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We derive a simple sufficient criterion for the locality of correlations obtained from given measurements
on a Gaussian quantum state. The criterion is based on the construction of a local-hidden-variable model
that works by passing part of the inherent Gaussian noise of the state onto the measurements. We illustrate
our result in the setting of displaced photodetection on a two-mode squeezed state. Here, our criterion
exhibits the existence of a local-hidden-variable model for a range of parameters where the state is still
entangled.
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Introduction.—Quantum mechanics allows for correla-
tions than are impossible classically and which can be
exploited in a variety of applications. In particular, entangled
quantum states are a key resource for quantum information
science, enabling advantages in computing, communica-
tion, and sensing [1–4]. Furthermore, as shown by Bell [5],
measurements on certain entangled states can lead to
observations that violate a so-called Bell inequality and
are then incompatible with local causal explanations. This
phenomenon, known as nonlocality, demonstrates a pro-
found departure from classical physics and is a cornerstone
of modern understanding of quantum physics [6]. Nonlocal
correlations also enable advantages for communication [7,8]
and information processing at an unprecedented level of
security [9–11].
Entanglement and nonlocality, however, are not equiv-

alent. While entanglement is a prerequisite for nonlocality,
in general, only carefully chosen measurements on a given
entangled state will produce nonlocal observations, and
while such measurements can always be found for pure
entangled states [12], there exist mixed entangled states that
are local for any possible measurements [13,14]. Deciding
whether given states can give rise to nonlocality is desirable
both for applications and fundamentally. This is, for
instance, crucial in the context of device-independent
(DI) quantum key distribution (QKD), the strongest form
of quantum cryptographic protocols [15,16]. In DIQKD
and other DI protocols, security relies on the violation of a
Bell inequality and hence requires the use of entangled
states that enable nonlocality.
Certifyingwhether an entangled state exhibits nonlocality

is far from trivial. To demonstrate nonlocality, it is sufficient
to find a particular set of measurements that leads to
violation of a particular Bell inequality. Demonstrating that
a state cannot give rise to nonlocality ismuch harder because
there are infinitely many possible measurements and Bell
inequalities. It requires the construction of local-hidden-
variable (LHV) models that can reproduce the observations

for any combination of measurements. Constructing such
models is challenging, even for particular classes of mea-
surements. A number of methods for constructing LHV
models have nevertheless been developed [13,14,17–22],
applicable to a variety of entangled states and measure-
ments. Very often, a clear connection between the intro-
duction of noise and the vanishing of nonlocality can be
identified in these models, e.g., in [13,18].
While most previous work is concerned mainly with

systems of finite dimension, another relevant class is that of
so-called continuous-variables systems [23]. Most particu-
larly, Gaussian bosonic states and transformations are
ubiquitous in quantum theory and in experiments in,
e.g., optical, superconducting, and mechanical platforms.
At the same time, Gaussian systems are relatively easy to
model. Their entanglement properties have been exten-
sively studied [24,25] and their nonlocality [26–35] and
steering [36] have also been explored. The relation between
noise and nonlocality has also been investigated [37,38].
For Gaussian measurements on Gaussian states, the result-
ing observations are always local, because the positive
Wigner function of such states enables the construction of
an LHV model for any set of Gaussian measurements (as
explained in more detail below). However, little is known
about the existence of LHV models for Gaussian states
subject to non-Gaussian measurements.
Here, we develop a sufficient criterion for the existence

of LHV models for general measurements on Gaussian
states. Given a state and a candidate family of measure-
ments, the criterion enables one to certify that they will
never lead to nonlocal correlations. The idea behind our
result follows the lines of Werner and Wolf’s criterion for
the separability of Gaussian states [24]. Furthermore, we
provide an interesting interpretation in terms of the role of
noise for the vanishing of nonlocality, separating the
inherent quantum noise resulting from the uncertainty
relations from additional classical Gaussian noise. Before
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presenting our main result, we review some elements of the

theory of bosonic systems and nonlocality.
Bosonic systems and Bell nonlocality.—A bosonic sys-

tem [23] is described by N modes, where each mode is
associated with an infinite-dimensional Hilbert space and a
pair of bosonic field operators âk; â

