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Summary (English)
Today, many people live with diseases that require constant treatment. An example is
diabetes. Diabetes is a growing world-wide problem. In 2021, 537 million adults (20-79
years) were living with diabetes with a total cost of at least USD 966 billion.

Studies have shown that automatic treatment by a closed-loop system (artificial
pancreas) based on feedback control can both improve glycemic control and lessen the
burden of living with diabetes. The first hybrid closed-loop system became commercially
available in 2016. Hybrid closed-loop systems are not fully automatic and require the
user to manually announce, e.g., meals or exercise. Furthermore, the currently available
systems are only able to administer insulin which lowers the glucose concentration. Con-
sequently, they are unable to actively prevent hypoglycemia by, e.g., administration of
glucagon. Severe hypoglycemia can have acute consequences, such as loss of conscious-
ness and seizures. Therefore, there is still a significant interest in developing artificial
pancreases (APs). Clinical trials are crucial to ensuring a high level of safety and ef-
ficacy, but are also very expensive and time-consuming which makes the development
of medical devices (including APs) long and cumbersome. Here, virtual clinical trials
(in-silico studies) are beneficial to evaluate the performance and identify potential risks
before a real clinical trial.

In this thesis, we 1) develop a parallelized high-performance Monte Carlo simulation
toolbox to perform large-scale long-term virtual clinical trials, 2) develop the DiaCon
dual-hormone (insulin and glucagon) AP and test it in a clinical trial with 11 adolescents,
3) describe the mathematical models applied in the virtual clinical trials and in the
DiaCon AP as well as the models that were developed during the thesis, and 4) develop
a web application to visualize and analyze diabetes data from, e.g., an AP or a virtual
clinical trial.

The Monte Carlo simulation toolbox is connected to a PostgreSQL database of virtual
participants (represented by mathematical models) and protocols. The database makes
it straightforward to reuse or add more participants and protocols. We show examples
of a virtual clinical trial where two different closed-loop algorithms are compared in 1
mio. virtual participants over 1 year. Using high-performance computing, the virtual
clinical trial is conducted in 82 min.

The DiaCon AP is based on nonlinear model predictive control where we use an
extension of the Medtronic virtual patient model for predictions. We estimate the model
parameters with a prediction error method based on the continuous-discrete extended
Kalman filter that is also used for state estimation. The DiaCon AP consists of the
control algorithm (implemented in an Android smartphone), a Dexcom G6 continuous
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glucose monitor, and two Dana-RS pumps. The clinical trial displayed that it is feasible
to use NMPC for APs and the DiaCon AP improved the time in range compared to the
baseline, but identifying a model individualized to each participant is a challenging and
very time-consuming process. Furthermore, we experienced several technical difficulties
during the trial, such as, pressure induced sensor attenuations and loss of connection to
the pumps.

The web application allows users to login and view representations of the data de-
pending on the permissions of the users. Individuals can view different representations
of their own data from selected periods whereas, e.g., doctors can select between all
their patients. The web application is build using a Vue.js frontend application, a Java
Spring Boot backend application, and a PostgreSQL database. The web application is a
prototype hosted on the localhost and currently only shows virtual people and simulated
data.

This thesis consists of a summary report and a collection of thirteen research papers
and three technical reports.



Summary (Danish)
I dag lever mange mennesker med sygdomme, som kræver konstant behandling. Et
eksempel er diabetes. Diabetes er et stigende verdensomspændende problem. I 2021
levede 537 millioner voksne (20-79 år) med diabetes med en total omkostning på mindst
966 milliarder USD.

Studier har vist, at automatisk behandling med et lukket-sløjfe-system (kunstig pan-
creas) baseret på feedback-kontrol både kan øge glykæmisk kontrol og mindske byrden af
at leve med diabetes. Det første hybride lukket-sløjfe-system blev kommercielt tilgæn-
geligt i 2016. Hybride lukket-sløjfe-systemer er ikke fuldt automatiske og kræver at
brugeren manuelt annoncerer eksempelvis måltider eller fysisk aktivitet. Derudover kan
de nuværende tilgængelige systemer kun administrere insulin og er ikke i stand til aktivt
at forhindre hypoglykæmi. Alvorlig hypoglykæmi kan have akutte konsekvenser såsom
tab af bevidsthed og anfald. Derfor er der stadig en stor interesse i at videreudvikle
kunstige pancreas (AP). Kliniske forsøg er afgørende for at sikre et højt niveau af sikker-
hed og effektivitet, men er også meget dyre og tidskrævende, hvilket gør udviklingen
af medicinske enheder (APer inkluderet) lang og omstændig. Her er virtuelle kliniske
forsøg (in-silico simuleringer) gavnlige til at evaluere ydeevne og identificere potentielle
risici før et rigtigt klinisk forsøg.

I denne afhandling 1) udvikler vi et paralelliseret høj-ydeevne Monte Carlo simuler-
ingsværktøj til at udføre storskala langsigtede virtuelle kliniske forsøg, 2) udvikler vi
DiaCon dual-hormon APen og tester den i et klinisk forsøg med 11 eunge (13-18 år), 3)
beskriver vi de matematiske modeller, der bruges i de virtuelle kliniske forsøg samt i Di-
aCon APen såvel som de modeller, der blev udviklet i løbet af afhandlingen, 4) udvikler
vi en webapplikation til at visualisere og analysere diabetesdata fra f.eks. en AP eller
virtuelle kliniske forsøg.

Monte Carlo simuleringsværktøjet er forbundet til en PostgreSQL database med
virtuelle deltagere (repræsenteret af matematiske modeller) og protokoller, som gør det
ligetil at genbruge eksisterende deltagere og protokoller og tilføje flere. Vi viser eksempler
på et virtuelt klinisk forsøg, hvor to forskellige lukket-sløjfe-algoritmer sammenlignes i
1 mio. virtuelle deltagere over 1 år. Ved at benytte høj-ydeevne computerberegninger
tager det virtuelle kliniske forsøg 82 min.

DiaCon APen er baseret på ikke-lineær model prædiktiv regulering (NMPC), hvor
vi bruger en udvidelse af Medtronic virtual patient modellen til prædiktioner. Model
parametrene er estimeret med en prædiktions-fejl-metode baseret på det kontinuert-
diskrete udvidede Kalman filter, som også bruges til tilstandsestimering. DiaCon APen
består af kontrolalgoritmen (implementeret i en Android smartphone), en Dexcom G6
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kontinuerlig glukosemåler og to Dana-RS pumper. Det kliniske forsøg viste, at det er
muligt at benytte NMPC til APer, og DiaCon APen øgede tid-i-område sammenlignet
med deltagernes normale tid-i-område, men det er udfordrene og meget tidskrævende
at identificere parametre individualiseret til hver enkelt deltager. Derudover oplevede vi
også flere tekniske problemer i løbet af forsøget såsom trykinducerede sensor dæmpninger
og tab af forbindelsen til pumperne.

Webapplikationen tillader brugere at logge ind og se forskellige repræsentationer af
data afhængig af deres rettigheder. Enkelte brugere kan se forskellige repræsentationer
af deres egne data fra udvalgte perioder, hvorimod f.eks. læger kan vælge imellem alle
deres patienter. Web applikationen er bygget af en Vue.js frontend applikation, en
Java Spring Boot backend applikation. Data er gemt i en PostgreSQL database. Web
applikationen er en prototype hosted på localhost og som på nuværende tidspunkt kun
viser virtuelle mennesker og simuleret data.

Denne afhandling består af en sammenfattende rapport og en samling af tretten
forskningsartikler samt tre tekniske rapporter.
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CHAPTER 1
Introduction

The subject of this thesis is the development of model based medical control systems.
Specifically, we consider a dual-hormone (DH) artificial pancreas (AP) based on non-
linear model predictive control (NMPC) for treatment of type 1 diabetes (T1D) and
a simulation framework for development and pre-clinical evaluations (virtual clinical
trials) of closed-loop diabetes treatments (i.e. APs). The AP was tested in a clinical
trial with adolescents. The purpose of an AP is to automatically administer a suitable
amount of insulin (decided by a control algorithm) based on measurements from a con-
tinuous glucose monitor (CGM). AP systems that only administer insulin are referred
to as single-hormone (SH) APs, whereas systems that can administer both insulin and
glucagon are referred to as DH APs. The NMPC algorithm and the simulation frame-
work both require a physiological model and in this work, we primarily focus on models
for T1D. Furthermore, we present a mobile application that functions as a graphical user
interface (GUI) for the AP and a web application for visualizing and analyzing diabetes
data.

1.1 Motivation
Diabetes is a growing world-wide problem [1]. In 2021, 537 million adults (20-79 years)
were living with diabetes and that number is predicted to increase to 643 million by 2030
and 783 million by 2045. T1D accounts for 5-10%. Diabetes was responsible for 6.7%
of deaths in 2021 and accounted for 9% of the global health expenditure with a total
cost of at least USD 966 billion. Despite the advances in technology and treatments,
only around 50% of adults in the United States in 2018 met the glycemic control target
of an hemoglobin A1c (HbA1c) below 7% [2]. Omission of insulin treatment (e.g. due
to fear of hypoglycemia or interference with daily activities) is one of potential causes
of the poor glycemic outcomes [3]. Insulin treatment is also beneficial in critically ill
patients where intensive insulin therapy reduced mortality during intensive care from
8.0% compared to 4.6% with conventional treatment [4].

1.2 Diabetes treatment
Diabetes describes a group of metabolic disorders characterized by elevated blood glu-
cose concentrations (hyperglycemia) in the absence of treatment [5]. In healthy people,
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normoglycemia is achieved by 1) insulin secretion from the β-cells in the pancreas to
lower the blood glucose and 2) glucagon secretion from the α-cells in the pancreas to
increase the blood glucose. Insulin lowers the blood glucose concentration by converting
glucose to glycogen in the liver and stimulating glucose uptake in the tissue (such as,
muscles and kidney) and glucagon increases the concentration by converting glycogen to
glucose in the liver (see Figure 1.1). Insulin secretion from the pancreas can also happen
preemptively, e.g., in relation to consumption of carbohydrates [6].

T1D is an autoimmune disease, where the immune system attacks the insulin-producing
pancreatic β-cells and prevents insulin production. Therefore, people with T1D require
life-long treatment with daily injections of insulin to avoid hyperglycemia. Extended
periods of hyperglycemia lead to a range of health complications, e.g., cardiovascular
disease, chronic kidney disease, and damage to the nerves and eyes. Too much insulin
can cause low blood glucose concentrations (hypoglycemia). Hypoglycemia can cause
a variety of acute complications including loss of consciousness, seizures, and, in severe
cases, even death. Therefore, it is crucial to administer an appropriate amount of insulin.

Type 2 diabetes (T2D) accounts for the majority (over 90%) of diabetes worldwide
and includes various degrees of β-cell dysfunction and insulin resistance [1, 5]. In general,
symptoms of T2D are less dramatic and it is expected that between 33% and 50% of
people living with T2D are undiagnosed. However, extended lack of treatment causes
complications of prolonged hyperglycemia [8]. The cause of T2D is not completely
understood, but overweight, age, and genetics seem to be critical factors. The treatment
of T2D typically begins with a promotion for life-style change. If life-style changes are
not sufficient, treatment with non-insulin drugs (e.g, metformin, glucagon-like peptide 1
(GLP-1), dipeptidyl peptidase 4 (DPP-4) inhibitors) is initiated and eventually insulin
treatment may be necessary.

This thesis primarily concerns T1D. Conventional treatment of T1D consists of mul-
tiple daily injections with syringes, pens, or with an insulin pump and a self monitoring
blood glucose (SMBG) device to measure the glucose concentration. Therefore, people
living with T1D have to manually adjust the insulin dose based on the glucose measure-
ment and meal consumption, as shown in Figure 1.2. The first CGM was commercialized
in 1999 [9] and allowed for, so called, sensor-augmented insulin-pump therapy, where
the subject can continuously monitor and adjust the insulin infusion rate based on the
CGM measurements. Sensor-augmented pump therapy resulted in improved glycemic
control [10]. However, the person living with T1D is still required to manually adjust
the insulin rate. Therefore there has been a significant interest in developing systems
that can automatically adjust the insulin infusion rate. Such systems are referred to as
closed-loop systems or artificial pancreases.

1.2.1 Closed-loop diabetes treatment
The progress towards fully automatic closed-loop systems has been accelerating since
the commercialization of glucose sensors and insulin delivery systems in the mid-2000s
[11]. Figure 1.3 shows a sketch of a closed-loop system that consists of a CGM, a con-
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Figure 1.1: Glucose homeostasis in healthy people: 1) insulin secretion from the β-
cells in the pancreas coverts glucose to glycogen in the liver and stimulates
glucose uptake from the blood to lower the blood glucose and 2) glucagon
secretion from the α-cells in the pancreas converts glycogen to glucose in
the liver to increase the blood glucose [7].

trol algorithm that computes the infusion rate (e.g., in a smartphone), and an insulin
pump. Several control algorithm types have been suggested [12], including fuzzy logic
[13], proportional-integral-derivative (PID) control [14, 15], linear model predictive con-
trol (LMPC) [16, 17], NMPC [18–20], generalized predictive control (GPC) [21], H-∞
control [22], and algorithms based on multiple control modules [23]. Clinical trials have
indicated that closed-loop systems may improve glycemic control [24–29] and in a con-
sensus report Phillip et al. [30] concludes that closed-loop systems should be considered
in all populations. The first hybrid closed-loop system became commercially available
in 2016, where the Medtronic 670G received approval by the U.S. Food and Drug Ad-
ministration (FDA). Since then five more closed-loop systems have become available for
commercial use in the EU or the US 1) Medtronic 780G, 2) Control-IQ, 3) CamAPS
FX, 4) Diabeloop, and 5) Omnipod 5 [30]. These are all categorized as single-hormone
hybrid closed-loop systems, where only insulin can be administered and the user is re-
quired to manually provide information about, e.g., meals or exercise. Consequently,
they are unable to actively increase the glucose concentration in case of hypoglycemia.
Therefore, researchers investigate both fully automatic closed-loop systems that does
not require manual announcements and systems that can actively prevent hypoglycemia
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+

Figure 1.2: Conventional treatment of T1D, where the person measures the glucose
concentration with an SMBG and manually administers insulin with a
pen or updates the pump settings based on the glucose measurement and
meals or exercise.

by, e.g., suggesting carbohydrates [31] or administer glucagon [32–35]. The only com-
mercially available fully automatic closed-loop system is the STG-22 and its successor,
the STG-55, that are both only available in Japan and are bedside devices that use
intravenous access for glucose measurements and insulin delivery [11]. Initially, clinical
evaluations of DH APs did not demonstrate the expected improved performance com-
pared to SH APs [36, 37], but recent studies have displayed improved outcomes for DH
systems [32–34]. In addition to the commercially available closed-loop system, there
are three systems that received regulatory approval or are under regulatory review, but
are not yet commercially available. The Tidepool Loop system [38] has received FDA
approval and the Inreda DH system [34] received a CE mark. Furthermore, the iLet
insulin only bionic pancreas is under regulatory review. The iLet pancreas also comes in
a DH configuration [32]. The success of closed-loop systems and development thus far
is promising, but there are still open questions in the capability of adapting to complex
scenarios such as exercise, sleep disruption, and variable meal times and sizes [11].



1.2 Diabetes treatment 7

Figure 1.3: Closed-loop system. The insulin administration is automatically updated
by the control algorithm based on the measurement received from a
CGM [39].

1.2.2 Glycemic targets

In 2019, Battelino et al. [40] formulated recommendations for clinical targets on time
in range (TIR) for CGM data. These targets are used to evaluate the glycemic control.
Table 1.1 shows the glycemic ranges and the color code used to represent each range in
this thesis. Table 1.2 shows the target values for average glucose, glucose management
index (GMI), glucose variability (GV), and how much time the CGM should be active as
well as targets for time spent in each range. The average glucose and GMI are directly
related to HbA1c and GV is an indicator for variations in the glucose concentration. It
is recommended that the computed values are based on 14 days of CGM data, which is
not always available in this thesis.

Table 1.1: The five glycemic ranges described by Battelino et al. [40].

Category Range [mmol/L] Color
Level 2 hyperglycemia ]13.9, ∞ [ Orange
Level 1 hyperglycemia ]10.0, 13.9] Yellow
Normoglycemia [ 3.9, 10.0] Green
Level 1 hypoglycemia [ 3.0, 3.9[ Light red
Level 2 hypoglycemia [ 0.0, 3.0[ Red
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Table 1.2: The glycemic targets described by Battelino et al. [40].

Quantity Target
Average glucose < 8.55 mmol/L
Glucose management index < 7%
Glucose variability ≤ 36%
Active CGM 100%
Level 2 hyperglycemia < 5%
Level 1 and 2 hyperglycemia < 25%
Normoglycemia > 70%
Level 1 and 2 hypoglycemia < 4%
Level 2 hypoglycemia < 1%

1.3 Clinical trials and virtual clinical trials

The development of complex medical devices (e.g. closed-loop systems) is very expensive
and time-consuming. In an economic analysis, the mean development cost of bringing a
novel therapeutic complex medical device to the US market was estimated to $54 million.
The estimate was $522 million when accounting for the cost of failed trials and cost of
capital [41]. Clinical trials were a key factor associated with the cost. Clinical trials
are necessary to ensure the safety and efficacy of medical treatments, but they might
result in an undesired outcome. Therefore, it is important to 1) evaluate the potential
performance, 2) identify faults and risks, and 3) assess the competitive advantages of
the treatment or medical device before the actual clinical trial. This is the purpose
of virtual clinical trials. Virtual clinical trials involve virtual participants represented
by mathematical models and can be performed with computer simulations. Virtual
clinical trials are cheaper and less time-consuming, causes no risk for the participants,
and by using high-performance computing, they can involve large populations of virtual
participants and long-term protocols. Various T1D simulators have been developed for
this purpose. The two most famous simulators are the UVA/Padova simulator [42] and
the Cambridge simulator [43]. The UVA/Padova simulator was FDA approved in 2008
as an alternative to animal studies and pre-clinical trials for a single meal scenario only
and includes 300 virtual participants (300 sets of model parameters). A new version
was published in 2014 [44] and in 2018 another version was published that extended the
scenario from a single meal to a single day [45]. The Cambridge simulator was published
in 2010 with 18 virtual participants based on the model by Hovorka et al. [46]. These
simulators offer limited virtual participants with limited variations. Therefore, several
methods to generate larger cohorts of virtual participants with more variability have
been developed [47–50]. To utilize very large cohorts of virtual participants, the virtual
clinical trials must be based on high-performance computing techniques.
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1.4 Objectives and contributions
In this work, we aim to develop a DH AP for treatment of T1D and a simulation toolbox
for performing large-scale virtual clinical trials of closed-loop diabetes treatment. Fur-
thermore, we develop a web application to visualize the large amounts of diabetes data
that has become available with modern technology. Digital package solutions combin-
ing mobile communication, smart devices, cloud solutions, and advanced analytics are
projected to transform the health care industry in the future and the transformation
has already started [51, 52]. Here, we attempt to build a package solution consisting of
the AP, the simulation toolbox, and the web application. Figure 1.4 shows the concept.
The DH AP continuously uploads data to the database and enables remote monitoring
from the web application. Furthermore, the web application enables, e.g., doctors or
researchers to analyze data from the AP. The simulator can be used for educational
purposes or for tests and development of new closed-loop systems. The web application
functions as a high level interface to the simulation toolbox and can visualize the results.
In this work, we have developed the individual components, but the full setup, where
the web application can start simulations and remotely monitor the AP, is future work.
The main contributions are as follows.

Dual-hormone artificial pancreas. We develop the DiaCon DH AP based on NMPC
and test it in a clinical trial with 11 adolescents. We use an extended version of the
Medtronic Virtual patient (MVP) model for predictions and estimate the parameters
using a maximum likelihood (ML) based prediction error method (PEM). We use the
continuous-discrete extended Kalman filter (CD-EKF) in both the PEM and for state
estimation in the AP. Furthermore, we use heuristics to switch between administering
insulin and glucagon (insulin and glucagon cannot be administered simultaneously) and
additional safety measures.

Virtual clinical trials. We develop a high-performance Monte Carlo simulation tool-
box for uncertainty quantification in closed-loop systems. We apply the toolbox to
perform large-scale long-term virtual clinical trials of closed-loop diabetes treatment.
The populations of virtual participants are represented by a combination of mathemati-
cal models formulated as stochastic differential equations to incorporate the uncertainty
in the physiology. The protocols are designed from a set of basis days that we combine
to form weeks, months and years. The virtual participants and protocols are stored in a
PostgreSQL database to make it straightforward to reuse and sort existing participants
and protocols or add more. We demonstrate the utility of the toolbox by 1) comparing
two different AP algorithms in a 52 week virtual clinical trial with 1 mio. virtual par-
ticipants, and 2) comparing the performance of an AP algorithm in a 52 week virtual
clinical trial with two different virtual populations of each 1 mio. participants.

Web application and user interfaces. We design and develop a web application
to visualize and analyze diabetes data. The web application is build with a Vue.js
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Artificial Pancreas Web application

Simulator

Figure 1.4: Objective of the thesis and concept for a connected solution for diabetes
treatment, education, and development of new closed-loop systems.

frontend application, a Java Spring Boot backend application, an application program-
ming interface (API), and a PostgreSQL database. The web application allows patients,
doctors, or researchers to inspect different representations of the data based on their
permissions through a login page. In this work, we assume that the data already exist
in the database and it is not possible to start virtual clinical trials directly from the web
application or automatically receive data from the DiaCon AP (due to General Data
Protection Regulation (GDPR)).

1.5 Outline of the thesis
Chapter 2 describes the physiological models used in the DiaCon AP, the models
used to represent virtual participants in the virtual clinical trials, five meal models, and
a glucagon model developed during the thesis. Furthermore, we present the concept of a
whole-body model developed during the thesis and discuss T2D and intensive care unit
(ICU) models. The physiological models are central to all of the work in this thesis, but
the following Appendices are directly related to modeling: Appendix A describes the
whole body model, Appendix B and C presents the glucagon model, and Appendix D
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collects and compares five meal models.

Chapter 3 presents the Monte Carlo simulation toolbox and the large-scale virtual
clinical trials used to prepare and evaluate the performance of closed-loop systems for
diabetes treatment before real clinical trials. We describe the virtual participants repre-
sented by a combination of the models presented in Chapter 2 and a 1 year (52 weeks)
protocol that the participants follow during the trials. Furthermore, we describe how
the virtual participants and protocols are stored in a database. Finally, we describe how
high-performance computing is used for computational feasibility of the large-scale trials
and show an example virtual clinical trial. This chapter is based on Appendices E, F,
G, and H.

Chapter 4 presents the DiaCon AP and compares the system to closed-loop systems
that are commercially available, received regulatory approval, or are under regulatory
review. We show the hardware used to build the DiaCon AP and describe the NMPC
algorithm and heuristics used to compute the insulin or glucagon administration. Fur-
thermore, we describe how we identify individualized parameters for each participant in
the clinical trial. Finally, we summarize and discuss the results from the clinical trial of
the DiaCon AP with 11 adolescents. This chapter is based on Appendices I, J, K, L, M,
N, and O.

Chapter 5 presents the GUI of the DiaCon app and describes the web application
used to visualize and analyze diabetes data. We demonstrate how the DiaCon app allows
the user to connect devices, announce meals and exercise, view time-series of glucose,
insulin and glucagon data, and see selected stats. Next, we show the tools applied to
build the web application and describe the different roles with individual permissions in
the web application. Finally, we show a demonstration of the web application. The web
application is described in Appendix P.

Chapter 6 provides conclusions, summarizes the main contributions, and discusses
possible improvements and future work.
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CHAPTER 2
Models

In this chapter, we describe and list the models used or developed during the thesis.
The different models have been a central component during all of the thesis and range
from relatively simple models suitable for control to whole-body models. There exist
many models in the literature to describe the dynamics in people with both T1D and
T2D and for people in ICU, but here we only list the models that were directly used or
developed during the thesis. We divide the descriptions of the models into descriptions of
the submodels where Section 2.2 describes insulin models, Section 2.3 describes glucagon
models, Section 2.4 describes meal models, Section 2.5 describes exercise models, Section
2.6 describes CGM models, Section 2.7 describes glucose models, Section 2.8 describes
whole-body models, and Section 2.9 discusses the differences in T2D and ICU models
compared to T1D models. Appendices A-C are directly related to modeling and describe
a whole-body model and a glucagon model developed during the thesis. Appendix D
collects multiple meal models for simulation of the human metabolism. Appendices F-
I and M describe the models used to represent virtual participants for virtual clinical
trials and Appendix I and J describe the control model used in the DiaCon AP. Finally,
Appendix O includes three different models to simulate people in the ICU extended
with a simple representation of stress. The model parameters used in the clinical trial of
the DiaCon AP are listed in Appendix L and the model parameters used in the virtual
clinical trials are listed in Appendix H. Appendix D lists parameters for the meal models
and Appendix C lists parameters for the UPV glucagon model.

2.1 General form
The models described in this section can be written (and implemented) as a continuous-
discrete stochastic system in the form

x(t0) = x0, (2.1a)
dx(t) = f(t, x(t), u(t), d(t), θ)dt + σ(t, x(t), u(t), d(t), θ)dω(t), (2.1b)

z(t) = h(t, x(t), θ) (2.1c)
y(tk) = g(tk, x(tk), θ) + v(tk). (2.1d)

Here, t is time, t0 is the initial time, x are the states, x0 are the initial states, u are
manipulated inputs (e.g., insulin and glucagon administration), d are disturbances (e.g.,
meals and exercise), and θ are parameters. The first term in (2.1b) is the deterministic
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(drift) term, and the second term is the stochastic (diffusion) term. y are the measure-
ments (e.g, from a CGM) with measurement noise, v. z, are the outputs and are used in,
e.g., the control algorithm. Additionally, ω(t) is a standard Wiener process, and v(tk)
is normally distributed measurement noise at discrete time, i.e.,

dω(t) ∼ Niid(0, Idt), (2.2a)
v(tk) ∼ Niid(0, R). (2.2b)

2.2 Insulin models
In this section, we present the insulin models used in the thesis. The insulin mod-
els include compartments for the plasma insulin concentration and the insulin effect.
Furthermore, the models include compartments for subcutaneous insulin absorption to
describe insulin delivery from, e.g., a pump or a pen. We describe the insulin subsystem
from the 1) Hovorka model [18, 46], 2) UVA/Padova model [53, 54], and 3) MVP model
[55].

2.2.1 Hovorka model
The Hovorka model describes the absorption of fast acting insulin (both bolus and basal)
as a two-compartment chain, S1 and S2 [mU], by

Ṡ1(t) = uI(t) − S1(t)
τS

, (2.3a)

Ṡ2(t) = S1(t)
τS

− S2(t)
τS

, (2.3b)

(2.3c)

where uI [mU/min] is the insulin administration rate and τs [min] is a time constant for
maximum insulin absorption. The appearance of insulin in the plasma is the amount
that leaves S2 [mU], i.e., S2(t)

τS
distributed in the volume, Vi [L]. The plasma insulin

concentration, I(t) [mU/L], is

İ(t) = 1
VI

S2(t)
τS

− keI(t), (2.4)

where ke [1/min] is the fractional elimination rate. Finally, the three compartments for
insulin action on the glucose kinetics are

ẋ1(t) = kb1I(t) − ka1x1(t), (2.5a)
ẋ2(t) = kb2I(t) − ka2x2(t), (2.5b)
ẋ3(t) = kb3I(t) − ka3x3(t). (2.5c)
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Here, x1 [1/min] represents the insulin effect on glucose distribution, x2 [1/min] repre-
sents the insulin effect on glucose disposal, and x3 [1/min] represents the insulin effect
on endogenous glucose production. kai and kbi [1/min], i = 1, . . . , 3, are activation and
deactivation rates.

2.2.2 UVA/Padova model
In the UVA/Padova model, the insulin absorption of subcutaneously administered in-
sulin is described by

İsc1(t) = −(kd + ka1)Isc1(t) + uI(t)
BW

, (2.6a)

İsc2(t) = kdIsc1(t) − ka2Isc2(t), (2.6b)

where Isc1 and Isc2 [pmol/kg] are insulin in a non-monomeric and monomeric state. kd,
ka1, and ka2 [1/min] are rate parameters where ka2 > ka1 to represent that insulin
absorption is faster in the monomeric state. uI [pmol/min] is the subcutaneous insulin
infusion rate. The appearance rate of insulin in the plasma, RaIsc [pmol/kg/min], is
described by the combined absorption from the non-monomeric and monomeric state,
i.e.

RaIsc(t) = ka1Isc1(t) + ka2Isc2(t). (2.7)
The insulin mass in the liver, Iℓ, and plasma, Ip [pmol/kg], are described by

İℓ(t) = −(m1 + m3)Iℓ(t) + m2Ip(t), (2.8a)
İp(t) = −(m2 + m4)Ip(t) + m1Iℓ(t) + RaIsc(t), (2.8b)

where m1 and m2 [1/min] are rate parameters to describe the transport between the
liver and plasma and m3 and m4 [1/min] are rate parameters for degradation computed
by

m2 = 3CL

5HEbViBW
, (2.9a)

m3 = HEbm1

1 − HEb

, (2.9b)

m4 = 2CL

5ViBW
. (2.9c)

CL [L/min] is the insulin clearance, HEb [–] is the basal hepatic insulin extraction, and
BW [kg] is the body weight. The plasma insulin concentration, I [pmol/L], is

I(t) = Ip(t)
Vi

, (2.10)

where Vi [L/kg] is the insulin distribution volume. In the UVA/Padova model, insulin
affects the glucose utilization and the endogenous glucose production (EGP). The in-
sulin concentration in the interstitial fluid, X [pmol/L], affects the glucose utilization
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described in Section 2.7 and is described by

Ẋ(t) = −p2UX(t) + p2U(I(t) − Ib). (2.11)

Here, p2U [1/min] is the rate of the insulin action on the peripheral glucose utilization and
Ib [pmol/L] is the basal insulin plasma concentration. Furthermore, a delayed insulin
signal represented by a two-compartment chain, Id and I1 [pmol/L], affects the EGP
described in Section 2.7. The delayed insulin signal is described by

İd(t) = −ki(Id(t) − I1(t)), (2.12a)
İ1(t) = −ki(I1(t) − I(t)), (2.12b)

where ki [1/min] is a rate parameter to describe the delay between the insulin signal and
the insulin action on EGP.

2.2.3 Medtronic virtual patient model
The final insulin subsystem is from the MVP model and describes the insulin concentra-
tion in the subcutaneous tissue, ISC [mU/L], and the plasma, IP [mU/L], by

dISC(t) = k1

(
uI(t)
CI

− ISC(t)
)

dt, (2.13a)

dIP (t) = k2 (ISC(t) − IP (t)) dt, (2.13b)

where uI [mU/min] is the subcutaneous insulin administration rate, k2 = k1 [1/min] is
the inverse insulin absorption time constant, and CI [L/min] is the insulin clearance rate.
We set k2 = k1 for identifiability [56]. The insulin effect, IEF F [1/min], is described by

dIEF F (t) = p2 (SI(t)IP (t) − IEF F (t)) dt, (2.14a)
d log(SI(t)) = σSI

dwSI
(t). (2.14b)

p2 = k1 [1/min] is a time constant, GEZI [1/min] is the glucose effectiveness, EGP
[(mmol/L)/min] is the EGP. The insulin sensitivity, SI [(L/mU)/min], is adaptive and
is estimated with the CD-EKF described in Section 4.3.1. Furthermore, σSI

is the insulin
sensitivity diffusion coefficient, and wG and wSI

are standard wiener processes.

2.3 Glucagon models
In this section, we present the glucagon models used during the thesis. We present 1) the
Haider model [57], and 2) the UVP model (Appendix B and C). As the UPV model was
developed towards the end of the thesis, we only used the Haidar model in the virtual
clinical trials and the DiaCon AP.
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2.3.1 Haidar model
The Haider model describes the glucagon absorption as a two-compartment chain, QG

1
and QG

2 [µg], by

Q̇G
1 (t) = uG(t) − QG

1 (t)
τGlu

, (2.15a)

Q̇G
2 (t) = QG

1 (t)
τGlu

− QG
2 (t)

τGlu

, (2.15b)

where uG [µg/min] is the subcutaneous glucagon infusion rate and τGlu [min] is the
glucagon absorption time constant. We describe how the model is included in the Hov-
orka model and the MVP model in Section 2.7.

2.3.2 UPV model
The UPV model also describes the absorption of glucagon as a two-compartment chain,
QG

1 and QG
2 [pg], by

Q̇G
1 (t) = uG(t) − k1Q

G
1 (t), (2.16a)

Q̇G
2 (t) = k1Q

G
1 (t) − k2Q

G
2 (t), (2.16b)

where k1 and k2 are rate parameters and the glucagon concentration, C [pg/mL], is

C(t) = k2Q
G
2 (t)

BW · ClF,C

+ Cb. (2.17)

BW [kg] is the body weight, CLF,C [ml/kg/min] is the apparent glucagon clearance,
and Cb [pg/mL] is the basal glucagon concentration. In addition to the Haidar glucagon
model, the UPV model also includes glucagon receptor dynamics [58]. The receptors
are described in three different states 1) available, r, 2) bonded to glucagon, rc, and
3) internalized, ri [unitless]. The receptors become unavailable in the internalized state.
By assuming that the number of receptors is constant, one state can be eliminated, and
we can express the internalized receptors by

ri(t) = 1 − r(t) − rc(t). (2.18)

The available and bonded receptors are described by

˙r(t) = − konVhC(t)r(t) + koffrc(t) + krecri(t), (2.19a)
˙rc(t) = konVhC(t)r(t) − koffrc(t) − kinrc(t). (2.19b)

kon [(pg/min)−1] is the association rate of glucagon to the receptor, Vh [ml] is the volume
of the hepatic interstitial space, koff [1/min] is the dissociation rate, krec [1/min] is the
recycling rate, and kin [1/min] is the internalization rate of the glucagon-bonded receptor.
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Fhgp [µmol/kg/min] is the hepatic glucose production and is dependent on the glucagon
receptors by the Michaelis-Menten relation

Fhgp(t) = Vrrc(t)
Kr + rc(t)

, (2.20)

where Vr [µmol/kg/min] is the maximum glucagon-dependent hepatic glucose production
rate and Kr [unitless] is the apparent dissociation constant. In the UPV model, the
expression for the EGP (described in Section 2.7), the hepatic glucose production is
added to the effect of insulin on the glucose production in the liver.

2.4 Meal models
In this section, we present the meal models used in the thesis. The meal models are
primarily described in Appendix D. We present the 1) Hovorka model [18, 46], 2) UVA/-
Padova model [59], 3) SIMO model [60], 4) Alskär model [61], and 5) CSTR-PFR model
based on Moxon et al. [62]. The models introduced here consider only the carbohydrate
content of meals and not the nutritional content or, e.g., amount of calories, which also
affects the digestion of food and appearance of glucose in the plasma [63]. The DiaCon
AP and the virtual participants in the large scale virtual clinical trials are based on
Hovorka’s meal model.

2.4.1 Hovorka model
The meal absorption subsystem in the Hovorka model is described as a two-compartment
chain, D1 and D2 [mmol],

Ḋ1(t) = AGD(t) − D1(t)
τD

, (2.21a)

Ḋ2(t) = D1(t)
τD

− D2(t)
τD

. (2.21b)

Here, D [mmol/min] is the amount of carbohydrates in the meals, AG [unitless] is the
carbohydrate bioavailability, and τD [min] is the meal absorption time constant. The
amount of carbohydrates in the meal, D(t) [mmol/min], can be converted to d(t) [g
CHO/min] by

D(t) = 1000
MwG

d(t), (2.22)

where MwG = 180.1577 [g/mol] is the molecular weight of glucose. The rate of appear-
ance, RA [mmol/min], is

RA = f
D2(t)

τD

, (2.23)

where f [unitless] is the fraction of the consumed carbohydrates that appears in the
blood.
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2.4.2 UVA/Padova model
In the UVA/Padova model, meals are consumed by updating the initial condition of the
states and it is a single meal model (the UVA/Padova has been extended to a single day
[45]). The meal absorption is described by three compartments that represent 1) the
solid phase of the stomach, Qsto1 [mg], 2) the liquid phase of the stomach, Qsto2 [mg],
and 3) the glucose mass in the intestine, Qgut [mg]. The solid and liquid phases are
described by

Q̇sto1 = −kgriQsto1, Qsto1(t0) = D, (2.24a)
Q̇sto2 = −kemptQsto2 + kgriQsto1, Qsto2(t0) = 0. (2.24b)

Here, kgri [1/min] is the grinding rate and D [mg] is the total amount of carbohydrates
in the meal. The total amount of glucose in the stomach is

Qsto = Qsto1 + Qsto2, (2.25)

where kempt [1/min] is the emptying rate that depends on the amount in the stomach
and is described by

kempt = kmin + kmax − kmin

2

 tanh(α(Qsto − bD)) − tanh(β(Qsto − cD)) + 2

, (2.26a)

α = 5
2D(1 − b)

, (2.26b)

β = 5
2Dc

. (2.26c)

kmax [1/min] is the maximum emptying rate that decreases with a rate α [1/mg] to the
minimum emtpying rate kmin [1/min] until it recovers back to the maximum by a rate
β [1/mg]. b and c [unitless] relate to the shape of the curve that the emptying rate
decreases and increases with. Finally, the glucose mass in the intestine, Qgut, and the
rate of appearance, RA [mg/kg/min], is

Q̇gut = −kabsQgut + kemptQsto2, Qgut(t0) = 0, (2.27a)

RA = fkabsQgut

BW
, (2.27b)

where, kabs [1/min] is the absorption rate, BW [kg] is the body weight, and f [unitless]
is the fraction of the consumed carbohydrates that appear in the blood.

2.4.3 SIMO model
The SIMO model also describes the absorption of meals with compartments for the
stomach and intestine, but the SIMO model describes the transport through the intestine
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by modeling 1) the jejunum, J [mmol], 2) a delay compartment, R [mmol], and 3) the
ileum, L [mmol]. The stomach, S [mmol], is described by

Ṡ = −kjsS, S(t0) = D, (2.28)

where kjs [1/min] is glucose transfer rate from the stomach to the jujenum and D [mmol]
is the glucose in the stomach (meal) at the initial time. The glucose in the jejunum is
described by

J̇ = kjsS − kgjJ − krjJ, J(t0) = 0. (2.29)

kgj [1/min] is the transfer rate from the jejunum to the plasma and krj [1/min] is the
transfer rate from the jejunum to the delay compartment. The delay compartment is

Ṙ = −klrR + krjJ, R(t0) = 0, (2.30)

where klr [1/min] is the transfer rate from the delay compartment to the ileum. Finally,
the ileum is described by

L̇ = klrR − kglL, L(t0) = 0. (2.31)

Here, kgl [1/min] is the transport rate from the ileum to the plasma. The rate of
appearance, RA [mmol/L/min], is the combined contribution from the jejunum and the
ileum

RA = f(kgjJ + kglL)
V · BW

, (2.32)

where f [unitless] is the fraction of glucose that appear in the plasma, V [L/kg] is the
distribution volume and the BW [kg] is the body weight.

2.4.4 Alskär model
The Alskär model includes a compartment for the duodenum instead of the delay com-
partment in the SIMO model. The Stomach, GS [mg], duodenum, GD [mg], GJ [mg],
and ileum, GI [mg] are represented by

ĠS = −kSDτGS, GS(t0) = D, (2.33a)
ĠD = kSDτGS − kDJGD − RAD, GD(t0) = 0, (2.33b)
ĠJ = kDJGD − kJIGJ − RAJ , GJ(t0) = 0, (2.33c)
ĠI = kJIGJ − RAI , GI(t0) = 0, (2.33d)
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where D [mg] is the glucose in the stomach (meal) at the initial time and the flow rates
between the compartments are

kSD = kw

(
1 − Gγ

D

IGγ
D50 + Gγ

D

)
, (2.34a)

kDJ = 1
LDT

, (2.34b)

kJI = 1
LJT

, (2.34c)

τ = 1
1 + exp(−σ(t − t50))

. (2.34d)

kSD [1/min] is the emptying rate of the stomach described as a hill function with the hill
factor γ [unitless] and amount of glucose corresponding to a 50% reduction of the gastric
emptying rate, IGD50 [mg]. kw [1/min] is the emptying rate for a noncaloric liquid. The
hill function represents the pylorus sphincter that can control gastric emptying. KDJ

and KJI [1/min] are the transport rates from duodenum to the jejunum and from the
jejunum to the ileum. LD and LJ [unitless] are fractions of the total length of the
intestine and T [min] is the transit time. τ [unitless] is a lag coefficient to represent a
delay, where σ [1/min] defines the steepness, and t50 [min] is the time for which τ = 0.5.
The rate of appearance, RA [mg/min/kg], is described as the combined contribution from
each compartment in the intestine and is described with Michaelis-Menten relations to
represent saturation of the glucose transporters, i.e.

RA = FP
RAD + RAJ + RAI

BW
, (2.35a)

RAD = RAmaxDGD

KmG + GD

, (2.35b)

RAJ = RAmaxJGJ

KmG + GJ

, (2.35c)

RAI = RAmaxIGI

KmG + GI

, (2.35d)

where, KmG [mg] is the amount of glucose corresponding to a 50% reduction of the
absorption rate, RAmaxi

[mg/min] for i = D, J, I is the maximum absorption rate from
the duodenum, jejunum, and ileum, FP [unitless] is the fraction of glucose that appears
in the plasma, and BW [kg] is the body weight.

2.4.5 CSTR-PFR model
The CSTR-PFR model describes the stomach as a continuous stirred-tank reactor (CSTR)
and the small intestine as a plug flow reactor (PFR). It is based on the second model
presented by Moxon et al. [62]. Contrary to the previous models, the CSTR-PFR model
also contains partial differential equations (PDEs).
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The stomach, ms [mg], is represented by

ṁs = Fm − Fsd, (2.36a)
Fsd = ksdms, (2.36b)

where Fm = d [mg/min] is the carbohydrates in meals and Fsd [mg/min] is the flow
rate from the stomach to the duodenum. ksd [1/min] is an inverse time constant and
represents the pylorus sphincter. ksd is assumed to be either 1) constant, 2) a function
of the glucose rate of appearance in the plasma [64], or 3) a function of the amount
of glucose in the duodenum [61]. The glucose concentration, csi [mg/m2], in the small
intestine is described by the PDE

∂tcsi = −∂zNp − Qa, z ∈ [z0, zf ]. (2.37)

where, z [m] is the spatial coordinate along the small intestine, and the positions z0 and
zf [m] are the boundaries. The peristaltic movement in the small intestine is described
by the flux, Np [mg/m/min], and it consists of an advection term, Nap [mg/m/min], and
a diffusion term, Ndp [mg/m/min], i.e.

Np = Nap + Ndp, (2.38a)
Nap = vpcsi, (2.38b)
Ndp = −Dp∂zcsi. (2.38c)

vp [m/min] is the constant velocity and Dp [m2/min] is the constant diffusion coefficient.
The glucose absorption, Qa [mg/m2/min], is described by

Qa = 2f

rsi

qa, (2.39a)

qa = vacsi, (2.39b)

where rsi [m] is the radius of the small intestine, f [unitless] is a factor that describes
how much of the glucose that is absorbed, and va [m/min] is the glucose absorption rate.
The boundary condition between the stomach and the duodenum is

AsiNp|z=z0 = Fsd, (2.40)

which means that the flux at the beginning of the small intestine times the cross-sectional
area, Asi [m2] must be equal to the glucose flow rate, Fsd.

Finally, the glucose rate of appearance, RA [mg/min], is

RA = Asi

∫ zf

z0
Qadz. (2.41)

2.5 Physical activity models
During the thesis, we only applied the model by Rashid et al. [65], but more models
of physical activity exist in the literature, e.g., the model by Resalat et al. [50] or by
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Breton [66]. Some models use heart rate to measure exercise intensity (e.g. the Rashid
model), but exercise intensity measured by heart rate can be converted to heart rate
reserve by

HR = HRR(HRmax − HRrest) + HRrest, (2.42)

where HR [BPM] is the heart rate that corresponds to the heart rate reserve, HRR [%],
HRmax [BPM] is the maximum heart rate and HRrest [BPM] is the resting heart rate.
We use the following simple approximation of the maximum heart rate:

HRmax = 220 − age. (2.43)

2.5.1 Rashid model
The Rashid model includes both the short-term effects of exercise, E1 [BPM], and the
long-term effects of exercise, E2 [min]. The model is described by

Ė1(t) = HR(t) − HR0 − E1(t)
τHR

, (2.44a)

ṪE(t) = c1fE1(t) + c2 − TE(t)
τex

, (2.44b)

Ė2(t) = −
(

fE1(t)
τin

+ 1
TE(t)

)
E2(t) + fE1(t)TE(t)

c1 + c2
, (2.44c)

fE1(t) =

(
E1(t)

a·HR0

)n

1 +
(

E1(t)
a·HR0

)n . (2.44d)

Here, TE [min] is the characteristic time for the long-term effects of exercise, where
c1 [min] and c2 [min] define the steady state value and τex [min] is the time constant
for how fast the steady state is reached, HR [BPM] is the heart rate, HR0 [BPM] is
the resting heart rate and τHR [min] is a time constant. a [unitless], n [unitless], and
τin [min] specify the intensity and time constant of the long-term effect exercise on the
insulin action. We describe how the exercise subsystem is included in the Hovorka model
in section 2.7.

2.6 CGM models
In the thesis, we used the CGM model developed by Facchinetti et al. [67] in a simplified
version, where the measurement noise is assumed to be normally distributed. CGM
models represent that CGMs measure from the subcutaneous interstitial tissue with
some sensor noise.
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2.6.1 Fachinetti model
The Fachinetti model describes the glucose transport from the plasma to the interstitial
tissues and a non-Gaussian sensor noise. The non-Gaussian sensor noise represents the
additional lags and delays caused by the CGM. The interstitial glucose concentration,
GSC [mg/dL], is described by

ĠSC = 1
τG,SC

(G(t) − GSC(t)) . (2.45)

The time constant, τG,SC , is 6.7 min. The non-Gaussian sensor noise is represented by
the sum of the two autoregressive processes

cck = 1.23cck−1 − 0.3995cck−2 + wcc,k, (2.46a)
v̂k = 1.013v̂k−1 − 0.2135v̂k−2 + wk, (2.46b)

where wcc,k ∼ N(0,11.3 mg2/dL2) and wk ∼ N(0,14.45 mg2/dL2). The discrete time
measurements from the CGM are described by

yk = GSC(tk) + cck + v̂k. (2.47)

During the thesis, we assume that the sensor noise is normally distributed as in (2.1)
and neglect the non-Guassian sensor noise described by this model.

2.7 Glucose models
We applied three different glucose models during the thesis 1) the Hovorka model [18,
46], 2) the UVA/Padova model [53, 54], and 3) MVP model [55]. The glucose models
describe the plasma glucose concentration and include different representations of the
physiological phenomena that affect both the glucose consumption and glucose produc-
tion.

2.7.1 Hovorka model
The Hovorka model describes the glucose subsystem by the accessible, Q1 [mmol], and
non-accessible, Q2 [mmol], glucose compartments

Q̇1(t) = RA(t) − F01,c(t) − FR(t) − x1(t)Q1(t) + k12Q2(t) + EGP, (2.48a)
Q̇2(t) = x1(t)Q1(t) − k12Q2(t) − x2Q2(t). (2.48b)

Here, RA [mmol/min] is the rate of appearance of meal carbohydrates, k12 [1/min] is
a transfer rate between the compartments, EGP [mmol/min] is the EGP, and xi, i =
1 . . . 3, is the insulin action (2.5). Furthermore, the corrected total non-insulin dependent
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glucose flux, F01,c [mmol/min], and the renal glucose clearance, FR [mmol/min], are
described by

F01,c(t) =

F01 G(t) ≥ 4.5 mmol/L,

F01G(t)/4.5 otherwise,
(2.49a)

FR(t) =

0.003(G(t) − 9)VG G(t) ≥ 9 mmol/L,

0 otherwise,
(2.49b)

where F01 [mmol/min] is the nominal total non-insulin dependent glucose flux. The
plasma glucose concentration, G [mmol/L], is the glucose in the accessible compartment
divided by the distribution volume, VG [L], i.e.

G(t) = Q1(t)
VG

. (2.50)

In the nominal case, the EGP is

EGP = EGP0(1 − x3(t)), (2.51)

where EGP0 [mmol] is the EGP extrapolated to zero insulin concentration, but the UPV
glucagon model modifies the EGP to represent the effect of glucagon on the hepatic
glucose production (2.20), i.e.

EGP (t) = Fhgp(t) + EGP0 (1 − SI,hx3(t)) . (2.52)

Here, SI,h [(mU/L)−1] is the hepatic insulin sensitivity. The Haider glucagon model
instead adds KGluVGQG

2 (t) to (2.48a), where KGlu [(mmol/L)/µg/min] is the glucagon
gain. The Rashid exercise model can be included by subtracting

QE21(t) = αE2(t)2x1(t)Q1(t), (2.53)

from (2.48a) and adding it to (2.48b). Furthermore,

QE22(t) = αE2(t)2x2(t)Q2(t), (2.54)

and
QE1(t) = β

E1(t)
HR0

, (2.55)

are subtracted from (2.48b).

2.7.2 UVA/Padova model
In this thesis, we only used the UVA/Padova model without including glucagon or
exercise. In the UVA/Padova model, the glucose subsystem includes compartments for
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the glucose mass in the plasma and equilibrating tissues, rapidly equilibrating, Gp [mg],
and slowly equilibrating Gt [mg]. It is described by

Ġp(t) = EGP (t) + RA(t) − Uii(t) − E(t) − k1Gp(t) + k2Gt(t), (2.56a)
Ġt(t) = −Uid(t) + k1Gp(t) − k2Gt(t). (2.56b)

Here, RA [mg/kg/min] is the rate of appearance of carbohydrates from the meals, and
k1 [1/min] and k2 [1/min] are rate parameters, E [mg/kg/min] is the renal excretion,
and Uii and Uid [mg/kg/min] are the insulin-independent and insulin-dependent glucose
utilizations given by

Uii(t) = Fcns, (2.57a)

Uid(t) = (Vm0 + VmxX(t))Gt(t)
Km0 + Gt(t)

. (2.57b)

Fcns [(mg/kg)/min] is the glucose uptake of the erythrocytes and the brain, Vmx [mg L/(kg
pmol min)] and Km0 [mg/kg] are parameters, X [pmol/L] is the insulin concentration
in the interstitial fluid (2.11), p2U [1/min] is the rate of the insulin action on the pe-
ripheral glucose utilization, Ib [pmol/L] is the basal insulin plasma concentration, and
Vm0 [(mg/kg)/min] is

Vm0 = (EGPb − Fcns)(Km0 + Gtb)
Gtb

, (2.58)

with
Gtb = Fcns − EGPb + k1Gpb

k2
. (2.59)

EGPb [mg/kg/min] is the basal EGP, and Gtb and Gpb [mg/kg] are the basal glucose
masses. Next, the EGP is

EGP (t) = max{0, EGPb − kp2(Gp(t) − Gpb) − kp3(Id(t) − Ib)}, (2.60)

where kp2 [1/min] and kp3 [mg L/(kg pmol min)] are the liver glucose effectiveness and
the amplitude of the insulin action of the liver. Id is the delayed insulin signal (2.12a),
and Ib [pmol/L] is the basal plasma insulin concentration. Finally, the renal excretion,
E, is

E(t) = max{0, ke1(Gp(t) − ke2)}, (2.61)

where ke1 [1/min] and ke2 [mg/kg] are the glomerular filtration rate and the renal glucose
threshold. The plasma glucose concentration is computed by dividing the glucose mass
in the plasma, Gp, by the distribution volume, Vg [dL/kg], i.e.

G(t) = Gp(t)
Vg

. (2.62)
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2.7.3 Medtronic virtual patient model
The MVP model describes the glucose subsystem by a single compartment representing
the glucose concentration, G [mmol/L]. We only use the MVP model in the DiaCon
AP. We describe the MVP model as a stochastic differential equation (SDE) and include
glucagon from Haidar’s glucagon model
dG(t) = [−(GEZI + IEF F (t))G(t) + EGP + RA(t) + KGluQG

2 (t)]dt + σGdwG(t). (2.63)
Here, IEF F [1/min] is the insulin effect (2.14a), GEZI [1/min] is the glucose effective-
ness, EGP [(mmol/L)/min] is the endogenous glucose production, RA [mmol/min/L]
is the rate of appearance of meals (we use Hovorka’s meal model in the DiaCon AP),
KGlu [(mmol/L)/µg/min] is the glucagon gain, QG

2 [µg] is the second compartment in
the Haidar glucagon model (2.15b) (this term should be removed if glucagon is not in-
cluded in the model), σG is the glucose diffusion coefficient, and wG is a standard wiener
processes.

2.8 Whole-body models
Whole-body models describe much more detailed representations of the human physiol-
ogy, but include many more states and parameters that can be hard, if not impossible
to estimate. In 1985, Sorensen presented a whole-body model that includes insulin,
glucagon, and glucose dynamics [68]. Since then, more models have been proposed as
discussed in Appendix A. During this thesis, we presented a whole-body model that
includes 7 organs, 16 metabolites, and 31 enzymatic reactions, and includes digestion
of meals (carbohydrates, protein, and lipids) and external administration of glucagon
and insulin. Here, we briefly introduce the methodology, but leave out the full system
of equations and instead refer to appendix A. Figure 2.1 shows a diagram of the model
and the dynamics of each compartment is described in the form

V
dC

dt
= M(QinCin − QoutC) + RV, (2.64)

where V is the volume, C is the concentration of the metabolites, M represents the
external and internal component ordering, Qin are the inflow rates, Cin is the concen-
tration of the metabolites that flow in, and Qout are the outflow rates. The production
rate, R, is defined as

R = (TS)′Tr, (2.65)
where r are the reaction rates, S is the stoichiometric matrix, T is a matrix to define
the reactions that occur in each compartment.

2.9 Models for T2D and the ICU
We mainly focused on modeling T1D during the thesis, but some of the models described
here, also exist in versions to represent people in the ICU or people with T2D, such as, the
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Figure 2.1: Schematic representation of the whole-body model. Solid arrows represent
blood circulation, where the right side is the arteries and the left side is the
veins. Thick arrows, a2 and v2, represents joining of flows from other organs.
M , Ck, and Vk represents the blood tissue exchange and Rk represents the
reactions inside the cell. The dotted lines in the compartments suggest
free diffusion as cell-permeability is not included.
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ICU model by Hovorka et al. [69] or the UVA/Padova simulator for T2D [70]. The major
difference between models for T1D and T2D or the ICU is the modeling of the pancreas
in the insulin subsystem. People with T1D do not produce any insulin and therefore the
pancreas is not included in the insulin subsystem, whereas models describing people in
the ICU or with T2D include the insulin production from the pancreas. In Appendix O,
we list three different models for the ICU and extend them by a simple representation
of stress modeled as an unknown disturbance that directly enters the plasma glucose.

2.10 Summary
In this chapter, we described the models that we used or developed during the thesis.
We only described the models that were directly used during the thesis, but more models
exist in the literature. Here, we divided the descriptions of the models into descriptions
of each subsystem and included models for dynamics of insulin, glucagon, meals, exercise,
CGM, and glucose. Finally, we also briefly discussed whole-body models and models
for the ICU and people with T2D. We use different combinations and versions of the
models described here in the remainder of the thesis, where the large scale virtual clinical
trials are based on extensions of Hovorka’s model and the UVA/Padova model and the
DiaCon AP is based on the MVP model extended with Hovorka’s meal model, Haidar’s
glucagon model and a simplified version of Fachinetti’s CGM model. The parameters
for the models are listed in the appendix.
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CHAPTER 3
Large scale virtual clinical

trials
In this chapter, we describe how we use Monte Carlo simulation to evaluate the perfor-
mance of closed-loop diabetes treatments in large scale virtual clinical trials. The virtual
clinical trials include a population of virtual participants represented by a combination of
the models described in Chapter 2 and a protocol that describes the events that happen
during the trial (i.e. a sequence of model disturbances). We use high-performance com-
puting to make it computationally feasible to perform the large amount of closed-loop
simulations. This chapter refers to Appendices E, F, G, and H. Appendix E introduces
the Monte Carlo simulation toolbox used to perform the virtual clinical trials. In Ap-
pendix F, we extend the Monte Carlo simulation toolbox with a low-memory version
and show an example virtual clinical trial, where we compare the performance of two
different closed-loop systems in a population of 1 mio. virtual participants over 1 year.
Appendix G shows an example, where we instead compare the performance of an AP in
two different virtual populations. Finally, Appendix H describes how the protocols and
virtual participants for the virtual clinical trials are generated (lists the model parame-
ters) and describes how they are stored in a database.

3.1 Monte Carlo simulation
We use Monte Carlo simulation to conduct the large scale virtual clinical trials. Monte
Carlo simulations are used to quantify the uncertainty of certain performance measures
(e.g. the TIR for a person with diabetes) for different values of the uncertain quantities.
The Monte Carlo simulation toolbox works for systems in the general form (2.1), where
we can perform Monte Carlo simulations for different 1) model parameters (i.e. virtual
participants), 2) disturbances (i.e. different lifestyles or protocols), 3) realizations of
the process noise (i.e. model uncertainty), 4) initial conditions, and 5) realizations of
the measurement noise (e.g. measurements from a CGMs). Furthermore, we consider
closed-loop feedback control strategies written in a general form

xc
k+1 = κk(xc

k, yk+1, ūk, ȳk+1, d̂k, pκ), (3.1a)
uk = λk(xc

k, yk, ūk, ȳk, d̂k, pµ), (3.1b)
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where xc
k are the control states estimated by some κ, and uk are the manipulated inputs

computed from some control strategy λ. The generel form (3.1) enables simulation of
different announced disturbances, d̂, (e.g. misestimated or mistimed meals), hyperpa-
rameters in the controller, pµ, or state estimator, pκ, and setpoints, ȳk and ūk. This form
describes multiple types of closed-loop control strategies including controllers based on
heuristics and physiological insight, PID-based controllers, and MPCs. We solve the
optimal control problem (OCP) in MPC algorithms with IPOPT [71] and we solve the
system of non-stiff SDEs with the Euler-Maruyama method [72]

tk,n+1 = tk,n + δt, (3.2a)
xk,n+1 = xk,n + f(tk,n, xk,n, uk, dk, pf )δt

+ σ(tk,n, xk,n, uk, dk, pσ)δωk,n,
(3.2b)

where tk,0 = tk, xk,0 = xk, and δwk,n ∼ Niid(0, Iδt). The internal steps in the SDE solver
are not required to have the same sampling time as in the closed-loop system. We let
Nk denote the number of steps of size δt in the interval [tk, tk+1] i.e. Nkδt = ∆t. Then

tk+1 = tk,Nk
, (3.3a)

xk+1 = xk,Nk
. (3.3b)

We use internal steps of 30 seconds.

3.2 Protocols
The protocols describe the activities or events that happen during a clinical trial. Here,
the protocols are represented as the model disturbances, d, in (2.1). The protocols
can also include, e.g., meals that are not estimated correctly. In that case d̂ and d
are different. The protocols can include any disturbance described by the model used
for simulation. In this thesis, we design protocols that include the meal carbohydrate
contents and exercise. We design a set of four season dependent basis days and combine
the basis days to form different weeks, months and years. Figure 3.1 shows the basis
days during winter and autumn that consist of the 1) standard day, 2) active day, 3)
movie night, and 4) late night. During summer and spring, the dinner as a medium
meal and the snack is before lunch. Table 3.1 shows the meal sizes. Here, we assume
that the all the disturbances are correctly announced, i.e. d = d̂. Table 3.2 shows the
composition of the basis days in the standard week, the active week, and the vacation
week. We attempt to represent a northern European lifestyle with eight vacation weeks
(including public holidays) and Table 3.3 shows how the weeks are combined to form
seasons that together forms a year. The protocols are stored in a PostgreSQL database
which makes it straightforward to reuse the existing protocols, combine them in new
combinations, and add new protocols to the framework.
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Medium meal
Small meal

Large meal

Snack

Medium meal
Small meal

Large meal

Snack

Snack

Medium meal
Small meal

Large meal

Snack

Snack

Medium meal
Small meal

Large meal

Snack Snack

Exercise

Figure 3.1: From the top: 1) the standard day, 2) the active day, 3) the movie night,
and 4) the late night.

Table 3.1: Body weight-dependent meal carbohydrate contents.

Meal size Amount of carbohydrates For a 70 kg person
Large meal 1.29 g CHO/kg 90 g CHO
Medium meal 0.86 g CHO/kg 60 g CHO
Small meal 0.57 g CHO/kg 40 g CHO
Snack 0.29 g CHO/kg 20 g CHO

3.3 Virtual Participants
The virtual participants are represented by a mathematical model or a combination of
the models described in Chapter 2. Each virtual participant is associated with a unique
set of model parameters, and we consider all the virtual participants represented by the
same model, a population. Furthermore, we generate personal information for the virtual
participants, e.g., name, date of birth, height, body weight etc. to 1) emulate real data
and 2) compute, e.g., heart rate related parameters that are dependent on age. Figure
3.2 shows the approximations of age, body weight and resting heart rate in the virtual
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Table 3.2: Compositions of the weeks.

Type Standard days Active days Movie nights Late nights
Standard 4 1 1 1
Active 3 3 1 0
Vacation 5 0 0 2

Table 3.3: Compositions of the seasons.

Season Standard weeks Active weeks Vacation weeks
Winter 6 4 3
Spring 6 6 1
Summer 7 3 3
Autumn 9 3 1

population. In this work, we generate 1 mio. parameter sets for the Hovorka model and
extend with Rashid’s exercise model, Haidar’s glucagon model, and Facchinetti’s CGM
model and 1 mio. parameter sets for the UVA/Padova model, i.e. we have generated two
virtual populations with 1. mio virtual participants in each population. The parameters
in the Hovorka model are sampled from the distributions presented by Boiroux et al.
[19] and the distributions in the UVA/Padova model are based on the values provided
by Colmegna et al. [54] and Kovatchev et al. [73]. Furthermore, we require that 1) the
generated parameters are within one standard deviation of the mean, 2) the generated
time constants are within one order of magnitude of the mean, 3) the basal rate is above
0.4 U/h, and 4) the steady state is physical, i.e. non-negative and we discard parame-
ters sets that lead to a steady state glucose concentration above 44 [mmol/L] when no
insulin is administered. Clearly, the amount of data used to construct the distributions
and sample the parameters is limited, but with more data becoming available, it should
become possible to construct more representative distributions in the future. The par-
ticipants are saved in a PostgreSQL database as described in appendix H that also lists
the exact distributions of the model parameters. The database allows the participants
to be reused and makes it possible to add more virtual participants to the framework.

3.4 Examples
We demonstrate the utility of the Monte Carlo simulation toolbox with the example large-
scale virtual clinical trial from Appendix F. Here, we compare the performance of two
different closed-loop systems in a population of 1 mio. virtual participants represented
by an extended version of the Hovorka model during a 1 year (52 weeks) virtual clinical
trial. In both trials, the participants are treated with a model-free DH AP that makes
microadjustments of the basal rate, estimates the insulin-to-carb ratio (ICR) over time
to administer meal insulin boli and can administer glucagon boluses at the beginning of
exercise or if the participant reaches hypoglycemia. In trial A, the nominal basal rate is
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Figure 3.2: Distributions of the personal parameters that affect the simulation models.
From the left: 1) The age of the participants with a mean of 51 years,
2) the body weight of the participants with a mean of 70 kg, and 3) the
resting heart rate of the participants with a mean of 80 BPM.

correctly estimated and in trial B, the nominal basal rate is underestimated by 50%. The
large-scale virtual clinical trials allow us to evaluate the outcomes based on distributions
of the KPIs instead of individual values. Figure 3.3 shows the mean and worst-case TIRs
for trial A and trial B. We define the worst-case trial as the trial where the participant
reaches the lowest glucose concentration. As expected, the TIR in trial A, where the
basal rate is correctly estimated, is higher, but surprisingly the worst-case participant
spends more time in severe hypoglycemia in trial A compared to trial B. Figure 3.4
shows a cumulative distribution of the glucose concentration for the participants in the
two trials, where we can, e.g., inspect the tails of the distribution and see that some
participants reach both very low and very high glucose levels. Furthermore, we can also
see the span of the all the participants. Figure 3.5 shows a boxplot with the distribution
of the time in ranges for all the participants. The boxplot shows that some participants
spend almost all the time in hyperglycemia and 0% time in range in trial A which is not
the case in trial B. However, on average the participants spend less time in range in trial
B. The boxplot also displays that some participants have 100% TIR. Finally, Figure 3.6
shows the distribution of the manipulated inputs during the trials. Since the basal rate
is underestimated in trial B, we can see that the AP administers less basal insulin and
more bolus insulin in trial B compared to trial A. Furthermore, it also shows that more
glucagon is administered in trial B, which is most likely due to the larger insulin boli.
Another example of a large-scale virtual clinical trial is shown in Appendix M, where the
performance of a closed-loop system is evaluated in two different virtual populations.

3.5 High-performance computing
Virtual clinical trials with millions of virtual participants are not computationally feasi-
ble unless high-performance techniques are applied. The Monte Carlo simulation tool-
box is implemented in C and uses OpenMP [74] to parallelize the simulations for shared
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Figure 3.3: Time in ranges for the two different treatments. Left: mean time in ranges
for treatment A and treatment B. Right: time in ranges for the worst-
case participant (the participant that reaches the lowest blood glucose
concentration) for treatment A and treatment B.

memory architectures. The Monte Carlo simulations are straightforward to parallelize as
each worker can be assigned to a distinct closed-loop simulation. It requires significant
amounts of storage to save the results from the large number of long-term simulations.
Therefore, we extend the toolbox presented in Appendix E with a low-memory version
in Appendix F and G, where only selected KPIs are stored and not the full simulations
for each participant. Whenever the simulation for each participant is completed, we
compute its contribution to the selected KPIs such as TIR as well as mean, minimum,
and maximum glucose concentration. Consequently, the simulation is only stored if it
was worse or better than the previous simulations based on the criterion of the KPIs.
We use the DTU HPC system [75], where Table 3.4 shows the computation times of the
virtual clinical trial. The computation time of the trial with 1 mio. participants over
1 year is 82 minutes with 64 cores. Rome and Epyc refers to two different CPU types
available at DTU. The table shows that the computation time scales almost linearly with
the number of cores, which means that the computation time can be further reduced
with more cores. Furthermore, it also indicates that the performance could be improved
by modifying the toolbox to work for distributed memory architectures (e.g. using MPI
[76]) where multiple computers can used.

3.6 Summary
In this chapter, we described the Monte Carlo simulation framework used to perform
large-scale virtual clinical trials of closed-loop diabetes treatment. The virtual partici-
pants are represented by a combination of the mathematical models presented in Chapter
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Figure 3.4: Cumulative distribution of the glucose concentration in the two virtual
clinical trials with 1 mio. virtual participants over 52 weeks. Blue solid
line: the mean glucose concentration in trial A. Blue dotted line: the mean
glucose concentration in trial B. Red solid line: the participant that reaches
the lowest glucose concentration in trial A. Red dotted line: the participant
that reaches the lowest glucose concentration in trial B. Red dashed line:
the setpoint. Grey shaded area: the span of all the participants in trial A.
Light blue shaded area: the span of all the participants in trial B.

Table 3.4: Computation times of one virtual clinical trial with 1 mio. virtual partici-
pants over 52 weeks.

Cores Epyc Rome
64 113 min 82 min
32 220 min 158 min
24 287 min 204 min

2, where each participant is associated with a unique set of parameters, and we design
the protocols from a set of basis days based on a northern European lifestyle. Both the
participants and the protocols are stored in a PostgreSQL database, which allows the
user to reuse, modify and add new participants and protocols to the framework. We
use a general formulation of the models, control algorithm, and state estimator in the
toolbox, which makes it possible to test different control algorithms and represent the
participants by different mathematical models. The general formulation also enables
Monte Carlo simulation of, e.g., different protocols, realizations of the sensor noise or
process noise, or different controller hyperparameters.
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Figure 3.5: Box plot of the time in each range during the two virtual clinical trials
with 1 mio. virtual participants over 52 weeks.

Figure 3.6: Distributions of manipulated inputs during the two virtual clinical trials
with 1 mio. virtual participants over 52 weeks.



CHAPTER 4
Artificial pancreas

technology
In this chapter, we describe the DiaCon AP and summarize the results from a clinical
trial with adolescents (n = 11). We provide an overview of the closed-loop systems
that are either commercially available, in regulatory review, or received approval and
compare with the DiaCon AP. The DiaCon AP consists of a Dexcom G6 CGM, two
Dana RS pumps, and the control algorithm is implemented in an Android smartphone.
The control algorithm is an NMPC algorithm, where we use a stochastic version of
the MVP model extended by Hovorka’s meal model, Haidar’s glucagon model, and
Fachinetti’s CGM model described in Chapter 2 for predictions. We use a ML based
PEM to estimate the parameters. The CD-EKF is used for state estimation and in
the PEM. This chapter is based on Appendices I, J, K, L, M, N, and O. Appendix I
introduces the DH AP system and algorithm and shows the results from a pre-clinical
virtual clinical trial with 50 participants represented by an extended version of Hovorka’s
model. Appendix J provides a full description of the control algorithm used in the
AP, discusses the technical challenges, and summarizes the results from the clinical
trial. Appendix K describes the clinical trial and trial outcomes in detail. Appendix
J and K are the primary resources for this chapter. Appendix L lists and discusses
the individual parameter estimates and outcomes for each participant in the clinical
trial. Appendix M proposes a model-free one-size-fits-all AP for people with T1D that
does not require parameter estimation and is in some ways an extension of the titration
algorithm proposed Appendix N. Finally, Appendix O proposes a linear MPC algorithm
for control of the blood glucose concentration in the ICU.

4.1 Artificial pancreas systems
As also discussed in Chapter 1, there are currently five closed-loop systems commercially
available in the EU or the US. Figure 4.1 shows selected specifications of the systems as
well as the DiaCon AP for comparison. The licenses differ between each system, and they
are not all available in both the EU and the US. Each system have unique features. The
DiaCon AP, the CamAPS FX, and the Omnipod 5 all implement the control algorithm
in Android smartphones, but the Omnipod 5 uses the Omnipod patch pump which
is tubeless instead of the Dana RS pump. The Medtronic systems, Control-IQ, and
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Diabeloop implements the control algorithm in pump or a in dedicated device. The
Medtronic 780G includes automatic corrections and is an upgraded version of the 670G.
Common to all of the commercially available systems is that they require announcements
of meals or exercise. Compared to the commercially available systems, the DH feature
of the DiaCon AP is unique, but if we compare to other AP systems in development
(see Figure 4.2), both the Inreda and Ilet bihormonal systems are able to administer
glucagon. Both the Inreda and iLet bihormonal systems have special pumps that contain
chambers for both insulin and glucagon, i.e., they do not require two different pumps
like the DiaCon AP, but currently, just the insulin only version of the iLet system is
in regulatory review. Furthermore, the Inreda system does not require announcements
of meals or exercise whereas the iLet system still requires announcements although not
specific amounts of carbohydrates. The Inreda system is the only system that uses two
CGMs. Finally, the Tidepool loop system is an Iphone app that is compatible with
multiple sensors and pumps and also integrates with the Apple watch. As these systems
are still in development, the exact features are unknown and some of the details might
change.

4.2 DiaCon artificial pancreas system
The DiaCon AP is categorized as a hybrid DH closed-loop system as it can administer
both insulin and glucagon and requires the user to announce both meal intake and
exercise. The system consists of two Dana Diabecare RS pumps (one for insulin and
one for glucagon), a Dexcom G6 sensor, and a Samsung galaxy A5 2017 smartphone.
Figure 4.3 shows a picture of the DiaCon AP. The DiaCon app is a Java Android
application that also provides a GUI for the user. All computations in the control
algorithm are performed with the smartphone. Figure 4.4 shows a flowchart of the
closed-loop system as well as the pre-trial preparations. We describe the details of both
the pre-trial parameter estimation and the control algorithm in Section 4.3.

4.3 Nonlinear model predictive control
In this section, we describe the NMPC algorithm used to compute the insulin and
glucagon administration in the AP, and how we estimate the parameters in the predic-
tion model. NMPC algorithms compute a closed-loop feedback control strategy using
the moving horizon principle, where a new open-loop strategy is computed with some
sampling time when new measurements are available. NMPC allows to include the non-
linear effect of the insulin action on glucose. The NMPC algorithm is combined with a
number of heuristics to switch between insulin and glucagon and to provide additional
safety constraints.
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Figure 4.1: Comparison between the DiaCon AP system (SH and DH configuration)
with the closed-loop systems commercially available in the EU or the US.
From the left: DiaCon SH, DiaCon DH, Medtronic 670G, Medtronic 780G,
Control-IQ, CamAPS FX, Diabeloop, and Omnipod 5.
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DiaCon Single DiaCon Dual Tidepool Loop iLet insulin only iLet bihormonal Inreda

System 
appearance

Continuous 
glucose monitor

Dexcom G6 Dexcom G6 Dexcom G6
Guardian Sensor

Dexcom G6 Dexcom G6 Medtronic

Pump Dana RS Dana RS Omnipod
MiniMed

iLet pump iLet pump Inreda pump

Algorithm 
configuration

App on Android 
phone

App on Android 
phone

App on Iphone On pump On pump On pump

Regulatory status - - FDA approved Pending 510(k) - CE mark

Features Automatic 
corrections. 
Exercise mode 
with temporary
target

Dual hormone. 
Automatic 
corrections. 
Exercise mode 
with temporary
target

Compatible with 
multiple diabetes 
devices. Automatic 
corrections. 
Exercise mode

Automatic 
corrections. Does 
not require carb 
counting

Dual hormone.
Automatic 
corrections. Does 
not require carb 
counting

Dual hormone. No 
announcements 
required

Figure 4.2: Comparison between the DiaCon AP system (SH and DH configuration)
and the closed-loop systems that are in development and either received
approval or are in regulatory review (with the exception of the iLet bihor-
monal system). From the left: DiaCon SH, DiaCon DH, Tidepool Loop,
iLet insulin only, iLet bihormonal, and Inreda AP.

4.3.1 Continuous-discrete extended Kalman filter
We use the CD-EKF [77] to estimate the states and the insulin sensitivity from the
received CGM measurement every 5 minutes. Furthermore, we use the CD-EKF in the
PEM to estimate the model parameters.

Filtering Given the previous one-step prediction of the states, x̂k|k−1, its covariance,
Pk|k−1, and a measurement, yk, the CD-EKF computes the filtered state, x̂k|k, and
its covariance, Pk|k. We compute the one-step prediction of the measurement and its
derivative by

ŷk|k−1 = g(tk, x̂k|k−1, θ), (4.1a)

Ck = ∂g

∂x
(tk, x̂k|k−1, θ). (4.1b)

We use the one-step prediction of the measurements to compute the innovation, ek, and
its covariance, Re,k, by

ek = yk − ŷk|k−1, (4.2a)
Re,k = CkPk|k−1C

T
k + R. (4.2b)

We then compute the Kalman gain as

Kfx,k = Pk|k−1C
T
k R−1

e,k, (4.3)



4.3 Nonlinear model predictive control 47

Figure 4.3: The DiaCon AP system. The system consists of 1) an Android smart-
phone, 2) a Dexcom G6 sensor, 3) a Dana Diabecare RS pump for insulin
administration, and 4) another Dana Diabecare RS pump for glucagon
administration.

and obtain the filtered state and its covariance by

x̂k|k = x̂k|k−1 + Kfx,kek, (4.4a)
Pk|k = Pk|k−1 − Kfx,kRe,kKT

fx,k. (4.4b)

Positive definiteness of the filtered state covariance, Pk|k, can be ensured by the Joseph
stabilized form [78]

Pk|k = (I − Kfx,kCk)Pk|k−1(I − Kfx,kCk)T + Kfx,kRKT
fx,k. (4.5)

Prediction From the filtered state-covariance pair (4.4), we compute the one-step
prediction

x̂k+1|k = x̂k(tk+1), (4.6a)
Pk+1|k = Pk(tk+1), (4.6b)

by solving
d

dt
x̂k(t) = f(t, x̂k(t), uk, dk, θ), (4.7a)

d

dt
Pk(t) = Ak(t)Pk(t) + Pk(t)Ak(t)T

+ σk(t)σk(t)T , (4.7b)
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Pre-trial parameter estimation

Closed-loop system

PumpsSensor Participant

Smartphone

Uncertain dynamical system

Maximum likelihood based prediction error method

Write to pumpRead sensor Extended
Kalman filter

Pre-
processing

Optimal control
problem

Post-
processing

Figure 4.4: A flowchart of the pre-trial preparations and the DiaCon AP as a closed-
loop system. Top left: Example of CGM, meal, and insulin data received
before the studies. Top right: Parameter estimation using the data pro-
vided by the participants. Bottom: We enter the model parameters in the
smartphone that is connected to the sensor and pumps. The smartphone
reads the sensor and estimates the states using the CD-EKF based on
the measurement. We then update the constraints, select either insulin or
glucagon administration, and solve the OCP. The post-processing routine
evaluates the solution, checks the predictions, and rounds the input to the
pump resolution before writing the instructions to the pump.
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for tk ≤ t ≤ tk+1, where

Ak(t) = ∂f

∂x
(t, x̂k(t), uk, dk, θ), (4.8a)

σk(t) = σ(t, x̂k(t), uk, dk, θ), (4.8b)

with the initial condition

x̂k(tk) = x̂k|k, (4.9a)
Pk(tk) = Pk|k. (4.9b)

Remark Different versions of the Kalman filter can also be applied for fault-detection
[79, 80].

4.3.2 System identification
We estimate the parameters in the extended MVP with a PEM based on the CD-
EKF [56] from CGM, meal, and insulin data. In the clinical trial, we received around
two weeks of data from the participants prior to the trials and in the pre-clinical virtual
clinical trials (Appendix I), we generate data with the simulation model and estimate
the parameters from the simulated data to represent a real clinical trial.

4.3.2.1 Maximum likelihood based prediction error method
We use a ML based PEM using the CD-EKF to estimate the parameters. Let IN be a
set of experimental data, i.e.

Ik+1 = {yk+1, uk, dk} ∪ Ik, I0 = {y0}, k = 0 . . . N − 1. (4.10)

The aim is to maximize the conditional probability density, p(IN |θ). Since we assume
that the inputs, uk, and disturbances, dk, are deterministic, we can express the condi-
tional probability density as

p(IN |θ) = p(yN , yN−1, . . . , y0|θ). (4.11)

Let the negative log-likelihood function

V (θ) = − log(p(YN |θ)), (4.12)

be expressed as

V (θ) = (N + 1)ny

2
log(2π) + 1

2

N∑
k=0

(
log[det(Re,k(θ))] + ek(θ)T [Re,k(θ)]−1ek(θ)

)
. (4.13)
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Here, ny = 1 and the innovation, ek, and its covariance, Re,k, are computed with the
CD-EKF (4.2). The objective is to the find the set of parameters, θ̂, that minimizes the
negative log-likelihood function (4.13), i.e.,

θ̂ = arg min
θl≤θ≤θu

V (θ), (4.14)

where θ̂ ∼ N(θ̄, Pθ) and with the constraints θl ≤ θ̄ ≤ θu.

