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Abstract

Atlantic cod is a keystone species that remains among the most economically important

demersal fish in the North Atlantic. Throughout its distribution range, Atlantic cod is com-

posed of populations with varying environmental preferences and migratory propensities.

This life-history variation is likely to have contributed to the niche width and large population

sizes of Atlantic cod, and its relative resilience to environmental change and exploitation.

The Icelandic cod stock is currently managed as a single unit, but early research indicates

population variation by depth and temperature and distinct offshore and inshore spawning

components. Pelagic 0-group juveniles from different spawning grounds coexist in nursery

areas around Iceland, but their genetic composition or habitat partitioning had not been

examined post benthic settlement. In the current study we examine the genetic composition

of Atlantic cod juvenile aggregations at nearshore nursery grounds in NW-Iceland and report

distinct segregation by the depth of offshore and inshore juvenile cod. The physiological

mechanism of this segregation is not known, but the pattern demonstrates the need to con-

sider population structure at nursery grounds in the application of marine spatial planning

and other area-based conservation tools.

Introduction

Atlantic cod is a keystone species that remains among the most economically important

demersal fish in the North Atlantic despite severe overexploitation in many of the stocks [1].

Throughout its distribution range, Atlantic cod populations vary genetically across environ-

mental gradients, such as temperature and salinity [2, 3]. Population variation in migratory

propensity is also common [4], and was early on linked to genetic markers, notably the Pan I

locus [5]. The Pan I locus has since been located on linkage group 1 (LG1) on the Atlantic cod

genome, a supergene divergent between cod with different migratory propensity and life his-

tory [6]. Other linkage groups, or supergenes, have also been identified as important for the

Atlantic cod population structure [6–9]. The origin of these supergenes is ancient [10], and

variation in cod migratory behavior has been noted throughout historical times [11]. This life-
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history variation is likely to have contributed to the niche width and large population sizes of

Atlantic cod, and its relative resilience to environmental change and exploitation.

The Icelandic cod has recovered in recent years, with reference stock biomass estimates

exceeding 900 thousand tons since 2012 [12]. Currently managed as a single unit, stock struc-

ture of Atlantic cod in Icelandic waters has been examined for over two decades, first by identi-

fying depth gradients in Pantophysin I (Pan I) and hemoglobin (HBI) frequencies [13] and

soon after by confirming segregation by depth and geographic stock structure at the Pan I

locus, microsatellites and by otolith shape and chemistry [14–16]. Later studies using genome

examination of single-nucleotide polymorphism (SNPs) confirmed this differentiation and

defined offshore and coastal populations based on a clustering analysis of spawning compo-

nents around Iceland and Greenland [17].

Results from data storage tags (DSTs) show markedly different environmental profiles of

Atlantic cod in Icelandic waters, part of the stock inhabits deeper and cooler waters both dur-

ing foraging migrations and at spawning grounds [18, 19]. This environmental divergence is

associated with genetic divergence on LG1 [20, 21]. The differentiation of stocks by foraging

grounds [18], prompted the terms frontal and coastal cod [22], but the association of genetic

stock structure and migratory behavior is likely complex [21] and there is no recent or geo-

graphically detailed genomic analysis of spawning populations of Atlantic cod around Iceland.

In a study including contemporary and historical samples from Greenland, Iceland and Can-

ada, Therkildsen et al. [17] sampled Icelandic cod from north and south coastal populations as

well as at different depths at spawning grounds in south Iceland. Those results supported two

genetic clusters associated with depth [17]. Further research is needed to resolve population

structure of Icelandic cod and to understand how genetic structure relates to migratory behav-

ior. However, in the current paper we make use of these previous population genetic clusters

and refer to offshore or inshore populations as the identified groups by Therkildsen et al. [17].

We also use Pan I genotypes and refer to; Pan IAA, associated with cod in shallower, warmer

waters, Pan IBB, associated with cod in offshore, cooler waters, and heterozygotes Pan IAB [14].

When discussing Atlantic cod grouping based on depth or temperature profiles recorded by

DSTs, we refer to migratory types [18, 19].

Pelagic juveniles from different spawning grounds coexist in nursery regions around Ice-

land [23, 24], but there is limited knowledge on juvenile distribution following benthic settle-

ment. The main spawning area of Atlantic cod around Iceland is off the south-west coast,

where migratory types have spawned at divergent depths [25]. Eggs and larvae from the main

spawning ground are carried along the west and north coast with the Irminger current and

then transported with coastal currents into fjords and nearshore waters, were they settle to

benthic habitats and may mix with juveniles from local spawning components [23, 24, 26].

