the modified Type II functional response. Satiation
versus risk then provides a mechanism which can be tested empirically to asses
our model (Gliwicz and Maszczyk, 2007; van Someren Greve et al., 2019).

The fear of predation causes a new equilibrium where the consumption rate
is constant across changing environmental conditions, and much lower than ex-
pected purely from digestion. Instead of striving for full satiation, there appears
to be a constant level of good-enough partial satiation for both consumers and
predators. This result is in accordance with results for bottom-up pressure

19



in single-actor models (Kiørboe et al., 2018). Though the foraging intensity
for a consumer increases with top-down pressure and decreases with-top down
pressure, the consumption rate stays the same, hence our model illuminates
the complicated relationships that can arise when multiple species optimize si-
multaneously, beyond those considered in Abrams (1992b). The emergence of
a constant partial satiation for both predators and consumers with increasing
top-predation is surprising, but this maintenance of a constant partial satiation
appears to explain the changes in both populations and behavior at the equi-
librium. Such partial satiation levels are observed empirically in zooplankton,
van Someren Greve et al. (2019), and in fish where stomach content analysis
have shown that fish rarely have full stomachs (Armstrong and Schindler, 2011).
These observations could be a sign of behavioral adaptation of lower feeding to
avoid predation and are in accordance with the good-enough partial satiation
emerging from our model.

4.3. Model choices

The parameterization of our model represents a generic aquatic ecosystem
with scaling described by metabolic scaling (Yodzis and Innes, 1992). The value
for the top-predation and the carrying capacity represent the only free parame-
ters in the model. A tri-trophic food chain with a chemostat can exhibit chaotic
behavior (Hastings and Powell, 1991). Chaos is impossible in our model, as it
would appear for large values of εαb (Hastings and Powell, 1991), which is con-
stant for our model scaled through Kleibers’ law (Yodzis and Innes, 1992). We
do not consider imperfect refuges, implemented e.g. through vigilance Malone
et al. (2020). An imperfect refuge corresponds to fixing a minimal constant
value of τ in our model, and would lead to a greater time spent in the refuge
compared to what we find. Including imperfect refuges would therefore only
serve to restrict the possibilities that can be explored with the model. We do
not consider the evolutionary time-scale, where other traits than refuge use can
be modified. Our model could be incorporated in such a model, having a fast
time-scale with instantaneous optimization, a medium time-scale of population
dynamics, and a slow time-scale of evolution. It is hard to predict what would
happen in such a model Abrams and Roth (1994b). Implementing our approach
in a more complicated food-web with multiple predators or prey types as e.g.
Abrams (1992b); Stump and Chesson (2017) would be interesting, as the numer-
ical approach appears scalable to realistic models rather than only concerning
itself with toy models.

4.4. Behavior and games

We model behavior by an instantaneous individual optimization, where the
objective is given by the growth of an individual with a modified Type II func-
tional response. This reflects an underlying reality of a migration or activity
switch that is much faster than the population dynamics. If not for this fast-
slow dynamic, we would need to incorporate explicit migration mechanisms in
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our model (Abrams et al., 2007; Ma et al., 2003; Abrams, 2007). Our game-
theoretic approach is to treat a population game as playing the field (Broom
and Rychtár, 2013; Parker, 1978).

The approach of playing the field has a number of advantages compared
to assuming a monomorphic population. Assuming that each individual opti-
mizes their per capita growth in a monomorphic populations is fundamentally
problematic, as the optimization ceases to be at an individual level since an indi-
vidual can take the behavior of the rest of the population into account (Abrams
et al., 1993). Hence modeling monomorphic populations causes them to take
much better decisions at the population level than they would otherwise (Křivan
et al., 2008; Abrams et al., 1993). As such in many situations models of popu-
lation dynamics with individual behavior should be based on playing the field,
rather than assuming monomorphic decision makers.

Modeling our game as individuals playing the field keeps the optimization
problem at an individual level while possibly allowing for non-linear and density-
dependent effects (Vincent and Brown, 2005), such as satiation (Křivan and Eis-
ner, 2006). Incorporating satiation in the fitness proxy causes a non-linearity
in the inner game of the model, and is well supported empirically as a factor in
behavioral choice (Schadegg and Herberholz, 2017). By assuming that individ-
uals play the field we can model behavior taking satiation of both consumers
and predators into account simultaneously without assuming populations of
monomorphic individuals. By taking satiation into account, the transition be-
tween full presence in the refuge and arena becomes continuous in the state of
the system. Using or linear functional responses lead to instantaneous switch-
ing in animal preferences, and to discontinuities in population dynamics (Křivan
and Schmitz, 2003; Křivan, 2007). The existence of this discontinuity has caused
debate about ecosystem models with instantaneous behavior (Abrams, 2010).
Attempts at removing this discontinuity have involved attempts at smooth-
ing the transition post-hoc (Fryxell and Lundberg, 1994; Van Baalen et al.,
2001). By modeling the system as a game with individuals playing the field
with non-linearities in their fitness proxies the continuous habitat transition
arises naturally.

The choice of modeling the game as an instantaneous non-linear game where
each individual plays the field comes at a cost: We do not have an analytical
expression for the Nash equilibrium, as can be found when the fitness proxy is
linear (Křivan and Cressman, 2009). In a similar vein, it is infeasible to find an
analytical expression for the current state in population games with migrations
(Abrams, 2007). An advantage of our approach is that it allows us to handle
individual behavior conditioned on non-linear choices, and it fulfills this niche
perfectly. There are, however, situations where the game-theoretic approach we
advocate is not suitable. We have already mentioned migration games where
the migrations and population dynamics happen on the same time-scale as un-
suitable for our approach. Another setting where instantaneous optimality is
unsuitable is modeling evolution. For instance, slowly changing traits on the
evolutionary time-scale can lead to counter-intuitive results such as vigilance
evolving into extinction (Matsuda and Abrams, 1994) which is the opposite of
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our result. This highlights that the relative time-scales need to be considered
before choosing a model with instantaneous optimization. Generally, however,
behavior and population dynamics are often on decoupled time-scales (Křivan,
2013). When this decoupling occurs, incorporating behavior as an instantaneous
game is a valuable tool and our approach can be used to find complex emergent
phenomena.

5. Conclusion

Ecosystem models that include fast behavioral adaptations often neglect
non-linear effects on behavior, or only consider a single type of animal. By in-
corporating the behavior of both predators and consumers, we arrive at a unified
model which has explanatory power both at the ecosystem and the individual
level. Adding individual behavior taking non-linear tradeoffs into account for
both consumers and predators gives rise to complex emergent phenomena. The
emergent phenomena expand on results from ecosystems with single-actor opti-
mization, showing the importance of considering the behavior of more than one
trophic level.
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Křivan, V., 2013. Behavioral refuges and predator–prey coexistence. Journal of
Theoretical Biology 339, 112–121.
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Laundré, J.W., Hernández, L., Altendorf, K.B., 2001. Wolves, elk, and bi-
son: reestablishing the” landscape of fear” in yellowstone national park, usa.
Canadian Journal of Zoology 79, 1401–1409.

Lima, S.L., Dill, L.M., 1990. Behavioral decisions made under the risk of pre-
dation: a review and prospectus. Canadian journal of zoology 68, 619–640.

Loeuille, N., Loreau, M., 2004. Nutrient enrichment and food chains: can
evolution buffer top-down control? Theoretical population biology 65, 285–
298.

Ma, B.O., Abrams, P.A., Brassil, C.E., 2003. Dynamic versus instantaneous
models of diet choice. The American Naturalist 162, 668–684.

Malone, M.A., Halloway, A.H., Brown, J.S., 2020. The ecology of fear and
inverted biomass pyramids. Oikos 129, 787–798.

Matsuda, H., Abrams, P.A., 1994. Timid consumers: self-extinction due to
adaptive change in foraging and anti-predator effort. Theoretical Population
Biology 45, 76–91.

26



Maynard Smith, J., 1982. Evolution and the Theory of Games. Cambridge
university press.

McNamara, J.M., Houston, A.I., 1992. Risk-sensitive foraging: a review of the
theory. Bulletin of mathematical biology 54, 355–378.

Oksanen, L., Fretwell, S.D., Arruda, J., Niemela, P., 1981. Exploitation ecosys-
tems in gradients of primary productivity. The American Naturalist 118,
240–261.

Oksanen, L., Oksanen, T., 2000. The logic and realism of the hypothesis of
exploitation ecosystems. The American Naturalist 155, 703–723.

Pace, M.L., Cole, J.J., Carpenter, S.R., Kitchell, J.F., 1999. Trophic cascades
revealed in diverse ecosystems. Trends in ecology & evolution 14, 483–488.

Parker, G.A., 1978. Searching for mates. Behavioural ecology: an evolutionary
approach 1, 214–244.

Peckarsky, B.L., Abrams, P.A., Bolnick, D.I., Dill, L.M., Grabowski, J.H., Lut-
tbeg, B., Orrock, J.L., Peacor, S.D., Preisser, E.L., Schmitz, O.J., et al.,
2008. Revisiting the classics: considering nonconsumptive effects in textbook
examples of predator–prey interactions. Ecology 89, 2416–2425.

Pinti, J., Andersen, K.H., Visser, A.W., 2021. Co-adaptive behavior of interact-
ing populations in a habitat selection game significantly impacts ecosystem
functions. Journal of Theoretical Biology 523, 110663.

Pinti, J., Kiørboe, T., Thygesen, U.H., Visser, A.W., 2019. Trophic interactions
drive the emergence of diel vertical migration patterns: a game-theoretic
model of copepod communities. Proceedings of the Royal Society B 286,
20191645.
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Appendix A: Uniqueness of the Nash equilibrium

We start by defining the notion of strict pseudomonotonicity:

Definition 1. A function f : K → Rn from a convex set K ⊂ Rn is strictly
pseudomonotone if for every pair x 6= y we have

〈x− y, f(y)〉 ≥ 0⇒ 〈x− y, f(x)〉 > 0 (.1)

For a tractable criterion for a unique Nash equilibrium, we use the following
proposition Hadjisavvas et al. (2006, P. 580, Proposition 13.8):

Proposition 1. A game with payoff functions U1 and U2 and strategies σ1, σ2
defined on a convex set K has a unique Nash equilibrium if the function (dσ1U1, dσ2U2)
is strictly pseudomonotone as a function of (σ1, σ2).

Defining f1 = −dτcFc |τc=τc and f2 = −dτpFp |τp=τp , to show that the Nash
equilibrium Equation (11) is unique, it suffices to show that the function g =
(f1, f2) is strictly pseudomonotone. For each pair a = (x0, x1) ∈ [0, 1]2 and
d = (y0, y1) ∈ R2 define the set

Iad = {t ∈ R : (x0 + ty0, x1 + ty1) ∈ [0, 1]2} (.2)

By Hadjisavvas et al. (2006, p. 95), a function f : [0, 1]2 → R2 is strictly
pseudomonotone if and only if the function

G(t) = 〈g((x0 + ty0, x1 + ty1)), (y0, y1)〉 (.3)

is strictly pseudomonotone for t ∈ Iad for all pairs (a, d), see (Equation (.2)).
Hence to establish pseudomonotonicity we must consider the function in Equa-
tion (.3) in our context. To define this, we need to establish how an expression
for g in Equation (.3). Recall that:

f1(τ c, τp) = −
(
ε

a2cβcRτ c
(βcRτ c + ac)2

− apPτp
βpCτ cτp + Fp

)

f2(τ c, τp) = −ε a2pβpCτ c

(βpCτ cτp + Fp)2
+ ξτp

(.4)
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Fixing a pair a ∈ [0, 1]2, d ∈ R2, and a corresponding set Iad, we get a function
g(t) : Iad → R2 using the definition in Equation (.4):

g(t) = (f1(x0 + ty0), f2(x1 + ty1))

=

(
−
(
ε

a2cβcR(x0 + ty0)

(βcR(x0 + ty0) + ac)2

apP (x1 + ty1)

βpC(x0 + ty0)(x1 + ty1) + Fp

)
,

−ε a2pβpC(x0 + ty0)

(βpC(x0 + ty0)(x1 + ty1) + Fp)2
+ ξ(x1 + ty1)

)
(.5)

This allows us to find an expression for G(t) as in Equation (.3):

G(t) = 〈g(t), (y0, y1)〉

= −
(
ε

a2cβcRy0(x1 + ty1)

(βcR(x0 + ty0) + ac)2

− apPy0(x1 + ty1)

βpC(x0 + ty0)(x1 + ty1) + Fp

)

−
(
ε

a2pβpC(x0 + ty0)y1

(βpC(x0 + ty0)(x1 + ty1) + Fp)2
− ξ(x1 + ty1)y1

)
(.6)

To simplify the analysis and streamline the notation, we define the constants:

k0 = εa2cβcR

k1 = βcR

k2 = ac

k3 = apx1P

k4 = βpC

k5 = ap

k6 = εa2pβpC

k7 = ξ

(.7)
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In this notation, the expression for G(t) simplifies slightly

G(t) = −y0
k0(x1 + ty1)

(k1(x0 + ty0) + k2)2

+ y0
k3(x1 + ty1)

(k4(x0 + ty0)(x1 + ty1) + k5)

− y1
k6(x0 + ty0)

(k4y1(x0 + ty0)(x1 + ty1) + k5)2
+ (x0 + ty0)k8

= y1k8(x0 + tx1) + y0
k3(x1 + ty1)

(k4(x0 + ty0) + k5)

− y0
k0

(k1(x0 + ty0) + k2)2

− y1
k6(x0 + ty0)

(k7(x0 + ty0)(x1 + ty1) + k5)2

(.8)

By Karamardian et al. (1993, Theorem 2.2(iii)), the function G(t) is strictly
pseudomonotone if it has a unique zero and G(x) > 0 implies that G(y) >
0 when y > x. Consider the positive and negative terms in G, separately
Equation (.8). Denoting them by G+, G− we get:

G+(t) = y1k8(x0 + tx1)

+ y0
k3(x1 + ty1)

(k4(x0 + ty0) + k5)

G−(t) = y0
k0

(k1(x0 + ty0) + k2)2

+ y1
k6(x0 + ty0)

(k7(x0 + ty0)(x1 + ty1) + k5)2

(.9)

Clearly both have monotone first-derivatives, as they are both convex. Due to
the linear growth term in G+, the derivative of G+ will always asymptotically
dominate the derivative of G−, hence the value of G+ will continue to exceed
to exceed that of G− once they have crossed. Hence the function has at most
one zero. This characteristic of the derivatives also gives the sign-preservation,
as once the positive linear term dominates the function G(t) is always positive.
Hence the function G(t) is strictly pseudomonotone.

