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Abstract

The modern world is built upon a large industrial sector consisting of areas such as

manufacturing plants, chemical processing, energy production, and a large marine-based

global supply chain. Maintaining and ensuring optimal runtime of these large and complex

assets requires frequent inspections and repairs. These inspection missions pose a series of

potential health risks to human surveyors, and most critically confined space inspections

result in several yearly deaths across the industry. It is clear that a robotic solution has the

potential to mitigate some of these fatalities by removing humans from the danger zone.

Due to the complex shape of the associated operational spaces, teleoperated robots do not

perform well. Therefore, autonomous robotic solutions with the ability to self-localize and

self-navigate are required. However, the localization of robots in confined industrial spaces

poses a range of challenges. The environment is often feature-few, and poorly lit, and a high

level of symmetry tends to be a common factor across most sectors. Due to these challenges,

autonomous robot-based inspections with the ability to provide absolute positions of the

robot and defects are currently non-existent in the inspection of industrial confined spaces.

To perform state estimation on autonomous robots, well-formed uncertainty estimates

are required to be provided by all individual estimates. Therefore, accurate uncertainty

estimation for 3D-3D registrations, in the context of localization within a given map of the

environment, is also an area where further research is needed. Moreover, the ability to

provide a good pose and uncertainty estimate of the defects within the critical areas of a

vessel, is important to provide a proper evaluation of each vessel, whether evaluated by a

human or by machine learning approaches. The first step in filling this gap in research and

industry is the investigation of the optimal system to obtain absolute localization both

for defect pose estimation and as an input for the navigation of the robots themselves.

Therefore, the presented research aims to explore viable solutions for absolute localization

in autonomous robotic inspection of confined spaces, using a mixture of compact lightweight

visual and ToF cameras, with the goal of fitting the resulting system onto payload-limited

platforms in the shape of UAVs or small legged robots. The research presented in this

dissertation is focused on the water ballast tanks of marine vessels and begins by tackling

the absolute localization within these known environments using unmanned aerial vehicles.

As part of the first presented method, a custom feature detector was developed to provide a

robotic and defect pose estimate in a high-level map of the ballast tanks. The disadvantages

of this approach were later addressed by employing more general deep learning-based

feature descriptors in combination with a novel registration algorithm, Teaser++. To

handle the computational load and ambiguity of the environment, specific attention was

given to the design / execution of the developed algorithms onboard GPUs as well as to

the inclusion of state-of-the-art uncertainty estimation. In addition, an exploration-based

inspection approach with a focus on defect detection was investigated and proved viable

in a real-world simulated water ballast tank. With these findings, it was shown that it is

possible to use small-scale aerial robotic systems to autonomously inspect confined spaces.
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Resumé

Den moderne verden er bygget p̊a en stor industrisektor, best̊aende af omr̊ader s̊asom

produktion- og kemianlæg, energiproduktion og en stor, global maritim forsyningskæde.

Vedligeholdelse og driftsikring af disse store og komplekse aktiver kræver hyppige

inspektioner og reparationer. Inspektionsopgaverne udgør en række potentielle

sundhedsrisici for inspektørerne, og især inspektioner af lukkede rum resulterer i en

række årlige dødsfald. En robotbaseret løsning har potentialet til at reducere nogle af

disse dødsfald ved at fjerne de menneskelige aktører fra disse risici. Konstruktionen og

udformningen af de lukkede rum resulterer dog ofte i, at fjernstyrede robotter i de fleste

tilfælde ikke kan anvendes. Derfor er det nødvendigt med autonome robotløsninger der har

evnen til at finde deres egen position i rummet og navigere i det svært tilgængelige miljø.

Imidlertid udgør lokaliseringen af robotter i lukkede industrielle rum en række udfordringer.

Miljøet er ofte kendetegnet ved ensartede overflader og d̊arlig belysning, samt et højt niveau

af symmetri i mange af de industrielle konstruktioner. P̊a grund af disse udfordringer

eksistere der i skrivende stund ikke autonome robotbaserede inspektionsløsninger der

har evnen til at positionere robotten og detekterede defekter i industrielle lukkede rum.

For at positions-bestemme autonome robotter kræves ogs̊a en velfunderet vurdering af

usikkerheden p̊a den estimerede position. Nøjagtigheden af denne usikkerhed er især vigtig

for 3D-3D registreringer fra en sensor dannet punktsky, til et givet kort eller CAD-model af

omr̊adet. Ydermere er evnen til at give en god position og vurdering af defekterne inden for

de kritiske omr̊ader, i eksempelvis et skib, vigtig for at give en korrekt evaluering skibets

tilstand — uanset om det vurderes af et menneske eller ved hjælp af kunstig intelligens. Det

første skridt i at udfylde dette hul i forskningen og industrien er undersøgelsen af et system

til opn̊aelse af absolut lokalisering — b̊ade til estimering af defektposition og som input

til selve robotternes navigationssystem. Den præsenterede forskning i denne afhandling

har derfor til formål at udforske rentable løsninger til absolutte lokalisering i autonom

robotinspektion af lukkede rum. Løsningen vil anvende en blanding af kompakte visuelle-

og ToF-kameraer med det formål at tilpasse det resulterende system til platforme med

begrænset nyttelast i form af droner eller firbenede robotter. Den forskning der præsenteres

i denne afhandling, er primært fokuseret p̊a inspektion af ballast-tanke i marinefartøjer

og begynder med at tackle den absolutte positionering inden for disse kendte miljøer ved

hjælp af ubemandede luftfartøjer. Som en del af den først præsenterede løsning, blev en

rumspecifik metode udviklet til at give positionsestimater af detekterede defekter ved at

anvende en detektion af strukturelle elementer i en ballast tank. Ulemperne ved denne

rumspecifikke tilgang blev senere løst ved at anvende mere generelle deep learning-baserede

metoder i kombination med en ny registreringsalgoritme, Teaser++. Dette resulterer i

bredere anvendelsemuligheder p̊a tværs af industrier. For at h̊andtere de beregningstunge

algoritmer, og ensartetheden i det industrielle miljø, blev der tillagt særlig opmærksomhed

p̊a at udviklede algoritmer der kunne køre ombord p̊a en GPU, samt p̊a inklusion af

nye metoder til vurdering af nøjagtigheden af positionsestimaterne. Derudover blev en

udforsknings-baseret inspektionstilgang, med fokus p̊a defektdetektering, undersøgt og vist

sig rentabel i en simuleret vandballasttank i den virkelige verden. Med disse resultater blev

det vist, at det er muligt at anvende sm̊a droner til autonom inspektion af lukkede rum.
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Chapter 1

Introduction

Inspection of industrial assets is a vital part of maintaining safe and reliable infrastructures

across the world. Large-scale industrial inspections can be divided into a wide range of

categories, where most share a common focus on determining the physical condition and

integrity of a given asset. The asset can take many forms, where examples of such assets

include power plants, refineries, storage tanks, wind turbines, buildings, ships, airplanes,

and many more. Many of these assets include areas that are difficult to reach, explore, and

navigate. Therefore, most of the data collection for inspection activities is currently carried

out by human surveyors, who are able to climb and crawl into the odd locations necessary

to evaluate the condition of the asset. Maneuvering around structures not intended for

everyday human interactions poses an increased risk to surveyors, and entering confined

spaces can be especially dangerous [8].

A confined space can be thought of as an enclosed box with the addition of a potential

hazard [9]. The most deadly hazard present in confined spaces is the lack of oxygen [10],

which cannot be detected by humans, but needs to be monitored by gas sensors mounted

within the space and/or worn by the surveyor. The atmosphere in confined spaces can also

be flammable, explosive, corrosive, or toxic. The dangers of the atmosphere can be caused

by cargo, natural processes, such as the degradation of organic material, or work carried

out within the space. For ballast tanks in marine vessels, such as the one shown in figure

1.1, a toxic atmosphere can arise from leakage of cargo tanks or pipelines, while a lack of

oxygen can have several causes such as the corrosion process itself, the accumulation of

rotting seaweed and other biological material in the empty tanks, as well as the intentional

supply of inert gases to limit the corrosion process. The dangers of entering confined spaces

are currently mitigated by employing different risk reduction strategies, but there is still an

average fatality rate of 148 workers per year in the period 2011 to 2018 in the US alone[11].

Unfortunately, a third of these casualties are caused by other personnel rushing into the

space to rescue the collapsed person. From a safety perspective, it is clear that solutions

are needed to reduce the fatalities in enclosed spaces.

Using robotic systems to replace humans for dangerous operations is one way to reduce

this number of casualties. Likewise, robotic solutions can also be used in areas of dull and

dirty work to free up the workforce to tackle more complex tasks. Additionally, a robotic

inspection solution will be able to perform regular and repeatable inspections that could

furthermore provide trend line data analysis and metrics by which the asset owner can

1



Chapter 1 Introduction

(a) (b)

Figure 1.1. An example confined space inside a marine vessel. Figure (a) captures the inside of a
topside water ballast tank of a single hull bulk carrier. Figure (b) shows the author entering the
deeper levels of the side water ballast tanks of a double hull oil tanker.

efficiently plan and cost-manage future repairs. The research covered in this dissertation is

mainly focused on the inspection of ballast tanks for marine vessels, however, experiments

were also carried out on a mock-up model of a chemical distillation column using a legged

robot from Unitree (see article F).

Marine vessels are a critical part of the modern world infrastructure, since 70-80 % of

goods are transported at some point by ships[12]. Furthermore, the environmental impact

of a shipwreck can be severe, and therefore regulations are established to avoid catastrophic

structural failure of vessels. The surveys of the vessels are carried out at fixed intervals,

and part of these focus on performing visual inspection of the water ballast tanks. The

water ballast tanks serve the purpose of maintaining good alignment and stability of the

vessel under different cargo types and cargo hold filling levels. To maintain the desired

alignment of the vessel in the sea, the ballast tanks can be flooded with various amounts of

water at different locations on the ship. However, the ballast tanks are mostly empty when

the ship is transporting cargo, which can be expected to be the majority of its useful life.

The water ballast tanks on most commercial grade marine vessels are generally located in

the bottom and near the sides of the ship hull.

(a) (b)

Figure 1.2. A cross-section of single skin and a double skin vessel. Ballast tanks are placed either
on the side, directly underneath the deck (topside tanks), or around the cargo holds (double hull
side ballast tanks).

2



Chapter 1 Introduction

Figure 1.2 illustrates the ballast tanks of (a) a single-hull bulk carrier and (b) a double-hull

tanker. Most of the experiments in this dissertation are conducted on a mock-up model

of a top-side water ballast tank of the single-hull tanker NORD SUMMIT (D/S Norden).

The mock-up model described and used for the experiments in the articles included in

this dissertation, is shown in Figure 1.3. The mock-up model is designed at a scale of

approx. 2:3, with the exception of the man-ways, which are kept at a 1:1 scale to allow a

Unmanned Aerial Vehicle (UAV) to enter the model. The man-ways have a width of 0.6 m

and a height of 0.8 m. The total length of the two compartments in the ballast tank is 5.2

meters with a maximum width of 3 meters and a maximum height of 1.75 meters.

(a) Outside mock-up model (b) Inside mock-up model (c) Inside real ballast tank

Figure 1.3. The mock-up model compared to the inside of a real topside water ballast tank from
a marine vessel. From (b) and (c) it can be seen that the mock-up model has a good resemblance
with the real world scenario.

1.1 Problem statement

When inspecting or navigating within confined spaces, localization is a major concern for

both humans and robots[13]. Most inspection results are invalid without a proper position

tag added to the data point. The severity of a detected defect can depend greatly on where

it is located. For example, the exact location of a corrosion spot can determine whether an

asset needs to be immediately shut down or continue its work, with further more in-depth

investigations scheduled at a later date. Localization in confined spaces poses a range of

challenges. Using a Global Navigation Satellite System (GNSS), such as Global Positioning

System (GPS) and Galileo, to provide the pose estimates would seem as an obvious choice.

However, the lack of radio transparency in many enclosed spaces makes it an unviable

solution for most cases. A similar approach to the GNSS method is the installation of local

Ultra Wide Band (UWB) based satellites inside the space, which was also investigated by

[14, 15, 16]. This satellite-based system can provide a reasonable pose estimate for factory

floors and storage facilities [17, 18], but the requirement of mounting localization hardware

inside the space makes them unusable for our described use cases. Mounting hardware

inside the space violates the concept of limiting human entry into the confined space. In

addition, installing satellite hardware during construction is also often not an option due

to both the cost and the —hostile to electronics— environment of the confined space. An

alternative but similar method, which simplifies the UWB concept, would be to install

fiducial markers (eg: the popular ArUco markers) at known fixed locations within the

confined space. The markers can then be detected and interpreted by a camera on the

robot to provide a position estimate. This has been investigated in [19, 20, 21], and can

provide a good estimate of the absolute position. However, it still requires an installation
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of the markers and an accurate measurement of their positions, which adds cost and

also the requirement to keep the tag clean and visible before a robot-based inspection is

conducted. It is also important to consider that there exist approximately 54,000 vessels[22]

in operation and any solution that requires predefined landmarks (after construction) is

almost unfeasible. To avoid installing known landmarks into the environment, we could

use Visual (Inertial) Odometry as our position estimate, which builds upon the idea of

extracting and tracking visual features from a camera image stream. Known methods

include SVO[23], DSO[24] ROVIO[25], and VINS-mono [26]. Although these methods are

generally considered to provide a good and robust relative pose estimate, they still require

sufficient lighting conditions, and their performance is limited by the number of available

features. Many industrial spaces have sections that are featureless and increase the risk of

unbounded errors, i.e. drift, for these purely visual-based tracking systems.

To solve the lack of visible trackable features, one could use the 3D structure of the confined

space to provide an absolute position estimate of the robot. Extraction of the structure

around the robot can be achieved in multiple ways, but is often done by either stereo

vision or LIDAR based solutions. Stereo vision can create a depth image or a point cloud

of the field of view by detecting visual features from each camera image and then finding

the corresponding features between the two images. However, as described earlier, visual

features are not abundant in industrial confined spaces, and the lack of features in the

images of the stereo camera can quickly reduce the available points in the generated point

cloud. Therefore, structured light in the form of randomly arranged dots, or similar, can

be shined onto the surface to create visual features on otherwise featureless surfaces. The

point clouds generated in article B used this type of structured light depth camera.

3D spinning LIDARs can, on the other hand, provide accurate 3D point clouds over 360

degrees without the need for a feature-rich surface. The LIDARS are frequently used in

self-driving cars and other wheeled robots and can detect reflective surfaces up to several

hundred meters away. However, this type of LIDAR sensor has several disadvantages;

it can be too heavy for small rotor-based aerial systems, it has a higher rate of failure

than non-mechanical solutions and it generally has a higher energy consumption than

non-spinning devices. Therefore, smaller Time-of-Flight (ToF)-based cameras might be

the only option for smaller UAVs. In the project supporting this research, Inspectrone,

the available spinning LIDARs were considered too heavy for the aerial robot, and a

mixture of stereo cameras and ToF cameras were used to provide 3D point clouds of

the environment. By choosing these cameras, the generated point cloud can only cover

a limited area determined by the field of view of the camera. The limited point cloud

coverage further adds difficulty in determining where the point cloud was generated, due

to the ambiguity of the environment, as was also presented in article C, D, F.

1.2 Research purpose

The main purpose of this Ph.D. project is to develop an absolute localization system to be

able to perform autonomous robotic inspection of confined spaces. The developed system

will be part of the navigation system of the Inspectrone project, which aims to automate

the inspection of confined spaces in marine vessels, by using a small UAV. For most of

these vessels, as well as other industrial assets, the Computer-aided Design (CAD) files for
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their structure are available, or can be acquired and can, as such, be utilized as an aid for

the localization system. It is therefore worth investigating the possibility of generating

absolute pose estimates by registering structural scans from the interior of the space to

the CAD model of the vessel.

In rare cases where a CAD drawing of the confined space is not available, an exploration of

the environment should be investigated with a focus on collecting inspection data from it.

The objectives of this PhD research can therefore be summarized as follows:

1. Provide an absolute localization system for known confined spaces tailored

to data availability.

The approach for absolute localization in confined spaces will vary depending on the

available data. If no data are available, exploring the environment is a necessity. For

older industrial spaces, there are often simple drawings of the confined space that

can be used for a high-level form of absolute localization. Similarly, most modern

infrastructure assets contain CAD models that can be utilized as a reliable prior map

for absolute localization.

2. Provide absolute localization in visual featureless or visually degraded

confined environments, specifically by providing/employing a well formed

uncertainty.

Industrial spaces are often constructed using steel or stainless steel, which has very

few visual features, and often contains a high degree of symmetry. This means that

the system needs to be able to use the 3D structure of the environment to provide

an absolute pose estimate, and at the same time be able to provide a reasonable

localization uncertainty for the ambiguous environment.

3. Create absolute localization pipelines that are specifically designed for

online operation on small form-factor robots.

Size limitations in the access ways for confined spaces induce the need for small

and agile mobile robots to traverse the environment. Small robots have limited

computational and power capabilities, leading to a need for a selection of pipeline

architectures that can be either parallelizable on dedicated co-processing units or

accelerated in a similar way to maintain real-time capabilities.

If these goals can be achieved, it can lead to safer and more repeatable inspection of

confined spaces. This improvement in industrial inspections also has the potential to

reduce costs and gain access to areas that previously would have been considered too

dangerous for human entry.

1.3 Summary of contributions

In this section, the contributions of the dissertation and the motivations behind each

publication are explored. Section 1.3.1 provides a list of the individual articles and their

significant contributions.

The first contribution in this dissertation is a literature review of current state-of-the-art

research for autonomous inspection of marine vessels. This review is focused on the

maritime industry and identifies the autonomy levels of the different inspection systems.
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On the one hand, the target is on identifying how efficiently the systems traverse the

different environments of the vessels, whether this is outside or inside the ship. On the

other hand, the review of systems for automatic detection and evaluation of the collected

inspection data was performed. In addition, it provides potential research areas in the field

of maritime inspections, which can surpass current state-of-the-art methods.

The second contribution in this dissertation is the creation of an absolute localization

system, developed to traverse known confined spaces using custom high-level landmarks.

High-level landmark extraction limits the requirements of the available map of the space

with the benefit of maintaining a low memory footprint of the onboard computer system.

The complete system also has the capability to estimate the pose of defects, as well as a

hierarchical structure of the landmarks for simpler navigation. This contribution meets

the need in the maritime industry for a simple localization system without the need for

detailed CAD drawings, and thus is mostly suited for the aged and soon to be scrapped

vessels.

The third topic of contributions tackles the need for more generalizable structural landmarks

for absolute localization in confined spaces. Using a range of 3D geometric feature

descriptors, different localization pipelines are investigated, focusing on localizing within

the water ballast tanks of marine vessels. GPU acceleration is introduced in the form of

novel Deep Learning descriptors, and Graphics Processing Unit (GPU)-based KNN search

is employed to increase the frequency of absolute pose estimates. The contribution of

GPU-accelerated localization pipelines enables a faster method of pose estimation compared

to the standard CPU-based alternative.

The fourth area of contribution addresses the requirements for providing an uncertainty

estimate for absolute localization in confined spaces with a high level of similarity. This

contribution takes advantage of a GPU accelerated Stien-ICP based uncertainty estimation

method to aid in localizing, especially in environments with a high level of similarity. Two

systems are designed, where the first one adds the uncertainty estimation to a deep learning

based localization pipeline. The second system utilizes custom-defined landmarks and

incorporates the inherent registration capabilities of the Stein-ICP uncertainty method, to

provide an absolute pose with uncertainty within the cylindrical structure of a distillation

column.

The fifth and final contribution of this dissertation disregards the previous assumption of a

prior map and investigates the possibility of an exploration-based autonomous inspection

system. This contribution introduces a defect-aware exploration of confined spaces, where

the goal of the exploration planner is, additionally to maximizing the known areas, to

obtain a large amount of data of detected defects. The collection of a large amount of

photos of potential defects enables the possibility of an automatic evaluation system for

further research.
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1.3.1 Publications

Journal articles

Article A

Rasmus E. Andersen, Rune Y. Brogaard, and Evangelos Boukas. Autonomous

robotic inspection for Remote Inspection Technique Systems: A review. Field

Robotics, 3:69–96, 2023. doi: https://doi.org/10.55417/fr.2023002. Published.

A literature review of current state-of-the-art marine vessel inspections, which introduces

a metric to score the autonomy of the systems. The main contributions are as follows:

• A scoring metric to evaluate the current state of the art with regard to the industry

standards as set by the classification societies, specifically with regard to fully

autonomous inspection.

• Detailed overview of accessible research and technology for autonomous robot

navigation and defect detection in marine vessels.

• Pinpointing future research areas that will increase the level of autonomy of inspection

UAVs.

Article C

Rune Y. Brogaard, Ole Ravn, and Evangelos Boukas. Absolute localisation

in confined spaces using deep geometric features. Electronics Letters, 57(16):

621–623, 2021. doi: https://doi.org/10.1049/ell2.12199. Published.

This journal article uses novel machine learning-based feature descriptors for 3D point

cloud registration, in combination with Visual Inertial Odometry, for 3D absolute pose

estimation. The main contributions are as follows:

• Development of an absolute localization system using deep learning-based 3D feature

descriptors for robots operating in confined spaces.

• Integration of a fast and robust registration algorithm for 3D registration in confined

spaces under the presence of a large number of outliers.

• Comparison of well-known designed 3D features (FPFH) with deep-learning

equivalent.

Article E

Rune Y. Brogaard and Evangelos Boukas. Autonomous GPU-Based UAS

for Inspection of Confined Spaces: Application to marine vessel classification.

Robotics and Autonomous Systems (RAS), 2023. Under review.

This journal article presents and demonstrates a real-time inspection system for collecting

3D structural and visual data, from a series of inspection points within a prior map of a

confined space. The main contributions are as follows:

• Online GPU based 3D localization system using Deep Learning features.

• Integration of a novel uncertainty estimation of a 3D-3D registration in a localization

filter.

• Development of an autonomous inspection system for known feature-poor confined

spaces.

• Showcasing a full inspection pipeline onboard an autonomous aerial robot.
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Peer-Reviewed Conference Articles

Article B

Rune Y. Brogaard, Marcin Zajaczkowski, Luka Kovac, Ole Ravn, and Evangelos

Boukas. Towards UAV-Based Absolute Hierarchical Localization in Confined

Spaces. In 2020 IEEE International Symposium on Safety, Security, and Rescue

Robotics (SSRR), pages 182–188, 2020. doi: 10.1109/ssrr50563.2020.9292616.

Published.

This conference article creates an absolute and hierarchical localization system employing

a combination of Visual Inertial Odometry and detection of existing known structural 3D

landmarks. The main contributions are as follows:

• Introduction of a simple and hierarchical landmark-based extraction system for water

ballast tanks.

• Creation and testing of a custom absolute location system based on landmarks to

inspect the water ballast tanks of marine vessels.

• Detection and localization of simulated defects in marine vessels.

Article D

Rune Y. Brogaard, Ole Ravn, and Evangelos Boukas. GPU-accelerated

Localization in Confined Spaces using Deep Geometric Features. In 2021

IEEE International Conference on Imaging Systems and Techniques (IST),

pages 1–6, 2021. doi: 10.1109/ist50367.2021.9651425. Published.

This conference article uses a Graphic Processing Unit(GPU) to enable the possibility of

deep learning-based feature descriptors for near real-time absolute localization in confined

spaces. The main contributions are as follows:

• Introduction of a GPU accelerated localization pipeline for confined spaces.

• Performance comparison of state-of-the-art deep learning-based feature descriptors

in an environment with a high level of self-similarity.

• Deployment of a robust localization system, tested in a dataset from a real

environment.

Article G

Rune Y. Brogaard, Rasmus E. Andersen, Luka Kovac, Marcin Zajaczkowski,

and Evangelos Boukas. Towards an Autonomous, Visual Inspection-aware 3D

Exploration and Mapping System for Water Ballast Tanks of Marine Vessels.

In 2021 IEEE International Conference on Imaging Systems and Techniques

(IST), pages 1–6. Ieee, 2021. doi: 10.1109/ist50367.2021.9651476. Published.

This conference article extends a receding horizon “next-best-view” exploration planner to

increase the exploration towards detected defects. The main contributions are as follows:

• Defect-aware exploration of confined spaces.

• Novel objective function in a well-known exploration technique including defect areas

for an “inspection-aware” exploration.

• Development of a photorealistic ballast tank in a real-time simulator.
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Article F

Rune Y. Brogaard, Robert A. Hewitt, Sarah Etter, Arash Kalantari, and

Evangelos Boukas. Absolute Localization in Feature-poor Industrial Confined

Spaces. In IEEE International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2023. Under review.

This conference article presents an uncertainty-aware absolute localization system for highly

ambiguous spaces, using visual inertial odometry and GPU-based point cloud registrations

for limited field of view sensors. The main contributions are as follows:

• Incorporating the uncertainty-aware 3D registration algorithm, Stein-ICP, on an

online robotic system for EKF-based absolute localization.

• The improvement of Stein-ICP based estimation by using the Kernel Density

Estimation distribution evaluation.

• Taking advantage of prior information about the environment and robot to both

speed up Stein-ICP (by sampling based on state uncertainty) and to reduce scene

ambiguity by only registering local views to unique elements of the environment.
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Chapter 2

State of the Art

Autonomous inspection of marine vessels has received increasing interest as the shipping

industry grows. Many areas of the vessels are still manually inspected, but research

has been conducted on how to automate a range of these inspections. The purpose of

this chapter is to provide a review of the literature on the current state-of-the-art in

automated inspection. The following article will investigate two aspects of the procedure

for automated inspection, namely, expertise and engineering. The expertise part is focused

on the automatic evaluation of the collected inspection data, while the engineering part is

focused on in which ways the robotic system can get to the desired inspection point, and

with what level of autonomy. These capabilities will be related to the required specifications

from the classification societies, i.e. DNV GL and Lloyd’s register, which are some of the

most important stakeholders among the end users. One of the objectives of classification

societies is to verify the structural integrity of ships to both government agencies and

insurance companies. Most structural integrity inspections are currently performed by

human surveyors, where the amount of corrosion is evaluated by each surveyor following

the guidelines provided by the classification society. It is clear that this is subject to each

surveyor’s judgement, and an automatic evaluation solution could potentially avoid human

discrepancies between surveyors and could also speed up the evaluation process. Therefore,

the available expertise aspect of the automatic inspection process is evaluated in the article

using a set of metrics, such as the system’s ability to detect defects, classification, and

evaluation.

There is also a need to avoid human entry into the confined spaces onboard the vessel.

Therefore, a robotic solution is required, hence the engineering part of the article. Different

kinds of robotic systems have been tested by researchers in the investigated literature,

with a wide range of automation levels depending on the operation area. The autonomy

level is quantified using a taxonomy inspired by the Society of Automotive Engineers

(SAE) taxonomy [27]. The SAE taxonomy was originally intended for motor vehicles on

the roadway system, however, the same classification can within reason be applied to

any autonomous vehicle. Thus, the gradual removal of the operator is similar for both

grounded vehicles and aerial vehicles, ultimately progressing to full autonomy without the

influence of a human operator. It is important to note that the metric does not evaluate

the robustness or performance of each system. The accuracy, precision, or how they handle

disturbances could vary widely, both in and across categories. However, it provides an

overview of the research-based solutions currently available for the shipping industry and

the areas that require further investigation.
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Using different sets of metrics for the engineering and expertise aspects of an autonomous

inspection solution, the included article reviews and quantifies the research available in

the shipping industry. The findings conclude that currently there is no fully autonomous

SAE level 5 solution for confined space inspection. Some methods in level 4 exist for

exploring cave and mine environments, but have not yet reached inspection of marine vessels.

Similarly, the lower level of autonomy still has humans in the loop for conducting the

inspection, which is especially true for inspection of the water ballast tanks of marine vessels.

Little literature exists in this area, furthermore revealing that confined space inspection of

marine vessels is an area where more research is needed. The review, furthermore, indicates

that the use of a deep learning architecture is suitable for the data evaluation part, and a

flexible robotic solution such as an aerial vehicle could be an effective inspection solution,

as illustrated in Figure 2.1. The combination of these two approaches was tested in a

simulated ballast tank in article G.

(a) UAV in the ballast tank (b) Corrosion detection using Deep Learning

Figure 2.1. Autonomous inspection of water ballast tank using an UAV in the simulation
environment AirSim. The UAV used in the simulation is shown in (a), where its camera point of
view, with the detected corrosion, is shown in (b).
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Autonomous robotic inspection for

Remote Inspection Technique

Systems: A review

Rasmus Eckholdt Andersen1, Rune Y. Brogaard2, Evangelos Boukas1

1Department of Electrical and Photonics Engineering, Technical University of Denmark,

Kgs. Lyngby, 2800, Denmark
2FORCE Technology, Park Allé 345, Brøndby, Denmark

Abstract:

Due to the harsh environment and heavy use modern marine vessels are subjected to,

they are required to undergo periodic inspections to determine their current condition.

The use of autonomous remote inspection systems can alleviate some of the dangers and

shortcomings associated with manual inspection. While there has been research in the use

of robotic platforms, none of the works in the literature evaluates the current state of the art

with respect to the specifications of the classification societies, who are the most important

stakeholders among the end users. The aim of this paper is to provide an overview of the

existing literature and evaluate the works individually in collaboration with classification

societies. The papers included in this review are either directly developed for, or have

properties potentially transferable to the marine vessel inspection process. To structure

the review, an expertise-engineering separation is proposed based on the contributions of

the individual paper. This separation shows both which part of the inspection process has

received the most attention as well as where the shortcomings of each approach lay. The

findings in this review clearly indicate that while there are promising approaches, according

to our metrics, there is still a gap between the classification societies’ requirements and

the state of the art.

Our results indicate that, even though there is a lot of quality work in the literature, there

is a lack of integrated development activities that achieve a level of completeness sufficient

for the classification societies to confidently use them.
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A.1 Introduction

One of the most efficient ways of transportation is by sea, which, according to the United

Nations (UN) [28], constitutes over 80% merchandise trade by volume. It is critical for

the environment, that marine vessels —especially the large vessels which transport cargo—

are safe to operate to minimize the risk of contamination e.g. oil spills or more abrupt

catastrophes such as explosions.

(a) (b)

Figure A.1. Examples of marine vessels (a) during operation and (b) during maintenance in a
dock.

The International Maritime Organization (IMO) is a specialized agency of the UN and

the authority in setting standards for safe shipping. Its main contribution is a universally

adopted regulatory framework ensuring that ship owners cannot sacrifice safety for increased

market advantages. The level playing field set by the IMO covers all aspects of shipping

including construction and maintenance of marine vessels [29].