The abundance of pelagic juveniles found in these ocean currents varies year to year [27] but

in any given year, more than half of the pelagic 0-group juveniles found in the northern area

were likely to have originated from the main spawning area [24, 26, 28]. Tagging and recapture

of age 1 and age 2 juvenile cod in the area has further shown that they remain mostly resident

in their first two or three years [29].

Many questions remain unanswered on the stock complexities and population connectivity

of Atlantic cod around Iceland. Resolving population structure and dynamics in the early life

stages is a critical issue in stock management, for example, understanding how the influx of

juveniles into nursery grounds and recruitment out of nursery grounds varies between differ-

ent stock components, and how area-based conservation tool could be used to manage genetic

variation. Moreover, smaller-scale patterns, caused by behavioral or physiological mechanisms

post-settlement, can be important in determining growth and survival. Atlantic cod juveniles

of different spawning stock origins co-occur in specific regions [30–32] but may use different
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habitats within those nursery grounds. A good example is the depth segregation of juvenile

Norwegian coastal cod (NCC) and juvenile Northeast Arctic cod (NEAC) in near-shore waters

off northern Norway, as the coastal cod juveniles were found in much shallower waters follow-

ing benthic settlement [33]. Similar depth segregation of juveniles by ecotype was recently

reported along the west coast of Sweden [34]. Conversely, in Skagerrak, coastal cod juveniles

and juveniles from North Sea spawning populations inhabit nearshore nursery grounds with-

out clear habitat or depth segregation [35, 36], although juvenile aggregations have differed

temporally in genetic composition [37]. Different spawning time of ecotypes and spawning

components could contribute to the segregation of juvenile cod ecotypes on nursery grounds.

The current study determined the genetic origin of Atlantic cod juvenile aggregations at

nearshore nursery grounds in the Westfjords, NW-Iceland. The area is known as an important

nursery area for cod with mixing of pelagic juveniles from different spawning grounds and

genotypes [23, 28]. However, prior studies have not sampled 0-group juveniles post settlement

or shallow tidal waters. For the current study, we repeatedly sampled juvenile cod in both shal-

low tidal waters and deep fjords around the Westfjords, analyzed variation in juvenile length

and assigned juveniles to inshore and offshore populations using the specifically developed

SNP panel described above [17]. We also determined size and Pan I alleles for a larger sample

of individuals available as a measure of intra-annual variation. We ask if juvenile origin differs

by sampling depth, indicating habitat segregation, or by time, indicating an influx of juveniles

with different genetic makeup from different spatial or temporal spawning grounds.

Materials and methods

Ethics statement

The fish used for this research were either by-catch in a fishery survey conducted by the

Marine and Freshwater Research Institute of Iceland (MFRI) or caught by beach seine for eco-

logical field sampling. Neither is subject to licensing by an animal welfare or ethics committee

by Icelandic law. The fish were anesthetized, immediately upon capture, by overexposure to

phenoxyethanol to minimize stress or suffering.

Study area and samples

The juvenile cod used in this study were sampled around the Westfjords, a large peninsula in

NW Iceland (Fig 1). Iceland is situated on the Greenland-Scotland ridge were the warm Irmin-

ger current from the south meets the cold currents from the north, resulting in a distinct tem-

perature gradient between southern and northern Icelandic waters [38, 39]. The ocean front is

located off the west of the Westfjords, making the peninsula an ideal system to examine biolog-

ical variation across these ocean currents and the resulting temperature gradient. Juvenile cod

were sampled with a beach seine (1.5 m x 20 m, mesh size = 6 mm) in tidal waters (depth< 1.5

m) in four areas (fjord systems), Breiðafjörður being the southernmost area, then Arnarf-

jörður, Ísafjarðardjúp and Strandir being the furthest north. The beach seining occurred at the

time of benthic settlement of pelagic cod juveniles, in late August to early September, and

again a few weeks post-settlement in 2017 and again in 2019, at all sites except for Breiðaf-

jörður (Table 1). In October 2019, juvenile cod were specifically sampled for this study from

by-catch in shrimp trawl (40 mm mesh size cod end) in an annual shrimp survey conducted

by the Marine and Freshwater Research Institute (MFRI) in Ísafjarðardjúp and Arnarfjörður.

