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Summary (English)
The pathways to decarbonize the energy sector is not only changing the ways in
which we consume and produce electricity, but the entire power system at large. As
generation is moved to the edge of the grid, while, among other things, electrification
of transport and heating leads to changes in load behaviour, new situations arise
in the power distribution systems. The increasing levels of intermittent distributed
generation (DG) and the changing demand might stress the distribution grids, which
highlights the need for new methods to operate power distribution systems.

For low voltage (LV) grids in the distribution systems, the observability is typically
zero, thus implying no ability to respond to grid issues that might arise from the more
volatile and stochastic generation and demand. Meanwhile, grid equipment, such as
transformers, are more often loaded above their rated capacities. Rated limits are
conventionally static, while the actual loading capability is dynamic due to seasonal
(daily, yearly, etc.) variations in the operating environment. Thereby, static ratings
leave unused capacity in the grid.

In this thesis, focus is given to developing new methods for online monitoring and
forecasting of both grid and grid equipment states during operation. More specifi-
cally, a per phase node voltage estimation method is developed for unbalanced radial
LV grids, proven to have reasonable accuracy with root mean squared errors ranging
from 0.002 – 0.0004 p.u. depending on the node. A transformer thermal model is
further developed for the application of dynamic transformer rating, proven to be
capable of providing 6-hour forecasts.

While the mentioned models address real-time operation tools to gain information
about the operating conditions, the thesis further develops an operational framework
to solve emerging grid issues. The Smart Energy-Operating System (SE-OS) offers
a platform to request ancillary services provided through flexible resources, and the
distribution system operator (DSO) framework is derived from these principles.

The suggested operational framework involves ancillary services provided by an ag-
gregator, energy communities and battery energy storage systems. To support the
coordination of flexibility based ancillary services, a price elasticity model for aggre-
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gators is developed. The method enables analysis and evaluation of the capability of
flexible resources to provide the ancillary services needed by the DSO.

The operational framework further incorporates data-driven online monitoring and
forecasting tools, for which the developed methods are intended. This enables a shift
in DSO operation strategy from the traditionally passive to adaptive operation.



Summary (Danish)
Vejene til at dekarbonisere energisektoren ændrer ikke kun den måde, vi forbruger og
producerer elektricitet på, men hele elsystemet som helhed. I takt med at produktio-
nen flyttes til de ydre deler af elnettet, mens blandt andet elektrificering af transport
og opvarmning fører til ændringer i elforbruget, opstår der nye situationer i eldistri-
butionssystemerne. De stigende niveauer af intermitterende distribueret produktion
(DG) og den skiftende elforbrug kan stresse distributionsnettene, hvilket understreger
behovet for nye metoder til at drive eldistributionssystemer.

For lavspændingsnet (LV) i distributionssystemerne er observerbarheden typisk nul,
hvilket betyder, at der ikke er nogen evne til at reagere på netproblemer, der måtte
opstå fra den mere voltaile og stokastiske elproduktion og efterspørgsel. I mellemtiden
er netudstyr, såsom transformatorer, oftere belastet over deres nominelle kapacitet.
Nominelle grænser er konventionelt statiske, mens den faktiske lasteevne er dynamisk
på grund af sæsonbestemte (daglige, årlige osv.) variationer i driftsmiljøet. Derved
efterlader statiske ratings uudnyttet kapacitet i elnettet.

I dette Ph.D.-afhandling fokuseres der på at udvikle nye metoder til online overvågn-
ing og prognose af både net- og netudstyrstilstande under drift. Mere specifikt er
der udviklet en pr. fase spændingsestimeringsmetode til ubalancerede radiale LV net,
som har vist sig at have rimelig præcision med rodmiddel kvadratfejl af 0.002 – 0.0004
p.u. afhængigt af noden. En termisk transformator model er videreudviklet til anven-
delse af dynamisk transformator rating, bevist at være i stand til at levere 6-timers
prognoser.

Mens de nævnte modeller omhandler realtidsdriftsværktøjer for at få information om
driftsbetingelserne, videreudvikler afhandlingen en operationel ramme til at løse de
lokale netproblemer. Smart Energy-Operating System (SE-OS) tilbyder en platform
til at anmode om systemydelser leveret gennem fleksible ressourcer, og distribution-
ssystemoperatørens (DSO)-rammen er afledt af disse principper.

Den foreslåede operationelle ramme involverer systemydelser leveret af en aggregator,
energifællesskaber og batterienergilagringssystemer. For at understøtte koordinerin-
gen af fleksibilitetsbaserede systemydelser udvikles en priselasticitetsmodel for aggre-
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gatorer. Metoden muliggør analyse og evaluering af fleksible ressourcer evne til at
levere de systemydelser, som DSO’en har brug for.

Den operationelle ramme omfatter yderligere datadrevne online overvågnings- og prog-
noseværktøjer, som de udviklede metoder er udviklet til. Dette muliggør et skift i
DSO-driftsstrategien fra traditionelt passiv til adaptiv drift.
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CHAPTER 1
Introduction

1.1 Context and Motivation
While the severity of climate change is reported in the latest report from the Inter-
governmental Panel on Climate Change (IPCC), adaptive measures are advocated
to mitigate its impact. Among the adaptive measures mentioned in the report are
smart grid-technologies, climate responding energy markets and improved capacity
to respond to shortfalls in energy supply [1]. Further, actions taken within the Eu-
ropean Union (EU) include an aim at climate neutrality in 2050 as well as a goal
of 32% share of renewable energy in the energy mix by 2030 [2, 3]. To support the
indispensable decarbonization of the energy sector, the power system is undergoing
a paradigm shift, meaning that the ways in which we consume, produce and operate
in the power system have to change.

Increasing levels of renewable distributed generation (DG) along with technology
that allows to shift the consumption to times with intermittent renewable genera-
tion, i.e. flexible consumers and energy management systems, constitute some of the
promising solutions towards a carbon neutral power system [4, 5, 6]. As the genera-
tion is moved to the lower topological levels of the power system simultaneously as
demand behaviour is changing through new types of loads such as electric vehicles,
it might stress the low voltage (LV) networks, which were not originally designed for
these power flow situations. Voltage violations, congestion and reverse power flow in
the LV systems, might be some of the concerns for a distribution system operator
(DSO) [7, 8, 9].

Meanwhile, the real-time observability in LV networks are typically nonexistent or
very low, making it impossible to mitigate any grid limit violations during opera-
tion. Furthermore, the ratings of grid equipment are static although the operating
conditions are varying, leaving unused capacity in the grid. To enable a shift from
the traditionally passive operation approach [10] to a more active grid management
enabling full utilization of the grid and renewable DGs, new operation models and
methods in the distribution systems are required.

To implement such active operation schemes, the DSOs firstly need increased ob-
servability of grid equipment and grid states. With such information the DSO could
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evaluate the physical limits of the grid in relation to real time demand and gener-
ation. To solve any detected local grid issues, it is also important that the new
operational framework allows for participation to request local ancillary services [11].
For instance, the Smart Energy - Operation System (SE-OS) provides such a plat-
form, where ancillary services are provided through activating flexible consumers [12].

To successfully apply methods for increased observability in DSO grids, the meth-
ods need to be data-driven to reflect the state of the grid in real-time. Meanwhile,
physics-informed methods could provide the DSO with a certain degree of explainabil-
ity to derive causes for local grid issues, while enabling analysis of various scenarios
that could occur during operation. The methods further need to be able to give proba-
bilistic monitoring and forecasting outputs to support risk averse operation strategies
for the DSO. Moreover, appropriate forecast horizons with reasonable accuracy are
crucial for the DSOs ability to react to certain grid situations in time and solve local
grid issues.

Furthermore, digitization of LV grids is key in enabling novel and active operation
strategies [13]. While smart meters are being installed at scale at the consumer
premises, their usage for operational purposes is limited due the cost of communi-
cation infrastructure [14]. It is thus of importance that the required installation of
sensors for observability solutions are cheap and efficient in terms of data flow and
infrastructure. This is essential to keep in mind when developing the new operational
tools in order to achieve practical and scalable solutions bridging the gap towards
application at scale.

As the DSOs become aware of local grid issues in real-time through online moni-
toring and forecasting tools, they could also solve any local grid issues, for instance
by requesting local ancillary services. Demand response (DR) constitutes a promising
alternative to provide ancillary services in distribution grids [15, 16] and the afore-
mentioned SE-OS a platform to exchange these services. It is thus of importance
to define new DSO operational frameworks, within this context to identify how to
coordinate with actors within the platform, such as aggregators, providing the ancil-
lary services. Furthermore, the aggregators need probabilistic analytical methods to
ensure that requested ancillary services can be delivered from their flexible resources
to the DSOs. By solving local grid issues through DR ancillary services within the
SE-OS the DSO operation would not only be active, but also adaptive.

1.2 Thesis Objectives
The objective of this thesis is to develop an operational framework for adaptive DSO
smart grid operation consisting of data-driven approaches.

Objectives related to DSO smart grid operation are:
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• To develop a data-driven model, predicting the transformer temperature for
online dynamic transformer rating in LV grids.

• To develop a data-driven model for real time online voltage estimations in LV
grids.

• To develop practical methods, in terms of computational burden and required
setup, based on real-world installations to increase observability in the grid.

• To develop probabilistic methods for dynamic operation that can be used for
risk averse operation strategies.

To further enable adaptive DSO operation in the context of utilizing flexible resources
in the SE-OS, the objectives are:

• To develop a probabilistic model to estimate the quantity and uncertainty of
price responsive demand response.

• To develop a framework for adaptive DSO operation of LV grids, including the
aggregator-DSO communication concepts for requesting flexibility as well as a
variation of flexible resources.

1.3 Thesis Structure/Outline of Thesis
This thesis consists of two parts. Part I presents a summary of the research conducted
in the thesis. Chapter 2 provides relevant background information and introduction
to concepts that lays the ground for the following chapters. Chapter 3 presents the
experimental setup and data collection from two living lab installations. Chapter 4
presents methods and discussion of the results related to aggregators, whereas chap-
ter 5 follows the same structure focusing on DSO operation instead. In chapter 6
conclusions are outlined and suggestions for future work provided. Finally, Part II
presents preprints of papers included in the thesis.



6



CHAPTER 2
Background

This chapter presents relevant theory and information, laying the ground for the
following chapters of this thesis. It presents the concept of the smart-energy operation-
system, for which the methods in paper A, B and C are developed. Furthermore,
relevant theory and state of the art for local DSO grid issues such as congestion and
rating of transformers as well as voltage drop and rise is presented.

2.1 Smart-Energy Operation-System
The work in this thesis is derived from the concept of Smart-Energy Operating-System
(SE-OS) [12, 17]. The SE-OS framework is a response to the Danish goals to eliminate
fossil fuel plants and to achieve a 50 % coverage of the total electricity consumption
through wind power by 2050. To reach these goals conventional operation methods
and provision of ancillary services are insufficient as the high share of intermittent
electricity production requires demand matching to the production instead of the tra-
ditional vice versa approach. Thus, the SE-OS compromises a framework to enable
such energy flexibility solutions at different topological levels in the power system to
meet the requirements of a transition towards a carbon neutral energy system.

Traditional ancillary services (AS) markets and methods have served the conventional
centralized system well. However, to fully utilize flexible resources and to efficiently
operate decentralized generation (DG), the methods involving centralized large-scale
optimization will be slow due to the increasing complexity of the system. Realizing
that the complex computations are required at each time step, further limits the ap-
plicability of conventional methods to the future power system. Another important
issue is that for the future weather-driven low-carbon power system the flexibility has
to be provided at end-users (residential buildings, industry, etc) at the low voltage
(LV) levels in the power system. However, conventional market bidding and clearing
will not work on this low topological level, with the increasing number of single AS
providers such as DGs and flexible resources. Instead the SE-OS builds on unidirec-
tional communication, forecasting and control-based approaches. Here aggregators
play a crucial role in managing and optimizing the flexibility by distributed energy
resources (DERs).



8 2 Background

The framework applies both direct an indirect control mechanisms to activate elec-
trical DERs. By using direct control, an aggregator would transmit signals to turn
on and off DERs. If instead adapting indirect control, signals are broadcasted to
DERs, who themselves can run internal optimization through for example an energy
management system (EMS) and decide whether they would like to shift their con-
sumption/production or not. In SE-OS mostly price-based signals are adopted in the
indirect control mechanisms, but CO2-signals can and has also been implemented.
The designed indirect control signal, or rather penalty signal, function is illustrated
in Figure 2.2 for the configuration of the low-levels in the SE-OS. Here the prices gen-
erated by the function can be designed with different objectives for ancillary services,
such as voltage or frequency control, but multilevel control objective are also possible.

The SE-OS framework, seen in Figure 2.1, consists of different stochastic optimization
layers, thereby avoiding large-scale optimization. These optimization layers naturally,
has different spatial-temporal resolutions for the aggregation of DERs [17]. The top
layer represent day-ahead and intraday markets for larger regions and a lower tem-
poral solution along with the conventional market and system optimizations. The
lower layers in Figure 2.1 has an increasing spatial-temporal resolution in the aggre-
gation and optimization of flexible DERs [18]. Thereby, the framework addresses
the dynamic and stochastic behaviour of DERs, and control-based technologies can
be embedded in the SE-OS [19, 20, 21]. In the layers the aggregators also use the
flexibility function in Figure 2.2 to predict the response from DERs using time series
of price signals [22, 23].

The methods in the SE-OS use various data sources such as meteorological, elec-
tricity market and load demand behaviour data to build algorithms to operate in an
open-loop scheme. Forecasts and control schemes are thus updated for each time step
during operation. The framework requires real-time online forecasting and operation
algorithms, for which new technological setup and installation of devices are needed,
both at DER and power system levels.

The SE-OS framework has been used to implement solutions enabling flexibility for
wastewater treatment plants, supermarket cooling systems, heat pumps, buildings
and district heating [24, 25, 26]. It has further demonstrated that it is possible to
unlock flexibility in already existing resources through real-time data-driven methods
utilizing available data through meteorological forecasts and predictive algorithms.
The implementations further highlight the importance of considering stochastic and
dynamic behaviour when dealing with energy flexibility as it deviates from traditional
consumption-production behaviour. This is an important consideration for aggrega-
tors that wish to enter the market. For further details on the SE-OS the reader is
referred to chapter 6 in [12].
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Figure 2.1: Workflow for Smart-Energy Operation-System (Figure from [12]).

2.2 Distribution system operation and local grid
issues

Distributed generation (DG), such as wind and photo-voltaic (PV) panels, are typ-
ically placed in the power distribution grids. This does not only mean increasing
levels of stochastic production in the distribution grids [27], but potentially also bidi-
rectional power flows. Increasing customer load, for example through increasing levels
of electric vehicles (EVs), further amplifies the already stochastic nature of customer
load behaviour. Distribution power systems were originally designed for unidirec-
tional power flows from higher to lower voltage levels. The operation has also been
passive and traditionally, the grid development strategy has been to ’fit-and-forget’
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Figure 2.2: Penalty signal and flexibility function in SE-OS with a power systems
focus (Figure from [12]).

[10]. The developments in generation and consumption, now compromises various
concerns for DSOs and calls for new methods for distribution grid operation [11]. For
instance, distributed generation introduces harmonics affecting the power quality and
can also cause bidirectional power flows, whereas voltage drops and rises might be
a consequence from more volatile generation and consumption [10, 7, 8, 9]. Increas-
ing fault levels and congestion in distribution grids are also potential concerns and
consequences if adaptive measures are not taken by the DSOs.

2.2.1 Low voltage distribution grids
The research in this thesis concerns low voltage distribution grids, also known as
secondary distribution systems. The low voltage system distributes the electricity
from transformers connected to the medium voltage grids to cable cabinets, to which
the customers are connected, or alternatively directly to customers metering devices.
The transformers are in general small and the neutral-to-line voltage is normally 230
V (i.e. 0.4 kV line-to-line) in Europe. The distribution networks are typically radial
grids (subsection 2.3()), meaning there is only one path for the power flow [28], as
opposed to meshed grids (2.3(a)) commonly seen at the higher topological levels in the
power system. Furthermore, the low voltage distribution systems are characterized
by a low X/R ratio (reactance over resistance), and unbalance between the phases
since the various customers loads are directly connected to the different phases.
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(a) (b)

Figure 2.3: Example drawings of radial (a) and meshed (b) power grids.

2.2.2 Transformer congestion and temperature dynamics
Congestion occurs when the loading exceed the limits of grid equipment such as ca-
bles or transformers. Power transformers are one of the most costly grid equipment
in the power system [29], and it it thus of great concern that they are safely operated
to avoid equipment failure or reduction in life expectancy.

It is a standard practice to operate power transformers based on their nameplate
ratings [30]. For each transformer, the nameplate provides the working conditions
within which the transformer can be safely operated, without compromising its age-
ing and life expectation. These ratings have traditionally been set as static limits
that have been developed in controlled environments with conservative margins. For
instance the ambient temperature at which the transformer is rated is normally higher
than the actual ambient temperature, especially in the Nordic countries [31]. During
transformer operation, the conditions might be more advantageous than the static
rating conditions, leaving unused capacity to be extracted. If instead adapting the
rating to the actual working conditions this extra capacity can be unlocked, and this
concept is known as dynamic transformer rating (DTR) [32, 33], which is similar to
the concept of dynamic line ratings (DLR) [34].

The limiting factor for loading a transformer beyond the nameplate rating is the
temperature, both in terms of operation and thermal ageing. Loading a transformer
beyond the nameplate rating increases the leakage flux both to the core and outside,
which heats metallic parts of the transformer. This can cause higher temperatures of
windings, oil and core, while stressing components such as tap-changers and cables,
potentially beyond their designed margins [35, 36]. Additionally, the composition of
the insulation oil might change and gas content increase [35]. It is thus of importance
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to have real-time monitoring of the transformer temperatures to ensure safe operation
[32].

As explained in Annex F in standard IEC 60076-7:2018 [35], the thermal conditions
within the transformer is driven by heat generated from load (i.e. ohmic winding,
core and stray losses), and no-load losses. The thermal system also includes thermal
capacitance of oil and winding and is cooled down by the transformer oil and the
ambient temperature between which there are thermal resistances. Moreover, IEEE
standard Std. C57.110-1998 [36] defines the load loss as the sum of load loss related
to I2R and stray loss, including both winding stray loss or eddy-current loss (PEC

in (2.1)), and stray loss in other components (POSL in (2.1)). It should however, be
noted that all of these losses are driven by current, meaning that they increase as the
current increases. Eddy-current losses, PEC , are specifically driven by increased har-
monic currents. The standard IEC 60076-7:2018 further states that outdoor ambient
conditions such as solar radiation, wind and rain might affect the loading capacity of
small transformers, but it is not included in the calculation methods in the standard
[35].

PLL = P + PEC + POSL (2.1)

According to the standard IEC 60076-7:2018 four temperatures under three differ-
ent conditions are crucial to the transformer operation and lifetime and should be
considered for loading over rating. The conditions consider normal cyclic loading,
long-time emergency loading and short-time emergency loading and the maximum
temperature are seen in Table 2.1 respectively, however not for short-time emergency
loading for which the temperature might be hard to control. Further, gas bubbles
might be developed in the oil if the hot-spot temperature exceeds 140 ◦C [35]. The
transformer temperature can be monitored using fiber optics or thermal models. The
methods developed in this thesis primarily aims to support the grid operator under
normal cyclic conditions. However, insights for long-time emergency loading could
be of interest (note that methods would need to be tested and validated under such
conditions).

Normal cyclic Long-time
Temperature in ◦C: loading emergency loading
Winding hot-spot 120 140

Other metallic hot-spot 140 160
Inner core hot-spot 130 140

Top-oil 105 115

Table 2.1: Maximum temperatures for small transformers from IEC standard 60076-
7:2018 [35].
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2.2.3 Voltage estimation/state estimation

Keeping the voltage stable in a power grid is of major importance to avoid system or
equipment failure. As stated in Section 2.2.1, DSO LV grids are most commonly radial
grids. Assuming we have a simplified radial as in Figure 2.4 (with Thevenin equivalent
as in Figure 2.5) the relation between sending-end voltage (VS) and receiving-end
voltage (VR) is described by:

VS = VR + ∆V (2.2)

where the voltage drop along the radial, ∆V , is described by the following equation
from IEEE Standard 141-1993:

∆V = VS + IR cos θ + IX sin θ −
√

V 2
S − (IR cos θ + IX sin θ)2

≈ IR cos θ + IX sin θ
(2.3)

where I is the current as in Figure 2.5, R and X are the resistance and reactance
of ZL in Figure 2.5 (i.e. ZL = R + jX ), cos θ is the power factor of the load and
sin θ is the reactive factor of the load [37]. The second line of Eq. (2.3) represents an
approximation of the voltage drop which is commonly used for engineering purposes
[38]. If the X/R ratio is low, as it typically is in low voltage grids, it might be possible
to simplify the equation further by neglecting the second term of the approximation
of Eq. (2.3) (i.e. IX sin θ).

Figure 2.4: Assumed/simplified radial for voltage drop equations. VS and VR rep-
resent sending-end and receiving-end voltages, respectively.
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Figure 2.5: Thevenin equivalent of Figure 2.4, where ZL is the impedance of the
line (such that ZL = R + jX, in Eq. (2.3)) and ZR represents the load
in Figure 2.5.

Looking at Eq. (2.3) with Figure 2.4 and Figure 2.5, it is realized that a higher
load will lead to a larger voltage drop and lower receiving-end voltage. A lower or
negative load (for example through PV generation) will on the other hand lead to a
smaller voltage drop or even voltage rise and therefore a higher receiving-end voltage.

The concerns for a DSO is understood by studying Figure 2.6, describing the relation
between receiving-end over sending-end voltage versus active power at receiving-end
over short circuit capacity. If the receiving-end voltage is too high or too low it will
cause the power to drop drastically (system failure). With the recent developments
in demand behaviour and increasing levels of EVs, such drastic voltage drops could
for instance be caused by:

• many EVs being plugged in and charged at the same time.

• other and many loads occurring simultaneously, such as heat pumps.

• many DERs providing frequency down-regulation at the same time.

The listed events all result in a large I in Eq. (2.3), meaning a larger voltage drop
along the radials. On the other hand drastic voltage rise could occur through:

• significant PV or other DG generation (i.e. negative I in Eq. (2.3)).

• many DERs providing frequency up-regulation (meaning very low I in Eq.
(2.3)).

It should be noted that these voltage drops and rises will occur if the power grid is not
dimensioned (meaning ZL in Figure 2.5 adjusted) for these changes in consumption
and DG in LV grids or if no adaptive measures are taken, for example by utilizing
flexibility (or adapting flexibility algorithms). Utilizing flexibility to mitigate voltage
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issues in distribution power systems will potentially have a more efficient impact
than reactive power control due to the low X/R ratio. Due to this behaviour it
is important that voltage adjusting flexibility is locally prioritized above frequency
regulating flexibility. To avoid theses hazardous situations, the TSOs normally set
voltage limits, and in Denmark the limits are 230V ± 10% [39].

Figure 2.6: The ratio between receiving-end over sending-end voltage versus active
power at receiving-end over short circuit capacity, presented as Figure
3 in [40].

For the described reasons it is becoming increasingly important for DSOs to keep
track of the voltage. In transmission power systems, state estimation has been used
by TSOs for decades to estimate voltages and other states. However, due to the
commonly low X/R ratio in distribution systems, the DC state estimation techniques
and simplifications are not applicable [41, 14]. Unbalance between the phases in
distribution system further limits the applicability of conventional state estimation
methods [14] and DSOs need other real-time 3-phase state estimation methods con-
vert to an active grid management [28, 42]. Other important considerations for DSO
state estimation are cyber-security, GDPR (if using data from smart meters), data
flow architecture/infrastructure and bandwidth, more frequent network configura-
tions (replacing or installing cables, connecting new loads/customers) and increasing
number of states [14, 42].

2.3 Towards adaptive/dynamic DSO smart grid
operation - identified gaps

The SE-OS framework offers potential benefits for DSOs, such as local ancillary ser-
vices solutions in distribution grids, to solve potential local grid issues discussed in
the previous section (Section 2.2). Through the multi objective price signal generator
in Figure 2.2 the objective can be set to provide various ancillary services at different
topological levels in the grid. While frequency control management and signals can be
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optimized and generated at a higher aggregator layer, voltage, congestion and other
local distribution system issues can be solved by a local aggregator at a lower layer
[12]. Thereby, local ancillary services can be provided for the DSO at the distribution
system layer in the SE-OS.

2.3.1 Aggregator layer
However, to utilize this potential measures need to be taken from both aggregator and
DSO sides. Following the description of voltage deviations and transformer congestion
in Section 2.2, it is understood that there is a spatial factor to the need for flexibility
in distribution grids as opposed to flexibility provided for, e.g., frequency control.
This is addressed by the SE-OS framework by defining different spatial-temporal res-
olutions in the different layers [12]. For aggregators to enter this framework with
customer pools that can deliver the required flexibility, the uncertainty of demand
response (DR) needs to be addressed in both spatial and temporal scales [17, 18].
In [43], the authors found that the flexibility potential varies for different sectors in
Northern Europe. Therefore, the aggregators need probabilistic price elasticity mod-
els reflecting the various customers types. This is firstly needed to identify a customer
pool (in quantity and types of consumers) in distribution grids that can fill the DSOs
requirements for flexibility at different times. Secondly, it is required to generate an
appropriate and effective price signal to the customer pool. That the price elasticity
models are probabilistic are important due to the stochastic behaviour of DR [17].

Through the extensive communication with DSOs that has been ongoing throughout
the work of this thesis, it has been understood that the uncertainty of DR is a barrier
or concern for DSOs to incorporate flexibility in their operation strategy. This further
highlights the need for probabilistic price elasticity models for aggregators, such that
the uncertainty can be communicated to DSOs. If the aggregator’s communicated un-
certainty/certainty matches the expectations and requirements from the DSO’s side,
then flexibility can be traded with to solve local grid issues.

Several papers can be found on short-term price elasticity for electricity consump-
tion (e.g [44] and [45]). However, many of the presented models in these studies are
deterministic and not applicable in the SE-OS framework. There are, however, prob-
abilistic models presented in the literature. For instance, [46] presents a DR model
using conditional probability density and [47] presents a quantile linear-regression
model. Nevertheless, the applicability in the context of the SE-OS framework is
limited, as the former is based on two-way communication, whereas unidirectional is
adapted in the framework, and the latter considers single residential customers ,which
limits the aggregators ability to explore the aggregated customer pool behaviour with
various types of customers. Furthermore, it is important that an appropriate scenario
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is assumed for the model development. For instance, [48] found that automation
strongly increases the price responsiveness. To fit the model development to the
SE-OS framework, a future scenario was adopted in which customers are equipped
with Energy Management Systems (EMS). For the scenario adopted, limited research
and data was available. For instance, in [47] the authors assume customers having
home energy managements systems, but limitations in the context of this work has
already been stated. For a more detailed literature review on price elasticity models
the reader is referred to [49] (also attached as paper A in this thesis).

2.3.2 DSO layer
To be able to adapt to new grid conditions and take advantage of ancillary services
provided through the SE-OS framework, DSOs need new methods to support their
grid operation. As previously mentioned in Section 2.2, DSO grids have traditionally
been characterized by passive operation [10]. To adopt an active strategy, increased
observability is required as a first step. Without information on the current state of
the grid it will be difficult for the DSO to know when and how much flexibility to
request. This has increased importance as the levels of DGs, heat pumps and EVs
are increasing in the distribution grids and an increased observability is required to
be able to ensure safe grid operation and power quality [10, 50].

The DSO methods for increased observability needs to be data-driven and risk infor-
mative as well as being able to deliver model estimation and forecasting in real-time.
This is especially understood from the SE-OS framework, as control signals and fore-
casts are updated for each time step and data is collected from devices to ensure
synergies between the markets mechanisms and physical system. That the methods
are able to deliver forecasts and risk information, such as prediction intervals, are
important for the DSO to be able to take actions ahead in time though the SE-OS
to avoid any predicted grid violations.

In this thesis methods for increasing the observability of both transformer conges-
tion (temperature) and system voltage states are developed in paper B and C. In
the literature, research papers can be found aiming to increase the observability, but
has limited applicability in the SE-OS framework. For instance in [32, 51], thermal
models for transformers are developed for monitoring or design purposes, but are not
proven to have forecasting capabilities, required in the SE-OS framework. Instead
e.g. [52, 53] propose transformer thermal models for predicting the temperature, but
the models either require input data that cannot be practically measured or does not
consider the impact from environmental surroundings, which small transformers are
affected by.

Furthermore, there is a need for adaptive and efficient feeder modeling for state
estimation, as highlighted by the authors in [54]. Concerning state estimation to
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increase the observability for DSOs, the authors in [42] requests more real-world im-
plementations and more accurate models as 1% observation error can lead to a 10 %
state estimation error. Alternatively, models enabling uncertainty management could
also be useful.

Grey-box modeling offers a method to derive models that are both physics-informed
and data-driven [55, 56]. The models are useful for providing estimates and predic-
tions as well as associated uncertainty of dynamic and stochastic system behaviour
[24, 25]. These types of models are a mixture between deterministic modeling ap-
proaches (white-box models), purely relying on theoretical knowledge, and black-box
modeling approaches, exclusively using statistics and data to derive the model struc-
tures (Figure 2.7). In the context of SE-OS, grey-box models have proven to be useful
and are thus explored in paper B and C.

Figure 2.7: Concept of grey-box modeling.

Furthermore, the DSOs need to adapt the observability models in their operation
strategy. Therefore, this thesis focuses on developing an adaptive DSO smart grid op-
eration strategy in the context of SE-OS. This would not only offer the utilization of
DER to solve local grid issues, but also to use data-driven approaches to fully utilize
grid equipment. The recent digital development of better communication infrastruc-
ture and cheaper devices offers new ways to operate the grid to its full potential,
delaying the replacement of grid equipment [29] and potentially increasing the elec-
tricity distribution at certain times. The latter should be of critical interest for DSOs
as they might be able to safely transmit more electricity without the long procedure
of replacing equipment. For this purpose the DSO operation framework is developed
and addressed in paper paper B and C.

2.4 Chapter Summary
As seen in the literature many electricity price elasticity models are deterministic and
adapts scenarios with little applicability in the SE-OS framework. For aggregators
to successfully explore price elasticity in DR for various customer types to ensure
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a customer pool capable of supporting the DSOs need for ancillary services as well
as supporting the communication between the two actors different approaches are
required. To fill this gap an approach is adapted assuming a future scenario, in which
customers have EMS. Furthermore, the approach explores variations and uncertainty
of DR from various customer types allowing the aggregator to adapt its customer
pool and business strategy.

Moreover, several works found in literature aiming to support DSO grid operation
are either simulation studies, does not report enough information about uncertain-
ties, relies on measurements that are unpractical to measure at scale and cannot be
utilized for forecasting purposes. To design useful methods for adaptive DSO smart
grid operation in the context of SE-OS, special focus is given to:

• Physics-informed and data-driven models (grey-box models), to enable real-time
monitoring and forecasting of the system.

• Models capable of providing forecasts and information of associated uncertainty.

• Using available data as well as data inputs that are practical to measure with
a setup that is scalable in DSO grids.
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CHAPTER 3
Experimental setup

This chapter presents the experimental setup and data that is used to develop moni-
toring and forecasting tools for DSOs.

3.1 Experimental setup - living lab description
The research in this thesis has been closely related to the Flexible Energy Denmark
(FED) project [57]. FED is a Danish project focused on enabling flexibility in the
power system through digitization. Through FED two living labs (LLs) from a DSO
in Jutland, Denmark, were established [58]. LLs here refers to real-world grids that
are used for testing new technologies. The two LLs compromise two LV radial grids
at 0.4 kV, with 170 residential customers (this LL is hereafter referred to as LL1 or
grid 1) and 140 residential customers as well as a small industry (this LL is hereafter
referred to as LL2 or grid 2), respectively. In each LL there are 5 - 10 customers with
electric vehicles (EVs) and 15 - 20 customers with photovoltaic (PV) panels (rated
sizes of 3 - 6 kW). The heating of the households occurs through a mixture of heat
pumps and district heating.

Both LLs are connected to the external grid with 3-phase 10/0.4 kV oil cooled trans-
formers, where the transformer in LL1 (hereafter transformer 1) is rated at 400 kVA
and the one in LL2 (hereafter transformer 2) is rated at 200 kVA. Both transformers
are installed in ventilated metal housings, placed outdoors. The apparent power pro-
file for each transformer is visualized through the boxplots in Figure 3.1. (Note that
the apparent power is chosen as it is rather the apparent power than the active power
that is relevant for the loading or rating of the transformer.) In the figure it can be
seen that the peak loads of both transformers are in the range of 200 to 250 kVA.
Transformer 2 seems to have a relatively larger base load, compared to transformer
1, which could be because of the industrial load in LL2.

In the LLs 22 electronic measuring devices have been installed. In Figure 3.3 and
in Figure 3.4, it can be seen how the devices are distributed in the two LLs. Since
only 22 devices were available, it was decided to install them on three out of the five
feeders in each grid, to gain enough observability at these feeders for the model de-
velopment in paper B and C. At the transformers all feeders as well as temperatures
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(b) Transformer 2

Figure 3.1: Boxplots of apparent power for both transformers using data from
November 2021.

are measured and therefore two devices were required. The LLs are real-world grid
and thus, they can not always be forced into ideal situations often assumed when con-
ducting simulation studies. For instance, in this setup we aimed to have one device
at one middle node along the radial and some devices at the end-nodes of the feeders
to measure both voltage and current of ingoing and outgoing cables. Due to space
limitations in the cable cabinets this was not always possible. Table 3.1 indicates
which measurements are delivered by each of the devices, either voltage and current
measurements or alternatively only voltage. If current measurements are available,
measurements of active power, power factor and harmonic distortion are also avail-
able. All data is delivered per phase and once per second (neutral phase data is only
available for some of the devices). Furthermore, all impedances of the cables as well
as cable lengths are known.