Appendix B: Metabolic model

Recall that mc, mp denotes the mass of a consumer and a predator respec-
tively and the relationship between predator and consumer masses mp = smc.
As noted in the methods section, we assume that the clearance rates βc, βp,
maximal consumption rates ac, ap and metabolism µc, , µp scale with the mass
by a factor of 0.75. With this in mind, we can write the equations describing
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the population dynamics with metabolic scaling fully:

Ṙ = λ(R−R)− bm
3/4
c αm

3/4
c τcCR

bm
3/4
C τCR+ αm

3/4
c

Ċ = C

(
ε
bm

3/4
c αm

3/4
c τCR

bm
3/4
c τcR+ αm

3/4
c

− b(sm1)3/4α(sm1)3/4τcτpP

b(sm1)3/4τcτpC + α(smc)3/4
− vαm3/4

c

)

Ṗ = P

(
ε

b(smc)
3/4α(smc)

3/4τcτpP

b(smC)3/4τcτpC + α(smc)3/4
− vα(smc)

3/4 − ξpτ2p
)

In order to simplify the expression, we rephrase the above in terms of the half-
saturation, βi/ai:

Ṙ = λ(R−R)− αm
3/4
c τcCR

τcR+ α/b

Ċ = C

(
ε
αm

3/4
c τcR

τcR+ α/b
− α(smc)

3/4τcτpP

τcτpC + α/b
− vαm3/4

c

)

Ṗ = P

(
ε
α(smc)

3/4τcτpC

τcτpP + α/b
− vα(smc)

3/4 − ξP τ2p
)

To further simplify the expression, we change into consumer-specific units of
mass ms where ms where ms = 1mC , which allows the final expression of our
population-dynamical as:

Ṙ = λ(R−R)− ατcCR

τCR+ α/b

Ċ = C

(
ε

ατcR

τcR+ α/b
− αs3/4τcτpP

τpτcC + α/b
− vα

)

Ṗ = P

(
ε
αs3/4τCτPP

τcτpC + α/b
− vαs3/4 − ξpτ2p

)
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Abstract How to determine the spatial distribution and population dynamics of
animals are some of the key questions in ecology. These two have been coupled
before, but there is no general method for determining spatial distributions based
on instantanous behavior coupled with population dynamics. We propose model-
ing interacting populations with instantaneous habitat choice through mean-field
games. By using the framework of variational inequalities, we are able to deter-
mine existence and uniqueness for habitat distributions of interacting populations,
in both continuous and discrete habitats. With some additional restrictions, we
are also able to show existence and uniqueness of fixed-points of the population
dynamics along with spatial distributions. We illustrate our theoretical results
by studying a Rosenzweig-MacArthur model where predators and consumers in-
habit a continuous habitat. This study is conducted both theoretically and numer-
ically. Analyzing the emergent dynamics is possible as viewing the system from
the vantage point of variational inequalities allows for applying efficient numerical
methods. The generality of our theoretical approach opens up for studying com-
plex ecosystems, e.g. the impact of enrichment on spatial distributions in marine
ecosystems.

Keywords game theory, population dynamics, habitat choice, population game

1 Introduction

Game theory is a natural tool to model the behavior of animals, who must re-
spond to the behavior of other animals as well as complex and rapidly shifting en-
vironments. A classical application of game-theory is patch-choice models, where
the ideal free distribution emerges to explain spatial distributions of populations
(Cressman et al. 2004). A game theoretical approach has been fruitful in studying
habitat choice in simple ecosystems under the assumption of static populations
or simplifying the habitat to a few discrete patches, (Cressman and Křivan 2010;
Valdovinos et al. 2010). Real-life habitat choice consists of animals choosing where
to forage in a continuous landscape, with varying intra-specific competition and
external risk factors. Building models that can handle these challenges would rep-
resent a significant step forward in understanding natural systems (Morris 2003).

A population game is a system of interacting populations where each individ-
ual chooses the best strategy at every instant. Typically, this is the strategy that
maximizes individual fitness. That is, population games generalize the ideal free
distribution (Cressman et al. 2004). The single-species ideal free distribution is
characterized by evolutionary stability, but stability in the multi-species case is
more complex (Křivan et al. 2008). In the multi-species case evolutionary stability
is not immediate when each animal optimizes their fitness. We refer to the ideal
free distribution without stability assumptions as the simple ideal free distribu-
tion. When including behavior in population models using game-theory a common
simplification is to assume that at least one payoff is linear in the choice of strat-
egy (Krivan 1997). Linear models are suffficient to explain simple predator-prey
dynamics with optimal behavior, (Křivan 2007), but non-linear effects in natural
systems are substantial (Gross et al. 2009).

A general model for population games based on fitness is set out in (Vincent and
Brown 2005) where optimal behavior is introduced by every population maximizing
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the per capita growth at every instant. This implicitly assumes monomorphic
populations, where all individuals intrinsically act as one (Malone et al. 2020;
Stump and Chesson 2017). The assumption of monomorphic populations is the
typical approach to population games with instantaneous migrations (Křivan 2013;
Vincent and Brown 2005), but it is well-known that this does not generalize the
ideal free distribution and dramatically increases the per capita gain (Křivan et al.
2008). We propose a modification of the approach from (Vincent and Brown 2005)
in the vein of (Cressman and Křivan 2010), based on individual optimization in
the context of habitat selection. Rather than assuming a population where all
individuals act in lockstep, we allow each anima to act independently with its
risk-reward calculus affected by the population mean behavior (Fretwell 1969;
Smith 1982; Cressman and Křivan 2010). Then the game at every instant game
becomes a mean field game with multiple types, which leads to the simple ideal
free distribution if the animals are optimizing their fitness.

We model instantaneous movement, but the underlying reality is that ani-
mals migrate between adjacent patches, e.g. through advection-diffusion dynamics
(Cantrell et al. 2010). If population dynamics are sufficiently slow, then the migra-
tion dynamics which lead to the simple ideal free distribution are those which are
evolutionarily stable (Averill et al. 2012; Cantrell et al. 2010), and even very basic
migration dynamics lead to the simple ideal free distribution (Avgar et al. 2020).
As such, populations at a population-dynamical equilibrium can be expected to
follow a distribution where each individual has optimal fitness (Cantrell et al.
2007; Cressman and Křivan 2010), which in this case is zero. When the popula-
tion dynamics and migratory time-scales are sufficiently decoupled, the migration
dynamics which lead to the simple ideal free distribution are also evolutionarily
stable (Cantrell et al. 2020; Cressman and Křivan 2006), even when predators
do not directly optimize their own fitness (Avgar et al. 2020). Therefore a wide
range of natural systems can be modeled by coupling population dynamics to op-
timal patch distribution. Currently there is no general approach to do so, but we
introduce an approach based on mean-field games and optimization.

We essentialy unite the two parallel tracks which mean-field games have fol-
lowed since their inception. One track is in mathematical biology through the ideal
free distribution and habitat selection games (Fretwell 1969; Parker 1978; Cress-
man et al. 2004; Křivan et al. 2008; Cressman and Křivan 2010; Broom and Rychtár
2013), and the other in mathematical optimization based directly on anonymous
actors (Lasry and Lions 2007; Aumann 1964; Blanchet and Carlier 2016). The
main focus in the game-theoretically focused ecological work has been studying
specific families of games in depth Broom and Rychtár (2013), while the focus in
mathematical optimization has been in establishing uniqueness and existence of
Nash equilibria through the toolbox of variational inequalities (Karamardian 1969;
Gabay 1980; Nabetani et al. 2011).

Using the theory of variational inequalities, we show that population games
based on individual optimization have a unique equilibrium under very mild as-
sumptions. Our approach allows us to handle both continuous and discrete strategy
spaces, but more technical assumptions are required for existence in the contin-
uous setting. The simple ideal free distribution emerges as a special case of our
approach, providing a compelling argument for the mean-field approach. By work-
ing with variational inequalities, we can generalize the classical definition of a
multi-species evolutionary stable state to the continuous setting (Cressman et al.
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2001). We demonstrate our approach by applying it to a Rosenzweig-MacArthur
system with intraspecific predator competition in continuous space modeling a
marine ecosystem. We modify the system so both predators and consumers have
instantaneous optimal behavior based on maximizing the individual growth rate.
We show that the Rosenzweig-MacArthur system with optimal behavior satisfies
the criteria for existence and uniqueness of equilibria as a population game, and
perform numerical experiments to see the effect of the carrying capacity and com-
petition on the system.

In addition to our theoretical advances, we implement a simple and efficient nu-
merical method of finding Nash equilibria and equilbria of population games. The
numerical method is applied to the behaviorally modified Rosenzweig-MacArthur
system. We examine the population dynamics through a phase portrait, where
they appear to be asymptotically stable. We study the population levels and spa-
tial distribution at equilibrium as a function of the carrying capacity and intraspe-
cific predator competition. With optimal behavior, increased competition causes
a drastic change in behavioral patterns for consumers and predators and an in-
crease in consumer populations with a very low impact on predator populations.
Increasing carrying capacity causes both predator and consumer populations to
increase, while consumers move towards more cautious behavior.

The paper is organized as follows: We start with the general setting. After
building the general setting, we introduce the machinery of variational inequalities
in the context of game theory. Here we show the general uniqueness and existence
results. We proceed to study the concrete Rosenzweig-MacArthur model, showing
existence and uniqueness of the Nash equilibrium and population equilibrium. We
analyze the results, and discuss the implications of both numerical and theoretical
results.

2 Population games based on habitat choice

We build the general setting piece-by-piece, from the environment to the foraging
strategies. First we define the environment, then we introduce the mean-field set-
ting, as it is necessary to handle the strategy of an entire population. With this
in place, we can give an exact definition of a population game in our sense. Once
we have laid the building blocks for our setting, we show that mean-field games
generalize the ideal free distribution.

We envision a setting with M different unstructured populations of animals
co-existing in an environment, each with biomass Ni. We only model behavior as
patch choice, excluding e.g. mating behavior. The distribution of population i in
the environment is described by σi. More rigorously, we assume that the envi-
ronment is a probability space (X,µ). Modeling the environment as a probability
space allows us to model habitats which are continuous, discrete and mixtures
thereof in the same context. As an example, bats forage over a continuous area
while the caves where they rest are discrete and disconnected (Collet 2019). We
model that the populations Ni, i ∈ {1, . . . ,M} are large compared to a single
individual. This allows us to consider the population as continuous, consisting of
infinitely many individuals. We assume that the population dynamics depend both
on the distributions and the population sizes:

Ṅi = Nifi((Njσj)
M
j=1) (1)
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That is, we consider population dynamics which can be described by a Kolmogorov
model.

We suppose that the migration dynamics happen on a faster time-scale than
the population dynamics, as is seen with e.g. vertical migrations in marine ecosys-
tems (Iwasa 1982). This slow-fast dynamic allows us to model the migrations as
instantaneous, with each individual picking the optimal foraging ground at every
instant (Křivan 2013; Cressman and Křivan 2006).

We assume that every animal has an area where it forages at every instant.
For an animal of type i this is described by a probability distribution σi over the
environment X. We require that the distribution σi is absolutely continuous with
respect to the measure µ. In an abuse of notation, we will denote this density
by σ. We denote the space of probability densities over X with respect to µ by
Pµ. We suppress X for notational brevity. By requiring absolute continuity with
respect to the base measure we remove degenerate Nash equilibria e.g. Dirac-type
distributions in a continuous setting, avoiding for example all gazelles stacked
exactly at a single point in space. We hereby generalize both the continuous and
discrete approach to habitat selection (Fretwell 1969; Broom and Rychtár 2013;
Thygesen and Patterson 2018).

2.1 Foraging strategies and mean-field

In habitat choice games an animal faces the essential choice of where to forage,
weighing risk and reward. Hence the density σi describing where it forages is a
strategic choice. As we assume instantaneous migrations and perfect information,
an animal of type i faces the foraging choices of all other inhabitants. Modeling
the influence of the foraging choices necessitates the introduction of the mean-field
strategy, σj for type j. The mean-field strategy σj is the average strategy of all
individuals of type j. As a consequence, we can describe the foraging presence
from type j at a point x ∈ X by Njσj(x).

The choice of optimal foraging strategy σ∗i for an animal of type i is a trade-
off based on the presence of competitors, predators and prey. When considering
animal populations, finding the optimal behavior for all individuals simultane-
ously quickly becomes infeasible. For this reason, we need to simplify the problem.
This is where mean-field games come into play. The fundamental idea behind a
mean-field game is that in a sufficiently large population, the decision of a single
individual has no discernible impact on the average behavior of the population. In
this case we can decouple the behavior of an individual and the mean behavior of
the population, and assume that an individual plays against the average behavior
of the population. That is, an individual plays the field (Smith 1982). The funda-
mental assumption in the mean-field game that we consider is that the populations
consist of infinitely many individuals acting instantaneously and independently so
the choice of a single individual does not change the mean-field strategy (Aumann
1964)

The mean density of competitors, predators and prey at a point x is described
by Njσj(x). We capture this trade-off for for each individual in a payoff function
Ui(σi, (Njσj)

M
j=1). The payoff Ui we have in mind is the instantanenous growth

of an individual, i.e. individual fitness. This is given by the difference between the
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instantaneous per capita reproduction and mortality for an individual in Equa-
tion (1). When using the individual fitness as payoff, the Nash equilibria we find
should be the same as simple ideal free distributions.

Given that each type j is distributed according to σj , the goal of a single
animal of type i is finding the optimal strategy σ∗i by playing the field at each
instant such that

σ∗i ∈ argmaxσi∈Pµ Ui(σi, (Njσj)
M
j=1) (2)

Whether such a Nash equilibrium exists is well established when no additional
regularity is imposed on the probability distributions (Glicksberg 1952), we will
tackle the general problem of existence later. At the Nash equilibrium of a mean-
field game every individual of type i follows the same strategy σ∗i , (Lasry and
Lions 2007; Aumann 1964). Heuristically, this is due to interchangeability as if
any individual of type i gains by deviating from σ∗i , any one of them would also
gain from making the same deviation, hence doing so. Therefore if all individuals
follow the optimal strategy, they follow the same strategy. This allows us to go
from the individual-level optimization to the Nash equilibrium in Equation (2).

Using N to denote the Nash equilibrium, a mean-field equilibrium σNi is a
solution to the equation:

σNi =
(

argmaxσi∈Pµ Ui(σi, (Njσj)
M
j=1,j 6=i, Niσ

N
i )
)

(3)

A solution is guaranteed to exist by the results of Glicksberg (1952). Hence a Nash
equilibrium of a game with M interacting populations is a solution to the system
of equations:

σN1 =
(

argmaxσ1∈Pµ U1(σ1, (Njσ
N
j )Mj=1)

)

...

σNM =
(

argmaxσM∈Pµ UM (σM , (Njσ
N
j )Mj=1)

)
(4)

This system of equations looks intractable, but in the next section we will see that
in many cases it can actually be solved using the toolbox of variational inequalities.
Introducing Equation (4) allows us to define a population game exactly.

Definition 1 A population game consists of M unstructured populations with
each population having a biomass of size Ni with dynamics given by Equation (1).
Each individual of type i has a payoff function Ui(σi, (Njσj)

M
j=1)). Migrations are

instantanenous, and at every instant the populations are distributed according to
the mean-field Nash equilibrium Equation (4), σNi .

The canonical example of Definition 1 is the case where the payoff functions Ui
are given by the individual fitness. The Nash equilibrium Equation (4) becomes
a situation where all individuals of each type have the same fitness and do not
gain from deviating Equation (4), i.e. the simple ideal free distribution (Fretwell
1969). We repeat the caveat that this version of the ideal free distribution does
not incorporate any stability criteria (Křivan et al. 2008). For this reason we
refrain from using the terminology ”the ideal free distribution” and instead refer
to Equation (4) as the Nash equilibrium of a mean-field game or the simple ideal
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free distribution. We will give a definition of the multi-species ideal free distribution
once we have introduced the entire framework of variational inequalities and their
coupling with Nash equilibria.