The regulations dictate that cargo vessels have to undergo periodic inspections where,

among other tasks, the condition of the vessel is assessed. The main goal of these inspections

is to find any defects present on the vessel that may reduce its structural integrity and thus

pose a risk of failure during operation. Examples of the most important areas that undergo

inspections are shown in figure A.2. The actual inspection is carried out via a collaboration

between the vessel owner and a classification society or a class-certified surveyor that

enforces the regulations set by IMO. It is up to the individual classification society how

they ensure that the regulations set by the IMO are adhered to and it is, thus, up to them

what technologies and assisting tools they deem suitable for use in the assessment. For

this reason, 12 classification societies have formed the non-governmental International

Association of Classification Societies (IACS) [30] that provides technical support and

guidance on the unified regulations set by the IMO. Additionally, they provide support

when amendments and changes to the existing regulations occur or new regulations are

added.
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(a) (b) (c)

Figure A.2. Examples of areas on a modern marine vessel that have to be inspected (a) cargo
hold (b) ballast tank (specifically top-side tank) and (c) the outside hull of a vessel.

One of the emerging technologies that classification societies are adopting at an increasing

rate is the use of drones (an example of a drone flying in a ballast tank is shown in

figure A.3). They serve the purpose of removing human surveyors from the hazardous

and unfriendly environments present on a vessel during inspections while still allowing the

acquisition of sensory information used in the assessment.

Figure A.3. Example of a drone flying in a ballast tank. If equipped with the right sensory
equipment accompanied by a high level of autonomy, the drone can replace human surveyors in the
hazardous environments present in the ballast tanks of modern marine vessels.

With the recent increased availability of viable drone solutions and the advances in image

processing and recognition, the works in the literature trying to automate the inspection

process have also increased. The existing literature tends to either focus on detecting defects

[31, 32, 33, 34], or to provide drones capable of reaching the areas that are difficult to access

while balancing the trade-offs of equipment payload, drone size, operation time, etc [35, 36].
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The IACS has defined some recommendations for how these Remote Inspection Technique

Systems (RITS) should operate, however, the general interpretation of it is, that any RITS

has to be able to represent the same quality of information as a surveyor being physically

present would be able to acquire [30]. Thus there are no clear definitions or requirements

for the drone, as long as the assessment does not suffer in quality. Thus, a complete/perfect

RITS should be capable of delivering the same level of quality inspection as a human

surveyor, with all the added benefits of task automation such as easier standardization,

repeatability, increased precision, etc. Specifically, the repeatability is of great importance

since a vessel (shown in figure A.1) can contain more than 600 000 m2 of steel that has to

be visually inspected within a 1-2 meters observation distance. It is nearly impossible for

a human surveyor to maintain focus for the time required to inspect such an amount of

steel, resulting in varying and subjective inspections [37].

Though it is clear that some progress has been made, it is unclear how close to a complete

RITS any single work or collection of works has come, since there exists a general lack of

evaluation concerning the regulations as a whole. Thereby, it is hard to quantify how close

the community has come to a realistic solution that the classification societies can use.

A previous survey [38] evaluated the technological advances, particularly within marine

vessel inspection. They present defect detection as the detection of cracks and corrosion and

robotic platforms suitable for marine vessel inspection. While they provide a comprehensive

list of the state of the art, they do not address all of the criteria for a solution to be viable

for the classification societies, such as being able to quantify the defects or detecting the

type of corrosion.

This paper strives to fill this hole and, in collaboration with a classification society

(Lloyd’s Register [39]), evaluate the current status of how close the state of the art is to a

fully functioning RITS. This is done by separately investigating a) the expertise and b)

the engineering challenges present when capturing information to apply that expertise.

Specifically, this paper is interested in identifying the existing works in the literature that

encapsulate both the expertise and the engineering as shown in figure A.4. For this paper,

expertise is defined as the knowledge and the associated processing ability to assess the

condition of a vessel given a selection of sensory information. The engineering aspect

concerns the acquisition of the information while raising the autonomy level higher than

that of a fully teleoperated drone solution. Thus, engineering encapsulates the physical

hardware and control software needed not only to autonomously navigate the relevant

inspection areas of the marine vessel but to additionally ensure that the requirements for

applying the expertise can be fulfilled with sufficient sensory information.

In section A.2, the approach employed to evaluate the progress of the state of the art is

presented. The metrics defined in section A.2 will be used to score the existing literature

within what has been defined as expertise in section A.3 and engineering in section A.4.

A.2 Metrics definition

The assessment parameters of the marine vessels are derived from the type of materials

used for their construction and are defined by the classification societies. An example is

that the condition of the paint (coating) is assessed to be either good, fair, or poor, if there
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Figure A.4. The role of the expert surveyors is to supply their vessel inspection knowledge.
However, this knowledge has to be based on sensory information that binds said knowledge to a
specific physical context. Thus, any solution attempting to automate a process will have to both
capture expertise and gather information. In the context of marine vessel inspection, the knowledge
relates to defect detection, classification, and repairability. Engineering relates to supplying the
necessary information and navigating the vessel. Thus, in the current work, the literary works of
interest are those which tackle the overlap between these two concepts.

is less than 3%, between 3% and 20%, or more than 20% corrosion, respectively. Similarly,

cracks are quantified by their location and physical sizes, such as length and width.

The main job of a surveyor is to document the type of defect, its location, and severity

— which in this paper are collectively referred to as expertise since it encapsulates the

knowledge and training of the surveyor. Similarly, the engineering aspect is the technology

needed to support the expertise. Analogously, for a manual inspection process, this could

be the modular scaffolding or the mobile lights required to inspect all areas of the vessel.

The following section is a description of how the existing literature is evaluated. The goal

of this work is to quantify the development by the community so that it is possible to

identify solutions that solve either the engineering challenges related to using autonomous

drones in confined spaces and/or that try to capture the expertise of human surveyors by

evaluating sensory information to assess the condition of marine vessels.

A.2.1 Expertise

Though there exist defined criteria with regards to the condition of a vessel, few papers in

the literature compare against them and, instead, tend to use standard image processing

metrics such as confusion matrices and intersection over union. Even though such an

approach evaluates the performance of the detection algorithm —and is, thus, important—

it does not reveal whether any progress is being made towards the actual goal of assessing
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the condition of the vessel in relation to the unified requirements. In this paper, the

existing literature is evaluated on six different parameters that either represent parts of the

survey used to document the vessel condition or the level of autonomy that the literature

is trying to introduce into the assessment process.

Seen from the point of the surveyor, some of the tasks related to vessel inspection can be

more critical than others. For instance, it may be of higher importance to the surveyor that

the autonomous evaluation can detect the type of defect, than that it is able to determine

its location. For this reason, the importance of each evaluation metric is weighted by a

classification society (Lloyds Register). The weight ranges from 1-4 with 4 being most

important and 1 being of lesser importance.

The final score of existing literature will then be given by the following formula:

Score =
wi · vi∑

iwi
(A.1)

where wi denotes the weight given by the classification society and vi is the score given for

the metric i. The purpose of this evaluation is to quantify the minimum level of expertise

captured by any method before it can realistically be considered by the classification

societies. The weights given by the classification societies are normalized to be within the

same interval as the scoring of the metrics used. For instance, if there is a metric that the

classification societies consider essential, but none of the methods score high on this metric,

the overall score of the method should be lowered since the presented method would not

be of interest to the classification societies. The metrics used are the following, and a

definition of the metrics can be found in the related section:

1. Defect detection (section A.2.1)

2. Defect location (section A.2.1)

3. Defect quantification (section A.2.1)

4. Autonomous evaluation (section A.2.1)

5. Flexibility (section A.2.1)

To increase reproducibility, table A.1 shows some general examples of what each scoring

means.

Defect detection

The ability to detect defects based on sensory inputs is a prerequisite to the works evaluated

in this paper. The necessity of this parameter is to sort out approaches that only process

or otherwise transform sensory information before any real assessment or evaluation is

done. Since this metric is a prerequisite to be considered at all in this evaluation, it has

been left out of the final scoring as it only adds a constant bias to all the works evaluated.
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Example Score

Defect type

A work that performs binary classification (i.e. only concerns the presence of defects/corrosion
or otherwise abnormalities).

0.1

A work that actively includes one of the corrosion types stated by the classification society. 0.5

A work that actively includes all of the corrosion types stated by the classification society. 1.0

Defect location

A work that classifies on a whole image basis without respecting spatial location in any form. 0.0

A work that provides bounding boxes or otherwise proposes some weak form of localization
(e.g. through recursive detection) and is strictly bounded to the image plane.

0.5

A work that provides low-level positioning of the defect with respect to some extrinsic reference
frame.

1.0

Defect quantification

A work that does not quantify any detection. 0.0

A work that is able to quantify the detected defects. 0.5

A work that is able to quantify the detected defects such that they can be compared against
the existing metrics used by the classification society.

1.0

Autonomous evaluation

A work that relies heavily on manual operation to function, e.g. a surveyor has to traverse the
area with some equipment or remove samples from the vessel to analyze off-site.

0.0

A work that functions partially automates the evaluation process but still relies on some human
interaction, e.g. for result interpretation.

0.5

A work that is able to carry out the entire evaluation process without any prior existing system
knowledge.

1.0

Flexibility

A work that is dedicated to inspecting a single specific element of the marine vessel. 0.0

A work that is dedicated to inspecting parts of a single area of the marine vessel (e.g. parts of
the hull)

0.5

A work that is able to be deployed in one, or more, areas of the marine vessel that requires
inspection.

1.0

Table A.1. Examples of how a score is assigned.

Defect type

In order to identify the severity, the type of defect is important since the maintenance

process changes depending on how the vessels’ structural integrity is affected. In the

standards set by IACS [30], there are 4 main defect types; Cracking, Deformation, Coating

Breakdown, and Corrosion. It is these types of defects that a surveyor inspecting the

structural integrity of a vessel is expected to document and base a final vessel classification

on. The underlying interest of the defect type is determining the likelihood of failure

and propagation (e.g. a growing crack) which vary among the four types. Thus, it is

fundamental that in order to achieve a complete, or close to complete, the autonomous

inspection process, any solution or algorithm has to be able to identify the type of defect

such that it can be documented in a vessel condition report. Since there are multiple types

of defects to be detected, the score has to reflect how many of the necessary defects can

be identified. The classification society weighted this as 4, with the reasoning that the

type of defect is important to estimate the severity of the defect and thereby the extent of

necessary repairs.

Defect location

In order to efficiently plan any work for maintenance, the location of any defect is required.

In this paper, the location of the defect is not necessarily with respect to the vessel itself,
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but rather just to a fixed frame. The fixed frame can either be the physical location in

relation to the vessel or with respect to some other frame such as a sensor frame. Depending

on the area of the vessel being inspected, the location can be of higher or lower importance.

Generally, the primary structures (e.g. traverse bulkhead, longitudinal bulkhead) are of

more importance than secondary structures (e.g. stiffeners, sides, deck, bottom). The

surveyor documentation requires that the defects are located with respect to the vessel

structure, rather than an arbitrary relative frame (e.g. a camera sensor). This has to be

reflected in a score. The weight given to this metric by the classification society is 3, as the

location of the defect is important but not critical, since larger areas could be scanned in

smaller increments and, thereby, still, reduce the total area requiring subsequent manual

inspection.

Defect quantification

A critical part of documenting the condition of the vessel under assessment is to quantify

the defects. In some cases, like cracks, this requires physical measurements in terms of

length and width, but for other cases, the quantification is more ambiguous. Such a

case is corrosion which is measured in the percentage of the area under consideration

[39]. For visual sensory inputs like imagery, a scale readout is required. If this is not

provided, the physical size of the defects is subject to perspective distortions. Similarly,

imagery data must be accompanied by some form of image quality indicator along with a

calibration procedure that ensures the quality of the sensory information. Similar to defect

type, there are multiple ways of quantifying defects, and thus the score has to reflect how

many ways any solution or algorithm can quantify defects. With similar reasoning as for

defect location, the metric is given a weight equal to 2. Specifically, the quantification of

the defects can in some scenarios be done manually without losing the advantages of an

otherwise autonomous solution.

Autonomous evaluation

Some of the proposed solutions in the literature may attempt to only assist the existing

manual inspection process. This can for instance be achieved by evaluating gathered

data offline or by representing it intuitively but still relying on manual inspection. The

autonomous evaluation score is, thus, an encapsulation of how many manual processes

are required to be performed for the autonomous inspection. The classification society

weighted this metric with a value of 1 since the goal of using autonomous solutions is to

remove the human surveyor from hazardous environments. Thus, if the human surveyor is

required to be present in the evaluation process, the benefits of performing autonomous

evaluations diminish.

Flexibility

Marine vessels contain diverse types of areas that require inspection for defects, ranging

from large open spaces such as cargo holds, to small confined spaces like ballast tanks. The

need for this metric is to identify the works in the literature that focus on specific areas

and those that can perform inspections in multiple areas of the vessel. An example of this

distinction is a solution that only works in water on the outside hull of the vessel and a

solution that can be used in cargo holds vessel hulls and ballast tanks. Flexibility was
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given a weight equal to 4 by the classification society with the reasoning that a significant

motivation for using a RITS is the ability to reach otherwise hard-to-access areas. Such

areas are present all over the vessel and being able to use the same solution for multiple

areas of the vessel is of great importance.

A.2.2 Engineering

The engineering aspect of performing inspections is the process of acquiring the information

required to utilize or apply the expertise. If the inspection is performed on the vessel

hull while in water, the engineering aspect is to create a solution that can navigate in

water. Since expertise and engineering are separate, this category will also include all

those solutions that utilize different forms of drones in a teleoperation setting and still rely

on human surveyor expertise for the actual assessment. A pure teleoperated solution still

solves many of the challenges present in the current way of performing inspection, such

as removing the human surveyor from the hostile environment present in ballast tanks.

However, a significant part of the engineering challenge is to be able to traverse the vessel

and since this has to include some form of autonomy, the engineering score used to evaluate

the existing literature is derived by the SAE [27]. This adaption consists of six steps with

increasingly higher requirements for the level of automation. Note that this is a sequential

score, i.e. it is not possible to attain level 3 without having attained level 2, etc.:

1. No Automation (section A.2.2)

2. Assistance Automation (section A.2.2)

3. Partial Automation (section A.2.2)

4. Conditional Automation (section A.2.2)

5. High Automation (section A.2.2)

6. Full Automation (section A.2.2)

No Automation

Any drone which is fully controlled by the operator at any given time with only very basic

functionalities is considered a non-autonomous drone. The operator of the drone has to

be either physically present in the same area the drone is flying in, or a live video feed

from the drone has to be transmitted to them. It is this level of automation that most

consumer drones reside at.

Assistance Automation

Assisted drones can traverse simple environments controlled by the operator while providing

a pose estimate for the operator. A complete description of the environment is available

to the drone, and any actions the drone has to perform are executed by the operator.

Similarly, it is up to the operator to decide which actions/tasks must be performed. Thus

the most significant advancement, of the works at this autonomy level, is that the drone is

capable of estimating its position.

Partial Automation

A partially automated drone maintains its ability to return pose estimates within the

environment and gains the skill to map the environment while moving around. The
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operator still has to manually move the drone to the inspection area but the drone can

generate and follow a local inspection trajectory under the supervision of the operator.

Conditional Automation

At this automation level, the drone possesses the ability to observe and adapt trajectories

as it traverses the environment. The interference of an operator is limited to specifying

the type of environment and they only interrupt in rare situations. The main milestone is

the capability to plan local actions such as trajectories to solve a task and the drone being

capable of adapting to a changing and somewhat dynamic environment. In theory, it is,

therefore, no longer required for the operator to maintain focus on a single drone, as the

automation level is high enough for both traversing the environment, as well as adapting

to changes in the environment.

High Automation

Employing highly automated drones, the role of the operator is shifted from using the

drone as a tool, to managing the information gained from the task the drone is solving.

Thus, the drone no longer requires monitoring and can initiate new tasks required by the

operator. The drone itself will determine when, where, and what has to be done. At

this level, the drone is capable of giving a consistent stream of information related to

inspections of the vessel from which a continuous estimation of the condition can be made.

It is up to the drone to ensure that the dynamic environment is explored and based on

sensory information can solve the task it was given at launch. At this level, it is still

required for the operator to initiate the drone to begin execution.

Full Automation

In the full automation category, the drone learns from past experiences to improve the

execution efficiency of the task. The drone is able to perform under any conditions that an

operator would normally operate under.

A.3 Assessment of Literature with regards to Expertise

The premise of being able to apply expert knowledge is the presence of information that

can be interpreted. This information can come from a wide variety of sources, such as

visual images, non-visual images, ultrasonic measurements, or even statistical methods

used to describe areas at risk as a function of vessel age, type, previous assessment, etc.

The process of applying expertise to this information can either be manual, semi-automatic,

or automatic. Applying the expertise manually involves human surveyors assessing the

sensory information and based on their experience, classifying the condition. Similarly,

semi-automatic solutions can consist of tools that automate parts of the inspection process,

such as easing the documentation process or by only fulfilling some of the defect metrics

described in section A.3.

It is not only within marine vessel inspection that attempts have been made to automate

the inspection process by capturing the expertise in the form of sensory input followed by

an artificial assessment. Such examples can be found in railways [40], bridge structures
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[41], wind turbine blades [42], tunnels [43]. Earlier surveys on inspection also date far back

in time [44]. Thus, there exists a wide interest in automating the inspection processes,

and since the elements used in many large construction efforts consist of roughly the

same materials, e.g. steel and concrete, a solution not directly intended for marine vessel

inspection may include the same components required for this application, too.

For this paper, however, we are focused only on existing literature work directly related to

marine vessel inspection due to it being unfeasible to test all existing works on inspection

processes on marine vessels. Like with many inspection processes, the inspection of marine

vessels currently relies on visual inputs from the human surveyor, and thus many attempts

at automating the inspection process uses visual cameras. The following section reviews the

attempts to assess the condition of marine vessels by categorizing them into spatial-domain,

wavelet, histogram, and deep learning methods. Finally, a subsection is reserved to present

the works that attempt to evaluate the corrosion using non-visual methods, for the sake of

completeness.

A.3.1 Spatial-domain based methods

Not only corrosion has been detected with image processing, but cracks and other types of

deformations have received attention as well. In [31], a camera is used to capture information

of a sample of metal, which is then analyzed using a combination of thresholding and

morphology. The parameters for the morphology process are learned through a genetic

algorithm. The main disadvantage of this method is the requirement to obtain a sample of

the metal to be inspected. This makes it infeasible for large-scale vessel inspection.

Segmentation of corrosion in images is a task that desirably gives an exact location of the

corrosion in the image. One of the ways to segment an image is to perform watershed

transform [45]. One of the great challenges when performing a watershed transform

for corrosion detection is segmentation, specifically when the image contains noise. An

improved watershed transform is presented in [32] where the incorporation of the value

and brightness of each pixel together with the canny operator was proposed [46]. The

result was a more robust segmentation and less sensitivity to noise in the image. Canny

edge detection has also been used directly for segmentation as shown in [47].

Saliency has been utilized in multiple occasions in [33, 48, 49, 50, 51]. The saliency map

consists of a topographic map where bright values represent areas with defects and lower

values represent areas with no defects. In [50], the saliency map is used as an input to

two kinds of detectors: contrast-based and symmetry-based detectors. The two types of

detectors are also combined to produce a single defect detector in three different ways using

the logical operators OR, AND, and a custom or operator that averages the contribution

of the contrast channels, intensity, color, and orientation as well as the symmetry map.

One of the main results of this work is that their final defect detector is able to produce

an Area Under the Curve (AUC, [52]) value of 0.8. Additionally, it was found that a

contrast-based detector performs better than a symmetry-based detector, suggesting that

contrast is capable of capturing more information used to discriminate between defective

areas and non-defective areas.

An ensemble of different classifiers was explored in [53] ranging from a support vector
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machine and Fisher Discriminant Analysis to K-nearest neighbor. The features used for

the classifiers are all computed from the Hue, Saturation, and Value (HSV) color space.

The main contribution is a combination of all the classifiers trained individually on the

training features. Then, the final classifier, named PICARD, classifies inputs based on a

majority vote of the in total 6 classifiers. Similarly, [54] used AdaBoost consisting of a

linear combination of weak classifiers implemented using 48 Law’s texture energy filters.

25 images were used to generate 39746 patches of which 12952 were labeled defective. 50%

of the total amount of patches were used for training. One of the main results is a false

positive and false negative of 17.16% and 3.39% respectively with the reasoning that it

is more important to detect all defects than to have false positives. In Eich et al. [55] a

global classifier is obtained by chaining two smaller classifiers together. The first classifier

relies on the fact that corroded areas in images have a rough texture measured by the

energy of the symmetric gray-level co-occurrence matrix. Based on the energy field, a

threshold determines candidates for corrosion. The second classifier uses the output of the

first classifier and the fact that corroded areas are bounded to the hue-saturation plane.

Subsequently, a bidirectional histogram is built on which a filter is used to zero out entries

that are 10% below the peak. After applying a Gaussian filter the remaining pixels are

thresholded based on the filtered histogram.

A combination of traditional image processing techniques and neural networks has been

explored in [37, 56]. Initially, they use a set of selected features in the image which is

classified using a three-layer neural network with the goal of segmenting any corrosion

defects in the image. The features are computed using a modified version of [57] and work

by extracting the dominant colors of a small patch of the original image, which are fed into

the neural network. A second experiment used k-means ([58]) initialized by K-means++

([59]) to avoid clustering the k-means in the same area in the color space. Lastly, [60]

presented an experiment where texture analysis is used to extract features and perform

local binary patterns to weigh the difference in pixel intensities in the image. One of the

main downsides of the different feature extractors used in [37, 56] is the required time to

compute the features since they all operate on patches of the image, and the classification

depends on the size and number of defects present in the image.

A.3.2 Wavelet based methods

Some of the early work on applying image processing tools on images of corrosion include

[61, 62] in which a discrete wavelet transform is used. Initially, a three-level wavelet

decomposition on an image is applied after which the image is divided into patches with a

stride equal to the patch size. A feature vector of each patch is extracted consisting of

the energy response of the wavelet transform at each frame. Finally, the classification of

the feature vectors was performed by a 3-layer feed-forward neural network trained in a

supervised setting. Though the application is corrosion on aircraft skin, it is included here

for completeness since it uses the wavelet transform for corrosion detection, thus making it

directly related to the application of marine vessel inspection considered in this paper.

Another example of the use of the wavelet transform was presented in [63], where corrosion

located on the vessel hull was detected. The decomposition used in their work consists

of applying all combinations of low- and high-pass filters and thereby obtaining four
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sub-images from the one original image on which the process was repeated recursively. The

image with two low-pass filters applied is also referred to as the image approximation, as

it is just a smoothened version of the original image. The main contribution of that work

is that the decomposition level is determined by computing the ratio between the Shannon

entropy of the image approximation and the sum of the entropy of the other sub-images.

A.3.3 Histogram methods

Simpler approaches such as the ones in [64, 65] utilize a histogram of the image to determine

the background based on the principle that the majority of the images will be without

corrosion or other defects and, thus, they will be similar in color (due to the coating). The

image is then thresholded based on the histogram to segment the defects.

Digital images are usually represented in the RGB color space, however, multiple other color

representation models exist, some of which contain desirable properties for the classification

of objects that are characterized by specific color [66]. In [67], images are interpreted in

the Hue, Saturation, and Intensity (HSI) color space from which they build histograms of

patches of the image with size 10x10 pixels. The histograms for each channel are treated

as random variables on which they apply principal component analysis and varimax. The

output of this process is features used for classification. Their work concludes that the

mean H, median S, skew of S, and skew of I together with some physical characteristics

such as the area, perimeter, length, and mean radius can be used to obtain a classification

accuracy of approximately 85%.

A more comprehensive approach was used in [68] where external RGBD scanners are placed

around the vessel when in drydock to create a 3D representation of the vessel including

the color. Defects are then classified by considering a small area of the vessel surface and

generating a histogram after the color channels have been converted to the HSV color

space. Depending on how big the area that is corroded, segmentation happens based on

either a histogram or a threshold.

A.3.4 Deep learning methods

Classification

Pure deep learning classification was also used in [69], however, corrosion is only detected

on a binary whole-image level. So it can only be used to detect the presence of corrosion

and not where in the image it is located. Though the training dataset size was very small,

the method still managed to achieve an accuracy of 89.1%.

Object detection

More recent deep learning architectures have also been used for defect detection. Some

preliminary results were presented in [12], where the authors have used transfer learning

on a Single-Shot multi-box Detector (SSD, [70]) and a Faster R-CNN [71] with a VGG

network [72] as a backbone. Instead of using the common intersection over union metric,

an intersection of prediction was employed with the reasoning that detecting the presence

of defects is more valuable than generating a bounding box that tightly fits the ground
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truth. The findings indicate Faster R-CNN is better suited for corrosion detection than

the single shot multi-box detector.

Deep learning architectures have also been used in [73] and the continuing work in [74, 75].

In the former, transfer learning was used to train a Faster R-CNN architecture with a

VGG19 backbone and the system was able to detect three types of defects: surface-based

corrosion and coating breakdown, edge-based corrosion and coating breakdown -, and

non-coating-failure. In general, the work outlined in [73, 74, 75] presents a complete system

including a drone and user interface for image processing and evaluation as well as the

option for generating a report of the results. The main results of using Faster R-CNN

with a VGG19 backbone is an accuracy of 81.37% when separating corrosion on welds and

edges and 89.54% otherwise, which indicates deep learning approaches may be suitable

for vessel classification. The same authors have tried to improve the accuracy of the

system by introducing active human intervention in [34]. The human intervention is a

human surveyor manually assessing an image that has been pre-processed by adjusting the

brightness, gamma correction, and histogram equalization.

Not only general-purpose deep learning architectures have been explored for the detection

of corrosion. In [76] a custom deep neural network was proposed to classify the level

of corrosion on pipes as either None, Low, Medium, or High. To localize the corrosion

within the image, the authors proposed to recursively sub-sample the input image if it

contains medium or high levels of corrosion until the image size reaches a lower threshold.

Consequently, this also means the number of inference calls on the classification network is

high.

Segmentation

Some of the most popular deep neural networks have been investigated in [77] to identify

the best suitable pipeline to perform inspections on robotic platforms with limited

computational power. Specifically, two pipelines were proposed: The first one included

a simple network performing binary classification on the image level and, if defects were

detected, a larger network performing pixel-wise localization was deployed, upon the result

of which, the image would be classified as good, fair or poor. Similarly, the second approach

was to simply use a smaller network to categorize the image as good, fair, poor directly

and only use a larger image network for localization. Based on their findings, the best

performing pipeline is to do binary classification and perform overall category conditioning

with a large pixel-wise segmentation. Additionally, among the investigated, architectures

the Mask-RCNN performed the best, indicating that larger networks may be a necessity

for high-quality inspection results.

One of the biggest challenges when employing deep learning approaches is the large number

of annotated images required for creating a robust model. For this reason there exist

multiple ways to annotate an image, some of which were explored in [78]. Specifically, a

loss function based on the centroid loss was proposed which seeks to minimize the effect

of weak annotations on the network architecture (Attention U-Net) [79]. They conclude

that their approach to employing weakly supervised training produces similar results at a

reduced annotation burden when compared to traditional full supervision in the task of

detection of corrosion in images from marine vessels.
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A.3.5 Non-visual methods

In this section, methods that do not directly rely on imagery are presented. The purpose

is to include methods that use other sensory equipment than those naturally available to a

human surveyor. The methods include using the grid method, ultrasonic, and augmented

reality. The former is presented in [80] and is an approach to detect cracks by applying a

grid pattern on the inspection surface, which in the specific experiments is a transparent

sheet transferred to the inspection specimen. By analyzing the phase modulation of the

light caused by the crack with Windowed Fast Fourier Transform, it is possible to separate

the discontinuities in the phase with a simple threshold. Cracks as small as 5 µm in width

are successfully detected and their location is determined with an accuracy of 1.2 mm.

While the detection and localization accuracy are more than sufficient for the inspection

of marine vessels, it has to be noted this method relies heavily on a fully controlled

environment.

Other methods utilize ultrasonic measurements to measure the thickness of the steel. The

advantage of this approach is an exact measurement of the integrity of the steel the vessel

consists of. In [81], a robotic solution fitted with an ultrasonic sensor was presented.

Though the sensor was mounted on a robotic platform, the only expertise in relation to

the condition of the vessel was provided by a human surveyor.

The use of augmented reality has also been explored for inspection. Multiple applications

for augmented reality were shown in [82]. Some of the applications highlighted by the

authors are related to inspection by indicating faults and defects to the operator. The

operator can also use augmented reality to point out faults and defects manually, and then

save the location of the defect automatically. Augmented reality was also included in [83]

where the utilization of a drone equipped with a live camera is presented. The operator is

then shown the live camera feed.

More statistical approaches exist that rely on the physical process of corrosion such as the

method proposed in [84]. The authors identify a set of parameters divided into operational

and internal parameters. One of the operational parameters is the ballast ratio - the

ratio between how long the vessel is loaded with cargo and the age of the vessel. Other

parameters are trade route, coal corrosivity, and frequency of cargo changes. Thus, the

operational parameters consist of the external forces applied to the vessel that influences its

condition. On the contrary, the internal parameters describe the internal design measures

taken to prevent corrosion. These include corrosion protection systems and structural

member location and orientation. The conclusion of the work was a proposal to monitor

the aforementioned parameters to build a corrosion rate database that would enhance the

reliability of corrosion prediction models.

One of the most effective measures of preventing corrosion in marine vessels is by applying

paint on the steel surface that prevents direct contact between the salt water and the steel.

The disadvantage of coatings is the difficulty of being able to detect corrosion underneath

them. Therefore, [85] proposed the use of microwave sensors to detect corrosion under

paint and composite laminates. Their experimental setup included a painted steel plate on

which they were able to detect corrosion even with varying paint thickness.
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A.3.6 Summary

Table A.2 shows the main reported results for each evaluated paper. Note that these results

are reported directly from the papers without scrutiny. Thus, a comparison is meaningless

without referencing the underlying methods. It is included here for completeness as it

gives an overview of what method the different papers have used to evaluate their results

and how they have performed.

The scoring based on the weighting from the classification society and the scoring of the

metrics for each work considered in this paper is listed in table A.3. It should be noted

that while all of the works have some relation to the marine vessel inspection process, some

of the presented works also include more general applications, such as crack detection on

concrete structures and/or spalling.

From table A.3 it is clear that methods which rely on some form of deep neural network

score better on the metrics used in this paper. Specifically, they can distinguish between

more types of defects, alleviating the subjective assessment of the surveyor. Generally,

all the methods investigated in this paper score poorly in quantification, i.e. they do

not incorporate a way of quantifying the defects. Most of the methods use some form of

in-image localization. This approach has the advantage of only requiring a single image,

however, it limits the quantification to be strictly on the image plane. Since the area

affected by a defect will be perceived drastically differently depending on the perspective

and viewing angle, it is difficult to get a real-world quantification of the defects. One of

the advantages of using camera images is the high level of automation that can be achieved

as well as the flexibility. Cameras can be small in size so as to fit in even tighter places

while only requiring a light source when there is no natural light present, such as when

inspecting a cargo hold or a vessel hull.

Another conclusion from the table is that the differentiation between defect types has

been neglected. A common trend has been to find corrosion or cracks, with none of the

investigated methods addressing the need for also detecting deformations in the steel of the

vessel. These types of damage are not infrequent and can occur when the anchor hits the

hull of the vessel or when loading/unloading cargo. Some of the more severe deformations

can occur when a vessel is sailing in low depths or due to collisions - the latter accounting

for 35% of marine vessel accidents [90].