As the numbers of juveniles caught as by-catch is highly variable among sampling stations

juveniles were pooled from nearby stations to form four groups that represented distinct geo-

graphical variation, outer Arnarfjörður (Outer_ARN), inner Arnarfjörður (Inner_ARN), Skö-

tufjörður (SKÖ) and Ísafjörður (ISA) (Fig 1). Additionally, samples from several trawl stations
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of the same survey carried out in Ísafjarðardjúp in November 2017 could be used and were

pooled to represent two sample groups, Ísafjörður (ISA) and Mjófjörður (MJO). The trawl

sites were at depths ranging from 33–93 meters. Catch from all sampling was frozen as soon as

possible pending further analysis. Subsequently, the juveniles were defrosted, weighted, their

standard length (SL) measured, and a fin clip taken for genetic analysis. Note that the juveniles

caught in 2017 represent a post-hoc addition to core sampling of 2019 that was specifically for

this study. This resulted in a somewhat unbalanced study design, as is reflected in the number

of samples per group, number of samples per depth and the different timing of the trawl survey

between the two years. Moreover, the SNP analysis could only be done on the 2019 samples.

Nevertheless, we concluded that the inclusion of a second year was beneficial as it allowed

examination of inter-annual variation.

After examining the length/frequency distributions, juveniles< 14 cm (SL) were assigned

to age as 0-group juveniles and juveniles> 14 cm as 1-year-old juveniles. This cut-off may not

fully differentiate between age classes in 2017 because the trawl survey was conducted in

November. This makes differentiating age classes solely on size difficult and may result in

some 0-group juveniles in 2017 being misclassified as 1-year-olds. However, this is preferable

to false positive assignment of 1-year-olds as 0-groups, as the current analysis is focused on the

Fig 1. Map of sample sites. The map shows the four areas and the sample sites within each area (areas and site code matching Table 1). Beach seining

sites are indicated by a black dot and trawl sites by a black triangle. The coastline presented in the map is based on the National Land Survey of Iceland

(Landmælingar Íslands) IS 50V database, made available to the authors by CC BY 4.0, downloaded 12/2018 (www.lmi.is).

https://doi.org/10.1371/journal.pone.0292495.g001
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early settling 0-group juveniles, and most of the sampling (before November) assigns well two

the two size groups (S2 Fig). However, the size distributions presented should be interpreted

keeping this uncertainty in mind. Only three putative 1-year-old juveniles were caught with

the beach seine (and excluded from any further analysis), but the size (SL) and Pan I genotypes

of the 77 putative 1-year-old juvenile cod from the trawl survey were used in the current study

(Table 1). Note that these sample numbers do not reflect the relative frequencies of age classes

in the catch as the collection of by-catch in the shrimp survey focused primarily on the

0-group. No fish larger than 23 cm was used in this study. The geographical areas, and sample

groups within areas, as they are referred to in the statistical analysis can be found in Table 1

and are depicted in Fig 1.

Genotyping

DNA was extracted using a Genomic DNA Purification Kit (Thermo Scientific) following the

manufacturer’s protocol. Representative samples of geographical and depth variation from

2019 (n = 393), were analyzed using a 96 SNP panel previously developed to resolve the

Table 1. Overview of the juvenile cod samples used in the current study. The table shows the four sample areas as well as each sample site within that area, separated by

time of sampling. The number of juvenile cod used for assignment to inshore / offshore populations is indicated as well as Pan I allele frequencies in each sample group

and summary statistics for the SNP data.

Area Site code Age group Month Year Gear n SNPs Inshore Offshore HE HO FIS n Pan I AA AB BB

