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Abstract— Lane changing and obstacle avoidance are 

one of the most important tasks in automated cars. To 

date, many algorithms have been suggested that are 

generally based on path trajectory or reinforcement 

learning approaches. Although these methods have been 

efficient, they are not able to accurately imitate a smooth 

path traveled by an expert driver. In this paper, a method 

is presented to mimic drivers’ behavior using a 

convolutional neural network (CNN). First, seven 

features are extracted from a dataset gathered from four 

expert drivers in a driving simulator. Then, these features 

are converted from 1D arrays to 2D arrays and injected 

into a CNN. The CNN model computes the desired 

steering wheel angle and sends it to an adaptive PD 

controller. Finally, the control unit applies proper torque 

to the steering wheel.  Results show that the CNN model 

can mimic the drivers’ behavior with an R2-squared of 

0.83. Also, the performance of the presented method was 

evaluated in the driving simulator for 17 trials, which 

avoided all traffic cones successfully. In some trials, the 

presented method performed a smoother maneuver 

compared to the expert drivers. 

Keywords— lane-changing, obstacle avoidance, convolutional 

neural networks, deep learning, adaptive PD. 

I. INTRODUCTION 

Autonomous driving will be an inextricable part of future 

automated vehicles. These systems can potentially facilitate 

the use of cars and reduce accidents. Many car crashes are 

directly related to human error, fatigue, etc. More than 94% of 

accidents occur due to driving faults [1]. 539000 accidents 

occur due to wrong lane-changing in the US annually [2]. So, 

it is important to equip cars with new smart systems to reduce 

the number of accidents in lane changes.  

To date, various partially and fully autonomous driving 

systems have been developed including parallel park systems, 

adaptive cruise control, autonomous emergency braking, and 

automatic lane-changing system [3]. Among them, automatic 

lane-changing system is more complex; hence, it is 

challenging to develop a proper and safe lane-changing 

system [4]. Therefore, it’s essential to precisely develop a 

lane-changing system, considering the safety of the 

passengers in addition to avoiding crashes. So, it’s significant 

that the automated car equipped with a lane-changing system 

must take a safe route smoothly (not aggressively or clumsily) 

in order to fulfill the passengers’ safety and comfort [5]. 

To overcome the mentioned complexity of the lane-

changing system, researchers have developed different 

methods. Overall, these methods can be divided into two main 

categories. The first category is path trajectory-based 

approaches, where a geometric path is designed as the 

reference path and a controller steers the car on the reference 

path. The reference path is usually a third-degree or higher-

degree polynomial curve, and the controller could be PID, 

adaptive PID, MPC, fuzzy controller, etc. For example, Wang 

et al. [6] considered a seventh-degree polynomial curve to 

develop a lane-changing system. They preferred using a 

seventh-degree polynomial instead of lower-degree ones as 

the lower-degree polynomial curves are not as smooth as 

higher-degree ones [6, 7]. In another work, Chowdhri et al. [8] 

designed a new automatic system to perform an evasive lane-

changing maneuver by tracking a desired reference path 

leveraging a nonlinear MPC. They also took the brake system 

into account and entered the dynamics of the brake system in 

the designed controller. 
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The second category is reinforcement learning-based 

approaches through which an agent can learn a task by trial-

and-error. These approaches are commonly model-free and 

make the agent interacts with a stochastic environment based 

on the states and immediate rewards and the agent tries to 

maximize the long-term reward. The initial mathematical 

model of reinforcement learning (RL) algorithms is based on 

Markov decision process, through which the discrete 

stochastic environment for the agent is formalized [9]. Aiming 

at developing an RL-based lane-changing system, Ye et al. 

[10] devised a new lane-changing system using proximal 

policy optimization-based deep reinforcement learning. Also, 

in another endeavor, Mirkevska et al. [11] presented a new 

reinforcement learning-based approach combined with formal 

safety verification. They exploited 13 features and a deep Q-

network to gain a fast learning rate; the simulation results 

showed that the designed system worked well.  

Although a plethora of works based on the two mentioned 

categories (path trajectory and RL-based approaches) have 

been conducted, and these works have achieved great 

successes, they are not able to imitate the behavior of expert 

drivers. Path trajectory-based methods are commonly based 

on a third-degree polynomial which is not perfectly smooth. 

Even though some papers suggest using higher-degree 

polynomial curves to circumvent the smoothness problem [6, 

7], these paths cannot be a perfect alternative for the path 

taken by an expert driver. The smoothness problem also 

exists for RL-based approaches as these methods try to learn 

the environment based on trial-and-error; therefore, although 

the agent is able to find its path and finish its mission, the path 

might not be as smooth as the route taken by a skilled and 

expert driver.  