Though we focus on population games with the individual fitness as payoff
function, an appeal of the mean-field approach is that it allows general payoff
functions. As an example, the impact of cooperation in a spatially extended game
can be investigated by using a mean-field approach (Antonov et al. 2021).

3 Nash equilibria and variational inequalities

Calculating Nash equilibria, Equation (4) is generally a hard problem. A fruitful
approach to calculating Nash equilibria is via the theory of complementarity prob-
lems and variational inequalities (Karamardian 1969; Nabetani et al. 2011). We
unite the approach of variational inequalities and mean-field games which allows
us to characterize a situation that guarantees uniqueness and existence of Nash
equilibria in population games (Definition 1), and the existence of fixed-points of
these games.

As in Section 2, our habitat is a probability space (X,µ). We have M different
animal types coexisting with individual payoff-functions Ui. The simplest example
our framework needs to handle is that of a single type with populationN inhabiting
X with following a distribution with density σ. The pointwise encounter rate of
an individual following the strategy σ with the entire population also following
the strategy σ is Nσ(x)2. The expected total encounter for an individual with its
conspecifics is then

N

∫

X

σ2dµ (5)

and this quantity must be finite. This motivates that the appropriate setting for
our work is the space L2(X).

Definition 2 Define the real Hilbert space H = L2(X), where X is a probability
space. Define H+ ⊂ H as the a.e. positive functions in H.

3.1 From Karush-Kuhn-Tucker to complementarity

In order to find the Nash equilibrium at every instant in a population game, we
need to solve Equation (4). We recall the setup of the M -player mean field game,
now restricted to H. Assume we have M different types of animals, with payoff
functions Ui, and strategies σi, with corresponding mean-field strategies σi. Before
we proceed, we need to recall a simple version of the Karush-Kuhn-Tucker (KKT)
conditions that we need. We denote the identity operator on H by 1H . For the full
version of the KKT conditions, see e.g. Deimling (2010).

Theorem 1 A minimum x∗ of a Gateaux differentiable function f in P2,µ ⊂
L2(X) satisfies the necessary condition that there exists an element ν ∈ H+ and
a scalar λ ∈ R such that:

f(x∗) + ν = 1Hλ〈
x∗, ν

〉
= 0

(6)
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The condition 〈x∗, ν〉 = 0 is described as the complementary slackness conditions,
and the requirements that x∗ ≥ 0 and

∫
x∗dµ = 1 are the primal conditions. The

variable λ is a Lagrange multiplier, and ν is typically referred to as a slack variable.

The Nash equilibrium of the game specified by the family (Ui) corresponds to
finding a system σ∗i satisfying the KKT conditions simultaneously for every Ui,
with σ = σ as in Equation (3). The total criterion for a Nash equilibrium of a
mean-field game Equation (4) is:

∇σiUi((σj)Mj=1) |σi=σi +νi − λi · 1H = 0

〈σi, νi〉 = 0

νi ∈ H+, σi ∈ H+∫

X

σidµ(x)− 1 = 0

(7)

Remark that the last two conditions are equivalent to σ ∈ Pµ ∩H. This motivates
the definition:

Definition 3 Assume we have a probability space (X,µ). Consider the space of
square-integrable functions H = L2(X,µ) and space Pµ of probability densities
over X. Define the space P2,µ = H∩Pµ consisting of square-integrable probability
densities.

Solving the system in Equation (7) is highly non-trivial, but it turns out that
reinterpreting the problem is helpful. Finding Nash equilibria by interpreting the
problem as a complementarity problem is one of the the original solutions to the
hardness of finding Nash equilibria (Karamardian 1969). It turns out that the set
of equations in Equation (7) is very close to being a complementarity problem,
but first we need to introduce the notion (Hadjisavvas et al. 2006, p. 507).

Definition 4 Let H be a real Hilbert space, and K ⊂ H be a closed convex
cone. Define K∗ = {x ∈ H : 〈x, y〉 ≥ 0, ∀y ∈ K}. Assume T : K → H. The
complementarity problem CP (T,K) is the problem of finding an element x such
that

〈x, Tx〉 = 0

Tx ∈ K∗, x ∈ K (8)

In Definition 4 we recover the notion of a linear complementarity problem if T is
affine.

With Definition 4 we can write Equation (7) as an equivalent family of com-
plementarity problems. Introduce K = H+ ⊕ R, with K∗ = H+ ⊕ {0} and define

T (σi, λi) = (−∇σiUi + λi · 1H |σi=σi , 0) (9)

Then the equations in Equation (7) can be recast as finding (σi, λi) ∈ K such
that:

〈T (σi, λi), (σi, λi)〉 = 0

T (σi, λi) ∈ K∗
(10)
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Which, when writing out the definition of T , becomes:

〈−∇σiUi |σi=σi +λi · 1H , σi〉+ 〈0, λi〉 = 0

(− (∇σiUi |σi=σi +λi · 1H) , 0) ∈ K∗ (11)

There are dedicated tools available allowing for fast numerical resolution of com-
plementarity problems in finite dimensions (Acary et al. 2019; Dirkse and Ferris
1995), which can be applied after suitable discretization of the problem. There is
still the problem of establishing existence and uniqueness of the solution to this
complementarity problem, which is generally hard, (Hadjisavvas et al. 2006).

3.2 Results on variational inequalities

Before we can proceed with the main theme of the article, we recount some re-
sults on existence and uniqueness of variatinoal inequalities, which also show their
general utility in optimization. We define a variational inequality:

Definition 5 Let H be a real Hilbert space and K ⊂ H be a non-empty convex
subset of H. Let T : K → H. The variational inequality V I(T,K) is the following
system for x 6= y:

x ∈ K, 〈y − x, Tx〉 ≥ 0, ∀y ∈ K (12)

The relationship between variational inequalities and complementarity problems
is captured in (Hadjisavvas et al. 2006, Proposition 12.1):

Proposition 1 Let K ⊂ H be a convex cone, and T : K → H. Then the varia-
tional inequality V I(T,K) is equivalent to the complementarity problem CP (T,K).

The solutions to a variational inequality are not generally unique, but with certain
restrictions on T the solutions become unique.

Definition 6 The function T : K → H is strictly pseudomonotone if for every
pair x 6= y we have

〈x− y, T (y)〉 ≥ 0⇒ 〈x− y, T (x)〉 > 0 (13)

Likewise, the function T is pseudomonotone if for every pair x 6= y we have:

〈x− y, T (y)〉 ≥ 0⇒ 〈x− y, T (x)〉 ≥ 0 (14)

Which enables the uniqueness result:

Theorem 2 (Lemma 12.3, p. 516, (Hadjisavvas et al. 2006)) Let K ⊂ H
be a non-empty subset of H. If T is a strictly pseudomonotone function, then the
problem V I(T,K) has at most one solution.

Strict pseudomonotonicity is related to strict monotonicity, in that every strictly
monotone function is also strictly pseudomonotone. A natural question is how
strictly pseudomonotone arise, and they arise from a corresponding generalization
of strict convexity.
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Definition 7 Let Ω ⊂ H be an open subset of H, and let f : Ω → R be Gateaux-
differentiable. The function f is strictly pseudoconvex if

〈y − x, (∇f)(x)〉 ≥ 0⇒ f(y) > f(x) (15)

Where a strictly convex function has a strictly monotone derivative, a variant holds
for strictly pseudoconvex functions which have strictly pseudomonotone deriva-
tives. Hence minimizing a differentiable strictly pseudoconvex f function over a
convex set K is equivalent to solving the variational inequality (Hadjisavvas et al.
2006, P. 521)

x ∈ K, 〈(∇f)(x), x− y〉 ≥ 0,∀y ∈ K (16)

Having given a criterion for uniqueness, the next question is whether a solution
exists at all. The existence of solutions to a variational inequality given by a
pseudomonotone function can be determined by a simple criterion (Maugeri and
Raciti 2009, Theorem 3.4), which we abridge:

Theorem 3 Let K be a closed convex set and A : K → H a pseudo- monotone
map which is continuous on finite dimensional subspaces of H. A variational in-
equality 〈A(x), y − x〉 has a solution if and only if There exists a point u0 ∈ K
such that the set

{v ∈ K : 〈A(v), v − u0〉 < 0} (17)

is bounded. This provides us with a testable criterion for whether a variational
inequality admits a solution.

Remark 1 Boundedness of K, or more precisely weak compactness, also ensures
that V I(T,K) has a solution in K (Hadjisavvas et al. 2006, Theorem 12.1, P.
510). This also ensures existence of solutions to variational inequalities in the
finite-dimensional case.

Intuitively, the criterion in Theorem 3 states that as long as there a direction
where A(v) becomes positive eventually, there exists a solution to the variational
inequality inK. Or, on a more formal level, what the criterion says is that instead of
K being weakly compact, it is sufficient that 〈A(v), v − u0〉 changes sign on weakly
compact set. In practice this criterion should always be satisfied in a population
game, as a negative density dependence should eventually outweigh any gain from
clumping as an infinite concentration should not be advantageous.

Though strictly pseudomonotone functions initially arise as gradients of strictly
pseudoconvex functions, they can be much more general. Checking whether a func-
tion is strictly pseudomonotone from the definitions can also be hard in practice,
hence we state another characterization of strict pseudomonotonicity for differen-
tiable functions.

Lemma 1 Let K be a convex subset of H. A function f : K → R is strictly
pseudomonotone if the following implication holds for any x, h ∈ K:

〈f(x), h〉 = 0⇒ 〈(∇xf(x))h, h〉 > 0 (18)

A proof can be found in (Hadjisavvas et al. 2006, Proposition 2.8, p.96)
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3.3 The Nash equilibrium as a variational inequality

We have recast the problem of finding a Nash equilibrium to a complementar-
ity problem, which allows for numerical resolution. To establish existence and
uniqueness, we need to use the relationship between complementarity problems
and variational inequalities. We will show that in case the payoff-functions Ui are
sufficiently nice, the machinery of variational inequalities can be applied to show
existence and uniqueness of the Nash equilibrium.

We can now turn the problem finding a Nash equilibrium into a variational
inequality. Consider the problem as stated in Equation (10). This is a complemen-
tarity problem over the convex cone H+⊕R. Hence it is equivalent to a variational
inequality over the same convex cone with T as in Equation (10) by Proposition 1.
The equivalent variational inequality becomes that of finding a pair σi, λi such
that:

〈
T (σi, λi), (σ

′
i − σi, λ′i − λi)

〉
≥ 0, ∀(σ′i, λ′i) ∈ K, (σ′i, λ

′
i) 6= (σi, λi) (19)

Recalling the definition of T , T = (−∇σiUi |σi=σi −λi, 0), we see the second
coordinate is identically zero. Hence solving Equation (19) is equivalent to solving

〈
−∇σiUi |σi=σi −λi, σ′i − σi

〉
≥ 0 ∀σ′i ∈ K, σ′i 6= σi〈

−∇σiUi |σi=σi , σ′i − σi
〉
−
〈
λi, σ

′
i − σi

〉
≥ 0 ∀σ′i ∈ K, σ′i 6= σi

(20)

If we constrain the solution set to the convex set P2,µ where it must lie due
to the Lagrange multiplier, both σi and σ′i integrate to 1, therefore the term〈
λi, σ

′
i − σi

〉
vanishes. Hence solving Equation (20) over K is equivalent to solving

the variational inequality:
〈
−∇σiUi |σi=σi , σ′i − σi

〉
≥ 0, ∀σ′i ∈ P2,µ, σ

′
i 6= σi (21)

We can now state the problem of finding the Nash equilibrium Equation (4) as
finding the solution of a variational inequality.

Definition 8 (Nash equilibrium as variational inequality) Defining

dU =



∇σ1U1 |σ1=σ1

...
∇σNUN |σN=σN


 (22)

the problem of determining the Nash equilibrium Equation (4) is the variational
inequality of finding a vector S = (σi)

M
i=1 such that:

〈−dU(S),W − S〉 ≥ 0 ∀W ∈ (P2,µ)M ,W 6= S (23)

with P2,µ as defined in Definition 3

With Definition 6 in hand, we can finally give sufficient criteria for existence
and uniqueness of the Nash equilibrium of the game specified in Equation (4).

Theorem 4 Consider a game with M players with payoff functions Ui such that
the total operator −dU from Definition 8 is strictly pseudomonotone. Assume the
strategies σi are in P2,µ. The game has a unique Nash equilibrium if −dU as
in Definition 8 satisfies the criterion in part (2) of Theorem 3 or H is finite
dimensional.
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Proof By Theorem 2 any Nash equilibrium will be unqiue since dU is strictly
pseudomonotone. So if the solution exists, it is unique. By assumption Theorem 3
gives existence of a solution of V I(dU, PM2,µ) in case H is infinite dimensional. If H

is finite-dimensional then PM2,µ is compact and there exists a solution by Remark 1.
ut

With Theorem 4, we can show that there exist unique fixed points of population
games where dU is strictly pseudomonotone and the vector fields specifying the
population dynamics are sufficiently regular.

Theorem 5 We have a population game as Definition 1 with M populations of
size Ni, payoff functions Ui(σi, (Njσj)

M
j=1) and dynamics given by fi((Njσj)

M
j=1)):

Ṅi = Nifi (24)

Assume that the that the set of stationary points of the population dynamics is
uniformly bounded in (σi)

M
i=1, and that the stationary points can be described by

a continuous function Φ : PM2,µ → RM+ . Let −dU = (∇σiUi |σi=σi) be strictly
pseudomonotone and satisfy the criterion of Theorem 3. Then the population game
has a fixed point. If further the system fi defines a pseudomonotone operator F :
RM+ → RM+ with F = (f1, . . . , fM ), the fixed-point is unique.

Proof The game specified by the family (Ui)
M
i=1 defines a variational inequality

problem over PM2,µ with operator −dU . This variational inquality has a unique

solution for each x ∈ RM+ , due to the existence and uniqueness of the solution by
Theorem 4. This solution defines a continuous a function from RM+ , denoted G,
where G : RM+ → PM2,µ, (Barbagallo and Cojocaru 2009, Theorem 4.2).

Finding a fixed point of the dynamical system along with a Nash equilibrium
then corresponds to finding a fixed point of the mapping Φ ◦G : RM+ → RM+ . Since
the set of stationary points is assumed bounded, G has compact range, and Φ ◦G
has compact image. Therefore Φ ◦ G : RM+ → RM+ has a fixed point (x∗1, . . . , x

∗
m)

by Schauder’s fixed point theorem (Granas and Dugundji 2003, Theorem 3.2, p.
119).

We can conclude that a fixed-point exists, hence a combined Nash and popu-
lation equilibrium.