3.2 Modeling approach based on experimental setup
As previously stated, the setup of the two LLs were designed throughpaper B andC in
this thesis. However, the real-world reality in LLs put constraints on the setup design,
that simply had to be accepted. Therefore, the developed methods reflect a real-world
scenario, rather than an ideal case that are often seen in simulation studies, but
sometimes not in the real-world. The approach for the model development processes
was to use the available data that could practically be measured, and it was inevitably
achieved through the LL setup design.
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Figure 3.2: Experimental setup for the transformers, with temperature sensor (TS)
and electronic measurement instruments (EMI). Figure is from paper
B.

Device Voltage Current Temperature

Grid 1:
T 11,T 12 X X X
BRM X X -
BRE X X -
GM X X -
GE1 X X -
GE2 X - -
GE3 X - -
BM X X -
BE1 X X -
BE2 X X -
BE3 X - -

Grid 2:
T 21,T 22 X X X
BLM X X -
BLE1 X - -
BLE2 X - -
YM X X -
YE X X -
RM X X -
RE1 X - -
RE2 X X -

Table 3.1: Devices installed in the LLs (in Figure 3.3 and Figure 3.4), X indicates
that voltage or current measurement is available. If current measure-
ments are available, data for harmonic current content, active power and
power factor are also available.
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3.3 Data Cleaning Pipelines

To develop the methods in this thesis various data sources have been used.

Meter data – electrical meter data from the DSO was available in parquet file for-
mat that was sorted through spark SQL. The data included both active and reactive
power measurements in a 1 hour time resolution.

Grid topology data – was available in several excel files and were sorted in python, to
build a grid model using pandapower [59].

Measuring device data – the data from the installed measuring devices were avail-
able in json format and were fetched from a third party SFTP server. The devices
deliver per phase data once per second.

Meteorological data – was fetched in json format from the open data from the Danish
Meterological Institute (DMI) [60], using their API [61]. The time resolution was 10
minutes.

To fetch and clean this data a set of data cleaning pipelines were written in python.
One pipeline was written to fetch the measuring device data from an SFTP server.
The pipeline fetched and extracted relevant measurements for defined devices and
dates automatically, through small data sets that were later combined. The pipeline
also filtered the data sets to different time resolutions and combined them with rele-
vant meteorological data for model development (note that this was only possible for
10 minute time resolutions).

The data from the measuring devices and meter data was further analyzed to ensure
a correct installation. For this purpose another pipeline was written. The pipeline
first constructed a graph (the data structure) representation of the LV network using
Networkx graphs in python [62] and the grid topology excel files. The meter data
could then be sorted and combined for different feeders, or even section of feeders,
by cutting edges between relevant nodes in the graphs. It proved to be an efficient
way of sorting customer electrical load data for various spatial scales in the grid.
Through analyzing the data from the meters and the measuring devices for different
feeders and section of feeders, a correct installation could be ensured. Through the
pipeline and data analysis, incorrect installations in the setup were identified and
fixed. Furthermore, the analysis showed that the reactive power data recordings from
the meters contained so many erroneous measurements that the data was unusable.
Furthermore, time shifts between data sets were also identified.

A simplified illustration of the data bases and pipelines is depicted in Figure 3.5.
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3.4 Chapter Summary
In this chapter it has been explained how the experimental setup was designed through
the thesis project and collaboration with the DSO and FED. The real-world conditions
put constraints on the preferred installation of the 22 electrical measuring devices due
to space limitations in the cable cabinets. Nevertheless, as the modeling approach
is to use the data available to construct models that are based on a setup that is
practical and achievable for the DSO, this was accepted.

Available data sets were also outlined and a couple of data cleaning pipelines de-
scribed. The pipelines fetched data using APIs, cleaned and filtered the data to
relevant time resolutions. The main contributions can be summarized as follows:

• Designing a real-world setup with 22 electrical measuring devices for two LV
grids.

• The design includes a specific installation setup for temperature measurements
at the transformers.

• Writing data cleaning pipelines fetching data from different sources of data to
output relevant data sets for model development and analysis.

• Identifying incorrect installations through data analysis of the cleaned data sets.
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Figure 3.3: Grid topology and installation of devices for grid 1/LL1. The name
of the devices is constructed from the first letter(s) of the color of the
feeder, while subscript M indicates that it is a middle node, and sub-
script E indicates an end-node. Figure is from paper C .
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Figure 3.4: Grid topology and installation of devices for grid 2/LL2. The name
of the devices is constructed from the first letter(s) of the color of the
feeder, while subscript M indicates that it is a middle node, and sub-
script E indicates an end-node.
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Figure 3.5: A simplified illustration of data bases, data flows and pipelines to con-
struct relevant data sets for model development.



CHAPTER 4
Aggregators in SE-OS

The aggregators are key actors in the SE-OS framework. In the framework their task
is to aggregate the DR at various spatial-temporal resolutions to provide ancillary
services at different layers in the framework (Figure 2.1). This chapter presents and
motivates methods for aggregators to build useful customer pools by developing a
model to describe the price responsiveness across different sectors using a probabilistic
approach. The chapter further discusses the results and contributions of paper A in
the context of SE-OS to provide ancillary services for DSOs.

4.1 Considerations towards useful price response
models for aggregators

Following the presented background in Chapter 2, there are several important con-
siderations when modeling the price responsiveness of DR.

As the SE-OS involves spatial-temporal layers covering the entire power system, there
will be many and diverse types of potential customers for the aggregator. Meanwhile,
the flexibility potential has proven to vary across different sectors [43]. Therefore,
the aggregator needs information on the flexibility potential for various types of cus-
tomers to explore the flexibility of customers pools in various DSO grids. Since the
aggregator is supposedly interested in the aggregated flexibility potential, the aggre-
gators need information about the DR from aggregated consumers, as opposed to
single customer behaviour with little relevance in this context [16]. Thus in paper A,
focus is given to modeling aggregated response from various types of customers.

In the SE-OS indirect control through unidirectional communication is commonly
applied, often using price signals as control mechanism. It is thus useful for the ag-
gregator to investigate the price elasticity. Values of estimated price elasticity varies
widely in the literature. For instance, in [63] 538 observations of price elasticity were
found and the authors in [64] found that the elasticity varied between -0.2 and -0.8
for data sets representing residential consumers in the US. Meanwhile, the estimated
price elasticity seems to depend on assumed scenarios and other author assumptions.
Gillan, assuming explicit DR in [44], found different values for price elasticity for
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different changes in price and furthermore an increased price elasticity for automated
DR, for which a reduced effort cost was also highlighted. Increased price responsive-
ness for automated customers was also seen in [48].

Hence, to apply a relevant scenario for the price elasticity model in the context of
SE-OS, paper A assumes a future scenario, in which consumers are equipped with
Energy Management Systems (EMS) [65]. Furthermore, the various values of price
elasticity found in literature indicates that deterministic point estimations might not
be sufficient. Instead we develop a probabilistic model allowing for non-linear price
responsive behaviour. Due to the flexibility of such a model, it is also assumed that
the model would be applicable to slightly varying scenario assumptions and DR be-
haviour.

Due to the unidirectional communication flow giving the customer the choice to
choose if they would like to adapt their consumption, the response from the flexi-
ble resources is not as certain as it is in two-way communication approaches, in which
the DER commits to providing flexibility. Therefore, probabilistic models are of ma-
jor importance for aggregators to describe the uncertainty of DR in this context. Such
models are also required by the aggregator to manage the uncertainty and apply risk
informed operation strategies. For instance, the aggregator could apply conditional
value at risk (CVaR) or scenario-based stochastic programming [66, 67]. In this case,
deterministic point estimations are insufficient as input to these methods and thus
paper A applies a probabilistic price elasticity model to support these types of oper-
ation strategies.

The objective of the research in relation to the aggregator can be summarized as
follows:

• Develop a model to describe price responsive behaviour of flexible consumers.

• Adapt a relevant future scenario for the consumer behaviour applicable to the
SE-OS.

• Provide a probabilistic output from the model, than can be used to 1) estimate
a customer pool capable of providing ancillary services to DSO 2) communicate
the uncertainty of the response to the DSO.

4.2 Data Presentation
Due to scarcity of available experimental data representing DR consumers equipped
with EMS, synthesized data was used to develop the price elasticity method in paper
A. The synthesized data is from [65, 68, 69] and is based on data from a Danish
project collaboration between the Danish TSO, Energinet and Dansk Energi (the
Elforbrugspanel project). The data set involves 29 customer categories, with different
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price responsive characteristics, to account for various customer types across different
sectors. 70 unique customers of each category are then exposed to 1000 price-sets,
consisting of hourly electricity prices for one day. The electricity price is constructed
from a baseline price of 2.25 DKK/kWh and an hourly variable price component, πh.
The total price is consequently 2.25 + πh DKK/kWh and the variable component has
a cap such that πh ∈ [−0.75, 0.75]. Moreover, rebound is also accounted for assuming
a static rebound effect as described in [68]. A more detailed description and a visual
example of the data are found in [49] (also attached as supplementary information to
paper A in this thesis). In paper A customers from different customer categories are
aggregated to residential, light industry and heavy industry clusters (this is further
described in [49].

4.3 Probabilistic price elasticity modeling of DR
This section presents applied methods relevant for the probabilistic price elasticity
model in paper A.

4.3.1 B-splines
B-splines offers a flexible method of data fitting, allowing to model non-linear be-
haviour using a linear model structure. B-splines consists of pieces of polynomials of
degree p, that meet on x-coordinates called knots [70]. The knots, or knot vector, are
a vector of non-decreasing values along the x-axis, i.e. v = [ξ1, ..., ξk], where ξi ≤ ξi+1
and k is the number of knots [71]. If the knots are equidistantly spaced the B-splines
are said to be uniform B-splines [70]. Each polynomial spline function is defined such
that:

Bj,p(x) =

{
fp(x), if ξj ≤ x < ξj+1.

0, otherwise.
(4.1)

where fp(x) is a polynomial of degree p and Bj,p is the jth spline function of a B-
spline with degree p [71]. The total B-spline formula, S(x) can then be described
by:

S(x) =
N∑

j=1
ajBj(x) (4.2)

where N are the number of individual spline functions. A property of B-splines is
that its integer values (of Bj(x)) sums to unity [70]. Fitting the B-splines to a data
set is thus about optimizing the coefficients, aj , for the individual spline functions.

Since the regression had to be done for multiple clusters for several hours, B-splines
proved to have the flexibility not requiring to manually calibrate the regression for
each data set. Other methods were considered, for instance linear regression, polyno-
mial regression, and I-splines. However, B-splines was preferred to gain the flexibility
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and applicability to multiple data sets, while also offering method extensions, such
as monotonically non-decreasing P-splines, as outlined in Section 4.3.3.1.

4.3.2 Distribution of DR
In engineering modeling design, errors are often assumed to be Gaussian. The problem
when modeling the aggregator customer pools in the context of providing ancillary
services for DSOs is that the number of customers in each LV grid is generally too
small to consider the assumption applicable. In 1978, Koenker highlighted an over
exaggerated belief in the Gaussian law of error when estimating models to data, in-
stead suggesting a minimization problem to generate quantile regression models, at
the time with comparable efficiency to least squares optimization for Gaussian linear
model [72].

The maximum customer pool sizes to provide local ancillary services, such as voltage
control or congestion management, in the grids studied in the thesis are 170 and 140
customers each (see setup description in Chapter 3). The distribution of a hypotheti-
cal DR from the customers in the grids, can therefore not be assumed to be Gaussian.
Instead quantile regression is applied where knowledge of the a priori distribution
is not required. Additionally, it is seen in the data that is used to build the price
elasticity model that a Gaussian description of the distribution is insufficient [49].

Instead it is concluded that the magnitude of the flexibility given a certain hour and
price signal can be described by some unknown probability density function (pdf)
with a cumulative density function (cdf):

P (Lh|πh) =
∫ Lh

−∞
f(x; πh)dx (4.3)

In paper A quantile regression method is thus applied to allow for and model various
cdf’s in the data.

4.3.3 Quantile regression
In quantile regression, no assumed a priori distribution is required [73]. The modeling
approach rather estimates the model for a quantile, qτ , i.e. a model for observing
a set of observations, e.g. y, with at least τ probability (i.e. P (y ≤ qτ ) ≥ τ) [73].
By conducting several such quantile regressions for different values of τ a cdf can be
extracted. The parameters of a quantile regression model are optimized by minimizing
an asymmetrically weighted absolute error to fit the model to a certain quantile. For
more details on quantile regression the reader is referred to [73].
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4.3.3.1 Quantile Regression with P-splines
In paper A quantile regression with B-splines is applied such that the conditional
quantile given the data for price and response is described by:

Qτ,h(L̂h|Lc,hπc,h) =
n∑

j=1
âj,hBj,h(πh; q) (4.4)

where Qτ (L̂h|Lc,h, πc,h) is the estimated function for a quantile τ , given the data set
C for hour h, and âj,hand Bj,h are the corresponding estimated B-splines as described
in Section 4.3.1.

To successfully apply this modeling approach there are some important considera-
tions. Firstly, to avoid overfitting, B-splines with penalties, also known as P-splines,
are used. P-splines apply a penalty term adjusting the smoothness of the fitted curve
and thereby correcting for overfitting to the data [74].

Secondly, monotonically non-decreasing P-splines are applied. This constraints the
method to model a non-positive relation between electricity price and DR. Due to
the exclusively negative estimations of price elasticity found in literature (e.g. [63, 64,
44]), this seems to be a valid model modification. Furthermore, the study in paper
A assumes customers with EMS, meaning that it is highly expected that a higher
price would result in a lower consumption and vice versa. This was found to be a
reasonable model modification in paper A. Should, however, the method be applied
to another data set, it could occur that the DR does not follow this logic. In such a
case another addition or extension to the model should be applied as this behaviour
supposedly is not driven by price, but rather by other factors.

Finally, when fitting quantile regression curves to data sets, it might occur that the
regression lines cross. Considering the definition of quantiles [73] it would imply a
negative probability of the observation between the fitted curves. An example of this
is seen in Figure 4.1, where I-splines [75] have been used to fit quantile regressions to
the negative price deviations (πh < 0) in hour 18 using a data set with 50 customers.
In the figure it can be seen how quantiles for τ2 and τ3 as well as τ4 – τ7 are crossing.
The problem of quantile crossings is also highlighted in [76] and [77], where the latter
suggests monotonization of the quantile regressions as a solutions. This is another
reason for applying monotonically non-decreasing P-splines in the method of paper A.

Another method to avoid quantile crossings is proposed in [78]. In the suggested
methodology constraints are applied to the parameters in each quantile regression,
such that θk ≤ θk+1, where θk are the parameters for the k’th quantile [78]. In paper
A this method is utilized by applying the R package quantregGrowth version 0.4.3
[78, 79, 80, 81].
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Figure 4.1: Fitted quantile regressions to negative price deviation, πh in DKK/kWh,
at hour 18. The points represent the flexibility magnitude, Lh in Wh,
for 50 customers of customer category ”House without heating”. It can
be seen that quantiles for τ2 and τ3 as well as τ4 – τ7 are crossing.

4.4 Discussion of Results - insights on DR price
elasticity modeling

In paper A the applied method showed a flexible fitting to the data capturing various
shapes of cdf’s, such as very skewed or bimodal distributions. The variety of distribu-
tion functions seen in the fitted models to the data, validates that quantile regression
was an appropriate approach, and one assumed a priori distribution function would
not have been applicable to the entire data set.

Because of the observed flexibility of describing the cdf’s, it is further believed that
the method is applicable to other data sets representing other DR scenarios. How-
ever, it remains to be tested and validated. Due to the stochastic behaviour and
other factors in another data set, it could occur that the response does not follow
the assumed logic that an increase in price is followed by a reduction in electricity
consumption. One option to apply the method is to loosen the restriction of mono-
tonically non-increasing P-splines. Yet, this solution is not recommended as it firstly,



4.4 Discussion of Results - insights on DR price elasticity modeling 35

could cause quantile crossing problems in the quantile regression [76, 77]. Secondly,
such a deviation from the logic is probably better described through an addition or
extension to the model with relevant inputs for the behaviour, which is the recom-
mended solution. For example, an extension could be to include a variable describing
holidays, as these days could affect the price elasticity of DR.

After fitting the quantile regressions to the data sets, cdf’s for a certain price de-
viation and hour could then be extracted. This was done using the fitted quantiles as
well as a combination of linear and exponential regression. Thereafter the magnitude
of flexibility for customer cluster could be simulated. To demonstrate the usage of
the model in paper A, the DR was simulated for different customer clusters using a
price deviation of ±0.5 DKK/kWh to achieve ±1 MW of DR for each hour of the
day. The simulations were repeated 1000 times and the results are presented in the
boxplots in Figure 4.2, Figure 4.3 and Figure 4.4, showing how many customers that
were required to achieve a flexibility magnitude of ±1 MW.

Although, paper A focuses on up- and down-regulation for frequency regulation
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Figure 4.2: Number of activated electricity customers required to achieve ±1 MW
in DR from cluster 1 (residential cluster). The figure was presented in
paper A.
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Figure 4.3: Number of activated electricity customers required to achieve ±1 MW
in DR from cluster 2 (light industry cluster). The figure was presented
in paper A.

when estimating the DR for ±1 MW the results can easily be translated to other
ancillary services. For instance, the up-regulation case (i.e. −1 MW DR) would also
mean a increasing voltage level if providing voltage control (see Section 2.2.3) or a
reduced congestion. In contrast, the down regulation case (i.e. 1 MW DR) would
result in down regulation of the voltage level. It should be noted that frequency reg-
ulation is more relevant at the upper layers of the SE-OS framework, while the local
ancillary services for DSO are more relevant at lower layers.

Given the results, a few examples of insights for aggregator customer pools can be
drawn. For instance, a DSO operating a LV grid where PV panels are present, might
request voltage down-regulation as an ancillary service. For this purpose the resi-
dential customer cluster is a promising candidate to generate the required response.
Even though, more customers are required during the day to provide 1 MW of DR,
the uncertainty of the amount of required customers is comparably low. Furthermore,
less than 75 customers are required, keeping in mind that this would mean approxi-
mately less than 50 % of the customers in the studied LV grids. If on the other hand
”up-regulation” is required to provide congestion management and there are light in-
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Figure 4.4: Number of activated electricity customers required to achieve ±1 MW
in DR from cluster 3 (heavy industry cluster). The figure was presented
in paper A.

dustries connected to the LV grid of interest such as in grid 2, it might be smart from
the aggregator to recruit them to the customer pool as very few light industries are
required to provide a significant response (Figure 4.3).

4.5 Chapter Summary
In summary, the model in paper A has successfully applied a method to provide a
probabilistic output of the price responsiveness of DR across different sectors. The
model output is useful for the aggregator to plan its operation strategy and compo-
sition of customer pools. Furthermore, the clusters can be constructed to represent
customers in various DSO grids. However, for aggregator online real-time operation,
a time series modeling approach would be more suitable. The output can also be
used to support the communication to the DSOs informing about the probability on
response form the DR. Such information can be extracted from the generated cdf’s
given a customer cluster, at different points in time. The contributions related to
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this chapters are the following:

• Applying quantile regression and P-splines to model the price responsiveness of
various flexible consumers.

• Providing probabilistic model output to construct cumulative density functions.

• Probabilistic analysis of customer pool DR in relation to required ancillary
services by the DSO.



CHAPTER 5
DSOs in SE-OS

This chapter presents methods aiming to enable adaptive DSO smart grid operation
in the context of the SE-OS. The methods are designed to increase the observability
for DSOs in real-time, and can be applied to monitor and evaluate the state of low
voltage radial grids. The developed methods have the capability to provide real-
time estimations and probabilities forecasts. Through this knowledge the DSO will
have tools to make informed decisions in the context of SE-OS and request ancillary
services. The chapter further discusses the results and insights of paper B, C and D
in the context of adaptive operation in DSO smart grids in the SE-OS framework.

5.1 Concept of adaptive operation in DSO smart
grids

For the DSOs to participate in the SE-OS framework and gain the benefits from
ancillary services provided by aggregators, there is a need to understand the SE-OS
framework from the DSO’s perspective. For this purpose the concept of adaptive
operation in DSO smart grids is developed. It involves digitization of low voltage
(LV) distribution grids to enable online real-time monitoring as a necessary means
to adapt to a new situation with increasing levels of DGs and changing behaviour in
demand, as described in Section 2.2.

Figure 5.1 presents the conceptual framework for adaptive DSO operation of digitized
LV grids. In this framework data is collected from installed measuring devices at the
transformers and selected nodes in LV distribution grids. Note that the final installa-
tion of devices will differ from the experimental setup (Figure 3.3 and Figure 3.4), as
the latter might involve a redundant number of devices for online monitoring. At the
transformers the devices collect temperature data as well as electrical measurements
from the transformer and all outgoing feeders. Data is also collected at selected nodes
in the LV grid, to measure voltage or alternatively also current, power factor and har-
monic distortion (see Chapter 3 for a more detailed description). Similarly, to the
experimental setup the data may be collected by a third party, and thus it is fetched
from third party data bases. In the operational framework, the DSO online forecast-
ing and monitoring tools pull the data from the third party data bases along with
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other required data, such as weather data and electric load forecasts, using REST
API’s. If not cleaned by the third party, the data will be cleaned through pipelines
in the online tools (for instance as in Section 3.3).

Through the data-driven algorithms in the online tool, real-time grid and equip-
ment state estimations and forecasts as well as associated uncertainties are provided.
Through the output from the online tools, the state of the grid can be evaluated in
the DSO control room, as the DSO gains information on if grid states are, or are
predicted to be, violated. For instance, the congestion of the transformer is moni-
tored using a thermal dynamic rating model. If local grid issues are predicted, the
DSO can then take action by requesting flexibility ancillary services from an appro-
priate aggregator in the SE-OS framework. The aggregator then broadcasts signals
to flexible resources to change their load. Here, voltage adjusting flexibility should be
locally prioritized above frequency regulating flexibility at higher layers in the SE-OS,
since active power regulation for voltage control might be more effective than reactive
power regulation due the low X/R ratio in the LV grids. Furthermore, the aggregator
could use the method described in Chapter 4 to calculate how many customers to
activate and which price to set through the probabilistic model, and could further
inform the DSO about the uncertainty of the DR. An alternative approach, if the DR
is not predicted to solve the local grid issues, is to to use a DSO operated Battery
Energy Storage System (BESS). The DR will be noticeable in the measuring devices
placed in the grid, and load forecasts will be updated. This procedure is iterated
for each time step and the DSO will receive updated forecasts and estimations for
every time step. Thus, the DSO can monitor if the flexibility is predicted to solve the
local grid issues, or if further changes in DR is required. Here, probabilistic outputs
from the tools are essential in the DSO’s capability of taking informed decisions and
accounting for uncertainty/risk when taking action in the SE-OS framework.

To develop useful methods applicable in the described framework, the approach has
been to use available data to achieve practically possible methods. In other words:
given the situation and setup in the LV grids studied, how well can we predict and
estimate critical states such as end-node voltages and transformer temperature? Fo-
cus has also been given to not develop isolated methods, but rather methods that
can be combined and have a common installation that is scalable. Furthermore, the
aim is to develop data-driven models such that the operation can rely on real-time
information. In summary, the research objectives to develop methods for adaptive
DSO smart grid operation is:

• To develop models that can estimate and predict real-time states of the grid,
while providing uncertainty information.

• Using available data, that can be practically measured or fetched from existing
data bases.

• Achieving a practical and scalable installation.
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• Developing methods/tools that gives information for managing the uncertainty
of the grid state and DR in the context of the SE-OS.

Moreover, the aim of paper B and C are:

• To develop a forecasting model for transformer temperature to apply dynamic
transformer rating (paper B)

• To develop a voltage observability method for radial low voltage grids for real-
time grid state monitoring (paper C).

5.2 Data-driven modeling for DSO observability and
dynamic ratings

This section gives an overview of applied methods related to paper B and C. A special
focus is given to time series modeling in DSO grids to provide increased observability
and dynamic transformer rating (DTR) for the adaptive DSO operation framework
described in Figure 5.1. The overview covers both the development of the transformer
thermal model for DTR in paper B and the observability method in paper C.

5.2.1 Time series modeling techniques
5.2.1.1 ARMA type models
Auto Regressive - Moving Average (ARMA) type models have been widely used in
literature to develop various forecasting models. E.g. in [82] to predict electricity
prices or in [83] to predict electricity demand in Turkey. Thus, they have also been
explored in the approach towards finding suitable forecasting models for the DSO
forecasting tools.

ARMA type models have also been especially adapted in thermal forecasting mod-
els. For instance, [84] developed an Integrated ARMA (ARIMA) model to forecast
thermal ratings of transmission lines and [85] used an ARIMA approach to forecast
temperature in residential premises. For the thermal transformer model, data from
weather forecasts, electrical load and other variables were available, which could pos-
sible be useful input variables to model the temperature at interest. Hence, ARMAX
models (ARMA with exogenous input) were explored as a possible solution to build
the thermal model for DTR. ARMAX models have the following structure:

φ(B)Yt = ω(B)Xt−b + θ(B)ϵt (5.1)

where Y is the observed variable, X is the exogenous input variables, b is a time delay,
ϵ is white noise residuals and φ(B), ω(B) and θ(B) are polynomials in the back shift
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Figure 5.1: Operational framework for adaptive DSO smart grid operation.
Turquoise lines indicate data flows and dotted lines indicate commu-
nication signals.
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operator [86]. This model structure was explored to find a transformer thermal model
(aim of paper B). Although models developed using this approach showed reasonable
one step ahead predictions, their ability to forecast further ahead was very limited.
This could possibly be due to the limited possibility to describe the thermal dynamics
in relation to the exogenous input given the model structure. To successfully apply
DTR in the DSO operational framework (Figure 5.1), predictions with a horizon of
at least a few hours are crucial for the DSO’s ability to request flexibility ahead in
time before transformer limits are violated. Therefore, other modeling approaches
were explored.

To construct the voltage observability model Multivariate ARIMA (MARIMA) mod-
els were also explored. MARIMA models have a similar formula as in Eq. (5.1),
however, observation variables are also allowed as input to describe other observation
variables, thereby being multivariate. [87]. As node voltages affect other node volt-
ages in a power grid, a multivariate model structure could be useful and MARIMA
models were investigated using the marima package in R [88, 87]. Yet, the model
showed poor performance in estimating the voltages when applying it to a data set
from fewer electric measurement devices. One of the aims for the observability model
was to have a modeling approach with a scalable installation, relying on few measuring
devices and thus, MARIMA models were excluded as a solution.

5.2.1.2 Grey-box models
In the SE-OS framework grey-box models have proven to be an effective way to
model dynamical systems. For instance, they proved useful in constructing models
for wastewater treatment plants in the context of the SE-OS [25] as well as for wind
power forecasting [89]. They have also proven to effectively model complex thermal
systems (e.g. in [90]), and have thus been explored to build useful models in paper
B andC. Grey-box models are physics-informed, in the sense that a first proposal of
the model structure is derived from theoretical knowledge. The models are also data-
driven, since statistics and information from data is used to identify the relationship
between input and output variables. Thereby, grey-box models are at the intersection
between white-box approaches (deterministic models), and black-box approaches for
which no theoretical knowledge of the process is used [91].

In grey-box modeling, first order stochastic differential equations (SDE) are often
used to describe the dynamics of the system, which can be expressed as follows:

dXt = f(Xt, Ut, t, θ)dt + σ(Xt, Ut, t, θ)dwt (5.2)

where Xt is a state vector, Ut is an input vector, θ are the model parameters and dwt

is a standard Wiener processes (i.e. a Gaussian stochastic process with mutually inde-
pendent increments) [92]. Here, the first term, the drift term (= f(Xt, Ut, t, θ)dt), rep-
resent the deterministic part of the model, while the diffusion term (σ(Xt, Ut, t, θ)dwt)



44 5 DSOs in SE-OS

allows to model noise and disturbances in the system that are not captured by the
drift term. This description of the system is linked to the observed states through:

Yk = g(Xtk
, Utk

, tk, θ) + etk
(5.3)

where Yk is a vector of observed states and etk
are the measurement errors, i.e. Gaus-

sian white noise, N (0, σ2). Note that as the system equation is defined in continues
time the observation equation is formulate in discrete time, with time steps k, al-
lowing for such observations. The parameters to the model, θ, are optimized to the
data by, for instance, using maximum likelihood. In paper B and C model parame-
ters are optimized using CTSM-R [91]. For a more in depth description of grey-box
models the reader is referred to [92, 55, 56]. The presented model formulation here is
equivalent to the continuous-discrete time state-space representation in paper B and
C.

5.2.1.3 Generalized Additive Models
In the power system, seasonal behaviour is commonly seen in the demand load be-
haviour [93, 94]. One way to model seasonal behaviour is through using cubic seasonal
splines and has for instance been implemented in [95] to model daily electricity load
profiles. However, not all electrical load behaviour can be represented using cubic
splines. Generalized Additive Models (GAMs), derived from generalized linear mod-
els, offer a flexible modeling approach in the possibility to combine various smooth
functions. The have for instance been applied to model fault In [96], GAMs are high-
lighted as a promising candidate for online fault assessment of electrical machines
with a low computational burden and in [97] GAMs proved computationally feasible
to a big data set to model U.K black smoke network data. Thus, GAMs was explored
as a modeling approach for the voltage observability model in paper C, that is re-
quired to be scalable in data throughput.

The general formula for GAMs is:

g(µi) = Aiθ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + ... (5.4)

where µi is the expected value of a response variable Yi. The parametric part of
the model is represented in Aiθ, with parameters, θ, and model smooth functions of
variables xj are represented by fk [98]. In paper C, GAMs for voltage observability
were developed using R package mgcv version 1.8-40 [98, 99, 100, 101, 102]. For
further details on GAMs the reader is referred to [98].

5.2.2 Application in forecasting and monitoring tools for DSOs
5.2.2.1 Thermal model for dynamic transformer rating
To develop useful thermal transformer models for DTR in the DSO adaptive opera-
tional framework (Figure 5.1) there are e few important considerations in addition
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to the background information presented in Section 2.2.2. Firstly, the models need
to be able to provide reasonable forecasts, as outlined in Section 5.1. The forecasts
further, need to have a time horizon that allows the DSO to request flexibility with
a time time margin such that the transformer limits are not violated. To ensure that
enough time margin is provided in the predictions, a cross-correlation analysis is im-
plemented in paper B.

It is further becoming increasingly relevant to account for harmonic distortion in
distribution grids, due to non-linear loads [36, 103]. Some works can be found on
thermal transformer models in literature, investigating the impact of harmonics on
the loading capacity of transformers, e.g. [104] introducing an algorithm to estimate
loading capability under harmonic conditions, [105] suggesting a 3-D finite element
approach, and [106] proposing an extension to the IEC Std. 60076-7 thermal models
to account for harmonic effects. The presented works indicate a considerable impact
from harmonic distortion in the transformer temperature, and it is thus investigated
in paper B. It should be noted that the mentioned studies are focused on monitoring
and do not have forecasting capabilities. Thus, they cannot be applied in the DSO
operational framework, for which other methods are required.

The models within the presented framework are further focused on secondary distri-
bution grids and thus the transformer thermal models primarily concerns secondary
transformers. Considering the size of DSO areas and the supposedly large number
of secondary transformers, the applied methods need to be scalable. In thermal
modeling a commonly applied method is 3-D finite element method also used for
transformer modeling, for instance applied in [105] or in [107] using the approach for
model validation. However, these type of methods were instantly excluded due to the
computational burden and therefore low scalability.

Another aspect is that the secondary transformers are in general small transform-
ers. As stated in Section 2.2.2, temperatures of such small transformers might be
affected by environmental factors, for example wind and solar radiation [35]. In
paper B, environmental factors are thus included in the model.

5.2.2.2 Voltage observability method in low voltage radial grids
A few remarks can also be made on important factors to have in mind, in the ap-
proach to develop the voltage observability model in paper C.

The developed operational concept concerns unbalanced radial LV distribution grids.
Therefore, it is interesting to develop a model for estimating phase voltages. Further-
more, the unbalance might lead to the neutral carrying current and thus a voltage
drop or rise along the neutral wires [108, 109] (see also Section 2.2.3). Significant
neutral currents were observed in both studied grids of the experimental setup and
therefore their impact was investigated in paper C.
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Although, several studies can be found on distribution system state estimation (DSSE)
for medium voltage grids, there are less studies to be found on radial LV grids at 0.4
kV, which is the primary focus in this thesis. At this voltage level real-time observ-
ability is typically nonexistent or very low. In DSSE for higher voltage levels neural
network (NN) have been extensively applied, for instance in [110] applying a NN
approach to an IEEE 34-bus system at 24.9/4.16 kV or in [111], where the authors
apply a NN approach for system monitoring in a 20 kV grid. Since the aim for the ob-
servability model is to develop a method with some degree of explainability based on
inputs from few devices, it is questionable if an NN approach would provide enough
explainability and if the measuring points would provide enough information to opti-
mize NN models.

Many DSSE methods are also based on pseudo-measurements. An approach for a ra-
dial LV system state estimation can be found in [112] and used pseudo-measurements
to fit the state estimation model through power flow calculations and polynomial re-
gression. Relying on synthesized data requires relevant and updated pseudo-measurements
and could potentially result in maintenance work for the DSO to find and maintain
such data sets. In paper C another approach was therefore taken to avoid such pseudo-
measurement data, to rather rely on the measured data instead.

In LV grids, smart meters broadly being installed (in Europe for instance through
the EU directive 2009/72/EC [113]). It could be tempting to use the large amount
of smart meter data for voltage estimation. However, the authors in [42] highlight
that the required communication infrastructure is expensive and could be subject to
cyber attacks. Therefore, phase management units (PMUs) might be a better choice
for data input to observability models, as they generally also have a higher sampling
frequency [14]. The choice of data input is also important in terms of scalability of
the model.

Finally, in radial LV grids the end-nodes are of more critical concern for the DSO. As
they are the furthest away from the transformer this is commonly where the largest
voltage drops and rises occurs.

