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Determination of diffusion coefficients from constant volume diffusion tests 
through numerical simulation 

Wei Yan *, Yibo Yang , Erling H. Stenby 
Center for Energy Resources Engineering (CERE), Department of Chemistry, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark   
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A B S T R A C T   

Molecular diffusion is a fundamental mass transport phenomenon crucial to many scientific and industrial fields. 
Its accurate description relies on diffusion coefficients that can be either experimentally measured or theoreti-
cally estimated. The constant volume diffusion (CVD) method is a widely used approach to measure liquid-phase 
diffusion coefficients at high pressures. However, it requires analytical or numerical solutions to interpret the 
measured data. In this study, we described in detail a legacy CVD simulation code developed by Michael L. 
Michelsen and showed how his algorithm can determine constant or composition-dependent diffusion co-
efficients from the CVD data using the orthogonal collocation method. We further coupled the code with five 
diffusion coefficient correlations, including the Wilke-Chang (WC), Hayduk–Minhas (HM), extended Sigmund 
(ES), Riazi–Whitson (RW), and Leahy-Dios-Firoozabadi (LDF), to investigate their performance in terms of 
predicting and regressing the CVD data for methane-n-alkane and nitrogen-n-alkane systems. We found that the 
CVD results are insensitive to the gas-phase diffusion coefficients. The simple WC and HM give the closest 
predictions despite their empirical nature and inherent inconsistency. In contrast, the predictions by LDF under 
the rigorous Maxwell-Stefan framework are not satisfactory. The regression results using different correlations 
and a constant liquid-phase diffusion coefficient are almost the same. Different correlations result in different 
ranges of the regressed coefficients, and those determined using the assumption of constant diffusion coefficients 
are always within these ranges. We also compared and illustrated the differences in the profiles of diffusion 
coefficients between these correlations. The study demonstrates that Michelsen’s algorithm is an effective tool for 
processing CVD data, and it also highlights how the interpretation of CVD data depends on the assumed 
composition-dependence.   

1. Introduction 

Molecular diffusion is a fundamental mass transport phenomenon 
that, together with convective mixing, determines the time needed for a 
system to reach chemical equilibrium. In situations where convective 
mixing is limited, the role of molecular diffusion becomes even more 
significant. Molecular diffusion is a critical factor in a wide range of 
scientific and engineering fields, such as geologic processes [1], chem-
ical separation [2], and biomedical applications [3]. In the oil and gas 
production, molecular diffusion is crucial in the study of solution gas 
drive [4–6], the production from fractured reservoirs [7–11], the 
development of unconventional shale or other tight formation [12–15], 
and the production of highly viscous heavy oil and bitumen [16,17]. 

There are two major theoretical frameworks for diffusion: the Fick-
ian framework [18] and the Maxwell-Stefan (MS) one [19], both of 

which provide a quantitative description of molecular diffusion. While 
the MS framework is theoretically rigorous, the Fickian law is more 
commonly used. Both frameworks use diffusion coefficients to express 
the diffusion rate. It should be noted that the two types of diffusion 
coefficients are generally not the same, and a conversion is possible 
under certain situations. 

Experimental measurement of diffusion coefficients is indispensable 
but challenging, especially at elevated pressures. The review of some 
experimental measurement methods can be found in [20–25]. To 
determine liquid-phase diffusion coefficients at high pressures, the 
Constant Volume Diffusion (CVD) method [26,27] is often used, 
particularly in the oil industry. This unsteady-state method involves 
bringing two non-equilibrium phases (gas and liquid) into contact in a 
fixed volume cell at constant temperature. The pressure will vary with 
time during the experiment as the diffusion takes place in both phases. 
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The pressure typically decreases with time—that is why it is also known 
as the pressure decay (PD) method [27]. We use the CVD term here since 
an earlier study [26] already suggested it. The outcome of a CVD test 
includes the pressure variation with time, and, sometimes, the liquid 
height variation with time. The data can be processed using an analyt-
ical model [27,28] or a numerical one [26,29–32] to obtain the diffusion 
coefficients (mainly the liquid-phase ones). 

While using an analytical model is faster, most analytical methods 
require some assumptions, such as a constant interface height or a 
simple equilibrium relation (e.g., Henry’s law). These assumptions can 
be reasonable simplifications for some special cases, such as the diffu-
sion in heavy oils. However, for most gas-liquid systems, a more general 
equilibrium description using equations of state (EoS) is necessary, and 
the variation of the interface height is often non-negligible. In 1992, 
Michael L. Michelsen developed a general CVD algorithm based on the 
orthogonal collocation method [26], but the work does not seem to be 
widely known among the researchers in this area. His method describes 
the gas and liquid phases using a cubic EoS and the instantaneous 
equilibrium at the interface by rigorous fugacity equalities. The method 
allows for a moving interface and composition-dependent diffusion co-
efficients. However, the method was only briefly described in the liter-
ature [26,33]. In this study, we intend to provide the details of 
Michelsen’s algorithm and couple his code [34] with different diffusion 
coefficient models to investigate the processing of the CVD data. 

In the literature, various diffusion coefficient correlations are avail-
able, and for this study, we have chosen five widely-used correlations: 
the Wilke-Chang (WC) correlation [35], the Hayduk–Minhas (HM) 
correlation [36], the extended Sigmund (ES) correlation [37,38], the 
Riazi–Whitson (RW) correlation [39], and the Leahy-Dios-Firoozabadi 
(LDF) correlation [40]. WC and HM were developed based on the 
Stokes-Einstein theory [41,42] for liquid diffusivity. ES was developed 
based on the finding by Dawson et al. [43] that the ratio of the high- and 
low-pressure density-diffusivity products could be simplified as a poly-
nomial of the mixture molar density. The low-pressure gaseous diffusion 
can be obtained from the kinetic theory of dilute gasses [44]. RW shares 
some similarity with ES, but it uses viscosity as a modeling parameter, 
inspired by the Stokes-Einstein theory. Among the five correlations, LDF 
is the only one explicitly using the MS framework. The correlation can 
estimate the MS diffusion coefficients as well as the generalized Fickian 
diffusion coefficients. LDF calculates the infinite dilution diffusion 

coefficients first using a correlation like RW. The MS diffusion co-
efficients at other concentrations can then be estimated using the infinite 
dilution diffusion coefficients. Finally, the MS diffusion coefficients can 
be converted to Fickian coefficients with the help of a thermodynamic 
model. 

In the following text, we will present Michelsen’s method for CVD 
simulation, including the mathematical formulation of the CVD process 
and its numerical solution using the orthogonal collocation method. We 
will then briefly present the five diffusion coefficient correlations stud-
ied here. Finally, we will present the CVD simulation results based on 
Christoffersen’s data [26]. In addition to the validation of the simulation 
and a discussion of the simulation strategy, we will present both pre-
diction and regression results, as well as the profiles of diffusion co-
efficients. The aim of the study is two-fold. First, we will demonstrate the 
effectiveness of Michelsen’s method in simulating CVD using constant or 
composition-dependent diffusion coefficients. Second, we will investi-
gate the determination of diffusion coefficients from CVD tests and 
evaluate the impact of different treatments, such as the use of a constant 
diffusion coefficient or a composition-dependent coefficient calculated 
by one of the five correlations, on the results. Specifically, we will 
compare the five correlations in terms of their prediction and regression 
capabilities. 

2. Mathematical model 

Fig. 1 presents a schematic of the CVD test. The total height of the 
diffusion cell is h. The height of the liquid column is l(t), and that of the 
vapor column is h − l(t). There are Nc components in the system. If the 
convective flow is negligible, the diffusion equation can be written for 
each component i: 

∂Ci

∂t
=

∂
∂x

(

Di
∂Ci

∂x

)

= Di
∂2Ci

∂x2 +
∂Di

∂x
∂Ci

∂x
(1) 

In Eq. (1), t and x are dimensional time and distance, respectively, Ci 

is the molar concentration (mole per volume) of component i, and Di is 
the effective diffusion coefficient of component i in a certain phase. The 
coefficient Di is in principle concentration-dependent in each phase. In 
the case of constant Di in each phase, the second term on the RHS of Eq. 
(1) disappears. However, even for this case, the diffusion coefficients in 
vapor (DV

i ) and liquid (DL
i ) still assume two different values. Eq. (1) holds 

for i ∈ [1,Nc]. For simplicity, we drop i ∈ [1,Nc] in the equations in this 
paper. 