To show uniqueness, we need to shift perspectives. We are searching for zeros
of the system fi, i.e. solutions of the variational inequality V I(F,RM+ ) constrained
by the fact that the system of σi constitute a Nash equilibrium, i.e. they need to
solve the variational inequality V I(−dU, PM2,µ). This is an example of a so-called
bi-level variational inequality. As we have already established existence, the strict
pseudomonotonicity of −dU and pseudomonotonicity of F give us uniqueness of
the solution (Chen et al. 2014). This shows the desired result.

ut

3.4 The ideal free distribution

Having introduced the framework of variational inequalities allows us to connect
with the ideal free distribution. As noted in the introduction, the ideal free distribu-
tion is classically defined as emerging from playing the field in single-species habitat
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selection games (Fretwell 1969). As such, the ideal free distribution is informally
characterized by no individual gaining anything from moving from their spot in a
habitat selection game. This definition, while perfectly suitable for single-species
games is insufficient for the multi-species case. A stability requirement should also
be introduced so a small deviation from the ideal free distribution will not change
the overall distribution and such that best-response dynamics converge to the ideal
free distribution (Křivan et al. 2008). The ideal free distribution can also be ex-
panded to incorporate population dynamics (Cressman and Křivan 2010), but we
refrain from going in this direction here as it would bring us too far afield. As in
Section 2 we consider M populations with mean-field strategies (σi)

M
i=1, individual

strategies (σi)
M
i=1 and individual payoff functions Ui. We assume that we have a

population game with a total operator −dU Definition 8, with components −dUi.
We generalize the definition of (Křivan et al. 2008) and go with a rather restric-

tive definition of the multi-species ideal free distribution which ensures stability.
It is typically posed as a result that the ideal free distribution is an evolutionarily
stable strategy (ESS), but we take it as a part of the definition. We introduce
the notion of evolutionary stable strategies based on the definition on evolution-
ary stable states using variational inequalities (Migot and Cojocaru 2021). For
simplicity, we do not take weakly evolutionary stable strategies into account but
concern ourselves with the strict case. In (Cressman et al. 2004) the notion of
an M -species evolutionarily stable strategy is introduced, which is equivalent to
the ideal free distribution defined in terms of best responses, Křivan et al. (2008,
Section 3.3).

Definition 9 A set of strategies (σN )i)
M
i=1 in an M -species population game is an

evolutionarily stable strategy if invaders following the slightly perturbed strategies
(σ′i)

M
i=1 do not have an advantage against the resident population. In our notation,

implies that for at least one i, we have Ui(σ
′
i, (σj)

M
j=1) < Ui(σi, (σj)

M
j=1).

We can now relate strict pseudomonotonicity and evolutionary stable strategies,
which motivates that strict pseudomonotonicity is the correct notion to look for
in population games, apart from the uniqueness properties.

Theorem 6 Given a population game with payoff functions (Ui)
M
i=1 with total op-

erator −dU , if each component −dUi is strictly pseudomonotone, the Nash equi-
librium (σNi )Mi=1 is an evolutionarily stable strategy.

Proof We wish to show that Ui(σ
′
i, (σj)

M
j=1) < Ui(σi, (σj)

M
j=1). As the in assump-

tion in Definition 9 is that σ′i is a slight perturbation of σi, we can equivalently
show 〈

σi
N − σ′i,−dUi((σj)Mj=1)

〉
> 0 (25)

As we assume each −dUi is strictly pseudomonotone and that σNi is the Nash
equilibrium for the game defined by Ui(σ, σ), by definition of pseudomonotonicity
any strategy ω different from σNi satisfies the inequality:

〈−dUi(σi), ω − σi〉 > 0 (26)

which is exactly the criterion for evolutionary stability of the strategy σi.

This allows us to define an M -species ideal free distribution.
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Definition 10 A Nash equilibrium (σNi )Mi=1 of an M -species population game
with payoff-functions Ui given by the individual fitness is an M -species ideal free
distribution if the Nash equilibrium (σNi )Mi=1 is an evolutionarily stable strategy.

This allows us to state the result which motivates that strict pseudomonotonicity
is the correct notion to look for in population games, apart from the uniqueness
properties.

Corollary 1 If −dU and each component −dUi are strictly pseudomonotone, the
Nash equilibrium (σNi )Mi=1 in a population game is unique and an ideal free distri-
bution.

Proof The uniqueness of the Nash equilibrium follows from the strict pseudomono-
tonicity of −dUi. As we assume each −dUi is strictly pseudomonotone the Nash
equilibrium also constitutes an ESS by Theorem 6.

The strict pseudomonotonicity in Corollary 1 is also sufficient for asymptotic con-
vergence of the replicator dynamics to the Nash equilibrium (Migot and Cojocaru
2021), providing additional motivation for the choice of strict pseudomonotonicity
as the defining characteristic in population games. Our definition of an evolu-
tionarily stable strategy is closely related to that of an evolutionarily stable state
(Migot and Cojocaru 2021). If all components −dUi are strictly pseudomonotone
as in Corollary 1 and not just a single one or a few, the resulting ESS is even
stable in the sense that it can invade other states (Apaloo et al. 2009).

Having established the general results for population games based on habitat
choice with instantaneous migrations and introduced the connection to the ideal
free distribution, we are ready to apply the theory to a Rosenzweig-MacArthur
system with fast adaptive behavior.

4 Revisiting the Rosenzweig-MacArthur model

We consider a predator-prey system modeled as a Rosenzweig-MacArthur system
where each individual consumer and predator seeks to maximize its growth at
every instant, in the vein of (Krivan and Cressman 2009). We represent consumer,
respectively predator, per capita growth by Gc and Gp. Likewise, we represent
the per capita mortality by Mc and Mp. We denote the growth and mortality
rates of an individual by the superscript ind. Defining the per capita dynamics
fc = Gc −Mc and fp = Gp −Mp, we can write the dynamical system for the
population dynamics as:

Ṅc = Ncfc

Ṅp = Npfp
(27)

The payoff functions for an individual consumer and predator are given by the
individual growth rates Uc, Up, and they are:

Uc(σc, Ncσc, Npσp) = Gindc −M ind
c

Up(σp, Ncσc, Npσp) = Gindp −M ind
p

(28)
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We consider a system with zooplankton as consumers (Nc) and forage fish as
predators (Np) in the water column, modeled as the interval [0, 100], with 0 as the
top of the water column and 100 as the bottom. The choice of strategy is the depth
at which to forage. Both forage fish and zooplankton have large populations, so
it is reasonable to model this system as a mean-field game. We denote the mean
strategies of the predator and consumer populations by σc, and σp. The productive
zone of the water column, i.e. where zoo-plankton can find food, is near the top
where sunlight allows phytoplankton to grow. Forage fish are visual predators, so
their predation success is greatest near the top of the water column (Schadegg and
Herberholz 2017). We model an arctic summer where there is constant sunlight
which allows us to to ignore the influence of the day-night cycle. Both zooplank-
ton and foraging fish populations in the arctic are mainly driven by the summer
(Astthorsson and Gislason 2003; Mueter et al. 2016).

As zooplankton are olfactory foragers, we model that their growth rate βc is
constant throughout the water column but the carrying capacity varies. We as-
sume the zooplankton are not limited either by maximal consumption or handling
(Kiørboe 2011), which coupled with the varying capacity leads to a logistic model
for their growth. Summarizing, we assume that the maximal potential growth for a
consumer from a location depends both on the absolute carrying capacity and how
many consumers are already occupying the spot. We model the carrying capacity
as K0 +Kϕ where K0 is the minimal carrying capacity, K is the varying capacity
and ϕ is a probability density function. The per capita growth rate of a consumer
becomes:

Gc(Nc, σc) = βc

〈
σc, 1−Nc σc

Kϕ+K0

〉
(29)

The mortality of the consumers is directly related to the growth of the preda-
tors, so we define the growth of the predators and then come back to the mortality
of the consumers. Predator-prey interactions are fundamentally governed by the
clearance or catch rate βp which describes the change in encounter rate from an
increase in consumer or predator concentration. The encounter rate incorporates
the light-dependent nature of forage fish, while incorporating that that there is
still a minimal chance of catching prey without light. Concretly, we define:

βp = βl + β0

where βl varies locally and β0 is the minimal clearance rate. We define the maximal
consumption rate for a predator Fp as the reciprocal of the handling time of a
predator Hp:

Fp =
1

Hp
(30)

The choice of maximal consumption rate as a parameter rather than handling time
reflects that marine animals are rarely limited by handling (Schadegg and Herber-
holz 2017). We assume the maximal predator consumption rate is Hp, and the
predators have a conversion efficiency of ε. Consumption events are assumed lo-
cal, so the expected encounter rate between predators and prey is NcNp 〈βpσp, σc〉.
We assume that predators have a Type II functional response, and their consump-
tion is limited by prey-capture and digestion rather than handling, which causes
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a non-linearity in the functional response as a function of the strategy (Kiørboe
et al. 2018). This gives a per capita predator growth rate Gp:

Gp(Np, σp, Nc, σc) = ε
Fp 〈βpNcσc, σp〉
Fp + 〈βpσc, σp〉Nc

(31)

Having defined the growth rate of the predators allows us to define the per capita
consumer mortalityMc =

Np
εNc

Gp. Predator losses stems both from a metabolic loss
µp and mortality from intraspecific predator competition, which we assume leads
to a quadratic loss for predators as there is no satiation. We assume that predators
losses from competition are greatest in the area where they are best specialized
for hunting, since this is where they are best able to confront their con-specifics.
Introducing a competition parameter c, the per capita predator mortality Mp is:

Mp(Np, σp) = c 〈σp, Npβpσp〉+ µp (32)

Hence the population dynamics in eq. (27) are a modified Rosenzweig-MacArthur
system, where behavior of both consumer and predator populations has been in-
corporated. Having considered the population dynamics, we now proceed to the
individual level.

4.1 The instantaneous game

Following the exposition in Section 2 we model predator and consumer movement
as instantaneous. We assume that each predator and consumer seeks to maximize
their instantanous growth at every instant. As we have switched to focusing on the
individuals, we have to distinguish between the strategy of an individual and the
mean-field strategy of the population. Denote the strategies of a focal consumer
and predator by σc and σp respectively. The growth of the focal individual depends
on the mean-field strategies of both predators and consumers, and can be arrived
at by analysing the expressions for Gc,Mc and Gp,Mp carefully, noting which
terms depend upon individual choice and which are dependent on the mean-field
strategy.

The growth Gindc of an individual consumer depends on the choices of the
consumer, while the available food depends on the spatial distribution of the entire
population. Hence the growth of an individual consumer is:

Gindc = βc

〈
σc, 1−Nc σc

Kϕ+K0

〉
(33)

The loss from predation (Mc) for an individual consumer is more complex. The
risk of encountering a predator depends on the strategy of the focal consumer
and the overall predator distribution, while the satiation of the predator depends
on how many total consumers it encounters, hence the mean of the population
behavior. Therefore the individual mortality of a consumer M ind

c becomes

M ind
c =

Fp 〈βpσc, σp〉Np
Fp +Nc 〈βpσc, σp〉

(34)
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Going to a focal predator, the growth Gindp of an individual predator has the same
expression as the per capita growth, since the satiation of an individual predator
has does not depend on the behavior of the other predators.

Gindp = ε
Fp 〈βpσc, σp〉Nc
Fp + 〈βpσc, σp〉Nc

(35)

The individual predator mortality M ind
p depends on both the strategy of the in-

dividual predator and the distribution of the entire predator population.

M ind
p = c 〈σp, Npβpσp〉+ µp (36)

4.2 Existence and uniqueness of Nash and population equilibria

In order to establish existence and uniqueness of the Nash equilibrium we show
that the variational inequality defined by −dU is strictly pseudomonotone and
admits a solution. We start by showing that there is a unique Nash equilibrium
for the cases where the predator and consumer respectively have constant behavior,
i.e. σi = 1, i ∈ {c, p}. First we need a small lemma to simplify the calculations.

Lemma 2 A function g : P2,µ → H is pseudomonotone if and only if g + λ is
pseudomonotone for any λ ∈ R.

Proof Consider 〈g(x) + λ, x− y〉 = 〈g(x), x− y〉 + λ
∫
xdµ − λ

∫
ydµ Using that∫

ydµ =
∫
xdµ = 1, we arrive at 〈g(x), x− y〉. Hence the pseudomonotonicity of g

and g + λ are equivalent.

Proposition 2 For every pair of non-zero abundances Nc, Np we have: There is a
unique mean-field Nash equilibrium in the Rosenzweig-MacArthur system where the
consumers have adaptive behavior and predators have constant behavior σp = 1.
Likewise, there is a unique Nash equilibrium in the Rosenzweig-MacArthur sys-
tem where the predators have optimal behavior and the consumers have constant
behavior σc = 1.

Proof To show the uniqueness of the Nash equilibrium when the consumers have
optimal behavior, consider dUc = ∇σcUc |σc=σc . Without loss of generality, we
may assume σp = 1 as the difference may be absorbed in βp. By Lemma 2 it
suffices to show that f = −dUc + 1 is strictly pseudomonotone. To de-clutter the
calculations we set βc = 1 in the following calculations, but the necessary changes
for an arbitrary value are straightforward. For Lemma 1 assume 〈f((σc)), h〉 = 0,
then

〈f(x), h〉 = 0
〈
σc

Nc
Kϕ+K0

, h

〉
+

NpFp 〈βp, h〉
Fp +Nc 〈βp, σc〉

− 〈1, h〉+ 〈1, h〉 = 0
(37)

Hence 〈
σc

Nc
Kϕ+K0

, h

〉
= − NpFp 〈βp, h〉

Fp +Nc 〈βp, σc〉
(38)

Introducing 〈x| as the functional defined from x, consider

H((σc, h) = 〈(∇f)((σc, σp))h, h〉
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, where 〈f(σc), h〉 = 0. We calculate ∇f :

∇f =
(

Nc
Kϕ+K0

− FpNc〈βp|〈βp|
(Fp+Nc〈βp,σc〉)2

)
(39)

So

H(σc, h) =

〈
Nc

Kϕ+K0
h, h

〉
−
〈
FpNcNp 〈βp, h〉βp
(Fp +Nc 〈βp, σc〉)2

h, h

〉
(40)

Inserting Equation (38) in Equation (40), we arrive at

H(σc, h) =

〈
Nc

Kϕ+K0
h, h

〉
+

Nc
NpFp

(〈
σc

Nc
Kϕ+K0

, h

〉)2

(41)

As Nc
Kϕ+K0

is strictly positive, we conclude that H(σc, h) > 0. Therefore f is
strictly pseudomonotone by Lemma 1. The situation for the predators is even
simpler, since −dUp is strictly monotone, hence strictly pseudomonotone, so the
Nash equilibrium is unique. The existence of the Nash equilibria follows from the
proof of existence in Proposition 3.

Remark 2 In Proposition 2 we considered the single-species game where the con-
stant behavior was a uniform distribution. The proofs for constant behavior dif-
ferent from the uniform distribution are the same, but are heavier in notation.

Having shown that each of the underlying mean-field games has a unique Nash
equilibrium, we can consider the total game.

Proposition 3 The game defined by Uc and Up has a unique Nash equilibrium
for every non-zero pair Nc, Np. Further, this Nash equilibrium constitutes an ideal
free distribution.