The attention the marine vessel inspection process has received over the last 35 years —

from an automation perspective — has been increasing steadily as indicated by figure A.5.

The number of publications shows an increasing interest in the topic, and with the recent

advances in deep learning and computer vision, the level of expertise that can be reproduced

autonomously is steadily rising according to the metrics defined in this paper.

To achieve a higher expertise score, it is clear there has to be a bigger focus on quantifying

any detected defect. Detecting different kinds of defects has been addressed in some cases

with the use of deep learning that is capable of distinguishing multiple types of defects,

and in some cases providing an in-image segmentation of the defect. While this provides

some form of location, it is not directly possible to transform a single image coordinate

into a usable 3D coordinate that can be used by repairmen to localize the defect. As

technology advances, the range of sensors capable of capturing 3D information increases.
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Evaluation method Results
Siegel et al. [61] Visual evaluation Demonstration
Qaddoumi et al. [85] Visual evaluation Demonstration
Siegel and Gunatilake [62] Visual evaluation Demonstration

Zheng et al. [31]
Hole and crack detection
accuracy on dataset

holes 91%
cracks 86%

Gardiner and Melchers [84] Parameters affecting corrosion Degradation hierarchy
Avril et al. [80] Metric size of cracks smallest detection 5 µm
Choi and Kim [67] Accuracy on dataset corrosion 85%
Akinfiev et al. [81] Not stated Not stated
Zaidan et al. [47] Visual evaluation Demonstration
Navarro et al. [64] Classification rate 92.5%

Bonnin-Pascual and Ortiz [54] Confusion matrix

FP=20.47 rate,
FN=20.91 rate,
FP=17.16%,
FN=3.39%

Ji et al. [32] Not stated Not stated

Jahanshahi et al. [86] Metric size of cracks
Maximum deviance
from ground truth <15mm

Navarro et al. [65] Accuracy on dataset 95%

Fernández-Isla et al. [63] Confusion matrix
FP=6.8 error,
FN=0.9 error

Eich et al. [55] Confusion matrix

Corrosion:
FP=9.8%,
FN=5.86%

Crack:
FP=0.72%,
FN=0.52%

Bonnin-Pascual and Ortiz [33] AUC 0.9
Dini and Mura [82] Not stated (augmented reality) Not stated
Papachristos and Alexis [83] Not stated (teleoperation) Not stated
Bonnin-Pascual and Ortiz [49] AUC 0.8
Bonnin-Pascual and Ortiz [48] AUC 0.9
Ozog and Eustice [35] Not stated Not stated
Petricca et al. [69] Confusion matrix Accuracy=92%
Aijazi et al. [68] F1 measure 0.90
Ortiz et al. [56] Success rate 0.87
Ortiz et al. [37] F1 measure 0.92
Ortiz et al. [87] Visual evaluation Demonstration

Yang et al. [88] F1 measure

Accuracy=97.96
Precision=81.73
Recall=78.97
F1=79.95

Maglietta et al. [53] Accuracy on dataset Corrosion 0.961
Ortiz et al. [12] Intersection over Precision Visually inspected on graph
Bonnin-Pascual and Ortiz [50] AUC Visually inspected on graph
Liu et al. [73] Confusion matrix Accuracy=81.37% on 5 classes
Liu et al. [74] Confusion matrix Accuracy=89.54% on 5 classes
Liu et al. [75] Confusion matrix Accuracy=89.54% on 5 classes
Bastian et al. [76] Accuracy and F1 Accuracy=98.2, F1=96.73
Liu et al. [34] Confusion matrix Accuracy=89.54% on 5 classes
Hoskere et al. [89] Accuracy on dataset 91.7%
Andersen et al. [77] Intersection over Union 0.156
Yao et al. [78] Intersection over Union 0.7542

Table A.2. Reported results for each evaluated paper. Note that the results reported here are
taken directly from the respective papers. Thus a direct comparison between the results is of little
value without also considering the underlying methods and metrics.
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Andersen et al. [77] DL 1.0 0.9 0.3 0.5 0.9 0.814

Liu et al. [75] DL 0.9 0.8 0.3 1.0 0.9 0.800

Hoskere et al. [89] 0.9 0.8 0.3 0.9 0.9 0.793

Liu et al. [74] DL 0.8 0.8 0.3 1.0 0.9 0.771

Liu et al. [34] DL 0.8 0.8 0.3 1.0 0.9 0.771

Jahanshahi et al. [86] 0.5 0.8 1.0 0.5 0.9 0.750

Bonnin-Pascual and Ortiz [33] Spatial 0.8 0.5 0.1 0.9 0.9 0.671

Ortiz et al. [87] 0.8 0.5 0.1 0.9 0.9 0.671

Liu et al. [73] DL 0.9 0.5 0.1 0.5 0.9 0.671

Yang et al. [88] 0.5 0.5 0.5 0.9 0.9 0.643

Yao et al. [78] 0.6 0.5 0.3 1.0 0.7 0.593

Fernández-Isla et al. [63] Wavelet 0.5 0.5 0.1 0.9 0.9 0.586

Bonnin-Pascual and Ortiz [49] Spatial 0.6 0.3 0.1 1.0 0.9 0.579

Bonnin-Pascual and Ortiz [48] Spatial 0.6 0.3 0.1 1.0 0.9 0.579

Bonnin-Pascual and Ortiz [50] Spatial 0.6 0.3 0.1 1.0 0.9 0.579

Bonnin-Pascual and Ortiz [54] Spatial 0.5 0.5 0.0 0.9 0.9 0.571

Eich et al. [55] 0.6 0.3 0.1 0.9 0.9 0.571

Ozog and Eustice [35] 0.1 1.0 0.8 1.0 0.5 0.571

Bastian et al. [76] 0.5 0.7 0.6 0.5 0.5 0.557

Ortiz et al. [56] Spatial 0.5 0.5 0.1 0.5 0.9 0.557

Ortiz et al. [37] Spatial 0.5 0.5 0.1 0.5 0.9 0.557

Akinfiev et al. [81] 0.5 0.5 1.0 0.8 0.3 0.536

Ortiz et al. [12] DL 0.5 0.3 0.1 0.5 0.9 0.514

Choi and Kim [67] Histogram 0.5 0.1 0.1 0.9 0.9 0.500

Aijazi et al. [68] Histogram 0.5 0.9 0.9 0.5 0.0 0.500

Navarro et al. [64] Histogram 0.5 0.5 0.3 0.8 0.4 0.464

Navarro et al. [65] Histogram 0.5 0.5 0.3 0.8 0.4 0.464

Petricca et al. [69] DL 0.5 0.0 0.0 0.5 0.9 0.436

Avril et al. [80] Non-visual 0.5 0.5 1.0 0.1 0.0 0.400

Ji et al. [32] Spatial 0.4 0.5 0.8 0.5 0.1 0.400

Zaidan et al. [47] Spatial 0.5 0.3 0.0 0.5 0.5 0.386

Siegel et al. [61] Wavelet 0.5 0.8 0.1 0.1 0.1 0.364

Siegel and Gunatilake [62] Wavelet 0.6 0.5 0.1 0.5 0.1 0.357

Papachristos and Alexis [83] Non-visual 0.0 0.8 0.1 0.1 0.5 0.336

Dini and Mura [82] Non-visual 0.0 0.8 0.1 0.0 0.5 0.329

Maglietta et al. [53] Spatial 0.5 0.5 0.3 0.5 0.0 0.329

Zheng et al. [31] Spatial 0.5 0.5 0.0 0.1 0.0 0.257

Qaddoumi et al. [85] Non-visual 0.5 0.3 0.1 0.0 0.0 0.221

Gardiner and Melchers [84] Non-visual 0.5 0.0 0.5 0.0 0.0 0.214

Table A.3. The score of all references. The metrics are used to compute the final expertise score
according to equation A.1. The expertise scoring lies in the interval [0 − 1] with a higher value
meaning a better fit between the expectations of the classification societies and the actual level of
expertise captured.
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Figure A.5. The attention the marine vessel inspection process has received over the last 35 years
from an automation perspective has been increasing. This is an indication of the technological
advancement that has been made within image processing and computer vision, as that is by far
the most popular approach to automating marine vessel inspections.

A simple solution to the localization problem would simply be to use a stereo camera setup

that can provide a simple form of 3D localization [7]. The disadvantage of stereo vision is

possibly the difficulty in achieving high enough accuracy to also perform quantification.

Quantifying the amount of corrosion can be done on a higher level as was shown in [91, 92]

however, both the severity of deformations and cracks have to be quantified using physical

distance units. This might require a higher level of detail than a stereo vision camera setup

can provide. Unless an orthophoto can be produced, a better approach might be to use a

laser range sensor that is capable of producing high-accuracy point clouds.

A.4 Evaluation with regards to the Engineering Aspect

Autonomous robotic platforms for vessel inspection are still in their early stages, and

few systems provide a high level of mobile autonomy. This section will cover the level of

autonomy that is currently available using a taxonomy inspired by the SAE taxonomy [27]

(see figure A.6). The SAE taxonomy was originally intended for motor vehicles on the

roadway system, however, the same reasoning can be applied to any autonomous vehicle.

Thus, the gradual removal of the operator is similar for both grounded vehicles and aerial

31



Article A
Autonomous robotic inspection for Remote Inspection Technique Systems: A

review

vehicles, ultimately progressing to full autonomy without the influence of an operator

[93]. In the context of drone applications in confined spaces, the specific adaptation used

here is described in section A.2.2. For each level of autonomy, the relevant literature

will be reviewed and categorized by the relevant taxonomy of automation. The levels do

not implicitly describe the robustness of each system. Two systems in the same category

can perform differently with regards to — for example — accuracy, precision, and how

they handle disturbances. Likewise, the levels will not differentiate whether the drone is

airborne, sub-sea, or ground-based.

No
Automation

SAE 0

Assistance

SAE 1

Partial
Automation

SAE 2

Conditional
Automation

SAE 3

High
Automation

SAE 4

Full
Automation

SAE 5

Figure A.6. The autonomy taxonomy used here is sequential, starting at no automation and
progressively decreasing the involvement of the operator to the point of a self-sustainable solution
with full automation.

Drones/Robotic platforms which are not aimed at vessel inspections, but can provide a

comparably high level of autonomy, will also be reviewed with the purpose of a future

outlook on what research could be applied to conduct autonomous vessel inspections.

A.4.1 SAE 0 - No Automation

The first category, where the human is in control of all parts of the navigation during the

vessel inspection, primarily consists of legged and so-called crawler platforms operating

above the sea surface. Small 4-legged robots are presented in [94], where magnets are

attached to each foot to ensure the capability of climbing vertical surfaces. Furthermore,

the authors enhanced its capability to climb on industrial beams with a thickness of less

than 5 cm, and through narrow gaps of 23 cm. Other approaches use magnetic wheels

[95, 42, 55] or chain-like tracks with inserted magnets in each link [96]. The authors in

[97, 98], have investigated the possibility of a rubber-wheeled robot with top-mounted

propellers to provide a thrust that increases the friction between the wheels and the surface.

The hybrid actuation approach adds the advantage of climbing over vertical walls made of

non-magnetic materials, such as glass fiber, wood, and aluminum. A manually controlled

Unmanned Aerial Vehicle (UAV) was used in [99] to collect image data of a wall from a

cargo hull of a container vessel. These images were then offloaded from the drone and used
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to build a mosaic of the wall, with the benefit of an increased overview of the inspection

area.

None of the aforementioned research efforts in this category has capabilities to aid in

autonomously inspecting the vessel.

A.4.2 SAE 1 - Assistance

Within this level of autonomy, the operator enjoys some level of assistance in controlling

the robotic platform, which could be in the form of localization and/or a stabilization

system. Examples of localization systems are the relative pose estimations for sub-sea hull

inspection described in [100] and [101]. The authors of [101] and [102] use stereo vision to

get a relative pose by matching image feature points between the camera views and frames.

Both systems are tested on a real vessel, where the authors in [101] tested their system on

a 19x2 meter hull section of a real marine vessel. The system was verified by showcasing

the reconstruction of the hull section using the pose and images along the inspection path.

Another approach by [35] uses the CAD model of the hull in combination with a camera

and a Doppler velocity log (DVL), to localize itself with respect to the coordinate frame

of the hull. By, furthermore, adopting a bundle adjustment system the authors built a

mosaic map overlayed on the CAD model of the hull.

Absolute localization systems for UAVs operating in the confined spaces of the vessel were

recently investigated in [2, 3, 4]. Employing a combination of Visual Inertial Odometry

(VIO) and detection of existing known structural 3D landmarks were used in [2] to estimate

the absolute pose in a mockup model of a water ballast tank. This had the advantage

of only requiring a high-level map of the environment. Deep neural networks were used

in [3, 4] to generate accurate 3D feature descriptors within an existing point cloud map

and for the current viewpoint of the vehicle. The feature descriptors were then matched

and used together with a visual-inertial odometry estimate in an extended Kalman filter,

resulting in an absolute pose estimate.

A magnetic track/belt robot was proposed by [103], which uses computer vision to localize

the robot and create a mosaic map of the traveled trajectory. The system was tested in

the cargo hulls of a bulk carrier, and was according to the experiments, able to combine

images and create a 2d overview map of approximately 1 x 3 meters of a section of the

wall of the cargo hull. Similarly, [104] developed a magnetic track/belt robot capable of

performing thickness measurements on the dry parts of a hull on a marine vessel. The

robot was able to maintain an estimation of its position using an extended Kalman filter

to fuse wheel encoder readings and IMU data.

A.4.3 SAE 2 - Partial Automation

Most subsea inspection systems are naturally focused on the outer hull of the vessel. The

researchers in [105, 106, 107] focus on hull mapping with simple path planning systems

built into the commercially available ROV. This research involves pose graph optimization

based on pose estimation by fusing multiple sensors, namely cameras, sonars, and DVLs.

The executed trajectory near the hull structure is a simple zig-zag pattern, also known

as meander pattern. A noticeable addition is the ability to align previous and years-old
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inspection scans with recent scans [106]. This alignment adds important value to the

inspection data since the rate and progress of any deterioration or biofouling of the hull

can now be monitored, which in turn can be used to estimate required inspection intervals.

Specific to this category is also the focus of added capability of path planning or execution,

where [36, 108] presents a method for full coverage inspection of a hull through redundant

roadmaps [109]. They also specifically address the challenging areas around the driveshaft

and propeller at the stern of the vessel and illustrate the possibility for full hull inspection

with a resolution in the order of 10cm [36]. The novelty within the planning aspect

specifically lies in the redundant roadmaps where previous subsea inspection methods

have applied a mostly uniform zig-zag pattern. Above sea level, a magnetic wheeled

robot, Sparrow, has been developed in [110] to conduct contact-based ultrasonic thickness

inspection. The localization system was based on Marvel Mind beacons, attached to the

hull of the vessel, and required line of sight to the robot to provide stable position estimates.

The Sparrow can autonomously move in simple zig-zag patterns during the inspection,

using position estimates from wheel odometry and the beacons. This capability was tested

within a 0.7x0.7m area. Airborne solutions have in recent years been researched as viable

solutions for the visual inspection of marine vessels. Examples of this are the AscTec

Firefly, the Hummingbird and the Pelican platforms which were used in [37, 48, 87]. To

navigate, the system presented in [37] utilizes LIDARs, cameras, and IMU data from the

onboard AscTec flight controller. It makes use of a 2D Hokuyo UST-20LX lidar to estimate

distances to the surrounding walls and a 1D LIDAR-Lite to estimate the height above the

floor. Experiments were carried out in the cargo hull and the top ballast tanks of a cargo

vessel. 2D scan matching was used to align the UAV with the surrounding walls and, in

combination with the LIDAR-lite for height estimate, the system was able to maintain

the position of the UAV inside the confined space. The autonomous capabilities of the

works in [48] and [87] are similar to [37], due to the employment of the same positioning

system to maintain the robot’s position next to the wall of the cargo or ballast tank.

In [87] the authors added a multi-threaded Binary descriptor-based Image MOSaicing

(BIMOS) approach to create an overview of the inspection surface, using ORB features

and Keyframes.

A.4.4 SAE 3 - Conditional Automation

The aerial system used in [111], includes self-localization, navigation, and obstacle avoidance.

The authors, furthermore, add a Safety Manager system which is built on top of the obstacle

avoidance capabilities, by (1) preventing the drone from flying too close to the ceiling, and

(2), automatically landing the UAV when the battery voltage gets below a threshold or

(3), hover the drone when the wireless connection to its base station is lost. The system

is designed for confined spaces within marine vessels, but the experiments are conducted

in an office-like environment of approximately 9x8x2.5 meters. Obstacles were simulated

using cardboard pillars, and the UAV was successful in planning paths, in 2D, around

the obstacles. The system was later updated in [112], to make the platform as usable as

possible for non-experts. The level of autonomy is the same as in [111], but the focus

was on the human interaction with the UAV using the Supervised Autonomy approach

from [113]. The work in [111] adds a human control interface to the UAV, where the

operator can overrule part of the automation layers, i.e. path execution. During the human
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operation, the UAV will, however, overrule the operator, and perform evasive actions,

in case obstacles are in the human executed path. The authors tested the system in an

office-like environment, showing the obstacle avoidance capabilities, where the system

prevents the operator from flying into a wall. The authors of [114] propose an aerial

autonomous system for fire detection in visually degraded confined spaces of marine vessels.

In terms of localization, the authors employ an absolute pose estimation method that fuses

Visual Inertial Odometry estimates with 6-DOF pose estimates, based on point cloud data

from an RGB-D camera with a known map of the environment. Online motion planning

is applied, which combines A* path planning with a receding horizon control framework

for obstacle avoidance. The majority of their tests were conducted in a corridor onboard

a vessel, with outbreaks of fires along a corridor. The fires are automatically detected

using a FLIR infrared camera using a threshold for temperatures above 100 degrees C.

The UAV was successfully able to automatically navigate along the corridor and through

the doorways of the test environment.

A.4.5 SAE 4 - High Automation

The state of the current research has to our knowledge not yet reached [SAE level 4]

autonomy within marine vessels. However research within similar environments could

reasonably well be applied to raise the autonomy level. The research mentioned in this

section is, therefore, most of a higher autonomy level than in the area of marine vessels.

The authors in [115] presented a path planning framework for autonomously underground

mine exploration, based on random trees while also accounting for the robots’ endurance

limit. Their approach is field tested on a UAV in an underground mine. The authors,

furthermore, improve the system and presented a solution in [116] for underground mine

rescue using the same UAV. Their system is capable of autonomously exploring the

unknown mine environment and detecting and localizing objects of interest, which in their

case were humans in need of rescue. Their approach is further expanded in [117] to include

other vehicles, more specifically the legged robot ANYmal [118] from ANYbotics AG in

Switzerland. ANYmal was also used to perform autonomous inspection inside offshore

platforms in [119]. Here, it was shown that ANYmal could perform some of the same

simple inspection tasks as the human surveyors, such as using its manipulator to push

buttons, toggle switches and fuses, and turn valves. However, it still lacked behind the

humans in simple tasks such as opening and closing doors, which was required due to fire

prevention onboard the platform.

A.4.6 SAE 5 - Full Automation

Currently, there is no fully autonomous system, category [SAE level 5] which is relevant

for vessel inspections.

A.4.7 Other important aspects

Little research effort within automating inspections has focused on addressing the

requirements for surface preparation before an inspection can be performed. For visual and

ultrasonic testing this is most often a thorough cleaning of the surface, which is currently
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most often done by humans. The authors of [120] designed an inspection and cleaning

system for removing biofouling on the hull of the vessel.

A.4.8 Summary

Though robotics platforms have been used in the inspection process of marine vessels,

many of the platforms do not achieve a high level of autonomy and still rely on human

operators for a significant part of the operation. Many of the platforms presented are based

on general concepts such as a flying drone or a submarine. This independence also means

there is a high probability of being able to transfer a platform from other applications

where a higher level of autonomy has been achieved to the marine vessel inspection process.

Examples of this were shown to achieve an adopted SAE level of 4 - higher than any of

the investigated works that specifically target marine vessels.

A.5 Overall assessment of the state of the art

A visual interpretation of the existing work is shown in figure A.7. From this figure, it

is visualized that there is a lack of systems that encapsulates both the engineering and

expertise aspect that is necessary to alleviate the human involvement in the inspection

process.
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Figure A.7. The existing works scored on their expertise and engineering aspect. The category
NA captures all the works that presented some form of expertise, but have not presented a way of
collecting the sensory information necessary for a fully autonomous system.

It should be noted that some of the references in figure A.7 are not directly trying to solve

the challenge of autonomous marine vessel inspection, however, they all show some form of

potential.
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While most of the literature included in this paper tries to solve either the expertise or

engineering aspect, some of the works are part of a larger project that collectively tries

to solve the challenge of automating the inspection process. Generally, it is these papers

consisting of collections of previous work that score high in both expertise and engineering.

Among the highest scoring works are a significant number using UAVs as a robotic

platform to reach otherwise inaccessible areas. One reason for this might be the ease of

access to these kinds of platforms in combination with the low requirement for specific

external environments — i.e. they don’t rely on the presence of water and work in

non-metal structures. Though they are limited by their heavy trade-off between lifting

capacity and battery life, they can quickly traverse large areas while carrying lightweight

sensor equipment such as cameras. In return, the cameras can provide a large amount

of information about the environment where the drone is located and can be used to

detect defects. By using stereo vision, the drone can even achieve 3D vision that enables

localization of defects as was shown in Brogaard et al. [7]. A general challenge when relying

on cameras as the input for detection is the reliability of external lighting. In some areas

of a marine vessel, such as in the ballast tanks, there is no natural light, thus the drone has

to carry it on-board further reducing the effective flight time, in the case of aerial drones.

Some of the works presented in this paper utilize multiple robotic platforms to perform

different parts of the inspection process. This means the platforms can be more specialized

in solving one part of the inspection process. It does also mean that the output of the

technologies has to be merged before a complete overview of the vessel condition can be

given, thus demanding a higher level of cooperation.

Many of the works reviewed in this paper address both capturing sensory information

through the use of cameras and drones while also presenting some level of image processing

to evaluate the sensory information. Only a few of them address the challenge of capturing

image data in areas where there are very poor lighting conditions. Since many areas of

modern marine vessels have little to no natural light, any drone has to carry any necessary

light sources with it which complicates the detection. Additionally, none of the methods

address the uncertainty associated with detection. I.e. the detection’s not influencing

the behavior of the drone to optimize the ability to accurately do defect quantification

– a critical step towards an autonomous solution that provides the necessary level of

quantification for the classification society. Similarly, there is a clear trend to use object

detectors and segmentation models to provide a deterministic output. By doing so, they

fail to encapsulate the ambiguity that is inherently present in visual defect detection where

information is only partially observable due to the surface conditions where the defects are

located. Instead of these deterministic approaches, one future direction for marine vessel

inspection that has to be addressed is a distribution estimation over the detected faults

and defects. If a classification society has to rely on the detections without being present,

they need access to some form of certainty metric from which they can assess the overall

vessel condition without risking a wrongly tuned confidence threshold altering the vessel

classification.

Though a wide range of detection models has been tried on defect detection, very little

emphasis is put on processing the detections in a human-readable manner - e.g. by

converting the mapped detections to the reference frame of the vessel by noting on which
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longitudinal or web frame the defect is present on. This kind of topological representation

could also be used for navigational purposes. The vessels are well structured and the layout

of all areas to be inspected is usually known in advance. This information is rarely used

in combination with active defect detection to optimize the information gathered during

the traversal of the inspection areas. Using a topological navigation planner would also

alleviate the risk of drifts. If the drone is relying on a high-resolution map representation

of the environment, drifting increases the risk of collision with the environment. By using

a topological planner that relies only on high-level information such as longitudinal counts,

web frame counts, stringer level, etc. in combination with local information like VIO and

3D sensory information, the need for high-resolution maps can be reduced. An instance

where relying on internal map representations can be insufficient is when navigating to

an unexplored area through a narrow passage. If the map representation is too low,

the narrow passage is not visible, or difficult to reliably sample paths during exploration.

Simultaneously, a too high map resolution increases the requirement for onboard processing.

A.6 Conclusion

In this paper, works on autonomous inspection were reviewed and evaluated with respect

to a series of metrics defined to indicate how far the state of the art has progressed when

compared to the needs of the classification societies. The metrics consist of two parts:

Expertise and Engineering. The purpose of this split was to separate the part of an

autonomous system that performs condition assessment of vessels and the part that enables

the inspection to be physically carried out.

The metrics defined for the expertise were intended to show how well a given method can

assess the types of defects that are typically found during a marine vessel inspection as

well as quantify them. Generally, most of the methods struggle to quantify the defects

they are able to detect. While the detection of defects is useful as a starting point, it is

not sufficient as a replacement for manual inspection.

The adapted SAE taxonomy was used as a metric to evaluate the robotic platforms related

to marine vessel inspection. This step-wise taxonomy describes the level of autonomy

of each robotic platform where a higher score means a lower level of manual operation

involved in the inspection. Some of the robotic platforms achieved a significant level of

autonomy.

Though the purpose of this paper was not to in-depth review the machine learning and

locomotion methods used in the literature, we have observed a high correlation between

using deep learning techniques in a system and scoring high in our metrics – specifically

the expertise one. In combination with flexible robotic platforms, such as UAVs, deep

learning has proven to be an effective approach to the marine vessel inspection process.

Based on the analysis done in this paper we have identified some crucial future research

directions within marine vessel inspection and classification: a higher level of quantification,

human interpretable defect localization, defect-aware navigation, and the notion of

probabilistic inspection. Remote inspection cannot be realistically implemented as an

assistive tool for human surveyors unless a higher level of quantification is achieved. By

doing so, the expertise level of the solutions would be increased significantly. Additionally,
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defect localization in a human interpretable manner would be directly usable in the vessel

condition documentation. This would help increase the confidence of the surveyor and

would reduce the amount of translation that has to be done between users of the new

autonomous system and the established classification process. As a further note, there

is a lack of navigation methods that incorporate faults and defect detections to increase

detection confidence and quantification accuracy, for documentation purposes, or otherwise

better coverage of an area under consideration. From the analysis, we also found a lack of

works that address the ambiguity of the classification process. Future research should help

address this ambiguity by relying less on single binary ground truths as these are both

difficult to access and rely on due to residue build-up in the ballast tanks.

We believe that these four areas of research would significantly increase not only the

autonomy of marine vessel inspection but also increase the confidence of the human

surveyors that have to rely on the system and ultimately are responsible for the vessel

certification.
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Chapter 3

Absolute Localization with custom

structural landmarks

Confined industrial spaces are often dark and visually feature poor, resulting in sub-optimal

performance of Visual-Inertial Odometry (VIO). When considering the ballast tanks of

marine vessels and many other industrial spaces, a lot of repetitive structure and symmetry

is however often present. For ballast tanks, a range of compartments of similar dimensions

are coupled in a grid-shaped structure along the bottom and side of the vessel, also shown

earlier in Figure 1.2. The internal structure of each compartment tends to be well defined

and, therefore, an initial effort is made to investigate the use of prominent 3D structural

elements as known landmarks in confined spaces. The next article presents such a method

in which custom structural landmarks are detected and extracted from a water ballast tank.

The structural landmarks are then registered with the same landmarks in a high-level map

to provide an absolute pose estimate. With this approach, there is no need for detailed

maps of the environment, but only high-level information, in the form of landmarks, from

the structural drawings of the ship. This can simplify the required landmark points and

the need for detailed maps. For our case with the ballast tanks, the intersection between

the web frame and the longitudinal was used, where Figure 3.1a highlights these structural

elements as the red and blue areas, respectively. An example of a point cloud generated

(a) (b)

Figure 3.1. Illustration of the longitudinals and web-frame inside a water ballast tank (a) and the
longitudinals highlighted in a pointcloud scan from an RGB-D sensor (b). The purple and green
dots indicate the intersection points between the longitudnials and web-frame in the map and the
scan respectively.
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by the depth camera of the UAV is shown in Figure 3.1b, where the green landmarks

indicate the detected intersection points and the purple dots the position of landmarks

manually extracted from the drawings of the vessel. Using the 2D drawings of the vessel

to generate a simplistic map of the environment can limit the detail requirements of the

map and simplify the registration of the map to the environment. Since each compartment

of the ballast tanks consists of the same high-level structural elements, a list of high-level

landmarks could be kept onboard the UAV in a hierarchical setup. In article B, we

demonstrate a proof-of-concept toward such a custom structural landmark approach for

localization in confined spaces. The primary contribution of the article was the creation of

a custom feature extractor with the addition of a simple hierarchy setup to locate defects

in water ballast tanks. The core of the system consists of the Visual Inertial Odometry

system, ROVIO. The absolute pose estimate from the aforementioned landmark estimation

system is then used to provide absolute corrections to the VIO pose estimate. An overview

of the entire pipeline can be seen in Figure 3.2, where the desired output is the robot pose

estimate and the defect pose estimate.

Figure 3.2. The absolute localization and defect pose estimation pipeline using custom landmark
extraction from the environment and visual inertial odometry.

The proposed method was tested using a small UAV with an onboard stereo camera, which

provided both the point cloud for the landmark extraction and the image and Inertial

Measurement Unit (IMU) stream for the ROVIO based VIO estimate. The results of the

article showed an improvement in pose accuracy compared to using the raw VIO estimate.

Furthermore, the system was used to localize simulated defects installed within the mock-up

model described in chapter A.1. Additionally, the results showed that the system was

able to accurately determine the absolute pose of the defects using the proposed method.

This approach can be useful in scenarios where only simple 2D drawings are available

compared to newer CAD files. In addition, it adds well-defined landmarks that could be

tuned to perform well for each given environment. The method described in article F

uses a similar approach to extract a structural element from a chemical distillation column

to determine whether the robot is in a reliable position for its localization estimation.

However, the custom landmark extraction also makes it somewhat less generalizable to

other structures without human-created feature extraction methods. The approach in

article B also requires a well-structured extraction of 3D intersection points, and could

face issues with asset scalability due to a potential time-intensive manual extraction process
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from the structural drawings. Despite the listed potential disadvantages, the results from

the article, show that the system was able to accurately estimate the position of the UAV

and the detected defects in the water ballast tank.
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Towards UAV-based absolute

hierarchical localization in confined

space
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1FORCE Technology, Park Allé 345, Brøndby, Denmark

2Department of Electrical and Photonics Engineering, Technical University of Denmark,
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Abstract:

To perform safe, autonomous, visual inspections of maritime vessels, accurate and

lightweight localization of UAVs in dark and confined areas is required. Such visual

inspections are performed by expert surveyors, periodically, and aim at the classification

of the vessel by identifying defect locations within the frames of the ship. The paper at

hand presents our initial efforts in absolute localization as a solution to the aforementioned

problems using a UAV. Employing a combination of Visual Inertial Odmetry and detection

of existing known structural 3D landmarks, an absolute and hierarchical localization system

is created. With this approach there is no need for detailed maps of the environment, but

only high-level information —i.e. few landmark points— from the structural drawings of

the ship. The system is tested within a mock-up model of a topside water ballast tank,

and its localization is compared to a groundtruth, which is estimated based on ArUco

markers mounted on the walls inside the model. Our initial results indicate that the use of

geometric landmarks, extracted from vessel designs, greatly benefit the UAV localization

accuracy as well as the localization of defects with respect to the vessel body frame.