The initial and boundary conditions are given by 

t = 0 : CL
i = CL

i0,CV
i = CV

i0, l = l0 (2)  

x = 0 :
∂CL

i

∂x
= 0 (3)  

x = l : f L
i = f V

i (4)  

x = h :
∂CV

i

∂x
= 0 (5) 

At the initial state, the molar concentration of component i in vapor 
(CV

i ) and that in liquid (CL
i ) are uniform, equal to CV

i0 and CL
i0, respec-

tively. The initial height of the liquid column is l0. Eqs. (3) and (5) honor 
the fact that there is no transport at the upper and lower boundaries of 
the diffusion cell. Eq. (4) assumes instantaneous equilibrium at the 
vapor-liquid interface. 

The overall mole balance for each component can be written as 

ni =

∫ l

0
CL

i (x, t)dx +
∫ h

l
CV

i (x, t)dx = l0CL
i0 + (h − l0)CV

i0 (6)  

where ni is the moles of component i. 
Since the pressure gradient is small in the experiment, it is reason-

Fig. 1. Schematic of the CVD test.  
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able to use an average pressure for each phase. The vapor phase pressure 
PV and the liquid phase pressure PL, calculated from their respective 
average concentrations C̄V and C̄L, should be equal to the system pres-
sure P: 

PL( C̄L
,T
)
= PV ( C̄V

,T
)
= P (7) 

Eqs. (1)–(7) constitute a complete set of equations that can in prin-
ciple be solved numerically to generate the molar concentration profiles 
at certain time. However, before proceeding to the numerical solution, it 
is advantageous to further transform and simplify the equations by 
introducing new variables. 

During the CVD test, the vapor-liquid interface moves with time. To 
avoid continuous re-gridding during the numerical solution, it makes 
sense to define a new spatial variable χ: 

χ =
x

l(t)
for liquid (8)  

χ =
h − x

h − l(t)
for vapor (9) 

The newly introduced spatial variable varies from 0 at the bottom 
boundary to 1 at the interface for the liquid, and from 0 at the top 
boundary to 1 at the interface for the vapor. The spatial coordinates 
therefore have opposite directions in the two phases. The diffusion 
equations given by Eq. (1) become two similar sets for liquid and vapor: 

∂CL
i

∂t
=

DL
i

l2
∂2CL

i

∂χ2 +
1
l2

∂DL
i

∂χ
∂CL

i

∂χ +
1
l

dl
dt

χ ∂CL
i

∂χ for liquid (10)  

∂CV
i

∂t
=

DV
i

(h − l)2
∂2CV

i

∂χ2 +
1

(h − l)2
∂DV

i

∂χ
∂CV

i

∂χ −
1

h − l
dl
dt

χ ∂CV
i

∂χ for vapor

(11)  

and the new boundary conditions are 

t = 0 : CL
i = CL

i0,C
V
i = CV

i0, l = l0 (12)  

χ = 0 :
∂CL

i

∂χ = 0,
∂CV

i

∂χ = 0 (13)  

χ = 1 : f L
i = f V

i (14) 

We further introduce η = χ2. With ∂
∂χ = 2 ̅̅̅η√ ∂

∂η, the boundary con-
dition Eq. (13) is always satisfied and can be removed, leaving just one 
boundary condition 

η = 1 : f L
i = f V

i (15) 

The resulting diffusion equations are 

∂CL
i

∂t
=

4ηDL
i

l2

(
∂2CL

i

∂η2

)

+
2DL

i

l2

(
∂CL

i

∂η

)

+
4η
l2

(
∂DL

i

∂η

)(
∂CL

i

∂η

)

+
2η
l

(
dl
dt

)(
∂CL

i

∂η

)

for liquid
(16)   

In the RHS of Eqs. (16) and (17), the third terms disappear if D is 

assumed to be concentration independent, and the fourth terms disap-
pear if the change of the interface level is negligible. In our study, we 
always include the fourth term to account for the varying interface 
height. The final set of equations consists of the diffusion Eqs. (16) and 
(17), the material balance equations Eq. (6), the pressure equality Eq. 
(7), the initial condition Eqs. (2) or (12), and the fugacity equalities at 
interface Eq. (15). 

3. Numerical model 

The equations formulated in Section 2 can be solved using the 
orthogonal collocation method. Eqs. (16) and (17) are discretized using 
a series of orthogonal collocation points. It can be shown that the con-
centrations on these collocation points, CL

i and CV
i , can be solved if the 

equilibrium concentrations at the interface, Ce,L
i and Ce,V

i , and the liquid 
height l(t) are known. The final set of independent variables, Ce,L

i , Ce,V
i , 

λ = l(t)/h, and the system pressure P, should satisfy material balances, 
fugacity equalities, and the pressure equation for each phase. 

3.1. Concentrations at the collocation points 

We illustrate how to discretize Eq. (16) using the orthogonal collo-
cation method and solve for CL

i provided that Ce,L
i and l(t) are known. The 

procedure for solving Eq. (17) is essentially the same. Here we drop the 
superscript L in Eq. (16) for simplicity. Also note that the solution pro-
cedure is the same for each component in the Nc components. 

We select N interior collocation points ηm, which are the zeros of a 
suitable Jacobi polynomial p(α,β)N (α = 0 and β = − 0.5 here). The first and 
second order derivatives of Ci w.r.t. η at η = ηm can be expressed using 
the values Ci,n at the N interior points and at η = 1: 
(

∂Ci,m

∂η

)

η=ηm

=
∑N+1

n=1
l(1)n (ηm)Ci,n =

∑N+1

n=1
AmnCi,n (18)  

(
∂2Ci,m

∂η2

)

η=ηm

=
∑N+1

n=1
l(2)n (ηm)Ci,n =

∑N+1

n=1
BmnCi,n (19)  

where Amn = l(1)n (ηm) and Bmn = l(2)n (ηm) are the differentiation weights 
that can be generated after the collocation points are determined. These 
two derivatives can be evaluated implicitly using Ci,n at the current time 
step. If we use constant Di, the spatial derivative of Di is zero and the 
third term on the RHS of Eq. (16) disappears. However, in the general 
situation where composition-dependent Di are used, we need to take into 
account the spatial variation of Di and the third term on the RHS of Eq. 
(16). Since Di is expected to vary with time slowly in the diffusion 
process, it is convenient to treat Di in Eq. (16) and its derivative ∂Di

∂η 
explicitly. That is, we calculate Di,m at the collocation point m using the 
concentrations from the old time step, Cold

i,m, and then evaluate its de-
rivative using 

D(1)
i,m =

(
∂Di,m

∂η

)

η=ηm

=
∑N+1

n=1
l(1)n (ηm)Di,n =

∑N+1

n=1
AmnDi,n (20) 

Substitution of Eqs. (18)-(20) into Eq. (16) results in the collocation 
equations for the N interior points: 

∂CV
i

∂t
=

4ηDV
i

(h − l)2

(
∂2CV

i

∂η2

)

+
2DV

i

(h − l)2

(
∂CV

i

∂η

)

+
4η

(h − l)2

(
∂DV

i

∂η

)(
∂CV

i

∂η

)

−
2η

(h − l)

(
dl
dt

)(
∂CV

i

∂η

)

for vapor
(17)   
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(
Ci,m − Cold

i,m

)
−

Δt
l2

∑N+1

n=1

(
4ηmDi,mBmn + 4ηmD(1)

i,mAmn + 2Di,mAmn

)
Ci,n

−
l − lold

l

∑N+1

n=1
2ηmAmnCi,n

= 0 (21) 

Note that Ci,N+1 is essentially the equilibrium concentration at the 
interface Ce,L

i . We can write Eq. (21) in a matrix-vector form: 

Eci = q (22)  

with 

ci =
(
Ci,1,Ci,2, ...,Ci,N

)T (23) 

Table 1 
An overview of the binary systems measured by Christoffersen [26].  