4.3.2.2 Fisher information matrix and parameter covariance
The Fisher information matrix, H(θ), is defined as the covariance of the gradient of the
log-likelihood function

[
H(θ̂)

]
ij
≜ Eθ

{
∂V

∂θi

(θ̂)∂V

∂θj

(θ̂)
}

= Eθ

{
∂2V

∂θi∂θj

(θ̂)
}

, (4.15)

or equivalently
H(θ̂) ≜ Eθ

{
∇V (θ̂)∇V (θ̂)′

}
= Eθ

{
∇2V (θ̂)

}
, (4.16)

where

∂V

∂θi

=
N∑

k=0

1
2

tr
[
R−1

e,k

∂Re,k

∂θi

]
+ e′

kR−1
e,k

∂ek

∂θi

− 1
2

e′
kR−1

e,k

∂Re,k

∂θi

R−1
e,kek, (4.17)

The observed Fisher information matrix can be used to provide a lower bound on the
covariance of the estimated parameters by the Cramér-Rao lower bound (CRLB) [81–83]

Pθ = Cov(θ̂) ≥ H−1(θ̂). (4.18)

If the number of data points is sufficiently large, the covariance of the parameter esti-
mates, θ̂, can be approximated as the inverse of the Hessian [84], i.e.

Cov(θ̂) = H−1(θ̂). (4.19)

Consequently, the standard deviation of the parameter estimate, θ̂i, is

σθ̂i
=
√

(H−1)i,i. (4.20)

Remark The Fisher information matrix can also be applied to evaluate the experi-
mental design [85, 86].
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4.3.2.3 Examples
Figure 4.5 shows an example of the data used for estimation and a simulation with
the estimated parameters for one virtual participant from Appendix I, and Figure 4.6
shows the data and a simulation with the estimated parameters for a participant in
the actual clinical trial from Appendix J and L. Clearly, the fit is more accurate in the
simulation study. The data we received from each participant before the clinical trial
was usually of poor quality with periods of missing CGM data and unannounced or
misestimated meals. Therefore, we selected a subset of the data for estimation, which
was usually less than 24 hours, and for some participants it was not possible to find
more than a few hours of data without missing information. In practice, it was also
necessary to fix some of the parameters. Choosing a suitable subset of the and data
and which parameters to fix was both a challenging and time-consuming task and was
performed by trial and error. Conversely, the data in the simulation study had correctly
announced meals and no missing data. Furthermore, the data received from the real
participants included more variations in, e.g., the meal response, where meals of similar
sizes with a corresponding insulin bolus resulted in different responses (see, e.g., the
first and third meal in Figure 4.6). These variations might occur because of incorrectly
announced meals, but can also happen because of physiological variability. We could
have included incorrectly announced meals in the simulation study, but neither the
control nor simulation model are able to describe the physiological variability in the
meal response. The combined effects lead to much more accurate predictions in the AP
in the simulation study compared to the real clinical trial.

4.3.3 Optimal control problem
We solve an OCP to compute the insulin or glucagon administration every 5 minutes
when a new CGM measurement is received. The OCP is in the form

min
[x(t)]

tf
t0

,{uk}N−1
k=0

ϕ = ϕ([x(t)]tf

t0 , {uk}N−1
k=0 ), (4.21a)

subject to

x(t0) = x̂0, (4.21b)
ẋ(t) = f(t, x(t), u(t), d(t), θ), t ∈ [t0, tf ], (4.21c)
u(t) = uk, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (4.21d)
d(t) = d̂k, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (4.21e)
umin ≤ uk ≤ umax, k = 0, . . . , N − 1, (4.21f)

where (4.21b) is the initial condition estimated with the CD-EKF, (4.21c) is the determin-
istic part of the extended MVP model, (4.21d)-(4.21e) are zero-order hold parametriza-
tions of the manipulated inputs and announced disturbances, and (4.21f) are the con-
straints on the manipulated inputs. We use a control and prediction horizon of 6 hours
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Figure 4.5: Parameter estimation for the example study. From the top: 1) CGM
measurements (blue dots) and a simulation with the estimated parameters
(red line), 2) announced meals, 3) basal insulin rate, and 4) bolus insulin.

for predicting sufficiently long to reach steady state while ensuring computational feasi-
bility. We describe the objective function, ϕ, in Section 4.3.3.1.

4.3.3.1 Objective function
We define the objective function (4.21a) as

ϕ =
∫ tf

t0
ρz(z(t))dt +

N−1∑
k=0

ρu(uk), (4.22)

to penalize deviations from the target glucose concentration and deviations from the
nominal values of the manipulated inputs. We define the term that penalizes deviations
from the target glucose concentration as

ρz(z) = αz̄ρz̄(z) + αzminρzmin(z) + αzmaxρzmax(z), (4.23)
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Figure 4.6: Parameter estimation for one virtual participant in the simulation study.
From the top: 1) CGM measurements (blue dots) and a simulation with
the estimated parameters (red line), 2) announced meals, 3) basal insulin
rate, and 4) bolus insulin.

where

ρz̄(z) = 1
2

(z − z̄)2, (4.24a)

ρzmin(z) = 1
2

(min{0, z − zmin})2, (4.24b)

ρzmax(z) = 1
2

(max{0, z − zmax})2. (4.24c)

We penalize 1) deviations of the blood glucose concentration from the setpoint, z̄ =
6 mmol/L, 2) hypoglycemia (z < zmin = 4.5 mmol/L), and 3) hyperglycemia (z >
zmax = 10.0 mmol/L). Figure 4.7 shows the glucose penalty function when administering
both glucagon and insulin. The weights in (4.23) are αz̄ = 1, αzmin = 106, αzmax = 50
when computing the insulin administration, and αzmax = 0 when computing the glucagon
administration. The penalty function is asymmetric to penalize hypoglycemia more than
hyperglycemia i.e. αzmin > αzmax . The second penalty term is defined as

ρu(uk) = αu,baρu,ba(uba,k) + αu,boρu,bo(ubo,k), (4.25)
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Figure 4.7: Asymmetric glucose penalty function when administering insulin (blue)
and glucagon (black).

when administering insulin, where

ρu,ba(uba,k) = ∥uba,k − ūba,k∥2
2, (4.26a)

ρu,bo(ubo,k) = ∥ubo,k∥1. (4.26b)

Here, ρu,ba(uba,k) penalizes deviations from the nominal basal insulin rate ūba,k in a 2-
norm to promote small deviations and ρu,bo(ubo,k) penalizes administering insulin boli,
where the 1-norm promotes sparsity, i.e., few, but large insulin boli. We set the weights
in (4.25) to αu,ba = 0.5 and αu,bo = 0.01. When administering glucagon, the penalty
term is

ρu(uk) = αu,G∥uG,k∥2
2. (4.27)

Similar to the basal insulin penalty term, we also apply the 2-norm for glucagon admin-
istration to promote small deviations, but here the nominal value is zero. The weight is
αu,G = 100.0.

4.3.3.2 Numerical solution
We use direct multiple-shooting [87] to transcribe the OCP (4.21) into an NLP. We
discretize the dynamic constraint (4.21c) and the integral in the objective function with
an explicit 4th order Runge-Kutta method with fixed step size. We solve the NLP with
a SQP method [20, 88], where we solve the QP in each SQP iteration with a Riccati
based primal-dual interior point algorithm [89, 90].

4.3.4 Heuristics
We use heuristics to 1) switch between insulin and glucagon administration, 2) compute
bounds of the insulin and glucagon administration, 3) update controller parameters when
exercise is announced, 4) round to pump resolution, and 5) a fall-back strategy if the
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solution of the OCP (4.21) was prevented. In the nominal case, the setpoint, z̄, and the
switch limit is,

z̄ = 6.0 mmol/L, switch limit = 4.5 mmol/L. (4.28)

The setpoint is set to a value above the glucose level in healthy people as an extra
safety measure to avoid hypoglycemia. Furthermore, the switch limit is slightly above
the threshold for the hypoglycemic range to let the AP be able to administer glucagon
proactively. Algorithm 1 lists the full control algorithm.

Algorithm 1: Control algorithm executed with 5 min intervals.
1 if CGM measurement available then
2 if a meal was consumed within the previous hour then
3 set the insulin sensitivity diffusion coefficient, σSI

, to zero;
4 end
5 estimate the states, x̂, Section 4.3.1;
6 clip insulin sensitivity, SI(t), (4.38);
7 update the constraints, umax

G,k , (4.34), umax
ba,k , (4.33), and, umax

bo,k , (4.29);
8 if the exercise mode is active then
9 update the setpoint, z̄, and the switch limit, (4.36);

10 end
11 if the measured or estimated glucose level is below the switch limit then
12 solve the OCP, (4.21), in glucagon mode;
13 else
14 solve the OCP, (4.21), in insulin mode;
15 if any glucose predictions within the next 30 min are below the switch

limit then
16 go back and solve the OCP in glucagon mode;
17 end
18 end
19 if the optimal solution is obtained then
20 proceed with the solution;
21 else
22 use the open-loop fallback strategy, (4.39);
23 end
24 if exercise was just announced and GCGM < 7 mmol/L then
25 stop insulin administration and give a glucagon bolus of 100 µg, (4.37);
26 end
27 else
28 use the open-loop fallback strategy, (4.39);
29 end
30 round to pump resolution and unit conversion, Section 4.3.10;
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4.3.5 Switch logic
We use a simple switch logic to avoid administering insulin and glucagon simultaneously:

• If the measured or estimated glucose concentration is below switch limit, we set
the insulin administration to zero and switch to the glucagon mode.

• If the glucose concentration is predicted to become below the switch limit within
the next 30 minutes, we set the insulin administration to zero and switch to the
glucagon mode.

The AP is always initialized in insulin mode.

4.3.6 Insulin administration logic
We allow insulin boli to be administered after meals or as a correction if the glucose
concentration reaches hyperglycemia. We compute the upper bound on the allowed
insulin bolus as

umax
bo,k = max{ϵ, ucorr

bo,k + umeal
bo,k − uhist

bo,k}, (4.29)

where ϵ = 10−3, ucorr
bo,k is the maximum correction bolus infusion rate, umeal

bo,k is the maxi-
mum meal bolus infusion rate, and uhist

bo,k is the sum of the insulin administration history
over the last hour. The allowed correction bolus is computed as

ucorr
bo,k = max

{
0,

1
Ts

GCGM − Gmax

ISF

}
. (4.30)

Here, Ts = 5 min is the sampling time, GCGM [mmol/L] is the CGM measurement,
Gmax = 10 mmol/L is the limit for when correction boli can be administered, and
ISF [mmol/L/mU] is the insulin sensitivity factor provided by the participants. The
correction bolus target is set to 10 mmol/L, as the aim is to correct the participants into
range and not to the target. We allow meal boli for 1 hour after a meal is announced
and compute the maximum allowed insulin bolus as

umeal
bo,k = max

{
0,

γ

Ts

d̂

ICR

}
, (4.31)

where d̂ [g CHO] is the announced amount of the carbohydrates in the meal, ICR [g/mU]
is the ICR provided by the participants, and γ = 1.15 [unitless] allows the AP to
administer 15% more insulin than the amount that would have been administered based
on the ICR alone. If a meal was not consumed within the last hour, umeal

bo,k = 0. The
insulin bolus history is computed as

uhist
bo,k =

Nhist
bo∑

j=1
ubo,k−j|k−j, (4.32)
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where ubo,k|k is the insulin bolus infusion rate at the k’th interval and Nhist
bo = 11 corre-

sponds to 12 sampling intervals of 5 minutes, i.e., 1 hour. Finally, the maximum allowed
insulin basal rate is

umax
ba,k = 2ūba,k, (4.33)

where ūba,k is the nominal basal rate of the participants.

4.3.7 Glucagon administration logic
The glucagon administration is constrained by

umax
G,k = max{ϵ, ūmax

G − uhist
G,k}. (4.34)

Here, ϵ = 10−3, ūmax
G = 300 µg and the glucagon history is computed by

uhist
G,k =

Nhist
G∑

j=1
uG,k−j|k−j. (4.35)

uG,k|k is the glucagon administration rate at the k’th interval and Nhist
G = 23 which

corresponds to 24 sampling intervals, i.e., 2 hours. The limit of 300 µg per 2 hours is
based on the recommendations by the doctors at Steno Diabetes Center Copenhagen.

4.3.8 Exercise logic
We update certain parameters in the AP when exercise is announced as the prediction
model does not include an exercise subsystem. We increase the setpoint, z̄, and the
switch limit to reduce insulin administration and allow the AP to administer glucagon
earlier during exercise. The updated values are

z̄ = 7.0 mmol/L, switch limit = 7.0 mmol/L. (4.36)

Furthermore, if GCGM < 7 mmol/L when exercise is announced, a glucagon bolus is
administered

uG,k = 100 µg if GCGM < 7 mmol/L. (4.37)

4.3.9 Insulin sensitivity logic
We set the insulin sensitivity diffusion coefficient to zero for one hour after meals to
prevent the meals from effecting the adaptive estimation of the insulin sensitivity. Fur-
thermore, we restrict the estimated value of the insulin sensitivity, SI , in the CD-EKF
to be within the limits

log SI(0) − 1 ≤ log SI(t) ≤ log SI(0) + 1, (4.38)

as a safety measure, where SI(0) is estimated during the parameter estimation.
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4.3.10 Post-processing and fall-back strategy
We design a fall-back strategy to handle possible unforeseen problems. Specifically, the
fall-back strategy is activated in case the solution of the OCP (4.21) is prevented (e.g.,
if the maximum number of iterations in the SQP algorithm is reached). The fall-back
strategy is

uba,k|k =

0 GCGM ≤ 8.0 mmol/L,

ūba,k otherwise,
(4.39a)

ubo,k|k = 0, (4.39b)

uG,k|k =

min{15 µg, umax
G,k } GCGM < 4.5 mmol/L,

0 otherwise.
(4.39c)

If the solution of the OCP (4.21) is obtained, we round the manipulated inputs to the
pump resolution which is 0.01 U/h for the insulin basal rate, 0.1 U/h for the bolus
insulin and 0.01 µg/h for the glucagon infusion rate.

4.4 Clinical trial
The DiaCon AP was tested in a clinical trial with adolescents with T1D. Appendix
K describes the clinical trial and primary outcomes. Appendix L and J discuss the
clinical trial from a technical perspective. Appendix L describes the results from each
study individually and Appendix J summarizes the overall results and compares to the
simulation study performed in Appendix I. Here, we provide an overview and discuss
the most interesting learnings from a technical perspective and refer to the Appendices
for more details. There were 3 participants in the phase 1 trial and 11 participants in
the phase 2 trial. In the phase 1 trial, we only tested the DH configuration of the AP
and in the phase 2 trial each participant had two visits, one with the DH configuration
of the AP and one with the SH configuration of the AP. Figure 4.8 shows the protocol.
The study lasted 26 hours and the participants entered the clinic at 17:00, had dinner at
19:00, slept from approximately 22:00 to 07:30, had breakfast at 08:00, lunch at 12:00, a
snack at 15:00, had an exercise session of moderate intensity from 16:30-17:15, and the
study ended at 19:00. The participants had a median of 54% TIR, 3% in level 1 and 2
hypoglycemia, and 43% in level 1 and 2 hyperglycemia with their normal treatment.

4.4.1 Technical difficulties and subset of participants
The studies were affected by a number of technical difficulties of varying impact including
pressure induced sensor attenuations (PISAs), lost connections to the pumps, occlusions,
and bent infusion sets. PISAs cause faulty CGM measurements of very low glucose
concentrations, which causes the DH AP to administer glucagon to increase the glucose
concentration. PISAs are less significant for SH APs as the only impact is a suspension
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of the insulin administration until the next measurement is received. One approach to
circumvent PISAs, is to, e.g., use two glucose sensors as in the Inreda system. Lost
connections to the pumps can cause the AP to believe that the insulin or glucagon has
been administered, which causes both the participants to not receive the adequate dose,
but also the estimate of the insulin sensitivity to become incorrect. If the connection is
lost briefly it has almost no effect, but prolonged disconnections can have a severe impact
on the study outcome. The AP starts an alarm if the connection is lost for more than 15
minutes, but in one study the alarm was unnoticed. Glucagon occlusions are common
and happen due to rapid fibrillation after reconstitution [91]. The occlusions prevent
the glucagon from being delivered and causes issues in the AP as the administered
amount is unknown. Finally, when inserting the infusion sets, the tubes may bend and
prevent drug delivery. We make a subset of studies, where we exclude the studies that
were heavily affected by technical difficulties. Furthermore, we also exclude the studies
where no glucagon was administered in the DH study, as the algorithm is identical in
both studies, in that case. The subset of selected participants (n = 7) excluded two
participants, where no glucagon was administered in the DH study, a participant where
the connection to the insulin pump was lost for approximately 7 hours in the DH study,
and finally a participant where multiple PISAs occurred in the DH study and caused
faulty glucagon administrations.

4.4.2 Results
We show the combined results from the phase 2 trial here and refer to Appendix J and
L for discussions of the individual studies the results from the phase 1 trial. Figure
4.9 shows the mean time in the different ranges for all phase 2 studies, the selected
studies, the worst-case studies (the studies where the participants spent most time in
level 2 hypoglycemia), and the simulation study presented in Appendix I. Table 4.1
shows the outcomes for the glycemic targets [40] for all studies in the phase 2 trial as
well as the selected studies and the simulation study, and Table 4.2 shows the insulin
and glucagon administration. Finally, Figure 4.10 shows the median and span of all the
phase 2 studies and the selected studies. The mean TIR was higher (not significantly
different, see Appendix K) and the mean time in hypoglycemia was lower in the SH
studies compared to the DH studies, when considering all studies. The TIR for both
configurations was higher than the baseline TIR of the participants, but adherence during
the clinical trial might also affect the TIR. If we consider the selected studies, the TIR
was similar and all the glycemic targets were satisfied. In the worst-case SH study, the
participant entered the clinic in level 2 hypoglycemia and did not reach normoglycemia
before the study was started and both the meal and glucagon response was overestimated
in the worst-case DH study, which resulted in too much insulin being administered. The
insulin administration was similar in all studies although slightly more correction bolus
insulin was administered in the DH studies. More glucagon was administered in the
selected studies, where a mean of 912.91 µg glucagon was administered compared to
a mean of 653.95 µg in all studies. Figure 4.10 shows that, the glucose concentration
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was mainly in target over night and oscillated more during the day, and that the initial
glucose concentration varied between each study. The initial condition should not have
a large impact on the performance in a real life setting, where the participants wear
the AP for extended periods of time, but can affect the outcomes in a 26 hour study.
If we compare the outcomes from the clinical trial to the simulation study, both the
DH and SH configuration achieved lower TIR and more TBR in the clinical trial. We
believe future simulation studies could represent a real clinical better, if we designed
the simulation study differently. Specifically, 1) the simulated data used for parameter
estimation is of too high quality with no missing data and correctly announced meals,
2) the glucagon model was the same in both the simulation and control model in the
simulation study which results in too accurate predictions of the glucagon response, and
3) the initial condition should not always be steady state. Furthermore, it could be
interesting to include certain technical issues in a simulation study as suggested by, e.g.,
Formo et al. [92].

4.5 Summary
In this chapter, we introduced the DiaCon AP and summarized the results from a clinical
trial with (n = 11) adolescents. Furthermore, we compared the overall features of the
DiaCon AP to the closed-loop systems that are commercially available or in development.
The DiaCon AP uses a Dexcom G6 CGM, two Dana Diabecare RS pumps, and the
control algorithm is implemented in an Android smartphone. The control algorithm is
an NMPC algorithm, where we use an extended stochastic version of the MVP model for
prediction. Furthermore, we use a number of heuristics for additional safety measures
and to switch between insulin and glucagon administration. We obtain the individualized
model parameters with a ML based PEM from CGM, meal and insulin data before the
trials. The clinical trials displayed that it is feasible to use NMPC for APs, where both
the DH and SH configuration of the AP improved the TIR compared to the median
baseline TIR of 54%, but obtaining a model for predictions is both very time-consuming
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Figure 4.8: The protocol in the clinical trial. The protocol consists of a dinner, sleep,
a breakfast, a lunch, a snack, and finally, exercise of moderate intensity.
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Table 4.1: Mean and standard deviation of the values for the glycemic targets [40]
for the DH and SH AP in the clinical trial as well as the simulation study.
The average glucose concentration is shown in [mmol/L] and the rest of the
targets are displayed in [%].

Quantity Target DH all SH all DH selected SH selected DH sim.

Avg. gluc. < 8.55 8.69 (1.57) 8.05 (1.15) 7.73 (0.91) 7.65 (0.66) 7.01 (0.41)
GMI < 7 7.03 (0.70) 6.78 (0.50) 6.61 (0.41) 6.61 (0.29) 6.33 (0.18)
GV ≤ 36 29.81 (6.88) 33.93 (8.72) 31.34 (6.29) 31.74 (6.63) 29.95 (8.18)
Active CGM 100 99.97 (0.10) 100.0 (0.00) 100.0 (0.00) 100.0 (0.00) 100.0 (0.00)

2 hyper < 5 5.2 (7.26) 4.8 (7.38) 1.8 (3.89) 1.3 (2.73) 1.9 (3.31)
1 and 2 hyper < 25 34.3 (22.56) 22.2 (13.63) 20.7 (13.36) 18.8 (11.38) 10.56 (8.28)
normo > 70 62.9 (20.94) 76.0 (13.63) 75.3 (12.70) 78.8 (11.90) 89.44 (7.16)
1 and 2 hypo < 4 2.8 (4.65) 1.8 (1.63) 4.0 (5.52) 2.4 (1.42) 0.0 (0.00)
2 hypo < 1 0.8 (1.50) 0.2 (0.48) 1 (1.75) 0.3 (0.60) 0.0 (0.00)

Table 4.2: Mean and standard deviation of the insulin and glucagon administration
during the 26 h trial.

Quantity DH all SH all DH selected SH selected DH sim.

Total ins. [U] 59.32 (20.65) 59.47 (17.15) 58.12 (18.44) 61.45 (18.89) 26.19 (7.34)
Basal ins. [U] 26.88 (9.45) 26.29 (7.96) 27.71 (9.01) 28.05 (7.99) 15.13 (4.59)
Meal bo. ins. [U] 25.94 (10.33) 28.64 (10.39) 26.89 (10.12) 30.64 (12.32) 10.12 (3.61)
Cor. bo. ins. [U] 6.50 (6.26) 4.54 (3.71) 3.53 (4.01) 2.76 (2.20) 0.94 (1.36)
Glucagon [µg] 654.0 (499.6) - 912.9 (415.2) - 135.5 (74.3)

and very challenging. The TIR was not significantly different between the DH and SH
configuration. The DH AP achieved a mean of 63% TIR and the SH AP achieved a mean
of 76% TIR. Some studies were heavily affected by technical issues, such as, PISAs and
lost connections to the pumps, and therefore we made a subset of selected participants
(n = 7). For the selected participants, the DH AP achieved a mean of 75.3% TIR and
the SH AP achieved a mean of 78.8% TIR.



CHAPTER 5
User interfaces

In this chapter, we describe and demonstrate two user interfaces for diabetes manage-
ment. We show the GUI from the DiaCon AP application and a web application that lets
people with diabetes and medical personnel view diabetes data from, e.g., an AP. The
web application is a prototype hosted on the localhost and only includes virtual people
and simulated data as described in Chapter 3, but it is designed to work with real data
from, e.g., the AP as well. The web application is build with a Vue.js frontend applica-
tion, a Java Spring Boot backend application, and the data is stored in a PostgreSQL
database. We show a demonstration of the DiaCon app here, but it was primarily devel-
oped before the beginning of this project. During this project, we added functionality
to the exercise announcement screen and corrected bugs. Appendix P describes the web
application.

5.1 Artificial pancreas mobile application
The DiaCon app is a Java android application build with the model-view-presenter
framework. The application is currently not connected to a database and saves the data
in local CSV files as GDPR restricts the connection to the internet during the clinical
trials. The application serves multiple purposes as it handles the connections to the
pumps and sensor, calls the control algorithm, lets the user create a profile (name, ICR,
ISF , nominal basal rate) and change settings, allows announcement of exercise and
meals, and finally displays glucose, insulin, and glucagon time series and predictions.
Figure 5.1 shows the stats page (front page) of the application on a smartphone and
Figure 5.2 describes each component in the stats page. The stats page shows glucose,
insulin, and glucagon data and lets the user activate or deactivate the automatic closed-
loop mode. From the bottom menu, the user can navigate between the different pages.
Figure 5.3 shows the care page that lets the user announce meals, give manual boluses,
set temporary targets, and insert manual glucose measurements. Figure 5.4 shows the
exercise page, where the user can announce exercise and shows the modifications to the
stats page and settings page. While exercise is active, an icon is shown on the stats page
to remind the user that exercise is active and during exercise it is not possible to change
the settings from the settings page. Figure 5.5 shows the profile page that lets the user
create new profiles and modify the existing ones (this is where the user enters, e.g., their
ICR). Finally, Figure 5.6 shows the settings page, where the user connects the CGM
and pumps. If the user selects virtual CGM and virtual pump, the app will run with
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a simulator instead. The application also continuously monitors the connection to the
CGM and pumps, and sounds an alarm if the connection to the sensor or pumps is lost
for more than 15 minutes.

5.2 Web application
The web application allows users to login and view different representations of the data
depending on their permissions. The aim of the web application is to let people with
diabetes and medical personal view and analyze data, but, in the future, also to provide
a GUI for the large scale virtual clinical trials described in Chapter 3 and enable remote
monitoring of, e.g., the DiaCon AP. Figure 5.7 shows the architecture of the web appli-
cation and the primary tools used to build each element. The web application is build
with a Vue.js frontend application, a Java Spring Boot backend application, an API, and
a PostgreSQL database. The backend and frontend application communicates through
the API that is described with Swagger. Figure 5.8 shows the login page that handles the
permission for each user. Currently, it is possible to log in as a patient, doctor, or admin.
The doctor role has permissions to view the data from all the patient users, whereas the
permissions of the patient only allow the user to view their own data. The admin role
(e.g. a researcher) also enables the user to see statistics based on the entire population
of patients similar to the results from Chapter 3, but this role is work in progress and
will not be displayed here. Figure 5.9 shows the glucose page with the doctor login. The
visualization of the data is the same for each role. The left bar lets the doctor search for

Figure 5.1: The DiaCon artificial pancreas Android application.
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Figure 5.2: The stats page (front screen) in the DiaCon app. 1) Closed-loop status
(active/inactive) and time since last update of the glucagon or insulin
infusion rate, 2) current glucose concentration and trend, 3) current in-
fusion rate, 4) historical glucose concentration and future predictions, 5)
historical data for insulin, glucagon, or IOB (selected above 4.), 6) button
to activate closed-loop. 7) reminder when activating closed-loop, 8) but-
ton to suspend insulin when closed-loop is active, 9) button to deactivate
closed-loop, and 10) button that directs the user to the stats page.

specific patients and select who to visualize (this bar is not shown for patients). The top
bar lets the user select data from a specific period, switch between mmol/L and mg/dL,
and select between different pages with visualizations of the data. The second top bar
and the right bar shows the values (black if the value is within target range and red if
it is not in range) for the glycemic targets [40]. The All time series page shows meals,
insulin administration, and exercise in addition to the glucose concentration as shown in
Figure 5.10. Finally, the Glucose statistics page consists of two charts where 1) displays
the time in ranges for each day in the selected period (see Figure 5.11) and 2) displays an
overlay of the glucose concentration from each day in selected period (see Figure 5.12).
The glucose statistics page indicates trends in the glucose concentration. The overlay of
days in Figure 5.12 can indicate if the user has, e.g., a tendency of hypoglycemia in the
morning and has a too high basal rate during the night or hyperglycemia after dinner
and should administer a larger insulin bolus. The simulated data in Figure 5.12 has
limited variations between the days and causes narrow confidence intervals. The daily
time in ranges in Figure 5.11 can indicate if, e.g., the glucose concentration is usually
poorly managed in weekends or if a new treatment improves the care as in the example
in Figure 5.11, where the daily TIR is gradually improving.
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Figure 5.3: The care menu in the DiaCon application. 1) Front page to announce
meals, administer a manual insulin bolus, set temporary target or insert
manual glucose measurement, 2) insert amount of carbohydrates in the
meal, 3) select size and duration of manual insulin bolus, 4) icon on front
page for administration of a meal bolus, 5) set temporary target, 6) icon
that indicates that a temporary target is active, 7) the temporary target
can be canceled by clicking the icon, and 8) enter manual glucose values.

5.3 Summary and future perspectives
In this chapter, we introduced the DiaCon app and a web application for diabetes
management. The DiaCon app is a Java Android application that handles the setup
and connection to the CGM and pumps, meal and exercise announcements, and displays
the current status of the user and the treatment. The web application allows users to
see different visualizations of diabetes data and see the glycemic targets for the selected
periods. The web application is build with a Vue.js frontend application, a Java Spring
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Figure 5.4: The exercise menu in the DiaCon application. 1) Front page to set exercise
duration and accept, 2) confirm exercise announcement, 3) stats page after
exercise announcement with an exercise icon in top-left corner, and 4)
settings cannot be changed while exercise is active.

Boot backend application, an API, and a PostgreSQL database. Through the login page,
the view changes depending on the permissions of the user, where doctors can see data
from all their patients. patients can only see their personal data. There are however
still several possible improvements to the web application and missing links before the
concept from Figure 1.4 is achieved. Some of the first improvements should include
adding the charts from Chapter 3 to the admin role and the possibility to sort the
patients based on not only their name, but also, e.g., the TIR to let the doctors identify
the patients that need care. Adding the charts from Chapter 3 requires some updates
to the data structure and backend in order to handle the computations of population
based statistics and reduce computation time. Furthermore, while both the virtual
clinical trials from Chapter 3 and the web application are connected to a database, the
two systems do not interact. In future versions, it should be possible to setup and
start simulations (virtual clinical trials) from the web application for both educational
purposes, and to perform and view results from large scale virtual clinical trials. Finally,
the DiaCon app should be connected to the database to enable the web application for
remote monitoring.
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Figure 5.5: The profile menu in the DiaCon application. 1) The profile page, where
profiles can be activated, edited, deleted, or created, 2) new profile page,
where the user inserts information, and 3) settings for the advanced open
loop basal rate (this feature is currently not implemented).

Figure 5.6: The settings menu in the DiaCon application. 1) The front page to connect
hardware, reset data, receive general information about the application,
and exit the application, 2) the hardware page, where the CGM and pumps
are selected and connected, 3) confirmation for resetting data (this feature
is inactive as no database is connected), and 4) the about page.
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DATABASE

Figure 5.7: Architecure of the web application that consists of a PostgreSQL database,
a Java Spring Boot backend application, an API, and a Vue.js frontend
application. The charts in the frontend are build with Chart.js.

Figure 5.8: Login page to the web application. The login page allows the user to log in
and view personalized pages. Currently, it is possible to log in as a patient,
doctor, or admin.
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Figure 5.9: Glucose page with the doctor login. Left bar: search for specific patients
and choose who to visualize. Top bar: select period of data to view, switch
between mmol/L and mg/dL, and select between different visualizations
of the data. Second top bar and right bar: values (the values are black if
they are within target range and red if not) for the glycemic targets.

Figure 5.10: The all time series page. A glucose plot similar to Figure 5.9 is shown
above, but does not fit in one screen. From the top: 1) meals, 2) insulin
boli, 3) insulin basal rate, and 4) exercise sessions. Right bar: stats in the
selected period for average daily amount of carbohydrates, average daily
bolus insulin, average daily basal insulin, and average weekly exercise
sessions.
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Figure 5.11: Chart that displays the time in ranges for each day in the selected period.
The treatment for this virtual person improved during the period.

Figure 5.12: Chart that displays an overlay of each day to show the mean glucose
concentration with a 95% confidence interval in the selected period.
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CHAPTER 6
Conclusions

The main contributions of this thesis are

1. A high-performance Monte Carlo simulation toolbox to perform large-scale long-
term virtual clinical trials of closed-loop diabetes treatments.

2. The DiaCon AP tested in a clinical trial with 11 adolescents.

3. A web application to visualize and analyze diabetes data.

In this work, we presented the models used and developed during the thesis. The mod-
els are a central component in both the DiaCon AP and the virtual clinical trials. We
presented the models used for predictions in the DiaCon AP and the models used to
represent virtual participants in the virtual clinical trials. We described and compared
five different meal models and briefly discussed models for T2D and the ICU. Further-
more, we described the glucagon model and introduced the whole-body model developed
during the thesis.

We developed a parallelized high-performance Monte Carlo simulation toolbox in
C and applied it to perform large-scale long-term virtual clinical trials of closed-loop
diabetes treatment. The virtual participants were represented by a combination of
mathematical models, where each set of model parameters represent a unique participant.
We designed protocols from a set of basis days and combined them to form weeks,
months and years. The virtual participants and protocols are stored in a PostgreSQL
database to make it straightforward to reuse, modify, or add more participants and
protocols. We demonstrated the utility of the toolbox by comparing two different closed-
loop algorithms in a population of 1 mio. virtual participants over a year (52 weeks) as
well as by comparing the performance of a closed-loop system in two different virtual
populations with 1 mio. participants in each over 1 year (52 weeks). The first virtual
population was represented by the Hovorka model extended with the Haidar glucagon
model, the Rashid exercise model, and a simplified version of the Facchinetti CGM model.
The second virtual population was represented by the UVA/Padova model modified by
Hovorka’s meal model. The total computation time of each virtual clinical trial was less
than 3 hours.

We developed the DiaCon AP that has both a DH and SH configuration. The DiaCon
AP consists of a control algorithm implemented in an Android smartphone, a Dexcom
G6 CGM, and two Dana Diabecare RS pumps for insulin or glucagon administration.
The DiaCon AP is based on NMPC, where we used an extended version of the MVP
model for predictions. We estimated the model parameters with a ML based PEM from
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glucose, insulin, and meal data. The states were estimated with the CD-EKF that was
also used in the PEM. Furthermore, we used a number of heuristics for 1) switching
between insulin and glucagon administration, 2) updating controller hyperparameters
during exercise, 3) a fall-back strategy in case the solution of the OCP was prevented,
and 4) rounding the suggested administration rate to the pump resolution. The AP
was tested in a clinical trial with 11 adolescents and we prepared the AP with a pre-
clinical virtual clinical trial including 50 virtual participants. The virtual participants
were represented by an extended version of Hovorka’s model. The clinical trial displayed
that it is feasible to use NMPC for APs, where both the DH and SH configuration of
the AP improved the TIR compared to the baseline (54% TIR). However, obtaining a
model for predictions is both very time-consuming and very challenging. The TIR was
not significantly different between the DH and SH configuration. The DH AP achieved
a mean of 63% TIR and the SH AP achieved a mean of 76% TIR. Some studies were
heavily affected by technical issues, such as, PISAs and lost connections to the pumps.
The DH AP achieved a mean of 75.3% TIR and the SH AP achieved a mean of 78.8%
TIR for the subset of selected participants (n = 7) without technical difficulties and
where glucagon was administered in the DH studies.

Finally, we designed and developed a web application for visualizing and analyzing
diabetes data. The web application was build with a Vue.js frontend application, an
API, a Java Spring Boot backend application, and a PostgreSQL database. The web
application is a prototype hosted on the localhost and only includes virtual people and
simulated data. The web application allows users to login and see different views de-
pending on their permissions. The web application allows users to inspect time-series
data and the glycemic targets for specific periods. Furthermore, the user can view daily
TIRs and an overlay of days in the selected period to inspect specific daily trends.

6.1 Suggestions for future work
In this section, we discuss suggestions for future work. We discuss future work and
possible improvements for the Monte-Carlo simulation toolbox for large-scale virtual
clinical trials, the DiaCon AP, and the web application, individually.

Large-scale virtual clinical trials. In this work, we generate virtual participants
represented by two different models, 1) an extended version of the Hovorka model, and
2) a modified version of the UVA/Padova model. Both populations are based on limited
data, and we suggest that virtual participants represented by more mathematical models
are added to the library. Furthermore, we have attempted to construct a set of basis
protocols that can be used as building blocks for longer protocols, but we suggest that
protocols with more daily variations are added to the library. Furthermore, while we can
solve OCPs in the Monte Carlo simulation toolbox, we were not able to achieve parallel
scaling with IPOPT due to internal memory allocation. Here, a specialized thread-safe
solver is required. Finally, we suggest adding a high-level interface to the toolbox, e.g.,
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from the web application, to make it user friendly and available for people who are
unfamiliar with C code.

DiaCon AP. Here, we displayed that it is feasible to use NMPC for APs and solve
OCPs in a smartphone, but the major drawback of NMPC is the requirement of a predic-
tion model. In this work, the model parameters are estimated from glucose, insulin and
meal data from the participants with a ML based PEM, but it is a very time-consuming
process that requires manual selection of suitable subsets of the data. Manual parameter
estimation is not feasible in a commercial setting with, potentially, thousands of users.
Therefore, either the parameter estimation procedure needs to be automated or the con-
trol algorithm should either depend on a simpler model or be completely model free.
Furthermore, the clinical trial also provided valuable learnings for future development
of DH APs: 1) the insulin sensitivity is adaptive and estimated with the CD-EKF, but
we fixed it during and after meals. A similar approach should be implemented after
administration of glucagon and 2) PISAs have a significant impact on the performance
of DH APs. The impact of PISAs may be avoided by using two glucose sensors as in the
Inreda system or by some fault-detection algorithm. Finally, in this work, we assumed
that the glucagon response was the same for all participants as glucagon data from the
participants was unavailable. With the data from the trials, it could be to estimate
parameters in the Haidar glucagon model or the UPV glucagon model to compare and
evaluate the differences.

Web application. The web application developed in this work is a prototype hosted
on the localhost and only includes virtual people and simulated data. Evidently, several
improvements are possible. The first and fastest improvement is to add the possibility
to sort patients based on KPIs, such as, TIR in addition to their names and date of
birth. This would allow medical personnel to quickly identify the people who need care.
Furthermore, the admin role that allows for population based statistics needs to be
finalized. The objective of the thesis from Figure 1.4 requires two significant updates
to the web application, 1) the web application should be connected to the Monte Carlo
simulation toolbox with a GUI to start simulations and 2) the data from DiaCon AP
should be uploaded to the database and visualized. Connecting the DiaCon AP to a
database is a relatively small task, but might be challenging due to GDPR.
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Abstract: We propose a whole-body model of the metabolism in man as well as a generalized
approach for modeling metabolic networks. Using this approach, we are able to write a large
metabolic network in a systematic and compact way. We demonstrate the approach using a
whole-body model of the metabolism of the three macronutrients, carbohydrates, proteins and
lipids. The model contains 7 organs, 16 metabolites and 31 enzymatic reactions. All reaction
rates are described by Michaelis-Menten kinetics with an addition of a hormonal regulator
based on the two hormones insulin and glucagon. We incorporate ingestion of food in order to
simulate metabolite concentrations during the feed-fast cycle. The model can simulate several
days due to the inclusion of storage forms (glycogen, muscle protein and lipid droplets), that
can be depleted if food is not ingested regularly. A physiological model incorporating complex
cellular metabolism and whole-body mass dynamics can be used in virtual clinical trials. Such
trials can be used to improve the development of medicine, treatment strategies such as control
algorithms, and increase the likelihood of a successful clinical trial.
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1. INTRODUCTION

In the human body, metabolites are constantly formed
and broken down through a vast number of reactions.
The metabolism functions in an organized manner to keep
the body alive (Miesfeld and McEvoy, 2017). Whole-body
modeling uses exactly this idea to describe the human
body as a collective unit. Doing so can provide a predicted
concentration of a metabolite in any specific organ, which
is relevant e.g. to PK/PD drug development (Derendorf
et al., 2020).

Depending on the modeling objective (i.e. the intended use
of the model), there are several ways to model the human
metabolism. We look at the system of organs and blood
vessels as a whole-body model. The enzymatic reactions
in the metabolic network occur in the organs, and the
organs are connected with each other through the blood
vessels. As the organs are not identical, different reactions
and reaction rates are defined based on their role in the
metabolism. Following this approach, it is possible to
simulate the metabolism of man under various conditions.

There exist whole-body models in today’s literature that
describe the metabolism in man at different levels of com-
plexity. Sorensen (1985) refined simple and inadequate
models with focus on glucose, insulin and glucagon dy-
namics, using a simple whole-body model. More complex
models have been developed in recent years. Panunzi

⋆ Corresponding author: J.B. Jørgensen (e-mail: jbjo@dtu.dk).

et al. (2020) focused on extending the model proposed
by Sorensen (1985), by adding food intake. Other authors
(Kim et al., 2007; Dash et al., 2008; Kurata, 2021) use
whole-body models and expand into stoichiometry to in-
clude several metabolites. A simple and intuitive approach,
in which the mathematical equations can easily be incor-
porated, is not readily available. By utilizing previous work
and modeling principles described by Yasemi and Jolicoeur
(2021), we propose such a mathematical approach.

In this work, we describe a whole-body model of the
metabolism in man. Furthermore, we demonstrate a gen-
eral, systematic and intuitive way to formulate the model
equations. The five key organs included are the brain,
the heart and lungs, the liver, the gut and the kidney.
Further, the muscle tissue and the adipose tissue are each
simplified as a single compartment and can therefore be
considered as an organ. This results in a total of seven
organs. The metabolism inside the organs are explained
by the stoichiometry of the enzymatic reactions. We use
Michaelis-Menten kinetics to describe the enzymatic re-
actions. Using the model, we simulate the feed-fast cy-
cle to investigate how prolonged fasting affects selected
metabolite concentrations and glucose flux. Further, we
simulate intermittent fasting to investigate how it affects
the carbohydrate, the protein and the lipid storage.

The remaining part of this paper is structured as follows.
Section 2 describes the approach for whole-body modeling.
In section 3, a biological model is formulated using the
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1. INTRODUCTION

In the human body, metabolites are constantly formed
and broken down through a vast number of reactions.
The metabolism functions in an organized manner to keep
the body alive (Miesfeld and McEvoy, 2017). Whole-body
modeling uses exactly this idea to describe the human
body as a collective unit. Doing so can provide a predicted
concentration of a metabolite in any specific organ, which
is relevant e.g. to PK/PD drug development (Derendorf
et al., 2020).

Depending on the modeling objective (i.e. the intended use
of the model), there are several ways to model the human
metabolism. We look at the system of organs and blood
vessels as a whole-body model. The enzymatic reactions
in the metabolic network occur in the organs, and the
organs are connected with each other through the blood
vessels. As the organs are not identical, different reactions
and reaction rates are defined based on their role in the
metabolism. Following this approach, it is possible to
simulate the metabolism of man under various conditions.

There exist whole-body models in today’s literature that
describe the metabolism in man at different levels of com-
plexity. Sorensen (1985) refined simple and inadequate
models with focus on glucose, insulin and glucagon dy-
namics, using a simple whole-body model. More complex
models have been developed in recent years. Panunzi
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et al. (2020) focused on extending the model proposed
by Sorensen (1985), by adding food intake. Other authors
(Kim et al., 2007; Dash et al., 2008; Kurata, 2021) use
whole-body models and expand into stoichiometry to in-
clude several metabolites. A simple and intuitive approach,
in which the mathematical equations can easily be incor-
porated, is not readily available. By utilizing previous work
and modeling principles described by Yasemi and Jolicoeur
(2021), we propose such a mathematical approach.

In this work, we describe a whole-body model of the
metabolism in man. Furthermore, we demonstrate a gen-
eral, systematic and intuitive way to formulate the model
equations. The five key organs included are the brain,
the heart and lungs, the liver, the gut and the kidney.
Further, the muscle tissue and the adipose tissue are each
simplified as a single compartment and can therefore be
considered as an organ. This results in a total of seven
organs. The metabolism inside the organs are explained
by the stoichiometry of the enzymatic reactions. We use
Michaelis-Menten kinetics to describe the enzymatic re-
actions. Using the model, we simulate the feed-fast cy-
cle to investigate how prolonged fasting affects selected
metabolite concentrations and glucose flux. Further, we
simulate intermittent fasting to investigate how it affects
the carbohydrate, the protein and the lipid storage.

The remaining part of this paper is structured as follows.
Section 2 describes the approach for whole-body modeling.
In section 3, a biological model is formulated using the
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metabolism. We look at the system of organs and blood
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metabolism. Following this approach, it is possible to
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describe the metabolism in man at different levels of com-
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models with focus on glucose, insulin and glucagon dy-
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models have been developed in recent years. Panunzi
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eral, systematic and intuitive way to formulate the model
equations. The five key organs included are the brain,
the heart and lungs, the liver, the gut and the kidney.
Further, the muscle tissue and the adipose tissue are each
simplified as a single compartment and can therefore be
considered as an organ. This results in a total of seven
organs. The metabolism inside the organs are explained
by the stoichiometry of the enzymatic reactions. We use
Michaelis-Menten kinetics to describe the enzymatic re-
actions. Using the model, we simulate the feed-fast cy-
cle to investigate how prolonged fasting affects selected
metabolite concentrations and glucose flux. Further, we
simulate intermittent fasting to investigate how it affects
the carbohydrate, the protein and the lipid storage.
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metabolism. Following this approach, it is possible to
simulate the metabolism of man under various conditions.

There exist whole-body models in today’s literature that
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models with focus on glucose, insulin and glucagon dy-
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whole-body models and expand into stoichiometry to in-
clude several metabolites. A simple and intuitive approach,
in which the mathematical equations can easily be incor-
porated, is not readily available. By utilizing previous work
and modeling principles described by Yasemi and Jolicoeur
(2021), we propose such a mathematical approach.

In this work, we describe a whole-body model of the
metabolism in man. Furthermore, we demonstrate a gen-
eral, systematic and intuitive way to formulate the model
equations. The five key organs included are the brain,
the heart and lungs, the liver, the gut and the kidney.
Further, the muscle tissue and the adipose tissue are each
simplified as a single compartment and can therefore be
considered as an organ. This results in a total of seven
organs. The metabolism inside the organs are explained
by the stoichiometry of the enzymatic reactions. We use
Michaelis-Menten kinetics to describe the enzymatic re-
actions. Using the model, we simulate the feed-fast cy-
cle to investigate how prolonged fasting affects selected
metabolite concentrations and glucose flux. Further, we
simulate intermittent fasting to investigate how it affects
the carbohydrate, the protein and the lipid storage.

The remaining part of this paper is structured as follows.
Section 2 describes the approach for whole-body modeling.
In section 3, a biological model is formulated using the

mathematical approach. Section 4 presents the simulation
results, and we discuss our formulated model and assump-
tions in Section 5. Finally, Section 6 concludes on our
findings.

2. MATHEMATICAL APPROACH

The general model is described as a system in which
metabolites flow in, are metabolized, and flow out. The
dynamics of a single compartment is defined by the general
differential equation

V
dC

dt
= M(QinCin −QoutC) +RV, (1)

where V is the volume, C is a vector containing the
concentration of the metabolites, M is the external and
internal component ordering, Qin is the flow rate of what
goes in, Cin is a vector containing the concentration of
the metabolites that flow in, Qout is the flow rate of what
goes out and R is the production rates. The compartments
are coupled through concentration gradients in the blood
vessels that connect the compartments. M is a square
matrix containing only ones and zeros in the diagonal
corresponding to the metabolites distributed through the
blood vessels (circulating metabolites). For instance, the
circulating metabolite, Ci, corresponds to Mi,i = 1. The
production rate R is incorporated as a vector defined by

R = (TS)′Tr, (2)

where T is a matrix of reactions that occur, S is a stoi-
chiometric matrix containing all reactions and r is a vector
with the kinetics for the reactions. T contains ones and
zeros corresponding to which reactions from the stoichio-
metric matrix, that are present in the compartment. For
instance, a compartment which involves reaction 1, 3 and
5 from the stoichiometric matrix have T1,1 = 1, T2,3 =
1, T3,5 = 1, and zeros elsewhere. The reaction rate vector,
r, is a function of the concentration of each metabolite:

r = r(C). (3)

To utilize (1), in a whole-body model, it must be formu-
lated for each compartment.

3. MODEL

We now present a model containing 7 compartments, 16
metabolites and 31 reactions including the hormonal effect
from two signal molecules, insulin and glucagon, on specific
tissues. Fig. 1 shows a flow diagram of the whole-body
model. The blood circulation is split into two parts, the
arteries (red) and the veins (blue). The total blood flow,
Q, is at all times preserved, and the local blood flow can
be calculated using mixers and splitters. They are either
explicitly modelled as organs, or implicitly as shown by
the triangle (splitter) or square (mixer). A splitter divides
the blood flow so a2 = a1 + a3, and a mixer combines the
blood flow so v1 + v3 = v2. As blood flow is preserved, the
flow coming into a compartment is the same as the flow
coming out of a compartment.

We create the model using the same methodology as de-
scribed in Section 2. The purpose is to describe the energy
metabolism of the three macronutrients, carbohydrates,
proteins and lipids. We include the major biochemical
pathways, shown in Fig. 2, which these macronutrients
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Fig. 1. Schematic representation of the whole-body model.
Solid arrows represent blood circulation, where the
right side is the arteries and the left side the veins.
Thick arrows, a2 and v2, represents joining of flows
from other organs. M ,Ck,Vk represents the blood tis-
sue exchange and Rk represents the reactions hap-
pening inside the cell. The dotted lines in the com-
partments suggest free diffusion, as cell-permeability
is not included.

are a part of, in order to simulate their behaviour under
various conditions. Insulin and glucagon are included to
add stability and avoid large transient periods in the
simulation after food intake, as they are important an-
abolic and catabolic hormones, respectively. From Fig. 2,
it follows that many pathways are cell specific. 10 of 31
reactions occur in all organs. The remaining 21 are tissue
specific, as the different organs each have a specialized role.
Insulin and glucagon secretion/clearance are incorporated
as a single reaction each for simplicity, as they are not
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Fig. 2. Diagram of metabolic pathways in cell. The hollow
double-sided arrows indicate that the metabolite is
distributed through the blood. The black arrows in-
dicate reactions that happen in all organs. The grey
arrows indicate reactions that only happen in some
organs. Metabolites are shown as 2-4 letter abbrevi-
ations. The stoichiometric matrix is formed from the
numbering of the reactions.

created by nor metabolised into any included metabolite.
Their reaction rates are inherited from Sorensen (1985),
as described in Section 3.1.

The most accurate mathematical equations to describe
each of these 31 metabolic reactions are not necessarily
known, and vary from individual to individual. Therefore
each of these reactions have been simplified. In the model,
we describe the reaction rates using Michaelis-Menten ki-
netics. Michaelis-Menten kinetics are especially useful for
describing enzyme reactions, as enzyme reactions have an
upper limit on the reaction rate. Alternatives to Michaelis-
Menten kinetics include altering the mathematical formula
in the reaction rate vector to e.g. positive hyperbolic tan-
gent functions as in Sorensen (1985) or simple first-order
kinetics from Kim et al. (2007). If a reaction is excluded
from an organ, it does not mean that the reaction never
happens in reality. Instead, it means that the reaction is
excluded for simplicity. An example is glycogen formation
that also happens in the brain, heart and adipose tissue,
but it is in such small quantities, that it becomes negligible
(Gropper et al., 2018).

3.1 Inclusion of a hormonal model

Sorensen (1985) employs a very simple glucagon model
that describes the pancreatic glucagon release. Sorensen
found that the glucagon release and clearance could
be described adequately by a one compartment model.
Sorensen also formulated an insulin model described by
a six compartment model. While it is possible to include

Table 1. Reactions affected by insulin and
glucagon (Gropper et al., 2018; Miesfeld and
McEvoy, 2017). ⇑ symbolizes increased stimu-
lation and ⇓ symbolizes decreased stimulation.

Hormone Effect # R Reaction Affected Organs

Insulin ⇑ 1 GLC → G6P Liver, muscle, adipose tissue

⇑ 3 G6P → 2 GA3P Liver, muscle tissue

⇑ 5 G6P → GLY Liver, muscle tissue

⇑ 13 PYR → ACoA Liver, muscle tissue

⇑ 21 TGL → 3 FFA + GLR Adipose tissue

⇑ 23 7 ACoA → FFA Liver

⇑ 26 AA → PRO Muscle tissue

⇑ 28 3 FFA + GLR → TGLAP Adipose tissue

⇓ 4 2 GA3P → G6P Liver

⇓ 6 GLY → G6P Liver, muscle tissue

⇓ 27 PRO → AA Muscle tissue

⇓ 29 TGLAP → 3 FFA + GLR Adipose tissue

Glucagon ⇑ 4 2 GA3P → G6P Liver

⇑ 6 GLY → G6P Liver

⇑ 29 TGLAP → 3 FFA + GLR Adipose tissue

⇓ 3 G6P → 2 GA3P Liver

⇓ 5 G6P → GLY Liver

the glucagon model as a single compartment model and
insulin as a six compartment model, similar to Panunzi
et al. (2020) and Sorensen (1985), we include insulin and
glucagon in a whole-body seven compartment model. In-
sulin and glucagon are therefore included in the stoichio-
metric matrix as metabolites in order to calculate their
production rates.

Table 1 contains the reactions that are affected by insulin
and glucagon, as well as which organ is affected. While
the qualitative effect of insulin and glucagon is known (see
Table 1), the related model parameters for insulin and
glucagon are not necessarily known. Miesfeld and McEvoy
(2017) describe qualitatively which enzymes and hence
reactions that insulin and glucagon affect. Accordingly,
given the reciprocal effects of insulin (I) and glucagon (Γ),
we use a simple function where the ratio between them
allows us to determine whether or not they have an effect
on the system. These functions alter the production rates
of the reactions in Table 1. If only insulin have an effect
on the reaction, the functions are

Insulin activation:

(
Ik
IBk

)µj

Vmaxj
, (4)

Insulin inhibition:

(
IBk
Ik

)µj

Vmaxj
, (5)

and if both insulin and glucagon have an effect on the
same reaction (though with opposite effects), the insulin-
to-glucagon or glucagon-to-insulin ratio is used instead,

Insulin-to-Glucagon stimulation:

(
ΓB
k

Γk

Ik
IBk

)µj

Vmaxj
,

(6)

Glucagon-to-insulin stimulation:

(
Γk

ΓB
k

IBk
Ik

)µj

Vmaxj
,

(7)
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arrows indicate reactions that only happen in some
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numbering of the reactions.

created by nor metabolised into any included metabolite.
Their reaction rates are inherited from Sorensen (1985),
as described in Section 3.1.

The most accurate mathematical equations to describe
each of these 31 metabolic reactions are not necessarily
known, and vary from individual to individual. Therefore
each of these reactions have been simplified. In the model,
we describe the reaction rates using Michaelis-Menten ki-
netics. Michaelis-Menten kinetics are especially useful for
describing enzyme reactions, as enzyme reactions have an
upper limit on the reaction rate. Alternatives to Michaelis-
Menten kinetics include altering the mathematical formula
in the reaction rate vector to e.g. positive hyperbolic tan-
gent functions as in Sorensen (1985) or simple first-order
kinetics from Kim et al. (2007). If a reaction is excluded
from an organ, it does not mean that the reaction never
happens in reality. Instead, it means that the reaction is
excluded for simplicity. An example is glycogen formation
that also happens in the brain, heart and adipose tissue,
but it is in such small quantities, that it becomes negligible
(Gropper et al., 2018).

3.1 Inclusion of a hormonal model

Sorensen (1985) employs a very simple glucagon model
that describes the pancreatic glucagon release. Sorensen
found that the glucagon release and clearance could
be described adequately by a one compartment model.
Sorensen also formulated an insulin model described by
a six compartment model. While it is possible to include

Table 1. Reactions affected by insulin and
glucagon (Gropper et al., 2018; Miesfeld and
McEvoy, 2017). ⇑ symbolizes increased stimu-
lation and ⇓ symbolizes decreased stimulation.

Hormone Effect # R Reaction Affected Organs

Insulin ⇑ 1 GLC → G6P Liver, muscle, adipose tissue

⇑ 3 G6P → 2 GA3P Liver, muscle tissue

⇑ 5 G6P → GLY Liver, muscle tissue

⇑ 13 PYR → ACoA Liver, muscle tissue

⇑ 21 TGL → 3 FFA + GLR Adipose tissue

⇑ 23 7 ACoA → FFA Liver

⇑ 26 AA → PRO Muscle tissue

⇑ 28 3 FFA + GLR → TGLAP Adipose tissue

⇓ 4 2 GA3P → G6P Liver

⇓ 6 GLY → G6P Liver, muscle tissue

⇓ 27 PRO → AA Muscle tissue

⇓ 29 TGLAP → 3 FFA + GLR Adipose tissue

Glucagon ⇑ 4 2 GA3P → G6P Liver

⇑ 6 GLY → G6P Liver

⇑ 29 TGLAP → 3 FFA + GLR Adipose tissue

⇓ 3 G6P → 2 GA3P Liver

⇓ 5 G6P → GLY Liver

the glucagon model as a single compartment model and
insulin as a six compartment model, similar to Panunzi
et al. (2020) and Sorensen (1985), we include insulin and
glucagon in a whole-body seven compartment model. In-
sulin and glucagon are therefore included in the stoichio-
metric matrix as metabolites in order to calculate their
production rates.

Table 1 contains the reactions that are affected by insulin
and glucagon, as well as which organ is affected. While
the qualitative effect of insulin and glucagon is known (see
Table 1), the related model parameters for insulin and
glucagon are not necessarily known. Miesfeld and McEvoy
(2017) describe qualitatively which enzymes and hence
reactions that insulin and glucagon affect. Accordingly,
given the reciprocal effects of insulin (I) and glucagon (Γ),
we use a simple function where the ratio between them
allows us to determine whether or not they have an effect
on the system. These functions alter the production rates
of the reactions in Table 1. If only insulin have an effect
on the reaction, the functions are

Insulin activation:

(
Ik
IBk

)µj

Vmaxj
, (4)

Insulin inhibition:

(
IBk
Ik

)µj

Vmaxj
, (5)

and if both insulin and glucagon have an effect on the
same reaction (though with opposite effects), the insulin-
to-glucagon or glucagon-to-insulin ratio is used instead,

Insulin-to-Glucagon stimulation:

(
ΓB
k

Γk

Ik
IBk

)µj

Vmaxj
,

(6)

Glucagon-to-insulin stimulation:

(
Γk

ΓB
k

IBk
Ik

)µj

Vmaxj
,

(7)
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Fig. 3. Schematic representation of the digestive tract.
S represents the amount of macronutrients in the
stomach, J the jejunum, R a delay and L the amount
in the ileum. rOGA is a vector describing the uptake
of the three macronutrients.

where j is the reaction, e.g. GLC→G6P, k is the compart-
ment and the superscript B indicates that it is the basal-
value. Vmaxj

is the maximum rate in the Michaelis-Menten
kinetics and muj is a scaling parameter for the hormonal
effect. These simple functions are equal to Vmaxj

at steady
state, which occurs when the blood glucose concentration
is at 5mmol/L, such that it is independent of µj in steady-
state. This is an important property, since many of the
parameters used in the reactions are estimated based on
metabolite homeostasis.

3.2 Inclusion of a modified SIMO-model

A modified version of the simple interdependent glu-
cose/insulin model, SIMO (Panunzi et al., 2020), is used to
include the uptake of glucose, amino acids and lipids from
ones diet. The rates are the same for all macronutrients,
which is not physiologically accurate. It is known from
Miesfeld and McEvoy (2017) that the macronutrients differ
in terms of absorption given their molecular differences.
Due to lack of data or other mathematical models de-
scribing the uptake of macronutrients, we adopt the SIMO
model as it is the simplest choice. The resulting uptake of
macronutrients is represented by

rOGA = kgjJ + kglL =

[
kgjJGLC + kglLGLC

kgjJAA + kglLAA

kgjJTGL + kglLTGL

]
, (8)

where kgj and kgl are uptake rates and rOGA is a 3×1
vector, where the first two macronutrients, i.e. glucose and
amino acids, are taken up by the gut. This is not the
case for triglycerides, which enter the lymphatic system
as chylomicrons and is transported to muscle and adipose
tissue before it enters the blood circulation (Gropper
et al., 2018). The triglycerides (TGL) from rOGA is then
delivered to muscle and adipose tissue, where a 50/50%
distribution is assumed in the two tissues. As the specific
uptake rates of amino acids and lipids are not explicitly
known from the SIMO model, we utilize the uptake rate
kgj and kgl from glucose. It is included in the model as the
parameters:

0 20 40 60

Time [h]

4

5

6

7

8

9

G
L

C
 c

o
n

c
e

n
tr

a
ti
o

n
 [

m
m

o
l/
L

]

L

0 20 40 60

Time [h]

2

3

4

5

6

7

A
A

 c
o

n
c
e

n
tr

a
ti
o

n
 [

m
m

o
l/
L

]

0 20 40 60

Time [h]

1

2

3

4

5

6

T
G

L
 c

o
n

c
e

n
tr

a
ti
o

n
 [

m
m

o
l/
L

]
0 20 40 60

Time [h]

50

100

150

200

250

G
L

Y
 c

o
n

c
e

n
tr

a
ti
o

n
 [

m
m

o
l/
L

]

0 20 40 60

Time [h]

2

4

6

8

F
F

A
 c

o
n

c
e

n
tr

a
ti
o

n
 [

m
m

o
l/
L

]

0 20 40 60

Time [h]

0.1

0.2

0.3

0.4

G
L

R
 c

o
n

c
e

n
tr

a
ti
o

n
 [

m
m

o
l/
L

]

Fig. 4. The metabolite concentrations of glucose (GLC),
amino acids (AA), triglycerides (TGL), glycogen stor-
age (GLY ), free fatty acids (FFA) and glycerol
(GLR) in the liver after an initial meal of 60 g glucose,
24 g protein and 16 g fat and an accompanying fasting
for 72 hours.

Gut: GrOGA

Muscle: MPrOGA

Adipose: APrOGA

The modified SIMO model is included as additional inputs
in the differential equations and not directly into the
production rate vector R, as the modified SIMO model
provides external inputs from meal consumption and is
seen as an extension to the general methodology.

4. SIMULATION RESULTS

We now simulate the model presented in Section 3 in
MATLAB. Initially we present the model with a single
meal ingested at steady-state, and follow the development
of the metabolites as an in silico patient refrains from
eating or doing physical activity for the next 72 hours.
Fig. 4 shows the glucose concentration, the amino acids,
the triglycerides, the glycerol, the free fatty acids and
the glycogen concentration. The plots for GLC, AA and
TGL show the metabolites that are ingested through the
modified SIMO model. After the initial meal, we see that,
the glucose concentration initially rises and then returns
to the baseline, where it remains constant for roughly 10
hours. The glucose concentration then starts to decrease
as glycogen storage is reduced substantially. While the
glucose concentration diminishes, the concentrations of
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Fig. 5. Sum of the glucose fluxes in every organ after an
initial meal and accompanying fasting for 72 hours.
The organs are the brain (B), the heart and lungs
(H), the gut (G), the liver (L), the kidneys (K), the
muscle tissue (MP) and the adipose tissue (AP). The
total sum of all the glucose fluxes is the rightmost
column denoted ’Sum’.
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Fig. 6. The glucose fluxes in every organ after an initial
meal and accompanying fasting for 72 hours. It shows
the fluxes over time with a logarithmic scale on the
x-axis.

the other metabolites start increasing. This is especially
the glycerol concentration, the free fatty acids and the
triglycerides, as the patient enters the starvation stage,
where lipids are the main energy source for several organs.
An increase in the triglycerides is seen during starvation
as the triglyceride storage in the adipose tissue, TGLAP ,
reduces. The free fatty acid levels increase substantially
during starvation, which is to be expected based on articles
that investigate the effects of starvation (Unger et al.,
1963; Yaffe et al., 1980).

4.1 Fluxes inside the cells

While it is important to keep in mind that these simulation
results are not physiologically accurate for all metabolites,
we can plot the fluxes in order to investigate the dynamics.
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Fig. 7. The metabolite concentrations of the fat storage
in the adipose tissue (TGLAP ), the protein storage
in the muscle tissue (PRO), the glycogen storage in
the liver (GLYL) and in the muscle tissue (GLYMP ),
the triglycerides in the liver (TGLL), the free fatty
acids in the liver (FFAL) and the glycerol in the
liver (GLRL). The simulation is run for 13 days with
intermittent fasting every other day.

Fig. 5 shows that the brain is a major consumer of glucose,
and the liver is a major exporter of glucose, which is also
what is expected from Miesfeld and McEvoy (2017). The
rightmost column, Sum, shows the net flux of glucose in all
organs, resulting in an overall consumption corresponding
to a meal containing 60 g glucose. Fig. 6 shows which
organs are the consumers of glucose over time. There
is a large drop initially for the glucose flux in the liver
and the muscle tissue as food is ingested and the blood
glucose concentration is high. This is especially seen in
the insulin stimulated tissues, as the effect described in
Table 1 shows an increase in the glucose uptake as a result
of high concentrations of insulin. As the blood glucose
concentration reduces, the liver again produces glucose for
the other organs in order to keep homeostasis, and thus
increases its flux to a positive value.

4.2 Simulation of intermittent fasting

Fig. 7 shows a simulation over 13 days, with regular food
intake every other day, resulting in intermittent fasting
for 33 hours. We see a decrease in the concentration of
lipid droplets, as they are metabolized to provide energy
for the body. This is due to the energy balance of the
system becoming skewed from a roughly equal calory
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the other metabolites start increasing. This is especially
the glycerol concentration, the free fatty acids and the
triglycerides, as the patient enters the starvation stage,
where lipids are the main energy source for several organs.
An increase in the triglycerides is seen during starvation
as the triglyceride storage in the adipose tissue, TGLAP ,
reduces. The free fatty acid levels increase substantially
during starvation, which is to be expected based on articles
that investigate the effects of starvation (Unger et al.,
1963; Yaffe et al., 1980).

4.1 Fluxes inside the cells

While it is important to keep in mind that these simulation
results are not physiologically accurate for all metabolites,
we can plot the fluxes in order to investigate the dynamics.
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Fig. 7. The metabolite concentrations of the fat storage
in the adipose tissue (TGLAP ), the protein storage
in the muscle tissue (PRO), the glycogen storage in
the liver (GLYL) and in the muscle tissue (GLYMP ),
the triglycerides in the liver (TGLL), the free fatty
acids in the liver (FFAL) and the glycerol in the
liver (GLRL). The simulation is run for 13 days with
intermittent fasting every other day.

Fig. 5 shows that the brain is a major consumer of glucose,
and the liver is a major exporter of glucose, which is also
what is expected from Miesfeld and McEvoy (2017). The
rightmost column, Sum, shows the net flux of glucose in all
organs, resulting in an overall consumption corresponding
to a meal containing 60 g glucose. Fig. 6 shows which
organs are the consumers of glucose over time. There
is a large drop initially for the glucose flux in the liver
and the muscle tissue as food is ingested and the blood
glucose concentration is high. This is especially seen in
the insulin stimulated tissues, as the effect described in
Table 1 shows an increase in the glucose uptake as a result
of high concentrations of insulin. As the blood glucose
concentration reduces, the liver again produces glucose for
the other organs in order to keep homeostasis, and thus
increases its flux to a positive value.

4.2 Simulation of intermittent fasting

Fig. 7 shows a simulation over 13 days, with regular food
intake every other day, resulting in intermittent fasting
for 33 hours. We see a decrease in the concentration of
lipid droplets, as they are metabolized to provide energy
for the body. This is due to the energy balance of the
system becoming skewed from a roughly equal calory

intake/consumption, to a 50% reduction in calory intake.
Further, we see that the protein storage in the muscle
tissue is also broken down, as food becomes a relatively
scarce source for the body. Within a day we see a large
drop in the concentration of glycogen after the last meal.
Glycogen is initially used as an energy storage, but gets
depleted quickly in the liver. The glycogen in the muscle
tissue is relatively stable, as the in silico patient is at
rest for the entire simulation. The lipid droplets are
converted into FFA and GLR and utilized in different
compartments. We see large spikes when the body enters
the starvation phase after 18 hours without any food (see
also Fig. 4). The simulation shows, that following this diet
results in an effective weight loss, as TGLAP (body fat)
levels decrease. However there are adverse effects to this
diet, as muscle proteins are also diminished. By simulating
intermittent fasting, we are able to show both the effects
of regular meal intake and fasting.

5. DISCUSSION

Diffusion across the cell membrane is assumed to happen
infinitely fast, as the time it takes for the cell to be in
equilibrium with the blood vessels happens at a much
faster timescale compared to the timescale of our model.
This assumption makes it possible to include organs as
one compartment. If transporters and diffusion were to be
incorporated in the model, it would be expected to divide
the compartments in two, intracellular and extracellular,
such that transporters could be explicitly modeled. The
concentration is assumed to be the same across the entire
compartment. We model each organ as a well-stirred tank.
Therefore every metabolite is uniformly distributed in the
organs. It is known, that the enzymatic reactions in each
cell and organ happen at a fast timescale of 10−3 to 100

seconds (Yasemi and Jolicoeur, 2021). We are interested in
simulating the model for up to several days. Therefore, we
assume that the enzymatic reactions happen at a uniform
rate across the spatial organs, allowing a simplification of
enzymatic reactions to Michaelis-Menten kinetics.

It could be theorized, given the introduction of more
metabolic inputs, that a model like this could be used
to gain a better understanding of the dynamical changes
in metabolite concentrations of an individual. Both a
generalized model could be used, or one tailored to a
specific person’s parameters, thus introducing personalized
modeling behaviour. Simulation of enzymatic defects to
represent various diseases, could be done with the current
format of the model. However, it would require validation
of the model.

6. CONCLUSION

Using a systematic approach for modeling metabolic net-
works, we have developed a model that is capable of
simulating the complex human metabolism. The approach
makes it simple to expand the system through changes
in the stoichiometric matrix, that match the chemistry
and modeling objective. The core of the model is simply
which parameters and reaction kinetics that are used in
the production rate vector Rk. This is illustrated in the
model, which involves 16 metabolites and 2 hormones in
7 organs. It results in a total of 126 differential equations.

We write these as 7 differential equations, one for each
organ, as the entire reaction network is included in Rk. As
shown, the modeling approach can readily be expanded to
incorporate large networks of metabolic reactions in the
body. The approach is applicable to not just a physiologi-
cal model, but can easily be made to fit chemical systems,
with containers, tubes and chemical reactions taking place.
The modeling objective was to create the basis for a phys-
iological whole-body model that can incorporate cellular
metabolic processes, so that qualitative knowledge can be
utilized in a quantitative manner and, when adequately
tested, used for in silico trials.
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Universitat Politècnica de València, València, Spain

∗∗ Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kgs. Lyngby, Denmark
∗∗∗ Steno Diabetes Center Copenhagen, Gentofte, Denmark
∗∗∗∗ Centro de Investigación Biomédica en Red de Diabetes y
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Abstract: In this work, a novel insulin-glucagon-glucose model is proposed, where the glucagon
effect on the endogenous glucose production (EGP) is described by the dynamics of the glucagon
receptors. In order to assess the quality of the model, its parameters are fitted in such a way that
the influence of glucagon on EGP is isolated. Experimental data is used to validate the model
structure and show that the receptor dynamics allow to explain some of the glucagon-related
phenomena observed in the clinical data. This physiology-focused model will be useful in the
development of artificial pancreas algorithms both for more realistic in silico validations and in
the development of model-based control strategies.
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1. INTRODUCTION

Type 1 diabetes (T1D) is a metabolic disease caused
by the auto-immune destruction of the insulin-producing
beta cells in the pancreas. This also results in glucagon-
producing alpha cell dysfunction, partly due to lack of
paracrine signalling between both cells (Unger and Cher-
rington, 2012). Insulin lowers blood glucose (BG) concen-
tration by promoting glucose entrance into the cell, while
glucagon has the opposite effect by promoting EGP. The
lack of endogenous insulin secretion leads to an unhealthy
state of too high BG concentration (hyperglycaemia).
Therefore, diabetes treatment depends on exogenously
injected insulin. However, too much insulin can result in
too low BG concentrations (hypoglycaemia), leading to
unconsciousness, coma and even death (Cryer et al., 2003).
Exogenous glucagon infusion can be used to mitigate hy-
poglycaemia. Understanding and modelling the effect of
both hormones is important to several aspects of diabetes
treatment, e.g., automated insulin delivery systems, also
referred as the artificial pancreas (AP).

AP systems aim to lessen the burden of glycaemic control
for people with T1D. The main actor is a control algorithm
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which adjusts the insulin dosage via an insulin pump,
based on the glucose measurements below skin provided
by a continuous glucose monitor. This is a challenging task
since insulin infusion is a control action that acts in a single
direction. Insulin stacking due to subcutaneous insulin
absorption can provoke, for instance, late hypoglycaemia
after a meal. As well, exercise can induce hypoglycaemia,
which is difficult to resolve solely with insulin pump
suspension (Zaharieva et al., 2017).

Dual-hormone AP systems add glucagon infusion as a
counterregulatory control action. A review (Peters and
Haidar, 2018) concluded that dual-hormone AP systems
proved superior performance in reduction of hypogly-
caemia overall and during exercise compared to single-
hormone (insulin-only) AP systems. Contrary to the ex-
pected performance, benefits in postprandial control, re-
duction of severe hypoglycaemia, and mean BG remained
unclear, which means there is room for improvement in
the design of dual-hormone AP systems.

The design of an AP system relies heavily on in si-
lico evaluations. Futhermore, many control algorithms
are designed from control-oriented models, with simpler
structure, which must capture the main dynamics be-
tween the control action and BG. Insulin pharmacokinetic-
pharmacodynamic (PK-PD) models have been widely
studied and few variations exists in the available simula-
tors used in AP research (Hovorka et al., 2004; Dalla Man
et al., 2014). However this is not the case with glucagon
action and modelling differs significantly among authors.
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José-Luis Dı́ez ∗,∗∗∗∗ John Bagterp Jørgensen ∗∗

Jorge Bondia ∗,∗∗∗∗

∗ Instituto Universitario de Automática e Informática Industrial,
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Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain

Abstract: In this work, a novel insulin-glucagon-glucose model is proposed, where the glucagon
effect on the endogenous glucose production (EGP) is described by the dynamics of the glucagon
receptors. In order to assess the quality of the model, its parameters are fitted in such a way that
the influence of glucagon on EGP is isolated. Experimental data is used to validate the model
structure and show that the receptor dynamics allow to explain some of the glucagon-related
phenomena observed in the clinical data. This physiology-focused model will be useful in the
development of artificial pancreas algorithms both for more realistic in silico validations and in
the development of model-based control strategies.

Keywords: Diabetes, glucagon receptors, PK-PD model, parameter estimation, clinical data

1. INTRODUCTION

Type 1 diabetes (T1D) is a metabolic disease caused
by the auto-immune destruction of the insulin-producing
beta cells in the pancreas. This also results in glucagon-
producing alpha cell dysfunction, partly due to lack of
paracrine signalling between both cells (Unger and Cher-
rington, 2012). Insulin lowers blood glucose (BG) concen-
tration by promoting glucose entrance into the cell, while
glucagon has the opposite effect by promoting EGP. The
lack of endogenous insulin secretion leads to an unhealthy
state of too high BG concentration (hyperglycaemia).
Therefore, diabetes treatment depends on exogenously
injected insulin. However, too much insulin can result in
too low BG concentrations (hypoglycaemia), leading to
unconsciousness, coma and even death (Cryer et al., 2003).
Exogenous glucagon infusion can be used to mitigate hy-
poglycaemia. Understanding and modelling the effect of
both hormones is important to several aspects of diabetes
treatment, e.g., automated insulin delivery systems, also
referred as the artificial pancreas (AP).

AP systems aim to lessen the burden of glycaemic control
for people with T1D. The main actor is a control algorithm

� Corresponding author: J. Bondia (jbondia@isa.upv.es)
��This work was partially supported by: grant DPI2016-
78831-C2-1-R funded by MCIN/AEI/10.13039/501100011033 and
by “ERDF A way of making Europe”; grants PID2019-
107722RB-C21, FPU17/03404 and EST19/00740, funded by
MCIN/AEI/10.13039/501100011033; the IFD Grand solution
project ADAPT-T2D (9068-00056B).

which adjusts the insulin dosage via an insulin pump,
based on the glucose measurements below skin provided
by a continuous glucose monitor. This is a challenging task
since insulin infusion is a control action that acts in a single
direction. Insulin stacking due to subcutaneous insulin
absorption can provoke, for instance, late hypoglycaemia
after a meal. As well, exercise can induce hypoglycaemia,
which is difficult to resolve solely with insulin pump
suspension (Zaharieva et al., 2017).

Dual-hormone AP systems add glucagon infusion as a
counterregulatory control action. A review (Peters and
Haidar, 2018) concluded that dual-hormone AP systems
proved superior performance in reduction of hypogly-
caemia overall and during exercise compared to single-
hormone (insulin-only) AP systems. Contrary to the ex-
pected performance, benefits in postprandial control, re-
duction of severe hypoglycaemia, and mean BG remained
unclear, which means there is room for improvement in
the design of dual-hormone AP systems.

The design of an AP system relies heavily on in si-
lico evaluations. Futhermore, many control algorithms
are designed from control-oriented models, with simpler
structure, which must capture the main dynamics be-
tween the control action and BG. Insulin pharmacokinetic-
pharmacodynamic (PK-PD) models have been widely
studied and few variations exists in the available simula-
tors used in AP research (Hovorka et al., 2004; Dalla Man
et al., 2014). However this is not the case with glucagon
action and modelling differs significantly among authors.

Assessment of a new model of glucagon
action with glucagon receptor dynamics
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1. INTRODUCTION

Type 1 diabetes (T1D) is a metabolic disease caused
by the auto-immune destruction of the insulin-producing
beta cells in the pancreas. This also results in glucagon-
producing alpha cell dysfunction, partly due to lack of
paracrine signalling between both cells (Unger and Cher-
rington, 2012). Insulin lowers blood glucose (BG) concen-
tration by promoting glucose entrance into the cell, while
glucagon has the opposite effect by promoting EGP. The
lack of endogenous insulin secretion leads to an unhealthy
state of too high BG concentration (hyperglycaemia).
Therefore, diabetes treatment depends on exogenously
injected insulin. However, too much insulin can result in
too low BG concentrations (hypoglycaemia), leading to
unconsciousness, coma and even death (Cryer et al., 2003).
Exogenous glucagon infusion can be used to mitigate hy-
poglycaemia. Understanding and modelling the effect of
both hormones is important to several aspects of diabetes
treatment, e.g., automated insulin delivery systems, also
referred as the artificial pancreas (AP).