B.1 Introduction

The inspection of ballast tanks is an important factor in assessing the integrity of the

ship and, therefore, the safety of the crew and the environment during operation. These

inspections are mostly carried out by humans, which involves entering into confined

spaces. Inspection is considered dangerous work, due to the variability’s in the atmospheric

conditions. Likewise, this line of work is also often tiresome, dirty, and dangerous, which

increases the risk of human errors, such as missed critical defects. It is important to

45



Article B Towards UAV-based absolute hierarchical localization in confined space

Figure B.1. Our system operating inside the mock-up ballast tank, in complete darkness.

minimize human involvement during inspection of ballast tanks, to eliminate the human

risk and to maximize repeatability. The repeatability of such an automated procedure may

enable the introduction of defect trend analysis on such critical areas. Due to complex

structures within the ballast tanks, ground-based robots are limited by their ability to move

on and around the obstacles. Small submarines, like the BlueROV2 from Blue Robotics,

could be used for contact-based inspection but are unlikely to provide good results for

the visual survey, due to the muddy conditions of the water in the tanks, which greatly

reduce visibility. During most —and all of the special— surveys [121], the ballast tanks

are empty, and therefore an Unmanned Aerial Vehicle (UAV) is considered to be the most

suitable solution for visual inspection task.

To be able to navigate within ballast tanks, as shown in figure B.2, a lightweight accurate

3D localization system is required. Visual Intertial Odometry (VIO) would fit nicely

to this description, however the current algorithms —considering optimal conditions for

camera sensors— are known to produce at best 1% localization errors which can increase

unboundedly [122]. Given poor lighting conditions and long complex pathways in the

ballast tanks, the error can be in the 10ths meters. It might come as a natural extension

of this line of argument that simultaneous localization and mapping (SLAM) approaches

(e.g: ROVIOLI [123] or ORBSLAM [124]) would be a good fit for the task. However, these

approaches rely on re-observation (loop-closure [125]), which is not in accordance with

automated surveying of ballast tanks. To optimize for exploration, an autonomous drone

has to observe every area once and use a quick exit route —usually vertical aligned holes—

moving straight up to get out the ballast tank and on the deck to be recharged. Another

approach to allow the usage of SLAM would be to conduct a pre-mission to generate a

consistent map of the area which can later be used for accurate localization. Given the

fact that inspections are usually performed in all tanks of all vessels at most once a year,
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this approach would double the load/time to perform inspection.

Following this analysis, the aforementioned approaches are deemed unsuitable for the

problem at hand. In this paper we, therefore, propose and test an initial implementation of

a Hierarchical VIO-based localization algorithm, which is able to provide absolute —with

regards to the vessel body frame— localization, employing 3D structural landmarks, known

from design documents. We test the system in a realistic environment (a mock-up model)

evaluating both its UAV localization and its defect localization accuracy. The baseline for

the evaluation of our system is a proven VIO solution, i.e. ROVIO.

Figure B.2. Location of a top-side water ballast tank in the cross section of a bulk carrier vessel.

B.2 Related work

Entering the confined spaces of vessels is considered a high-risk operation for humans,

and the need to use robots has therefore emerged. The most common approaches are

magnetic crawlers or small submerged Remotely Operated Vehcicles (ROV). Research on

the use of ROVs for vessel inspection has focused on the hull [25], by submerging the robot

underwater near the vessel. These approaches usually comprise a SLAM system using a

fusion of visual and acoustic sensors. Although small ROVs can physically fit in many of

the confined spaces of the vessel, such as the ballast tank, they are not deemed suitable

due to both wielding an increasing position error and their water requirement. Though

the ROVs might seem as the obvious choice for especially ballast tank inspection, it is

important to note that the ballast tanks are only filled with water when the ship is empty,

which is often only the case in a very limited time period when the ship is in dock. Crawler

and small-legged robots have, to our knowledge, not focused on the localization problem.

In fact, the authors of [94] have not implemented a positioning system, and the work in [42]

uses external pose referencing. Such a solution is not considered viable for tight, confined

spaces such as ballast tanks. In addition, crawlers require human intervention to place and

disengage them. This could discourage the adoption of said approaches as they would not

provide a solution to the human risk problem. An alternative to pure VIO based solutions

is localization based on fusion of data from multiple sensors [126]. The authors of [127]
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propose a camera system that can perform localization based on a previously collected

LIDAR map. The work shows that the the drift in a VIO system without loop closure

can be reduced, by localizing within the prior LIDAR map. The availability of a detailed

LIDAR map can not be assumed for our case, and also poses a risk to the localization if the

map is not up to date with the actual navigated environment. Other works such as the one

in [128] integrates a LIDAR and an IMU to do simultaneous localization and mapping on-

board an unmanned aerial vehicle in a GPS denied environment. Localization is performed

by using a scan matching approach based on a customized version of the Iterative Closest

Point algorithm. Unfortunately the system is intended to only localize itself in a simple

2D map (e.g. office-like), whereas our camera based approach aims at localizing within the

full 3D environment. When performing inspection, the location of defects with regards

to the body-frame coordinates of the subject is of utmost importance. Therefore, many

previous approaches employ pre-existing models during inspections. Even-though there

is no extended literature for body-frame aligned inspection in confined spaces, outdoor

solutions have been reported. The work in [129] requires a 3D CAD model of a bridge as

an input to the localization system. Specifically, the system first captures a 3D image and

generates a 2D binary projection. Then, it associates it with 2D projections of the CAD

model to estimate its absolute position. The requirement for a full 3D model onboard

—and the generation of several subsequent projected templates— may lead to exceeding

the capabilities of a light weight system, especially for large areas such as the Water

Ballast Tank (WBT) of a vessel. Additionally, the method employed doesn’t estimate

the orientation of the UAV as it assumes a motion always parallel to the inspected area.

Since the inspection of defects, requires observation from multiple viewpoints, we opted

for a full 6D pose estimate. The work in [130] requires a GPS-enabled pre-mission to

generate a reference map of visual landmarks. That enables them to accurately locate

themselves using 3D-2D motion estimation. The method employed requires external

localization and pre-mission to enable consequent inspections. In other domains (e.g.

space exploration [131, 132]) researchers employ FPGAs to accelerate operations. In our

approach we extract the necessary absolute landmarks using design documents, therefore,

allowing for implementation in a multitude of vessels, in a fast and efficient way.

B.3 System overview

To accurately report the position of defects within a structured confined space, a localization

system that rely on the internal structural elements is proposed (figure B.3). To

solve this task, the UAV (figure B.1) is equipped with a stereo camera and an IMU,

enabling it to use both Visual Inertial Odometry (VIO) and landmark extraction in

the form of known structures in the confined space. The UAV uses the VIO as its

pose estimation, but experiments show that within the challenging environment of a

ballast tank, the accumulated error increases quickly. To mitigate this problem, the

developed camera software on-board the UAV extracts structural features —in our case

the longitudinals(beams) and web frames in the ballast tank— and compares the estimated

positions of the features to the actual known positions within the space. When the pose of

the UAV has been accurately estimated, defects within the space can be located with a

similar accuracy, i.e., the error of the absolute position of the defects relies only on the

error of the absolute localization system, and in our case, the negligible camera projection
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Figure B.3. Absolute localization system based on VIO and hierarchical structure landmarks.
The landmarks detected from the UAV’s point of view are combined with structural landmarks
—extracted from design documents— to provide accurate absolute localization.

error.

A normal use case for our system is as follows: The approximate initial location of the

UAV is known —e.g the UAV is placed next to the entrance of the WBT #3. The UAV

takes off and detects a manhole, while it localizes itself with respect to it. The UAV then

enters the manhole and, consequently, redefines its topological position to be inside the

corresponding compartment. The UAV is able to move inside the tank and maintain

absolute localization using landmarks, i.e. the corners of the intersections of web-frames

with longitudinal strengtheners. When the system passes through another manhole, the

localization pipeline is repeated. Given a defect detection system [77] (not included here),

the system is capable of providing accurate localization of the observed defects, consistent

with the ship body frame. The defects are, in this paper, represented by ArUco markers.

B.3.1 Environment

The developed UAV-based system is aimed to operate in the confined spaces of ballast

tanks onboard cargo vessels. To enable rapid development and testing —and due to

temporary access restrictions to vessels (see Covid-19)— a mock-up model of a topside

ballast tank of a double-sided cargo carrier was designed and produced to simulate the

real environment. The mock-up model is at a scale of 2:3, with the manholes being at the

original scale. A comparison between the mock-up model and a real top-side ballast tank

is shown in figure B.4. Inside a ballast tank one can identify some distinct features as seen

in figure B.4c. Among them, the transverse supporting structures (web frames) as well as
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(a) Real (b) Mock-up model (c) Color-overlay

Figure B.4. Photos of a real topside ballast tank (a) of a bulk carrier vessel and its mock-up
model (b). We constructed the mock-up at a scale of 2:3 but we maintained the entrances at the
same size, to provide realistic conditions. The inside of the mock-up has been treated with paint,
so that it assimilates closely the real environment. The longitudinal stiffeners and web frames are
color coated in (c).

the longitudinal strengtheners are the most prominent. In this paper, the space between

two web frames is defined as a compartment.

B.3.2 Aerial Vehicle

The aerial platform (figure B.5) used in this paper is specifically designed for operating in

confined spaces, and utilizes publicly available components, with a focus on minimizing

size and weight. It is equipped with a small onboard Linux PC, LatePanda Alpha

868, and a Flight Controller Unit (FCU), Pixhawk 4 Mini —running the open source

software PX4 [133], which handles the low-level stability control of the UAV. To sense

its surroundings, the UAV is equipped with powerful natural light LEDs and a Mynteye

Figure B.5. Our developed UAV system, including stereo cameras, IMU, an onboard flight
controller, a processing unit and an adjustable lighting system. N.B.: the ArUco markers on the
walls are used for groundtruth and not for localization estimation.
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D1000-120 stereo vision camera, which includes a time-synchronized IMU. The camera

is equipped with an IR-projector that is continuously toggled with 30 hz. Therefore,

we acquire both IR-(with point cloud) and RGB-only images, which are used for VIO.

Consequently, this camera setup makes it possible to have both a VIO system running and

at the same time generating point clouds for detecting 3D features in the environment.

The localization system is executed on the onboard PC which is connected to both the

FCU and the stereo camera. The onboard PC transmits pose estimates via serial to the

FCU based on the VIO system. To calculate these pose estimates, a fusion of VIO and a

association of geometric features with simple prior knowledge of the environment is used,

providing a hierarchical localization system.

B.3.3 Visual Inertial Odometry

The UAV uses ROVIO [25] as its base localization system. ROVIO is a Visual Inertial

Odometry (VIO) algorithm, which fuses inertial measurements with image data to provide

an estimate of the pose of the camera-IMU system, using an iterated extended Kalman

filter. ROVIO is selected as our short-term localization system because of its proven

robustness and ability to track noncorner-shaped features, such as lines, which is beneficial

in scenarios with missing texture. There exist other VIO solutions such as the one in [26]

that employ similar algorithms. In general, ROVIO constitutes a robust solution, but its

accuracy is challenged by the harsh conditions within the ballast tanks, which results in

an increased uncertainty.

B.3.4 Prior Knowledge

Large ships are designed and manufactured with a set number of web-frames, along the

lateral axis and a set number of longitudinal stiffeners along the longitudinal axis of the

ship, as shown in figure B.4c. The distance between each longitudinal stiffener and frame

is also known —described in design documents— and this frame-stiffener construction is

employed to guarantee the vessel’s integrity. It is also used by inspection personnel as

the coordinate system to describe the positions inside the ballast tanks. Therefore, it is

important to be able to accurately detect and localize defects with respect to these frames

and longitudinals. This prior knowledge is provided to the system in the form of a map of

landmarks. This map of landmarks is organized in a hierarchical structure, and includes

the 3D location of the intersection points between the web frame and the longitudinals as

well as the center of the manholes, with regards to the specific compartment.

B.3.5 Landmark Detection

The estimated pose from the VIO system is corrected by detecting known landmarks, such

as the intersection of the web frames and longitudinals, within the ballast tanks of the ship.

A point cloud of the environment is created from the disparity map of the camera and the

landmarks are thereafter detected by extracting the longitudinal beams and web frames in

the point cloud and calculating the location of their intersection, as shown in figure B.6.

The correction is applied every time there is a match between the known and detected

landmarks. A detailed description of the landmark detection process can be seen in figure
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Figure B.6. Illustration of the detected longitudinal stiffeners (red), the intersection points
(green), and the known landmarks (purple) in the WBT mock-up model.

Figure B.7. Algorithm for 3D landmark detection.
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B.7. AR landmarks are furthermore detected within the tank with the sole purpose of

obtaining a reasonable estimate of the groundtruth pose of the UAV.

B.3.6 Hierarchical structure

A drawing of the structure of the vessel is provided by the owner/operator to the inspection

team. Prior to the mission, fixed 3D landmark points were extracted from this drawing. All

landmark points are stored in a hierarchical structure, as shown in figure B.8. The top node

is a WBT. Each topside WBT consists of several compartments. In each compartment, we

include the landmarks as defined in the previous sections. The location of the compartment

holes and the location of the landmarks in regard to the compartment they belong to are

known. It is possible to request information about a given compartment, which is then

used to extract landmarks required for absolute localization. The possible connections

between compartments, in the form of manholes, are also included in the structure, and

are illustrated in figure B.8 as the arrows between the compartments.

Figure B.8. Hierarchical structure of the Topside WBT. Grey selection represents an example of
the information retrieved to be used in absolute localization.

B.3.7 Abs. Localization

Owing to the fact that every passage from compartment to compartment is intentional and

actively guided, the system can load the respective landmarks of the “correct” compartment

—from the hierarchical structure— to be used for absolute localization. Both the detected

and map landmarks have a pose (position and orientation) which can be calculated using

the adjacent longitudinal beams. Then, the association among detected and map landmarks

can be performed by minimum euclidean distance. A relative “correction” pose can be

calculated so that the poses of the detected and map landmarks are aligned. Finally, this

correction is added to the VIO estimate to provide the absolute pose of the UAV.

B.4 Experiments

B.4.1 Experimental Setup

All experiments have been conducted within the WBT mock-up model previously shown in

figure B.4b. The UAV is launched from a known position outside the WBT and estimates
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its relative localization using a VIO system. It is then flown through the first manhole

entrance (figure B.1), using position commands on a remote ground station (GS). When

inside the WBT, the absolute localization system is activated and corrects the pose of the

UAV based on the 3D detected landmarks (longitudinal stiffeners and web frames). ArUco

markers are placed inside the tank, and their usage is twofold. On the one hand, they

are used to represent defects within the WBT. Once detected, a position estimate of the

specific defect/marker is published. This circumvents the usage of a machine learning-based

defect detection component and, therefore, allows one to evaluate only the localization

accuracy. On the other hand, the markers provide a groundtruth against which both the

VIO and the absolute localization will be benchmarked.

B.4.2 Experimental Results

In figure B.9 the trajectories of the position estimates and the groundtruth are illustrated.

Both, the results of ROVIO and our method are shown. It can be seen that a standalone
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Figure B.9. (X,Y) groundtruth position vs ROVIO estimate (upper) and our approach (lower).

ROVIO solution, implemented on our UAV-setup, is challenged by the harsh conditions in

the WBT and the estimation starts to drift away from the groundtruth after 15-30 seconds,

whereas our position estimate is corrected every time suitable structural landmarks are

detected. The reason of the ROVIO drift can be attributed to several factors, such as

lack of features in the dark scene, dust particles in the confined area, and the artificial

(on-drone) illumination creating pseudo features which move together with the UAV.

An error in the position estimate of the drone will also affect the ability to localize accurately

the defects in the tanks (ArUco makers). Figure B.11 shows the x,y estimated position of

the defects and the error, as the Euclidean distance from the measurement to the ground

truth. It is clear from the figure that adding the structural landmarks to the position

estimate greatly benefits the accurate localization of defects. The hierarchical structure,

furthermore, provides increased accuracy without the need for extensive computational

resources onboard the drone.
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Figure B.10. Position error compared to the groundtruth. Missing data points are due to visual
dropouts of groundtruth tags.

Figure B.11. Defect location estimation vs grountruth (upper) in world coordinates and the
resulting error (lower) for ROVIO and our approach.
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B.5 Conclusion

Within this work, an absolute localization system, utilizing a hierarchical structure, was

proposed for accurate localization of defects in water ballast tanks of marine vessels. A

fusion of Visual Inertial Odometry and the detection of known 3D structural landmarks,

such as longitudinals and web frames, was conducted to increase the accuracy of the

position estimate of the defects. While VIO solutions fail within the dark and confined

spaces of the water ballast tanks, our system is capable of accurately localizing defects,

requiring only a high-level human understanding of the environment. Our experiments

conducted in a mock-up model of a topside water ballast tank, proved that the localization

system was able to accurately provide better positions of defects located within the confined

space compared to a stand-alone VIO system. In our future work we will integrate the

updates from visual-inertial ego-motion and landmark-based pose extraction, in a tightly-

coupled state estimation. Even though we did not experience many erroneous 3d landmark

extractions in our environment, in the future, we will investigate the performance in other

types of water ballast tanks, as well as the resiliency of landmarks and data association.
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Chapter 4

Absolute Localization with Deep

Learning landmarks

In the previous chapter, we investigated a method for localizing using custom structural

landmarks extracted from point clouds. There are a series of benefits to this method, but

one of its weaknesses is the need to create custom landmark/feature descriptors for the

environment. In this chapter, we introduce a setup for absolute localization in known

confined spaces, using Deep Learning based landmarks, which is applicable to a wider

range of cases. The focus will be on using 3D point clouds from a camera-based ToF

sensor, for absolute pose estimation. However, the most common approaches for point

cloud registration will first be considered.

4.1 Iterative Closest Point (ICP)

The Iterative Closest Point (ICP) algorithm is a popular method for rigid registering of

two point clouds. The goal of ICP is to find the transformation that minimizes the distance

between the corresponding points in two point clouds. The most common approach for the

ICP algorithm is to create a correspondence set by finding the closest distance between the

points from a source point cloud P, to a target point cloud Q. This is done for all the points

in the cloud, and a transformation is estimated based on the minmization of an objective

function defined over the correspondence set. The ICP algorithm then works iteratively,

with each iteration improving the alignment of the two point clouds, until a convergence

criterion is met or a maximum number of iterations is reached. The convergence criterion

commonly used is the maximum RMS error of the correspondence points.

One of the drawbacks of the ICP algorithm is slow convergence due to its linear convergence

rate [134]. Moreover, ICP needs an initial starting position and can also converge to a local

minima, as shown in the example in Figure 4.1. Using classic ICP as the only registration

solution for 3D point clouds could, therefore, potentially give a lot of false registrations

and in the same time be computationally heavy. Much of this potential error comes from

the data association step in the algorithm in which the correspondence set is generated.

If the points were paired based on some uniqueness of each point, this could solve some

of the incorrect correspondences. This uniqueness can be achieved by employing feature

descriptors.
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Figure 4.1. Illustration of a sensor scan (red) registered to a map (grey) using point-2-point ICP,
with the registration result shown in yellow. The structure of the environment can cause ICP to
converge to an incorrect local minima. The correct registration is shown in green.

4.2 Feature descriptors

A common way to describe the structure in 3D point clouds is to use 3D feature descriptors.

These descriptors use various methods, where a popular choice for a classical feature

descriptor is Fast Point Feature Histograms (FPFH)[135]. FPFH uses histograms to

represent the local geometric structure surrounding a single point in a 3D point cloud. To

do this, first the surface normals of the surrounding points are calculated and the angles

between the normals are extracted. The angles are then binned into histograms, with a

fixed number of bins. One of the advantages of FPFH, according to its authors, is its

ability to handle noise and changes in viewpoint. Since the descriptor is based on the

distribution of normal angles around a point, FPFH is not sensitive to small variations in

the positions of the points. Furthermore, by using FPFH to represent the local geometric

structure, the descriptor can capture the shape of a local area, rather than being affected

by small variations of the surface, e.g. from noise. However, these abilities also depend on

how well the normals are calculated for each point and, thus, the descriptor can require a

bit of manual tuning of its input data.

In recent years, deep learning-based methods for 3D point description have been

investigated with increasing success. One of the current powerful feature descriptors

is 3DSmoothNet[136] that applies a novel smoothed density value (SDV) voxelization

preparation step on the input data. The advantage of SDV is that it reduces the sparsity

of the input voxel grid. The output of the SDV is then used as input to a siamese deep

learning architecture. The complete network is trained on the 3D Match dataset [137],

which consists of aligned point cloud data from indoor environments such as offices, hotels,

and homes. The ML model used in the experiments in this chapter is trained on this

dataset and should, therefore, be expected that the descriptors’ ability to represent the

environment is diminished due to domain change. However, the results of the articles

in this chapter show that 3DSmoothNet performed well, albeit computationally resource

intensive. A large part of the computational cost arises from the data preparation step of
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the SDV calculation.

Moving towards a more computationally efficient pipeline, we employ the state-of-the-art

Fully Convolutional Geometric Features (FCGF)[138]. The FCGF feature descriptor

eliminates the need for a data preparation step and works directly on the 3D point cloud

data, hence its improved computational efficiency. Furthermore FCGF is based on sparse

tensors and sparse convolutions, which adds to its efficiency. It utilizes a UNet structure

with skipped connections and residual blocks to extract sparse fully-convolutional features.

To counteract the loss of accuracy in benefit of computational efficiency, FCGF employs

negative sample training and specifically introduces novel contrastive losses, maintaining

both high efficiency and high performance during training. The use of FCGF as a suitable

feature descriptor for ballast tanks was investigated in article D. The FCGF model used in

the article was also trained on the 3D Match dataset. FCGF did not perform as accurately

as 3DSmoothNet but was 6.7 times faster in the experiments conducted in the article. The

lack of accuracy can be overcome by employing registration algorithms that are robust in

high outlier count. This will be the subject of the next section.

4.3 Correspondence based Registration

Assuming features extracted from two overlapping point clouds, theoretically a set of

matching features should exsist. The data association between the feature points can be

done using K-Nearest Neighbors (KNN) in the feature space to find the corresponding

3D points. In article C the KNN correspondence search is performed on the Central

Processing Unit (CPU), while in article D the search is performed on the GPU using

Facebook AI Similarity Search (FAISS)[139]. FAISS was originally developed to quickly

search through large amounts of multimedia documents by harvesting the parallelizable

compute architecture of the GPUs. It is built around an index type that stores a set

of vectors and provides a function to search through a list based on Euclidean distance

(L2) in the feature space. The results show a noticeable time improvement utilizing the

GPU-based correspondance search from FAISS compared to the standard CPU-based

version in article C.

With a list of corresponding points, a registration algorithm can be used to find the

optimal alignment of two point clouds, in the presence of outliers. A common way to

do this is to use RANdom SAmple Consensus (RANSAC). RANSAC randomly selects a

subset of the 3D points from the feature descriptor correspondences and estimates the

transformation matrix that aligns these points. This random selection can be repeated

up to a predefined maximum number of times. For each random sampling, the algorithm

applies the estimated transformation matrix to the source point cloud and validates the

transformation by considering the convergence criteria of all the points in the point cloud.

The process finishes either by reaching the maximum number of iterations or by satisfying

the convergence criterion. The convergence criteria for a successful registration are, in

the following articles, based on a threshold of required inliers in the corresponding point

clouds (as well as the maximum number of iterations of RANSAC). Depending on the

number of features and iterations required, RANSAC can be computationally inefficient.

Furthermore, a large number of outliers in the correspondences can also affect RANSACs

ability to converge to the correct solution[140].
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To counteract this problem, a newer method, called Teaser++[141], has been proposed in

the literature as a fast and robust approach to register two sets of 3D points in the presence

of a large number of outliers, although for object registration rather than localization. This

method has been the preferred choice for the registration algorithm in article C and D.

Incorporating a feature descriptor, correspondence search, and a registration algorithm

into a 3D registration pipeline, a scan from the ToF point cloud sensor can be registered to

the map of the environment. The transformation of the scan into the map frame provides

a pose estimate of the sensor, and by extension also of the robot, within the given map.

This is the absolute pose estimate of the robot. However, this pose estimate can still be

computationally intensive and result in slow update rates on performance limited platforms.

Therefore, a relative pose estimate can be used between absolute pose updates. By fusing

the slow absolute pose with a faster relative pose (VIO) in an Extended Kalman Filter

(EKF), a fast absolute pose estimate can be obtained. Figure 4.2 illustrates how the 3D

Figure 4.2. Illustration of the high-level absolute pose estimation by fusion of both 3D feature
based registration and visual inertial odometry.

registration is fused with a Visual Interial Odometry estimate in an EKF, to provide the

fast absolute pose estimate. The high-level representation of the 3D registration pipeline

containing the feature descriptor, correspondence search and registration, can be seen as

the orange 3D Registration-box in the figure. An example of how a point cloud scan is

registered to the environment map is shown in Figure 4.3, which in this case is based on

the ballast tank mock-up model. The green lines indicate where features from the orange

sensor scan are matched to the map, marked as gray points.

4.4 Summary

The motivation behind this research section was to eliminate the need for custom feature

extraction and investigate the possibility of 3D Deep Learning-based feature descriptors

for absolute localization in known confined spaces. Article C compared FPFH and 3D

smoothnet in combination with ICP and Teaser++ registration. The findings showed

that FPFH as a feature descriptor for the highly self-similar environment of the ballast

tank did not perform well enough —in terms of accuracy— and, therefore, was one of

the main components to be replaced on the follow-up work and corresponding article.

3DSmoothNet proved to be a good feature descriptor for the environment and was able

to provide absolute pose updates with decent accuracy. The absolute pose estimate was
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(a) Sensor scan (b) Feature Correspondences (c) Registration result

Figure 4.3. Example of a scan to map registration from a water ballast tank mockup model,
where the orange orange point cloud is the scan from the point cloud sensor and the gray points
indicate the environment map. The green lines indicate the matching correspondences between the
two point clouds.

coupled with a relative VIO estimate in an extended Kalman filter to provide a fast and

accurate absolute pose estimate. In article D, the newer and faster FCGF model was

applied and compared to the previously investigated 3DSmoothNet. FCGF was a faster

method than 3DSmoothNet due to its sparse tensor representation of the 3D space. In

this work, both 3DSmoothNet and FCGF were executed on the GPU and the article,

furthermore, introduced an improvement to the correspondence search by utilizing FAISS

KNN —also implemented on the GPU. These improvements resulted in the localization

pipeline being able to run on live data from the sensors in adequately high frequency for

onboard online operations.

There is some similarity between the two articles in this section. They both utilize feature

descriptors to register a scan point cloud to a map, to provide an absolute pose estimate in

a map frame. However, there are still important key differences that need to be highlighted.

In the first published article C, all computations for the localization system are performed

offline on the CPU and the system was tested on a collected dataset. In the subsequent

article D it was clear that utilizing a GPU for the feature descriptor could significantly

boost the computational performance of the feature descriptors based on deep learning.

The goal was therefore to introduce the GPU as a significant aid for the aforementioned

3D registration part of the localization pipeline. The findings of both articles show how

using the GPU can significantly boost the performance of these kind of point-cloud-based

localization systems, and using a carefully selected pipeline, the system can run live in real

environments.
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Abstract:

When operating in dark and confined spaces, the capacity of the robots to localize in

an absolute reference frame is of utmost importance. This letter presents an absolute

localization system, using deep 3D landmarks, for known confined spaces. The system

estimates the robot’s relative localization using visual inertial odometry. Local deep 3D

landmarks are extracted from the robot’s view. Similar 3D landmarks are, also, extracted

from the prior map, which are then registered with the local landmarks to provide absolute

localization via an Extended Kalman Filter. To the best of our knowledge, deep 3D feature

registration has not been used before for absolute localization. The proposed localization

system is tested within representative application area —i.e. a structured, confined space—

and our results indicate greater accuracy and lower processing time when compared to

mainstream 3D registration approaches.

C.1 Introduction

Localizing within industrial dark and confined spaces can be a challenging task in robot

applications. Structured areas, such as industrial environments, often contain featureless

surfaces hindering visual tracking or recognition. Visual localization systems are known

to produce at best 1% error [122], [142] which is also unbounded without some prior

knowledge or re-observation. Repetitive patterns —of both visual and structural nature—

can make loop closure, and in extension absolute localization, prone to errors. Furthermore,

occlusions can diminish the accuracy of VIO systems, while low light conditions limit the

number of reliable visual landmarks. Additionally, environmental attributes, such as dust,

can introduce noise to sensors and, in consequence, to the estimation. Using structural
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features from confined spaces for absolute localization has been previously investigated in

[2], however, the landmarks were custom designed to represent use of case-specific structural

attributes. The authors of [143] use the VIO pose as a priori for the ICP registration, and

add a further validation of the registration result. However, they perform registration

directly on the original points without extracting distinct features.

Another approach investigated by the authors in [14], is to fuse positions from a pre-installed

Ultra Wide Band(UWB) satellite system with a VIO pose estimate. Although this method

could be suitable for warehouses, it is not possible to equip all the relevant GNSS-denied

confined spaces with UWB systems. Another application area for GNSS-denied absolute

localization is the robotics space exploration [144, 145]. A different approach could be

the referencing of online data to offline 3D models (stemming either from CAD or from

previous stereo reconstruction[146, 147]).

Absolute localization using geometric 3D features has become an interesting research topic

due to the rise of better feature detection [136], [148] and robust registration approaches

[140], [141], [149]. The aforementioned novel registration approaches have been applied

to the problem of object pose estimation, rather than robot localization. To the best of

our knowledge, this is the first work employing deep 3D feature registration for absolute

localization in industrial confined spaces.

In this letter, we propose an absolute localization system for confined spaces using deep

3D geometric features extracted from point clouds. Extracting geometric features from

both the pre-existing map and the current field of view of the robot, we find the relative

pose between the two point clouds to obtain an absolute pose in the map frame. Due to

the computational cost of the point cloud registration, we employ VIO —which provides

high-frequency relative localization— and couple it with the absolute pose at a lower

frequency, via an Extended Kalman Filter.

Using state of the art deep geometric feature descriptors, on both the robot’s field of view

and the already available CAD models of confined spaces, we can extract better point

correspondences between the clouds. Combining these correspondences with a fast and

outlier-robust registration algorithm results in better registration performance compared

to previous methods. Furthermore, fusing a fast robust VIO relative localization system

with the registration, gives rise to a reliable absolute localization system even in highly

repetitive structural environments.

The rest of the letter will describe the system architecture, the experiments conducted in

a real-world confined area, and the performance of the system with regards to position

accuracy and computational time.

C.2 System description

The proposed localization system, figure C.1, consists of two modules, the first of which

is pose estimation based on 3D point cloud registration. The second module contains

the filter, which rejects 3D registrations with sudden motion changes, and fuses the 3D

registered pose estimations with VIO estimates to increase the update rate of the resulting

absolute pose estimation.
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Figure C.1. The pipeline of the proposed absolute localization system. The main parts of
the system are the Feature extraction (using 3DSmoothNet), robust 3D point registration (using
TEASER++), and the Extended Kalman Filter which fuses the pose estimate from the registration
algorithm with a visual-inertial pose.

