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Abstract

Microbial genes encode the majority of the functional repertoire of life on earth. However, despite 

increasing efforts in metagenomic sequencing of various habitats1–3, little is known about the 

distribution of genes across the global biosphere, with implications for human and planetary 

health. Here we constructed a non-redundant gene catalogue of 303 million species-level genes 

(clustered at 95% nucleotide identity) from 13,174 publicly available metagenomes across 14 

major habitats and use it to show that most genes are specific to a single habitat. The small 

fraction of genes found in multiple habitats is enriched in antibiotic-resistance genes and markers 

for mobile genetic elements. By further clustering these species-level genes into 32 million protein 

families, we observed that a small fraction of these families contain the majority of the genes 

(0.6% of families account for 50% of the genes). The majority of species-level genes and protein 

families are rare. Furthermore, species-level genes, and in particular the rare ones, show low rates 

of positive (adaptive) selection, supporting a model in which most genetic variability observed 

within each protein family is neutral or nearly neutral.

Metagenomic shotgun sequencing enables quantification of molecular functions in 

environmental samples, often enabled by gene catalogues, which combine information 

from multiple local assemblies4. Such catalogues have been used for the human gut4, as 

well as for other host-associated5,6 and environmental habitats1,3. More recently, increased 

sequencing depth has enabled more complete genome assembly (metagenome-assembled 

genomes (MAGs)), providing contextual information on genes7. However, despite the 

increasing amount of information on genes and their known ability to cross species 

and habitat barriers (affecting human health8), a comprehensive assessment of the gene 

distribution across the global biosphere has not yet been performed.

The Global Microbial Gene Catalogue

Here we integrate metagenomes and complete genomes, surveying prokaryotic genes 

across habitats to gain an understanding of the global distribution of genes and the 

molecular functions they encode. We collated data from 14 habitats (both host-associated 

and environmental; Fig. 1) in an integrated, consistently processed, non-redundant Global 

Microbial Gene Catalogue (GMGCv1).
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GMGCv1 was derived from 13,174, publicly available, high-quality metagenomes 

(Methods, Supplementary Tables 1, 2). The underlying samples were annotated with their 

respective habitat by semi-manual curation. We assembled contigs and predicted open 

reading frames (ORFs) from each metagenome, resulting in 2,007,736,046 ORFs (Methods, 

Extended Data Fig. 1, Supplementary Table 3). To broaden the coverage of our catalogue, 

we included 312,020,843 ORFs from 84,029 high-quality genomes from the proGenomes2 

database9. Using a graph-based redundancy removal algorithm (Methods), the resulting 

2,319,756,889 sequences were, as in previous habitat-specific gene catalogues1,4–6, clustered 

at 95% nucleotide identity–a threshold that roughly corresponds to species boundaries10 

(Extended Data Fig. 2)–resulting in 302,655,267 clusters. A single sequence from each 

cluster was retained, representing all the nucleotide variants at 95% nucleotide identity–this 

corresponds to one copy of a particular gene per species, which is hereafter referred to as the 

‘unigene’.

To be able to generalize on global gene distribution properties, we also grouped sequences 

more broadly using a homology-based clustering approach11, on the basis of statistically 

significant sequence similarity (e-value < 10−3; Methods) and four additional thresholds of 

amino acid identity (>90%, >50%, >30% and >20%). Requiring a minimum of 90% identity 

represents a strict, yet common, cut-off in protein databases12 and led to 210,478,083 

unique protein clusters, while considering all statistically significant homologues with at 

least 20% amino acid identity resulted in 31,992,232 very broadly defined protein families.

An inevitable limitation of current metagenomics is that most assembled contigs are short 

relative to the size of ORFs, leading to many incomplete ORFs. As some analyses may 

benefit from a stricter emphasis on the quality of individual sequences (at the cost of 

lower coverage) and as 68.5% of the unigenes in GMGCv1 are predicted to be incomplete 

ORFs, we created a version of the catalogue including only complete ORFs and also 

built operationally defined protein families at different stringencies from them (https://

gmgc.embl.de).

Both the inclusion of incomplete ORFs and the different operational protein family 

definitions can potentially affect functional and phylogenetic interpretations. Therefore, 

while we focus here on the broadest operational protein family definition (statistically 

significant sequence similarity, with at least 20% amino acid identity, including all ORFs), 

all our observations are robust across the several thresholds tested as well as to the inclusion 

of incomplete ORFs (Supplementary Table 4).

The majority of species-level unigenes in GMGCv1 were included in a tiny fraction of large 

protein families (the 0.6% largest protein families contain half of the species-level unigenes 

(Fig. 1d)). As a case in point for the robustness of the results with regard to parameter 

definitions, this fraction changes only slightly when exclusively considering complete ORFs 

(0.5%) or choosing a stricter definition of protein family (for example, 0.9% at the 50% 

clustering cut-off; Supplementary Table 4). The large amount of genetic diversity observed 

in GMGCv1 is thus mostly owing to diversification within protein families, rather than de 

novo creation of genes.
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We next attempted to put the genes into genomic context and produced 278,629 MAGs. 

Even without removing low-quality assemblies (Methods, Supplementary Table 5), these 

MAGs contain only 40 million species-level unigenes, compared with the 303 million in the 

full catalogue. Yet–in agreement with previous reports7–this MAG subset is sufficient for 

mapping short reads from well-studied habitats at high rates, as MAGs preferentially capture 

higher-abundance genes (in the well-studied human gut metagenome, 95.3% of reads map to 

MAGs, but 42.5% of unigenes do not; Extended Data Figs. 3, 4).

Most genes are habitat-specific

Whereas MAGs are usually built per sample or per habitat, the global microbial gene 

catalogue enabled us to identify genes that are shared between habitats. As the species-level 

unigenes represent multiple sequences (with nucleotide identity greater than 95%), they may 

represent genes from multiple habitats (‘multi-habitat genes’). These could be contained in 

species thriving in multiple habitats or be part of mobile elements, that is, genes that can be 

transferred horizontally between genomes and across habitat boundaries.

Only 18,145,135 species-level unigenes (5.8% of the total, P < 10−38, permutation test; 

Methods) are multi-habitat genes (Fig. 1b, Extended Data Fig. 5). This is consistent with 

findings that species tend to adapt to their environments13 and that in host-associated 

microbiomes, conspecific strains contain host-specific genes6,14.