To address the mentioned gap, we developed a new 

system based on expert drivers’ behavior data. We extracted 

some features and input them into a convolutional neural 

network (CNN). The output of the CNN model is the steering 

wheel angle that is sent to the control unit, which is based on 

an adaptive PD. The system is designed to mimic expert 

drivers’ behavior. A byproduct of this paper will be to 

develop a haptic driving training simulation system to train 

novice drivers. The rest of the paper is organized as follows. 

The methodology employed in this research is elaborated in 

section II. The results and the performance of the developed 

system are presented in section III. Finally, discussion and 

conclusion are presented in sections IV and V, respectively.  

II. METHODOLOGY 

A. Overview of the developed system 

 In this research, we devised a new system that is able to 

mimic expert drivers’ behavior for obstacle avoidance and 

lane-changing. To develop the system, four experienced 

drivers were asked to perform a slalom maneuver made up of 

three lane-changing and four longitudinal movement tasks 

(Fig. 1). Then, the driving data of the drivers were gathered 

and employed to train a CNN model in order to compute the 

proper steering wheel angle. Then, the computed steering 

wheel angle is sent to a control unit which is based on an 

adaptive PD controller. After that, the control unit calculates 

an appropriate torque and applies it to the steering wheel. Fig. 

2 depicts the steps of the designed system. In the next 

subsection, we address the data collection process. 

 

Figure 1. The slalom maneuver used for this research 

 

Figure 2. The flowchart of our work. 𝑥 and 𝑦 are position of the car. 𝜑 is the car head angle relative to 𝑦-axis. 𝜃 is the steering wheel angle.



 
Figure 3. The used simulator in this study 

B. Data Collection 

To collect data, four expert drivers were asked to perform 

a slalom maneuver with a driving simulator located in Nasir 

Driving Simulator Lab at the K.N. Toosi University of 

Technology. As shown in Fig. 1, the slalom maneuver 

includes three sets of cones/obstacles that lead to three lane-

changing and four longitudinal movements.  

The four expert drivers carried out and repeated the 

maneuver 573 times with non-fixed speeds ranging from 15 

to 60 kilometers. The data of 500 maneuvers were randomly 

selected for training set and the rest of the maneuvers for test 

set. The simulator constantly sampled and saved the driving 

data with a rate of 30 hertz per second. The driving data 

includes various information like speed, steering wheel angle, 

car head angle, x, y, tire angle, car horn, car gear, etc. Also, 

it’s worth mentioning that the simulator software was 

developed using OpenGL and Python scripts. Fig. 3 shows 

the simulator located in Nasir Driving Simulator Lab. 

 

C. Feature Extraction and the CNN model 

In this project, after carefully investigating various 

features and machine learning models, we came to conclude 

that the performance of 2D CNN models with seven input 

features outperforms other models such as 1D convolutional 

neural network, LSTM, GRU, shallow MLP, KNN, and SVR. 

Detailed explanations on the extracted features and the 

structure of the model will be presented next.  

As we know, the input to a CNN model must be a 2D 

vector. On the other hand, we extracted only seven features 

at each time step of driving that is actually a 1D vector. To 

convert these 1D vectors to 2D vectors, we constructed 5x7 

matrices. We put the seven features with five different 

permutations in each row.  

As mentioned, seven features were extracted. The first is 

about the state of the car’s lateral motion. This feature has 

three constant values, which are 1, 2, and 3, that express 

turning left, turning right, and no turn (when moving in 

parallel of cone sets), respectively. We designed this feature 

inspired by drivers’ behavior as a driver observes the vacant 

spaces ahead and decides to turn right or left. Also, when a 

driver moves parallel to the obstacle, the driver decides to 

move straight and not turning right or left. The driver senses 

the circumstance by her/his eyes while in our system, this 

feature is obtained by the simulator at each time step. Fig. 4 

demonstrates this feature.  

The second and third features are about lateral and 

longitudinal distances between the car head and the start/end 

of a cone set. When the car is heading a cone set, the distances 

are computed with regard to the start of the cone set. But, 

when the car is moving parallel to a cone set, the distances 

are calculated with regard to the end of the cone set. Fig. 5 

demonstrates these features better. It’s worth noting that the 

lateral distance is simply computed by subtracting 𝑦𝑐𝑎𝑟  from 

𝑦𝑐𝑜𝑛𝑒and could be positive or negative (Eq. 1), whereas the 

longitudinal distance is obtained by the inverse of 1 + 

(𝑥𝑐𝑜𝑛𝑒 −  𝑥𝑐𝑎𝑟), which is observable in Eq. 2. Since 𝑥𝑐𝑜𝑛𝑒 is 

always bigger than 𝑥𝑐𝑎𝑟  in the map of the simulator, the 

output of the subtraction is always positive. Consequently, 

the value of Eq. 2 is always between zero and one. When the 

car nears the start/end of an obstacle, the value of Eq. 2 nears 

one. Therefore, this feature becomes more meaningful.  