AP systems aim to lessen the burden of glycaemic control
for people with T1D. The main actor is a control algorithm
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producing alpha cell dysfunction, partly due to lack of
paracrine signalling between both cells (Unger and Cher-
rington, 2012). Insulin lowers blood glucose (BG) concen-
tration by promoting glucose entrance into the cell, while
glucagon has the opposite effect by promoting EGP. The
lack of endogenous insulin secretion leads to an unhealthy
state of too high BG concentration (hyperglycaemia).
Therefore, diabetes treatment depends on exogenously
injected insulin. However, too much insulin can result in
too low BG concentrations (hypoglycaemia), leading to
unconsciousness, coma and even death (Cryer et al., 2003).
Exogenous glucagon infusion can be used to mitigate hy-
poglycaemia. Understanding and modelling the effect of
both hormones is important to several aspects of diabetes
treatment, e.g., automated insulin delivery systems, also
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which adjusts the insulin dosage via an insulin pump,
based on the glucose measurements below skin provided
by a continuous glucose monitor. This is a challenging task
since insulin infusion is a control action that acts in a single
direction. Insulin stacking due to subcutaneous insulin
absorption can provoke, for instance, late hypoglycaemia
after a meal. As well, exercise can induce hypoglycaemia,
which is difficult to resolve solely with insulin pump
suspension (Zaharieva et al., 2017).

Dual-hormone AP systems add glucagon infusion as a
counterregulatory control action. A review (Peters and
Haidar, 2018) concluded that dual-hormone AP systems
proved superior performance in reduction of hypogly-
caemia overall and during exercise compared to single-
hormone (insulin-only) AP systems. Contrary to the ex-
pected performance, benefits in postprandial control, re-
duction of severe hypoglycaemia, and mean BG remained
unclear, which means there is room for improvement in
the design of dual-hormone AP systems.

The design of an AP system relies heavily on in si-
lico evaluations. Futhermore, many control algorithms
are designed from control-oriented models, with simpler
structure, which must capture the main dynamics be-
tween the control action and BG. Insulin pharmacokinetic-
pharmacodynamic (PK-PD) models have been widely
studied and few variations exists in the available simula-
tors used in AP research (Hovorka et al., 2004; Dalla Man
et al., 2014). However this is not the case with glucagon
action and modelling differs significantly among authors.
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Fig. 1. Schematic of the proposed compartment model with glucagon receptor dynamics. The blue square contains
insulin pharmacokinetics ((2a) to (2c)). The green square contains glucagon pharmacokinetics ((3a) to (3c)). The
yellow square contains the glucagon receptors cycle ((1a) to (1c)), and the orange square contains the glucose
regulation subsystem ((4a) to (4f)).

Here, X1(t) and X2(t) are the insulin mass due to exo-
genous dosing in the subcutaneous tissue and in plasma,
respectively, measured in insulin units (U). tmax is the
time from dose to maximum plasma concentration (min).
uI(t) is insulin infusion as a deviation from basal (U/min).
I(t) is the insulin concentration in plasma, and Ib is its
basal value (mU/l). W is the body weight (kg) and ClF,I

is the apparent insulin clearance (ml/kg/min). Note that
dynamics in plasma are considered fast with respect to
subcutaneous tissue, therefore equation (2c) represents the
static behaviour.

Glucagon pharmacokinetics. Similar to the insulin
subsystem, glucagon pharmacokinetics are described by:

dZ1(t)

dt
= uC(t)− k1Z1(t) (3a)

dZ2(t)

dt
= k1Z1(t)− k2Z2(t) (3b)

C(t) =
k2Z2(t)

W · ClF,C
+ Cb (3c)

Here Z1(t) and Z2(t) are the glucagon mass due to exo-
genous dosing in the subcutaneous tissue (pg). k1 and k2
are the absorption and elimination rate constants (min−1).
ClF,C is the apparent glucagon clearance (ml/kg/min).
uC(t) is glucagon infusion as a deviation from basal
(pg/min). C(t) and Cb are the glucagon concentration and
its steady state value (pg/ml).

Glucose regulation. The model describing insulin action
is composed by three states according to Hovorka et al.
(2004). These states represent the effects of insulin on
the glucose distribution, x1(t); glucose disposal, x2(t); and
endogenous glucose production, x3(t):

dx1(t)

dt
= ka1 [I(t)− x1(t)] (4a)

dx2(t)

dt
= ka2 [I(t)− x2(t)] (4b)

dx3(t)

dt
= ka3 [I(t)− x3(t)] (4c)

ka1, ka2 and ka3 are deactivation rate constants (min−1).

Finally, the glucose dynamics for the accessible, Q1(t), and
non-accessible, Q2(t), compartments, are described as:

dQ1(t)

dt
= −F01(t)− FR(t)− STx1(t)Q1(t) + k12Q2(t)

+ EGP (t) (4d)

dQ2(t)

dt
= STx1(t)Q1(t)−Q2(t) [k12 + SDx2(t)] (4e)

G(t) =
Q1(t)

V
(4f)

where EGP is given by

EGP (t) = Fhgp(t) + EGP0 (1− SIx3(t)) (4g)

F01 is the insulin-independent glucose flux (µmol/kg/min),
FR is the renal glucose clearance (µmol/kg/min) (see
Wendt et al. (2017) for their definition), ST and SD

are the insulin sensitivity to glucose transport and dis-
posal, respectively (min−1/(mU/l)). k12 is the transfer
rate constant from the non accessible to the accessible
compartment (min−1), EGP0 is the EGP extrapolated
to zero insulin concentration (µmol/kg/min), SI is the
hepatic insulin sensitivity ((mU/l)−1), V is the glucose
distribution volume (ml/kg) and G(t) is the BG (mmol/l).

Remark that the difference with the original model in
Wendt et al. (2017) is provided by the new description
of EGP given in (4g). For the sake of completeness, the
original description was given by:

EGP (t) =
1− SEx3(t)

1− SEIb

(
(Emax −GGNG)

C(t)

CE50 + C(t)

)

+GGNG (5)

where SE ((mU/l)−1) is the hepatic insulin sensitivity,
Emax (µmol/kg/min) is the maximum EGP at basal in-
sulin concentration, CE50 (pg/ml) represents the glucagon
concentration yielding half of maximum EGP, and GGNG

(µmol/kg/min) represents glucose production by glyco-
neogenesis.

In Dalla Man et al. (2014), glucagon PK-PD is incorpo-
rated in the widely used UVA/Padova simulator. Glucagon
action on EGP is modelled as an additive antagonic effect
with respect to insulin. A “delayed” glucagon action is
considered proportional to plasma glucagon concentration
(when above a basal threshold). The same additive effect is
considered in the model proposed in Resalat et al. (2019),
but in this case a composite term of glucagon action and
its derivative are added to the EGP. Other authors have
introduced a coupled effect of insulin and glucagon on
EGP. Indeed, in El Youssef et al. (2014) a saturating effect
of insulinemia on glucagon action is reported in euglycemic
clamp studies with constant low-mid-high insulin infusion.
In Wendt et al. (2017) a Michaelis-Menten-type glucagon
action is proposed, modulated with a multiplicative effect
of the delayed insulin action, proportional to plasma in-
sulin. Emami et al. (2017) also resorts to consider this
interaction with a multiplicative effect, reducing glucagon
action the higher the insulin action is. Note that all the
above models consider a functional relationship among
plasma glucagon and EGP aimed at fitting experimental
data, which does not provide any physiological insight.

Contrarily, in Masroor et al. (2019) a model of glucagon
action on EGP is presented based on the glucagon receptor
dynamics. In particular, internalization of glucagon recep-
tors is proposed, with good fitting of experimental data
from the “glucagon challenge test”, where endogenous
insulin and glucagon secretion are inhibited by somatosta-
tine, and are replaced by exogenous insulin and glucagon
infusion to get a constant plasma insulin and rapidly
changing plasma glucagon concentration 2-3-fold with res-
pect to physiological levels. However, this experimental
condition is far from being representative of physiological
conditions in T1D insulin therapy.

This paper aims to assess the capacity of the glucagon-
receptors-based proposal in Masroor et al. (2019), with no
coupled effect with insulin, to explain the dose-response
of glucagon from experimental data representative of T1D
management, such as in a dual-hormone AP system, where
glucagon delivery is expected as a response to hypogly-
caemia, probably induced by an inadequate previous in-
sulin bolus.

This paper is organized as follows: Section 2 presents the
glucagon action model. Section 3 describes the complete
glucoregulatory model. Experimental data is described in
Section 4. Section 5 explains the model fitting procedure.
Section 6 depicts the obtained results for the parameters
and the fit to the data. Finally, in Section 7 the implica-
tions of the obtained results are discussed.

2. GLUCAGON ACTION MODEL WITH GLUCAGON
RECEPTOR DYNAMICS

In this section, the glucagon action model proposed by
Masroor et al. (2019) is described. As a key feature
compared to current models used in artificial pancreas
research, it incorporates dynamics of glucagon receptors,
being more physiologically sustained. Glucagon receptors
are mainly located on the liver membrane. These receptors
bond to glucagon molecules and cause a chain reaction
in protein signalling that leads to promotion of glyconeo-
genesis (synthesis of new glucose from non-carbohydrate

precursors such as aminoacids and lactate) and glycoge-
nolysis (depletion of glycogen in the liver) while inhibiting
glycolysis and glycogenesis (Müller et al., 2017). However,
receptors undergo a recycling process in which they are
internalized and become unavailable. Information about
the behaviour of receptors is limited. In Masroor et al.
(2019), this process is described by a three-compartmental
model representing glucagon receptors at different states:
the glucagon-bonded receptors rc(t), the available surface
receptors r(t), and the internalized receptors ri(t), ex-
pressed as normalized amounts with respect to the total
(unknown) number of receptors, which is considered con-
stant. Thus, the constraint ri(t) = 1 − r(t) − rc(t) holds,
and the model can be simplified to the following second
order system (where no free receptors are internalized):

dr(t)

dt
=− kon · Vh · C(t) · r(t) + koff · rc(t) (1a)

+ krec · (1− r(t)− rc(t))

drc(t)

dt
= kon · Vh · C(t) · r(t)− koff · rc(t) (1b)

− kin · rc(t)

Fhgp(t) =
Vr · rc(t)
Kr + rc(t)

(1c)

where C(t) (pg/ml) is the plasma glucagon concentration
(model input), Fhgp(t) (µmol/kg/min) represents the he-
patic glucose production (model output) as a Michaelis-
Menten dynamic of the relative number of glucagon-
bonded receptors, Vh (ml) is the volume of the hepatic in-
terstitial space, kon ((pg/min)−1) is the association rate of
glucagon to the receptor, koff (min−1) is the dissociation
rate, krec (min−1) is the recycling rate of the receptor, kin
(min−1) is the internalization rate of the glucagon-bonded
receptor, Kr (dimensionless) is the apparent dissociation
constant, and Vr (µmol/kg/min) is the maximal glucagon-
dependent hepatic glucose production rate.

3. COMPLETE GLUCOREGULATORY MODEL

In order to assess the capacity of the above model to
describe glucagon dose-response, it must be integrated
into a complete glucoregulatory model describing glucose
regulation by subcutaneously infused insulin and glucagon.
An adaptation of the model from Wendt et al. (2017) is
considered in this work, where the insulin and glucagon
effect on the EGP are substituted by the descriptions in
Hovorka et al. (2004) and Masroor et al. (2019), respec-
tively. It should be remarked that Wendt et al. (2017) was
chosen as a baseline model because this work shares the
same experimental data as the original model. Thus, it
serves as a good comparator. An overview of the model
subsystems is shown in Fig. 1, which are described next.

Insulin pharmacokinetics. A two-state system descri-
bes the pathway of insulin from subcutaneous adminis-
tration to plasma:

dX1(t)

dt
= uI(t)−

X1(t)

tmax
(2a)

dX2(t)

dt
=

X1(t)

tmax
− X2(t)

tmax
(2b)

I(t) =
1

tmax

X2(t)

W · ClF,I
· 106 + Ib (2c)
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Fig. 1. Schematic of the proposed compartment model with glucagon receptor dynamics. The blue square contains
insulin pharmacokinetics ((2a) to (2c)). The green square contains glucagon pharmacokinetics ((3a) to (3c)). The
yellow square contains the glucagon receptors cycle ((1a) to (1c)), and the orange square contains the glucose
regulation subsystem ((4a) to (4f)).

Here, X1(t) and X2(t) are the insulin mass due to exo-
genous dosing in the subcutaneous tissue and in plasma,
respectively, measured in insulin units (U). tmax is the
time from dose to maximum plasma concentration (min).
uI(t) is insulin infusion as a deviation from basal (U/min).
I(t) is the insulin concentration in plasma, and Ib is its
basal value (mU/l). W is the body weight (kg) and ClF,I

is the apparent insulin clearance (ml/kg/min). Note that
dynamics in plasma are considered fast with respect to
subcutaneous tissue, therefore equation (2c) represents the
static behaviour.

Glucagon pharmacokinetics. Similar to the insulin
subsystem, glucagon pharmacokinetics are described by:

dZ1(t)

dt
= uC(t)− k1Z1(t) (3a)

dZ2(t)

dt
= k1Z1(t)− k2Z2(t) (3b)

C(t) =
k2Z2(t)

W · ClF,C
+ Cb (3c)

Here Z1(t) and Z2(t) are the glucagon mass due to exo-
genous dosing in the subcutaneous tissue (pg). k1 and k2
are the absorption and elimination rate constants (min−1).
ClF,C is the apparent glucagon clearance (ml/kg/min).
uC(t) is glucagon infusion as a deviation from basal
(pg/min). C(t) and Cb are the glucagon concentration and
its steady state value (pg/ml).

Glucose regulation. The model describing insulin action
is composed by three states according to Hovorka et al.
(2004). These states represent the effects of insulin on
the glucose distribution, x1(t); glucose disposal, x2(t); and
endogenous glucose production, x3(t):

dx1(t)

dt
= ka1 [I(t)− x1(t)] (4a)

dx2(t)

dt
= ka2 [I(t)− x2(t)] (4b)

dx3(t)

dt
= ka3 [I(t)− x3(t)] (4c)

ka1, ka2 and ka3 are deactivation rate constants (min−1).

Finally, the glucose dynamics for the accessible, Q1(t), and
non-accessible, Q2(t), compartments, are described as:

dQ1(t)

dt
= −F01(t)− FR(t)− STx1(t)Q1(t) + k12Q2(t)

+ EGP (t) (4d)

dQ2(t)

dt
= STx1(t)Q1(t)−Q2(t) [k12 + SDx2(t)] (4e)

G(t) =
Q1(t)

V
(4f)

where EGP is given by

EGP (t) = Fhgp(t) + EGP0 (1− SIx3(t)) (4g)

F01 is the insulin-independent glucose flux (µmol/kg/min),
FR is the renal glucose clearance (µmol/kg/min) (see
Wendt et al. (2017) for their definition), ST and SD

are the insulin sensitivity to glucose transport and dis-
posal, respectively (min−1/(mU/l)). k12 is the transfer
rate constant from the non accessible to the accessible
compartment (min−1), EGP0 is the EGP extrapolated
to zero insulin concentration (µmol/kg/min), SI is the
hepatic insulin sensitivity ((mU/l)−1), V is the glucose
distribution volume (ml/kg) and G(t) is the BG (mmol/l).

Remark that the difference with the original model in
Wendt et al. (2017) is provided by the new description
of EGP given in (4g). For the sake of completeness, the
original description was given by:

EGP (t) =
1− SEx3(t)

1− SEIb

(
(Emax −GGNG)

C(t)

CE50 + C(t)

)

+GGNG (5)

where SE ((mU/l)−1) is the hepatic insulin sensitivity,
Emax (µmol/kg/min) is the maximum EGP at basal in-
sulin concentration, CE50 (pg/ml) represents the glucagon
concentration yielding half of maximum EGP, and GGNG

(µmol/kg/min) represents glucose production by glyco-
neogenesis.
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Fig. 3. Simulation results for Patient 2, visit C (300 µg glucagon dose); Patient 6, visit C and Patient 8, visit A (100
µg glucagon dose). Top graph depicts the glucose concentration in mg/dl, middle graph is the plasma insulin in
mU/ml and bottom graph is the plasma glucagon in pg/ml.
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Fig. 4. J index distribution for our proposal (M1) and the
model by Wendt et al. (2017) (M2).

6. RESULTS

Table 1 shows the identified parameter values. The pa-
rameters in θ2 and θ3 have a unique value per patient,
whereas for θ1 parameters (ST , SD, Q20), the table shows
the average value and standard deviation along the three
visits for each patient. Results are reported as number or
mean (standard deviation).

Figure 3 shows selected results obtained with the proposed
model (Patients 2, 6 and 8). The results clearly show
that the model successfully fits the data with different
glucagon doses. These patients are illustrative of different
behaviours with different glucagon doses. Remarkably,
similar fits are obtained for all patients and visits.

After simulating all eight patients, we analyzed the ob-
tained results for JP (6) with both model structures.
For our model (labelled M1), the mean JP value is 19.65
(5.45) mg/dl, whereas for the model by Wendt et al. (2017)
(labelled M2), the mean JP is 25.57 (5.5) mg/dl. Normality
tests were performed (Shapiro-Wilk, Kolmogorov-Smirnov

and Anderson-Darling) which prove that both data dis-
tributions were normal, so a t-test was applied to see if
there were statistically significant differences between both
approaches. The results for the paired t-test were: t(7) =
3.20, p = 0.015**, Cohen’s d = 1.13, proving that there
was a significant difference between them.

The difference in the JP values per visit was also analysed.
The results show that the average error value is lower in
every visit for the approach presented in this work (M1,
Figure 4), especially in visit C (300 µg glucagon dose),
where there is the greatest difference between both models.
Note that a trend to increase residuals with respect to
the glucagon dose is observed in the original model M2,
contrary to our proposal. Table 2 details the average value
of JP per visit, as well as the t-test result, p-value and
Cohen’s d.

7. DISCUSSION AND CONCLUSION

This work validates a model which includes the dynamics
of glucagon receptors using a set of clinical data with
different glucagon doses. Our goal was to develop accu-
rate models which can be used in the artificial pancreas
environment, for both control and in silico validations.
Therefore, it is necessary to find low-complexity models
that properly describe the physiology.

The experimental conditions from the clinical trial by
Ranjan et al. (2016) allowed us to assess the ability of the
glucagon receptors dynamics proposed by Masroor et al.
(2019) to describe the EGP variations due to different
glucagon doses. The obtained results show the model
proposed here successfully describes this effect.

Notice that the model from Wendt et al. (2017), as well as
others (Resalat et al., 2019), include the influence of insulin
on the glucagon effect. Moreover, the work by El Youssef
et al. (2014) shows that high levels of plasma insulin
inhibit glucagon effect. However, that clinical trial was
performed under conditions of clamped plasma insulin. In

Fig. 2. Protocol in the clinical trial by Ranjan et al. (2016).
After admission, patients were administered insulin
in order to lower their glycemic values to 70 mg/dl.
When glucose reached hypoglycaemia conditions (t =
0 min) a glucagon or saline bolus was injected.

4. EXPERIMENTAL DATA

The data used for the assessment of this model was ob-
tained during the clinical trial carried out by Ranjan et al.
(2016). Their study was designed to evaluate the effect of
different glucagon doses from insulin-induced mild hypo-
glycaemia. Eight subjects with T1D participated in the
study, and each one underwent four different arms of the
trial. In all visits, patients were administered an insulin bo-
lus to reach mild hypoglycaemia (BG concentration ≤ 70
mg/dl). Then, depending on the assigned randomization,
they were administered either saline or a glucagon bolus
of 100 µg, 200 µg or 300 µg (see Fig. 2).

Plasma glucose, plasma glucagon, plasma insulin, plasma
growth hormone, cortisol, free fatty acids, triglycerides,
blood pressure and heart rate were measured. However,
for the purpose of this work, only glucose, insulin and
glucagon data are relevant. Only the visits where glucagon
was administered are considered. Consequently, three dif-
ferent sets of data are available per patient, each with a
different glucagon dose, labelled henceforth Visit A, B and
C, respectively.

Each of the datasets (3 datasets × 8 patients) describes
two parts: 1) the first segment of the study up to t = 0,
where only insulin was administered and plasma glucagon
kept its steady state value; and 2) from t = 0, when
a glucagon bolus is administered and both the effect of
plasma insulin and glucagon on EGP are present.

5. MODEL FITTING

5.1 Parameter identification

The purpose of this study is to assess the glucagon dose-
response explanation capacity of a glucagon action model
incorporating glucagon receptors as novelty. Thus, it is our
interest to eliminate confounding factors unrelated to EGP
that could hinder the explanatory performance of this
model structure compared to other grey-box (functional)
glucagon action models, such as the one in Wendt et al.
(2017).

The main confounding factor in this case is the patient’s
insulin sensitivity, which varies over time and between pa-
tients (Heinemann (2002)). The model incorporates three
insulin sensitivity parameters, of which ST and SD affect
processes unrelated to EGP. Consequently, these param-
eters were identified for each patient visit. The initial
value of Q2(t), denoted as Q20, was also identified. In
simulation studies, the initial state is sometimes associated

with equilibrium. However, it is difficult to achieve steady
state conditions in real life, i.e., the starting point of the
study is not in equilibrium. Contrary to the value of Q10

which is known from glucose measurements, Q20 must be
identified for each visit. The rest of the model states were
considered at equilibrium. Therefore, the following set of
parameters θ1 must be identified, for each patient (P ) and
for each visit (v):

θv1P = {ST , SD, Q20} , v = 1, 2, 3; P = 1, 2, ..., 8

The EGP model subsystem must be able to explain the
dose-response from data in Visit A, B and C, so indivi-
dualized parameter values must be considered. Regarding
the glucagon action model, parameters kon, Kr, and Vr

were considered in the identification process, represent-
ing the activation rate of receptors, and the Michaelis-
Menten parameters. Since the patients that underwent the
“glucagon challenge test” in Masroor et al. (2019) were
healthy people, it was deemed appropriate to tune the
activation rate of the receptors. It could be discussed that
glucagon action is impaired in people with diabetes and
that could be explained by a deficit in the activation rate.
The remaining parameters in (1) were taken from the work
of Masroor et al. (2019), giving rise to the following to-be-
identified parameter vector θ2 per patient:

θ2P = {kon,Kr, Vr} , P = 1, 2, ..., 8

Besides, parameters EGP0 and SI affecting insulin influ-
ence on EGP were also identified per patient:

θ3P = {EGP0, SI} , P = 1, 2, ..., 8

Thus, for each patient P , the complete parameter vector
to be optimized is:

ΘP =
{
θ11P , θ

2
1P , θ

3
1P , θ2P , θ3P

}

which was identified by minimizing the aggregated root-
mean-squared error (RMSE) per visit

JP =

3∑
v=1

√√√√ 1

nv

nv∑
i=1

(ŷvi,P − yvi,P )
2 (6)

where nv is the number of data, ŷvi,P is the simulated value,
and yvi,P is the real data point for visit v.

The identification was carried out in MATLAB R2018b,
using the fmincon function.

The existence of many local minima is often observed in
non-linear parameter estimation. Therefore, the identifi-
cation was performed ten times using different random
initial guesses of the parameter values within predefined
limits based on the original values identified by Wendt
et al. (2017).

5.2 Baseline comparison

In order to verify whether the use of the glucagon receptors
in the description of glucagon action provides any improve-
ments, we compared our model with the one presented by
Wendt et al. (2017). In order to make a meaningful com-
parison, parameters were identified following the above-
described procedure, giving rise to the following parameter
set:

Θ′
P =

{
θ11P , θ

2
1P , θ

3
1P , SE , Emax, CE50

}
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Fig. 3. Simulation results for Patient 2, visit C (300 µg glucagon dose); Patient 6, visit C and Patient 8, visit A (100
µg glucagon dose). Top graph depicts the glucose concentration in mg/dl, middle graph is the plasma insulin in
mU/ml and bottom graph is the plasma glucagon in pg/ml.
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Fig. 4. J index distribution for our proposal (M1) and the
model by Wendt et al. (2017) (M2).

6. RESULTS

Table 1 shows the identified parameter values. The pa-
rameters in θ2 and θ3 have a unique value per patient,
whereas for θ1 parameters (ST , SD, Q20), the table shows
the average value and standard deviation along the three
visits for each patient. Results are reported as number or
mean (standard deviation).

Figure 3 shows selected results obtained with the proposed
model (Patients 2, 6 and 8). The results clearly show
that the model successfully fits the data with different
glucagon doses. These patients are illustrative of different
behaviours with different glucagon doses. Remarkably,
similar fits are obtained for all patients and visits.

After simulating all eight patients, we analyzed the ob-
tained results for JP (6) with both model structures.
For our model (labelled M1), the mean JP value is 19.65
(5.45) mg/dl, whereas for the model by Wendt et al. (2017)
(labelled M2), the mean JP is 25.57 (5.5) mg/dl. Normality
tests were performed (Shapiro-Wilk, Kolmogorov-Smirnov

and Anderson-Darling) which prove that both data dis-
tributions were normal, so a t-test was applied to see if
there were statistically significant differences between both
approaches. The results for the paired t-test were: t(7) =
3.20, p = 0.015**, Cohen’s d = 1.13, proving that there
was a significant difference between them.

The difference in the JP values per visit was also analysed.
The results show that the average error value is lower in
every visit for the approach presented in this work (M1,
Figure 4), especially in visit C (300 µg glucagon dose),
where there is the greatest difference between both models.
Note that a trend to increase residuals with respect to
the glucagon dose is observed in the original model M2,
contrary to our proposal. Table 2 details the average value
of JP per visit, as well as the t-test result, p-value and
Cohen’s d.

7. DISCUSSION AND CONCLUSION

This work validates a model which includes the dynamics
of glucagon receptors using a set of clinical data with
different glucagon doses. Our goal was to develop accu-
rate models which can be used in the artificial pancreas
environment, for both control and in silico validations.
Therefore, it is necessary to find low-complexity models
that properly describe the physiology.

The experimental conditions from the clinical trial by
Ranjan et al. (2016) allowed us to assess the ability of the
glucagon receptors dynamics proposed by Masroor et al.
(2019) to describe the EGP variations due to different
glucagon doses. The obtained results show the model
proposed here successfully describes this effect.

Notice that the model from Wendt et al. (2017), as well as
others (Resalat et al., 2019), include the influence of insulin
on the glucagon effect. Moreover, the work by El Youssef
et al. (2014) shows that high levels of plasma insulin
inhibit glucagon effect. However, that clinical trial was
performed under conditions of clamped plasma insulin. In
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Table 1. Glucagon receptors and insulin PK identified parameters. For parameters with different
values for each visit (ST , SD, Q20), the mean and the standard deviation (SD) are shown.

Patient kon · 10−4 Kr · 10−4 Vr SI · 10−4 EGP0 ST · 10−4 SD · 10−4 Q20

[(pg/min)−1] [-] [µmol/kg/min] [(mU/l)−1] [µmol/kg/min] [min−1/(mU/l)] [min−1/(mU/l)] [µmol/kg]

1 0.37 184 63.9 170 7 33.9 (3.5) 5.1 (1.6) 2219 (318)
2 1.16 1778 120.4 100 10 27.0 (10.5) 3.8 (2.5) 1413 (389)
3 0.51 813 137.6 277 10 42.3 (9.9) 3.1 (2.2) 1891 (532)
4 0.19 152 85.3 100 6 18.7 (3.6) 1.3 (0.5) 1311 (1052)
5 0.10 108 70.0 100 6 32.3 (6.1) 1.2 (0.2) 1821 (620)
6 0.23 191 85.3 300 10 34.2 (14.9) 4.0 (1.8) 2077 (733)
7 0.57 2706 200.0 484 10 30.1 (17.5) 2.6 (0.8) 1687 (877)
8 0.23 146 64.7 500 2 42.9 (12.3) 2.7 (2.9) 1683 (578)

Mean (SD) 0.42 (0.34) 760 (975) 103.4 (47.2) 254 (167) 7.6 (2.8) 32.7 (11.8) 3.0 (2.0) 1763 (637)

Table 2. Means and standard deviations for
J index of M1 and M2, t-test analysis, and

Cohen’s d.

Visit M1 M2 t p Cohen’s d

A 5.54 (1.46) 6.48 (1.44) -2.17 0.066 -0.77
B 8.55 (3.28) 9.47 (3.00) -1.57 0.161 -0.55
C 5.56 (2.32) 9.61 (3.85) -3.10 0.017** -1.10

contrast, the glucagon receptors model does not include
information about insulin plasma levels in the glucagon
action description. Despite of this, the model fits the data
well. This suggests that further investigation into this
effect is necessary. As well, a better understanding of the
role of glucagon receptors and their internalization process
is needed. Other phenomena such as lose of effectiveness
of glucagon over time deem to be studied.

As a conclusion, based on the obtained results, the pro-
posed model could help to improve the design of dual-
hormone artificial pancreas systems.
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A B S T R A C T

This paper validates a glucoregulatory model including glucagon receptors dynamics in the description
of endogenous glucose production (EGP). A set of models from literature are selected for a head-to-head
comparison in order to evaluate the role of glucagon receptors. Each EGP model is incorporated into an
existing glucoregulatory model and validated using a set of clinical data, where both insulin and glucagon are
administered. The parameters of each EGP model are identified in the same optimization problem, minimizing
the root mean square error (RMSE) between the simulation and the clinical data. The results show that the
RMSE for the proposed receptors-based EGP model was lower when compared to each of the considered models
(Receptors approach: 7.13 ± 1.71 mg/dl vs. 7.76 ± 1.45 mg/dl (𝑝 = 0.066), 8.45 ± 1.38 mg/dl (𝑝 = 0.011) and
8.99± 1.62 mg/dl (𝑝 = 0.007)). This raises the possibility of considering glucagon receptors dynamics in type 1
diabetes simulators.

1. Introduction

People with type 1 diabetes (T1D) suffer from an impairment in
their blood glucose (BG) regulation. Due to the auto-immune destruc-
tion of the 𝛽 cells in the pancreas, insulin is not produced, which is
the hormone responsible of promoting glucose uptake by the cells. As
a result, the body is unable to restore glucose concentration to normal
values. People with T1D rely on external insulin administration with
insulin pens or infusion pumps in order to regulate their BG levels.
However, high doses of insulin could lead to low BG concentration if
overdosed. Both a maintained high BG concentration (hyperglycaemia),
and a low BG concentration (hypoglycaemia) are undesirable situa-
tions. The former, because it can cause several long-term vascular
complications, such as retinopathy, foot amputations, heart attack and
strokes, nephropathy, neuropathy, among others. Meanwhile, hypogly-
caemia could induce dizziness, nausea, coma or even death in the most

∗ Corresponding author at: Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, C/Camí de Vera, s/n, València,
46022, Spain.
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ajenthen.ranjan@regionh.dk (A.G. Ranjan), Kirsten.Noergaard@regionh.dk (K. Nørgaard), jldiez@isa.upv.es (J.-L. Díez), jbjo@dtu.dk (J.B. Jørgensen),
jbondia@isa.upv.es (J. Bondia).

severe cases [1]. This means people with T1D live with the colossal task
of self-managing their diabetes on a daily basis.

In order to ease this duty, automated insulin delivery systems (also
known as artificial pancreases (APs)) have recently appeared on the
market. This term refers to the combination of (at least) three different
elements: an insulin pump, a continuous glucose monitor (CGM) and a
control algorithm (incorporated in the pump or in an external device
such as a smartphone). The algorithm receives the glucose values
provided by the CGM and provides an insulin infusion value to the
pump every few minutes, according to a given control logic. Despite au-
tomation, hypoglycaemia prevention is challenging for single-hormone
(insulin-only) systems, especially in situations like exercise or when
overdosed. Thus, additional counterregulatory actions are needed, such
as, intake of rescue carbohydrates or administration of glucagon.

https://doi.org/10.1016/j.compbiomed.2023.106605
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Glucagon is a hormone produced in the pancreas by the 𝛼 cells
with an antagonist effect to insulin (it increases glucose concentra-
tion), promoting endogenous glucose production (EGP). The glucagon
secretion is also impaired in people with T1D mainly due to the lack
of signaling between 𝛽 and 𝛼 cells [2]. Glucagon is often used as
stand-alone injections to rapidly rise glucose levels in case of severe hy-
poglycaemia. Soluble formulations of glucagon [3] have paved the way
to dual-hormone AP systems infusing glucagon through dual-chamber
pumps or an additional pump, in order to prevent hypoglycaemia.
Dual-hormone APs have proven useful in glucose regulation in contrast
to single-hormone APs, especially under exercise [4,5]. Integrating
glucagon in APs allows to regulate glucose as the pancreas would,
without needing any patient intervention, as it would be the case with
the intake of rescue carbohydrates.

A fundamental step in the development of AP systems is the use of
simulation tools to validate the algorithms. Clinical trials are expensive
and may entail risks for the patients. Therefore, a lot of effort has been
put towards developing mathematical models that reproduce physiol-
ogy as accurately as possible. The use of these simulators allows to test
algorithms in a quick and inexpensive way. The most commonly used
models in the validation of AP algorithms are Dalla Man’s model [6]
(the UVA/Padova simulator) and Hovorka’s model [7] (the Cambridge
simulator and with some variations, OHSU and McGill simulators, for
instance).

Whereas pharmacokinetics of insulin and glucagon are described in
a similar fashion, other aspects can differ greatly among authors, such
as EGP. This quantity is influenced by both insulin and glucagon and
represents glucose production as a response to either hypoglycaemia
or hyperglycemia. However, contrary to insulin, whose dynamics have
been widely studied and there is a consensus in literature about de-
scribing its effect [6,8], glucagon effect description is more diverse.
Although both insulin and glucagon are involved in EGP, their rela-
tionship has been described very differently in literature, and not many
clinical trials study the relationship between both hormones. Their in-
fluence on EGP has been described as additive [9], multiplicative [10],
or with a Michaelis–Menten function [11].

El Youssef et al. [12] reported a loss of glucagon effectiveness for
high insulinemia under constant insulin infusion. A vanishing effect
of glucagon effectiveness has also been reported. Whereas it has been
proved that insulin and glucagon have a collaborative relationship, its
physiological extent and mathematical description is still debated. One
element that is sometimes overlooked in AP simulators development is
glucagon receptors. The work by Masroor et al. [13] gave some insight
into their dynamics.

The purpose of this work is to test an unconventional method for
describing glucagon behavior. A physiology-based structure may prove
useful in describing glucose dynamics more accurately. The glucagon
receptors-based EGP model is compared to three other EGP models
from literature. A set of clinical data is used to fit the models and to
identify their parameters. In previous work, the authors carried out the
validation of the receptors approach against just one other description
of EGP [14]. This work adds two extra models to the comparison and
changes the identification process so that the parameters in the baseline
model used are common for all EGP definitions (the previous approach
identified the models independently). The process will show how the
receptors approach provides a good fit to the data, reducing the average
error compared to the other models.

The paper is organized as follows: Section 2 describes the base
model and the different EGP descriptions used for validation. Section 3
presents the identification procedure, divided into the description of the
clinical data and the parameter identification method. Section 4 shows
the main results and Section 5 discusses the implications of the results.
Section 6 summarizes the conclusions.

2. Models

The evaluation of the EGP models was carried out using a base-
line model that included descriptions of glucose regulation, insulin
pharmacokinetics and glucagon pharmacokinetics. The submodel corre-
sponding to EGP and glucagon effect was instantiated with the different
EGP models to be evaluated.

Wendt et al. [11] presented the model used as reference, which is
based on the widely used model by Hovorka et al. [8]. However, the
former also incorporates glucagon pharmacokinetics and its effect on
glucose. This model also fitted the purpose of the paper since it was
identified using the same clinical dataset that is used to validate this
work. Experimental data was obtained by Ranjan et al. [15] and it is
described in more detail in Section 3.1.

The other EGP structures selected for comparison were chosen be-
cause their underlying structures were also based on Hovorka’s model
of glucose regulation. A total of four different definitions of EGP and
glucagon effect are tested in this work:

1. The definition by Wendt et al. [11], which accompanies the
baseline model. It will be labeled as DTU (Technical Univer-
sity of Denmark) which was Wendt’s affiliation at the time of
publication.

2. The EGP model proposed by Emami et al. [10]. This paper
evaluates several definitions of EGP and presents a solution that
is the one used in this work. It will be labeled as McGill, for
McGill University in Montreal.

3. The proposal by Resalat et al. [9], which was first presented
in [16]. It will be referred to as OHSU model, for the Oregon
Health and Science University.

4. EGP based on receptors dynamics, this paper’s new proposal,
following the work by Masroor et al. [13]. It will be labeled as
Receptors model.

The next sections will describe the baseline model and each one of
the EGP definitions.

2.1. Baseline model

The baseline model can be divided into four different blocks: in-
sulin pharmacokinetics, glucagon pharmacokinetics, EGP, and glucose
regulation.

Fig. 1 provides an overview of the model compartments and their
relationships. The block corresponding to EGP is left empty since its
content will depend on the model being evaluated. Next, the equations
and states of each subsystem are presented. Also, the model states are
described in Table 1 and the parameters and their description can be
found in Table 2.

2.1.1. Insulin pharmacokinetics
The insulin pharmacokinetics subsystem (blue block, Fig. 1) consists

of two compartments (𝑋1(𝑡) and 𝑋2(𝑡)), the input being the insulin
infusion (𝑢𝐼 (𝑡)), expressed as a deviation with respect to basal insulin
infusion, and the output, plasma insulin concentration (𝐼(𝑡)). The factor
106 in (1c) acts as unit conversion from U/ml to mU/l [11].

d𝑋1(𝑡)
d𝑡 = 𝑢𝐼 (𝑡) −

𝑋1(𝑡)
𝑡𝑚𝑎𝑥

(1a)

d𝑋2(𝑡)
d𝑡 =

𝑋1(𝑡)
𝑡𝑚𝑎𝑥

−
𝑋2(𝑡)
𝑡𝑚𝑎𝑥

(1b)

𝐼(𝑡) = 1
𝑡𝑚𝑎𝑥

𝑋2(𝑡)
𝑊 ⋅ 𝐶𝑙𝐹 ,𝐼

⋅ 106 + 𝐼𝑏 (1c)
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Fig. 1. Baseline model overview. Glucose regulation (red box), insulin pharmacokinetics (blue box) and glucagon pharmacokinetics (green box), corresponding to the model
definition by Wendt et al. [11]. The EGP definition varies between the four definitions studied in this work (see Sections 2.2 to 2.5).

Table 1
Baseline model states units and description.

Magnitude Units Description

𝑢𝐼 (𝑡) U/min Insulin infusion (as a deviation from basal)
𝑋1(𝑡) U Insulin mass due to exogenous dosing in subcutaneous tissue
𝑋2(𝑡) U Insulin mass due to exogenous dosing in plasma
𝐼(𝑡) mU/l Insulin plasma concentration

𝑢𝐶 (𝑡) pg/min Glucagon infusion (as a deviation from basal)
𝑍1(𝑡) pg Glucagon mass due to exogenous dosing in subcutaneous tissue
𝑍2(𝑡) pg Glucagon mass due to exogenous dosing in plasma
𝐶(𝑡) pg/ml Glucagon concentration in plasma

𝑥1(𝑡) mU/l Effect of insulin on glucose distribution
𝑥2(𝑡) mU/l Effect of insulin on glucose disposal
𝑥3(𝑡) mU/l Effect of insulin on endogenous glucose production
𝐸𝐺𝑃 (𝑡) μmol/kg/min Endogenous glucose production
𝑄1(𝑡) μmol/kg Glucose mass in the accessible compartment
𝑄2(𝑡) μmol/kg Glucose mass in the non-accessible compartment
𝐺(𝑡) mmol/l Blood glucose

Table 2
Baseline model parameters units and description.

Parameter Units Description

𝑡𝑚𝑎𝑥 min Time from dose to maximum plasma concentration
𝑊 kg Weight
𝐶𝑙𝐹 ,𝐼 ml/kg/min Apparent insulin clearance
𝐼𝑏 mU/l Basal insulin concentration

𝑘1 , 𝑘2 min−1 Absorption elimination rate constants
𝐶𝑙𝐹 ,𝐶 ml/kg/min Apparent glucagon clearance
𝐶𝑏 pg/ml Basal glucagon concentration

𝑘𝑎1 , 𝑘𝑎2 , 𝑘𝑎3 min−1 Deactivation rate constants
𝐹01 μmol/kg/min Insulin-independent glucose flux
𝐹𝑅 μmol/kg/min Renal glucose clearance
𝑆𝑇 min−1/(mU/l) Insulin sensitivity to glucose transport
𝑆𝐷 min−1/(mU/l) Insulin sensitivity to glucose disposal
𝑘12 min−1 Transfer rate constant from the nonaccessible to the accessible compartment
𝑉 ml/kg Glucose distribution volume

2.1.2. Glucagon pharmacokinetics
The glucagon pharmacokinetics (green block, Fig. 1) is also repre-

sented as a two-compartment subsystem (𝑍1(𝑡) and 𝑍2(𝑡)), analogously
to the insulin one, with input the glucagon infusion (𝑢𝐶 (𝑡)), expressed as
a deviation with respect to basal glucagon infusion (which is expected
to be zero), and output plasma glucagon concentration (𝐶(𝑡)).

d𝑍1(𝑡)
d𝑡 = 𝑢𝐶 (𝑡) − 𝑘1 ⋅𝑍1(𝑡) (2a)

d𝑍2(𝑡)
d𝑡 = 𝑘1 ⋅𝑍1(𝑡) − 𝑘2 ⋅𝑍2(𝑡) (2b)

𝐶(𝑡) =
𝑘2 ⋅𝑍2(𝑡)
𝑊 ⋅ 𝐶𝑙𝐹 ,𝐶

+ 𝐶𝑏 (2c)

2.1.3. Glucose regulation
The glucose regulation subsystem (red block, Fig. 1) follows the

Hovorka model [8]. It is composed by three states representing the
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Table 3
EGP models parameters and states description. Parameters marked with (⋆) are the ones to be identified.

Magnitude Units Description

𝑘𝑜𝑓𝑓 min−1 Dissociation rate
𝑘𝑟𝑒𝑐 min−1 Recycling rate
𝑘𝑖𝑛 min−1 Internalization rate of the glucagon-bonded receptor
𝑘𝑜𝑛 ⋆ (pg/min)−1 Association rate of glucagon to the receptor
𝑉ℎ ml Volume of the hepatic interstitial space
𝐾𝑟 ⋆ unitless Apparent dissociation constant
𝑉𝑟 ⋆ μmol/kg/min Maximal glucagon-dependent hepatic glucose production rate
𝐸𝐺𝑃0 ⋆ μmol/kg/min EGP extrapolated to zero insulin concentration
𝑆𝐼 ⋆ (mU/l)−1 Hepatic insulin sensitivity
𝑟(𝑡), 𝑟𝐶 (𝑡) unitless Normalized amount of free and bonded receptors
𝐹ℎ𝑔𝑝(𝑡) μmol/kg/min Hepatic glucose production

𝑆𝐸 ⋆ (mU/l)−1 Hepatic insulin sensitivity
𝐸𝑚𝑎𝑥 ⋆ μmol/kg/min Maximum EGP at basal insulin concentration
𝐶𝐸50 ⋆ pg/ml Glucagon concentration yielding half of maximum EGP
𝐺𝐺𝑁𝐺 ⋆ μmol/kg/min Glucose production by glyconeogenesys
𝐺𝑔𝑔 (𝑡) μmol/kg/min Glucose production due to glycogenolysis

𝑆 ⋆ (mU/l)−1 Hepatic insulin sensitivity
𝑇 ⋆ (pg/ml)−1 Glucagon sensitivity
𝐺𝑛𝑔 ⋆ μmol/kg/min Effect due to gluconeogenesis
𝐾𝐺𝑑 ⋆ (μmol/kg)−1 Fractional deactivation rate constant
𝑇𝐺𝑑 ⋆ μmol/kg Glucagon rate of change sensitivity
𝐸𝐺𝑃𝐺(𝑡) μmol/kg/min Contribution to EGP from the rate of change of glucagon

𝐸𝐺𝑃0 ⋆ μmol/kg/min Basal endogenous glucose production at zero insulin concentration
𝑆𝑓 ⋆ (mU/l)−1 Hepatic insulin sensitivity
𝑘𝑔3 ⋆ min Glucagon rate of change sensitivity
𝑘𝑐 ⋆ (ng/l)−1/min Glucagon sensitivity
𝑘𝑑 ⋆ min−1 Clearance rate of glucagon from the remote compartment
𝑌 (𝑡) unitless Effect of glucagon on EGP

effects of insulin on glucose transport, glucose disposal, and EGP.
d𝑥1(𝑡)

d𝑡 = 𝑘𝑎1
(

𝐼(𝑡) − 𝑥1(𝑡)
)

(3a)

d𝑥2(𝑡)
d𝑡 = 𝑘𝑎2

(

𝐼(𝑡) − 𝑥2(𝑡)
)

(3b)

d𝑥3(𝑡)
d𝑡 = 𝑘𝑎3

(

𝐼(𝑡) − 𝑥3(𝑡)
)

(3c)

Finally, the glucose dynamics for the accessible, 𝑄1(𝑡), and non-
accessible, 𝑄2(𝑡), compartments, are described as follows:
d𝑄1(𝑡)

d𝑡 = −𝐹01(𝑡) − 𝐹𝑅(𝑡) − 𝑆𝑇 ⋅ 𝑥1(𝑡) ⋅𝑄1(𝑡) + 𝑘12 ⋅𝑄2(𝑡) + 𝐸𝐺𝑃 (𝑡) (3d)

d𝑄2(𝑡)
d𝑡 = 𝑆𝑇 ⋅ 𝑥1(𝑡) ⋅𝑄1(𝑡) −𝑄2(𝑡)

(

𝑘12 + 𝑆𝐷 ⋅ 𝑥2(𝑡)
)

(3e)

𝐺(𝑡) =
𝑄1(𝑡)
𝑉

(3f)

where the definition of 𝐸𝐺𝑃 (𝑡) will vary depending on the model used.
Note that, as compared to Hovorka et al. [8], Eqs. (3a)–(3c) have unit
static gain, being insulin sensitivities (gains) for glucose transport and
uptake described by parameters 𝑆𝑇 and 𝑆𝐷, respectively, in Eqs. (3d)–
(3e). Hepatic insulin sensitivity will be defined by the corresponding
model describing 𝐸𝐺𝑃 (𝑡).

The following sections describe the different EGP models tested in
this study. In the presentation of the subsequent models, the notation
of parameters and states has been kept as similar as possible to the
original respective works for the sake of clarity, as listed in Table 3.

2.2. DTU EGP model

The original Wendt model [11] described EGP as:

𝐸𝐺𝑃 (𝑡) = 𝐺𝑔𝑔(𝑡) + 𝐺𝐺𝑁𝐺 (4a)

where the signal 𝐺𝑔𝑔(𝑡) determines the effect of glucagon and insulin on
hepatic glucose production. This relationship is given by a Michaelis–
Menten expression with maximum rate inhibited by insulin effect (𝑥3(𝑡))
above basal insulin concentration 𝐼𝑏, with hepatic insulin sensitivity 𝑆𝐸
(see Fig. 2):

𝐺𝑔𝑔(𝑡) =
1 − 𝑆𝐸 ⋅ 𝑥3(𝑡)
1 − 𝑆𝐸 ⋅ 𝐼𝑏

⋅
(

(

𝐸𝑚𝑎𝑥 − 𝐺𝐺𝑁𝐺
) 𝐶(𝑡)
𝐶𝐸50 + 𝐶(𝑡)

)

(4b)

Fig. 2. DTU EGP model.

Fig. 3. McGill EGP model.

2.3. McGill EGP model

Emami et al. [10] perform a comparison of 8 different descriptions
of EGP and validate them with a set of clinical data. The model
concluded as the best description for EGP was defined as (see Fig. 3):

𝐸𝐺𝑃 (𝑡) =
(

1 − 𝑆 ⋅ 𝑥3(𝑡)
)

⋅
(

𝐸𝐺𝑃𝐺(𝑡) + 𝑇 ⋅ 𝐶(𝑡)
)

+ 𝐺𝑛𝑔 (5a)

where (⋅) is the unit step function, included to keep the expression
positive. They consider that not only the level of plasma glucagon
contributes to hepatic glucose production, but also its rate of change,
defining the derivative of 𝐸𝐺𝑃𝐺(𝑡) as:

d𝐸𝐺𝑃𝐺(𝑡)
d𝑡 = −𝑘𝐺𝑑 ⋅ 𝐸𝐺𝑃𝐺(𝑡) − 𝑘𝐺𝑑 ⋅ 𝑇𝐺𝑑

(

d𝐶(𝑡)
d𝑡

)

(5b)
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Fig. 4. OHSU EGP model.

Fig. 5. Receptors EGP model.

Hepatic insulin sensitivity is given by parameter 𝑆. Similarly to
Wendt et al. [11], insulin effect 𝑥3(𝑡) inhibits glucagon effect on EGP
as a multiplicative factor.

2.4. OHSU EGP model

Jacobs et al. [16] proposed a model based on Hovorka’s model [8],
incorporating glucagon dynamics. However, contrary to Wendt et al.
[11], EGP is defined as (see Fig. 4):

𝐸𝐺𝑃 (𝑡) = 𝐸𝐺𝑃0

(

1 − 𝑆𝑓 ⋅ 𝑥3(𝑡) + 𝑌 (𝑡) + 𝑘𝑔3 ⋅
d𝑌 (𝑡)

d𝑡

)

(6a)

where 𝑌 (𝑡) represents glucagon effect with dynamics given by:
d𝑌 (𝑡)

d𝑡 = 𝑘𝑐 ⋅ 𝐶(𝑡) − 𝑘𝑑 ⋅ 𝑌 (𝑡) (6b)

Note that the parameter 𝑆𝑓 was added to the original formulation of
the model, in order to match our definition of the unit-gain 𝑥3(𝑡), as
compared to Jacobs et al. [16]. Also, units of 𝑘𝑐 are different with
respect to the original definition, in order to match the units of the
plasma glucagon signal.

Remark that, contrary to Wendt et al. [11] and Emami et al. [10],
insulin and glucagon effects on EGP in this model are considered to
be additive, instead of multiplicative. This means that contribution
of glucagon to EGP is independent of insulin, and that the balance
between glucagon and insulin antagonic effects will determine EGP.

2.5. Receptors-based EGP model

More recently, the work from [13] proposed a three compartment
system to describe glucagon receptors dynamics. Receptors are lo-
cated on the surface membrane of the liver and they bond to plasma
glucagon. This pairing triggers a chain of protein signaling that re-
sults in promoting glycogenolysis and glyconeogenesis [17]. After this,
glucagon-bond receptors dissociate and internalize at different rates,
becoming temporarily unavailable in this latter case. The authors repre-
sent this process with a three compartment model, one state variable for
each state of the receptors: available (𝑟(𝑡)), bonded to glucagon (𝑟𝑐 (𝑡))
and internalized (𝑟𝑖(𝑡)) (see Fig. 5). Assuming that the total number of
receptors, although unknown, remains constant, this relationship can
be simplified considering the constraint 𝑟𝑖(𝑡) = 1 − 𝑟(𝑡) − 𝑟𝑐 (𝑡), where
the state variables are expressed as relative to the total number of

receptors. As a result, a two-compartment model is obtained describing
unbound and bonded (active) receptors, which is given by:
d𝑟(𝑡)
d𝑡 = − 𝑘𝑜𝑛 ⋅ 𝑉ℎ ⋅ 𝐶(𝑡) ⋅ 𝑟(𝑡) + 𝑘𝑜𝑓𝑓 ⋅ 𝑟𝑐 (𝑡) + 𝑘𝑟𝑒𝑐

(

1 − 𝑟(𝑡) − 𝑟𝑐 (𝑡)
)

(7a)

d𝑟𝑐 (𝑡)
d𝑡 = 𝑘𝑜𝑛 ⋅ 𝑉ℎ ⋅ 𝐶(𝑡) ⋅ 𝑟(𝑡) − 𝑘𝑜𝑓𝑓 ⋅ 𝑟𝑐 (𝑡) − 𝑘𝑖𝑛 ⋅ 𝑟𝑐 (𝑡) (7b)

Then, glucagon effect on hepatic glucose production (𝐹ℎ𝑔𝑝(𝑡)) is
made dependent on active glucagon receptors, as opposed to previous
models which consider plasma glucagon concentration. This relation is
modeled by means of a Michaelis–Menten relationship, as follows:

𝐹ℎ𝑔𝑝(𝑡) =
𝑉𝑟 ⋅ 𝑟𝑐 (𝑡)
𝐾𝑟 + 𝑟𝑐 (𝑡)

(7c)

When incorporating this effect into our model, the EGP expression
was complemented by adding an additive effect of insulin on glucose
production by the liver, which was not considered in the work by Mas-
roor et al. [13]. With this, the expression of EGP is finally constituted
as:

𝐸𝐺𝑃 (𝑡) = 𝐹ℎ𝑔𝑝(𝑡) + 𝐸𝐺𝑃0
(

1 − 𝑆𝐼 ⋅ 𝑥3(𝑡)
)

(7d)

where 𝑆𝐼 is the hepatic insulin sensitivity.
The original work by Masroor et al. [13] validated the model with

glucagon-challenge test data on eight healthy subjects, and used a
minimal glucoregulatory model, based on the [18] model. In this work,
it is incorporated into a more detailed model and it is validated using
data from people with T1D receiving subcutaneous glucagon injec-
tion of various doses, better describing the expected use of glucagon,
as explained in the next section. This model proposal has already
been proven useful in describing glucagon dynamics, as shown in the
authors’ previous work [14].

3. Identification procedure

3.1. Clinical data

The data used for the models evaluation was obtained in a clinical
trial performed by Ranjan et al. [15]. The purpose of the trial was to
test the efficacy of different glucagon doses in recovering from mild
hypoglycaemia. Eight subjects with T1D took part in the study, who
underwent four different arms in the trial.

The protocol for the study was the following: patients received an
insulin bolus to reach mild hypoglycemic conditions (BG concentration
lower than 70 mg/dl). At that point they received either saline or a
glucagon bolus (100 μg, 200 μg or 300 μg) depending on the trial arm.
The study finised four hours after the glucagon injection. A summary
of the protocol is shown in Fig. 6. Plasma glucose, plasma glucagon,
plasma insulin, plasma growth hormone, cortisol, free fatty acids,
triglycerides, blood pressure, and heart rate were measured throughout
the study. In the development of this work, only the information about
plasma glucose, glucagon and insulin was used. Also, since the main
interest was the modeling of glucagon effect on EGP, only the visits
were glucagon was administered (100 μg, 200 μg or 300 μg) have been
considered, which will be labeled as visit A, B and C henceforth.

Fig. 6. Protocol in the clinical trial by Ranjan et al. [15]. After admission, patients
were administered insulin in order to lower their glycemic values to 70 mg/dl. When
glucose reached hypoglycaemia conditions (𝑡 = 0 min) a glucagon or saline bolus was
injected.
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3.2. Parameter identification

The main goal of this work is to test the receptors structure capa-
bility of describing observed glucose behavior against other proposals.
This required identifying the model-specific parameters for each one of
the aforementioned EGP models.

In a previous work, where a preliminary validation of the EGP
model based on glucagon receptors was carried out, the identifica-
tion was performed independently for each of the two models being
tested [14]. However, since there are multiple EGP definitions, but the
baseline model is common to all of them, the identification was revised
taking into account that:

1. The parameters in the baseline model should be the same for
each one of the complete models.

2. Instead of carrying out separate optimizations for each one of
the models, the required set of parameters should be found for
all of the models in the same optimization problem. This way,
the parameters of the base model will be common to all EGP
definitions.

3. The aim is to test each model structure, not finding a global
model for all the patients. Hence, a different set of parameters
will be identified for each patient.

With these premises in mind, the proposed identification method
tries to find the best fit to the data for all the models while being equally
fair. Note that most of the parameters for the baseline model (Table 2)
are taken from [11], since they used the same set of clinical data as the
present work.

In solving the optimization problem, each model runs three times,
one for each visit to the clinic. Then, for each model, an index was
calculated as the aggregated sum of the root mean square error (RMSE)
per visit:

𝐽𝑚 =
3
∑

𝑣=1

√

√

√

√

1
𝑛𝑣

𝑛𝑣
∑

𝑖=1
(�̂�𝑣𝑖,𝑃 − 𝑦𝑣𝑖,𝑃 )

2 (8)

where 𝑚 refers to the models, 𝑣 refers to the visits, 𝑛𝑣 is the number
of data points in a specific visit, 𝑃 refers to the patient, �̂�𝑣𝑖,𝑃 is the
simulated data point and 𝑦𝑣𝑖,𝑃 is the measured data.

The total index to be optimized was the average value of 𝐽𝑚 for the
four models.

𝐽 = 1
4
⋅

4
∑

𝑚=1
𝐽𝑚 (9)

Regarding the parameters to be identified, insulin sensitivities (𝑆𝑇
and 𝑆𝐷, (3d)–(3e)) were identified not only per patient but also per visit
(i.e., each patient gets a different insulin sensitivity in each visit to the
clinic). The reason behind this is that insulin sensitivity can present a
wide variability, and change along time for a myriad of reasons [19].
Along with these parameters, the initial condition for the state 𝑄2(𝑡)
(𝑄20 ) was also identified for each visit. This allows to have a better fit
to the data of each visit especially in the first part of the trial, where
only insulin effect is present. In this way, simulated glucose and real
glucose will be the closest possible at time 𝑡 = 0 min, since from that
point onwards is where our main area of interest will be.

The total vector of parameters can be divided into different sections.
The first subset of parameters to identify will contain the constants from
the base model.

𝜃𝑣1𝑃 =
{

𝑆𝑣
𝑇 , 𝑆

𝑣
𝐷, 𝑄

𝑣
20

}

, 𝑣 = 1, 2, 3; 𝑃 = 1, 2,… , 8

For each of the EGP models, a subset of parameters is selected
to be identified. These sets are identified per patient, but they are
common across visits (the same EGP model should be able to explain
the response of different glucagon doses). First, the subset for the DTU
model will be:

𝜃2𝑃 =
{

𝐺𝐺𝑁𝐺 , 𝑆𝐸 , 𝐸𝑚𝑎𝑥, 𝐶𝐸50
}

, 𝑃 = 1, 2,… , 8

For the McGill model:

𝜃3𝑃 =
{

𝐺𝑛𝑔 , 𝑆, 𝑇 , 𝐾𝐺𝑑 , 𝑇𝐺𝑑
}

, 𝑃 = 1, 2,… , 8

For the OHSU model:

𝜃4𝑃 =
{

𝐸𝐺𝑃0, 𝑆𝑓 , 𝑘𝑔3, 𝑘𝑔 , 𝑘𝑐
}

, 𝑃 = 1, 2,… , 8

And finally the Receptors model:

𝜃5𝑃 =
{

𝐸𝐺𝑃0, 𝑆𝐼 , 𝑘𝑜𝑛, 𝐾𝑟, 𝑉𝑟
}

, 𝑃 = 1, 2,… , 8

The Receptors model included many parameters describing rates
between the receptors compartments. In the original work by Masroor
et al. [13], some of the parameters were identified whereas others were
fixed according to previous works found in literature, based on the
modeling of insulin receptors (𝑘𝑟𝑒𝑐 based on [20]) or previous studies
on glucagon receptors (𝑘𝑜𝑛 and 𝑘𝑜𝑓𝑓 based on [21]). However, it was
deemed appropriate to identify the activation rate (𝑘𝑜𝑛, (7a)–(7b)) as
a way of tailoring the process to each patient. Furthermore, to avoid
identifiability issues, the value of 𝑘𝑖𝑛 was fixed to the identified value
in [13]. The components of the Michaelis–Menten expression (𝐾𝑟 and
𝑉𝑟, (7c)), were also included in the identification.

The complete parameter vector to be optimized will include all
parameter subsets.

𝜃𝑃 =
{

𝜃11𝑃 , 𝜃
2
1𝑃 , 𝜃

3
1𝑃 , 𝜃2𝑃 , 𝜃3𝑃 , 𝜃4𝑃 , 𝜃5𝑃

}

This leaves an optimization problem with a total of 28 parameters
per patient. The identification was carried out using the fmincon func-
tion in Matlab R2018b. This function makes use of the interior point
algorithm to find the minimum of the specified cost index (9) [22].
This algorithm is the default solver in the fmincon function, and it
is widely used for solving optimization problems. The interior point
algorithm tries to iteratively approach the optimal solution from the
interior of a feasible set. Since this is a local optimization solver, the
optimization was repeated five times with different random starting
points within the parameter bounds. These bounds are predefined based
on the provided parameter values in each model’s original work.

To solve the system of differential equations, Matlab provides the
function ode45, that makes use of a Runga-Kutta method to solve
the system over a specific time step. Specifically, the Dormand-Prince
method [23]. In this work, the ode45 function runs over 5 min
intervals, with the solver applying a variable simulation step size within
each interval.

4. Results

Fig. 7 shows the average fit of the models to the data. Each row
corresponds to one model (DTU, McGill, OHSU and Receptors1), and
each column shows the different visits (A, B and C). All models present
a reasonable fit to the data, however the Receptors model presents a
better fit consistently across visits.

Fig. 8 shows the average fit to plasma insulin and plasma glucagon
data. Since both these signals belong to the baseline pharmacokinetics
models, they are common for all the studied models. Plasma insulin
graph for visit B presents some unusual shape in the standard deviation
graph. This is because only one patient’s data was measured at some
of the depicted timestamps. Hence, the standard deviation is zero for
those points.

The parameter values obtained in the identification process are
described in Tables 5–7. Table 5 shows the values of the parameters
that were identified per visit (𝑆𝑇 , 𝑆𝐷 and the initial value of 𝑄2).
Tables 6 and 7 show the parameters values of each EGP model for the
eight patients.

RMSE results for each model and period are summarized in Fig. 9.
The RMSE values were analyzed at three different periods:

1 From this point on, we refer to the models by name but they comprise
the combination of the baseline model plus the corresponding EGP model.
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Table 4
Means and standard deviations for the 𝐽𝑚 index of each of the models against the receptors proposal, 𝑡-test analysis, and
Cohen’s 𝑑, separated by time period.
First period

Receptors 𝑡 𝑝 Cohen’s 𝑑

DTU 7.22 ± 2.15
7.21 ± 2.36

0.02 0.985 0.01
McGill 8.84 ± 3.01 1.78 0.118 0.63
OHSU 8.64 ± 2.82 1.58 0.159 0.56

Second period

Receptors 𝑡 𝑝 Cohen’s 𝑑

DTU 6.64 ± 1.58
5.90 ± 1.75

2.43 0.046** 0.86
McGill 7.18 ± 1.32 3.85 0.006** 1.36
OHSU 7.81 ± 1.75 3.06 0.018** 1.08

Overall

Receptors 𝑡 𝑝 Cohen’s 𝑑

DTU 7.76 ± 1.45
7.13 ± 1.71

2.18 0.066 0.77
McGill 8.45 ± 1.38 3.44 0.011** 1.22
OHSU 8.99 ± 1.62 3.74 0.007** 1.32

Table 5
Identified values for the parameters 𝑆𝑡, 𝑆𝐷 and 𝑄20 . Bottom row shows the mean values and their standard deviation of each parameter.

Patient Visit A Visit B Visit C

𝑆𝑑 𝑆𝑡 𝑄20
𝑆𝑑 𝑆𝑡 𝑄20

𝑆𝑑 𝑆𝑡 𝑄20

1 1.81 ⋅ 10−4 1.13 ⋅ 10−3 860 5.45 ⋅ 10−4 2.82 ⋅ 10−3 2061 3.08 ⋅ 10−4 4.92 ⋅ 10−3 2999
2 1.52 ⋅ 10−4 1.89 ⋅ 10−3 1038 3.16 ⋅ 10−4 3.05 ⋅ 10−3 1508 2.78 ⋅ 10−5 3.59 ⋅ 10−3 2178
3 2.08 ⋅ 10−4 5.62 ⋅ 10−3 2990 5.32 ⋅ 10−4 3.83 ⋅ 10−3 1939 5.97 ⋅ 10−4 8.90 ⋅ 10−3 2992
4 1.16 ⋅ 10−5 1.60 ⋅ 10−4 218 2.74 ⋅ 10−4 7.43 ⋅ 10−4 802 3.55 ⋅ 10−1 1.12 ⋅ 10−4 121
5 1.03 ⋅ 10−5 2.46 ⋅ 10−3 1822 9.64 ⋅ 10−5 2.19 ⋅ 10−3 1126 1.52 ⋅ 10−4 4.85 ⋅ 10−3 1979
6 2.79 ⋅ 10−4 5.50 ⋅ 10−3 3000 2.02 ⋅ 10−2 6.20 ⋅ 10−4 3000 4.69 ⋅ 10−4 4.77 ⋅ 10−3 3000
7 1.46 ⋅ 10−4 4.65 ⋅ 10−3 2190 1.54 ⋅ 10−4 4.12 ⋅ 10−3 3000 1.23 ⋅ 10−4 4.28 ⋅ 10−3 2042
8 6.33 ⋅ 10−5 5.53 ⋅ 10−3 2503 2.60 ⋅ 10−4 4.32 ⋅ 10−3 2177 9.71 ⋅ 10−4 9.01 ⋅ 10−3 2999

1.31 ⋅ 10−4 ± 9.60 ⋅ 10−5 3.37 ⋅ 10−3 ± 2.21 ⋅ 10−3 1828 ± 1033 2.80 ⋅ 10−3 ± 7.03 ⋅ 10−3 2.71 ⋅ 10−3 ± 1.44 ⋅ 10−3 1952 ± 798 4.47 ⋅ 10−2 ± 1.25 ⋅ 10−1 5.05 ⋅ 10−3 ± 2.87 ⋅ 10−3 2289 ± 991

Table 6
Identified values for the DTU and McGill EGP models parameters. Bottom row shows the mean values and their standard deviation of each parameter.

Patient DTU McGill

𝑆𝑒 𝐸𝑚𝑎𝑥 𝐶𝐸50 𝐺𝐺𝑁𝐺 𝑆 𝑇 𝐾𝐺𝑑 𝑇𝐺𝑑 𝐺𝑛𝑔

1 1.33 ⋅ 10−2 100 900 5 0.01 0.05 0.26 1.93 ⋅ 10−1 7
2 1.03 ⋅ 10−3 75 999 6 0.01 0.05 0.01 4.66 ⋅ 10−3 6
3 1.02 ⋅ 10−3 100 447 8 0.03 0.20 6.88 4.32 ⋅ 10−1 9
4 1.17 ⋅ 10−3 79 735 8 0.01 0.07 0.81 3.65 ⋅ 10−1 9
5 2.98 ⋅ 10−3 96 987 5 0.01 0.03 6.69 5.54 ⋅ 10−1 7
6 1.00 ⋅ 10−3 100 642 9 0.04 0.17 0.09 4.16 ⋅ 10−1 10
7 2.14 ⋅ 10−2 89 1000 3 0.01 0.05 6.65 2.17 ⋅ 10−3 3
8 8.86 ⋅ 10−3 100 631 1 0.01 0.06 0.07 5.56 ⋅ 10−1 5

6.34 ⋅ 10−3 ± 7.58 ⋅ 10−3 92 ± 10 793 ± 209 6 ± 3 0.02 ± 0.01 0.09 ± 0.06 2.68 ± 3.37 3.15 ⋅ 10−1 ± 2.24 ⋅ 10−1 7 ± 2

Table 7
Identified values for the OHSU and Receptors EGP models parameters. Bottom row shows the mean values and their standard deviation of each parameter.

Patient OHSU Receptors

𝑆𝑓 𝑘𝑔3 𝑘𝑐 𝑘𝑑 𝐸𝐺𝑃0 𝑆𝐼 𝑘𝑜𝑛 𝐾𝑟 𝑉𝑟 𝐸𝐺𝑃0

1 8.16 ⋅ 10−6 8.25 ⋅ 10−6 1.62 ⋅ 10−3 0.26 7 1.33 ⋅ 10−2 2.25 ⋅ 10−6 8.57 ⋅ 10−3 135 8
2 9.19 ⋅ 10−6 9.81 ⋅ 10−6 7.46 ⋅ 10−3 1.00 6 1.03 ⋅ 10−3 5.30 ⋅ 10−5 2.19 ⋅ 10−1 200 9
3 6.89 ⋅ 10−5 9.93 ⋅ 10−6 3.59 ⋅ 10−3 0.34 10 1.02 ⋅ 10−3 1.35 ⋅ 10−5 3.48 ⋅ 10−2 195 10
4 1.05 ⋅ 10−5 1.07 ⋅ 10−5 1.63 ⋅ 10−3 0.27 9 1.17 ⋅ 10−3 9.70 ⋅ 10−6 1.65 ⋅ 10−2 80 10
5 9.40 ⋅ 10−6 9.45 ⋅ 10−6 1.14 ⋅ 10−3 0.20 7 2.98 ⋅ 10−3 1.04 ⋅ 10−6 2.86 ⋅ 10−3 101 6
6 9.98 ⋅ 10−5 1.23 ⋅ 10−5 1.69 ⋅ 10−3 0.32 12 1.00 ⋅ 10−3 4.79 ⋅ 10−6 7.90 ⋅ 10−3 109 10
7 9.41 ⋅ 10−5 1.06 ⋅ 10−5 1.43 ⋅ 10−2 1.00 3 2.14 ⋅ 10−2 1.72 ⋅ 10−5 1.04 ⋅ 10−1 200 5
8 1.35 ⋅ 10−5 1.33 ⋅ 10−5 1.46 ⋅ 10−3 0.13 5 8.86 ⋅ 10−3 1.00 ⋅ 10−6 1.62 ⋅ 10−3 103 4

3.92 ⋅ 10−5 ± 4.11 ⋅ 10−5 1.06 ⋅ 10−5 ± 1.62 ⋅ 10−6 4.11 ⋅ 10−3 ± 4.62 ⋅ 10−3 0.44 ± 0.35 7 ± 3 6.34 ⋅ 10−3 ± 7.58 ⋅ 10−3 1.28 ⋅ 10−5 ± 1.73 ⋅ 10−5 4.94 ⋅ 10−2 ± 7.64 ⋅ 10−2 140 ± 50 8 ± 2

1. Considering the first part only (First period), from start time
of the clinical trial until the glucagon bolus was administered
(t = −X to 𝑡 = 0 min, see Fig. 6). This interval was analyzed to
ensure that the behavior of the baseline model was consistent
independent of the EGP model.

2. From the moment the glucagon was administered, onward
(Second period), from 𝑡 = 0 to 𝑡 = 240 min. This would be the

main area of interest in this study, where the glucagon effect
comes into play.

3. Along all the time of the experiment (Overall).

Table 4 details the mean RMSE (8) and its standard deviation for
each of the models in each of the studied time periods. Several paired
statistical analysis were performed, comparing each of the selected EGP
models against the Receptors model. This comparison provided the
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Fig. 7. Glucose simulation results. Figures show each of the studied models against the clinical data. Dashed/gray lines correspond to the data and continuous/colored lines show
the simulation results. The central line for both data series represents the average of the eight patients, whereas the shaded area encloses standard deviation. Results show the
response from 𝑡 = 0 min to 240 min.

result of the 𝑡-test, its 𝑝-value and Cohen’s 𝑑 size effect. Results in the
First period show that there is no statistically significant differences
between any of the studied models and the Receptors model. However
in the Second period, the difference is statistically significant for every
pair of models. In the overall analysis, the pairs McGill-Receptors and
OHSU-Receptors also present statistically significant differences. Across
all the analysis it is also shown that the average error for the Receptors
model is lower in every comparison.

5. Discussion

This work’s results show how the EGP model including glucagon re-
ceptors dynamics provides an improvement in describing the glucagon
effect when compared with other models from literature. Table 4
reflects this result, showing a lower average error value for the Re-
ceptors model, and a statistically significant difference for each of the
comparisons in the Second period of the data, which is the main focus
of our analysis. Also, Cohen’s 𝑑 values (larger than 0.8), confirm that
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Fig. 8. Plasma insulin (top) and plasma glucagon (bottom) simulation results. Dashed/gray lines correspond to the data and continuous/colored lines show the simulation results.
The central line for both data series represents the average of the eight patients, whereas the shaded area encloses standard deviation. Results show the response from 𝑡 = 0 min
to 240 min. Irregularities in insulin standard deviation graph are due to just one patient’s data being measured in certain timestamps, making zero the standard deviation.

Fig. 9. Boxplots of RMSE values obtained per model for the First period of data (left), the Second period (middle) and Overall the time of the trial (right). White crosses mark
mean values and black horizontal lines, median values.

there is a noticeable difference in the behavior between the analyzed
pairs. In fact, for the Overall analysis, there is a statistically significant
difference for all the comparisons but DTU-Receptors. However, the 𝑝-
value is close to being lower than 0.05 and Cohen’s 𝑑 is also close to
0.8, meaning that the difference is not negligible.

Having no statistically significant difference in the First period
agrees with what we expected, since in that interval, the EGP model
only contributes as a constant (basal value) to the general model. Our
hypothesis was that no matter the EGP model used, the behavior in the
First period should be similar across models in order to provide a fair
comparison. The First period also shows the greatest standard deviation
in the error values. This is due to the scarce data available in the first
part of the experiment, which caused the fits to have greater RMSEs,
and also the great variability in the initial conditions (i.e., there is no
information about the patients’ state prior to arriving to the clinic).

The results obtained in this study will allow to incorporate EGP
models including glucagon receptor dynamics into other T1D simu-
lators. To our knowledge, they are not present in any widely-used
simulator, but it could improve the accuracy of the in silico experiments
providing a more physiology-based definition.

One question remains unanswered and that is, how decisive the
influence of plasma insulin levels is on the glucagon effect. As shown in
Fig. 8, plasma insulin levels were stable during the Second period, when
glucagon was acting, with an average value of 15 mU/l approximately.
According to the results reported by El Youssef et al. [12], maintained
high plasma insulin may impair glucagon effect. Their results report a
high plasma insulin concentration around 40 mU/l, which is not close
to the conditions of the clinical data used in this work.

Limitations of this work include: (1) The reduced number of partic-
ipants (𝑛 = 8) in the clinical dataset. This is a general limitation found
in metabolic studies addressing glucagon modeling where cohorts are
typically between 10 and 20 (see for instance [12,24,25]), due to the
specific nature of the data to be collected in ad-hoc experiments (time
series with frequent enough measurements of plasma glucose, insulin
and glucagon are needed), as opposed to the use of tests part of the
clinical routine such as the Oral Glucose Tolerance Test (OGTT), where
larger cohorts are feasible (e.g. Contreras et al. [26]). Hence, given
the reduced number of datasets available, this only allows to draw
preliminary conclusions. Further research will be needed introducing
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a larger dataset or several clinical trials as validation data in order to
be able to guarantee the accuracy of the proposed model; (2) A slight
inaccuracy in the first part of the data fit. As seen in Fig. 7, some models
did not exactly reach the point of interest at 𝑡 = 0, which might also
indicate a limitation in the insulin pharmacokinetics models; (3) The
large number of parameters to be identified. A long time was needed to
solve the optimization problem, which makes it infeasible to be solved
online within an AP algorithm; (4) Further validation should include
different datasets in a variety of conditions, such as larger glucagon
doses, higher plasma insulin concentrations or close in time repeated
glucagon doses.

6. Conclusions

This work presents a glucagon receptors based EGP model, and
performs a head to head comparison with three other models from
literature. The evaluation consists in identifying parameters from the
selected EGP models to fit data from a clinical trial. The results show
an improvement in the data fitting with the proposed model. These
outcomes will be useful in the study of T1D and AP development,
allowing for more accurate in silico validations.
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A B S T R A C T
We present and critically discuss five commonly used mathematical models of the meal glucose rate of
appearance in humans. Such models are key to simulation of the metabolism in healthy people, people
with diabetes, and obese people, and they are central to developing effective treatments and prevention
strategies. Furthermore, we discuss important aspects of systematic mathematical modeling of human
metabolism, including meal consumption modeling, stoichiometry and reaction kinetics, and general-
purpose model components.

1. Introduction
Mathematical modeling and simulation of the human

metabolism are central to treating and preventing two of
the major pandemics of the 21st century; diabetes and obe-
sity (Pattaranit and van den Berg, 2008). Model-based simu-
lation can both support scientific developments within phys-
iology, help to improve drug development processes (Huang
et al., 2009), and be used directly in support tools, e.g.,
in automated insulin delivery systems for people with di-
abetes (Lal et al., 2019). Specifically, modeling is a key
component of virtual clinical trials (Reenberg et al., 2022;
Ritschel et al., 2022), rigorous mathematical analysis (Cohen
and Li, 2021), and of model-based algorithms for, e.g.,
monitoring, prediction, control, and optimization (Boiroux
et al., 2018).

The human metabolism is a complex set of chemical
reactions that are responsible for sustaining life. Their pur-
poses are to 1) digest food, 2) convert the energy in the
food into a form that can be used in cellular processes,
3) convert food into building blocks for nucleic acids, pro-
teins, carbohydrates, and lipids, 4) transport substances into
and between cells, and 5) eliminate waste from metabolic
processes. Food digestion and absorption are particularly
important to mathematical modeling in diabetes and obe-
sity (Gouseti et al., 2019; Le Feunteun et al., 2020). Many
models describe the dynamics of glucose and insulin and dis-
regard other macronutrients (fat and protein) and hormones
(e.g., glucagon, ghrelin, and incretins). Furthermore, it is
common to describe meal glucose absorption using simple
algebraic relations (Silber et al., 2010) or to only consider
intravenous glucose injection (Silber et al., 2007). However,
models that include the dynamics of glucagon (Adams and
Lasseigne, 2018), ghrelin (Barnabei et al., 2022), and in-
cretins (Jauslin et al., 2007), as well as the absorption of
other macronutrients (Sicard et al., 2018), have also been

∗Corresponding author
jbjo@dtu.dk (J.B. Jørgensen)

ORCID(s): 0000-0002-5843-240X (T.K.S. Ritschel);
0000-0003-0015-7107 (A.T. Reenberg); 0000-0001-7511-2910 (J.B.
Jørgensen)

proposed. Recently, Pompa et al. (2021) compared three
models commonly used in diabetes using a simulation study.
However, they conclude that it is not possible to determine
which of the models that is more physiologically accurate
based on simulations alone. Noguchi et al. (2014) propose
a model which accounts for the digestion and absorption of
carbohydrates based on the glycemic index and carbohydrate
bioavailability. Moxon et al. (2016) propose three models
which include transport along the small intestine. Later, both
Noguchi et al. (2016) and Moxon et al. (2017) extended their
respective models with an upper bound on the glucose rate
of appearance in the blood stream. We refer to the reviews
by Smith et al. (2009), Palumbo et al. (2013), and Huard
and Kirkham (2022) for further information on models in
the literature.