To disentangle the mechanisms by which genes traverse habitat boundaries (that is, with 

entire species or with mobile elements), we first looked for unigenes associated with 

mobile elements (Methods) and found that they are indeed more than twice as likely 

to be in multiple habitats (156,738 out of 1,182,749 (13.3%), P < 10−38, Fisher’s exact 

test; Extended Data Fig. 6) than the average unigene (5.8%). Antibiotic-resistance genes 

(ARGs)–which are thought to be frequent cargo of mobile elements8–were, also as expected, 

more likely than other unigenes to be present in multiple habitats (329,857 out of 3,208,187 

ARGs (10.3%) P < 10−38, Fisher’s exact test; Extended Data Fig. 6, Methods). To quantify 

species overlap between habitats, taking into account that many species are not yet known, 

we constructed metagenomic species (MGSs) for each habitat (Methods) as proxies for 

species15 with reliable habitat information. Overall, 7,443 MGSs were built, out of which 

only 1,099 are shared between habitats, consistent with the sharing patterns observed for 

individual unigenes (Extended Data Fig. 5, cf. Fig. 1b). As expected, species are more 

likely to be shared between similar environments (Extended Data Fig. 7); for example, the 

different mammalian gut habitats share many MGSs (786 of the 1,099 that are shared).

Richness patterns are habitat-specific

To investigate the presence of conspecific genes in each sample, we used the richness of 

universal, single-copy genes16 to measure taxonomic richness and compared it to overall 

unigene richness (Methods). We observed distinct average number of species-level unigenes 

per species in each sample (Fig. 2a, P < 10−38, Kruskal–Wallis test). The marine and soil 

environments show a mixture of multiple sub-patterns. In the case of the marine samples, 

these sub-patterns correspond to distinct ocean depths, especially when comparing shallow 

samples to those collected in deeper water that is inaccessible to sunlight1, whereas the 
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differences in soil environments follow differences in acidity and moisture (Extended Data 

Fig. 8). Thus, the number of unigenes per species present in a metagenome emerged as an 

identifying feature of a well-defined habitat.

To test whether the observed unigene richness was driven primarily by communities 

containing multiple orthologous unigenes (assumed to be performing the same metabolic 

function17) or a variety of functional groups, we calculated the ratio of protein family 

richness to species-level unigene richness as a proxy for functional redundancy, and 

observed clear differences between habitats (Fig. 2b). We further tested the habitat 

specificity by building a classifier that predicts the habitat of each sample using only four 

descriptors (taxonomic, phylogenetic, unigene and protein family richness, after rarefaction 

to control for differences in sequencing depth; Methods). By cross-validation, we estimated 

the accuracy of this classifier across the 14 habitats at 86.1% (controlling for the class size 

imbalance by downsampling habitats to a maximum of 200 samples, so the largest habitats 

represent at most 11.8% of the dataset; Methods). Functional redundancy, whereby multiple 

organisms encode the same function, has been described in multiple environments18. 

Although it falsifies simplistic models in which each metabolic niche is occupied by a single 

species, there is still no consensus on the processes that explain it or its implications18. From 

our data, we conclude that the functional redundancy within each environment is tightly 

connected to the habitat within which the community develops, consistent with observations 

on pangenomes19. Thus, general models of functional redundancy will need to incorporate 

habitat-specific parameters.

Most genes are rare

Having established that functional redundancy and the majority of genes are habitat-specific, 

we investigated how frequent unigenes are in metagenomes. We observed that the prevalence 

of species-level unigenes follows a power law, with differing parameters for each habitat 

(Fig. 3), clearly showing that most genes have low prevalence. In fact, if we consider genes 

detected in 10 or fewer samples (out of 13,174 analysed, so less than 0.1%) as rare genes, 

then most unigenes in the GMGCv1 are rare (54.7% of genes, with similar results when 

considering broader clustering levels; Extended Data Fig. 9, Supplementary Table 4).

These frequency distributions in the form of power laws are expected under the assumption 

of neutral (or nearly neutral) evolution20 and describe our data well (for the human gut, the 

Pearson correlation between theoretical fit and observed data for unigenes is 0.997, P = 9.7 × 

10−112, n = 7,059; Supplementary Table 6, Methods).

In agreement with this model, the vast majority of protein families (designed to include 

distant homologues; Methods), consist of rare, low-abundance clusters around species-level 

unigenes with no further homologues (Fig. 1d, Extended Data Fig. 10). Genes without 

detectable homologues are expected to have little (if any) effect on the fitness of the 

organisms–as has been observed for fully sequenced genomes21 and should hold true in the 

environmental context.

Owing to the operon structure, functionality can be inferred by the co-occurrence of 

neighbouring genes22–we therefore measured the conservation of gene order and pathway 
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neighbourhood across prevalence classes. Rare species-level unigenes appear indeed less 

functionally interacting than prevalent ones (Fig. 4a), consistent with rare genes being under 

fewer evolutionary constraints.

We then investigated whether our data are compatible with a neutral model of evolution by 

analysing sequence variation. Neutrality would imply that most observed genetic differences 

have (almost) no effect on fitness and therefore are not due to adaptation (positive selection) 

to particular niches, although purifying (negative) selection may still be active23. As 

selection operates differently between protein families24, we tested for positive (adaptive) 

selection within each of our protein families (Methods). We found that the vast majority of 

unigenes does not show evidence of positive selection (Fig. 4b).

Yet, we observed that rare unigenes are much less likely (4%) than prevalent ones (up to 

10%) to be adaptive (Fig. 4b). To guard against possible confounding effects of differences 

in evolutionary speed and prevalence between species as well as for possible technical 

issues, we used only unigenes from 5,126 well-annotated Escherichia coli genomes included 

as part of GMGCv1 and obtained a very similar correlation of increased positive selection 

and gene prevalence (Fig. 4b). Moreover, the available number of E. coli genomes in 

GMGCv1 was sufficient to test for selection at each site, and indeed this showed that sites 

in rare E. coli unigenes were under less detectable selective pressure than those in more 

prevalent ones (Fig. 4c).

Within a single genome, however, most genes are neither under low selection pressure25 

nor rare. In the 5,126 E. coli genomes, only 2.8% ± 1.7% (mean ± s.d.) of the genes 

in each genome are rare (that is, they occur in 10 or fewer of the metagenomes in our 

collection). Yet the reservoir of E. coli strains in different habitats is vast, corresponding to 

the observation that the pangenome of E. coli, like that of most other bacteria, is open26, and 

thus its genomes will collectively contain a huge number of rare genes.