No. Case ID Vapor Liquid T ( ◦C) hL (cm) P0 (bar) Pfinal (bar) Peq (bar) Duration (hr) 

1 C1-C5 M no.1 C1 C5 21.4 22.60 94.9 73.5 54.1 161.9 
2 C1-C5 M no.2 C1 C5 21.4 21.60 94.3 69.2 55.4 266.0 
3 C1-C5 M no.3 C1 C5 24.0 18.20 96.7 72.2 64.1 328.1 
4 C1-C8 M no.1 C1 C8 22.9 19.71 93.9 81.6 68.9 263.5 
5 C1-C8 M no.2 C1 C8 21.6 20.20 95.8 83.9 69.4 225.3 
6 C1-C8 M no.3 C1 C8 21.4 20.20 95.0 82.0 69.0 283.5 
7 C1-C8 H no.1 C1 C8 23.6 19.33 177.2 153.9 133.3 308.0 
8 C1-C8 H no.2 C1 C8 21.0 19.20 178.8 154.3 134.9 350.1 
9 C1-C8 H no.3 C1 C8 21.5 19.40 183.7 156.9 138.2 400.3 
10 C1-C10 M C1 C10 21.4 20.90 97.1 87.0 73.5 310.3 
11 C1-C10 H C1 C10 21.5 20.20 180.5 165.2 142.5 258.8 
12 C1-C16 M no.1 C1 C16 21.0 22.80 95.6 90.6 77.1 250.3 
13 C1-C16 M no.2 C1 C16 21.0 22.50 95.8 89.5 77.3 404.3 
14 C1-C16 H no.1 C1 C16 25.7 17.70 179.6 173.3 158.8 271.2 
15 C1-C16 H no.2 C1 C16 25.8 17.66 184.6 177.4 163.0 308.6 
16 N2-C5 M no.1 N2 C5 21.0 17.28 98.5 90.9 86.7 235.3 
17 N2-C5 M no.2 N2 C5 23.6 19.20 100.1 92.1 86.0 207.1 
18 N2-C5 H no.1 N2 C5 23.7 18.42 178.8 165.7 156.7 234.4 
19 N2-C5 H no.2 N2 C5 21.5 17.90 181.8 168.3 159.1 239.8 
20 N2-C8 M N2 C8 22.0 19.80 98.7 94.0 89.6 332.0 
21 N2-C8 H N2 C8 20.8 19.70 179.4 173.7 165.0 235.5 
22 N2-C10 M N2 C10 20.5 20.10 97.2 94.1 89.8 312.9 
23 N2-C10 H N2 C10 21.2 20.00 184.6 180.3 172.3 233.6 
24 N2-C16 M no.1 N2 C16 21.5 22.10 93.6 92.7 88.0 90.3 
25 N2-C16 M no.2 N2 C16 21.5 22.10 95.4 94.7 89.8 67.3 
26 N2-C16 H N2 C16 25.7 17.64 177.8 174.9 171.0 529.8  

Table 2 
Parameters used for the SRK EoS and the diffusion coefficient models.  

Component TC 

(K) 
PC (bar) Acentric factor sSHIFT MW (g/mol) VC (cm3/mol) VA (cm3/mol) 

∑
vi 

N2 126.3 33.99 0.0358 0.085 28.01 90.09 34.753 18.50 
C1 190.6 46.04 0.0074 0.100 16.04 99.27 37.984 25.14 
C5 469.6 33.69 0.2522 0.104 72.15 303.99 118.330 107.22 
C8 568.8 24.86 0.3998 0.160 114.23 492.14 186.58 168.78 
C10 617.6 20.96 0.4916 0.200 142.29 603.17 235.61 209.82 
C16 720.5 14.20 0.7667 0.268 226.43 953.43 373.78 332.94  

Table 3 
Non-zero binary interaction coefficients (BIC) 
for SRK.  

Binary pair BIC 

N2-C5 0.150 
N2-C8 0.200 
N2-C10 0.250 
N2-C16 0.320 
C1-C5 0.032 
C1-C8 0.060 
C1-C10 0.070 
C1-C16 0.100  

Fig. 2. The pressure curves from the CVD simulator and E300 for C1-C10 M.  

W. Yan et al.                                                                                                                                                                                                                                    



Fluid Phase Equilibria 576 (2024) 113944

5

Emn = δmn −
Δt
l2

(
4ηmDi,mBmn + 4ηmD(1)

i,mAmn + 2Di,mAmn

)
−

l − lold

l
2ηmAmn

(24)  

qm = Cold
i,m +

Δt
l2

(
4ηmDi,mBm,N+1 + 4ηmD(1)

i,mAm,N+1 + 2Di,mAm,N+1

)
Ce,L

i

+
l − lold

l
2ηmAm,N+1Ce,L

i (25) 

From Eq. (22), we can solve Ci,n at the N collocation points. From Ci,n, 
we can readily calculate the average concentration C̄i using the Gaussian 
quadrature. Eq. (22) can be further used to evaluate dci

dCe,L
i 

and dci
dl , and we 

only need to change its RHS to qCe,L
i and ql, respectively: 

qCe,L
i

m =
Δt
l2

(
4ηmDi,mBm,N+1 + 4ηmD(1)

i,mAm,N+1 + 2Di,mAm,N+1

)

+
l − lold

l
2ηmAm,N+1 (26)  

ql
m =

∑N+1

n=1

{[

− 2
Δt
l3

(
4ηmDi,mBmn + 4ηmD(1)

i,mAmn + 2Di,mAmn

)
+

lold

l2 2ηmAm,n

]

Ci,n

}

(27) 

The derivatives of the average concentration, ∂C̄i
∂Ce,L

i 
and ∂C̄i

∂l , can also be 

evaluated using the Gaussian quadrature. 

3.2. Solution for Ce,L
i , Ce,V

i , λ, and P 

For two-phase diffusion with NC components, the 2NC + 2 variables, 
Ce,L

1 ,…,Ce,L
Nc

, Ce,V
1 ,…,Ce,V

Nc
,λ = l/h, and P, must satisfy the following 2NC +

2 equations 

fi = λCL
i + (1 − λ)CV

i − C0
i = 0, i = 1, ...NC (28)  

Fig. 3. The relative changes in BIC and DL after matching the equilibrium pressure.  

Fig. 4. Influence of tuning BIC on the pressure curve (a) C1-C5 M no.3 (b) C1-C16 M no.2.  

W. Yan et al.                                                                                                                                                                                                                                    



Fluid Phase Equilibria 576 (2024) 113944

6

fNC+i = ϕe,L
i xe

i − ϕe,V
i ye

i = 0, i = 1, ...,NC (29)  

f2NC+1 =
P

ZxT
−
∑NC

k=1
C̄L

k = 0 (30)  

f2NC+2 =
P

ZyT
−
∑NC

k=1
C̄V

k = 0 (31) 

These equations are from Eqs. (6), (7) and (15). Note that xe
i and ye

i in 
Eq. (29) are the equilibrium liquid and vapor mole fractions at the 
interface: 

xe
i =

Ce,L
i

∑NC

k=1
Ce,L

k

(32)  

ye
i =

Ce,V
i

∑NC

k=1
Ce,V

k

(33) 

ϕe,L
i and ϕe,V

i are the fugacity coefficients corresponding to xe
i and ye

i , 
respectively. In Eqs. (30) and (31), Zx and Zy are the compressibility 
factors corresponding to the overall compositions C̄L

i and C̄V
i at the 

average system pressure P. 
The Jacobian for Eqs. (28)–(31), obtained by differentiating 

fi(i= 1, ...,2NC +2) w.r.t. (Ce,L
1 , ..., Ce,L

NC
, Ce,V

1 , ..., Ce,V
NC

, λ, P), assumes the 
following form:  

(34) 

where “×” marks the non-zero elements. Appendix A provides detailed 
expressions for the Jacobian. 