Apart from the physiological phenomena included in the
models, there are several differences between the underlying
mathematical formulations. Some models are purely com-
partmental (De Gaetano et al., 2013) and described only by
ordinary differential equations (ODEs). Others also use par-
tial differential equations (PDEs), e.g., to describe the trans-
port through the small intestine (Moxon et al., 2016). Simi-
larly, there are models that represent delays exactly (Contr-
eras et al., 2020; Cohen and Li, 2021) using delay differential
equations (DDEs), and, in other cases, they are approxi-
mated (Alskär et al., 2016). Furthermore, meal consumption
can either be represented as a finite flow rate of nutri-
ents (Hovorka et al., 2004) or as instantaneous (Dalla Man
et al., 2014). Finally, while most models are deterministic,
some also include stochasticity (uncertainty), e.g., to model
variations in the meal size and consumption time (Chudtong
and De Gaetano, 2021). These different mathematical for-
mulations are also discussed in the review by Makroglou
et al. (2006).

In this work, we present a critical discussion of five
commonly used mathematical models of meal glucose ab-
sorption: 1) the model proposed by Hovorka et al. (2004),
2) the UVA/Padova model presented by Dalla Man et al.
(2006, 2007), 3) the SIMO model described by De Gaetano
et al. (2013) and used in the revised Sorensen model by Pa-
nunzi et al. (2020), 4) the model by Alskär et al. (2016), and
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5) a model which represents the stomach as a continuous
stirred-tank reactor (CSTR) and the small intestine as a plug-
flow reactor (PFR) (Moxon et al., 2016, 2017). In the last
model, we compare different models of the opening and
closing of the pylorus valve, which connects the stomach
to the duodenum in the small intestine. Furthermore, we
discuss general aspects of mathematical modeling relevant
to the human metabolism (representation of meals, delays,
and general modeling components).

The remainder of the paper is structured as follows. In
Section 2, we discuss the simulation of mathematical meal
models, and in Section 3, we present modeling components
that are relevant to modeling of the human metabolism in
general. In Section 4, we present the five models of meal
glucose absorption mentioned above, and in Section 5, we
discuss and compare them based on simulations. Finally, we
present conclusions in Section 6.

2. Mathematical models and simulation
We consider mathematical models of the meal nutrient

absorption in the gastrointestinal tract, which are in the form
of initial value problems involving ODEs:

�̇�(𝑡) = 𝑓 (𝑥(𝑡), 𝑑(𝑡), 𝑝𝑓 ), 𝑥(𝑡0) = 𝑥0. (1)
Here, 𝑡 is time, 𝑥 are the states, 𝑑 are the meal inputs, and
𝑝𝑓 are the parameters in the model, 𝑓 . 𝑥0 are the states
at time 𝑡0. The states constitute the minimal amount of
information necessary for simulating the future evolution of
the system (1).

The outputs, 𝑦, are described by the function
𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑝𝑔), (2)

where 𝑝𝑔 is a parameter vector. The purpose of the model
is to describe the relation between the outputs, 𝑦, and 1) the
meal inputs, 𝑑, and 2) the parameters, 𝑝𝑓 and 𝑝𝑔 , which are
specific to each person (and possibly also to each meal).
Remark 1. Models that contain PDEs or DDEs can be
approximated by models that only contain ODEs by means
of spatial discretizations and delay approximations, respec-
tively.

2.1. Typical structure of nonlinear models
Nonlinear models of meal nutrient absorption are often

more structured than the system (1). Specifically, many
nonlinear models are affine in the meal inputs:
�̇�(𝑡) = 𝑓 (𝑥(𝑡), 𝑑(𝑡), 𝑝𝑓 )

= 𝑓𝑥(𝑥(𝑡), 𝑝𝑓𝑥 ) + 𝑓𝑑(𝑥(𝑡), 𝑝𝑓𝑑 )𝑑(𝑡), 𝑥(𝑡0) = 𝑥0.
(3)

The first term describes the internal dynamics of the meal
absorption and the second term describes the direct effect
of the meal inputs on the states, e.g., the relation between
the amount of glucose in the meal and in the stomach. The
parameter vectors 𝑝𝑓𝑥 and 𝑝𝑓𝑑 contain the same parameters
as 𝑝𝑓 .

2.2. Linear models
Several meal models are linear in the states, 𝑥, and the

meal inputs, 𝑑:
�̇�(𝑡) = 𝐴𝑐(𝑝𝑓𝑥 )𝑥(𝑡) + 𝐵𝑐(𝑝𝑓𝑑 )𝑑(𝑡), 𝑥(𝑡0) = 𝑥0, (4a)
𝑦(𝑡) = 𝐶𝑐(𝑝𝑔)𝑥(𝑡). (4b)

The subscript 𝑐 on the system matrices, 𝐴𝑐 , 𝐵𝑐 , and 𝐶𝑐 ,indicate that it is a continuous-time linear state space model
(as opposed to a discrete-time state space model).
Remark 2. The linear state space model (4) is a special
case of the nonlinear model (1)–(2) where

𝑓 (𝑥(𝑡), 𝑑(𝑡), 𝑝𝑓 ) = 𝐴𝑐(𝑝𝑓𝑥 )𝑥(𝑡) + 𝐵𝑐(𝑝𝑓𝑑 )𝑑(𝑡), (5a)
𝑔(𝑥(𝑡), 𝑝𝑔) = 𝐶𝑐(𝑝𝑔)𝑥(𝑡). (5b)

The dynamical equation in the linear state space model (4a)
is also a special case of the meal input-affine model (3)
where

𝑓𝑥(𝑥(𝑡), 𝑝𝑓𝑥 ) = 𝐴𝑐(𝑝𝑓𝑥 )𝑥(𝑡), (6a)
𝑓𝑑(𝑥(𝑡), 𝑝𝑓𝑑 ) = 𝐵𝑐(𝑝𝑓𝑑 ). (6b)

2.3. Meal inputs
Some models of meal nutrient absorption represent the

meal inputs as flow rates, i.e., as step functions, and others
represent them as instantaneous, i.e., as impulses.
2.3.1. Step inputs

When the meal inputs are represented using step func-
tions, they are described by

𝑑(𝑡) = 𝑑𝑘 = 𝐷𝑘∕Δ𝑡, 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, (7)
where 𝐷𝑘 is the total meal size ingested in the interval
[𝑡𝑘, 𝑡𝑘+1[ and Δ𝑡 = 𝑡𝑘+1 − 𝑡𝑘. The response to a sequence
of piecewise constant meal inputs of sizes {𝐷𝑘}𝑀−1

𝑘=0 may be
simulated by setting 𝑥(𝑡0) = 𝑥0 and solving the 𝑀 initial
value problems

𝑥(𝑡𝑘) = 𝑥𝑘, (8a)
�̇�(𝑡) = 𝑓 (𝑥(𝑡), 𝑑𝑘, 𝑝𝑓 ), 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, (8b)
𝑥𝑘+1 = 𝑥(𝑡𝑘+1), (8c)

for 𝑘 = 0, 1,… ,𝑀 − 1. The result is the sequence of states
{𝑥𝑘}𝑀𝑘=0 that may be used to compute the corresponding
sequence of outputs {𝑦𝑘}𝑀𝑘=0 from (2).
2.3.2. Impulse inputs

For this type of meal input model, we only consider the
input-affine model (3). A single meal of size 𝐷, which is
consumed instantaneously at time 𝑡0, can be represented as
an impulse,

𝑑(𝑡) = 𝐷𝛿(𝑡 − 𝑡0), (9)
using the Dirac delta function, 𝛿(𝑡). We denote by 𝑡−0 the
time 𝑡0 before the impulse and by 𝑡+0 the time 𝑡0 immediately
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after the impulse. The impulse function has three relevant
properties:

𝑑(𝑡0) = ∞, (10a)
𝑑(𝑡) = 0, 𝑡0 < 𝑡, (10b)

∫

𝑡+0

𝑡−0

𝑑(𝑡) d𝑡 = 𝐷. (10c)

Consequently, the states immediately before and after the
impulse are

𝑥(𝑡−0 ) = 𝑥−0 = 𝑥0, (11a)
𝑥(𝑡+0 ) = 𝑥+0 = 𝑥−0 + 𝑓𝑑(𝑥−0 , 𝑝𝑓𝑑 )𝐷. (11b)

Therefore, the initial value problem (3) with the meal input
function (9) can be simulated by solving the initial value
problem

�̇�(𝑡) = 𝑓 (𝑥(𝑡), 0, 𝑝𝑓 ) = 𝑓𝑥(𝑥(𝑡), 𝑝𝑓𝑥 ), 𝑥(𝑡+0 ) = 𝑥+0 , (12)
for 𝑡 ≥ 𝑡+0 . The corresponding output, 𝑦(𝑡), computed by (2)
is called the impulse response of the system (3) and (2) to the
meal impulse, 𝐷, provided that 𝑥(𝑡0) = 𝑥0 = 𝑥𝑠𝑠 is a steady
state, i.e., that 𝑥𝑠𝑠 satisfies 𝑓 (𝑥𝑠𝑠, 0, 𝑝𝑓 ) = 𝑓𝑥(𝑥𝑠𝑠, 𝑝𝑓𝑥 ) = 0.

Multiple instantaneous meals (i.e., impulses) of sizes
{𝐷𝑘}𝑀−1

𝑘=0 at times {𝑡𝑘}𝑀−1
𝑘=0 can be represented by the input

function

𝑑(𝑡) =
𝑀−1
∑

𝑘=0
𝐷𝑘𝛿(𝑡 − 𝑡𝑘). (13)

This input function has the three properties
𝑑(𝑡𝑘) = ∞, (14a)
𝑑(𝑡) = 0, 𝑡𝑘 < 𝑡 < 𝑡𝑘+1, (14b)

∫

𝑡+𝑘

𝑡−𝑘

𝑑(𝑡) d𝑡 = 𝐷𝑘. (14c)

The definitions of 𝑡−𝑘 and 𝑡+𝑘 are analogous to those of 𝑡−0 and
𝑡+0 , respectively. Because of these properties, the system (3)
with the multiple meal impulse input function (13) may be
simulated by using that 𝑥−0 = 𝑥0 and solving the 𝑀 initial
value problems

𝑥(𝑡+𝑘 ) = 𝑥−𝑘 + 𝑓𝑑(𝑥−𝑘 , 𝑝𝑓𝑑 )𝐷𝑘, (15a)
�̇�(𝑡) = 𝑓𝑥(𝑥(𝑡), 𝑝𝑓𝑥 ), 𝑡+𝑘 < 𝑡 < 𝑡−𝑘+1, (15b)
𝑥−𝑘+1 = 𝑥(𝑡−𝑘+1), (15c)

for 𝑘 = 0,… ,𝑀 − 1. As mentioned previously,
𝑓𝑥(𝑥(𝑡), 𝑝𝑓𝑥 ) = 𝑓 (𝑥(𝑡), 0, 𝑝𝑓 ), (16)

which means that the simulation can be carried out with the
general dynamic model (1) using 𝑑(𝑡) = 0 for 𝑡𝑘 < 𝑡 < 𝑡𝑘+1.

3. Model components
As the human metabolism is a set of chemical reactions,

the gastrointestinal tract can be modeled mathematically
using modeling techniques from chemical reaction engineer-
ing. In this section, we briefly outline a systematic mod-
eling approach using stoichiometry and reaction kinetics
in combination with ideal CSTRs and PFRs. Furthermore,
delays play an important role in metabolic modeling (Voit,
2017), and we describe several mathematical models and
approximations of delayed signals.
3.1. Stoichiometry and reaction kinetics

Consider a set of molecules  which are involved in a set
of reactions  in the human metabolism. Let 𝑆 ∈ ℝ𝑛𝑟×𝑛𝑐

be the matrix of stoichiometric coefficients for this set of
reactions and molecules. 𝑛𝑐 is the number of molecules
and 𝑛𝑟 is the number of reactions. Let 𝑐 be the vector of
concentrations such that we can express the rate vector, 𝑟,
for this set of reactions as the function

𝑟 = 𝑟(𝑐). (17)
Consequently, the production rate vector for the molecules
can be expressed as

𝑅 = 𝑆′𝑟. (18)
This general way of expressing the production rate,𝑅, is use-
ful because it only requires the specification of the chemical
reaction stoichiometry (and the corresponding stoichiomet-
ric matrix, 𝑆) as well as the corresponding expression for
the reaction rates, 𝑟 = 𝑟(𝑐).
3.2. CSTR

Any part of the gastrointestinal tract where transport
phenomena (i.e., advection and diffusion) are negligible can
be represented as a CSTR. The mass balance for a CSTR is

𝑉 �̇� = (𝑐𝑖𝑛 − 𝑐)𝐹 + 𝑅𝑉 , (19)
where 𝑉 is volume, 𝑐 is concentration, 𝑐𝑖𝑛 is the inflow
concentration, 𝐹 is the volumetric in- and outflow rate, and
𝑅 is the production rate. The volume is assumed to be
constant, and the model can be reformulated as an ODE:

�̇� = (𝑐𝑖𝑛 − 𝑐)𝐹∕𝑉 + 𝑅. (20)
3.3. PFR

The parts of the gastrointestinal tract where advective
and diffusive transport phenomena are significant can be de-
scribed as PFRs. A PFR is cylindrical and the concentration,
𝑐 = 𝑐(𝑡, 𝑧, 𝑟, 𝜃) = 𝑐(𝑡, 𝑧), only changes along the transport
direction, 𝑧, i.e., it is constant along the radial and angular
coordinates, 𝑟 and 𝜃.

The spatiotemporal evolution of the concentration is
described by the PDE

𝜕𝑡𝑐 = −𝜕𝑧𝑁 + 𝑅 +𝑄, (21)
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where 𝑁 is flux, 𝑅 is the production rate, and 𝑄 is a source
term. The flux is the sum of an advection term, 𝑁𝑎, and a
diffusion term, 𝑁𝑑 :

𝑁 = 𝑁𝑎 +𝑁𝑑 . (22)
These terms are

𝑁𝑎 = 𝑣𝑐, (23a)
𝑁𝑑 = −𝐷𝑐𝜕𝑧𝑐, (23b)

where 𝑣 is velocity and 𝐷𝑐 is the diffusion coefficient. The
expression (23b) is called Fick’s law.
3.4. Delays

Here, we describe different formulations and approxi-
mations of a model, where 𝑦 is equal to the input signal 𝑢
delayed by 𝜏𝑑 , i.e.,

𝑦(𝑡) = 𝑢(𝑡 − 𝜏𝑑). (24)
The Laplace transform of (24) is

𝑌 (𝑠) = 𝐺(𝑠)𝑈 (𝑠), (25a)
𝐺(𝑠) = 𝑒−𝜏𝑑𝑠. (25b)

Alternatively, the system (24) can be formulated as a
series of 𝑀 systems with smaller time delays:

𝑦𝑖(𝑡) = 𝑦𝑖−1(𝑡 − 𝜏𝑑∕𝑀), 𝑖 = 1,… ,𝑀, (26)
where

𝑦0(𝑡) = 𝑢(𝑡), (27a)
𝑦(𝑡) = 𝑦𝑀 (𝑡). (27b)

The Laplace transform of this series of systems are
𝑌𝑖(𝑠) = 𝐺𝑖(𝑠)𝑌𝑖−1(𝑠), 𝑖 = 1,… ,𝑀, (28a)
𝐺𝑖(𝑠) = 𝑒−(𝜏𝑑∕𝑀)𝑠, (28b)

where
𝑌0(𝑠) = 𝑈 (𝑠), (29a)
𝑌 (𝑠) = 𝑌𝑀 (𝑠). (29b)

Approximating 𝐺𝑖 in (28) will typically result in a lower
error than approximating 𝐺 in (25) because the delay is
smaller. However, the increased accuracy comes at the ex-
pense of higher computational cost. Below, we show differ-
ent approximations based on a dynamical system in the form

�̇�(𝑡) = 𝐴𝑐𝑥(𝑡) + 𝐵𝑐𝑢(𝑡), (30a)
�̃�(𝑡) = 𝐶𝑐𝑥(𝑡) +𝐷𝑐𝑢(𝑡). (30b)

3.4.1. Lag approximation
The transfer function in (25b) can be approximated by

the transfer function of a lag process, i.e.,

𝐺(𝑠) ≈ 1
𝜏𝑑𝑠 + 1

=
1∕𝜏𝑑

𝑠 + 1∕𝜏𝑑
=

𝑃 (𝑠)
𝑄(𝑠)

= �̃�(𝑠). (31)

The system matrices in the corresponding linear state space
realization, in observable canonical form (Hendricks et al.,
2008, Chap. 3.9), are

𝐴𝑐 = −1∕𝜏𝑑 , 𝐵𝑐 = 1∕𝜏𝑑 , (32a)
𝐶𝑐 = 1, 𝐷𝑐 = 0. (32b)

We apply the same approximation to the system (28):

𝐺𝑖(𝑠) ≈
1

(𝜏𝑑∕𝑀)𝑠 + 1
=

𝑀∕𝜏𝑑
𝑠 +𝑀∕𝜏𝑑

=
𝑃𝑖(𝑠)
𝑄𝑖(𝑠)

= �̃�𝑖(𝑠). (33)
Again, we consider the corresponding state space realization
in observable canonical form. In this case, the system matri-
ces are

𝐴𝑐,𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

−𝑀∕𝜏𝑑 , 𝑖 = 𝑗,
𝑀∕𝜏𝑑 , 𝑖 = 𝑗 − 1,
0, otherwise,

(34a)

𝐵𝑐,𝑖 =

{

𝑀∕𝜏𝑑 , 𝑖 = 1,
0, otherwise, (34b)

𝐶𝑐,𝑖 =

{

1, 𝑖 = 𝑀,
0, otherwise, (34c)

𝐷𝑐 = 0, (34d)
for 𝑖 = 1,… ,𝑀 and 𝑗 = 1,… ,𝑀 .
3.4.2. Padé approximation

The Padé approximation (Wei et al., 2016) is another
classical way used to approximate time delays. The first-
order Padé approximation of 𝐺(𝑠) = 𝑒−𝜏𝑑𝑠 is

𝐺(𝑠) ≈
−(𝜏𝑑∕2)𝑠 + 1
(𝜏𝑑∕2)𝑠 + 1

=
−𝑠 + 2∕𝜏𝑑
𝑠 + 2∕𝜏𝑑

=
𝑃 (𝑠)
𝑄(𝑠)

= �̃�(𝑠).

(35)
The first-order Padé approximation (35) may be used to ap-
proximately realize (25) as the linear state space model (30),
in observable canonical form, with the system matrices

𝐴𝑐 = −2∕𝜏𝑑 , 𝐵𝑐 = 4∕𝜏𝑑 , (36a)
𝐶𝑐 = 1, 𝐷𝑐 = −1. (36b)

The Padé approximation of 𝐺𝑖 in (28) is

𝐺𝑖(𝑠) ≈
−(𝜏𝑑∕(2𝑀))𝑠 + 1
(𝜏𝑑∕(2𝑀))𝑠 + 1

=
−𝑠 + 2𝑀∕𝜏𝑑
𝑠 + 2𝑀∕𝜏𝑑

=
𝑃𝑖(𝑠)
𝑄𝑖(𝑠)

= �̃�𝑖(𝑠), (37)
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and the system matrices in the corresponding state space
realization (in observer canonical form) are

𝐴𝑐,𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

−2𝑀∕𝜏𝑑 , 𝑖 = 𝑗,
(−1)𝑖+𝑗+14𝑀∕𝜏𝑑 , 𝑖 > 𝑗,
0, otherwise,

(38a)

𝐵𝑐,𝑖 = (−1)𝑖+14𝑀∕𝜏𝑑 , (38b)
𝐶𝑐,𝑖 = (−1)𝑀+𝑖, (38c)
𝐷𝑐 = (−1)𝑀 , (38d)

for 𝑖 = 1,… ,𝑀 and 𝑗 = 1,… ,𝑀 .
3.4.3. Physical transport delay model

Delays can also be represented using transport processes.
The input signal, 𝑢, constitutes the boundary condition,

𝑐𝑖𝑛(𝑡) = 𝑢(𝑡), (39)
and the initial boundary value problem

𝑐(𝑡, 0) = 𝑐𝑖𝑛(𝑡), (40a)
𝜕𝑡𝑐 = −𝑣𝜕𝑧𝑐, 𝑡 ≥ 0, 0 ≤ 𝑧 ≤ 𝐿, (40b)

has the analytical solution 𝑦(𝑡) = 𝑐(𝑡, 𝐿) = 𝑐𝑖𝑛(𝑡 − 𝜏𝑑) =
𝑢(𝑡 − 𝜏𝑑) with the delay 𝜏𝑑 = 𝐿∕𝑣.
Remark 3. A left-sided first-order finite difference dis-
cretization of the PDE (40), based on an equidistant grid
with 𝑀 + 1 nodes, is equivalent to the linear state space
model (30) with the system matrices (34) obtained using a
series of 𝑀 lag approximations.

3.4.4. Algebraic delay approximation
For completeness, we also describe an algebraic delay

approximation which is used in the literature, e.g., by Alskär
et al. (2016). However, unlike the previous approximations,
it is an algebraic expression rather than a linear state space
model in the form (30). Furthermore, it specifically approx-
imates a step in the input function, 𝑢, whereas the other
approximations can be used for arbitrary input functions.

Let 𝑡𝑠 denote the time at which the step in 𝑢 occurs, i.e.,
𝑢(𝑡) = 1 for 𝑡 ≥ 𝑡𝑠 and 𝑢(𝑡) = 0 otherwise. Then, the
approximation is

𝑦(𝑡) ≈ 1
1 + exp(−𝜎(𝑡 − 𝑡50))

= �̃�(𝑡), (41)

where 𝑡50 = 𝑡𝑠+𝜏𝑑 is the time at which �̃� is halfway between
the value of 𝑢 before and after the step.

4. Meal models
In this section, we present five commonly used models

of glucose absorption in the gastrointestinal tract: The model
by Hovorka et al. (2004), the model by Dalla Man et al.
(2006, 2007), the SIMO model by De Gaetano et al. (2013),
the model by Alskär et al. (2016), and a CSTR-PFR model
based on the ones proposed by Moxon et al. (2016, 2017).

0 0.5 1 1.5 2 2.5 3

-1

0

1

0 0.5 1 1.5 2 2.5 3

-1

0

1

0 0.5 1 1.5 2 2.5 3

-1

0

1

0 0.5 1 1.5 2 2.5 3

-1

0

1

0 0.5 1 1.5 2 2.5 3

-1

0

1

Figure 1: True, 𝑦, and approximate, �̃�, delays of the input, 𝑢.
Top: Lag approximation. Second from the top: Padé approxi-
mation. Third from the top: Finite difference discretization of
physical transport delay model. Fourth from the top: Algebraic
delay approximation. Bottom: Input, 𝑢.

For the CSTR-PFR model, we consider different descrip-
tions of the pylorus sphincter (or valve) which connects the
stomach to the small intestine.

Several of the models are linear. Specifically, they are in
the form

�̇�(𝑡) = 𝐴𝑐𝑥(𝑡) + 𝐵𝑐𝑑(𝑡), (42a)
𝑦(𝑡) = 𝐶𝑐𝑥(𝑡), (42b)

where 𝑑 is the meal input and 𝑦 is the glucose rate of ap-
pearance in the blood plasma. Furthermore, in Appendix B,
we show that, for some of the models, 𝑦 is a linear function
of the total meal carbohydrate content, 𝐷. For brevity of
notation, we omit the time dependency in the remainder of
this section.
4.1. Hovorka’s model

The model by Hovorka et al. (2004) contains two com-
partments, as illustrated in Fig. 2. The first compartment,
𝐷1, describes the amount of glucose in the stomach, and the
second compartment, 𝐷2, describes the amount of glucose
in the small intestine:

�̇�1 = 𝐴𝐺𝑑 − 𝑅12, (43a)
�̇�2 = 𝑅12 − 𝑅2. (43b)
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𝐷1 𝐷2
𝑑 𝑅12 𝑅2

Figure 2: Sketch of the meal model presented by Hovorka et al.
(2004).

𝑄𝑠𝑡𝑜,1 𝑄𝑠𝑡𝑜,2 𝑄𝑔𝑢𝑡
𝑑 𝑅12 𝑅𝑠𝑡𝑜,𝑔𝑢𝑡 𝑅𝑔𝑢𝑡,𝑝𝑙𝑎

Figure 3: Sketch of the meal model presented by Dalla Man
et al. (2006).

Here, 𝐴𝐺 describes the bioavailability of the carbohydrates
in the meal, and 𝑅12 = 𝑅12(𝐷1) is the glucose flow rate
between the stomach and the small intestine. Furthermore,
𝑅2 = 𝑅2(𝐷2) describes the glucose absorption, and the
glucose rate of appearance, 𝑅𝐴 = 𝑅𝐴(𝐷2), is a fraction, 𝑓 ,
of 𝑅2:

𝑅12 = 𝐷1∕𝜏𝐷, (44a)
𝑅2 = 𝐷2∕𝜏𝐷, (44b)
𝑅𝐴 = 𝑓𝑅2. (44c)

The parameter 𝜏𝐷 is a time constant, and the model is a
linear state space model in the form (42), where the system
matrices are

𝐴𝑐 =

[−1
𝜏𝐷

0
1
𝜏𝐷

−1
𝜏𝐷

]

, 𝐵𝑐 =
[

𝐴𝐺
0

]

, 𝐶𝑐 =
[

0 𝑓
𝜏𝐷

]

.

(45)
4.2. Dalla Man’s model

The model by Dalla Man et al. (2006, 2007) is sketched
in Fig. 3, and it contains three compartments: The glucose in
the solid and liquid phases of the stomach content, 𝑄𝑠𝑡𝑜,1 and
𝑄𝑠𝑡𝑜,2, respectively, and the amount of glucose in the small
intestine, 𝑄𝑔𝑢𝑡. The compartments are described by

�̇�𝑠𝑡𝑜,1 = 𝑑 − 𝑅12, (46a)
�̇�𝑠𝑡𝑜,2 = 𝑅12 − 𝑅𝑠𝑡𝑜,𝑔𝑢𝑡, (46b)
�̇�𝑔𝑢𝑡 = 𝑅𝑠𝑡𝑜,𝑔𝑢𝑡 − 𝑅𝑔𝑢𝑡,𝑝𝑙𝑎, (46c)

where 𝑅12 = 𝑅12(𝑄𝑠𝑡𝑜,1) is the glucose flow rate be-
tween the liquid and solid phase in the stomach, 𝑅𝑠𝑡𝑜,𝑔𝑢𝑡 =
𝑅𝑠𝑡𝑜,𝑔𝑢𝑡(𝑄𝑠𝑡𝑜,1, 𝑄𝑠𝑡𝑜,2, 𝐷) is the flow rate between the stom-
ach and the small intestine, and 𝐷 is the total carbohydrate
content of the meal. Furthermore, 𝑅𝑔𝑢𝑡,𝑝𝑙𝑎 = 𝑅𝑔𝑢𝑡,𝑝𝑙𝑎(𝑄𝑔𝑢𝑡)is the glucose absorption rate, and the glucose rate of appear-
ance in the blood plasma, 𝑅𝐴 = 𝑅𝐴(𝑄𝑔𝑢𝑡), is a fraction, 𝑓 ,
of the glucose absorption rate:

𝑅12 = 𝑘𝑔𝑟𝑖𝑄𝑠𝑡𝑜,1, (47a)
𝑅𝑠𝑡𝑜,𝑔𝑢𝑡 = 𝑘𝑒𝑚𝑝𝑡𝑄𝑠𝑡𝑜,2, (47b)
𝑅𝑔𝑢𝑡,𝑝𝑙𝑎 = 𝑘𝑎𝑏𝑠𝑄𝑔𝑢𝑡, (47c)

𝑅𝐴 = 𝑓𝑅𝑔𝑢𝑡,𝑝𝑙𝑎. (47d)

𝑆

𝐽 𝑅 𝐿

𝑑

𝑅𝑆𝐽

𝑅𝐽𝑅

𝑅𝐴,𝐽

𝑅𝑅𝐿

𝑅𝐴,𝐿

Figure 4: Sketch of the SIMO meal model presented by De
Gaetano et al. (2013).

Here, 𝑘𝑔𝑟𝑖 and 𝑘𝑎𝑏𝑠 are the inverses of time constants, and
the gastric emptying rate, 𝑘𝑒𝑚𝑝𝑡 = 𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜, 𝐷), is

𝑘𝑒𝑚𝑝𝑡 = 𝑘𝑚𝑖𝑛 +
𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛

2

(

tanh
(

𝛼(𝑄𝑠𝑡𝑜 − 𝑏𝐷)
)

− tanh
(

𝛽(𝑄𝑠𝑡𝑜 − 𝑐𝐷)
)

+ 2

)

, (48a)

𝛼 = 5
2𝐷(1 − 𝑏)

, (48b)

𝛽 = 5
2𝐷𝑐

, (48c)

where 𝑄𝑠𝑡𝑜 = 𝑄𝑠𝑡𝑜(𝑄𝑠𝑡𝑜,1, 𝑄𝑠𝑡𝑜,2) is the total amount of
glucose in the stomach:

𝑄𝑠𝑡𝑜 = 𝑄𝑠𝑡𝑜,1 +𝑄𝑠𝑡𝑜,2. (49)
Furthermore, the parameters 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 are the minimum
and maximum gastric emptying rates, and 𝑏 and 𝑐 are the
percentages of 𝐷 where the magnitude of the derivative of
𝑘𝑒𝑚𝑝𝑡 is 1

2 (𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛), i.e., at 𝑄𝑠𝑡𝑜 = 𝑏𝐷 and 𝑄𝑠𝑡𝑜 = 𝑐𝐷.
Finally, as 𝑘𝑒𝑚𝑝𝑡 in (48a) is nonlinear in 𝑄𝑠𝑡𝑜, the model is
not in the linear form (42).
4.3. The SIMO model

The SIMO model by De Gaetano et al. (2013) contains
four compartments, and it is sketched in Fig. 4. The compart-
ments represent the amounts of glucose in 1) the stomach, 𝑆,
2) the jejunum, 𝐽 , 3) an artificial delay compartment, 𝑅, and
4) the ileum, 𝐿:

�̇� = 𝑑 − 𝑅𝑆𝐽 , (50a)
�̇� = 𝑅𝑆𝐽 − 𝑅𝐽𝑅 − 𝑅𝐴,𝐽 , (50b)
�̇� = 𝑅𝐽𝑅 − 𝑅𝑅𝐿, (50c)
�̇� = 𝑅𝑅𝐿 − 𝑅𝐴,𝑃 . (50d)

Here, the glucose flow rates between the stomach and the
jejunum, 𝑅𝑆𝐽 = 𝑅𝑆𝐽 (𝑆), between the jejunum and the
delay compartment, 𝑅𝐽𝑅 = 𝑅𝐽𝑅(𝐽 ), and between the delay
compartment and the ileum, 𝑅𝑅𝐿 = 𝑅𝑅𝐿(𝑅), as well as the
glucose absorption rates in the jejunum, 𝑅𝐴,𝐽 = 𝑅𝐴,𝐽 (𝐽 ),and the ileum, 𝑅𝐴,𝐿 = 𝑅𝐴,𝐿(𝐿), are given by

𝑅𝑆𝐽 = 𝑘𝑗𝑠𝑆, (51a)
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𝐺𝑆

𝑅𝑆𝐷

𝐺𝐷 𝐺𝐽 𝐺𝐼

𝑑

𝑅𝐴,𝐷

𝑅𝐷𝐽

𝑅𝐴,𝐽

𝑅𝐽𝐼

𝑅𝐴,𝐼

Figure 5: Sketch of the meal model presented by Alskär et al.
(2016).

𝑅𝐽𝑅 = 𝑘𝑟𝑗𝐽 , (51b)
𝑅𝑅𝐿 = 𝑘𝑙𝑟𝑅, (51c)
𝑅𝐴,𝐽 = 𝑘𝑔𝑗𝐽 , (51d)
𝑅𝐴,𝐿 = 𝑘𝑔𝑙𝐿. (51e)

The coefficients, 𝑘𝑗𝑠, 𝑘𝑟𝑗 , 𝑘𝑙𝑟, 𝑘𝑔𝑗 , and 𝑘𝑔𝑙 are the inverses
of time constants, and the glucose rate of appearance, 𝑅𝐴 =
𝑅𝐴(𝐽 , 𝐿), is a fraction, 𝑓 , of the total glucose absorption:

𝑅𝐴 = 𝑓 (𝑅𝐴,𝐽 + 𝑅𝐴,𝐿). (52)
This model is in the linear form (42), and the system matrices
are given by

𝐴𝑐 =

⎡

⎢

⎢

⎢

⎣

−𝑘𝑗𝑠 0 0 0
𝑘𝑗𝑠 −(𝑘𝑔𝑗 + 𝑘𝑟𝑗) 0 0
0 𝑘𝑟𝑗 −𝑘𝑙𝑟 0
0 0 𝑘𝑙𝑟 −𝑘𝑔𝑙

⎤

⎥

⎥

⎥

⎦

, (53a)

𝐵𝑐 =

⎡

⎢

⎢

⎢

⎣

1
0
0
0

⎤

⎥

⎥

⎥

⎦

, (53b)

𝐶𝑐 =
[

0 𝑓𝑘𝑔𝑗 0 𝑓𝑘𝑔𝑙
]

. (53c)
4.4. Alskär’s model

The model by Alskär et al. (2016) contains four compart-
ments representing the amounts of glucose in the stomach,
𝐺𝑆 , the duodenum, 𝐺𝐷, the jejunum, 𝐺𝐽 , and the ileum, 𝐺𝐼 ,
as illustrated in Fig. 5. They are described by

�̇�𝑆 = 𝑑 − 𝑅𝑆𝐷, (54a)
�̇�𝐷 = 𝑅𝑆𝐷 − 𝑅𝐷𝐽 − 𝑅𝐴,𝐷, (54b)
�̇�𝐽 = 𝑅𝐷𝐽 − 𝑅𝐽𝐼 − 𝑅𝐴,𝐽 , (54c)
�̇�𝐼 = 𝑅𝐽𝐼 − 𝑅𝐴,𝐼 , (54d)

where the glucose flow rates between the stomach and duo-
denum, 𝑅𝑆𝐷 = 𝑅𝑆𝐷(𝐺𝑆 ), between the duodenum and
jejunum, 𝑅𝐷𝐽 = 𝑅𝐷𝐽 (𝐺𝐷), and between the jejunum and
ileum, 𝑅𝐽𝐼 = 𝑅𝐽𝐼 (𝐺𝐽 ), are

𝑅𝑆𝐷 = 𝑘𝑆𝐷𝜏𝐺𝑆 , (55a)
𝑅𝐷𝐽 = 𝑘𝐷𝐽𝐺𝐷, (55b)
𝑅𝐽𝐼 = 𝑘𝐽𝐼𝐺𝐽 . (55c)

The inverses of the time constants, 𝑘𝑆𝐷 = 𝑘𝑆𝐷(𝐺𝐷), 𝑘𝐷𝐽 ,
and 𝑘𝐽𝐼 , are

𝑘𝑆𝐷 = 𝑘𝑤

(

1 −
𝐺𝛾
𝐷

𝐼𝐺𝛾
𝐷50 + 𝐺𝛾

𝐷

)

, (56a)

𝑘𝐷𝐽 = 1
𝐿𝐷𝑇

, (56b)

𝑘𝐽𝐼 = 1
𝐿𝐽𝑇

. (56c)

Here, 𝑘𝑆𝐷 represents the pylorus sphincter, and it is a func-
tion of the amount of glucose in the duodenum described
using the Hill expression. For 𝐺𝐷 = 0, 𝑘𝑆𝐷 is equal to its
nominal value, 𝑘𝑤, and, as 𝐺𝐷 increases, 𝑘𝑆𝐷 approaches
zero. For large values of the Hill coefficient, 𝛾 , 𝑘𝑆𝐷 has
a steep decrease around 𝐼𝐺𝐷50. Furthermore, 𝐿𝐷 and 𝐿𝐽are the relative lengths of the duodenum and jejunum (i.e.,
fractions of the total length of the small intestine), and
𝑇 is the transit time through the small intestine. The lag
coefficient (used to approximate a time delay) is given by

𝜏 = 1
1 + exp(−𝜎(𝑡 − 𝑡50))

, (57)

as described in Section 3.4.4. The parameter 𝜎 determines
the steepness, and 𝑡50 is the time at which 𝜏 is 0.5. The glu-
cose absorption rates in the duodenum, 𝑅𝐴,𝐷 = 𝑅𝐴,𝐷(𝐺𝐷),jejunum, 𝑅𝐴,𝐽 = 𝑅𝐴,𝐽 (𝐺𝐽 ), and ileum, 𝑅𝐴,𝐼 = 𝑅𝐴,𝐼 (𝐺𝐼 ),are described using Michaelis-Menten expressions, i.e.,

𝑅𝐴,𝐷 =
𝑅𝐷,max𝐺𝐷

𝐾𝑚𝐺 + 𝐺𝐷
, (58a)

𝑅𝐴,𝐽 =
𝑅𝐽 ,max𝐺𝐽

𝐾𝑚𝐺 + 𝐺𝐽
, (58b)

𝑅𝐴,𝐼 =
𝑅𝐼,max𝐺𝐼

𝐾𝑚𝐺 + 𝐺𝐼
, (58c)

where 𝐾𝑚𝐺 is the Michaelis constant and 𝑅𝐷,max, 𝑅𝐽 ,max,
and 𝑅𝐼,max are the maximum glucose absorption rates in
the duodenum, jejunum, and ileum, respectively. Finally,
the glucose rate of appearance in the blood plasma, 𝑅𝐴 =
𝑅𝐴(𝐺𝐷, 𝐺𝐽 , 𝐺𝐼 ), is a fraction, 𝐹𝑃 , of the total glucose
absorption:

𝑅𝐴 = 𝐹𝑃 (𝑅𝐴,𝐷 + 𝑅𝐴,𝐽 + 𝑅𝐴,𝐼 ). (59)
4.5. CSTR-PFR model

The CSTR-PFR model presented here consists of a
CSTR representing the stomach and a PFR representing the
small intestine, as shown in Fig. 6 (see also Section 3.2
and 3.3). It is based on the second model presented by Moxon
et al. (2016), and we describe three ways of modeling the
opening and closing of the pylorus sphincter, which connects
the stomach to the small intestine.

The amount of glucose in the stomach, 𝑚𝑠, is given by
�̇�𝑠 = 𝐹𝑚 − 𝐹𝑠𝑑 , (60a)
𝐹𝑠𝑑 = 𝑘𝑠𝑑𝑚𝑠, (60b)
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Figure 6: CSTR-PFR model with the feedback mechanism
proposed by Alskär et al. (2016).

where 𝐹𝑚 = 𝑑 is the meal input, 𝐹𝑠𝑑 is the glucose
flow rate from the stomach to the duodenum, and 𝑘𝑠𝑑 is
the inverse of a time constant. We either consider 𝑘𝑠𝑑 to
be 1) constant (the pylorus sphincter is always completely
open), 2) a function of the glucose rate of appearance in the
blood (see Section 4.5.1), or 3) a function of the amount of
glucose in the duodenum (see Section 4.5.2). The glucose
concentration in the small intestine is described by the PDE

𝜕𝑡𝑐𝑠𝑖 = −𝜕𝑧𝑁𝑝 −𝑄𝑎, 𝑧 ∈ [𝑧0, 𝑧𝑓 ], (61)
where 𝑧 is the spatial coordinate along the small intestine,
and the positions 𝑧0 and 𝑧𝑓 denote the beginning and end
of the small intestine. The flux 𝑁𝑝 describes the peristaltic
movement in the small intestine, and it consists of an advec-
tion term, 𝑁𝑎𝑝, and a diffusion term, 𝑁𝑑𝑝:

𝑁𝑝 = 𝑁𝑎𝑝 +𝑁𝑑𝑝, (62a)
𝑁𝑎𝑝 = 𝑣𝑝𝑐𝑠𝑖, (62b)
𝑁𝑑𝑝 = −𝐷𝑝𝜕𝑧𝑐𝑠𝑖. (62c)

The velocity, 𝑣𝑝, and the diffusion coefficient, 𝐷𝑝, are con-
stant. The glucose absorption, 𝑄𝑎, is given by

𝑄𝑎 =
2𝑓
𝑟𝑠𝑖

𝑞𝑎, (63a)
𝑞𝑎 = 𝑣𝑎𝑐𝑠𝑖, (63b)

where 𝑟𝑠𝑖 is the radius of the small intestine, and 𝑓 is a factor
describing 1) the increase in surface area (compared to that
of a cylinder) due to villi, microvilli, and plicae circulares,
and 2) the fact that glucose is only absorbed from a fraction
of the surface. Furthermore, 𝑣𝑎 is the glucose absorption
rate. The flow rate from the stomach to the duodenum is
represented as a boundary condition, i.e., the flux at the
beginning of the small intestine times the cross-sectional
area, 𝐴𝑠𝑖, must equal the glucose flow rate 𝐹𝑠𝑑 :

𝐴𝑠𝑖𝑁𝑝|𝑧=𝑧0 = 𝐹𝑠𝑑 . (64)
Finally, the glucose rate of appearance is the cross-sectional
area times the integral of the glucose absorption rate over the

length of the small intestine:

𝑅𝐴 = 𝐴𝑠𝑖 ∫

𝑧𝑓

𝑧0
𝑄𝑎 d𝑧. (65)

4.5.1. Moxon’s feedback mechanism
Moxon et al. (2017) propose that the glucose flow rate

between the stomach and duodenum is equal to 1) zero if the
glucose rate of appearance, 𝑅𝐴, is above a certain threshold,
𝑅𝐴,𝑚𝑎𝑥, and 2) 𝑘𝑚𝑎𝑥𝑠𝑑 otherwise. This is approximated by

𝑘𝑠𝑑 = 𝑘𝑚𝑎𝑥𝑠𝑑
1

1 + exp(𝜎(𝑅𝐴 − 𝑅𝐴,𝑚𝑎𝑥))
, (66)

where the parameter 𝜎 determines the accuracy of the ap-
proximation, i.e., the steepness of 𝑘𝑠𝑑 around 𝑅𝐴,𝑚𝑎𝑥.
4.5.2. Alskär’s feedback mechanism

Alskär et al. (2016) propose that the glucose flow rate
can be described using a Hill expression with a high Hill
coefficient, 𝛾 , i.e., it approximates an on/off mechanism
where the glucose flow rate is equal to zero if the amount
of glucose in the duodenum, 𝑚𝑑 , is above a threshold value,
𝑚𝑑,50, and 𝑘𝑚𝑎𝑥𝑠𝑑 otherwise. In addition to the original model
of the feedback mechanism, we introduce a minimum value,
𝑘𝑚𝑖𝑛𝑠𝑑 :

𝑘𝑠𝑑 = 𝑘𝑚𝑖𝑛𝑠𝑑 + (𝑘𝑚𝑎𝑥𝑠𝑑 − 𝑘𝑚𝑖𝑛𝑠𝑑 )

(

1 −
𝑚𝛾
𝑑

𝑚𝛾
𝑑,50 + 𝑚𝛾

𝑑

)

.

(67)
Finally, the duodenum constitutes the first part of the small
intestine (from 𝑧0 to 𝑧𝑑). Consequently, the amount of glu-
cose in the duodenum is given by

𝑚𝑑 = 𝐴𝑠𝑖 ∫

𝑧𝑑

𝑧0
𝑐𝑠𝑖 d𝑧. (68)

Remark 4. If 𝑘𝑚𝑖𝑛𝑠𝑑 = 0 in (67), the glucose flow rate
may become close to zero even though the duodenum is
almost entirely empty. The reasons are that the velocity of
the peristaltic movement, 𝑣𝑝, is relatively low and that it is
independent of the glucose concentration. Consequently, a
very short plug of chyme with a high glucose concentration
will move through the duodenum, and once it enters into
the jejunum, the duodenum again becomes empty, and the
process repeats itself.

5. Discussion
Table 1 shows the main characteristics of the models

described in Section 4: 1) the types of equations in the
model, 2) the number of states, 3) whether it is a linear state
space model or not, and 4) whether or not the glucose rate of
appearance is linear in the total meal carbohydrate content,
𝐷. It is more straightforward to simulate models that only
contain ODEs. The reason is that PDEs are typically approx-
imated by a set of ODEs using spatial discretization (this
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is called the method of lines). However, this approximation
is derived analytically, and it is problem-specific. In con-
trast, there exists general-purpose software for simulating
models that only contain ODEs. In Appendix C and D, we
describe two spatial discretization schemes that are relevant
to meal models containing PDEs. The approximation often
results in a large number of ODEs. Consequently, it is more
computationally intensive to simulate models that contain
PDEs because the computation time depends strongly on the
number of states. Next, linear state space models are simpler
to analyze than nonlinear models, and, in important special
cases, explicit expressions for their solutions can be derived.
Similarly, it can be exploited in both analysis and simulation
if a model is linear in the total meal carbohydrate content,
𝐷. Specifically, if 𝑅(1)

𝐴 is the glucose rate of appearance
over time for 𝐷 = 1, the rate of appearance for any meal
carbohydrate content is 𝑅(1)

𝐴 𝐷 if the model is linear in 𝐷.
Only the CSTR-PFR model contains a PDE (describing

the glucose transport in the small intestine). Consequently,
when discretized, it will contain more states than the other
models, and it will be more computationally intensive to
simulate. All the other models contain a small number of
states. Furthermore, Hovorka’s model and the SIMO model
are linear. The CSTR-PFR model is also linear if the py-
lorus sphincter is modeled as always being open, i.e., if
there is no feedback mechanism. The remaining models are
nonlinear. Finally, Hovorka’s and Dalla Man’s models, the
SIMO model, and the CSTR-PFR model without feedback
are linear in the total meal carbohydrate content, 𝐷, (see
Appendix B).

Fig. 7 shows the response to meals with different car-
bohydrate contents. The meal consumption is modeled as
instantaneous (as described in Section 2.3). The parameter
values used in the various models (see Appendix A) do not
represent the same individual. Therefore, we show the glu-
cose rate of appearance in the blood normalized with body
weight. The meal responses predicted by the linear models,
i.e., Hovorka’s model, the SIMO model, and the CSTR-PFR
model without feedback, are qualitatively similar. After an
initial rise, the glucose rate of appearance slowly decays to
zero. In contrast, Dalla Man’s model predicts two peaks.
After the initial rise, the rate of appearance decreases and
then increases again before decaying to zero. The second
peak represents the delayed carbohydrate absorption caused
by, e.g., fat and protein in the meal. None of the other models
predict more than one peak. In Alskär’s model, there is a
pronounced saturation effect, and the larger meals do not
lead to significantly higher glucose absorption rates. Instead,
the absorption is prolonged for larger meals. For the largest
meal, the CSTR-PFR model using Moxon’s feedback mech-
anism shows a similar saturation effect. However, for the two
smaller meals, the saturation threshold is not reached and the
simulations are almost identical to those obtained without a
feedback mechanism. When Alskär’s feedback mechanism is
used in the CSTR-PFR model, the glucose rate of appearance
does not saturate. Instead, after a fast but short rise where
the duodenum is filled, it increases slowly. For larger meals,
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Figure 7: Glucose rate of appearance per body weight for
different meal carbohydrate contents.

it increases for a longer time. Finally, the simulations clearly
demonstrate that the glucose rate of appearance is linear in
𝐷 for Hovorka’s and Dalla Man’s models, the SIMO model,
and the CSTR-PFR model without feedback.

In Fig. 8, we compare the two meal input models dis-
cussed in Section 2.3, i.e., 1) the instantaneous model using
an impulse function and 2) the constant flow rate model
using a step function. The two representations are almost
identical if the meal is consumed over 5 min. However,
there is a pronounced lag for almost all of the models if
the meal is consumed over 30 min. The exceptions are
Alskär’s model and the CSTR-PFR model using Alskär’s
feedback mechanism. The reason is that the feedback limits
the amount of glucose that can enter into the duodenum.
Consequently, the rate at which the stomach is filled has a
smaller impact than in the other models.
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Table 1
Main characteristics of the meal models described in Section 4. For the CSTR-PFR model, the number of states depends on
the discretization of the PDE (resulting in 𝑀 ODEs). The models are considered linear if they are in the form of a linear state
space model (42). The CSTR-PFR model is linear if 𝑘𝑠𝑑 in (60b) is constant and nonlinear if it is described by (66) or (67). In
Appendix B, we show that the glucose rate of appearance is linear in the total meal carbohydrate content, 𝐷, for some of the
models.

Model Types of equations Number of states Linear Linear in 𝐷
Hovorka et al. (2004) ODEs 2 Yes Yes
Dalla Man et al. (2006, 2007) ODEs 3 No Yes
De Gaetano et al. (2013) ODEs 4 Yes Yes
Alskär et al. (2016) ODEs 4 No No
CSTR-PFR (Moxon et al., 2016) ODEs and PDEs 1 + 𝑀 Yes/no Yes/no

6. Conclusions
We present a critical discussion of five commonly used

mathematical models of gastrointestinal meal glucose ab-
sorption. We compare their predictions of the glucose rate
of appearance in the blood plasma, and we provide an
overview of key aspects of the models, including linearity
and the types of equations in the models. The models are
relevant to accurate simulation of the metabolism in healthy,
diabetic, and obese people, and they can be used to test and
develop treatment and prevention strategies. Furthermore,
we discuss general modeling aspects relevant to system-
atic modeling of meal glucose absorption. Specifically, we
discuss model structures, meal input representations, delay
approximations, general formulations of stoichiometry and
reaction kinetics, and general CSTR and PFR models which
can represent different parts and processes in the human
metabolism.

A. Parameter values
Table A.1 shows the parameter values used in the sim-

ulations presented in Section 5. Apart from the following
exceptions, the parameter values are available in the papers
referenced in the table. We use a value of 𝜎 in Alskär’s
model from an unpublished source, and we choose the value
of 𝑘𝑠𝑑 in the CSTR-PFR model without feedback based
on the interval considered by Moxon et al. (2016). In the
CSTR-PFR model, 𝐷𝑝 and 𝑘𝑠𝑑,𝑚𝑖𝑛 were not present in the
original model. Therefore, we have chosen the values based
on simulations. We have also chosen the value of 𝜎 in the
CSTR-PFR model with Moxon’s feedback mechanism. For
models where the body weight, 𝐵𝑊 , is not provided, we use
a value of 82 kg. Similarly, when 𝑓 is not provided, we use
a value of 1.

B. Linearity of the glucose rate of appearance
Here, we show that the glucose rate of appearance in

the blood, as a function of time, is linear in the total meal
carbohydrate content, 𝐷, for linear state space models and
the model developed by Dalla Man et al. (2006, 2007),
provided that the meal input, 𝑑, is linear in 𝐷. That is the
case when 𝑑 is an impulse or step function as described
in Section 2.3. Consequently, the meal response can be

computed for 𝐷 = 1 and scaled in order to obtain the
response for any other value of𝐷. For brevity of notation, we
do not explicitly indicate the time-dependence of the states.
Remark 5. There exist meal input functions, 𝑑, that are not
linear in 𝐷. For instance, if 𝑑 is a step function, the meal
duration may increase linearly in 𝐷 while the glucose flow
rate remains constant.

B.1. Linear models
The linear meal models are in the form

�̇� = 𝐴𝑐𝑥 + 𝐵𝑐𝑑, (B.1a)
𝑦 = 𝐶𝑐𝑥. (B.1b)

We introduce the normalized states, inputs, and outputs
�̃� = 𝑥∕𝐷, 𝑑 = 𝑑∕𝐷, �̃� = 𝑦∕𝐷. (B.2a)

Note that, by assumption, 𝑑 is independent of 𝐷. Then,
̇̃𝑥 = �̇�∕𝐷 = 𝐴𝑐𝑥∕𝐷 + 𝐵𝑐𝑑∕𝐷 = 𝐴𝑐 �̃� + 𝐵𝑐𝑑, (B.3)
�̃� = 𝑦∕𝐷 = 𝐶𝑐𝑥∕𝐷 = 𝐶𝑐 �̃�, (B.4)

and, given a simulation of this normalized system, the glu-
cose rate of appearance can be obtained for any meal by
scaling the normalized response, i.e., 𝑦 = �̃�𝐷.
B.2. Dalla Man model

As for the linear state space models, we introduce the
normalized state variables

𝑞𝑠𝑡𝑜,1 = 𝑄𝑠𝑡𝑜,1∕𝐷, 𝑞𝑠𝑡𝑜,2 = 𝑄𝑠𝑡𝑜,2∕𝐷, (B.5a)
𝑞𝑔𝑢𝑡 = 𝑄𝑔𝑢𝑡∕𝐷, 𝑞𝑠𝑡𝑜 = 𝑄𝑠𝑡𝑜∕𝐷, (B.5b)

and the normalized meal input 𝑑 = 𝑑∕𝐷. Note that 𝑞𝑠𝑡𝑜 =
𝑞𝑠𝑡𝑜,1+𝑞𝑠𝑡𝑜,2. The flow rates 𝑅12 and 𝑅𝑔𝑢𝑡,𝑝𝑙𝑎 and the glucose
rate of appearance, 𝑅𝐴, are linear in their arguments, and
they do not depend directly on 𝐷, i.e.,

𝑅12(𝑄𝑠𝑡𝑜,1) = 𝑅12(𝑞𝑠𝑡𝑜,1)𝐷, (B.6)
𝑅𝑔𝑢𝑡,𝑝𝑙𝑎(𝑄𝑔𝑢𝑡) = 𝑅𝑔𝑢𝑡,𝑝𝑙𝑎(𝑞𝑔𝑢𝑡)𝐷, (B.7)

𝑅𝐴(𝑄𝑔𝑢𝑡) = 𝑅𝐴(𝑞𝑔𝑢𝑡)𝐷. (B.8)
In contrast, 𝑅𝑠𝑡𝑜,𝑔𝑢𝑡 depends on the gastric emptying rate,
𝑘𝑒𝑚𝑝𝑡 = 𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜, 𝐷), which 1) depends directly on 𝐷 and
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Figure 8: Responses to meals that are consumed instanta-
neously (i.e., modeled as an impulse function), over 5 min,
and over 30 min (i.e., modeled as step functions). The meals
contain 90 g carbohydrates.

2) is nonlinear in both its arguments. However, the argu-
ments are not independent, and we show that 𝑘𝑒𝑚𝑝𝑡 is inde-
pendent of𝐷 when𝑄𝑠𝑡𝑜 = 𝑞𝑠𝑡𝑜𝐷, i.e., that 𝑘𝑒𝑚𝑝𝑡(𝑞𝑠𝑡𝑜𝐷,𝐷) =
𝑘𝑒𝑚𝑝𝑡(𝑞𝑠𝑡𝑜). First, we note that

𝛼𝐷 = 5
2(1 − 𝑏)

, 𝛽𝐷 = 5
2𝑐

. (B.9)

Next, using these expressions and substituting 𝑄𝑠𝑡𝑜 = 𝑞𝑠𝑡𝑜𝐷,

𝛼(𝑄𝑠𝑡𝑜 − 𝑏𝐷) = 𝛼(𝑞𝑠𝑡𝑜𝐷 − 𝑏𝐷) = 𝛼𝐷(𝑞𝑠𝑡𝑜 − 𝑏)

= 5
2
𝑞𝑠𝑡𝑜 − 𝑏
1 − 𝑏

, (B.10a)
𝛽(𝑄𝑠𝑡𝑜 − 𝑐𝐷) = 𝛽(𝑞𝑠𝑡𝑜𝐷 − 𝑐𝐷) = 𝛽𝐷(𝑞𝑠𝑡𝑜 − 𝑐)

= 5
2
𝑞𝑠𝑡𝑜 − 𝑐

𝑐
. (B.10b)

Finally, we insert into the expression for the gastric emptying
rate:

𝑘𝑒𝑚𝑝𝑡 = 𝑘𝑚𝑖𝑛 +
𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛

2

(

tanh
(

𝛼(𝑄𝑠𝑡𝑜 − 𝑏𝐷)
)

− tanh
(

𝛽(𝑄𝑠𝑡𝑜 − 𝑐𝐷)
)

+ 2

)

= 𝑘𝑚𝑖𝑛 +
𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛

2

(

tanh
(

5
2
𝑞𝑠𝑡𝑜 − 𝑏
1 − 𝑏

)

− tanh
(5
2
𝑞𝑠𝑡𝑜 − 𝑐

𝑐

)

+ 2

)

. (B.11)

Clearly, 𝑘𝑒𝑚𝑝𝑡 is independent of 𝐷. Consequently, 𝑅𝑠𝑡𝑜,𝑔𝑢𝑡 is
linear in 𝐷 for 𝑄𝑠𝑡𝑜,1 = 𝑞𝑠𝑡𝑜,1𝐷 and 𝑄𝑠𝑡𝑜,2 = 𝑞𝑠𝑡𝑜,2𝐷:

𝑅𝑠𝑡𝑜,𝑔𝑢𝑡(𝑄𝑠𝑡𝑜,1, 𝑄𝑠𝑡𝑜,2, 𝐷)
= 𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜, 𝐷)𝑄𝑠𝑡𝑜,2

= 𝑘𝑒𝑚𝑝𝑡(𝑞𝑠𝑡𝑜𝐷,𝐷)𝑞𝑠𝑡𝑜,2𝐷
= 𝑘𝑒𝑚𝑝𝑡(𝑞𝑠𝑡𝑜)𝑞𝑠𝑡𝑜,2𝐷
= 𝑅𝑠𝑡𝑜,𝑔𝑢𝑡(𝑞𝑠𝑡𝑜,1, 𝑞𝑠𝑡𝑜,2)𝐷. (B.12)

In conclusion, the normalized variables are described by
�̇�𝑠𝑡𝑜,1 = �̇�𝑠𝑡𝑜,1∕𝐷 = 𝑑∕𝐷 − 𝑅12(𝑄𝑠𝑡𝑜,1)∕𝐷

= 𝑑 − 𝑅12(𝑞𝑠𝑡𝑜,1), (B.13a)
�̇�𝑠𝑡𝑜,2 = �̇�𝑠𝑡𝑜,2∕𝐷

= 𝑅12(𝑄𝑠𝑡𝑜,1)∕𝐷 − 𝑅𝑠𝑡𝑜,𝑔𝑢𝑡(𝑄𝑠𝑡𝑜,1, 𝑄𝑠𝑡𝑜,2, 𝐷)∕𝐷
= 𝑅12(𝑞𝑠𝑡𝑜,1) − 𝑅𝑠𝑡𝑜,𝑔𝑢𝑡(𝑞𝑠𝑡𝑜,1, 𝑞𝑠𝑡𝑜,2), (B.13b)

�̇�𝑔𝑢𝑡 = �̇�𝑔𝑢𝑡∕𝐷
= 𝑅𝑠𝑡𝑜,𝑔𝑢𝑡(𝑄𝑠𝑡𝑜,1, 𝑄𝑠𝑡𝑜,2, 𝐷)∕𝐷
− 𝑅𝑔𝑢𝑡,𝑝𝑙𝑎(𝑄𝑔𝑢𝑡)∕𝐷

= 𝑅𝑠𝑡𝑜,𝑔𝑢𝑡(𝑞𝑠𝑡𝑜,1, 𝑞𝑠𝑡𝑜,2) − 𝑅𝑔𝑢𝑡,𝑝𝑙𝑎(𝑞𝑔𝑢𝑡). (B.13c)
Given a simulation of this system, the glucose rate of appear-
ance for any meal carbohydrate content, 𝐷, can be computed
as 𝑅𝐴(𝑞𝑔𝑢𝑡)𝐷.

C. Finite volume discretization
In this appendix, we present a finite volume discretiza-

tion of the PFR model (21),
𝜕𝑡𝑐 = −𝜕𝑧𝑁 +𝑄, (C.1)

with the boundary condition
𝐴𝑁|𝑧=𝑧0 = 𝐹 . (C.2)

For simplicity, we ignore the reaction term, 𝑅, which is
treated in the same way as the source term, 𝑄. We discretize
the cylindrical domain, Ω, as shown in Fig. C.1. That is,
we split it into 𝑀 smaller non-overlapping volumes (also
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cylinders) such that Ω =
⋃𝑀−1

𝑖=0 Ω𝑖, where Ω𝑖 = {𝑠 =
(𝑧, 𝑟, 𝜃)|𝑧 ∈ [𝑧𝑖, 𝑧𝑖+1], 𝑟 ∈ [0, 𝑟𝑐], 𝜃 ∈ [0, 2𝜋[} and 𝑟𝑐 is the
radius of the cylinder. First, we integrate over each volume,
i.e.,

∫Ω𝑖

𝜕𝑡𝑐 d𝑠 = −∫Ω𝑖

𝜕𝑧𝑁 d𝑠 + ∫Ω𝑖

𝑄 d𝑠,

= −𝐴∫

𝑧𝑖+1

𝑧𝑖
𝜕𝑧𝑁 d𝑧 + 𝐴∫

𝑧𝑖+1

𝑧𝑖
𝑄 d𝑧,

(C.3)
for 𝑖 = 0,… ,𝑀 − 1. We have interchanged integration and
differentiation on the left-hand side, and exploited that the
concentration is identical in the plane perpendicular to the
motion through the cylinder. Next, we 1) use the definition
of concentration to define the glucose mass 𝑚𝑖 = ∫Ω𝑖

𝑐 d𝑠,
2) apply Gauss’ divergence theorem to the first term on the
right-hand side, and 3) approximate 𝑄 as constant in each
volume:

�̇�𝑖 = −𝐴(𝑁𝑖+1 −𝑁𝑖) + 𝐹𝑖, 𝑖 = 0,… ,𝑀 − 1.
(C.4)

Here, 𝑁𝑖 is an approximation of the flux on the left boundary
of the 𝑖’th volume, and

𝐹𝑖 = 𝐴Δ𝑧𝑖𝑄𝑖, 𝑖 = 0,… ,𝑀 − 1, (C.5)
where Δ𝑧𝑖 = 𝑧𝑖+1 − 𝑧𝑖 and 𝑄𝑖 = 𝑄(𝑐𝑖). Next, we 1) use
the boundary condition (C.2), 2) use an upwind scheme to
approximate the advection term, 3) use a first-order finite
difference approximation of the spatial derivative in the
diffusion term, and 4) assume that there’s no diffusion at the
end of the cylinder:

𝑁0 = 𝐹∕𝐴, (C.6a)
𝑁𝑖 = 𝑁𝑎,𝑖 +𝑁𝑑,𝑖, 𝑖 = 1,… ,𝑀, (C.6b)

𝑁𝑎,𝑖 = 𝑣𝑐𝑖−1, 𝑖 = 1,… ,𝑀, (C.6c)
𝑁𝑑,𝑖 = −𝐷𝑐

𝑐𝑖 − 𝑐𝑖−1
Δ𝑧𝑐,𝑖−1

, 𝑖 = 1,… ,𝑀 − 1, (C.6d)
𝑁𝑑,𝑀 = 0. (C.6e)

The center of the 𝑖’th volume is
𝑧𝑐,𝑖 = 𝑧𝑖 +

1
2
Δ𝑧𝑖 = 𝑧𝑖 +

1
2
(𝑧𝑖+1 − 𝑧𝑖)

=
𝑧𝑖+1 + 𝑧𝑖

2
, 𝑖 = 0,… ,𝑀 − 1, (C.7)

and the distance between the 𝑖’th and 𝑖 + 1’th cell center is
Δ𝑧𝑐,𝑖 = 𝑧𝑐,𝑖+1 − 𝑧𝑐,𝑖, 𝑖 = 0,… ,𝑀 − 2. (C.8)

For completeness, we also describe the discretization of

𝑚𝑑 = 𝐴∫

𝑧𝑑

𝑧0
𝑐 d𝑧, (C.9)

which is used in the CSTR-PFR model with Alskär’s feed-
back mechanism (68). Let 𝐾 be the number of volumes for

𝑧0
𝑁0

𝑧1
𝑁1

𝑧2
𝑁2

𝑐0 𝑐1
⋯

𝑐𝑀−2 𝑐𝑀−1

𝑧𝑀−2 𝑧𝑀−1 𝑧𝑀
𝑁𝑀−2 𝑁𝑀−1 𝑁𝑀

Figure C.1: Sketch of the spatially discrete grid used in the
finite volume discretization of (C.1).

which 𝑧𝐾 ≤ 𝑧𝑑 < 𝑧𝐾+1. Then, assuming that the glucose is
evenly distributed in each volume,

𝑚𝑑 = 𝐴

(

∫

𝑧𝑑

𝑧𝐾
𝑐 d𝑧 +

𝐾−1
∑

𝑖=0
∫

𝑧𝑖+1

𝑧𝑖
𝑐 d𝑧

)

≈
𝑧𝑑 − 𝑧𝐾

𝑧𝐾+1 − 𝑧𝐾
𝑚𝐾 +

𝐾−1
∑

𝑖=0
𝑚𝑖. (C.10)

First, we have split up the integral, and then, we have used
the definition of concentration and the assumption of even
distribution of the glucose.

D. Spectral Galerkin discretization
In this appendix, we describe a spectral Galerkin dis-

cretization (Kopriva, 2009) of the PFR model (21). As with
the finite volume discretization, we disregard the reaction
term, 𝑅, because it is discretized in the same way as the
source term, 𝑄. That is, we discretize the system

𝜕𝑡𝑐 = −𝜕𝑧𝑁 +𝑄, (D.1a)
𝐴𝑁|𝑧=𝑧0 = 𝐹 . (D.1b)

In this appendix, we assume that 𝑧 ∈ [−1, 1] (referred to
as the computational domain). That is typically not the case.
However, the actual physical domain can be mapped onto the
computational domain and the system can be transformed
accordingly, as described in Appendix D.3.

We approximate the solution, 𝑐, as a sum of products be-
tween time-dependent functions and space-dependent poly-
nomials:

𝑐(𝑡, 𝑧) ≈ 𝑐(𝑡, 𝑧) =
𝑀
∑

𝑚=0
𝑐𝑚𝓁𝑚. (D.2)

Here, 𝑐𝑚 = 𝑐𝑚(𝑡) = 𝑐(𝑡, 𝑧𝑚) is the 𝑚’th time-dependent
coefficient, {𝑧𝑚}𝑀𝑚=0 is a set of collocation points, and 𝓁𝑚 =
𝓁𝑚(𝑧) is the 𝑚’th Lagrange polynomial (see Appendix D.2).
An important property of such polynomials is that 𝓁𝑚(𝑧𝑖) =
𝛿𝑖𝑚, i.e., it is equal to one when evaluated in the 𝑚’th colloca-
tion point and zero when evaluated in any other collocation
point. For brevity of notation, we often omit the dependency
on time and space when functions are evaluated at 𝑡 and 𝑧.
Furthermore, for clarity, we explicitly indicate the arguments
of the flux, 𝑁 , and the source term, 𝑄.

We require that the approximate solution, 𝑐, satisfies the
PDE weakly. Specifically,

∫

𝑧𝑓

𝑧0

(

𝜕𝑡𝑐 + 𝜕𝑧𝑁(𝑐) −𝑄(𝑐)
)

𝜙 d𝑧 = 0 (D.3)
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must be satisfied for any test function 𝜙 that belongs to the
same function space as the approximate solution, i.e., for any
polynomial. As for the solution, we write the test function as
a Lagrange polynomial:

𝜙(𝑡, 𝑧) =
𝑀
∑

𝑛=0
𝜙𝑛𝓁𝑛. (D.4)

Here, 𝜙𝑛 = 𝜙𝑛(𝑡) = 𝜙𝑛(𝑡, 𝑧𝑛) is the 𝑛’th time-dependent
coefficient. We substitute the expression for the test function
in (D.3):

𝑀
∑

𝑛=0
𝜙𝑛 ∫

𝑧𝑓

𝑧0
(𝜕𝑡𝑐 + 𝜕𝑧𝑁(𝑐) −𝑄(𝑐))𝓁𝑛 d𝑧 = 0. (D.5)

This equality must be satisfied for any polynomial 𝜙, which
means that it must be satisfied for any combination of values
of {𝜙𝑛}𝑚𝑛=0 at any point in time. Therefore, the integral must
equal zero, i.e.,

∫

𝑧𝑓

𝑧0
(𝜕𝑡𝑐 + 𝜕𝑧𝑁(𝑐) −𝑄(𝑐))𝓁𝑛 d𝑧 = 0, (D.6)

for 𝑛 = 0,… ,𝑀 . Next, we use integration by parts to rewrite
the integral of the flux term. The result is

∫

𝑧𝑓

𝑧0
𝜕𝑧𝑁(𝑐)𝓁𝑛 d𝑧 =

[

𝑁(𝑐)𝓁𝑛
]𝑧𝑓
𝑧0

− ∫

𝑧𝑓

𝑧0
𝑁(𝑐)

d𝓁𝑛
d𝑧

d𝑧, (D.7)

for 𝑛 = 0,… ,𝑀 . We insert this expression and the expres-
sion for the approximate concentration (D.2) into (D.6) in
order to obtain

𝑀
∑

𝑚=0

d𝑐𝑚
d𝑡 ∫

𝑧𝑓

𝑧0
𝓁𝑚𝓁𝑛 d𝑧 +

[

𝑁(𝑐)𝓁𝑛
]𝑧𝑓
𝑧0

− ∫

𝑧𝑓

𝑧0
𝑁(𝑐)

d𝓁𝑛
d𝑧

d𝑧 − ∫

𝑧𝑓

𝑧0
𝑄(𝑐)𝓁𝑛 d𝑧 = 0, (D.8)

for 𝑛 = 0,… ,𝑀 . We approximate the integrals using
quadrature (see Appendix D.1). Consequently,

𝑀
∑

𝑚=0

d𝑐𝑚
d𝑡

𝑀
∑

𝑙=0
𝓁𝑚(𝑧𝑙)𝓁𝑛(𝑧𝑙)𝑤𝑙 +

[

𝑁(𝑐)𝓁𝑛
]𝑧𝑓
𝑧0

−
𝑀
∑

𝑙=0
𝑁(𝑐(𝑡, 𝑧𝑙))

d𝓁𝑛
d𝑧

(𝑧𝑙)𝑤𝑙

−
𝑀
∑

𝑙=0
𝑄(𝑐(𝑡, 𝑧𝑙))𝓁𝑛(𝑧𝑙)𝑤𝑙 = 0, (D.9)

for 𝑛 = 0,… ,𝑀 . We exploit that 𝓁𝑚(𝑧𝑙) = 𝛿𝑚𝑙 and that
𝑐(𝑡, 𝑧𝑙) = 𝑐𝑙(𝑡):

d𝑐𝑛
d𝑡

𝑤𝑛 +
[

𝑁(𝑐)𝓁𝑛
]𝑧𝑓
𝑧0

−
𝑀
∑

𝑙=0
𝑁(𝑐𝑙)

d𝓁𝑛
d𝑧

(𝑧𝑙)𝑤𝑙

−𝑄(𝑐𝑛)𝑤𝑛 = 0, 𝑛 = 0,… ,𝑀. (D.10)
Finally, we rearrange terms in order to obtain the ODEs for
each of the coefficients,

d𝑐𝑛
d𝑡

= − 1
𝑤𝑛

[

𝑁(𝑐)𝓁𝑛(𝑧)
]𝑧𝑓
𝑧0

+ 1
𝑤𝑛

𝑀
∑

𝑙=0
𝑁(𝑐𝑙)

d𝓁𝑛
d𝑧

(𝑧𝑙)𝑤𝑙 +𝑄(𝑐𝑛), (D.11)

for 𝑛 = 0,… ,𝑀 .
Remark 6. When using Gauss-Lobatto quadrature, the bound-
ary contribution in (D.11) (i.e., the first term on the right-
hand side) is only nonzero for the boundary coefficient (i.e.,
for 𝑛 = 0) because 𝑧0 and 𝑧𝑓 are collocation points. For
Gauss quadrature, the boundary contribution is nonzero for
all of the differential equations because 𝑧0 and 𝑧𝑓 are not
collocation points.

D.1. Jacobi polynomials and quadrature
We denote by 𝑃 (𝛼,𝛽)

𝑘 a general 𝑘’th order Jacobi poly-
nomial (Kopriva, 2009), and we describe two special cases:
1) Legendre polynomials and 2) Chebyshev polynomials.
Both polynomials can be used in a Gauss or Gauss-Lobatto
quadrature rule:

∫

𝑧𝑓

𝑧0
𝑓 (𝑧)𝑤(𝑧) d𝑧 ≈

𝑀
∑

𝑙=0
𝑓 (𝑧𝑙)𝑤𝑙. (D.12)

The weight function 𝑤 and the weights {𝑤𝑙}𝑀𝑙=0 are specific
to each Jacobi polynomial. Gauss quadrature rules are exact
for polynomials of up to order 2𝑀 + 1, but do not include
the endpoints, 𝑧0 and 𝑧𝑓 . The endpoints are included in
Gauss-Lobatto quadrature rules, which are only exact for
polynomials of up to order 2𝑀 − 1.
Remark 7. The Sturm-Liouville problem consists of the fol-
lowing differential equation combined with boundary condi-
tions on 𝑢 (not shown).

− d
d𝑧

(

𝑝(𝑧) d𝑢
d𝑧

)

+ 𝑞(𝑧)𝑢 = 𝜆𝑤(𝑧)𝑢, 𝑎 < 𝑧 < 𝑏.

(D.13)
Jacobi polynomials, 𝑃 (𝛼,𝛽)

𝑘 (𝑧), are eigenfunctions of the spe-
cific Sturm-Liouville problem

− d
d𝑧

(

(1 − 𝑧)1+𝛼(1 + 𝑧)1+𝛽 d𝑢
d𝑧

)

= 𝜆(1 − 𝑧)𝛼(1 + 𝑧)𝛽𝑢, (D.14)
where 𝛼, 𝛽 > −1 and −1 < 𝑧 < 1.

D.1.1. Legendre polynomials
The 𝑘’th order Legendre polynomial, 𝐿𝑘 = 𝑃 (0,0)

𝑘 , is
obtained with 𝛼 = 𝛽 = 0, and it is defined recursively
starting with 𝐿0(𝑧) = 1 and 𝐿1(𝑧) = 𝑧. Subsequently,

𝐿𝑘+1(𝑧) =
2𝑘 + 1
𝑘 + 1

𝑧𝐿𝑘(𝑧) −
𝑘

𝑘 + 1
𝐿𝑘−1(𝑧), (D.15)
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and the weight function is
𝑤(𝑧) = 1. (D.16)

The Legendre polynomials also satisfy

(2𝑘 + 1)𝐿𝑘(𝑧) =
d𝐿𝑘+1
d𝑧

(𝑧) −
d𝐿𝑘−1
d𝑧

(𝑧). (D.17)

The Legendre Gauss collocation points, {𝑧𝑙}𝑀𝑙=0, are the
zeros of 𝐿𝑀+1, and the weights are

𝑤𝑙 =
2

(1 − 𝑧2𝑙 )
(

d𝐿𝑀+1
d𝑧 (𝑧𝑙)

)2
, 𝑙 = 0,… ,𝑀.

(D.18)
The Legendre Gauss-Lobatto collocation points, {𝑧𝑙}𝑀𝑙=0, are
-1, 1, and the zeros of d𝐿𝑀

d𝑧 , and the weights are

𝑤𝑙 =
2

𝑀(𝑀 + 1)
1

(

𝐿𝑀 (𝑧𝑙)
)2

, 𝑙 = 0,… ,𝑀.

(D.19)
D.1.2. Chebyshev polynomials

For Chebyshev polynomials, 𝛼 = 𝛽 = −1∕2 and the
𝑘’th order polynomial is denoted by 𝑇𝑘 = 𝑃 (−1∕2,−1∕2)

𝑘 .
Chebyshev polynomials are given by the explicit expression

𝑇𝑘(𝑧) = cos
(

𝑘 cos−1(𝑧)
)

, (D.20)
but they also satisfy a recursion. It starts with 𝑇0(𝑧) = 1 and
𝑇1(𝑧) = 𝑧 and is followed by

𝑇𝑘+1(𝑧) = 2𝑧𝑇𝑘(𝑧) − 𝑇𝑘−1(𝑧). (D.21)
They also satisfy

2𝑇𝑘(𝑧) =
1

𝑘 + 1
d𝑇𝑘+1
d𝑧

(𝑧) − 1
𝑘 − 1

d𝑇𝑘−1
d𝑧

(𝑧), (D.22)
and the weight function is

𝑤(𝑧) = 1
√

1 − 𝑧2
. (D.23)

The Chebyshev Gauss collocation points and weights are
given by

𝑧𝑙 = cos
( 2𝑙 + 1
2𝑀 + 2

𝜋
)

, 𝑙 = 0,… ,𝑀, (D.24a)
𝑤𝑙 =

𝜋
𝑀 + 1

, 𝑙 = 0,… ,𝑀, (D.24b)
and the Chebyshev Gauss-Lobatto collocation points and
weights are

𝑧𝑙 = cos
( 𝑙𝜋
𝑀

)

, (D.25a)

𝑤𝑙 =

{

𝜋
2𝑀 , 𝑙 ∈ {0,𝑀},
𝜋
𝑀 , 𝑙 = 1,… ,𝑀 − 1,

(D.25b)

for 𝑙 = 0,… ,𝑀 .

D.2. Lagrange polynomials
Here, we describe the Lagrange polynomials which we

use several times in the derivation of the spectral Galerkin
method presented in this section. For arbitrary 𝑧, the 𝑚’th
Lagrange polynomial of order 𝑀 + 1 and its derivatives
are (Berrut and Trefethen, 2004)

𝓁𝑚(𝑧) =
𝑀
∏

𝑙=0
𝑙≠𝑚

𝑧 − 𝑧𝑙
𝑧𝑚 − 𝑧𝑙

= 1
𝑠(𝑧)

�̃�𝑚
𝑧 − 𝑧𝑚

, (D.26a)

d𝓁𝑚
d𝑧

(𝑧) = 1
𝑠(𝑧)

(

−�̃�𝑚

(𝑧 − 𝑧𝑚)2
− 𝓁𝑚(𝑧)

d𝑠
d𝑧

(𝑧)
)

,

(D.26b)
d2𝓁𝑚
d𝑧2

(𝑧) = 1
𝑠(𝑧)

(

2�̃�𝑚

(𝑧 − 𝑧𝑚)3
− 2

d𝓁𝑚
d𝑧

(𝑧) d𝑠
d𝑧

(𝑧)

− 𝓁𝑚(𝑧)
d2𝑠
d𝑧2

(𝑧)
)

, (D.26c)
where the corresponding weight is

�̃�𝑚 =
𝑀
∏

𝑙=0
𝑙≠𝑚

1
𝑧𝑚 − 𝑧𝑙

, (D.27)

and the auxiliary function, 𝑠, and its derivatives are given by

𝑠(𝑧) =
𝑀
∑

𝑙=0

�̃�𝑙
𝑧 − 𝑧𝑙

, (D.28a)

d𝑠
d𝑧

(𝑧) =
𝑀
∑

𝑙=0

−�̃�𝑙

(𝑧 − 𝑧𝑙)2
, (D.28b)

d2𝑠
d𝑧2

(𝑧) =
𝑀
∑

𝑙=0

2�̃�𝑙

(𝑧 − 𝑧𝑙)3
. (D.28c)

The above expressions for the derivative of 𝓁𝑚 cannot be
evaluated in the collocation points, {𝑧𝑚}𝑀𝑚=0, because it
would result in division by zero. In the collocation points,
the Lagrange polynomials and their derivatives are

𝓁𝑚(𝑧𝑙) = 𝛿𝑚𝑙, (D.29a)

d𝓁𝑚
d𝑧

(𝑧𝑙) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̃�𝑚
�̃�𝑙(𝑧𝑙−𝑧𝑚)

, 𝑙 ≠ 𝑚,

−
𝑀
∑

𝑗=0
𝑗≠𝑙

d𝓁𝑗
d𝑧 (𝑧𝑖), 𝑙 = 𝑚, (D.29b)

d2𝓁𝑚
d𝑧2

(𝑧𝑙) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−2 d𝓁𝑚
d𝑧 (𝑧𝑙)

(

− d𝓁𝑙
d𝑧 (𝑧𝑙) +

1
𝑧𝑙−𝑧𝑚

)

, 𝑙 ≠ 𝑚,

−
𝑀
∑

𝑗=0
𝑗≠𝑙

d2𝓁𝑗
d𝑧2 (𝑧𝑖), 𝑙 = 𝑚.