5.3 Discussion of results - insights on online tools
and DSO smart grid operation

This section firstly discusses the separate results and contributions the models pre-
sented in paper B and C, followed by the results and contribution in the context of
the DSO smart grid operation framework described in Section 5.1.
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5.3.1 Transformer thermal model
In paper B, a thermal model was developed for transformer temperature forecasting
using a grey-box modeling approach. Through statistical analysis of the model pa-
rameters it was found that relevant inputs were the 3-phase current squared, neutral
current squared (for transformer 2 only), ambient temperature, solar radiation and
wind speed. The final model had the following formulation:

dTi = 1
Ci

(
1

Rti
(Tt − Ti) + 1

Rib
(Tb − Ti)

)
dt + σ1dw1 (5.5)

dTt = 1
Ct

(
Φh + 1

Rti
(Ti − Tt)

)
dt + σ2dw2 (5.6)

dTb = 1
Cb

(
1

Rib
(Ti − Tb) + 1

Rba
(Ta − Tb) + ωΦwind + Φsol

)
dt + σ3dw3 (5.7)

Tlid = Ti + e (5.8)

where R and C represent thermal resistance and capacitance, respectively. Three
states are represented in this model; the state at the lid of the transformer, Ti, the
state in the housing, Tb, and the thermal state within the transformer, Tt. The latter
two states are hidden states. Environmental impact is model represented in Φwind,
which is the wind speed and Φsol representing the impact from solar radiation, such
that Φsol(t) =

∑n
j=1 scjBj(t)Gh(t), where Bj are B-splines (see Section 4.3.1), ˆscj is

the corresponding estimated parameter and Gh is the solar radiation. Φh represent
the internal heating in the transformer and is described by the three-phase current
squared (Φh = aI2

3ph + b), or alternatively also neutral current for transformer 2
(Φh = aI2

3ph + b + cI2
N ). For further details see Section 5.2.1.2 and paper B.

Differences between the final models of the two transformers were observed for solar ra-
diation B-splines and the neutral current proved to only be significant for transformer
2. As mentioned in paper B, this is probably due to the smaller size of transformer
2 (200 kVA compared to 400 kVA for transformer 1), rather than a higher harmonic
content since the neutral current to total phase current ratio is quite similar for the
two transformers. Since the loading of transformer 2 is higher, it could mean that
the electrical input variables have a higher impact in relation to the environmental
inputs compared to transformer 1, which is only loaded at approximately 50 %.

For scalability of the thermal model in the DSO network, ideally, the final formu-
lation of the thermal model should be the same for all transformers. Thus, when
applying the model to the operational framework, it is suggested that neutral cur-
rent is included as an input variable and only removed if proven to be insignificant
(for a better model calibration). Furthermore, automizing the optimizations of the
B-splines could improve scalability. The final model further suggests that not all



48 5 DSOs in SE-OS

measurements are required and the final setup is suggested in Figure 5.2. Note that
only the measurement at the lid, Tlid is required to run the model, and the measure-
ment at the radiator Trad is only kept in the installation, because it is suggested by
the manufacturer of the transformer. In paper B, it is suggested that heat-run test
from the manufacturer could further improve the accuracy of the model, and thus
this measurement is kept in the installation to ensure future model alignment with
the manufacturer.

The forecasts are provided with a 6 hour horizon. A cross-correlation analysis

Figure 5.2: Suggested final setup for the transformers, with temperature sensor (TS)
and electronic measurement instruments (EMI).

in paper B, indicates that the lid temperature correlates to the inner hot-spot tem-
perature with an approximately 2.5 and 2 hours time delay for transformer 1 and 2,
respectively. The 6 hour time horizon, thus gives 3.5 and 4 hours, respectively, for
the DSO to take action in the SE-OS framework and request flexibility. The forecasts
related to temperature monitoring, i.e.e with time horizons of 2.5 and 2 hours are
seen in Figure 5.3, whereas the forecasts to be utilized for flexibility requests in the
operational framework, i.e. with 6-hour horizons are seen in Figure 5.4.

5.3.2 Voltage Observability Model
In paper C, a model for voltage observability is developed. The final model for ob-
servability along a radial includes a grey-box model using input parameters from one
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(a) 5 step ahead predictions for the test data set, using the one state
model for transformer 1.
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(b) 4 step ahead predictions for the test data set, using the extended two
state model for transformer 2.

Figure 5.3: Predictions of the transformer lid temperature for 5 and 4 time steps
ahead, respectively, corresponding to the current state inside the trans-
former. Black line – observations, Blue line – predictions, Light blue
area – 95% prediction interval. Figures from paper B..

end-node device to estimate a node voltage along the feeder, VGM and the voltage
drop between the nodes. The estimated voltage drop is then used as an input vari-
able to estimate other end-node voltages. The final grey-box model is formulated as
follows:

d∆VR,GM−GE1 = a · RGM−GE1 · dIGE1

dt
· PFGE1 + σ1dw1 (5.9)

d∆VX,GM−GE1 = b · XGM−GE1 · dIGE1

dt
· sin (arccos (PFGE1))) + σ2dw2 (5.10)

VGM = c · VGE1 + d · (VR,GM−GE1 + VGE1) (5.11)

where ∆VR,GM−GE1 is the state for the voltage drop related to the wire resistance,
RGM−GE1, between the nodes with measuring devices, GM and GE1, and ∆VX,GM−GE1
is the state for the voltage related to the reactance, XGM−GE1, along the same line.
See Section 2.2.3 for further details on voltage drop calculations used to derive the
model structure and paper C for further details on the final model. Further, the final
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(a) Thermal forecast for transformer 1
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(b) Thermal forecast for transformer 2.

Figure 5.4: Forecasts with a horizon of 12 step ahead (6 hours), using the final
model in paper B. Black line – observations, Blue line – predictions,
Light blue area – 95% prediction interval. Figures from paper B..

GAMs to estimate end-node voltage is formulated as follows:

Vend = s(Vest,GM ) + s(∆Vest,R,GM−GE1, IZT ) + s(tday) (5.12)

where ∆Vest,R,GM−GE1 and Vest,GM are the estimated states from the grey-box model,
and s(tday) are seasonal splines for the daily variation using B-splines of degree 3
with 144 knots. It was investigated to incorporate the other state from teh grey-box
model,∆VX,GM−GE1, but it was insignificant to the model structure. All voltage es-
timations are in a 10 minute time resolution and per phase.

Voltage estimations for the middle node using the grey-box model are seen in Fig-
ure 5.5. The predictions have a low confidence interval due the low standard deviation
in the model output. The estimations further have a low root mean squared error
(rmse) of approximately 0.1 V for both the training data set (18th to 30th April
20022) and the test data set (1st to 31st May 2022). An example of end-nod estima-
tions are seen in Figure 5.6. The end-node estimations of V10H had a rmse of 0.22 V
and 0.24 V for the training and test data sets, respectively while for V10H the found
rmse were 0.39 V and 0.49 V. For comparison with other works the 0.1 V error is
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0.0004 in p.u. and the 0.49 V error is corresponds to 0.002 p.u. Given this, the model
provides output with reasonable accuracy for online monitoring and can be utilized
in the operational framework.

Nonetheless, the model selection process and data analysis in paper C suggested
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(b) Estimations on the test data set

Figure 5.5: Grey-box model estimations on the training and test data sets, zoomed
in on three days. The black line represents the observations and the
blue line the model predictions. There is also a 95 % confidence interval
indicated by a blue area, but is visually difficult to see in the graph due
to a low standard deviation in the model. Figures are from paper C.

some improvements for future installations to further. For instance, the end-node
voltage measurements should be improved by also measuring the neutral wire as it
might have an impact on the phase voltage in an unbalanced network. In the model
selection process, focus was given to selecting few input devices to achieve a scalable
and practical installation. A reduced installation for the observability online moni-
toring tool is proposed in Figure 5.7 and Figure 5.8. These setups should however,
be validated for other feeders in the future.

Finally, the developed method does not rely on pseudo-measurements limiting ex-
tra work to apply the model in operation. It also provides some explainability in the
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(c) Estimations on the training data set for 10H
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(d) Estimations on the test data set for 10H

Figure 5.6: GAM model end-node estimations on the training and test data sets for
V10V and V10H , zoomed in on three days. The black line represents the
observations and the blue line the model predictions. There is also a 95
% confidence interval indicated by a blue area. Figures are from paper
C.



5.3 Discussion of results - insights on online tools and DSO smart grid operation 53

grey-box model estimating the voltage drop along the radial, which can be used to
explain other voltage drops. Furthermore, one end-node device is chosen as input
and thus, one end-node voltage will be know to the DSO with high certainty which
is beneficial for the grid operation.

5.3.3 DSO Operational Framework
his section discuss the thesis contribution of developing the concept of the adaptive
operational framework in Section 5.1. It further discusses the contributions from
paper B, C; and D from this perspective.

5.3.3.1 Combined installation
In the DSO operational framework, focus is given to digitizing the LV grids and the
setup to run the online tools is thus of interest. The combination of input variables
required for the developed methods for DTR and voltage observability in paper B
and C, results in a combined installation for the two studied grids respectively. The
final setup to run the monitoring and forecasting models can be seen in Figure 5.7 for
LL1 and in Figure 5.8 for LL2. Here, the final placement of the devices for the voltage
observability model are a suggestion, to be validated in future studies. Nevertheless,
the number of devices should be the same. The final setup includes one device at the
end of each feeder which is required to run the voltage observability model. It also
includes a device at middle nodes for branched feeders, which is needed for model
validation and could possibly be removed at a latter stage if the model calibration
is successful. For feeders that are not branched, for example the brown, yellow and
green feeder in grid 2 (Figure 5.8), it is suggested to rather measure the end-node
voltage directly. This is supposedly the most crucial node voltage for the respective
feeders and the voltage drop along the feeder could then be estimated with the grey-
box model in paper C.

Throughout the model selection process for the methods, it has been actively cho-
sen to keep the required number of devices low. Thus, the combination of the voltage
monitoring and DTR tools result in a combined installation that is practical and
possible to scale in DSO grids, consisting of many small LV grids.

5.3.3.2 Daily operation of observability tools
The developed methods in paper B and C deal with two different physical phenom-
ena, with regard to dynamics. The transformer model in paper B considers a thermal
system, typically with slow dynamics, whereas paper C considers nodal voltages, char-
acterized by considerably faster dynamics. This is reflected in the model output as
the thermal model requires a longer forecasting horizon, and thus a forecasting hori-
zon of 6 hours is given such that the DSO has time to mitigate any transformer
capacity violations. For the observability model, it is significantly harder to provide
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Figure 5.7: Suggested final setup for grid 1/LL1.

forecast with such long horizons and reasonable accuracy. Further, such forecasts has
potentially little value as the system dynamics would most likely change within those
6 hours. Instead focus is given to achieve a monitoring tool better suited for voltage
observability purposes.

Moreover, the DSO can use both models in paper B and C to investigate future
scenarios in the grid as well as analysing historical output from the model to evaluate
grid equipment replacement. For instance, if the voltage or transformer temperature
has such behaviour that limitations are often ”about to be violated” and flexibility is
required for a majority of the time during the daily operation, it might be time for
a replacement. Such analysis is possible due to explainability in the models. This
extends the dimension for the usage of the DSO tools to - analysis, monitoring and
forecasting.

The different dynamics also has implications for the required characteristics of flexi-
bility in the operational framework. As the temperature changes more slowly, a more
constant response might be required from the flexible devices in Figure 5.1, whereas
the voltage is more volatile and thus, the requested flexibility to solve voltage related
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Figure 5.8: Suggested final setup for grid 2/LL2.

issues might be needed with a faster ramping and of a more volatile nature. Therefore,
it is very important in the framework that the electricity load forecasts are updated
for the input to the online forecasting tools. For instance, the faster changing flexi-
bility for voltage control will also affect the loading of the transformer and thus, the
input and output of the DTR tools. This, further highlights the need for combined
solutions for DSOs, rather than having separate solutions for different grid issues. As
the solutions for each of the grid issues, most likely is a change in power flow, their
solutions and control signals will affect each other as they are in the same power
system. Hence, the forecasting tools and control systems need to communicate in a
combined framework.

Furthermore, the computation time for both methods in paper B and C allows for
daily updates of the models. The computation time to optimize the parameters for
the thermal model is about 6 minutes and for the observability model the first itera-
tion takes 14 seconds and for each node and additional 1-2 seconds (see paper B and
C for further details). Since smart meters have been or are about to be installed in
many LV grids the DSO can utilize this in the daily operation. Meter measurements
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are often collected once a day [14], and simultaneously the model parameters can be
updated to maintain the accuracy of the predictions, as the short computation time
would allow this.

Finally, real-time observability has through this project increased from practically
zero to achieving models that can be used for online grid monitoring and forecasting.
In summary, both models provide the DSO with tools to take action in the SE-OS
framework and request flexibility ancillary services.

5.3.3.3 Uncertainty mitigation
As previously stated, the models in paper B and C are capable of providing predic-
tion or confidence intervals (PIs or CIs). Since the associated uncertainty for the
predictions are reported in the model output, the DSO can apply risk averse oper-
ation strategies in the operational framework. For instance, the DSO might choose
to base the DTR on the upper interval for the temperature predictions, as too high
temperature are preferably avoided. A similar approach can also be adapted for the
voltage observability, but here the DSO need to change between upper and lower CIs
as both drops and rises are unfavourable.

BESS
While the above considers the uncertainty in the grid states there are another dimen-
sion of uncertainty through the unidirectional communication flow, namely in the DR.
As seen in paper A, the certainty of the DR will vary for customer pool composition
and time of the day. That is, there will be periods with higher and lower certainty
in the DR. For the periods with low certainty the DSO might need a complementary
strategy to the unidirectional communication flexibility to safely mitigate local grid
issues. Paper D, Battery-Energy Storage Systems (BESS) in LV networks are high-
lighted as a solution to mitigate local grid issues. Examples of grid relief and ancillary
services through utilization of BESS can also be found in other studies. For instance,
in [114] the authors investigated a system operator owned BESS to provide ancillary
services, finding that it could improve grid management and delay grid investments,
while the authors in [115] found that a BESS for grid relief reduced local demand
and power peak stress. Furthermore, potential benefits of communal BESS rather
than individual are highlighted in [116] and [117]. It might thus be of interest for the
DSO to incorporate a BESS to mitigate local grid issues in the operational framework.

In [118] (also attach as paper D in this thesis), we studied the placement of a BESS in
three different LV grids (city, suburban and village) in the context of an energy com-
munity with different operation strategies. Energy communities compromise cooper-
atives sharing renewable DERs, while minimizing their energy consumption through
flexibility of active consumers. The BESS placement was studied through a series of
power flow calculations of various scenarios, including different operating strategies
of the energy community as well as different energy community configurations. In
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total 180 scenarios were investigated in the paper. In paper D, the first configuration
(EC1 in the paper) only includes households and is comparable to grid 1, while the
other configurations (EC2 and EC3 in the paper) are comparable to grid 2 as they
also include a commercial customer (i.e. with larger load). The grids are comparable
to grid 1 and 2 described in Chapter 3, although the village and suburban grids are
probably the most relevant. We used household load profiles representing detached
houses without electric heating, detached houses with heat pumps and apartments
without electric heating.

In paper D we found that the energy community and BESS strategy of peak-shaving
improved the line loading. As an example the LV line loading was up to 58 % lower
for the city grid (with configurations EC2 and EC3) compared to the strategy to max-
imize economic benefits. This indicates promising results to reduce the loading of the
transformer in LV grids, with potential benefits for the application of DTR (relevant
for paper B). Whereas, paper D was focused on energy community owned BESS, El-
Batawy [119] studied optimal parameters for a BESS from a DSO perspective, finding
voltage improvements for two of their four investigated scenarios. This suggest that
a BESS could also be utilized to mitigate voltage violations, during times with low
certainty in the DR and is therefore incorporated in the operational framework (see
Figure 5.1). However, in paper D, where the study is conducted from energy com-
munities perspective, no particular voltage improvements were found. Due to this, it
is suggested that the BESS is owned and operated by the DSO. Nevertheless, paper
D showed a clear advantage for the grid voltage impact, in having the BESS at the
beginning of the feeder in the LV networks.

5.3.3.4 Flexibility coordination
As seen in Chapter 4, the aggregator have probabilistic price elasticity information
that might be useful for the DSO to design their grid issues mitigation strategies. For
instance, if the probability of overloading the transformer is high, while the certainty
of DR is low it is useful for the DSO to have this information such that the risk of
system failure can be avoided. For instance, the situation can be avoided ahead in
time by planning to activate a BESS instead. Vice versa, the DSO has useful infor-
mation for the aggregator to build their customer pools. For instance, the thermal
transformer models shows a daily peak in temperature in the afternoon/evening (Fig-
ure 5.4). Such information can be combined with the DR price elasticity box plots, in
Figure 4.2, Figure 4.3 and Figure 4.4, to evaluate which customer clusters are likely
to respond to DR signals at that time with high certainty. Therefore, exchange of
information between the aggregator and the DSO is suggested to effectively allocate
flexible resources for ancillary services in the SE-OS framework. It should be noted
that, although a soft version of two-way communication is introduced here, the com-
munication to the customer flexible resources is kept unidirectional.

Energy communities
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As previously stated, energy communities with communal BESS offers an alternative
approach for the DSO can gain support to solve local grid issues. However, communi-
cation between the energy community and DSO is encouraged, to avoid unsuccessful
configurations which might undermine the energy community goals of easing their
loading and impact on the power grid. This is highlighted in paper D, where it was
seen that the energy community operation strategy and placement of the communal
BESS had different impacts on line loading and voltage violations in the studied LV
grids. Coordination is thus suggested to avoid grid violations by adjusting opera-
tional strategies and placement of communal BESS. The results further suggest that
energy communities can provide ancillary services, for instance through peak-shaving
(i.e. related to congestion problems). To incorporate this in the DSO operational
framework it is, however, suggested that the flexibility coordination is operated by an
aggregator to simplify communication flows. Thus, energy communities would also
be included as ”flexible resources” in the framework described in Figure 5.1.

5.4 Chapter Summary
In this chapter model development, results and contributions from paper B, C and
D have been discussed. The chapter presents an adaptive DSO smart grid operation
framework. A thermal transformer model for DTR have been presented in paper B
and a voltage observability method for radial unbalanced LV grids have been pre-
sented in paper C. Both models contributes to the online monitoring and forecasting
tools in the described operational framework. Such methods are crucial for the DSOs
to adapt to a new distribution power system situation with increasing levels of DGs
and changing demand behaviour. The operational framework further suggests adap-
tive measures to arising grid issues during operation by requesting flexibility form an
aggregator in the SE-OS. Furthermore, energy communities are highlighted as flexible
resources to provide DR in paper D and BESS is suggested as an alternative addition
to times with high uncertainty in the DR ancillary services. To avoid intensified grid
impact, communication between energy communities and DSOs is also encouraged.

The contributions form this chapter can be outlined as follows:

• A grey-box transformer thermal model, capable of providing 6-hour temperature
forecasts for the application of DTR.

• A method combining grey-box and GAM models for node voltage estimations
in unbalanced LV grids, with high accuracy and low computational burden.

• Data-driven methods relying on a combined setup that is practical and scalable.

• An adaptive DSO smart grid operation framework, including online forecasting
and monitoring tools as well as solving local grid issues through DR ancillary
services, energy communities and BESS.



CHAPTER 6
Conclusions and

Perspectives
The focus of this thesis has been to develop an operational framework for adaptive
DSO smart grid operation in the context of SE-OS including data-driven modeling
approaches supporting the framework.

For this purpose, an experimental setup compromising two living labs has been de-
signed. The living labs consist of two real-world low voltage grids operated by a
Danish DSO, allowing for the developed methods to be anchored in a real-world in-
stallation and the compromises and challenges that inevitably come with it. Thereby,
the developed methods (in paper B and C) have an advantage towards simulation
studies, since they are based on data describing a real system.

Furthermore, a framework explaining how a DSO can operate with adaptive mea-
sures to solve local grid issues in the context of the SE-OS has been developed and
described. Through the framework the DSO gain information about the LV grid and
transformer through online monitoring and forecasting tools, which is becoming in-
creasingly important due to increasing levels of DG and changes in demand behaviour.

Within the framework models for two grid evaluating tools are developed through
paper B and C. A thermal model for dynamic transformer rating is proposed in paper
B, by defining a grey-box model, meaning it is both physics-informed and data-driven.
The model further provides forecasts accompanied by prediction intervals (PIs) with
reasonable accuracy. The model is evaluated with a 6-hour prediction horizon giving
the DSO a time margin to take action within the SE-OS framework if the transformer
is predicted to be congested. Furthermore, paper B incorporates both electrical and
environmental input variables in a data-driven approach, which is scarcely seen in
existing literature.

A model for nodal voltage observability is defined in this thesis through paper C.
The model aims to serve the DSO in real-time monitoring of node voltages in unbal-
anced radial LV grids within the framework. The method relies on a combination of
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grey-box modeling and GAMs, providing node voltage estimations per phase and 10
minutes, while also providing confidence intervals. The model achieved high accuracy
when being evaluated on a data set twice as long as the training data set, with root
mean squared errors of 0.002 – 0.0004 p.u. depending on the node. The model only
uses input data from one device per feeder and has a low computational burden.

Both models developed for online monitoring and forecasting in paper B and C, rely
on measurements that are practical and possible to measure by the DSO. The com-
bined installation setup that is required is thus supposedly practical and scalable in
DSO grids consisting of many radial LV grids. By providing probabilistic output in
both models, it further allows he DSO to apply risk averse strategies within the SE-
OS framework. Moreover, the short computation times allow the DSO to calibrate
the models through optimizing the parameters on a regular basis to maintain the
accuracy of the models (for instance daily).

The DSO operational framework, further describes how the DSO can request flex-
ibility from an aggregator in the SE-OS to solve local grid issues. To appropriately
support DSOs with relevant ancillary services through activating flexible resources the
methods in chapter 4 were developed. In paper A, a flexible and probabilistic price
elasticity model for various types of DR was proposed. The model proved capable
of extracting cumulative density functions for the DR given hourly electricity prices
to analyze how many customers are required to meet a certain request of flexibility
services. Through the model the aggregator can both evaluate the DR potential in an
LV grid given the customer composition and compose flexibility customer pools that
are predicted to be capable of providing required flexibility in the ancillary services.
Here, it is also recommended that voltage adjusting flexibility is locally prioritized
above frequency regulating flexibility, as active power regulation for voltage control
is more effective than reactive power regulation due the low X/R ratio in the LV grids.

As an alternative, energy communities could also provide flexibility to the DSO. An
advantage of the energy communities are that they can design the operation strategy
to support the DSO if it aligns with their own goals. For instance, in paper D, it
was seen that the energy communities could significantly reduce the maximum line
loading through a peak-shaving strategy. In the operational framework suggested in
the thesis it is, however, suggested that control signals and communication is handled
by the aggregator to simplify communication flows and account for other flexible re-
sources in the grid.

An exchange of information of daily patterns in both DR and needed ancillary ser-
vices between the aggregator and the DSO is further suggested. The communication
flow could further help the aggregator to construct relevant customer pools and the
DSO could gain information on when complementary measures might be needed to
solve local grid issues. For instance, the DSO could use a complementary battery
energy storage system (BESS) to account for the times with high uncertainty in the
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DR. In paper D it is suggested that such a BESS should be placed at the beginning
of a feeder in a LV grid. It is further highlighted that a DSO owned and operated
BESS could better improve the voltage situation in the LV grid.

As underlined in Chapter 1, there is a need for new methods to increase the ob-
servability to support adaptive measures and control for the DSOs. The PhD project
involved communication with DSOs and a general concern has been noted, that ap-
plying control algorithms and new methods to the grid would impose a risk to the
daily operation. However, as highlighted in this thesis, observability and forecasting
methods are key for the DSOs to adapt to a new and future grid situation. The
consumption and production behaviours are changing through increasing levels of
distributed generation and new technologies in the demand such as electric vehicles
and energy management systems. The methods developed in this thesis show that
it is possible to estimate and predict grid and transformer states, with reasonable
accuracy while reporting uncertainty, equipping the DSOs with tools to apply risk
averse strategies in their real-time operation.

In conclusion, the models serve the purpose of using data driven methods to enable
adaptive operation of DSO smart grids. The developed framework further enables
utilization of renewable distributed generation and flexibility - necessary in the transi-
tion towards a carbon neutral power system. The developed framework and methods
can further support full utilization of grid equipment, avoiding unnecessarily early
replacement, which has clear economic and environmental benefits.

6.0.1 Outlook (Future work)
The methods developed in this thesis can be used to apply an adaptive operational
framework for DSO smart grid operation. Nevertheless, a few improvements are sug-
gested here to further improve the methods and applicability.

If price elasticity data becomes available for relevant LV grids in the operational
framework, it is additionally suggested to apply the price elasticity model to such
data sets. Thereby, the flexibility potential of relevant customer pools can be evalu-
ated.

Although parts of the online tool have been developed, they need to be assembled
and implemented in order to verify the models during real-time operation.

Further improvements to the installation setup for the voltage observability tool are
suggested, consisting of measuring neutral wire currents at all measuring point as well
as all outgoing and ingoing cables for middle node devices. It is then recommended
to validate the model on more feeders with the new installation setup.
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Abstract—Aggregators are expected to become an inevitable
entity in future power system operation, playing a key role
in unlocking flexibility at the edge of the grid. One of the
main barriers to aggregators entering the market is the lack
of appropriate models for the price elasticity of flexible demand,
which can properly address time dependent uncertainty as well
as non-linear and stochastic behavior of end-users in response
to time varying prices. In this paper, we develop a probabilistic
price elasticity model utilizing quantile regression and B-splines
with penalties. The proposed model is tested using data from
residential and industrial customers by assuming automation
through energy management systems. Additionally, we show an
application of the proposed method in quantifying the number
of consumers needed to achieve a certain amount of flexibility
through a set of simulation studies.

Index Terms—Flexibility, data-driven modelling, quantile re-
gression, B-splines, industrial and residential consumers

I. INTRODUCTION

To ensure a green transition of the energy system and
enable further integration of renewable energy resources into
the power grid, new and green flexibility resources will be
necessary for the day-to-day grid operation [1]. Advancements
in behind-the-meter controllable technologies along with au-
tomation, i.e., Energy Management Systems (EMS), enable
both traditional electricity consumers and prosumers to pro-
vide flexibility. However, the flexibility provided by individual
consumers/prosumers is too small for direct participation in
the wholesale electricity market. Thus, there is a need for
aggregation of these resources.

While there is general agreement that aggregators will
become an inevitable part of the future power system, several
issues must be addressed before their full potential can be
realised in practice. One of the main barriers is the uncertainty
associated with Demand Response (DR) of diverse types of
consumers, especially through indirect load control by time-
varying price signals. Aggregators will need information and
methods to evaluate DR from flexible resources to develop
strategies on how to optimally manage these resources. This
calls for probabilistic price elasticity models of prosumers,
specifically developed for aggregators.

This work was supported by the Flexible Energy Denmark (FED) project
funded by Innovation Fund Denmark under Grant No. 8090-00069B.

As of today, several papers have investigated the long-term
price elasticity of electricity consumption, e.g., [2] in the US.
Unfortunately, the proposed approaches for long-term elastic-
ity cannot be used for day-to-day aggregator operations and
are substantially different in nature. In [3], elasticity values and
calculation methods are summarised from several studies. The
authors found 538 observations of price elasticity estimations
in literature, where the average short-term price elasticity was
−0.201. However, the authors did not provide a definition
of the short-term price elasticity; thus, the granularity of the
price elasticity is unclear. Furthermore, Miller et al. [4] used
three data sets for residential consumers in the US to estimate
price elasticity, which varies between −0.2 and −0.8 for the
given data sets. The variation in price elasticity estimation is
an indicator of the uncertainty associated with the underlying
phenomenon, in which point estimations may not be able to
explain it sufficiently. Hence, there is a need for dynamic and
probabilistic elasticity models. Furthermore, a probabilistic
consumer flexibility model is essential to apply risk-based
methods (e.g., CVaR in [5]) and scenario-based stochastic
programming (e.g., [6]) for optimal operation of aggregators.
In [7], the DR from households responding to economic
incentives for critical load and peak shifting is investigated.
The authors concluded that automation strongly increases the
price responsiveness, while manual DR can only make long-
run adjustments. Thus, automation, e.g., EMS, is necessary to
fully realise the potential of demand-side flexibility.

There are also a few papers on short-term price elasticity.
J. M. Gillan [8] investigated the short-term price elasticity for
residential electricity consumers in California. However, the
study only concerns explicit DR. In [9], the authors looked
at the price elasticity in the real-time and day-ahead market.
These studies consider all customers in the data set with pos-
sible effects of customer fatigue in manual DR. Furthermore,
in [10], the authors developed an artificial neural networks
solution to learn the behavior of a single electricity consumer.
The models developed in these studies are deterministic, which
is less useful for the aggregators’ operation in an uncertain
environment with low profit margin. Probabilistic DR models
are presented in the literature, e.g., [11] in which conditional

Preprint submitted to
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probability density for future demand is used for prediction
of demand. However, the model is based on two-way com-
munication and customers react manually to the electricity
price signals. A quantile and linear regression-based model
of DR is proposed for a single customer in [12] based on the
Spanish ADRESS project, in which 260 residential consumers
with Home Energy Management Systems (HEMS) partici-
pated. Nevertheless, these studies only considered individual
customers from a specific sector, explicit mechanism for DR,
and linear modeling approaches.

Furthermore, numerous studies have developed DR models
using consumer price elasticity, e.g., [13] in which the short-
term price elasticity is assumed to be −0.2 in their proba-
bilistic demand curve model. Also, [14] utilized a function of
elasticity to describe DR customer behavior. These studies did
not develop a model for the elasticity in particular nor did they
discuss the elasticity values/models. Analysing the potential
of flexibility to reduce power peak consumption in Northern
Europe, [15] found that the flexibility potential varies over
different sectors (residential, commercial and industrial). To
address the aggregators’ interest, the price-load models should
therefore be applicable to consumers from different sectors.

This paper aims to provide a methodology for quantifying
the consumer/prosumer price elasticity and associated uncer-
tainty. Our research contributes to this field by making hourly
price elasticity models using quantile regression and B-splines
with penalties. Thereby, we develop a non-linear probabilis-
tic model, reflecting the uncertainty of consumer/prosumer
flexibility. We then use the proposed model to quantify the
number of consumers required to achieve ±1 MW flexibility
from different sectors in a probabilistic manner. To create a
price elasticity model suitable for the aggregators’ operation,
price-load flexibility data are required. However, due to the
scarcity of experimental data involving consumers equipped
with automation, synthesized data from [16]–[18] is used for
modeling and simulation studies. The contributions of the
paper can be summarized as follows:

• We develop hourly flexibility models of consumers that
represent non-linearity of the flexibility resources and
consumer behavior.

• A probabilistic approach is adopted using quantile regres-
sion to model the uncertainty of DR resources, which
does not require a probability density function (pdf) as a
priori. Therefore, its application is not limited to a certain
type of pdf.

• We utilize data from residential and industrial sectors,
which are assumed to be equipped with automation
through EMS, but still allow for customers’ preferences
and stochastic behavior.

To the best of our knowledge, such a price-response elasticity
model of consumers from different sectors has not been
presented in the literature.

The rest of the paper is organized as follows. Section
II presents the methodology of applying quantile regression
and B-splines with penalties, as well as the methodology to

quantify the number of consumers required to obtain a certain
amount of flexibility. Section III reports and analyzes the most
important findings and Section IV concludes the paper.

II. METHODOLOGY

In this section, we describe the methodology of applying
quantile regression (QR) and B-splines with penalties (also
known as P-splines) to the price-load data set. Thereafter, we
describe the methodology to estimate the number of activated
customers required to reach ±1 MW bid size using the QRs.

In this work, up-regulation refers to a reduction in consump-
tion which is assumed to be a result from positive price on
top of the baseline price. Hence, down-regulation means an
increase in consumption, which is assumed to be a response
to negative incentives. The flexibility behavior appears to be
quite different for up- and down-regulation (i.e., to positive and
negative price deviations). Therefore, we apply the regression
methodology for up- and down-regulation separately.

A. Quantile regression and B-splines with penalties

The magnitude of flexibility, Lh, at a certain hour, h, given
a price deviation π, can be described by some unknown pdf,
f(Lh) with cumulative density function (cdf) (1).

P (Lh|πh) =

∫ Lh

−∞
f(x;πh)dx (1)

where the flexibility magnitude, Lh, is the change in load
from the baseline at a certain hour, h, while the price,
πh ∈ [−0.75, 0.75] is the deviation in electricity price from a
certain baseline electricity price (assumed 2.25 DKK/kWh as
in [16]) for the same hour h. For a specific data set C, we
can define the conditional distribution as P (Lh|Lh,c, πh,c).

One approach to find the conditional distribution from a
data set is to utilize QR. The pdf of DR is unknown and can
vary depending on various factors such as type of customers,
time of the day and weather. Using QR avoids parametric
assumptions on the pdf. Thus, QR is especially well suited
for this purpose, since it does not assume any distribution a
priori [19].

When applying QR to find the cdf, quantiles may cross.
If this occurs, it would imply negative probability according
to the definition of quantiles. Hence, a method that does not
result in crossings should be applied. One methodology is
proposed in [19], in which constraints are applied on the fitted
parameters in the linear programming to ensure non-crossing
regressions. In this work, we utilize this method through the
R package quantregGrowth version 0.4.3 [19]–[21]. The QR
applied can be described as follows (2).

Qτ,h(L̂h|Lc,hπc,h) =
n∑

j=1

âj,hBj,h(πh; q) (2)

where Qτ (L̂h|Lc,h, πc,h) is the estimated function for a
quantile τ , given the data set C for hour h. The dimension of
the problem is n and is less or equal to the number of price
signals. In the loss function for the QR, there is a penalty



term λ
∑

j |∆d
j |, as defined in the R package quantregGrowth

version 0.4.3 [19]–[21], where the order of the difference
operator (d) is set to 3. The penalty term penalizes overfitting;
thus, it affects the smoothness of the regression. We test for
several values of the weight of the penalty, λ, and allow the
algorithm to choose the best value through cross validation
as described in [19]. We also set the degree of the B-
splines to 3. Equation (2) is initially applied to quantiles
τ = [0.1, 0.2, · · · , 0.9]

From analyzing the load versus price data set (Lc,h, πc,h),
the consumer flexibility appears to be non-linear. Thus, we
apply B-splines with penalties using the ps() function from
the quantregGrowth version 0.4.3 package in R as in [19].