Proof By Remark 2 and Proposition 2, any Nash equilibrium of this game is an
ideal free distribution as both single-species game are strictly pseudomonotone
by Corollary 1. Again, to simplify the notational load in the calculations we set
βc = 1, but the changes to accomodate an arbitrary value are straight-forward.
To show existence of a Nash equilibrium, we need to show that the variational
inequality defined by the function

dU =

(
−∇σcUc |σc=σc
−∇σpUp |σp=σp

)
(42)

satisfies the criteria of Theorem 3 and is strictly pseudomonotone. To reduce no-
tational clutter we write σc in place of σc and σp in place of σp through the
remainder of the proof. To show that there exists a solution, start by noting that
for all S ∈ H2, S 7→ −dU(S) is Lipschitz continuous, hence continuous on finite-
dimensional subspaces, fulfilling the first criterion of Theorem 3. For the second
criterion, consider

〈−dU(σc, σp), (σc − 1, σp − 1)〉 (43)

We relegate the calculations to the appendix Appendix A.1, but we conclude

〈−dU(σc, σp), (σc − 1, σp − 1)〉 ≥ C1 ‖σc‖22 + C2 ‖σp‖22 −W (σc, σp) (44)

where W is uniformly bounded on P 2
2,µ, and C1, C2 strictly positive. Recall that

constraining the problem to P2,µ is equivalent to ‖σc‖1 = 1, ‖σp‖ = 1. Hence
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Equation (44) tends to infinity as ‖(σc, σp)‖2 tends to infinity. Therefore Equa-
tion (43) is only negative on a bounded subset of P 2

2,µ, showing existence of a
solution to the variational inequality defined by the function Equation (42) by
Theorem 3.

To show strict pseudomonotonicity, we again apply Lemma 1. Assume that

〈−dU((σc, σp)), (h1, h2)〉 = 0 (45)

Re-arranging gives:

εFpNc 〈βpσc, h2〉
(Fp +Nc 〈βpσc, σp〉)2

= c 〈βσp, h2〉Np +

〈
σc

K0 +Kϕ
, h1

〉
+

FpNp 〈βpσp, h1〉
(Fp +Nc 〈βpσc, σp〉)

(46)
Introducing 〈x| as the functional defined by the inner product with x, we calculate:

H(x) = (∇−dU)(x) =




Nc
K −

FpNcNp〈βpσp|〈βpσp|
(Fp+Nc〈σc,βpσp〉)2

F 2
pNp〈βpσp|

(Fp+Nc〈βpσc,σp〉)2
εNcF

2
p (Nc〈βpσp|βp−〈βpσp|Fp)
(Fp+Nc〈βpσc,σp〉)3

εN2
cF

2
p 〈βpσc|〈βpσc|

(Fp+Nc〈βpσc,σp〉)3 + cNp〈βp|




(47)
We need to show that 〈H(x)h, h〉 > 0. We immediately see that the negative
contribution from the lower-left corner is cancelled by the upper-right corner.
Inserting the relationship Equation (46) in the term from the lower right right
corner in 〈H(x)h, h〉 allows cancellation of the negative terms from the upper left
corner in 〈H(x)h, h〉. This shows the desired result. ut

Remark 3 From the proof of existence in Proposition 3, we can extract that a
negative density dependence described by a quadratic form is enough for existence
of a Nash equilibrium in a population as long as all other terms have sub-quadratic
growth.

As we are interested in the fixed-points of the population dynamics Equa-
tion (27), we show that a fixed-point of the population dynamics exists and is
unique.

Theorem 7 The population game Equation (27) has a unique co-existence fixed
point.

Proof The stationary-point mapping of the behaviorally modified Rosenzweig-
MacArthur system is clearly continuous as a function of σc, σp. Due to the metabolic
terms and logistic terms the set of fixed-points of is uniformly bounded in σc, σp,
and non-empty for sufficiently large K. By Proposition 3 the Nash equilibrium
exists and is unique for every Nc, Np. The operator (−fc,−fp) can be shown to
be pseudomonotone in an entirely analogous fashion as (−dUc,−dUp), and we
omit the calculations. Therefore, by Theorem 5 any coexistence equilibrium for
the population game is unique and this will exist for K sufficiently large. Hence
the equilibrium is unique as desired.

ut
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4.3 Parameters

We parametrize the model according to Kleibers’ law (Yodzis and Innes 1992),
hence that clearance rates, metabolic loss and the maximal consumption rate all
scale with the mass to the power of 0.75. We decompose the depth-dependent
predator clearance rate into a constant and a depth-dependent function D(x).
Denoting the consumer mass by mc and the predator mass by mp, the parameters
of the model are given by:

Fp = αm0.75
p

βl(x) = bm0.75
p D(x)

βc = bm0.75
c

µp = γm0.75
p

(48)

We model light decay I(x) throughout the water column as I(x) = exp(−kx),
hence the depth-dependent carrying capacity as following the light-curve:

ϕ(x) = exp(−kx) (49)

And the depth-dependent predator clearance rate as being specialized in hunting
near the top of the water-column:

D(x) = exp(−k/m · x2) (50)

The scaling parameters for the model are taken from (Andersen 2019, Table 2),
except for the zooplankton mass which is from (Kiørboe 2011).

Name Value Meaning
mc 0.01 g Consumer mass
mp 10 g Predator mass

α 1.25 g 1/4/month Scaling of consumption rate

b 27.5 g1/4 m3/month Scaling of clearance rate
γ 0.2 Ratio between max growth and respiration
K0 10−4 g m3·month Minimal carrying capacity
βp,0 10−4 m3/month Minimal predator clearance rate
µp 0.35 g/(m3· month) Predator metabolic rate
Fp 7 g/(m3· month) Predator maximum growth rate
ε 0.1 Trophic efficiency
k 0.05 m−1 Light attenuation
κ 1

10 m2 Decay of predation success

5 Numerical approach and results

5.1 Numerical implementation

In order to find Nash equilibria and fix-points of the behaviorally modified Rosenzweig-
MacArthur system Section 4, we use the formulation of Equation (10). We dis-
cretize space uniformly, using the trapezoidal rule to evaluate the integrals. By
using the trapezoidal rule, we keep a banded sparsity pattern in the coupling of
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the locations. The equations Equation (27) and the functions −dUc,−dUp are for-
mulated via. the symbolic language CasADi (Andersson et al. 2019), where we
then solve the complementarity problem as a feasibility problem using IPOPT
(Wächter and Biegler 2006) using the HSL subroutines for linear algebra (HSL
2007). We verified the numerical results by also solving the problem with a non-
linear complementarity routine from the open-source package SICONOS (Acary
et al. 2019).

The numerical approach for finding Nash equilibria and fixed points is ex-
tremely fast, and should scale to much larger problems. It allows for determination
of fixed-points of the dynamics in less than 1 second with several hundred grid
points. Simulating the population dynamics is, in contrast, a comparatively slow
affair since we simulate the population dynamics using a forward Euler method.

5.2 Population dynamics

With a numerical approach in place, we can perform numerical experiments to
study the population dynamics and the impact of carrying capacity (K) and in-
traspecific predator competition (c) on the distributions and populations at equi-
librium on the model in Section 4.

Fig. 1 Phase portrait of the Rosenzweig-MacArthur system without optimal behavior (σc =
1, σp = 1), (A) and with optimal behavior (B) at carrying capacity of K = 40 and a competi-
tion of c = 0. The green lines show a system trajectory.
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The direction of the flow with optimal behavior (Section 5.2(B)) is consistent
with the usual Rosenzweig-MacArthur system (Section 5.2(A)). The phase portrait
reveals that the system dynamics have been stabilized. Looking at the sample tra-
jectory, the system has been been damped. The stable dynamics stand in contrast
to the Rosenzweig-MacArthur model with constant behavior (σp = σc = 1) where
the point of the Hopf bifurcation has been passed (Rosenzweig 1971), leading to
limit cycles.
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Fig. 2 Transient strategies of consumers (A) and predators (B) at carrying capacity of K = 40
and a competition of c = 0 corresponding to the phase portrait Section 5.2.
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Both consumer and predator strategies change rapidly at the start of the time-
interval, before stabilizing towards the equilibrium values. It appears that the
consumers are more present in the most productive area when the predator pop-
ulation is lower, which is not that surprising.

5.3 Population at equilibrium

Fig. 3 Panel (A) shows population levels of consumers (blue) and predators (red) at equilib-
rium with changing carrying capacity (K). Panel (B) again shows the population levels, but
with varying intraspecific predator competition (C).
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Figure 3 reveals how the population levels of consumers and predators change at
equilibrium with varying carrying capacity (Figure 3(A)) and intraspecific predator
competition (Figure 3(B)).

A higher carrying capacity causes higher populations of both consumers and
predators populations at equilibrium (Figure 3). The increase in both populations
is probably because the behavioral choice allows the consumers to avoid the risk
of predation, while achieving the same fitness.

Varying the intraspecific predator competition causes an increase in the popu-
lation of predators (Figure 3(C, red)) until a point where the population stabilizes
(Figure 3(c ≈ 1/3)). The population of consumers continues to increase (Fig-
ure 3(C, blue)) throughout.

5.4 Spatial distributions

We start by investigating the spatial distribution of consumers and predators com-
pared to their spatially varying fitness (−dUc, − dUp).

Fig. 4 Spatial distribution (full lines) and fitness (dashed lines) of consumers (A) and preda-
tors (B) at the equilibrium with carrying capacity K = 3.
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Both consumers and predator distributions have a constant fitness of zero
in the area with coexistence, where the fitness of the predators changes when
their concentration is zero. In this we recognize the emergence of the ideal free
distribution.
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Fig. 5 Spatial distribution of consumers (A) and predators (B) at the equilibrium with in-
creasing carrying capacity (K).
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At low carrying capacity consumers are relatively spread out in the most op-
timal part of the habitat (0-0.3), while predators are concentrated near the most
optimal part (0). As the carrying capacity increases, the distribution of consumers
becomes more concentrated, distributed around a peak of 0.4. The peak slowly
moves downward with increasing carrying capacity. The consumers can be found
throughout the habitat, even at the points of lowest productivity.

Predators go from being concentrated to very spread out, but surprisingly the
peak of the predator distribution is just above the peak of the consumer distri-
bution. There are no predators below the band of highly concentrated consumers.
This is quite surprising since they have a non-zero encounter rate everywhere. The
predator and consumer distributions follow each other as the carrying capacity
increases, and appear to approach a stable asymptote.
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Fig. 6 Distribution of consumers (A) and predators (B) at equilibrium under changing preda-
tor competition (c).
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When there is no intraspecific predator competition consumers are highly con-
centrated at about 0.4, while the predator distributions spreads from 0.4 to 0.
The distribution of predators spreads out as we increase competition, before con-
centrating in the safest zone (1) again. The foraging benefits from clustering on
the consumers is outweighed by the risk of encountering other predators. The
movement of predators is echoed by the consumers. The consumers spread out
and gradually migrate to the most productive area (0). The spreading out of the
consumer population though the predator population is concentrated far away is
caused by the intraspecific competition between consumers, akin to the ideal free
distribution. It appears that both consumer and predator densities are converging
to asymptotic densities.

6 Discussion and conclusion

We study population games through the introduction of mean-field games, which
generalize the ideal free distribution (Fretwell 1969) to multi-species settings, al-
beit without the dynamical considerations of the multi-species ideal-free distri-
bution (Cressman and Křivan 2010). We establish existence and uniqueness of
Nash equilibria for a large class of population games using variational inequalities.
In particular, we are able to handle a wide class of payoff functions with unique
extrema and continuous strategy spaces. Having determined existence and unique-
ness of Nash equilibrium for the instantaneous game, we showed the existence and
uniqueness of fixed-points for suitably nice population games. This provides a
simple criterion for population games, extending theorems based on specific mod-
els (Cressman and Křivan 2010; Sandholm 2010). As such, our work provides a
multi-species generalization of the work on two-species ideal free distributions,
(Cressman and Křivan 2010; Cressman et al. 2004) and provides a generalization
of the criteria for a unique equilibrium in a habitat selection game (Cressman and
Křivan 2006, Appendix B).



26 Emil F. Frølich, Uffe H. Thygesen

We demonstrate the utility of our results by applying them to study a Rosenzweig-
MacArthur system with fast optimal behavior. We establish existence and unique-
ness of Nash equilibria, both for only consumers or predators and when both have
optimal behavior. The method of proof is computational, and hence can almost
certainly be extended to larger more complex ecosystems where the Nash equi-
librium appears unique but has not been shown to be unique Pinti et al. (2019).
This shows that our general results open up the study of population games from a
general mathematical viewpoint than has otherwise been the case, (Cressman and
Křivan 2010; Křivan 2013; Krivan and Cressman 2009; Broom and Rychtár 2013).

After showing existence and uniqueness, we analyzed the modified Rosenzweig-
MacArthur game numerically by discretizing space. Adding optimal individual be-
havior appears to eliminate the paradox of enrichment (Rosenzweig 1971), which
is a common consequence of optimal behavior in ecosystem models (Abrams 2010).
We were unable to find a Lyapunov function to provide a theoretical justification
(Krivan and Cressman 2009). In the sensitivity analysis we saw that the intraspe-
cific predator competition did not noticeably affect the predator population levels,
while elevating the consumer population levels, which was surprising (Abrams
2010). The increase in carrying capacity increased both predator and prey levels,
as is usually the case in models with optimal behavior (Valdovinos et al. 2010).
The numerical analysis also showed the emergence of an interesting pattern of con-
sumer predator co-existence, with an ideal-free distribution emerging in the areas
without any predators. In our numerical experiments we saw that changing the
predator competition had a powerful indirect on both distribution and population
of prey. The ecological interest of these results is supported by corresponding ef-
fects appearing when movement is not instantanenous and information is limited
(Flaxman et al. 2011).

Our definition of an evolutionarily stable strategy (ESS) follows (Cressman
et al. 2001), but generalized to function spaces. This definition allows for verifica-
tion of whether a Nash equilibrium is an ESS, without taking population dynam-
ics into account (Cressman and Křivan 2010). Though the definition does directly
draw on population dynamics, whether a Nash equilibrium constitutes an ESS can
be tested by studying the population dynamics (Grunert et al. 2021). This method
of attack may reveal greater insights on the coupling of the population dynamics
and the inner game, but is computationally heavy.

The key assumption in our modeling approach is the of instantaneous optimal
behavior. Instantaneous optimal behavior in a transient population is reasnoable
model if there is a decoupling between behavioral and population-dynamical time-
scales. If this decoupling is not present, then the populations cannot be expected
to follow the simple ideal free distribution at transient states (Abrams et al. 2007;
Lou et al. 2014). The evolutionary stability of strategies leading to the simple
ideal free distribution can break down, for instance when migrations driven by
diffusion (Cantrell et al. 2010), or the resources and interactions are too irregular
(Averill et al. 2012). As such, the model of instantaneous optimal behavior must be
used with care, but is particularly suited for studying populations at steady-state
(Cantrell et al. 2020, 2010, 2012a,b) or populations with separate behavioral and
population-dynamical time-scales (Cressman and Křivan 2006; Křivan 2013).

Though the instantanenous ideal free distribution may serve to stabilize the
dynamics, this is not always the case when the population dynamics and migration
dynamics cannot be modeled on separate time-scales. When the simple ideal free
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distribution emerges through an explicit advection-diffusion model in a two-species
setting, the simple ideal free distribution can serve to destabilize the population
dynamics with a slightly sub-optimal strategy leading to stable population dy-
namical regime (Zelenchuk and Tsybulin 2021). Showing stability in systems with
optimal behavior like the behaviorally modified Rosenzweig-MacArthur system
is a hard analytical problem (Krivan and Cressman 2009). It seems a general ap-
proach could be drawing on the rapidly developing theory of dynamical variational
inequalities (Adly 2018; Brogliato and Tanwani 2020; Tang et al. 2020) or study-
ing dynamical systems associated to bi-level variational inequalities (Anh and Hai
2021). This could also provide a general theory of why optimal behavior generally
enhances stability (Valdovinos et al. 2010). It appears that using these tools could
be a promising future direction of research.