 

𝑓2 =  𝑦𝑐𝑜𝑛𝑒 − 𝑦𝑐𝑎𝑟  

 

(1) 

 𝑓3 =  
1

1+(𝑥𝑐𝑜𝑛𝑒−𝑥𝑐𝑎𝑟)
 

(2) 

  

The fourth feature is the speed of the car at each time step 

that is between 15 km/h and 60 km/h. The fifth feature is car 

head angle relative to 𝑦-axis. The sixth and seventh features 

are the time derivative of the car head angle change and the 

rate of steering wheel angle change, respectively. We did not 

employ the previous steps of the steering wheel angle as input 

features because the output of the CNN model is actually the 

steering wheel angle. Therefore, previous steps of steering 

wheel angle convert our problem into a time series problem. 

During the project, whenever we employed the previous steps 

of steering wheel angle as input features, the model acted like 

a predictive model and couldn’t be able to determine whether 

the steering wheel angle was appropriate or not. In other 

words, the model was predicting the trend of the steering 

wheel angle and didn’t care about performing the maneuver 

correctly. Therefore, we didn’t consider the previous steps of 

steering wheel angle for the input of the CNN model.  

As mentioned before, we witnessed that CNN models 

work better for this specific task. It’s highly likely that the 

CNN model can take the correlation between the features into 

consideration. The CNN model has been generally made up 

of three convolutional layers and three dense layers. All 

layers except the output layer exploit Exponential Linear Unit 

(ELU) function as activation function. The output layer is 

actually responsible for computing the steering wheel angle 

and employs a linear function as activation function. The 



three convolutional layers have 32, 64, and 128 kernels, 

respectively, with the same size of 2 by 2. The structure of 

the CNN model is shown in the Fig. 6. 

Also, Adam optimization algorithm was used as the 

optimizer to train and update the parameters of the model. 

Moreover, it’s worth noting that the adaptive learning rates 

led to better result when training the network. Therefore, we 

chose an adaptive learning rate with the initial value of 0.001 

for Adam algorithm. The model was trained for 18 epochs 

with a batch size of 4. The Mean square error (MSE) was used 

to evaluate the performance of the model during the training 

process. The training procedure of the model is demonstrated 

in Fig. 7. After training the model, we evaluated the 

network’s performance in terms of MSE and R2-squared 

criteria with training and test sets. R2-squared criterion is 

between zero and one; zero means no correlation and one 

shows complete correlation between the output of the 

network and the desired values. From Table 1, we can 

observe that the model managed to mimic the drivers’ 

behavior with R2-squared of 0.83 for test set.  

 

Table 1. Evaluation of the CNN model in terms of MSE and R2-

squared criteria 

               Metrics 

Data sets 
MSE R2-squared 

Training set 3.76 × 10−4 0.87 

Test set 3.78 × 10−4 0.83 

 

D. Controll Unit  

In the previous part, we mentioned how the CNN model 

can find the patterns behind the scene of an expert driver's 

maneuvering. On the other hand, it can also imitate the 

general trend during the driving behavior in the maneuver. In 

this section, we’re going to focus on implementing the 

designed model on the real steering wheel. To accomplish 

this part, we combined the Neural Network model and PD 

control-based rule: 

 

𝜃𝑑 =  𝐹𝑁𝑁(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

 

(3) 

𝑒𝜃 =  𝜃𝑎 −  𝜃𝑑   (4) 

 

𝜏𝐺 =  𝑃𝑔𝑒𝜃 +  𝐷𝑔�̇�𝜃 

 

(5) 

 

In the above equation, 𝜃𝑎  is the actual steering wheel 

angle, and 𝜃𝑑 is the desire steering wheel angle produced by 

the Neural Network function which has been demonstrated 

by𝐹𝑁𝑁. Using these gains (𝑃𝑔 ,𝐷𝑔) alongside the PD control-

based rule on each time step,  𝜃𝑎  converges to  𝜃𝑑 . 

Converging 𝜃𝑎  and 𝜃𝑑  will produce the proper torque to 

stimulate the steering wheel toward the desired angle in each 

time step. As a result, the vehicle can perform the maneuver 

autonomously. More information about how 𝑃𝑔 and 𝐷𝑔 will 

be presented in the future works. 

III. RESULTS  

In this section, we investigate the performance of the 

developed system. To evaluate our method, we executed the 

CNN model and the controller on the simulator in real-time. 

We observed that our method was able to steer the car 

perfectly and perform the slalom maneuver without any 

collision. 

