

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 29, 2024

An Open-Source Modeling Editor for Declarative Process Models

Tamo, Lucien Kiven ; Abbad-Andaloussi, Amine; Trinh, Dung My Thi; López-Acosta, Hugo-Andrés

Published in:
Proceedings of the Demonstration Track at International Conference on Cooperative Information Systems 2023

Publication date:
2023

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Tamo, L. K., Abbad-Andaloussi, A., Trinh, D. M. T., & López-Acosta, H-A. (2023). An Open-Source Modeling
Editor for Declarative Process Models. In Proceedings of the Demonstration Track at International Conference
on Cooperative Information Systems 2023 (Vol. 3552). Article 5 CEUR-WS. https://ceur-ws.org/Vol-3552/paper-
5.pdf

https://orbit.dtu.dk/en/publications/7e971ae0-3f60-4896-a5a5-92f285420117
https://ceur-ws.org/Vol-3552/paper-5.pdf
https://ceur-ws.org/Vol-3552/paper-5.pdf

An Open-Source Modeling Editor for Declarative
Process Models
Lucien Kiven Tamo1,∗, Amine Abbad-Andaloussi2,∗, Dung My Thi Trinh1,∗ and
Hugo A. López1,∗

1Technical University of Denmark, Richard Petersens Plads, 321, 2800 Kgs. Lyngby, Denmark
2University of St Gallen, St Gallen, Switzerland

Abstract
This paper presents an open-source modeling environment for Declarative Process Models. Traditionally,
process models have described rigid structures, where re-work, process variants, and alternatives are
difficult to represent. The Dynamic Condition Response (DCR) Graphs notation is a declarative process
modeling notation that enables the description of processes with a high level of flexibility, using behavioral
constraints to allow only compliant executions. The DCR-js editor is an open-source web-based editor
for DCR graphs for academic use that enables the process management community to interact with
declarative process models. As part of the innovations of the tool, DCR-js provides an alternative,
semantic-transparent representation of declarative process models. Its web-based interface makes it
ideal to be used as a component in tool-based experiments on cognitive aspects of modeling business
processes. With DCR-js, we expect to render declarative process models more accessible to novice and
academic users.

Keywords
DCR Graphs, Declarative Process Models, Modeling Editor

1. Introduction

In the pursuit of continuous improvement and innovation, organizations have historically turned
to process modeling techniques as indispensable tools for optimizing efficiency and productivity
while ensuring customer satisfaction. Traditionally, process modeling has served as a crucial
method for capturing and depicting how multiple agents in an organization interact to achieve
objectives by an ordered execution of tasks. These well-established techniques, commonly
referred to as imperative processes, have proven invaluable in facilitating a structured approach
to handling routine tasks within an organization [1]. However, as the business landscape evolves
and complexity grows, there is a rising recognition that imperative process modeling may have
limitations in addressing the dynamic and adaptive nature of modern operations. To bridge
this gap, declarative process modeling was proposed. Unlike its predecessor, declarative process

Proceedings of the Demonstration Track at International Conference on Cooperative Information Systems 2023, CoopIS
2023, Groningen, The Netherlands, October 30 - November 3, 2023
∗Corresponding authors.
Envelope-Open hulo@dtu.dk (H. A. López)
GLOBE http://lopezacosta.net (H. A. López)
Orcid 0000-0001-5162-7936 (H. A. López)
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1

mailto:hulo@dtu.dk
http://lopezacosta.net
https://orcid.org/0000-0001-5162-7936
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org

Lucien Kiven Tamo et al. CEUR Workshop Proceedings 1–5

modeling focuses on leaving an open execution canvas, limiting the possible executions via
behavioral constraints between activities [1].

One valuable notation that falls under the declarative paradigm is the Dynamic Condition
Response (DCR) [2]. In comparison to other declarative process modeling notations like DE-
CLARE [3] and CMMN [4], DCR has gained popularity in the process modeling community
with a limited but solid base of users and it is actively being taught in many Scandinavian uni-
versities. DCR provides a graphical formalism for modeling, analyzing, and optimizing dynamic
processes, that has evolved over years to capture complex behavioral patterns including control
flows [2], subprocesses [5], data [6], time [7], and message-passing constraints [8]. Over the
past years, DCR has also benefited from a large array of empirical studies aiming at improving
the modeling and comprehension of declarative process models [9, 10]. However, despite their
flexibility, there is a considerable lack of adoption of declarative process models compared to
their imperative counterparts. Several factors may contribute to the lack of adoption. One
prominent obstacle is the absence of adequate open-source tools tailored to facilitate DCR graph
modeling and rendering. Existing solutions are intended for expert users, focus on process
execution use cases, and live under closed-use licenses, thus limiting the accessibility of DCR
graphs for a larger audience of novices in declarative process languages. Moreover, without
simpler tools intended for novice users, potential users may find the learning curve steep and,
as a result, be discouraged from adopting novel declarative modeling techniques.