Although we cannot quantify the relative contribution of ecological and evolutionary 

processes to the observed patterns27 or prove nearly neutral evolution for rare genes, as our 

sampling and sequencing depth is biased against very rare genes, the observed correlations 

point to such a model and indicate that we might still be underestimating the excess of rare 

genes.

Thus, as costs of sequencing continue to decrease, it seems feasible that we will be able to 

capture all abundant prokaryotic species on earth, as this goal appears almost achieved for 

well-studied habitats such as the human gut. Given our data, this even seems feasible for 

habitats, such as soil, with very high biodiversity. However, owing to the vast amount of 

rare, habitat-specific and perhaps even region-specific genes, as well as a probable turnover 

process of de novo gene creation, modification and extinction, considerable parts of the 

global gene pool will probably never be captured.
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Methods

Selection of genomes and metagenomes

Metagenomes were downloaded from the European Nucleotide Archive (ENA)1,5,15,28–59. 

Only samples that were public on 1 January 2017 were used. Metagenomes were identified 

using the following two criteria: (1) samples tagged with a taxonomic ID that is either 

408169, the taxonomic ID for metagenome, or a taxonomic ID that is a descendent of 

408169 in the taxonomic tree; and (2) experiments where the library source field was set to 

“METAGENOMIC”. Samples containing at least 1 million reads, with an average length of 

at least 75 base pairs, and having been sequenced on an Illumina instrument, were selected 

for further analysis. Samples were then grouped by ENA project and all projects with at least 

100 samples were considered. Manual inspection led to the rejection of five studies as they 

either contained eukaryotic samples or consisted of amplicon sequences.

To broaden the set of biomes under study, cat gut and soil metagenomes were manually 

added. These samples fulfil the quality criteria above (over 1 million reads, >75 bp per read, 

on average), but are contained in projects with fewer than 100 samples.

This selection and data download is implemented by the Python scripts in the fetch-data/ 

directory of the supplementary software package, which rely on the requests package. The 

resulting set of samples is listed in Supplementary Table 1. Based on further analyses, 369 

samples were found to be misannotated and to consist of amplicon data. Thus, while they 

were used in the construction of the catalogue, they were not used in the rest of the analyses 

in this work.

Genomes were selected as in the proGenomes2 database9, by collecting an updated set of 

high quality genomes from the NCBI database.

The map in Fig. 1a shows the geographical distribution of samples. It was created using R60 

and the package maptools (version 1.1.0).

Contig assembly and ORF prediction

The reads were processed using NGLess61, discarding short reads (less than 60 bp), after 

trimming positions with quality <25. Filtered reads were assembled into contigs with 

Megahit62 (using default parameters for metagenomics) and open read frames (ORFs) were 

predicted with MetaGeneMark63. These steps were performed using the NGLess61 script 

assemble/assemble.ngl in the supplementary software package.

Non-redundant gene catalogue construction

A non-redundant unigene catalogue was built in a four-step process.

Step 1: using rolling hashes, exact matches are found and genes which are perfectly 

contained in another gene are removed. This step is performed by the Jugfile64 and the 

other scripts in the directory redundant100/ of the supplementary software package.

Step 2: using DIAMOND65, all genes are compared against each other.
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Step 3: the matches resulting from the previous step are filtered (in nucleotide space) so 

that only ‘representable’ relationships are kept. Namely, A is considered representable by 

B if there is a sequence A’ such that A’ is a substring of B and the edit distance from A 

to A’ is ≤5% of the length of A. When the lengths are identical (or similar), this definition 

corresponds to the species-level 95% nucleotide identity criterion (Extended Data Fig. 2a). 

When A is a fragment of B (even with minor changes), however, then only B is kept. The 

result of this step is a graph where each vertex is an input gene sequence and directed edges 

correspond to representable relationships.

Step 4: select a dominant vertex set. A dominant vertex set, D, is a set of vertices such that 

all vertices in the original graph are either (1) contained in D, (2) represented by a gene 

that is contained in D. This step is solved using a greedy approach: starting with the empty 

set, iteratively add vertices to the output choosing, at each step, the vertex whose addition 

would most increase the number of represented sequences. Ties are broken in an arbitrary, 

but reproducible manner, by using the order of the sequences in the input file as the fallback 

criterion.

Steps 2–4 are performed by the code in the cluster-genes directory in the supplementary 

software package.

Quality control of the GMGCv1

Although a large number of unigenes (189,105,503) could only be assembled in a single 

sample, 74.9% of these assembly singletons were subsequently detected in multiple samples 

by read mapping (see ‘Metagenomic annotation and profiling’ for details on detection). 

Similarly, despite the fact that a large fraction of unigenes are incomplete ORFs, at least 

91.7% of them are merged into protein families. This includes 83.2%, which cluster into 

a protein family that includes at least one complete unigene (that is, they are homologous 

to a complete ORF sequence, so are as real as those) and 8.5% which form small protein 

families of their own (which also considerably increases the likelihood that they represent 

real genes).

The unigene resulting catalogue was screened for potential chimeras by aligning it to 

Uniprot using DIAMOND (parameters: blastp -c 1 -b 4.0). Genes which had (at least) two 

alignments with >70% amino acid identity with an overlap of fewer than 10 amino acids 

were considered potential chimeras. Only 920,579 unigenes met this criterion.

To further check the effect of including incomplete ORFs in the catalogue, we checked 

whether there was extensive overlap of fragments at gene ends, as would be expected if 

multiple incomplete ORFs originate from a single real sequence that we failed to assemble 

completely. However, we reasoned that if the problem was extensive, we would frequently 

observe overlaps at the edges of fragments. To directly test this hypothesis, we aligned 

a randomly selected set of unigenes back to the full catalogue (using a combination 

of DIAMOND65 in amino acid space to pre-filter and full Smith–Waterman nucleotide 

alignments to obtain the final result). We counted how often we could find another gene that 

overlapped (at ≥95% nucleotide identity) with the query at one of its edges. Eight per cent 

of unigenes had such an edge overlap. The presence of overlaps is not, by itself, sufficient 
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to conclude that we have extraneous unigenes. It is not uncommon that pairs of unigenes 

have internal regions of high identity even though the sequences as a whole are still above 

the threshold. Although this analysis does not completely exclude the possibility that genes 

generate non-overlapping fragments (particularly, if they start at opposite ends), we could 

not find evidence of widespread fragmentation.