We apply further modifications in the ps() function by
limiting the B-splines function to be monotonically non-
increasing. This is a reasonable implementation given that
the higher the price the lower consumption is expected. If
the customers are equipped with EMS, it is not expected
that a higher price will give a higher consumption. It should
be mentioned that, due to the stochastic behavior of flexible
electricity consumers, it can happen that a higher price yields a
higher consumption although a lower consumption is expected.
However, this would not be driven by the price, but rather
happen due to other reasons, e.g., rebound effect of critical
loads. Thus, it should not be reflected in the fitted spline
functions, but rather by the uncertainty, i.e., the shape of the
cdf. Alternatively, applying more explanatory variables, such
as the rebound effect, may fix this issue, although this has not
been investigated in this article.

B. Estimation of activated customers

As most markets require a minimum bid size to participate
in the market, aggregators are interested in estimating the
required number of customers to reach a minimum bid size.
This estimation can be utilized to determine the number of
customers in the pool. Alternatively, it can be used to evaluate
the participation of customers from different categories or
sectors by estimating the number of customers that should be
activated at a certain hour from an already existing customer
pool. Here, we set the required bid size of a hypothetical
market to ±1 MW and describe how to make such estimates
from the proposed QR models.

As described above, the cdf for a certain price can be
extracted from the QR. Here, we demonstrate this by ex-
tracting the cdf for 0.5 DKK/kWh and −0.5 DKK/kWh
price variations, which are the medians for the positive and
negative price deviations. The extracted values are samples
from the cdf for their respective τ . To get a full cdf, we make
a piecewise linear regression between the extracted points.
Since the uncertainty is higher in the tail probabilities of
the cdf, where the cdf tends to vary more, we add quantiles
τk = [0.01, 0.05, 0.95, 0.99] to the QR model. To deal with
the end points of the QRs, i.e., from τ = 0.01 to 0 and
τ = 0.99 to 1, a different approach is needed. Since the
data in this case behave well and do not reach negative loads

for negative prices, it is possible to make a linear regression
between the QR for τ = 0.01 and zero for down regulation.
The same is valid for up-regulation and τ = 0.99, since the
load at τ = 1 does not go above zero. For the case of down-
regulation and τ > 0.99, there is no natural maximum that can
be extracted from the data. Therefore, we fit an exponential
function to describe the cdf from τ = 0.99 to τ = 1. For the
up-regulation, it is assumed that the total consumption will not
be negative and a linear regression is made from Qτ=0.01(Lh)
to the negative value of what they are already consuming at
that hour, i.e., the base load, −Lbase,h.

Using a uniform distribution, U(0, 1), we then simulate from
the cdf until 1 MW or −1 MW is reached. In other words,
we find i such that (3) for down-regulation is satisfied for
Lbid = 1MW ; similarly for up-regulation that (4) is satisfied
for Lbid = −1MW .

Lbid ≥
i∑

j=1

F−1(rj) (3)

Lbid ≤
I∑

j=1

F−1(rj) (4)

where rj ∼ U(0, 1). This is repeated 1000 times, giving an
estimate of mean and variance for how many customers are
required to reach 1 or −1 MW, respectively, for a certain
customer cluster and certain hour, given a price deviation.

III. RESULTS AND ANALYSIS

In this section, we present some of the findings from
applying the methodology described in Section II. In addition,
we present the results of the simulations of activated customers
from the presented cases.

In the data utilized for this study, the baseline electricity
price is assumed to be 2.25 DKK/kWh with a variable price
component, πh ∈ [−0.75, 0.75]. Consumers categories are
aggregated to form 3 clusters (residential, light industry, heavy
industry). Further details of the data are described in [22],
accompanied by [16]–[18].

A. Flexibility model of demand with QR

In this work, we apply 9 QRs such that τk takes on values
from 0.1 to 0.9, linearly spaced with 0.1 interval. Of course,
when applying the methodology to a specific case, this could
be changed depending on the aggregator’s needs in terms of
uncertainty analysis.

In Fig. 1, the results for the residential cluster at hour 12
are provided, while the results for the heavy industry cluster
can be seen in Fig. 2. In both figures, it is shown that a
point estimation would not be sufficient and that a confidence
interval would not give the full picture of the possible out-
comes of flexibility. Meanwhile, the QR curves span over the
entire data set. It can also be seen that the response function
is not linear, which supports the necessity of a non-linear
method. Additionally, it can be observed that crossings of



the QR curves are avoided through the application of the
quantregGrowth package [19], [21]. From both graphs (Figs.
1 and 2), cdfs can be extracted by simply fixing the electricity
price deviation and obtaining the flexibility magnitude from
the QRs, arranging the values of τk in an increasing order.

For cluster 1 (Fig. 1), the variance is quite high for up-
regulation compared to cluster 3. For the case of down-
regulation, the flexibility has more dense QR curves in the
upper region of the data set. This implies a more skewed dis-
tribution function, with higher probabilities of the customers
actively responding. As a result, the widely-used normal
distribution in such studies does not properly describe the
flexibility. This justifies the application of QRs with which
a priori pdf is not required.

Looking at cluster 3 (Fig. 2), however, it can be noticed
that the variance is higher for the down-regulation. It is also
seen that the pdf is skewed towards non-responsive behavior,
unless the price deviation is high. For the up-regulation, on the
other hand, the observed reactions are smaller in magnitude
but more certain. Here, the response also appears to have a
bimodal distribution that is well captured by the QR curves
by being more dense around these lines. If simulations were
made from the up-regulation case, two most probable scenarios
would be observed.

One reason for this bimodal distribution for up-regulation
in cluster 3 could be that two categories in the cluster, “Non-
metallic” and “Other industries”, have quite similar behavior,
whereas the behavior of the category “Chemical” differs
significantly from the other two. This can be seen in the
assumptions made for the categories (Table I in [16]).

Furthermore, the lack of flexibility to down-regulation prices
can be explained by the industrial customers’ strict technical
and operational constraints compared to the residential ones.
However, they are business-driven: for the right price deviation
at the right time, they react to optimize their energy consump-
tion expenditure. In Fig. 2, it can be seen that for hour 12, it

Cluster 1 − Residential, Hour 12
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Fig. 1. Flexibility of 280 residential customers in cluster 1. The graph shows
hour 12 with 9 quantile regressions.

Cluster 3 − Heavy Industry, Hour 12
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Fig. 2. Flexibility of 210 heavy industry customers in cluster 3. The graph
shows hour 12 with 9 quantile regressions.

is not favorable for the industrial consumers to increase their
consumption, unless the price deviation is very high.

The fact that industries have technical constraints and
generally operate in more safety-driven ways than residential
consumers can also be seen in the comparison between clusters
1 and 3. Thus, the response from the residential cluster has
a higher variance, while for the heavy industry cluster, the
patterns are more recognizable, probably due to their routine
day-to-day operation.

B. Customer activation

In this section, we present the results from the 1000 sim-
ulations for up- and down-regulation respectively, to achieve
±1 MW in load deviation through the flexibility models, as
described in Section II. To better account for the uncertainty
in the lower and upper end of the cdf, we also include QRs
for τk = [0.01, 0.05, 0.95, 0.99], as described in Section II.

The results of the simulations for cluster 1 (residential),
are presented in Fig. 3. In general, it can be seen that the
uncertainty in the number of required customers is larger for
up-regulation compared to down-regulation. This is a direct
result from the larger variance on the up-regulation side in Fig.
1. It can also be observed that significantly more customers
are needed for down-regulation compared to up-regulation for
hours 2, 3, and 4, as well as hours 12, 13, and 14. This could
be due to the rebound effect and the fact that the residential
customers are asleep in the earlier hours or not at home in the
middle of the day. Thus, there is no need for increasing their
electricity consumption.

For cluster 2 (light industry), the results are visualized in the
box-plot of Fig. 4, where it can be observed that significantly
fewer customers are required to obtain −1 MW than 1 MW
of flexibility. The number of electricity customers required
for down-regulation in hours 1, 8, 17, and 24 is high, which
means that there is not much flexibility (or willingness by the
consumers to provide flexibility) to be activated; thus lower



commitment for the aggregator in the wholesale market can
be suggested. For hours 6, 10, 11, 13, 20, 21, 22, and 23,
we stopped the simulations at 2.8 million customers without
reaching 1 MW. It should, however, be noted that for a larger
price deviation, the 1 MW flexibility could be achieved.

For cluster 3 (heavy industry) in Fig. 5, it can be seen that
fewer consumers are required to achieve −1 MW than 1 MW.
This is in line with what is shown in Fig. 2. For a price
deviation of −0.5 DKK/kWh, there is a 70-80% probability
that there will be no reaction or a very small reaction from the
customer cluster. On the other hand, for 0.5 DKK/kWh, the
probability that the cluster is not responsive to the incentives is
less than 10%. It can also be seen that the number of required
customers for both up- and down-regulation decreases over
the day. The base-load consumption is lower during the early
hours of the day and higher in the later hours. Seeing higher
activity in the later part of the day suggests that there are more
active loads to be offered for both up- and down-regulation.

Overall, these results could be further used by the aggre-
gators to target the right consumers for flexibility provision.
Aggregators can get an insight into how large a customer
pool from different clusters they need and their associated
uncertainty. In other words, they can estimate the number
of activated customers that are required at each hour in the
best and worst case scenarios. Such results can be used in
operational risk assessments and meeting the minimum bid
requirements. As another advantage of the proposed approach,
the aggregators receive valuable insights into cluster integra-
tion. For instance, while more customers in cluster 2 are
required for up-regulation in hours 19, 20, and 21, consumers
in cluster 3 can provide a lot more flexibility in the same
period of time. These complementary effects can be exploited
by the aggregators.

IV. CONCLUSION

This paper presents an hourly price load model for implicit
flexibility provision. QR and B-splines with penalties were

●

●●

●

●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●

●●●

●

●

●
●●
●●

●

●
●

●

●

●●●

●●

●

●

●
●●

●

●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●●●
●
●●

●

●

●●
●
●

●

●
●
●
●
●●●

●

●

●
●●● ●●

●
●
●

●●●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●●
●
●●

●

●

●●●●
●
●●●●

●●●●●

●

●

●●●●●
●

●

●
●

●

●

●

●

●

●●

●●

●●●

●

●

●

●●●●●●●

●

●

●

●

●●●●●

●●

●

●
●●
●●●

●

●●●

●

●

●

●

●

●

●

●

●●
●●●●●
●

●

●

●●
●

●

●●●●●
●
●

●●

●

●●
●●

●

●●●●●●
●
●

●

●

●

●

●

●●●●

●●

●

●
●
●

●

●●●●●●

●●

●

●●●●

●

●

●●●●●●●●

●

●

●

●

●

●

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

N
um

be
r 

of
 c

us
to

m
er

s/
10

00

regulation
down
up

Fig. 3. Number of activated electricity customers required to achieve ±1
MW in DR from cluster 1 (residential cluster).
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Fig. 4. Number of activated electricity customers required to achieve ±1
MW in DR from cluster 2 (light industry cluster).
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Fig. 5. Number of activated electricity customers required to achieve ±1
MW in DR from cluster 3 (heavy industry cluster).

applied to achieve a non-linear probabilistic model to capture
the variance and uncertainty in the data. A future scenario
was assumed, in which the customers are equipped with
EMS and the model was applied to both residential and
industrial electricity customers. From the QRs, the cdf for
±0.5 DKK/kWh was extracted. From this study, we observed
a higher uncertainty for up-regulation compared to down-
regulation from the residential cluster. We also discovered that
fewer customers were required for up-regulation compared to
down-regulation from both light and heavy industry clusters.

From an aggregator’s perspective, the simulation results
can be further employed for risk assessments. For instance,
scenarios can be defined, such as best, worst and most probable
scenarios of required activated customers from an already
existing customer pool. Additionally, the results may assist
aggregators in determining the customer segments with the
highest flexibility and willingness for their business.

Furthermore, QR and extracted cdfs could be used for



scenario generation for flexibility. Alternatively, they can also
be utilized to generate inputs for CVaR models.
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DATA PRESENTATION

The data presented here is based on data from the Danish
Elforbrugspanel project, which was a collaboration between
the Danish TSO Energinet and Dansk Energi. The flexibility
of consumers in response to different electricity prices is then
synthesized using the method proposed in [1]. The electricity
price is a combination of a baseline electricity prices, 2.25
DKK/kWh, and variable price component πh, such that the
total price is 2.25 + πh DKK. The variable electricity price
component is different for each hour and has a cap, such that
πh ∈ [−0.75, 0.75]. There are 29 different customer categories
in the data with different responsiveness to dynamic prices (see
Table I in [1] for details). In our work, 70 unique customers
of each load category are exposed to 1000 price-sets for one
day in a simulation study. As previously mentioned, a future
scenario is assumed where the electricity customers have EMS,
in which they can set their personal preferences. A static
rebound effect is assumed when generating the data according
to [1]. For further details on the data and the method used
for synthesizing, the reader is referred to [1]. The reason
for synthesizing the flexibility of consumers is the lack of
available data for research on price responsive demand with
automation. It is assumed that the methodology and analytical
approach can be applied to real world data when available.

From the aggregators’ perspective, the baseline consumption
is not of primary concern, but rather the deviation from the
baseline due to a given price deviation is important. Thus,
we build our models for load deviation versus price deviation
data in this study. An example of the data is plotted in Fig. 1,
showing the flexibility from 70 customers of category 3 (house
with heating) in hours 3, 6, 12 and 19. It can be seen that
category 3 is not so flexible at late night (hour 3), but as the day
starts there is more active energy consumption to be utilized
as a flexible resource. Fig. 1 shows the aggregated flexibility
for 70 consumers of categories 1, 2, 3 and 4 respectively.
The four categories form the “residential cluster”, as they all
belong to residential categories including “Apartment without
heating” (cat. 1), “House without heating” (cat. 2), “House
with heating” (cat. 3) and “Cottage” or alternatively “Summer
house” (cat. 4). It is clear that the variance of the flexibility
increases when aggregating these consumers together. In the
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Fig. 1. Purple: flexibility of 70 customers in category 3 in hours 3, 6, 12
and 19. Turquoise: flexibility of consumers in cluster 1.

aggregated response in Fig. 1, it can be observed that the
response to the negative price changes (i.e., down-regulation)
are smaller than the flexibility achieved for up-regulation (i.e.,
positive price deviations), possibly due to a ‘natural maximum
energy consumption’ for residential consumers. For example, a
consumer would probably not start the dishwasher just because
it is possible, but rather when it is needed.

As previously mentioned, categories 1-4 are aggregated to
create a residential cluster (cluster 1). Likewise, 70 consumers
of categories 8-12 are aggregated to form a light industry
cluster, called cluster 2 (including Food, Basic metal, Wood,
Textile and Paper). 70 consumers of categories 13-15 are
aggregated to form the heavy industry cluster (cluster 3),
which includes Non-metallic, Chemical, and Other Industries.
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Abstract

Power transformers are one of the most costly assets in power grids. Due to increasing
electricity demand and levels of distributed generation, they are more and more often loaded
above their rated limits. Transformer ratings are traditionally set as static limits, set in a
controlled environment with conservative margins. Through dynamic transformer rating,
the rating is instead adapted to the actual working conditions of the transformers. This
can help distribution system operators (DSOs) to unlock unused capacity and postpone
costly grid investments. To this end, real-time information of the transformer operating
conditions, and in particular of its hot-spot and oil temperature, is required. This work
proposes a grey-box model that can be used for online estimation and forecasting of the
transformer temperature. It relies on a limited set of non-intrusive measurements and was
developed using experimental data from a DSO in Jutland, Denmark. The thermal model
has proven to be able to predict the temperature of the transformers with a high accuracy
and low computational time, which is particularly relevant for online applications. With a
six-hour prediction horizon the mean average error was 0.4 – 0.6 ◦C. By choosing a stochastic
data-driven modeling approach we can also provide prediction intervals and account for the
uncertainty.

Keywords: Grey-box modeling, Dynamic transformer rating, Distribution grid flexibility,
Thermal model, Data-driven modeling

1. Introduction1

The decarbonization pathways towards a carbon-neutral Europe are deeply reshaping2

the power system. Increasing levels of distributed generation (DG) together with the elec-3

trification of the heating and transport sectors (e.g. use of heat pumps and electric vehicles)4
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enable a shift from passive to active distribution grids. The increased peaks and congestion5

that come with the increasing demand have resulted in transformers being more frequently6

loaded above their rated limits, i.e. nameplate ratings. The overloading could reduce their7

life expectancy, and also jeopardize the reliability of the entire network. This highlights the8

need for more dynamic grid operations.9

Over the past decades, capacity expansion and replacement of existing grid assets have10

been the main measures taken by distribution system operators (DSOs) to keep the network11

running smoothly, while handling an increasing number of new connections and increasing12

levels of DG and low-carbon technologies (e.g. heat pumps). However, the traditional13

“connect and reinforce” operating model is economically and environmentally costly and14

takes time to implement. As a result, new methods to increase transformer capacity, while15

limiting their aging are needed to reduce the need for expensive network upgrades.16

Power transformers are one of the most expensive assets in a power grid infrastructure17

[1]. Loading a transformer beyond its nameplate capacity increases the leakage flux to the18

core and outside, which heats the metallic parts of the transformer. This might further19

affect the internal thermal dynamics as the composition of the insulation oil might change20

and gas content increase [2]. As a consequence of the transformer losses (i.e. ohmic winding,21

core and stray losses), the temperature increases. If the transformer hot-spot (the area with22

the highest temperature) and oil temperature rise above the recommended thermal limits23

(given by manufacturer or see e.g. [2]), it could increase the insulation’s aging rate and24

reduce transformer lifetime [1].25

These limits vary according to the transformer type and cooling strategy. According to26

IEEE Std. C57.12.00-2015 the average and maximum (hottest-spot) winding temperature27

rise above ambient temperature shall not exceed 65 ◦C and 80 ◦C, respectively, at rated28

kVA when tested in accordance with IEEE Std. C57.12.90 (i.e. continuous ambient tem-29

perature of 40 ◦C for air-cooled transformers and of 30 ◦C for water-cooled transformers)30

[3]. However, such constant conditions are quite unusual during normal operation [4], as the31

environment within which the transformer is operated constantly changes. When the ambi-32

ent temperature is lower than the rated temperature, a higher load can be allowed without33

increasing the transformer aging rate. Therefore, by adapting the transformer rating to34

its actual working conditions (i.e. dynamic rating), it is possible to unlock extra capacity,35

without violation of the safety margins [5], and achieve monetary saving by deferring the36

investment in new transformers. This strategy is especially useful in colder climates, since37

the peak demand coincides with low temperatures [6].38

The application of dynamic ratings requires increased awareness of the transformer op-39

erating conditions to safely increase the load above the nameplate rating, without increasing40

the risk of failures and safety breaches [7]. More specifically, it requires information on the41

critical temperatures within the transformer, namely winding, inner core and other metallic42

hot-spot temperatures as well as top oil temperature. For normal cyclic loading, i.e. normal43

daily operation, the maximum recommended temperatures are 120 ◦C, 130 ◦C, 140 ◦C and44

105 ◦C, respectively [2]. These temperatures can be either monitored by fiber optics or45

estimated using transformer thermal models.46

The International Electrotechnical Commission (IEC) Standard 60076-7 [2] proposes47
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two different calculation methods for the transformer hot-spot temperature: an exponential48

equation and a difference equation method. Both methods provide the hot-spot temperature49

for arbitrarily time-varying load factor and ambient temperature. However, the former50

method is more suited to be used by manufacturers during tests for the determination of51

the transformer heat transfer parameters, while the latter method is more suitable for real52

time monitoring.53

In [8], the IEC Std. 60076-7 thermal model was used for dynamic transformer rating for54

wind energy applications. The model was applied to an existing transformer to assess its55

reduction in lifespan and reliability when overloaded, and on that basis to provide design56

and financial considerations. Results showed that by applying dynamic transformer rating,57

the transformer size can be safely reduced (-20%), thus reducing future investment costs, or58

that the wind farm can be expanded up to 60%.59

In [7], Jalal et al. proposed an extended version of the calculation methods proposed in60

[2], by developing a dynamic rating algorithm which also includes measurements of the top61

oil temperature, tap position, and cooling operation in the evaluation of the transformer62

hot-spot temperature and reduction in lifespan of the insulation.63

Similarly, in [9], the differential approach of the IEC Std. 60076-7 was modified to64

incorporate the dependency of oil viscosity and winding loss on temperature. The proposed65

improved model was then validated using temperature measurements from a 40 MVA, 21/11566

kV, oil forced air forced (OFAF) transformer. Results showed that the improved model67

outperformed the thermal model proposed by the IEC Std. 60076-7 in estimating the hot-68

spot temperature for short-time dynamic loading.69

Also Annex G of the IEEE C57.91 Standard provides a thermal model that takes in70

to account the effects on transformer losses of temperature and oil viscosity. However, the71

requirement of complex and many input parameters is a downside of the methods that rely72

on the above-mentioned standards, as it complicates the practical implementation. In view73

of this, simplified models have been proposed as an alternative to the standards’ calculation74

methods.75

Arabul and Senol [10] proposed a regression model for hot-spot temperature calculation76

based on experimental measurements from fiber optic temperature sensors, while aiming77

to reduce the error rate without increasing input data. Results showed that the proposed78

method provided more accurate lifetime calculations, by significantly reducing the error in79

the reduction in lifespan estimation.80

A further aspect affecting the transformer hot-spot temperature is the presence of har-81

monic conditions caused by nonlinear loads [11]. In [12], Das et al. proposed an extension82

of the two IEC Std. 60076-7 thermal models that account for unbalanced loading with dif-83

ferent harmonic distortions in each phase. The model was then incorporated into a dynamic84

transformer rating algorithm to help utilities to minimize the risk of transformer failure.85

A 3-D finite element model was used by Huang et al. [13] to investigate the impacts of86

harmonics on the magnetic flux leakage and hot-spot temperature rise. Simulation results87

showed that high-order harmonics can produce a hot-spot temperature rise of around 7 ◦C.88

A similar approach was used in [14] for evaluating the transformer losses and estimating the89

lifetime of oil-filled and dry-type transformers under harmonic loads. Based on numerical90
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simulation, Zang et al. [15] identified a quantitative relationship for the winding temperature91

rise under different harmonic content and harmonic frequency. As in [13], their results92

showed that the hot-spot temperature increases from 0.3 ◦C to 18.7 ◦C when the harmonic93

content increases from 1% to 10%.94

While the works above focused on the development of thermal models for real-time mon-95

itoring and reduction in lifespan estimation, only a few works in the literature turned their96

attention on thermal models for dynamic rating applications with predictive capabilities.97

For dynamic rating applications, predictions are a crucial requirement.98

Juarez-Balderas et al. [16] developed a prediction model for forecasting the transformer99

hot-spot temperature based on Artificial Neural Networks (ANN). The model was validated100

with both finite element method (FEM) simulations and experimental data, and showed101

accurate prediction with respect to the latter (average error of 2.71%). However, the model102

was developed for medium voltage/low voltage (MV/LV) transformers and tested indoors.103

The model thereby does not consider ambient temperature, while using many inputs and104

computationally heavy FEM calculations. Therefore, the model has little applicability to105

many small MV/LV transformers placed outdoors. Moreover, the prediction horizon is not106

reported in the paper, further limiting the applicability to dynamic operation.107

Unlike [16], Bracale et al. [17] proposed a probabilistic stress-strength framework to108

predict the probability of load not exceeding the transformer rating, and formulated an109

alarm-setting strategy based on this probability. However, the proposed model only detects110

the transformer status, i.e. either overload or not, but does not provide any quantitative111

information regarding the overloaded status of the transformer. Thus, the model is not well112

suited for real-time monitoring and predictions to be used by a grid operator in a dynamic113

operation setting. Sun et al. [18] used a support vector regression method to predict the114

hot spot temperature of a distribution grid transformer. The input data for the method115

includes the ambient temperature, load rate, historical hot spot temperature and cooling116

fan status. While the simulations results shows high accuracy of results, its implementation117

requires hot spot temperature data and can be applied only to the dry-type transformers.118

Rommel et al. [19] proposed a method to predict hot spot temperature of transformers119

when limited information is available. The method uses voltage and current measurement120

to estimate losses and proposed a simple virtual twin of the transformer to estimate the121

winding hot spot temperature. The virtual twin is created based on only the transformer122

nameplate data. The method does not consider the impacts of ambient temperature and123

environmental data such as solar radiation on the results.124

Zang et al. [20] developed a prediction model for transformer winding hot-spot tem-125

perature fluctuation based on fuzzy information granulation and the chaotic particle swarm126

optimized wavelet neural network. The model shows a high prediction accuracy, but the127

author suggests more research to make it more applicable to engineering practices.128

In this context, the transformer winding hot-spot temperature has been rarely studied129

for time series prediction [20]. In particular, stochastic models for distribution transformer130

temperature forecasting which take into account prediction of future disturbances have to131

date rarely been investigated. To fill this gap, the present paper focuses on presenting a132

methodology to develop a transformer thermal model for temperature prediction by using133
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stochastic grey-box modeling. The main contribution of this paper is the development of134

a thermal model for transformers in power distribution grids. The proposed model has the135

following novelties:136

• The proposed model can provide both estimation and predictions. Hence, the model137

can be used for online forecasting, enabling dynamic rating of distribution grid trans-138

formers.139

• We use a grey-box modeling approach, meaning that the model accounts for the physics140

informed and stochastic behavior in the system. This results in the ability to estimate141

the uncertainty in the predictions and laying the ground for a risk informed dynamic142

control strategy.143

• We developed the proposed model considering input data accessible through non-144

intrusive measurements. We further chose a model selection process that minimizes145

the amount of input data (and sensors). Thus, the installation required to apply the146

model for online forecasting is practical and affordable.147

• The proposed model is developed based on experimental data collected during field-148

trials in the context of the Flexible Energy Denmark (FED) project [21]. This gives149

the opportunity to investigate and evaluate the transformer temperature predictions150

in a real world scenario.151

The rest of this paper is structured as follows: Section 2 defines the problem and describes152

the framework within which the thermal model will be applied. Next, Section 3 presents153

the experimental setup and data acquisition. Section 4 describes the grey-box modeling154

approach and Section 5 presents and discusses the results. Section 6 concludes the paper.155

2. Model application framework156

The use of dynamic transformer ratings can help DSOs to unlock extra capacity at157

distribution grid level and postpone costly grid investments. The dynamic rating should be158

set relative to the temperature of the transformer, which is the actual limiting factor for the159

power flow through the transformer. If the temperature is below the thermal limit, a higher160

power transmission can be allowed. If instead the temperature is above the limit, less power161

has to be transmitted to avoid transformer failure and aging.162

Figure 1 shows the proposed operational framework of a temperature-based dynamic163

transformer rating (DTR). In this framework, temperature sensors and power measurement164

devices monitor the transformer operating conditions. An online forecasting tool fetches the165

data from the transformer sensors as well as the latest environmental data and load forecasts166

through APIs. In the online forecasting tool the data is then fed to the thermal model, giving167

predictions of the transformer temperature in a requested time horizon. The DSO can use168

these predictions along with load forecasts to determine whether more or less power can be169

transmitted. The adjustments in power flow could be done through activation of flexible170
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resources. In such a scenario, the DSO could request flexibility from a flexibility operator171

(for example an aggregator or other actor in a flexibility market). However, determining how172

this should be done is not within the scope of this work. Through the activation of flexible173

resources the power flow is changed, and will be visible in the transformer data collected by174

the online forecasting tool. The electricity demand forecasts are also updated accordingly175

and the procedure is repeated for each time step.176

Figure 1: The proposed general framework of data transactions (solid arrow) and changed power
flow (dotted arrow) for dynamic rating of transformers considering flexible devices.

Successful implementation of this framework requires accurate prediction of the trans-177

former temperature. The goal of this paper is to develop a thermal model that can be used178

for both parameter and state estimations as well as predictions of the transformer tempera-179

ture in the online forecasting tool. According to the transformer manufacturer, monitoring180

the transformer lid temperature is sufficient for avoiding critical overloading conditions as181

it relates to the top oil temperature. Hence, the proposed model will be used to predict the182

lid temperature of the transformers. For this purpose we chose the approach of grey-box183

modeling. Why this approach is chosen and how it is applied is further explained in Section184

4.185

To develop a model that can be seamlessly applied in the framework of dynamic rating,186

we aim to find input variables that can be measured in a non-intrusive way or that can187

easily be fetched using existing APIs. Nevertheless, the input variables should be chosen188

such that acceptable prediction results are obtained. This should result in a solution that189

is affordable and practical, not requiring any interruption in power delivery or replacement190

of grid equipment, which has clear economic and environmental benefits.191

3. Experimental setup and data acquisition192

The installation setup includes two 3-phase 10/0.4 kV oil cooled transformers at two193

separate low voltage (LV) grids owned by a Danish DSO in Jutland. Both transformers are194
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situated in living labs (LLs) [22] in the Flexible Energy Denmark project [23], meaning they195

are real world grids that are used for testing new technologies. Transformer 1 (TRF 1) is196

rated at 400 kVA and serves around 170 residential customers. Transformer 2 (TRF 2) is197

rated at 200 kVA and serves around 140 residential customers and a small industry. Each198

transformer supplies 5 - 10 customers with electric vehicles (EVs) and 15 - 20 customers199

with photovoltaic (PV) panels. Heating occurs through a mixture of heat pumps and district200

heating. The peak load of both transformers is in the range of 200 to 250 kVA. TRF 2 has201

a relatively larger base load, compared to TRF 1, which could be due to the industrial load.202

The transformers are installed in ventilated metal housings that are placed outdoors.203

Electrical metering devices (EMDs) are installed in a non-intrusive way (i.e. magnetic204

mounting and clamp-on current/voltage sensors) on the low-voltage side of the two trans-205

formers to collect current, voltage, harmonic and power factor data. Four temperature206

sensors are installed inside the metal housing as shown in Figure 1. Two sensors measure207

the housing temperature 10 - 20 cm below the ceiling (Ttop) and 10 - 20 cm above the floor208

(Tbot), while the other two measure the temperatures of the lid of the transformer case (Tlid)209

and of the transformer radiator (Trad). Table 1 summarizes all the measured data.210

Thus, the solution is practically simple and can take place without any interruption in211

power delivery. A sampling rate of one second was used; however, measurements can be212

filtered to other resolutions considering the mean value of the per second values. The data213

from the measuring devices is from a third party company, and we fetch the data using an214

API.215

Variable Notation Unit

Solar radiation Gh W/m2

Wind speed Φwind m/s
Wind speed South Φwind,S m/s
Wind speed North Φwind,N m/s
Wind speed East Φwind,E m/s
Wind speed West Φwind,W m/s
Ambient temperature Ta

◦C
Transformer lid temperature Tlid

◦C
Transformer radiator temperature Trad

◦C
Housing top temperature Ttop

◦C
Housing bottom temperature Tbot

◦C
Apparent three-phase power S3ph V A
Phase current Iph A
Neutral current IN A

Table 1: Measured input variables.

The ambient temperature, wind speed, wind direction and solar radiation data are re-216

trieved from the open data provided by the Danish Meteorological Institute (DMI open217

data) [24]. All the data is available at 10 min resolution and can be filtered for other resolu-218

tions, e.g. 30 minutes resolution, by considering the appropriate mean value of the 10 min219

measurements.220

The entire data set available is from November 2021 to June 2022. However, if using the221

entire data set, there would be seasonal effects in the data that the model would need to222

describe. To properly describe seasonal effects we would need a minimum of two years of223
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data and associated parameters estimated with the data at hand will be unreliable. As an224

initial step of the model development we thus choose a shorter time period, namely Novem-225

ber 2021, and thereby we can neglect the seasonal effects. A similar approach is seen in e.g.226

[25]. An example of the time series data for November 1st 2021 to November 8th 2021 is227

shown in Figure 2. The data has been filtered to 30 min time resolution and this resolution228

is also used in the model development. This time resolution was chosen as a compromise229

between smooth data where behavior in a longer time scale is seen (typically systems with230

high inertia) and a more volatile data set where variation in a shorter time resolution is seen231

(typically systems with low inertia). It is seen in the figure that the peak in transformer232

temperature generally occurs after peaks in the other data inputs. For the model develop-233

ment, the data set was divided into a training and a testing data set. The training data set234

is roughly 80% of the entire data set.235

236

INI3ph Temp Ambient Temp Transformer

Figure 2: Example of normalized time series data for three-phase current (I3ph), neutral current
(IN ) ambient temperature and transformer temperature, measured on the lid. The data has been
filtered to a 30 min time resolution.