(D.29c)

Remark 8. There is a sign error in the last term in the
parenthesis on the right-hand side of (9.4) in the paper
by Berrut and Trefethen (2004).
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D.3. Domain transformation
If the physical spatial domain is not [𝑧0, 𝑧𝑓 ] = [−1, 1],

we transform the system by introducing the spatial coordi-
nate 𝜉 = 𝜉(𝑧) = 2 𝑧−𝑧0

𝑧𝑓−𝑧0
− 1 ∈ [−1, 1]. We use the inverse

transformation, 𝑧 = 𝑧(𝜉) = 1
2 (𝜉 + 1)(𝑧𝑓 − 𝑧0) + 𝑧0, to

express the PDE and the boundary condition in terms of 𝜉.
For simplicity, in this appendix, we assume that the velocity,
𝑣, and the diffusion coefficient,𝐷𝑐 , are independent of space,
𝑧, and concentration, 𝑐. First, we use the chain rule to derive
the partial derivatives of the concentration with respect to 𝜉:

𝜕𝜉𝑐 = 𝜕𝑧𝑐
d𝑧
d𝜉

, (D.30a)

𝜕𝜉𝜉𝑐 = 𝜕𝑧𝑧𝑐
(

d𝑧
d𝜉

)2
+ 𝜕𝑧𝑐

d2𝑧
d𝜉2

= 𝜕𝑧𝑧𝑐
(

d𝑧
d𝜉

)2
.

(D.30b)

We have exploited that 𝑧 is linear in 𝜉, i.e., d2𝑧
d𝜉2 = 0.

Consequently,

𝜕𝑧𝑐 = 𝜕𝜉𝑐
(

d𝑧
d𝜉

)−1
, 𝜕𝑧𝑧𝑐 = 𝜕𝜉𝜉𝑐

(

d𝑧
d𝜉

)−2
. (D.31)

Next, we use the chain rule to express the partial derivatives
of the flux:

𝜕𝜉𝑁 = 𝜕𝑧𝑁
d𝑧
d𝜉

=
(

𝑣𝜕𝑧𝑐 + 𝜕𝑧𝐽
) d𝑧
d𝜉

= 𝑣𝜕𝜉𝑐 + 𝜕𝜉𝐽 ,

(D.32a)

𝜕𝜉𝐽 = 𝜕𝑧𝐽
d𝑧
d𝜉

= −𝐷𝑐𝜕𝑧𝑧𝑐
d𝑧
d𝜉

= −𝐷𝑐𝜕𝜉𝜉𝑐
(

d𝑧
d𝜉

)−1
.

(D.32b)
Consequently,

𝜕𝑡𝑐 = −𝜕𝑧𝑁 +𝑄 = −𝜕𝜉𝑁
(

d𝑧
d𝜉

)−1
+𝑄, (D.33)

and

𝜕𝜉𝑁
(

d𝑧
d𝜉

)−1
= 𝑣

(

d𝑧
d𝜉

)−1
𝜕𝜉𝑐 + 𝜕𝜉𝐽

(

d𝑧
d𝜉

)−1
,

(D.34a)

𝜕𝜉𝐽
(

d𝑧
d𝜉

)−1
= −𝐷𝑐

(

d𝑧
d𝜉

)−2
𝜕𝜉𝜉𝑐. (D.34b)

Therefore, the transformed system
𝜕𝑡𝑐 = −𝜕𝜉�̄� +𝑄, (D.35)

where
�̄� = �̄�𝑐 + 𝐽 , (D.36a)
𝐽 = −�̄�𝑐𝜕𝜉𝑐, (D.36b)

�̄� = 𝑣
(

d𝑧
d𝜉

)−1
, (D.36c)

�̄�𝑐 = 𝐷𝑐

(

d𝑧
d𝜉

)−2
, (D.36d)

is in the form (D.1), and 𝜉 ∈ [−1, 1]. The two main
differences between the original and the transformed system
are the velocity and the diffusion coefficient. Note that we
have exploited that d𝑧

d𝜉 is independent of 𝜉 (i.e., it is constant).
The boundary condition in the transformed system is

𝐴�̃�|𝑧=𝑧0 = 𝐹 , (D.37)
where

�̃� = 𝑣𝑐 + 𝐽 , (D.38a)

𝐽 = −𝐷𝑐𝜕𝑧𝑐 = −𝐷𝑐𝜕𝜉𝑐
(

d𝑧
d𝜉

)−1
= −�̃�𝑐𝜕𝜉𝑐,

(D.38b)

�̃�𝑐 = 𝐷𝑐

(

d𝑧
d𝜉

)−1
. (D.38c)

Finally, we reformulate the integral in (68) in the CSTR-
PFR model with Alskär’s feedback mechanism. We use that
d𝑧 = d𝑧

d𝜉 d𝜉:

𝑚𝑑 = 𝐴∫

𝑧𝑑

𝑧0
𝑐 d𝑧 = 𝐴∫

𝜉𝑑

𝜉0
𝑐 d𝑧
d𝜉

d𝜉, (D.39)

where 𝜉0 = −1 and 𝜉𝑑 = 𝜉(𝑧𝑑).
Remark 9. As d𝑧

d𝜉 is constant, the boundary condition (D.37)
can also be formulated in terms of the transformed flux �̄� ,
i.e.,

𝐴�̄�|𝑧=𝑧0 = 𝐹 , (D.40)
where

𝐹 = 𝐹
(

d𝑧
d𝜉

)−1
. (D.41)
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Table A.1
Parameter values used in Section 5 to simulate the glucose rate of appearance for each of the models described in Section 4.

Symbol Value Unit Description
Hovorka’s model (Hovorka et al., 2004)

𝐴𝐺 0.8 − Carbohydrate bioavailability
𝜏𝐷 40 min Time constant
𝑓 1 − Percentage of absorbed glucose that appears in the blood
𝐵𝑊 82 kg Body weight

Dalla Man’s model (Dalla Man et al., 2006, 2007)
𝑘𝑚𝑎𝑥 0.0465 1/min Maximum inverse of gastric emptying time constant
𝑘𝑚𝑖𝑛 0.0076 1/min Minimum inverse of gastric emptying time constant
𝑘𝑎𝑏𝑠 0.023 1/min Inverse of intestinal glucose absorption time constant
𝑘𝑔𝑟𝑖 0.0465 1/min Inverse of grinding (solid-to-liquid in the stomach) time constant
𝑏 0.69 − Percentage of total meal glucose content corresponding to left inflection point
𝑐 0.17 − Percentage of total meal glucose content corresponding to right inflection point
𝑓 0.90 − Percentage of absorbed glucose that appears in the blood
𝐵𝑊 91 kg Body weight

The SIMO model (Panunzi et al., 2020, Table 4)
𝑘𝑗𝑠 0.026 1/min Inverse of stomach-to-jejunum time constant
𝑘𝑟𝑗 0.033 1/min Inverse of jejunum-to-delay compartment time constant
𝑘𝑙𝑟 0.030 1/min Inverse of delay compartment-to-ileum time constant
𝑘𝑔𝑗 0.036 1/min Inverse of time constant of glucose absorption in the jejunum
𝑘𝑔𝑙 0.027 1/min Inverse of time constant of glucose absorption in the ileum
𝑓 1 − Percentage of absorbed glucose that appears in the blood
𝐵𝑊 82 kg Body weight

Alskär’s model (Alskär et al., 2016)
𝑘𝑤 0.14 1/min Emptying rate for a noncaloric liquid (e.g., water)
𝐼𝐺𝐷50 7420 mg Amount of glucose corresponding to a 50% reduction of the gastric emptying rate
𝛾 14 − Hill factor
𝐿𝐷 0.08 − Length of duodenum relative to the length of the small intestine
𝐿𝐽 0.37 − Length of jejunum relative to the length of the small intestine
𝑇 240 min The time it takes the chyme to pass through the small intestine
𝜎 10 1/min Parameter in the lag of the gastric emptying rate
𝑡50 5 min Delay of the gastric emptying rate
𝐾𝑚𝐺 6320 mg Amount of glucose corresponding to a 50% reduction of the absorption rate
𝑅𝐷,max 580 mg/min Maximum rate of glucose absorption in the duodenum
𝑅𝐽 ,max 2060 mg/min Maximum rate of glucose absorption in the jejunum
𝑅𝐼,max 1330 mg/min Maximum rate of glucose absorption in the ileum
𝐹𝑃 1 − Fraction of glucose absorption that appears in the blood
𝐵𝑊 82 kg Body weight

CSTR-PFR model (Alskär et al., 2016; Moxon et al., 2016, 2017)
𝑧0 0 m Position of left end of small intestine
𝑧𝑓 2.85 m Position of right end of small intestine
𝑣𝑝 0.0102 m/min Advection velocity of the chyme due to peristaltic movement
𝐷𝑝 0.0001 m2/min Coefficient of glucose diffusion in the chyme
𝑟𝑠𝑖 0.018 m Radius of small intestine
𝑓 12 − Factor accounting for villi, microvilli, plicae circulares, and effective absorption area
𝑣𝑎 6.4392 ⋅ 10−6 m/min Glucose absorption mass transfer coefficient
𝑘𝑠𝑑 0.06 1/min Inverse of stomach-to-duodenum time constant (no feedback mechanism)
𝑘𝑠𝑑,𝑚𝑎𝑥 0.0554 1/min Maximum inverse of stomach-to-duodenum time constant (Moxon’s feedback)
𝑘𝑠𝑑,𝑚𝑎𝑥 0.14 1/min Maximum inverse of stomach-to-duodenum time constant (Alskär’s feedback)
𝑘𝑠𝑑,𝑚𝑖𝑛 0.0116 1/min Minimum inverse of stomach-to-duodenum time constant
𝑅𝐴,𝑚𝑎𝑥 420 mg/min Maximum glucose rate of appearance
𝜎 0.1 − Parameter in approximation of Moxon’s feedback mechanism
𝑚𝑑,50 7420 mg Amount of glucose corresponding to a 50% reduction of the gastric emptying rate
𝛾 14 − Hill factor
𝐵𝑊 82 kg Body weight
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A High-Performance Monte Carlo Simulation Toolbox for
Uncertainty Quantification of Closed-loop Systems

Morten Ryberg Wahlgreen, Asbjørn Thode Reenberg, Marcus Krogh Nielsen,
Anton Rydahl, Tobias K. S. Ritschel, Bernd Dammann, John Bagterp Jørgensen

Abstract— We apply Monte Carlo simulation for perfor-
mance quantification and tuning of controllers in nonlinear
closed-loop systems. Computational feasibility of large-scale
Monte Carlo simulation is achieved by implementation of a
parallelized high-performance Monte Carlo simulation toolbox
for closed-loop systems in C for shared memory architectures.
The toolbox shows almost linear scale-up on 16 CPU cores on a
single NUMA node, and a scale-up of 27.3 on two NUMA nodes
with a total of 32 CPU cores. We demonstrate performance
quantification and tuning of a PID controller for a bioreactor in
fed-batch operation. We perform 30,000 closed-loop simulations
of the fed-batch reactor within 1 second. This is approximately
a 2300 times computational performance increase compared
to a serial reference implementation in Matlab. Additionally,
we apply Monte Carlo simulation to perform automatic tuning
of the PID controller based on maximizing average produced
biomass within 8 seconds.

I. INTRODUCTION

In closed-loop systems, we encounter unknown quantities
that need to be estimated, e.g., model parameters. Addition-
ally, it can be beneficial to quantify controller performance.
Currently, there exist well-defined methods for parameters
estimation [1], [2] and tuning of controllers in linear systems
[3]–[5]. However, for nonlinear systems, quantification of
controller performance and tuning is not as well developed.
We propose a Monte Carlo simulation brute-force tech-
nique for automatic performance quantification and tuning
of controllers in linear and nonlinear systems. With the
Monte Carlo approach, we can tune controllers with any
performance measure, e.g., maximizing economic yield or
minimizing the risk of low production, such as in modern
control applications [6], [7]. The Monte Carlo simulation
technique is made computationally feasible by implementa-
tion of a high-performance Monte Carlo simulation toolbox
parallelized for shared memory architectures in C.

Monte Carlo simulation is a widely used technique for
quantification of uncertainties. It is applied in various ar-
eas, e.g., portfolio management and epidemiology [8]–[10].
Monte Carlo simulation uses random sampling to obtain
numerical results about deterministic quantities. However,
the method requires many samples to be effective, and
thus computational efficiency becomes a bottleneck. The
development in central processing unit (CPU) technology
increases the number of possible applications for Monte

M. R Wahlgreen, A. T. Reenberg, M. K. Nielsen, A. Rydahl, T. K.
S. Ritschel, B. Dammann, and J. B. Jørgensen are with the Department
of Applied Mathematics and Computer Science, Technical University of
Denmark, DK-2800 Kgs. Lyngby, Denmark.

Corresponding author: J. B. Jørgensen (E-mail: jbjo@dtu.dk).

Carlo simulation. However, trends in CPU development show
that the clock frequency of new CPUs is no longer increasing
due to power consumption and heat issues [11]. Instead,
new CPUs have increased performance by increasing the
number of cores. Consequently, the full potential of modern
CPUs is only achieved with parallelized software executed
on multi-core processors. Not all problems are paralleliz-
able, but Monte Carlo simulation is a prime example of a
parallelizable problem, as each simulation is independent of
all other simulations. To achieve the full potential of Monte
Carlo simulation on modern CPUs, we require state-of-the-
art parallelized software in high-performance languages.

In this paper, we present closed-loop systems based on a
stochastic continuous-discrete model, a stochastic differen-
tial equation (SDE) solver, and a controller. We introduce
our implementation of a high-performance Monte Carlo
simulation toolbox for closed-loop systems. Additionally,
we introduce the SDE solvers and controllers contained in
the toolbox. Furthermore, we demonstrate applications of
the toolbox on a bioreactor in fed-batch operation [12].
In particular, we demonstrate that Monte Carlo simulation
can be used for performance quantification and tuning of a
proportional–integral–derivative (PID) controller.

The remaining part of the paper is organized as follows.
Section II introduces the stochastic continuous-discrete sys-
tem, two SDE solvers, and four controllers of increasing
complexity. Section III presents the Monte Carlo simulation
scheme for closed-loop systems and introduces our toolbox
for Monte Carlo simulation. Section IV presents an example
application of the toolbox. Section V presents our conclusion.

II. CLOSED-LOOP SIMULATIONS

This section presents our representation of closed-
loop systems for simulation. Our simulations consist of
1) an SDE model with discrete measurements, represented
as a stochastic continuous-discrete model, 2) an SDE solver,
and 3) a controller.

A. Stochastic continuous-discrete system
We consider stochastic continuous-discrete systems in the

form

x(t0) = x0, (1a)
dx(t) = f(t, x(t), u(t), d(t), pf )dt

+ σ(t, x(t), u(t), d(t), pσ)dω(t),
(1b)

y(tk) = g(tk, x(tk), pg) + v(tk, pv), (1c)
z(t) = h(t, x(t), ph), (1d)
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where x(t) are the states, u(t) are inputs, d(t) are dis-
turbances, and pf , pσ , pg , pv , and ph are parameters.
Additionally, x0 is a normally distributed initial condition,
ω(t) is a standard Wiener process, and v(tk, pv) is normally
distributed measurement noise at discrete time, i.e.,

x0 ∼ N(x̄0, P0), (2a)
dω(t) ∼ Niid(0, Idt), (2b)

v(tk, pv) ∼ Niid(0, R(tk, pv)). (2c)

Measurements are sampled with sampling time ∆t, such that,
tk+1 = tk + ∆t. We use zero-order-hold parameterization of
the inputs and disturbances:

u(t) = uk, tk ≤ t < tk+1, (3a)
d(t) = dk, tk ≤ t < tk+1. (3b)

B. Stochastic differential equation solvers

SDE solvers are required to simulate stochastic
continuous-discrete systems in the form (1). We consider
an explicit-explicit (Euler-Maruyama) solver and an
implicit-explicit solver [13], [14].

1) Explicit-explicit (Euler-Maruyama):

tk,n+1 = tk,n + ∆t, (4a)
xk,n+1 = xk,n + f(tk,n, xk,n, uk, dk, pf )∆t

+ σ(tk,n, xk,n, uk, dk, pσ)∆ωk,n,
(4b)

2) Implicit-explicit:

tk,n+1 = tk,n + ∆t, (5a)
xk,n+1 = xk,n + f(tk,n+1, xk,n+1, uk, dk, pf )∆t

+ σ(tk,n, xk,n, uk, dk, pσ)∆ωk,n,
(5b)

where tk,0 = tk, xk,0 = xk, and ∆wk,n ∼ Niid(0, I∆t).
Let Nk denote the number of steps of size ∆t in the

interval [tk, tk+1]. Then

tk+1 = tk,Nk
, (6a)

xk+1 = xk,Nk
. (6b)

The explicit-explicit solver is suitable for non-stiff systems,
whereas the implicit-explicit solver is suitable for stiff sys-
tems.

We let Φ represent the discretization of the state equation,
(1b), with either the explicit-explicit solver or the implicit-
explicit solver. To compactly describe simulation of closed-
loop systems, we introduce the notation for a discretized
version of (1),

xk+1 = Φ(tk, xk, uk, dk, wk, pf , pσ), (7a)
yk = g(tk, xk, pg) + vk, (7b)
zk = h(tk, xk, ph), (7c)

where vk = v(tk, pv).

C. Controller
The digital discrete-time controller in typical model-based

control applications is represented as the dynamic system

xck = κ(tk−1, x
c
k−1, yk, uk−1, pκ), (8a)

uk = λ(tk, x
c
k, pλ), (8b)

zck = µ(tk, x
c
k, pµ), (8c)

where xck are estimated states, zck are predictions of the
outputs and manipulated inputs, κ(·) is a state estimator, λ(·)
is a regulator, and µ(·) is a predictor.

We consider four controllers of increasing complexity.
1) Open-loop controller (no feedback): The open-loop

controller does not include feedback and outputs a target
value for the inputs

uk = λ(·) = ūk. (9)

The functions κ(·) and µ(·) are not necessary for the open-
loop controller.

2) Proportional–integral–derivative controller: The con-
tinuous PID controller is given by

u(t) = ū(t) +Kpe(t) +Ki

∫ t

t0

e(τ)dτ +Kd
de(t)

dt
, (10)

where Kp, Ki, and Kd are gain constants. The error,
e(t), is the difference between the set point, ȳ(t), and the
measurement, y(t), i.e.,

e(t) = ȳ(t)− y(t). (11a)

Notice, for the PID controller the output is assumed to be
measured, i.e., ȳ(t) = z̄(t). It can be advantageous to let the
derivative term act on the measurements, y(t), rather than
the error, e(t) [15], [16]. We get,

u(t) = ū(t) +Kpe(t) +Ki

∫ t

t0

e(τ)dτ −Kd
dy(t)

dt
. (12)

We discretize the PID controller (12) as

ek = ȳk − yFk , (13a)
Pk = Kpek, (13b)
Ik = Ik−1 + TsKiek, (13c)

Dk = −Kd

Ts
(yFk − yFk−1), (13d)

uk = ūk + Pk + Ik +Dk, (13e)

where Ts is the sampling time and filtered measurements,
yFk , are computed from the discrete-time low-pass filter

yFk = (1− α)yFk−1 + αyk, (14)

with α ∈ [0, 1].
For the PID controller, λ(·) is given by (13e), κ(·) is given

by (14), and µ(·) is not necessary.
3) PID controller with clipping: We incorporate input

bounds with clipping. The PID controller with clipping is,

ũk = ūk + Pk + Ik +Dk, (15a)
uk = max(umin,min(umax, ũk)). (15b)
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4) Nonlinear model predictive control: The nonlinear
model predictive controller (NMPC) includes a continuous-
discrete extended Kalman filter (CD-EKF) based on (1) for
state estimation and prediction [17], [18]. Given the filtered
state-covariance pair, x̂k−1|k−1 and Pk−1|k−1, the CD-EKF
obtains a one-step prediction

x̂k|k−1 = x̂k−1(tk), (16a)
Pk|k−1 = Pk−1(tk), (16b)

as the solution to

d

dt
x̂k−1(t) = f(t, x̂k−1(t), uk−1, dk−1, pf ), (17a)

d

dt
Pk−1(t) = Ak−1(t)Pk−1(t) + Pk−1(t)Ak−1(t)′

+ σk−1(t)σk−1(t)′,
(17b)

for tk−1 ≤ t ≤ tk with initial condition

x̂k−1(tk−1) = x̂k−1|k−1, (18a)
Pk−1(tk−1) = Pk−1|k−1, (18b)

and

Ak−1(t) =
∂

∂x
f(t, x̂k−1(t), uk−1, dk−1, pf ), (19a)

σk−1(t) = σ(t, x̂k−1(t), uk−1, dk−1, pσ). (19b)

The CD-EKF obtains a filtered state estimate, x̂k|k, and its
covariance, Pk|k, from the one-step prediction, x̂k|k−1 and
Pk|k−1, and the measurement, yk. The CD-EKF computes
the predicted measurement and derivative,

ŷk|k−1 = g(tk, x̂k|k−1, pg), (20a)

Ck =
∂

∂x
g(tk, x̂k|k−1, pg), (20b)

the innovation and its covariance,

ek = yk − ŷk|k−1, (21a)
Re,k = CkPk|k−1C

′
k +Rk, (21b)

and the Kalman gain,

Kfx,k = Pk|k−1C
′
kR
−1
e,k. (22)

We obtain the estimated state-covariance pair from (20)-
(22) as

x̂k|k = x̂k|k−1 +Kfx,kek, (23a)
Pk|k = Pk|k−1 −Kfx,kRe,kK

′
fx,k. (23b)

The CD-EKF is the state estimator, κ(·), that computes
filtered state estimates, xck = x̂k|k, from measurements yk,
and one-step state prediction, x̂k|k−1.

The NMPC uses a regulator based on a weighted least-
squares objective and regularization of the input rate-of-
movement. This regulator can be expressed in terms of the
optimal control problem (OCP)

min
x,u

ϕk = ϕz,k + ϕ∆u,k, (24a)

s.t. x(tk) = x̂k|k, (24b)
ẋ(t) = f(t, x, u, d, pf ), tk ≤ t ≤ tk + T, (24c)
z(t) = h(t, x, ph), (24d)
u(t) = uk+j , j ∈ N , tk+j ≤ t ≤ tk+j+1, (24e)
d(t) = dk+j , j ∈ N , tk+j ≤ t ≤ tk+j+1, (24f)
ul ≤ uk+j ≤ uu, j ∈ N , (24g)
∆ul ≤ ∆uk+j ≤ ∆uu, j ∈ N , (24h)

with f(t, x, u, d, pf ) = f(t, x(t), u(t), d(t), pf ) and the
objective terms

ϕz,k =
1

2

∫ tk+T

tk

‖Wz (z(t)− z̄(t))‖22 dt, (25a)

ϕ∆u,k =
1

2

N−1∑
j=0

∥∥W̄∆u∆uk+j

∥∥2

2
, (25b)

where W̄∆u = W∆u/Ts. The term ϕz,k is output target
tracking and ϕ∆u,k is input rate of movement penalty.
We use the prediction and control horizon, T , defined as
T = NTs, where Ts is the sampling time and N is the
discrete prediction and control horizon. Additionally, we
define N = {0, 1, ..., N − 1} such that tk+j = tk + jTs for
j ∈ N . We solve the OCP with a simultaneous approach,
where we discretize each control interval with M time steps
using Euler’s implicit method.

We denote the optimal solution
{
x̂k+j+1|k, ûk+j|k

}
j∈N .

The input corresponding to the first control interval, uk =
ûk|k = λ(·), is part of the solution of this optimal control
problem. Only uk is implemented in the system. Further-
more, {ẑk+j+1|k, ûk+j|k}N−1

j=0 = zck = µ(·) is the predicted
output and the predicted manipulated inputs from the con-
troller that can be used for visualization.

D. Simulation of closed-loop systems

We compactly write a closed-loop simulation as

yk = g(tk, xk, pg) + vk, (26a)
zk = h(tk, xk, ph), (26b)
xck = κ(tk−1, x

c
k−1, yk, uk−1, pκ), (26c)

uk = λ(tk, x
c
k, pλ), (26d)

zck = µ(tk, x
c
k, pµ), (26e)

xk+1 = Φ(tk, xk, uk, dk, wk, pf , pσ), (26f)

for k = 0, 1, ..., Ns − 1.

III. MONTE CARLO SIMULATION

Our Monte Carlo simulations are based on the closed-
loop simulation (26). We perform Nmc distinct closed-loop
simulations for different, e.g., process noise realizations.
Algorithm 1 presents an overview of the Monte Carlo simula-
tion scheme. For sufficiently large Nmc, the computed Monte

6757

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 10,2022 at 13:21:01 UTC from IEEE Xplore.  Restrictions apply. 

E Conference Paper - CDC 2021 143



Algorithm 1: Monte Carlo simulation
Result: Statistics and output data
// Monte Carlo loop
for i = 1, 2, . . . , Nmc do

// Closed loop simulation
for k = 0, 1, . . . , Ns − 1 do

// Measurement

y
(i)
k = g(tk, x

(i)
k , p

(i)
g ) + v

(i)
k

// Output

z
(i)
k = h(tk, x

(i)
k , p

(i)
h )

// State estimation

x
c,(i)
k = κ(tk−1, x

c,(i)
k−1 , y

(i)
k , u

(i)
k−1, p

(i)
κ )

// Regulator

u
(i)
k = λ(tk, x

c,(i)
k , p

(i)
λ )

// Output prediction

z
c,(i)
k = µ(tk, x

c,(i)
k , p

(i)
µ )

// Simulator

x
(i)
k+1 = Φ(tk, x

(i)
k , u

(i)
k , d

(i)
k , w

(i)
k , p

(i)
f , p

(i)
σ )

end
// Final measurement and output

y
(i)
Ns

= g(tNs
, x

(i)
Ns
, p

(i)
g ) + v

(i)
Ns

z
(i)
Ns

= h(tNs , x
(i)
Ns
, p

(i)
h )

end

Carlo data can quantify uncertainties in the closed-loop sys-
tem. Possible applications are; estimation of unknown model
parameters, tuning controllers, and testing performance of
controllers on different noise realizations.

A. Toolbox

We implement a Monte Carlo simulation toolbox for
closed-loop systems in C. The toolbox provides an inter-
face for closed-loop Monte Carlo simulations that currently
includes implementations of
• an explicit-explicit Euler-Maruyama SDE solver,
• an implicit-explicit SDE solver,
• an open-loop controller,
• a single-input single-output (SISO) PID controller with

clipping, and
• an NMPC based on the CD-EKF and a simultaneous

approach combined with IPOPT [19].
The toolbox includes three test examples, and the user can
provide a set of model functions for a system and perform
Monte Carlo simulations with the toolbox. Additionally, the
toolbox allows for user-provided controllers and SDE solvers
with specific interfaces. This allows the user to test and
benchmark controllers and SDE solvers using Monte Carlo
simulations. The toolbox supports perturbations of model
parameters, controller parameters, noise realizations, initial
conditions, and disturbances.

We include a parallelized version with OpenMP for shared
memory architectures. Each worker is assigned distinct
closed-loop simulations. Such parallelization requires that

TABLE I
PARAMETERS FOR FED-BATCH REACTOR.

Variable Value Unit
µmax 0.37 1/h
KS 0.021 kg/m3

KI 0.38 kg/m3
γs 1.777 kg substrate/kg biomass
cS,in 10.0 kg/m3

TABLE II
INITIAL CONDITION AND OPERATIONAL BOUNDS.

Variable Value Unit
V0 1.00 m3

cX,0 2.00 kg/m3

cS,0 0.0893 kg/m3

Vmax 12.39 m3

cX,max 2.00 kg/m3

cS,max 3.00 kg/m3

FS,max 10.00 m3

FW,max 10.00 m3

each worker has access to a local workspace for the SDE
solver and the controller to avoid data races. Additionally,
some controllers utilize information from previous steps, e.g.,
the integral term of a PID controller or the CD-EKF for an
NMPC. Each worker also requires a local version of such
information. The Monte Carlo simulation toolbox distributes
memory blocks to each local worker, such that workers
do not have overlapping cache lines. This consideration is
essential for achieving optimal parallel performance.

We demonstrate some applications of the toolbox in sec-
tion IV.

IV. BIOREACTOR IN FED-BATCH OPERATION

A. Model

We consider the SDE model for a bioreactor in fed-batch
operation [12],

dV = (FS + FW )dt+ σ1dω1(t), (27a)
dmX = (RXV )dt+ σ2dω2(t), (27b)
dmS = (FScS,in +RSV )dt+ σ3dω3(t), (27c)

where mX = cXV , mS = cSV , and

RX = r, r = µ(cS)cX , (28a)

RS = −γr, µ(cS) = µmax
cS

KS + cS + c2S/KI
. (28b)

We represent the system as a stochastic continuous-discrete
model in the form (1), where x(t) = [V (t);mX(t);mS(t)],
y(tk) = cS(tk) + v(tk), and z(t) = cS(t).

Table I presents the parameters of the system and Table II
presents the initial conditions and operational bounds of the
system.

B. Control strategy

We operate the bioreactor with an open-loop input tra-
jectory, ū = [F̄W ; F̄S ]. Additionally, we use a SISO PID
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TABLE III
SYSTEM INFORMATION.

Architecture: x86 64
CPU op-mode(s): 32-bit, 64-bit
CPU(s): 32
Thread(s) per core: 1
Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 2
Model name: Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
CPU MHz: 2900.000
L1d cache: 32 kB
L1i cache: 32 kB
L2 cache: 1024 kB
L3 cache: 22528 kB
RAM: 384 GB

controller with clipping, (15), that manipulate the substrate
inlet, FS , to achieve optimal substrate concentration, c∗S ,
achieved at the maximum of µ(cS),

c∗S =
√
KIKS . (29)

Thus, z̄(t) = c∗S . We use the bang-bang open-loop trajectory
[12]. In the deterministic case, the bang-bang trajectory
was one among infinitely many optimal solutions. However,
it was the least sensitive to uncertainties. The inputs are
computed as,

F̄W =

{
FW,max, 0 ≤ t ≤ tswitch,
0, tswitch ≤ t ≤ tf ,

(30a)

F̄S =
FW c

∗
S + γsβ

∗(t)

cS,in − c∗S
, (30b)

where

β∗(t) = µ(c∗S)cX,maxV0 exp(µ(c∗S)t). (31)

C. Simulation of the true system

We simulate the fed-batch reactor in closed-loop with an
Euler-Maruyama solver. The reactor runs for 10 hours from
time t0 = 0 to tf = 10 h. The sampling time is Ts = 36
seconds resulting in Ns = 1000 steps. At each step, we solve
the SDE with Nk = 10 Euler-Maruyama steps.

D. Monte Carlo simulations of fed-batch reactor

Here, we demonstrate an application of the Monte Carlo
simulation toolbox. The simulations are conducted on a
dual-socket Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
system (see Table III for CPU details).

1) Scaling: Fig. 1 shows the wall time and the scale-up for
10, 000 Monte Carlo simulations. We observe close to linear
scaling within one non-uniform memory access (NUMA)
node, and slightly decreasing scale-up when exceeding one
socket. We point out that the toolbox is not optimized to
utilize multiple NUMA nodes, so a decrease in performance
on more than one socket is expected.

2) Open-loop controller: We perform Monte Carlo sim-
ulations for the fed-batch reactor in open-loop. Fig. 3(a)
shows a probability density function (PDF) plot for 30, 000
realizations of process noise. The mean produced biomass is
m̄X(tf ) = 20.69 kg.

Fig. 1. Wall time and scale-up plots for 10, 000 Monte Carlo simulations.
The red dashed line is the number of cores on a single NUMA node. We
get a scale-up of 27.3 on 32 cores.

Fig. 2. Tuning of PID gains. Left: locate Kp = 85 as the optimum. Middle:
locate Ki = 3 as the optimum. Right: locate Kd = 0 as the optimum.
Total Monte Carlo simulations: 3 ·101, 000 = 303, 000. Computation time:
∼ 7.50 seconds.

3) Quantification of PID controller performance: Con-
sider a PID controller with Kp = 1.0, Ki = 0.0, and
Kd = 0.0. We perform a Monte Carlo simulation with
30, 000 process noise realizations. Fig. 3(b) presents a PDF
plot of the produced biomass. The PDF follows a long-tailed
distribution towards the lower values of produced biomass
with mean produced biomass m̄X(tf ) = 24.04 kg, i.e.,
a 16.19% increase in biomass production compared to the
open-loop controller. However, low produced biomass, for
some realizations of process noise, indicates poor controller
performance. The computation time of the Monte Carlo
simulation is 0.77s. That is approximately a 2300 times
speed-up compared to a reference serial implementation in
Matlab.

4) Tuning: We apply Monte Carlo simulation to tune the
value of Kp, Ki, and Kd in the PID controller. The tuning
is based on maximizing the average produced biomass,
m̄X(tf ), for 1000 realizations of process noise. We point out
that the tuning could have been based on other factors, e.g.,
maximizing the 10% quantile. We investigate 101 equidistant
values in [0, 100] of Kp, Ki, and Kd. Thus, the tuning of
each gain requires 101, 000 closed loop simulations. Fig. 2
shows the tuning results of the PID controller. The optimal
parameters for the PID gains are Kp = 85, Ki = 3, and
Kd = 0.

Fig. 3(c) shows a PDF plot for 30, 000 noise realizations

6759

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 10,2022 at 13:21:01 UTC from IEEE Xplore.  Restrictions apply. 

E Conference Paper - CDC 2021 145



(a) Open-loop controller. Computation time: 0.78s.

(b) Sub-optimal PID controller. Computation time: 0.77s.

(c) Optimal PID controller. Computation time: 0.76s.

Fig. 3. Probability density function of biomass production computed from
30, 000 closed-loop simulations with different process noise realizations.
The closed-loop consists of the fed-batch model, the Euler-Maruyama SDE
solver, and a controller specified in the subplot. The red dashed line is the
produced biomass in a simulation without process noise and the orange
dashed line is the 10% quantile.

with the tuned PID controller. The PDF is almost normally
distributed with mean produced biomass, m̄X(tf ) = 24.76.
Compared to the non-optimal PID controller, the tuned
controller results in an 2.98% increased average biomass

Fig. 4. Probability density function of biomass production computed
from 1000 NMPC closed-loop simulations with different process noise
realizations. The red dashed line is the produced biomass in a simulation
without process noise and the orange dashed line is the 10% quantile. The
computation time is ∼ 30 min.

production and reduced risk of low biomass production. It
is evident that the tuning improved the performance of the
PID controller.

5) NMPC: Initial investigation of an NMPC based on the
open source optimization software, IPOPT, does not show the
same scaling as the PID controller. We observe a significant
stall time in the memory allocation with malloc(), when
increasing the number of threads. These calls to malloc()
are located in IPOPT and give reason to believe that IPOPT
has internal memory allocation. Each memory allocation has
a lock that interrupts all activity, i.e., stalling all threads. In
future work, we will expand the toolbox to include an NMPC
based on optimization software that does not have internal
memory allocation. We believe that scaling similar to the PID
case can be achieved with such an NMPC. Fig. 4 presents
a PDF plot for 1000 process noise realizations. The NMPC
and the tuned PID controller show similar performance. The
experiment is conducted on 6 cores as performance decreases
above 6 cores due to the problem mentioned above. The
computation time is ∼ 30 min.

V. CONCLUSION

The paper presents a Monte Carlo simulation approach
for performance quantification and tuning of controllers in
linear and nonlinear systems. The approach is computation-
ally feasible due to the implementation of a parallel high-
performance Monte Carlo simulation toolbox in C for closed-
loop systems. In particular, we demonstrate performance
quantification and tuning of a PID controller for a bioreactor
in fed-batch operation. Our results show that large-scale
Monte Carlo simulations can be performed within seconds.
The computational performance of the toolbox show approx-
imately a 2300 times speed-up compared to a serial reference
implementation in Matlab.

High-performance closed-loop Monte-Carlo simulations,
as illustrated in this paper, has countless applications in
systems and control. Drug dosing, as in treatment of diabetes,
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is a very prominent example of this where several dosing
strategies must be compared by their probability density
functions [20], [21].
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High-performance Uncertainty Quantification in Large-scale Virtual
Clinical Trials of Closed-loop Diabetes Treatment

Asbjørn Thode Reenberg, Tobias K. S. Ritschel, Bernd Dammann, John Bagterp Jørgensen

Abstract— In this paper, we propose a virtual clinical trial for
assessing the performance and identifying risks in closed-loop
diabetes treatments. Virtual clinical trials enable fast and risk-
free tests of many treatment variations for large populations
of fictive patients (represented by mathematical models). We
use closed-loop Monte Carlo simulation, implemented in high-
performance software and hardware, to quantify the uncer-
tainty in treatment performance as well as to compare the
performance in different scenarios or of different closed-loop
treatments. Our software can be used for testing a wide variety
of control strategies ranging from heuristical approaches to
nonlinear model predictive control. We present an example of a
virtual clinical trial with one million patients over 52 weeks, and
we use high-performance software and hardware to conduct the
virtual trial in 1 h and 22 min.

I. INTRODUCTION

Clinical trials of medical treatments are crucial to en-
suring a high level of safety and efficacy. However, they
are also very expensive and time-consuming. Therefore, it
is important to assess the treatment performance, identify
potential risks, and rigorously compare with state-of-the-
art prior to the trials. Virtual clinical trials are used for
exactly this purpose. In a virtual clinical trial, each patient
is represented by a mathematical model and the clinical trial
is simulated using high-performance software and hardware.
The simulation is carried out for a large population of virtual
patients, many different scenarios, and several variations of
the treatment. This allows for thorough and fast testing of a
large variety of different treatment designs.

In this paper, we specifically consider the treatment of
type 1 diabetes (T1D). One in eleven adults suffer from
diabetes (both types), and in 2019, 10% of the global health
expenditure (USD 760 billion) was spent on diabetes [1]. Due
to autoimmune destruction of β-cells, people with T1D are
unable to produce insulin. Consequently, life-long treatment
involving daily injections of insulin is necessary to avoid ele-
vated blood glucose (BG) levels (hyperglycemia), which can
lead to several complications and chronic conditions [2]. The
BG concentration must be measured in order to determine
an appropriate insulin dose. While too little insulin results
in hyperglycemia, too much insulin results in hypoglycemia
(low BG levels), which can be fatal in very severe cases.

As monitoring the BG and determining the appropriate
insulin dose is laborious, there is significant interest in auto-

This work was partially funded by the IFD Grand Solution project
ADAPT-T2D (9068-00056B). *A. T. Reenberg, T. K. S. Ritschel, Bernd
Dammann, and J. B. Jørgensen are with the Department of Applied
Mathematics and Computer Science, Technical University of Denmark, DK-
2800 Kgs. Lyngby, Denmark. Corresponding author: J. B. Jørgensen (E-
mail: jbjo@dtu.dk).

mated closed-loop diabetes treatment systems. Such systems
are referred to as artificial pancreases (APs), and they consist
of 1) a continuous glucose monitor (CGM), 2) a control
algorithm that determines the insulin dose, and 3) a pump
which delivers the insulin to the patient (it is possible to
use other hormones, e.g., glucagon or amylin, in addition
to insulin). Many AP algorithms have been proposed and
the majority is based on heuristics [3], proportional-integral-
derivative (PID) control [4], fuzzy logic [5], linear model
predictive control (MPC) [6]–[8], or nonlinear MPC [9], [10].

All AP algorithms contain hyperparameters, e.g., the gains
in a PID controller, and performance assessment is essential
to choosing suitable values for these. There exist both
process-independent performance measures for this purpose,
e.g., setpoint deviation and variance, and process-specific
measures [11]–[13]. For diabetes treatment, including closed-
loop systems, time-in-range (TIR), Hb1Ac values, and the
probability of severe hypoglycemia [14]–[18] are commonly
used (process-specific) performance measures. The perfor-
mance of an AP can vary significantly between T1D patients
due to differences in physiology (e.g., in pharmacodynamics
and pharmacokinetics). Therefore, it is necessary to evaluate
the performance measures for a large population of patients
in order to accurately estimate the uncertainty. However,
due to computational limitations of standard software, it is
common to evaluate the performance using only a small
number of patients and over a short time span (days or a
few weeks).

In this work, we describe an approach for high-
performance uncertainty quantification of the performance
of AP algorithms in large-scale long-term virtual clinical
trials. The approach involves mathematical models based on
stochastic differential equations (SDEs), and we use closed-
loop Monte Carlo simulation to quantify the performance
uncertainty. Furthermore, we propose multiple ways of 1) vi-
sualizing the uncertainty in the performance measures and
2) comparing the performance for different scenarios or
AP algorithms. We implement the Monte Carlo simulation
and the AP in parallelized high-performance C code, and
the computations are carried out on a high-performance
computing (HPC) cluster. Finally, we present a numerical
example of a virtual clinical trial with one million patients
over 52 weeks which can be carried out in 1 h and 22 min.

The remaining part of this paper is organized as follows.
In Section II, we describe the virtual clinical trial, and in
Section III, we present the approach for uncertainty quantifi-
cation of AP algorithms. Section IV contains the numerical
examples, and conclusions are presented in Section V.

2022 American Control Conference (ACC)
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II. VIRTUAL CLINICAL TRIAL

The virtual clinical trial consists of 1) a population of
patients, 2) a protocol containing the trial activities (size
and duration of meals, intensity and duration of exercise,
etc.), 3) one or more mathematical models of the patients,
4) values of the model parameters, and 5) one or more
APs (i.e., control algorithms). Furthermore, it is possible to
include both incorrectly announced and unannounced meals
and exercise which are some of the key challenges that an
AP should be able to address. Finally, the virtual clinical trial
allows for stochastic mathematical models which can repre-
sent unmodeled physiological phenomena, uncertain model
parameters, and uncertainty related to meals and exercise, as
well as noisy sensor measurements.

A. Patients

The virtual clinical trial contains one million fictive pa-
tients. Each patient is represented by the same information
that would be available for a real patient. Specifically, each
fictive patient is associated with a unique ID and a set of
attributes including first and last name, date and place of
birth, sex, height, body weight, and resting heart rate. The
height, the body weight and the resting heart rate are sampled
from normal distributions, and the date of birth is sampled
from a uniform distribution.

B. Protocols

A protocol consists of a sequence of model disturbances,
i.e., uncontrolled inputs to the patient model. Common
disturbances are meals and exercise. Each protocol has an
ID and for each disturbance, it contains the disturbance type
and size as well as time stamps indicating the beginning and
end of the disturbance.

Next, to illustrate the concept, we describe a protocol
designed to mimic a Northern European lifestyle in terms
of meal times, seasons, work weeks, and the number of va-
cation weeks and public holidays. Furthermore, the protocol
involves a high-carb diet (in particular during winter and
autumn), which is challenging for APs. We divide the year
into 4 seasons each consisting of 13 weeks, and we assume
6 weeks of vacation and 10 public holidays, represented as
an additional 2 weeks of vacation. Each season is a different
combination of three basis weeks; a standard week, an active
week, and a vacation week. Furthermore, each basis week is
a different combination of four basis days; a standard day,
an active day, a day with a movie night, and a day with a
late night. Table I shows the compositions of the seasons
and the weeks.

The patients are less active and eat more during vacation
weeks, they also eat more during winter and autumn, and
active weeks contain more active days. Compared to the
standard day, 1) the active day has an exercise session, 2) the
movie night has an additional snack in the evening, and 3) the
late night has two additional snacks in the evening. Fig. 1
shows schematics of the basis days, and Table II shows the
meal sizes which depend on the body weight.

TABLE I
COMPOSITIONS OF THE SEASONS AND THE WEEKS

Compositions of the seasons
Season Standard week Active week Vacation week
Winter 6 4 3
Spring 6 6 1
Summer 7 3 3
Autumn 9 3 1

Compositions of the weeks
Week type Standard day Active day Movie night Late night
Standard 4 1 1 1
Active 3 3 1 0
Vacation 5 0 0 2

Medium meal
Small meal

Large meal

snack

Medium meal
Small meal

Large meal

snack Exercise

snack

Medium meal
Small meal

Large meal

snack

snack

Medium meal
Small meal

Large meal

snack snack

Fig. 1. Overview of the basis days in winter and autumn. From the top,
we show 1) the standard day, 2) the active day, 3) the movie night, and 4)
the late night. During the summer and spring, the dinner is a medium meal
and the snack is before lunch.

C. Database

A key component of the virtual clinical trial is a database
containing the fictive patients, protocols, model parameters,
and simulation results. We use the open-source database sys-
tem PostgreSQL. Using a database makes it straightforward
to share the virtual clinical trial and compare performance
results for the exact same patients and protocols. It also
allows the user to carry out the clinical trial for a specific
demographic, e.g., people with a certain body weight or sex.
Furthermore, the database includes several basis days and
weeks which the user can combine to form new protocols.
Finally, the database can be extended with a graphical user
interface in order to 1) visualize the AP performance and
characteristics of the patients and protocols and 2) add

TABLE II
WEIGHT-DEPENDENT MEAL SIZES

Meal size Amount of carbohydrates For a 70 kg patient
Large meal 1.29 g CHO/kg 90 g CHO
Medium meal 0.86 g CHO/kg 60 g CHO
Small meal 0.57 g CHO/kg 40 g CHO
Snack 0.29 g CHO/kg 20 g CHO
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new elements such as patients, protocols, and mathematical
models to the database.

III. CLOSED-LOOP MONTE CARLO SIMULATION

In Monte Carlo simulation, the uncertainty of a quantity
of interest (e.g., the TIR for a T1D patient) is estimated
by simulating the system (i.e., the clinical trial) with dif-
ferent values of the uncertain quantities (e.g., the model
parameters). In this work, we extend the high-performance
toolbox for closed-loop Monte Carlo simulation developed
by Wahlgreen et al. [19] with a low-memory implementation
which circumvents the high storage requirements associated
with large numbers of long-term simulations.

A. Mathematical model
The virtual clinical trial can be used for mathematical

models of patient physiology in the general stochastic form

x(t0) = x0, (1a)
dx(t) = f(t, x(t), u(t), d(t), p)dt

+ σ(t, x(t), u(t), d(t), p)dw(t), (1b)
z(t) = h(t, x(t), p) (1c)

y(tk) = g(tk, x(tk), p) + v(tk). (1d)

Here, t is time, and the virtual clinical trial starts at time t0.
The states, x, represent the physiological state of the patient,
e.g., the BG concentration and amount of insulin in the body,
and x0 are the initial states. The manipulated inputs, u, are
the quantities computed by the AP, e.g., the insulin flow
rate. The disturbance variables, d, represent the uncontrolled
inputs, e.g., meals and exercise, and p are model parameters.
The first term in (1b) is the deterministic drift term and the
second term is the stochastic diffusion term.

The AP receives measurements of the observed variables,
y, obtained from the measurement function, g, at discrete
points in time, tk, and the outputs, z, obtained from the
output function, h, are the quantities relevant to the control
objective of the AP. The standard Wiener process w is used to
represent uncertainty. Its increment is distributed as dw(t) ∼
Niid(0, Idt), and the measurement noise is assumed to be
normally distributed: v(tk) ∼ Niid(0, R(tk)). Furthermore,
the inputs are assumed to be piecewise constant between
sampling times:

u(t) = uk, t ∈ [tk, tk+1[, (2a)
d(t) = dk, t ∈ [tk, tk+1[. (2b)

Finally, we stress that the form (1b) also includes determin-
istic dynamical systems, i.e., ordinary differential equations
(ODEs), where σ is zero.

B. Control algorithm
At time tk, 1) the control state, xc

k, is updated, and 2) the
AP (i.e., the closed-loop feedback control strategy) computes
values of the manipulated inputs based on the previous
control state and the measurements, yk = y(tk):

xc
k+1 = κk(x

c
k, yk, ūk, ȳk, d̂k, pκ), (3a)

uk = λk(x
c
k, yk, ūk, ȳk, d̂k, pµ). (3b)

Here, ūk and ȳk are setpoints, and d̂k are estimates of the
disturbances. This form can represent many types of closed-
loop control strategies including heuristic strategies based
on physiological insight, PID-based strategies, and MPC
(including state estimation). Many different values of the
hyperparameters pµ and pκ can be tested using the virtual
clinical trial.

C. Software and hardware

The closed-loop Monte Carlo simulation, the mathematical
models, and the AP are implemented using high-performance
C code which we parallelize for shared-memory architectures
using OpenMP. Whenever a simulation is completed, we im-
mediately compute its contribution to performance indicators
such as TIR as well as mean, minimum, and maximum BG
concentration as functions of time. Subsequently, the simu-
lation is only stored if it is worse than previous simulations
according to some criterion (e.g., lowest BG concentration
reached).

We use two AMD EPYC 7542 32-core processors with
a clock speed of 2.9 GHz [20]. As the Monte Carlo simu-
lation is highly parallelizable, the speedup in computational
performance increases almost linearly with the number of
cores. Consequently, the parallel implementation runs almost
64 times faster than a corresponding sequential implementa-
tion. Furthermore, it would be computationally infeasible to
carry out large-scale long-term virtual clinical trials using a
sequential Matlab implementation [19] or similar.

IV. EXAMPLE OF A VIRTUAL CLINICAL TRIAL

In this section, we present an example of a virtual clinical
trial involving a million virtual patients following the exam-
ple protocol described in Section II-B. We briefly describe
the mathematical model of the patients’ physiology and the
AP used in the trial, and we demonstrate how to visualize
the uncertainty in the AP performance. Furthermore, we also
show how to compare the performance of the AP in two
different scenarios; one where the basal rate is correct (trial
A) and another where it is underestimated by 50% (trial B).
Finally, the computation time is 1 h and 22 min (with a time
step size of 30 s in the simulations). Consequently, several
virtual clinical trials can be carried out in a single day.

A. Performance measures

We divide the BG concentration into 5 ranges [14] given
in mmol/L. Red: severe hypoglycemia (below 3). Light
red: hypoglycemia (3–3.9). Green: normoglycemia (3.9–10).
Yellow: hyperglycemia (10–13.9). Orange: severe hyper-
glycemia (above 13.9). Furthermore, we also consider the
distributions of the total daily basal and bolus insulin as well
as bolus glucagon.

B. Patient model

We use an extension of the model presented by Hovorka
et al. [9] to represent the pharmacokinetic and pharmacody-
namical responses of the virtual patients to carbohydrate ab-
sorption and subcutaneous infusion of insulin and glucagon.
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The model is extended with 1) a one-state model of the
measured BG concentration, 2) a two-state pharmacokinetic
model of subcutaneous glucagon injection [21], and 3) a
three-state model of the effect of exercise on the plasma BG
concentration [22].

The model parameters related to the measured BG concen-
tration, glucagon infusion, and exercise have the same values
for all virtual patients. We sample the remaining model
parameters from the distributions presented by Hovorka et
al. [23]. We only use parameter sets where the parameter
values are nonnegative, the normally distributed parameters
are within one standard deviation from the mean, and the
insulin basal rate is at least 0.4 U/h.

C. Artificial pancreas

We demonstrate the capabilities of the virtual clinical trial
using a dual-hormone AP which switches between an insulin
mode and a glucagon mode. Glucagon is used to mitigate hy-
poglycemia. The insulin mode involves 1) microadjustments
of the basal rate, 2) a meal bolus calculator, 3) superboli, and
4) an insulin-to-carb ratio estimator. In the glucagon mode,
only microboli are administered. In both modes, a 100 µg
glucagon bolus is administered at the beginning of exercise
if the blood glucose concentration is below 7 mmol/L.
No insulin is administered in the glucagon mode, and no
glucagon, apart from the exercise bolus, is administered in
the insulin mode. The AP uses filtered estimates of the
glucose concentration obtained with a low-pass filter, and
several hyperparameters have different values depending on
whether the patient is exercising or not.

Fig. 2 shows week 14 of a simulation for a single patient.
The AP administers insulin boli at meal times, the basal
rate is turned off for a period after the meals, and a small
glucagon bolus is administered during exercise, i.e., it is not
the 100 µg bolus at the beginning of exercise. As is evident,
the TIR is high for the shown period.

D. Performance of the artificial pancreas

Fig. 3 shows the amount of time spent below different BG
concentrations. It allows us to inspect the worst-case patient
(lowest BG concentration reached), the population average,
and the values reached by at least one patient (the span).
The worst-case patient is useful for identifying weaknesses
in the AP. Here, it seems unlikely that the basal rate is too
high because the patient suffers from severe hyperglycemia
almost 40% of the time. This can also be seen from the
stacked bar chart in the middle of Fig. 4. The population
mean can reveal systemic issues. On average, the patients
spend almost all of their time above the target of 6 mmol/L.
Perhaps too little insulin is administered. Finally, the shaded
area can be used to conclude that, e.g., 1) no patient spends
more than 6% of their time below 3.9 mmol/L and 2) nobody
is above 13.9 mmol/L more than 40% of the time.

Whereas the two stacked bar charts in the left of Fig. 4
provide an intuitive overview, the box plot on the right gives
a comprehensive picture of the TIR for the entire population.
The red markers show that only a few patients experience

Fig. 2. Week 14 of a simulation for 1 patient. From the top we show:
1) The BG concentration (BGC), 2) the meal carbohydrate content (shown
as a rate dependent on the body weight), 3) the resting heart rate reserve
(HRR), 4) the administered insulin basal rate, 5) the insulin boli, and 6) the
glucagon boli.

Fig. 3. Cumulative distribution of the BG concentration in a virtual clinical
trial with 1 million patients over 52 weeks. Blue solid line: The mean BG
concentration. Red solid line: The worst-case patient. Red dashed line: The
setpoint. Grey shaded area: The span of all the patients.

hypoglycemia. On average, the patients spend 77% of their
time in range, and for most patients, this value is at least
55%. However, a significant part spends between 5% and
40% above 13.9 mmol/L. Finally, Fig. 5 shows distributions
of the total insulin and glucagon administered per day. These
distributions can be compared with dosage guidelines to
see if extreme amounts are administered. For instance, it
is positive that for the most part, only small amounts of
glucagon are administered here.

E. Comparison of scenarios

When comparing different scenarios or APs, the plots in
Fig. 3–5 can be overlaid or combined as shown in Fig. 6–
8. It is clear from Fig. 6 that the basal rate is too low in
trial B. However, the worst-case patients reach equally low
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Fig. 4. Distribution of the TIRs for a virtual clinical trial with 1 million patients over 52 weeks. Left: Mean TIRs for all patients. Middle: TIRs for the
worst-case patient. Right: Box plot of the TIRs for all patients.

Fig. 5. Distributions of the total daily basal and bolus insulin and bolus
glucagon for a virtual clinical trial with 1 million patients over 52 weeks.
Top: Basal insulin. Middle: Bolus insulin. Bottom: Bolus glucagon.

BG concentrations in both trials. Fig. 7 also clearly shows
that far better TIRs are reached with the correct basal rate
although the worst-case patient experiences hypoglycemia
more often with the correct basal rate. Fig. 8 allows for
direct comparison of how much insulin and glucagon that is
administered on a daily basis. Obviously, less basal insulin
is administered in trial B, and as a result, more bolus insulin
is given. Consequently, more glucagon is given in trial B.

V. CONCLUSION

In this paper, we present a virtual clinical trial for as-
sessing the uncertainty in the performance of closed-loop
diabetes treatments. We use a high-performance closed-loop
Monte Carlo method for quantifying the uncertainty, and we
evaluate the performance by examining 1) the distributions of
the TIRs for the patient population and 2) the distributions
of the total daily doses of basal and bolus insulin as well
as bolus glucagon. Furthermore, this approach can be used
to compare the performance in different scenarios and for
different closed-loop treatments. Finally, we demonstrate that
a virtual clinical trial with one million patients over 52 weeks
can be completed in 1 h and 22 min by using parallel
high-performance software and hardware. The developed
software can be used for closed-loop systems with any drug

Fig. 6. Cumulative distribution of the BG concentration in two virtual
clinical trials of 1 million patients over 52 weeks. Blue solid line: The mean
BG concentration of trial A. Blue dotted line: The mean BG concentration of
trial B. Red solid line: The patient that reaches the lowest BG concentration
in trial A. Red dotted line: The patient that reaches the lowest BG
concentration in trial B. Red dashed line: The setpoint. Grey shaded area:
The span of all patients in trial A. Light blue shaded area: The span of all
patients in trial B.

administration device (pump or pen) and measurement device
(CGM or self-monitoring of blood glucose (SMBG) device).
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Abstract: We propose a virtual clinical trial for assessing the safety and efficacy of closed-loop
diabetes treatments prior to an actual clinical trial. Such virtual trials enable rapid and risk-free
pretrial testing of algorithms, and they can be used to compare different treatment variations
for large and diverse populations. The participants are represented by multiple mathematical
models, consisting of stochastic differential equations, and we use Monte Carlo closed-loop
simulations to compute detailed statistics of the closed-loop treatments. We implement the
virtual clinical trial using high-performance software and hardware, and we present an example
trial with two mathematical models of one million participants over 52 weeks (i.e., two million
simulations), which can be completed in 2 h 9 min.
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1. INTRODUCTION

Clinical trials ensure the safety and efficacy of medical
treatments, but they are also time-consuming and ex-
pensive. Furthermore, they might result in a negative
outcome, e.g., that the proposed treatment is not safe.
Therefore, prior to the actual clinical trial, it is impor-
tant to 1) evaluate the potential treatment performance,
2) identify shortcomings and risks, and 3) assess the advan-
tages of the treatment over alternative treatments. This is
the purpose of virtual clinical trials which involve virtual
participants that are represented by a mathematical model
(often consisting of differential equations). By using high-
performance computing (HPC) software and hardware,
such virtual trials can involve large populations and long-
term protocols, which allows for extensive and fast testing
of different treatment variations.

In this paper, we consider virtual clinical trials of closed-
loop diabetes treatment systems. These are also referred
to as artificial pancreases (APs). Worldwide, one in ten
adults suffer from diabetes, and according to the Inter-
national Diabetes Federation (2021), it accounted for 9%
of the 2021 global health expenditure (USD 966 billion).
Specifically, we consider type 1 diabetes (T1D) where, due
to autoimmune destruction of the β-cells, the pancreas
does not produce any insulin. People with T1D require
daily treatment with exogenous insulin in order to avoid
high blood glucose concentrations (hyperglycemia). Pro-
longed hyperglycemia can lead to a number of health
complications and chronic conditions, e.g., chronic kidney
disease, cardiovascular disease, and damage to the eyes and
nerves. Conversely, the insulin treatment can lead to low
⋆ This work was partially funded by the IFD Grand Solution project
ADAPT-T2D (9068-00056B).

blood glucose concentrations (hypoglycemia), which can
result in acute complications such as loss of consciousness
and seizures.

Clearly, given the risks associated with hyper- and hypo-
glycemia, it is not straightforward for people with T1D
to manage their insulin treatment. Therefore, over the
last few decades, there have been significant developments
within AP systems which can decrease this burden (Lal
et al., 2019). APs typically consist of 1) a continuous
glucose monitor (CGM), 2) an insulin pump, and 3) a
control algorithm implemented on a smartphone or a ded-
icated device. The control algorithm repeatedly computes
an appropriate insulin flow rate based on measurements
from the CGM device and communicates it to the insulin
pump. There exist a variety of control algorithms for
computing the insulin flow rate, e.g., based on heuristics,
fuzzy logic, proportional-integral-derivative (PID) con-
trol (Huyett et al., 2015; Sejersen et al., 2021), and model
predictive control (MPC) (Boiroux and Jørgensen, 2018;
Chakrabarty et al., 2020). All of these algorithms contain
algorithmic parameters which must be tuned based on sim-
ulation, i.e., based on a virtual clinical trial. As the human
physiology and behavior vary significantly between people
and over time, this is a nontrivial task. In spite of this,
the tuning is typically based on short-term simulations of
one or a few virtual participants who are only represented
by a single mathematical model. In contrast, if large-scale
long-term virtual clinical trials (involving multiple mathe-
matical models) are used to identify candidate algorithms
and algorithmic parameters, the chances of a successful
real-world clinical trial increase significantly.

In this work, we develop an approach for performing large-
scale long-term virtual clinical trials of AP algorithms (i.e.,
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participants that are represented by a mathematical model
(often consisting of differential equations). By using high-
performance computing (HPC) software and hardware,
such virtual trials can involve large populations and long-
term protocols, which allows for extensive and fast testing
of different treatment variations.

In this paper, we consider virtual clinical trials of closed-
loop diabetes treatment systems. These are also referred
to as artificial pancreases (APs). Worldwide, one in ten
adults suffer from diabetes, and according to the Inter-
national Diabetes Federation (2021), it accounted for 9%
of the 2021 global health expenditure (USD 966 billion).
Specifically, we consider type 1 diabetes (T1D) where, due
to autoimmune destruction of the β-cells, the pancreas
does not produce any insulin. People with T1D require
daily treatment with exogenous insulin in order to avoid
high blood glucose concentrations (hyperglycemia). Pro-
longed hyperglycemia can lead to a number of health
complications and chronic conditions, e.g., chronic kidney
disease, cardiovascular disease, and damage to the eyes and
nerves. Conversely, the insulin treatment can lead to low
⋆ This work was partially funded by the IFD Grand Solution project
ADAPT-T2D (9068-00056B).

blood glucose concentrations (hypoglycemia), which can
result in acute complications such as loss of consciousness
and seizures.

Clearly, given the risks associated with hyper- and hypo-
glycemia, it is not straightforward for people with T1D
to manage their insulin treatment. Therefore, over the
last few decades, there have been significant developments
within AP systems which can decrease this burden (Lal
et al., 2019). APs typically consist of 1) a continuous
glucose monitor (CGM), 2) an insulin pump, and 3) a
control algorithm implemented on a smartphone or a ded-
icated device. The control algorithm repeatedly computes
an appropriate insulin flow rate based on measurements
from the CGM device and communicates it to the insulin
pump. There exist a variety of control algorithms for
computing the insulin flow rate, e.g., based on heuristics,
fuzzy logic, proportional-integral-derivative (PID) con-
trol (Huyett et al., 2015; Sejersen et al., 2021), and model
predictive control (MPC) (Boiroux and Jørgensen, 2018;
Chakrabarty et al., 2020). All of these algorithms contain
algorithmic parameters which must be tuned based on sim-
ulation, i.e., based on a virtual clinical trial. As the human
physiology and behavior vary significantly between people
and over time, this is a nontrivial task. In spite of this,
the tuning is typically based on short-term simulations of
one or a few virtual participants who are only represented
by a single mathematical model. In contrast, if large-scale
long-term virtual clinical trials (involving multiple mathe-
matical models) are used to identify candidate algorithms
and algorithmic parameters, the chances of a successful
real-world clinical trial increase significantly.

In this work, we develop an approach for performing large-
scale long-term virtual clinical trials of AP algorithms (i.e.,
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Monte Carlo closed-loop simulations). The approach is
an extension of our recent work (Reenberg et al., 2022;
Wahlgreen et al., 2021) which allows the virtual partici-
pants to be represented by multiple mathematical models.
Specifically, we use 1) the model described by Hovorka
et al. (2002) combined with a CGM model and 2) a
modification of the model described by Dalla Man et al.
(2007) and Colmegna et al. (2020). Furthermore, we ex-
tend both models to incorporate uncertainty about the
physiology and the CGM measurements, i.e., we formu-
late the models as stochastic differential equations (de-
scribing the dynamics) and stochastic algebraic equations
(describing the CGM measurements). We implement the
approach using high-performance C code, and we use an
HPC cluster (DTU Computing Center, 2021) to carry out
the computations. Finally, we demonstrate the utility of
the virtual clinical trial by comparing the performance
of an AP algorithm for the two models. Specifically, we
simulate one million participants over 52 weeks with both
models (i.e., two million in total) which takes 2 h 9 min.

The remainder of this paper is structured as follows. In
Section 2, we describe the virtual clinical trial, and in
Section 3, we describe the two models used in this work.
Next, we present the results of the virtual clinical trial in
Section 4, and finally, we present conclusions in Section 5.

2. VIRTUAL CLINICAL TRIAL

The virtual clinical trial involves a population of people
with T1D, a protocol describing, e.g., the size and duration
of meals, mathematical models, model parameter values,
and AP algorithms. Additionally, meals and other activi-
ties can be incorrectly announced to the AP algorithm (as
is often the case in reality). Furthermore, the mathematical
models can be either deterministic (no uncertainty) or
stochastic (uncertain dynamics and measurements). The
uncertainty can, for instance, represent physiological phe-
nomena that are not included in the model or unknown
model parameters.

2.1 Virtual people

The virtual clinical trial contains one million virtual peo-
ple. Each person is represented by the same pieces of
information as real people, e.g., a unique ID, given name,
family name, date of birth, place of birth, sex, height, and
body weight. Additionally, each person is associated with
a set of mathematical models and model parameter values.

2.2 Protocols

A protocol describes the participants’ activities during
the virtual trial. Typical examples include the time and
carbohydrate contents of meals as well as the duration and
intensity of physical activity. Furthermore, each protocol
has its own ID, and it contains IDs, time stamps (start
and end time), and type and size for each activity.

In Section 4, we demonstrate the virtual clinical trial using
a protocol based on a Northern European lifestyle with
respect to 1) meal times, 2) work weeks, 3) vacation weeks,
4) public holidays, and 5) seasons. The year is divided
into 4 seasons consisting of 13 weeks. In total, there are

Table 1. The seasons, weeks, and meal carbo-
hydrate contents (Reenberg et al., 2022).

Compositions of the seasons

Season Standard weeks Active weeks Vacation weeks

Winter 6 4 3
Spring 6 6 1
Summer 7 3 3
Autumn 9 3 1

Compositions of the weeks

Type Standard days Active days Movie nights Late nights

Standard 4 1 1 1
Active 3 3 1 0
Vacation 5 0 0 2

Body weight-dependent meal carbohydrate contents

Meal size Amount of carbohydrates For a 70 kg person

Large meal 1.29 g CHO/kg 90 g CHO
Medium meal 0.86 g CHO/kg 60 g CHO
Small meal 0.57 g CHO/kg 40 g CHO
Snack 0.29 g CHO/kg 20 g CHO

Medium meal
Small meal

Large meal

snack

Medium meal
Small meal

Large meal

snack Exercise

snack

Medium meal
Small meal

Large meal

snack

snack

Medium meal
Small meal

Large meal

snack snack

Fig. 1. Schematic of the different types of days during
autumn and winter (Reenberg et al., 2022). Top:
A standard day. Second from the top: An active
day. Third from the top: A day with a movie night.
Bottom: A day with a late night. In the spring and
summer, the snack is consumed between breakfast and
lunch, and the dinner is a medium meal.

8 weeks of vacation (2 of them represent public holidays).
All weeks are either a standard week, an active week,
or a vacation week. Similarly, all days are categorized
as either a standard day, an active day, a day with a
movie night, or a day with a late night. Each type of
week contains a different combination of the days, and
each season contains a different combination of the weeks.
Table 1 gives an overview of the weeks and seasons as
well as the carbohydrate contents of the different meals in
the trial. During autumn, winter, and vacation weeks, the
participants are less active and eat more. Furthermore, in
addition to the meals consumed during a standard day,
active days have an additional exercise session, days with
a movie night have an additional snack in the evening, and
days with a late night have two additional snacks in the
evening.

160 G Conference Paper - FOSBE 2022



 Tobias K. S. Ritschel  et al. / IFAC PapersOnLine 55-23 (2022) 169–174 171

Monte Carlo closed-loop simulations). The approach is
an extension of our recent work (Reenberg et al., 2022;
Wahlgreen et al., 2021) which allows the virtual partici-
pants to be represented by multiple mathematical models.
Specifically, we use 1) the model described by Hovorka
et al. (2002) combined with a CGM model and 2) a
modification of the model described by Dalla Man et al.
(2007) and Colmegna et al. (2020). Furthermore, we ex-
tend both models to incorporate uncertainty about the
physiology and the CGM measurements, i.e., we formu-
late the models as stochastic differential equations (de-
scribing the dynamics) and stochastic algebraic equations
(describing the CGM measurements). We implement the
approach using high-performance C code, and we use an
HPC cluster (DTU Computing Center, 2021) to carry out
the computations. Finally, we demonstrate the utility of
the virtual clinical trial by comparing the performance
of an AP algorithm for the two models. Specifically, we
simulate one million participants over 52 weeks with both
models (i.e., two million in total) which takes 2 h 9 min.

The remainder of this paper is structured as follows. In
Section 2, we describe the virtual clinical trial, and in
Section 3, we describe the two models used in this work.
Next, we present the results of the virtual clinical trial in
Section 4, and finally, we present conclusions in Section 5.

2. VIRTUAL CLINICAL TRIAL

The virtual clinical trial involves a population of people
with T1D, a protocol describing, e.g., the size and duration
of meals, mathematical models, model parameter values,
and AP algorithms. Additionally, meals and other activi-
ties can be incorrectly announced to the AP algorithm (as
is often the case in reality). Furthermore, the mathematical
models can be either deterministic (no uncertainty) or
stochastic (uncertain dynamics and measurements). The
uncertainty can, for instance, represent physiological phe-
nomena that are not included in the model or unknown
model parameters.

2.1 Virtual people

The virtual clinical trial contains one million virtual peo-
ple. Each person is represented by the same pieces of
information as real people, e.g., a unique ID, given name,
family name, date of birth, place of birth, sex, height, and
body weight. Additionally, each person is associated with
a set of mathematical models and model parameter values.

2.2 Protocols

A protocol describes the participants’ activities during
the virtual trial. Typical examples include the time and
carbohydrate contents of meals as well as the duration and
intensity of physical activity. Furthermore, each protocol
has its own ID, and it contains IDs, time stamps (start
and end time), and type and size for each activity.

In Section 4, we demonstrate the virtual clinical trial using
a protocol based on a Northern European lifestyle with
respect to 1) meal times, 2) work weeks, 3) vacation weeks,
4) public holidays, and 5) seasons. The year is divided
into 4 seasons consisting of 13 weeks. In total, there are

Table 1. The seasons, weeks, and meal carbo-
hydrate contents (Reenberg et al., 2022).

Compositions of the seasons

Season Standard weeks Active weeks Vacation weeks

Winter 6 4 3
Spring 6 6 1
Summer 7 3 3
Autumn 9 3 1

Compositions of the weeks

Type Standard days Active days Movie nights Late nights

Standard 4 1 1 1
Active 3 3 1 0
Vacation 5 0 0 2

Body weight-dependent meal carbohydrate contents

Meal size Amount of carbohydrates For a 70 kg person

Large meal 1.29 g CHO/kg 90 g CHO
Medium meal 0.86 g CHO/kg 60 g CHO
Small meal 0.57 g CHO/kg 40 g CHO
Snack 0.29 g CHO/kg 20 g CHO
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Fig. 1. Schematic of the different types of days during
autumn and winter (Reenberg et al., 2022). Top:
A standard day. Second from the top: An active
day. Third from the top: A day with a movie night.
Bottom: A day with a late night. In the spring and
summer, the snack is consumed between breakfast and
lunch, and the dinner is a medium meal.

8 weeks of vacation (2 of them represent public holidays).
All weeks are either a standard week, an active week,
or a vacation week. Similarly, all days are categorized
as either a standard day, an active day, a day with a
movie night, or a day with a late night. Each type of
week contains a different combination of the days, and
each season contains a different combination of the weeks.
Table 1 gives an overview of the weeks and seasons as
well as the carbohydrate contents of the different meals in
the trial. During autumn, winter, and vacation weeks, the
participants are less active and eat more. Furthermore, in
addition to the meals consumed during a standard day,
active days have an additional exercise session, days with
a movie night have an additional snack in the evening, and
days with a late night have two additional snacks in the
evening.

2.3 Database

The virtual participants, model parameters, protocols,
and results from the virtual clinical trial are stored in
a database. We use PostgreSQL which is an open-source
database system. The database enables direct comparison
of the performance of different AP systems on differ-
ent populations, e.g., people with high body weights or
low insulin sensitivity (provided that this sensitivity is
a model parameter). Additionally, the database contains
basic components for building protocols, e.g., the 4 types
of days used in the protocol described in Section 2.2. The
user can construct their own protocols based on these basic
components. Finally, the database can be used together
with a graphical user interface to select and visualize
the results of the virtual clinical trial, show statistics of
certain demographics and protocols, and add new elements
(for instance, virtual people, mathematical models and
parameters, or protocols).

3. MODELS

In this section, we describe the two models used in the
virtual clinical trial. In Section 3.1, we describe the model
developed by Hovorka et al. (2002) combined with a
CGM model, and in Section 3.2, we describe the model
developed by Dalla Man et al. (2007) and Colmegna
et al. (2020) where the meal model is replaced with that
proposed by Hovorka et al. (2002). In order to simplify the
demonstration of the virtual clinical trial in Section 4, we
do not include exercise in the models or in the protocol.

3.1 An extension of Hovorka’s model

The insulin subsystem is described by

Ṡ1(t) = uI(t)−
S1(t)

τS
, (1a)

Ṡ2(t) =
S1(t)

τS
− S2(t)

τS
, (1b)

İ(t) =
1

VI

S2(t)

τS
− keI(t), (1c)

where S1 and S2 [mU] constitute a two-compartment
chain representing the absorption of insulin, I [mU/L] is
the insulin concentration in the plasma, τS [min] is the
insulin absorption time constant, VI is the volume in which
insulin is distributed, ke [1/min] is an elimination rate, and
uI [mU/min] is the insulin infusion rate. The insulin action
subsystem is described by the three compartments

ẋ1(t) = kb1I(t)− ka1x1(t), (2a)

ẋ2(t) = kb2I(t)− ka2x2(t), (2b)

ẋ3(t) = kb3I(t)− ka3x3(t), (2c)

where xi [1/min] are the insulin effect on the glucose
distribution (i = 1), the disposal of glucose (i = 2), and
the endogenous glucose production (i = 3). Furthermore,
kbi [(L/mU)/min2] are activation rates and kai [1/min] are
deactivation rates (for i = 1, 2, 3). The meal subsystem is
described by a two-compartment chain:

Ḋ1(t) = AGD(t)− D1(t)

τD
, (3a)

Ḋ2(t) =
D1(t)

τD
− D2(t)

τD
. (3b)

Here,D [mmol/min] is the meal carbohydrate content (per
minute), D1 and D2 [mmol] represent the meal absorption,
AG [–] is the bioavailibility of the carbohydrates, and
τD [min] is a time constant. The glucose subsystem is also
described by two compartments, i.e.,

Q̇1(t) =
D2(t)

τD
− F01,c(t)− FR(t)− x1(t)Q1(t)

+ k12Q2(t) + EGP0(1− x3(t))), (4a)

Q̇2(t) = x1(t)Q1(t)− k12Q2(t)− x2Q2(t), (4b)

where Q1 and Q2 [mmol] are the accessible and non-
accessible glucose compartments, k12 [1/min] is a transfer
rate, EGP0 [mmol] is the endogenous glucose production
(extrapolated to an insulin concentration of zero). Further-
more,

F01,c(t) =

{
F01 G(t) ≥ 4.5 mmol/L,

F01G(t)/4.5 otherwise,
(5a)

FR(t) =

{
0.003(G(t)− 9)VG G(t) ≥ 9 mmol/L,

0 otherwise,
(5b)

G(t) =
Q1(t)

VG
, (5c)

where F01,c and F01 [mmol/min] are the corrected and
nominal total non-insulin dependent glucose fluxes, FR

[mmol/min] is the renal glucose clearance, G [mmol/L]
is the glucose plasma concentration, and VG [L] is the
volume in which the glucose is distributed. Finally, the
CGM subsystem is

ĠI(t) =
G(t)

τIG
− GI(t)

τIG
. (6)

Here, GI [mmol/L] is the interstitial glucose concentration
measured by the CGM and τIG [1/min] is a time constant.