Fig. 8 depicts and compares the steering wheel angle 

taken by an expert driver and our method. In order to make a 

fair comparison, the experiment shown in Fig. 8 has been 

performed at the same initial location and based on the same 

speeds at each time step. According to Fig. 8, we can see that 

our method sometimes takes smoother angles. For example, 

by taking a meticulous look at the time interval between 5 and 

10 seconds, we notice that our method takes a smoother 

steering wheel angle than the expert driver. 

 

 
Figure 4. The graphical view of the first feature 

 
Figure 5. The first and the second features (lateral and longitudinal 

distances. a) Lateral distance. b) Longitudinal distance. DLt and DLg 

are lateral and longitudinal distances, respectively. 

 
Figure 6. The structure of the CNN model 



 

 
Figure 7. The CNN model's loss during training  

Moreover, we can observe that at each positive or negative 

peak in Fig. 8, our system adopts a smaller angle compared 

to what the expert driver chooses, leading to a smoother 

obstacle avoidance. Also, the path and the coordination of the 

car at each time step for the expert driver and our system is 

shown in Fig. 9. In Fig. 9, we can see that our system crossed 

the cone sets smoothly and without any collision.  

Fig. 10 shows the paths taken by the car in 17 trials. To 

perform the trials, the designed slalom maneuver was 

repeated 17 times at different longitudinal speeds. Our 

algorithm steered the car through the cone sets (red rectangles 

in Fig. 10) without any collision. It’s worth mentioning that 

during the trials, our system only controlled the steering 

wheel and did not have any control over the accelerator pedal. 

This pedal was pressed at the discrete of the human driver. 

Therefore, as the car speed was not constant and was 

constantly changed by the driver, it was a big challenge for 

the algorithm to adapt itself and steer the car properly. The 

curves of speed and steering wheel angle for the mentioned 

17 trials are illustrated in Fig. 11 and Fig. 12.  

 

 

 
Figure 8. Steering wheel angle (our system vs. the expert driver) 

  

 
Figure 9. Position of the car (our system vs. the expert driver). Red 

rectangles are the cone sets.  

 
Figure 10. The paths taken by our system for 17 trials. The red 

rectangles are the cone sets.  

 
Figure 11. The speed applied to the car by the driver for 17 trials.  

 
Figure 12. The steering wheel angle taken by our system for 17 

trials.  

IV. DISCUSSION 

As said before, there exist two main attitudes for 

developing a lane-changing and obstacle avoidance system -

- path trajectory approaches and RL-based methods. 

However, the path taken by these approaches is not as smooth 

as the path taken by an expert driver. On the other hand, 

although this paper is about an automatic lane-changing and 

obstacle avoidance system, our main goal is to develop a 

haptic driving training system. Therefore, it’s very important 

for us that the trainer system acts like an expert driver when 

performing a lane-changing maneuver. Hence, we decided to 

gather a large dataset from four expert drivers and train a 

M
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E
 

    Expert driver 

Our system  



CNN model with the data to mimic the drivers’ behavior and 

approximate the appropriate steering wheel angle. 

The initial results are promising by examining the 

experimental results of the developed system on the 

simulator. The developed system was able to perform a 

complex slalom maneuver which constituted of three sets of 

cones. 

Finally, we can conclude that, contrary to the common 

approaches like path trajectory and RL-based approaches, 

which have a specific and certain path or policy, training 

supervised algorithms could be an alternative method. 

However, this attitude has its merits and demerits. Mimicking 

the expert driver’s behavior could be counted as a merit for 

this approach. Also, these methods could perfectly 

outperform the other mentioned approaches if the designer of 

the system extracts more meaningful features and also 

manipulates the cost function of the model, as is common in 

physics-informed neural works [12]. Regarding demerits, it 

should be said that gathering a dataset for each scenario could 

be time-consuming.  

     

V. CONCLUSION  

In this paper, a new method was developed to perform 

slalom maneuvers by mimicking expert drivers’ behavior. 

Seven meaningful features were extracted from the dataset 

gathered from four drivers. The features were converted to 

2D vectors and then employed as the input of a CNN model, 

which is responsible for approximating the appropriate 

steering wheel angle. Then, the steering wheel angle 

computed by the CNN model was sent to the control unit, 

which consists of an adaptive PD controller. The control unit 

applies proper torque to the steering wheel of the driving 

simulator. Finally, the car performs the slalom maneuver and 

crosses the obstacle without any collision. 

We observed that the designed system functions well and 

is able to perform the maneuver smoothly. Also, by 

comparing the curves of steering wheel angle taken by an 

expert driver and our method, we observed that not only the 

performance of the developed method is close to the expert 

driver (R2-squared of 0.83 based on Table 1), but also our 

method crosses the obstacles more safely and smoothly. In 

the future, we will develop a haptic driving training simulator 

that is able to teach novice drivers how to avoid obstacles. 
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