†
k, where k ¼ 1;…; N

denotes the mode. The total system Hilbert space is the
tensor product over the modes. The field operators satisfy
the bosonic commutation relations ½âi; â†j � ¼ δij, ½âi; âj� ¼
0, ½â†i ; â†j � ¼ 0. Alternatively, the system can be described
using the quadrature operators fq̂k; p̂kgNk¼1 defined as
q̂k ≔ âk þ â†k, p̂k ≔ iðâ†k − âkÞ (we take ℏ ¼ 2 through-
out), which can also be arranged in the vector r̂ ≔
ðq̂1; p̂1;…; q̂N; p̂NÞT. The quadratures satisfy ½r̂k; r̂l� ¼
2iΩkl, where Ω ≔ ⨁N

k¼1

�
0 1

−1 0

�
is the symplectic form.

Any positive Hermitian operator in state space can
equivalently be completely described by its real-valued
Wigner function in phase space. If the operator is of unit
trace (e.g., the density matrix ρ of a quantum state), its
Wigner function integrates to unity. Two quantities
of particular interest are the two first statistical
moments: the mean of the quadratures r̄ ≔ Tr½r̂ ρ̂� and
the covariance matrix V with Vij ≔ Tr½fΔr̂i;Δr̂jgρ̂�=2,
where Δr̂i ≔ r̂i − r̄i and f·; ·g is the anticommutator.
Whenever ρ is a genuine quantum state, the 2N × 2N real,
symmetric covariance matrix satisfies the uncertainty
principle V þ iΩ ≥ 0, which also implies V ≥ 0.
As already mentioned, Gaussian states [39] are ubiqui-

tous in quantum experiments. These are states whose
Wigner function is a multivariate Gaussian distribution.
As such, they are completely described by their first two
statistical moments, and their Wigner function can be
written as

WðrÞ ¼ 1

ð2πÞN ffiffiffiffiffiffiffiffiffiffiffi
detV

p e−
1
2
ðr−r̄ÞTV−1ðr−r̄Þ: ð1Þ

The entanglement in a Gaussian state is determined by its
covariance matrix alone. A bipartite Gaussian state with
covariance matrix VAB will be separable if and only if there
exist genuine covariance matrices γA and γB of parties A
and B such that V ≥ γA ⊕ γB [24].
A stronger form of correlations, Bell nonlocality is

defined at the level of the observed input-output distribu-
tion in an experiment with multiple observers. In particular,
a bipartite experiment with observers A and B is charac-
terized by the distribution pðabjxyÞ, where x, y label the
choice of input (measurement setting) of A and B, respec-
tively, and a, b label their outputs (measurement out-
comes). The distribution is called nonlocal if it does not
admit an LHV model, i.e., if it cannot be written as

pðabjxyÞ ¼
Z

dλqðλÞpðajx; λÞpðbjy; λÞ; ð2Þ

where the integral is over the (hidden) variable λ, which is
distributed according to a probability density qðλÞ and
where pðajx; λÞ and pðbjy; λÞ are local response functions.
Entanglement is necessary but not sufficient for the

generation of nonlocal correlations [6]. In a general bipartite
quantum experiment, A and B share a state ρ̂AB and each
perform a generalized measurement with positive-operator-
valued-measure (POVM) elements Qajx and Rbjy, respec-
tively. The corresponding probabilities are pðabjxyÞ ¼
Tr½ρ̂ABQajx ⊗ Rbjy�. If the quantum state and all the POVM
elements have positive Wigner functions, pðabjxyÞ is
necessarily local. Indeed, if ρ̂AB, Qajx, and Rbjy have
respective Wigner functions W, Qajx, and Rbjy, we have

pðabjxyÞ ¼
Z

drWðrÞQajxðrAÞ
ð4πÞ−NA

RbjyðrBÞ
ð4πÞ−NB

; ð3Þ

with r ¼ ðrA; rBÞ, where rA and rB are the phase-space
variables andNA andNB are the number of modes of partyA
and B, respectively. This can be understood as an LHV
model (2) with r as the hidden variable.W is normalized and
is hence a probability density over r. Since