Ísafjarðardjúp ARG Age 0 10 2017 Seine - - - - - - 32 7 21 4

Ísafjarðardjúp ARG Age 0 8 2017 Seine - - - - - - 31 24 7 0

Ísafjarðardjúp ARG Age 0 8 2019 Seine 14 14 0 0.23 0.21 0.11 14 9 5 0

Arnarfjörður AUD Age 0 10 2017 Seine - - - - - - 18 16 2 0

Arnarfjörður AUD Age 0 9 2017 Seine - - - - - - 22 21 1 0

Arnarfjörður AUD Age 0 9 2019 Seine 38 38 0 0.25 0.23 0.10 38 31 7 0

Arnarfjörður AUD Age 0 10 2019 Seine 28 28 0 0.24 0.23 0.04 27 23 4 0

Strandir BAS Age 0 10 2017 Seine - - - - - - 19 10 7 2

Strandir BAS Age 0 10 2019 Seine 35 31 4 0.24 0.22 0.14 34 28 5 1

Strandir BAS Age 0 8 2017 Seine - - - - - - 26 20 4 2

Strandir BAS Age 0 8 2019 Seine 35 32 3 0.25 0.22 0.10 62 52 9 1

Strandir EYJ Age 0 8 2017 Seine - - - - - - 11 2 8 1

Strandir EYJ Age 0 8 2019 Seine - - - - - - 42 39 3 0

Arnarfjörður Inner_ARN Age 0 10 2019 Trawl 31 18 13 0.22 0.19 0.16 49 2 13 34

Ísafjarðardjúp ISA Age 0 10 2019 Trawl 55 14 41 0.23 0.20 0.14 35 1 11 23

Ísafjarðardjúp ISA Age 0 11 2017 Trawl - - - - - - 127 9 45 73

Ísafjarðardjúp ISA Age 1 10 2019 Trawl - - - - - - 26 8 11 7

Ísafjarðardjúp ISA Age 1 11 2017 Trawl - - - - - - 13 0 6 7

Ísafjarðardjúp MJO Age 0 11 2017 Trawl - - - - - - 23 0 16 7

Ísafjarðardjúp MJO Age 1 11 2017 Trawl - - - - - - 15 1 10 4

Arnarfjörður Outer_ARN Age 0 10 2019 Trawl 39 7 32 0.19 0.16 0.18 39 1 9 29

Arnarfjörður Outer_ARN Age 1 10 2019 Trawl - - - - - - 21 6 13 2

Ísafjarðardjúp SEY Age 0 10 2019 Seine 34 31 3 0.24 0.22 0.10 36 27 6 3

Ísafjarðardjúp SEY Age 0 9 2019 Seine 45 40 5 0.25 0.23 0.11 34 28 5 1

Ísafjarðardjúp SKO Age 0 10 2019 Trawl 40 18 22 0.19 0.17 0.142 37 2 14 21

Breiðafjörður VAT Age 0 9 2017 Seine - - - - - - 9 2 6 1

Breiðafjörður ÞOR Age 0 10 2017 Seine - - - - - - 3 2 1 0

Breiðafjörður ÞOR Age 0 9 2017 Seine - - - - - - 40 26 12 2

https://doi.org/10.1371/journal.pone.0292495.t001
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population structure of Atlantic cod around Iceland and Greenland (see Christensen et al. [40]

for details of methods). A larger sample of 883 juvenile cod, from 2017 and 2019 was analyzed

for the allele variation at the Pan I loci. Not all individuals genotyped at the Pan I locus could

be analyzed using the 96 SNP panel and vice versa (see S1 Table for details). Pan I alleles A and

B are distinguished by a single-nucleotide polymorphism (SNP) located on LG1, making the

Pan locus potentially useful to differentiate between Atlantic cod inshore and offshore types

[6]. Concurrence between SNP assignment and Pan I genotypes was examined when both

were available for the same individuals (n = 346).

Samples were SNP genotyped using allele specific primers on a Fluidigms 96.96 Dynamic

Array™ IFC. Individuals genotyped for less than 60 SNPs were discarded from further analysis

(a total of 13 individuals). The Pan I alleles were determined by targeting variation of the spe-

cific Pan I SNP [6] using a KASP (Kompetitive Allele-Specific PCR) assay following the manu-

facturer’s protocol (LGC Genomics). The qPCR runs were replicated at least twice with a

negative control for each eleven samples. The PCR reactions were run on a QuantStudio 3

Real-Time PCR system (Applied Biosystems), and the alleles called manually using the cloud-

based Applied Biosystems analysis modules for genotyping.

Statistical analysis

The data used for analysis is available in S1 Table. Data handling, statistics, and graphs were

done in R 4.1.0 software [41] and by using the R package tidyverse [42] in addition to the pack-

ages and software cited below. All models were checked using the R package DHARMa [43],

and the examination revealed no significant deviations from the expected distribution of resid-

uals. All the statistical analysis was done separately for the 0-group and 1-year-old juveniles, as

well as for the inshore/offshore and Pan I dataset. To examine if juveniles of different origins

(inshore/offshore assignment or Pan I genotypes) from different areas, sampling times or

depths (as represented by beach seine and trawl) differed in size, we used a general linear

model (GLM) with log-transformed standard length as the response variable, either inshore/

offshore assignment or Pan I genotype (Pan IAA, Pan IAB and Pan IBB), area (Breiðafjörður,

Arnarfjörður, Ísafjarðardjúp, and Strandir), gear (trawl or beach seine), year and month as

fixed effects. The model included an interaction effect between assignment/Pan I genotype

and gear (acknowledging the obvious size difference between juveniles by gear) as well as the

sampling area and month of sampling to examine temporal changes. The standard length of

0-group juveniles is depicted in Fig 2 and putative 1-year-old juveniles is S2 Fig.