3.2 A modification of the UVA/Padova model

In the UVA/Padova model, the glucose subsystem is
described by

Ġp(t) = EGP (t) +Ram(t)− Uii(t)− E(t)

− k1Gp(t) + k2Gt(t), (7a)

Ġt(t) = −Uid(t) + k1Gp(t)− k2Gt(t), (7b)

G(t) =
Gp(t)

Vg
, (7c)

where Gp and Gt [mg/kg] are the plasma glucose in
rapidly and slowly equilibrating tissues, respectively,
EGP [(mg/kg)/min] is the endogenous glucose produc-
tion, Ram [(mg/kg)/min] is the glucose rate of appearance,
Uii and Uid [(mg/kg)/min] are the insulin-independent and
insulin-dependent glucose utilization, E [(mg/kg)/min]
represents renal excretion, k1 and k2 [1/min] are rate
parameters, G [mg/dL] is the glucose concentration, and
Vg [dL/kg] is the glucose distribution volume. Next, the
insulin subsystem is represented by

İℓ(t) = −(m1 +m3)Iℓ(t) +m2Ip(t), (8a)

İp(t) = −(m2 +m4)Ip(t) +m1Iℓ(t) +RaIsc(t), (8b)

I(t) =
Ip(t)

Vi
, (8c)

where Iℓ and Ip [pmol/kg] are insulin in the plasma
and liver, mi [1/min] for i = 1, . . . , 4 are rate parame-
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ters, RaIsc [(pmol/kg)/min] is the insulin rate of appear-
ance, I [pmol/L] is the plasma insulin concentration, and
Vi [L/kg] is the insulin distribution volume. Furthermore,

m2 =
3CL

5HEbViBW
, (9a)

m3 =
HEbm1

1−HEb
, (9b)

m4 =
2CL

5ViBW
. (9c)

Here, CL [L/min] is the insulin clearance, HEb [–] is the
basal hepatic insulin extraction, and BW [kg] is the body
weight. The insulin-independent and insulin-dependent
glucose utilization are given by

Uii(t) = Fcns, (10a)

Uid(t) =
(Vm0 + VmxX(t))Gt(t)

Km0 +Gt(t)
, (10b)

Ẋ(t) = −p2UX(t) + p2U (I(t)− Ib), (10c)

where Fcns [(mg/kg)/min] is the glucose uptake of the
erythrocytes and the brain, Vmx [mg L/(kg pmol min)] and
Km0 [mg/kg] are parameters, X [pmol/L] is the insulin
concentration in the interstitial fluid, p2U [1/min] is the
rate of the insulin action on the peripheral glucose utiliza-
tion, Ib [pmol/L] is the basal insulin plasma concentration,
and Vm0 [(mg/kg)/min] is

Vm0 =
(EGPb − Fcns)(Km0 +Gtb)

Gtb
, (11a)

Gtb =
Fcns − EGPb + k1Gpb

k2
, (11b)

where EGPb [(mg/kg)/min],Gtb [mg/kg], andGpb [mg/kg]
are the basal endogenous glucose production and the basal
plasma glucose masses. The model of the oral glucose
absorption is similar to that in (3):

Ḋ1(t) = AGD(t)− D1(t)

τD
, (12a)

Ḋ2(t) =
D1(t)

τD
− D2(t)

τD
, (12b)

Ram(t) =
D2(t)

BWτD
. (12c)

Again, D [mg/min] is the meal carbohydrate rate, D1

and D2 [mg] describe the meal absorption, AG [–] is
the carbohydrate bioavailibility, and τD [min] is a time
constant. The endogenous glucose production is

EGP (t) = max{0, EGPb − kp2(Gp(t)−Gpb)

− kp3(Id(t)− Ib)}, (13a)

İd(t) = −ki(Id(t)− I1(t)), (13b)

İ1(t) = −ki(I1(t)− I(t)), (13c)

where kp2 [1/min] and kp3 [mg L/(kg pmol min] are the
liver glucose effectiveness and the amplitude of the insulin
action of the liver, Id and I1 [pmol/L] constitute a two-
compartment delayed insulin signal chain, and ki [1/min]
is a rate parameter. Next, the renal excretion is given by

E(t) = max{0, ke1(Gp(t)− ke2)}. (14)

Here, ke1 [1/min] and ke2 [mg/kg] are the glomerular
filtration rate and the renal glucose threshold. The sub-
cutaneous insulin delivery is described by

İsc1(t) = −(kd + ka1)Isc1(t) +
uI(t)

BW
, (15a)

İsc2(t) = kdIsc1(t)− ka2Isc2(t), (15b)

RaIsc(t) = ka1Isc1(t) + ka2Isc2(t), (15c)

where Isc1 and Isc2 [pmol/kg] are insulin in a non-
monomeric and monomeric state, kd, ka1, and ka2 [1/min]
are rate parameters accounting for subcutaneous in-
sulin kinetics, and uI [pmol/min] is the insulin infusion
rate. Finally, the subcutaneous glucose concentration, Gsc

[mg/dL], is

Ġsc(t) = −kscGsc(t) + kscG(t), (16)

and ksc [1/min] is the inverse of a time constant.

3.3 General mathematical form and simulation

The two models described in this section are in the form

x(t0) = x0, (17a)

dx(t) = f(t, x(t), u(t), d(t), p)dt

+ σ(t, x(t), u(t), d(t), p)dw(t), (17b)

z(t) = h(t, x(t), p), (17c)

y(tk) = g(tk, x(tk), p) + v(tk). (17d)

Here, t is time, t0 is the initial time, x are the states (i.e.,
the physiological state), x0 are the initial states, u are
manipulated inputs computed by the AP algorithm (e.g.,
the insulin infusion rate), d are disturbance variables (e.g.,
the meal carbohydrate content), and p are model param-
eters (specific to each person). The first term in (17b)
is the deterministic (drift) term, and the second term is
the stochastic (diffusion) term. At time tk (e.g., every
5 min), the AP receives a CGM measurement, y, which
is corrupted by noise, v. Furthermore, the outputs, z,
are used to evaluate the AP algorithm. The measurement
noise is normally distributed, and w is a standard Wiener
process, i.e., v(tk) ∼ N(0, R) and dw(t) ∼ N(0, Idt)
where I is an identity matrix. In between measurements,
the manipulated inputs and the disturbance variables are
modeled as constant:

u(t) = uk, t ∈ [tk, tk+1[, (18a)

d(t) = dk, t ∈ [tk, tk+1[. (18b)

Finally, when the AP algorithm (represented by the func-
tions κk and λk) receives a measurement, it updates its
internal state, xc

k, and computes the manipulated inputs
based on the measurement, yk = y(tk), the targets ūk and

ȳk, an estimate of the disturbance variables, d̂k, and the
hyperparameters pκ and pµ:

xc
k+1 = κk(x

c
k, yk, ūk, ȳk, d̂k, pκ), (19a)

uk = λk(x
c
k, yk, ūk, ȳk, d̂k, pµ). (19b)

In Section 3.1 and 3.2, we described the models with-
out uncertainty, i.e., with σ = 0. In Section 4, we use
uncertain models where we 1) add a stochastic term to
the plasma glucose compartments (4a) and (7a) with
(equivalent) diffusion coefficients of 1.5 mmol/min3/2 and
270.24/BW mg/(kg min3/2), and 2) add measurement
noise with a variance of 0.1 mmol/L ≈ 1.8 mg/dL.

We use the Euler-Maruyama method with a step size of
0.5 min to simulate each participant, and we only store
statistics and the worst-case simulation. We implement
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Again, D [mg/min] is the meal carbohydrate rate, D1

and D2 [mg] describe the meal absorption, AG [–] is
the carbohydrate bioavailibility, and τD [min] is a time
constant. The endogenous glucose production is

EGP (t) = max{0, EGPb − kp2(Gp(t)−Gpb)

− kp3(Id(t)− Ib)}, (13a)

İd(t) = −ki(Id(t)− I1(t)), (13b)

İ1(t) = −ki(I1(t)− I(t)), (13c)

where kp2 [1/min] and kp3 [mg L/(kg pmol min] are the
liver glucose effectiveness and the amplitude of the insulin
action of the liver, Id and I1 [pmol/L] constitute a two-
compartment delayed insulin signal chain, and ki [1/min]
is a rate parameter. Next, the renal excretion is given by

E(t) = max{0, ke1(Gp(t)− ke2)}. (14)

Here, ke1 [1/min] and ke2 [mg/kg] are the glomerular
filtration rate and the renal glucose threshold. The sub-
cutaneous insulin delivery is described by

İsc1(t) = −(kd + ka1)Isc1(t) +
uI(t)

BW
, (15a)

İsc2(t) = kdIsc1(t)− ka2Isc2(t), (15b)

RaIsc(t) = ka1Isc1(t) + ka2Isc2(t), (15c)

where Isc1 and Isc2 [pmol/kg] are insulin in a non-
monomeric and monomeric state, kd, ka1, and ka2 [1/min]
are rate parameters accounting for subcutaneous in-
sulin kinetics, and uI [pmol/min] is the insulin infusion
rate. Finally, the subcutaneous glucose concentration, Gsc

[mg/dL], is

Ġsc(t) = −kscGsc(t) + kscG(t), (16)

and ksc [1/min] is the inverse of a time constant.

3.3 General mathematical form and simulation

The two models described in this section are in the form

x(t0) = x0, (17a)

dx(t) = f(t, x(t), u(t), d(t), p)dt

+ σ(t, x(t), u(t), d(t), p)dw(t), (17b)

z(t) = h(t, x(t), p), (17c)

y(tk) = g(tk, x(tk), p) + v(tk). (17d)

Here, t is time, t0 is the initial time, x are the states (i.e.,
the physiological state), x0 are the initial states, u are
manipulated inputs computed by the AP algorithm (e.g.,
the insulin infusion rate), d are disturbance variables (e.g.,
the meal carbohydrate content), and p are model param-
eters (specific to each person). The first term in (17b)
is the deterministic (drift) term, and the second term is
the stochastic (diffusion) term. At time tk (e.g., every
5 min), the AP receives a CGM measurement, y, which
is corrupted by noise, v. Furthermore, the outputs, z,
are used to evaluate the AP algorithm. The measurement
noise is normally distributed, and w is a standard Wiener
process, i.e., v(tk) ∼ N(0, R) and dw(t) ∼ N(0, Idt)
where I is an identity matrix. In between measurements,
the manipulated inputs and the disturbance variables are
modeled as constant:

u(t) = uk, t ∈ [tk, tk+1[, (18a)

d(t) = dk, t ∈ [tk, tk+1[. (18b)

Finally, when the AP algorithm (represented by the func-
tions κk and λk) receives a measurement, it updates its
internal state, xc

k, and computes the manipulated inputs
based on the measurement, yk = y(tk), the targets ūk and

ȳk, an estimate of the disturbance variables, d̂k, and the
hyperparameters pκ and pµ:

xc
k+1 = κk(x

c
k, yk, ūk, ȳk, d̂k, pκ), (19a)

uk = λk(x
c
k, yk, ūk, ȳk, d̂k, pµ). (19b)

In Section 3.1 and 3.2, we described the models with-
out uncertainty, i.e., with σ = 0. In Section 4, we use
uncertain models where we 1) add a stochastic term to
the plasma glucose compartments (4a) and (7a) with
(equivalent) diffusion coefficients of 1.5 mmol/min3/2 and
270.24/BW mg/(kg min3/2), and 2) add measurement
noise with a variance of 0.1 mmol/L ≈ 1.8 mg/dL.

We use the Euler-Maruyama method with a step size of
0.5 min to simulate each participant, and we only store
statistics and the worst-case simulation. We implement

the virtual clinical trial using parallel high-performance
C code for shared-memory architectures and two 2.9 GHz
AMD EPYC 7542 32-core processors.

4. VIRTUAL CLINICAL TRIAL RESULTS

In this section, we demonstrate how the virtual clinical
trial can be used to assess the safety and efficacy of an
AP algorithm. We use the protocol described in Section 2
(without exercise), and for each model, we include one
million participants. In the analysis, we consider the first
4 weeks a titration period and disregard them. In the
following, we refer to the models presented in Section 3.1
and 3.2 as model A and B, respectively. We choose
the algorithmic hyperparameters based on deterministic
simulations with model A. The total computation time is
2 h 9 min.

We demonstrate the virtual clinical trial using a simple
algorithm based on physiological insight and concepts from
proportional-integral-derivative (PID) control. It uses two
integrators (I-controllers) to estimate the basal and bo-
lus insulin requirements, and a PD-controller to miti-
gate smaller variations in the blood glucose. It also uses
deadbands, error truncation, a hypoglycemia amplification
factor, switching logic, and a few heuristics. Fig. 2 shows
how the controller doses insulin during 4 days of the virtual
clinical trial for a single participant.

We evaluate the algorithm using the performance mea-
sures and targets described by Holt et al. (2021). The
measures are 1) average glucose, 2) glucose management
index (GMI), 3) glucose variation (GV) computed as the
coefficient of variation, 3) time above range (TAR), 4) time
in range (TIR), and 5) time below range (TBR). All of
these are based on CGM measurements. The 5 ranges
used to compute TAR, TIR, and TBR are as follows (all
values are in mmol/L, and the colors are used throughout
this section). Level 2 hypoglycemia: [0, 3[ (red). Level 1
hypoglycemia: [3, 3.9[ (light red). Normoglycemia: [3.9, 10]
(green). Level 1 hyperglycemia: ]10, 13.9] (yellow). Level 2
hyperglycemia: ]13.9,∞[ (orange).

For model A, τIG has the same value for all participants.
All other parameters are sampled from normal distribu-
tions based on the sample means and variances of the
parameter values presented by Hovorka et al. (2002). For
model B, we generate normal distributions based on the
means and variances reported by Colmegna et al. (2020).
For the remaining parameters, we use the means and
variances of the values reported by Kovatchev et al. (2010)
and Dalla Man et al. (2007). For both models, we discard
parameter sets if 1) all parameters are not within one stan-
dard deviation of the mean, 2) the basal rate is lower than
0.4 U/h (corresponding to a blood glucose concentration of
6 mmol/L), 3) any time constant or inverse rate parameter
is not within one order of magnitude of the corresponding
mean, and 4) the steady state is not physical. For model
B, we also discard parameter sets if the steady state blood
glucose concentration, in the absence of insulin, is above
43.93 mmol/L (the highest obtained with model A).

Fig. 3 shows the mean and worst-case (i.e., the participant
with the lowest CGM measurement) time in ranges (TIRs)
as well as a box plot of the distributions of the TIRs. The

Fig. 2. CGM measurements (top), meal carbohydrate con-
tents (second from the top), basal insulin infusion rate
(third from the top), and insulin boluses (bottom) for
a single participant (represented with model B) over
a period of 4 days.

Table 2. Comparison based on the glycemic
targets described by Holt et al. (2021).

Quantity Target A B

Average glucose < 154 mg/dL 76.87% 84.19%
GMI < 7% 77.48% 84.82%
GV ≤ 36% 91.37% 89.46%

TAR (level 2) < 5% 85.80% 88.35%
TAR (level 1 and 2) < 25% 68.92% 58.57%
TIR (normoglycemia) > 70% 78.01% 75.09%
TBR (level 1 and 2) < 4% 100.00% 100.00%
TBR (level 2) < 1% 100.00% 100.00%

All targets 68.10% 58.46%

mean TIRs are similar for the two models, and the worst-
case TIRs are better for model B. The box plot gives a
more thorough overview and illustrates that, for model B,
the distributions of TIR and TAR (level 1) are more
narrow. Fig. 4 shows the total daily doses (TDDs) of basal
and bolus insulin. Both distributions are shifted towards
higher TDDs for model B. Fig. 5 shows the cumulative
distributions of the CGM measurements. The distribution
is more narrow for model B, and the mean and worst-case
trajectories are similar for the two models. Finally, Table 2
shows that the AP performs better for model B on some
but not all glycemic targets. For both models, the target
on TAR (level 1 and 2) appears to be the most challenging.

5. CONCLUSIONS

We present an approach for conducting large-scale long-
term virtual clinical trials for evaluating APs prior to
the actual clinical trials. The participants are represented
by multiple mathematical models consisting of stochastic
differential equations. We use Monte Carlo closed-loop
simulations, implemented with HPC software and hard-
ware, to compute detailed treatment statistics. Finally, we
present results from a virtual clinical trial with one million
participants (represented by two mathematical models)
over 52 weeks, which is conducted in 2 h 9 min.
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Fig. 3. Left: Mean TIRs. Middle: TIRs for the worst-case participants. Right: Box plots of the TIRs for all participants.

Fig. 4. Histograms of the insulin basal and bolus TDDs.

Fig. 5. Cumulative distributions of the CGM measure-
ments.
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Summary
In this technical report, we describe and discuss how we design protocols and generate
virtual participants for large-scale long-term virtual clinical trials of closed-loop dia-
betes treatment. We design the protocols from a set basis days that function as building
blocks to form weeks, months and years. The virtual participants are represented by a
mathematical model with a set of parameters generated from a distribution. We use an
extended version of the Hovorka model to represent a population of 1 mio. virtual partic-
ipants and a modified version of the UVA/Padova model to represent another population
of 1 mio. virtual participants. We show how both the protocols and virtual participants
are stored in a database. The database make existing protocols and virtual participants
sortable and reusable and allows the user to add new protocols and participants.
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CHAPTER 1
Introduction

In this technical report, we describe how the protocols and virtual participants are de-
signed and generated in Reenberg et al. [1] and Ritschel et al. [2] in more detail and
we list the model parameters. Furthermore, we show how the protocols and virtual
participants are stored in a database. Virtual clinical trials make it possible to evaluate
the potential performance of, e.g., closed-loop diabetes treatment and identify potential
shortcomings prior to a real clinical trial. The virtual clinical trials involve a population
of virtual people with type 1 diabetes described by a mathematical model, a protocol to
describe, e.g., the size and duration of meals and some treatment strategy. The math-
ematical models can be either deterministic or stochastic. The uncertainty represents,
e.g., unknown model parameters or physiological phenomena that are not described by
the mathematical models. The mathematical models we consider, can be written in the
form

x(t0) = x0, (1.1a)
dx(t) = f(t, x(t), u(t), d(t), p)dt

+ σ(t, x(t), u(t), d(t), p)dw(t), (1.1b)
z(t) = h(t, x(t), p), (1.1c)

y(tk) = g(tk, x(tk), p) + v(tk), (1.1d)

where t is time, t0 is the initial time, x are the states, x0 are the initial states, u are
manipulated inputs (e.g., insulin administration), d are disturbance variables (e.g., the
meals described in the protocols), and p are model parameters (unique to each virtual
participant). The first term in (1.1b) is the deterministic (drift) term, and the second
term is the stochastic (diffusion) term. y are the measurements (e.g, from a CGM) with
measurement noise, v. z, are the outputs and are used in, e.g., a control algorithm. The
measurement noise, v, is normally distributed, and w is a standard Wiener process, i.e.,
v(tk) ∼ N(0, R) and dw(t) ∼ N(0, Idt) where I is an identity matrix. We assume that
the manipulated inputs and the disturbance variables are piecewise constant, i.e.

u(t) = uk, t ∈ [tk, tk+1[, (1.2a)
d(t) = dk, t ∈ [tk, tk+1[, (1.2b)

and we use the Euler-Maruyama method to solve the system of SDEs. In Section 3.2.1
and 3.2.2, we describe the models without uncertainty, i.e., with σ = 0, but a stochastic
term can be added to the plasma glucose compartments that will be described in (3.9a)
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2 1 Introduction

and (3.22a). In Reenberg et al. [1] and Ritschel et al. [2], we used diffusion coefficients of
1.5 mmol/min3/2 and 270.24/BW mg/(kg min3/2) and added measurement noise with a
variance of 0.1 mmol/L ≈ 1.8 mg/dL.

Protocols The protocols are represented by the disturbances, d, in (1.1). The proto-
cols describe the activities or events that happen during a clinical trial. In a real clinical
trial the inputs, u, can also be described in a protocol, but here we assume that the
inputs are controlled by a control algorithm and not decided from the protocol. The
protocols include meals and exercise, and we design a set of days that each should de-
scribe a typical day. We combine the days to form different weeks, e.g., an active week
where the participant exercises more, and use the different weeks to form months and
years. The protocols depend on the season, and we assume that the participants eat
more during winter and autumn compared to during summer and spring.

Virtual participants The virtual participants are described by a mathematical model
as described in (1.1b), where each participant is represented by a unique set of param-
eters, p. We use two mathematical models to represent two populations of each 1 mio.
virtual participants. The first model is an extended version of the Hovorka model [3]
and the second model is a modified version of the UVA/Padova model [4, 5].

Database We use a the open-source PostgreSQL database to store the protocols and
virtual participants. The database enables the user to store, reuse and combine different
protocols and use the existing virtual participants or add more participants. Further-
more, it also enables the user to sort, e.g., the participants based on certain demographics
or select specific protocols. The database also enables storage of the results from a vir-
tual clinical trial, such that two trials can be directly compared. Finally, the database
enables the use of a graphical user interface to visualize the results, protocols and par-
ticipants.

Virtual clinical trial Reenberg et al. [1] and Ritschel et al. [2] each show examples
of results from a virtual clinical trials. Reenberg et al. [1] shows an example virtual
clinical trial used to assess the difference in performance between two different treat-
ment strategies and Ritschel et al. [2] tests a closed-loop system in two different virtual
populations. We refer to these publications for example results from a virtual clinical
trial and only describe the protocols and virtual participants in this technical report.

Structure of the report In Chapter 2, we describe the protocols used in the virtual
clinical trials and how they are stored in a database and in Chapter 3, we describe the
demographics and the mathematical models used to represent the virtual participants.
In Chapter 3, we also list the model parameters and show how they are stored in a
database. Finally, we provide conclusions in Chapter 4.
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CHAPTER 2
Protocols

In this chapter, we describe how we design and generate protocols for the virtual clinical
trials. The protocols describe the activities or events (e.g. meals or exercise) that
happen during a clinical trial. We consider the protocols as disturbances, d, in (1.1),
and the protocols are translated to piecewise constant rates as described in (1.2). Each
disturbance has a start time and an end time to make it possible to include that, e.g., it
is faster to eat a snack than a large meal. Furthermore, each disturbance has a size and
an indicator for the type of disturbance. We design the protocols from a set of basis days
that we combine to form weeks, months and years. The aim is to imitate a northern
european lifestyle w.r.t. 1) meal times, 2) work weeks, 3) vacation weeks, and 4) public
holidays. Here, the size and timing of the events are deterministic to make it easy to
use and understand, but similar protocols could be made where the events are randomly
generated. Table 2 shows the disturbances that can be included in the protocols. In
the protocols created in this technical report, we do not include stress and only consider
meals and exercise.

Table 2.1: Types of disturbances that can be included in the protocols and the corre-
sponding indicator.

Type Indicator
Meal size dependent on body weight [g CHO/kg] 1

Heart rate [bpm] 2
Stress [-] 3

Meal size rate [g CHO/min] 4
Absolute meal size [g CHO] 5

Heart rate reserve [%] 6

2.1 Days
We design a set of days that can either be used on their own or used as building blocks
for longer protocols. We construct four basis days that change depending on the season.
Figure 2.1 shows the basis days during autumn and winter where the standard day
consists of three meals and a snack, the active day consists of three meals, a snack, and
an exercise session (of 60% heart rate reserve (HRR)), the movie night consists of three
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4 2 Protocols

meals and two snacks, and finally the late night conists of three meals (with a later
breakfast) and three snacks. Figure 2.2 shows the basis days during spring and summer
where the snack instead is before lunch and the dinner is a medium meal. Table 2.1
shows the size of the different meals. The meal sizes are dependent on the body weight,
which creates variation between the participants. The large meal is a relatively high
amount of carbohydrates, but does not represent, e.g., a pizza.

Table 2.2: Body weight-dependent meal carbohydrate contents.

Meal size Amount of carbohydrates For a 70 kg person
Large meal 1.29 g CHO/kg 90 g CHO
Medium meal 0.86 g CHO/kg 60 g CHO
Small meal 0.57 g CHO/kg 40 g CHO
Snack 0.29 g CHO/kg 20 g CHO

2.2 Weeks
We use the basis days to build three different weeks: 1) the standard week consisting
of 4 standard days, 1 active day, 1 movie night, and 1 late night, 2) the active week
cosisting of 3 standard days, 3 active days, and 1 movie night, and 3) the vacation week
consisting of 5 standard days and 2 late nights. The weeks are designed such that the
participants exercise more in the active weeks and have more late nights (more snacks)
in vacation weeks. Table 2.2 shows the composition of days in the different weeks.

Table 2.3: Compositions of the weeks.

Type Standard days Active days Movie nights Late nights
Standard 4 1 1 1
Active 3 3 1 0
Vacation 5 0 0 2

2.3 Months and years
We combine the weeks to form months (4 weeks), seasons (12 weeks), and years (52
weeks). Table 2.4 shows the composition of weeks in each season that together forms a
year. We assume that the participants are more active during spring and summer and
eat more during autumn and winter. We add combined Christmas and winter holidays,
easter holidays, summer holidays and autumn holidays. We include 8 vacation weeks
in total, where the vacation weeks also include public holidays. Figure 2.3 shows where
the vacation weeks are placed during the year.
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Figure 2.1: Basis days during autumn and winter. From the top: 1) the standard day,
2) the active day, 3) the movie night, and 4) the late night .

Table 2.4: Compositions of the seasons.

Season Standard weeks Active weeks Vacation weeks
Winter 6 4 3
Spring 6 6 1
Summer 7 3 3
Autumn 9 3 1

2.4 Database
We store the protocols in a PostgreSQL database to make them reusable and to make it
straightforward to add more protocols and distinguish between them. Each protocol is
stored in the database with a unique ID and a name and it is possible to combine, e.g.,
the standard week and the active week as a new protocol. Table 2.5, 2.6, 2.7, and 2.8
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Snack

Medium meal

Exercise

Figure 2.2: Sample days during spring and summer. From the top: 1) the standard
day, 2) the active day, 3) the movie night, and 4) the late night.

show the data format and exact timestamps for the four basis days during autumn and
winter and Table 2.9, 2.10, 2.11, and 2.12 show the days during spring and summer. We
only store the start and end time, size and type of the disturbance in the database. The
protocols are automatically translated into the form (1.1) before simulations are started.
If we consider, e.g., a meal of type 1 (body weight dependent meal size), we correct for
the body weight, and then divide by the time it took the participant to eat the meal, to
convert it to a rate.
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Figure 2.3: A year with seasons and approximate vacations.

Table 2.5: Standard winter day.

start time end time size type
0000-01-01T07:30 0000-01-01T08:00 0.57g CHO/kg 1
0000-01-01T12:00 0000-01-01T12:30 0.86g CHO/kg 1
0000-01-01T16:15 0000-01-01T16:30 0.29g CHO/kg 1
0000-01-01T18:30 0000-01-01T19:00 1.29g CHO/kg 1

Table 2.6: Active winter day.

start time end time size type
0000-01-01T07:30 0000-01-01T08:00 0.57g CHO/kg 1
0000-01-01T12:00 0000-01-01T12:30 0.86g CHO/kg 1
0000-01-01T16:15 0000-01-01T16:30 0.29g CHO/kg 1
0000-01-01T16:45 0000-01-01T17:30 60% HRR 6
0000-01-01T18:30 0000-01-01T19:00 1.29g CHO/kg 1

Table 2.7: Winter movie night.

start time end time size type
0000-01-01T07:30 0000-01-01T08:00 0.57g CHO/kg 1
0000-01-01T12:00 0000-01-01T12:30 0.86g CHO/kg 1
0000-01-01T16:15 0000-01-01T16:30 0.29g CHO/kg 1
0000-01-01T18:30 0000-01-01T19:00 1.29g CHO/kg 1
0000-01-01T20:30 0000-01-01T20:45 0.29g CHO/kg 1
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8 2 Protocols

Table 2.8: Winter late night.

start time end time size type
0000-01-01T08:00 0000-01-01T08:30 0.57g CHO/kg 1
0000-01-01T12:00 0000-01-01T12:30 0.86g CHO/kg 1
0000-01-01T16:15 0000-01-01T16:30 0.29g CHO/kg 1
0000-01-01T18:30 0000-01-01T19:00 1.29g CHO/kg 1
0000-01-01T20:30 0000-01-01T20:45 0.29g CHO/kg 1
0000-01-01T22:30 0000-01-01T22:45 0.29g CHO/kg 1

Table 2.9: Standard Summer day.

start time end time size type
0000-01-01T07:30 0000-01-01T08:00 0.57g CHO/kg 1
0000-01-01T10:00 0000-01-01T10:15 0.29g CHO/kg 1
0000-01-01T12:00 0000-01-01T12:30 0.86g CHO/kg 1
0000-01-01T18:30 0000-01-01T19:00 1.29g CHO/kg 1

Table 2.10: Active Summer day.

start time end time size type
0000-01-01T07:30 0000-01-01T08:00 0.57g CHO/kg 1
0000-01-01T10:00 0000-01-01T10:15 0.29g CHO/kg 1
0000-01-01T12:00 0000-01-01T12:30 0.86g CHO/kg 1
0000-01-01T16:45 0000-01-01T17:30 60% HRR 6
0000-01-01T18:30 0000-01-01T19:00 1.29g CHO/kg 1

Table 2.11: Summer movie night.

start time end time size type
0000-01-01T07:30 0000-01-01T08:00 0.57g CHO/kg 1
0000-01-01T10:00 0000-01-01T10:15 0.29g CHO/kg 1
0000-01-01T12:00 0000-01-01T12:30 0.86g CHO/kg 1
0000-01-01T18:30 0000-01-01T19:00 1.29g CHO/kg 1
0000-01-01T20:30 0000-01-01T20:45 0.29g CHO/kg 1
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Table 2.12: Summer late night.

start time end time size type
0000-01-01T07:30 0000-01-01T08:00 0.57g CHO/kg 1
0000-01-01T10:00 0000-01-01T10:15 0.29g CHO/kg 1
0000-01-01T12:00 0000-01-01T12:30 0.86g CHO/kg 1
0000-01-01T18:30 0000-01-01T19:00 1.29g CHO/kg 1
0000-01-01T20:30 0000-01-01T20:45 0.29g CHO/kg 1
0000-01-01T22:30 0000-01-01T22:45 0.29g CHO/kg 1
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CHAPTER 3
Virtual participants

In this chapter, we describe how, we generate participants for the virtual clinical trials.
Each virtual person is represented by some personal information similar to a real person,
i.e., a unique ID, given name, family name, date of birth, place of birth, sex, height,
resting heart rate, and body weight. Additionally, each virtual participant is associated
with a set of parameters in a mathematical model.

3.1 Personal information
We generate the personal information with Mockaroo https://www.mockaroo.com (Ac-
cessed: January 18th, 2023). Mockaroo lets users generate test data of anything from
names to IP addresses or unique IDs. Table 3.1 shows an example of a participant gen-
erated with Mockaroo. Figure 3.1 shows the distribution of the virtual participants’ age,
body weight, and resting heart rate. We only include adult people and assume that their
age is uniformly distributed. We use approximate average values of the adult human
population to generate normal distributions for the body weight and resting heart rate.
Using normal distributions for the body weight and resting heart rate are very crude
approximations and result in, e.g., the body weights being between 35 kg and 100 kg
which is not representative of all humans. The exact distributions of the parameters
are listed in Section 3.3. The patient class value is used to distinguish between types of
participants and virtual populations where real people have class 0 and virtual people
have class 1.

3.2 Mathematical models
In this section, we describe the two mathematical models that represents the virtual
participants in the virtual clinical trials. We consider the participants represented by
each model, a virtual population. The first model is an extension of Hovorka’s model
and the second model is a modified version of the UVA/Padova model. The models are
also described in Reenberg et al. [1] and Ritschel et al. [2]. The dynamics in the models
are different and result in different outcomes of the trials. Therefore, it would also be
valuable to add more mathematical models (populations) to the framework. We list the
parameters used in both models in Section 3.3. We do not have distributions for the
parameters related to the glucagon model, the exercise model, and the CGM model and
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Table 3.1: Example of a virtual participant.

ID 321781
First name Hilly
Last name Hehir

Sex Male
Height 187.0 cm

Body weight 88.4 kg
Resting heart rate 67

Date of birth 1991-06-18
Country of birth Russia

Patient class 1

Figure 3.1: Distributions of the personal parameters that affect the simulation models.
From the left: 1) The age of the participants with a mean of 51 years,
2) the body weight of the participants with a mean of 70 kg, and 3) the
resting heart rate of the participants with a mean of 80 BPM.

use the same parameters for all participants. We translate the exercise intensity in heart
rate reserve to heart rate by

HR = HRR(HRmax − HRrest) + HRrest, (3.1)

where HR [BPM] is the target heart rate, HRR [%] is the heart rate reserve, HRmax [BPM]
is the maximum heart rate and HRrest [BPM] is the resting heart rate. We compute the
maximum heart rate based on the participants age by

HRmax = 220 − age. (3.2)
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3.2.1 Extended Hovorka model
The model by Hovorka et al [3, 6] consists of an insulin subsystem, a meal subsystem,
and a glucose subsystem. We extend it with a glucagon subsystem [7], an exercise
subsystem [8], and a simplified version of the CGM subsystem by Facchinetti et al. [9].
Table 3.3 in Section 3.3 describes the parameters.

Insulin subsystem The insulin subsystem describes the insulin absorption and the
insulin concentration by

Ṡ1(t) = uI(t) − S1(t)
τS

, (3.3a)

Ṡ2(t) = S1(t)
τS

− S2(t)
τS

, (3.3b)

İ(t) = 1
VI

S2(t)
τS

− keI(t), (3.3c)

where S1 and S2 [mU] represent the insulin absorption as a two-compartment chain,
τS [min] is the insulin absorption time constant, I [mU/L] is the plasma insulin concen-
tration, VI [L] is the insulin distribution volume, and ke [1/min] is the elimination rate.
uI = uba + ubo [mU/min] is the insulin infusion rate where uba [mU/min] is the basal
infusion rate and ubo [mU/min] is the bolus infusion rate.

Insulin action subsystem The insulin action subsystem describes the insulin action
on the glucose kinetics by

ẋ1(t) = kb1I(t) − ka1x1(t), (3.4a)
ẋ2(t) = kb2I(t) − ka2x2(t), (3.4b)
ẋ3(t) = kb3I(t) − ka3x3(t), (3.4c)

where x1 [1/min], x2 [1/min], and x3 [1/min] describe the effects of insulin on the
glucose distribution, the glucose disposal, and the endogenous glucose production. kbi

[(L/mU)/min2] and kai [1/min] for i = 1, 2, 3 are the activation and deactivation rate
constants.

Meal subsystem The meal subsystem describes the meal absorption by

Ḋ1(t) = AGD(t) − D1(t)
τD

, (3.5a)

Ḋ2(t) = D1(t)
τD

− D2(t)
τD

. (3.5b)

Here, D1 [mmol] and D2 [mmol] represent the meal absorption as a two-compartment
chain, D [mmol/min] is the carbohydrate content of the meal as a rate, AG [–] is the
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carbohydrate bioavailability, and τD [min] is the meal time constant. We convert carbo-
hydrates in the meal, D(t) [mmol/min], to d(t) [g CHO/min] by

D(t) = 1000
MwG

d(t), (3.6)

where MwG = 180.1577 [g/mol] is the molecular weight of glucose.

Glucagon subsystem The glucagon subsystem describes the glucagon absorption by

Q̇G
1 (t) = uG(t) − QG

1 (t)
τGlu

, (3.7a)

Q̇G
2 (t) = QG

1 (t)
τGlu

− QG
2 (t)

τGlu

, (3.7b)

where QG
1 [µg] and QG

2 [µg] represent the glucagon absorption as a two-compartment
chain, uG [µg/min] is the glucagon infusion rate, and τGlu [min] is a time constant.

Exercise subsystem The exercise subsytem describes short-term and long-term ef-
fects of physical activity on the glucose consumption and insulin sensitivity. The effect
of high-intensity exercise is not modeled. The exercise subsystem consists of

Ė1(t) = HR(t) − HR0 − E1(t)
τHR

, (3.8a)

ṪE(t) = c1fE1(t) + c2 − TE(t)
τex

, (3.8b)

Ė2(t) = −
(

fE1(t)
τin

+ 1
TE(t)

)
E2(t) + fE1(t)TE(t)

c1 + c2
, (3.8c)

fE1(t) =

(
E1(t)

a·HR0

)n

1 +
(

E1(t)
a·HR0

)n . (3.8d)

Here, E1 [BPM] is the short-term effect, E2 [min] is the long-term effect, TE [min] is the
characteristic time for the long-term effect, HR [BPM] is the heart rate, HR0 [BPM]
is the resting heart rate, τHR [min] is a time constant, c1 [min] and c2 [min] define the
steady state value for TE, τex [min] is a time constant for how fast TE reaches steady state,
and a [–], n [–], and τin [min] specify the intensity and time constant of the long-term
effect on the insulin sensitivity.

186 H Technical Report



3.2 Mathematical models 15

Glucose subsystem The glucose subsystem describe the glucose kinetics modeled as
two compartments (accessible and non-accessible) and is represented by

Q̇1(t) = D2(t)
τD

− F01,c(t) − FR(t) − x1(t)Q1(t) (3.9a)

+ k12Q2(t) + EGP (t) + QG(t) − QE21(t),
Q̇2(t) = x1(t)Q1(t) − k12Q2(t) − x2Q2(t) (3.9b)

+ QE21(t) − QE22(t) − QE1(t),

where

EGP (t) = EGP0(1 − x3(t)), (3.10a)
QG(t) = KGluVGQG

2 (t), (3.10b)
QE21(t) = αE2(t)2x1(t)Q1(t), (3.10c)
QE22(t) = αE2(t)2x2(t)Q2(t), (3.10d)

QE1(t) = β
E1(t)
HR0

, (3.10e)

and

F01,c(t) =

F01 G(t) ≥ 4.5 mmol/L,

F01G(t)/4.5 otherwise,
(3.11a)

FR(t) =

0.003(G(t) − 9)VG G(t) ≥ 9 mmol/L,

0 otherwise,
(3.11b)

G(t) = Q1(t)
VG

. (3.11c)

Here, Q1 [mmol] and Q2 [mmol] represent the accessible and non-accessible compart-
ments, k12 [1/min] is the transfer rate, F01 [mmol/min] and F01,c [mmol/min] are the
nominal and corrected total non-insulin dependent glucose flux, FR [mmol/min] is the
renal glucose clearance, VG [L] is the glucose distribution volume, EGP0 [mmol] is the en-
dogenous glucose production, KGlu [(mmol/L)/µg/min] is the glucagon gain, α [1/min2]
is the exercise-induced insulin action, β [mmol/min] is the exercise-induced insulin-
independent glucose uptake rate, and G [mmol/L] is the glucose concentration.

CGM subsystem The CGM subsystem describes the glucose concentration in the
interstitial tissue by

ĠI(t) = G(t)
τIG

− GI(t)
τIG

, (3.12)

where GI [mmol/L] is the interstitial glucose concentration and τIG is a time constant.
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3.2.2 Modified UVA/Padova model
The second model we use to describe a virtual population of participants, is a modified
version of the UVA/Padova model [4, 5]. We use the meal model from the Hovorka
model as the original UVA/Padova model only allows simulations of a single meal. This
model does not include exercise or glucagon, but can be extended with the equations
described in Section 3.2.1. Table 3.4 in Section 3.3 lists the parameters.

Insulin subsystem The insulin subsystem describes the insulin in the plasma and
the liver by

İp = −(m2 + m4)Ip + m1Il + Rai, (3.13a)
İl = −(m1 + m3)Il + m2Ip. (3.13b)

Ip [pmol/kg] is the insulin in the plasma and Il [pmol/kg] is the insulin in the liver.
Raisc [(pmol/kg)/min] is the rate of appearance described by

Rai = ka1Isc1 + ka2Isc2, (3.14)

where m1 is a rate parameters, and m2, m3, and m4 [1/min] are rate parameters com-
puted as

m2 = 3CL

5HEbVIBW
, (3.15a)

m3 = HEbm1

1 − HEb

, (3.15b)

m4 = 2CL

5VIBW
. (3.15c)

Here, CL [L/kg] is the insulin clearance, HEb [–] is the basal hepatic insulin extraction,
and BW [kg] is the body weight. The plasma insulin concentration, I [pmol/L] (note
that 1 pmol/L = 3/1000 ng/mL [10].), is

I = Ip/VI . (3.16)

Subcutaneous insulin subsystem The subcutaneous insulin subsystem describes
the kinetics of insulin subcutaneous insulin administration by

İsc1 = −(kd + ka1)Isc1 + uI

BW
, (3.17a)

İsc2 = kdIsc1 − ka2Isc2, (3.17b)

where Isc1 and Isc2 [pmol/kg] represent the insulin in a non-monomeric and monomeric
state, kd, ka1, and ka2 [1/min] are rate parameters, and uI [pmol/min] is the insulin
infusion rate.
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Glucose utilization subsystem The glucose utilization subsystem describes the
insulin-independent and insulin-dependent glucose utilization by

Uii = Fcns, (3.18a)

Uid = (Vm0 + VmxX)Gt

Km0 + Gt

, (3.18b)

where Uii [(mg/kg)/min] is the insulin-independent glucose utilization, Uid [(mg/kg)/min]
is th insulin-dependent glucose utilization, FCNS [(mg/kg)/min] is the glucose uptake of
the erythrocytes in the brain, Vmx [mg L/(kg pmol min)] and Km0 [mg/kg] are parame-
ters, X [pmol/L] is the insulin concentration in the interstitial fluid described by

Ẋ = −p2UX + p2U(I − Ib), (3.19)

where p2U [1/min] is the rate of the insulin action on the peripheral glucose utilization,
Ib [pmol/L] is the basal plasma insulin concentration, and Vm0 [(mg/kg)/min] is

Vm0 = (EGPb − Fcns)(Km0 + Gtb)
Gtb

, (3.20a)

Gtb = Fcns − EGPb + k1Gpb

k2
, (3.20b)

where EGPb [(mg/kg)/min] is the basal endogenous glucose production, and Gtb and
Gpb [mg/kg] are the plasma glucose masses.

Meal subsystem The meal subsystem is identical to (3.5) and describes the meal
absorption by

Ḋ1 = AGD − D1

τD

, (3.21a)

Ḋ2 = D1

τD

− D2

τD

. (3.21b)

Here, D1 [mmol] and D2 [mmol] represents the meal absorption as a two-compartment
chain, D [mmol/min] is carbohydrate content of the meal as a rate, AG [–] is the carbo-
hydrate bioavailability, and τD [min] is the meal time constant.

Glucose subsystem The glucose subsystem describes the plasma glucose in the rapidly
and slowly equilibrating tissues as

Ġp = EGP + Ra − Uii − E − k1Gp + k2Gt, (3.22a)
Ġt = −Uid + k1Gp − k2Gt. (3.22b)

Gp and Gt [mg/kg] are the plasma glucose in the rapidly and slowly equilibrating tis-
sues, respectively. EGP [(mg/kg)/min] is the endogenous glucose production, Ram
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[(mg/kg)/min] is the glucose rate of appearance, Uii, and Uid is the insulin-independent
and insulin-dependent glucose utilization as described in (3.18), E [(mg/kg)/min] is the
renal excretion, k1 and k2 [1/min] are rate parameters, and Vg [dL/kg] is the glucose
distribution volume. The plasma glucose concentration is computed by

G = Gp/VG, (3.23)

the glucose rate of appearance by

Ram = D2

BWτD

, (3.24)

and renal excretion is described by

E =

ke1(Gp − ke2), if Gp > ke2,

0, if Gp ≤ ke2.
(3.25)

Here, ke1 [1/min] is the glomerular filtration rate and ke2 [mg/kg] is the renal glucose
threshold.

Endogenous glucose production subsystem The endogenous glucose productions
is described as

EGP = max{0, EGPb − kp2(Gp − Gpb) − kp3(Id − Ib)}, (3.26)

where kp2 [1/min] is the liver glucose effectiveness and kp3 [mg L/(kg pmol min)] is the
amplitude of the insulin action on the liver. Il and Id [pmol/L] are a two-compartment
chain for the insulin effect on the EGP described by

İ1 = −ki(I1 − I), (3.27a)
İd = −ki(Id − I1), (3.27b)

where ki [1/min] is a rate parameter.

Subcutaneous glucose subsystem The subcutaneous glucose subsystem describes
the glucose concentration in the subcutaneous tissue (e.g. the tissue a CGM measures
from) by

Ġs = −kscGs + kscG, (3.28)

where ksc [1/min] is a rate parameter.
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3.3 Parameters
This section lists the parameters of the models described in Section 3.2. Table 3.2 shows
the distribution of the personal parameters. The height is not used in any of the models,
but we generate it such that it is possible to compute, e.g., the BMI. If the sampled
body weight is below 35 kg, we set it to 70 kg and if the resting heart rate is below
35 BPM, we set it to 80 BPM. Table 3.3 shows the parameters used in the extended
Hovorka model and Table 3.4 shows the parameters used in the modified UVA/Padova
model. The data used to construct the parameter distributions is sparse and we assume
that the parameters are not correlated. Therefore, the parameters distributions are
crude approximations. We require that 1) the generated parameters are within one
standard deviation of the mean, 2) the generated time constants are within one order of
magnitude of the mean, 3) the basal rate is above 0.4 U/h, and 4) the steady state is
physical. If these criteria are not satisfied, we discard the parameters and sample a new
set. Furthermore, we also discard parameters sets that lead to a steady state glucose
concentration above 44 [mmol/L] when no insulin is administered. As also mentioned
in the introduction, we describe the models in the original form as ODEs here, i.e., with
σ = 0, but a stochastic term can be added to the plasma glucose compartments, (3.9a)
and (3.22a). In Reenberg et al. [1] and Ritschel et al. [2], we used diffusion coefficients of
1.5 mmol/min3/2 and 270.24/BW mg/(kg min3/2) and added measurement noise with a
variance of 0.1 mmol/L ≈ 1.8 mg/dL.

3.3.1 Database
We store the virtual participants (i.e. the information shown in Table 3.1) and parame-
ters (i.e. the parameters generated from the distributions listed in Table 3.3 and Table
3.4) in a Postgresql database. The database allows the user to reuse the generated
parameters, but also to sort the population based on certain demographics and simu-
late a subset of the population. Each set of parameters is associated with a unique id.
The database also makes it easy to add parameters for a new population or add more
virtual people to the existing populations. Figure 3.2 shows the example virtual partic-
ipant from Table 3.1 directly in the database. In the database, we add an additional
universally unique identifier (UUID).

Table 3.2: Distributions of the personal parameters.

Symbol Value or distribution Unit Description
BW N(70, 72) kg Body weight

Height N(170, 72) cm Height
Age U(17, 87) years Age
HR0 N(80, 52) BPM Resting heart rate
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Table 3.3: Model parameters in the extended Hovorka model.

Symbol Value or distribution Unit Description
Parameters presented by Boiroux et al. [11] (see also Wilinska and Hovorka et al. [12, 3])
EGP0 N(0.0161, 0.00392) mmol/min Liver gluc. prod. at 0 ins.
F01 N(0.0097, 0.00222) mmol/min Ins. indep. gluc. cons.
Ag U(0.7, 1.2) - CHO utilization
k12 N(0.0649, 0.02822) 1/min Transfer Rate
ka1 N(0.0055, 0.00562) 1/min Deactivation Rate
ka2 N(0.0683, 0.05072) 1/min Deactivation Rate
ka3 N(0.0304, 0.02352) 1/min Deactivation Rate

SIT N(51.2, 32.092) ((L/mU)/min)·10−4 Transport ins. sens.
SID N(8.2, 7.842) ((L/mU)/min)·10−4 Disposal ins. sens.
SIE N(520, 306.22) ((L/mU)/min)·10−4 EGP ins. sens.
kb1 ka1 · SIT (L/mU)/min2 Activation Rate
kb2 ka2 · SID (L/mU)/min2 Activation Rate
kb3 ka3 · SIE (L/mU)/min2 Activation Rate
ke N(0.14, 0.0352) 1/min Ins. elim. rate
VI N(0.12, 0.0122) L Ins. dist. volume

ln(VG) N(ln(0.15), 0.232) L Gluc. dist. volume
ln(1/τD) N(−3.689, 0.252) min Carb. abs. time const.

1/τS N(0.018, 0.00452) min Ins. abs. time const.
Model parameters in the model by Rashid et al. [8].

a 0.77 - Ex. param.
tHR 5 min Ex. param.
tin 1 min Ex. param.
n 3 - Ex. param.
tex 200 min Ex. param.
c1 500 min Ex. param.
c2 100 min Ex. param.
β 0.78 mmol/min Ex-ind. ins. indep. gluc. upt.
α 1.79 - Ex-ind. in. action

Model parameters in the model by Haider et al. [7] and Facchinetti et al. [9].
τIG 6.7 min Interst. gluc. time const.
τGlu 19 min Glucagon time const.
KGlu 0.075 (mmol/dL)/(µg/min) Glucagon gain

Figure 3.2: The example virtual participant as it is stored in the database.
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Table 3.4: Model parameters in the modified UVA/Padova model.

Symbol Distribution or value Unit Description
Parameter values based on data collected by Colmegna et al. [5]

VG N(1.8700, 0.10202) dL/kg Distribution volume
k1 N(0.0810, 0.02302) 1/min Rate parameter
k2 N(0.1370, 0.05302) 1/min Rate parameter
Km0 N(224.2810, 12.26402) mg/kg Glucose mass (MM)
kp2 N(0.0050, 0.00402) 1/min Hep. gluc. effectiveness
Vmx N(0.0810, 0.03302) mg L/(kg min pmol) Ins. sens. on gluc. util.
EGPb N(2.5040, 0.39102) mg/(kg min) Basal endo. gluc. prod.
CL N(1.0210, 0.30802) L/min Insulin clearance

Parameter values based on data collected by Kovatchev et al. [13]
VI N(0.0646, 0.01752) L/kg Distribution volume
Gb N(147.4100, 8.93902) mg/dL Basal blood gluc. conc.
m1 N(0.2109, 0.13622) 1/min Rate parameter
kp3 N(0.0106, 0.00682) mg L/(kg min pmol) Hepatic ins. sens.
ki N(0.0069, 0.00272) 1/min Delayed ins. action rate
p2U N(0.0246, 0.01202) 1/min Ins. action rate
Ib N(92.7470, 19.66182) pmol/L Basal plasma ins. conc.
ka1 N(0.0016, 0.00052) 1/min Rate parameter
ka2 N(0.0149, 0.00522) 1/min Rate parameter
kd N(0.0161, 0.00172) 1/min Rate parameter
ksc N(0.1033, 0.03762) 1/min Rate parameter

Parameter values presented by Dalla Man et al. [4]
Fcns 1.0 mg/(kg min) Ins.-indep. gluc. util.
ke1 0.0005 1/min Glomerular filt. rate
ke2 339.0 mg/kg Renal threshold of gluc.
HEb 0.6 - Basal hep. excre. of ins.
Parameters presented by Boiroux et al. [11] (see also Wilinska and Hovorka et al. [12, 3])
log(1/τD) N(−3.689, 0.252) min Carb. abs.
Ag U(0.7, 1.2) - Carb. bioavailability
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CHAPTER 4
Conclusions

In this technical report, we described how we design protocols and generate virtual par-
ticipants for large-scale long-term virtual clinical trials of closed-loop diabetes treatment.
We design four different season dependent days consisting of meals and exercise, and use
them as building blocks for longer protocols. We describe and list the parameters for two
mathematical models to each represent a population of 1 mio. virtual participants and
generate the personal details with Mockaroo. The protocols and virtual participants are
stored in a PostgreSQL database to make them reusable and make it straightforward to
add new protocols and participants.

H Technical Report 195



24

196 H Technical Report



Bibliography
[1] Asbjørn Thode Reenberg, Tobias K. S. Ritschel, Bernd Dammann, and John

Bagterp Jørgensen. “High-performance uncertainty quantification in large-scale
virtual clinical trials of closed-loop diabetes treatment”. In: Proceedings of the 2022
American Control Conference (ACC). 2022, pages 1367–1372. doi: 10.23919/
ACC53348.2022.9867234.

[2] Tobias K. S. Ritschel, Asbjørn Thode Reenberg, and John Bagterp Jørgensen.
“Large-scale Virtual Clinical Trials of Closed-loop Treatments for People with Type
1 Diabetes”. In: IFAC-PapersOnLine 55.23 (2022), pages 169–174. doi: 10.1016/
j.ifacol.2023.01.037.

[3] Roman Hovorka, Fariba Shojaee-Moradie, Paul V. Carroll, Ludovic J. Chassin, Ian
J. Gowrie, Nicola C. Jackson, Romulus S. Tudor, A. Margot Umpleby, and Richard
H. Jones. “Partitioning glucose distribution/transport, disposal, and endogenous
production during IVGTT”. In: American Journal of Physiology-Endocrinology and
Metabolism 282 (2002), E992–E1007. doi: 10.1152/ajpendo.00304.2001.

[4] Chiara Dalla Man, Robert A. Rizza, and Claudio Cobelli. “Meal simulation model
of the glucose-insulin system”. In: IEEE Transactions on Biomedical Engineering
54.10 (2007), pages 1740–1749. doi: 10.1109/TBME.2007.893506.

[5] Patricio Colmegna, Ke Wang, Jose Garcia-Tirado, and Marc D. Breton. “Mapping
data to virtual patients in type 1 diabetes”. In: Control Engineering Practice 103
(2020), page 104605. doi: 10.1016/j.conengprac.2020.104605.

[6] Roman Hovorka, Valentina Canonico, Ludovic J. Chassin, Ulrich Haueter, Mas-
simo Massi-Benedetti, Marco O. Federici, Thomas R. Pieber, Helga C. Schaller,
Lukas Schaupp, Thomas Vering, and Malgorzata E. Wilinska. “Nonlinear Model
Predictive Control of Glucose Concentration in Subjects with Type 1 Diabetes”.
In: Physiological Measurement 25.4 (2004), pages 905–920. doi: 10.1088/0967-
3334/25/4/010.

[7] Ahmad Haidar, Claire Duval, Laurent Legault, and Rémi Rabasa-Lhoret. “Phar-
macokinetics of insulin aspart and glucagon in type 1 diabetes during closed-loop
operation”. In: Journal of Diabetes Science and Technology 7.6 (2013), pages 1507–
1512. doi: 10.1177/193229681300700610.

H Technical Report 197



26 Bibliography

[8] Mudassir Rashid, Sediqeh Samadi, Mert Sevil, Iman Hajizadeh, Paul Kolodziej,
Nicole Hobbs, Zacharie Maloney, Rachel Brandt, Jianyuan Feng, Minsun Park,
Laurie Quinn, and Ali Cinar. “Simulation software for assessment of nonlinear
and adaptive multivariable control algorithms: Glucose–insulin dynamics in Type
1 diabetes”. In: Computers & Chemical Engineering 130 (2019), page 106565. issn:
0098-1354. doi: 10.1016/j.compchemeng.2019.106565.

[9] Andrea Facchinetti, Simone Del Favero, Giovanni Sparacino, Jessica R. Castle,
W. Kenneth Ward, and Claudio Cobelli. “Modeling the Glucose Sensor Error”. In:
IEEE Transactions on Biomedical Engineering 61.3 (2014), pages 620–629. doi:
10.1109/TBME.2013.2284023.

[10] Angus G. Jones and Andrew T. Hattersly. “The clinical utility of C-peptide mea-
surement in the care of patients with diabetes”. In: Diabetic Medicine 30.7 (2013),
pages 803–817. doi: 10.1111/dme.12159.

[11] Dimitri Boiroux, Anne Katrine Duun-Henriksen, Signe Schmidt, Kirsten Nørgaard,
Sten Madsbad, Niels Kjølstad Poulsen, Henrik Madsen, and John Bagterp Jør-
gensen. “Overnight glucose control in people with type 1 diabetes”. English. In:
Biomedical Signal Processing and Control 39 (2018), pages 503–512. issn: 1746-
8094. doi: 10.1016/j.bspc.2017.08.005.

[12] Malgorzata E. Wilinska, Ludovic J. Chassin, Carlo L. Acerini, Janet M. Allen,
David B. Dunger, and Roman Hovorka. “Simulation Environment to Evaluate
Closed-Loop Insulin Delivery Systems in Type 1 Diabetes”. In: Journal of Diabetes
Science and Technology 4.1 (2010), pages 132–144. doi: 10.1177/193229681000400117.

[13] Boris P. Kovatchev, Marc D. Breton, Claudio Cobelli, and Chiara Dalla Man.
Method, System and Computer Simulation Environment for Testing of Monitoring
and Control Strategies in Diabetes. The U.S. Patent and Trademark Office. U.S.
Patent Application Publication No. US 2010/0179768 A1, July 15, 2010. 2010.

198 H Technical Report



APPENDIX I
Conference Paper -

DYCOPS 2022
Nonlinear Model Predictive Control and System
Identification for a Dual-hormone Artificial Pancreas

Authors:
Asbjørn Thode Reenberg, Tobias K. S. Ritschel, Emilie B. Lindkvist, Christian Lauge-
sen, Jannet Svensson, Ajenthen G. Ranjan, Kirsten Nørgaard, John Bagterp Jørgensen

Published in:
IFAC-PapersOnLine, 55–7, 915–921, 2022.
Proceedings of the 13th IFAC Symposium on Dynamics and Control of Process Systems,
including Biosystems DYCOPS 2022: Busan, Republic of Korea, 14–17 June, 2022.



200



IFAC PapersOnLine 55-7 (2022) 915–921

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.07.561

10.1016/j.ifacol.2022.07.561 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Nonlinear Model Predictive Control
and System Identification

for a Dual-hormone Artificial Pancreas

Asbjørn Thode Reenberg*, Tobias K. S. Ritschel*,
Emilie B. Lindkvist**, Christian Laugesen**,
Jannet Svensson**, Ajenthen G. Ranjan**,

Kirsten Nørgaard**, John Bagterp Jørgensen*

∗ Department of Applied Mathematics and Computer Science,
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
∗∗ Steno Diabetes Center Copenhagen, Clinical Research, DK-2730

Herlev, Denmark.

Abstract: In this work, we present a switching nonlinear model predictive control (NMPC)
algorithm for a dual-hormone artificial pancreas (AP), and we use maximum likelihood
estimation (MLE) to identify the model parameters. A dual-hormone AP consists of a continuous
glucose monitor (CGM), a control algorithm, an insulin pump, and a glucagon pump. The
AP is designed with a heuristic to switch between insulin and glucagon as well as state-
dependent constraints. We extend an existing glucoregulatory model with glucagon and exercise
for simulation, and we use a simpler model for control. We test the AP (NMPC and MLE) using
in silico numerical simulations on 50 virtual people with type 1 diabetes. The system is identified
for each virtual person based on data generated with the simulation model. The simulations
show a mean of 89.3% time in range (3.9–10 mmol/L) and no hypoglycemic events.
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1. INTRODUCTION

Type 1 diabetes (T1D) is a chronic metabolic disor-
der which prevents the pancreas from producing insulin.
People with T1D require life-long treatment with daily
injections of insulin in order to prevent hyperglycemia
(i.e., high blood glucose concentrations). Prolonged hy-
perglycemia leads to a range of health complications, e.g.,
cardiovascular disease, chronic kidney disease, and damage
to the nerves and eyes. Over 9% of the world population
suffers from diabetes, 5-10% of those have T1D, and 10%
of the 2019 global health expenditure (USD 760 billion)
was spent on diabetes (International Diabetes Federation,
2019).

The treatment of T1D is tedious and time-consuming,
and if managed poorly, it can lead to both hyper- and
hypoglycemia (low blood glucose concentrations). Hypo-
glycemia can, in severe cases, cause a variety of acute
complications including loss of consciousness, seizures,
and death. Therefore, there is a significant interest in
developing closed-loop diabetes treatment systems based
on feedback control. Such systems are referred to as
artificial pancreases (APs). They consist of 1) a con-
tinuous glucose monitor (CGM) (the sensor), 2) a con-
trol algorithm (e.g., implemented on a smartphone or
a dedicated device), and 3) an insulin pump (the ac-
tuator). Many control strategies have been proposed for

1 Corresponding author: J. B. Jørgensen (E-mail: jbjo@dtu.dk).

this purpose, including fuzzy logic (Biester et al., 2019),
proportional-integral-derivative (PID) control (Sejersen
et al., 2021; Huyett et al., 2015; Jørgensen et al., 2019),
and model predictive control (MPC). MPC is a closed-
loop feedback strategy that uses the moving horizon op-
timization principle, i.e., it involves solving a sequence of
open-loop optimal control problems (OCPs). Both linear
MPC (LMPC) (Chakrabarty et al., 2020; Messori et al.,
2018), and nonlinear MPC (NMPC) (Hovorka et al., 2004;
Boiroux et al., 2018b; Boiroux and Jørgensen, 2018) have
been considered.

Most algorithms are designed for single-hormone systems
where only insulin is administered. Consequently, they are
unable to actively counteract low blood sugar concentra-
tions which can occur in a variety of situations, e.g., in
connection with physical activity. Therefore, researchers
currently investigate dual-hormone systems that admin-
ister both insulin and glucagon (Peters and Haidar, 2018;
Infante et al., 2021). In contrast to insulin, glucagon causes
an increase in the blood glucose level. Moscardo et al.
(2019) develop a dual-hormone control algorithm based on
proportional-derivative (PD) control, and Boiroux et al.
(2018a) develop LMPC algorithms based on a variety
of different transfer function models. Other hormones
than glucagon have also been considered, e.g., pramlintide
which slows down gastric emptying (Haidar et al., 2020).

In this work, we present a dual-hormone NMPC algorithm
for administering insulin and glucagon. The algorithm is
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proportional-integral-derivative (PID) control (Sejersen
et al., 2021; Huyett et al., 2015; Jørgensen et al., 2019),
and model predictive control (MPC). MPC is a closed-
loop feedback strategy that uses the moving horizon op-
timization principle, i.e., it involves solving a sequence of
open-loop optimal control problems (OCPs). Both linear
MPC (LMPC) (Chakrabarty et al., 2020; Messori et al.,
2018), and nonlinear MPC (NMPC) (Hovorka et al., 2004;
Boiroux et al., 2018b; Boiroux and Jørgensen, 2018) have
been considered.

Most algorithms are designed for single-hormone systems
where only insulin is administered. Consequently, they are
unable to actively counteract low blood sugar concentra-
tions which can occur in a variety of situations, e.g., in
connection with physical activity. Therefore, researchers
currently investigate dual-hormone systems that admin-
ister both insulin and glucagon (Peters and Haidar, 2018;
Infante et al., 2021). In contrast to insulin, glucagon causes
an increase in the blood glucose level. Moscardo et al.
(2019) develop a dual-hormone control algorithm based on
proportional-derivative (PD) control, and Boiroux et al.
(2018a) develop LMPC algorithms based on a variety
of different transfer function models. Other hormones
than glucagon have also been considered, e.g., pramlintide
which slows down gastric emptying (Haidar et al., 2020).

In this work, we present a dual-hormone NMPC algorithm
for administering insulin and glucagon. The algorithm is

I Conference Paper - DYCOPS 2022 201



916 AsbjΦrn Thode Reenberg  et al. / IFAC PapersOnLine 55-7 (2022) 915–921

based on an extended Medtronic Virtual patient (MVP)
model (Kanderian et al., 2009), and we use maximum
likelihood estimation (MLE) to identify the model param-
eters. We use the continuous-discrete extended Kalman
filter (CD-EKF) in both the parameter estimation and
in the NMPC algorithm. Furthermore, we use a state-
dependent heuristic for switching between administering
insulin and glucagon (which cannot be administered simul-
taneously). We use an extension of the model developed by
Hovorka et al. (2002) to perform closed-loop simulations.
It is extended with 1) a model of the measurement delay
of the CGM (Facchinetti et al., 2014), 2) a pharmacoki-
netic model of subcutaneous glucagon injection (Haidar
et al., 2013), and 3) a model of the effect of physical
activity (Rashid et al., 2019). We present numerical results
for 50 virtual people with T1D and demonstrate that the
AP, including the parameter estimation, satisfies the time
in range (TIR) targets described by Holt et al. (2021).

The remainder of the paper is structured as follows. We
present the extension of the model by Hovorka et al. in
Section 2 and the MVP model in Section 3. In Section 4,
we describe the parameter estimation problem, and we
describe the NMPC algorithm in Section 5. We present
the state-dependent switching heuristic in Section 6, and
we discuss the numerical results in Section 7. Finally,
conclusions are given in Section 8.

2. SIMULATION MODEL

The model by Hovorka et al. (2002, 2004) consists of an
insulin subsystem, a meal subsystem, and a glucose sub-
system. We extend it with a glucagon subsystem (Haidar
et al., 2013), an exercise subsystem (Rashid et al., 2019),
and a CGM subsystem (Facchinetti et al., 2014).

2.1 Insulin subsystem

The insulin absorption and insulin concentration are de-
scribed by

Ṡ1(t) = uI(t)−
S1(t)

τS
, (1a)

Ṡ2(t) =
S1(t)

τS
− S2(t)

τS
, (1b)

İ(t) =
1

VI

S2(t)

τS
− keI(t), (1c)

where S1 and S2 [mU] are a two compartment chain
representing the insulin absorption, τS [min] is the insulin
absorption time constant, I [mU/L] is the plasma insulin
concentration, VI [L] is the insulin distribution volume,
and ke [1/min] is the elimination rate. uI = uba + ubo

[mU/min] is the insulin infusion rate where uba [mU/min]
is the basal infusion rate and ubo [mU/min] is the bolus
infusion rate.

2.2 Insulin action subsystem

The insulin action on the glucose kinetics is described by

ẋ1(t) = kb1I(t)− ka1x1(t), (2a)

ẋ2(t) = kb2I(t)− ka2x2(t), (2b)

ẋ3(t) = kb3I(t)− ka3x3(t), (2c)

where x1 [1/min], x2 [1/min], and x3 [1/min] represent
the effects of insulin on the glucose distribution, the
glucose disposal, and the endogenous glucose production.
Furthermore, kbi [(L/mU)/min2] and kai [1/min] for i =
1, 2, 3 are the activation and deactivation rate constants.

2.3 Meal subsystem

The meal absorption subsystem is represented by

Ḋ1(t) = AGD(t)− D1(t)

τD
, (3a)

Ḋ2(t) =
D1(t)

τD
− D2(t)

τD
, (3b)

where D1 [mmol] and D2 [mmol] are a two compartment
chain representing the meal absorption, D [mmol/min] is
the meal carbohydrate content, AG [–] is the carbohydrate
bioavailability, and τD [min] is the meal time constant.

2.4 Glucagon subsystem

The glucagon subsystem is described by

Q̇G
1 (t) = uG(t)−

QG
1 (t)

τGlu
, (4a)

Q̇G
2 (t) =

QG
1 (t)

τGlu
− QG

2 (t)

τGlu
, (4b)

where QG
1 [µg] and QG

2 [µg] are a two-compartment chain
representing the glucagon absorption, uG [µg/min] is the
glucagon infusion rate, and τGlu [min] is a time constant.

2.5 Exercise subsystem

The exercise model describes the increased glucose con-
sumption and insulin sensitivity during and after physical
activity. The effect of high-intensity exercise is not mod-
eled. The exercise subsystem consists of

Ė1(t) =
HR(t)−HR0 − E1(t)

τHR
, (5a)

ṪE(t) =
c1fE1(t) + c2 − TE(t)

τex
, (5b)

Ė2(t) = −
(
fE1(t)

τin
+

1

TE(t)

)
E2(t) +

fE1(t)TE(t)

c1 + c2
,

(5c)

fE1(t) =

(
E1(t)
a·HR0

)n

1 +
(

E1(t)
a·HR0

)n , (5d)

where E1 [BPM] is the short-term effect, E2 [min] is the
long-term effect, TE [min] is the characteristic time for the
long-term effect, HR [BPM] is the heart rate, HR0 [BPM]
is the resting heart rate, τHR [min] is the time constant,
c1 [min] and c2 [min] define the steady state value for TE ,
τex [min] is the time constant for how fast TE reaches
steady state, and a [–], n [–], and τin [min] specify the
intensity and time constant of the long-term effect on the
insulin sensitivity.

2.6 Glucose subsystem

The glucose kinetics are represented by

Q̇1(t) =
D2(t)

τD
− F01,c(t)− FR(t)− x1(t)Q1(t) (6a)

+ k12Q2(t) + EGP (t) +QG(t)−QE21(t),

Q̇2(t) = x1(t)Q1(t)− k12Q2(t)− x2Q2(t) (6b)

+QE21(t)−QE22(t)−QE1(t),

where

EGP (t) = EGP0(1− x3(t)), (7a)

QG(t) = KGluVGQ
G
2 (t), (7b)

QE21(t) = αE2(t)
2x1(t)Q1(t), (7c)

QE22(t) = αE2(t)
2x2(t)Q2(t), (7d)

QE1(t) = β
E1(t)

HR0
, (7e)

and

F01,c(t) =

{
F01 G(t) ≥ 4.5 mmol/L,

F01G(t)/4.5 otherwise,
(8a)

FR(t) =

{
0.003(G(t)− 9)VG G(t) ≥ 9 mmol/L,

0 otherwise,
(8b)

G(t) =
Q1(t)

VG
, (8c)

where Q1 [mmol] and Q2 [mmol] represent the accessible
and non-accessible compartments, k12 [1/min] is the trans-
fer rate, F01 [mmol/min] and F01,c [mmol/min] are the
nominal and corrected total non-insulin dependent glucose
flux, FR [mmol/min] is the renal glucose clearance, VG [L]
is the glucose distribution volume, EGP0 [mmol] is the
endogenous glucose production, KGlu [(mmol/L)/µg/min]
is the glucagon gain, α [1/min2] is the exercise-induced in-
sulin action, β [mmol/min] is the exercise-induced insulin-
independent glucose uptake rate, and G [mmol/L] is the
glucose concentration.

2.7 CGM subsystem

The CGM subsystem describes the glucose transfer from
the plasma to the interstitial tissue by

ĠI(t) =
G(t)

τIG
− GI(t)

τIG
, (9)

whereGI [mmol/L] is the interstitial glucose concentration
and τIG is a time constant.

3. CONTROL MODEL

In the AP, we use an extension of the Medtronic Virtual
patient (MVP) model (Kanderian et al., 2009) represented
as a system of coupled stochastic differential equations.
The MVP model describes the glucose-insulin dynamics
and we extend it with the meal subsystem, the glucagon
subsystem and the CGM subsystem from the simulation
model described in Section 2.

3.1 Insulin subsystem

The insulin absorption subsystem consists of

dISC(t) = k1

(
uba(t) + ubo(t)

CI
− ISC(t)

)
dt, (10a)

dIP (t) = k2 (ISC(t)− IP (t)) dt, (10b)

where ISC [mU/L] is the subcutaneous insulin concen-
tration, IP [mU/L] is the plasma insulin concentration,

k2 = k1 [1/min] is the inverse insulin absorption time
constant, and CI [L/min] is the insulin clearance rate.

3.2 Glucose subsystem

Here, we describe the insulin effect, the blood glucose
concentration and insulin sensitivity. The blood glucose
concentration and insulin sensitivity is modeled as stochas-
tic differential equations:

dIEFF (t) = p2 (SI(t)IP (t)− IEFF (t)) dt, (11a)

dG(t) = [−(GEZI + IEFF (t))G(t) + EGP (11b)

+RA(t) +KGluQ
G
2 (t)]dt+ σGdwG(t),

d log(SI(t)) = σSI
dwSI

(t), (11c)

where IEFF [1/min] is the insulin effect, p2 = k1 [1/min] is
the inverse insulin action time constant, SI [(L/mU)/min]
is the insulin sensitivity, GEZI [1/min] is the glucose
effectiveness, EGP [(mmol/L)/min] is the endogenous
glucose production, σG and σSI

are the glucose and insulin
sensitivity diffusion coefficients, and wG and wSI

are
standard Wiener processes. The meal rate of appearance,
RA [(mmol/L)/min], is

RA(t) =
kmD2(t)

VG
, (12)

where km [1/min] is a time constant.

4. PARAMETER ESTIMATION

We use MLE based on the CD-EKF to estimate the param-
eters in the MVP model given N +1 CGM measurements
of the blood glucose concentration, YN = {y0, y1, . . . , yN}.
The MVP model is in the form

dx(t) = f(t, x(t), u(t), d(t), θ)dt+ σ(θ)dw(t), (13a)

yk = g(tk, xk, θ) + vk, (13b)

where t is the time, x are the states, u are the manipulated
inputs, d are the disturbances, θ are the parameters, and
yk = y(tk) are the measured variables. σ is the diffusion
coefficient, w is a standard Wiener process (i.e., dw(t) ∼
N(0, Idt)), and vk ∼ N(0, R) is the measurement noise.

The MLE of the parameters, θ̂, is given by

θ̂ = argmin
θ

V (θ), (14)

where V is the negative log-likelihood function:

V (θ) = − log p(YN |θ). (15)

Here, p(YN |θ) is the conditional probability density func-
tion of the stochastic observations in the system (13)
evaluated at the observed blood glucose concentrations for
a given set of parameters, θ. The negative log-likelihood
function is given by

V (θ) =
(N + 1)ny

2
log(2π) +

1

2

N∑
k=0

log[det(Re,k(θ))]

+ ek(θ)
T [Re,k(θ)]

−1ek(θ), (16)

where ny = 1 and ek(θ) is the innovation:

ek(θ) = yk − ŷk|k−1(θ). (17)

Given an initial estimate of the states (which is also
estimated) and their covariance, x̂0(θ) and P0, we use
the CD-EKF to compute the one-step predictions of the
observed variables, ŷk|k−1(θ), and the covariance of the
innovations, Re,k(θ). We refer to the paper by Boiroux
et al. (2019) for more details.

202 I Conference Paper - DYCOPS 2022



 AsbjΦrn Thode Reenberg  et al. / IFAC PapersOnLine 55-7 (2022) 915–921 917

Q̇1(t) =
D2(t)

τD
− F01,c(t)− FR(t)− x1(t)Q1(t) (6a)

+ k12Q2(t) + EGP (t) +QG(t)−QE21(t),

Q̇2(t) = x1(t)Q1(t)− k12Q2(t)− x2Q2(t) (6b)

+QE21(t)−QE22(t)−QE1(t),

where

EGP (t) = EGP0(1− x3(t)), (7a)

QG(t) = KGluVGQ
G
2 (t), (7b)

QE21(t) = αE2(t)
2x1(t)Q1(t), (7c)

QE22(t) = αE2(t)
2x2(t)Q2(t), (7d)

QE1(t) = β
E1(t)

HR0
, (7e)

and

F01,c(t) =

{
F01 G(t) ≥ 4.5 mmol/L,

F01G(t)/4.5 otherwise,
(8a)

FR(t) =

{
0.003(G(t)− 9)VG G(t) ≥ 9 mmol/L,

0 otherwise,
(8b)

G(t) =
Q1(t)

VG
, (8c)

where Q1 [mmol] and Q2 [mmol] represent the accessible
and non-accessible compartments, k12 [1/min] is the trans-
fer rate, F01 [mmol/min] and F01,c [mmol/min] are the
nominal and corrected total non-insulin dependent glucose
flux, FR [mmol/min] is the renal glucose clearance, VG [L]
is the glucose distribution volume, EGP0 [mmol] is the
endogenous glucose production, KGlu [(mmol/L)/µg/min]
is the glucagon gain, α [1/min2] is the exercise-induced in-
sulin action, β [mmol/min] is the exercise-induced insulin-
independent glucose uptake rate, and G [mmol/L] is the
glucose concentration.

2.7 CGM subsystem

The CGM subsystem describes the glucose transfer from
the plasma to the interstitial tissue by

ĠI(t) =
G(t)

τIG
− GI(t)

τIG
, (9)

whereGI [mmol/L] is the interstitial glucose concentration
and τIG is a time constant.

3. CONTROL MODEL

In the AP, we use an extension of the Medtronic Virtual
patient (MVP) model (Kanderian et al., 2009) represented
as a system of coupled stochastic differential equations.
The MVP model describes the glucose-insulin dynamics
and we extend it with the meal subsystem, the glucagon
subsystem and the CGM subsystem from the simulation
model described in Section 2.

3.1 Insulin subsystem

The insulin absorption subsystem consists of

dISC(t) = k1

(
uba(t) + ubo(t)

CI
− ISC(t)

)
dt, (10a)

dIP (t) = k2 (ISC(t)− IP (t)) dt, (10b)

where ISC [mU/L] is the subcutaneous insulin concen-
tration, IP [mU/L] is the plasma insulin concentration,

k2 = k1 [1/min] is the inverse insulin absorption time
constant, and CI [L/min] is the insulin clearance rate.

3.2 Glucose subsystem

Here, we describe the insulin effect, the blood glucose
concentration and insulin sensitivity. The blood glucose
concentration and insulin sensitivity is modeled as stochas-
tic differential equations:

dIEFF (t) = p2 (SI(t)IP (t)− IEFF (t)) dt, (11a)

dG(t) = [−(GEZI + IEFF (t))G(t) + EGP (11b)

+RA(t) +KGluQ
G
2 (t)]dt+ σGdwG(t),

d log(SI(t)) = σSI
dwSI

(t), (11c)

where IEFF [1/min] is the insulin effect, p2 = k1 [1/min] is
the inverse insulin action time constant, SI [(L/mU)/min]
is the insulin sensitivity, GEZI [1/min] is the glucose
effectiveness, EGP [(mmol/L)/min] is the endogenous
glucose production, σG and σSI

are the glucose and insulin
sensitivity diffusion coefficients, and wG and wSI

are
standard Wiener processes. The meal rate of appearance,
RA [(mmol/L)/min], is

RA(t) =
kmD2(t)

VG
, (12)

where km [1/min] is a time constant.

4. PARAMETER ESTIMATION

We use MLE based on the CD-EKF to estimate the param-
eters in the MVP model given N +1 CGM measurements
of the blood glucose concentration, YN = {y0, y1, . . . , yN}.
The MVP model is in the form

dx(t) = f(t, x(t), u(t), d(t), θ)dt+ σ(θ)dw(t), (13a)

yk = g(tk, xk, θ) + vk, (13b)

where t is the time, x are the states, u are the manipulated
inputs, d are the disturbances, θ are the parameters, and
yk = y(tk) are the measured variables. σ is the diffusion
coefficient, w is a standard Wiener process (i.e., dw(t) ∼
N(0, Idt)), and vk ∼ N(0, R) is the measurement noise.

The MLE of the parameters, θ̂, is given by

θ̂ = argmin
θ

V (θ), (14)

where V is the negative log-likelihood function:

V (θ) = − log p(YN |θ). (15)

Here, p(YN |θ) is the conditional probability density func-
tion of the stochastic observations in the system (13)
evaluated at the observed blood glucose concentrations for
a given set of parameters, θ. The negative log-likelihood
function is given by

V (θ) =
(N + 1)ny

2
log(2π) +

1

2

N∑
k=0

log[det(Re,k(θ))]

+ ek(θ)
T [Re,k(θ)]

−1ek(θ), (16)

where ny = 1 and ek(θ) is the innovation:

ek(θ) = yk − ŷk|k−1(θ). (17)

Given an initial estimate of the states (which is also
estimated) and their covariance, x̂0(θ) and P0, we use
the CD-EKF to compute the one-step predictions of the
observed variables, ŷk|k−1(θ), and the covariance of the
innovations, Re,k(θ). We refer to the paper by Boiroux
et al. (2019) for more details.
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5. NONLINEAR MODEL PREDICTIVE CONTROL

The NMPC algorithm receives a CGM measurement of
the blood glucose concentration every 5 minutes. Subse-
quently, the CD-EKF is used to compute a filtered es-
timate of the states which is used as the initial states,
x̂0, when solving the following OCP for the manipulated
inputs.

min
[x(t)]

tf
t0

,{uk}N−1
k=0

φ = φ([x(t)]
tf
t0 , {uk}N−1

k=0 ), (18a)

subject to

x(t0) = x̂0, (18b)

ẋ(t) = f(t, x(t), u(t), d(t), θ), t ∈ [t0, tf ], (18c)

u(t) = uk, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (18d)

d(t) = d̂k, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (18e)

umin ≤ uk ≤ umax, k = 0, . . . , N − 1. (18f)

The prediction and control horizon, [t0, tf ], is 6 h, and
each of the N control intervals is 5 min. The objective
function in (18a) is described in Section 5.1, (18b) is
the initial condition, (18c) is the MVP model where
the process noise is disregarded, (18d)–(18e) are zero-
order-hold parametrizations of the manipulated inputs
and the estimated disturbance variables, and (18f) are
bounds on the manipulated inputs. Only the first set of
manipulated inputs, u0, are administered before a new
CGM measurement is received and the horizon [t0, tf ] is
shifted by one control interval.

5.1 Objective function

The objective function depends on whether insulin or
glucagon is administered. In both cases, it is in the form

φ =

∫ tf

t0

ρz(z(t))dt+

N−1∑
k=0

ρu(uk), (19)

where ρz and ρu are penalty functions and the outputs (the
CGM measurements of the blood glucose concentration)
are z(t) = g(t, x(t), θ).