4. Modeling approach237

The present section describes the stochastic grey-box modeling approach used to develop238

the thermal model. Grey-box models are introduced first, together with the related math-239

ematical framework, followed by a presentation of model structure and the tested models.240

Statistical methods are used in the model selection.241

4.1. Grey-box modeling242

Grey-box models have proven to be an effective way to model the dynamics of complex
thermal systems [26]. As their name suggests, grey-box approaches are at the intersection
between white box approaches, where the model is derived from the theoretical knowledge of
the systems (e.g. continuity, momentum and energy equations), and black box approaches,
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where statistics, and hence information from data, is used to identify the relationship be-
tween the model inputs and outputs, without exploiting any knowledge of its internal pro-
cess. In grey-box models, the theoretical knowledge of the system is used to suggest a first
proposal for the model structure, i.e. a set of first-order stochastic differential equations.
Grey-box models are also data-driven in the sense that statistics and input data is used to
optimize the parameters of the model. [27] The models are usually written in a continuous-
discrete time state-space representation with system equation and observation equation as
follows:

dX(t) = AX(t)dt+BU(t)dt+ σdw(t) (1)

Y(t) = CX(t) + e(t) (2)

X ∈ Rn is the state vector, U ∈ Rp is the input vector, A ∈ Rn×n, B ∈ Rn×p and243

C ∈ Rm×n are the state-space matrices, Y ∈ Rm is the vector of measured outputs, w244

standard Wiener processes with incremental covariance matrix σ ∈ Rn×n, and e ∈ Rm are the245

measurement errors, each assumed to be Gaussian white noise N (0, σ2
ek
) to the kth measured246

output. We also assume that the measurement errors for the different measurements are247

uncorrelated. In this work we assume that the Wiener processes are independent, and248

thus, the diagonal covariance matrix consists of the corresponding variances, σ2
i , to each ith249

Wiener process. Finally, we assume that the Wiener processes and the measurement error250

are independent.251

In this work, an iterative model-selection strategy similar to that described by Bacher252

and Madsen in [26] was adopted to identify the best dynamic model to estimate and predict253

the transformer temperature. It consists in a forward selection procedure that starts from254

the simplest model structure, and then iteratively extends the model by adding new states255

and/or input variables. Model parameters are found by maximizing the joint probability of256

the observed data given the model structure (see [28] for a detailed discussion). This was257

done by using the R-package CTSM-R [27], which is a tool for developing stochastic state258

space models in R. Given the maximum likelihood estimates of the model parameters, each259

model was then evaluated by analyzing the corresponding residual auto-correlation function260

(acf) and cumulated periodogram to verify the model assumption of white noise residuals.261

If the residuals are not white noise this reflects that the model does not describe all the262

systematic variation in the data, and hence the model has to be expanded. Moreover, the263

visual inspection of the inputs, outputs, and residuals time series was used to detect what264

effects the model did not capture, and hence to provide insights for the subsequent model265

extension. Through the expansion of the model, the significance levels of the estimated266

parameters were also evaluated, aiming for a p-value lower than 5%. If higher p-values were267

detected, the model was reduced.268

Since the transformers considered in this study are located in two different geographical269

areas and present different loading conditions, as discussed in Section 3, two different models270

have been investigated.271
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4.2. Model structure: transformer heat balance272

The model structure was derived from the first law of thermodynamics. By considering
the transformer as a closed system that exchanges energy with its surroundings, i.e. ex-
ternal environment, the dynamics of the transformer temperature directly follow from the
transformer heat balance:

CdT (t) = Φgain(t)dt− Φloss(t)dt (3)

where C and T are the transformer thermal capacity and temperature, respectively, Φgain273

is the internal heat gains due to the transformer power losses, and Φloss is the heat losses274

towards the surrounding environment, such as those due to convective heat transfer between275

the transformer case and external air. Power losses are due to the dissipative effects that take276

place within the transformer, i.e. load and no-load losses, further described in 4.2.1. Heat277

losses towards the environment account for the heat removed by the transformer cooling278

system, and the convective and radiative heat transfer between the transformer and its279

surroundings, namely the environment inside the metal housing. Since the latter is affected280

by outdoor conditions, the impact of local weather data on the transformer temperature281

was also taken into account. Figure 3 shows the correlation analysis among the measured282

variables (Table 1). It can be seen clearly that the transformer temperature is correlated283

to the external environmental conditions, thus confirming the rationale behind the inclusion284

of ambient temperature, wind speed and global solar radiation in the modeling process.285

This also agrees with the IEC Std. 60076-7, stating that environmental factors have a286

larger impact on smaller transformers, however, the factors are not included in the standard287

calculation methods [2]. A positive correlation can be noted between the transformer and288

ambient temperatures: a lower Ta helps to cool down the transformer, while a higher Ta289

reduces the temperature difference driving the heat transfer, hence the cooling capacity.290

Conversely, the wind speed and solar radiation input data are inversely correlated to the291

measurements of Tlid (this data behavior and interpretation in terms of the physical system292

is further discussed in Section 4.2.2).293

4.2.1. Transformer power losses294

The no-load losses in the transformer are due to the induced voltage in the core. Since295

the voltage generally has much lower variance than the current, we assumed that the no-load296

losses are constant in the transformer. Thereby, we simply modeled the no-load losses as a297

constant, ΦNL = b.298

Load losses on the other hand depend on the increased load as:

ΦLL = P + PEC + POSL (4)

where P , PEC and POSL represent ohmic (I2R ), winding eddy current, and other stray299

losses respectively [29]. All of these losses increase as the total current squared increases.300

In the thermal model we used only one parameter to model the effect from the current301

squared. By this formulation, we assumed that the contribution from all parameters, such as302

impedance or separate effects in (4), can be summarized to one parameter, a (ΦLL ∝ aI23ph).303
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Figure 3: Scatter plots, correlation and data density distribution using data from TRF 1 from
November 2021. Here Tlid is the transformer lid temperature, Ta is ambient temperature, I23ph is

three-phase current squared, I2N is neutral current squared and Gh is solar radiation.

Moreover, all losses in (4) are also affected by harmonics [29]. Whereas the ohmic304

loss increases proportionally to increasing harmonic current, eddy-current loss increases305

proportionally to squared harmonic current and squared frequency. Furthermore, other306

stray losses increase by a harmonic exponent factor of 0.8 [29]. If taking the approach of307

modeling the separate effects of harmonic currents, inputs for frequency and each order of the308

harmonic currents are required. This quickly becomes impractical as data and predictions309

for harmonic currents are required, while increasing the size and thus the computational310

time to estimate the model.311

To solve this issue, it was suggested to use neutral current as the explaining variable of312

harmonics effects. Because of the 120 degree symmetry between the phases, it was assumed313

that harmonic currents pass through the neutral conductor [30]. This behavior was seen314

and supported in the data, where the 3rd order harmonic at 150 Hz was the second most315
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apparent frequency component for the three phases, while it was the most apparent in the316

neutral current. Furthermore, the variance of the frequency is relatively low compared to317

the variance of harmonic current and thus, we assumed that the effects of frequency can be318

neglected. Since we used a grey-box modeling approach, we assumed that using the neutral319

current squared as a linear input is sufficient to describe the losses related to harmonic effects320

(ΦLL ∝ cI2N).321

In summary, the thermal losses of the transformer can be represented as a function of
three-phase current squared and neutral current squared representing the load losses and a
constant term representing the no load losses as follows:

Φh = ΦLL + ΦNL = aI23ph + b+ cI2N (5)

4.2.2. Environmental factors322

The main environmental factors that were taken into account in the thermal model are323

ambient temperature, wind and solar radiation.324

The wind should have a cooling effect on the housing in which the transformer is placed,325

but could also cause an increase in temperature if it blocks any ventilation in the housing.326

Thus, we allowed the parameters for wind to be both positive and negative. Both wind speed327

and wind direction can potentially affect the thermal model. Investigations showed that328

including wind direction in the model did not give significant parameters while increasing329

the size of the model. Hence, it was proposed to model the wind using only one input330

variable, i.e., wind speed.331

The solar radiation should have a heating effect on the housing, indirectly resulting in332

impacts on the heat convection between the temperature in the housing and the temperature333

of the transformer. This implies less cooling from the surrounding environment and increased334

transformer temperature. Figure 3 shows no clear relationship and a negative correlation335

between solar radiation and the transformer temperature (note that a lot of data points336

are zero). The combination of the physical interpretation of solar radiation impact and337

the data behavior does not translate well into a linear relationship between the transformer338

temperature and solar radiation. Therefore, another approach was taken to find a suitable339

solution to model the solar impact.340

The impacts of solar radiation can vary over the day due to the change in solar azimuth
angle or shadow effects from, for example, buildings or trees. B-splines offer a flexible fitting
of the data to find the function of how one variable affects another. Due to the flexibility,
B-splines were used to model the impact of solar radiation on the transformer temperature.
The B-splines were applied such that they depend on the time of the day. To reduce
the model and avoid unnecessary parameters, the B-splines were designed to be active only
during the time intervals for which there is solar radiation, i.e. hours 7 to 16. After applying
the B-splines to the model it was discovered that the solar radiation had a significant impact
on the temperature of both transformers only between hours 7 to 12. Hence, the interval
was reduced to these hours. Using B-splines, the estimated solar radiation impact, Φsol, can
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be formulated as below:

Φsol(t) =
n∑

j=1

scjBj(t)Gh(t) (6)

where Bj is the jth spline, ŝcj is the corresponding estimated parameter to the jth spline341

and Gh is the solar radiation. Since the solar radiation should contribute to an increased342

transformer temperature we constrained the coefficients, scj, to be positive. The best results,343

i.e., significant parameters and improved estimations of the transformer temperature, for344

TRF 1 were achieved using a polynomial degree of three and four splines (i.e. n=4 in (6)).345

It was also discovered that the second spline is insignificant and therefore sc2 was set to346

a value close to zero. This simplified the process of finding significant parameters in the347

model. The behavior could be due to a shadow effect during the time when the second348

spline is active. For TRF 2 the best results were achieved with five splines (i.e. n=5 in (6))349

and again by setting sc2 to a value close to zero.350

4.3. Tested models351

Many different models were tested and evaluated in the model development process. As it352

is infeasible to present all models evaluated within this paper, we will discuss a representative353

sample from the model selection process. This sample includes a one state model, a two354

state model, an extended two state model and two three state models, where the latter are355

the final models for TRF 1 and 2, respectively. The overall model selection process followed356

the same steps for both TRF 1 and 2. However, there was a slight difference in identifying357

the final three state model.358

4.3.1. One state model359

As stated in Section 4.1, we used a forward selection process and thus, we started out
with a simple model. The initial model had one state and ambient temperature and current
as input variables. This was to represent the simplest model using the most relevant inputs
according to the correlation analysis in Section 4.2 (solar radiation was ignored here due
to reasons described in Section 4.2.2). The system and observation equations are presented
below:

dTi =
1

Ci

(
Φh +

1

Ria

(Ta − Ti)

)
dt+ σdw(t) (7)

Tlid(t) = Ti + e(t) (8)

where Ti is the corresponding state to the observed lid temperature Tlid, Ci is the thermal360

capacitance at the transformer lid, Ria is the thermal resistance between the lid and the361

ambient temperature (including the housing) and Φh represents the heat generated by the362

transformer losses. In this model the load and no-load losses were modeled by only using363

the three-phase current squared as input, i.e. Φh = aI23ph + b.364

The system can also be described by the circuit model in Figure 4, where the heat365

generated by load and no-load losses is modeled as a current source and the cooling from366

ambient temperature as a voltage source.367
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Figure 4: RC circuit of the one state model Ti.

4.3.2. Two state model368

We extended the model by adding a second state for the temperature inside the trans-
former, Tt. Note that this is an arbitrary point inside the transformer and does not aim to
identify the hot-spot temperature, but rather model the heat transfer between the inside
of the transformer and the lid, i.e. from Tt to Ti. The system equations and observation
equation are:

dTi =
1

Ci

(
1

Rti

(Tt − Ti) +
1

Ria

(Ta − Ti)

)
dt+ σ1dw1 (9)

dTt =
1

Ct

(
Φh +

1

Rti

(Ti − Tt)

)
dt+ σ2dw2 (10)

Tlid = Ti + e (11)

where Tt is the thermal state within the transformer and generated heat due to power369

losses is described by the three-phase current squared (Φh = aI23ph+b). The Wiener processes370

are denoted w1 and w2 for (9) and (10), respectively. No extra input variables were added in371

this model compared to the one state model, but parameters for the thermal resistance, Rti,372

between the states (Tt and Ti) and capacitance, Ct, for the internal state (Tt) were added.373

This is also visualized in the circuit model in Figure 5.374

Figure 5: RC circuit of the two state model TiT t.

4.3.3. Extended two state model375

In this step, we extended the two state model by adding the wind speed as input to the
model. This step was done to investigate the impact on the performance of the model that
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comes with expanding the model through adding inputs rather than adding states to the
model. The resulting system and observation equations are as follows:

dTi =
1

Ci

(
1

Rti

(Tt − Ti) +
1

Ria

(Ta − Ti) + ωΦwind

)
dt+ σ1dw1 (12)

dTt =
1

Ct

(
Φh +

1

Rti

(Ti − Tt)

)
dt+ σ2dw2 (13)

Tlid = Ti + e (14)

where Φwind is the wind speed and ω the corresponding parameter. All other variables and376

parameters are described in section 4.3.2. The extended two state model is also illustrated377

in the circuit model in Figure 6, where the wind speed acts as a current source to the378

transformer temperature state.379

Figure 6: RC circuit of the two state model TiT t with wind contribution.

4.3.4. Three state model380

In the three state model, we added a hidden state for the temperature, Tb, representing
the temperature inside the metal housing, in which the transformer is placed. It was further
explored whether more environmental or electrical inputs should be added to the model.
Solar radiation was added to the system equations as an environmental input to increase
the performance of the model as described in Section 4.2.2. Due to different locations and
properties of the two studied transformers, their three state models are presented separately.

Transformer TRF 1
The three state model for TRF 1 is described by (15) – (18).

dTi =
1

Ci

(
1

Rti

(Tt − Ti) +
1

Rib

(Tb − Ti)

)
dt+ σ1dw1 (15)

dTt =
1

Ct

(
Φh +

1

Rti

(Ti − Tt)

)
dt+ σ2dw2 (16)

dTb =
1

Cb

(
1

Rib

(Ti − Tb) +
1

Rba

(Ta − Tb) + ωΦwind + Φsol

)
dt+ σ3dw3 (17)
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Tlid = Ti + e (18)

where Rib is the thermal resistance between the state at the lid, Ti and the state in the381

housing, Tb. Cb is the thermal capacitance in the housing, Φsol, is explained in (6) and Φh382

is described by the three-phase current squared (Φh = aI23ph + b). All other variables and383

parameters are explained in Sections 4.3.2 and 4.3.3. The thermal model for TRF 1 is also384

depicted in the thermal circuit model (Figure 7).385

386

Transformer TRF 2387

For the final three state model, the neutral current turned out to be a significant input to388

TRF 2, but not to TRF 1. Thus, for TRF 2, the neutral current was added to Φh in both389

the system equation (16) and in the RC circuit in Figure 7 (i.e. Φh = aI23ph + b+ cI2N).390

It should also be noted that the input for solar radiation differs for TRF 1 and 2 as391

described in Section 4.2.2.

Figure 7: RC circuit of the three state model TiT tTb.

392

4.4. Temperature estimation and prediction393

As described in Section 4.2.1, the power losses are directly causing heating inside the394

transformer. Meanwhile, the measuring point is at the lid of the transformer (see Figure 1)395

and it is realized that there will be a time delay between the time of the hot-spot temper-396

ature inside the transformer and corresponding effects seen at the observed transformer lid397

temperature. This can also be realized by observing the thermal resistance in the oil as well398

as thermal capacitance in the RC circuits in e.g. Figure 7.399

This time delay is important for the understanding of which prediction horizon of the400

transformer lid temperature gives an indication of the core conditions at the current time401

step. To investigate this, a cross-correlation analysis between three-phase current squared402

and transformer lid temperature was carried out. Assuming that the leakage flux is heating403

the metallic parts quite instantly, the time span between an increase in current squared and404

the temperature rise at the lid gives an indication of the time delay. The three-phase current405

squared was chosen as the main explaining variable for the transformer inner temperature,406

following the description of transformer losses above and given that it has a higher correlation407

than the neutral current as seen in Figure 3. The analysis was done by dividing the time408

series for each transformer into segments of days. The cross-correlation between the three-409

phase current squared and transformer lid temperature was calculated, while noting the lag410
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at which the maximum value of the cross correlation was achieved. For TRF 1 the maximum411

cross correlation occurred on average at a lag of 5 ± 1.5 time steps with a 95% confidence412

interval. For TRF 2 it instead occurred at 3.5±1 time steps with a 95% confidence interval.413

Keeping in mind that each time step is 30 minutes, this means that the heat generated from414

load losses takes 2.5 ± 0.75 hours to transfer to the measuring point at the lid for TRF415

1 and for TRF 2 it takes 1.75 ± 0.5 hours. The difference in time delay between the two416

transformers is most likely due to the smaller size and thus thermal inertia of TRF 2 (200417

kVA), which is half the size of TRF 1 (400 kVA).418

As seen in the model application framework in Section 2 (Figure 1) the DSO should419

receive predictions such that adjustments can made to the load of the transformer before420

the limit is violated. Given that predictions at 5 ± 1.5 and 3.5 ± 1 time steps ahead,421

relate to the current state inside the transformer, predictions further ahead are required to422

support the DSO in the model application framework. For this purpose we evaluate the423

thermal model at 12 step ahead predictions (6 hours), leaving 3.5 and 4 hours respectively424

to activate flexible resources.425

5. Results and Discussion426

In this section we present and analyze the results from the models defined in Section 4.3.427

To avoid repetition, the results are mostly discussed for TRF 1, and the models of TRF 2428

are presented for the sake of comparison. We further discuss the results in the context of429

the model application framework presented in Section 2.430

5.1. Residual analysis431

Based on the definition of the model in (2), the residuals from an adequate model should432

be in the form of normally distributed white noise. The residual analysis is done by evalu-433

ating the auto correlation function (acf), to ensure that the residuals are independent, and434

also by looking at the cumulated periodogram, to ensure that no frequencies are left in the435

residuals. Both evaluations aims to identify whether the residuals are white noise or not.436

If the residuals are not white noise, there are patterns in the system that the model is not437

capturing. The principles of using the residuals for a model evaluation are based on the438

methods suggested in [31].439

The acf and cumulated periodograms from the models presented in Section 4.3 are shown440

in Figure 8. It can be seen that the significant and periodic values in the acf are gradually441

decreasing throughout the model selection process. However, little improvement is seen442

between the one and two state models, whereas reduced acf and a shift in the cumulated443

periodogram can be seen for the extended two state model. This means that extending444

the model by adding input variables to the model was necessary. It should be noted that445

adding states such that the input variables could be described in a physics informed manner446

was also required and improvements for the residual analysis were observed through such447

extensions. For the presented one and two state models the acf has significant periodic448

values indicating that there are patterns or behaviors in the system that the models do449

not capture. It is further seen in the cumulated periodograms that some frequencies of the450
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residuals are dominating for these models. Thus, it cannot be concluded that the residuals451

are white noise and neither the one nor the two state models properly describe the system.452

Looking at the residual analysis for the three state model in (15) – (18) for TRF 1, it453

can be seen that the acf (Figure 8d) does not have any significant values. Furthermore,454

the cumulated periodogram (Figure 8h) shows no dominating frequencies in the residuals,455

but lies within the interval of the 95% confidence interval. Thereby, the three state model456

gives residuals that are white noise and we conclude that the three state model provides an457

adequate description of the system.458

The acf and cumulated peridogram for the three state model for TRF 2 show white noise459

residuals within a 95% confidence interval (Figure 9). Thereby, this three state model with460

the modification described in Section 4.3 is identified as the final model for TRF 2.
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Figure 8: Residual analysis for the model selection process for transformer 1. Graphs for acf
are shown in subfigures (a) – (d) and cumulated periodogram in (e) – (h). The results for the
different models are presented as follows: One state model in (a) and (e), two state model in (b)
and (f), extended two state model in (c) and (g), three state model in (d) and (h). Blue dotted
lines indicate 95% confidence bands under the assumption that the residuals are white noise.

461

5.2. Residual sum of squares and likelihood analysis462

We analyzed the residual sum of squares (RSS) values and mean average error (MAE)463

to evaluate whether the errors in the output given the observed data were reduced in the464
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Figure 9: Residual analysis for the three state model for TRF 2. The acf is shown in subfigure
(a) and cumulated periodogram in (b). Blue dotted lines indicate a 95% significance level.

model selection process. The values of the log likelihood function were used to compare the465

models. As shown in Table 2, by moving from one state models to three state models the466

values of RSS, MAE and likelihood values of both transformers are improved, which confirms467

an increased performance of the model throughout the selection process. Comparing the468

results for both transformers shows that the proposed three state model for TRF 1 has a469

better performance than the three state model for TRF 2. Furthermore, in the final models470

a maximum absolute error of 1.69 and 2.47 ◦C was seen for TRF 1 and TRF 2, respectively,471

using the training data. If instead we use the test data, the maximum absolute errors were472

5.6 and 3.0 ◦C, respectively. For TRF 2 this is acceptable for the application of the dynamic473

rating framework, which is satisfying given that this transformer is the most critically loaded,474

with a peak above the nameplate rating. For TRF 1, the results could be improved, but475

it should be mentioned that the MAEs are 0.73 and 0.87 ◦C, respectively, and the high476

maximum error for TRF 1 is an exception.477

Model RSS RSS Max Log Computation
1 step 12 step MAE Error likelihood time

Trf 1: One state 21.6 1035 0.79 3.82 772 11 secs
Trf 1: Two state 21.4 1061 0.81 3.81 718 1.34 mins
Trf 1: Extended two state 16.2 468 0.54 2.54 885 1.84 mins
Trf 1: Three state 8.5 261 0.39 1.69 1273 5.95 mins

Trf 2: One state 50.4 1179 1.06 5.08 -37.6 9 secs
Trf 2: Two state 50.0 1184 1.07 5.05 -34.4 1.34 mins
Trf 2: Extended two state 42.0 654 0.77 4.40 38.9 2.16 mins
Trf 2: Three state 27.6 442 0.63 2.47 212.8 6.37 mins

Table 2: Summary of RSS for 1 and 12 step ahead, mean average error and maximum absolute
error for 12 step ahead predictions, log likelihood from models for TRF 1 and TRF 2 using the
training data set. The computation time of estimating the parameters, using a Intel core i7 @ 1.90
Ghz, 16 GB RAM and running on Linux Pop! OS version 21.10, is also presented.
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5.3. Estimated parameters478

The estimated parameters for the final model are seen in Table 3 for TRF 1 and 2.479

Normalized inputs were used for all variables, except for the temperature variables, which480

were kept in measured ◦C. If including the squared neutral current, I2N , for TRF 1, the481

estimated parameter, c, obtained a p-value higher than 0.1, meaning more than a 10%482

probability that it should not be included in the model. Thus, there is a slight difference in483

the final model for the two transformers, meaning that the neutral current is a significant484

input variable to TRF 2, whereas it was not for TRF 1. Noting that the percentage of485

neutral current to total phase current is quite similar for both transformers (13% for TRF 1486

and 12% for TRF 2), it is concluded that a higher harmonic content in TRF 2 is probably not487

the reason for this difference. Instead another possible reason is that TRF 2 has a loading488

that is almost twice as large as the loading condition for TRF 1 (see 3). This could mean489

that the power related factors have a higher impact compared to environmental factors for490

TRF 2, and hence, the neutral current is significant during such a loading condition. If this491

holds, this means that when implementing the model at and above nameplate rating the492

neutral current should be included as an input variable to the model.493

It was also seen that for the parameter for the Wiener process, σ2 in the third system494

equation (17) was significant for TRF 2, but not for TRF 1. Thus, in the final model for495

TRF 1, there is no Wiener process (i.e. σ2dw2 is not included in (17)).496

Moreover, different numbers of splines were needed for the two transformers to model497

the impact from the solar radiation. This is reasonable given that different shading and498

angle to direct solar radiation could occur depending on the placement of the transformers.499

Identification of the splines could potentially to some extent be automized if the model is500

applied at large scale. It was, however, seen for both transformers that the solar radiation501

only had an impact during the morning until noon. Seasonal effects could also be incorpo-502

rated in the future, as the described interval, solar spline function and effects from the wind503

would probably change throughout the year. However, to investigate seasonal effects, time504

series of minimum two years are required (as discussed in Section 3). As the model was505

developed using the available data from November 2021, it was not relevant for this study,506

but is rather a part of future work.507

Although four different temperature measurements were available (see Figure 1), the508

best results were achieved using only one of them (Tlid). This further reduces the number509

of sensors required in the installation in order to apply the model.510

5.4. Application of the proposed method for real time estimation and prediction511

As described in Section 4.4, predictions at 5± 1.5 and 3.5± 1 time steps ahead relate to512

the current state inside the transformer. The time delay is due to the time constants of the513

system and the predictions at these horizons are useful for control room purposes. Therefore,514

we evaluated the predictions at horizons 5 and 4 (rounded off from 3.5) time steps ahead,515

or 2.5 and 2 hours, respectively. The predictions and PIs can be seen in Figure 10. The516

predictions follow the observations for most of the time. Nevertheless, there is an overshoot517

in the estimation of the evening peak on the 28th of November. This could be due to “the518

memory” (the derivative of previous time steps) in the model structure and the previous519
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Parameter TRF 1 TRF 2
Estimate Std. Dev. Estimate Std. Dev.

Initial state Ti 28.5 0.07 28.2 0.15
Initial state Tb 22.7 1.2 20.2 1.9
Initial state Tt 52.0 14.2 41.5 5.1
a 2.61 0.30 3.33 0.26
b 0.607 0.111 0.863 0.113
c −− −− 0.158 0.055
Cb 4851 876 2312 403
Ce 412 69 168 40
Ct 413 165 394 79
ln(σ2

e) −45.7 0.09 −45.7 0.07
ln(σ1) −25.1 5.3 −20.7 11.3
ln(σ2) −− −− −48.3 26.8
ln(σ3) −5.46 0.12 −4.79 0.14
Rb 3.97 0.79 5.28 0.97
Ria 14.2 1.76 9.76 0.89
Rti 15.8 7.5 8.85 3.08
sc1 3.67 0.78 14.8 3.64
sc3 1.86 0.41 1.10 0.60
sc4 1.03 0.24 1.68 0.58
sc5 −− −− 1.41 0.37
ω −0.817 0.124 −0.902 0.134

Table 3: Parameter estimations and standard deviations (Std. Dev.) in the final models for TRF
1 and 2. All inputs were normalized, except for the initial temperatures, which are presented in
◦C.

positive trend in the temperature time series. Although the prediction intervals do not520

fully capture the observations, they give reasonable predictions of the states. Taking in to521

account that there is a 95% PI in the graph, under and over estimations will occur from522

time to time. Through adjusting the PIs, the likelihood of having an observation outside the523

PIs can be as small as desired. Thereby, the DSO can account for the uncertainty in their524

control strategies by adjusting the PIs. Predictions further ahead than the current state are
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(a) 5 step ahead predictions for the test data set,
using the one state model for TRF 1.
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(b) 4 step ahead predictions for the test data set,
using the extended two state model for TRF 2.

Figure 10: Predictions of the transformer lid temperature for 5 and 4 time steps ahead, respec-
tively, corresponding to the current state inside the transformer. Black line – observations, Blue
line – predictions, Light blue area – 95% PI.

525

required to support the DSO in the model application framework in Figure 1. We therefore526

evaluated 12 step ahead predictions (6 hours), giving 3.5 and 4 hours respectively to adjust527

the power flow through activating flexible resources.528
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The 12 step ahead predictions for the test data set are presented in Figure 11. Improve-529

ments in the accuracy of the prediction and the prediction intervals (PIs) can be seen as530

the model is expanded from one to three states. For the one and two state models the PI531

often misses the observation, which is a sign of a not well enough implemented model. For532

the final three state model for both transformers, the observations are, however, most of533

the time inside the PIs. Naturally, some observations will be outside of the PI due to the534

95% significance level of the PIs. Most importantly for the safety of the grid operation,535

the PIs capture the peaks of the temperature, which are the most critical points for the536

implementation. Thus, we conclude that the predictions at this time horizon are fulfilling537

the requirements for usage in the model application framework.538

Nevertheless, there is also potential for improvements to reduce the uncertainty of the539

model. The model is developed for, and using data from, normal cyclic operation. However,540

if the model should be applied under other operating conditions, such as long time emergency541

loading [2], a reduced uncertainty might be required. For instance, heat run tests could be542

performed to establish a model, table or such, that can estimate the hot-spot temperature543

given the transformer lid temperature and loading conditions. This could, for example, be544

done with optical sensors. With the proposed model, the DSO would need to establish some545

extra temperature margin that is acceptable from a safety point of view given the uncertainty.546

Performing such tests would reduce this margin as DSOs would have more knowledge on547

how to translate the transformer temperature and loading condition to possible scenarios548

for the hot-spot temperature.549

Furthermore, other improvements, such as adding more states to the model, could be550

investigated. This could, for example, include seasonal effects from solar radiation or having551

adaptive parameters. It should, however, be noted that such improvements in the accuracy552

could have a negative impact on the computation time. As seen in Table 2 the computational553

time increased when increasing the model order.554

5.5. Discussion on applicability of the model555

To evaluate the applicability of the thermal model, the computation time is a crucial556

factor. It should be noted that although capturing non-linear behavior, such as heating557

from the solar radiation, the grey-box models are formulated as linear models. This reduces558

the computational burden of optimizing the parameters in the models. As seen in Table 2,559

the computation time increases with increasing order of the model. It is also seen that the560

time to run and optimize the parameters for the final model is approximately six minutes561

for TRF 1 and 2, respectively. With this computation time, the model can be updated on a562

regular basis, enabling the usage of the model in grid operation. How often the parameters of563

the model should be updated is a compromise between model accuracy and computational564

burden. It is possible to update the parameters for every time step given that the time565

resolution is 30 minutes, but it needs to be evaluated if that is feasible. The DSO has to566

weight the gained capacity from having an accurate thermal model against the economical567

cost of updating the models, taking into account how many transformers in the system the568

model will be applied to.569
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Figure 11: Prediction analysis for 12 step ahead (6 hours) predictions. Subfigures (a)-(c) show
predictions for TRF 1 using the one state model (a), extended two state model (b) and the final
three state model (c). Subfigure (d) shows predictions for TRF 2 using the final three state model.
Black line – observations, Blue line – predictions, Light blue area – 95% PI.