We also checked whether incomplete ORFs show different behaviour in prevalence. For 

this, we compared the prevelance of ORFs that are adjacent in a metagenomic contig. 

Incomplete ORFs are, in general, less prevalent (which is natural, as the more often a 

sequence is observed, the more likely it is that it will be assembled into the complete 

gene). However, the overall correlation (Spearman r) in prevalence between adjacent ORFs 

on a contig (technically, between the unigenes that are representing them) is very similar: 

complete/complete: 0.46; complete/fragment: 0.48; fragment/fragment: 0.49.

To assess possible human contamination, the catalogue was split into files containing 50,000 

sequences and aligned with blastn (nucleotide–nucleotide BLAST + 2.7.1) against a human 

genome reference (GRCh38. p10) containing genomic, cdna and 45S rRNA regions. An 

e-value of 0.00001 was used. Results were then processed and alignments with spans of 

<100 nucleotides were discarded if this corresponded to less than 2/3 of the length of the 

query sequence. Finally, we considered the highest identity across all alignments of every 

unigene and removed unigenes with ≥97% identity from the catalogue.

AntiFAM66 was used to detect spurious ORFs and reported only 37,428 unigenes (0.012%) 

as matching its database of known false positives.

Metagenome-assembled genomes construction

MAGs were built using Metabat267 using default parameters, by binning on the contigs 

described above from per sample mappings obtained with BWA68. This resulted in a total of 

278,629 bins. Genome statistics were estimated using the lineage workflow of checkM69 and 

they are provided for all bins in Supplementary Table 5. Genomes are classified into high, 

medium, or low quality following MIMAG cut-offs70.

Metagenomic species construction

MGSs were identified for each biome using co-abundance clustering15. Only complete 

unigenes that were observed in at least 3 samples were clustered. A Pearson correlation 

coefficient above 0.9 was used as cut-off and the canopy profiles were calculated sample-

wise as the 75th percentile abundance across all genes. Co-abundant gene clusters were 

filtered based on their size, inter-quartile GC range, presence of marker genes, and 

taxonomy. The resulting 7,443 clusters contained more than 500 genes and were called 

MGSs. MGSs where at least 80% of the genes could be annotated to a single species with 

95% sequence identify were said to be of that species. MGSs with inconsistent taxonomy 

(>10% ambiguity at any given taxonomic level) were discarded. MGSs with an inter-quartile 

GC above 10% were also discarded. MGSs that were annotated to Bacteria and Archaea at 

kingdom level, and which contained fewer than 6 marker genes, were also removed.
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Estimation of mapping rates to GMGCv1 and reference genomes

To estimate the quantity of ‘microbial dark matter’ for each habitat, we built a non-

redundant catalogue based exclusively on the subset of ORFs from the sequenced genomes 

used in the global catalogue, resulting in 44,098,640 non-redundant unigenes. Aligning the 

metagenomic reads to this collection revealed that, for certain habitats, sequenced genomes 

already capture most of the biodiversity, for example, for human gut samples, on average 

80.3% of the short reads in the samples can be aligned to sequenced genomes (Extended 

Data Fig. 3a), a result that is consistent with previous work71. However, even for the human 

gut, there are samples that are not well represented by sequenced genomes only, particularly 

samples from less well-studied, lower-income countries (Extended Data Fig. 3b, c).

Protein family cluster calculation

For computing protein family clusters we used standard MMseqs213 (version 

fd3db05699decf550f428782e1b382a9b7f490e1) settings with an additionally required 

amino acids identity threshold of 50%, 30% or 20% and a minimum sequence coverage 

of 50% (keeping the default minimum e-value threshold of 10−3). The parameters used were 

--min-seq-id 0.2 -c 0.5 -cov-mode 2 -cluster-mode 0 (where 0.2 was replaced by 0.3 and 0.5, 

for 30% and 50% identity, respectively). Supplementary Table 4 provides summary statistics 

on the results of this clustering process.

Protein clusters were done similarly, with a minimum identity threshold of 90% and a 

minimum sequence coverage of 90%. The parameters used were -min-seq-id 0.9 -c 0.9 

-cov-mode 1 -cluster-mode 2.

Taxonomic predictions

Taxonomic predictions were obtained by a combination of three approaches: (1) unigenes 

that cluster at <95% (nucleotide identity) with sequences from a single species were 

assigned to that species. For the remaining unigenes, (2) the best hit (as determined by 

DIAMOND) to the full Uniprot database predicted the superkingdom (Bacteria/Archaea/

Eukarya/Viruses). (3) For unigenes predicted as bacterial or archaebacterial in the 

previous step, the dual-BLAST least common ancestor approach72 (using the amino acid 

representation and DIAMOND as an alternative to BLAST) was used to determine the final 

prediction. Species-level assignments from this method were converted to genus level.

This method assigned a prediction to 78.4% of GMGCv1 unigenes at levels ranging from 

species to domain of life (Extended Data Fig. 2). Of these unigenes, 94.6% were classified 

as bacterial genes, while 2.7% were archaeal, 1.7% were eukaryotic and 0.9% were viral 

genes.

Estimation of within-species and within-genus nucleotide identity thresholds

Genes were annotated in Prokka73. Blastn (nucleotide–nucleotide BLAST 2.2.29+) searches 

were performed on 107 species (specI clusters) which belong to 32 genera. Each specI 

cluster had at least 10 genomes. SpecI clusters that contained more than 20 genomes were 

randomly down-sampled to 20 genomes). We used all genes in each genome for blastn 

searches against other genomes in a specI cluster or between specI clusters from the same 
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Genus. Nucleotide identity in Extended Data Fig. 2a is the average of all identities of gene 

matches in the pair of genomes. In total we performed 14,686 pairwise genome-comparisons 

within specI clusters and 51,368 comparisons between specI clusters within genera.

Estimation of amino acid identity within orthologues

Average amino acid identity was computed for the clusters in eggNOG 574 corresponding 

to previously characterized 40 universal marker genes that span bacteria and archea13, 

namely: COG0098, COG0091, COG0186, COG0088, COG0200, COG0202, COG0184, 

COG0100, COG0049, COG0256, COG0097, COG0522, COG0090, COG0048, COG0495, 

COG0185, COG0102, COG0541, COG0096, COG0215, COG0081, COG0087, COG0201, 

COG0080, COG0086, COG0018, COG0016, COG0533, COG0052, COG0093, COG0094, 

COG0092, COG0099, COG0012, COG0197, COG0103, COG0525, COG0552, COG0172 

and COG0124. The precomputed alignments within eggnog 5 were used for identity 

computation, which was performed with the AliStat tool in the HMMER3 package75.