Descriptive statistics, HE, HO and FIS were calculated for each sample group of the 96-SNP

dataset using the Genetix 4.05 software [44]. Differentiation between samples representing

sampling event or time was estimated by first calculating the pairwise FST values of all sample

groups using the R package hierfstat version 0.5–10 [45]. Second, we used a discriminant anal-

ysis of principal components (DAPC), a non-model-based clustering method implemented in

the R package adegenet 1.3–1 [46], to visualize the genetic composition of sample groups. We

used the find.clusters function in adegenet to estimate the number of clusters in our sample

and find.clusters used K-means clustering to maximize between group variance and minimizes

within group variance. To select the optimal k, we applied the Bayesian Information Criterion

(BIC) as suggested by the authors [46]. We then used DAPC on the pre-defined clusters with

the dapc function in adegenet. Third, we identified the loci that had the highest loading on the

axis of divergence between the identified clusters also in adegenet. Finally, we assigned the

juveniles to the previously identified inshore/offshore populations originated from the SNP

study of Atlantic cod population structure in Greenland and Iceland [17]. In that study 847

contemporary and historical cod tissue samples were analysed with 935 SNPs and individual
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genotypes clustered with DAPC [46] into four groups were two included the Icelandic samples

[17].

Two binomial generalized linear models were used to examine how the likelihood of

inshore vs offshore assignment and Pan IAA vs PanIBB genotypes varied across gear (trawl or

beach seine), depth, area (Breiðafjörður, Arnarfjörður, Ísafjarðardjúp, and Strandir), and

month of sampling. Note that gear and depth are highly correlated, but both are included in

the model to examine if the juvenile genotype distribution would be better reflected by gear

(indicating an abrupt shift) or depth (indicating a more gradual shift). For both models,

Arnarfjordur was used as the reference (area) for the categorical factor of area.

Fig 2. Standard length of juvenile Atlantic cod populations and genotypes across fishing gear and sample sites. The violin plots show the

distribution of juvenile size in the areas sampled and by different fishing gear. The SNP assignment to inshore and offshore populations (a) and Pan I

genotypes (b & c) are depicted separately and note that although the two sample years are depicted for the Pan I genotypes (b & c) the figure does not

reflect variation in sampling time post benthic settlement.

https://doi.org/10.1371/journal.pone.0292495.g002
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Results

The 0-group juveniles caught in trawls were much larger than the juveniles caught with a

beach seine (Fig 2, Table 2). Moreover, 0-group juveniles were significantly smallest in Stran-

dir, the sites furthest north. The 0-group juveniles were smaller in 2019 than in 2017 (Table 2).

Juvenile standard length increased slightly by month of sampling. The standard length of juve-

niles assigned as offshore differed between trawl and seine samples (Table 2) but inshore/off-

shore assignment or Pan I genotype did not affect the standard length in other comparisons.

The 1-year-old juveniles were larger in Arnarfjörður than in Ísafjarðardjúp and smaller in

2019 than in 2017 (Table 2). It should be noted that the difference in the time of the trawl sur-

vey between years could confound any between year as well as overall size comparison (S1

Fig).

Only 0-group juveniles were genotyped with the 96-SNP panel. There were no instances of

heterozygote deficiency or significant FIS values within sample groups (Table 1). Pairwise FST

values calculated using the 96-SNP dataset were most often significant between juvenile groups

sampled with a trawl at more depth and juvenile groups sampled with a beach seine (S2

Table).

The largest drop in BIC values was observed between one and two clusters, and the values

then plateaued. The clear clusters (Fig 3) support that juveniles of two population components

were present and that the previously identified differentiation between inshore and offshore

populations [17] explained much of the variation in the SNP data. Three SNPs were found to

have the highest loadings on the axis discriminating between groups: Rhodopsin, cgpGmo-

S1166, and cgpGmo-S523. These loci are all on LG1.