To extract features in both the map and the sensor point cloud, we employ a 3D deep

convolutional neural network-based algorithm, i.e: 3DSmoothNet [136], which comprises a

two-part pipeline. The first part is a voxelized smoothed density value (SDV) representation,

which is computed per interest point and aligned to the local reference frame (LRF) to

achieve rotation invariance. The second part is the siamese deep learning architecture

which receives as input the normalized 3D SDV voxel grid. The result of the 3DSmoothNet

pipeline is a feature descriptor for the given interest points in the point cloud. The interest

points are selected randomly —approximately 50% of all points in the map and 25% of

the sensor point cloud. By randomly selecting points in both clouds, we minimize the

computational load while maintaining a high probability of acquiring correspondences. The

feature descriptors of the interest points are organized in k-d trees to allow the efficient

correspondences search between the map and sensor point cloud.

The noisy corresponding points are fed into a robust registration algorithm, i.e:

TEASER++ [140] which calculates the transformation between the map and sensor

cloud. In an ideal case, where no outliers exist among the correspondences, the registration

can be defined as a nonlinear least squares solution, as follows:

min
s>0,R∈SO(3),t∈R3

N∑
i=1

1

σ2
i

∥bi − sRai − t∥2 (C.1)

, where the minimization is performed over the scale s, the rotation R, and the translation t.

Due to the metric environment of the use case, a scale of 1 can be assumed and, therefore,

no additional computational resources will be spent on estimating the scale. The 3D

correspondence points are notated as a and b, where (ai, bi) represent a correspondence
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pair between the map and sensor point cloud features and N represents the total number

of corresponding points. Due to the noisy measurements of the point cloud reconstruction,

a Gaussian noise with isotropic covariance described by σ2 is included. However, for

most real world cases, correspondences with zero outliers cannot be safely assumed [140]

and therefore the robust registration can be performed using a Truncated Least Squares

function C.2, as follows:

min
s>0,R∈SO(3),t∈R3

N∑
i=1

min

(
1

β2
i

∥bi − sRai − t∥2 , c2
)

(C.2)

Equation C.2 describes a least squares solution of measurements with small residuals (≤ c̄2),

where βi is a given bound of the noise. This noise bound is set as the maximum error

expected from an inlier or 3σ. Large residuals (> c̄2) are discarded. In our experimental

setup, c̄ is set to 1.

To simplify the solution, the rotation and translation are decoupled in TEASER++, as

expressed by equations C.3 and C.4 respectively.

R̂ = arg min
R∈SO(3)

K∑
k=1

min

(∥∥b̄k − ŝRāk
∥∥

δ2k
, c̄2

)
(C.3)

Firstly, to estimate R̂, we want to minimize the distance between corresponding points

expressed as b̄k and āk, with a bounded noise δk. Using the estimated rotation, the

translation can then be determined by equation C.4. The translation is acquired component-

wise, i.e., the entries t1, t2, t3 of t are computed independently. Large residuals (> c̄2) are,

as in the previous equations, discarded:

t̂j = arg min
tj

N∑
i=1

min

(tj −
[
bi − ŝR̂ai

]
j
)2

β2
i

, c̄2

 (C.4)

An analytic derivation of the aforementioned formulation can be found in [140]. Via the

registration, we obtain the pose of the robot in the map. The registration assumes no

knowledge about previous poses and a simple motion filter and an extended Kalman filter

are introduced to improve the pose estimate. To obtain a better estimate, the pose from

the 3D registration is evaluated by a motion filter, which rejects movements with a velocity

above 0.3 m/s. The filtered pose is then used in an Extended Kalman Filter along with

the VIO pose. The result of the Kalman Filter is an absolute pose estimate in the map.

C.3 Experimental Setup

The proposed localization system has been tested within a representative structured and

confined space, specifically a mock-up model of a topside water ballast tank (WBT)

onboard a marine cargo vessel. The structure of these confined spaces are often known.

The localization system can use this information in the form of a point cloud extracted

from the CAD drawings, which we consider as the map. The environment, or the map, the

UAV has to localize itself in, can be seen in figure C.2. The experimental Unmanned Aerial
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Figure C.2. Illustration of a correct(left) and wrong(right) match with the point clouds used in
the experiments, where the map is shown in grey and the sensor points in colour. The geometric
similarity of repeated structured environments can cause errors when matching without prior
location information. These wrong matches are avoided using simple filtering techniques.

Vechicle (UAV) was equipped with an RGB-D camera, which generates RGB images and

3D point clouds at a frequency of 15-24 Hz. To estimate the position of the UAV, the point

cloud originating from the sensor is matched to the map point cloud. The registration

is based on TEASER++ [140] and uses features generated by 3DSmoothNet [136] which

utilizes a deep learning architecture to extract 3D features from point clouds. To compare

the performance of our system, two other setups were tested. The first setup is based on

the extraction of FPFH [135] features, and registration using TEASER++. To maximize

the quality of the FPFH setup, features were calculated for all points in both the map

and the sensor point cloud. The pose estimate from each solution was compared to a

groundtruth, which was estimated using ArUco markers mounted inside the mockup-model.

From the position error in figure C.3 it can be seen that the FPFH solution has large

errors on all three axis and, therefore, cannot register correctly the sensor and map point

clouds. To get better matches, we therefore introduce 3DSmoothNet feature descriptors,

while maintaining TEASER as the registration algorithm (shown as the red line in the

figure C.3).

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 12:59 14:00 15:00

Time [mm:ss]

-4

-2

0

2

4

X
 e

rr
or

 [m
] ICP TEASER FPFH

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 12:59 14:00 15:00

Time [mm:ss]

-4

-2

0

2

4

Y
 e

rr
or

 [m
] ICP TEASER FPFH

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 12:59 14:00 15:00

Time [mm:ss]

-4

-2

0

2

4

Z
 e

rr
or

 [m
] ICP TEASER FPFH

Figure C.3. Position error for tested methods: ICP registration using: 3DSmoothNet features;
TEASER++ using 3DSmoothNet features; and TEASER using FPFH features.
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As the last comparison setup, ICP registration [150] was used based on the features from

3DSmoothNet(3DSN) and the points in map and sensor clouds. The registration for all tests

was performed at 0.1 Hz. From figure C.3 it can be seen that both 3DSmoothNet(3DSN)

with TEASER++ and the ICP test show sudden errors of around ±2 meters on the x-axis.

Due to the similarity between the two compartments of the WBT, the sensor cloud is

being matched to the wrong compartment, which results in large jumps in the matched

pose. An example of a correct and wrong match is shown in figure C.2. These jumps are

rejected by a motion filter which rejects updates with a velocity larger than 0.3 m/s, before

the estimated pose from TEASER is published to the Extended Kalman Filter, as shown

in figure C.1. The extended Kalman filter fuses the pose from TEASER++ with a VIO

estimate from ROVIO [25] using a ROS implementation of a generic Kalman Filter [151].

The VIO pose has the benefit of a fast update rate, but will tend to drift over time. By

fusing the accurate but slow pose from the 3D registration with the fast VIO estimate,the

final accurate absolute pose can be acquired with the high update rate from the VIO

system. The result of the entire localization pipeline is shown in figure C.4, where it is

clear that the position error for ROVIO increases, while the filtered EKF pose error is

small. The mean and standard deviation of the tested methods can be seen in table C.1.
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Figure C.4. The position error of our filtered system (Notated as Filtered) compared to the
standalone TEASER++ using 3DSmoothNet (Notated as TEASER), and ROVIO pose estimate
(Notated as ROVIO). Because of ROVIO’s relative localization, an increasing error is visible on
the x axis, but due to little movement (±1m) in the experiment on the y and z axis, the drift in
ROVIO is limited on these two axes.

3DSN+ICP FPFH+TEASER 3DSN+TEASER ROVIO Our.

Mean 0.715 1.842 1.094 0.1724 0.102
Std. 1.138 1.304 1.153 0.0564 0.050

Table C.1. The mean and standard deviation(Std.) of the euclidean position error, in meters,
of the tested methods: ICP with 3DSmoothNet features, TEASER++ with FPFH, TEASER++
with 3DSmoothNet, ROVIO, and our EKF filtered absolute localization solution.
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C.4 Computational time

An important aspect for all localization systems is the computational time required to obtain

a pose estimate. The computational time for our proposed approach(3DSN+TEASER)

is illustrated in figure C.5 and is compared to the FPFH and ICP setups. To have a fair

comparison, all tests were performed on a CPU, and no GPU was used for 3DSmoothNet,

despite the fact that even better performance would be expected by using a GPU. In

figure C.3 it can be seen that the ICP registration with 3DSmoothNet features has fewer

outliers than 3DSN+TEASER++, but this accuracy comes with a computational cost.

The computational costs of the three methods are shown in figure C.5, where it can be

seen that the combination of 3DSmoothNet(3DSN) and Teaser is more than twice as fast

as the ICP solution. It is worth noticing that the correspondence search is significantly

slower with the FPFH solution since it’s based on all points in the point cloud. This was

necessary to get the best registrations with TEASER++ and, therefore, it provides the

lowest possible error for the 3D point matches.
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Figure C.5. The average computational time for each element in the 3D registration
methods; (i) ICP registration using 3DSmoothNet features (3DSN+ICP), (ii) TEASER++
registration using FPFH features (FPFH+TEASER), (iii) TEASER++ using 3DSmoothNet
Features (3DSN+TEASER).

C.5 Conclusion

In this letter we have proposed an absolute localization system for confined spaces using

VIO and deep geometric features, which is able to accurately estimate the position of an

UAV in a confined space. The experimental results in real environment indicate that our

absolute localization system outperforms standard feature detection approaches such as

FPFH, and lowers the computational time from scan to registration, compared to previous

methods. Furthermore, fusing the pose of the registration with a VIO estimate in an

extended Kalman Filter increases the robustness in similar structural environments and

can increase the update-rate of the absolute pose estimation. Future improvements to the

system can be achieved by the inclusion of faster deep geometric feature descriptors, which

will further robustify the 3D point cloud registration.
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Abstract:

Navigating within dark and confined spaces requires robotic platforms to utilize accurate

and reliable localization systems to operate safely and unattended. This paper presents

an absolute localization system, for known confined spaces, using state-of-the-art 3D

pointcloud descriptors. Local geometric features are extracted from a known map and

registered to matching features visible in the robots’ field of view. The 3D registrations are

motion-filtered and fused with a visual inertial odometry estimate in an extended Kalman

filter, which returns a fast and accurate absolute pose estimate. The proposed localization

system is tested with different deep learning feature descriptors in a structured confined

space, and our results indicate greater accuracy and lower processing time when compared

to mainstream 3D registration approaches.

D.1 Introduction

Absolute localization within dark and confined spaces, using features from the environment,

can be a difficult task in robot applications. Industrial spaces, not designed for everyday

human interaction, can contain featureless surfaces, limiting pure visual tracking or

recognition algorithms. Visual Inertial localization systems are prone to unbounded errors

and are known to produce at best 1% error [122], [142]. Repetitive patterns, of both visual

and geometric nature, can be used for loop closure, but in environments with structural

similarities, they are prone to errors.Visual Inertial Odometry(VIO) systems also depended

heavily on sufficient light conditions and furthermore tend to drift significantly in the case

of dust, smoke or similar noise in the environment [152]. Similarly, highly performing

visual methods for loop closure and simultaneous localization and mapping [153, 154, 155],
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are also not good candidates when operating in the absence of light or in foggy/dusty

environments.

The employment of custom, manually designed, 3D geometric features for absolute

localization was described in [2], where 3D —CAD derived, case-specific— structural

elements were detected in point clouds. Exploiting the 3D geometry to provide accurate

mapping has been investigated in [143] where VIO was used as the first step of an ICP-based

localization and mapping algorithm. In that case, the whole pointclouds were used and

the feature extraction was not investigated.

If the confined space consists only of large open accessible areas, fixed positioning systems

such as UWB beacons, can be installed and used as a position estimate. This approach was

investigated in [14], where the authors fuse positions from a preinstalled Ultra Wide Band

(UWB) satellite system with a VIO pose estimate. While interesting for fixed —frequently

explored— areas such as workshops and warehouses, it is clear that for most cases —such as

new exploration or in-frequent operation— the use of UWB beacons as a counter measure

to GNNS-denied areas is impractical. Extraterrestrial planetary robotic exploration is

also an application where the GNSS-denied is crucial. In [144, 145] 3D landmarks, such

as large boulders and craters —observed both in rover and orbital images— were used to

localize a rover in cartographic coordinates.

Due to the rise of fast and accurate 3D descriptors, such as [136], [148], [138] and robust

registration approaches [140], [141], [149], absolute localization on 3D point clouds has the

potential to become a well-performing approach. Inspired by these latest advancements, in

this paper, we: a) propose the absolute localization of an autonomous system using deep

geometric feature matching and b) benchmark the two most promising deep geometric

feature description algorithms. The recently proposed deep geometric feature descriptors

allow us to produce better correspondences between the online robot 3D reconstructed

pointclouds and the previously extracted model-based 3D pointcloud of the confined area.

The correspondences are further evaluated and pruned by a state-of-the-art registration

algorithm which is both fast and robust against a large percentage of outliers, yielding

better overall performance than previous 3D-based localization systems. Finally, the

fusion of the periodic registration with a online high frequency VIO relative localization

results in an absolute localization system which is reliably performing even in cases of

highly repetitive structural environments. We have explored the idea of deep geometric

features for absolute localization in [3] using 3DSmoothNet. In this paper we propose

an updated pipeline which, with the inclusion of a GPU-based correspondence search

and a substantially faster deep feature descriptor, allows for computational times suitable

for online robot execution, which was previously unfeasible. The following sections will

describe the system architecture, the experiments conducted in a real-world confined area,

and the performance of the system with regards to position accuracy and computational

time, using the feature descriptors; Fast Point Feature Histograms (FPFH), 3DSmoothNet

and Fully Convolutional Geometric Features (FCGF).
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D.2 System description

The absolute localization system, shown in figure D.1, is divided into three components;

a 3D registration module, a visual inertial odometry system, and a filtering module. In

the 3D registration module, the point cloud generated by the sensor is registered to a

map of the environment, to generate the first pose estimate. Due to the occurrence of

incorrect registrations, the pose is fed to a motion filter to reject sudden jumps in the pose,

which may occur due to these outliers. Parallel to the 3D registration, a fast VIO system

estimates a relative pose based on IMU and image data from the same sensor. The VIO

and motion filtered registration poses are fused in an Extended Kalman Filter, to calculate

a reliable and fast absolute pose estimate of the robot.

Figure D.1. The pipeline of the proposed absolute localization system. The main parts of
the system are the Feature extraction (using either 3DSmoothNet or FCGF), robust 3D point
registration (using TEASER++), and the Extended Kalman Filter which fuses the pose estimate
from the registration algorithm with a relative visual-inertial pose.

The 3D registration method is executed in three consecutive steps; (1) Feature extraction,

(2) correspondence search and (3) the registration algorithm. In the first step of the

registration process, 3D features are extracted which describe the geometric structure at

a given point. The feature descriptors for the map are only calculated once whereas the

features from the sensor scan are calculated at each arrival of the scan.
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D.2.1 Feature extraction

The investigated feature descriptors for this paper are Fast Point Feature Histograms

(FPFH) [135], 3DSmoothNet [136] and Fully Convolutional Geometric Features(FCGF) [138].

The first method, FPFH, is an extension of Point Feature Histograms(PFH), and is a

well known 3D point descriptor. It uses normal information of the neighboring points to

generate a histogram that reflect the characteristics of the neighborhood around each point.

SmoothNet is a deep learning-based descriptor and consists of two parts.

The system starts by calculating for every point a voxelized smoothed density value (SDV)

representation, which limits the sparsity of the input voxel grid. To produce orientation

invariance the SDV is aligned to a local reference frame (LRF), similarly to hand-crafted

3D descriptors. The resulting SDV is then used as an input to a siamese deep learning

architecture working on stacked convolutional layers and the output unit length feature

vector is produced by a batch normalization layer followed by an l2 normalization. Each

input interest point is, therefore, assigned with a 32-dimensional feature vector. In this

work, to make the 3DSmoothnet competitive with the much faster FCGF, we randomly

select approximately 50% of the pre-existing map points and 25% of the live robot view

points. We have verified that this way can both limit the computational cost and provide

enough data to ensure correspondences.

FCGF is a 3D fully-convolutional network, without the need for prepossessing. FCGF is

based on sparce tensors and sparse convolutions. It uses a UNet structure with skipped

connections and residual blocks to extract sparse fully-convolutional features. In our paper

FCGF is setup to its standard use of metric learning losses based on Hardest-Contrastive

Losses. On the 3D match dataset [137], FCGF outperformed all other classical and

machine-learning based feature descriptors —both in speed and feature match recall.

D.2.2 Correspondence search

Feature correspondences between the map and the sensor scan are then determined based

on the GPU-based KNN algorithm Facebook AI Similarity Search(FAISS)[139]. Due to

some inaccuracy’s in the feature descriptors and the geometric similarities of the the

environment, incorrect matches will arise, and are consider as noise in the correspondence

set.

D.2.3 3D Registration

Due to the nature of the environment, i.e. similar structural areas, and imperfect feature

descriptor, the produced correspondence points include substantial noise. Therefore, we

should use an algorithm that allows for outlier rejection. We opted for the TEASER++ [140]

which is a robust 3D registration algorithm, which is able to provide accurate transformation

between two corresponding point sets —in our case robot’s view and map points— even in

the presence of high percentage of outliers.

The following brief description of the registration algorithm was also described in [3], but

is included here to allow for a standalone paper.

In an ideal case, where no outliers exist among the correspondences, the registration can
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be defined as a nonlinear least squares solution, as follows:

min
s>0,R∈SO(3),t∈R3

N∑
i=1

1

σ2
i

∥bi − sRai − t∥2 (D.1)

, where the minimization is performed over the scale s, the rotation R, and the translation t.

Due to the metric environment of the use case, a scale of 1 can be assumed and, therefore,

no additional computational resources will be spent on estimating the scale. The 3D

correspondence points are notated as a and b, where (ai, bi) represent a correspondence

pair between the map and sensor point cloud features and N represents the total number

of corresponding points. Due to the noisy measurements of the point cloud reconstruction,

a Gaussian noise with isotropic covariance described by σ2 is included. However, for

most real world cases, correspondences with zero outliers cannot be safely assumed [140]

and therefore the robust registration can be performed using a Truncated Least Squares

function D.2, as follows:

min
s>0,R∈SO(3),t∈R3

N∑
i=1

min

(
1

β2
i

∥bi − sRai − t∥2 , c2
)

(D.2)

Equation D.2 describes a least squares solution of measurements with small residuals (≤ c̄2),

where βi is a given bound of the noise. This noise bound is set as the maximum error

expected from an inlier or 3σ. Large residuals (> c̄2) are discarded. In our experimental

setup, c̄ is set to 1. To simplify the solution, the rotation and translation are decoupled in

TEASER++, as expressed by equations D.3 and D.4 respectively.

R̂ = arg min
R∈SO(3)

K∑
k=1

min

(∥∥b̄k − ŝRāk
∥∥

δ2k
, c̄2

)
(D.3)

Firstly, to estimate R̂, we want to minimize the distance between corresponding points

expressed as b̄k and āk, with a bounded noise δk. Using the estimated rotation, the

translation can then be determined by equation D.4. The translation is acquired component-

wise, i.e., the entries t1, t2, t3 of t are computed independently. Large residuals (> c̄2) are,

as in the previous equations, discarded:

t̂j = arg min
tj

N∑
i=1

min

(tj −
[
bi − ŝR̂ai

]
j
)2

β2
i

, c̄2

 (D.4)

An analytic derivation of the aforementioned formulation can be found in [140]. The 3D

registration method assumes no knowledge of prior poses and incorrect registrations will

therefore greatly affect the pose estimate.

D.2.4 Filtering

To remove the pose outliers from incorrect registrations, a simple motion filter is introduced,

which remove pose estimates with movements larger than a predefined threshold. The

filtered poses from the 3D registration is then used in an Extended Kalman Filter along

with the VIO pose. The VIO pose is estimated using ROVIO and is updated at a faster

rate than the 3D registrations. The resulting pose estimates from the Extended Kalman

Filter are therefore both fast and accurate.
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D.3 Experimental Setup

The proposed localization system is tested offline on a data-set of a representative structured

and confined space, specifically a mock-up model of a topside water ballast tank (WBT)

from a marine vessel. Most often CAD drawings of these confined spaces are available,

and a map can be extracted from the drawings. The environment, or the map, for the

experiments are represented as the dark points in figure D.2. This mock-up model consists

of two compartments with similar structural geometry to reflect real-world conditions and

challenge the 3D localization system. The x,y,z size of the map is respectively 5.30, 2.9,

1.75 meters.

Figure D.2. Illustration of a correct(top) and incorrect(bottom) registration with the point clouds
used in the experiments, where the map is shown in black and the scan points in orange. The
structural similarity of the environment can cause errors when matching without prior location
information. These incorrect registrations are in this paper avoided using simple motion filtering
techniques.

The experiments are done on a data set collected with the Azure Kinect Time of flight

camera inside the mockup model. The Kinect Camera generates RGB images and 3D

point clouds at 15 Hz. To estimate the position of the camera, the point cloud arriving

from the sensor is registered to the point cloud of the map. The registration is based on

TEASER++ [140] and uses features generated by either FPFH, 3DSmoothNet [136] or

FCGF where the last two methods utilizes the described deep learning architectures to

extract 3D features from point clouds. Both deep learning methods were trained on the

3D Match dataset [137].

FPFH was tested using the Open3D [150] implementation with its standard 33 dimensional

feature descriptor on down-sampled clouds using a voxel size of 0.04 meters, and a normal

radius estimation of 0.08 meters. The size of the feature descriptors for 3DSmoothNet

and FCGF were both 32 dimensions, and the point clouds used in the experiments were

downsampled with a voxel size of 0.04 meters. FCGF was run with a kernel size of 3, and
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Figure D.3. The absolute position error for the 3D registration, using only Teaser++ and one of
the three different feature descriptors; FPFH, 3DSmoothNet(3DSN) or FCGF

the algorithm inherently extract features from all available points in both the map (112.739

points) and sensor scan. 3DSmoothNet was run with a SDV voxel size of 16, and grid size

of 0.8 meters, 55.000 random keypoints in the map, and 1000 randomly selected keypoints

for each scan. The downsampling of the map points and the random selection of the robot

points in the 3DSmoothnet was decided so that results would be adequate while keeping

the computational time withing reasonable —in terms of online operation— bounds.

From the absolute position error in figure D.3 it can be seen that large sudden errors occur

for all methods on especially the x-axis. This is mostly due to the geometric similarity

of the environment, and an example of such an geometric similarity between a correct

and incorrect match is shown in figure D.2. From the raw unfiltered 3D matching the

best accuracy is obtained from 3DSmootNet, followed by FCGF and FPFH. The accuracy

of 3DSmoothNet comes at a significant higher computational resource cost than FCGF

as it can be seen from the compute time plot in figure D.5. According to the authors

of [138], FCGF should however be more accurate than 3DSmoothNet when applied to the

3D match test dataset. The results shown here could indicate that 3DSmoothNet might

be more generalizable than FCGF, when applied to datasets which the networks have not

trained on.

The outliers from the 3D registration can to some degree be filtered by the motion filter,

depicted in figure D.1, which rejects updates with a velocity larger than 0.3 m/s. The

motion filtered 3D registrations is fused with an VIO pose estimate in an Extended Kalman
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filter using a ROS implementation of a generic Extended Kalman Filter [151]. The result

of the whole localization pipeline is shown in figure D.4, where it is clear that the filtered

EKF pose error is less than the unfiltered pose estimate in figure D.3. The mean and

standard deviation of the tested methods can be seen in table D.1, where 3DSN+T is only

using 3DSmoothNet features and Teaser++ for 3D registration, without any filtering, as

shown in figure D.3. The mean and standard deviation of the full localization pipeline is

depicted as 3DSN+EKF or FCGF+EKF depending on which feature descriptor is used on

the point clouds.

Table D.1. Euclidean positioning error

Mean (m) Std.(m)

FPFH 1.8312 1.3189
3DSN+T 1.0549 1.1782
FCGF+T 1.5928 1.4171
ROVIO 0.1724 0.0566
3DSN+EKF 0.0999 0.0497
FCGF+EKF 0.1211 0.0617
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Figure D.4. The absolute position error for our localization system, utilizing the full pipeline with
motion and Extended Kalman filter, using one of the three different feature descriptors; FPFH,
3DSmoothNet(3DSN) or FCGF.
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D.4 Computational time

An important aspect to localization systems is the required computational resources and

time to acquire a pose estimate. The average computational time for the localization

pipeline using the three different feature extraction methods can be seen in figure D.5.

Total compute time (Nvidia 2080-TI, AMD 3975-WX)

3DSN+Tea FPFH+Tea FCGF+Tea
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Figure D.5. The average computational time for each element in the 3D registration methods; (i)
TEASER++ registration using 3DSmoothNet features (3DSN+Tea), (ii) TEASER++ registration
using FPFH features (FPFH+Tea), (iii) TEASER++ using FCGF features (FCGF+Tea).

The correspondence search and feature descriptor calculations were all conducted on a

Nvidia 2080TI GPU, and the Teaser++ registration and 3DSmoothNet data preparation

(SDV+LRF) calculations were done on an AMD 3975-WX CPU. On the current system,

interchanging 3DSmoothNet with FCGF reduces the computation times with a factor of

6.7, with only minor increase in the filtered localization error, as depicted (as FCGF+EKF)

in table D.1.

D.5 Conclusion

In this paper we proposed an absolute localization system utilizing deep geometric feature

descriptors and VIO relative poses, for localization within confined spaces. Two different

methods were tested —using the same training data from 3DMatch—, where 3DSmoothNet

performed the best in terms of raw 3D point accuracy and FCGF was by far the fastest

while still performing adequately. The experiments indicate that using deep geometric

features instead of Fast Point Feature Histograms, the absolute localization performance in

both accuracy and speed could be increased after simple filtering. Future improvements to

the system can be achieved by training the networks to the specific operating environment,

since the results indicate that the fastest performing network was sensitive to the used

traning set.
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Uncertainty Aware Absolute

Localization

Up to this chapter, the uncertainty of the 3D registration has not been incorporated. In

the literature, accurate estimation of the uncertainty of 3D point cloud registrations has

been investigated [156, 157, 158], with a focus on ICP. Many of these methods have been

computationally intensive and have a tendency to underestimate the actual uncertainty

[159]. The novel deterministic method, Stein-ICP[159], can estimate the uncertainty of

6-dof point-cloud registrations utilizing the parallelizing capabilities of GPU.

Due to the lack of uncertainty estimation in my previous 3D registration methods, Stein-

ICP is therefore introduced in the 3D registration pipeline in article E. The addition to

the 3D registration pipeline is shown as the uncertainty estimation block in Figure 5.1.

Figure 5.1. The updated version of the 3D registration pipeline shown in Figure 4.2, where
the uncertainty module has been added to include the uncertainty in the resulting absolute pose
estimate.

Article E also includes a waypoint-based inspection system, where artificial defect points

are detected and inspection data are collected of each defect. The entire autonomous

inspection system is tested onboard a small UAV within the mockup model of a water

ballast tank. The results demonstrate a system able to localize and traverse the confined

space, where corrections to a drifting VIO are correctly applied. In addition, the system

locates defects within the confined space within some varying noise-bound due to a poor

timing issue from the point cloud sensor.
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(a) Cross section (b) Ambiguity registration example of a single column section

Figure 5.2. Example of ambiguity of a typical distillation column. The grey points represent the
map and the red points a point cloud from the sensor. The red point cloud can reasonably be
registered to multiple locations in the map, from which the ambiguity problem therefore arises.

For environments with an even higher level of similarity and ambiguity than ballast tanks,

the Stein-ICPs registration approach further adds value in its approach to determine

multiple successful registrations. Figure 5.2b illustrates an example of such a scan (red)

within a highly symmetrical section of a simulated chemical distillation column. For the

human reader, it is clear that the scan has the potential to be registered to multiple

locations in the gray point cloud map. However, using the previously discussed methods

based on feature descriptors, the system will suffer from incorrect data association in

the correspondence list and therefore return severely incorrect registrations, which will

furthermore impact the pose estimate of the robot. Therefore, a different approach is

needed that can handle this kind of ambiguity. Stein-ICP can provide a good solution to

the example presented in Figure 5.2, where the focus, for the sake of simplicity, will be

limited to only 1D in which we try to register the red point cloud by rotating around the

center point of the circle. Stein-ICP will perform the registration for each of its particles,

as described in article F, resulting in the Kernel Density Estimate (KDE) plot shown in

Figure 5.3. The plot illustrates that two solutions are the most prominent with a rotation

of around -80 and 100 degrees, which fit our intuition from looking at Figure 5.2b. The

Gaussian is also plotted for the sake of completeness, and it is clear that this is not an

optimal representation of the uncertainty.
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Figure 5.3. Illustration of the Gaussian and the KDE for the yaw axis of the point cloud
registration shown in Figure 5.2b. Two equally suitable registration solutions arise at -80 and 100
degrees of yaw rotation, which illustrates the problem of ambiguity.
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In article F a localization system was designed for these kind of highly similar and

feature-few environments, using a modified version of the Stein-ICP approach as one of

its primary contributions. The goal of the article is to provide an absolute pose estimate

while a legged robot traverses the confined space of a distillation column. In the article,

the ambiguity is mitigated to some extent by detecting a so-called downcomer inside the

structure, which can be seen as the vertical plate in front of the robot in figure 5.2a.

Registrations are only attempted when at least part of this unique feature is in view.

However, due to structural elements, such as cross-sectional beams and cylindrical walls,

correctly associating classic feature descriptors is still challenged by the high level of

similarity in the environment. Stein-ICP is therefore chosen as the approach for the 3D

registrations in this article, and Stein-ICPs 6 degrees of freedom are optimized to 3, to

decrease the computational requirements. Stein-ICP is furthermore improved to use the

previously mentioned KDE to provide the most optimal pose estimate to an extended

Kalman filter in the localization pipeline. The Kalman filter fuses this pose estimate with a

velocity estimate from a VIO system to provide a fast and accurate absolute pose estimate.

The results from both simulated tests and real-world tests indicate a robust accuracy of

the pose estimate with few outliers in the feature-few environment.
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Abstract:

Inspection of confined spaces poses a series of health risks to human surveyors, and therefore

a need for robotic solutions arises. In this paper, we design and demonstrate a real-time

system for collecting 3D structural and visual data from a series of inspection points

within a prior map of a confined space. The system consists of a GPU accelerated 3D

point cloud registration and a visual inertial odometry estimate fused in an Unscented

Kalman Filter. Using the state-of-the-art deep learning-based feature descriptors, FCGF –

and the robust Teaser++ 3D registration algorithm – point clouds from a narrow field

of view, time-of-flight, camera can be registered to a prior map of the environment. The

uncertainty of the system is furthermore estimated on the basis of the novel GPU-based

Stein ICP algorithm. Visual defects, represented by augmented reality fiducial markers,

are automatically detected during inspection, and their positions are estimated in the map

frame of the confined space. The performance of the system has been evaluated in real

time onboard a small UAV, within a mock-up model of a water ballast tank from a marine

vessel, where the UAV was able to navigate and inspect the ambiguous and featureless

environment.