P
a Qajx ¼ I,

with I the identity operator, the Wigner functions fulfillP
a QajxðrAÞ ¼ ð4πÞ−NA for all x and rA, because theWigner

function of the identity onNmodes is the constant ð4πÞ−N in
our convention and similarly forRbjy. It follows that the last
two terms in (3) are probability distributions over a and b,
respectively, and can be interpreted as local response
functions. Hence (3) is of the form (2). An immediate
consequence is that correlations obtained by Gaussian
measurements on a Gaussian state will never be nonlocal.
Constructing the LHV model.—We denote by Gs̄;γ the

multivariate Gaussian distribution with mean s̄ and covari-
ance matrix γ, and by f∘g the convolution of functions f
and g, which is defined as

ðf∘gÞðrÞ ≔
Z

dr0fðr0Þgðr − r0Þ: ð4Þ

We also define 0 ≔ ð0;…; 0ÞT. The following statement
provides a sufficient criterion for the existence of LHV
models for Gaussian states subject to specific measurements.
Theorem 1.—Let r̄ be the mean and V the covariance

matrix of a Gaussian state ρ̂AB and let Qajx and Rbjy be the
Wigner functions of the POVM elements Qajx and Rbjy.
If there exist matrices γA ≥ 0 and γB ≥ 0 such that

V ≥ γA ⊕ γB; ð5Þ
and

Qajx∘G0;γA ≥ 0 and Rbjy∘G0;γB ≥ 0; ð6Þ
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for all a, x and b, y, then the probabilities pðabjxyÞ ¼
Tr½ρ̂ABQajx ⊗ Rbjy� exhibit an LHV model.
Proof.—Let ω ¼ V − γA ⊕ γB ≥ 0. Since γA ≥ 0 and

γB ≥ 0, one can define genuine Gaussian probability
distributions G0;γA and G0;γB , and similarly for Gr̄;ω.

A useful property of Gaussian distributions is that con-
volving two such distributions results in a Gaussian
distribution, i.e., Gs̄1;γ1∘Gs̄2;γ2 ¼ Gs̄;γ , with s̄ ¼ s̄1 þ s̄2 and
γ ¼ γ1 þ γ2. Exploiting this and the symmetries of
Gaussian distributions, we have

pðabjxyÞ ¼ ð4πÞN
Z

drAdrBGr̄;VðrA; rBÞQajxðrAÞRbjyðrBÞ

¼ ð4πÞN
Z

drAdrB

Z
dr0Adr

0
BGr̄;ωðr0A; r0BÞG0;γA⊕γBðrA − r0A; rB − r0BÞQajxðrAÞRbjyðrBÞ

¼ ð4πÞN
Z

dr0Adr
0
BGr̄;ωðr0A; r0BÞ

Z
drAdrBG0;γA⊕γBðr0A − rA; r0B − rBÞQajxðrAÞRbjyðrBÞ

¼
Z

drAdrBGr̄;ωðrA; rBÞ
Q̃ajxðrAÞ
ð4πÞ−NA

R̃bjyðrBÞ
ð4πÞ−NB

; ð7Þ

where Q̃ajx ≔ Qajx∘G0;γA ≥ 0, R̃bjy ≔ Rbjy∘G0;γB ≥ 0.
Since for the constant distribution c ¼ ð4πÞ−NA , it holds
that c∘G0;γA ¼ c, we also have that ð4πÞNA

P
a Q̃ajx ¼ 1,

and similarly for R̃bjy. Equation (7) can therefore be
interpreted as an LHV model. ▪
An important point of Theorem 1 is that γA and γB need

not be covariance matrices of genuine quantum states and
only have to be non-negative. It is instructive to have a
closer look at the situation when the state ρ̂AB is separable.
In that case, there exist covariance matrices γA and γB of
quantum states (i.e., which satisfy the uncertainty princi-
ple), such that V ≥ γA ⊕ γB [24], so that