3.3. Solution procedure 

A solution procedure can be developed based on the details given in 
Sections 3.1 and 3.2. It consists in the solution of the 2NC +2 variables 
(Ce,L

i , Ce,V
i , l, and P) using Newton’s method and the solution of the 2NC 

diffusion Eqs. (16) and (17) using the orthogonal collocation method. In 
the solution of the diffusion equations, implicit treatment is used for all 
the spatial derivatives of Ci and explicit treatment is used for all the Di 
terms. The procedure is summarized below:  

1 Set the initial conditions according Eq. (12).  
2 Set initial estimates Ce,L

i = C0,L
i , Ce,V

i = C0,V
i , l = l0, and P = P0. If 

there are only two components, one can in principle solve the two- 

phase equilibrium at T and P to obtain the equilibrium composi-
tions as initial estimates for Ce,L

i and Ce,V
i .  

3 Advance time by Δt.  
4 Estimate Di,m and D(1)

i,m using Cold
i,m for both liquid and gas phases.  

5 Solve Eq. (22) for Ci,m and evaluate the average concentrations C̄i and 
their sensitivities w.r.t. Ce

i and l. Repeat the calculation for all the 
components in both phases.  

6 Update Ce,L
i , Ce,V

i , l, and P using Newton’s method for Eqs. (28) and 
(31).  

7 If the updates in step 6 are higher than the tolerance, go back to step 
5. Otherwise, the Newton method has converged, and we proceed to 
the next time step by going to step 3. The loop from step 3 to step 7 
terminates if the final simulation time is reached. 

It is worthwhile to note that this algorithm is not restricted to the 
initial condition of uniform concentrations in both phases. But for CVD 
processes, it is usually the case. 

The above CVD algorithm uses the orthogonal collocation method. It 
should be noted that the mathematical treatment in Section 2 and the 
thermodynamic treatment in Section 3 can also be applied to the finite 
difference or finite volume methods. The advantage of the orthogonal 
collocation method is that it achieves the same accuracy with a much 
smaller set of equations than the finite difference or finite volume 
methods. 

4. Diffusion coefficient models 

A brief review of the five diffusion coefficient correlations studied 
here, including WC, HM, ES, RW, and LDF, is provided here to sum-
marize the major equations, model parameters, and other correlations 
involved in the estimation of diffusion coefficients. 

4.1. Wilke-Chang (WC) correlation 

The WC correlation (1955), originally designed for low- 
concentration solute A in solvent B, is an empirical modification of the 
Stokes-Einstein relation: 

Do
AB =

7.4 × 10− 8(ΦMB)
1/2T

ηBV0.6
A

(35)  

where Do
AB is the mutual diffusion coefficient (cm2/s) of solute A at very 

low concentrations in solvent B, MB is the molecular weight (g/mol) of 
solvent B, T is temperature (K), ηB is the viscosity (cP) of solvent B, VA is 
the molar volume (cm3/mol) of solute A at its normal boiling temper-
ature, and Φ is the association factor (dimensionless) of solvent B. For 
the non-associating solvents studied here, Φ is always equal to unity. WC 
is designed for dilute solutions. For a non-dilute solution, there is no 
consensus on how to interpret ηB and MB. One convenient solution is to 
treat them as the properties of the solution instead of the solvent B. 
However, there is an ambiguity regarding the choice of solute/solvent 
component, leading to inconsistency when the role of solute and that of 
solvent are swapped. 

4.2. Hayduk–Minhas (HM) correlation 

Hayduk and Minhas proposed a set of correlations for liquid diffu-
sivities similar to WC in 1982. The proposed correlations are in principle 
only applicable to the infinite dilution binary diffusion coefficients. The 
following correlation was developed based on normal paraffin solutions 
and generally recommended for hydrocarbons: 

Do
AB =

13.3 × 10− 8T1.47η

(
10.2
VA

− 0.791

)

B

V0.71
A

(36) 
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Fig. 6. Predicted CVD pressure curves for C1-CX systems with the initial pressure around 95 bar.  

Fig. 5. Fitted DL using different objective functions.  
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The symbols in the above equation have the same meaning as in WC. 
Compared to WC, HM does not require MB. It has the same inconsistency 
problem as WC. 

4.3. Extended Sigmund (ES) correlation 

Sigmund developed in 1976 a correlation for the binary diffusion 
coefficients Dij based on the corresponding states principle. He expressed 
the ratio of molar density-diffusivity product, ρMDij/ρo

MDo
ij, as a poly-

nomial in the pseudo-reduced molar density ρpr: 

ρMDij

ρo
MDo

ij
= 0.99589 + 0.096016ρpr − 0.22035ρ2

pr + 0.032874ρ3
pr (37) 

In the equation, the molar density ρM (mol/cm3) and the binary 
diffusion coefficient Dij (cm2/s) are at the system temperature and 
pressure. ρpr is calculated as ρM

ρc
, where ρc is the mixture pseudo-critical 

molar density (mol/cm3), given by 

ρc =

∑
xiv

2/3
ci

∑
xiv

5/3
ci

(38)  

with vci being the critical molar volume (cm3/mol) and xi being the mole 
fraction of component i. The low-pressure density-diffusivity product 
ρo

MDo
ij is a function of temperature and composition only, and can be 

calculated using the Chapman-Enskog dilute gas theory [44,45]. Da 
Silva and Belery, in 1989, devised a small modification of the Sigmund 
correlation. They noticed that Eq. (37) provides negative diffusion co-
efficients at high ρpr and thus suggested using the equation only for 
ρpr ≤ 3. For ρpr > 3, they proposed the following modification: 

ρMDij

ρo
MDo

ij
= 0.18839exp

(
3 − ρpr

)
(39) 

Eq. (37) together with Eq. (39) are known as the extended Sigmund 
(ES) correlation. 

Fig. 7. The predicted CVD pressure curves by different models for C1-CX systems with the initial pressure between 150 and 180 bar.  
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4.4. Riazi–Whitson (RW) correlation 

Riazi and Whitson in 1993 developed a correlation to estimate 
diffusion coefficients of dense gasses and liquids for both binary and 
multicomponent systems. Its development was inspired by both the 
hydrodynamic theory (using viscosity) [41] and the kinetic theory of 
gasses (using density) [20]. The correlation for a binary mixture is given 
by: 

ρMDAB

ρo
MDo

AB
= a
(

μ
μo

)b+cPr

(40)  

where ρMDAB and ρo
MDo

AB are the density-diffusivity product at the system 
conditions and at the low-pressure, respectively. The molar density ρM is 
in mol/cm3 and the binary diffusion coefficient DAB is in cm2/s. As in ES, 
ρo

MDo
AB is calculated from the Chapman-Enskog dilute gas theory. The 

coefficients a, b, and c in Eq. (40) are given by a = 1.07, b = − 0.27 −
0.38ω, and c = − 0.05+ 0.1ω. The reduced pressure Pr is calculated by 

Pr = P/Pc. The mixture critical pressure Pc and acentric factor ω are 
calculated using mole fraction-based linear mixing rules. The low- 
pressure mixture viscosity μ0 is estimated from the Stiel and Thodos 
correlation [46], with the viscosity at the system conditions μ from the 
generalized Jossi-Stiel-Thodos (1962) correlation [47], which is essen-
tially the same as the so-called Lohrenz-Bray-Clark (LBC) correlation 
[48] in the petroleum industry. 