E.1 Introduction

Inspection of dark and confined spaces can be a challenging task for both human and robotic

applications. Inspections of these spaces are performed mainly by humans due to the

often complex structures and limitations of current robotic capabilities. The environment
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can often be considered dangerous due to the variability in atmospheric conditions, the

risk of falling, and the often unknown integrity of the structure. Similarly, this line of

work can also be tiresome and dirty, further increasing the risk of human error, such as

missing critical defects. Therefore, it is important to minimize human involvement during

inspection of confined and structurally complex spaces, to eliminate human risk, and

to maximize repeatability of inspections. The repeatability of an automated inspection

solution can also allow analysis of the trend of defects in critical areas.

For the inspection of the water ballast tanks, three modes of operation are of interest,

namely 1) Mapping and exploration of the environment, 2) Visual close-up inspections,

and 3) Contact-based thickness measurement of the metal structure. The authors of [7]

have shown how water ballast tanks can be mapped using an exploration-based approach

where unknown spaces are used as an element in the RRT cost function. Therefore, the

focus of this paper is on autonomously performing visual inspections in an already known

environment. The environment can be known from either the CAD drawings of the ship or

from the construction of a map as shown in [7].

The goal of this paper is to autonomously fly an inspection mission in a water ballast tank,

while collecting inspection data in the process. The proposed inspection system to solve this

problem can be seen in Figure E.5, where this paper covers the entire pipeline except the

data evaluation part. In-depth research on deep learning-based detection and evaluation of

images collected from the UAV is covered by [77, 91]. Most autonomous systems require a

good localization module, and this will therefore be the backbone of our system. A large

part of our proposed inspection system is dedicated to both localizing the UAV itself, but

also localizing detected defects. Localizing within structured, confined, and ambiguous

spaces poses a range of challenges. These spaces often contain low lighting conditions and

poor visual features, therefore limiting visual tracking or recognition. Likewise, the nature

of industrial man-made spaces is often built with a certain repeatable pattern in mind,

challenging classical 3D geometric pattern recognition and subsequent data association.

The authors of [4] show that the well-known Fast Point Feature Histograms (FPFH)

performed poorly in these structured environments, compared to deep learning-based

geometric feature descriptors. The inspection pipeline handles a range of these challenges

by utilizing prior information from the CAD drawing of the industrial space, which in this

case is the water ballast tanks of marine vessels. The pipeline, furthermore, uses a Kalman

fused combination of Visual Inertial Odometry and 3D deep learning-based geometric

features, collected, respectively, from an Intel T265 stereo camera and L515 ToF camera.

It is important to note that the designed inspection system has the potential to be utilized

on various kind of robotic platforms, where in this paper we have tested the pipeline on

a small Unmanned Aerial Vehicle (UAV). Therefore, the purpose of the UAV is to visit

planed inspection points inside the ballast tank and collect image data of defects. In this

paper, the defects are marked using wall-mounted ArTags, at typical positions of structural

stress concentration.

Part of the localization system has been tested offline in [4], whereas this paper focus on

real time execution of a whole automatic inspection pipeline. Due to less requirements for

realtime performance, the automatic evaluation of the inspection data can still be obtained

offline using different methods based on machine learning such as described in [77, 91].
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The main contributions of this work are as follows:

1. The real-life online application of GPU and deep learning based localization using

3D geometric information, allowing the autonomous operation of inspection robots

in featureless environments.

2. Proving that a faster but inferior deep geometric feature descriptor is sufficient for

the accurate online localization of aerial inspection robots under the condition that

the system includes a robust registration algorithm capable of providing accurate

transformations even in the presence of high percentage of outliers.

3. The first-time application of a well-calibrated (3D point cloud matching) uncertainty

estimation algorithm running on a GPU in an online robot localization case.

E.1.1 Related Work

Entering confined spaces is considered a high-risk operation for humans, and therefore the

need to use robots has emerged. The most common approaches are submerged Remotely

Operated Vehicles (ROV), Magnetic Crawlers, or Unmanned Wheeled Robots, and to

some extent, Aerial Systems.

Research on ROV applications, such as [36, 160, 161], has focused mainly on inspecting

the exterior of the hull. This has been done by submerging the vehicle near the vessel

and either manually controlling the ROV or by using wheel encoder data and to some

degree visual odometry. For the confined spaces in the ballast tanks, ROVs are, however,

not considered as a viable solution. The ballast tanks are rarely filled with water, and

visibility of the water in the tanks is often limited due to impurities in the water such as

mud and marine growth.

The authors in [103, 94] have investigated the usage of crawlers and small legged robots for

inspection of marine vessels. The authors of [103] have designed a magnetic track wheel

robot, which is capable of autonomously building a mosaic image of a vertical inspection

run on a planar surface of the cargo bay. This design is limited by a simple odometry

localization system, but also by its ability to traverse obstructions in the ballast tanks

such as ladders, beams, and bulkheads. Instead, a small legged robot was designed in [94],

which uses electromagnets on its feet, and is able to traverse tight areas and obstacles, as

long as they are magnetic. To our knowledge, they do, however, not provide a localization

or navigation system for autonomous control of the robot. The authors of [42] build on a

similar magnetic approach as [103], but uses an external pose estimate for reference, which

is not considered possible for the complex and confined space of the water ballast tanks.

The challenges of traversing confined spaces using aerial systems have been described in

[162, 77], where they mention reliable absolute localization and lack of remote control as

some of the major difficulties. It is therefore clear that some level of autonomy is required

for the UAV. The authors of [16, 14] solve the localization issue by implementing Ultra

Wide Band(UWB) satellites inside the confined space to give them an absolute global

coordinate system for the UAV. This proves to provide accurate results, but installing

UWB electronic hardware in the water ballast tanks is in our case not considered a

viable solution. Other aerial systems such as [163, 164] use cameras and touch-based

sensors to demonstrate the ability to traverse small man-way-sized ventilation shafts, but
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have not focused on collecting inspection data during their flight. The authors of [165]

provide a path planning solution for autonomous inspection of the outside of marine

hulls, using multiple UAVs to first perform a general inspection and secondly a close-up

inspection of detected defects. The system was not tested on real vessels or in more

constricted environments such as confined spaces but, rather, in simulated environments.

Other research [166] has focused on exploration and mapping of the environment using a

combination of Simultaneous Localization and Mapping(SLAM) and Convolutional Neural

Networks (CNN). This research was conducted using a similar sized UAV as ours, but was

however only tested in a well lit office environment.

The authors of [56] used LIDARs, cameras, and IMU data from the onboard AscTec flight

controller to navigate around the cargo hull of a large marine vessel. The UAV used a

2D lidar to estimate the distance to the surrounding walls and a 1D lidar to estimate the

altitude inside the cargo hull. The system was tested within both the cargo hull and the

top-side ballast tanks, but a user was still required to give high-level commands to the

UAV through a base station using a joystick. The system was further expanded in [87] to

use multi-threaded Binary descriptor-based Image MOSaicing (BIMOS) to create a single

overview image of the inspection surface, using ORV features and Keyframes.

The research carried out in [167] implements an autonomous Unmanned Aerial Fire

Detection System, for marine vessels. It can navigate inside the main areas of the ship,

such as corridors and doorways, by utilizing a prior map of the environment. A particle-

filter-based localization algorithm was used to localize the UAV in a generated 3D octomap.

They are able to localize the fire using a thermal camera, but point to some failures and

limitations due to drifting odometry and poor 3D registrations between the sensor-scan

and the prior map.

In [116] the authors used a UAV to explore an underground mine environment, to locate

objects of interest, which in their case were humans in need of rescue. The solution is based

on the fusion of LiDAR data with thermal vision frames and inertial measurements. The

system proved capable of autonomously navigating the mine environment, however, the

repeatable structure and ambiguity of the ballast tanks do not allow for a simple transfer

of the system to new domains.

E.2 System description

E.2.1 Unmanned Aerial Vehicle

To test the entire inspection navigation pipeline, an Unmanned Aerial Vehicle (UAV) is

custom built to be able to enter through the man-way in the water ballast tanks. The

UAV shown in figure E.1 is based on a Lynxmotion Crazy2Fly Drone Kit equipped with a

Pixhawk 4 Mini Flight Controller Unit(FCU), an Aeeon PICO-WHU4 I5 PC, and a Nvidia

Jetson Xavier NX that functions as the GPU of the system. A protection cage is installed

around the UAV to protect the propellers from potential impacts with the surrounding

environment. The cage of the UAV increases the footprint of the UAV to 500 x 500 mm,

with a height of 140 mm.

The UAV is also equipped with an Intel L515 Time-of-Flight camera and two Intel T265
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Figure E.1. The Unmanned Aerial Vechicle used in the experiments of the autonomous inspection
system. A simulated defect is depicted as an AR tag in the next ballast tank compartment.

VIO cameras. The front facing T265 is acting as the VIO input to the localization

system, where as the down facing camera is completely decoupled from the localization

system, to only provide the ground truth estimate from a series of AR tags installed on

the bottom of the tank. The UAV uses the two computers onboard to process sensor

data and communicate with onboard Flight Controller Unit (FCU). The main computer

is the AAEON PICO-WHU4, and the second processing unit is the Nvidia Jetson NX

development board. The onboard PICO PC handles the communication to the FCU

and drives the data collection of the T265 and L515 cameras. The L515 point cloud is

down-sampled using a voxel grid of 0.05 m, and the point cloud is then transmitted to

the Nvidia Jetson over a cabled Ethernet connection. The Nvidia Jetson handles the

majority of the localization pipeline by utilizing the Graphical Processing Unit. The latter

system also runs the 3D registration part of the Localization pipeline, where especially the

correspondence search and feature descriptors benefit from the parallel computation power.

The low-level control of the UAV is done by the FCU Pixhawk 4 Mini[168], running the

PX4 1.10 software stack, where the communication to the AAEON PC is done by a wired

RS232 connection. The PC sends 20 Hz pose estimates and waypoints to the FCU, which

then ensures the robot is on the commanded position with an acceptance threshold set to

+/- 10cm. The PICO and the Jetson run Ubuntu 18.04 with ROS Melodic[169], where the

PICO PC is running as the ROS master and the Nvidia Jetson as a secondary device, with

a wired Ethernet connection. The defects, represented as April Tags, are detected using

the ROS package AprilTag 3 visual fiducial detector[170] on the PICO PC using the RGB

image stream from the L515. Using the camera matrix, the 2D April tag is transformed

into the 3D position of the camera frame and then transformed into the map frame using
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the absolute pose estimate from the localization pipeline. It is important to note that no

April tags are used for the actual localization part of our system.

E.2.2 Environment

The proposed system has the potential to operate in a wide range of confined spaces, but

the focus of this paper has been to verify the system in a water ballast tank of a marine

vessel. To enable rapid development and testing –and due to temporary access restrictions

to vessels– a mock-up model of a topside ballast tank has been used for the experiments.

A map of the ballast tank is represented as the gray point cloud shown in Figure E.2. The

ballast tank consists of two compartments with a bulkhead/webframe as the divider. A

registered scan from the L515 is shown as the orange point cloud in the figure.

Figure E.2. Illustration of the mock-up model of the water ballast tank, shown as the grey point
cloud. An example of an aligned sensor scan is depicted with orange points.

To provide a reasonable ground truth estimate, a series of April Tags are mounted on the

floor of the ballast tank, as shown in figure E.3. The positions of these tags were first

manually mapped and then used in the localization part of the TagSLAM package[171], to

provide the ground truth pose of the UAV.

Figure E.3. Undistorted and image from the T265 camera, with the floor mounted ground
truth tags visible. The tags are only used for the ground truth estimation and not for the actual
localization pipeline.
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The defects the UAV needs to detect and localize are represented by 6 April Tags mounted

on the walls within the tank, and in the field of view of the camera at the specified

inspection points, as shown in figure E.4. The inspection points are defined on the basis of

known areas of the ship that must be inspected according to shipping regulations. These

inspection points are often areas that are prone to deterioration or failure, due to the high

material stresses within the structure of the ship.

Figure E.4. Example of an April Tag defect detected by the Camera

E.3 Inspection pipeline

To autonomously perform the inspection, the system is designed as shown in Figure E.5.

During the UAV startup, a list of inspection waypoints is loaded onto the onboard PC and

a point cloud map of the environment, with its extracted geometric features, is loaded into

the GPU memory of the Nvidia Jetson.

Figure E.5. Overview of the inspection system running onboard the UAV. 3D point cloud
registrations between a known map and scan from the L515 sensor are fused with a VIO velocity
estimate in an UKF to give an absolute pose estimate in the map frame. A defect detection system
is continuously evaluating image data from the sensor to provide an estimate of defects within the
map.

E.3.1 Inspection waypoint execution

The map of the environment is provided based on the CAD drawings of the ship and an

inspection path can be generated for the UAV based on inspection points. Inspection

points are defined in the specifications of the classification societies. The generated route
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is, thereafter, executed by the UAV using the Pixhawk FCU using the localization pipeline

of section E.3.2 as its absolute pose estimate. During inspection execution, the UAV will

arrive at a series of inspection points, where along its path it will look for defects and

collect visual data in the form of RGB images and surface point clouds for any detected

defects. The RGB images and surface point clouds will later serve as the evaluation and

decision base for onshore inspection personnel. Although not included in this paper, for the

sake of conciseness, we have in the past automated the evaluation of corrosion or defects

using different machine learning methods as investigated by [77, 91].

E.3.2 Localization pipeline

A major part of an autonomous inspection system is its localization pipeline, as illustrated

in Figure E.6. The pipeline can be divided in three sections; a 3D registration module,

Visual Inertial Odometry (VIO), and lastly a filtering step. The 3D registration module

generates an absolute pose estimate by registering the sensor scan (point cloud) to the

map of the environment. The VIO provides a relative odometry estimate, where in our

case the velocity is used as a state update in our filtering step. The filtering module of

the pipeline first removes poor absolute pose estimates from the 3D registration based

on a motion filtering threshold, and then fuses the inlier pose estimates with the velocity

estimate from the VIO, in an Uncented Kalman Filter (UKF).

Figure E.6. Localization pipeline
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Localization based on 3D registration

Due to the fact that the intended environments (i.e. ballast tanks of marine vessels) for

this system are visually featureless, the localization pipeline in this work relies on 3D

registration of —live acquired— 3D scans with pre-existing 3D models. While pair-wise

registration is usually employed for 3D point cloud registration tasks [172], the algorithms

proposed in the literature, mainly variants of ICP, are not suitable for implementation

on an inspection UAV, due to the ICP’s requirement of approximate prior knowledge of

the model/target pose, the problem of local minima and due to its inability of providing

uncertainty estimates (see sec.E.3.2) which is a must have for appropriate state estimation.

Therefore, we follow the approach of feature-based 3D registration and specifically we

employ deep learning feature extraction. Then we use a robust registration system, which

is designed to accurately provide correspondences even in the presence of significantly

more outliers than inliers. Finally, since the output of the 3D registration is used for

state estimation, we integrated a state-of-the-art method for uncertainty estimation of 3D

pointcloud registrations, allowing us to overcome a common problem of the 3D registration,

i.e. uncertainty underestimation [159].

Feature extraction and data association The first step in the 3D registration

module of the localization pipeline is to extract geometric features both in the map and

in the sensor scan. Hand-crafted features have been very successful in providing some

specific qualities, e.g. rotational invariance. A typical example is the FPFH[135] algorithm

(and its predecessor PFH) which use a histogram of surrounding 3D points to calculate

correspondences invariant to changes in orientation. We have tested such approaches in [4]

and it was concluded that they do not perform well and are therefore not included in this

investigation.

To overcome the trade-off between these different handcrafted features, we can employ

learned features which, despite being less explainable, incorporate multiple qualities present

in several custom designed features. Two such approaches are presented in this work,

SmoothNet[136] which can achieve high accuracy but is computationally expensive —

therefore used as a baseline— and FCGF [138] which is fit for online execution, albeit with

less accuracy. We will briefly present both of the approaches for completeness.

SmoothNet is a deep learning-based descriptor with a focus on robustness as well as

rotational and isometry invariance. Rather than implementing an end to end trainable

network it has two distinct parts; a) the ”preprocessing” of a pointcloud using Local

Reference frames (LRF) and smoothed density value (SDV) representation and b) the

fully convolutional part, which encodes a descriptor. To achieve rotational invariance, the

neighbourhoods of randomly selected points in the pointclouds are structured in SDVs

with LRFs defined by the neighborhoods themselves. Finally, the compact representation

(3D SDV voxel grid) is fed into a siamese network to produce a descriptor.

In terms of the specific implementation of Smoothnet as a baseline for our system, the

interest points were selected randomly —approximately 50% of all points in the map and

25% of the sensor point cloud. By randomly selecting points in both clouds, we limit the

computational load while maintaining a high probability of acquiring correspondences.
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As proven in our previous work on pre-recorded datasets [3, 4], Smoothnet is able to

provide superior results in our application domain (WBT of large vesssels) which however

comes at a significant computational cost. The cost is such that the approach could not be

used for the online localization of our robot; a fully autonomous, self sufficient, power and

time limited inspection robot in real life. While there is a fair argument to be made about

the usage of Smoothnet on larger robots (e.g. a tethered aerial robot), we found that the

method used in our robot, i.e. FCGF, is an order of magnitude more computationally

efficient and that with the appropriate outlier rejection and robust estimation the system

can provide adequate results.

The computational efficiency of FCGF stems from its structure, which is a one-pass 3D

fully convolutional network, relying on sparse tensors and sparse convolutions. Additionally,

FCGF does not rely on low-level pre-procecing of the input point clouds. Technically, the

FCGF is a ResUNet (or Deep Residual UNET) architecture that uses skiped connections

and residual blocks to extract fully convolutional descriptor features. By replacing the

bridge of the UNET with residual blocks, the network is minimal in terms of parameters.

The most important contribution of the FCGF is the usage of ”hardest-contrastive” losses.

Contrastive loss is defined as follows: Similar features —or positive— should be as close as

possible in the output feature dimension, and dissimilar features —or negative— must be at

least a margin away. Instead of accumulating pairs of features (either positive or negative),

the idea of hardest contrastive loss is to structure quadruplets using a positive pair with

their ”hardest” (or closer) negatives. This procedure is called hard negative mining. In the

case of triplets (positive-positive-negative) rather than pairs, ”hardest-triplet” losses can

be structured. In our paper the network is setup to use standard metric learning losses

based on ”hardest-contrastive” losses.

The extracted features (whether Smoothnet or FCGF) are then searched for correspondences

to features in the map using the GPU based KNN algorithm Facebook AI Similarity

Search(FAISS)[139].

Registration

The extracted and associated geometric features from the scan and the map, are prone

to a notable number of outliers due to the ambiguity of the environment. We, therefore,

employ the robust 3D registration algorithm TEASER++[140, 141], which allow for outlier

rejection. TEASER++ is capable of providing an accurate transformation between two

corresponding point sets, even in the presence of a high percentage of outliers. The

following brief description of the registration algorithm was also described in [4].

For ideal cases, where the 3D-point correspondence list contains zero outliers, the 3D

registration can be defined as the following nonlinear least square solution:

min
s>0,R∈SO(3),t∈R3

N∑
i=1

1

σ2
i

∥bi − sRai − t∥2 (E.1)

, where minimization is performed over the scale s, the rotation R, and the translation t.

For our case with the ballast tanks, we can assume a metric environment with no significant

scale changes between the scan and the map, and the scale factor s can therefore be fixed

94



Article E
Autonomous GPU-Based UAV for Inspection of Confined Spaces:

Application to marine vessel classification

to 1. The total number of correspondence points are denoted as N, and a and b represent

two vectors of the corresponding pairs between the map and the sensor point cloud.

To include robustness of measurement noise in point clouds, a Gaussian noise with isotropic

covariance described by σ2 is included. So far we have assumed correct corresponding

points, however, for most real-world cases, correspondences with zero outliers cannot be

safely assumed [140] and therefore robust registration can be performed using a Truncated

Least Squares function as stated by equation E.2:

min
s>0,R∈SO(3),t∈R3

N∑
i=1

min

(
1

β2
i

∥bi − sRai − t∥2 , c2
)

(E.2)

Equation E.2 provides a least squares solution to measurements with minimal residuals (no

greater than c̄2), where βi represents a given limit for the noise. This noise limit is either

set as the maximum error allowed for an inlier or 3 standard deviations. Any measurements

with large residuals (more than c̄2) are disregarded. In the experimental setup, c̄ is set to

1. In order to simplify the solution, TEASER++ separates rotation and translation, as

shown by equations E.3 and E.4 respectively.

R̂ = arg min
R∈SO(3)

K∑
k=1

min

(∥∥b̄k − ŝRāk
∥∥

δ2k
, c̄2

)
(E.3)

To determine the estimated rotation R̂, the first step is to minimize the distance between

the corresponding points, expressed as b̄k and āk, with a defined noise limit of δk. Once the

rotation is estimated, the translation can be calculated using equation E.4. The translation

is obtained on a component-wise basis, meaning the entries t1, t2, t3 of t are calculated

individually. Similar to the previous equations, any measurements with large residuals

(more than c̄2) are discarded.

t̂j = arg min
tj

N∑
i=1

min

(tj −
[
bi − ŝR̂ai

]
j
)2

β2
i

, c̄2

 (E.4)

An analytic derivation of the aforementioned formulation can be found in [140].

The transformation from the global TEASER registration is then compared with the

roll and pitch attitude of the UAV. If the registration is offset by a given threshold, the

registration is rejected, and the 3D registration pipeline is rerun with a new point-cloud

scan from the sensor. If the registration is within the limits of the roll and pitch of the

UAV, the uncertainty of the registration can then be calculated, along with a refinement

step of the registration.

Uncertainty estimation To estimate the uncertainty, different methods are available

with different properties. The uncertainty of the final 3D registration can be estimated

using efficient closed form solutions, such as CELLO [156] and [157], which provides a
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computationally fast solution, but sensor noise is not adequately captured, and the method

has been shown in experimental trials by [158] to underestimate the covariance. The

authors of [158] improved the work of [157], but the results still showed an underestimate

of the covariance. Stein-ICP[159] can provide a better covariance estimation than previous

methods, using a sampling-based approach but, therefore, also has a lower computational

efficiency than closed form solutions. However, Stein-ICP can be parallelized to run on a

GPU for optimal time efficiency. Stein-ICP proved to provide good covariance estimations

and is therefore used as the method of choice for this paper.

Stein-ICP initializes a set of K randomly generated particles within some set 6D pose

boundaries. For the use case with the UAV we can limit the initial distribution of the

points on the roll and pitch axis, since we know these from the IMU of the onboard FCU.

Using an accurate IMU, one could also exclude these two degrees of freedom; however,

due to some uncertainty and noise in the IMU measurements on the UAV, we still include

the roll and pitch degrees of freedom in our experiments. Each particle represents the

transformation of sampled points from a source point cloud, which in our case is the

sensor scan. For all points in each transformed batch, the corresponding closest point

in a reference cloud (map) is determined based on the nearest neighboring points in the

3D space. Mean gradients are then estimated for all matching pairs belonging to each K

particles. Next, the Stein variational gradients [173, 159] are obtained independently for

translations and rotations, which, in turn, are then used to update each particle. This

estimation is repeated for T iterations, producing an adjusted set of K particles that

represent the posterior distribution. The distribution of the K particles can be used as a

discrete estimation of the uncertainty and ambiguity of the environment for each degree

of freedom in the registration. Using the Kernel Density Estimation (KDE) method on

the distribution, the best registration can be selected. An inherent feature of Stein-ICP is

that it can also apply a small refinement of the registration, which is utilized to obtain a

more accurate local registration than the one provided by the global TEASER registration

algorithm.

Registration quality After the uncertainty and refinement step have been performed,

the quality of the registration is calculated. The quality estimation is based on the

overlapping points between the map and the transformed sensor scan, where overlaps are

considered if points are within the resolution of the voxel down sampling of the point clouds.

The threshold for the experiments is set to reject registrations below 75% of overlapping

points. This allows for some inconsistency between the map and the scan point cloud,

which could be due to areas with severe buckling or structural revisions not applied to the

CAD drawings of the vessel.

Visual Inertial Odometry

To aid the localization system with pose updates between absolute pose estimates, a

relative pose system is introduced, namely Visual Inertial Odometry. The system in the

experiments uses the front-facing Intel T265 camera, with a proprietary VIO algorithm,

which provides a pose and velocity message. For our absolute localization system, we use

the velocity message as the input to our Extended Kalman Filter.
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Filtering

Outliers are removed from the absolute pose estimate using a motion filter that is based on

a maximum velocity threshold of the pose estimate compared to the previous pose update.

The filtered pose and covariance matrix is then used in an UKF[174, 175] together with the

VIO pose and covariance matrix. The UKF is a non-linear filtering algorithm, and is well

described in [174], and thus only a high-level explanation will be given here. It is based on

the unscented transform (UT) technique for propagating a mean and its covariance through

a nonlinear transformation, and the UKF is proposed as an improvement to the well-known

linear EKF. Instead of the linearization required by the EKF, the UT approximate method

is used in the UKF. A set of weighted sigma points are chosen based on the mean and

covariance of a prior state. Each of these points are transformed to a new state using the

non-linear function in the UKF. The predicted mean and covariance are then calculated

on the basis of the newly transformed points. The added value of UKF compared to EKF

is that it better represents non-Gaussian noise in the system[176].

Stein-ICP vs P2P-ICP

Figure E.7 illustrates a point cloud registration for a single scan using standard Point-2-

Point (P2P) ICP[177, 150] and our 3D registration part of the pipeline. P2P-ICP settles at

a local minima, with the y- and z-axis being correct, but with an incorrect registration of 1.8

meters on the x-axis, as can be seen in Figure E.8. With the current settings of Stein-ICP,

p2p-ICP is more than 100 times faster than Stein-ICP, however the structural ambiguity

of our environment results in p2p-icp setteling into the incorrect local minima. Besides

ICP’s large incorrect registration on the x-axis, ICP also fails to provide a covariance

or uncertainty estimate of the registration, which is the main benefit of using Stein-ICP

in this paper. Based on our experience, another benefit of Stein ICP vs. ICP is its

ability to additionally provide refinement in slightly erroneous registrations provided by

TEASER++.

Figure E.7. Stein vs ICP point cloud registration. Red is the raw scan point cloud, green is the
ground truth, yellows is p2p-ICP and blue is the Stein ICP pipeline.
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Figure E.8. The position and angle error of p2p-ICP registration (deterministic) compared to
statistics (mean and STD) of stein ICP (1000 runs)

E.4 Experimental results

Due to limited access to real ships during the COVID-19 pandemic, experiments were

carried out in a mock-up model of a water ballast tank. A series of flights with different

inspection points and paths within the mock-up model were carried out. A single flight is

described in this section.

The path of an inspection flight can be seen as a top view and a side view in Figure

E.9, where the UAV enters the ballast tank through the man-way in the wall on the left.

Hereafter, the inspection mission begins, with its first waypoint being (1,1,1). The UAV

then visits the predefined interest points, marked as red stars, looking for defects at the

inspection point itself and along its path, shown as the dotted black line. Figure E.9 also

shows the estimation of the tags/defects illustrated as the blue points, where the equivalent

ground truth is shown as a red circle. As can be seen in the figure, some position error in

the estimate of the defect location is still present, where this error is shown as a box plot

for each of the 6 defects in Figure E.10.
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Figure E.9. Top down view of the trajectory of a single inspection run in the mock up model of
the water ballast tank. The thick black lines indicate the walls of the tank. The dotted black line
is the actual trajectory of the UAV. The blue points indicate the estimated position of defects and
the red circles their actual position. The red stars mark the way-points the UAV has to visit on its
inspection run.

From this figure it can furthermore be seen that the errors are generally low, but point

3 and 4 have a larger variation on the x-axis than the rest. This is caused by both an

imprecise and varying timestamp provided by the L515, and the points being in the FOV

even at large distances, which in turn exaggerate small camera calibration errors. An

increasing error also arises during long time intervals between absolute updates from the

localization system. The position of the specific points can be seen in figure E.9.

The error of the absolute localization pipeline can be seen in Figure E.11, where the blue

line indicates the output of the entire pipeline.

The 3D registration estimate using FCGF, Teaser++ and Stein-ICP is shown as red stars,

and depicts the absolute error of the pure 3D registration element in the pipeline. All 3D

registrations are estimated every 2 seconds (0.5 Hz), whereas the UKF, which fuses the

VIO with the 3D registration pose estimate, runs at 30 Hz. The intermittent output from

the Teaser++ registration algorithm, in Figure E.6, using either SmoothNet or FCGF

as its feature descriptors, are shown as the purple and black crosses, respectively. The

SmoothNet feature descriptor was unable to run reliably in real time on the Jetson NX,

and was therefore subsequently added using a ROS-bag file on a desktop PC. The FCGF

feature descriptor was used in the pipeline during the flight as shown in the figure. The
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Figure E.10. Box blot of the position error for each of the 6 defects located in the tank

results from [3, 4] however indicate that SmoothNet would be slower than FCGF by more

than a factor of 10 if running on the Jetson. The computational time for each absolute

pose update is on average 1.85 seconds. The mean accuracy and standard deviation of

each feature descriptor, together with the output of the filtered output pose, can be seen in

table E.1. From the table it can also be seen that Stein-ICP corrects some of the x-position

error from the raw FCGF-Teaser++ output, as was also shown in Section E.3.2.

The vertical dashed lines indicate an absolute pose update of the UKF from the 3D

registration part of the pipeline. The varying intervals between the lines is due to the

rejection of low-quality 3D registrations based on the overlapping points between the map

and scan.

To estimate the ground truth of the UAV, a series of closely spaced April Tags are mounted

at known locations on the floor of the ballast tank. The ground-truth tags are only mounted

on the floor in order to avoid providing artificial visual feature points for the forward

looking VIO camera. Using the image stream from the downward facing T265 camera, the

localization part of the TagSLAM package[171], can be used to provide a ground-truth

estimate. The downward-facing camera data and the derived ground-truth estimate are not

used in the localization pipeline but only serve as a method for comparing the performance

of our absolute localization estimate. Due to the limited space inside the ballast tanks, a

motion camera system such as VICON was not deemed a viable solution as a ground-truth

estimate. To represent the defects within the tank, six AR tags are mounted on the walls.

Tags are recognized using the image stream from the L515 color camera, which serves as

the inspection camera of the UAV. When a tag/defect is detected, the inspection system

will save a point cloud and image of the defect and estimate the defects absolute position

in the map frame.
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Figure E.11. Error of localization pipeline. Vertical dotted lines indicate an absolute pose update
with a correction to the position of the robot.