The penalty function in the first term of (19) is

ρz(z) = αz̄ρz̄(z) + αzmin
ρzmin

(z) + αzmax
ρzmax

(z), (20)

where 1) the first term penalizes the deviation of the blood
glucose from the setpoint z̄ = 6 mmol/L, 2) the second
term penalizes hypoglycemia (z < zmin = 4.5 mmol/L),
and 3) the third term penalizes hyperglycemia (z > zmax =
10 mmol/L):

ρz̄(z) =
1

2
(z − z̄)2, (21a)

ρzmin
(z) =

1

2
(min{0, z − zmin})2, (21b)

ρzmax(z) =
1

2
(max{0, z − zmax})2. (21c)

The weights in (20) are αz̄ = 1, αzmin
= 106, αzmax

= 50
when computing the insulin flow rates, and αzmax

= 0
when computing the glucagon flow rate. The penalty
function is shown in Fig. 1. As is evident, preventing
hypoglycemia has the highest priority.

When computing the insulin flow rates, the penalty func-
tion in the second term of (19) is

ρu(uk) = ρu,ba(uba,k) + ρu,bo(ubo,k), (22)

Fig. 1. Blood glucose penalty function when administering
insulin (blue) and glucagon (black).

where

ρu,ba(uba,k) = ‖uba,k − ūba,k‖22, (23a)

ρu,bo(ubo,k) = ‖ubo,k‖1, (23b)

in order to penalize excursions from the nominal basal rate
ūba,k and to promote the administration of fewer larger
insulin boluses. When computing the glucagon flow rate,

ρu(uk) = ‖uG,k‖22, (24)

in order to minimize the administered glucagon.

5.2 Numerical solution

We use a multiple-shooting approach (Bock and Plitt,
1984) to transcribe (18) by discretizing the dynamic con-
straint (18c) and the integral in (19) using an explicit
Runge-Kutta method with fixed step size. The result
is a nonlinear program which we solve using a sequen-
tial quadratic programming (SQP) method (Nocedal and
Wright, 2006).

6. HEURISTICS

In the NMPC algorithm, we use a set of heuristics to
1) switch between administering insulin and glucagon,
2) compute upper bounds on the manipulated inputs,
3) modify algorithmic hyperparameters during exercise,
and 4) post-process the manipulated inputs computed by
solving the OCP (18).

6.1 Switching between insulin and glucagon administration

Insulin and glucagon should not be administered simul-
taneously. Therefore, we switch between them based on
the blood glucose concentration. If the blood glucose
concentration becomes lower than 4.5 mmol/L, the AP
switches to glucagon administration. Conversely, if it be-
comes higher than 5 mmol/L, the AP switches to admin-
istering insulin. However, for 1 h after each meal, only
insulin can be administered.

6.2 Bounds and meal-specific heuristics

The upper bounds on the insulin and glucagon boli are
updated at the beginning of every control interval (i.e.,
whenever a CGM measurement is obtained). Furthermore,
the upper bound on the insulin basal rate is twice the
target basal rate, i.e., 2ūba,k, and the lower bounds on all
three manipulated inputs are 0.

The upper bound on the insulin bolus is

umax
bo,k = max{ε, ucorr

bo,k + umeal
bo,k − uhist

bo,k}, (25)

where ε = 10−3 [–], ucorr
bo,k is the maximum correction bolus

infusion rate, umeal
bo,k is the maximum meal bolus infusion

rate, and uhist
bo,k is the sum of the insulin bolus infusion

rates administered during the previous 11 control intervals.
If a meal was announced at time tk, or if no meal was
announced in the last hour,

ucorr
bo,k = max

{
0,

1

Ts

G− 10 mmol/L

ISF

}
, (26)

where ISF [(mmol/L)/mU] is the insulin sensitivity fac-
tor and Ts = 5 min is the sampling time. Otherwise,
ucorr
bo,k = ucorr

bo,k−1. If a meal was consumed within the last
hour, the maximum meal bolus is

umeal
bo,k = max

{
0,

γ

Ts

d̂

ICR

}
, (27)

where d̂ [g CHO] is the announced carbohydrate content
of the last meal, γ = 1.15 [–] is a bolus allowance factor,
and ICR [g/mU] is the insulin-to-carb ratio. Otherwise,
umeal
bo,k = 0. Finally, the insulin bolus history is

uhist
bo,k =

11∑
j=1

ubo,k−j|k−j , (28)

where ubo,k|k is the insulin bolus infusion rate in the
k’th control interval. When a meal is announced, we set
uhist
bo,k = 0. The history spans 11 control intervals in order

to bound the amount of bolus insulin over each 1 h period.

The maximum glucagon bolus is computed by

umax
G,k = max{ε, ūmax

G − uhist
G,k}, (29)

where ūmax
G = 300 µg and the glucagon bolus history is

uhist
G,k =

23∑
j=1

uG,k−j|k−j . (30)

Here, uG,k|k is the glucagon infusion rate in the k’th
control interval. As for the insulin bolus history, the
glucagon history spans 23 control intervals in order to
bound the amount of glucagon administered over each 2 h
period.

Finally, to avoid that the insulin sensitivity is adjusted
after a meal, the insulin sensitivity diffusion coefficient is
set to zero if a meal was consumed within the last hour.
Otherwise, it is set to the value estimated during the
parameter estimation. Additionally, in the CD-EKF, we
set the state variance of logSI as well as the corresponding
covariances with the other states to zero when a meal is
announced, and we enforce that

logSI(0)− 1 ≤ logSI(t) ≤ logSI(0) + 1 (31)

using clipping, where logSI(0) is estimated during the
parameter estimation.

6.3 Exercise logic

During physical activity, the setpoint, z̄, is increased from
6 mmol/L to 7 mmol/L, the glucagon switching threshold
is increased to 7 mmol/L, and a glucagon dose of 100 µg
is administered if the blood glucose concentration is below
7 mmol/L when the physical activity is initiated.

6.4 Post-processing and open-loop fallback strategy

Once the solution to the OCP (18) has been obtained, the
resulting manipulated inputs in the first control interval
are rounded to the pump resolution which is 0.01 U/h
for the insulin basal rate, 0.1 U for the bolus insulin, and
0.01 µg/h for the glucagon infusion rate.

Furthermore, the AP algorithm is intended to be used by
real people, e.g., in clinical trials. Therefore, as a safety
measure, we implement the following open-loop strategy
if unforeseen circumstances prevent the solution of the
OCP (18).

uba,k|k =

{
0 G ≤ 8.0 mmol/L,

ūba,k otherwise,
(32a)

ubo,k|k = 0, (32b)

uG,k|k =

{
min{15 µg, umax

G,k } G < 4.5 mmol/L,

0 otherwise.
(32c)

7. RESULTS

In this section, we present the results from testing both the
system identification and the artificial pancreas in a virtual
clinical trial with 50 virtual people with T1D. We estimate
the parameters in the control model from data generated
with the simulation model individually for each person. We
estimate the parameters km, τD, VG, EGP , σG, and σSI

as
well as the initial states in the MVP model. The remaining
parameters are fixed. We estimate ICR as described by
Sejersen et al. (2021) and ISF = 2 mmol/L/U for all
participants. We show the generated data and a simulation
(without process noise) with the estimated model in Fig. 2
for one virtual person. In the virtual clinical trial, we use
the protocol shown in Fig. 3. In Fig. 4, we show the closed-
loop simulation for the person identified in Fig. 2. We
divide the blood glucose concentration into the following
5 ranges (Holt et al., 2021) given in mmol/L. Red: severe
hypoglycemia (below 3). Light red: hypoglycemia (3–3.9).
Green: normoglycemia (3.9–10). Yellow: hyperglycemia
(10–13.9). Orange: severe hyperglycemia (above 13.9). For
this person, the administered meal bolus is at the limit for
most of the meals, but for the snack, we see that only a part
of the allowed bolus is administered. The AP is allowed
to give the remaining bolus insulin for 1 hour after the
snack. The basal rate is increased after the meals where
the bolus size is constrained, as the control model predicts
the meal to have a larger effect than what the allowed
bolus can correct for. Due to the high insulin dose after
the dinner, the AP administers a small dose of glucagon.
Furthermore, we see that the AP is allowed to give a
small correction bolus after the dinner, but once the blood
glucose concentration is below 10 mmol/L, the correction
bolus is no longer allowed. It is desired to administer a
larger meal bolus and compensate by decreasing the basal
rate to reduce the postprandial peak. However, for safety
reasons, we have a limit on the maximum bolus even
though it can decrease the performance of the AP for some
people. After the person begins to exercise, the setpoint is
increased and a glucagon bolus of 100 µg is administered.
Fig. 5 and 6 show the TIR for all 50 virtual people. The
average time in normoglycemia is very high at 89.3%, with
8.7% in hyperglycemia, 2% in severe hyperglycemia and no
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where ε = 10−3 [–], ucorr
bo,k is the maximum correction bolus

infusion rate, umeal
bo,k is the maximum meal bolus infusion

rate, and uhist
bo,k is the sum of the insulin bolus infusion

rates administered during the previous 11 control intervals.
If a meal was announced at time tk, or if no meal was
announced in the last hour,

ucorr
bo,k = max

{
0,

1

Ts

G− 10 mmol/L

ISF

}
, (26)

where ISF [(mmol/L)/mU] is the insulin sensitivity fac-
tor and Ts = 5 min is the sampling time. Otherwise,
ucorr
bo,k = ucorr

bo,k−1. If a meal was consumed within the last
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umeal
bo,k = max

{
0,

γ

Ts

d̂

ICR

}
, (27)
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umeal
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G,k = max{ε, ūmax

G − uhist
G,k}, (29)
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uhist
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23∑
j=1

uG,k−j|k−j . (30)

Here, uG,k|k is the glucagon infusion rate in the k’th
control interval. As for the insulin bolus history, the
glucagon history spans 23 control intervals in order to
bound the amount of glucagon administered over each 2 h
period.

Finally, to avoid that the insulin sensitivity is adjusted
after a meal, the insulin sensitivity diffusion coefficient is
set to zero if a meal was consumed within the last hour.
Otherwise, it is set to the value estimated during the
parameter estimation. Additionally, in the CD-EKF, we
set the state variance of logSI as well as the corresponding
covariances with the other states to zero when a meal is
announced, and we enforce that

logSI(0)− 1 ≤ logSI(t) ≤ logSI(0) + 1 (31)

using clipping, where logSI(0) is estimated during the
parameter estimation.

6.3 Exercise logic

During physical activity, the setpoint, z̄, is increased from
6 mmol/L to 7 mmol/L, the glucagon switching threshold
is increased to 7 mmol/L, and a glucagon dose of 100 µg
is administered if the blood glucose concentration is below
7 mmol/L when the physical activity is initiated.

6.4 Post-processing and open-loop fallback strategy

Once the solution to the OCP (18) has been obtained, the
resulting manipulated inputs in the first control interval
are rounded to the pump resolution which is 0.01 U/h
for the insulin basal rate, 0.1 U for the bolus insulin, and
0.01 µg/h for the glucagon infusion rate.

Furthermore, the AP algorithm is intended to be used by
real people, e.g., in clinical trials. Therefore, as a safety
measure, we implement the following open-loop strategy
if unforeseen circumstances prevent the solution of the
OCP (18).

uba,k|k =

{
0 G ≤ 8.0 mmol/L,

ūba,k otherwise,
(32a)

ubo,k|k = 0, (32b)

uG,k|k =

{
min{15 µg, umax

G,k } G < 4.5 mmol/L,

0 otherwise.
(32c)

7. RESULTS

In this section, we present the results from testing both the
system identification and the artificial pancreas in a virtual
clinical trial with 50 virtual people with T1D. We estimate
the parameters in the control model from data generated
with the simulation model individually for each person. We
estimate the parameters km, τD, VG, EGP , σG, and σSI

as
well as the initial states in the MVP model. The remaining
parameters are fixed. We estimate ICR as described by
Sejersen et al. (2021) and ISF = 2 mmol/L/U for all
participants. We show the generated data and a simulation
(without process noise) with the estimated model in Fig. 2
for one virtual person. In the virtual clinical trial, we use
the protocol shown in Fig. 3. In Fig. 4, we show the closed-
loop simulation for the person identified in Fig. 2. We
divide the blood glucose concentration into the following
5 ranges (Holt et al., 2021) given in mmol/L. Red: severe
hypoglycemia (below 3). Light red: hypoglycemia (3–3.9).
Green: normoglycemia (3.9–10). Yellow: hyperglycemia
(10–13.9). Orange: severe hyperglycemia (above 13.9). For
this person, the administered meal bolus is at the limit for
most of the meals, but for the snack, we see that only a part
of the allowed bolus is administered. The AP is allowed
to give the remaining bolus insulin for 1 hour after the
snack. The basal rate is increased after the meals where
the bolus size is constrained, as the control model predicts
the meal to have a larger effect than what the allowed
bolus can correct for. Due to the high insulin dose after
the dinner, the AP administers a small dose of glucagon.
Furthermore, we see that the AP is allowed to give a
small correction bolus after the dinner, but once the blood
glucose concentration is below 10 mmol/L, the correction
bolus is no longer allowed. It is desired to administer a
larger meal bolus and compensate by decreasing the basal
rate to reduce the postprandial peak. However, for safety
reasons, we have a limit on the maximum bolus even
though it can decrease the performance of the AP for some
people. After the person begins to exercise, the setpoint is
increased and a glucagon bolus of 100 µg is administered.
Fig. 5 and 6 show the TIR for all 50 virtual people. The
average time in normoglycemia is very high at 89.3%, with
8.7% in hyperglycemia, 2% in severe hyperglycemia and no
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Fig. 2. Generated data and simulation with the estimated
model for one virtual person. From the top: 1) the
CGM data (blue circles) and simulation (red line), 2)
the meal carbohydrate content, 3) the insulin basal
rate, and 4) the insulin boli.

snack

Breakfast
Dinner Lunch

Exercise
Sleep

19:00 22:00 07:30 08:00 12:00 15:00 16:30 17:15 

Fig. 3. The protocol used in the virtual clinical trial. The
protocol consists of a dinner of 75 g CHO, sleep, a
breakfast of 50 g CHO, a lunch of 75 g CHO, a snack of
15 g CHO, and finally, exercise of moderate intensity.

time in hypoglycemia. The person with the lowest time in
normoglycemia still spends more than 70% of the time in
normoglycemia which is the minimum recommended by
Holt et al. (2021). From Fig. 6, we see that the 50 virtual
people receive relatively low total daily insulin doses
and are sensitive to insulin. The amount of administered
glucagon is fairly low and at a reasonable level.

8. CONCLUSION

In this paper, we present a dual-hormone AP algorithm for
controlling the blood glucose concentration in people with
T1D. The AP is based on a switching NMPC algorithm,
and we use an extension of the MVP model for prediction.
Furthermore, we use MLE to estimate the model param-
eters. The CD-EKF is used in both the NMPC and the
MLE algorithm. We test the algorithm using an extension
of the model by Hovorka et al. (2002), and we demonstrate
that the average TIR for 50 virtual people with T1D in a
virtual clinical trial is 89.3%. Furthermore, none of the
virtual people experience any hypoglycemic events.
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A B S T R A C T
In this work, we present the DiaCon dual- and single-hormone artificial pancreas (AP) for controlling
the blood glucose concentration (BGC) in people with type 1 diabetes. A dual-hormone AP can
administer insulin to lower the BGC and glucagon to increase the BGC. A single-hormone AP is
limited to insulin administration and is therefore unable to actively prevent low BGCs (hypoglycemia).
Severe hypoglycemia can have acute consequences, such as loss of consciousness and seizures. A dual-
hormone AP consists of a continuous glucose monitor (CGM), an insulin pump, a glucagon pump, and
a control algorithm. The control algorithm is implemented using a smartphone that also receives the
sensor measurements and sends instructions to the pumps. The control algorithm computes the insulin
or glucagon infusion rate that is administered until the next measurement is received. The DiaCon AP
is based on a nonlinear model predictive control (NMPC) algorithm that uses heuristics to switch
between insulin and glucagon administration. The heuristics also ensure that insulin and glucagon are
never administered simultaneously. The NMPC algorithm is based on stochastic differential equations
and we estimate the states using the continuous-discrete extended Kalman filter (CD-EKF). The model
parameters are estimated using a prediction error method (PEM). We present the hardware components
and show how it is technically feasible to solve NMPC problems on a smartphone. We discuss the
limitations and potential of the dual-hormone AP as well as the NMPC algorithm. The dual- and
single-hormone AP has been tested in a clinical trial with adolescents with type 1 diabetes. The AP
achieved a mean of 62.9% and 76.0% TIR time in range (TIR) (3.9–10 mmol/L) for the DH and SH
configuration respectively, and 75.3% and 78.8% TIR when disregarding the studies where there were
significant technical issues or where no glucagon was administered. The technical issues included
pressure induced sensor attenuations (PISAs) and loss of connection to the pumps.

1. Introduction
Type 1 diabetes (T1D) is a chronic metabolic disorder

which leads to an autoimmune destruction of the pancreatic
𝛽 cells and prevents insulin production. Therefore, people
with T1D require life-long insulin treatment to prevent high
blood glucose levels (hyperglycemia). Extended periods of
hyperglycemia can lead to a range of complications, e.g.,
cardiovascular disease, chronic kidney disease and damage
to the nerves and eyes. Conversely, too much insulin can lead
to low blood glucose levels (hypoglycemia). Hypoglycemia
can in severe cases lead to acute complications, such as
loss of consciousness and seizures. Managing the treatment
is thus necessary, but also tedious and time-consuming.
Therefore, there is an increasing interest in developing safe
automatic closed-loop diabetes treatment systems based on
feedback control. Such systems are known as artificial pan-
creases (APs). APs consist of 1) a continuous glucose moni-
tor (CGM), 2) a control algorithm (here, implemented us-
ing a smartphone), and 3) one or more pumps. The con-
trol algorithm computes the insulin or glucagon infusion
rates administered through the pumps. A variety of con-
trol algorithms have been applied, including fuzzy logic

∗Corresponding author
jbjo@dtu.dk (J.B. Jørgensen)

ORCID(s):

(Biester et al., 2019), proportional-integral-derivative (PID)
control (Huyett et al., 2015; Jørgensen et al., 2019; Sejer-
sen et al., 2021), linear model predictive control (LMPC)
(Chakrabarty et al., 2020; Messori et al., 2018), nonlinear
model predictive control (NMPC) (Boiroux et al., 2018b;
Boiroux and Jørgensen, 2018; Hovorka et al., 2004), and
algorithms based on a modular architecture (Breton et al.,
2012).
There are currently only single hormone (SH) APs commer-
cially available. SH APs are only able to administer insulin
and are unable to actively prevent low blood sugar concen-
trations, which may occur because of, e.g., exercise, over-
bolused meals, stress and physiological variability. There-
fore, researchers investigate dual-hormone (DH) APs where
glucagon can be administered in addition to insulin (Bionic
Pancreas Research Group, 2022; Blauw et al., 2021; Infante
et al., 2021; Peters and Haidar, 2018). Glucagon causes an
increase in the blood glucose concentration. A number of ap-
proaches have been suggested for DH algorithms. Moscardo
et al. (2019) suggested a coordinated control strategy based
on PD control and Boiroux et al. (2018a) suggested LMPC
algorithms based on transfer functions, but currently no DH
APs based on NMPC have been tested in a clinical trial.
There are also systems that use other hormones, such as
pramlintide that slows gastric emptying (Haidar et al., 2020).
However, previous clinical evaluations of DH APs have not
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demonstrated the expected improved performance compared
to SH systems (Haidar, 2019; Haidar et al., 2016). Some
studies have indicated improved performance during and
after exercise (Castle et al., 2018; Taleb et al., 2016) and
in the more recent studies, the iLet bionic pancreas by
Beta Bionics and the Inreda Diabetic AP showed improved
outcomes for the DH AP compared to the SH AP (Bionic
Pancreas Research Group, 2022; Blauw et al., 2021; Castel-
lanos et al., 2021). Children and adolescents have proven
more challenging for closed-loop systems (Fushimi et al.,
2020) and only the trial by Bionic Pancreas Research Group
(2022) included chrildren and adolescents.
In Reenberg et al. (2022), we introduced the DiaCon DH
AP system based on NMPC, described how it was prepared
for clinical trials and tested using in silico simulations.
In this work, we show the hardware that is used in the
trial, present the algorithm, and describe the optimal control
problem (OCP) we solve using the smartphone. We discuss
the benefits and technical challenges related to using APs
in general and the specific challenges related to DH APs.
Furthermore, we summarize and discuss the results from a
clinical trial where the DH AP and SH AP was tested for
adolescents (𝑛 = 11) and compare with the results from the
simulations in Reenberg et al. (2022). The insulin algorithm
is identical for the DH and SH configuration of the AP. The
clinical trial and primary outcomes are presented in detail in
Lindkvist et al. (2023). We evaluate the performance of the
APs based on the targets specified by Battelino et al. (2019).
The remainder of the paper is structured as follows. We
introduce AP systems and present the DiaCon AP system
and hardware in Section 2. In Section 3, we introduce the
Medtronic virtual patient (MVP) model. We describe the
state estimation in Section 4 and the system identification
in Section 5. In Section 6, we present the OCP, and de-
scribe how we solve it. We present the safety constraints
and heuristics used to switch between insulin and glucagon
administration in Section 7. In Section 8, we describe the
clinical trial and summarize and discuss the results. Finally,
we conclude in Section 9.

2. Artificial pancreas systems
The development of artificial pancreas systems has been

accelerating over the last 20 years (Templer, 2022). The first
hybrid closed-loop system (Medtronic MiniMed 670G) be-
came approved for commercial use in 2016. Hybrid closed-
loop systems require the users to manually announce, e.g.,
meals and exercise. Contrarily, fully automatic closed-loop
systems require no interactions from the user. Currently, only
hybrid closed-loop single-hormone systems are commer-
cially available in Europe or the US, but both fully automatic
and multihormonal closed-loop systems are an active field of
research.
2.1. DiaCon AP system

The DiaCon AP system is categorized as a hybrid mul-
tihormonal closed-loop system as it requires the user to
announce meals and exercise, but can administer both insulin

Figure 1: The DiaCon AP system. The system consists of 1)
an Android smartphone, 2) a Dexcom G6 sensor, 4) a Dana
Diabecare RS pump for insulin administration, and 5) another
Dana Diabecare RS pump for glucagon administration.

and glucagon. The system consists of two Dana Diabecare
RS pumps (one for insulin and one for glucagon), a Dexcom
G6 sensor, and a Samsung galaxy A5 2017 smartphone.
Fig. 1 shows a picture of the hardware. The DiaCon app
is installed on the smartphone and provides an interface
for the AP. Both the graphical user-interface and the un-
derlying numerical methods are implemented in Java. The
smartphone performs all computations and communicates
with the sensor and pumps through a bluetooth connection.
Therefore, the AP also works without connection to the
internet. However, the AP requires estimation of model pa-
rameters and we require the user to provide glucose, insulin
and meal data before the AP can be used. The parameter
estimation is performed on a computer and the parameters
are provided to the smartphone. The model parameters are
the same for both the DH and SH configuration of the AP.
Fig. 2 shows a flowchart of the closed-loop system as well
as the pre-trial preparations.

3. Model
We use an extension of the MVP model (Kanderian et al.,

2009) in the AP. The model consists of the glucose-insulin
dynamics from the MVP model, the meal subsystem by
Hovorka et al. (2004), the glucagon subsystem by Haidar
et al. (2013), and the CGM subsystem by Facchinetti et al.
(2014). Fig. 3 shows an overview of the model. We can write
the model as an uncertain dynamical system in the form

𝑑𝑥(𝑡) = 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑑(𝑡), 𝜃)𝑑𝑡 + 𝜎(𝜃)𝑑𝑤(𝑡), (1a)
𝑦𝑘 = 𝑔(𝑡𝑘, 𝑥𝑘, 𝜃) + 𝑣𝑘. (1b)

Here, 𝑓 (⋅)𝑑𝑡 represents the deterministic part of the model. 𝑡
is the time, 𝑥 are the states, 𝑢 are the manipulated inputs (i.e,
insulin and glucagon administration), 𝑑 are the disturbances
(meals), 𝑦𝑘 are the measured variables and 𝜎 are the diffusion
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Pre-trial parameter estimation

Closed-loop system

PumpsSensor Participant

Smartphone

Uncertain dynamical system

Maximum likelihood based prediction error method

Write to pumpRead sensor Extended
Kalman filter

Pre-
processing

Optimal control
problem

Post-
processing

Figure 2: Flowchart of the pre-trial preparations and the DiaCon AP as a closed-loop system. Top left: Example of CGM, meal, and
insulin data received before the studies. Top right: Parameter estimation using the data provided by the participants. Bottom: We
enter the model parameters in the smartphone that is connected to the sensor and pumps. The smartphone reads the sensor and
estimates the states using the extended Kalman filter based on the measurement. We then update the constraints, select either
insulin or glucagon administration and solve the optimal control problem. The post-processing routine evaluates the solution,
checks the predictions, and rounds the input to the pump resolution before writing the instructions to the pump. The full control
algorithm is described in Algorithm 1.

model coefficients. The measurement noise, 𝑣𝑘, and the
process noise, 𝑑𝜔, are standard Wiener processes, i.e.,

𝑑𝜔(𝑡) ∼ 𝑁𝑖𝑖𝑑(0, 𝐼𝑑𝑡), (2)
𝑣𝑘 ∼ 𝑁𝑖𝑖𝑑(0, 𝑅). (3)

3.1. Insulin subsystem
The insulin subsystem describes the absorption of the

insulin administered by the insulin pump. The pump admin-
isters insulin in subcutaneous tissue, but only the insulin
in the plasma affects the glucose concentration. The insulin
subsystem is represented by

𝑑𝐼𝑆𝐶 (𝑡) = 𝑘1

(

𝑢𝑏𝑎(𝑡) + 𝑢𝑏𝑜(𝑡)
𝐶𝐼

− 𝐼𝑆𝐶 (𝑡)
)

𝑑𝑡, (4a)
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Figure 3: A diagram of the extended version of the MVP
model. The MVP model is used for prediction in the AP.

𝑑𝐼𝑃 (𝑡) = 𝑘2
(

𝐼𝑆𝐶 (𝑡) − 𝐼𝑃 (𝑡)
)

𝑑𝑡, (4b)
where 𝐼𝑆𝐶 [mU/L] is the subcutaneous insulin concentra-
tion, 𝐼𝑃 [mU/L] is the insulin concentration in the plasma,
𝑢𝑏𝑎 [mU/min] represents the basal insulin infusion rate and
𝑢𝑏𝑜(𝑡) is the bolus insulin infusion rate, that both enter
through the subcutaneous tissue, and the total insulin infu-
sion rate is thus 𝑢𝐼 (𝑡) = 𝑢𝑏𝑎(𝑡) + 𝑢𝑏𝑜(𝑡), 𝑘2 = 𝑘1 [1/min] is
the inverse insulin absorption time constant, and 𝐶𝐼 [L/min]
is the insulin clearance rate.
3.2. Meal subsystem

The meal absorption subsystem is described by

�̇�1(𝑡) = 𝐴𝐺𝐷(𝑡) −
𝐷1(𝑡)
𝜏𝐷

, (5a)

�̇�2(𝑡) =
𝐷1(𝑡)
𝜏𝐷

−
𝐷2(𝑡)
𝜏𝐷

. (5b)

Here, 𝐷1 [mmol] and 𝐷2 [mmol] form a two-compartment
chain to describe the meal absorption from the stomach into
the intestine before it appears in the blood, 𝐷 [mmol/min]
represents the amount of carbohydrates in the meals, 𝐴𝐺 [–]
is the carbohydrate bioavailability, and 𝜏𝐷 [min] is the meal
absorption time constant.
3.3. Glucagon subsystem

The glucagon subsystem is represented by

�̇�1(𝑡) = 𝑢𝐺(𝑡) −
𝑄1(𝑡)
𝜏𝐺𝑙𝑢

, (6a)

�̇�2(𝑡) =
𝑄1(𝑡)
𝜏𝐺𝑙𝑢

−
𝑄2(𝑡)
𝜏𝐺𝑙𝑢

. (6b)

𝑄1 [𝜇g] and 𝑄2 [𝜇g] are a two-compartment chain to de-
scribe the glucagon absorption from the subcutaneous tissue
to the plasma, 𝑢𝐺 [𝜇g/min] is the glucagon infusion rate and
𝜏𝐺𝑙𝑢 [min] is the glucagon absorption time constant.

3.4. Glucose subsystem
The glucose subsystem is represented as a set of stochas-

tic differential equations
𝑑𝐼𝐸𝐹𝐹 (𝑡) = 𝑝2

(

𝑆𝐼 (𝑡)𝐼𝑃 (𝑡) − 𝐼𝐸𝐹𝐹 (𝑡)
)

𝑑𝑡, (7a)
𝑑𝐺(𝑡) = [−(𝐺𝐸𝑍𝐼 + 𝐼𝐸𝐹𝐹 (𝑡))𝐺(𝑡) + 𝐸𝐺𝑃

(7b)
+ 𝑅𝐴(𝑡) +𝐾𝐺𝑙𝑢𝑄2(𝑡)]𝑑𝑡 + 𝜎𝐺𝑑𝑤𝐺(𝑡),

𝑑 log(𝑆𝐼 (𝑡)) = 𝜎𝑆𝐼
𝑑𝑤𝑆𝐼

(𝑡), (7c)
where 𝐼𝐸𝐹𝐹 [1/min] is the insulin effect, 𝑝2 = 𝑘1 [1/min]
is a time constant, 𝑆𝐼 [(L/mU)/min] is the insulin sensi-
tivity, 𝐺𝐸𝑍𝐼 [1/min] is the glucose effectiveness, 𝐸𝐺𝑃
[(mmol/L)/min] is the endogenous glucose production, 𝜎𝐺 is
the glucose diffusion coefficient, 𝜎𝑆𝐼

is the insulin sensitivity
diffusion coefficient, and 𝑤𝐺 and 𝑤𝑆𝐼

are standard wiener
processes. The insulin sensitivity, 𝑆𝐼 , is adaptive and up-
dated using the CD-EKF. The adaptive insulin sensitivity de-
scribes the change in insulin sensitivity that happens during
and after exercise. Furthermore, the log-transform ensures
that it remains positive. Finally, the rate of appearance,
𝑅𝐴 [(mmol/L)/min], is represented by

𝑅𝐴(𝑡) =
𝑘𝑚𝐷2(𝑡)

𝑉𝐺
, (8)

where 𝑘𝑚 [1/min] is a time constant.
3.5. CGM subsystem

Since a CGM measures the glucose concentration in the
interstitial tissue, we extend the MVP model with the CGM
subsystem

�̇�𝐼 (𝑡) =
𝐺(𝑡)
𝜏𝐼𝐺

−
𝐺𝐼 (𝑡)
𝜏𝐼𝐺

, (9)

to describe the interstitial glucose concentration,𝐺𝐼 [mmol/L],
where 𝜏𝐼𝐺 is a time constant.

4. Extended Kalman filter
When a new CGM measurement is received, the states

and insulin sensitivity are estimated using a continuous-
discrete extended Kalman filter (CD-EKF) (Jazwinski, 2007).
4.1. Filtering

The CD-EKF computes the filtered state, �̂�𝑘|𝑘, and its
covariance, 𝑃𝑘|𝑘, given the previous one-step prediction,
�̂�𝑘|𝑘−1, and, 𝑃𝑘|𝑘−1, and a measurement, 𝑦𝑘. The predicted
measurement and its derivative is given by

�̂�𝑘|𝑘−1 = 𝑔(𝑡𝑘, �̂�𝑘|𝑘−1, 𝜃), (10a)
𝐶𝑘 =

𝜕𝑔
𝜕𝑥

(𝑡𝑘, �̂�𝑘|𝑘−1, 𝜃). (10b)
From the predicted measurement, the innovation and covari-
ance of the innovation, can be computed as

𝑒𝑘 = 𝑦𝑘 − �̂�𝑘|𝑘−1, (11a)
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𝑅𝑒,𝑘 = 𝐶𝑘𝑃𝑘|𝑘−1𝐶
𝑇
𝑘 + 𝑅, (11b)

and the Kalman gain as
𝐾𝑓𝑥,𝑘 = 𝑃𝑘|𝑘−1𝐶

𝑇
𝑘 𝑅

−1
𝑒,𝑘. (12)

We then obtain the estimated state-covariance pair
�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 +𝐾𝑓𝑥,𝑘𝑒𝑘, (13a)
𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 −𝐾𝑓𝑥,𝑘𝑅𝑒,𝑘𝐾

𝑇
𝑓𝑥,𝑘. (13b)

We can guarantee positive definiteness of the covariance of
the filtered state, 𝑃𝑘|𝑘, by using the Joseph stabilized form
(Schneider and Georgakis, 2013)

𝑃𝑘|𝑘 = (𝐼−𝐾𝑓𝑥,𝑘𝐶𝑘)𝑃𝑘|𝑘−1(𝐼−𝐾𝑓𝑥,𝑘𝐶𝑘)𝑇 +𝐾𝑓𝑥,𝑘𝑅𝐾
𝑇
𝑓𝑥,𝑘.
(14)

4.2. Prediction
From the estimated state-covariance pair (13), we can

obtain the one-step prediction
�̂�𝑘+1|𝑘 = �̂�𝑘(𝑡𝑘+1), (15a)
𝑃𝑘+1|𝑘 = 𝑃𝑘(𝑡𝑘+1), (15b)

as the solution to
𝑑
𝑑𝑡

�̂�𝑘(𝑡) = 𝑓 (𝑡, �̂�𝑘(𝑡), 𝑢𝑘, 𝑑𝑘, 𝜃), (16a)
𝑑
𝑑𝑡

𝑃𝑘(𝑡) = 𝐴𝑘(𝑡)𝑃𝑘(𝑡) + 𝑃𝑘(𝑡)𝐴𝑘(𝑡)𝑇

+ 𝜎𝑘(𝑡)𝜎𝑘(𝑡)𝑇 , (16b)
for 𝑡𝑘 ≤ 𝑡 ≤ 𝑡𝑘+1, where

𝐴𝑘(𝑡) =
𝜕𝑓
𝜕𝑥

(𝑡, �̂�𝑘(𝑡), 𝑢𝑘, 𝑑𝑘, 𝜃), (17a)
𝜎𝑘(𝑡) = 𝜎(𝑡, �̂�𝑘(𝑡), 𝑢𝑘, 𝑑𝑘, 𝜃), (17b)

with the initial condition
�̂�𝑘(𝑡𝑘) = �̂�𝑘|𝑘, (18a)
𝑃𝑘(𝑡𝑘) = 𝑃𝑘|𝑘. (18b)

5. System identification
We receive data from each participant to identify the

system before the clinical trials. The data consists of CGM
values, meal information and insulin infusion rates. We
estimate the parameters in the MVP model with a maximum
likehood based PEM using the CD-EKF. We refer to Boiroux
et al. (2019) for more details.
5.1. Maximum likelihood based prediction error

method
Let 𝑁 be a set of experimental data, i.e.

𝑘+1 = {𝑦𝑘+1, 𝑢𝑘, 𝑑𝑘} ∪ 𝑘, 0 = {𝑦0}. (19)

The aim is to maximize the conditional probability density,
𝑝(𝑁 |𝜃). Since we assume that the inputs, 𝑢𝑘, and distur-
bances, 𝑑𝑘, are deterministic, we can express the conditional
probability density as

𝑝(𝑁 |𝜃) = 𝑝(𝑦𝑁 , 𝑦𝑁−1,… , 𝑦0|𝜃). (20)
Let the negative log-likelihood function

𝑉 (𝜃) = − log(𝑝(𝑁 |𝜃)), (21)
be expressed as

𝑉 (𝜃) =
(𝑁 + 1)𝑛𝑦

2
log(2𝜋) + 1

2

𝑁
∑

𝑘=0

(

log[det(𝑅𝑒,𝑘(𝜃))]

+ 𝑒𝑘(𝜃)𝑇 [𝑅𝑒,𝑘(𝜃)]−1𝑒𝑘(𝜃)
)

, (22)
where 𝑛𝑦 = 1 and the innovation, 𝑒𝑘, and its covariance,
𝑅𝑒,𝑘, are computed with the CD-EKF (11). The objective
is to the find the set of parameters, �̂�, that minimizes the
negative log-likelihood function (22), i.e.,

�̂� = arg min
𝜃𝑙≤𝜃≤𝜃𝑢

𝑉 (𝜃), (23)

where �̂� ∼ 𝑁(�̄�, 𝑃𝜃) and with the constraints 𝜃𝑙 ≤ �̄� ≤ 𝜃𝑢.

6. Optimal control problem
Every 5 minutes, we solve an OCP to compute the insulin

or glucagon dose. We assume zero-order hold parametriza-
tion of the manipulated inputs, 𝑢(𝑡), and disturbances, 𝑑(𝑡),
i.e.,

𝑢(𝑡) = 𝑢𝑘, 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, (24a)
𝑑(𝑡) = 𝑑𝑘, 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1. (24b)

We solve an OCP in the form
min

[𝑥(𝑡)]
𝑡𝑓
𝑡0
,{𝑢𝑘}𝑁−1

𝑘=0

𝜙 = 𝜙([𝑥(𝑡)]
𝑡𝑓
𝑡0
, {𝑢𝑘}𝑁−1

𝑘=0 ), (25a)

subject to
𝑥(𝑡0) = �̂�0, (25b)
�̇�(𝑡) = 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝑑(𝑡), 𝜃), 𝑡 ∈ [𝑡0, 𝑡𝑓 ], (25c)
𝑢(𝑡) = 𝑢𝑘, 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1[, 𝑘 = 0,… , 𝑁 − 1,

(25d)
𝑑(𝑡) = 𝑑𝑘, 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1[, 𝑘 = 0,… , 𝑁 − 1,

(25e)
𝑢min ≤ 𝑢𝑘 ≤ 𝑢max, 𝑘 = 0,… , 𝑁 − 1.

(25f)
We describe the objective function (25) in section 6.1. (25b)
is the initial condition, (25c) is the deterministic version of
the extended MVP model described in Section 3, (25d)-(25e)
are the zero-order hold parametrizations of the manipulated
inputs and estimated disturbances, and (25f) are the bounds
on the manipulated inputs. We use a control and prediction
horizon of 6 hours which is sufficient to reach steady state
while retaining computational feasibility.
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6.1. Objective function
We use the objective function described in Reenberg

et al. (2022) in the AP. We use different objective functions
for insulin and glucagon administration. The objective func-
tion is

𝜙 = ∫

𝑡𝑓

𝑡0
𝜌𝑧(𝑧(𝑡))𝑑𝑡 +

𝑁−1
∑

𝑘=0
𝜌𝑢(𝑢𝑘), (26)

where 𝜌𝑧 is the output penalty function and 𝜌𝑢 is the input
penalty function. 𝑧(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝜃) are the outputs (blood
glucose concentration). We define the first penalty function,
𝜌𝑧, in (26) as

𝜌𝑧(𝑧) = 𝛼�̄�𝜌�̄�(𝑧) + 𝛼𝑧min
𝜌𝑧min

(𝑧) + 𝛼𝑧max
𝜌𝑧max

(𝑧), (27)
that penalizes 1) deviations of the blood glucose concen-
tration from the setpoint, �̄� = 6 mmol/L, 2) hypoglycemia
(𝑧 < 𝑧𝑚𝑖𝑛 = 4.5 mmol/L), and 3) hyperglycemia (𝑧 >
𝑧𝑚𝑎𝑥 = 10.0 mmol/L):

𝜌�̄�(𝑧) =
1
2
(𝑧 − �̄�)2, (28a)

𝜌𝑧min
(𝑧) = 1

2
(min{0, 𝑧 − 𝑧min})2, (28b)

𝜌𝑧max
(𝑧) = 1

2
(max{0, 𝑧 − 𝑧max})2, (28c)

where 𝛼𝑧 = 1, 𝛼𝑧𝑚𝑖𝑛 = 106, and 𝛼𝑧𝑚𝑎𝑥 = 50 when computing
insulin administration and 𝛼𝑧 = 1, 𝛼𝑧𝑚𝑖𝑛 = 106, and 𝛼𝑧𝑚𝑎𝑥 =
0 when computing glucagon administration. 𝛼𝑧𝑚𝑖𝑛 is set to
a large value as preventing hypoglycemia has the highest
priority. Fig. 4 shows the penalty function. When computing
the insulin administration, we define the second penalty term
in (26) as

𝜌𝑢(𝑢𝑘) = 𝛼𝑢,𝑏𝑎𝜌𝑢,𝑏𝑎(𝑢𝑏𝑎,𝑘) + 𝛼𝑢,𝑏𝑜𝜌𝑢,𝑏𝑜(𝑢𝑏𝑜,𝑘), (29)
where the weights are 𝛼𝑢,𝑏𝑎 = 0.5 and 𝛼𝑢,𝑏𝑜 = 0.01 and

𝜌𝑢,𝑏𝑎(𝑢𝑏𝑎,𝑘) = ‖𝑢𝑏𝑎,𝑘 − �̄�𝑏𝑎,𝑘‖
2
2, (30a)

𝜌𝑢,𝑏𝑜(𝑢𝑏𝑜,𝑘) = ‖𝑢𝑏𝑜,𝑘‖1. (30b)
The first term penalizes deviations from the nominal basal
rate, �̄�𝑘, where the 2-norm promotes small deviations from
the nominal basal rate. The second term penalizes the admin-
istration insulin boluses, where the 1-norm promotes few,
but large insulin boluses. When computing the glucagon
administration, we instead use

𝜌𝑢(𝑢𝑘) = 𝛼𝑢,𝐺‖𝑢𝐺,𝑘‖
2
2, (31)

to penalize the administration of glucagon with 𝛼𝑢,𝐺 =
100.0. This expression is identical to (30a), but the nominal
glucagon rate is zero.
6.2. Numerical Solution

We use direct multiple-shooting (Bock and Plitt, 1984)
to transcribe (25) by discretizing the dynamic constraint

Figure 4: Blood glucose penalty function when administering
insulin (blue) and glucagon (black).

(25c) and the integral in the objective function (26) using
an explicit 4th order Runge-Kutta scheme with fixed step
size. We solve the resulting nonlinear program using a
sequential quadratic programming (SQP) method (Boiroux
and Jørgensen, 2018; Nocedal and Wright, 2006). We solve
the quadratic program (QP) in each SQP iteration using a
structured primal-dual interior point algorithm, where we
use Riccati recursions to compute the Newton iterations
(Frison and Jørgensen, 2013; Jørgensen, 2005).

7. Heuristics
In the AP, we use several heuristics to 1) switch be-

tween insulin and glucagon administration, 2) compute up-
per bounds on the manipulated inputs, 3) modify controller
hyperparameters during exercise, and 4) a post-processing
and fall-back strategy to round to pumps and handle possible
issues in the solution of the OCP (25) (Reenberg et al., 2022).
In the nominal case, the setpoint, �̄�, is

�̄� = 6.0 mmol/L, (32)
and the switch limit is

switch limit = 4.5 mmol/L. (33)
The switch limit is slightly above the hypoglycemic range to
allow the AP to administer glucagon to proactively prevent
hypoglycemic events. We show the control algorithm used
in the AP in algorithm 1.
7.1. Switch logic

To avoid simultaneous administration of insulin and
glucagon, we use a switch with the following logic (the
system is always initialized in insulin mode):

• If the measured or estimated glucose concentration is
below switch limit, we switch off the insulin adminis-
tration and switch to the glucagon mode.

• If the glucose concentration is predicted to become
below the switch limit within the next 30 minutes, we
switch off the insulin administration and switch to the
glucagon mode.

7.2. Insulin administration logic
For safety reasons, we update the constraint for the

maximum allowed insulin bolus in the beginning of each
<Reenberg et al.>: Preprint submitted to Elsevier Page 6 of 13
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Algorithm 1: Control algorithm executed with 5 min
intervals.

1 if CGM measurement available then
2 if a meal was consumed within the previous

hour then
3 set the insulin sensitivity diffusion

coefficient, 𝜎𝑆𝐼
, to zero;

4 end
5 estimate the states, �̂�, Section 4;
6 clip insulin sensitivity, 𝑆𝐼 (𝑡), (44);
7 update the constraints, 𝑢𝑚𝑎𝑥𝐺,𝑘 , (39), 𝑢𝑚𝑎𝑥𝑏𝑎,𝑘, (38),

and, 𝑢𝑚𝑎𝑥𝑏𝑜,𝑘 , (34);
8 if the exercise mode is active then
9 update the setpoint, �̄�, (41), and the switch

limit, (42);
10 end
11 if the measured or estimated glucose level is

below the switch limit then
12 solve the OCP, (25), in glucagon mode;
13 else
14 solve the OCP, (25), in insulin mode;
15 if any glucose predictions within the next 30

min are below the switch limit then
16 go back and solve the OCP in glucagon

mode;
17 end
18 end
19 if the optimal solution is obtained then
20 proceed with the solution;
21 else
22 use the open-loop fallback strategy, (45);
23 end
24 if exercise was just announced and

𝐺𝐶𝐺𝑀 < 7 mmol/L then
25 stop insulin administration and give a

glucagon bolus of 100 𝜇g, (43);
26 end
27 else
28 use the open-loop fallback strategy, (45);
29 end
30 round to pump resolution and unit conversion,

Section 7.6;

control interval. We allow insulin boli to be administered
after meals or as a correction if the glucose concentration
becomes too high. We compute the upper bound on the
allowed insulin bolus as

𝑢max
𝑏𝑜,𝑘 = max{𝜖, 𝑢corr𝑏𝑜,𝑘 + 𝑢meal

𝑏𝑜,𝑘 − 𝑢hist𝑏𝑜,𝑘}, (34)
where 𝜖 = 10−3, 𝑢corr𝑏𝑜,𝑘 is the maximum correction bolus infu-
sion rate, 𝑢meal

𝑏𝑜,𝑘 is the maximum meal bolus infusion rate, and
𝑢hist𝑏𝑜,𝑘 is the sum of the history of the insulin administration
over the last hour. The allowed correction bolus is computed

as

𝑢corr𝑏𝑜,𝑘 = max
{

0, 1
𝑇𝑠

𝐺𝐶𝐺𝑀 − 𝐺𝑚𝑎𝑥
𝐼𝑆𝐹

}

, (35)

where 𝑇𝑠 = 5 min is the sampling time, 𝐺𝐶𝐺𝑀 [mmol/L] is
the CGM measurement, 𝐺𝑚𝑎𝑥 = 10 mmol/L is the limit for
when correction boli are allowed, and 𝐼𝑆𝐹 [(mmol/L)/mU]
is the insulin sensitivity factor provided by the participants.
For 1 hour after a meal is consumed, the allowed meal bolus
is computed as

𝑢meal
𝑏𝑜,𝑘 = max

{

0,
𝛾
𝑇𝑠

𝑑
𝐼𝐶𝑅

}

, (36)

where 𝑑 [g CHO] is the announced amount of the carbohy-
drates in the meal, 𝐼𝐶𝑅 [g/mU] is the insulin to carb ratio
provided by the participants, and 𝛾 = 1.15 [-] is a bolus
allowance factor. If a meal was not consumed within the last
hour, 𝑢meal

𝑏𝑜,𝑘 = 0. The insulin bolus history is computed as

𝑢hist𝑏𝑜,𝑘 =
𝑁hist

𝑏𝑜
∑

𝑗=1
𝑢𝑏𝑜,𝑘−𝑗|𝑘−𝑗 , (37)

where 𝑢𝑏𝑜,𝑘|𝑘 is the insulin bolus infusion rate at the 𝑘’th
interval and 𝑁hist

𝑏𝑜 = 11 to compute the history for 1 hour.
Finally, we constraint the maximum insulin basal infusion
rate to

𝑢𝑚𝑎𝑥𝑏𝑎,𝑘 = 2�̄�𝑏𝑎,𝑘, (38)
where �̄�𝑏𝑎,𝑘 is the nominal basal rate of the participants.
7.3. Glucagon administration logic

Similarly, we restrict the maximum glucagon adminis-
tration rate by

𝑢max
𝐺,𝑘 = max{𝜖, �̄�max

𝐺 − 𝑢hist𝐺,𝑘}, (39)
where 𝜖 = 10−3, �̄�max

𝐺 = 300 𝜇g, and the glucagon history is
computed by

𝑢hist𝐺,𝑘 =
𝑁hist

𝐺
∑

𝑗=1
𝑢𝐺,𝑘−𝑗|𝑘−𝑗 , (40)

where 𝑢𝐺,𝑘|𝑘 is the glucagon administration rate at the 𝑘’th
interval and 𝑁hist

𝐺 = 23 which corresponds to a history of 2
hours.
7.4. Exercise logic

When exercise is announced, a number of hyperparam-
eters in the AP are updated as the control model does not
describe the effect of exercise. We increase the setpoint

�̄� = 7.0 mmol/L, (41)
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to make the AP less aggressive w.r.t. insulin administration
and we increase the limit for switching to glucagon admin-
istration

switch limit = 7.0 mmol/L, (42)
to allow the AP to administer glucagon before the par-
ticipants approach hypoglycemia. Finally, if 𝐺𝐶𝐺𝑀 <
7 mmol/L when exercise is announced, a glucagon bolus is
administered

𝑢𝐺,𝑘 = 100 𝜇g if 𝐺𝐶𝐺𝑀 < 7 mmol/L. (43)
7.5. Insulin sensitivity logic

After meals, we set the insulin sensitivity diffusion co-
efficient to zero for 1 hour to avoid adjusting the insulin
sensitivity to the postprandial peaks, and we restrict the
estimated value of the insulin sensitivity, 𝑆𝐼 , in the CD-EKF
to be within the limits

log𝑆𝐼 (0) − 1 ≤ log𝑆𝐼 (𝑡) ≤ log𝑆𝐼 (0) + 1, (44)
where 𝑆𝐼 (0) is estimated during the parameter estimation.
7.6. Post-processing and fall-back strategy

After the solution of the OCP (25), the manipulated
inputs for the first control interval are rounded to the pump
resolution which is 0.01U/h for the insulin basal rate, 0.1U/h
for the bolus insulin and 0.01 𝜇g/h for the glucagon infusion
rate.
In the rare case, where the solution of the OCP (25) is
prevented (e.g., if the maximum number of iterations in the
SQP algorithm is reached or if no measurement is received),
we use the following fall-back strategy as a safety measure

𝑢𝑏𝑎,𝑘|𝑘 =

{

0 𝐺𝐶𝐺𝑀 ≤ 8.0 mmol/L,
�̄�𝑏𝑎,𝑘 otherwise, (45a)

𝑢𝑏𝑜,𝑘|𝑘 = 0, (45b)

𝑢𝐺,𝑘|𝑘 =

{

min{15 𝜇g, 𝑢max
𝐺,𝑘 } 𝐺𝐶𝐺𝑀 < 4.5 mmol/L,

0 otherwise.
(45c)

8. Summary and insights from the clinical
trial
In this section, we summarize and discuss the results

from the clinical trial to understand the performance of the
NMPC algorithm and compare with the results from the
simulation study performed in Reenberg et al. (2022). The
DH and SH AP was tested in a clinical trial with adolescents
with T1D (𝑛 = 11). Lindkvist et al. (2023) describes the
clinical trial and outcomes in detail. Each study in the trial
consisted of one 26 hour visit with the SH configuration of
the AP and another 26 hour visit with the DH configuration
of the AP (in a randomized order). Both studies followed the
same schedule: the closed-loop system was started at 17:00,
the participants had dinner at 19:00, breakfast at 08:00, lunch

at 12:00, a snack at 15:00, a 45 min exercise session of mod-
erate intensity (50% heart rate reserve) from 16:30 to 17:15,
and at 19:00 the participants left the clinic. The participants
slept from approximately 22:00 to 07:30. See Fig. 5. The par-
ticipants were between 13 and 18 years old and had a median
of 54% baseline TIR with 3% in level 1 and 2 hypoglycemia
and 43% in level 1 and 2 hyperglycemia. All participants
already used a CGM (the participants used different CGMs
with different accuracy and sampling times) and an insulin
pump and some participants used commercially available
closed-loop systems. We evaluate the outcomes from the
trial based on the targets specified by Battelino et al. (2019)
where Table 1 shows the target glucose ranges. We show
the results from one example DH study, where we show
both the system identification as well as the time series of
all inputs and outputs during the study. We compare with a
simulation study for one virtual participant. Furthermore, we
give an overview of the results from the trial. However, some
studies were either heavily affected by technical challenges
or no glucagon was administered in the DH study. Therefore,
we also make a subset of studies (𝑛 = 7), where we
require that there were no major technical issues and that
glucagon was administered in the DH study. We show both
the combined results from all studies and the results from
the remaining 7 selected studies and compare with results
from the simulation study. The studies we consider as heavily
affected by technical issues, were because of 1) multiple
pressure induced sensor attenuations (PISAs), and 2) lost
connection to the insulin pump for extended periods of time.
We also experienced minor challenges with the infusion sets
and occlusions in the glucagon pump, but do not exclude
those studies. The CGM measurements deviated from the
Yellow Springs Instruments (YSI) measurements in some
studies, but we do not consider that as a major technical
issue. PISAs cause faulty measurements of very low blood
glucose levels and can occur if the participant, e.g., sleeps on
the CGM. Therefore, the position of the CGM can influence
the performance of the AP. PISAs are especially challenging
for DH systems as glucagon may be administered when
faulty glucose measurements are received. In the appendix,
Fig. 13 shows the results from participant 5 where multiple
PISAs occurred during the DH study and caused adminis-
tration of glucagon. Algorithms for detection of PISAs have
been suggested by, e.g., Baysal et al. (2014), but false PISA
detections can potentially be dangerous if the hypoglycemic
event is not handled. Furthermore, Fig. 12 shows the results
for participant 3 where the connection to the insulin pump
was lost for an extended period of time during the DH study.
8.1. Example study

We show the system identification from the participant
in the example study in Fig. 7 and the results from the DH
study in Fig. 9. We received approximately 2 weeks of data
from the participants before the studies, but the quality of
the data varied because of mistimed or misestimated meals,
lost connections to the CGM or insulin pump, or missed
meal boluses. Therefore, we selected a subset of the data
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22:00 

Snack

Breakfast
Dinner Lunch

ExerciseSleep

19:00 07:30 08:00 12:00 15:00 16:30 17:15 

Start

17:00

End

19:00 

Figure 5: The protocol used in the clinical trial. The protocol
consists of a dinner, sleep, a breakfast, a lunch, a snack, and
finally, exercise of moderate intensity.

Table 1
The five glycemic ranges described by Battelino et al. (2019).

Category Range [mmol/L] Color
Level 2 hyperglycemia ]13.9, ∞ [ Orange
Level 1 hyperglycemia ]10.0, 13.9] Yellow
Normoglycemia [ 3.9, 10.0] Green
Level 1 hypoglycemia [ 3.0, 3.9[ Light red
Level 2 hypoglycemia [ 0.0, 3.0[ Red

that appeared to be without missing information. It can be
a time-consuming process to select a subset of the data that
allows for an accurate identification of the system, and as
is evident from Fig. 7, the fit was not perfect. There are
many non-measured factors and the model structure is not
able to describe the varying meal responses from similar
carbohydrate and insulin amounts. It was, in most cases, also
necessary to fix some of the parameters even though the
MVP model in theory is identifiable (Boiroux et al., 2019).
We tuned the fixed parameters by hand to match the data and
get feasible values of the remaining parameters. We tuned
𝐺𝐸𝑍𝐼 to reach a basal rate, �̄�, close to what the participants
normally used. Importantly, we did not receive any glucagon
or exercise data from the participants. Therefore, we fixed
the parameters related to the glucagon model and did not
include an exercise subsystem in the control model. The
example study resulted in 78.3% TIR and approximately
100 𝜇g glucagon was administered around 06:00 and 10:00.
The glucagon administration increased the blood glucose
levels in both cases and seemed to reduce the time in level 1
hypoglycemia around 10:00. The meal responses were very
different despite the similar amount of carbohydrates and
insulin, where the postprandial peak was very large at the
dinner, but almost not visible at breakfast. The meal insulin
boli were limited by the safety constraints, and the large
postprandial peak after the dinner caused administration of
a number of correction boli. Ideally, the correction boli
should have been administered earlier to reduce the peak
and avoid the glucagon administration around 06:00. The
insulin basal rate remained close to the nominal basal rate,
�̄�, for most of the study, but the basal rate was increased
slightly over the night. This was due to the adaptation
of the insulin sensitivity, 𝑆𝐼 , which also caused the basal
rate to increase slightly after meals on the second day. No
glucagon was administered during or after exercise as the
glucose concentration was above 7 mmol/L when exercise
was announced and remained in range during the exercise
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Figure 6: Parameter estimation for one virtual participant in
the simulation study. From the top: 1) CGM measurements
(blue dots) and a simulation with the estimated parameters
(red line), 2) announced meals, 3) basal insulin rate, and 4)
bolus insulin.

session. The AP handled the potential low glucose levels
with glucagon and reduced the hyperglycemia with correc-
tion boli, as desired. Overall, the CGM measurements had
high accuracy in this study with only minor differences
from the YSI measurements. For comparison, we show the
parameter estimation in Fig. 6 and simulation result in Fig. 8
for one virtual participant in the simulation study. The main
differences are that the identified model was more accurate in
the simulation study and provides more accurate predictions.
Furthermore, the simulations began in steady state which
was not the case in the example study where the initial
glucose concentration lead to high glucose concentrations
after dinner. Finally, much less insulin was administered
in the simulation study, which was due to the high insulin
sensitivity in the simulation model.
8.2. All studies

In this section, we show the combined results from the
selected studies and all the studies. In Fig. 10, we show
the TIRs for all studies, selected studies, worst-case studies
(defined as the studies with the most time in level 2 hypo-
glycemia), and the simulation study and in Fig. 11, we show
the median and span for the SH and DH studies. We show the
average values of all clinical targets described by Battelino
et al. (2019) in Table 2. The DH AP achieved lower TIR
than the SH AP when we consider all studies, but statistically
insignificant Lindkvist et al. (2023). In the selected studies,
the performance was similar and all clinical targets were
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Figure 7: Parameter estimation for the example study. From
the top: 1) CGM measurements (blue dots) and a simulation
with the estimated parameters (red line), 2) announced meals,
3) basal insulin rate, and 4) bolus insulin.

satisfied by both APs. However, the SH AP still achieved
higher TIR and less time in hypoglycemia compared to the
DH AP. In the worst-case DH study both the meal and
glucagon response were overestimated which caused too
much insulin to be administered. In the worst-case SH study
the participant entered the clinic in level 2 hypoglycemia and
did not reach normoglycemia before the study was started.
Both the DH and SH AP increased the TIR on average
without increasing the time in hypoglycemia compared to
the baseline TIRs of the participants. Fig. 11 shows that
the glucose levels were mostly in target over the night and
there were more variations during the day and after meals.
The initial blood glucose levels varied notably between the
studies and some participants also reached hypoglycemia
immediately after the study was started. The AP assumed
that the participants were at steady state when the study
was started which clearly was not the case. We could have
used previous data from the participants to update the ini-
tial condition, which might have improved the performance
when the study was only 26 hours, but in a real life setting,
the initial condition is not as significant. The span of the
DH studies had a larger and later postprandial peak from
the dinner that we believe was due to the participants that
reached hypoglycemia in the beginning of the studies and
thus received glucagon just before the dinner. Table 3 shows
the insulin and glucagon administration in the studies, where
there was almost no difference in the insulin administration.
A mean of 653.95 𝜇g glucagon was administered during
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Figure 8: Results from one virtual participant in the simulation
study. From the top: 1) CGM measurements (blue dotted line)
with 96.5% time in range, 2) meals, 3) exercise, 4) basal
insulin (blue line) and maximum allowed basal insulin (red
dots), 5) meal boli (blue line) and maximum allowed meal boli
(red dots), 6) correction insulin boli (blue line) and maximum
allowed correction boli (red dots), and 7) glucagon boli (blue
line) and maximum allowed glucagon boli (red dots).

all the DH studies and a mean of 912.91 𝜇g glucagon was
administered in the selected DH studies. If we compare to
the simulation study with a cohort of 50 virtual participants,
the TIR is higher in the simulation study with no time in
level 1 and 2 hypoglycemia. The virtual participants required
much less insulin and on average received less glucagon.
The simulation result depends on the simulation model, but
some factors could be improved in the design of future
simulation studies to better represent a real clinical trial, 1)
the simulated data used for parameter estimation is of too
high quality, i.e., there was no missing data and all the meals
were correctly announced, 2) The model of the glucose-
insulin dynamics are different in the simulation and control
model, but the glucagon model was the same and results in
too accurate predictions of the glucagon response, and 3)
The initial condition should not always be steady state.

9. Conclusion
In this paper, we presented the DiaCon DH and SH AP

system. The system consists of an Android smartphone, a
Dexcom G6 sensor and two Dana Diabecare RS pumps for
insulin and glucagon administration. The AP is based on
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Table 2
Mean and standard deviation of the values for the glycemic targets described in Battelino et al. (2019) for the DH and SH AP.

Quantity Target DH all SH all DH selected SH selected DH simulation

Average glucose [mmol/L] < 8.55 8.69 (1.57) 8.05 (1.15) 7.73 (0.91) 7.65 (0.66) 7.01 (0.41)
GMI [%] < 7 7.03 (0.70) 6.78 (0.50) 6.61 (0.41) 6.61 (0.29) 6.33 (0.18)
GV [%] ≤ 36 29.81 (6.88) 33.93 (8.72) 31.34 (6.29) 31.74 (6.63) 29.95 (8.18)
Active CGM [%] 100 99.97 (0.10) 100.0 (0.00) 100.0 (0.00) 100.0 (0.00) 100.0 (0.00)

level 2 hyperglycemia [%] < 5 5.2 (7.26) 4.8 (7.38) 1.8 (3.89) 1.3 (2.73) 1.9 (3.31)
level 1 and 2 hyperglycemia [%] < 25 34.3 (22.56) 22.2 (13.63) 20.7 (13.36) 18.8 (11.38) 10.56 (8.28)
TIR (normoglycemia) [%] > 70 62.9 (20.94) 76.0 (13.63) 75.3 (12.70) 78.8 (11.90) 89.44 (7.16)
level 1 and 2 hypoglycemia [%] < 4 2.8 (4.65) 1.8 (1.63) 4.0 (5.52) 2.4 (1.42) 0.0 (0.00)
level 2 hypoglycemia [%] < 1 0.8 (1.50) 0.2 (0.48) 1.0 (1.75) 0.3 (0.60) 0.0 (0.00)

Table 3
Mean and standard deviation of the insulin and glucagon administration during the 26 h trial.

Quantity DH all SH all DH selected SH selected DH simulation

Total insulin [U] 59.32 (20.65) 59.47 (17.15) 58.12 (18.44) 61.45 (18.89) 26.19 (7.34)
Basal insulin [U] 26.88 (9.45) 26.29 (7.96) 27.71 (9.01) 28.05 (7.99) 15.13 (4.59)
Meal bolus insulin [U] 25.94 (10.33) 28.64 (10.39) 26.89 (10.12) 30.64 (12.32) 10.12 (3.61)
Correction bolus insulin [U] 6.50 (6.26) 4.54 (3.71) 3.53 (4.01) 2.76 (2.20) 0.94 (1.36)
Glucagon [𝜇g] 653.95 (499.55) - 912.91 (415.21) - 135.47 (74.34)

a NMPC algorithm as well as several heuristics used to
1) switch between insulin and glucagon administration, 2)
provide additional safety constraints and a fall-back strat-
egy, 3) update controller hyperparameters during exercise,
and 4) round to the pump resolution. We use an extension
of the MVP model for prediction and estimate the model
parameters using a maximum likelihood based PEM. The
CD-EKF is used in both in the NMPC and the PEM. We
analyze and summarize the results from a clinical trial with
adolescents with type 1 diabetes (𝑛 = 11) and compare with
the results from a simulation study. Each study in the the
clinical trial lasted 26 hours, included 4 meals, and a 45
min exercise session of moderate intensity. It is technically
feasible to use NMPC for AP systems and both APs were
able to control the glucose concentration, but obtaining a
model for predictions is difficult and time-consuming and
inaccurate models may limit performance. Both the DH and
SH AP improved the TIR without increasing the time in
hypoglycemia compared to the baseline TIR of the partic-
ipants. Some studies were affected by technical issues, such
as, PISAs or loss of connection to the pumps. PISAs can
especially be challenging for DH APs, as glucagon can be
administered. The DH AP achieved a mean of 62.9% TIR
and the SH achieves a mean of 76.0% TIR. For the selected
studies without technical difficulties and where glucagon
was administered in the DH study (𝑛 = 7), the mean TIR
was 75.3% for the DH AP and 78.8% for the SH AP, and
all the clinical targets specified by Battelino et al. (2019)
were satisfied for both the DH and SH AP. The DH and SH
AP achieved lower TIR in the clinical trial compared to the
simulation study. In the simulation study, the data used for
parameter estimation did not include, e.g., missing data or
misestimated meals and we used the same glucagon model
for simulation and control which caused the predictions to

more accurate than in the clinical trial. Furthermore, the
simulation study did not include technical difficulties.
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Figure 9: Results from the example study. From the top: 1)
CGM measurements (blue dotted line) with 78.3% time in
range, YSI measurements (red crosses), and setpoint (red
dashed line), 2) meals, 3) exercise, 4) basal insulin (blue
line) and maximum allowed basal insulin (red dots), 5) meal
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correction boli (red dots), and 7) glucagon boli (blue line) and
maximum allowed glucagon boli (red dots).
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Figure 12: Participant 3. Left: results from the DH trial for participant 3 where the connection to the insulin pump was lost
with 57.3% time in range. Right: results from the SH trial for participant 3 with 89.0% time in range. From the top: 1) CGM
measurements (blue dotted line), YSI measurements (red crosses), and setpoint (red dashed line), 2) meals, 3) exercise, 4) basal
insulin (blue line) and maximum allowed basal insulin (red dots), 5) meal boli (blue line) and maximum allowed meal boli (red
dots), 6) correction insulin boli (blue line) and maximum allowed correction boli (red dots), and 7) glucagon boli (blue line) and
maximum allowed glucagon boli (red dots).
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Objective: To assess the efficacy and safety of a dual-hormone (DH [insulin and

glucagon]) closed-loop system compared to a single-hormone (SH [insulin only])

closed-loop system in adolescents with type 1 diabetes.

Methods: This was a 26-hour, two-period, randomized, crossover, inpatient study

involving 11 adolescents with type 1 diabetes (nine males [82%], mean ± SD age

14.8 ± 1.4 years, diabetes duration 5.7 ± 2.3 years). Except for the treatment

configuration of the DiaCon Artificial Pancreas: DH or SH, experimental visits were

identical consisting of: an overnight stay (10:00 pm until 7:30 am), several meals/

snacks, and a 45-minute bout of moderate intensity continuous exercise. The

primary endpoint was percentage of time spent with sensor glucose values below

range (TBR [<3.9 mmol/L]) during closed-loop control over the 26-h period (5:00

pm, day 1 to 7:00 pm, day 2).

Results: Overall, there were no differences between DH and SH for the following

glycemic outcomes (median [IQR]): TBR 1.6 [0.0, 2.4] vs. 1.28 [0.16, 3.19]%, p=1.00;

time in range (TIR [3.9-10.0 mmol/L]) 68.4 [48.7, 76.8] vs. 75.7 [69.8, 87.1]%,

p=0.08; and time above range (TAR [>10.0 mmol/L]) 28.1 [18.1, 49.8] vs. 23.3

[12.3, 27.2]%, p=0.10. Mean ( ± SD) glucose was higher during DH than SH (8.7 ( ±

3.2) vs. 8.1 ( ± 3.0) mmol/L, p<0.001) but coefficient of variation was similar (34.8 ( ±

6.8) vs. 37.3 ( ± 8.6)%, p=0.20). The average amount of rescue carbohydrates was

similar between DH and SH (6.8 ( ± 12.3) vs. 9.5 ( ± 15.4) grams/participant/visit,

p=0.78). Overnight, TIR was higher, TAR was lower during the SH visit compared to

DH. During and after exercise (4:30 pm until 7 pm) the SH configuration produced

higher TIR, but similar TAR and TBR compared to the DH configuration.
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Conclusions: DH and SH performed similarly in adolescents with type 1 diabetes

during a 26-hour inpatient monitoring period involving several metabolic

challenges including feeding and exercise. However, during the night and

around exercise, the SH configuration outperformed DH.

KEYWORDS

type 1 diabetes mellitus, adolescents, dual-hormone, advanced hybrid closed-loop,
artificial pancreas, non-linear model predictive control, moderate intensity
continuous exercise

1 Introduction

People with type 1 diabetes (T1D) are advised to aim for near-

normal blood glucose levels to reduce the risk of diabetes late

complications (1, 2). However, achieving optimal metabolic control

is challenging and many fail to meet recommended guidelines –

especially adolescents (3).

The most advanced commercially available technology is a single-

hormone (SH) closed-loop system, also known as an artificial

pancreas (AP). These systems automatically adjust insulin pump

delivery based on real-time values from a continuous glucose

monitor (CGM). Relative to insulin pump and CGM systems

without automated insulin dosing, APs have been shown to

improve glucose control (4–6). Despite these technological

improvements, adolescents with T1D still frequently experience

non-severe hypoglycemia (<3.9 mmol/L) (5, 7). Furthermore,

around exercise the risk of hypoglycemia is higher due to increased

insulin sensitivity, insulin absorption, glucose uptake in combination

with an impaired glucagon secretion (8).

A potential means of reducing the risk of hypoglycemia using

closed-loop systems is to add the glucose-elevating hormone

glucagon. Such dual-hormone (DH) hybrid closed-loop systems are

not currently commercially available but have generated interest in

research trials investigating their performance relative to SH systems.

A meta-analysis found that both SH and DH closed-loop systems

resulted in more time spent in the target glucose range (TIR [3.9-10.0

mmol/L]) compared to non-automated delivery systems.

Furthermore, DH was superior to SH in increasing TIR and

decreasing time below range (TBR [< 3.9 mmol/L]) (9). Limited

data exist comparing DH and SH closed-loop treatments during and

after exercise, however, some studies have found DH to minimize

TBR in such circumstances (10–13).

Our group has developed the DiaCon AP (14) which can run in

two configurations; SH and DH. A previous version of the system was

tested among adults with T1D showing improvements in TIR during

exercise and a lesser need for hypoglycemic-CHO treatments when

using the DH configuration (15). However, the updated system is yet

to be tested in an adolescent T1D cohort.

The aim of this study was therefore to test our hypothesis, that the

updated DiaCon AP DH configuration would be safe and effective to

use in individuals with T1D between 13-17 years old and that it would

be superior in managing glycemia compared to the DiaCon AP

SH configuration.

2 Materials and methods

2.1 Methods

This was a randomized, single-blind, two-period, crossover study in

adolescents with T1D recruited from Herlev and Gentofte Hospital

Pediatric Department Outpatient Clinics and the Steno Diabetes

Center Copenhagen. Enrollment was conducted from September 1st,

2021 until March 7th, 2022. All study participants’ parents or legal

guardians provided written informed consent and participants ≥15-

years provided written, informed assent before participation. The study

was approved by the Regional Committee in Health Research Ethics (H-

21000207), the Danish Data Protection Agency (P-2021-326), and the

Danish Medicines Agency (2020-005836-31). The trial was registered

with ClinicalTrials.gov (NCT04949867).

Participants were included if they were: 13-17 years old; diagnosed

with T1D for ≥two years; used an insulin pump for ≥one year; used a

real-time or intermittently scanned CGM, had an HbA1c ≤75 mmol/

mol; and used carbohydrate counting as well as the pump bolus

calculator for all meals. Main exclusion criteria were known allergy to

glucagon or lactose, use of diabetes medication other than insulin, and

hypoglycemia unawareness.

2.2 Study device and drugs

We used our DiaCon system consisting of two Dana Diabecare RS

insulin pumps (one for insulin and one for glucagon/saline), a

Dexcom G6 sensor (Dexcom, San Diego, CA) and a smartphone

(Samsung Galaxy A5 2017 Android phone) containing the DiaCon

algorithm (14) to adjust the pump deliveries based on the CGM

values. One pump was filled with insulin aspart (Fiasp®, Novo

Nordisk, Bagsværd, Denmark) and the other with either glucagon

(GlucaGen®, Novo Nordisk, Bagsværd, Denmark) or isotonic saline

(sodium chloride 9 mg/dL). The glucagon pump was refilled with

fresh glucagon every 22 hours after the first pump filling. The

Abbreviations: AP, Artificial Pancreas; CGM, Continuous Glucose Monitoring;

CHO, Carbohydrate intake; DH, Dual-Hormone; PG, Plasma Glucose; SG, Sensor

Glucose; SH, Single-Hormone; T1D, Type 1 diabetes; TAR, Time above range; TBR,

Time below range; TIR, Time in range.
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individual parameter estimates for the insulin algorithm were set up

using insulin pump, CGM and carbohydrate intake (CHO) data from

each participant. The algorithm computed the insulin and glucagon

administration based on predictions obtained with a mathematical

model of the blood glucose response to CHO, insulin, and glucagon,

i.e., based on nonlinear model predictive control (NMPC). Safety

constraints on bolus and basal insulin were based on participants’

insulin pump settings and the glucagon algorithm was constrained to

deliver maximally 300 µg glucagon over a two hour period (14). Meals

and exercise were announced to the DiaCon AP. The NMPC utilized

insulin-carbohydrate-ratio and the announced meal carbohydrates

when dosing meal boluses. Exercise mode increased target glucose

from 6 to 7 mmol/L and the limit for when glucagon could be

administered was increased from 4.5 to 7.0 mmol/L. If SG was ≤7.0

mmol/L at exercise announcement 100 µg glucagon was

administered (14).

2.3 Study design

Participants went through a screening visit and two 26-h in-clinic

visits with a wash-out period of at least three days. During each in-

clinic visit, participants wore the DiaCon system set-up to run in

either the DH or SH configuration depending on the randomization

order. Except for the DH and SH configurations, the study visits were

identical (Figure 1).

At the screening visit, participants’ medical history (i.e., allergies,

medications, other illnesses, diabetes complications) as well as results

of blood and urine analyses were reviewed. A clinical examination was

performed to assess height, weight, and blood pressure. Finally, 14

days of insulin pump and CGM data were downloaded to register the

mean values for basal rate delivery, insulin sensitivity factor, insulin-

carbohydrate-ratio, CHO, TBR, TIR, time above range (TAR [>10.0

mmol/L]) and mean glucose.

Two days prior to each in-clinic visit, participants inserted the

Dexcom G6 sensor which linked to the Dexcom receiver. On visit

days, participants arrived at the research facility at 4 pm following a

three hour fast. Upon arrival, the Dexcom sensor was linked to the

study equipment, an intravenous canula was inserted for blood

sampling, and participants were fitted with an activity tracker

(ActiGraph GT9X Link, Pensacola, FL). Intervention with one of

the two closed-loop configurations was initiated at 5:00 pm and

continued for the following 26-h (Figure 2). Meals (7:00 pm, 8:00 am

and 12:00 noon) and snacks (3:00 pm) were served throughout the

inpatient period and their CHO contents were based on the

participants’ average daily CHO intake entered in their own pumps

evaluated over a seven-day period. Participants eating <100 g daily

received 30 g CHO per meal, 100-150 g daily received 50 g CHO per

meal, 150-200 g daily received 60 g CHO per meal, and >200 g per day

received 70 g CHO per meal. The snack consisted of 1/3 of the CHO

given per meal, and the dinner consisted of 1.5 times the CHO

content of the other regular meals. The dinner was from McDonalds

and the CHO content was determined using their nutrition calculator

by the study personnel (16), who also prepared the remaining meals

incl. snack. The CHO contents of all meals were blinded from

participants, who made estimations which were used as the value

entered into the DiaCon AP at the start of each meal. Though meals

were kept identical between visits, participants’ estimations

could differ.

Participants were instructed to be in bed, and sleep, if possible,

from 10:00 pm to 7:30 am.

After resting during the day, at 4:30 pm on day two, participants

performed a 45-minute bout of moderate intensity continuous

exercise at an intensity equivalent to ~ 50% of their heart rate (HR)

reserve (17). Participants were fitted with a chest strap telemetry

monitor that linked to the ActiGraph and the stationary bike. Exercise

duration was announced to the DiaCon AP upon initiation of

exercise. During the entirety of the study period, participants were

asked to stay around the research facility, not to exercise and eat, and

to only be away from the research room within the 30-minute window

between plasma samples.

Venous blood samples were drawn every 30 minutes during the

day, every 60 minutes during sleep (10:00 pm until 7:30 am) and every

five to ten minutes during and immediately after exercise (4:30 pm

until 5:30 pm). Plasma glucose (PG) was measured via the YSI 2300

STAT Plus Analyzer (YSI Life Sciences, Yellow Springs, OH).

If PG dropped <3.0 mmol/L at any time during the intervention, 15

grams of oral rescue carbohydrate (dextrose) tablets were provided to the

participants, and plasma sampling was performed every five minutes.

The treatment was repeated every 15 minutes until PG was >3.9 mmol/L.

If PG was >12 mmol/L for more than two hours or >14 mmol/L (not in

relation to a meal), blood ketones were measured in 15minutely intervals

and the study devices were checked for issues. After an hour, if blood

ketones were ≥0.6 mmol/L and PG remained >14 mmol/L, insulin

was administered with an injection pen based on the participants’

insulin-sensitivity factor aiming for PG of 7.0 mmol/L.

During each visit, participants scored side effects using a visual

analog scale (VAS; 0-100) at seven specified timepoints (day 1: 5:00

FIGURE 1

Schematic overview of the study days.
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pm and 7:00 pm and day 2: 8:00 am, 12:00 noon, 3:00 pm, 4:30 pm

and 7:00 pm). Clinically significant side effects were defined as a VAS

score ≥ 15 (18–20).

2.4 Outcomes

The primary outcome was percentage of TBRSG during the 26-h

intervention period. Secondary outcomes were: percentage of TBRPG,

percentage of TIRSG&PG and TARSG&PG, mean SG and PG, coefficient

of variation (CV) and number of rescue CHO interventions. Study

outcomes were also reviewed separately overnight (10:00 pm to 7:30

am) as well as during and after exercise (4:30 pm to 7:00 pm).

2.5 Statistical analysis

To be able to detect a difference in percentage of time with SG

<3.9 mmol/L of 2.3%-points (approximately 30 minutes) with 90%

power, a 5% significance level, and a presumed 3.0%-points

standard deviation (10), it was established that 20 participants

were to be included in the study (2-sided test). Categorical

variables were reported as frequencies (percentage), whereas

continuous variables were reported as mean (SD) or median

(interquartile range [IQR]). Continuous data was assessed for

normality using Shapiro-Wilk test. For normally distributed

variables, paired student’s t-test was used to conduct pairwise

comparisons between the two groups. For skewedly distributed

variables despite log-transformation, the non-parametric

Wilcoxon signed-rank test was used. Missing glucose data were

estimated using linear interpolation. We used McNemar’s test to

assess the significance of the difference in the incidence of level 2

hypoglycemia between the two study arms. Analyses were

performed on an intention-to-treat basis. Statistical analyses were

performed using RStudio version 1.4.