4.5. Leahy-Dios and Firoozabadi (LDF) correlation 

The LDF correlation proposed in 2007 uses the MS framework 
explicitly. In this approach, the infinite dilution diffusion coefficients are 
estimated first using the following correlation: 

cD∞
21

(cD)
0 = A0

(
Tr,1Pr,2

Tr,2Pr,1

)A1
(

μ
μ0

)[A2(ω1 ,ω2)+A3(Pr ,Tr )]

(41) 

The correlation bears some similarities to ES and RW, especially the 

Fig. 8. The predicted CVD pressure curves by different models for N2-CX systems with the initial pressure between 90 and 100 bar.  

W. Yan et al.                                                                                                                                                                                                                                    



Fluid Phase Equilibria 576 (2024) 113944

10

latter. The ratio of the density-diffusivity product cD∞
21

(cD)0 is expressed as a 
function of the viscosity ratio μ

μ0, reduced temperatures Tr,i pressures Pr,i, 
and acentric factors ωi. Different from ES and RW, the molar density c 
and the viscosity μ are for the solvent component 1 instead of the 
mixture at the system temperature and pressure, and D∞

21 is the infinite- 
dilution diffusion coefficient of component 2 in component 1 instead of 
the D at the given composition. (cD)0 is the dilute gas density-diffusivity 
product, which can in principle be calculated by the Chapman-Enskog 
dilute gas theory as in ES and RW, but Leahy-Dios and Firoozabadi 
suggested using the approach of Fuller et al. [49]: 

(cD)
o
= 1.01 × 10− 2T0.75

(
1

M1
+ 1

M2

)0.5

R
[
(
∑

v1)
1/3

+ (
∑

v2)
1/3
]2 (42)  

where M1 and M2 are the molar masses (g/mol) of components 1 and 2, 
respectively. 

∑
vi is the so-called “diffusion volume increments” of 

component i, and can be calculated by summing the atomic diffusion 
volumes [50]. The dilute gas viscosity μ0 is calculated by the Stiel and 
Thodos correlation [46] evaluated at the equimolar composition of 
components 1 and 2. Leahy-Dios and Firoozabadi did not suggest a 
single-set of models for c and μ. In their original development of Eq. (41), 
they used experimental data whenever available; for hydrocarbons, they 
used the corresponding states theory [51] for μ, and PR-EoS with volume 
translation for c. 

Once the infinite-dilution diffusion coefficients for each pair of the 
components in the n-component mixture,D∞

ij , are estimated, we can es-
timate the MS diffusion coefficients Dij at the desired composition using 
the generalized Vignes relation: 

(43) 

Fig. 9. The predicted CVD pressure curves by different models for N2-CX systems with the initial pressure around 180 bar.  
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This equation utilizes the fact that at the infinite dilution limit, all 
molecular diffusion coefficients become equal. 

Finally, the MS diffusion coefficients can be converted to the mole- 
based generalized Fickian diffusion coefficients DM

ij with the following 
transformation: 

DM =
[
BM]− 1Γ (44) 

Here DM is the (n-1)-dimension square matrix of mole-based Fickian 
diffusion coefficients, and the transformation matrix BM is given by 

(45)  

BM
ij = − xi

(
1

Dij
−

1
Din

)

, i, j = 1, ..., n − 1, i ∕= j (46) 

The Γ matrix contains the following thermodynamic factors 
(dimensionless): 

Γij = xi

(
∂lnfi

∂xj

)

xk∕=j,n ,T,P
, i, j = 1, ..., n − 1 (47)  

where fi is the fugacity of component i. The Γ matrix represents the fluid 
mixture non-ideality at the given conditions and can be calculated using 
an activity coefficient model or equation of state. For a binary mixture, 
the Γ matrix has only one element: 

Γ11 = x1

(
∂lnf1

∂x1

)

T,P
(48)  

and the only Fickian diffusion coefficient is given by 

DM
11 = D12Γ11 (49)  

5. Results and discussions 

5.1. CVD measurements by Christoffersen 

We used the CVD simulator to simulate a series of CVD tests for bi-
nary mixtures (methane/nitrogen with various n-alkanes) measured by 
Christoffersen [26]. Christoffersen reported 26 CVD experiments [26] 
for eight binary systems: C1-C5, C1-C8, C1-C10, C1-C16, N2-C5, N2-C8, 
N2-C10, and N2-C16 at around 22 ◦C and 90 – 180 bar. The measurement 
conditions are collected in Table 1. Christoffersen’s tests were conducted 
at two pressure levels, around 90 and 180 bar. We use M and H in the 
case ID to represent the two pressure levels, respectively. All the CVD 
measurements were performed in a Ruska high-pressure visual cell with 
a height of 49.0 cm. In the experiment, the cell was evacuated first and 
then filled with a given amount of liquid. After a brief evacuation to 
remove air, gas was injected from the top, marking the start of the 
measurement. The initial pressure P0 and the initial liquid height hL are 
provided in Table 1. Ratnakar and Dindoruk [28] recently discussed the 
minimum time criteria for CVD tests when using an analytical approach 
in data processing. Christoffersen did not discuss this specifically, but his 
measurements lasted quite a long time, typically over 10 days. The 

Table 4 
Summary of the features of the DL correlations.  

Model Features Remark 

ES Overpredicts the pressure for C1- 
Cx; acceptable prediction for N2-Cx. 
Large variations in the regressed DL 

range for gas in heavier n-alkanes 
(C1 in C8/C10/C16 and N2 in C10/ 
C16) whereas small variations in 
lighter n-alkanes (C1/ N2 in C5) 
DL decreases toward the interface, 
the opposite to the others’ trends in 
general.  

• The abnormal DL trend is caused 
by the strong dependence on the 
molar density and critical 
density. 

RW Similar prediction to WC/HM for 
C1-Cx at 95 bar but poorer at 
150–180 bar; inferior to WC/HM in 
prediction for N2-Cx. 
DL increases toward the interface in 
most cases but slightly decreases 
for some cases (heavier n-alkanes 
at a higher pressure).  

• Besides solution viscosity, other 
factors also play a role.  

• A hybrid of the ES approach and 
the WC/HM one; LDF adopts a 
similar but more complex form. 

LDF Significantly underpredicts the 
pressure for C1-Cx; acceptable 
prediction for N2-Cx. 
DL increases toward the interface.  

• The generalized Vignes relation 
might be inadequate to estimate 
diffusivity for gas-liquid systems. 

WC/ 
HM 

Overall the best prediction for C1- 
Cx and N2-Cx. 
DL increases toward the interface.  

• Solution viscosity plays a major 
role.  

• Note the ambiguity in defining 
solute and solvent.  

Fig. 10. Regression results by different models for C1-C5 M no.2.  
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pressure variation with time was recorded for all the tests and the liquid 
height variation with time for some tests. Pfinal in Table 1 is the pressure 
at the end of each measurement. The cell was then rocked to equilibrate 
the system and determine the equilibrium pressure Peq. Christoffersen 
reported 0.5 bar in accuracy and 0.06 bar in resolution for the pressure 
transducer, and 0.2 K in accuracy and 0.01 K in resolution for the 
temperature one. The resolution of the liquid level is 0.001 cm. Some 
systems in Table 1 have duplicate or triplicate measurements although 
their initial pressures are not exactly the same. 

The SRK EoS parameters suggested by Christoffersen [26], including 
critical temperatures, critical pressures, acentric factors, volume shift 
parameters (sSHIFT), and non-zero binary interaction coefficients (BIC), 
are provided in Table 2 and Table 3. It should be noted that the pa-
rameters in Table 2 are kept constant in our modeling here whereas the 
BIC in Table 3 may be tuned. Table 2 also provides other parameters 
needed for calculating viscosity and diffusion coefficients. The molar 
volume VA of solute A at its normal boiling temperature is required by 
WC and HM. It is estimated from the NIST data whenever possible. If not 
available (only for C16 here), it is estimated by the Tyn and Calus cor-
relation [52]. LDF requires the so-called “diffusion volume increments” 
∑

vi in its dilute gas diffusivity calculation by the approach of Fuller 
et al. [49]. 