Table E.1. Mean and standard deviation of absolute pose estimations using different feature
descriptors

Mean [m] 3DSmoothNet FCGF FCGF+Stein Filtered

x -0.67 -1.09 -0.60 -0.24
y -0.08 0.13 0.13 0.04
z -0.08 -0.01 -0.06 -0.02

Std. Dev [m]

x 1.43 1.86 1.72 0.80
y 0.47 0.69 0.51 0.04
z 0.70 1.03 0.21 0.04
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E.5 Conclusions

In this paper an autonomous system was designed and tested to inspect known confined

spaces within a mock-up model of a water ballast tank. Our method used state-of-the-art

deep learning-based feature descriptors on 3D point cloud scans from a time-of-flight camera.

The features were registered to a know map of the environment using machine learning

based correspondence search and the fast Teaser++ registration algorithm, to provide

an absolute pose estimate within the environment. The novel GPU-based uncertainty

estimation method, Stein ICP, was used to provide a 6-dof uncertainty estimate for the

highly ambiguous and structured environment. The system was tested in real time on

a small UAV-platform without the need for external human input during the inspection

execution. Using 3D registration and Visual Inertial Odometry, the UAV was able to

accurately navigate and inspect the featureless and ambiguous environment of the water

ballast tanks and, moreover, locate and estimate the position of installed defects. The

position of the defects were accurately reported within the map frame to be used for further

evaluation by the human surveyor.

Future improvements to the system would be to improve the feature descriptors and the

registration algorithm to better handle the high level of ambiguity in the environment.

Automated detection and evaluation of defects is also an addition that would further add

additional value to the overall inspection system.
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Abstract:

Autonomous inspection of dark, confined, and feature-poor spaces requires robotic platforms

to utilize accurate and reliable localization systems for safe and reliable operation. This

paper presents an absolute localization system for highly feature-poor spaces, using visual

inertial odometry and GPU-based point cloud registrations for limited field-of-view sensors.

The extracted structural elements from sensor scans, along side IMU measurements, are

used to limit the search area for the GPU-based point cloud registrations. We employ

Stein-ICP which is an uncertainty aware variant of ICP. The 3D registrations are then

fused with a visual-inertial odometry estimate in an Extended Kalman Filter to provide a

fast and accurate absolute pose estimate. The proposed localization system is tested in

both a simulated environment and in a mock-up model of a chemical distillation column —

both highly feature-poor areas.

F.1 Introduction

Localizing within dark, confined industrial spaces can be a challenging task in robot

applications. Structured areas, such as a distillation column, often contain featureless

surfaces, limiting visual tracking or recognition. Repetitive patterns —of both visual and

structural nature— can make loop closure, and by extension absolute localization, prone to

errors. Furthermore, occlusions and reflections can diminish the accuracy of visual-inertial

odometry (VIO) systems, while low-light conditions limit the number of reliable visual

landmarks. Additionally, environmental attributes, such as dust or moisture, can introduce

noise in the sensor data and therefore also in the pose estimation. Data association of 3D
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feature descriptors, such as FPFH[135], FCGF[138] and 3DSmoothNet[136], are prone to

incorrect matching due to repetitive patterns in an environment. Generic ICP requires a

good initial prior, without which it can converge to an incorrect local minima of the cost

function. This can be especially problematic for ambiguous cases or where the initial prior

has a high uncertainty. Due to the similarity of our environment —a symmetrical metal

column— we are in need of a localization system that can handle somewhat ambiguous

and feature-poor cases. An example of an ambiguous case is shown in Figure F.2, where

red points indicate the registered scan from the sensor. In this example, it is clear that the

scan can be reasonably registered to multiple locations within the cylindrical map. The

main contributions of the paper are:

1. Incorporating the uncertainty-aware 3D registration algorithm Stein-ICP on an online

robotic system for EKF-based absolute localization.

2. The improvement of Stein-ICP based estimation by using the Kernel Density

Estimation distribution evaluation.

3. Taking advantage of prior information about the environment and robot to both

speed up Stein-ICP by sampling based on state uncertainty and to reduce scene

ambiguity by only registering local views to unique elements of the environment.

Figure F.1. Mock-up model of 3 sections of a distillation column with a diameter of 3 meters.
The model is based on a real world column and is used for the testing of our absolute localization
pipeline.
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Figure F.2. Example of ambiguity in a single section of a typical distillation column. The grey
points represent the map and the red points a point cloud from the sensor. The red point cloud
can reasonably be registered to multiple locations in the map, from which the ambiguity problem
therefore arises.

F.2 Related work

Visual localization systems are a good option for legged robots, but are known to produce

at best 1% error [122], [142] which is also unbounded without some prior knowledge

or re-observation. Although field robots can rely on distinct landmarks for absolute

localization [145], a featureless structured environment, such as our distillation column,

can cause increased errors and can lead to failure. Furthermore, low light conditions and

reflections from onboard light sources, can limit the number of reliable visual landmarks.

Furthermore, dust and high humidity can introduce noise to the sensors, which therefore

affects visual pose estimation. Therefore, additional steps are needed to provide a reliable

localization estimate.

The authors of [143] use a VIO pose as a prior for an ICP registration, and add further

validation and filtering of the registration result. However, this only mitigates the issue

of incorrect ICP registrations by filtering the outliers, instead of reducing the number of

incorrect registrations.

The research in [178] also uses an ICP approach, and assumes known rotations for the roll,

pitch and yaw angles. The authors used the eigenvectors associated with the Hessian of the

Point-To-Plane ICP cost to describe the observability for each direction for a pose estimate.

This method can provide an estimate of how well the registration can be performed on

each of the x, y, and z axes, which reduces the uncertainty in the pose estimation.

The researchers in [14] investigate the possibility for absolute localization using a pre-

installed Ultra Wide Band(UWB) satellite system coupled with a VIO pose estimate.

Although this setup can produce good estimates, it is only suitable for frequently inspected

areas, such as production lines or warehouses. It is therefore clear that for most industrial

inspection cases, this solution is not suitable for absolute localization, which is also the

case for robots operating within our distillation column.

The use of geometric structural features for absolute localization in confined spaces has

previously been investigated in [2], however, the feature descriptors were designed to

represent structural attributes that are use case specific.
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The rise of fast and accurate 3D descriptors, such as [136], [148], [138] and robust

registration approaches [140], [141], [149], provides a good toolbox when trying to tackle

absolute localization. The authors in [4, 3] use novel machine learning-based feature

descriptors and state of the art registration algorithms, however the approach still suffers

from incorrect data association in ambiguous environments. A motion filter is used to

mitigate this issue, but the underlying 3D registration outliers still persist.

F.3 Environment

In our use case, a quadrupedal robot has to localize itself within a single section of a

chemical distillation column. These columns are large cylinders, often more than 20 meters

tall, with varying diameters of 1 to 4 meters, and with a set of trays/levels inside the

cylinder. Due to this cylindrical shape and the man-made structure, very few unique

geometrical features are available to be described by feature descriptors such as FPFH

and FCGF.

To enable rapid development and testing, in addition to a simulation environment, a

mock-up model of a distillation column was built. The model is based on a sub-section of a

real distillation column and consists of two levels, as shown in Figure F.1. The aluminum

sheet metal chosen for the walls of the mock-up model was too reflective compared to

real-world inspection cases, and the walls were therefore covered by a less reflective material

in the experiments.

The robot was placed inside the mock-up model for the real-world experiments. The

ground truth was extracted using an upward facing camera —specifically an Intel D455

which is not part of our system— and ARuCo markers on the ceiling of the column. To

estimate the positions of the tags, which serve as ground truth markers, TagSLAM[171]

was used. For the online ground truth estimation we used AprilTag 2[170] on the images

from a top-mounted camera (D455).

F.4 System description

F.4.1 Localization

The localization system, shown in Figure F.3 is divided into three modules: 3D registration,

VIO, and Filtering. However, before the pipeline is started, the system must first load the

map of a single section in the column. This is the map that the 3D registration module

(highlighted in orange in Figure F.3) of the pipeline uses to estimate the pose of the robot.

The 3D registration module handles the 3D point cloud registration, where a point cloud

recorded by the sensor is matched to the correct location in the map. The 3D registration

module consists of four sub-modules. The first sub-module in the pipeline is the structure

detection block, which classifies and labels the specific elements in the column based on

their geometric properties. Examples of these elements are the walls, floor, ceiling, and

the downcomer in the column. The walls can be fitted to a cylinder using a model-based

RANSAC apporach, and the center point and radius of the cylinder can be extracted

and used later in the pipeline. The structural elements are also used as indications of

whether our system has enough structure in the scan to accurately estimate a position. For
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Figure F.3. The absolute localization pipeline consists of 3D registration, VIO and a filtering
step, which fuses the two pose estimates in an Extended Kalman Filter.

the specific case of the distillation column, the downcomer detection is used as a simple

indicator that a good registration should be possible. Based on the segmented wall points,

the structure detection module estimates the diameter and x, y center of the column. If

the estimated diameter is equal to the specified column diameter the initial transformation

of scan point-cloud is initialized so its x, y, z-origin is aligned with the map’s x, y, z origin.

The z-value corresponds to the elevation of the camera above the floor, given by the joint

poses of the robot’s leg when standing on the column floor section. The roll and pitch

angle of the camera, from its onboard IMU, is furthermore used to initialize the roll and

pitch rotations for registration estimation. The actual registration between the scan and

map point cloud are done in the next step, employing Stein-ICP. This sub-module is a

3-dof optimized version of the standard 6-dof Stein-ICP algorithm[159]. The last step

in the 3D registration module is a point-to-point refinement step, using a generic ICP

registration (Open3Ds[150]).

The second module of our system (highlighted in gray in Figure F.3), constitutes the

relative localization of our robot and can be provided either by means of dead reckoning (eg:

the quadrupedal odometry), or by more robust techniques. Examples of such techniques

are the multilevel-patch and EKF-based visual inertial odometry (ROVIO [25]) or the

multi-frame tracking VIO methods such as the ones used by the Intel Realsense T265

(which is the camera we employ in this work). The last module (highlighted in blue

in Figure F.3) constitutes a loosely coupled EKF, which fuses the 3D registered pose

estimation with the VIO estimate to increase the update rate of the resulting absolute pose

estimation. This module only accepts high quality 3D registrations, due to the quality

estimation sub-module, which qualifies 3D registrations based on the their average RMS

error between the registered scan and the map.
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F.4.2 Structure detection

The first important step in our localization pipeline is to detect and label the structures in

the camera field of view. An example where we label the column elements from the scan

can be seen in Figure F.4. The red points indicate the floor of the current level, while the

green points indicate the cylindrical wall. The yellow points represent the downcomer of

the most common and convetional crossflow tray[179]. The presence of the donwcomer

indicates that the robot is at a location to facilitate a high quality registration between

the scan and map, since only one downcomer is present on each tray. There are many

approaches that can be followed to identify such elements, for example, deep 3D shape

detection [180] or even structural landmarks [77] can be employed. In our case, for the sake

of simplicity, we use the open source Point Cloud Library (PCL) where we label points in

the cloud, based on core 3D shapes such as cylinders and planes. The different shapes are

extracted using a model-based RANSAC approach. The output of the cylindrical model

fitting is the x,y center point of the cylinder, which we use as the initialization step of our

Stein ICP algorithm.

Figure F.4. Classification of the structural elements in a sensor scan from the simulated column.
The floor is depicted with red points, the walls of the column as green points, and the downcomer
as yellow points. Black points indicate unclassified points.

F.4.3 Stein-ICP and Filtering

Since our absolute localization system relies on a Kalman-based state estimation submodule,

specifically the EKF, it is of utmost importance that our state and measurement covariances

are well defined. Assuming the world frame Fw and a robot frame Fr, the state of the

robot is notated as xrkw (which is also our absolute pose), at time k with Pk uncertainty:

xrkw :=
[
prkw , qrkw

]
, (F.1)

where prkw is the robot position and qrkw is the robot unit quaternion which represents

the rotation from frame Fw to frame Frk . Additionally, xrkrk−1
denotes the local state

(relative localization) between 2 consecutive image/3D frames of our robot. During the

prediction and update iterations of the EKF, both the predicted x̂rkw , P̂k and corrected

xrkw and Pk states and covariances are employed. Our system employs both a relative pose

estimate (coming from the T265) and an absolute pose estimate as a byproduct of our

3D registration (using the Kinect sensor). While the projection among different sensors is

trivial, the definition of the absolute localization covariance as input to the EKF is not.
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A typical approach for 3D-based absolute localization is the Iterative Closest Points (ICP)

algorithm. ICP [181] has several “flavors” based on the data used to perform the point

clouds alignment — i.e. point-to-point, point-to-plane, plane-to-plane. The solution to

ICP is an optimization, often solved using Singular Value Decomposition (SVD) and has

the following form:

argmin
Ro,uo

E(R, u, si, ri) =
1

N

N∑
1

||(Rsi + u)− ri||, (F.2)

where E is the alignment error of N corresponding points in clouds ri (map) and si (robot

view), given a rotation matrix R and a translation vector u.

While most ICP approaches do not provide an uncertainty for the alignment, and are

therefore not suitable for our method, some proposed variations can estimate the covariance

of the transformation [157, 158].

As most approaches either over- or under-estimate the covariance, for the actual registration

of the map and the scan point cloud we use a modified version of the GPU-based Stein-

ICP[159] algorithm, as it has been proven to provide accurate uncertainty estimates.

Stein-ICP initializes a set of K randomly generated particles, within some set 6D pose

boundaries. Each particle represents the transformation of a batch of sampled points from

a source point cloud (scan). For all points in each transformed batch, the corresponding

closest point in a reference cloud (map) is determined based on the points nearest neighbour

in 3D space. The corresponding points are stored in pairs, and their mean gradients are

estimated for all matching pairs. Next, the so called Stein variational gradients are obtained

independently for translation and rotation, which are then used to update each particle.

This procedure is repeated for T iterations producing K particles representing the posterior

distribution.

Our version of Stein-ICP has two distinct modifications. Firstly, we have set up Stein-ICP

to not optimize the Z, roll, and pitch degrees of freedom and is, therefore, able to run

faster than an equivalent 6D pose optimization. Our motivation to create this minimal

version of Stein-ICP is that the estimate of the scan point cloud Z-position can be obtained

from the Unitree robot, given our prior knowledge of the column structure and the robot’s

joint encoder measurements. The uncertainty of these states are obtained form the Unitree

robot own estimate. Likewise, the roll and pitch component can be obtained from the

onboard IMU, maintaining the manufactures uncertainty estimate, eliminating the need to

estimate these rotations as well. The system is therefore reduced to optimizing only on

the x, y, and yaw components. The second difference compared to the original Stein-ICP

—as it was also hinted in the original paper— is that the initialization of the K points is

not random, but stems from our structure detection (see section F.4.2). Specifically, the K

points are defined by the output of multiple ICP runs. Each ICP run is initialized at the

center of the structure detection solution but with different yaw (while multiple ranges

were tested and work adequately, for this work we will use uniformly distributed yaw values

in the range [−π, π]). These ICP iterations come at a very low computational cost as they

are GPU accelerated. The average compute time for our setup, with 200 particles, is 3.3

seconds using the original Stein-ICP and 2.3 seconds for our reduced version. The structure

detection part of this time consumption is on average 0.5 seconds. Even though the 2.3
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seconds are lower than the framerate of our sensor and frequency of estimation, it is used

only for correction, while VIO is used in the interim. After the optimization, the output of

our Stein-ICP is a distribution of translations on the x and y axis, and a distribution on the

yaw(z) rotation. While the Stein-ICP output distribution provides a valuable uncertainty

estimation, the assumption of a normal distribution can lead to erroneous results, as the

mean solution can be relatively far from the true pose. Therefore, the final translation and

rotation is selected as the value with highest density from a Kernel Density Estimation for

each degree of freedom. An example of how the yaw rotation angle is selected is shown

in Figure F.5. From the plot it can be seen that using our KDE approach —instead of

the standard normal distribution— has an impact of a 44 degrees difference. Our KDE

top-point is located at 48 degrees, where the ground truth is at 48.7 degrees. Finally, the

x,y, and yaw of the VIO system are fused with the 3D registration pose in an Extended

Kalman Filter[175].

Figure F.5. Example of how the yaw rotation angle in the 3D registration is determined based
on the Kernel Density Estimation (KDE) method from our modified stein-ICP approach. The
standard Gaussian distribution is plotted based on the mean and variance of the stein particles.
The difference between the KDE and Gaussian top points are 44 degrees.

F.5 Experiments

To test the absolute localization pipeline, a simulated environment and a mock-up model of

a distillation column were created. The design of the mock-up model, shown in Figure F.1

was based on a subsection of a real-world distillation column. For realistic comparison, the

distillation column used in the simulated environment is based on the same CAD model as

the mock-up model. A separate PC is used to run the Gazebo simulation environment.

The map used for both the simulation and real-world tests is a point-cloud version of the

CAD model.

F.5.1 Robot

To inspect the distillation column, the Unitree A1 legged robot, shown in Figure F.6, was

chosen —based on its small size and its agility compared to other wheeled solutions. It is

equipped with a Kinect Azure ToF camera and an Intel T265 camera. In simulation, the

robot is furthermore equipped with a custom robotic arm used for transitions between the

different trays in the distillation column. By using an accurate depth and color camera,
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Figure F.6. The Unitree robot standing inside the mock-up model used in the experiments. The
Kinect Azure and T265 camera can be seen mounted on the front of the robot.

the robot is able to collect both color images and colored point clouds of the interest points

for inspection. This is especially useful for inspections where a 2D image might not be

sufficient to detect buckling in the structure or similar visual hidden structural defects.

For computation and low-level control, the robot utilizes an Intel NUC i7 8th gen., which

is supported by an Nvidia Jetson Xavier NX handling the localization pipeline and point

cloud processing in realtime. A D455 camera is furthermore added pointing upwards to

capture ArUco makers added to the ceiling of the tray above the robot. This camera is not

used in the localization pipeline but only as a method to capture our ground truth of the

robot, when operating inside the mock-up model. The localization pipeline is implemented

using the ROS framework, and the filtering is all performed in the base link frame, which

is located in the center of the body.

F.5.2 Simulation

The Unitree robot and distillation column were simulated using ROS and Gazebo. The

parameters of a generic point-cloud camera in Gazebo were adjusted to fit the specifications

of the Microsoft Kinect Azure camera. To emulate our VIO pose estimate, a drifting

odometry was simulated based on the pose of the robot in the gazebo simulation. The

robot was manually tele-operated to simulate an inspection run inside the column. A top

view of the path is depicted in Figure F.7. From the figure it can be seen that the robot

moves around the centered man-way on the column tray. The absolute x, y, and yaw-error

of an simulated inspection routine are shown in Figure F.9a. At 31 seconds, pose updates

(red stars) from the 3D registration module of our pipeline stop being provided. This is

because the 3D registration module can no longer extract structural elements from the

scan, since the camera is too close to the wall of the cylinder to generate suitable point

clouds (downcomer not in view). An example of such a point cloud is shown in Figure F.2.

At 53 seconds the robot has moved to a position where 3D registration is again possible

and our 3D Stein-ICP pose updates are re-established. Between these two time stamps the
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filter is only relying on the drifting odometry, which is indicated by the increasing error

shown in plot F.9a. After time stamp 00:53, it can be seen that the error is reduced when

a new absolute pose update arrives to the filter. The errors for the simulation are shown

in table F.1.

Figure F.7. Top-view x,y plot of the path of an inspection run in simulation. The green
line indicate the ground truth, magenta the drifting odometry, the red stars are our Stein-ICP
registrations and the blue dots is our absolute localization estimate from the pipeline. The white
area illustrate empty space and the black area is occupied space.

Table F.1. Error metrics for simulation experiments

Raw 3D registration: x [m] y [m] Yaw [deg]

Mean 0.001 -0.006 -0.013
Std. dev. 0.042 0.0478 3.504
95 percentile 0.074 0.079 5.029
Max 0.136 0.188 12.350

Whole pipeline:

Mean -0.002 -0.029 -0.041
Std. dev. 0.024 0.040 2.211
95 percentile 0.053 0.018 2.437
Max 0.063 0.158 5.967
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(b) mock-up model

Figure F.8. Plot of the x,y position and the yaw rotation of an inspection run in simulation (a)
and a similar run in the real world mock-up model (b). The output from the raw point cloud
registrations are shown as the red stars: Stein-ICP (ours), and the ground truth is shown as the
green line. The output from our localization pipeline is depicted as the blue line (EKF).
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(b) Mock-up model

Figure F.9. The absolute error of an inspection run in the simulated and real world mock-up
model. The raw 3D point cloud registrations are shown as the red stars, whereas the output of the
full absolute localization pipeline is shown as the blue line (EKF). The 3D registration drop-outs are
due to lack of geometric features, which results in high dependence on the drifting VIO estimate.

Table F.2. Error metrics for real-world experiments

Raw 3D registration: x [m] y [m] Yaw [deg]

Mean 0.032 0.004 0.207
Std. dev. 0.050 0.071 4.075
95 percentile 0.058 0.162 4.815
Max 0.291 0.269 9.891

Whole pipeline:

Mean 0.073 0.013 1.359
Std. dev. 0.086 0.041 2.305
95 percentile 0.305 0.076 4.268
Max 0.379 0.224 10.158
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F.5.3 Mock-up model

Our algorithm was also tested in the real world using a mock-up model of the distillation

column. The approach follows the same steps as in simulation, where the robot was

placed inside a section of the column and was manually controlled around the model in

an inspection pattern. Due to the limited space, the ground truth was estimated using

ArUco markers attached on the ceiling. An Intel D455 camera pointing upwards was used

to give estimates of the ground-truth pose when the tags were in view of the camera. A

plot of the x, y position and the yaw angle is shown in Figure F.8b. The absolute x, y, and

yaw-error is shown in Figure F.9b and in table F.2, where it can be seen that the error is

comparable to the simulated results. From the figure, it can be seen that at 58 seconds

our algorithm can no longer perform 3D registrations, and the localization relies on the

VIO estimate up until 1:20 where a new absolute pose is received. In this time span, it

is clear that a noticeable error has occurred on the x axis and, to some extent, also on

the y axis, due to the challenging environment for the VIO system. However, it is worth

noticing that, with the exception of a few outliers, most of the 3D registration data points

have small errors. This shows that even with a poor VIO estimate the algorithm is able to

recover when structural data are available.

F.6 Conclusion

Within this work, we have designed and tested an absolute localization pipeline, using GPU

parallelized 3D registrations, for environments with a low number of features and a high

level of similarity. To incorporate 3D registrations into our state estimation, we employed a

variant of the ICP algorithm, which is capable of providing accurate uncertainty estimates.

Structural elements from the environment were detected and classified, to reduce the

degrees of freedom of Stein-ICP. Initial results indicate good performance, with very few

outliers for both the 3D registrations and the filtered output. The localization system was

tested in both a simulated and a real-world environment and showed good performance in

handling the highly symmetrical environment.
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Chapter 6

Applications of absolute

localization in autonomous

inspection

So far we have assumed that we operate in a known environment. This is a well-

founded assumption due to the availability of simple CAD drawings or 3D models of

most industrial confined spaces. However, in the cases where these models are not available,

an exploration-based inspection approach could be used. An example of such an approach

has been investigated in article G, where the Next-Best-View (NBV)[182] planner has

been augmented with information derived from the defect classification. The goal of the

original NBV planner is to explore the space, by generating random trajectories that

maximize the path towards unseen space. The planner distinguishes between occupied

space, free space, and unexplored space. The space is represented by an octree-based

map[183]. A fixed number of nodes are sampled in the free space around the robot, using a

Rapidly exploring Random Tree (RRT)[184], where each node represents individual states

of the robot. These nodes are connected by a tree structure and are also given a score

based on how much unexplored space is visible by the depth camera of the robot. The

robot will move to the node with the highest score, and a new tree is then built from this

node, using the maximum exploration approach.

In the article, the score of each node is furthermore scaled, based on the number of

visible interest points. The interest points are continuously discovered by using a Faster

R-CNN, trained on corrosion images generated in Blender[185]. By scaling the score of

each node based on the visible interest points, gives the system precedence to trajectories

that maximize the number of interest points in view, e.g. corrosion. This results in more

images of the defects, and at different angles, and thereby gives a better foundation for the

evaluation system – be it automatic or human-based. The main contribution of the paper

is therefore the defect aware exploration and its novel objective function with the input

from defect detection. For the experiments in the article a simulation of a water ballast

tank was created based on 3D laser scans from a real double hull vessel. The results of the

experiments showed that the UAVs were able to explore and map the ballast tank and

construct a metric occupancy grid of the environment, while at the same time detecting

defects along the path.
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Abstract:

While there exist several approaches for autonomous exploration of confined spaces, when

it comes to inspection tasks, there are not many works that take into account the actual

classification of defects in the robot’s view. Such approaches may result in less than optimal

observations —even miss corrosion areas— and, therefore, can hinder the fulfillment of the

purpose of the exploration, which is the identification of defects. In this paper, the first

steps towards the unification of the exploration and inspection procedures, are theorized

and experimentally evaluated. The next-best-view algorithm is augmented with information

stemming from the defect classification. The system is tested within a computer model

of a water ballast tank, from a double-sided cargo carrier, infused with corrosion areas.

The initial results indicate that the UAV is able to successfully maneuver through tight

entrance ways to explore and map the different compartments of a ballast tank while

observing a higher percentage of corrosion than “vanilla” next best view.

G.1 Introduction

The seaworthiness of marine vessels is mainly determined by their structural integrity and

overall condition. To assess this integrity, it is of utmost importance that a thorough visual

inspection is performed on the vessels’ key components. Such key components are, among

others, the ballast tanks, where it is often difficult and dangerous for human inspection

personnel to enter. Due to the hostile environment, surveyors tend to miss assessing key
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areas within the ballast tanks. Using an Unmanned Aerial Vehicle (UAV) for the visual

assessment, can ensure a repeatable and thorough inspection.

Typical autonomous robot exploration of unknown spaces aims at generating a full map

of the areas while defining collision-free regions and trajectories. In more complex cases

—such as the autonomous visual inspection of marine vessels— where exploration aims

at providing additional data, the requirements for the motion planing are augmented.

Naturally, a safe, autonomous, and reliable motion planning is required to navigate the

dark and confined spaces. However, further constraints, such as angle and distance of

observation, are implied, and therefore, the online information of the in-view defect must

be integrated in the exploration algorithm. To accomplish this, an exploration approach is

therefore investigated which aims at maximizing volume coverage within the ballast tanks,

while prioritizing defect areas.

In a similar manner to the work presented in [182] a stereo camera is used to generate

local 3D maps in the robot’s view. The sequential 3D maps are combined to form an

occupancy map. By the end of the exploration, the whole mapped area is described as

either occupied or free leafs of an octree. Iteratively, a random tree [184] is formed in the

free space of the explored area. Each branch is scored based on the amount of unmapped

space that can be mapped by following this branch and the amount of interest points

(e.g. faults and defects in the case of inspection of ballast tanks) in the field of view of

the on-board cameras. The detection of interest points is performed using custom trained

deep learning algorithms [77]. The top scoring branch of the octree is selected, and the

robot is commanded to move to the first node of this branch. The process is then repeated.

The approach is tested in two simulated environments of a top-side water ballast tank

(WBT) from a double-sided cargo vessel. The purpose of the first simulation is to show

that the exploration planner is capable of mapping an entire ballast tank. The second

simulation provides more photorealistic imagery, which will be used to demonstrate how a

vision-based detection system can be used to detect points of interest that is then included

in the scoring of each branch in the random tree.

The on-board calculation of paths to safely navigate and explore the unknown space, while

properly observing possible defect areas, enables efficient and accurate inspection of the

ballast tanks.

G.2 Related Work

Using UAVs for path planning for industrial inspections has been investigated by [186].

However, they assume a fully known environment and do not consider unknown changes to

the structure/map. This assumption of a valid map/drawing is rarely true for marine vessels,

as they often undergo minor structural improvements and repair throughout their lifespan.

These minor structural changes are seldom added to the vessel drawings. Therefore, this

paper assumes that we have no prior knowledge of the confined space of the ballast tanks.

The authors in [182] present an algorithm for exploration of unknown and limited confined

spaces. This algorithm yields good results for objects with a significant free space, either

within or surrounding the object. However, it also provides results only for a single confined

space and not a combination of multiple spaces, such as the compartments of a water
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ballast tank. The multiple compartment issue, complicates the volume that needs to be

explored and will therefore also be addressed in this paper. The detection of corrosion in

ballast tanks is crucial for the classification of the vessels as well as the maintenance and

general safety of the vessel, and therefore the crew onboard. Typically, autonomous defect

detection was based on image processing techniques employing hand-crafted, empirical

rules. The rise of deep learning over the past decade allows the exploitation of alternative

(typically higher order) feature spaces [187] which provide a more descriptive representation

of the environment [188]. Different approaches for the detection of corrosion have been

described in [77]. On the one hand, the detection of interest areas (object detection) was

described as a means of an overall assessment. FasterRCNN is a highly acknowledged

region proposal and classification network with application areas both in the inspection of

known environments [77] and in the exploration of novel regions [189]. In [77] Faster-RCNN

—an object detector— and its derivative Mask-RCNN —and image segmentation network—

have been investigated in the context of inspection. Even though the overall accuracy of

the Mask-RCNN is higher, the speed of Faster-RCNN allows for onboard implementation

inside our modified version of the next best view. In [92] regression of the percentage

of corrosion in an image. The integration of this approach in an exploration methods is

interesting, but was deemed out of scope for this first attempt at an inspection-aware

exploration.

G.3 System Overview

G.3.1 Aerial Vehicles

The aerial platforms used in this paper are based on their availability in the simulation

software and small size, which allows them to go through the narrow passages between the

compartments in the ballast tank. For the Gazebo simulation, we use an Astec Firefly,

shown in figure G.1, and in Airsim we use a DJI F450 frame-based UAV.

Figure G.1. The Unmanned Aerial Vehicle used for mapping an exploration inside simulated
model of a water ballast tank of a marine vessel.
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They utilize publicly available components, with a focus on minimizing size and weight.

They are equipped with a Flight Controller Unit (FCU), and a small onboard Linux pc.

To sense the surroundings, the UAVs are equipped with a stereo vision camera, which

includes a time-synchronized IMU. The camera is equipped with an IR-projector, which

aids in generating a point cloud used for mapping the environment. This camera setup

makes it possible to both have a VIO system, in our case ROVIO [25], running while at the

same time generating point clouds for detecting 3D features in the environment. Although

it is known that viusal odometry produces drift [122, 131] and that absolute localization

approaches could assist in eliminating the error [3, 144, 145, 4], this is deemed to be out of

the scope and to be included in our future work.

It is assumed that the UAVs carry their own light source to illuminate the dark environment

of the ballast tank. Due to computational limitations on the simulation hardware, this

is only included in the second UAV model, but an UAV-based light source has proven to

work both for VIO and point cloud generation for real-world tests [2]. Therefore, general

artificial low-light conditions are modeled for the inside of the water ballast tank.

G.3.2 Environment

The used UAV-based systems aims to operate in the confined spaces of empty water ballast

tanks on-board cargo vessels. Most of the time, the water ballast tanks are empty due

to cargo being present in the cargo holds. It is therefore reasonable to assume that an

airborne UAV can be utilized more often than a submerged vehicle.