Annotation of mobile genetic elements

We annotated mobile genetic elements within the dataset using hidden Markov models for 

DDE recombinase (PF01609, PF02914, PF01359, PF09299, PF00872, PF01526, PF01548, 

PF02371, PF03400, PF04986, PF12017, PF01385, PF01610, PF03004, PF03050, PF03108, 

PF04693, PF04754, PF04827, PF05598, PF07592, PF08721, PF08722, PF10551, PF12596, 

PF12762, PF13006, PF13007, PF13340, PF13359, PF13586, PF13610, PF13612, PF13701, 

PF13737, PF13751, PF02992, PF03184, PF12784, PF13358, PF13546, PF13843, PF10536, 

PF03017, PF04195 and PF04236, retrieved from Pfam-A (ftp://ftp.ebi.ac.uk/pub/databases/ 

Pfam/current_release/) in November 2017), tyrosine recombinase76 and HUH recombinase 

(PF01797) using HMMER 3.1b2 and the respective family-specific gathering threshold. 

Multiple hits were resolved by retaining the hit with highest bit score and e-value less than 

0.00001.

Antibiotic-resistance gene annotation

Genes were assigned ARG status based on the Comprehensive Antibiotic Resistance 

Database (CARD)77 and the ResFams database78 as follows. Catalogue unigenes were 

assigned to a CARD model by applying the CARD RGI software, requiring a hit scoring 

above the family-specific threshold, with the top hit taken if several are achieved. Similarly, 

Res-Fams hits were assigned to unigenes if (1) no CARD hit was assigned and (2) the score 

to a ResFams hidden Markov model exceeded the gathering threshold for that model. Of 

the three ARG models in CARD version 1.1.5, we excluded target loss models (where loss 

of a gene confers resistance) and protein variant models (for example, where known single 

nucleotide variations affect antibiotic susceptibility) as ARGs under these models cannot be 

reliably identified using our analysis pipeline. Instead, we used only the CARD homologue 

models, where under assumptions of curation of the database, the presence of a member of 

an ARG family is considered a reliable indicator for likely ARG potential.
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k-mer based homology search

Genes were indexed by 7-mers in a reduced 16 amino acid space79. By encoding each of 

the 16 possible amino acids using 4 bits, each 7-mer is converted to an integer in the range 

0 to 228 − 1. Each sequence is then indexed by all k-mers that it contains. For all 7-mers, 

member sequences are stored as a list of increasing integers. At search time, the sequence 

indices for all the 7-mers in a query sequence are retrieved and combined together to retrieve 

the 100 sequences in the database that share the highest number of 7-mers with the query. 

This set of 100 candidate hits is then re-ranked by re-aligning the query sequence with a fast 

implementation of Smith–Waterman80. This indexing and querying method is implemented 

by the code in the k-mer-find subdirectory of the supplementary software.

Metagenomic annotation and abundance profiling

The catalogue was functionally annotated using eggnog-mapper2 (version 2.0.1), which 

assigned 222,320,961 species-level unigenes (73.4%) to an eggNOG orthologous group17. 

We validated this approach by annotating a randomly selected set of ORFs in the redundant 

set that had not been selected as unigenes. When they were assigned to an orthologous group 

(OG), 95.4% of these were annotated to the same OG as the unigene that represents them. 

To measure the performance of eggnog-mapper on partial ORFs, we considered only the 

cases where the unigene is a complete ORF and the redundant ORF is a fragment. In class of 

cases, 93.7% of the annotations are to the same OG.

The metagenomes were mapped to the catalogue using minimap281, after read trimming and 

filtering as described in ‘Contig assembly and ORF prediction’. A unigene was considered 

as detected in a sample if it had reads mapping to it unambiguously. Gene and functional 

abundance profiles were then computed with NGLess61 as well as Jug64 scripts provided in 

the profiles-all directory of the supplementary software. In brief, abundance was estimated 

as the number of short reads mapping to a given sequence, with multiple mappers (short 

reads mapping to more than one sequence) being distributed by unique mapper abundance. 

For cross-sample comparisons, these results were normalized by library size.

Additionally, taxonomic profiles were obtained using mOTUs282 through a NGLess 

wrapper, using default parameters. As contaminants can be detected in low-

biomass samples83, we used a set of negative controls (sample accessions: 

SAMN03792193, SAMN03792201, SAMN03792209, SAMN03792217, SAMN03792225, 

SAMN03792233, SAMN03792241, SAMN03792249, SAMN03792257, SAMN03792265, 

SAMN03792273, SAMN03792282 and SAMN03792290) to obtain a list of suspicious 

mOTU clusters. The resulting set (Enterobacteriaceae sp. [ref_mOTU_v2_0036], 

Burkholderia sp. [ref_mOTU_v2_0098], Acinetobacter sp. [ref_mOTU_v2_0197], 

Sphingobium yanoikuyae [ref_mOTU_v2_0291], Stenotrophomonas maltophilia 
[ref_mOTU_v2_0363], Methylophilus sp. [ref_mOTU_v2_0404], Cupriavidus metallidurans 
[ref_mOTU_v2_0743], Pseudomonas sp. [ref_mOTU_v2_0932], Afipia broomeae 
[ref_mOTU_v2_1051], Methylobacterium oryzae [ref_mOTU_v2_1197], Methylobacterium 
extorquens [ref_mOTU_v2_1319], Bradyrhizobium sp. [ref_mOTU_v2_2670], Ralstonia sp. 

[ref_mOTU_v2_2701] and Bradyrhizobium sp. [ref_mOTU_v2_3893]) was excluded from 

consideration as possibly cross-habitat species. After these exclusions,Janthinobacterium 
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lividum [ref_mOTU_v2_1333] was found to be present in multiple habitats, which is 

consistent with previous reports of detecting this extremophile across a broad range of soil 

and aquatic habitats84,85.

Statistical analyses

Statistical analysis was carried out in Python, using NumPy86, SciPy87 and Pandas.