We have not touched on the topic of differential games, where the optimization
is not instantaneous but takes e.g. the entire life-history into account. Variational
inequalities can be applied to differential games, (Pang and Stewart 2008), so this
seems like a tantalizing next step. This could also provide a logical coupling with
advection-diffusion dynamics to study e.g. habitats which are periodic in time
(Cantrell et al. 2021).

By introducing mean-field games and studying them through variational in-
equalities, we show that it is possible to model the distribution of coexisting animal
populations where all seek to optimize their foraging in models with strong time-
scale separation or at the fixed-point. This enables accurate modeling of the spatial
distribution of animals along with their populations, which moves us closer to the
ultimate goal of being able to model the spatial distribution of animals exactly
(Morris 2003).
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Křivan V (2007) The lotka-volterra predator-prey model with foraging–predation risk trade-
offs. The American Naturalist 170(5):771–782
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A Calculations

A.1 Existence

We complete the omitted calculations from the main text. Initially,

〈−dU(σc, σp), (σc − 1, σp − 1)〉 =

〈
Ncσc

K0 +Kϕ
− 1, σc − 1

〉

+

〈
FpNpβpσp

Fp +Nc 〈βpσp, σc〉
, σc − 1

〉

−
〈

εF 2
pNcβpσc

(Fp +Nc 〈βpσp, σc〉)2
, σp − 1

〉

+ 〈Npcβpσp, σp − 1〉

(51)

Using that 〈1, σ〉 = 1, we can write out Equation (51) and gather the positive and negative
terms

〈−dU(σc, σp), (σc − 1, σp − 1)〉 =
〈

Ncσc

K0 +Kϕ
, σc

〉
+ 〈Npcβpσp, σp〉

+

〈
FpNpβpσp

Fp +Nc 〈βpσp, σc〉
, σc

〉
−
〈

εF 2
pNcβpσc

(Fp +Nc 〈βpσp, σc〉)2
, σp

〉

−‖Npcβpσp‖1 −
∥∥∥∥

Ncσc

K0 +Kϕ

∥∥∥∥
1

−
∥∥∥∥

NpFpβpσp

Fp +Nc 〈βpσp, σc〉

∥∥∥∥
1

−
∥∥∥∥∥

εF 2
pNcβpσc

(Fp +Nc 〈βpσp, σc〉)2

∥∥∥∥∥
1

(52)

To handle Equation (52), we consider the individual terms. We start by considering the terms:

〈
FpNpβpσp

Fp +Nc 〈βpσp, σc〉
, σc

〉
,

〈
εF 2
pNcβpσc

(Fp +Nc 〈βpσp, σc〉)2
, σp

〉 (53)

We see both terms in Equation (53) are uniformly bounded in (σc, σp) over P 2
2,µ, hence so is

their difference W0(σc, σp). Defining C1 = 1
K0+K ess supϕ

and C2 = c ess inf βp we can rewrite

Equation (52) as:

〈−dU(σc, σp), (σc − 1, σp − 1)〉 ≥ C1 ‖σc‖22 + C2 ‖σp‖22

−‖cβpσp‖1 −
∥∥∥∥

σc

K0 +Kϕ

∥∥∥∥
1

−
∥∥∥∥

FpNpβpσp

Fp +Nc 〈βpσp, σc〉

∥∥∥∥
1

−
∥∥∥∥∥

F 2
pNcβpσc

(Fp + 〈βpσp, σc〉)2

∥∥∥∥∥
1

+W0(σc, σp)

(54)

Since ‖σi‖1 = 1, i ∈ {c, p}, all terms involving ‖·‖1 in Equation (52) are uniformly bounded,
and can be gathered with W0 in a single uniformly bounded function W . Hence we end with:

〈−dU(σc, σp), (σc − 1, σp − 1)〉 ≥ C1 ‖σc‖22 + C2 ‖σp‖22 −W (σc, σp) (55)
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Abstract

The diel vertical migration is one of the main drivers of population dynamics
in the ocean. Population dynamical models of the ocean typically do not in-
corporate the behavioral aspects of the migration. We demonstrate a model
with coupled population dynamics and behavior with the diel vertical migra-
tion emerging. We study the population dynamics and behavioral dynamics of
a predator-prey system. We impose a cost of motion for both consumers and
prey, and model each individual as following an Ito stochastic differential equa-
tion. We study the fixed-points of the ecosystem. Our modeling shows that as
we increase the basal resource load, the strength of the diel vertical migration
increases, as well as maximal velocity. In addition, a bimodal pattern emerges
both for predators and consumers. The increase in the magnitude of the diel
vertical migration causes a change in the allocation of copepod resources.

Keywords:
diel vertical migration, mean-field games, predator-prey, ideal free distribution

1. Introduction

The diel vertical migration is an inescapable fact of ocean life, constituting
the largest migration of animals on the planet. Though the diel vertical mi-
gration is driven by behavior, models of ocean population dynamics typically
include the diel vertical migration as a mechanistic phenomenon (van Denderen
et al., 2021), if at all (Andersen, 2019). When the diel vertical migration is in-
cluded, it is often included by simply dividing a 24-hour period into two phases,
a day and a night phase (Iwasa, 1982). The introduction of vertical migrations
driven behavioral choices in this binary division has a major impact on ecosys-
tem function (Pinti et al., 2021). The division of the day into just a day-night
cycle has a major weakness, that is ocean population dynamics to a large degree
are driven by the interactions at dusk and dawn (Benoit-Bird and McManus,
2014). A binary simplification of the day can not catch this dynamic of dusk

⋆This work was supported by the Centre for Ocean Life, a Villum Kann Rasmussen Centre
of Excellence supported by the Villum Foundation.
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and dawn, so a finer division of the day could be expected to explain more of
the impact of behavior.

The diel vertical migration is a prime candidate for a phenomenon to model
as a game Pinti et al. (2019), but incorporating both continuous space and time
is non-trivial, but has been modeled (Thygesen and Patterson, 2018). A general
approach incorporating population dynamics in the approach of (Thygesen and
Patterson, 2018) exists (Frølich and Thygesen, 2022). This approach has the
assumption that assumes animals choose their optimal location at each instant
in time, moving instantaneously. This requires that behavior is much faster
than population dynamics and that movement happens at approximately the
same time-scale for the different types of animals (Cressman and Křivan, 2006).
Neither of these assumptions are necessarily satisfied in an aquatic setting with
sufficiently big differences in sizes (Thygesen et al., 2016). The simplifying as-
sumption that predators and prey do not plan their decisions over a longer
time-horizons but move at every instant also contrasts observations (Schadegg
and Herberholz, 2017). A final element which has been left unaccounted for
in models of the diel vertical migration is the effect of non-linearity in shaping
behavior in predator-prey interactions (Thygesen and Mazuryn, 2022). In par-
ticular, predator-prey interactions have generally been modeled as governed by
Type I functional responses, with notable exceptions in the case of a day in two
parts (Pinti et al., 2019).

Drawing the above together, there is a need for a robust approach to model
the diel vertical migration incorporating both population dynamics and emer-
gent behavior. When very large populations interact and the payoff for an
individual depends on the overall distribution of the populations, the method
of mean-field games can be used (Lasry and Lions, 2007). As the populations
involved in the diel vertical migrations are large (Mariani et al., 2016) the in-
teractions can be modeled as a mean-field game (Thygesen and Mazuryn, 2022;
Mazuryn and Thygesen, 2022). As the diel vertical migration drives ocean popu-
lation dynamics, (Benoit-Bird and McManus, 2014) understanding the interplay
between the diel vertical migration and population dynamics is key to a greater
understanding of ocean population dynamics. Using a model based on individ-
ual behavior also allows an explicit study of resource allocation of copepods,
as theoretical models and empirical measurements of copepod energy budgets
are rarely in agreement (Vlymen, 1970; Svetlichny et al., 2000). Hence a model
which can uncover these relationships is a desirable goal.

In this paper, we study a predator-prey system where both the predator
and prey populations are modeled through the mean-field game framework in-
troduced by (Lasry and Lions, 2007). This lets us model the diel vertical mi-
gration as an emergent phenomenon from behavior, allowing us to study the
interplay between the fixed-point population levels and behavior. Having the
diel vertical migration emerge organically allows us to understand how individ-
ual trade-offs and behavior change with a varying resource load, and the effect
on population dynamics. Specifically, we study how the population equilibrium
changes with changing resource load, and how the resource allocation of an in-
dividual changes. We find that a changing carrying capacity can explain the
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myriad patterns observed in the diel vertical migrations, and that the alloca-
tion of resources of phytoplankton to movement is dependent on the carrying
capacity.

2. Methods

We consider a tri-tropic marine ecosystem with a resource Nr, a consumer
population Nc and a predator population Np. We model a marine ecosystem
with phytoplankton as resource, copepods as the consumers and forage fish as
predators. We assume the resources are well-mixed and have the same distri-
bution rp in the water column at all times. The distribution of the copepod
population is σc and the distribution of the forage fish population is σp. These
two distributions vary in time.

2.1. Individual and population movement

We model the movement of an individual copepod (c) or forage fish (p) by
a Itô stochastic differential equation with constant noise intensity κ

dXi
t = vitdt+ κdBt (1)

We assume that the functional responses of both copepods and forage fish can
be described by a Type II model. We presume that individuals of type i have
maximal growth rates Fi and clearance rates βi i ∈ {c, p}. We assume that
consumers and predators have conversion efficiencies εi, i ∈ {c, p}. The specific
growth rate of a consumer at position x is

Gc(x, t,Nr) = εc
FcNrβcrp(x)

Fc + βcNr(x)
(2)

Phytoplankton growth is modeled by as a chemostat, denoting the expectation
value by E(·) the mortality Mr of the phytoplankton population is:

Mr =
1

εc
E(Gc) (3)

The mortalityMc of a consumer at a point x depends on the number of predators
at x. The number of predators depends both on the total predator population
and the distribution of the predator population σp. The other factor is the
satiation of the predators, which depends on the distribution of the consumers.
This gives a specific consumer mortality:

Mc(x, t,Nr, Nc, Np) =
Fpσp(x, t)βp(x, t)Np

Fp +Ncσp(x, t)σc(x, t)
(4)

An individual can control their swimming velocity. Moving expends energy as
it induces drag. Drag is proportional to the square of the velocity,

νc(x, t) =
γc
2
v2(x, t) (5)
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This leads an individual consumer to seek the strategy vtc which maximizes the
expected value over 24 hours of

Jc(x, t,Np, Nc, Nr) = Gc −Mc − νc (6)

That is, an individual consumer seeks the velocity which maximizes their ex-
pected fitness:

EFc(v, σc, σp) = E

(∫ 24

0

J(x, t)dt

)
(7)

Analogously, the specific growth rate of a predator Gp depends on the number
of consumers Nc and their distribution σc and is

Gp(x, t,Nc) =
FpNcβp(x, t)σc

Fp +Ncβp(x, t)σc
(8)

We now switch our focus to the forage fish. The vertical migration of forage fish
is dependent on swimbladder dynamics. Using a swimbladdder is more energy
efficient than swimming, but creates complex relationship between energy and
speed (Strand et al., 2005). For this reason we simply model the scaling as
scaling with the drag. The loss from drag νp is

νp(x, t) =
γp
2
v2p(x, t) (9)

Defining Jp(x, t) = Gp(x, t,Nc)− νp(x, t), a predator seeks to maximize:

EFp = E

(∫ 24

0

Gp − νpdt

)
(10)

The optimal strategy for a predator a consumer at each point in space and
time (x, t) can be found by solving a Hamilton-Jacobi-Bellman (HJB) equation.
Remark that we have simplified the mortality, by assuming the mortality con-
tributes with an energy loss. Solving the HJB equations simultaneously then
leads to a solution of the differential game, without taking the mean-field phe-
nonema into account. The HJB equation describing the optimal value for a
consumer Vc and a predator Vp, is

−∂vti
∂t

= sup
v

(
Ji(x, t) + vti∇xv

t
i +

κ

2

∂2vti
∂x2

)
i = {c, p} (11)

The optimal value of vti , i = {c, p} is then

vti =
1

γi
∇xv

t
i (12)

i.e. the optimal strategy for both consumers and predators is to climb along
the gradient of the value function at a rate inversely proportional to the scale
of the cost of motion.
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We now the have the equations to find an optimal strategy for an individual,
given the overall distributions of the populations. This is where the mean field
approach of Lasry and Lions (2007) comes into play. Given that each individual
follows the optimal strategy, the distributions of predator and prey each evolve
according to the Fokker-Planck equation.

∂σi

∂t
= −∇x(v

t
iσi) +

∂2σi

∂x2
(13)

2.2. Population dynamics

The growth of each population is given by the expected fitness of an individ-
ual minus their metabolic rate µi, i ∈ {c, p} multiplied by the total population
size. Note the metabolic rate was not included in the fitness functional, as the
metabolic rate does not depend on behavior in contrast to the losses from mor-
tality and movement. The population dynamics can therefore be described by
the equations in Equation (14).

Ṅr = λ(R−Nr)−Mr

Ṅc = Nc(E(Jc)− µc)

Ṅp = Np(E(Jp)− µp)

(14)

We consider the population-dynamical equilibrium on a 24-hour scale. This
imposes the additional set of constraints:

∫ 24

0

Ṅrdt = 0

∫ 24

0

Ṅcdt = 0

∫ 24

0

Ṅpdt = 0

(15)

Solving Equation (14) and Equation (15) together let us find a periodic population-
dynamical equilibrium.

2.3. Environment and encounters

We model an ecosystem in a water column, where the dominating factors are
the light intensity throughout the day and the resources available for the cope-
pods. Copepods are olfactory predators, so their clearance rate βc is constant
throughout the water column. We presume that light attenuates through the
water column by e−kz where z describes the depth from the surface. As forage
fish are visual predators, their clearance rate βp depends on the light-levels I,
with a small term β0 capturing other modes of sensing food and direct encoun-
ters. We model the predation rate as a function of light decay as in (Pinti et al.,
2021), leading to Equation (16)

βp,c =
I

1 + exp(kz)
+ β0 (16)
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Figure 1: The daily variation in clearance rate for the predators.

As the optical system is satiated beyond some threshold (Thygesen and Patter-
son, 2018), we model the variation in clearance rate I in Equation (16) caused
by the day night cycle as a periodic function varying from 0 to 1 smoothly,
keeping the values 0 and 1 constant throughout the night and day respectively,
leading to the daily variation in clearance rates seen in Figure 1 We model the
distribution of phytoplankton rp as constant in space and time, with a rate of
decline c and a fixed mixed layer depth of xmld Section 2.3 as in (Thygesen and
Mazuryn, 2022).

rp =
1

1 + c(exp(x− xmld)
(17)

2.4. Parameters

Metabolic function, clearance rate and maximal consumption rate in an
aquatic ecosystem typically all scale according to Kleibers law, scaling by the
mass of an individual to the power of 0.75, (Yodzis and Innes, 1992). The
metabolic rate and maximal consumption rate are typically related by Fi =
10µi. Using the values in (Andersen, 2019, Table 2.2), and (Thygesen and
Mazuryn, 2022) we arrive at the following parameters.
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Figure 2: The distribution of the basal resource.