Given the analysis of the predictions, accuracy and the computational time, the model570

can be applied for online forecasting of the transformer temperature in the model application571

framework. The manufacturer of the transformer in this study also claims that keeping track572

of the transformer lid temperature should be enough to safely operate the transformer.573

However, for full implementation of the model application framework, an algorithm for the574

online forecasting tool needs to be developed.575

In this work we have also found a solution that is both affordable and practical in terms576

of hardware installation. This is due to the limited number of input variables required to run577

the models. Weather data can be fetched from the meteorological forecast provider (in our578

case DMI) and current sensors have become more affordable in recent years. Furthermore,579

the model automatically includes environmental and electrical characteristics specific to the580

transformer, potentially unlocking even more capacity than a deterministic solution based on581

standard conditions. Since we have a stochastic model, we can also provide PIs accounting582

for the uncertainty.583

The model could potentially be extended to larger MV/LV transformers, if data for584

model calibration is available. As the leakage flux increases with increasing size, electrical585

input variables will most likely have a larger comparative impact and the model structure586

for TRF 2 would be recommended for initial model calibration to be reduced if necessary.587

6. Conclusion588

In this paper, we proposed a framework for obtaining dynamic rating of transformers in589

power distribution grids. For this purpose, we developed a thermal model for estimating590
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and predicting transformer temperature. The model was developed using data from a real591

world experimental installation and can be used for developing an online monitoring and592

forecasting algorithm for DSOs.593

The proposed model is formulated as a grey-box model. This is a physics-informed data-594

driven model which is optimized for assimilating information from sensors into the model595

parameters. Furthermore, this approach gives a possibility for providing prediction intervals,596

and hereby we can specify the risk of violating the temperatures.597

The identified input variables in the proposed thermal models result in an affordable and598

practical solution. The hardware in the solution can be installed without interruption of599

power supply and without exchanging any equipment.600

Furthermore, the proposed thermal model has been proven to give reasonable estimations601

and predictions. This enables the ability to operate the transformer dynamically, unlocking602

unused capacity at certain times.603

The proposed model also accounts for the electrical and environmental conditions at604

a specific transformer. This could give a more specifically applied DTR, unlocking more605

capacity than a DTR or thermal model based on standard conditions.606

Moreover, the computational time for the model gives the option to update the parame-607

ters of the model on a regular basis. This further enables implementation in grid operation608

as the accuracy can be maintained.609

6.1. Future work610

Although the proposed model can be applied for online monitoring and forecasting as it611

is, it could be complemented or improved to reduce the uncertainty.612

As discussed in Section 5, heat run tests with optical sensors could be made to establish613

how the transformer lid temperature and loading conditions affect the hot-spot temperature.614

This could provide a better insight into the transformer hot-spot temperature.615

Expansions to the model, such as states for seasonal effects, adaptive parameters or616

improved local weather forecasts could be developed. However, caution needs to be taken to617

not increase the computation time and burden too much or alternatively find a workaround618

that does not require us to rerun the model to update the parameters. We are planning619

on collecting data continuously during the coming years, and within a few years we aim at620

formulating an extension of the models which includes seasonal effects.621

Finally, an algorithm that uses the proposed model and input data to deliver the forecasts622

online in real time needs to be developed for full implementation of the concept.623
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[14] I. Kapetanović, J. Hivziefendić, M. Tešanović, Different Approaches for Analysis of Harmonics Impact672

on the Transformer Losses and Life Expectancy, Lecture Notes in Networks and Systems 28 (2018)673

392–408. doi:10.1007/978-3-319-71321-2{\_}36.674

[15] J. Zhang, L. Cheng, H. Wen, C. Liu, J. Hao, Z. Li, Simulation Analysis of the Influence of Harmonics675

Current on the Winding Temperature Distribution of Converter Transformer, in: Proceedings - 2021676

6th Asia Conference on Power and Electrical Engineering, ACPEE 2021, 2021, pp. 1566–1571. doi:677

10.1109/ACPEE51499.2021.9436944.678

[16] E. A. Juarez-Balderas, J. Medina-Marin, J. C. Olivares-Galvan, N. Hernandez-Romero, J. C. Seck-Tuoh-679

25



Mora, A. Rodriguez-Aguilar, Hot-spot temperature forecasting of the instrument transformer using an680

artificial neural network, IEEE Access 8 (2020) 164392–164406. doi:10.1109/ACCESS.2020.3021673.681

[17] A. Bracale, P. Caramia, G. Carpinelli, P. De Falco, SmarTrafo: A Probabilistic Predictive Tool for682

Dynamic Transformer Rating, IEEE Transactions on Power Delivery 36 (3) (2021) 1619–1630. doi:683

10.1109/TPWRD.2020.3012180.684

[18] Y. Sun, G. Xu, N. Li, K. Li, Y. Liang, H. Zhong, L. Zhang, P. Liu, Hotspot temperature prediction of685

dry-type transformers based on particle filter optimization with support vector regression, Symmetry686

13 (8) (2021). doi:10.3390/sym13081320.687

[19] D. P. Rommel, D. Di Maio, T. Tinga, Transformer hot spot temperature prediction based on basic688

operator information, International Journal of Electrical Power & Energy Systems 124 (2021) 106340.689

doi:https://doi.org/10.1016/j.ijepes.2020.106340.690

URL https://www.sciencedirect.com/science/article/pii/S014206152030867X691

[20] L. Zhang, W. Zhang, J. Liu, T. Zhao, L. Zou, X. Wang, A new prediction model for transformer692

winding hotspot temperature fluctuation based on fuzzy information granulation and an optimized693

wavelet neural network, Energies 10 (12) (2017). doi:10.3390/en10121998.694

URL https://www.mdpi.com/1996-1073/10/12/1998695

[21] Flexible Energy Denmark.696

URL https://www.flexibleenergydenmark.dk/697

[22] Uni-lab.dk, Living labs, visited on 2022-03-03.698

URL https://www.uni-lab.dk/en/living-labs/699

[23] Flexible Energy Denmark, visited on 2022-03-03.700

URL https://www.flexibleenergydenmark.dk/701

[24] DMI, Danish Meteorological Institute - Open Data, visited on 2022-03-03.702

URL https://confluence.govcloud.dk/display/FDAPI703

[25] P. Nystrup, H. Madsen, E. M. Blomgren, G. de Zotti, Clustering commercial and industrial load patterns704

for long-term energy planning, Smart Energy 2 (2021) 100010. doi:10.1016/j.segy.2021.100010.705

URL https://doi.org/10.1016/j.segy.2021.100010706

[26] P. Bacher, H. Madsen, Identifying suitable models for the heat dynamics of buildings, Energy and707

Buildings 43 (7) (2011) 1511–1522. doi:10.1016/j.enbuild.2011.02.005.708

URL http://dx.doi.org/10.1016/j.enbuild.2011.02.005709

[27] R. Juhl, J. K. Møller, H. Madsen, ctsmr - Continuous Time Stochastic Modeling in R, arXiv (2016).710

URL http://arxiv.org/abs/1606.00242711

[28] N. R. Kristensen, H. Madsen, S. B. Jørgensen, Parameter estimation in stochastic grey-box models,712

Automatica 40 (2) (2004) 225–237. doi:10.1016/j.automatica.2003.10.001.713

[29] IEEE, IEEE STD C57.110-1998 Recommended Practice for Establishing Transformer Capability When714

Supplying Nonsinusoidal Load Currents, Standard (1998).715

URL http://ieeexplore.ieee.org/iel5/59/10801/x0247870.pdf716

[30] J. B. Noshahr, M. Bagheri, M. Kermani, The Estimation of the Influence of Each Harmonic Component717

in Load Unbalance of Distribution Transformers in Harmonic Loading Condition, Proceedings - 2019718

IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial719

and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2019 (2019). doi:10.1109/EEEIC.720

2019.8783488.721

[31] H. Madsen, Time Series Analysis, Chapman and Hall/CRC, 2007. doi:doi-org.proxy.findit.cvt.722

dk/10.1201/9781420059687.723

26



4 Paper C 113

4 Paper C

EmmaM.V. Blomgren, Mohsen Banaei, Razgar Ebrahimy, Olof Samuelsson, Francesco
D’Ettorre, Henrik Madsen,
”Intensive data-driven model for real-time observability in low voltage radial DSO
grids”
(submitted to) Applied Energy



Intensive data-driven model for real-time observability in low

voltage radial DSO grids

Emma M.V. Blomgrena, Mohsen Banaeia,∗, Razgar Ebrahimya, Olof Samuelssonb,
Francesco D’Ettorrea, Henrik Madsena

aTechnical University of Denmark, Department of Applied Mathematics and Computer Science,
Lyngby, Denmark

bLund University, Faculty of Engineering, Industrial Electrical Engineering and Automation, Lund, Sweden

Abstract

Increasing levels of distributed generation (DG) and changes in electricity consumption
behaviour, are reshaping the power distribution systems. These changes might especially
stress the secondary low voltage (LV) distribution systems, that were not originally designed
for these power flows. Voltage violations, reverse power flow and congestion constitute some
of the concerns for distribution system operators (DSOs), while observability in these grids
are typically nonexistent or very low. The present paper addresses this issue by developing
a method for node voltage estimations for unbalanced radial LV grids (at 0.4 kV). The
proposed method combines a grey-box modeling approach with generalized additive models
(GAMs) achieving results with high accuracy and root mean squared errors of 0.002 –
0.0004 p.u.. Furthermore, the developed method relies on data from a real-world LV grid
in Denmark, and manages to to use input parameters from only one measuring device per
feeder. The method also results in a low computation time achieving applicability to online
monitoring in DSO grids.

Keywords: Data-driven modeling, Distribution power systems, Grey-box modeling,
Generalized additive models, Phase voltage estimation

1. Introduction

As a necessary means towards carbon neutral energy systems, power systems operation is
undergoing a paradigm shift. More devices are becoming electrified, such as electric vehicles
(EVs), levels of distributed generation (DG) are increasing, and demand side flexibility
is attracting an increasing attention in providing flexibility services for the power system
[1]. These developments are leading to changes in consumption and production patterns,
which might stress the low voltage (LV) distribution power systems that were originally not
designed for these conditions. Meanwhile, operational observability in LV grids is in general
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nonexistent or very low. As a result, to ensure reliable operation of grids, distribution system
operators (DSOs) require techniques to improve grid observability.

Although smart meters are being installed in large scale in Europe, they offer limited
potential for improving observability of distribution grids. In [2], the authors state that it
is not the smart meters that are the largest cost, but rather the required communication
infrastructure. Moreover, smart meters communication systems could be subject of cyber
attacks, are often delayed (e.g., smart meters in household level that collect data only once
a day) and have slower sampling frequency compared to phase measurement units (PMUs).
Hence, to infer the values of system’s state variables using a limited number of data requires
distribution system state estimation (DSSE).

While state estimation is common practice in transmission grids there are some factors
that complicates the application of the same state estimation methods in distribution grids
such as low X/R ratios, unbalanced operation, and fast changes in the configuration of
distribution grids [3]. Thus, new methods are proposed in the literature for DSSE that
can be categorized from different viewpoints. In general, DSSE problems are voltage-based
or branch-current-based. The main focus of this paper is on the voltage-based methods,
however several branch-current-based studies can be found in the literature such as [4], [5],
and [6].

Among voltage-based studies, many research studies try to apply or modify the weighted
least square (WLS) approach, commonly used in transmission system state estimation [7],
for DSSE. Lin et. al [8] proposed a fast decoupled DSSE method taking into account the
virtual measurements, i.e., perfect information about the grid as equality constraint in the
formulation. To this end, a penalty factor was added to the standard WLS problem that
enforces satisfying the equality constraint. This method needs no assumptions on voltage
magnitudes and phase angles. Chen et. al [9], proposed a methodology for DSSE in case
that only the aggregate data of smart meters are available due to the respect to customers’
privacy. The variance of measurement errors of the smart meters were used to construct
the weight matrix in the WLS optimization problem. Power flow analysis was performed to
create time series of active and reactive power data for the study. The problem of DSSE for
areas with high penetration of electric vehicles (EVs) was addressed by Nie et. al [10]. To
provide more reliable and accurate results, a new quasi-Newton method was used to solve the
WLS problem. Effectiveness of the method was evaluated by applying it to a IEEE 14-bus
and 30-bus test systems using real travel survey statistics and base load records. Simulation
results showed better performance of the proposed method compared to standard WLS and
extended Kalman filter methods, especially when the number of EVs increases. The DSSE
solvers of the WLS problems may face the issue of numerical instability and high sensitivity
to choice of initial values. To address this issue, Yao et. al [11] proposed a semi-definitive
programming (SDP) approach for the DSSE problem which obtained by convex relaxation
of the original WLS problem. The method is evaluated by applying to IEEE 13-bus, 34-bus,
and 123-bus test systems. Similarly, Zhu et. al [12] proposed a distributed SDP approach for
formulating the DSSE problem which can be used for areas with several DSOs and minimum
data exchange among DSOs due to data confidentiality concerns.

While WLS-based approaches are fast and simple, it could be very sensitive to bad data
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[3]. This led to introducing robust state estimation approaches. Some research papers up-
grade theWLS-based approaches to improve the robustness of state estimation. For instance,
Wu et. al [13] developed a DSSE method for a grid with limited real-time measurements or
with delayed information from smart meters. To provide robust results, a machine learning
function was used to create inputs for the weight matrix of WLS problem in the state es-
timator. Test system data were generated using power flow analysis at each time interval
and then errors were added to the system intentionally to simulate different measurement
errors. Simulation results confirm the robustness of the results against the measurement
errors, the type, location and accuracy of measurements, and the temporary failure of the
communication system. In contrast, there are other works that introduce new methods for
robust DDSE. Liu et. al [14] proposed a methodology based on matrix completion approach
to perform a robust DSSE. The matrix completion approach uses the known elements in
the matrix to estimate the missing elements by solving the rank minimization problem. In
the proposed approach, system information was used to form the system state-measurement
matrix, and distribution grid model and Ohm’s law are added to the rank minimization
problem as constraints. A decentralized PMU-based robust state estimation method for
distribution grids including a utility grid and several micro-grids was introduced by Lin et.
al [15]. The state estimation problem is formulated as a quadratic optimization problem
for utility grid and micro-grids. Each micro-grid is responsible for evaluating its bad data
measurements and an iterative algorithm with minimum data exchange between operators is
proposed to perform robust DSSE. Fast convergence and scalability are two main features of
this method. Dahale et. al [16] proposed robust formulations for four sparsity-based DSSE
approaches 1) 1-D compressive sensing, 2) 2-D compressive sensing, 3) matrix completion,
and 4) tensor completion. Simulation results highlight the great performance of compres-
sive sensing based approaches, compared to tensor completion and matrix completion based
methods.

Data-driven methods are one of the recently introduced approaches in DSSE. These
methods can be an auxiliary part for solving the DSSE problem, such as using neural network
(NN) method for generating initial points for solving the main optimization problem [17], or
applying machine learning for exploiting pseudo measurements[18]. Data driven approaches
could also be used to solve the DSSE problem. NN is one of the most common data-driven
approaches for DSSE [19], [20], [21]. Kim et. al [19] introduced a modified long short-
term NN for state estimation in hybrid DC/AC distribution grids. Zamzam et. al [20]
proposed a NN method that utilizes the structure of the power grid for DSSE. The proposed
architecture reduces the number of coefficients required for mapping from the measurements
to the network state which prevents overfitting and reduces the complexity of the training
stage. Among other data driven approaches, Weng et. al [22] introduced a data-driven
DSSE approach that uses the power system patterns and physics to clean data. Supervised
learning were used to learn the relationship between the measurement and the state of the
system using historical data. Using periodic patterns in power systems, an approach was
suggested to speed up the estimation up to 1000 times. To benefit from the advantages of
both data driven and classical methods, Anubi et. al [23] proposed an enhanced resilient
DSSE algorithm, which combines a data-driven model with compressive sensing regression
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method. Using this algorithm helps the system estimator to recover the true state of the
system if faced with false data injection attacks which mislead regression-based algorithms.

Nevertheless, all of the mentioned studies are focused on medium voltage (MV) distribu-
tion grids (here MV refers to voltage levels higher than 0.4 kV). This imposes a considerable
difference to the LV systems studied in this work as LV systems are typically more unbal-
anced than MV systems. As customers loads are connected to different phases, uneven load
distribution between the phases often arise, marking the need for per phase voltage estima-
tions. Moreover, MV loads are not as volatile as the aggregation of customer loads from the
connected LV networks results in a lower load variance, supposedly easier to estimate. Ad-
ditionally, there are methods for MV distribution grid can rely on more measurements than
what is practically feasible in LV networks. Furthermore, simulation studies and validation
through simulation is commonly applied, while real-world implementations are scarce.

With this in mind, it is worth to mention the study in [24], where the authors develop
a NN approach to estimate voltages in a 0.4 kV distribution grid. However, it seems that
the method is developed based on confidential customer data, and it could be questioned
if these data inputs should be used for operational purposes. Meanwhile, the reported root
mean squared error (RMSE) is 0.59 V, suggesting better accuracy can be achieved in the
voltage estimations. Furthermore, the method further requires retraining after 20 days,
which could also be improved. In [25] the authors derive a method for voltage control in
LV grids with high levels of PV panels, including a remote voltage estimation technique.
However, the method relies on load estimations of customers as well as number of customers
to produce a generic feeder and is rather designed for voltage control in networks with on-
load-tap-changers, limiting the applicability in the context of this study. Furthermore, in
[26] a remote voltage estimation method for radial LV grids is developed, combining a series
power flow calculations and polynomial regression. While the model shows good accuracy,
it relies on pseudo-measurements, which can complicate the eventual required retraining of
the model and applicable and relevant pseudo-measurements need to be ensured. The model
is also tested based on simulated data and the computation time to fit the model is 0.79 h,
meaning the computational efficiency could be improved.

Reviewing the literature highlights of DSSE, it is realized that methods for estimating
remote voltages in radial LV grids is scarce, as opposed to the many methods found for MV
grid DSSE. Furthermore, methods with higher accuracy and lower computational burden are
crucial for the DSOs to fully realize remote voltage estimation techniques for grid operation.
In addition, methods relying on few measurements that are based on and validated for
real-world data are needed. In the light of this, the present paper contributes to the field
by:

• Proposing a data driven approach for node voltage estimation in unbalanced LV grids.

• Combining a grey-box modeling approach, to gain explainability, and a generalized
additive modeling approach, to achieve considerable low computational burden, which
makes the method usable for online monitoring

• Deriving the method for a real-world experimental setup, and validating the results
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with high accuracy.

In addition, through the real-world setup, it is ensured that the method is based on
input variables that are practical for the DSO to measure, and does not rely on pseudo-
measurements.

The rest of the paper is structured as follows: Section 2 describes the experimental setup
and context for the derived observability model. Section 3 presents the applied method and
Section 4 presents and analyzes the results. Section 5 concludes the paper.

2. Framework for model development

This section describes the experimental setup suing a real world LV network as well as
the intended use case and goal of the observability model.

2.1. Experimental setup

The studied case is a low voltage grid on Jutland, Denmark, with a 400 kVA 10/0.4 kV
transformer serving 170 residential customers. In the network 5-10 customers have electric
vehicles (EVs) and 15-20 customers have PV panels with rated sizes 3 - 6 kW. The house-
holds use either district heating or heat pump for heating. 12 electronic voltage and current
measuring devices have been installed in the grid, placed at the transformer and cable cab-
inets according to Figure 1. As seen in the figure, the devices were installed on three out of
the five feeders. This was deemed the best way to use the limited number of measurement
devices giving enough observability on some of the feeders to build models for these feeders,
rather than having few (not enough) measurements on all feeders. Measuring all feeders at
the transformer required two devices. Due to space limitations in the cable cabinets some
of the devices are not collecting current measurements. Table 1 reports which devices that
have only voltage measurement or alternatively both voltage and current measurements.
The devices deliver per phase data once per second. If measuring current, the devices also
measure active power, power factor, harmonic current content and peak current. The DSO
operating the grid has full information of cable types and thereby cable impedances and
lengths in the grid are known. Active power data from household meters also available and
are delivered once per day in a one hour time resolution.

2.2. Observabiltity model for DSO grid operation

The model developed uses data collected from the experimental setup. It is intended to
support DSO in diagnosing the state of the grid through increased voltage observability. In
Figure 1, the end-nodes are the most critical and the model primarily focuses on estimating
such nodes in the system.

To develop a scalable model for DSO grids, which in general are large grids with many
nodes and radials, a goal of the method is to use input data from few devices.

The model is further intended to be used in an online monitoring algorithm and thus,
priority is given to methods resulting in low computational burden. The final operation
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Device Voltage Current
T1,T2 X X
BRM X X
BRE X X
GM X X
GE1 X X
GE2 X -
GE3 X -
BM X X
BE1 X X
BE2 X X
BE3 X -

Table 1: Devices installed in the grid (Figure 1), X indicates that voltage or current measurement
is available. If current measurements are available, data for harmonic currents, active power and
power factor are also delivered.

Figure 1: Grid topology and installation of devices. The name of the devices is constructed from
the first letter(s) of the color of the feeder, while subscript M indicates that it is a middle node,
and subscript E indicates an end-node.

algorithm and architecture can however, be enhanced with smart meter data updates if
such data is or would be available.
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3. Method

The models derived in this work are physics-informed and data-driven. This means that
the physics and known theory is used to build a first structure of the model while the data
together with statistical and analytical tools guides the process of finding the final model.
The data reflects the system at interest with disturbances that we cannot always measure.
Thus, a probabilistic model that does not only reflect a single physical phenomenon, but a
real world system and states is achieved.

3.1. Physics information - voltage drop

Since the model was developed for a radial LV network, the equations that guide the
first structure of the model are voltage drop equations. For a meshed network, power flow
equations might be more suitable, but due to the low X/R ratio in LV grids, this would
directly become a set of non-linear equations.

The voltage drop, ∆V , for a feeder is described through:

∆V = VS + IR cos θ + IX sin θ −
√
V 2
S − (IR cos θ + IX sin θ)2

≈ IR cos θ + IX sin θ
(1)

where R and X are the resistance and reactance of the cable or line, I is the current through
the feeder to the load, cos θ is the power factor of the load, sin θ is the reactive factor of the
load, and θ is the phase angle difference between voltage and current at the receiving end
[27]. VS is the sending end voltage (i.e. at the node upstream the network) and VR is the
receiving end voltage (i.e. at the node downstream the network) such that:

VS = VR +∆V (2)

The approximation expressed in Eq. (1) is one of the common approximations that is often
used in power systems engineering [28]. It should be noted that the equations are used to
calculate line-to-neutral voltage drops [27]. Since the LV grids are unbalanced the neutral
wire might carry currents and therefore, the neutral might not be at zero potential [29, 30].
Thus, we will investigate if a term for the neutral current voltage drop, ∆VN , should be
included in Eq. (2) such that:

VS = VR +∆V +∆VN (3)

Looking at Figure 1 it is realized that if using the nodes with installed devices as sending
and receiving end voltage inputs (VS and VR) to Eq. (1) there will be loads not only at
the receiving end, but also along the feeder. The effective length of the cable to the load
center and therefore resistance and reactance parameters to the voltage drop equations was
discussed in [28], where the author suggested to calculate the load center distance as it
varies with the total ampere distribution along the feeder. However, their suggested method
becomes unpractical for a real-time algorithm as it requires real-time input from all house-
holds. Instead we will fit a parameter in the model, based on available data, that reflects
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the effective resistance and reactance of the feeder. The resistance also increases with tem-
perature. This might lead to seasonal deviations in the model and will be investigated as well.

Since DSO grids are quite large and the installation needs to be repeated many times,
another objective of this work is to require as few devices for the model input variables as
possible. Turning to classical WLS state estimation is not an option here as it would require
more devices that we wish to install to have enough observability or very accurate pseudo-
measurements in at least the same time resolution as the model (minimum 10 minute).
Instead we use the data at hand to develop a model for that estimates the states that are
of most concern, i.e. the states at the customer premises.

3.2. Data analysis

This section presents a data analysis, supporting the selection of input parameters. Here,
the input parameters analyzed were inspired by the voltage drop equations, (eqs. (1) – (3)).
To avoid redundant discussion, the data analysis only presents data for the third phase,
L3. Model input parameters used in the model selection process are listed in Table 2. The
training data set is from April 18th 2022 to April 30th 2022 and the test data set is from
May 1st 2022 to May 31st 2022.

The voltage time series are seen in Figure 2 for the green feeder in the grid (see Fig-

Variable Notation Unit

VT1 voltage at T1 V
VGM voltage at GM V
VGE1 voltage at GE1 V
VGE2 voltage at GE2 V
VGE3 voltage at GE3 V
IT1 current at T1 A
PFT1 power factor at T1 -
IN,T1 neutral wire current at T1 A
PFN,T1 neutral wire power factor at T1 -
IN,GM neutral wire current at GM A
PFN,GM neutral wire power factor at GM -
IGM current at GM A
PFGM power factor at GM -
IGE1 current at GE1 A
PFGE1 power factor at GE1 -
solar solar radiation (from DMI) W/m2

Tamb ambient temperature (from DMI) ◦C

Table 2: Measured input variables used in the model selection process. All electrical measurements
from the experimental setup are per phase and their placements in the LV grid are seen in Figure 1.

ure 1). It is seen that there is a significant voltage drop from the transformer to the devices
at the edge of the grid, and that the variations in voltage drop seem quite correlated. This
behaviour is further supported by Figure 3, where higher correlations between the edge
device voltages compared to the transformer voltage are seen. Figure 4 presents scatter
plots, data density and correlation for relevant inputs. It is noteworthy that although GM

voltage has a higher correlation to the other edge voltages, the current for GE1 has higher
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(a) Phase L3 voltages of all devices on green feeder.
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(b) Voltages filtering for device GM , phase L3

Figure 2: Phase L3 voltage times series

correlation to the edge voltages than the current at GM . Ambient temperature has very low
correlation and will be excluded as a potential input. Solar radiation on the other hand has
a higher correlation to the voltages, however, it is not necessarily the explanatory variable
as it probably coincides with a higher load, in which case the current should be a better
input variable as it is supported by eqs. (1) – (3). Nevertheless, it will be investigated. In-
terestingly, Figure 5 suggests a high correlation between neutral currents and the voltages,
which will be further investigated in the model selection process.

As the raw data from the measuring devices has a time resolution of 1 second, filtering
of the times series lower time resolutions is required to achieve a reasonable data through-
put. In Figure 2b filtering to 1, 5, 10 and 15 minutes times resolutions can be seen for GM

third phase voltage. Comparing 1 minute to 15 minutes time resolution it is seen that the
voltage rise and drops appear smoothed and the time series is less volatile which is a natural
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outcome of low pass filtering. As the peaks and drops are of concern for power systems
operation, we instead aim to find a suitable model for 5 or 10 minute time resolution, which
is compromise between data throughput (or computational burden) and data filtering. 10
minute filtering is initially chosen to have the possibility to incorporate environmental data,
which has a time resolution of 10 minutes.

Figure 3: Scatter plots, data density and correlation for phase L3 voltages for all devices on green
feeder, using a time resolution of 10 minutes.

3.3. Model selection

It was realized through both modeling approaches in Sections 3.4 and 3.5 that using only
the transformer devices measurements was insufficient to model the edge node voltages. The
following two sections present two modeling approaches, both following a forward selection
process inspired from eqs. (1)–(3). The models are derived using the green feeder in the grid
(Figure 1). There are two options for placing the second input device, either at GM or GE1,
as the other two devices do not measure currents. Here, we chose to build models based on
measurements from GE1. In this way one end-node voltage will be known by the DSO with
a higher accuracy (assuming very small observation errors). Furthermore, if voltage drops
along one entire radial is known it will be supposedly be easier to derive models for other
end-nodes in the network.

To estimate the voltage at GM , using devices at T1 and GE1, two voltage drop drops can be
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Figure 4: Scatter plots, data density and correlation for voltages and input variables, using a
time resolution of 10 minutes.

expressed:

VGM = VT1 −∆VT1−GM (4)

VGE1 = VGM −∆VGM−GE1 ⇔ VGM = VGE1 +∆VGM−GE1 (5)

where VT1, VGM and VGE1 are phase-to-ground voltages at devices T1, GM and GE1, re-
spectively, ∆VT1−GM is the voltage drop between devices T1 and GM and ∆VGM−GE1 is the
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Figure 5: Scatter plots, data density and correlation for voltages and neutral current, using a
time resolution of 10 minutes.

voltage drop between devices GM and GE1. Both GAMs and grey-box models structures
are derived assuming that VGM is partly described by Eq. (4) and partly by Eq. (5) such
that:

E(VGM) = a(VT1 −∆VT1−GM) + b(VGE1 +∆VGM−GE1) + ϵ (6)

where a and b are coefficients to scale the contribution from eqs. (4) and (5), respectively,
and ϵ are independent and identically distributed errors assumed to be Gaussian white noise,
N (0, σ2

ek
). Both modeling approaches described below, start with this formula as an initial

model structure.

To evaluate the models in the forward model selection process, we used a similar approach
as described in [31]. For each tested model, the auto correlation function (acf) and cumu-
lated periodogram for the residuals were evaluated to investigate if the model assumption
of residual white noise had been achieved and if there are any patterns left in the data that
are not captured by the model. Root mean squared errors (rmse) for both the training and
test data set, along with visual inspection of model estimations on the training set and pre-
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dictions on the test set were used to evaluate each model. We also evaluated the significance
levels of the estimated parameters, and the model was reduced if higher p-values than 5%
were observed. Log likelihood was also used in the grey-box modeling approach and Akaike
Information Criterion (AIC) in the GAMs approach.

3.4. GAMs model

Generalized additive models (GAMs) were investigated as a possible model structure of
finding the voltage estimation model. The general expression for GAMs is:

g(µi) = Aiθ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + ... (7)

where µi is the expected value of a response variable Yi, Aiθ represent parametric part of
the model with parameters θ and fk represent smooth functions of variables xj [32].

The initially derived GAMs model from Eq. (6) has the following structure:

g(VGM) = VT1 + s1(IT1, PFT1) + VGE1 + s2(IGE1, PFGE1) (8)

where the inputs are describe in Table 2, while s1() and s2() represent smooth functions
using B-splines. The parameters of the model were optimized using gam() and gamm()
functions in R package mgcv version 1.8-40 [32–36]. Furthermore, a Gaussian distribution
was used for g(VGM).

The initial formula in Eq. (8) is derived using only terms related to resistance of the
voltage drop equations. Following the data analysis in Section 3.2 and the voltage drop
description in Section 3.1, various extensions of inputs were explored:

• adding a smooth term for the term in Eq. (1) relating to reactive current, by using
line current and sin θ = sin (arccos (PFd)) as inputs, where PFd is the power factor at
device d. This was done to investigate the impact of the reactance in the cable.

• adding voltage drop terms using IN,T1 and PFN,T1, to investigate the impact of the
voltage drop in the neutral wire. Using data for the neutral current in GE1 was not
possible, since it is not available in the measured data.

• adding temperature as an input by incorporating it in the smooth functions related
to cable resistance (s(Id, PFd)), to investigate if temperature has an impact on the
resistance.

• adding a smooth term for solar radiation to investigate potential impact from PV
panels in the network.

• adding a seasonal term to investigate if there is an additional daily or hourly variation
not explained by other data. This was done using cubic splines with and periodic
incremental time step inputs (i.e. a vector [1, ..., k], where k is the period length of a
day or hour).

Additionally, variations to the smooth functions were explored.
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3.5. Grey-box model

Grey-box models were also explored as another modeling approach as they have proven
to be useful when developing data-driven models for physical systems (e.g. in [31, 37]). In
grey-box models, known theory of the physical system is used to build a first structure for
the model, while statistics and data is used to optimize the parameters in the model [38].
Thus, it is a mixture of deterministic modeling, relying purely on the known theory, and
black-box models relying purely on statistics and data. Grey-box models, consisting of a
set of first order stochastic differential equations, can be described in a continuous-discrete
time state-space representation as follows:

dX(t) = AX(t)dt+BU(t)dt+ σdw(t) (9)

Y(t) = CX(t) +DU(t) + e(t) (10)

where X ∈ Rn is the state vector, Y ∈ Rm is the vector of measured outputs, U ∈ Rp is the
input vector, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n and C ∈ Rm×p are the state-space matrices,
w are standard Wiener processes with incremental covariance matrix σ ∈ Rn×n, and e ∈ Rm

are the measurement errors. We assume that Wiener processes are independent, resulting
in a diagonal covariance matrix with corresponding variances, σ2

i , to the ith Wiener process.
Measurement errors are assumed to be Gaussian white noise N (0, σ2

ek
) to the kth measured

output and uncorrelated to other measurement errors. We further assume that the Wiener
processes and the measurement errors are independent.

The initial grey-box model in the model selection process is described as follows:

d∆VT1−GM = a (RT1−GM ∗ dIT1/dt ∗ PFT1) dt+ σ1dw1 (11)

d∆VGM−GE1 = b (RGM−GE1 ∗ dIGE1/dt ∗ PFGE1) dt+ σ2dw2 (12)

VGM = c(VT1 −∆VT1−GM) + f(VGE1 +∆VGM−GE1) + e (13)

where a, b, c and f are parameters to be estimated, RT1−GM and RGM−GE1 are cable
resistance and other inputs are described in Table 2. The state equations are derived by
taking the derivative of both sides in Eq. (1).

Again various extensions to the model structure were explored, for instance:

• adding voltage drop related to reactive current by addingRd1−d2∗dId/dt∗sin (arccos (PFd))
to eqs. (11) and (12), where d1 is the device at the sending end and d2 is the device
at the receiving end.

• adding a state for the voltage drop in the neutral wire using IN,T1 and PFN,T1.

• adding temperature as an input to eqs. (11) and (12).

• adding solar radiation as an input to eqs. (11) and (12).

The parameters were optimized using maximum likelihood through the R-package CTSM-R
[38, 39].
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4. Result and Analysis

Several models were developed and tested throughout the model selection process. While
discussing a majority of the models, a special focus is given to the models with the best
statistical results.

4.1. GAM model

In the GAMs modeling approach it was discovered that neutral wire voltage drop, am-
bient temperature and reactance terms in the voltage drop equation, (1), were significant
terms improving the results of the model while having statistically significant estimated
parameters. Adding solar radiation and seasonal cubic splines resulted in insignificant pa-
rameters and/or worse predictive capabilities. The resulting GAMs model has the following
formula:

g(VGM) = s1(VT1) + s2(IT1, PFT1)Tamb + s3(IT1, sin (arccos (PFT1))) + s4(IN,T1, PFN,T1)

+s5(VGE1) + s6(IGE1, PFGE1)Tamb + s7(IGE1, sin (arccos (PFGE1)))

(14)

where s() represent smooth functions as described in Section 3.4, where s2(), s3(), s6() and
s7() are tensor product smooths, and input variables are described in Table 2. The parameter
and function terms estimates are seen in Table 3 and log likelihood and rmse values for the
training and test data set are presented in Table 4. Interestingly, the model maintains a
similar rmse for the test data set, which is promising for estimations and predictions outside
the training data set. This is further validated in Figure 6, showing model predictions for
the training and test data set. Here, the predictions are very close to the observations and
the 95% confidence intervals can barely be seen due to the small span. Although showing
good estimations and low rmse, the acf (Figure 7a) and cumulative periodogram (Figure 7b)
show that there are patterns in the data that the model does not capture. Additionally,
the model has 146 parameters (due to the smooth functions) which limits the explainability
and possibility to extend the model to explain other end-node behavior. For this we need a
model where the voltage drop for a piece of the radial could be separated/extracted.

Parameter/term Estimated P-value

Intercept 230.6 < 2e− 16
s(L3T1) 6.229 < 2e− 16
te(IT1, PFT1)Tamb 8.595 1.03e− 05
te(IT1, sin (arccos (PFT1)))) 9.831 0.09692
s(INT1, PFT1) 10.546 0.00115
s(L3GE1) 4.733 < 2e− 16
te(IGE1, PFGE1)Tamb 15.979 6.86e− 06
te(IGE1, sin (arccos (PFGE1))) .306 < 2e− 16

Table 3: Estimated parameters and function terms in Eq. (14) as well as corresponding p-values.
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(a)

(b)

Figure 6: GAM model estimations on training, (a), and test, (b), data sets zooming in on
three days, respectively. The black line represents the observations and the blue line the model
predictions. There is also a 95 % confidence interval indicated by a blue area, but it is visually
difficult to see in the graph due to the low standard deviation in the model.

GAM Grey-box

Log likelihood 1678 1685
rmse training data set 0.099 0.100
rmse test data set 0.109 0.107

Table 4: Comparison of log likelihood between the GAM and grey-box model as well as root mean
squared errors (rmse) for the training and test data set.

4.2. Grey-box model

In the grey-box model lower model order was achieved with the following model structure:

d∆VR,GM−GE1 = a ·RGM−GE1 ·
dIGE1

dt
· PFGE1 + σ1dw1 (15)

d∆VX,GM−GE1 = b ·XGM−GE1 ·
dIGE1

dt
· sin (arccos (PFGE1))) + σ2dw2 (16)

VGM = c · VGE1 + d · (VR,GM−GE1 + VX,GM−GE1) (17)
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Figure 7: Residual auto correlation functions and cumulative periodograms, for the GAM model
in (a) and (b), and for the grey-box model in (c) and (d). Blue horizontal and diagonal lines
indicate a 95 % confidence interval.

where ∆VR,GM−GE1 represents a state for the voltage drop related to resistance between GM

and GE1 (RGM−GE1), whereas ∆VX,GM−GE1 represents a voltage drop state related to the
reactance (XGM−GE1) along the same cables. Although inputs from the transformer devices
could be used in the model structure it had similar performance without those inputs. For
instance, using the device at T1 to model states for voltage drop along the radial from T1 to
GM and as well as the neutral current voltage drop, gave a log likelihood of 1687, and rmse of
0.100 and 0.108, for the training and test data set, respectively. This is to be compared with
the reported values in Table 4, keeping in mind that the model structure in the latter has 18
parameters as opposed to the model in eqs. (16)–(17) which has 9. Thus, the smaller model
structure was preferred. All other extensions as described in Section 3.5 either proved to give
insignificant parameters, or produced similar or even worse performance in the predictions.

The estimated model parameters and standard errors are reported in Table 5. Here it
can also be seen that p-values are very low and are in general more significant than the
estimated parameters in the GAMs model. Improvements compared to the GAM model are
also seen in the residual acf (Figure 7c) and cumulative periodogram (Figure 7d), indicating
that there is almost no auto correlation in the residuals and the model is better at capturing
the behaviour in the data. According to the cumulative periodogram there are either higher
frequencies left in the residuals or the model has a small tendency towards overfitting. It
should however be noted that voltage tends to change quite rapidly and higher frequency
patterns left in the residuals could be due to other load currents, for which we do not have
the measurements. Looking at the model estimations on the training and test data set in
Figure 8, it can be concluded that although there is a slight deviation in the cumulative
periodogram, the model is preforming quite well even on the test data set.