To allow rapid development and testing —and due to temporary access restrictions to

vessels (Covid-19)— a computer model of a topside water ballast tank of a double-sided

cargo carrier was designed for the simulation software in both Gazebo[190] and AirSim

[191]. The model of the water ballast tank is based on a 3D laser scan from a real vessel,

and the comparison between the scan and the model can be seen in figure G.2.

Figure G.2. An illustration of a typical water ballast tank from the port side of a double sided
cargo carrier vessel. The point cloud (left) was captured using a FARO laser scanner with accuracy
greater than 1 mm. The computer model (right) was build based on the point cloud from the real
tank, and includes manholes, pipes, ect. as shown in figure G.3
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The entire ballast tank is 18 meters long (x), 2 meters wide (y), 9 meters high (z), and

consist of 2 levels. The top level is 3 meters tall and is divided into 3 sections. The bottom

section is divided into five sections, each 3.5 meters long. A 2D view with separations (black

lines) for each compartment of the ballast tank can be seen in figure G.8. It is possible to

access the different sections through entrance holes between the sections near the floor of

the section. Transitions between the two levels are only possible in compartment E and H,

as shown in figure G.8.

Figure G.3. The inside of the water ballast tank shown in figure G.2. The UAV in the top center
of the image is located at (0,0.5,1) in the tank coordinate system, and can be seen through a
passageway between two compartments in the bottom of the tank structure.

G.3.3 Mapping

To be able to plan a 3D trajectory in the unknown environment of the ballast tanks, the

UAVs need to gain volumetric information of its closest environment. This is done using

the point cloud data from the stereo camera, to create a octree-based map [183] of the

environment. The occupancy map is a grid that covers the whole volume. To create

the grid, the volume is split into octants. An octant is a recursive subdivision of the

hierarchical space. Every octant is divided into eight smaller octants, and so forth. The

tree representation of this map is called an octree. Taking into account n, the depth (or

resolution of the octree), the octomap comprises 2n × 2n × 2n octants. The 3D volume to

be explored is initially considered unknown. The leafs of the octree are either occupied,

free, or unmapped. The octrees are selected in octomap for their simplicity, efficiency and

functionality (e:g: traversing and closest child querry). In figure G.4 it can be seen how a

map is gradually built up over a period of 30 minutes, while the UAV explores the water

ballast tank.

G.4 Exploration and path planning

The goal of the planner is to maximize exploration while penalizing the travel distance

and rewarding the observation of new defects. The foundation of the exploration and path

planning is based on the work of the authors in [182], so the nomenclature in this section
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Figure G.4. Example of how a map is slowly being build, over a period of 30 minutes, as the
UAV explores the water ballast tank from the inside.

follows that work closely. At each iteration of the path planning algorithm, only free and

occupied space —in the octree— is considered. As a first step, RRT samples points in the

free space of the octree. Then, samples (nodes of the RRT) are connected with a straight

line if the connection volume is marked as free. RRT is chosen on the basis of its natural

ability to handle obstacles and tight spaces. RRT* [192] would most likely give better

results but would require more computational resources. An alternative to RRT could be

Probabilistic Road Maps (PRM) [193], but it would spend more computational resources

on collision checking when building edges to the surrounding nodes. RRT is, therefore,

chosen for this paper. The state of the robot is given by ξ = (x, y, z, θ), which corresponds

to the UAV being able to translate in 3D and rotate around the z-axis (yaw). The lack of

roll and pitch in the state is explained by the drone flight stability and the slow straight

line movements generated by the RRT based planner.

G.4.1 Original NBV Path Score and Selection

A path is given by σ : R → ξ, which corresponds to the path between two discrete vehicle

configurations ξk−1 and ξk. The paths between these configurations are checked for collision

by diluting the path/edge in the shape of a box using the size of the drone as the size

parameter. The path cost is defined as c(σk
k−1), and due to moving in straight lines, the

cost is considered to be the Euclidean distance:

c(σk
k−1) = ||xk − xk−1||2 (G.1)

The yaw angle, θ, of the UAV is not considered in the cost. The maximum speed, vmax,

and the maximum yaw angle, θmax, of the UAV are controlled by the flight controller,

which in our case is simulated by the RotorS package [194]. For each vehicle configuration,

ξ, there is a certain set of voxels, m, which are both unmapped and can be explored/seen

by the camera sensor. This set will be denoted as E(M, ξ), and lies in the unexplored

space Vunmap, and is important for the determining the reward for each node in the RRT.

The quality/reward of each node Q(n) in the tree is the sum of the unmapped volume that
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can be explored at the nodes along the branch. For node k, this can be expressed as:

Q(nk) = Q(nk−1) + E(M, ξ) · e−λc(σk
k−1) (G.2)

Note that a tuning factor, λ, in equation G.2, penalizes large paths.

Starting from the current vehicle configuration, a tree is grown using RRT in the free

space, and the node with the best reward is determined. The first node in that branch

is set as the new destination for the UAV. A new tree can then be grown from the new

position, but to prevent discarding high-quality paths already found, the previous branch

with the best node is used to reinitialize the new tree. This principle is illustrated in figure

G.5, where the black bold line indicates the best branch in the first tree, which the second

tree is then built upon. The best node in any given tree is the one with the highest value.

From the figure G.5 it can be seen that for the first tree the best node has a value of 193

and for the second tree the value is 187. To facilitate the interpretation of the figure, some

of the nodes with smaller values are not displayed.
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Figure G.5. Illustration of tree iterations, where the best branch from the first tree is used as the
base for the second tree.

G.4.2 Novel Path Score

For inspection purposes, the goal is to spend as much time as possible looking at points of

interest in the ballast tank, such as faults and defects. To incorporate this behavior, a deep

learning model [77] is included on the drone to process the camera sensor information and

map interest points in the 3D space. The algorithm is a Faster-RCNN network pre-trained

on imagenet on which transfer learning was applied using a custom recorded dataset. For

the implementation details the reader is directed to [77]. Equation G.2 is updated using

a scaling factor µ based on how many interest points that are within the field of view in

nodes:

Q(nk) = Q(nk−1) + µE(M, ξ) · e−λc(σk
k−1) (G.3)
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The scaling factor is computed based on the sum of inverse distances:

µ =
∑
i∈I

1

di
(G.4)

Here I is the set of visible interest points in the camera FOV and di is the distance between

interest point i and the camera. When the detection model detects a new interest point,

the stereo camera is used to project the 2D image point to 3D and is stored with respect

to a fixed frame. This means that when the exploration tree is expanded, the FOV can be

computed for each node in the tree, and the amount of interest points within each FOV

can be used to compute the sum of inverse distances to scale the quality/reward of a node.

G.5 Experiments

In order to evaluate the performance of the exploration system, a simulated environment

is set up using ROS, Gazebo and AirSim using Unreal Engine. The unknown environment

is represented by a computer model of a water ballast tank, as shown in figure G.2. The

UAV has to explore this space by moving around inside the compartments. The UAV is

located at the floor in the bottom level of the WBT in the middle compartment, with its

vehicle configuration as (x, y, z, θ) = (0, 0, 0, 0). From this position the UAV is launched

to 1 meter above the floor and the exploration algorithm is started. The parameters for

the exploration algorithm in the Gazebo simulation can be seen in table G.1. To limit

computational requirements, the RRT size is limited to Nmax
T nodes, and the maximum

length of each edge is set to 2 meters. To properly calculate the reward for each node,

using equation G.2, the field of view of the camera is configured and the max depth field is

set to 5 meters. Gaussian noise is furthermore added to the sensors, including the camera,

to closely resemble real-world conditions. Previous work in [77] investigated the use of deep

Table G.1. Parameters for exploring the Water Ballast Tank in Gazebo

Parameter Value Parameter Value

vmax 0.25 m/s Volume (x,y,z) 16x2x9m

θmax 0.3 rad/s Map resolution 0.1m

λ 0.2 Nmax
T 30

learning architectures for inspection in marine vessel ballast tanks. The AirSim simulation

is included because of the ability to generate more photo-realistic environments that is

required when running a deep learning model for interest point detection. The detection

of interest points in this paper is done using a Faster-RCNN model trained on images

generated in Blender [185], although it is independent of the exploration system and could

be any detection model. An example of highlighted interest points is shown in figure G.6.

The center of the bounding boxes is used to look up the 3D coordinate representing each

point of interest. The 3D coordinate is then used to scale the gain by equation G.3. The

exploration parameters for the AirSim simulation are listed in table G.2.

G.5.1 Results

The UAV in the Gazebo simulation is set to explore the WBT and an occupancy map is

built by the UAV as shown in figure G.7. From this it can be seen that the UAV is able to
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Table G.2. Parameters for exploring the Water Ballast Tank in AirSim

Parameter Value Parameter Value

vmax 0.25 m/s Volume (x,y,z) 16x2x9m

θmax 0.3 rad/s Map resolution 0.05m

λ 1.0 Nmax
T 180

Figure G.6. (top) The AirSim drone located in front of a corrosion (bottom) Example output of
the detection model detecting corrosion in the image from the camera on the drone.

map the WBT with the exception of some lack of data for the front center of the tank.

The actual path of the drone during the exploration is shown in figure G.8 as the blue line.

The white and black dots indicate the start and end positions, respectively. Due to the

relatively flat structure of the WBT, the path is depicted as the projection from 3D to

2D, so that the y-axis is discarded. This eases the interpretation and results in a sideways

view of the ballast tank, where the compartments are marked by the thick black lines, and

given an identification letter from A to H in the top left corner. For every planning step, a

tree with 30 nodes is being built. The complete set of the 460 trees is shown as the red

dots (nodes) and the gray lines between the nodes (edges).

It can be seen from the path that the UAV crosses the different compartments through

the entrance ways in the bottom part of the WBT. Connections between the top layer (A

to C) and the bottom layer (E to H) are only available at the tops of D and H. However,

the UAV still passes through the top of compartment G. This is caused by errors in the
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Figure G.7. The original model of the water ballast tank (left) compared to the explored and
mapped model (right) represented as an occupancy grid map. The colour depicts the height of
each voxel.

Figure G.8. Illustration of the 460 generated exploration trees and its nodes projected to 2D on
the side of the ballast tank. The blue line depicts the resulting x,z-path of the UAV.
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simulation, where the roof of G can become transparent. In compartment E there is an

obstruction that prevents the UAV from fully exploring the compartment.

To validate that the addition of interest points to the gain computation in equation G.3, the

detection model is included in the AirSim simulation environment. The results of including

the interest points in the gain computation is visible by the drone valuing locations that

overlook more interest points. In our experiments, the number of detections increased from

an average of 1.21 detections per image to 1.35 detections per image. This 10% difference

directly translates into more images available for future repairmen’s decisions or other

subsequent planning based on the results of the inspection. The results of this first attempt

at integrating defect detection into the exploration indicate the potential of the idea but,

nonetheless, warrant further development and evaluation.

G.6 Conclusions

Within this work, a simple and computationally light system for exploring and mapping

unknown confined spaces —while increasing defect observation— was investigated. The

system was tested in two realistic simulated environments of a marine vessel water ballast

tank, using an UAVs with stereo vision cameras. The UAVs were able to explore and map

the ballast tank and construct a metric occupancy grid of the environment. Additionally,

a modified gain computation was introduced that indicated an increase in drone positions

with a higher number of interest points within the FOV. The interest points were found

using an off-the-shelf deep learning Faster R-CNN architecture trained on images generated

using Blender software. The detected interest points are projected to 3D space using

the stereo camera on the drone, which allows for computing the sum of inverse distances

scaling used in the modified scoring of the branches in the exploration tree.

The exploration system will in later iterations be improved by adding simple prior

knowledge of the environment. Such knowledge for the ballast tanks could be the number

of levels, compartments, and possible transition connections between compartments. These

improvements are aimed at being implemented into a RRT* or a kind of informed RRT.

127





Chapter 7

Conclusion & Future Research

Inspection of industrial confined spaces poses serious risks to humans, and with a focus on

the maritime industry, the purpose of this dissertation was to create an absolute localization

system for an autonomous robotic inspection solution. A literature review showed that

absolute localization within the confined spaces of marine vessels is still limited and does

not exist for the water ballast tanks. The investigation also showed that wheel-based

robotic platforms, such as crawlers, can have difficulty traversing confined spaces of vessels.

Therefore, this work focused on the absolute localization aspect of both an aerial and

legged-based robotic inspection solution. Different approaches were investigated, where

the first method used custom structural landmarks extracted from an RGB-D camera,

to update an absolute pose estimate. The landmarks were extracted by detecting known

structural elements from the ballast tank of marine vessels and comparing them to the

actual position in a map of the tank. Using this method, the UAV was able to accurately

localize itself as well as artificial defects scattered around the tank. However, it was limited

to a very specific environment due to the definition of custom landmarks. To mitigate

this limitation, the next work introduced 3D feature descriptors to extract structural

information from point clouds generated by the RGB-D camera. State-of-the-art deep

learning-based feature descriptors were used to register a sensor scan to a known map of

the environment. By fusing a Visual Inertial Odometry estimate with the absolute pose

estimate from the 3D registration, the system was able to provide pose estimates without

the limitations of the custom landmark approach. However, the system lacked the ability to

provide the uncertainty of the 3D registration, which is required for proper state estimation.

Therefore, the next work introduced a GPU-based uncertainty estimation method. The

uncertainty approach was experimentally tested for both a chemical distillation column and

a water ballast tank. The last article removed the assumption of available CAD drawings,

where research was instead conducted on how to perform an autonomous inspection without

a prior map of the environment. An exploration-based approach was used to explore the

unknown confined space, with additional weight in the objective function for the collection

of inspection data along the robot flight path.

As the reader may recall, the first objective of the PhD, described in Section 1.2, was

to provide an absolute localization system for known confined spaces that was tailored

to the data availability. This has been achieved by creating localization pipelines that

could work with just a few custom 3D landmarks extracted from 2D drawings, as well as a

system that could localize itself using a prior map from CAD drawings. Additionally, an
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exploration-based inspection system was provided for unknown confined spaces without

a prior map. The second objective of the Ph.D. was to provide an uncertainty estimate

for a localization pipeline in visually degraded or featureless environments. This objective

was achieved for a chemical distillation column with very limited structural and visual

features. Similarly, an uncertainty estimate was implemented in one of the localization

pipelines provided in the first objective, creating additional value for the resulting absolute

pose estimation. The third and last objective was to ensure that an absolute localization

pipeline could be created for online operation on small form-factor robots. A range of

the discussed pipelines achieved this by utilizing a small Graphic Processing Unit, and

were demonstrated in both the distillation column and the water ballast tank mock-up

model. The work carried out during this project has shown that absolute localization

can be obtained for industrial confined spaces using a variety of different solutions, and

therefore I consider our objectives to have been fully achieved.

7.1 Future Research

Accurate localization for inspection of industrial confined spaces is still a novel field that

leads to even more research directions. The findings of article A support this claim, where

it was also found that the shipping industry did not have a fully automatic inspection

solution for confined spaces. The usage of an end-to-end deep learning localization pipeline

would be a highly interesting area, as the availability of smaller and more powerful GPUs

has steadily increased in recent years. Several approaches could be used, where a 2D to

3D matching pipeline, using the Depth images for a registration to a CAD model, could

be an area worth researching. This could simplify the pipeline and have the potential to

reduce computational requirements compared to dense 3D feature extraction. Similarly,

incorporating ML-based prediction of the most common areas of corrosion and buckling

could increase the efficiency of an automated inspection process. Corrosion in steel assets

additionally requires thickness measurements of the remaining material, and a contact-

based navigation solution with ultra sonic thickness measurement capabilities would also

add additional value to an automated inspection solution. Investigating the continued

use of legged robots for inspecting confined spaces could, furthermore, help overcome

some of the limitations inherited by the use of small unmanned aerial vehicles. As legged

robots start to improve their stability and robustness in rough terrain, this could allow

longer operation times and less issues with turbulence compared to aerial solutions. A

legged robot could still provide some flexibility in traversing difficult-to-reach areas of

the ship, but would have the possibility of larger sensor packs and compute power. By

using larger spinning LIDARS this could for example increase the Field-of-View (FoV)

compared to the very limited FoV of the sensor pack on the UAV used in this project.

Incorporating air quality sensors onboard the robot could provide a valuable addition to

a mapping system that maps not only the structure, but also air quality throughout the

environment. This has the benefit of increasing the level of safety of human personnel

during the repair of detected defects. Another large and obvious research area could also

be an autonomous robotic system with repair capabilities. This would require surface

preparation and, most likely, stable contact with the surface at the defect location. It

is clear that robotic inspection for confined spaces still has a range of areas that require

further research before a fully autonomous solution will be available for the industry.
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[139] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with

GPUs. arXiv preprint arXiv:1702.08734, 2017.

[140] Heng Yang, Jingnan Shi, and Luca Carlone. Teaser: Fast and certifiable point cloud

registration. IEEE Transactions on Robotics, 2020.

[141] Heng Yang and Luca Carlone. A Polynomial-time Solution for Robust Registration

with Extreme Outlier Rates. In Robotics: Science and Systems XV, University of

Freiburg, Freiburg im Breisgau, Germany, June 22-26, 2019, 2019.

[142] Milad Ramezani and Kourosh Khoshelham. Vehicle positioning in GNSS-deprived

urban areas by stereo visual-inertial odometry. IEEE Transactions on Intelligent

Vehicles, 3(2):208–217, 2018.



[143] Tung Dang, Shehryar Khattak, Christos Papachristos, and Kostas Alexis.

Visual-Inertial Odometry-enhanced Geometrically Stable ICP for Mapping

Applications using Aerial Robots. CoRR, 2018.

[144] Evangelos Boukas, Antonios Gasteratos, and Gianfranco Visentin. Towards orbital

based global rover localization. In 2015 IEEE International Conference on Robotics

and Automation (ICRA), pages 2874–2881. IEEE, 2015.

[145] Evangelos Boukas, Antonios Gasteratos, and Gianfranco Visentin. Introducing a

globally consistent orbital-based localization system. Journal of Field Robotics, 35

(2):275–298, 2018.

[146] Lazaros Nalpantidis, Georgios Ch Sirakoulis, and Antonios Gasteratos. A dense

stereo correspondence algorithm for hardware implementation with enhanced

disparity selection. In Hellenic conference on Artificial Intelligence, pages 365–370.

Springer, 2008.

[147] Lazaros Nalpantidis, Georgios Ch Sirakoulis, and Antonios Gasteratos.

Non-probabilistic cellular automata-enhanced stereo vision simultaneous localization

and mapping. Measurement Science and Technology, 22(11):114027, 2011.

[148] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++: Deep

Hierarchical Feature Learning on Point Sets in a Metric Space. In Advances in

Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[149] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast Global Registration. In

Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The

Netherlands, October 11-14, 2016, Proceedings, Part II, volume 9906 of Lecture

Notes in Computer Science, pages 766–782. Springer, 2016.

[150] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A Modern Library for 3D

Data Processing. CoRR, abs/1801.09847, 2018.

[151] Thomas Moore and Daniel Stouch. A Generalized Extended Kalman Filter

Implementation for the Robot Operating System. In Intelligent Autonomous

Systems 13 - Proceedings of the 13th International Conference IAS-13, Padova,

Italy, July 15-18, 2014, volume 302 of Advances in Intelligent Systems and

Computing, pages 335–348. Springer, 2014.

[152] Christos Papachristos, Frank Mascarich, and Kostas Alexis. Thermal-Inertial

Localization for Autonomous Navigation of Aerial Robots through Obscurants. In

2018 International Conference on Unmanned Aircraft Systems (ICUAS), pages

394–399, 2018. doi: 10.1109/ICUAS.2018.8453447.

[153] Konstantinos A Tsintotas, Loukas Bampis, and Antonios Gasteratos.

Modest-vocabulary loop-closure detection with incremental bag of tracked words.

Robotics and Autonomous Systems, 141:103782, 2021.

[154] Konstantinos A Tsintotas, Panagiotis Giannis, Loukas Bampis, and Antonios

Gasteratos. Appearance-Based Loop Closure Detection with Scale-Restrictive Visual



Features. In International Conference on Computer Vision Systems, pages 75–87.

Springer, 2019.

[155] Konstantinos A Tsintotas, Loukas Bampis, Antonios Gasteratos, and FIET.

Tracking-DOSeqSLAM: A dynamic sequence-based visual place recognition

paradigm. IET Computer Vision, 15(4):258–273, 2021.

[156] David Landry, François Pomerleau, and Philippe Giguere. CELLO-3D: Estimating

the Covariance of ICP in the Real World. In 2019 International Conference on

Robotics and Automation (ICRA), pages 8190–8196. IEEE, 2019.

[157] Andrea Censi. An accurate closed-form estimate of ICP’s covariance. In Proceedings

2007 IEEE international conference on robotics and automation, pages 3167–3172.

IEEE, 2007.

[158] Martin Brossard, Silvere Bonnabel, and Axel Barrau. A new approach to 3D ICP

covariance estimation. IEEE Robotics and Automation Letters, 5(2):744–751, 2020.

[159] Fahira Afzal Maken, Fabio Ramos, and Lionel Ott. Stein ICP for Uncertainty

Estimation in Point Cloud Matching. IEEE Robotics and Automation Letters, 7(2):

1063–1070, 2022.

[160] Contreras Juan, Cuadrado William, Munoz David, Archbold George, Delgado,

Geraldine Delgado, and Diaz Vladimir. Automatic ship hull inspection using fuzzy

logic. In Proceedings - Applied Imagery Pattern Recognition Workshop, 2012. ISBN

9781467345583. doi: 10.1109/aipr.2012.6528214.

[161] VV Kostenko, A Yu Bykanova, and A Yu Tolstonogov. Underwater robotics complex

for inspection and laser cleaning of ships from biofouling. In IOP Conference Series:

Earth and Environmental Science, volume 272. IOP Publishing, 2019.

[162] Dario Floreano and Robert J Wood. Science, technology and the future of small

autonomous drones. nature, 521(7553):460–466, 2015.

[163] Paolo De Petris, Huan Nguyen, Tung Dang, Frank Mascarich, and Kostas Alexis.

Collision-tolerant Autonomous Navigation through Manhole-sized Confined

Environments. In 2020 IEEE International Symposium on Safety, Security, and

Rescue Robotics (SSRR), pages 84–89, 2020. doi: 10.1109/SSRR50563.2020.9292583.

[164] Paolo De Petris, Huan Nguyen, Mihir Kulkarni, Frank Mascarich, and Kostas Alexis.

Resilient collision-tolerant navigation in confined environments. In 2021 IEEE

International Conference on Robotics and Automation (ICRA), pages 2286–2292.

IEEE, 2021.

[165] Olivier Idir and Alessandro Renzaglia. Multi-Robot Weighted Coverage Path

Planning: a Solution based on the DARP Algorithm. In 17th International

Conference on Control, Automation, Robotics and Vision, 2022.

[166] Anne Steenbeek and Francesco Nex. CNN-Based Dense Monocular Visual SLAM for

Real-Time UAV Exploration in Emergency Conditions. Drones, 6(3):79, 2022.



[167] Zheng Fang, Shichao Yang, Sezal Jain, Geetesh Dubey, Stephan Roth, Silvio Maeta,

Stephen Nuske, Yu Zhang, and Sebastian Scherer. Robust autonomous flight in

constrained and visually degraded shipboard environments. Journal of Field

Robotics, 34(1):25–52, 2017.

[168] Lorenz Meier, Petri Tanskanen, Friedrich Fraundorfer, and Marc Pollefeys.

PIXHAWK: A system for autonomous flight using onboard computer vision. In 2011

IEEE International Conference on Robotics and Automation, pages 2992–2997, 2011.

doi: 10.1109/ICRA.2011.5980229.

[169] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,

Rob Wheeler, Andrew Y Ng, et al. ROS: an open-source Robot Operating System.

In ICRA workshop on open source software, volume 3.2, page 5. Kobe, Japan, 2009.

[170] John Wang and Edwin Olson. AprilTag 2: Efficient and robust fiducial detection. In

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 4193–4198. IEEE, oct 2016. ISBN 978-1-5090-3762-9. doi:

10.1109/IROS.2016.7759617.

[171] Bernd Pfrommer and Kostas Daniilidis. Tagslam: Robust slam with fiducial

markers. arXiv preprint arXiv:1910.00679, 2019.

[172] Dirk Holz, Alexandru E Ichim, Federico Tombari, Radu B Rusu, and Sven Behnke.

Registration with the point cloud library: A modular framework for aligning in 3-D.

IEEE Robotics & Automation Magazine, 22(4):110–124, 2015.

[173] Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose

bayesian inference algorithm. Advances in neural information processing systems, 29,

2016.

[174] Eric A Wan and Rudolph Van Der Merwe. The unscented Kalman filter for

nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal

Processing, Communications, and Control Symposium (Cat. No. 00EX373), pages

153–158. Ieee, 2000.

[175] Thomas Moore and Daniel Stouch. A generalized extended kalman filter

implementation for the robot operating system. In Intelligent autonomous systems

13, pages 335–348. Springer, 2016.

[176] Simon J Julier and Jeffrey K Uhlmann. Unscented filtering and nonlinear

estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[177] P.J. Besl and Neil D. McKay. A method for registration of 3-D shapes. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.

doi: 10.1109/34.121791.

[178] Andrea Tagliabue, Jesus Tordesillas, Xiaoyi Cai, Angel Santamaria-Navarro,

Jonathan P How, Luca Carlone, and Ali-akbar Agha-mohammadi. LION:

Lidar-Inertial observability-aware navigator for Vision-Denied environments. In

International Symposium on Experimental Robotics, pages 380–390. Springer, 2020.



[179] Mark Pilling and Bruce S Holden. Choosing trays and packings for distillation. Am.

Inst. Chem. Eng. CEP, 105:44–50, 2009.

[180] Rasmus Eckholdt Andersen, Marcin Zajaczkowski, Harsh Jaiswal, Jianan Xu,

Wenjie Fan, and Evangelos Boukas. Depth-based Deep Learning for Manhole

Detection in UAV Navigation. In 2022 IEEE International Conference on Imaging

Systems and Techniques (IST), pages 1–6, 2022. doi: 10.1109/ist55454.2022.9827720.

[181] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the ICP algorithm. In

Proceedings third international conference on 3-D digital imaging and modeling,

pages 145–152. IEEE, 2001.

[182] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen Oleynikova, and Roland

Siegwart. Receding horizon” next-best-view” planner for 3d exploration. In 2016

IEEE international conference on robotics and automation (ICRA), pages

1462–1468. Ieee, 2016.

[183] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram

Burgard. OctoMap: An efficient probabilistic 3D mapping framework based on

octrees. Autonomous robots, 34(3):189–206, 2013.

[184] Steven M LaValle et al. Rapidly-exploring random trees: A new tool for path

planning. Ames, 1998.

[185] Roland Hess. The essential Blender: guide to 3D creation with the open source suite

Blender. No Starch Press, 2007.

[186] Janosch Nikolic, Michael Burri, Joern Rehder, Stefan Leutenegger, Christoph

Huerzeler, and Roland Siegwart. A UAV system for inspection of industrial facilities.

In 2013 IEEE Aerospace Conference, pages 1–8. Ieee, 2013.

[187] Ioannis Kansizoglou, Nicholas Santavas, Loukas Bampis, and Antonios Gasteratos.

HASeparator: Hyperplane-Assisted Softmax. arXiv preprint arXiv:2008.03539, 2020.

[188] Chingiz Kenshimov, Loukas Bampis, Beibut Amirgaliyev, Marat Arslanov, and

Antonios Gasteratos. Deep learning features exception for cross-season visual place

recognition. Pattern Recognition Letters, 100:124–130, 2017.

[189] Loukas Bampis, Antonios Gasteratos, and Evangelos Boukas. CNN-based novelty

detection for terrestrial and extra-terrestrial autonomous exploration. IET

Cyber-Systems and Robotics, 3(2):116–127, 2021.

[190] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an

open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3,

pages 2149–2154. Ieee, 2004.

[191] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim:

High-fidelity visual and physical simulation for autonomous vehicles. In Field and

service robotics, pages 621–635. Springer, 2018.



[192] S. Karaman and E. Frazzoli. Incremental Sampling-based Algorithms for Optimal

Motion Planning. CoRR, abs/1005.0416, 2010.

[193] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE

transactions on Robotics and Automation, 12(4):566–580, 1996.

[194] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. RotorS–A

modular Gazebo MAV simulator framework. In Robot operating system (ROS),

pages 595–625. Springer, 2016.



Department of Electrical and Photonics Engineering

Automation and Control (AUT)

Technical University of Denmark

Elektrovej, Building 326

DK-2800 Kgs. Lyngby

Denmark

www.electro.dtu.dk/

Tel: (+45) 45 25 38 00

E-mail: electro@electro.dtu.dk

www.electro.dtu.dk/
electro@electro.dtu.dk

	Preface
	Abstract
	Resumé
	Acknowledgements
	Dissertation Details
	Abbreviations
	Table of Contents
	1 Introduction
	1.1 Problem statement
	1.2 Research purpose
	1.3 Summary of contributions

	2 State of the Art
	A Autonomous robotic inspection for Remote Inspection Technique Systems: A review
	A.1 Introduction
	A.2 Metrics definition
	A.3 Assessment of Literature with regards to Expertise
	A.4 Evaluation with regards to the Engineering Aspect
	A.5 Overall assessment of the state of the art
	A.6 Conclusion
	A.7 Acknowledgements

	3 Absolute Localization with custom structural landmarks
	B Towards UAV-based absolute hierarchical localization in confined space
	B.1 Introduction
	B.2 Related work
	B.3 System overview
	B.4 Experiments
	B.5 Conclusion

	4 Absolute Localization with Deep Learning landmarks
	4.1 Iterative Closest Point (ICP)
	4.2 Feature descriptors
	4.3 Correspondence based Registration
	4.4 Summary

	C Absolute Localization in Confined Spaces using Deep Geometric Features
	C.1 Introduction
	C.2 System description
	C.3 Experimental Setup
	C.4 Computational time
	C.5 Conclusion

	D GPU-accelerated Localization in Confined Spaces using Deep Geometric Features
	D.1 Introduction
	D.2 System description
	D.3 Experimental Setup
	D.4 Computational time
	D.5 Conclusion

	5 Uncertainty Aware Absolute Localization 
	E Autonomous GPU-Based UAV for Inspection of Confined Spaces: Application to marine vessel classification
	E.1 Introduction
	E.2 System description
	E.3 Inspection pipeline
	E.4 Experimental results
	E.5 Conclusions

	F Absolute Localization in Feature-poor Industrial Confined Spaces
	F.1 Introduction
	F.2 Related work
	F.3 Environment
	F.4 System description
	F.5 Experiments
	F.6 Conclusion

	6 Applications of absolute localization in autonomous inspection
	G Towards an Autonomous, Visual Inspection-aware 3D Exploration and Mapping System for Water Ballast Tanks of Marine Vessels
	G.1 Introduction
	G.2 Related Work
	G.3 System Overview
	G.4 Exploration and path planning
	G.5 Experiments
	G.6 Conclusions

	7 Conclusion & Future Research
	7.1 Future Research

	References