Meaning Symbol Value
Copepod mass mc 0.05 g
Forage fish mass mp 20 g

Consumer clearance βc 33 m3/year
Minimum clearance β0 1.5 m3/year
Predator clearance βp 3120 m3/year

Maximal consumer consumption Fc 2 g/year
Maximal predator consumption Fp 190 g/year

Consumer conversion rate εc 0.26
Predator conversion rate εp 0.46

Carrying capacity R Varies
Renewal rate λ 1 /year

Consumer metabolic rate µc 0.2 g/year
Predator metabolic rate µp 3.1 g/year

Consumer drag γc 10−6 · 1/6 Jh/m2

Predator drag γp 10−5 · 1/6 Jh/m2

Light dispersal k 0.05/m
Noise κ 1 m2/h

Mixed layer depth xmld 20 m
Resource gradient c 0.2/m

Our model ecosystem is the north sea, which has an average depth of 100m,
allowing comparison with the case study in (Frølich and Thygesen, 2022).

2.5. Numerical approach

Our numerical approach is based on the concept of grid-refinement. We
discretize the differential operators according to a second-order scheme, and
discretize the integration according according to the finite element method. We
start by solving the system at low spatial and temporal resolution (4x12) using
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Figure 3: (a) Daily average of resource (green), consumer (blue) and predator (red) population
levels as a function of carrying capacity at steady-state. (b) Energy budget of a consumer as a
function of carrying capacity, mortality compared to metabolism Mc/µc (red) and swimming
costs in comparison to metabolism, νc/µc (yellow)

CasADi (Andersson et al., 2019) to deliver exact derivatives to the interior-
point solver IPOPT (Wächter and Biegler, 2006). In order to improve both
speed and convergence of the interior point solver, we use the HSL numerical
libraries (HSL, 2007). Having solved the system at low spatial and temporal
resolution, we gradually increase the resolution. We do this by interpolating a
guess to a solution the system at step n+1 based on step n. This is done using
the interpolation tools in SciPy, interp2d and interp1d.

3. Results

Increasing the carrying capacity of the basal resource has essentially no effect
on the higher trophic levels Figure 3 (a, blue red), but causes a marked increase
in the resource population (a, green). At the finer scale, the increase in carrying
capacity by a factor of ten causes an approximate doubling of the consumer
population, and also an increase in the predator population.

We see that the energy expenditure to predation remains approximately
constant Figure 3(b, red), while the energy allocated to movement increases and
then plateaus Figure 3(b, yellow). Hence the total expected consumption must
rise to a plateau, and then level off. At low carrying capacities basal metabolism
accounts for two-thirds of energy consumption Figure 3(b), decreasing to a bit
less than 25% at the maximal carrying capacity.
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Figure 4: Average location across the day with varying capacity for a consumer (a) and
predator (b) and standard deviation of location of consumers (c) and predators (d)
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In the Figure 4 (a) we see the emergence of the diel vertical migration of
copepods as the carrying capacity increases. With a greater carrying capacity
comes a larger energy budget, allowing an individual consumer to migrate up
and down to increase their survivability. This is also reflected in the standard
deviation of their distribution Figure 4 (c), which is highest during the migration
down, adding safety, and lowest during the migration up. For the predators the
situation is quite different Figure 4(b). Predators are spread throughout the wa-
ter column with approximately the same depth throughout the day Figure 4(b),
albeit with a vertical migration for low carrying capacities capacity (Figure 4(b,
5-8), then moving to a reverse migration at medium to high carrying capaci-
ties Figure 4(d, 20-25). The distributions, are however, essentially unchanged
throughout the day.

We see the emergence of three distinct migration patterns for the consumers.
At low resource levels, the consumers have a bimodal distribution, but are es-
sentially distributed across the water column Figure 5 (a). At medium resource
levels, the consumer population has bifurcated Figure 5 (b). There is a part
of the population which is always concentrated at the top,, while the part of
the consumer population which is concentrated at the bottom conducts a larger
vertical migration Figure 5(b) . If we then proceed to the high-resource case
Figure 5 (c), the situation is again completely changed. Now we have a unimodal
consumer distribution, this time concentrated at the bottom with a migration
towards the top of the water column. What we see is a behavioral emergence
of a layer below the surface so the maximal zoo-plankton concentration is not
at the top but at a point below the top. The situation for the predators is less
interesting, with a standard vertical migration emerging from at low carrying
capacities Figure 5 (d) switching to a reverse migration Figure 5(e, f) carrying
capacities. A much greater change occurs in the modality, with a bimodal dis-
tribution at a low carrying capacity Figure 5 (d), switching to a unimodal one
at medium and high carrying capacity Figure 5(e, f). We note that as a general
trend, particularly noticeable in Figure 5(b) is that the zoo-plankton migrate
down before sunrise (6), anticipating the changing environment. This difference
in modes can also be seen in the standard deviation of their distribution Fig-
ure 4(d) As could be expected from the migration patterns, the speed of the
predators across varying resources is approximately constant Figure 6 (d,e,f),
while the consumers drastically increase their speed Figure 6(a) to Figure 6(b)
and increase the range and time where they swim fast Figure 6(c). As such
the changes in movement patterns are two-fold, with more mobile zooplankton
across a larger range both in space and time. This ties into the expected energy
consumption, which does not change essentially from Figure 6(b) to Figure 6(c)
for the consumers, see Figure 3(b). This is due to the concentration at the
bottom, so though the swimming speeds are high a consumer does not expect
to encounter these swimming speeds.
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4. Discussion

At the behavioral level, our results show that the diel vertical migration of
copepods and forage fish can be understood as an emergent behavioral strategy
in response to bottom-up forcing. We see the emergence of different modalities
at different levels of basal productivity, with bimodal distributions and unimodal
distributions appearing depending on the resource load. The energy budget of
an individual copepod changes drastically as the carrying capacity rises, with
active energy usage increasing relative to metabolism. At the same time, the
mortality risk falls, as the behavioral adaptation in swimming faster allows for
greater risk aversion.

In our system where forage fish are at no risk of predation, their optimal
behavior at population equilibrium is essentially to stand still in the water col-
umn. At the population level, our results reiterate the point that the ecosys-
temm enrichment hypothesis is insufficient to explain the effect of enrichment.
In particular, we see that the primary grazers increase in population while the
predators decline.

4.1. Population-level phenomena

We find both bimodal and unimodal distributions of zooplankton at pop-
ulation equilibrium. Bimodal distributions emerge at medium productivities,
corresponding to e.g. the start of fall in agreement with observations (Hattori,
1989). The two kinds of unimodal migration in our model , concentrated either
at the top or bottom, represent respectively high and low productivity, and
could be tested empirically to see migration modes (Hays et al., 2001; Bayly,
1986). Thus our model provides a direct coupling between productivity and be-
havior, serving to explain empirical observations of the variation in zooplankton
behavior with respect to seasons and latitudes (Hattori, 1989).

The result that forage fish do not migrate to any serious degree is quite
surprising. This contradicts findings when behavior is assumed instantaneous
(Thygesen and Patterson, 2018; Frølich and Thygesen, 2022). This difference
may be occasioned by the stable population levels in our model, so our results
show that bottom-up pressure is not always sufficient to drive a migratory pat-
tern for predators. In reality, forage fish are themselves subject to massive
predation pressure and their migration is also influenced by this. An interest-
ing side-effect is that this results vindicates modeling the threat of predation
by a light-dependent mortality field (Thygesen and Mazuryn, 2022) to model a
simple predator-prey system.

The impact on population levels is in tune with what is usually found in
models of optimal behavior, with all trophic levels increasing due to optimal
behavior (Valdovinos et al., 2010).

4.2. Individual impacts

The optimal strategy is following the gradient of an optimal value function,
which reflects the underlying structure in the ocean. That copepods follow such
a strategy is plausible, as copepods follow the physical gradients associated with
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ocean structure, i.e. light and productivty (Woodson et al., 2005). These are
exactly the two features which determine the value function. As such, our model
provides a behavioral explanation for both individual phenonema and large-scale
movements. The expected energetic requirements of swimming compared to
metabolism that we find range from 5% to 70%. This is an extremely wide range,
and matches the measured energy expenditure of swimming copepods which lies
in a range of 10-60% of metabolism (Svetlichny et al., 2000; Epp and Lewis,
1984). This illustrates that behavioral models provides realistic predictions for
energy expenditure, improving on purely fluid-dynamical approaches (Vlymen,
1970; Visser, 2007).

4.3. Game theory and model

The optimal movement strategy we find is the evolutionarily stable strategy
migration strategy in a constant environment (Cantrell et al., 2012), of con-
stantly moving towards better fitness. As we investigate the Nash equilibrium
at a population dynamical equilibrium the expected payoff for each individual
of each type is the same for every path, namely zero. Hence the emergent distri-
butions in our model constitute an ideal free distribution (Cantrell et al., 2021),
and the strategies are evolutionarily stable, (Cantrell and Cosner, 2018). This
is illustrated by the emergent migration patterns where we see a diving down
before daybreak, i.e. a use of non-local temporal information. This is one of the
hallmarks of a temporally periodic ideal free distribution, (Cantrell et al., 2021),
and a key point of difference from the standard ideal free distribution (Parker,
1978). The emergence of the ideal free distribution supports further investiga-
tion of ecosystem models incorporating both mean-field games and population
dynamics, as being distributed according to the ideal free distribution is one of
the chief features of realistic models of population distribution (Cressman and
Křivan, 2010).

4.4. Conclusion

In conclusion, our results show that it is possible to solve multi-species pop-
ulation games in continuous space and time, taking both population dynamics
and behavior into account. We show that mean-field games have a natural
place in studying population games with population dynamics. In this work we
considered a simple predator-prey model with continuous space and time, but
there is no reason to believe complex ecosystems could not be studied with the
same approach. This expands the ecosystems where behavior and population
dynamics can naturally be coupled, and paves the way to incorporating optimal
behavior in large-scale population models e.g. for fisheries management.
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Abstract

Shelf ecosystems support 90% of the worlds fisheries, and having good models
of shelf ecosystems is essential for ensuring that we have sustainable fisheries.
Models of shelf ecosystems rarely take behavior into account other than mech-
anistically, though behavior essentially governs the population dynamics. We
study a model of a shelf-ecosystem with six different trophic levels, where four
of them have optimal behavior. We implement the optimal through a mean-field
a game. This allows us to show the vertical migration of zooplankton as de-
pendent on phytoplankton productivity, and find reverse vertical migrations. In
addition we show that both and phytoplankton productivity negatively impacts
large pelagic fish, but benefit large demersal fish.

Keywords:
shelf eco-system, mean-field games, food-web, population dynamics

1. Introduction

Shelf ecosystems are some of the most productive ecosystems, responsible for
over 90% of global fisheries (Pauly et al., 2002). Hence a proper understanding
of the complexities of shelf eco-systems is essential for global fisheries manage-
ment. The structure of shelf ecosystems can be described by a simple food-web,
incorporating both benthic and phytoplankton productivity. These support a
food-web consisting of both zooplankton, forage fish, large pelagic fish and large
demersal fish. This food-web has many indirect effects, with an increase in ben-
thic production having been shown to decrease large pelagic populations (Petrik
et al., 2019; van Denderen et al., 2018).

One of the main drivers of population dynamics is behavior, and models
of shelf eco-systems typically do not include behavior (Petrik et al., 2019), or
only do so mechanistically (van Denderen et al., 2021). In the ocean the major
important behavioral pattern is the diel vertical migration, which is usually
characterized by prey seeking to avoid predation by swimming to safe areas.
Incorporating the diel vertical migration in population models is expected to

⋆This work was supported by the Centre for Ocean Life, a Villum Kann Rasmussen Centre
of Excellence supported by the Villum Foundation.
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improve their predictive power, as most trophic interactions happen at dawn
and dusk (Benoit-Bird and McManus, 2014), driven by the migration. Due to its
simple nature, incorporating the diel vertical migration (DVM) by dividing the
day into two and imposing migratory patterns seems promising. This approach,
however, is not supported by data. The strength and nature of diel migration
patterns is highly dependent on the individual risk of predation (Stockwell et al.,
2010; Scheuerell and Schindler, 2003). In a complex ecosystem, reverse diel
migrations where zooplankton migrate up during the day are known to emerge
as a function of predator density, (Kahilainen et al., 2009). This due to the day
becoming safe, as their main predators are also under the threat of predation.
As such, a wide variety of complex migration patterns can arise depending on
the state of the ecosystem. A model of a shelf ecosystem where population
dynamics are coupled to an emergent diel migration could provide a framework
where e.g. the transition of the state of shelf ecosystem from overfishing could
be studied, as in the case of north-west Atlantic cod (Choi et al., 2004).

The diel vertical migration is an example of a habitat choice decision, one
of the places where game theory has been most sucessful in theoretical ecology.
Habitat selection games are typically modeled as playing the field, where each in-
dividual plays against the behavior of the entire population (Smith, 1982). The
diel vertical migration in can be shown to arise from a game between predators
and prey, in complex ecosystems such as a shelf system (Pinti et al., 2021). In
this study the day-night cycle was divided into two parts. A weakness of simply
dividing the day into two zones is that this causes the critical feeding windows
of dawn and dusk to disappear, but as noted is to a large degree these which
drive population dynamics of the upper trophic layers of the ocean (Benoit-Bird
and McManus, 2014). Models with a continuous time resolution, can, however,
catch this dynamic (Thygesen and Patterson, 2018). This approach has been
advanced and expanded, incorporating both randomness in behavior and be-
havioral decisions taken over a longer time-horizon through the development of
mean-field games (Lasry and Lions, 2007). Mean-field games represent a power-
ful addition to the toolbox of theoretical ecology, allowing for the resolution of
population games without resorting to adaptive dynamics. This leads directly
to the next point, namely coupling population dynamics and behavior. Optimal
behavior has a large effect on population dynamics in simple models (Abrams,
2010), but there are no models coupling an emergent vertical migration in a
complex ecosystem with a population dynamics.

We propose a model of a food web in a shelf ecosystem which allows us to
study the coupling of population dynamics and behavior in a realistic ecosystem.
This is done by modeling the individual behavior of each population group as
a mean-field game. We couple the mean-field game to a population dynamical
model, studying the size of the populations at the fixed-points of the population
dynamics. This allows us to couple diel migration patterns, population levels,
and productivity in a shelf ecosystem.
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2. Methods

Our model has two basic components: A population dynamical and a be-
havioral component. Our food-web is a simple shelf ecosystem at a depth of
200m, as in (van Denderen et al., 2021). The food web consists of two different
sources of primary production. Phytoplankton Nr growing at the top of the
water column with a growth λr and maximal population R, and a benthic pro-
duction Nb with a growth rate of λ and maximal population B. The betnthic
resource follows a distribution rb with width w and the phytoplankton is dis-
tributed according to rr, with a mixed layer depth of xmld and a decline of c,
see Figure 1 and ??.

rr =
1

1 + exp(c(x− xmld))

rb = exp((x− 200)/w2)

(1)

Going upwards in the food web, the phytoplankton is consumed by zooplankton
Nz, who are then consumed by forage fish Nf . Forage fish are consumed by
large pelagic fish Np and large demersal fish Nd. Apart from forage fish, large
demersal fish also consume the benthic production. The interactions governing
the population dynamics are summarized by the food-web in Section 2. This
leads directly to the behavioral component of the model. Zooplankton seek a
behavioral pattern so they can maximize their consumption of phytoplankton
while avoiding being eaten by forage fish. This can be avoided by migrating to
the bottom, where they cannot be seen. Forage fish have the same drive, but
with the caveat that their predators the large demersals are also motivated to
stay at the bottom to consume benthic production. This leads directly to the
behavioral pattern of the large demersals, who must choose whether to consume
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Model food-web in a shelf ecosystem
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Figure 2: An unstructured food-web in a shelf eco-system

benthic resources or swim in search of forage fish. Finally the large pelagics seek
to eat the forage fish.