∑
vi is calculated by summing the atomic diffusion volumes 

[50,53]. 

5.2. Validation of the CVD simulator 

We compared the CVD simulator with the commercial reservoir 
simulator Eclipse 300 (E300) for three cases (C1-C5 M no.1, C1-C10 M, C1- 
C16 H no.2) in Christoffersen’s measurements as validation. The same 
simulation and model parameters were used in both simulators, 
including the tube length, the initial pressure, the interface height, and 
the SRK parameters from Tables 1 and 2. The CVD simulator used 8 
collocation points for both liquid and gas regions. In the finite difference 
E300 simulation, 500 grid blocks were used. The orthogonal collocation 
approach results in a much smaller system of equations to solve. Since 
E300 only supports constant diffusion coefficients, we chose to use 
constant diffusion coefficients in our simulator. Fig. 2 shows the curves 
simulated from two simulators for C1-C10 M and the figures for the other 
two cases are provided in Supplementary Material. With the same 
diffusion coefficients, the two simulators produce almost the same 
curves not just in the measurement period but also in the extended 
simulation period till equilibrium. It should also be noted that E300 also 
solves a pressure equation and has a convective flow term. Obviously, 

neglecting these in the CVD simulator does not lead to any significant 
difference. The comparison has validated the accuracy and reliability of 
the CVD simulator. 

5.3. Default setting for CVD simulation 

In the CVD simulation, different options can be selected regarding 
the gas-phase diffusion coefficient, the BIC, and the objective function 
used for regression (pressures only or both pressures and liquid heights). 
We performed a series of sensitivity analyses to evaluate the influence of 
different parameters/options on the simulation results, based on which 
we define the default parameter settings. For simplicity, the analyses in 
this subsection were made using constant diffusion coefficients. 

5.3.1. Influence of gas-phase diffusion coefficients 
For all 26 systems, we compared two strategies: tuning both liquid- 

phase (DL) and gas-phase diffusion coefficients (DG) and tuning only 
DL but keeping DG constant (equal to a middle value of the range esti-
mated by ES). The detailed results are provided in Supplementary Ma-
terial. It turns out the maximum change in the fitted DL is 0.164 cm2/day 
(C1-C8 H no.3), which represents a relative change of 2.7%. It is also 
shown in Supplementary Material that both fitting options give nearly 
the same pressure curve. Another case N2-C5 H no.1, corresponding to 
the largest DG difference (17.21 cm2/day) in the regression results, is 
also illustrated in the Supplementary Material. The calculated pressure 
curves from both regression options are nearly indistinguishable. The 
comparison shows that the fitted DL is insensitive to DG and it is 
reasonable to use a DG estimated from ES. It also shows that CVD is not a 
test suitable for determining DG. 

5.3.2. Tuning BIC to match the equilibrium pressure 
The determination of DL is directly related to the phase equilibrium 

modeling using the volume-translated SRK EoS. The model should 
accurately reproduce the final equilibrium pressure, which can be ach-
ieved by tuning the BIC between the gas component and the solvent. For 
all 26 cases, the relative change of BIC (Eq. (50)) and relative change of 
DL (Eq. (51)) for the 26 tested cases are shown in Fig. 3. The figure re-
veals that non-negligible tunings are needed for many systems and the 
impact on DL is significant for most cases. For cases like C1-C5 M no.3 
and C1-C16 M no.2, the relative change in DL can reach around 30%. It is 
interesting to note a positive correlation between the change in BIC and 
the change in DL. This is because a larger BIC gives a smaller gas solu-
bility, which requires a larger diffusion coefficient to reach the same 

Fig. 11. Fitted DL using different diffusion coefficient correlations.  
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magnitude of pressure decay. 

BIC relative change =

(
BICtuned − BICoriginal)

BICoriginal
(50)  

DL relative change =

(
Dtuned

L − Doriginal
L

)

Doriginal
L

(51) 

Fig. 4 shows the pressure curves with and without matching the 
equilibrium pressure for two selected cases. Fig. 4(a) is a case where a 
slight increase of BIC is needed, resulting a slightly higher DL to match 
pressure decay data. The original BIC also gives a good match but un-
dershoots the equilibrium pressure. Fig. 4(b) is a case where the tuning 
becomes really critical. The original BIC fits the data but significantly 
overpredicts the equilibrium pressure. The correct DL determined with 
the tuned BIC is much smaller than the one determined by the original 
BIC. Tuning BIC to match the equilibrium pressure is crucial to the 

determination of the correct DL. In engineering applications, the 
“optimal” BIC is often determined by matching different equilibrium 
data and it is generally desired to have a single optimal BIC value. In 
those situations, we may have to accept a BIC different from the one used 
in determining DL. We should bear in mind that the pressure decay curve 
is determined by DL and BIC together, and make sensible adjustments of 
DL if the pressure decay behavior is to be modeled. 

5.3.3. Pressure and liquid height in the objective function 
The pressure variation is easily available from CVD but the liquid 

height variation is not always reported. Only 13 cases in Christoffersen’s 
data have the liquid height data. We can set objective functions to 
include (1) only pressure, (2) both pressure and liquid height with 50% 
weight for each, or (3) only liquid height. The regressed DL corre-
sponding to three options, as shown in Fig. 5, are similar in general. The 
maximum DL difference between (1) and (3) is 1.94 cm2/day for N2-C10 
H. On average, the relative deviation between (1) and (3) is 12.4%. The 

Fig. 12. The diffusion coefficients (blue to red solid lines) and molar concentration (green to yellow dash lines) of C1 in C5 within the first 24 h by different models 
for C1-C5 M no.1. The dotted line represents the fitted constant DL. 
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option (2) tends to give a DL in the middle. Although it may be preferable 
to use both pressure and height data when they are available, the height 
data are not always available, and their accuracy is often not as good as 
the pressure data. It is considered reasonable to use the pressure data 
only, as we will practice in the subsequent discussions. 

5.3.4. Default setting 
The above analysis leads to the following default setting in our 

subsequent CVD simulations: We fit DL only and estimate DG by ES or 
LDF (LDF used for the LDF correlation and ES for the others); We adjust 
the BIC in the PVT model (SRK with volume translation) to match the 
measured equilibrium pressure before the CVD simulation; We only 
include pressure in the objective function. 

5.4. Predictive calculation 

The predicted pressure curves using different diffusion coefficient 

correlations are compared with the measured data to investigate the 
predictivity of these correlations. The comparison can reveal some 
general trends of these correlations in predicting the diffusion in C1-Cx 
and N2-Cx systems. It is impossible to illustrate the results for all 26 
systems. We selected some representative cases in Fig. 6 to Fig. 9 to 
cover the two types of systems at two pressure levels. 

Fig. 6 shows the prediction results for C1-C5, C1-C8, C1-C10 and C1-C16 
systems at around 95 bar. LDF generally underestimates the pressure 
and gives the largest deviations. ES overestimates the pressure for C1-C5, 
C1-C8, and C1-C10, with the overestimation decreasing for a heavier 
solvent. ES slightly underestimates the pressure for C1-C16. The pre-
dictions by RW, WC, and HM are similar and close to the experimental 
data. Fig. 7 shows the results at an initial pressure around 150 bar, which 
have similar general characteristics to Fig. 6. Nevertheless, two differ-
ences are worth mentioning here: (1) ES overestimates the pressure 
significantly for C1-C5 and C1-C8, and the extents are larger than the 
underestimations by LDF for these two systems. It seems that the 

Fig. 13. The diffusion coefficients (blue to red solid line) and molar concentration (green to yellow dash line) of C1 in C5 until 422 h by different models for C1-C5 M 
no.1. The dotted line represents the fitted constant DL. 
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performance of ES becomes worse at a higher pressure. (2) RW is no 
longer similar to WC and HM, and its deviation becomes larger. 