The advantage of the grey-box model is that it has a model structure that offers more
explainability compared to the GAM model. Furthermore, the estimated states can be used
to derive models for other end-nodes in the radial network.
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Parameter Estimated Std. error P-value

Initial state VR,GM−GE1 2.3693e+ 02 1.8476e+ 01 < 2.2e− 16
Initial state VX,GM−GE1 2.3716e+ 02 1.8498e+ 01 < 2.2e− 16
a 1.5318e− 01 3.7564e− 03 < 2.2e− 16
b 9.8561e− 06 1.8247e− 06 7.48e− 08
c 9.5597e− 01 2.0718e− 03 < 2.2e− 16
d 2.1358e− 02 9.9780e− 04 < 2.2e− 16
ln(σ1) −1.7058e+ 00 5.0160e− 02 < 2.2e− 16
ln(σ2) 2.0426e− 01 < 2.2e− 16
ln(σ2

e) −4.5660e+ 01 7.3097e− 02 < 2.2e− 16

Table 5: Estimated parameters for the final grey-box model in eqs. (16) – (17), with standard
errors (Std. errors) and corresponding p-values.

(a)

(b)

Figure 8: Grey-box model estimations on the training, (a), and test, (b), data sets zooming in
on three days, respectively. The black line represents the observations and the blue line the model
predictions. There is also a 95 % confidence interval indicated by a blue area, but it is visually
difficult to see in the graph due to the low standard deviation in the model.

4.3. End-node estimation

Since the GAM model indicated good estimation performance for the voltage at GM ,
although having limited explainabilty, we return to this modeling approach when estimating
the end-node voltages. Here less explainability is required, because the outputs will not
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be used for further modeling. The best results were acquired using the following model
structure:

Vend = s(Vest,GM) + s(∆Vest,R,GM−GE1, IT1) + s(tday) (18)

where s(tday) is a seasonal spline for the daily variation using B-splines of degree 3 and 144
knots and ∆Vest,R,GM−GE1 and Vest,GM are the estimated states from the grey-box model. It
was tested to incorporate ∆Vest,X,GM−GE1, however, insignificant parameters were observed
and the model had to be reduced. Estimating the voltage at GE2, VGE2, gave rmse values of
0.22 V and 0.24 V for the training and test data sets, respectively, as well as the predictions
in Figure 9. The voltage estimations, VGE3, at GE3 are seen in Figure 10, for which the
rmse was 0.39 V and 0.49 V, respectively. If instead using a GAM model with the measured
voltage at GM (such that Vend = s(VGM) + s(IGM , PFGM) + s(tday)) rmse values were 0.19
V and 0.21 V for voltage at GE2, and 0.40 and 0.50 for voltage at GE3 for the training and
test data set respectively.

(a)

(b)

Figure 9: GAM model estimations on the training, (a), and test, (b), data sets for VGE2 zooming
in on three days, respectively. The black line represents the observations and the blue line the
model predictions. There is also a 95 % confidence interval indicated by a blue area.
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(a)

(b)

Figure 10: GAM model estimations on the training, (a), and test, (b), data sets for VGE3 zooming
in on three days, respectively. The black line represents the observations and the blue line the model
predictions. There is also a 95 % confidence interval indicated by a blue area.

4.4. Application proposed method and future set up extension

Following the results from the end-node estimations using GE1 or GM as model input
produce quite similar model errors. Here, building the model using device input from GE1,
located at the end of the green feeder in the LV grid (Figure 1), has a clear advantage in that
one end-node voltage is known with high certainty. Furthermore, the models can be used in
an online estimation or forecasting algorithm due to fast computation times. The grey-box
model parameters are optimized in 13.7 seconds, while the GAM models for voltages at GE2

and GE3 are optimized in 1.1 and 1.3 seconds, respectively, using an Intel core i7 @ 1.90
Ghz, 16 GB RAM and running on Linux Pop! OS version 21.10.

Although producing reasonable estimations the model and experimental setup can be
improved. There are two main action paths to improve the experimental setup:

1. Improve measurements at GE1, to measure all customers at the end-node as well as
the neutral wire current.

2. Improve measurements at GM , to measure all outgoing cables, including neutral wires.

In the installation setup the electrical data for two out of three customers at GE1 are
measured. This could also explain that the potential presence of high frequency residuals for
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the grey-box model in Figure 7c, meaning that there are high frequency patterns that the
model might miss because the data is not available. Furthermore, the voltage drop along
the neutral wire was a significant input to the GAM model, but was only possible to model
between T1 and GM , since neutral phase data was only available at T1. In the grey-box model
using inputs from only GE1 was proven to provide the best results and therefore, the impact
form neutral wire voltage drop could not be explored. Thus, in a future installation setup
measurements for the neutral wire should be provided. This also highlights the importance
of using real world data in radial LV grids as unpredicted harmonics and unbalance and
could results in neutral wire currents and affect the model output. In setup improvement 2.
it is suggested to measure all outgoing cables and neutral wire. The idea here is that the
GAM model can be used directly to estimate end-node voltages. It should however, be noted
that improvement 1. still has the advantage of knowing one end-node voltage with very high
certainty and better explainabilty in extending the model structure to other radials. A good
practice would be to install both setup improvements and evaluate which one that provides
better model performance.

With the short computation time the models are also suitable for daily updates using
smart meters. Using smart meters directly to monitor voltage might not be possible due to
GDPR and costly communication infrastructure with large data flows. Instead smart meter
data is quite often collected once a day by DSOs. If this is the case model parameters can be
optimized using the data collected daily, to maintain the accuracy of the model, while the
model provides online real-time estimates with low computational burden during the daily
operation.

5. Conclusion

In this work we have developed a data-driven node voltage observability method for
real-time monitoring in radial LV grids. The method uses input from only one device at the
end of a radial and is designed to provide phase voltages in a 10 minutes time resolution.
Such estimations are useful for distribution system operation as these grids are typically
unbalanced.

The method compromises grey-box and GAMmodeling techniques and has proven to give
reasonable estimations on both the training data set (13 days) and the test data set (31 days),
with rmse of 0.002 – 0.0004 p.u. for the studied nodes. The grey-box model demonstrated
explainability in describing the voltage drop along parts of a radial, which could be used
as input to the computationally lighter GAM model. The method also provides confidence
intervals which gives the DSO the possibility to apply risk informed strategies.

The proposed method has a low computational burden, which makes it useful for online
monitoring algorithms, as opposed to other techniques relying on heavy data flows and
complex communication infrastructure.

Furthermore, the method is derived using data from a real-world radial LV grid. Working
with real-world data offers considerable contribution towards application of observability
models in DSO grids, as it reflects the real system with unavoidable disturbances, not
captured through simulations in ideal conditions.
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5.1. Future work

From analysing and using the data in the model development useful insights have been
gained and a few improvements to the experimental setup can be suggested. The improve-
ments involve more comprehensive measurements at the end-node used for model building
as well as at the middle node (GM). It is suggested that both improvements are installed
and the resulting models evaluate to obtain the better model performance.
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In this paper, an extensive study of Renewable Energy Communities and their potential impact on the electric

distribution grid has been carried out. For that purpose, a Linear Programming optimization model sizing the energy
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different operating strategies and different battery placements were investigated. The results showed that when
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minimum and maximum voltage. Moreover, it was found that depending on the energy community’s operating

strategy the low-voltage grid loading can be reduced by up to 58 %. The energy community’s sizing showed that

optimal capacities of photo-voltaics and communal batteries were up to three times larger for the case of city

grid, following the operating strategy of maximizing the energy community’s own economic benefit than in other

operating strategies and grid types.
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Sets

T Set of time periods t

Parameters

T Technology lifetime

Cb annualized battery investment costs [EUR/MWh]

Cp annualized PV investment costs [EUR/MW]

Pbuy
t purchase price for power in time step t ∈ T [EUR/MWh]

P sell
t sales price for power in time step t ∈ T [EUR/MWh]

Dt electricity demand in the EC in time step t ∈ T [EUR/MWh]

Gp
t Normalised electricity production from PV in time step t ∈ T

γcht battery charging efficiency in time step t ∈ T

γdct battery discharging efficiency in time step t ∈ T

λ minimum storage level in percent

Variables

Z total costs [EUR]

cb installed battery capacity [MWh]

cp installed PV capacity [MW]

qg2ct power imported from the central grid to the EC in time step t ∈ T [MWh]

qc2gt power exported from the EC to the central grid in time step t ∈ T [MWh]

qg2dt power imported from the central grid used for demand satisfaction in time step t ∈ T [MWh]

qg2bt power imported from the central grid used for charging the battery in time step t ∈ T [MWh]

qpt power produced by PV and used in time step t ∈ T [MWh]

qp2dt power production from PV used for demand satisfaction in time step t ∈ T [MWh]

qp2gt power production from PV exported to the central grid in time step t ∈ T [MWh]

qp2bt power inflow to the battery from PV in time step t ∈ T [MWh]

qb2dt power outflow from the battery used for demand satisfaction in time step t ∈ T [MWh]

qb2gt power exported from the battery to the central grid in time step t ∈ T [MWh]

qdct power outflow from the battery in time step t ∈ T [MWh]

qcht power inflow from the battery in time step t ∈ T [MWh]

lt battery storage level in time step t ∈ T [MWh]

Additional nomenclature

Cnorm norm investment costs [EUR/MWh]/[EUR/MW]

r discount rate

f generic objective function

M generic set of objectives

x generic vector of decision variables

S generic feasible space

εm ε-bound on objective m ∈ M

α peak power exchange

κ iteration counter in the ε-constraint method

Table 1: Nomenclature
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1. Introduction

To mitigate climate change the European Union (EU) aims at climate neutrality in 2050 [1]. Realizing the

central role of the energy sector in the climate challenge EU launched the Clean Energy package, stating that

the share of Renewable Energy (RE) in the energy mix should be at 32 % in 2030 and further that the energy

market should be modernized to account for flexibility [2]. To accommodate for increasing RE, the power system is

undergoing a paradigm shift, leading to more Decentralized Energy Resources (DERs) in the grid. In consequence,

Energy Communities (ECs) have been developed as an innovative and cooperative strategy to share RE DERs,

minimize their own consumption and/or to ease the loading of the power grid through utilizing energy flexibility of

the active consumers.

ECs are recognized by the EU and the Clean Energy package as “collective energy actions that foster citizens’

participation across the energy system” [3]. There are approximately 3, 500 ECs in the EU (in 2019) and in Denmark

specifically there are around 700 (in 2019) [3]. Moreover, there are several initiatives and research projects on energy

communities among which, IEletrix [4] is a recent addition to the development. ECs are often formed based on

social and/or environmental objectives and the participants share or exchange energy resources in a non-commercial

manner [3]. In this work, we focus on Renewable Energy Communities (RECs), utilizing locally produced RE and

Battery Energy Storage System (BESS). Given the already large number of ECs, the decentralization of the grid

and the goals on increasing RE, it is a natural conclusion that such RECs will have an increasing impact on the

energy system.

As generation is moved to the edge of the power system, it might stress the Low Voltage (LV) grid. The

increasing share of Photo-Voltaic (PV) electricity generation may cause voltage violations in LV grids and lead to

changes in load profiles potentially causing reversed power flows [5]. In the context of smart communities with

peer-to-peer trading and high adaptation of PVs, [6] finds that as the number of active members rises the risk of

overloading increases. These consequences could limit further adaptation of PV panels [5] and calls for research

on grid impact and mitigation strategies. This is highly relevant for RECs, generally having a high share of PV

installations as well as exchanging the generated RE locally, leading to different power flows as reported in [5].

To mitigate grid related issues associated with RE generation in LV networks, such as violation of voltage and

thermal limits, BESS can be utilized. Di Clerico et al. [7] investigate BESS providing ancillary services, owned

and operated by TSO or DSO and finds that the solution can improve grid management and potentially delay grid

investments if used for power peak reduction. In [8] the authors find that a multi-purpose and multi-tasking BESS

supporting grid relief, reduces local demand and power peak stress. Furthermore, Manbachi et al. [9] find that

their designed communal BESS operating in all 4 power quadrants optimally supports Volt-VAR optimization by

discharging during peak hours. However, if the BESS is owned by a REC the strategy to operate the BESS can differ

quite widely from grid supportive objectives. Resch [10] conclude that the most profitable operation strategies, from

a customer perspective, for large scale batteries in Germany 2017 were self-consumption optimization and primary

frequency control. Hence, communal BESS can greatly contribute to reliving the grid, but it is of importance to

investigate the impact of REC BESSs with various operational strategies, realistically applied by consumers such

as RECs.
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Communal BESS can also have social benefits and has the potential to be more profitable than individual BESS

[11]. Barbour et al. [12] states that communal BESSs decrease the total amount of deployed storage capacity,

increase the total rate of return and self-sufficiency compared to individually owned BESSs. Asimakopoulou &

Hatziargyriou [13] compare centralized dispatch of DER with DER dispatched by local ECs/aggregator and finds

that the later is more beneficial for the consumer as well as giving lower system marginal prices and average load

serving costs. As the market of behind-the-meter BESS is increasing, Liu et al. [14] point out the importance of

research on behind-the-meter energy storage systems to ensure optimal sizing and operation as well as their role

in improving reliability in local electricity grids. However, these type of studies often overlook the impact on the

power system. Consequently, there is a lack of both comparative research for operational strategies in economical

terms, but also to investigate their respective impact on distribution grids. In addition, [10] states that research is

needed on combining profitable and grid supportive operation strategies. If this is not done there is a risk of further

stressing the grid instead of relieving it. Hatta et al. [15] further stress the importance of interoperation between

the smart community and the rest of the power system to not compromise on power quality.

Through our research, we aim to provide a grid impact study comparing different optimized operational strategies

of RECs with shared BESS. The REC configuration in the distribution grid is varied to account for various power

flow scenarios. Additionally, we perform case studies for three different grid types typical for city, suburban and

village environments. The objective is to fill the gap of comparative research for various REC and the respective

impact on the power system as well as to spur communication between RECs and Distribution System Operators

(DSOs). Ideally, the comparative case study can support policy and regulatory frameworks, especially for smart

cities and municipalities.

It should be mentioned that smart energy systems and smart energy communities have also been a matter of

discussion in recent years [16]. However, in this work we focus on the energy communities’ impact on power systems

and thus, the electrical side of energy communities only.

Similar work has been conducted, however, not as comprehensive on the comparative side as this work. Faessler

et al. [17] develop an autonomous optimization routine for communal and individual BESS to support the grid

through load shifting and optimizing self-consumption. However, the grid impact of the developed system is not

investigated. The authors in [18] claim to investigate grid impact, in terms of loading, current and voltage for an LV

grid in Townsville, Australia, in three different cases: no battery present, with individual battery or with communal

battery installed in the system. Yet, only voltage at transformer is presented, whereas the voltage violations could

occur elsewhere in the LV grid. Additionally, full insight in behind-the-meter devices is assumed, which might not

always be practically applicable.

The authors in [19] design a MILP to optimize a smart community energy system (in the UK) including buildings,

energy storage and energy conversion devices and optimize on energy usage, cost and electricity self-sufficiency. Both

residential and commercial communities are included in the analysis as well as different price signals. Contrary to

our contribution, insight within the buildings is assumed which limits practical implementation. Reis et al. [20]

investigates the impact of individual end-users’ goals on the energy community’s self-sufficiency, using distributed

artificial intelligence and optimization. The authors find that individual economic goals can have a negative impact

on the community’s self-sufficiency. Furthermore, Fina et al. [21] estimate economic potential of shared rooftop
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PV systems through developing an optimization model to determine profitability. The study investigates city area,

town area (extended city area), mixed area (city outskirts) and rural area. Different house type combinations

and different direction of PVs, direct use, storage and fed into grid is also accounted for. Focusing more on the

market set up Moura et al. [22] designs a transactive energy market for community microgrids involving public

and commercial buildings with BESSs and EVs. The authors find that their method leads to improved matching

between demand and local PV production, while also lowering costs. Although these studies investigate ECs, there

is no sufficient analysis of the grid impact with relevant measures such as voltage and line loading.

Resch et al. [11] develop an operation strategy model for a community energy storage both for maximizing

self-consumption and performing primary frequency control, respectively. Yet again, the authors do not investigate

grid types and different REC configurations and indeed not the impact on the LV grid.

Recently, Rocha et al. [23] performed a benefit assessment for RECs and local energy markets, in which they

also considered grid impacts. They find issues with voltage and power losses in their case study and state that

utilizing flexibility could solve these issues. However, they do not investigate different community strategies, but

only optimize on cost. Additionally, they do not include line loading in their grid assessment.

Similar to our work, Hatta et al. [15] conduct a simulation study to evaluate the grid impact of a smart

community optimizing their local objectives (cost minimization). The study considers residential consumers in LV

grids, PV panels and communal batteries as well as commercial customer areas in high voltage grid, including PV

panels, BESS and combined heat and power systems. The authors find that maximum voltage and maximum current

increases when including BESS for both residential and commercial areas. Additionally, the authors state that the

smart community operation result in worse power quality. However, the study only considers cost optimization and

do not compare and investigate other strategies such as optimizing self-consumption which is reported as one of the

most profitable strategies for ECs that is expected to grow in number of business cases [10].

In [24] the authors optimally design a communal battery in a system where prosumers own PVs and EVs.

They aim to maximize net present value, improve the voltage profile, reduce power loss and mitigate transformer

aging and they notice improvements on all points. Additionally, they optimize the battery size and account for

maintenance, investment cost and battery bank replacement. However, it is assumed that the battery is designed

to meet the needs of DSOs and does not account for the perspective of an EC and their strategies. Furthermore,

there is no comparison of configurations and different grid types.

To the best of our knowledge no research has provided a comprehensive comparison for RECs including typical

distribution grids, which consist of a Medium Voltage (MV) and LV grids, representing different settlement areas,

REC configuration and operational strategies. The aim is to provide a grid impact analysis, that could support

bridging the communication gap between RECs and DSOs. As our research is only focused on REC, we hereafter

refer to REC simply as Energy Community (EC).

Our contribution are case studies using data from representative LV/MV grids in Germany. The load profiles

are based on real measurement data from 300, 000 customers in Denmark. We design a communal PV-BESS system

and develop four battery operational strategies through Linear Programming (LP). The grid impact of these are

then assessed using power flow analysis in 45 distribution grid scenarios including:

• 5 different REC composition configurations
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• 3 different grid types (city, village, suburban)

• 3 different BESS placements

The main research questions are:

• What are cost-optimal installed capacities of PVs and community BESS for ECs based on a current regulatory

framework?

• How do different operational strategies of an EC and the EC’s configuration impact the distribution grid?

• How do different placements of a communal BESS impact the distribution grid?

The novelty of this paper stems from the application of different methods on the same problem in order to

represent the potential scenarios if different perspectives are taken into account, for example a grid perspective and

the EC’s perspective. Different methods and different assumptions resulted in a much more comprehensive paper

than the current state-of-the-art. Thus, this paper primarily focuses on distribution system operators, as well as on

investors in ECs and policy makers. Many developed scenarios makes it possible to investigate different potential

outcomes, in line with the current significant development of energy communities.

The rest of the paper is organized as follows. Section 2 describes the formulation of the BESS operational

strategies, using LP programming, through which the optimal capacities of installed PV and BESS are designed. The

section further describes the investigated grids, EC configurations and the structure of the grid impact assessment.

Section 3 presents the optimal design of the installed BESS and PV in the ECs, followed by the results from the grid

impact assessment for the investigated scenarios. In Section 4 the main findings are discussed and finally, Section 5

concludes the paper.

2. Methods

The overall problem of assessing the impact of different ECs on the grid consisted of two soft-linked sub-problems.

First, the LP optimization model was run in order to detect the optimal capacities of PVs and a communal battery

that could be installed based on economic goals, taking into account different grid types, EC configurations and

different control strategies. Apart from capacities, the LP model also determined the operation profile of the battery.

Second, the obtained capacities and battery profiles were loaded into the power flow model that assessed the impact

of the EC on the power grid. By solving the capacity extension problem for the EC first, realistic capacities of the

distributed PV and the communal battery could be obtained, creating a more realistic EC size than defining the

energy capacities based solely on generic assumptions.

The following four control strategies were applied. The first strategy (Strategy 1), maximization of economic

benefit, modelled the EC’s goal of achieving the lowest system cost for electricity for the EC in the given market

and regulation framework. The second strategy (Strategy 2) of the EC, peak shaving, featured a multi-objective

optimization that resulted in a Pareto front of the EC’s peak demand versus total system costs, as explained in

section 2.1.3. The third strategy (Strategy 3), maximization of self-sufficiency has the goal of maximizing the

consumption of the electricity generated by the EC’s own PV. To this end, the optimization enforced that the
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power generated by the EC’s PVs was either locally consumed or stored in the communal battery. Strategy 3 had

two alternations depending on whether the battery was located behind the meter (Strategy 3a) or in front of the

meter (Strategy 3b) - as this distinction has an important consequence regarding the taxation. The two alternations

are presented in sections 2.1.4 and 2.1.5.

Furthermore, the impact on three different distribution grid types (city, suburban and village grid) was evaluated.

Five different connection schemes of the community members to the low and medium voltage feeders consisted of

different combinations of households and a large commercial customer connected to the distribution grid via different

set-ups of low and medium voltage feeders. Both of those variations are described in section 2.2.3.

2.1. Optimizing sizing and operation of the PV & BESS

In this section, model equations of the LP for the communal energy system are given. The model formulation is

flow-based, where a flow refers to the virtual, market-level, flow of electricity. This formulation allows to formulate

the problem in a general way, and later introduce additional constraints for the four strategies. If not mentioned

otherwise, the range of values for all variables is set of positive real numbers R+.

2.1.1. General Model

Objective function. The objective comprises the minimization of operational costs and investment costs:

Z = cbCb + cpCp

+
∑
t∈T

P buy
t qg2c

t − P sell
t qc2g

t (1)

Here, cb and cp denote the installed capacities for battery storage and PV respectively at the investment costs

Cb and Cp, which are annualized over the technology lifetime T at a discount rate r and the operation period of

one year is set in relation to the technology lifetime, such that C = rCnorm(1 + r)T ((1 + r)T − 1)−1, where Cnorm

denotes the norm investment costs. The sum of the operational costs over the set of time steps T included the

costs associated with the flow from the grid to the community qg2c
t at a price P buy

t , and with the flow from the

community to the grid qc2g
t at a price P sell

t .

Demand constraint. Electricity demand Dt needs to be satisfied by the flow from the grid to demand qg2d
t as well

as the flow from the PV units (battery) qp2d
t (qb2d

t ) to demand:

qg2d
t + qp2d

t + qb2d
t = Dt ∀t ∈ T (2)

PV generation. The product of the normalized electricity production from PV Gp
t and the installed capacity cp

sets an upper bound for the electricity generated from PV qp
t , which is the sum of the flows to demand satisfaction

qp2d
t , to the grid qp2g

t and to the battery storage qp2b
t :

qp
t ≤ cpG

p
t ∀t ∈ T (3a)

qp
t = qp2d

t + qp2g
t + qp2b

t ∀t ∈ T (3b)
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Battery storage. Battery storage is modelled by the following constraints. First, the storage level lt in time step t

is equal to the storage level in the preceding period adjusted by the charging (discharging) quantity qch
t (qdc

t ) at the

respective efficiencies γch (γdc):

lt = lt−1 + γchqch
t −

1

γdc
qdc
t ∀t ∈ T \ {0} (4a)

lt = γchqch
t −

1

γdc
qdc
t , t = 0 (4b)

Also, battery outflow is the power sold to the grid (qb2g
t ) and used to supply demand qb2d

t ; battery inflow can

originate from the grid (qg2b
t ) and PV units (qp2b

t ):

qch
t = qp2b

t + qg2b
t ∀t ∈ T (5a)

qdc
t = qb2d

t + qb2g
t ∀t ∈ T (5b)

Besides that, the storage level is bound by the storage capacity and a minimum storage level λcB (6a, 6b),

whereas we assume λ = 0.1. Besides, the battery cannot be discharged by more than half its capacity within one

hour:

lt ≤ cb ∀t ∈ T (6a)

lt ≥ λcb ∀t ∈ T (6b)

qch
t ≤

1

2
cb ∀t ∈ T (6c)

Finally, the storage level in the initial and final period is set to be at least as high as the initial storage level:

l0 ≥ l|T| (7)

Interaction with the central grid.. The EC can purchase and sell power from the central grid. Purchased power can

fill the storage or contribute to supplying demand:

qg2c
t = qg2d

t + qg2b
t (8)

Sales quantities consist of flows from PV and the battery storage:

qc2g
t = qp2g

t + qb2g
t (9)

The general problem can then be written as:

min Z (10a)

s.t. eqs. (2) to (9), (10b)

whereas specific constraints are added for the respective strategies.
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2.1.2. Strategy 1: Maximization of Economic Benefit

In the case of maximization of the economic benefit of the EC with the battery behind the meter, no additional

constraints were needed. Power was purchased at a price that included taxes, fees and tariffs and was sold at

day-ahead prices. The overview of price formation is given in Appendix A.1.

2.1.3. Strategy 2: Reducing peak power exchange with the central grid

This strategy aims at reducing the maximum power that the EC is exchanging with the grid. With that the

aim of the EC would be to reduce its cost. E.g. the costs for the required grid connection or the grid tariff charge,

which is associated with a customer’s capacity usage. In certain countries, e.g. Norway, it is already today practice

that some customers are charged based on their capacity usage and, in [25], it is stated that there is a push towards

capacity-based (or power-based) tariffs.

Multi-objective optimization. Multi-objective optimization means solving an optimization problem comprising more

than one objective. Only basic definitions of the field are given here, following [26] and [27], to which the reader is

referred for an introduction to the topic.

In multi-objective optimization, the notion of optimality becomes the one of Pareto-optimality and since more

than one Pareto-optimal solution can exist, there can be multiple ”optimal” solutions. In a problem with the

objective space M, the aim is to find a solution x from the feasible region S that minimizes the vector of objective

functions f ∈ R|M| [27].

min f(x) (11a)

s.t. x ∈ S (11b)

A solution x∗ is said to be Pareto-optimal, if there does not exist another solution x ∈ S that x∗ is dominated

by, in the sense that this solution is no worse than x∗ with respect to all objectives and strictly superior to x∗ with

respect to at least one objective [27].

ε-constraint method. The ε-constraint method [28] is a method for exploring the search space of a multi-objective

optimization problem. In each iteration, a problem of the following form is solved [27]: Minimize for one objective

k, while constraining all other objectives m ∈M \ {k} by upper bounds ε1, ε2, ..., ε|M|:

min fk(x) (12a)

s.t. fm(x) ≤ εm ∀m ∈M \ {k} (12b)

x ∈ S (12c)

Any solution to this problem is Pareto-optimal [26] and a variation of the bounds allows exploring the search

space of the problem. Here, the objectives are the minimization of costs and the minimization of peak consumption

from the central grid. Peak consumption α can be written as the maximum inflow from the grid to the community:
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α ≥ qg2c
t ∀t ∈ T (13)

The bi-objective problem of minimising peak power exchange from the central grid α and costs Z can be written

as (14). Hence, we refer to peak power exchange as the maximum of the flow both to and from the grid in the

remainder of this paper.

min [Z,α] (14a)

s.t. eqs. (2) to (9) and (13), (14b)

Here, the ε-constraint method is applied to solve that problem (14). That means that the set of objectives M,

introduced in (12) becomes M = {Z,α}. The linear program (eqs. (2) to (9)) is solved minimizing for costs Z

only, with costs corresponding to objective k with objective function fk in (12), whereas peak consumption α is

successively constraint, corresponding to {fm|m ∈M \ {k}}.

20 iterations κ are run, where an upper bound on α is set, that is linearly decreasing with respect to the peak

power exchange α0, when maximising economic benefit only. In other words, α0 is obtained from the solution to

the single-objective problem of cost-minimization and then, the model is solved 20 times, while forcing α ≤ α0, α ≤

0.95α0, α ≤ 0.9α0, ..., α ≤ 0.05α0.

That corresponds to writing the problem in iteration κ as:

min Z (15a)

s.t. α ≤ (1− κ− 1

20
)α0 (15b)

eqs. (2) to (9) and (13), (15c)

Please note that in general, in order to obtain a sensible range for the ε-constraints, it is recommended to first

optimize for all objective values (see e.g. [29]). In our case, we already know that the optimization for peak power

exchange would lead to α∗ = 0, hence the range for α is known a-priori.

2.1.4. Strategy 3a: Maximization of Self-Sufficiency - Battery Behind the Meter

When the energy community’s self-consumption is maximized with the battery behind the meter, all flows from

the community to the central grid were set to zero:

qc2g
t = 0 ∀t ∈ T (16)
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2.1.5. Strategy 3b: Maximization of Self-Sufficiency - Battery in Front of the Meter

If self-consumption is maximized with the battery placed in front of the meter, additionally to (16), grid tariffs,

taxes and fees P fix needed to be paid when charging and discharging the battery, so the objective function changed:

Z = cbQb + cpQp

+
∑
t∈T

P buy
t qg2c

t − P sell
t qc2g

t

+
∑
t∈T

(qp2b + qb2d)P fix (17a)

qc2g
t = 0 ∀t ∈ T (17b)

2.2. Grid impact analysis

The impact of ECs on the distribution grid was investigated based on power flow simulations in three test grids.

The open-source python tool pandapower [30] was used to carry out the grid impact analysis.

2.2.1. Test distribution grids

Depending on the supplied customers and the area, distribution grid design criteria differ [31]. Three distri-

bution grids are analysed in the paper, namely a city, a suburban and a village grid. In order to investigate EC

configurations, where the EC members are connected to two different LV grids, it is necessary to include the MV

grid in the power flow simulations. For simplicity, in this work the same MV grid was assumed for each of the above

mentioned areas, namely the CIGRE MV distribution grid described in [32]. In order to investigate the impact of

ECs, the following modifications were made to the MV grid.

• At bus 5, an MV/LV transformer was added supplying a commercial customer through LV cables.

• At bus 6 and 7, the MV loads were each replaced by an LV distribution grid (city, suburban and village,

respectively).

• The LV grid connected to bus 7 was extended with an additional LV feeder, which is supplying a commercial

customer

An example of the MV grid extended with two suburban LV grids can be seen in Fig. 1. The LV grids used in

this work can be found in [33] and are representative for LV grids in Germany. The different grid types are briefly

described in the following.

Village. This LV grid is representative for a grid in a village in Germany (called “Dorfnetz” in [33]). The MV/LV

transformer is a 400 kVA 20/0.4 kV transformer with six short LV feeders and 57 loads, which each corresponds to

one consumer considered to be detached houses.

Suburban. This LV grid is representative for grids in German suburban areas (called “Vorstadtnetz” in [33]), which

are often located around cities or urban areas. They are characterized by a high density of buildings/consumers

and the consumer type are households in detached, semi-detached or terraced houses. The MV/LV transformer is a

630 kVA 20/0.4 kV transformer with nine long LV feeders and 144 loads, which each corresponds to one consumer.
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Figure 1: Single-line diagram of the CIGRE medium voltage distribution grid [32] extended with two suburban LV grids.

City. In city centers, the customer concentration is high and the LV feeders are short. The grid topology is similar

to the village grid, but the supplied customers are generally households, mainly flats in apartment buildings and

few semi-/detached houses. There is no urban or city grid available in [33]. Since the grid topology is similar to

the village grid, that grid topology was used, but the consumption patterns correspond to typical consumers in

city centers. The MV/LV transformer is a 400 kVA 20/0.4 kV transformer with six LV feeders and 57 loads. In a

residential area of an urban grid, the consumers are a mix of flats and detached houses. In order to determine how

many consumers are located in the city grid, the following assumptions were made. An average number of flats per

apartment building were calculated based on data for the capital region of Denmark, which is dominantly urban

area. Based on data from Statistics Denmark1 for the capital region, there were ca. 31, 000 apartment buildings with

in total approx. 552, 000 flats in 2019. Consequently, there were in average ca. 18 flats in an apartment building.

Moreover, housing statistic for the region show that approx. 95 % of the homes are flats and the remaining 5 % are

houses. Based on these assumption, there are a total of 555 consumers in the city grid, which consist of 527 flats

and 28 houses.

2.2.2. Consumption profiles

The consumption profiles have a resolution of one hour and were extracted from real measurement data. The

database is an anonymized data set comprising one year of consumption data for approx. 300, 000 customers in

Denmark, which were categorized into consumer categories. The categories allow identifying different household

consumer types, e.g. detached house without/with electric heating, detached house with heat pump, apartment

with/without electric heating etc., and different industrial/commercial consumers, e.g. supermarkets. The resulting

consumption profiles differentiate between season (winter/summer) and day (weekday/weekend). Moreover, for all

1www.dst.dk
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(a) EC1 (b) EC2a (solid rectangle) and EC2b

(dashed rectangle)

(c) EC3a (black dashed rectangle) and

EC3b (red dashed rectangle)

Figure 2: The five different energy community configurations, which are investigated in the paper.

profiles a 95 % quantile was used and the profiles take into account simultaneity, when a feeder with multiple

consumers is simulated.

Profiles for the following consumer types where used in the simulations.

• Household loads: Detached houses without electric heating, detached houses with heat pump and apartments

without electric heating

• Commercial load: Supermarket

The used PV and battery profiles are the output from the optimization described in Section 2.1.

In the analysis, two summer weeks followed by two winter weeks will be simulated.

2.2.3. Energy community configurations

From a grid perspective, a variety of EC configurations are possible, where configuration refers to how the

members are connected to the distribution grid. In the following, three configurations, where two configurations have

two subcategories each, are considered. The subcategories are added, due to the fact that the EC can be composed

of different customer types, e.g. households and commercial customers. In Fig. 2 the different configurations are

indicated in the one-line diagram. The rectangles indicate which buses and, hence, consumers are part of the EC.