2.1. Behavioral dynamics

As in the ideal free distribution (Fretwell, 1969) we assume that each in-
dividual seeks to maximize their fitness. As the ocean is a time-varying envi-
ronment, with light changing throughout the day, we cannot use the ideal free
distribution as this assumes a static environment and that individuals move in-
stantaneously. We assume that the movement of an individual can be modeled
by an Ito stochastic differential equation.

dXi
t = vtidt+ σdBt (2)

Equation (2) captures that the movement of an individual is governed both by
active advection and noise. Instead, our model is that each individual seeks to
maximize their total fitness over a day. The fitness can be broken down into four
components. A growth Gi, a mortality term Mi, the energy lost to locomtion νi
and metabolism µi. These are determined by their location in the water column
xi and their velocity vti . In addition, individual growth and mortality depend
on the distribution of food sources, predators and conspecifics. That is, each
individual maximizes a utility function depending on its vertical position xi,
that of its conspecifics Niσi, the distribution of the other animals Njσj as well
as the velocity vti . At each instant, the growth of an individual is

Ji = Gi(xi, (Njσj)
4
j=1)−Mi(xi, (Njσj)

4
j=1) (3)
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We assume that the populations of each type is large, so the actions of an
individual do not have an effect on the overall population distribution. With
this in mind, each individual of type i maximizes

Fi,ind) = E

(∫ 24

0

Ji − νidt

)
(4)

We can now specify the concrete growth and mortality rates, depending on the
maximal consumption rates Ci, clearance rates βi and conversion efficiencies εi.
Remark that large demersals have two different clearance rates. The first is βd

which depends on light-levels and determines encounters with forage fish, the
second is βdb which determines clearance of the benthos. In addition to these
parameters, the growth and mortality depend on the ecosystem state, i.e. the
population levels and distributions. We start from the bottom of the food-web,
by specifying the growth and mortality of zooplankton.

Gz = εzNrCzbetazdr/(Cz +Nrbetazdr)

Mz =
Nfσfβf

cf +Nzβfσzσf

(5)

The growth and mortality of forage fish is the most complex, as they are preyed
upon both by large demersals and large demersals

Gf = εfCfNz
βfσz

(Cf + βfNzσz)

Mf =
NpσpCpβp

(Cp + σfβpNf )

+
Ndσdβd

(Cd + βdσfNf + βdbNbdb)

(6)

The large pelagics and large demersals have no mortality from predation, and
have growth functions:

Gp = εpCp
Nfσfβp

(Cp + σfβpNf ))

Gd = εdCd
Nfσfβd +Nbβdbdb)

(Cd + βdσfNf +Nbβdbdb)

(7)

Though the energy expenditure of swimming of fish in a viscious fluid is propo-
tional to the cube of the speed, we model it as proportional to the speed squared.
This is done for the sake of modeling, as the smoothness of a quadratic function
is more tractable than the absolute value. Hence the instantanenous energetic
cost of movement for all types is

νi =
γi
2
v2i i ∈ {z, f, p, d} (8)

We assume that each individual optimal value, or fitness, is given by Vi. With Vi

in hand, we can write up an expression for the instantaneous reward Ji following
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Thygesen (2022)
Ji(t) = Gi − ViMi − νi (9)

Each individual then seeks to optimize their expected fitness Fi, given by integral
of the expected value of Ji over an entire day.

Fi = E

(∫ 24

0

Jidt

)
(10)

With the fitness measure settled, we can now write up the Hamilton-Jacobi-
Bellman equation governing the optimal movement of an individual of type i
with value function Vit

−∂Vi

∂t
= sup

vt
i

(
Ji(x, t) + vti∇xVi +

κ

2

∂2Vi

∂x2

)
i ∈ {z, f, p, d} (11)

As we assume the populations are large, the situation we are in is that of a
mean-field game (Lasry and Lions, 2007). The Nash equilibrium of this game
can be found by solving a coupled system of Hamilton-Jacobi-Bellman equations
Equation (11) and Fokker-Planck equations Equation (12).

∂σi

∂t
= −∇x(v

t
iσi) +

∂2σi

∂x2
i ∈ {z, f, p, d} (12)

This is a slight simplification, as the equation should include source and death
terms. These contributions are negligible over a daily horizon, hence we do not
include them to ease the modeling.

2.2. Population dynamics

We have so far refrained from defining the mortality of the phytoplankton
the benthic resource , Mr and Mb. The mortality at any instant is

Mr =
Nz

εz
E(Gz)

Mb = NdE

(
Cd

Nbβdbdb)

(Cd + βdσfNf +Nbβdbdb)

) (13)

We assume both the benthic and phytoplankton resource can be described by a
chemostat, so their population dynamics can be described by Equation (14)

Ṅr = λr(R−Nr)−Mr

Ṅb = λb(B −Nb)−Mb

(14)

The population population dynamics of each group of animals is governed by
the average growth of all individuals in the group. As such, the population
dynamics of group i are given by

Ṅi = NiE(Gi −Mi − νi − µi), i ∈ {z, f, p, d} (15)
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We are interested in the population levels at the fixed-point, which in this case
means a periodic solution. Hence we also require

∫ 24

0

Ṅidt = 0, i ∈ {z, f, p, d} (16)

The two equations Equation (15) and Equation (16) completely specify the
populat ion dynamics of zoo-plankton, forage fish, large pelagics and large de-
mersals.

2.3. Parameters and resource distributions

We follow the parameter choices of FEISTY (Petrik et al., 2019; van Den-
deren et al., 2021). The parameters are represented in Section 2.3

Name Symbol Value
Copepod mass mz 0.05g
Forage fish mass mf 15g

Large pelagic mass mp 5000g
Large demersal mass md 4000g

Copepod maximal consumption rate cz 2 g/year
Forage fish maximal consumption rate cf 152 g/year
Large pelagic maximal consumption cp 10059 g/year
Large demersal maximal consumption cd 11892 g/year

Clearance rate zooplankton βz 35 m3/year
Clearance rate forage fish βf 2515 m3/year
Clearance rate large pelagic βp 165981 m3/year
Clearance rate large demersal βd 82991 m3/year

Benthic clearance large demersal βdb 41495 m3/year
Light attenuation coefficient k 0.05/m

Noise κ 1 m2/h
Mixed layer depth xmld 20

Phytoplankton attenuation c 0.2/m
Benthic layer width

Copepod drag γc
1
610

−6 Jh
Forage fish drag γf

1
610

−5 Jh
Large pelagics drag γp

1
610

−4 Jh
Large demersals drag γd

1
610

−4 Jh

2.4. Numerical approach

Our ability to resolve the system and find optimal strategies and stable
population levels simultaneously is based on the numerical scheme we use. We
discretize both space and time according to a second-order scheme. We start by
solving the system on a rough grid spatio-temporal resolution of 3× 15. We do
this by using the package CasADi (Andersson et al., 2019), using the interior-
point solver IPOPT (Wächter and Biegler, 2006) with the HSL linear algebra
routines (HSL, 2007). At this low resolution of the grid, an exact Hessian can
be computed and the system can be solved using this.
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Figure 3: Population levels as a function of carrying capacity R of phytoplankton (a), benthic
resource (b), zooplankton (c), forage fish (d), large pelagics (e) and large demersals (f) at
benthic carrying capacity B levels of 0.01g (red), 0.1g (green)

Then we succesively refine the space and time dimensions, using the solution
at step n − 1 to as an initial guess for the solution at step n, where we use an
inexact Hessian. This allows us to solve the system at a final resolution of
30× 150.

3. Results

Examining the population levels reveals several surprising effects. The first
general effect is the increase in both zoo-plankton and phytoplankton popu-
lations Figure 3(a,c) from increasing the carrying capacity. Surprisingly, an
increased benthic productivity causes the effect of phytoplankton productivity
to increase Figure 3(a,b). At a both low and high benthic productivity the
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Figure 4: Migration of patterns of zooplankton (σz , a), forage fish (σf , b), large pelagics (σp,

c), and large demersals (σd, d) at a carrying capacity of R = 5g and B = 0.01g

population of forage fish is essentially unchanged by the change in productiv-
ity Figure 3(d, red, green). The situation for large pelagics is surprising. An
increase in carrying capacity causes a decrease in large pelagic populations at
both and low high benthic carrying capacities Figure 3(e, red, green). The pop-
ulation of large demersals and large pelagics are both surprisingly essentially
unchanged when increasing the benthic productivity Figure 3(f, red, green).
Together, these two lead to the conclusion that an increase in carrying capacity,
either planktonic or benthic, favors mainly the zoo-plankton community.

The migration patterns in Figure 4 reflect the migration patterns in a shelf
ecosystem with a low phytoplankton productivty and low benthic productivity.
The zooplankton Figure 4 (a) have a a bimodal distribution. The uppermost
layer has a barely noticeable reverse diel vertical migration, where they con-
centrate at dusk. The mode at the bottom moves in counterpoint, migrating
slightly up during the dawn. If we consider the forage fish Figure 4 (b), their
patterns are more surprising. They concentrate near the surface at day, and
slightly below the surface at night. Proceeding in the food web, the large pelag-
ics also have a bimodal distribution. The large demersals have a small diel
migration, with a group migrating up during the night and down in the day.
There is also a population of large demersals which stays down during the entire
day-night cycle.

The migration patterns in Figure 5 reflect the migration patterns in a shelf
ecosystem with a medium phytoplankton productivty and low benthic produc-
tivity. The distribution of zooplankton Figure 5(a) has now changed to an es-
sentially unimodal distribution, with a clear diel vertical migration, surprisingly
concentrating during dusk. This is probably an anti-predation measure, as their
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Figure 5: Migration of patterns of zooplankton (σz , a), forage fish (σf , b), large pelagics (σp,

c), and large demersals (σd, d) at a carrying capacity of R = 13g and B = 0.01g

predators are also vulnerable here. If we consider the forage fish Figure 5(b),
their behavior has changed to an essentially uniform distribution with a small
reverse migration. Proceeding in the food web, the large pelagics now have a
unimodal distribution distributed evenly throughout the water column. The
large demersals are quite distributed, but have a very minor reverse migration.

At high phytoplankton and low benthic productivity, a new pattern emerges.
The migrations of zoo-plankton Figure 6 (a) has increased in scope and concen-
tration. Forage fish lost all trace of a migration Figure 6 (b). Large pelagics
and demersals have the same behavioral pattern as at medium productivity
Figure 6(c,d).

Inspecting the migration patterns in Figure 7 we immediately spot a dif-
ference from the case with low benthic productivity Figure 4. Zooplankton
Figure 7(a) are still bimodal in their distribution, while forage fish Figure 7(b)
perform a small reverse vertical migration but have the lost concentration be-
neath the surface at midnight. Large pelagics have bimodal distributions as in
the case with low productivity, and large demersals now have a bimodal distri-
bution without migration, concentrated in the top Figure 7(c,d), Figure 4(c,d)

At medium productivity, zooplankton perform a reverse diel vertical migra-
tion, concentrating 50 meters below the surface Figure 7(a), and forage fish
migrate to follow them Figure 7(b), concentrating on the zooplankton. The
forage fish also gather beneath the surface at midnight, which serves to scare
any copepods away Figure 7(b). The large pelagic population follows a uniform
distribution in the water column. The large demersals have a bimodal distri-
bution concentrated at the top of the water column, Figure 7(d), with a slight
reverse vertical migration.
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Figure 6: Migration of patterns of zooplankton (σz , a), forage fish (σf , b), large pelagics (σp,

c), and large demersals (σd, d) at a carrying capacity of R = 20g and B = 0.01g
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Figure 7: Migration of patterns of zooplankton (σz , a), forage fish (σf , b), large pelagics (σp,
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Figure 9: Migration of patterns of zooplankton (σz , a), forage fish (σf , b), large pelagics (σp,

c), and large demersals (σd, d) at a carrying capacity of R = 13g and B = 0.1g
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At high productivity of both benthics and phytoplankton, zooplankton per-
form a reverse vertical migration, and forage fish perform a vertical migration
Figure 9. At the same time, forage fish have a dilute concentration at the top
of the water column during the day, just intersection the zooplankton layer Fig-
ure 9, (a,b). The large pelagics now have a clear bimodal distribution Figure 9(c)
and the so do the large demersals, which are more spread out Figure 9(d)

4. Discussion and conclusion

The study shows the potential of incorporating complex behavior in realistic
ecosystem models. By changing environmental conditions, complex behavior
can emerge from simple individual choices, affecting population dynamics. Our
results show that benthic productivity apparently has a large effect on popu-
lations, Our results show that surprisingly benthic and phytoplankton produc-
tivity have the same overall effect on ecosystems, causing an increase in phy-
toplankton and zooplankton. Meanwhile they cause a decline in large pelagic
populations, and have little effect on forage fish populations beyond a certain
point. Phytoplankton productivity negatively impacts large demersals, but this
is to some degree counteracted by the positive effect of increased benthic pro-
ductivity.

Both a normal and a reverse vertical migration of zooplankton emerges from
the optimal behavioral patterns, while forage fish perform a limited reverse
migration, and a normal diel migration at high productivity of both benthic and
phytoplankton. Large pelagics and demersals have a tendency to either evenly
or distribute or have bimodal distributions. Large demersals, do, however, have
very slight reverse vertical migrations.

The population-level effects we find on the effect of benthic productivity cor-
responds to the FEISTY model without optimal behavior, (Petrik et al., 2019;
van Denderen et al., 2021). The effect of phytoplankton productivity, is, how-
ever, novel. Whether this prediction of our model holds water can be tested by
comparing the population levels in different shelf ecosystems. It would, how-
ever, serve to explain the very large Krill populations on the highly productive
Antarctic shelf and the large demersal population, with a correspondingly low
population of large pelagics and forage fish (Smith Jr et al., 2007).

The behavioral adaptation of an emergent diel vertical migration matches
findings that the diel vertical migration is dependent on ecosystem productivity
and predator counts (Stockwell et al., 2010; Kahilainen et al., 2009; Ohman,
1990), but the reverse migrations by the forage fish are unexpected (Scheuerell
and Schindler, 2003; Bayly, 1986). We expected the emergence of a reverse
migration of zooplankton at sufficiently high productivities due to high counts
of forage fish (Kahilainen et al., 2009), and it was surprising that this was also
the case when forage fish made the clearest normal vertical migration. Whether
this is a general pattern of this model, or just a result of the specific parameters
governing the migrations should be investigated further. The result that large
pelagics are evenly distributed throughout the water column corresponds well
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to reality, where pelagics are sparsely distributed but can speedily migrate to
consume their prey (Thygesen et al., 2016).

Our model brings new results to the table of shelf-ecosystem modeling, and
shows the promise of incorporating optimal behavior in realistic ecosystem mod-
els.
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