For testing the significance of the number of multi-habitat genes, the habitat of each sample 

was shuffled 32 times and the number of multi-habitat genes in that shuffled condition 

was counted. The Wilks-Shapiro test confirmed that this was well-modelled by a normal 

distribution (P = 0.98) as was expected from theoretical considerations (the total number 

of multi-habitat genes is a sum of a very large number of indicator variables, one for each 

unigene, each coding whether its respective unigene is a multi-habitat gene). This resulted 

in 89,481,710 ± 996,121 (mean ± s.d.) multi-habitat unigenes. Thus, the observed value 

(18,145,135) is 71.6 s.d. below the value expected by chance (P < 10−300).

Where shown, box plots show quartiles with the box (with a line drawn at the median), 

while the whiskers show the range of the data, excluding outliers. Outliers are defined by 

Tukey’s rule, namely as datapoints below Q1 – 1.5 × (Q3 – Q1), where Q1 is the first 

quartile and Q3 is the third; or above Q3 + 1.5 × (Q3 – Q1).

Single-copy marker gene methods

For extracting single-copy marker genes, we used the fetchMG tool16. The number of 

different single-copy operational taxonomic units present in each sample was then estimated 

by (1) counting, for each of the 40 COGs that are identified by fetchMG, the number of 

gene variants to which at least one paired-end read was unambiguously assigned to obtain 

the COG-specific species estimates, and (2) averaging the COG-specific estimates to obtain 

the final estimate of single-copy OTUs.

COG 525 (valyl-tRNA synthetase) was used to estimate taxonomic richness. Previous work 

had identified the COG-specific species-identity threshold16 for this gene to be very close to 

95% (which was used to build the catalogue). This was chosen over COG 12 (a GTP-binding 

protein), which also has a COG-specific threshold similarly close to 95%, as it is much 

longer on average (2,007 versus 366 residues for COG 525 and COG 12, respectively).

For validation, we used the mOTUs2 profiles described above. In the habitats for which 

the use of mOTUs2 is appropriate for estimating diversity, richness estimates from the two 

methods correlated well (human gut: r = 0.71, P < 10−300; human vagina: r = 0.78, P = 

1.1 × 10−10; human skin: r = 0.86, P = 9.2 × 10−140; human oral: r = 0.75, P = 3.3 × 

10−210; marine: r = 0.63, P = 8.3 × 10−16; Spearman r, for samples with ≥1 million reads 

after quality control). For samples in other habitats, the correlations were not always high 

(for example, in the pig gut, r = –0.08, P > 0.05), as this is not an appropriate use of the 

mOTUs2 tool. Thus, taxonomic richness was estimated for all samples based on the COG 

525 estimator.
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Diversity analyses

Gene count tables were rarefied to 1 million reads by random sampling. If fewer than 1 

million reads were available, then this sample was not considered further in this group 

of analyses–even though all metagenomes contained ≥1 million reads at the input, after 

quality-based filtering, some contained fewer than 1 million reads. This operation was 

performed by the script diversity.py provided in the profiles-all/gene. profiles directory of 

the supplementary software.

Protein family richness was used as a proxy for functional richness. Results using only 

orthologous groups inferred using eggnog-mapper17 were similar (Spearman R = 0.83, 

comparing protein family and orthologous group richness across samples; R = 0.87 if only 

samples from the well-studied human gut habitat are used), ensuring that this can be a 

valid proxy for functional diversity even if some individual protein families may contain 

non-orthologous members whose function has diverged.

For classification, a random forest classifier, as implemented in scikit-learn88 with 100 

trees (using default parameters). Tenfold, stratified cross-validation was used to evaluate 

the classification accuracy. To control for the class-size imbalance, the larger habitats were 

randomly downsampled to a maximum of 200 samples (so the largest habitats represent at 

most 11.8% of the dataset). This was performed with the script classify-biome-from-divs.py 

in the gmgc.analysis/profiles directory of the supplementary software.

Fitting the gene frequency spectrum to the neutral infinite gene model

We defined the gene frequency ck as the number of genes that is detected k times (for 

example, c2 is the number of genes detected in exactly two metagenomes). The ‘infinite 

gene model’, in which new genes are generated at random and existing ones are lost at 

random (without any effect on fitness), predicts an almost linear relationship20 between ck 

and 1/k.

We obtained estimates of ck by first rarefying the unigene count matrices to 1 million 

(see ‘Diversity analyses’; these data are plotted in Fig. 2). We excluded from this analysis 

habitats where after filtering out samples with fewer than 1 million reads after quality 

control, there were fewer than 100 samples remaining. For human-associated habitats, when 

multiple samples from the same individual were present, only one was used (as samples 

from the same individual, even if collected at different times, are not independent samples).

To quantify the goodness of fit, we computed the Pearson correlation between 1/k and the 

estimated ck values for k = 1,...,100. Overall, the correlation was 0.989806 (P = 9.1 × 10−85) 

and very high across all the habitats (Supplementary Table 6).

The very high correlations we obtained lead us to conclude that the neutral ‘infinite gene 

model’ is a good fit for the gene frequency spectrum of metagenomes and that the majority 

of genes cannot be under strong selection. The fit is particularly high at the lower end (k = 

1,…,10), the genes that we call rare (see Supplementary Table 6).
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This result is consistent with assertions that the infinite gene model is not a good model for 

prokaryotic genomes25,89. As noted in the main text, rare genes represent a small fraction of 

sequenced genomes.

Selection tests for GMGC unigenes and pan-genome clusters

Multiple sequence alignments were generated, for a representative set comprising 198,208 

GMGC unigenes, using ClustalOmega (version 1.2.4)90, for the translated version of all 

ORFs grouped under each unigene. Amino acid alignments were back-translated into codon 

alignments, and used to reconstruct phylogenetic trees using FastTree2 (version 2.1)91 with 

default parameters. The whole workflow was executed using ETE3 (version 3.1.1)92 with 

options ete3 build -w standard_fast-tree -nt-switch-threshold 0.0 -t 0.5 -launch-time 0.5 

-noimg -clearall -nochecks.

We also analysed 127,618 unigenes in the pangenome of E. coli (specI cluster 95). 

Escherichia coli protein sequences within each unigene were aligned using Muscle v3.8.393 

and transformed into nucleotide alignment using pal2nal94.