This paper introduces DCR-js, an open-source DCR graphs editor intended for novice users.
Our primary objective is to render declarative process models easier to access for a larger
population of users, mainly interested in different use cases than the ones covered by commercial
distributions, namely teaching, researching and process mining. DCR-js draws inspiration from
existing web-based process editors like bpmn-js1. We leverage the capabilities of the diagram-
js2 library (empoyering bpmn-js) to construct a process editor specifically designed for DCR
graphs. Our focus remains on achieving comprehensive support for the standard DCR graphs
modeling syntax but introduces novel notations intended to solve some of the shortcomings of
the existing notation explored in the literature [11, 12]. The alternative representations aim at
supporting novice users in the adoption of DCR graphs while still being compliant with the
standard notation used by DCR experts. The remainder of this paper is structured as follows:
Section 2 presents a brief background on DCR graphs. Then, Section 3 provides an overview of
the DCR-js features. Afterward, Section 4 discusses the maturity of the DCR-js editor. Finally,
Section 5 concludes the paper and provides an overview of the planned future work.

2. Background on DCR

Since its inception in 2011 [2], the DCR process modeling notation has known many changes
and additions to the language [11]. The fragment of the DCR language implemented in the tool
includes control flow operators and roles [2], nesting [5] and subprocesses [7], and constitute
the most common features used for teaching DCR graphs. They are illustrated in Figure 1.

The DCR notation includes events, relations, and markings. An Event describes the possible

1 https://github.com/bpmn-io/bpmn-js
2 https://www.npmjs.com/package/diagram-js

2

 https://github.com/bpmn-io/bpmn-js
https://www.npmjs.com/package/diagram-js

Lucien Kiven Tamo et al. CEUR Workshop Proceedings 1–5

Figure 1: DCR Graph: notation example.

activities existing in a process. Events can take the form of atomic occurrences (e.g. 𝐴 in Fig. 1)
or be grouped in event collections (e.g. 𝑂). Additionally, events can be associated with zero
or multiple roles (e.g. 𝐸 and 𝐹). Directed Relations constrain the execution of events. The
notation implemented corresponds to the operators in [7], and includes 6 types of relations:
(𝑖) conditions (→•), (𝑖𝑖) includes (→+), (𝑖𝑖𝑖) responses (•→), (𝑖𝑣) excludes (→%), (𝑣) milestones
(→), and (𝑣 𝑖) spawns (→∗). A condition from 𝐴 to 𝐵 limits the execution of 𝐵 until 𝐴 is executed
or excluded. A response from 𝐶 to 𝐷 makes 𝐷 pending if 𝐶 is executed. An include from 𝐸 to
𝐹 makes 𝐹 included if 𝐸 is executed. The exclude does exactly the opposite of an include. A
milestone from 𝐾 to 𝐿 blocks the execution of 𝐿 if 𝐾 is pending for execution.

Event states are represented using markings which determine if an event can be executed
or not. The set of markings comprises included/excluded events (differentiated via solid/dashed
borders, e.g., 𝐸 and 𝐹 respectively), executed/not executed events (e.g. those having the check
mark e.g. 𝑀), and pending/non-pending events (e.g. those having the ! symbol e.g. 𝐾). Markings
are compositional (e.g. 𝑁). Event collections consist of a stateless nesting structure (e.g. 𝑂)
which is a graphic economy operator, reducing the complexity of themodel by allowingmodelers
to apply a single constraint to multiple events [5]. Stateful single-instance and multi-instance
subprocesses (e.g. 𝑆, 𝑉 respectively) create copies of each of the enclosed events and relations at
runtime [7]. A multi-instance sub-process is bound to normal events via the spawn relation.

3. Overview of Tool Features

The DCR-js editor is a web-based framework adapted to recent web browsers. Figure 2 shows
the graphical user interface of our application while its principal components (i.e., Canvas,
Palette Panel, Export/Import Panel, Context Pad and Popup Menu, Settings Panel) are discussed
in the following paragraphs:

Canvas. When opening the DCR graph modeling tool, users are presented with the canvas as
the central area of interaction. The canvas serves as the workspace where users can construct
and modify DCR graphs. It is designed to support a range of functionalities, including drag and
drop of modeling constructs, zooming in and out, repositioning, resizing and labeling.

Palette Panel. The palette panel provides users with a collection of tools to construct and
modify DCR graphs. It consists of three tools for manipulation (hand tool, lasso tool, and space

3

Lucien Kiven Tamo et al. CEUR Workshop Proceedings 1–5

Figure 2: Overview of the DCR-js editor with the new semantic-transparent DCR notation activated [12].

tool) and four pre-defined elements (Events, relations, nesting and sub-processes, and labels).

Import/Export Panel. The import/export panel implements the persistency layer of the tool,
adding cross-platform compatibility with the XML definition schema of DCR graphs [13].

Context Pad and PopupMenu. The context pad is an interactive menu that appears when the
user selects an element on the canvas. It allows connecting, configuring, and deleting elements.
Configuring an element can be done through the wrench button which opens a popup menu
with element-specific functionalities. For instance, If the element is an event, the popup menu
shows event modifiers, that encode the markings for pending, included, and executed events,
whereas, if the element is a relation, the popup menu allows changing its type.