Q̃ajxðrAÞ ¼
Z

dsAQajxðsAÞG0;γAðrA − sAÞ

¼
Z

dsAQajxðsAÞGrA;γAðsAÞ

¼ ð4πÞ−NATr½Qajxσ̂A�; ð8Þ

where σ̂A is the density matrix of the Gaussian state with
mean value rA and covariance matrix γA. Since σ̂A is a
genuine density matrix, we have that Q̃ajxðrAÞ ≥ 0 for all
rA. The same reasoning can, of course, be made for party B.
We therefore see that, when ρ̂AB is separable, we are always
provided with an LHV model whatever the measurements,
as should indeed be the case.
In fact, while the Wigner functions Q̃ajx and R̃bjy will

always become positive when subject to enough noise (that
is, noise coming from a separable state ρ̂AB), one can push
the analysis further. Consider the bivariate convolution

Q̃ðtÞ
ajx ≔ Qajx∘G0;γA with the choice γA ¼ tI2, for some t ≥ 0,

where I2 is the 2 × 2 identity matrix. It is well known that

the function Q̃ðtÞ
ajx then satisfies the heat (or diffusion)

equation [40]

∂

∂t
Q̃ðtÞ

ajx ¼
1

2
ΔQ̃ðtÞ

ajx; ð9Þ

whereΔ is the Laplacian, with initial condition Q̃ð0Þ
ajx ¼ Qajx.

In the limit of t → ∞, the function Q̃ðtÞ
ajx approaches a

Gaussian, which is necessarily non-negative everywhere.
The convolution Qajx∘G0;γA actually always makes the
quasiprobability distribution Qajx “less negative” as the
parameter t increases. More precisely, the local minima of

Q̃ðtÞ
ajx have non-negative Laplacian, which implies from the

heat equation (9) that their t derivative is non-negative, so
that their values never decrease when t increases.
One can give an operational interpretation of Theorem 1

in terms of the effect that added local Gaussian noise has on
nonlocality. Consider a bipartite pure Gaussian state ρ̂AB
with covariance matrix V and suppose it can be written as
V ¼ ωþ γqA ⊕ γqB with ω; γqA; γ

q
B ≥ 0 (where q is for

quantum). Suppose further that we apply local noise to
ρ̂AB in the form of classical additive Gaussian noise
channels [23], i.e., local quantum convolutions in the sense
of Ref. [41]. These channels are completely characterized
by their action on the covariance matrix, which is of the
form V ↦ V þ γcA ⊕ γcB with γcA; γ

c
B ≥ 0 (where c is for

classical). The resulting mixed Gaussian state ρ̂0AB has
covariance matrix ωþ ðγqA þ γcAÞ ⊕ ðγqB þ γcBÞ. Now apply
Theorem 1 to ρ̂0AB with the POVM elements Qajx and Rbjy.
An LHV model will exist if

Qajx∘G0;γqAþγcA
≥ 0 and Rbjy∘G0;γqBþγcB

≥ 0; ð10Þ

for all a, x and b, y. Equation (10) expresses the fact that
ρ̂0AB will become local with respect to the POVMs Qajx and
Rbjy when the noise provided by the convolutions with the
Gaussian distributions G0;γqAþγcA

and G0;γqBþγcB
is important
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enough. There are two contributions to the noise. The first,
characterized by γqA and γqB, is quantum noise; that is, the
uncertainty inherent to quantum mechanics coming from
the fact that the pure state ρ̂AB is subject to the uncertainty
relation. The second, characterized by γcA and γcB, is
classical Gaussian additive noise making the state mixed.
An interesting situation arises when either γqA þ γcA or
γqB þ γcB is not a genuine covariance matrix, so that ρ̂0AB
is still entangled, while the noise is important enough so
that there exists an LHV model. We provide an example of
this in the following.
An application.—For the sake of illustration, we consider

a two-mode squeezed state (TMSS) ρ̂AB with zero mean
and covariance matrix

V ¼
 

νI2
ffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p
Zffiffiffiffiffiffiffiffiffiffiffiffi