For both GMGCv1 unigenes and E. coli gene clusters, selection tests were run using HyPhy 

version 2.5.1 (www.hyphy.org). Per-site selection tests were computed with the FUBAR 

model (analysis version 2.2)95, which computes the dN/dS ratio per site as well as the 

posterior probability of positive and negative selection at each codon. Sites under positive 

and negative selection with posterior probability ≥0.95 were selected. A ratio of sites under 

selection per gene was calculated by dividing the number of sites under selection by the 

total length of the alignment used. Per branch selection tests were computed on the protein 

family clusters with the aBS-REL method96, which runs an adaptive branch-site model that 

permits selective pressures on sequences, quantified by the ω ratio (dN/dS), to vary among 

both codon sites and individual branches in the phylogeny. For testing unigenes within 

GMGC families, an exploratory analysis of all branches was performed, retrieving Holm–

Bonferroni multiple-test corrected P-values at 0.05. For this test, we limited our analysis 

to 5,912 protein family clusters (175,395 unigenes) with at least one complete gene model 

in the alignment and that have been predicted (with P ≤ 0.05) to represent an alignment 

of expressed genes by the software RNACode (version 0.3)97. The fraction of unigenes 

showing evidence of positive selection is computed only within unigenes represented by 

complete ORFs to avoid any confounding effects related to incomplete sequences. The same 

criteria were used for E. coli clusters, except that only E. coli branches within each GMGC 

protein family were tested and all clusters were assumed to represent expressed genes. Given 

that per-site selection tests might be heavily confounded by sequence sampling (that is, the 

cluster size) as well as the length of the alignments, we limited those tests to alignments 

of size between 109 and 361 (as these limits represent the mean ± 1 × s.d.) and rebalanced 

the random dataset so that each rareness category contains exactly the same distribution 

of cluster sizes. Within the broader catalogue, there is a strong link between the number 

of detections of a unigene and the number of sequences available for it, as is expected. 

This link is weaker in genes from isolates as the number of sequences reflects both its 

prevalence in metagenomes as well as within the population of isolates, which is not an 
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accurate reflection of its prevalence in the broader environment. Here, we took advantage of 

this bias and performed this conservation analysis on pangenomes.

Operon functional conservation

KEGG pathway prevalence in the genomic context of unigenes was used as a proxy for 

operon-like functional conservation. For each unigene, genomic context was extracted for 

all clustered ORFs (that is, ORFs clustered at 95% nucleotide identity) in the contig 

neighbourhood. KEGG pathways diversity per unigene was then computed as the ratio 

of unique KEGG pathways to total KEGG pathways observed in a window of four 

neighbouring genes (two genes upstream and two downstream): (unique KEGGs/total 

KEGGs). Then, KEGG conservation per unigene was calculated as 1 – KEGG pathway 

diversity. KEGG conservation score was evaluated for 10 random sets of GMGC unigenes 

with 10 rareness categories, each category including 10,000 unigenes with at least 3 and a 

maximum of 1,000 ORFs. To avoid potential biases created by fragmented sequences, we 

excluded incomplete genes from the test.

Reporting summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this paper.
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Extended Data

Extended Data Fig. 1. Gene accumulation curves.
(a) For most (but not all) habitats, unigenes with high prevalence (≥ 5%) have been well-

captured, while rare unigenes continue to be found in each new sample. (b-d) New unigenes 

continue to be found in each sample. Each grey line represents a random permutation of the 

samples, while the solid black line shows the mean over these random permutations. The 

dotted red line is least-squares fit of Heap’s Law (N = k · sample^alpha). In all cases, the 
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parameter fit indicates that the number of has not reached saturation. (e) The number of 

assembled/ detected genes per sample grows with sequencing depth without a plateau being 

reached. (f) Similarly, the number of detected ORFs per insert grows with sequencing depth.

Extended Data Fig. 2. Identity thresholds and their relationship to taxonomy and function in the 
GMGCv1.
(a) A 95% nucleotide identity threshold is a proxy for species. Shown is nucleotide identity 

of closest gene homolog within the same species or within the same genus (excluding 

within-species comparisons). The threshold used in this work (95%) is marked with a dashed 
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red line. (b) Within well-conserved, universal, 40 single-copy orthologues (see Methods), 

the average pairwise amino acid identity is 49%, albeit with a wide range (27-75%) when 

considering within-orthologue averages. In dashed red, the thresholds used for building 

protein families are highlighted. Boxplots display quartiles and ranges (see Methods). (c) 
Proportion of genes annotated at each taxonomic level.

Extended Data Fig. 3. Short reads map to the GMGCv1 at higher rates (compared to a reference 
database of reference genomes).
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(a) Mapping rates for short reads from metagenomes mapped against the GMGCv1 or 

the reference genomes in proGenomes2. (b) Fraction of short reads from human gut 

metagenomes mapping to a collection of sequenced genomes and the GMGCv1, per country, 

(c) Same data as (b), aggregated by the World Bank’s classification of countries into income 

groups. In all panels, boxplots show quartiles (including median) and range (except for 

outliers, see Methods). Blue boxes show mapping rates to proGenomes2, while orange boxes 

show mapping rates to GMGCv1.

Extended Data Fig. 4. MAGs only capture a small fraction of all genes in a sample.
Fraction of undetected genes when mapping to only the genes captured by metagenome-

assembled genomes (MAGs) across the habitats compared to mapping to the full GMGCv1.
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Extended Data Fig. 5. Species and protein cluster sharing between habitats is similar to unigene 
sharing, but sharing of protein families is more extensive.
(a) The sharing of metagenomic species between habitats mimics unigene sharing. Width 

of each ribbons represents the number of MGSs shared between the habitats (the largest 

number shared is between the human and the pig gut, which share 166 MGSs out of 1,908 

MGSs in the human gut and 898 in pig gut, respectively). (b) Species-level unigene sharing 

between habitats by fraction of the number of unigenes from each habitat (cf. Fig. 1b, 

which uses abundance weighting). (c) Sharing of protein clusters (90% amino acid identity 

clusters) between habitats, abundance-weighted. (d) Sharing of protein families between 

habitats, abundance-weighted. When considering coarser clusterings of sequences, gene 

sharing between habitats increases, yet we still observed higher rates of sharing between 
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similar habitats and significant fractions of habitat-specific families (e.g., in the marine 

environment, 31.3% of the genes, by abundance, are in marine-specific protein families).