Fig. 8 shows the results for the N2-CX systems at an initial pressure 
around 95 bar. Compared to C1-CX with initial pressures around 100 bar 
in Fig. 6, all the models give a much smaller deviation in Fig. 8. 
Generally, DL is better predicted for N2-CX than C1-CX. LDF still gives an 
underestimation, and WC and HM predict satisfactorily for C5/C8/C10. 
ES gives an overestimation for N2-C5 but an underestimation for the 
heavier system N2-C10. RW performs similarly to ES here. For N2-CX at an 
initial pressure around 180 bar (Fig. 9), the pressure decay is much 
weaker than that at a lower pressure (Fig. 8) and that for C1-CX systems 
(Figs. 6 and 7). In general, the pressure estimation errors by all the five 
correlations are within one bar. WC and HM again provide satisfactory 
prediction here. 

Table 4 summarizes the main features of these correlations observed 
in this section and in Sections 5.5 and 5.6. We group WC and HM 
together due to their similarity. Not all the observed features can be 

attributed to a definite cause, and we just provide some relevant remarks 
for each model. LDF seems to have a problem in predicting the DL in C1- 
Cx mixtures. We also noticed that LDF performed poorly for the DL in 
gas-liquid mixtures in a recent publication [24]. This is probably caused 
by the generalized Vignes’ relation (Eq. (43)) used in calculating the 
diffusion coefficient in a mixture from the diffusion coefficients of the 
corresponding infinite dilute solutions. In the case of a gas-liquid 
mixture like C1 and Cx, the infinite dilute solution of Cx in C1 may not 
be an adequate reference since its physical state may be more gas-like. 
Furthermore, for a gas at a temperature lower than its critical temper-
ature, one may find two infinite dilute solutions and must decide which 
one to choose. For C1-Cx with a substantial C1 solubility in the liquid 
phase, this problem appears more severe. For N2-Cx with a much smaller 
gas solubility, the problem is less obvious. 

Fig. 14. The diffusion coefficients (blue to red solid line) and molar concentration (green to yellow dash line) of C1 in C5 until equilibrium state by different models 
for C1-C5 M no.1. The dotted line represents the fitted constant DL. 
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5.5. Regression calculation 

Regression of DL was performed using constant DL and composition- 
dependent DL. For composition-dependent DL, a multiplication factor 
was applied to the DL calculated by one of the five correlations. It can be 
shown that using constant DL or the DL correlations give essentially 
comparable regression results. Even for the case with the largest devi-
ation (C1-C5 M no.2), the difference is hardly noticeable (smaller than 
0.2 bar), as shown in Fig. 10. More details about the regression de-
viations can be found in Supplementary Material. It indicates that all 
these regression options are sufficiently flexible to capture the measured 
pressure decay trends. 

Fig. 11 shows the regressed DL for all 26 systems. When a DL corre-
lation is used, the obtained DL varies in a range. The constant DL values 
are marked as black points in the figure. 

For C1-Cx, ES gives the smallest variation range for the lightest C1-C5, 

but generally the largest variations for C1-C8, C1-C10 and C1-C16. The 
largest variation (around 9.8 cm2/day) appears in C1-C10 H. For ES, the 
molar fraction does not explicitly appear in Eqs. (37) and (39). Instead, 
the composition dependence is through the calculated molar density. 
Similarly, WC and HM do not have an explicit dependence on the mole 
fraction in Eqs. (35) and (36). However, the viscosity term in WC and 
HM is mole fraction dependent. The diffusion coefficient variation is the 
smallest for the C1-C16 systems for WC and HM. 

ES and WC/HM represent two different types of correlations, the 
former molar density-based and the latter viscosity-based. Nevertheless, 
both ES and WC/HM seem to give a larger DL variation at a higher 
pressure, e.g., C1-C10 for ES and C1-C8, C1-C10, and C1-C16 for WC/HM. 
The magnitudes of variation are different for two types: ES shows 
smaller variations for C1-C5, similar for C1-C8, and much larger for C1- 
C10 and C1-C16. 

RW and LDF have both viscosity and density in their correlations, 

Fig. 15. The diffusion coefficients (blue to red solid line) and molar concentration (green to yellow dash line) of C1 in C10 within first 400 h by different models for 
C1-C10 M. The dotted line represents the fitted constant DL. 
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and their results are thus influenced by both properties. The DL varia-
tions for RW and LDF are usually not the largest, but typically in the 
middle (e.g., for C1-C5 and for C1-C8). RW shows the smallest variation 
for C1-C10, but C1-C16 H no.1 & 2 seem to be exceptional cases for RW, 
where it gives larger variations than ES. 

It is interesting to compare the DL variations with the constant DL 
from the regression. All the constant DL are within their corresponding 
DL ranges from any of the five correlations. Furthermore, the constant DL 
values are usually close to the lower limits of the DL ranges for ES and 
within the upper half of the ranges for WC and HM. It suggests that, in 
terms of the overall effect, the lower DL values estimated by ES dominate 
the diffusion process while the high DL values give limited contribution. 
The constant DL values are closer to the mean values of the variation 
ranges for WC/HM than for ES. 

For N2-CX, the DL ranges are generally smaller than those for C1-CX at 
the same pressure level, which can be partly attributed to the lower N2 
solubility in n-alkanes. The five correlations show some similar 

characteristics as discussed for C1-CX systems, such as  

1 The range for ES is relatively smaller for the lighter systems (N2-C5) 
and larger for the heavier systems (N2-C10, N2-C16) compared to WC/ 
HM.  

2 For ES, WC, and HM, a higher pressure results in a larger DL 
variation.  

3 Constant DL values are usually close to the lower limits of the ranges 
for ES, and within the upper half of the ranges for WC and LDF.  

4 RW and LDF rarely give the largest variations. 

Obviously, different correlations lead to different interpretations on 
the DL range for the same set of CVD data. However, we cannot claim 
that a smaller variation is a more correct description. The magnitude of 
variation is determined by the dependence on density, viscosity, and 
composition in these correlations. From a practical viewpoint, for those 
correlations with a narrower range and a better agreement with the 

Fig. 16. The diffusion coefficients (blue to red solid line) and molar concentration (green to yellow dash line) of C1 in C10 within the first 422 h by different models 
for C1-C10 H. The dotted line represents the fitted constant DL. 

W. Yan et al.                                                                                                                                                                                                                                    



Fluid Phase Equilibria 576 (2024) 113944

18

constant DL, it is easier to select a constant DL to replace the correlation. 

5.6. Diffusion coefficient profiles 

The CVD simulation can provide the diffusion coefficient and con-
centration profiles and their development with time, revealing other 
differences between different correlations. We select a few cases 
(generated using regressed DL), including C1-C5 M no.1, C1-C10 M, C1- 
C10 H, C1-C16 M no.1, and N2-C5 M no.1 for illustration here. Since WC 
and HM give almost the same profiles (see Fig. S6 in Supplementary 
Material). For the ease of illustration, we only plot the results for ES, WC, 
RW, and LDF in the figures. 

5.6.1. C1-C5 M no.1 (21.4 ◦C, 94.9bar) 
Fig. 12 shows the C1 concentration and diffusion coefficient varia-

tions within the first 24 h for C1-C5 M no.1. The position represents the 
height in the CVD cell from bottom to top. The interface at around 24 cm 
moves slightly with time. The liquid-phase and gas-phase regions are 
located to the left and right sides of the interface, respectively. The DL 
value is around 10 cm2/day and the DG value is more than 70 cm2/day. 
It should be mentioned that DG here are not tuned but estimated by ES or 
LDF. 

The C1 profiles by different correlations are generally similar, with 
the C1 concentration in liquid increasing with time and position and that 
in gas decreasing with time. The closer the position is to the interface, 
the larger the concentration variation is. For the diffusion coefficient 
curves, the variation of DL with time in Fig. 12 seems modest, especially 
compared with the variation of DG. ES and LDF give different DG vari-
ations. For ES, DG increases with time in the whole gas region. For LDF, 
DG decreases with time close to the interface but increases in the top 
region farther from the interface. 