ν2 − 1
p

Z νI2

!
; ð11Þ

where ν ≥ 1 and Z ≔ diagð1;−1Þ. It is entangled for ν > 1.
We consider a scheme similar to that of Ref. [34] for
demonstrating nonlocality with a TMSS (see Fig. 1). First,
we take losses into account by applying a local pure-loss
channel [23] Eη of parameter η∈ ½0; 1� to each mode of the
TMSS. The channel Eη acts as

Eη½σ� ≔ Tr2½Uηðσ ⊗ j0ih0jÞU†
η�; ð12Þ

where Uη is a beam-splitter unitary and j0i is the vacuum
state. Since Eη is Gaussian, the resulting state ρ̂0AB ¼
ðEη ⊗ EηÞ½ρ̂AB� is also Gaussian with zero mean value
and covariance matrix

V0 ¼
 
½1þ ηðν − 1Þ�I2 η

ffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p
Z

η
ffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p
Z ½1þ ηðν − 1Þ�I2

!
: ð13Þ

Furthermore, it can be seen to be entangled for any ν > 1
and η > 0 by evaluating the partial transpose [25,42,43].
Next, for the measurements we consider displacements

followed by non-number-resolving single-photon detection
(click or no click). Ideally, this implements a measurement
where the no-click outcome corresponds to a projection onto
a coherent state. Here, we allow for some noise in the
detection by modeling the POVM element corresponding
to the no-click outcome as Xþ1ðε; αÞ ≔ Dα½ð1 − εÞj0i
h0j þ εj1ih1j�D†

α, where Dα is the displacement operator
and j1i is the one-photon Fock state. The click outcome
corresponds to X−1ðε; αÞ ≔ I − Xþ1ðε; αÞ. The parameter
ϵ∈ ½0; 1� can be understood as the probability for an addi-
tional excitation to be introduced during measurement.
Inputs x; y∈ f0; 1g for A and B correspond to displace-

ments αx and βy, respectively, and we label the outputs
a; b∈ f�1g, with −1 for click events. We take the noise
strength ε to be the same for all measurements. Defining the
correlators haxbyi ¼

P
a;b abpðabjxyÞ, Eq. (2) implies the

Clauser-Horne-Shimony-Holt (CHSH) inequality [44]

S ¼ ha0b0i þ ha0b1i þ ha1b0i − ha1b1i ≤ 2: ð14Þ

This inequality can be violated for the quantum probabil-
ities pðabjxyÞ ¼ Tr½ρ̂0ABðXaðε;αxÞ ⊗ Xbðε; βyÞÞ�. In par-
ticular, taking βy ¼ −αx for y ¼ x and optimizing over real
αx, we find violation for a range of values of the squeezing,
loss, and noise, as shown in Fig. 2. To do so, we fix
ε ¼ 0.02 as an example, before numerically maximizing
the value of S in Eq. (14) over the free para-
meters α0; α1 ∈ ½−1; 1�, for each value of η∈ ½0; 1� and
ν∈ ½1; 1.5�, after a suitable discretization. For instance, if
one chooses η ¼ 0.95 and ν ¼ 1.4, one gets S ≃ 2.1 > 2
for ðα0; α1Þ ≃ ð0.12;−0.48Þ.
On the other hand, we can apply Theorem 1 to show that

the correlations must be local for another parameter region.
LetX ðε;αÞ

a be the Wigner function of Xaðε; αÞ. The quasidis-
tribution X ðε;αÞ

þ1 is non-negative everywhere since ε < 1,

while X ðε;αÞ
−1 admits negative values. According to Theorem

1, the probability pðabjxyÞ will satisfy Eq. (2) if there
exist non-negative matrices γA and γB such that

V0 ≥ γA ⊕ γB and the Wigner functions X ðε;αxÞ
a ∘G0;γA and

X
ðε;βyÞ
b ∘G0;γB are non-negative for all a, b. It is enough to find

γA and γB such that X ðε;αxÞ
−1 ∘G0;γA ≥ 0 and X

ðε;βyÞ
−1 ∘G0;γB ≥ 0.