Extended Data Fig. 6. Antibiotic resistance and mobile genes are more likely to be multi-habitat 
genes, while most species are found in a single habitat.
(a) Fraction of unigenes within each habitat which are multi-habitat genes (for all unigenes, 

or when considering only mobile elements or antibiotic resistance genes). (b) A total of 
7,443 MGSs were built, across all the habitats as species proxies to reliably assess their 
habitats. Each circle shows the number of metagenomic species for each habitat, x-axis 

Coelho et al. Page 22

Nature. Author manuscript; available in PMC 2022 July 28.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



represents the number of genes in the catalogue specific to each habitat, the y-axis represents 

the number of samples. Note that differing sampling depth and habitat-specific biodiversity 

impact those numbers.

Extended Data Fig. 7. Determinants of functional community structure.
(a) principal coordinate analysis of all samples by protein family profile and the correlations 

with taxonomic and protein family richness (after rarefying to 1 million inserts to remove 
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effects of sample depth). (b) Hierarchical clustering of the habitats using high-level 

functional profiles based.

Extended Data Fig. 8. Marine and soil richness patterns are a mixture of subpatterns.
Conspecific genes per species in marine (a) and (b) soil sub-habitats. The differences in 

the marine environment are particularly large when comparing the samples in the photic 

zones (the shallower, light-accessible, surface and deep-chlorophyll maximum samples) to 

the non-photic mesopelagic samples (deeper, beyond the reach of sunlight). The differences 
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in the soil environment follow differences in acidity (with Podzol, Dystric Brunisol and Ultic 

soils being acidic, while Luvisols are usually neutral or alkaline) and differences in moisture 

(with Xeralfs being dry in the summer, while Glossudalfs are moist year round).

Extended Data Fig. 9. Most genes are detected only infrequently and rare genes are (on average) 
present at a lower abundance in metagenomes.
(a) Shown are the percentage of genes detected in at most 1,...,50 metagenomes (out of a 

total of 13,174). (b, c) Histograms of gene prevalence are roughly linear on a log-log scale, 

as predicted from neutral or nearly-neutral evolution models. Shown are histograms for 90% 
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amino acid identity protein clusters (b) and 20% amino acid identity protein families (c), 
which behave similar to species-level unigenes (see Fig. 3). (d) Shown is the percentage 

of genes in each sample that is composed of rare genes (Count) and the total abundance 

represented by these (Abundance). Except for wastewater (likely due to under-sampling), 

rare genes represent a lower fraction of the abundance than of detection. Boxplots show 

quartiles (including median drawn as a line) and whiskers show the range of the data 

excluding outliers, which are shown as extra elements (see Methods).

Extended Data Fig. 10. More abundant and larger protein families are under more intense 
selection.
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(a) dN/dS within each protein family, with protein families split into 5 abundance quintiles, 

showing a downward trend with abundance (higher negative selection). (b) dN/dS within 

each gene size category, similarly showing a downward trend with size. Categories are 

defined by increasing size, with each bin representing the same number of unigenes. 

Boxplots show quartiles and ranges (see Methods).
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Fig. 1. Global Microbial Gene Catalogue, version 1.
a, Metagenomes from 14 different habitats (marker size represents total number of short 

reads) were assembled and ORFs were extracted. These, combined with ORFs from 

proGenomes2, were clustered to form species-level unigenes, protein clusters and protein 

families (Methods). b, Sharing of unigenes between habitats is minimal, with the exception 

of sharing between mammalian gut microbiota. The width of each ribbon represents the 

average abundance of the shared genes in the habitat on the left. The widest ribbon connects 

the cat gut to the human gut and represents the fact that 58.0% of the reads in cat gut 

microbiomes map to genes shared with the human gut. c, The unigene accumulation curves 

show that some habitats reach diminishing returns per sample, whereas others (for example, 

marine and soil) are still under-sampled (Extended Data Fig. 1). Inset, for the human 

gut, the curve saturates for the most prevalent genes. However, rare unigenes, including 

sample-specific ones, are still being discovered. d, The largest protein family contains 

73,979 unigenes. However, the size distribution is long-tailed and half of all unigenes are 

contained in only 203,431 (0.6%) families (those containing ≥239 species-level unigenes), 

while 80% of protein families consist of only one or two genes, encompassing slightly less 

than 8% of the total unigene pool.
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Fig. 2. The number of conspecific genes (gene pool per species) and the functional redundancy in 
each metagenome show significantly less variation within than between habitats.
a, Density (smoothed histogram using a Gaussian kernel with the width automatically 

determined (Methods)) of the number of conspecific genes in each sample, by habitat, 

shows that the largest per-sample pangenomes are present in environmental samples rather 

than in host-associated habitats. b, Density of the number of unigenes for each protein 

family (a proxy for functional redundancy) detected in each sample, per habitat, shows 

clear differences between habitats. The protein family richness is highly correlated in the 

well-studied human gut habitat to the stricter orthologue-richness estimate obtained using 

eggnog-mapper217 and extends to all habitats (Methods).
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Fig. 3. Most genes are rare.
Histograms of gene prevalence are roughly linear on a log-log scale, as predicted from 

neutral or nearly neutral evolution models (Methods).
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Fig. 4. Rare unigenes are under lower selection pressure.
a, The operon structure is more frequently preserved in prevalent genes (estimated using 

genetic neighbourhood relations (Methods)). b, The fraction of unigenes under detectable 

positive selection (using the HyPHY aBS-REL method (Methods)) increases with the 

number of detections. This also holds in the E. coli pangenome. Inset, due to the correlation 

of prevalence and abundance, less-abundant genes are under lower selective pressure than 

more highly abundant ones (data are split into relative abundance quartiles). c, The E. coli 
pangenome is the only one of sufficient size to test for selection per site. High-prevalence 
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genes within the E. coli pangenome show evidence of stronger negative (blue) and positive 

(red) selection than rare genes (fewer detections in GMGCv1) per site. Box plots and dots 

show the fraction of residues under significant selection per unigene over the total alignment 

length (n = 4,167 for each category). The grey line shows the fraction of genes with at 

least one residue under selection (error bars indicate s.e.m.). Despite this overall trend 

we observed evidence of strong selection in a few rare E. coli genes. For example, we 

found instances of the UDP-glucose 6-dehydrogenase gene, which contributes to antibiotic 

resistance, with evidence of selection despite being observed in only six samples. Box plots 

show the median and the quartiles, with whiskers extending to the furthest data points 

(excluding outliers, detected using Tukey’s rule).
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