Table 2. Results from the three generalized linear models examining variation in juvenile cod standard length (SL). The analysis was done separately for 0-group and

putative 1-year-old juveniles as well as for the SNP and Pan I dataset. The results indicate differences in size by area, such as a north-south size gradient, as well as differ-

ences in sizes between years. The most notable result relating to genotype or population is that juveniles assigned to the offshore population are slightly (but significantly)

larger that inshore juvenile within the trawled samples.

Predictors 0-group by Pan I genotypes 0-group by inshore /offshore

populations

1-year-old

Estimate CI p-value Estimate CI p-value Estimate CI p-value

(Intercept) 62.62 46.27–78.97 <0.001 0.70 0.69–0.72 <0.001 -70.42 -100.21 –-40.62 <0.001

Pan genotype [AB] 0.01 -0.01–0.03 0.384 - - - 0.02 -0.01–0.05 0.186

Pan genotype [BB] 0.01 -0.04–0.05 0.787 - - - 0.03 -0.01–0.06 0.176

Gear [Trawl] 0.20 0.15–0.25 <0.001 0.13 0.10–0.16 <0.001 - - -

Area [Breiðafjörður] -1.07 -2.14–0.00 0.051 - - - - - -

Area [Ísafjarðardjúp] -0.08 -0.35–0.20 0.595 0.03 0.01–0.05 0.001 -0.07 -0.10 –-0.03 <0.001

Area [Strandir] -0.61 -0.95 –-0.27 <0.001 -0.09 -0.12 –-0.05 <0.001 -0.01 -0.09–0.07 0.777

Month 0.01 -0.02–0.04 0.538 - - - - - -

Year -0.03 -0.04 –-0.02 <0.001 - - - 0.04 0.02–0.05 <0.001

Pan genotype [AB] × Gear[Trawl] -0.04 -0.08–0.01 0.128 - - - - - -

Pan genotype [BB] × Gear[Trawl] -0.02 -0.08–0.04 0.571 - - - - - -

Area [Breiðafjörður] ×Month 0.12 0.00–0.24 0.042 - - - - - -

Area [Ísafjarðardjúp] × Month 0.01 -0.02–0.04 0.457 - - - - - -

Area [Strandir] × Month 0.07 0.03–0.10 <0.001 - - - - - -

SNP assignment [Offshore] - - - -0.03 -0.09–0.02 0.230 - - -

SNP assignment [Offshore]× Gear [Trawl] - - - 0.08 0.02–0.14 0.009 - - -

Observations 692 253 77

R2 / R2 adjusted 0.751 / 0.746 0.683 / 0.677 0.522 / 0.488

https://doi.org/10.1371/journal.pone.0292495.t002
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Most juveniles (> 95%) were assigned to the previously defined offshore or inshore popula-

tions with over 90% probability. Juveniles assigned to the inshore population were much more

common in seined samples (Figs 3 and 4), but depth was the only significant predictor of the

likelihood of inshore vs. offshore assignment (Table 3), conversely sampling gear predicted

Pan IAA vs. Pan IBB genotypes (Table 3). It should be noted that since gear and depth were

highly correlated these differing results most likely reflects the unbalances sample distribution.

This is particularly relevant for the Pan I genotype dataset when sampling by gear and depth

differed notably by year of sampling. Pan IBB genotypes were more likely in the later months of

sampling but this likely reflects that the trawling survey samples were more frequent in later

months and the shrimp survey that was conducted in November in 2017 rather than in Octo-

ber 2019. No other geographical or temporal variations were significant.

Examining agreement between the inshore/offshore assignment and Pan I genotypes there

was a general agreement of assignment by the 96-SNP panel and the Pan I genotypes by site

(Fig 4). However, there was considerable percentage of inshore individuals that were Pan IBB

genotypes (7.9%), but this was much less common for offshore juveniles that rarely had a Pan

IAA genotype (2.9%). Pan I heterozygotes were assigned as offshore in 33.9% of the cases.

Discussion

The current study shows that juveniles of both inshore and offshore Atlantic cod populations,

as defined by Therkildsen et al. [17], co-occur in nursery habitats around the Westfjords in

NW Iceland. However, 0-group juveniles classed to the offshore population (and Pan IBB geno-

types) were rarely sampled in shallow tidal waters, and juveniles of inshore population origin

(and Pan IAA genotypes) make up most of the juvenile groups sampled with the beach seine

and were rare at deeper stations. This pattern was consistent between years and time after ben-

thic settlement. However, for 1-year-old cod, there was a mix of Pan I genotypes in the trawled

samples with Pan I heterozygotes being the most common (Table 1).