Below the characteristics of the five EC configurations are described.

1. All members of the energy community are connected to the same LV feeder

(a) EC1: Only households (see Fig. 2a)

2. All members are connected to the same MV/LV transformer, but to different LV feeders (see Fig. 2b)

(a) EC2a: Only households (solid rectangle)

(b) EC2b: Households and one large commercial customer (dashed rectangle)

3. The members are connected to two different MV/LV transformers (see Fig. 2c)

(a) EC3a: Only households (black dashed rectangle)

(b) EC3b: Households and one large commercial customer (red dashed rectangle)
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Figure 3: Example for the investigated battery locations.

2.2.4. Approach for grid impact assessment

The grid impact is investigated in three steps. In each step, power flow computations are performed and their

results are analysed. Each power flow calculation simulates two summer weeks and two winter weeks, in total four

weeks. In order to evaluate the grid impact, minimum and maximum voltage magnitudes observed within the EC

in the simulated four weeks were extracted, as well as maximum LV line, MV line and MV/LV transformer loading.

Step 1 - Impact of battery placement. In order to investigate the impact of battery placement, the profiles from

Strategy 1 are used and the communal battery is connected at the following three locations (see also Fig. 3):

• Beginning of the feeder (yellow): It is expected that the impact of the battery is limited, since it is located

close to the MV/LV transformer and, hence, the electrical distance to the remaining grid is relatively short.

• End of the feeder (green): In this case, the battery presumably has a larger impact on the grid, since the

electrical distance to the remaining grid is long in comparison and power flowing from the MV grid to the

battery results in a voltage drop along the entire feeder.

• Commercial customer (red): The commercial customer has its own feeder or even its own MV/LV transformer,

which may limit the impact on the grid.

The impact is evaluated by investigating minimum/maximum voltage magnitude at the buses within the energy

community, maximum loading of LV cables, which interconnect the members of the EC and connect them to the

grid, and MV/LV transformer loading. Based on these results, from a grid perspective a preferred location for the

communal battery is selected. This location is used for all simulations in the second and third step.

Step 2 - Impact of peak-shaving. The methodology described in Section 2.1.3 was used to calculate the needed

PV and battery capacity as well as the corresponding charging profile to gradually reduce the maximum power
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consumption Pmax of the energy community in the base case (Strategy 1, see Section 2.1.2). The maximum

power consumption of the EC Pmax is gradually reduced by enforcing a power cap, which is expressed relative to

the maximum power consumption of the EC Pmax,0, when no cap was applied. The cap is reduced in steps of

5%. Hence, in the first peak-shaving step Pmax is limited to 95%Pmax,0. In total 20 steps are simulated, which

corresponds to a cap equal to 5%Pmax,0 in the last step. Based on an economical and grid impact analysis, a feasible

level for peak-shaving is selected.

Step 3 - Comparison of the impact of different battery operation strategies. In this step, the different strategies

derived in the section 2.1.2 to section 2.1.5 are compared based on their grid impact and economical factors. In all

strategies it is assumed that the battery is connected at the preferred location determined in Step 1. For Strategy 2

the peak-shaving level, which was chosen based on the analysis carried out in Step 2, will be used.

3. Results

To assess the impact of the different ECs on the distribution grids, first the LP optimization model was used to

determine the optimal PV and communal battery capacities. These results are presented in Sec. 3.1. Subsequently,

the impact of the ECs on the different grid types is investigated and discussed in Sec. 3.2.

3.1. Optimal capacity and operational results

The sizing of the EC’s PVs and battery are not only dependent on the configuration of the EC but also on the

operational strategy. In this section, first the capacities for the operation strategies 1 and 3a&b are discussed and

then for Strategy 2, where the amount of peak-shaving was gradually increased.

3.1.1. Strategy 1 and Strategy 3a&b

The average electricity price for households was 0.282 EUR/kWh, while the capacity factor of PV was 12 %.

More details about the taxes and the exact price formation is presented in Appendix A.1. Calculated yearly

annuities for investments were 124.9 EUR/kW of PV capacity and 41.76 EUR/kWh of the communal battery

capacity. The optimal capacities for different grid set-ups of EC can be seen in Fig. 4. Due to different consumption

profiles, optimal installed capacities in the city grid were generally larger than in the other two types of grid.

Moreover, the set-ups that included a large consumption point (a supermarket) had larger optimal capacities of PV

and BESS, which can be seen in cases EC2b and EC3b. For Strategy 3a for the case of the city grid, the optimal PV

capacities were lower between 25 % and 31 %, and the optimal communal battery capacities were lower between

24 % and 28 % than in Strategy 1. The reason for this is that Strategy 1 maximizes the economic benefit, which

includes also market arbitrage by using the battery. A larger battery then also provides larger value for the PVs,

as energy generated by PV can be stored for longer, until the more beneficial prices are achieved. On the other

hand, Strategy 3a optimizes the self sufficiency and does not allow selling the energy community’s electricity to the

main grid. This reduces the value of PV generated and the batteries, as they cannot utilize high market prices in

the most economic way. Furthermore, for Strategy 3b (battery located in front of the meter) for the case of city

grid, a communal battery was not installed for any of the configurations and the optimal PV capacity was between
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Figure 4: Strategy 1: Installed capacities of PV and BESS for the different grid set-ups investigated in this work

52 % and 57 % lower than in Strategy 1. This shows that the regulatory framework regarding the taxation of the

communal battery operation is very important for the feasibility of the investment. Optimal capacities of PV and

BESS, that were obtained by focusing on different possible strategies of EC, were used for the analysis of EC’s

impact on the power grid.

However, cases EC1-EC3b all had different total loads. Thus, in order to evaluate the average cost of acquiring

electricity, the levelized cost of acquired electricity (LCOE) expressed in EUR/kWh of electricity is a useful measure.

In Table 2, average electricity prices are presented for 45 different combinations of strategies and grid set-ups. The

lowest LCOE occurred for the village grid for Strategy 1, for the EC3b setup. Contrary to that, the highest LCOE

occurred in the case of Strategy 3, in village and suburban grids. The difference between the highest and the lowest

LCOE for the EC was 6.4 %.

Moreover, the operation of one EC that follows Strategy 1 for the city grid can be seen in Fig. 5. The demand

during the three weekdays followed a relatively uniform pattern and the peak occurred between 17 : 00− 19 : 00 in

all three days. PV generation in the summer was especially high on the 6th of July. The peak PV generation on

that day was three times larger than the EC consumption. Hence, one part of the energy was stored in the battery

and the larger share was exported to the central grid.

In general, the battery was utilized more in the winter time than in the summer time, as it could arbitrage better

during the winter week when the price oscillations on the market were larger. In all three winter days, the peak

demand hour was completely satisfied by the stored energy in the batteries, as the peaks in demand and day-ahead

electricity prices coincided. During the summer week, the batteries were usually charged during the periods of

high PV generation and they were usually discharged during the early evening. In the winter week, batteries were

charged during the night (starting after midnight), using the power from the central grid. This analysis shows
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Table 2: Total levelized cost of acquired electricity (LCOE) [EUR/kWh] in different Strategies and different grid set-ups. The total

levelized cost included both the annualized investment costs, as well as costs of electricity taken from the grid

EC1 EC2a EC2b EC3a EC3b

City Strategy 1 0.258 0.258 0.251 0.258 0.251

Strategy 3a 0.262 0.262 0.256 0.262 0.256

Strategy 3b 0.263 0.263 0.258 0.263 0.258

Village Strategy 1 0.260 0.260 0.250 0.260 0.250

Strategy 3a 0.264 0.264 0.254 0.264 0.254

Strategy 3b 0.267 0.267 0.256 0.267 0.256

Suburban Strategy 1 0.260 0.260 0.251 0.260 0.251

Strategy 3a 0.267 0.267 0.256 0.267 0.256

Strategy 3b 0.267 0.267 0.258 0.267 0.258

that the day-ahead prices in the summer were negatively correlated with the peak PV consumption, which made

it optimal for the batteries to charge it during those low-cost periods. However, in the winter week the day ahead

prices were lowest during the night and thus, the batteries were mostly charged over the night time. The battery

profiles were obtained for all the different combinations and they were further utilized as an input for the grid

analysis.

3.1.2. Strategy 2

Results of the optimization for Strategy 2 in terms of LCOE and investment capacities, the latter relative to

Strategy 1 results, are plotted against the enforced reduction in peak power exchange with the main grid in Figure 6.

In order to generate a one-dimensional KPI for the change in investment behaviour with respect to the baseline

case of no constraints on peak demand, investment capacities for PV and BESS were normalised with respect to

the baseline case - i.e. 0 % corresponding to the same value as in the baseline. Then, an average value across

normalized investment capacities for the two capacities was calculated.

Following the curves from right to left with increasingly strict constraints on the optimization, one can note that

until the elbow points, reductions in the peak power exchange had only a minor effect on resulting system costs and

investment behaviour. The reason for this behaviour was that stricter additional constraints led to a shift in the

EC’s system operation with respect to the timing of electricity sales and purchases. This behaviour was a result of

finding strictly optimal solutions meaning that due to power prices varying slightly across hours, the LP solution

shifted as much purchase/sales volume as possible to the most favourable hours, even though a flatter curve would

only yield a minor deterioration in the objective value.

The values left to the elbow points indicate that stricter constraints on the peak power exchange forced invest-

ments in additional BESS and PV capacities. At these points, mere operational changes were not sufficient to fulfill

the constraints on peak power exchange. As a result, a sharp increase in system costs was observable.
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Figure 5: Operation of the EC during three days for a winter (bottom) and a summer (top) week. The figure includes BESS operation,

PV generation and the total electricity demand of the community. The presented operation is for the city grid, Strategy 1 (maximizing

of EC’s own economic benefit) for the EC3a configuration. Presented profiles in the figure correspond with the summer and the winter

week that was used for the power grid analysis.

3.2. Grid impact analysis results

The analysis is split into three parts. First, the impact of the battery location was investigated for the three grid

types and for the five EC configurations. This allowed to identify favourable locations for the communal battery.

Second, the results from Strategy 2 were investigated in the City grid and for the different levels of peak-shaving.

Finally, the three strategies were compared to identify their differences with respect to grid impact.

3.2.1. Impact of battery location

The location, where the battery is connected, can have a significant impact on the grid.

Figure 7 shows the observed minimum and maximum voltages observed for each grid and EC configuration. The

bars stretch from the observed minimum to the maximum value in the power flow simulation and, consequently, all

voltages lay within the depicted range. In the graph, the blue bars show the voltage range, when the simulation

was carried out without a battery. The yellow bars correspond to the case, when the battery was located at the

beginning of the feeder, the green bars to the case, when the battery was connected at the end of the feeder, and
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Figure 6: LCOE and investments for Strategy 2 against peak power exchange with the main grid. Peak power exchange is given as a

percentage of Strategy 1 values and investments as a change with respect to Strategy 1 values as a baseline.
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Figure 7: Comparison of the impact of different investigated battery locations on the minimum and maximum voltage observed in the

EC.

the red bars, when the battery was connected at the location of the commercial customer (only applicable for EC2b

and EC3b).

The grid operator aims at keeping the voltages within a narrow band. According to the European Standard

EN50160 [34], the voltage should be maintained within a band ±10 % of its nominal value. It could be observed

that the battery location greatly impacts the voltage. In general, it could be observed that, when the battery was

located at the end of the feeder or the commercial customer, the impact on the voltage was detrimental and the

voltage range increased. Connecting the battery at the end of the feeder led to significantly lower voltages, e.g.

in the case City EC2b the lowest voltage was reached with 0.91 pu, while without battery the minimum voltage

was 0.96 pu. This was due to the fact that the additional power flow to charge the battery increased the voltage

drop along the feeder. If the battery was located at the beginning of the feeder (yellow), then the impact was

limited. In some cases the battery improved the voltages by decreasing the observed range of voltages, mainly by

increasing the minimum voltage. For example in City EC1, City EC3a, Suburban EC1 and Suburban EC2a the

minimum voltage with battery connected to the beginning of the feeder was slightly improved. With respect to EC

configurations, it could be observed that across all grid types in the cases where the EC configurations included

a commercial customers (namely EC2b and EC3b), then the impact on voltage was more pronounced. This may

be explained by the fact that the consumption of the commercial customer was large in comparison to residential

consumers and, hence, the power exchanged with the battery was larger. A comparison of the different grid types

revealed that the voltage in the City grid was generally more impacted. The consumer concentration was higher in

that grid type (see Section 2.2.1) and, consequently, also its loading. This can also be observed in Fig. 8, where the

maximum loading of the most loaded LV line is shown in each grid type, for each EC configuration and the different
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Figure 8: Comparison of the impact of different battery locations on the loading of the LV lines in the EC.

battery locations. The figure shows that the impact of the battery location on the LV line loading was limited.

Across grid types and with the configuration EC1, EC2a and EC3a, the introduction of a battery led to increase of

LV line loading. Due to the economical optimization, the battery was charged during hours where the electricity

price was low and discharged during hours where the price was high. This created a new consumption peak during

the night, where electricity prices were low (see Fig. 5). The new peak correlated with the number of consumers

in the EC. When the EC only consisted of consumers connected to a single feeder (EC1), then the impact was

considerably lower than in the case when the members spread over two feeders (EC2a and EC3a). When the EC

included a commercial customer (EC2b and EC3b), then the installed PV capacity was larger (see Fig. 4). This

resulted in a higher loading of the grid, when no battery was included (blue bars in Fig. 8) and a slight reduction

of the maximum LV line loading, when the battery was connected at the beginning or end of the feeder.

Figure 9 shows the impact of the battery and its location on the transformer loading for the different grid types

and EC configurations. It can be observed that the transformer loading was less impacted in comparison to the LV

lines. In a few cases (e.g. City/Suburban/Village EC3a) the battery had virtually no impact on the highest loaded

MV/LV transformer. In cases City/Suburban/Village EC1 as well as Village EC2a the battery appeared to slightly

decrease the loading. When a commercial customers was part of the EC (EC2b and EC3b), the battery generally

slightly increased the transformer loading.

Lastly, the impact on the loading of the MV grid, in particular, MV lines was investigated. Figure 10 displays

the highest loading of the highest loaded MV line in the different grid types and EC configurations. The graph

reveals that the battery and its location did not have a significant impact on the MV line loading. This may be

explained by the fact that the power consumption of the ECs were small compared to the total power delivered
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Figure 9: Comparison of the impact of different battery locations on the loading of the MV/LV transformers in the EC.
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Figure 10: Comparison of the impact of different battery locations on the loading of the MV lines in the EC.

through the MV grid. If multiple ECs would be considered, they could potentially impact the MV grid. However,

this was out of the scope of the paper.

The results presented in this section revealed that the battery location greatly affects the minimum and maximum
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Figure 11: Comparison of the impact of peak-shaving on the loading of the LV lines in the EC. 100% loading is indicated by the black

dashed line.

voltages in the LV grids. When the battery was located at the end of the feeder or at the commercial customer,

the impact on the voltage was detrimental, while the battery did not affect the voltage, when it was located at

the beginning of the feeder. Loading of LV lines, MV lines and transformers was not significantly impacted by the

battery location. Based on these results, the preferred location for connecting the communal battery seems to be

at the beginning of the feeder.

3.2.2. Impact of consumption peak-shaving

Due to the results in Section 3.2.1 and aiming at reducing the impact of the battery on the grid, in this analysis

it was assumed that the battery was connected at the beginning of the feeder (see Fig. 3). Moreover, only results

for simulation of the City grid will be discussed, since in the previous section, it was identified as the grid type most

impacted by the EC.

Figure 11 shows the impact on LV line loading, when the amount of peak-shaving was gradually increased. It can

be observed that initially peak-shaving was reducing the loading of the LV lines until a cap of 30%Pmax,0. Further

reducing the cap resulted in a massive increase of installed PV capacity and battery capacity (see Section 3.1.2),

which led to overloading of the LV lines. This shows that a peak shaving of 70% is both economic and technical

maximum, and that further peak shaving has only deleterious effect on the system. Future research applied on

different case studies should show whether a similar break-off point exists for energy communities in general.

Subsequently, only the peak-shaving cases up to 30%Pmax,0 were further analysed, since the aim with this strategy

was to relieve the grid.

Figure 12 shows the impact of peak-shaving up to 70 % on the line loading in the LV grid. It can be observed

that in all EC configurations the peak-shaving strategy reduced the loading of the LV lines to some extent. For

EC1 the loading of the highest loaded LV line was reduced from ca. 39 % to ca. 23 %. In configuration EC2b and
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Figure 12: Loading of the LV lines in the EC with up to 70 % peak-shaving.
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Figure 13: Impact on voltage in the EC with up to 70% peak-shaving.

EC3b a very similar reduction could be observed from ca. 64 % to 51 %. For EC2a and EC3a the reduction were

the same and were the largest compared to the other EC configurations. The loading dropped from 62 % to 26 %.

Figure 13 shows the observed minimum and maximum voltage in the City grid, when applying peak-shaving up

to 70 %. The graph shows that the impact on the voltage was very limited. In general more than 30 % peak-shaving

was required to notice any change. For further increase in peak-shaving in EC2a, EC2b and EC3b a reduction of

the voltage range could be observed. In comparison to the impact of battery location on the voltage, the impact of

the peak-shaving strategy was negligible.

The influence of the peak-shaving strategy on transformer loading is depicted in Fig. 14. For EC3a no impact
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Figure 14: Transformer loading in the EC with up to 70% peak-shaving.

could be observed. The reason was that the highest loaded MV/LV transformer was the one supplying LV grid 2

(see Fig. 1 and Fig. 2c). Additionally to the household loads in the LV grid, this transformer was providing one

commercial customer, which resulted in the higher loading. In this case, the battery was connected in LV grid 1

and, hence, the battery could not reduce the loading of that transformer located in LV grid 2.

For EC1, it could be observed that the loading remained constant around 61 % until 75%Pmax,0. Afterwards

the loading gradually decreased to 57 % (55%Pmax,0). This reduction may be due to the EC covering more of their

demand with power provided by the communal battery and PVs. This, consequently, reduced the demand of the

EC from the MV grid. Beyond 55%Pmax,0, the EC was again importing more power from the MV grid, which was

visible in an increasing loading of the transformer. Similar behaviour could be observed in the configurations EC2a,

EC2b and EC3b. The largest reduction in loading could be observed for EC2b, where the loading dropped from

83 % to 64 %.

Figure 15 shows for the different EC configurations the LCOE for the EC and maximum LV line loading for

all peak-shaving levels, where the LV line loading was below 120 %. On the x-axis the load-shaving levels are

shown. The blue curve indicates the costs for the EC on the left y-axis, while the red curve shows the maximum

LV line loading on the right y-axis. The graph reveals that the impact on the total costs for the EC community

was generally relatively small up to the peak-shaving level, where the LV line loading again began to increase. For

example, in EC2a, where the largest reduction in loading could be observed, the total cost increased with ca. 0.3 %

at the peak-shaving level 30% Pmax,0, where the LV line loading reached it’s minimum of ca. 26 %. This raised the

question of finding a point which is optimal from the perspective of a DSO (the optimum from the EC perspective

being the base case 100% Pmax,0). Table 3 shows the maximum reduction in line loading and the corresponding

increase in costs (both in percentage). While the reductions in maximum line loading were between 20.51 % and

and 58.51 %, additional costs stayed below 0.4 % for these points.
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Figure 15: Comparison of impact of peak-shaving on LV line loading and the EC’s LCOE in the City grid. Peak power exchange is

given as a percentage of Strategy 1 values.

Table 3: Highest reduction in maximum line loading and corresponding cost increase expressed in percentage relative to Strategy 1 for

the City grid.

EC1 EC2a EC2b EC3a EC3b

Line loading reduction 41.68 58.51 20.51 58.51 20.53

Cost increase 0.31 0.31 0.36 0.31 0.36

3.2.3. Impact comparison of the different strategies

The impact on the grid depends on the battery operation strategy. In Strategy 3b where the battery was located

in front of the meter, the optimization resulted in no battery being installed. Since the impact of the battery was

in this section the main interest, Strategy 3b was not investigated. Strategy 3a will in the following only be referred

to as Strategy 3. A comparison of the three remaining strategies (described in Section 2.1) was presented.

For all strategies, the battery was located at the beginning of the feeder based on the results in Section 3.2.1

and aiming at reducing the impact on the grid.

For Strategy 2, the costs for EC were generally only minor impacted by increasing the peak-shaving level until

the LV line loading reached its minimum. In Section 3.2.2 this was shown for the City grid and similar behaviour

could be observed in the other two grid types (see Fig. A.19 in Appendix A.2). Based on these observation, in the

comparison of the strategies in this section the peak-shaving levels were chosen, which achieved the lowest maximum

loading of the LV lines (see Table A.4 in Appendix A.2).

In order to assess the different strategies, their impact on the minimum and maximum voltage, LV/MV line

loading and transformer loading were investigated.

Figure 16 shows the minimum and maximum voltages observed within the EC. The graph shows that a smaller

voltage range could be observed for Strategy 2 (peak-shaving) and Strategy 3 (self-sufficiency) compared to Strat-

egy 1 (economical optimisation). Although Strategy 3 generally resulted in a narrower voltage range, it should be

noted that peak-shaving in several cases improved the minimum voltage slightly more than the other two strategies.

Raising the minimum voltage decreases losses and hence, makes grid operation more efficient. Consequently, raising

the minimum voltage may be of greater importance compared to having a narrower voltage band. However, it

should be noted that battery location seemed to have the greatest impact on voltage (see Section 3.2.1).
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Figure 16: Comparison of minimum and maximum voltage in the EC for the three strategies.
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Figure 17: Comparison of line loading in the EC for the three strategies.

In Fig. 17 the impact on LV line loading of the different strategies is shown. It could be observed that generally

Strategy 1 resulted in the highest LV line loading, which was due to the fact that this strategy generated new

demand peaks during the night, where prices were low (see Fig. 5). Depending on the EC configuration it was

27



City
 EC

1

City
 EC

2a

City
 EC

2b

City
 EC

3a

City
 EC

3b

Su
bu

rba
n E

C1

Su
bu

rba
n E

C2a

Su
bu

rba
n E

C2b

Su
bu

rba
n E

C3a

Su
bu

rba
n E

C3b

Villa
ge

 EC
1

Villa
ge

 EC
2a

Villa
ge

 EC
2b

Villa
ge

 EC
3a

Villa
ge

 EC
3b

0

10

20

30

40

50

60

70

80
Tr

an
sf

or
m

er
 lo

ad
in

g 
[%

]
Strategy 1: Economic optimisation
Strategy 2: Peak-shaving
Strategy 3: Self-sufficiency

Figure 18: Comparison of transformer loading in the EC for the three strategies.

either Strategy 2 or Strategy 3 where the maximum LV line loading was lowest. For EC1, EC2a and EC3a, it was

Strategy 2 where the maximum loading was lowest and for EC2b and EC3b the loading was lower in Strategy 3.

When considering transformer loading (see Fig. 18), little difference could be seen when comparing the three

strategies. One explanation could be the fact that the EC corresponds to only a fraction of all the customers

that the transformer was supplying. For EC2a and EC2b, it could be observed that Strategy 2 reduced slightly

the maximum transformer loading. In this strategy, the EC aimed at reducing its peak-demand. This reduction

is visible in the component/point, which is connecting the members of the EC to the overlying grid (similar to

the point of common coupling). For EC2a and EC2b this point was the MV/LV transformer and, consequently, a

reduction of its loading could be observed.

4. Discussion

This study focused on studying the impact of a communal battery owned by an EC and presented results for four

possible EC strategies (Strategy 1 - Maximization of EC’s economic benefit, Strategy 2 - Reducing the peak demand

and Strategy 3 maximizing the self-sufficiency of the EC with batteries located in front of or behind the meter),

three different grid types (city, suburban and village), five different EC configurations (based on the ECs connection

to the distribution grid) and three different battery placement locations, totalling in 180 different configurations.

One can note that the amount of possible configurations explodes quickly, as there are many different potential

setups, both in terms of EC configurations and distribution grids. That makes it complicated to encompass all

the possible community setups when evaluating possible impacts of ECs on the distribution grid. However, this

paper expanded the scientific literature with a significant amount of possible configurations, which made it possible
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to investigate which factors (e.g. battery location, battery operation strategy and EC configuration) contribute

significantly to the impact on the distribution grid. With respect to voltage, the results showed that battery

location has the most significant impact. If the battery is located at an unfavourable location (e.g. ’End of feeder’),

the range of observed voltages is significantly increased and thus, the risk of voltage violations increases. However,

if the battery is connected to a favourable point (e.g. ’Beginning of feeder’), the battery does not contribute to

increasing the range of voltages. This demonstrates the need for communication between the EC and the DSO when

an EC is established with a communal BESS. How much the ECs impact the loading of the LV grid was investigated

based on the observed maximum LV line loading and voltage, respectively. The results showed that the battery

operation strategy has the highest impact on LV line loading. Strategy 2 and 3 were generally decreasing the LV

line loading in comparison to Strategy 1. Due to the higher concentration of consumers, the highest LV line and

transformer loading could be observed in the City grid. With respect to EC configuration, the impact grows with

the total consumption of the EC. In the investigated configurations and grids, it appears that EC1, which consists

of only households on one LV feeder, generally shows the least impact on the distribution grid. The configurations

with the largest impact appear to be EC2b and EC3b, which consists of households and a commercial customer.

EC sizing LP problem revealed that the capacities of BESS and PVs were significantly larger in the City grid

for Strategy 1 than in the other grid types. As the EC sizing problem encompassed all the costs imposed on the

EC today, the obtained results present realistic outcomes of the potential EC sizing based on the current regulatory

framework. Currently, the potential ECs do not need to take into account a potential distribution system impact,

and thus, they do not need incentives to alternate their operation based on the grid conditions. However, Strategy

2 revealed that changing the operation strategy in line with the needs of the DSO (reducing peak load), the EC

could significantly help to mitigate the adverse distribution grid impact, for an only minor increase in costs. In a

green transition, the latter could potentially help integrating more electric vehicles (EVs), heat pumps and PVs

into the distribution grid without the need for grid reinforcements. The ECs would provide flexibility by adjusting

their behaviour based on the grid conditions. The potential regulatory framework for incentivizing this behaviour

was out of the scope of this paper, and it presents an interesting topic for future research.

Some aspects of this study can be compared to the available literature. El-Batawy et al. [24] perform their

study from a DSO perspective and with optimal parameters for their designed BESS they find service voltage

improvements of 2.6 % and 4.5 % for two of their scenarios. This study was carried out from the EC’s perspective,

which caused slight voltage deterioration on the main grid. This shows that the grid impact can be significantly

different based on the operating strategy and goals of the ECs. Furthermore, Hatta et al. [15] have reported voltage

violations in the upper end of the allowed voltage range, whereas this study found risks for voltage violations in the

lower end. This could be the consequence of different capacities of PVs and BESS installed in the ECs. Moreover,

we found that the voltage violation risk highly depends on the location of the BESS and to some extent, the

operational strategy. As [15] has reported only one scenario, the conclusions based on [15] are encumbered with

considerable uncertainty.

There are also limitations in the performed case study. First, as the number of possible configurations explodes

quickly, it is possible that some interesting configurations have been left out in this study. However, this study

covered significantly more configurations than the presented literature. The City grid resulted in the largest optimal
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capacities of both PV and BESS. As cities tend to be densely populated, it could be possible that the assumed

capacities violated the real-life spatial constraints. However, investigating and modeling of space and rooftop area

availability for installing those technologies was out of the scope of this study.

This study is highly relevant for the current development of ECs, primarily in European countries. Recently,

there has been an increased amount of initiatives on energy communities but there have not been many studies

systematically assessing the impact of energy communities from different perspectives. This study significantly

enriched this debate by assessing different impacts if different strategies are to be applied. The results of this paper

can be used by both policy makers, as well as DSO operators. It has been shown that by slightly alternating the

incentives to the ECs, a significantly different outcomes can be found. Thus, DSOs and policy makers can use

the study to create an inclusive framework for energy communities that already anticipates the development and

impact on the distribution grid.

5. Conclusion

In this paper, the sizing of energy communities with photo-voltaics and a communal battery was investigated

as well as its impact on the distribution grid. In order to determine what are cost-optimal installed capacities of

photo-voltaics and of a community battery of an energy community based on a current regulatory framework, sizing

the energy communities was carried out using linear-programming optimization based on four different strategies,

maximizing of the energy community’s own economic benefit, reducing the peak demand of the energy community

and maximizing self-sufficiency with the BESS located behind and in front of the meter. Since the design criteria

for distribution grids depend on the supplied customers, three different grid types were considered, namely a city, a

suburban and a village grid. In all types the distribution grid consisted of two low-voltage and one medium-voltage

grid. Different energy community configurations based on type of customers were also assessed. Taking into account

all the mentioned configurations resulted in 180 different scenarios that were assessed in this study.

The levelized cost of electricity was the lowest in the village grid for the energy community that included a large

consumer (a supermarket, configuration EC3b), with a value of 0.25 EUR/kWh. However, the levelized cost of

electricity was similar in all the cases and was in the most expensive setup (village and suburban grid, configurations

EC2a and EC3a) only 5.9 % higher. The optimal installed capacities of photo-voltaics and a communal battery

were the largest in the city grid, which included a supermarket (EC3b), with capacities of 189 kW and 163 kWh,

respectively. These values were 52 % and 35 % larger than in the same energy community configuration for a village

grid and 41 % and 27 % larger than in the same energy community configuration for a suburban grid.

To assess the impact of the location of a communal battery on the distribution grid, grid analysis were carried out,

which showed that the battery location mainly impacts the voltage. The largest voltage deviations could generally

be observed when the battery was located at the end of the feeder. In the City grid for configuration EC2b and

EC3b the observed voltages where between 0.91 pu to 1.02 pu. When the battery was located at the beginning

of the feeder this range could be reduced to 0.96 − 1.02 pu. To assess the impact of different energy community

configurations and operation strategies, additional grid analysis were carried out in the three distribution grid types.

The analysis showed that the largest impact on low-voltage line loading was observed in the City grid and it was

shown that the chosen operation strategy greatly impacts the loading. By switching from Strategy 1 (maximizing
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economic benefits) to Strategy 2 (peak-shaving) the maximum low-voltage line loading could be reduced by up to

58.5 % (City grid EC2a and EC3a), while the costs only increased by 0.3 %. It was further shown that peak shaving

of 70% of the load was both technical and economic maximum, after which the system costs, as well as the line

loading dramatically increased.

Since in this study the focus was solely on electricity, future work could extend this study to include communal

heating and interactions with charging of electric vehicles.
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Appendix A.

Appendix A.1. Input data for the LP

This appendix presents more detailed input data that is needed to recreate the case study. In the main part

of the manuscript, the most important figures were presented, while in the appendix the remaining figures are

reported.

PV hourly generation profile was taken from from [ref. https://re.jrc.ec.europa.eu/pvg tools/en/#PVP] With

the following parameters used: Slope angle 40o

Azimuth angle 0o

Summary of the profile (the profile downloaded from the referenced link consists of a time series with 8760

hourly values):

kWh generated / kW installed

mean (capacity factor) 0.12

min 0

max 1

count 8760

Formation of the electricity price for households (2019): Data has been taken from Energinet and Radius,

Energinet (energinet.dk) being a transmission system operator and Radius (https://radiuselnet.dk/) a distribution

system operator.

In 2019, the end-user total price, used for our case study of Denmark, consisted of:

• Electricity tax: 0.119 EUR/kWh

• Public Service Obligation (PSO) charge: 1st quarter: 0.0083EUR/kWh, 2nd quarter 0.021 EUR/kWh, 3rd

quarter 0, 4 th quarter 0.01 EUR/kWh

• Transmission tariff: 0.013 EUR/kWh
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• Distribution tariff: 0.027 EUR/kWh; except from October - March from 17:00 - 20:00: 0.075 EUR/kWh

• Electricity price on Nordpool day-ahead market DK2 sector (changes hourly): mean price: 0.0399 EUR/kWh,

max 0.1097 EUR/kWh, min -0.061 EUR/kWh

• 15% of retailer margin on the Nordpool price

• 25% VAT on the total price

Summing up all the costs and the day ahead electricty price, an hourly changing price time series has been created.

A summary of these used electricity price for households can be seen in the following table (electricity from the

grid):

EUR/kWh

mean 0.282

min 0.123

max 0.463

count 8760

Investments, fixed operating and maintenance costs and other economic parameters can be seen in the following

table. These parameters were fed to the objective function of the LP problem.

PV Li-ion Community Battery

Investment cost I EUR/kW for PV; EUR/kWh for a battery 1130 337.4

Project lifetime n 15 12

Discount rate d 0.07 0.07

Fixed O&M EUR/(kW * year) 12.8 -

Efficiency 1* charging: 0.98; discharging 0.97

* Because the rated power already took into account the efficiency of the panel.

Equated yearly installment of the investment calculation (PV: EUR/(kW * year); batteries: EUR/(kWh * year)):

EY I = I·d·(1+d)n

(1+d)(n−1)

Appendix A.2. Strategy 2 - Grid impact results

In this section the Strategy 2 results for all grid types are shown. Figure A.19 shows the LCOE and maximum LV

line loading as a function of peak demand given as a percentage of the demand when no peak-shaving is performed.

Table A.4 shows relative difference in line loading for the Strategy 2 for each of the set-ups.
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Figure A.19: LCOE and maximum line loading for Strategy 2 against peak demand. Peak demand is given as a percentage of Strategy

1 values as a baseline.

Table A.4: Highest reduction in maximum line loading (cost increase at that iteration with respect to Strategy 1 in percent) for Strategy

2 [%]

City Village Suburban

EC1 41.68 (0.31) 23.02 (0.18) 21.26 (0.22)

EC2a 58.51 (0.31) 48.98 (0.18) 48.63 (0.22)

EC2b 20.51 (0.36) 18.67 (0.56) 15.94 (0.52)

EC3a 58.51 (0.31) 48.98 (0.18) 48.51 (0.22)

EC3b 20.53 (0.36) 18.69 (0.56) 15.95 (0.52)
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