Now, consider the choice γA ¼ γB ¼ tI2 with t ≥ 0.
If we are to satisfyV0 ≥ γA ⊕ γB, we need t ≤ 1þ ηðν − 1−ffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p
Þ. From Eq. (9), it follows that if X ðε;αÞ

−1 ∘G0;tI2
becomes non-negative for some value of t, it will remain
so for all larger t. Consequently, one can consider the highest
acceptable value of t, that is t ¼ 1þ ηðν − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p
Þ.

Furthermore, by definition of the convolution, the value of t

for which X ðε;αÞ
−1 ∘G0;tI2 becomes non-negative does not

FIG. 1. Sketch of a scheme for demonstrating nonlocality from
a TMSS with loss. ATMSS is generated by injecting a couple of
vacua into a two-mode squeezer (TMS) of parameter ν, while
losses are modeled by the interaction of each output mode of the
TMS with a vacuum state through a beam splitter (BS) of
transmittance η. The measurements characterized by the POVM
elements Xaðε; αxÞ and Xbðε; βyÞ are then performed on party A
and B, respectively.
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depend on α, so that one can take α ¼ 0. Now,
the Wigner functions of the operators I, j0ih0j, and
j1ih1j are, respectively, given by WIðx; pÞ ¼ 1=ð4πÞ,
Wj0ih0jðx; pÞ ¼ eðx2þp2Þ=2=ð2πÞ, and Wj1ih1jðx; pÞ ¼ −ð1 −
x2 − p2Þeðx2þp2Þ=2=ð2πÞ [45], while we have X ðε;αÞ

−1 ðx; pÞ ¼
WI − ð1 − εÞWj0ih0jðx; pÞ − εWj1ih1jðx; pÞ. Using this, we
obtain

ðX ðε;0Þ
−1 ∘G0;tI2Þðx; pÞ

¼ 1

4π
−
ð1þ tÞ2 þ ε½x2 þ p2 − 2ð1þ tÞ�

2πð1þ tÞ3 e
−ðx2þp2Þ
2ð1þtÞ : ð15Þ

It can easily be shown that, for all t ≥ 0 and ðx; pÞ∈R2, the
above function achieves its minimum at ðx; pÞ ¼ 0, and that
this minimum is non-negative for t ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ε

p
. From

our choice of t, this means that the distribution will be
non-negative everywhere for 1þ ηðν − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p
Þ ≥ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ε
p

. The corresponding region in the ðη; νÞ-plane is
plotted in Fig. 2 for ε ¼ 0.02. In this region, the entangled
state ρ̂0AB admits an LHV model for the family of measure-
ments described above.
Conclusion.—In this Letter, we have developed a cri-

terion for the existence of local-hidden-variable models for
correlations resulting from general measurements on

Gaussian states, by exploiting that measurement-operator
Wigner functions can be made positive by passing
Gaussian noise from the state to the measurement. We
have illustrated the criterion for the case of noisy displace-
ment-based measurements on a two-mode squeezed state
subject to loss.
Recently, continuous-variables quantum systems have

emerged as a promising platform for the implementation of
QKD protocols [46–51]. In particular, Gaussian systems
such as coherent states can serve as a resource for security
against collective attacks [52,53]. In light of this, we expect
the present Letter to also be useful in the context of DIQKD
with Gaussian states.
An interesting question is whether the statement of

Theorem 1 is also a necessary criterion: if one cannot find
two positive semidefinite matrices γA and γB such that
Eq. (6) is satisfied for all POVM elements simultaneously,
does this imply nonlocality of the distribution pðabjxyÞ ¼
Tr½ρ̂ABQajx ⊗ Rbjy�?
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