The inshore / offshore assignment by the SNP panel and the Pan I allele frequencies showed

similar differentiation by depth/gear, as is to be expected as the differentiation of Icelandic cod

is most notably on LG1 [21]. Heterozygotes were common in this present study as in previous

studies of the Icelandic cod stock, perhaps indicating incomplete differentiation, admixture, or

Fig 3. Results from the DAPC analysis. The figure shows how the juveniles separated to the two identified clusters based on the SNP data and how the

identified groups association to fishing gear.

https://doi.org/10.1371/journal.pone.0292495.g003
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a role of selection [21]. The Pan IAA individuals in the current study were most often classed as

inshore cod using the SNP panel. However, the classification of Pan IBB and Pan IAB individu-

als was more erratic, and almost 20% of Pan IBB juveniles were assigned to the inshore popula-

tion. This may highlight the relatively recent origin of Icelandic inshore populations [10]

reflected in the plasticity of the Pan IBB genotypes. This was previously suggested by examining

the variation in Pan I genotypes with depth and temperature profiles of Atlantic cod around

Iceland [21]. Although the genetic segregation by depth in the current study is clear we suggest

that a comprehensive genetic analysis including pelagic and benthic juveniles as well as indi-

viduals from spawning grounds across regions is important to further understand the dynam-

ics of demersal juvenile Atlantic cod around Iceland.

Fig 4. Assignment to inshore / offshore populations and Pan I genotypes. The barplots specifically depict the

relative assignment of juveniles from different sample sites and times to inshore and offshore populations (a), Pan I

genotypes in the 2017 sample groups (b) and Pan I genotypes in the 2019 sample groups (c). The month of sampling is

indicated after the site code.

https://doi.org/10.1371/journal.pone.0292495.g004

Table 3. Results from binomial models examining the likelihood of inshore/offshore and Pan I genotypes in different samples. Both results show the clear differenti-

ation by depth / gear (likely to be highly correlated). Other factors explain little of the variation and the slightly higher likelihood in later sampling may simply result from

the trawling survey samples being more frequent in later months.

Predictors Inshore vs offshore assignment Pan IAA vs Pan IBB genotypes

Odds Ratios SE CI p-value Odds Ratios SE CI p-value

(Intercept) 0.01 0.03 0.00–3.59 0.129 0.00 0.00 0.00–0.03 0.001

Gear [Trawl] 1.48 1.60 0.17–12.07 0.716 87.92 86.85 12.92–631.99 <0.001

Depth 1.05 0.02 1.02–1.08 0.002 1.00 0.01 0.98–1.03 0.998

Area [Ísafjarðardjúp] 1.26 0.39 0.69–2.32 0.452 1.24 0.46 0.60–2.58 0.562

Area [Strandir] 1.56 1.48 0.81–8.03 0.103 1.72 0.99 0.54–5.40 0.347

Month 1.20 0.40 0.63–2.37 0.589 1.79 0.51 1.03–3.19 0.040

Area [Breiðafjörður] 3.11 2.30 0.62–12.35 0.124

Observations 400 624

R2 Tjur 0.432 0.702

https://doi.org/10.1371/journal.pone.0292495.t003
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Any comparison of beach seine and trawl samples should consider different mesh sizes and

gear selectivity. In the current study, the catchability of cod juveniles with the shrimp trawl

depends on many factors, importantly other catches, and the retention of very small juveniles

may be lower than with the beach seine. This could affect the size distribution reported by the

different gear, but also genotype/population assignment frequencies, if genotypes differ by

size. Juveniles and subadults of Icelandic cod Pan I genotypes have differed in growth rate [47,

48] and variation in growth rate has been found for Norwegian coastal and Northeast Arctic

cod reared under identical conditions [49]. However, juvenile growth rate is highly affected by

the environment [50–52], and environmentally induced variation in growth may mask any

ecotype effect [48]. Consequently, disentangling genetic and environmental effects on juvenile

cod size and growth can be difficult across very different life-time temperature regimes. For

example, cod originating from offshore and inshore spawning grounds around Iceland did not

differ in growth rate when measured at standardized aquaculture conditions [53]. In the cur-

rent study, 0-group juvenile cod caught by beach seining were much smaller than juveniles

caught in trawls, although size is more associated with geographical and temporal variation

(Table 2, Fig 2). Nevertheless, the current results could partly reflect coastal juveniles being

equally likely to settle at a range of depths but less likely to be caught in the shrimp trawl

because of their smaller size. However, it is unlikely that fishing gear selectivity explains the

lack of offshore/Pan IBB genotypes in tidal waters.