Settings Panel. The settings panel consists of three buttons: “Toggle Proposed DCR Relation
Design”, “Keyboard”, and “Fullscreen”. The “Toggle Proposed DCR Relation Design” allows
users to model DCR graphs using the alternative, semantic-transparent notation for DCR graphs
derived following our recent empirical study investigating how to model DCR relations with
higher semantic transparency [12]. The “Keyboard” and ”Fullscreen” buttons provide usability
features to facilitate the interaction with the editor on larger screens and using the keyboard.

4. Maturity

The DCR-js editor is implemented in JavaScript and tested on Google Chrome and Mi-
crosoft Edge browsers for compatibility. The project is available at the GitHub repository
https://github.com/hugoalopez-dtu/dcr-js. The editor is available online at https://hugoalopez-
dtu.github.io/dcr-js/ . Additionally, the features of DCR-js are showcased in the following video
https://youtu.be/1AQ6YdtgUUA. The editor supports a wide range of DCR graph elements,
allowing us to model the control flow of business processes, much like the well-established
commercial-grade but closed-sourced tool the DCR Graphs Portal3. However, unlike the DCR

3See https://www.dcrgraphs.net/

4

https://github.com/hugoalopez-dtu/dcr-js
https://hugoalopez-dtu.github.io/dcr-js/
https://hugoalopez-dtu.github.io/dcr-js/
https://youtu.be/1AQ6YdtgUUA
https://www.dcrgraphs.net/

Lucien Kiven Tamo et al. CEUR Workshop Proceedings 1–5

Graphs Portal, our editor provides users with an open-source framework that allows for the
extension of the tool (e.g., the implementation of a new representation of DCR relations based
on the proposal in [12]). Furthermore, the editor is conceived with interoperability in mind,
and users can export DCR models in the XML format using the schema described in [13].

5. Conclusion and Future Work

The DCR-js editor aims to support teaching and research on declarative process models. In
future work, we expect to extend the editor with further language capabilities such as data,
time, and communication flows, as well as analysis, simulation, and verification capabilities.

References

[1] M. Reichert, B. Weber, Enabling flexibility in process-aware information systems: chal-
lenges, methods, technologies, volume 54, Springer, 2012.

[2] T. Hildebrandt, R. R. Mukkamala, Declarative event-based workflow as distributed dynamic
condition response graphs, arXiv preprint arXiv:1110.4161 (2011).

[3] M. Pesic, H. Schonenberg, W. M. Van der Aalst, Declare: Full support for loosely-structured
processes, in: EDOC, IEEE, 2007, pp. 287–287.

[4] OMG, Case Management Model and Notation, Version 1.1, 2016. URL: http://www.omg.
org/spec/CMMN/1.1.

[5] T. Hildebrandt, R. R. Mukkamala, T. Slaats, Nested dynamic condition response graphs, in:
FSEN, Springer, 2011, pp. 343–350.

[6] R. Strømsted, H. A. López, S. Debois, M. Marquard, Dynamic evaluation forms using
declarative modeling, in: BPM (Dissertation/Demos/Industry), volume 2196 of CEUR
Workshop Proceedings, CEUR-WS.org, 2018, pp. 172–179.

[7] S. Debois, T. Hildebrandt, T. Slaats, Replication, refinement & reachability: complexity in
dynamic condition-response graphs, Acta Informatica 55 (2018) 489–520.

[8] T. Hildebrandt, H. A. López, T. Slaats, Declarative choreographies with time and data, in:
BPM (Forum), volume 490 of LNBIP, Springer, 2023, pp. 73–89.

[9] A. Abbad Andaloussi, C. J. Davis, A. Burattin, H. A. López, T. Slaats, B. Weber, Under-
standing quality in declarative process modeling through the mental models of experts, in:
BPM, Springer, 2020, pp. 417–434.

[10] A. Abbad-Andaloussi, A. Burattin, T. Slaats, E. Kindler, B. Weber, Complexity in declarative
process models: Metrics and multi-modal assessment of cognitive load, Expert Systems
with Applications 233 (2023) 120924.

[11] H. A. López, V. D. Simon, How to (re) design declarative process notations? a view from
the lens of cognitive effectiveness frameworks, in: PoEM, CEUR-WS, 2022.

[12] D. M. T. Trinh, A. Abbad-Andaloussi, H. A. López, On the semantic transparency of
declarative process models: The case of constraints, in: COOPIS 2023, (Accepted for
publication), Springer, 2023.

[13] T. Slaats, R. R. Mukkamala, T. Hildebrandt, M. Marquard, Exformatics declarative case
management workflows as dcr graphs, in: BPM, Springer, 2013, pp. 339–354.

5

http://www.omg.org/spec/CMMN/1.1
http://www.omg.org/spec/CMMN/1.1

	1 Introduction
	2 Background on DCR
	3 Overview of Tool Features
	4 Maturity
	5 Conclusion and Future Work