Fig. 13 illustrates the variations in liquid more closely. The C1 con-
centration in liquid generally increases with time except for the range 
from around 20 cm and the interface, where the concentration decreases 
in the period investigated here. At the interface, the liquid-phase equi-
librium concentration is higher than the gas-phase equilibrium one. The 
concentration profiles from different correlations are relatively similar. 
In contrast, the DL profiles differ significantly for different correlations. 
ES gives the most unique DL trend, with the DL decreasing towards the 
interface, just the opposite trend to the other models. The DL curves by 
ES at different times cross with each other at around 16 cm, corre-
sponding to an increase with time from around 16 cm to the interface 
and a decrease in the remaining range. DL by ES is also higher than the 
fitted constant DL for most of the time. RW, LDF, and WC predict an 
increasing DL towards the interface. Among them, WC gives the lowest 
DL in most positions. Also, the DL curves by WC at different times 
obviously cross over each other. This is because DL at the positions close 
to the interface decreases with time whereas DL at positions close to the 
bottom increases with time. 

Fig. 14 shows the profiles at the late period till the equilibrium state. 
The DL profile will approach a horizontal line (constant DL) at equilib-
rium. The DL curves by ES show the smallest variation, whereas those by 
WC show the biggest variation. 

5.6.2. C1-C10 M (21.4 ◦C, 97.1bar) 
Fig. 15 shows the results for C1-C10 M for the first 400 h. The pressure 

level is similar to that for C1-C5 M no.1 but the DL for C1-C10 is much 
smaller. This causes an extremely slow concentration variation close to 
the bottom. Compared to Fig. 13, the DL variations by all the models are 
less than that for C1-C5 M no.1. For WC, the DL variation is only around 1 
cm2/day. RW and LDF give a similar trend to WC, with RW giving the 
smallest variation. ES again shows a different DL trend, decreasing to-
wards the interface, from the other models. It also gives the largest DL 
variation. 

5.6.3. C1-C10 H (21.5 ◦C, 180.5bar) 
C1-C10 H is at a higher pressure (180.5 bar) than C1-C10 M (97.1 bar). 

Compared with Fig. 15, Fig. 16 shows that ES gives a higher DL near the 
bottom and a little lower DL close to the interface at the higher pressure. 
In other words, the DL variation is larger, which agrees with the general 
observation in Fig. 11. In contrast, WC gives a lower value at the bottom 
and a higher value at the interface. LDF is similar to WC, but its variation 
is smaller. The DL variation by RW is not monotonic and shows a 
decreasing trend (towards the interface) in a large range from the bot-
tom, somewhat like the trend for ES. However, the trend becomes 
increasing when it approaches the interface. 

5.6.4. C1-C16 M no.1 (21 ◦C, 95.6 bar) 
The results for C1-C16 M no.1 is provided in Fig. S7 in Supplementary 

Material. All the correlations give lower DL than the lighter systems. For 
this heavy system, WC gives a very limited deviation of DL. RW shows a 
decreasing trend towards the interface, similar to ES. 

5.6.5. N2-C5 M no.1 (21 ◦C, 98.5 bar) 
For the N2-Cx systems, the overall trends by different correlations are 

similar to those for the corresponding C1-Cx systems. The major differ-
ence is that the DL of nitrogen is lower than that for C1 at the same 
condition. Fig. S8 in Supplementary Material shows the result of N2-C5 
M no.1, where ES shows a decreasing DL towards the interface and the 
other correlations an increasing trend. 

It is worthwhile to discuss the decreasing trend of DL towards the 
interface predicted by ES, which is the opposite to most of the pre-
dictions by the other models. For instance, WC and HM always predict 
an increasing trend. According to Eqs. (37) and (39) for ES, the density- 
diffusivity product ρMDij depends on the empirical correlations of the 
reduced density ρpr and the DL is then calculated as this product divided 
by the molar density (a simplified interpretation for binary mixtures). 
The final DL value depends largely on the molar density ρM and the 
reduced density ρpr. In a mixture of gas (C1 or N2) and n-alkane (C5, C8, 
C10, C16), both ρM and the critical density ρc increase with the dissolution 
of the gas component. The increase in ρM is relatively larger, resulting in 
an increase in ρpr as well. This leads to a smaller density-diffusivity 
product, and the final DL, calculated by dividing a larger ρM, becomes 
even smaller. The above analysis shows that ES predicts a decreasing 
trend in DL with the increasing gas mole fraction in the liquid solution. 
This counterintuitive trend may reflect a problem with the ES 
correlation. 

6. Conclusions 

CVD is an important method to determine liquid-phase diffusion 
coefficients at high pressures. The interpretation of the CVD data re-
quires analytical or numerical solutions, the latter providing a more 
general solution since it involves fewer assumptions. With this study, we 
have shown that Michelsen’s algorithm for CVD simulation, based on the 
orthogonal collocation method, can be effectively used to determine the 
liquid-phase diffusion coefficients DL using either constant DL or 
composition-dependent DL from different correlations. Based on the 
simulation analysis of Christoffersen’s high-pressure CVD data for C1 
and N2 in n-alkanes, we have shown that the influence of DG in the DL 
determination is limited and matching the equilibrium pressure is 
crucial for estimating the correct DL. For the cases studied here, using 
the pressure data only seems to be sufficient for determining DL 
accurately. 

Among the five selected diffusion coefficient correlations, WC and 
HM are based on the Stokes-Einstein theory, ES and RW are somewhat 
related to the kinetic theory of dilute gases, and LDF is the only one 
developed under the MS framework. Nevertheless, in terms of predic-
tion, the more theoretical LDF gives mediocre results. LDF tends to un-
derestimate the pressure (or overestimate DL) whereas ES tends to 
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overestimate pressure (or underestimate DL). The underestimation of DL 
by ES becomes smaller for heavier systems. WC and HM give the best 
performance for most cases. For C1-CX systems, RW is good and com-
parable with WC and HM. For N2-CX systems, RW is similar to ES. 

Regarding the regression results, different correlations give different 
DL ranges for the same CVD test, showing that the determined DL de-
pends on the assumed composition dependence (including the constant 
DL assumption). The fitted DL under the constant DL assumption is 
usually close to the lower limit of the DL range given by ES, and within 
the upper half of the range by WC or LDF. 

The simulated diffusion coefficient profiles have also shown the 
differences between the tested correlations. In general, ES predicts a 
decreasing DL towards the interface whereas WC predicts an increasing 
trend. RW and LDF usually show an increasing trend. However, for a 
higher pressure and heavier n-alkanes, RW may give a decreasing trend. 
These differences illustrate clear but perhaps subtle differences between 
the correlations, although all of them describe the pressure data equally 
well and suggest similar concentration profiles. 
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Appendix A. Elements in the Jacobian matrix for Eq. (28)–(31) 

The non-zero elements in the first NC rows include 

Jii = λ
∂CL

i

∂Ce,L
i
, i = 1, ...,NC (A.1)  

Ji,NC+i = (1 − λ)
∂CV

i

∂Ce,V
i
, i = 1, ...,NC (A.2)  

Ji,2NC+1 = CL
i − CV

i + λ
∂CL

i

∂λ
+ (1 − λ)

∂CV
i

∂λ
, i = 1, ...,NC (A.3) 

For the rows from NC + 1 to 2NC, we have 
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∂P

)

T,n
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(
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For the last two rows, we have 

J2NC+1,k = −
1
Zx

[

1 + P
(

∂lnϕL
k
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](
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k
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It should be noted that Eqs. (A.4) to (A.6) are from the fugacity equalities at the interface, and all the involved composition and pressure derivatives 
in them are calculated using xe

i and ye
i (or Ce,L

i and Ce,V
i ). In contrast, the thermodynamic properties and derivatives in Eqs. (A.7) and (A.12) correspond 

to the average concentrations C̄L
i and C̄V

i . 
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