Segregation by depth of migratory and coastal ecotypes was described in northern Norway

a decade ago [33]. The authors concluded that environmental preferences, perhaps based on

the divergent adaptations of cod ecotypes to different salinity levels during glacial epochs,

could explain the depth segregation [33]. Moreover, a recent analysis of juvenile Atlantic cod

aggregations along the west coast of Sweden shows that the North Sea (offshore) and coastal

juveniles segregate by depth and suggests that the divergence is associated with environmental

adaptations, such as, to temperature, hypoxia, and salinity [34]. The current study cannot be

used to identify specific drivers of depth divergence, and many environmental factors co-vary

with depth, notably temperature and light. Icelandic fjords are not very stratified and salinity

at the beach seining sites in the current study was always above 32.5 PSU. In Arnarfjörður, the

only fjord were vertical salinity profiles were available, salinity varies from c.a. 32.5 PSU at the

surface to 35 or 36 PSU at benthic depths [54]. Although the difference in salinity is not as pro-

nounced as reported in Norway, the variation of 2–3 PSU in Iceland could result in habitat

selection. However, temperature [55] and light regime [56] have also been associated with

divergence on LG1, the most divergent genomic region between Icelandic cod migratory types

[21]. Rhodopsin, a gene that encodes variant visual pigments differs by depth profiles in Ice-

landic cod [56] and was also an outlier in the current analysis. Still, several other stressors or

impacts vary by depth. Young adult cod infested by ectoparasites have, for example, been

shown to inhabit deeper waters [57], and parasite load has been suggested as a biomarker for

cod ecotypes as they experience very different infestation levels in their lifetime [58]. Juveniles

from inshore populations may merely be more physiologically adept to tolerate the stressors

associated with the tidal habitat, for example, fluctuations in environmental factors. The bene-

fits of residing in the shallow habitat are likely to include low predation as well as high and

diverse food availability [59]. A recent study from Norway found high growth of coastal cod

0-group juveniles in very shallow water [60]. Finally, a recent study indicates a relationship

between individual tendency for exploration and Pan I genotypes in 0-group juvenile cod [61]

supporting that innate behavioral differences could also influence habitat choice.

It should also be considered that juvenile aggregations can differ in genetic composition

because of the temporal variation in the arrival and settlement of juveniles from geographi-

cally, or temporally, different spawning components. The prevalence of juvenile cod
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aggregations from the North Sea vs. local groups in Skagerrak, for example, differ temporally

[30, 31, 37]. Atlantic cod at the large spawning grounds off SW Iceland spawn earlier and may

grow initially faster, than smaller spawning components along the west coast [23, 25]. A possi-

ble explanation for the current pattern would be that the offshore juveniles inhabited the shal-

low tidal habitat earlier than juveniles from inshore populations that spawn later in the season.

However, no evidence was found for larger aggregations of offshore juvenile cod in tidal waters

earlier in the season, within the temporal range of the current sampling, and there were no dif-

ferences in the genetic composition of November 2017 and October 2019 Ísafjörður (ISA)

trawling sites. Therefore, we infer that the temporal variation in benthic settlement of juveniles

from different spawning grounds is unlikely to fully explain the current results but recommend

that a more comprehensive study, including repeated within-year sampling at both shallow

and deeper sites and including otolith analysis for inference of hatch date, growth and age.

To conclude, we show that genotypes of 0-group Atlantic cod juveniles in NW- Iceland dif-

fer by depth at the time of benthic settlement, and in the following weeks. Possible environ-

mental drivers of the divergence cannot be determined but such selection mechanisms could

be experimentally examined. The current results add significantly to the two previous studies

of similar segregation and highlight that physiological divergence is already clear in 0-group

juvenile cod. With the clear climate-driven northward shift of Atlantic cod and the establish-

ment of local northern populations, understanding how genotypes and environmental factors

shape distribution is a critical issue. From a national management perspective, the results high-

light the need for juvenile surveys to include a range of depths and times and suggest that the

anthropogenic impacts in coastal waters disproportionately affect inshore juveniles. Conserva-

tion efforts should focus on protecting the total within species biodiversity, and population

segregation at nursery grounds should be considered in the application of future marine spatial

planning and other area-based conservation tools.
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