3 Results

As per protocol, we performed an interim analysis to assess

efficiency of the DiaCon algorithm, where we found DH to be

inferior to SH for TIR and TAR and to be non-superior for TBR,

therefore the inclusion was truncated. At that time, 16 had been

screened and 14 were included and enrolled in the study. Two

adolescents were not eligible due to hypoglycemia unawareness.

Before initiation of the first study visit, three participants withdrew

due to scheduling issues [e.g., school absence and lack of time

(Figure 2)]. Thus, 11 participants completed both visits (Table 1),

and no differences were observed between completers and non-

completers on age, sex, BMI, HbA1c, diabetes duration or daily

insulin dose.

3.1 Entire study period

3.1.1 Glycemic metrics
For the 26-h study period we found no differences in TBRSG,

TIRSG, or TARSG between the two study arms (Table 2). The mean ( ±

SD) SG was higher during the DH compared to the SH study arm (8.7

( ± 3.0) mmol/L vs. 8.1 ( ± 3.0) mmol/L, p<0.001), with no difference

in CV. Similarly, no differences were found in PG-derived measures

(Table 2), except for TARPG (33.2 [16.1, 40.7] vs. 11.5 [3.83, 23.0]%,

p=0.02) and meanPG (8.84 ( ± 2.83) vs. 7.51 ( ± 2.98), p=0.03) both of

which were higher during DH.

During DH, six events of SG-derived level 2 hypoglycemia (<3.0

mmol/L) were registered in three participants compared to two events

in two participants during SH (p=0.65). In contrast, four episodes of

PG-derived level 2 hypoglycemia were registered in three participants

during DH compared to five episodes in four participants during SH

FIGURE 2

Flowchart of study.

TABLE 1 Baseline characteristics of the 11 participants who completed
both study visits.

Baseline characteristics Mean ( ± SD) or
median [IQR]

Sex (males [%]) 9 (82%)

Age (years) 14.8 ( ± 1.47)

HbA1c (mmol/mol) 54.6 ( ± 9.20)

BMI (kg/m2) 21.4 ( ± 2.42)

Diabetes duration (years) 5.73 ( ± 2.45)

Total daily insulin (U/kg) 0.94 ( ± 0.26)

Time below range (%) 3.0 [1.5, 6.5]

Time in range (%) 54.0 [46.0, 73.0]

Time above range (%) 43.0 [22.5, 52.0]

Age, HbA1c, BMI, diabetes duration and total daily insulin are expressed as mean ( ± SD). Time
below (<3.9 mmol/L), in (3.9-10.0 mmol/L) and above range (>10.0 mmol/L) are expressed as
median [interquartile range].
Sex is presented as absolute number and percentage.
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(p=0.71). Of those, two of the events were prolonged (>20 minutes)

during DH compared to one during SH.

Figure 3 shows the SG profile during the total study period,

overnight and the period during and after exercise. Individual SG

profiles are provided in the Supplemental Material, Figure 1S.

3.1.2 Insulin and glucagon
There were no differences in insulin delivery, either total insulin

delivery or average basal rate, between the DH and SH study arms

(Table 3, Supplemental Material Figures 2-5S). For the entire study

period, all received glucagon with a median [IQR] administration of

549 [229, 1034] µg (Figures 6-7S).

3.1.3 Carbohydrates (rescue interventions
and meals)

The mean amount of rescue CHO provided was similar between

the two arms (DH: 6.8 ( ± 12.3) grams/participant/visit vs. SH: 9.5 ( ±

15.4) grams/participant/visit, p=0.78).

The median [IQR] amount of CHO provided for each meal was 72

[70, 94] g for dinner, 60 [55, 70] g for breakfast, 60 [55, 70]g for lunch and

TABLE 2 Sensor and plasma glucose values during entire study, overnight and exercise and post-exercise period.

Sensor Glucose Measures Plasma Glucose Measures

Dual-Hormone
(n=11)

Single-Hormone
(n=11) P-value Dual-Hormone

(n=11)
Single-Hormone

(n=11) P-value

Entire study period (5:00 pm, day 1 – 7:00 pm, day 2)

Starting glucose for period (mmol/L) 7.33 ( ± 1.90) 9.35 ( ± 6.61) 0.64w 6.61 ( ± 1.71) 9.14 ( ± 4.90) 0.21

Time below range (%) 1.60 [0, 2.4] 1.28 [0.16, 3.19] 1.00w 0.958 [0, 3.83] 2.56 [0.479, 8.47] 0.26w

Time in range (%) 68.4 [48.7, 76.8] 75.7 [69.8, 87.1] 0.09 66.8 [56.9, 78.9] 79.6 [75.2, 87.4] 0.06

Time above range (%) 28.1 [18.1, 49.8] 23.3 [12.3, 27.2] 0.10 33.2 [16.1, 40.7] 11.5 [3.83, 23.0] 0.02

Mean glucose (mmol/L) 8.7 ( ± 3.02) 8.1 ( ± 3.0) <0.001 8.84 ( ± 2.83) 7.51 ( ± 2.98) 0.03

Coefficient of variation (%) 34.8 ( ± 6.8) 37.3 ( ± 8.6) 0.20 33.59 ( ± 8.17) 39.63 ( ± 8.72) 0.17

Overnight period (10:00 pm – 7:30 am)

Starting glucose for period (mmol/L) 10.3 ( ± 3.55) 9.34 ( ± 3.66) 0.54 9.66 ( ± 3.53) 8.22 ( ± 3.71) 0.24

Time below range (%) 0 [0, 0] 0 [0, 3.48] 0.10w 0 [0, 0] 0 [0, 5.22] 0.36w

Time in range (%) 73.0 [53.9, 87.4] 96.5 [84.3, 100] 0.02w 67.8 [60.4, 89.6] 89.6 [82.6, 100] 0.07w

Time above range (%) 27.0 [12.6, 42.6] 0 [0, 10.0] 0.02w 32.2 [5.22, 37.8] 0 [0, 5.22] 0.02w

Mean glucose (mmol/L) 8.49 ( ± 2.97) 7.25 ( ± 2.25) 0.04 8.34 ( ± 2.70) 6.88 ( ± 2.38) 0.01

Coefficient of variation (%) 35.0 ( ± 10.8) 31.0 ( ± 8.9) 0.39 32.34 ( ± 11.62) 34.66 ( ± 9.78) 0.69

Exercise and post-exercise period (4:30 pm – 7:00 pm)

Starting glucose for period (mmol/L) 10.1 ( ± 3.15) 9.31 ( ± 2.30) 0.35 9.40 ( ± 2.92) 7.71 ( ± 2.25) 0.14

Time below range (%) 0 [0, 0] 0 [0, 0] 0.42w 0 [0, 4.84] 0 [0, 14.5] 0.78w

Time in range (%) 64.5 [50.0, 91.9] 83.9 [80.6, 100] 0.02w 67.7 [32.3, 99.4] 93.5 [82.3, 100] 0.10w

Time above range (%) 22.6 [0, 37.1] 12.9 [0, 17.7] 0.06w 1.18 [0, 58.1] 0 [0, 3.23] 0.09w

Mean glucose (mmol/L) 7.92 ( ± 2.92) 6.81 ( ± 1.91) 0.13 7.91 ( ± 2.70) 6.06 ( ± 1.76) 0.05

Coefficient of variation (%) 37.0 ( ± 9.6) 28.2 ( ± 7.7) 0.65 34.16 ( ± 11.51) 29.10 ( ± 7.49) 0.49

Changeduring-exercise (mmol/L) -2.5 ( ± 1.6) -3.2 ( ± 1.0) 0.14 -2.5 ( ± 1.8) -2.7 ( ± 1.7) 0.73

Heart Rate Telemetry during exercise (4:30 pm – 5:15 pm)

HR targetduring-exercise (BPM) 133 ( ± 4.6) 132 ( ± 4.8) 0.33

HR target accuracyduring-exercise (%) 94.6 ( ± 5.7) 94.2 ( ± 4.6) 0.52

Time below (<3.9 mmol/L), in (3.9-10.0 mmol/L) and above range (>10.0 mmol/L) are reported as median [interquartile range], starting glucose, mean glucose and coefficient of variation are reported
as mean ( ± SD) and level 2 hypoglycemia is presented as events/participant. Time in range 3.9-10.0 mmol/L, time below range <3.9 mmol/L and time above range >10.0 mmol/L.
wnon-parametric test. For level 2 hypoglycemic events McNemars test was performed. HR, Heart Rate; BPM, Beats per minute. Measures notated with during-exercise depicts the 45-minutes bout of
exercise time period.
P-values marked with w have been analysed using non-parametric test. Otherwise, paired t-tests have been applied. P-values < 0.05 were considered statistically significant (marked bold).
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21 [19, 24]g for snacks, and we found no difference in the accuracy (%) of

the participants’ CHO estimations between the two study arms.

3.2 Overnight period

During the overnight period, the SH configuration outperformed

the DH with more TIRSG (96.5 [84.3, 100] vs. 73.0 [53.9, 87.4]%,

p=0.02), less TARSG (0 [0.0, 10.0] vs. 27.0 [12.6, 42.6]%, p=0.02) and

lower mean SG (Table 2). There were no differences in TBRSG or CV.

TARPG was higher during DH than during SH, with no differences in

TIRPG or TBRPG (Table 2). The overnight amount of total insulin

delivered was lower during SH than during DH (Table 3). Seven

participants received glucagon overnight by the DH system (549 [409,

599] µg). Data for the entire study population is depicted in Table 3.

Overnight we found one and zero SG-derived hypoglycemic

episodes, respectively, in the DH and SH arm. We did, however,

B

C

A

FIGURE 3

Median (interquartile range) sensor glucose values for Dual-hormone (blue) and Single-Hormone (pink) configuration. (A) Entire period. (B) Overnight
period (10:00 pm-7:30 am). (C) Exercise and post-exercise period. Black dotted lines mark lower and upper boundary of target glycemic range of 3.9 to
10.0 mmol/L, respectively.

TABLE 3 Study medication administration. Insulin measures are reported as mean (SD) and glucagon as median [IQR].

Insulin and glucagon delivery Dual-Hormone
(N=11)

Single-Hormone
(N=11) P-value

Entire study period (5:00 pm, day 1 – 7:00 pm, day 2)

Total insulin delivery (U/24h) 54.8 (19.0) 54.6 (15.4) 0.95

Basal insulin delivery (U/h) 1.03 (0.36) 1.01 (0.30) 0.77w

Bolus insulin delivery (U/24h) 29.9 (12.4) 30.3 (9.6) 0.92

Glucagon delivery (µg/26-h) 549 [229, 1034] - -

Overnight period (10:00 pm – 7:30 am)

Total insulin delivery (U/night) 12.94 (4.14) 10.51 (3.08) 0.01

Basal insulin delivery (U/h) 1.09 (0.37) 1.05 (0.34) 0.15w

Bolus insulin delivery (U/night) 2.55 (2.50) 0.5 (1.13) 0.04w

Glucagon delivery (µg/night) 298 [0, 462] - -

Exercise and post-exercise period (4:30 pm – 7:00 pm)

Total insulin delivery (U/exercise) 2.24 (1.07) 2.19 (0.98) 0.88

Basal insulin delivery (U/h) 0.80 (0.38) 0.87 (0.40) 0.51

Bolus insulin delivery (U/exercise) 0.25 (0.47) 0.01 (0.03) 0.14w

Glucagon delivery (µg/period) 1 [0, 275] - -

P-values marked with w have been analysed using non-parametric test. Otherwise, paired t-tests have been applied. P-values < 0.05 were considered statistically significant (marked bold).
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not provide any rescue glucose interventions as PG was never <3.0

mmol/L in either arm.

3.3 Exercise period

For the exercise and post-exercise phases, the SH system

performed superiorly to DH with more TIRSG (83.9 [80.6, 100.0]

vs. 64.5 [50.0, 91.9]%, p=0.02). There were no differences in TARSG,

TBRSG, mean SG, CV or in PG (Table 2). For this period, there was no

difference in amount of insulin delivered. A total of five participants

received glucagon during and after exercise (300 [250, 300]

µg) (Table 3).

One participant received rescue CHO following exercise in the

DH arm, and two participants received one and two rescue CHO

interventions, respectively, in the SH arm. The participant needing

two rescue interventions around exercise experienced level 2

hypoglycemia during exercise, and the exercise bout was therefore

cut short. None of the DH exercise sessions were interrupted.

The exercise starting SG and drop in SG during exercise (4:30 to

5:15 pm) were comparable between the two study visits (Table 2).

Furthermore, we found no difference in the estimated HR target

during exercise or in the accuracy (%) of which participants reached

their target between the two visits (Table 2).

3.4 Side effects

No severe adverse events were observed. Three participants (27%)

reported a clinically significant measure of nausea during the DH arm

compared with none in the SH arm. Headache was reported by four

(36%) in both the SH and the DH arm. Stomach-ache was reported by

two (18%) in the DH arm and one (9%) in the SH arm. None

experienced vomiting. All reported side effects were mild in severity

and, besides from hypoglycemic- and hyperglycemic episodes,

required no intervention.

3.5 Technological issues

During the study, there were a few technological issues. One

participant (during the DH visit) experienced prolonged pressure

induced sensor attenuation causing the sensor to register level 2

hypoglycemia, while PG was well within range. This caused wrongful

glucagon administration and subsequent hyperglycemia. During two

DH study visits, glucagon occluded the pump which required a

change of infusion set. During both study arms, the phone lost

connection to the sensor. However, all connection issues were

automatically reestablished without intervention from the study

personnel. These phone-sensor connection issues only triggered an

alarm if they lasted more than 15 minutes, thus shorter connection

loses may have been present, without the study personnel being

aware. Once during a DH study visit, there was a disconnection

between the phone and the insulin pumps which was resolved by

restarting the entire system.

4 Discussion

In this 26-h inpatient study, we compared the performance of the

DiaCon DH and SH configurations in adolescents with type 1 diabetes.

For the entire study period, we found no differences in TBRSG/PG, TIRSG/

PG,TARSG/PG, or in the amount of rescue glucose needed. However,

despite equivalency in TBRSG during the overnight period and around

exercise, SH achieved more TIRSG and less TARSG compared to DH.

The DiaCon AP has previously been tested in adults with type 1

diabetes (15), showing that DH was superior to SH in handling

hypoglycemia. These findings were in line with two systematic reviews

and meta-analyses performed in 2018, finding that DH was superior to

SH for TBR and TIR (4, 9). Still, only two studies have performed head-

to-head comparison of DH and SH in adolescents with type 1 diabetes

(21, 22). In line with our findings, the first study showed no significant

differences in TIR, TAR or TBR between SH and DH for the adolescents

during a 24-h observation period (21). Further, they found a tendency for

SH to achieve higher TIR than DH during the overnight period (11:00

pm to 8:00 am), but it did not reach statistical significance. The other

study was an overnight study showing that the addition of glucagon

significantly improved TIR and reduced the time in level 1 hypoglycemia,

but had similar time in level 2 hypoglycemia when compared with SH

(22). Both studies included a third study arm with usual care, and

generally both SH and DH achieved better glycemic control compared to

this arm. Recently, a pooled analysis was performed for nocturnal control

in children and adolescents using SH and DH. They found superiority in

favor of the DH configuration for TIR, level 1 hypoglycemia and level 2

hyperglycemia (23).

Even though our SH configurationmanaged to ensure good glycemic

control comparable to that of the commercially available APs with a

TIRSG of 75% for the whole study period, 83% during exercise and 95%

overnight, hypoglycemia still posed a challenge (4, 5). Indeed, seven

(64%) participants had at least one hypoglycemic event, whilst six

experienced recurrent events. This issue was not resolved by addition

of glucagon in our DH configuration. The reasonmay be attributed to the

different conditions for parameter estimations in the DiaCon AP rather

than glucagon per se. While the insulin algorithm was individualized and

parameter estimates were based on individual insulin pump and CGM

data, the parameter estimates for the glucagon algorithm were generic

and similar for all participants. The uncertainty of the individual glucose

response to glucagon (median[IQR] glucagon administration 549 [229,

1034] µg), therefore, produced equally uncertain glucose predictions for

the system, resulting in less correct insulin dosing in the DH

configuration. In this study, the glucagon sensitivity was not adaptive,

and we did not have the data to estimate individual glucagon parameters.

Whether addition of these features would have improved the DH study

results remain uncertain. The DiaCon AP was further challenged by

known technical issues, i.e., glucagon pump occlusions and pressure

induced sensor attenuation, both of which unfortunately affected the

DiaCon AP predictions and hence, it’s performance during the DH study

days. Glucagon occlusions happen quite commonly when using native

glucagon due to rapid fibrillation after reconstitution (12, 24–26), and

although we tried to avoid them by changing glucagon every 22 hours,

they still occurred. Future algorithms would therefore benefit immensely

from being able to detect occlusions and pressure induced sensor
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attenuations to avoid miscommunication between the systems’

predictions and the actual CGM data and hormonal delivery. Still,

even with improved occlusion detection in the algorithms, a stable

formulation of glucagon is required before it is feasible to be used in a

real-world setting. New, soluble formulations have been developed

(Dasiglucagon®, Baqsimi™ and Gvoke®/XeriSol®), but are still only

approved for treatment of severe hypoglycemia. Recently published and

ongoing clinical trials have shown promising results in using soluble

glucagon for treatment of non-severe hypoglycemia, regardless of

whether glucagon has been delivered through automated pumps or via

pen-injections (13, 27, 28).

In the overnight period participants were administered higher

doses of bolus insulin during DH compared to SH (2.55 [ ± 2.50] vs.

0.5 [ ± 1.13] IE). This was most likely due to a couple of different

factors. During the DH arm some participants were administered

glucagon right before dinner announcement, resulting in inadequate

meal bolus insulin, and subsequent hyperglycemia. Due to restrictions

in the DiaCon AP around meals this led to insulin corrections being

administered in the night hours (14). Another possible explanation

could be the occurrence of pressure induced sensor augmentations.

These caused wrongful glucagon administration and hyperglycemia,

which was followed by increased insulin supply when the

augmentation was resolved. Furthermore, a few participants

experienced oscillating sensor glucose levels, as they were

overcorrected and entered a glucagon-insulin oscillating cycle. With

the result from the SH arm in mind (TIR 96.5%) it is fair to speculate

whether a specific night setting should be developed, making the

glucagon algorithm during the night less aggressive, but as our study

was rather small and the glucagon algorithm was faced with several

challenges, we still think it is too unsafe to conclude (10).

Initially, we hypothesized that the addition of glucagon could

have counteracted the increased risk for hypoglycemia during

physical activity (8). However, we found that SH was superior to

DH with more TIRSG, and no difference in TARSG or TBRSG/PG

during and after exercise. We speculate whether the higher starting

glucose level before exercise for DH (10.1 [ ± 3.15] vs. 9.31 [ ± 2.30],

p=0.35), though not statistically significant, may have reduced the

need for glucagon around exercise – causing a systematic error when

interpreting the glucose data that are in favor for SH. In fact, only five

participants received glucagon in relation to exercise. Among four

adult head-to-head studies, DH was found to be superior to SH in

avoiding hypoglycemia during exercise, whereas only one of the

studies also included adolescents (11–13, 15). In the combined

adult and adolescent study, no differences were found between the

two hormonal configurations (21). Unfortunately, no subgroup

analysis – adult versus adolescents - for the exercise period was

reported. Our study period ended 1 hour and 45 minutes after the

exercise bout, and we were therefore only able to investigate a small

window of the post-exercise period. Previous studies, however, have

shown that SH systems could sufficiently keep glucose in range during

the post-exercise period (21, 29). This could indicate that glucagon

may be especially beneficial during aerobic exercise, where blood

glucose changes rapidly and insulin reduction or suspension is

inadequate, but requirement may waiver in the post-exercise period

when the pronounced acute glycemic declines induced by exercise

have passed (10).

The side effects experienced in this study were mild and self-

limiting, but the adolescents reported more clinically significant

events of nausea during DH than during SH (27% vs. 0%). The

other side effects were equally distributed across both study visits, as

reported by other study groups (26). A new outpatient study

investigating dasiglucagon pen treatment for non-severe

hypoglycemia found a higher occurrence of mild nausea with

glucagon treatment, but the participants would still incorporate it

into their regular diabetes treatment if possible (30). Taken

collectively nausea remains a limitation of DH use and finding ways

to reso lve such shou ld be a major cons idera t ion in

future developments.

The current study had some limitations. Firstly, a small sample

size makes the generalizability of the study results difficult.

Furthermore , the current DiaCon AP set-up was too

comprehensive for commercial pump use. Simpler set-up versions

of the DiaCon AP, should be developed. The use of native glucagon

limited the possibility to be used in real-world settings, but the current

data show that soluble glucagon has a similar response. Furthermore,

we conducted our study on adolescents of 13-17-years-old. This age

group is different from all other due to the considerable hormonal and

physiological changes over time. Therefore, it is important that

studies with DH and SH APs also include adolescents before

concluding whether it is beneficial in this age group. We chose a

McDonalds meal as dinner, which is not typically classified as a

balanced and healthy meal, however, we decided to do so in order to

test our configurations maximally during the limited study time.

Meals with a high carbohydrate and fat content are usually more

difficultly handled for people with type 1 diabetes and testing our

system in such a situation was therefore important. Furthermore,

McDonalds is known worldwide making the approach universally

applicable. Our participants were overall better regulated during the

study days than in their everyday lives, though, we did not have a

usual care control arm to test whether the superior glycemic control

achieved by the DiaCon AP would persist an inpatient setting. This

was the first 26-h inpatient study, during which the DH configuration

was tested during multiple metabolic challenges.

5 Conclusion

To conclude, the two configurations performed equally well; but

during night and exercise, SH achieved better glucose control than

DH with equal amount of rescue glucose needed.

Whether it is justifiable to add glucagon to the AP systems

remains unanswered. Our SH configuration managed to yield good

glycemic control, but hypoglycemia still posed a challenge which

neither of our configurations managed to overcome. However, as we

become more familiar with the use of glucagon and with more stable

glucagon formulations readily available, improved DH algorithms can

potentially be a key player in resolving this.
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FIGURE 1S:

Individual SG measures for participant during the entire study period for dual-

hormone (blue) and single-hormone (pink). Black dotted lines mark the lower
and upper boundary of target glycemic range of 3.9 mmol/L to 10.0 mmol/

L, respectively.

FIGURE 2S:

Mean (±SD) basal insulin (IE) delivered during the entire study period for dual-

hormone (blue) and single-hormone (pink). Sleep and exercise periods marked

in the figure.

FIGURE 3S:

Mean (±SD) total insulin (IE) delivered during the entire study period for dual-

hormone (blue) and single-hormone (pink). Sleep and exercise periods marked
in the figure.

FIGURE 4S:

Mean (±SD) bolus insulin (IE) delivered during the entire study period for dual-

hormone (blue) and single-hormone (pink). Sleep and exercise periods marked
in the figure.

FIGURE 5S:

Individual insulin delivery for each participant during the entire study period for
dual-hormone (blue) and single-hormone (pink).

FIGURE 6S:

Mean glucagon delivery during the entire dual-hormone study period. Sleep

and exercise periods marked in the figure.

FIGURE 7S:

Individual glucagon delivery for each participant during the entire dual-

hormone study period.
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Summary
In this technical report, we describe the individual parameter estimation and results of
a phase 1 and a phase 2 clinical trial of the DiaCon dual-hormone artificial pancreas
based on nonlinear model predictive in adolescents with type 1 diabetes from a technical
perspective. The two trials were conducted between October, 2021 and April, 2022,
and the 14 participants were between 13 and 17 years old at the time of recruitment.
In the phase 1 trial, there is one visit for each of 3 participants (only dual-hormone
treatment), and there are two visits for each of 11 participants in the phase 2 trial (both
single- and dual-hormone treatment). The AP was primarily developed by John Bagterp
Jørgensen’s research group at the Department of Applied Mathematics and Computer
Science, Technical University of Denmark, and the clinical trials were primarily carried
out by Kirsten Nørgaard’s research group at Clinical Research, Steno Diabetes Center
Copenhagen.
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Executive summary
Objective

• Test a dual-hormone (DH) and a single-hormone (SH) artificial pancreas (AP) in
a clinical trial with adolescents.

• Test the feasibility of using nonlinear model predictive control (NMPC) for APs.

• Phase 1 trial: Identify and adress minor issues with the AP.

• Phase 2 trial: Evaluate performance and compare the DH configuration to the SH
configuration of the AP.

Artificial pancreas

• The AP consists of 1) a Dexcom G6 sensor, 2) two Dana Diabecare RS pumps,
and 3) a control algorithm.

• The control algorithm is based on an adaptive NMPC algorithm.

• The AP uses an extension of the Medtronic Virtual Patient (MVP) model.

• The optimal control problem (OCP) is solved using a multiple-shooting approach
combined with a sequential quadratic programming (SQP) algorithm.

• The AP algorithm switches between two modes where it administers either insulin
or glucagon. In the single-hormone AP, it is not possible to switch to administering
glucagon. All other aspects of the two APs are the same.

Pre-trial parameter estimation

• The parameters were estimated using a maximum likelihood (ML) based prediction
error method (PEM) from CGM measurements, meal carbohydrate estimates, and
basal and meal bolus insulin administration from the participants.

• The amount of data available for estimation was different for each participant. For
all data sets, there appeared to be several meals without a corresponding estimate
of the carbohydrate content.
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iv Executive summary

• We selected a subset of the data for estimation where there appeared to be no
missing information. This period of time was typically short, e.g., less than 24 h
and sometimes only a few hours.

• The estimation required many decisions based on experience as well as trial and
error to choose, e.g., the subset of the data used for estimation, which parameters
to estimate, and the values of parameters that are not estimated from data.

• We evaluated the estimated parameters with a deterministic simulation that should
fit the data used for estimation and by simulation of the meal response for insulin
boli computed from different insulin-to-carb (ICR) ratios.

Clinical trials

• Phase 1 trial: The phase 1 trial (n = 3) only involved a single visit where the
dual-hormone AP was tested.

• Phase 2 trial: The phase 2 trial (n = 11) involved two visits; one with the single-
hormone AP and one with the dual-hormone AP.

• Each visit lasted 26 h. The visits started at 17:00 on the first day and ends at
19:00 on the second day. The participants had dinner at 19:00 on day one and
slept from 22:00 to 07:30. The participants had breakfast at 08:00, lunch at 12:00,
and a snack at 15:00 on day two. Finally, the participants exercised from 16:30 to
17:15 with moderate intensity.

Outcomes

• The trials displayed that it is feasible to use NMPC for APs and that both the
DH and SH AP were able to control the blood glucose concentration.

• Identifying a model can be a challenging and time-consuming process due to miss-
ing data and sometimes also incorrectly announced meals and insulin boli.

• During the studies, we started to set, e.g., the ICR to a value that seemed reason-
able instead of using the participants’ average value. We also shifted the timing
of some of the meals to match the peaks in the glucose concentration instead of
directly using the reported data. These adaptations seemed to improve the perfor-
mance of the AP.

• Pressure induced sensor attenuations (PISAs) are challenging for DH APs as
glucagon can be administered even if the glucose concentration is not low. Occlu-
sions in the glucagon pump and lost connections also influenced the performance
of the AP.

• The predicted glucagon response was inaccurate for many participants as we used
the same parameters for all participants.
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Executive summary v

• Many participants received too much insulin after glucagon was administered and
caused oscillations in some of the DH studies.

• Despite the challenges related to administration of glucagon in some studies it also
prevented hypoglycemia and the need for rescue carbs in others.
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CHAPTER 1
Introduction

In this technical report, we describe the individual parameter estimation and results of
a phase 1 and a phase 2 trial of a dual-hormone and a single-hormone artificial pancreas
(AP) for controlling the blood glucose concentration in adolescents with type 1 diabetes
(T1D) from a technical perspective. We describe each study in the trials individually
and we refer to Lindkvist et al. [2] for a clinical description of the trial outcomes and
Reenberg et al. [3] for the mathematical details. In this section, we summarize the key
details of the clinical trials and provide an outline of the report.

Objective The objective of the clinical trials was to test an AP which can administer
both insulin and glucagon and an AP that can only administer insulin in terms the
targets specified in [1] where Table 1.1 shows the target glucose ranges. Furthermore,
we tested the feasibility of using nonlinear model predictive control (NMPC) for APs.
The purpose of the phase 1 trial was to identify and address minor issues with the AP,
and the purpose of the phase 2 trial was to evaluate the performance and compare a
dual-hormone AP to a single-hormone AP.

Artificial pancreas We used a dual-hormone AP consisting of 1) a sensor, 2) two
actuators, and 3) a control algorithm. The sensor was a Dexcom G6 continuous glucose
monitor1 (CGM), and the actuators were two Dana Diabecare RS pumps2 from the
company Sooil. The pumps were used to administer insulin and glucagon, and the
control algorithm was implemented in an Android app, which is ran on a Samsung Galaxy
A5 (2017) smartphone3. The dual-hormone AP algorithm switches between two modes
where it administers either insulin or glucagon. The switch is based on measurements
of the subcutaneous glucose concentration as well as estimates and predictions of the
blood glucose concentration. In the single-hormone AP, it is not possible to switch to
administering glucagon. All other aspects of the two APs are the same.

The control algorithm is based on an adaptive NMPC algorithm. It uses an extension
of the Medtronic Virtual Patient (MVP) model. The (deterministic) optimal control
problem (OCP) is solved using a multiple-shooting approach combined with a sequential
quadratic programming (SQP) algorithm. The states and the initial condition in the
OCP are estimated using the continuous-discrete extended Kalman filter (CD-EKF),
which also (simultaneously) estimates the insulin sensitivity (a parameter in the MVP

1www.dexcom.com/g6-cgm-system (Accessed: June 27th, 2022)
2www.sooil.com/eng/product/dana-rs.php (Accessed: June 27th, 2022)
3www.samsung.com/dk/support/model/SM-A520FZKANEE (Accessed: June 27th, 2022)

L Technical Report 249



2 1 Introduction

Table 1.1: The five glycemic ranges described by Batteline et al. [1].

Category Range [mmol/L] Color Target [%]
Missing measurements - Grey 0
Level 2 hyperglycemia ]13.9, ∞ [ Orange <5.0
Level 1 hyperglycemia ]10.0, 13.9] Yellow <20.0
Normoglycemia [ 3.9, 10.0] Green >70.0
Level 1 hypoglycemia [ 3.0, 3.9[ Light red <4.0
Level 2 hypoglycemia [ 0.0, 3.0[ Red <1.0

model). As the control algorithm updates a model parameter based on feedback (CGM
measurements), it is adaptive.

The parameters in the MVP model were estimated using a maximum likelihood (ML)
based prediction error method (PEM) based on the participants’ own CGM measure-
ments, meal carbohydrate estimates, and basal and meal bolus insulin administration.
Furthermore, we received the participants’ own values for their insulin-to-carb (ICR)
ratio and their insulin-sensitivity-factor (ISF). The amount of data available for esti-
mation was different for each participant, and for all data sets, there appeared to be
several meals without a corresponding estimate of the carbohydrate content. Therefore,
for each participant, we selected a period of time where the majority of the meal carbo-
hydrate contents appeared to be properly estimated and used this subset of the data to
estimate the parameter values. This period of time was typically short, e.g., less than
24 h. Furthermore, the estimation was not fully automatic. It required many decisions
based on experience as well as trial and error to choose, e.g., the subset of the data
used for estimation, which parameters to estimate, and the values of parameters that
are not estimated from data. We evaluated the estimated parameters with a determin-
istic simulation that should fit the data used for estimation and by simulation of the
meal response for insulin boli computed from different ICRs. The simulation of the
meal response was used to verify that meals result in a post-prandial peak and that the
corresponding insulin bolus causes the blood glucose concentration to decrease within a
reasonable amount of time.

Time period The phase 1 trial was conducted between October 6th, 2021 and Novem-
ber 3rd, 2021, and the phase 2 trial was conducted between November 23rd, 2022 and
April 26th, 2022.

Protocol The phase 1 trial only involved a single visit where the dual-hormone AP
was tested. The phase 2 trial involved two visits; one with the single-hormone AP and
one with the dual-hormone AP. Each visit lasted 26 h. In the phase 1 trial, the visit
started at 17:00 on the first day and ends at 19:00 on the second day. The participant
consumed a meal at 19:00 on day one and slept from 22:00 (day one) to 07:30 (day two).
Next, breakfast and lunch were consumed at 08:00 and 12:00, respectively, and a snack
was consumed at 15:00. Finally, the participant exercised from 16:30 to 17:15 using an
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indoor bike trainer. Fig. 1.1 shows the protocol. In the phase 2 trial, two participants’
visits sometimes overlapped. In that case, one visit would proceed as in the phase 1
trial, and all aspects of the other visit were delayed by 15 minutes, i.e., it lasted from
17:15 on day one to 19:15 on day two. Otherwise, the protocol was identical in the two
studies. For some participants, there were slight variations in the actual starting time
due to specific details of the individual visits.

Participants The participants were between 13 and 17 years old when they were
recruited for the trials. There were 3 participants in the phase 1 trial, and 11 participants
in the phase 2 trial. In their daily lives, the participants used a CGM and an insulin
pump in either an open- or a closed-loop configuration.

DIACON partners DIACON is a collaboration between 1) John Bagterp Jørgensen’s
research group at the Department of Applied Mathematics and Computer Science, Tech-
nical University of Denmark, and 2) Kirsten Nørgaard’s research group at Clinical Re-
search, Steno Diabetes Center Copenhagen. The control algorithm and the app was
developed by Jørgensen’s group with assistance from Nørgaard’s group. The clinical
trials were carried out at Steno Diabetes Center Copenhagen by Nørgaard’s group with
assistance from Jørgensen’s group.

Jørgensen’s group consists of Dimitri Boiroux, Maria Sejersen, Tobias K. S. Ritschel,
and Asbjørn Thode Reenberg. Nørgaard’s group consists of Jannet Svensson, Ajenthen
G. Ranjan, Christian Laugesen, and Emilie Bundgaard Lindkvist.

Structure of the report In Chapter 2, we describe the parameter estimation and
results of the phase 1 trial and the modifications made to the AP after each visit. In
Chapter 3, we describe and discuss the parameter estimation and results of each of the
phase 2 trials, and in Chapter 4, we provide conclusions based on the clinical trial.

22:00 

Snack

Breakfast
Dinner Lunch

ExerciseSleep

19:00 07:30 08:00 12:00 15:00 16:30 17:15 

Start

17:00

End

19:00 

Figure 1.1: Schematic of the protocol used in the clinical trials.

L Technical Report 251



4

252 L Technical Report



CHAPTER 2
Phase 1 trial

In this chapter, we show the parameter estimation and results from all the studies in
the phase 1 trial. The studies are shown in chronological order. The app was updated
to save all values from the control algorithm after the phase 1 trial. Therefore, we are
unable to definitively distinguish between insulin meal boli and correction boli in the
phase 1 trial and show the combined insulin boli in the figures. Furthermore, the YSI
measurements from participant 2 in the phase 1 trial are missing.

2.1 Participant 1

2.1.1 Parameter estimation
We used around 40 hours of data with multiple meals and insulin boli. Figure 2.1 shows
the data used for estimation and a simulation with the estimated parameters. For this
participant, we fixed EGP , k1, and QlogSI , and 1/Vg was on the boundary. GEZI was
tuned to correct the basal rate to match the participants’ normal basal rate which was
∼ 25 mU/min. ICR and ISF were set to the mean values. Table 2.1 shows the estimated
parameters. Figure 2.2 shows the meal response with an insulin bolus computed from
different insulin-to-carb (ICR) ratios.

2.1.2 Results
Table 2.2 and Figure 2.3 shows the outcomes for the glycemic targets and Figure 2.4
shows the results. The blood glucose concentration oscillates a lot and the controller
should not give as much insulin after glucagon. The glucagon response was much larger
than we expected. We verified that the controller and heuristics were working as ex-
pected. The controller is more aggressive with glucagon than in the adult study, which
was also as expected. The insulin basal rate for the participant (1.5 U/h) seemed to be
a bit high. We noted that, there was a problem, where the app crashed after multiple
missing measurements. We increased the penalty of deviating from the basal rate after
this study to administer less insulin after glucagon administration to reduce oscillations.
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6 2 Phase 1 trial

Table 2.1: Participant 1. Parameter estimates for participant 1 in the phase 1 trial.
Parameter Initial guess Lower bound Estimate Upper bound Unit

k1 0.0167 0.00667 0.02 0.2 1/min
EGP 0.96 0.1 0.7 3 mg/(dL min)
1/Vg 0.0074 0.005 0.005 0.125 1/dL
km 0.027 0.00667 0.0184 0.1 1/min
Qg 15 0 22.7 30 (mg/(dL min1/2))2

log(Qlog SI) -11.5 -11.5 -11.5 -11.5 (L/(mU min3/2))2

ISc(0) 0.0005 0 89.7 1e+06 mU/L
IP (0) 34.3 0 2.99 1e+06 mU/L

IEff (0) 0.0567 0 0.00696 1e+06 1/min
G(0) 123 0 123 1e+06 mg/dL
D1(0) 0.5 0 0.00494 0.005 mg
D2(0) 0.5 0 0.00493 0.005 mg

log(SI(0)) -6.65 -10 -8.3 0 log(L/(mU min))
GEZI – – 0.0023 – 1/min
ICR – – 6.71 – g/U
ISF – – 1.93 – mmol/(L U)

Table 2.2: Participant 1. Values of the glycemic targets for participant 1 in the
phase 1 trial.

Quantity Target DH

Average glucose [mmol/L] < 8.55 7.26
GMI [%] < 7 6.44
GV [%] ≤ 36 39.16
Active CGM [%] 100 99.37
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Figure 2.1: Participant 1. Parameter estimation for participant 1 in the phase 1
trial. From the top: 1) CGM measurements (blue dots) and a deterministic
simulation with the estimated parameters (red line), 2) announced meals,
3) basal insulin rate, and 4) bolus insulin.
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8 2 Phase 1 trial

Figure 2.2: Participant 1. Evaluation of the meal response for participant 1 in the
phase 1 trial with an insulin bolus computed using different ICRs.

2.9%
5.7%

72.4%

17.5%

Figure 2.3: Participant 1. TIRs for the DH study for participant 1 in the phase 1
trial.
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Figure 2.4: Participant 1. Results from the DH study for participant 1 in the phase 1
trial with 72.4% time in range. From the top: 1) CGM measurements (blue
dotted line), YSI measurements (red crosses), and setpoint (red dashed
line), 2) meals, 3) exercise, 4) basal insulin (blue line) and maximum al-
lowed basal insulin (red dots), 5) insulin boli (blue line) and maximum
allowed insulin boli (red dots), and 6) glucagon boli (blue line) and maxi-
mum allowed glucagon boli (red dots).
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2.2 Participant 2

2.2.1 Parameter estimation
We used around 20 hours of data with 3 meals that all had a corresponding insulin
bolus. Figure 2.5 shows the data used for estimation and a simulation with the estimated
parameters. The fit for this participant was very good. In this study, we fixed EGP ,
km, and QlogSI , and 1/Vg was on the boundary. GEZI was tuned to make the estimated
basal rate match the participants’ normal basal rate which was ∼ 18.68 mU/min. We
computed ICR and ISF as the mean values for the participant. Table 2.3 shows the
estimated parameters. Figure 2.6 shows the meal response for an insulin bolus computed
from different ICRs.

2.2.2 Results
Table 2.4 and Figure 2.7 shows the outcomes for the glycemic targets and Figure 2.8
shows the results. This study went very well with nearly 100% TIR. Glucagon was
administered to prevent hypoglycemic events after dinner and also kept the participant
in range during exercise. After the study, we discussed if the penalty on hyperglycemia
should be changed, but we did not make any changes after this study.
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Table 2.3: Participant 2. Parameter estimates for participant 2 in the phase 1 trial.
Desc Param. init. lb. estim. ub. unit

inv. ins. TC k1 0.0167 0.00667 0.0169 0.2 1/min
ins. sens. log(SI(0)) -6.65 -10 -8 0 log((1/(mU/L))/min)

Endo. gluc. prod EGP 0.96 0.1 0.6 3 (mg/dL)/min
inv. dist. vol. 1/Vg 0.0952 0.005 0.005 0.125 1/dL
inv. meal TC km 0.027 0.00667 0.02 0.1 1/min
IC ins. sub. ISc(0) 0.0005 0 68.6 1e+06 mU/L
IC ins. plas. IP (0) 34.3 0 0.834 1e+06 mU/L
IC ins. eff. IEff (0) 0.0567 0 0.119 1e+06 1/min

IC gluc. conc. G(0) 187 0 188 1e+06 mg/dL
IC meal 1 D1(0) 0.5 0 111 300 mg
IC meal 2 D2(0) 0.5 0 230 300 mg
gluc. cov. Qg 15 0 14.4 30 -
ins. cov. log(Qlog SI) -11.5 -11.5 -11.5 -11.5 -
gluc. eff. GEZI - - 0.00146 - 1/min

ins. to carb. rat. ICR - - 7.04 - g/U
ins. sens. fac. ISF - - 1.16 - mmol/L/U

Table 2.4: Participant 2. Values of the glycemic targets for participant 2 in the
phase 1 trial.

Quantity Target DH

Average glucose [mmol/L] < 8.55 6.25
GMI [%] < 7 6.00
GV [%] ≤ 36 21.13
Active CGM [%] 100 100.0
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Figure 2.5: Participant 2. Parameter estimation for participant 2 in the phase 1
trial. From the top: 1) CGM measurements (blue dots) and a deterministic
simulation with the estimated parameters (red line), 2) announced meals,
3) basal insulin rate, and 4) bolus insulin.
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Figure 2.6: Participant 2. Evaluation of the meal responses participant 2 in the
phase 1 trial with an insulin bolus computed from different ICRs.

2.5%

96.5%

Figure 2.7: Participant 2. TIRs for the DH study for participant 2 in the phase 1
trial.
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Figure 2.8: Participant 2. Results from the DH study for participant 2 in the phase 1
trial with 96.5% time in range. From the top: 1) CGM measurements
(blue dotted line) and setpoint (red dashed line), 2) meals, 3) exercise, 4)
basal insulin (blue line) and maximum allowed basal insulin (red dots), 5)
insulin boli (blue line) and maximum allowed insulin boli (red dots), and 6)
glucagon boli (blue line) and maximum allowed glucagon boli (red dots).
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2.3 Participant 3

2.3.1 Parameter estimation
We used around 13 hours of data with 3 meals that had a corresponding insulin bolus.
There seems to be a missing meal around 10:00, but this was the best data we could
find. Figure 2.9 shows the data used for estimation and a simulation with the estimated
parameters. The fit is very good over night, but the meal responses are less accurate,
which could be becuase of a missing meal. In this study, we fixed EGP , km, k1, and
QlogSI and 1/Vg was on the boundary. GEZI was tuned to make the estimated basal
rate match the participants’ normal basal rate which was ∼ 14.76 mU/min. For the
2 previous participants the meal time constant was for 1) fixed at 50 minutes and for
2) estimated to be around 50 minutes, but we observed that the model predicted that
meals had a longer response, than what the results showed. Therefore, we fixed the meal
time constant to 40 minutes for this participant, which also seemed to match the data
used for estimation. We computed ICR and ISF as the mean values for the participant.
Table 2.5 shows the estimated parameters and Figure 2.10 shows the meal response for
an insulin bolus computed from different ICRs.

2.3.2 Results
Table 2.6 and Figure 2.11 shows the outcomes for the glycemic targets and Figure 2.12
shows the results. This study also resulted in a high TIR and a low amount of time
in hypoglycemia, but the app crashed around 11:00, which meant not all glucagon was
administered. Therefore, the participant also required rescue carbs. If the app had not
crashed, the peak before the snack could possibly have been avoided. We decided to
continue to calibrate xDrip before the studies as the CGM and YSI measurements were
consistent. After this study, we decided to reduce the allowed meal bolus factor from 1.3
to 1.15 based on the results from the phase 1 trial and decided that the AP was ready
to start phase 2.
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Table 2.5: Participant 3. Parameter estimates for participant 3 in the phase 1 trial.
Desc Param. init. lb. estim. ub. unit

inv. ins. TC k1 0.0167 0.00667 0.0167 0.2 1/min
ins. sens. log(SI(0)) -6.65 -10 -7.68 0 log((1/(mU/L))/min)

Endo. gluc. prod EGP 0.96 0.1 0.6 3 (mg/dL)/min
inv. dist. vol. 1/Vg 0.0952 0.005 0.005 0.125 1/dL
inv. meal TC km 0.027 0.00667 0.025 0.1 1/min
IC ins. sub. ISc(0) 0.0005 0 33 1e+06 mU/L
IC ins. plas. IP (0) 34.3 0 0.000837 1e+06 mU/L
IC ins. eff. IEff (0) 0.0567 0 0.0163 1e+06 1/min

IC gluc. conc. G(0) 119 0 120 1e+06 mg/dL
IC meal 1 D1(0) 0.5 0 10 10 mg
IC meal 2 D2(0) 0.5 0 10 10 mg
gluc. cov. Qg 15 0 18.5 30 -
ins. cov. log(Qlog SI) -11.5 -11.5 -11.5 -11.5 -
gluc. eff. GEZI - - 0.0011 - 1/min

ins. to carb. rat. ICR - - 9.75 - g/U
ins. sens. fac. ISF - - 3 - mmol/L/U

Table 2.6: Participant 3. Values of the glycemic targets for participant 3 in the
phase 1 trial.

Quantity Target DH

Average glucose [mmol/L] < 8.55 7.36
GMI [%] < 7 6.48
GV [%] ≤ 36 26.47
Active CGM [%] 100 96.86
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Figure 2.9: Participant 3. Parameter estimation for participant 3 in the phase 1
trial. From the top: 1) CGM measurements (blue dots) and a deterministic
simulation with the estimated parameters (red line), 2) announced meals,
3) basal insulin rate, and 4) bolus insulin.
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Figure 2.10: Participant 3. Evaluation of the meal responses for participant 3 in the
phase 1 trial with an insulin bolus computed from different ICRs.

1.9%

85.1%

9.8%
3.2%

Figure 2.11: Participant 3. TIRs for the DH study for participant 3 in the phase 1
trial.
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Figure 2.12: Participant 3. Results from the DH study for participant 3 in the
phase 1 trial with 85.1% time in range. From the top: 1) CGM measure-
ments (blue dotted line), YSI measurements (red crosses), and setpoint
(red dashed line), 2) meals, 3) exercise, 4) basal insulin (blue line) and
maximum allowed basal insulin (red dots), 5) insulin boli (blue line) and
maximum allowed insulin boli (red dots), and 6) glucagon boli (blue line)
and maximum allowed glucagon boli (red dots).
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CHAPTER 3
Phase 2 trial

In this chapter, we show the parameter estimation and results from all the DH and SH
studies in the phase 2 trial. Here, the studies are shown in the order of when both the
DH and SH study was completed. Therefore, e.g. participant 4 had their first visit
before participant 3. We did not make any changes to the algorithm during the phase 2
trial. However, we changed the time series charts to show dots instead of lines in the
app, as the chart library had a memory leak in the line chart. The memory leak was
also the reason why the app sometimes crashed during the phase 1 trial.

3.1 Participant 1

3.1.1 Parameter estimation
We had trouble finding suitable data for this participant and ended using data from only
one night and breakfast. Figure 3.1 shows the data used for estimation and a simulation
with the estimated parameters. The meal response seems to fit relatively well, but the
fit over night is less accurate which indicates that the basal rate was hard to estimate.
In this study, we fixed EGP , k1, and QlogSI . GEZI was tuned to make the estimated
basal rate match the participants’ normal basal rate which was ∼ 11.94 mU/min. We
computed ICR and ISF as the mean values for the participant. In the phase 1 trial,
we observed that the the meals have had a longer and larger response in the predictions
than what the actual data showed. Therefore, we reduced the lower bound on 1/Vg in
this study. We ended up increasing the lower bound on 1/Vg again later in the phase 2
trial, as it did not have the desired effect. Table 3.2 shows the estimated parameters.
Fig 3.2 shows the meal response for an insulin bolus computed from different ICRs. The
meal responses indicated that the algorithm would most likely be conservative with the
meal boli to avoid hypoglycemia.

3.1.2 Results
Table 3.2 and Figure 3.3 shows the outcomes for the glycemic targets and Figure 3.4
shows the results. Overall, the participant received too little insulin in both studies,
which also lead to a high amount of time in hyperglycemia. The meal effect seemed to
be underestimated and correction boli were administered in both studies. We believe this
was, partly, because the lower bound on 1/Vg was reduced in the parameter estimation.
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Table 3.1: Participant 1. Parameter estimates for participant 1 in the phase 2 trial.
Parameter Initial guess Lower bound Estimate Upper bound Unit

k1 0.0167 0.00667 0.02 0.2 1/min
EGP 0.96 0.1 0.5 3 mg/(dL min)
1/Vg 0.0952 0.00333 0.00369 0.125 1/dL
km 0.027 0.00667 0.0487 0.1 1/min
Qg 15 0 7.27 30 (mg/(dL min1/2))2

log(Qlog SI) -11.5 -11.5 -11.5 -11.5 (L/(mU min3/2))2

ISc(0) 0.0005 0 3.05e-05 1e+06 mU/L
IP (0) 34.3 0 4.38e-05 1e+06 mU/L

IEff (0) 0.0567 0 0.0103 1e+06 1/min
G(0) 133 0 128 1e+06 mg/dL
D1(0) 0.5 0 10 10 mg
D2(0) 0.5 0 2.44e-05 10 mg

log(SI(0)) -6.65 -10 -7.87 0 log(L/(mU min))
GEZI – – 0.0015 – 1/min
ICR – – 8.29 – g/U
ISF – – 2.35 – mmol/(L U)

In both studies there also seemed to be a dawn effect. In the SH study, the dinner
meal bolus was given manually without the algorithm knowing, as there was a problem
with the insulin pump. The glucose concentration was stabilized over night in the SH
study, due to the multiple correction boli that was administered after dinner. The
amount of carbs in the breakfast was underestimated and caused a large post prandial
peak and a correction bolus. In the DH study, the participant entered the clinic with
slight hypoglycemia and received glucagon. The AP was unable to stabilize the glucose
concentration over night. After the lunch, the basal rate is set to 0 due to the predictions
(possibly the connection was also lost), which causes the following increase in the glucose
concentration. In the DH study, the CGM measurements were higher than the YSI
measurements in most of the study.

270 L Technical Report



3.1 Participant 1 23

0

5

10

15

20

C
G

M
 M

ea
su

re
m

en
ts

[m
m

ol
/L

]

0

50

100

M
ea

ls
[g

 C
H

O
]

0

2

B
as

al
[U

/h
]

0

10

B
ol

us
[U

]

Oct 14, 00:00 Oct 14, 04:00 Oct 14, 08:00
2021   

Figure 3.1: Participant 1. Parameter estimation for participant 1 in the phase 2 trial.
From the top: 1) CGM measurements (blue dots) and a simulation with
the estimated parameters (red line), 2) announced meals, 3) basal insulin
rate, and 4) bolus insulin.

Table 3.2: Values of the glycemic targets for participant 1 in the phase 2 trial.
Quantity Target DH SH

Average glucose [mmol/L] < 8.55 10.19 10.81
GMI [%] < 7 7.70 7.97
GV [%] ≤ 36 26.90 31.94
Active CGM [%] 100 100.0 100.0
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Figure 3.2: Participant 1. Evaluation of the meal responses for participant 1 in the
phase 2 trial with an insulin bolus computed from different ICRs.
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48.6%

29.9%

21.5%

Figure 3.3: Participant 1. Left: TIRs for the DH study for participant 1 in the
phase 2 trial. Right: TIRs for the SH study for participant 1 in the
phase 2 trial.
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Figure 3.4: Participant 1. Left: Results from the DH study for participant 1 in the
phase 2 trial with 38.2% time in range. Right: Results from the SH study
for participant 1 in the phase 2 trial with 46.6% time in range. From the
top: 1) CGM measurements (blue dotted line), YSI measurements (red
crosses), and setpoint (red dashed line), 2) meals, 3) exercise, 4) basal
insulin (blue line) and maximum allowed basal insulin (red dots), 5) meal
boli (blue line) and maximum allowed meal boli (red dots), 6) correction
insulin boli (blue line) and maximum allowed correction boli (red dots),
and 7) glucagon boli (blue line) and maximum allowed glucagon boli (red
dots).
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3.2 Participant 2

3.2.1 Parameter estimation
The data for this patient was quite challenging. Again, we used data from one night
and a breakfast and it seemed like unanounced rescue carbs were consumed after the
breakfast, but this was the best data available. The meal was shifted 20 minutes earlier
to fit the peak in glucose concentration. Figure 3.5 shows the data used for estimation
and a simulation with the estimated parameters. Overall, the fit was relatively good, but
the model was unable to describe the increases after breakfast which could be because
of unannounced carbohydrates. We fixed EGP , km, k1, and QlogSI for this participant,
and 1/Vg was at its lower bound. GEZI was tuned to correct the basal rate to the
participants’ normal basal rate which was ∼ 14.13 mU/min. We computed ICR and
ISF as mean values for the participant. Table 3.4 shows the estimated parameters.
Figure 3.6 shows the meal response for an insulin bolus computed from different ICRs.
A bolus corresponding to the participants regular ICR results in slight hypoglycemia,
which causes the AP to be conservative with the meal boli, but we were unable to avoid
it with the data from this participant.

3.2.2 Results
Table 3.4 and Figure 3.7 shows the outcomes for the glycemic targets and Figure 3.8
shows the results. In both studies the meal boli seemed to be too small. The AP was
allowed to administer more insulin, but did not. In retrospect, we could have predicted
that based on the meal responses from the parameter estimation. Instead the AP ad-
ministers some correction boli after the predictions are updated, but the participant still

Table 3.3: Parameter estimates for participant 2 in the phase 2 trial.
Desc Param. init. lb. estim. ub. unit

inv. ins. TC k1 0.0167 0.00667 0.02 0.2 1/min
ins. sens. log(SI(0)) -6.65 -10 -7.13 0 log((1/(mU/L))/min)

Endo. gluc. prod EGP 0.96 0.1 1 3 (mg/dL)/min
inv. dist. vol. 1/Vg 0.00667 0.00455 0.00455 0.125 1/dL
inv. meal TC km 0.027 0.00667 0.025 0.1 1/min
IC ins. sub. ISc(0) 0.0005 0 19.3 1e+06 mU/L
IC ins. plas. IP (0) 34.3 0 70.1 1e+06 mU/L
IC ins. eff. IEff (0) 0.0567 0 0.0914 1e+06 1/min

IC gluc. conc. G(0) 164 0 167 1e+06 mg/dL
IC meal 1 D1(0) 0.5 0 100 100 mg
IC meal 2 D2(0) 0.5 0 100 100 mg
gluc. cov. Qg 15 0 15 30 -
ins. cov. log(Qlog SI) -11.5 -11.5 -11.5 -11.5 -
gluc. eff. GEZI - - 0.0016 - 1/min

ins. to carb. rat. ICR - - 8.5 - g/U
ins. sens. fac. ISF - - 2.12 - mmol/L/U
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Figure 3.5: Participant 2. Parameter estimation for participant 2 in the phase 2 trial.
From the top: 1) CGM measurements (blue dots) and a simulation with
the estimated parameters (red line), 2) announced meals, 3) basal insulin
rate, and 4) bolus insulin.

receives too little insulin. The participant started the SH study in hypoglycemia and
received dextrose. During the SH study it seemed like multiple pressure induced sensor
attenuations (PISAs) occurred, where the most significant one was before breakfast. In
the DH study, the AP administered glucagon when the participant was approaching
hypoglycemia. The glucagon response was very large and the basal rate was increased,
which caused oscillations during the night. During the day, the meal boli are too small
and even though correction boli are administered, the glucose concentration remained
high.
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Figure 3.6: Participant 2. Evaluation of the meal responses for participant 2 in the
phase 2 trial with an insulin bolus computed from different ICRs.
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28.2%

1.6%
1.6%

61.5%
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Figure 3.7: Participant 2. Left: TIRs for the DH study for participant 2 in the
phase 2 trial. Right: TIRs for the SH study for participant 2 in the
phase 2 trial.
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Table 3.4: Values of the glycemic targets for participant 2 in the phase 2 trial.
Quantity Target DH SH

Average glucose [mmol/L] < 8.55 8.62 8.74
GMI [%] < 7 7.03 7.08
GV [%] ≤ 36 22.42 31.94
Active CGM [%] 100 100.0 100.0
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Figure 3.8: Participant 2. Left: Results from the DH study for participant 2 in the
phase 2 trial with 71.8% time in range. Right: Results from the SH study
for participant 2 in the phase 2 trial with 61.5% time in range. From the
top: 1) CGM measurements (blue dotted line), YSI measurements (red
crosses), and setpoint (red dashed line), 2) meals, 3) exercise, 4) basal
insulin (blue line) and maximum allowed basal insulin (red dots), 5) meal
boli (blue line) and maximum allowed meal boli (red dots), 6) correction
insulin boli (blue line) and maximum allowed correction boli (red dots),
and 7) glucagon boli (blue line) and maximum allowed glucagon boli (red
dots).
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3.3 Participant 3

3.3.1 Parameter estimation
This participant was using a closed-loop system and therefore all the administered insulin
comes from insulin boli. The basal rate acts as a fallback mode and was active for around
2 hours around 15:00. Figure 3.9 shows the data used for estimation and a simulation
with the estimated parameters. The meal response in the simulation was rather large,
but that did also seem to match the data and overall this seemed to be one of the better
fits. We fixed km, k1, and EGP for this participant. GEZI was tuned to correct the
basal rate to match the participants’ normal basal rate which was ∼ 23.61 mU/min.
Here, we set the ICR slightly below the average as it seemed to be higher for dinner
and during the night compared to breakfast. We computed ISF as the mean value for
the participant. Table 3.5 shows the estimated parameters. Figure 3.10 shows the meal
response for an insulin bolus computed from different ICRs.

3.3.2 Results
Table 3.6 and Figure 3.11 shows the outcomes for the glycemic targets and Figure
3.12 shows the results. Overall, the AP performed very well for this participant, but
unfortunately the connection to the pump was lost for most of the day during the DH
study. In both studies, the AP managed to stabilize the participant at the setpoint over
night and achieved high TIR. The participant entered the clinic in level 2 hyperglycemia
in the SH study and received both a manual bolus before the study and correction
boli when the AP was activated. The participant was not in hypoglycemia, but felt
hypoglycemic and specifically asked for carbs. The AP reduced the basal rate, but the

Table 3.5: Parameter estimates for participant 3 in the phase 2 trial.
Desc Param. init. lb. estim. ub. unit

inv. ins. TC k1 0.0167 0.0111 0.0167 0.2 1/min
ins. sens. log(SI(0)) -8.15 -10 -8.6 0 log((1/(mU/L))/min)

Endo. gluc. prod EGP 1.11 0.1 0.4 3 (mg/dL)/min
inv. dist. vol. 1/Vg 0.005 0.00455 0.00455 0.125 1/dL
inv. meal TC km 0.02 0.0111 0.025 0.1 1/min
IC ins. sub. ISc(0) 14.8 0 16.9 1e+06 mU/L
IC ins. plas. IP (0) 80.1 0 6.79e-06 1e+06 mU/L
IC ins. eff. IEff (0) 0.0212 0 0.0147 1e+06 1/min

IC gluc. conc. G(0) 140 0 151 1e+06 mg/dL
IC meal 1 D1(0) 10 0 10 10 mg
IC meal 2 D2(0) 10 0 10 10 mg
gluc. cov. Qg 20.3 0 22.3 30 -
ins. cov. log(Qlog SI) -9.21 -11.5 -9.35 -9.21 -
gluc. eff. GEZI - - 0.00073 - 1/min

ins. to carb. rat. ICR - - 7.500 - g/U
ins. sens. fac. ISF - - 1.800 - mmol/L/U
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Figure 3.9: Participant 3. Parameter estimation for participant 3 in the phase 2 trial.
From the top: 1) CGM measurements (blue dots) and a simulation with
the estimated parameters (red line), 2) announced meals, 3) basal insulin
rate, and 4) bolus insulin.

carbs might have prevented hypoglycemia. In the DH study, the AP handled both the
dinner and night very well, but after breakfast, the connection to the insulin pump was
lost until around 15:20. A large amount of insulin was administered after the insulin
pump was reconnected. The high amount of insulin was administered just before the
exercise session and resulted in administration of glucagon to prevent hypoglycemia.
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Figure 3.10: Participant 3. Evaluation of the meal responses with an insulin bolus
computed from different ICRs.
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Figure 3.11: Participant 3. Left: TIRs for the DH study for participant 3 in the
phase 2 trial. Right: TIRs for the SH study for participant 3 in the
phase 2 trial.
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Table 3.6: Values of the glycemic targets for participant 3 in the phase 2 trial.
Quantity Target DH SH

Average glucose [mmol/L] < 8.55 9.63 7.02
GMI [%] < 7 7.46 6.33
GV [%] ≤ 36 38.43 47.97
Active CGM [%] 100 99.68 100.0
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Figure 3.12: Participant 3. Left: Results from the DH study for participant 3 in the
phase 2 trial with 57.3% time in range. Right: Results from the SH study
for participant 3 in the phase 2 trial with 89.0% time in range. From the
top: 1) CGM measurements (blue dotted line), YSI measurements (red
crosses), and setpoint (red dashed line), 2) meals, 3) exercise, 4) basal
insulin (blue line) and maximum allowed basal insulin (red dots), 5) meal
boli (blue line) and maximum allowed meal boli (red dots), 6) correction
insulin boli (blue line) and maximum allowed correction boli (red dots),
and 7) glucagon boli (blue line) and maximum allowed glucagon boli (red
dots).
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3.4 Participant 4

3.4.1 Parameter estimation
This participant also used a closed-loop system. We used data from one night and a
breakfast to estimate the parameters. Figure 3.13 shows the data used for estimation and
a simulation with the estimated parameters. There might have been an unannounced
snack during the night or evening, which caused the closed-loop system to administer
a correction bolus. The meal response was rather small for a meal with around 100g
carbohydrates compared to the other participants, but this was the best data available.
We fixed km, k1, and QlogSI for this participant and GEZI was tuned to correct the
basal rate to match the participants’ normal basal rate which was ∼ 9.028 mU/min.
We computed ISF as the mean values for the participant. The participant used ICR
values between 8 and 21 g/U in the closed-loop system. For the meals where the ICR is
set to 21 g/U, the participant seemed to rely on correction boli that are automatically
administered by the closed-loop system. Therefore, we chose to set the ICR to 13 even
though the weighted mean was 19 g/U. Table 3.7 shows the estimated parameters and
Figure 3.14 shows the meal response for an insulin bolus computed from different ICRs.

3.4.2 Results
Table 3.8 and Figure 3.15 shows the outcomes for the glycemic targets and Figure
3.16 shows the results. The DH study resulted in a very low TIR and high time in
hyperglycemia compared to the SH study. No glucagon was administered during the
DH study which means the control algorithm was identical for the 2 studies. Around
10U insulin more was administered in the DH study compared to the SH study and a

Table 3.7: Parameter estimates for participant 4 in the phase 2 trial.
Desc Param. init. lb. estim. ub. unit

inv. ins. TC k1 0.0182 0.0111 0.0167 0.2 1/min
ins. sens. log(SI(0)) -7.5 -10 -7.32 0 log((1/(mU/L))/min)

Endo. gluc. prod EGP 0.96 0.5 0.5 3 (mg/dL)/min
inv. dist. vol. 1/Vg 0.00402 0.005 0.00515 0.125 1/dL
inv. meal TC km 0.027 0.0111 0.02 0.1 1/min
IC ins. sub. ISc(0) 0.0005 0 0.00114 1e+06 mU/L
IC ins. plas. IP (0) 34.3 0 3.84 1e+06 mU/L
IC ins. eff. IEff (0) 0.0567 0 0.0202 1e+06 1/min

IC gluc. conc. G(0) 106 0 105 1e+06 mg/dL
IC meal 1 D1(0) 0.5 0 10 10 mg
IC meal 2 D2(0) 0.5 0 10 10 mg
gluc. cov. Qg 5 0 13.6 30 -
ins. cov. log(Qlog SI) -11.5 -11.5 -11.5 -9.21 -
gluc. eff. GEZI - - 0.0006 - 1/min

ins. to carb. rat. ICR - - 13.000 - g/U
ins. sens. fac. ISF - - 3.446 - mmol/L/U
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Figure 3.13: Participant 4. Parameter estimation for participant 4 in the phase 2
trial. From the top: 1) CGM measurements (blue dots) and a simulation
with the estimated parameters (red line), 2) announced meals, 3) basal
insulin rate, and 4) bolus insulin.

manual correction bolus of 2.5 U was also administered during the night of the DH study.
In both studies, it seemed like the basal rate was estimated to be too low and the AP
increased the basal rate during both studies. The CGM measurements are higher than
the YSI measurements during most of the DH study. In the DH study the response
from the dinner seemed to be rather large and delayed as the peak happened around
midnight.
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Figure 3.14: Participant 4. Evaluation of the meal responses for participant 4 in the
phase 2 trial with an insulin bolus computed from different ICRs.
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Figure 3.15: Participant 4. Left: TIRs for the DH study for participant 4 in the
phase 2 trial. Right: TIRs for the SH study for participant 4 in the
phase 2 trial.
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Table 3.8: Values of the glycemic targets for participant 4 in the phase 2 trial.
Quantity Target DH SH

Average glucose [mmol/L] < 8.55 11.48 8.92
GMI [%] < 7 8.26 7.15
GV [%] ≤ 36 20.78 24.24
Active CGM [%] 100 100.0 100.0
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Figure 3.16: Participant 4. Left: Results from the DH study for participant 4 in the
phase 2 trial with 28.7% time in range. Right: Results from the SH study
for participant 4 in the phase 2 trial with 76.8% time in range. From the
top: 1) CGM measurements (blue dotted line), YSI measurements (red
crosses), and setpoint (red dashed line), 2) meals, 3) exercise, 4) basal
insulin (blue line) and maximum allowed basal insulin (red dots), 5) meal
boli (blue line) and maximum allowed meal boli (red dots), 6) correction
insulin boli (blue line) and maximum allowed correction boli (red dots),
and 7) glucagon boli (blue line) and maximum allowed glucagon boli (red
dots).
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3.5 Participant 5

3.5.1 Parameter estimation
We were only able to find around 5 hours of data for this participant. Figure 3.17 shows
the data used for estimation and a simulation with the estimated parameters. Clearly,
the fit matched the data, but the meal response was very small and from Figure 3.18,
we saw that the AP would be conservative with the meal boli as the meal response in
the model was relatively small and sensitive to insulin. We fixed EGP , km, and QlogSI

for this participant and 1/Vg was at its lower bound. GEZI was tuned to correct the
basal rate to match the participants’ normal basal rate which was ∼ 19.06 mU/min.
We computed ICR and ISF as mean values for the participant. Table 3.11 shows the
estimated parameters.

3.5.2 Results
Table 3.10 and Figure 3.19 shows the outcomes for the glycemic targets and Figure 3.20
shows the results. In both studies, the AP administered correction boli in the beginning
as the participant entered the clinic in hyperglycemia with a rising glucose concentration.
In the SH study, the meal bolus should have been larger, but the performance of the
AP was relatively good. The DH study was affected by multiple PISAs during the night
which caused administration of multiple large glucagon boli even though the participant
already had a high glucose concentration. The participant was wearing the sensor on the
arm while most of the other participants wore the sensor on their stomach. During the
day in the DH study, the predictions were very inaccurate and the AP administered too
little insulin and even when it was allowed to give correction boli, almost no additional

Table 3.9: Parameter estimates for participant 5 in the phase 2 trial.
Desc Param. init. lb. estim. ub. unit

inv. ins. TC k1 0.0217 0.00667 0.0213 0.2 1/min
ins. sens. log(SI(0)) -7.4 -10 -7.38 0 log((1/(mU/L))/min)

Endo. gluc. prod EGP 0.9 0.1 0.87 3 (mg/dL)/min
inv. dist. vol. 1/Vg 0.00364 0.00364 0.00364 0.125 1/dL
inv. meal TC km 0.0333 0.00667 0.0333 0.1 1/min
IC ins. sub. ISc(0) 26.3 0 23.7 1e+06 mU/L
IC ins. plas. IP (0) 9.61e-06 0 0.000426 1e+06 mU/L
IC ins. eff. IEff (0) 0.0233 0 0.023 1e+06 1/min

IC gluc. conc. G(0) 119 0 119 1e+06 mg/dL
IC meal 1 D1(0) 10 0 10 10 mg
IC meal 2 D2(0) 10 0 10 10 mg
gluc. cov. Qg 2.97 0 2.97 30 -
ins. cov. log(Qlog SI) -11.5 -11.5 -11.5 -11.5 -
gluc. eff. GEZI - - 0.0001 - 1/min

ins. to carb. rat. ICR - - 9.17 - g/U
ins. sens. fac. ISF - - 2 - mmol/L/U
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Figure 3.17: Participant 5. Parameter estimation for participant 5 in the phase 2
trial. From the top: 1) CGM measurements (blue dots) and a simulation
with the estimated parameters (red line), 2) announced meals, 3) basal
insulin rate, and 4) bolus insulin.

insulin was administered. This could be because the insulin sensitivity was adapted
based on the faulty CGM measurements during the night.
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Figure 3.18: Participant 5. Evaluation of the meal responses for participant 5 in the
phase 2 trial with an insulin bolus computed from different ICRs.
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Figure 3.19: Participant 5. Left: TIRs for the DH study for participant 5 in the
phase 2 trial. Right: TIRs for the SH study for participant 5 in the
phase 2 trial.
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Table 3.10: Values of the glycemic targets for participant 5 in the phase 2 trial.
Quantity Target DH SH

Average glucose [mmol/L] < 8.55 10.16 8.26
GMI [%] < 7 7.69 6.87
GV [%] ≤ 36 22.36 46.92
Active CGM [%] 100 100.0 100.0
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Figure 3.20: Participant 5. Left: Results from the DH study for participant 5 in the
phase 2 trial with 40.1% time in range. Right: Results from the SH study
for participant 5 in the phase 2 trial with 70.4% time in range. From the
top: 1) CGM measurements (blue dotted line), YSI measurements (red
crosses), and setpoint (red dashed line), 2) meals, 3) exercise, 4) basal
insulin (blue line) and maximum allowed basal insulin (red dots), 5) meal
boli (blue line) and maximum allowed meal boli (red dots), 6) correction
insulin boli (blue line) and maximum allowed correction boli (red dots),
and 7) glucagon boli (blue line) and maximum allowed glucagon boli (red
dots).
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3.6 Participant 6

3.6.1 Parameter estimation
This participant also used a closed-loop system. Again, we used data from one night and
a breakfast. Figure 3.21 shows the data used for estimation and a simulation with the
estimated parameters. It seemed like the meal response was slightly delayed compared
to the announcement of the meal, but overall, the fit seemed decent. We fixed km, k1,
and EGP and GEZI was tuned to correct the basal rate to match the participants’
normal basal rate with was ∼ 16.667 mU/min. The closed-loop system had multiple
pump programs and therefore the basal rate was tuned to the value recommended by
Jannet Svensson. We computed ISF as the mean value for the participant and ICR was
computed as the mean of the values during the day (the participants used an ICR of 13
g/U during the night). We estimated the ICR to 8.575g/U and the values ranged from
8.4-8.7g/U during the day in the closed-loop system. Table 3.11 shows the estimated
parameters. The time constants 1/k1 and 1/km were relatively small for this participant,
but it looked reasonable from inspection of the post-prandial peaks in the data. Figure
3.22 shows the meal response for an insulin bolus computed from different ICRs.

3.6.2 Results
Table 3.12 and Figure 3.23 shows the outcomes for the glycemic targets and Figure 3.24
shows the results. In the SH study, the participant entered the clinical in hyperglycemia
and the CGM measurements were consistently higher than the YSI measurements. The
participant received rescue carbs before lunch and during exercise. The response from
the dinner was almost not visible and maybe the basal rate was a little too high. In

Table 3.11: Parameter estimates for participant 6 in the phase 2 trial.
Desc Param. init. lb. estim. ub. unit

inv. ins. TC k1 0.0182 0.0111 0.0222 0.2 1/min
ins. sens. log(SI(0)) -7.5 -10 -7.72 0 log((1/(mU/L))/min)

Endo. gluc. prod EGP 0.96 0.1 0.6 3 (mg/dL)/min
inv. dist. vol. 1/Vg 0.00402 0.005 0.005 0.125 1/dL
inv. meal TC km 0.027 0.0111 0.025 0.1 1/min
IC ins. sub. ISc(0) 0.0005 0 0.000247 1e+06 mU/L
IC ins. plas. IP (0) 34.3 0 77.6 1e+06 mU/L
IC ins. eff. IEff (0) 0.0567 0 0.00475 1e+06 1/min

IC gluc. conc. G(0) 115 0 119 1e+06 mg/dL
IC meal 1 D1(0) 0.5 0 10 10 mg
IC meal 2 D2(0) 0.5 0 10 10 mg
gluc. cov. Qg 5 0 15.8 30 -
ins. cov. log(Qlog SI) -11.5 -9.21 -9.21 -9.12 -
gluc. eff. GEZI - - 0.00054 - 1/min

ins. to carb. rat. ICR - - 8.575 - g/U
ins. sens. fac. ISF - - 2.135 - mmol/L/U
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Figure 3.21: Participant 6. Parameter estimation for participant 6 in the phase 2
trial. From the top: 1) CGM measurements (blue dots) and a simulation
with the estimated parameters (red line), 2) announced meals, 3) basal
insulin rate, and 4) bolus insulin.

the DH study, the dinner was handled well and the glucagon administration seemed to
prevent hypoglycemia and stabilize the participant over night. There appeared to be a
PISA just before the breakfast which caused glucagon to be administered and resulted
in very large post-prandial peak. The glucagon pump occluded between breakfast and
lunch and we don’t know how much glucagon was actually administered.

L Technical Report 291



44 3 Phase 2 trial

Figure 3.22: Participant 6. Evaluation of the meal responses for participant 6 in the
phase 2 trial with an insulin bolus computed from different ICRs.
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Figure 3.23: Participant 6. Left: TIRs for the DH study for participant 6 in the
phase 2 trial. Right: TIRs for the SH study for participant 6 in the
phase 2 trial.

292 L Technical Report



3.6 Participant 6 45

Table 3.12: Values of the glycemic targets for participant 6 in the phase 2 trial.
Quantity Target DH SH

Average glucose [mmol/L] < 8.55 7.69 7.79
GMI [%] < 7 6.62 6.67
GV [%] ≤ 36 30.70 30.48
Active CGM [%] 100 100.0 100.0
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Figure 3.24: Participant 6. Left: Results from the DH study for participant 6 in the
phase 2 trial with 74.8% time in range. Right: Results from the SH study
for participant 6 in the phase 2 trial with 75.9% time in range. From the
top: 1) CGM measurements (blue dotted line), YSI measurements (red
crosses), and setpoint (red dashed line), 2) meals, 3) exercise, 4) basal
insulin (blue line) and maximum allowed basal insulin (red dots), 5) meal
boli (blue line) and maximum allowed meal boli (red dots), 6) correction
insulin boli (blue line) and maximum allowed correction boli (red dots),
and 7) glucagon boli (blue line) and maximum allowed glucagon boli (red
dots).

L Technical Report 293



46 3 Phase 2 trial

3.7 Participant 7

3.7.1 Parameter estimation
This participant used a closed-loop system and did not announce meals in a conventional
way. The participant used an ICR between 2 and 2.5 and only announced a part of the
meal. The doctors decided together with the participant that we should set the ICR
to 7 g/U. Therefore, we also increased the size of the meals in the data by the same
factor, i.e., 7/2 = 3.5. Figure 3.25 shows the data used for estimation and a simulation
with the estimated parameters. We moved the meals 20 minutes earlier to match the
increase in the glucose concentration around noon. Therefore, the parameters related to
the effect of meals were very uncertain for this participant. We fixed km, k1, and EGP
and 1/Vg is on the boundary. GEZI was tuned to the correct basal rate to match the
participants’ normal basal rate which is ∼ 24.236 mU/min and ISF was computed as
the mean value. Table 3.13 shows the estimated parameters and Figure 3.26 shows the
meal response for an insulin bolus computed from different ICRs.

3.7.2 Results
Table 3.14 and Figure 3.27 shows the outcomes for the glycemic targets and Figure 3.28
shows the results. The participant entered the clinic with a rapidly decreasing glucose
concentration in the DH study and the AP immediately administered glucagon. In the
SH study, the participant entered the clinic in hypoglycemia and received both a banana
and dextrose before the study was started. The oscillations in the beginning of DH study
also caused almost no meal bolus to be administered for the dinner and resulted in a
large post-prandial peak. In general, the AP struggled to predict the effect of glucagon

Table 3.13: Parameter estimates for participant 7 in the phase 2 trial.
Desc Param. init. lb. estim. ub. unit

inv. ins. TC k1 0.0182 0.0111 0.0167 0.2 1/min
ins. sens. log(SI(0)) -7.5 -10 -7.51 0 log((1/(mU/L))/min)

Endo. gluc. prod EGP 0.96 0.1 1.1 3 (mg/dL)/min
inv. dist. vol. 1/Vg 0.00402 0.00455 0.00667 0.00667 1/dL
inv. meal TC km 0.027 0.0111 0.0182 0.1 1/min
IC ins. sub. ISc(0) 0.0005 0 60.7 1e+06 mU/L
IC ins. plas. IP (0) 34.3 0 0.000476 1e+06 mU/L
IC ins. eff. IEff (0) 0.0567 0 0.0311 1e+06 1/min

IC gluc. conc. G(0) 110 0 117 1e+06 mg/dL
IC meal 1 D1(0) 0.5 0 10 10 mg
IC meal 2 D2(0) 0.5 0 10 10 mg
gluc. cov. Qg 5 0 5.3 30 -
ins. cov. log(Qlog SI) -11.5 -9.21 -9.21 -9.12 -
gluc. eff. GEZI - - 0.0014 - 1/min

ins. to carb. rat. ICR - - 7.000 - g/U
ins. sens. fac. ISF - - 1.742 - mmol/L/U
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Figure 3.25: Participant 7. Parameter estimation for participant 7 in the phase 2
trial. From the top: 1) CGM measurements (blue dots) and a simulation
with the estimated parameters (red line), 2) announced meals, 3) basal
insulin rate, and 4) bolus insulin.

for the participant and administered too much insulin. Glucagon was administered right
before breakfast and the combined effect caused the glucose concentration to remain high
until after lunch. The phone briefly lost the connection to the CGM and pumps before
breakfast and the participant received rescue carbs after exercise. In the SH study, only
one YSI measurement is not in range, but there was an offset between the CGM and
YSI measurements. It looks like the participant might have received additional carbs
before exercise, even though it is not registered.

L Technical Report 295



48 3 Phase 2 trial

Figure 3.26: Participant 7. Evaluation of the meal responses for participant 7 in the
phase 2 trial with an insulin bolus computed from different ICRs.
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Figure 3.27: Participant 7. Left: TIRs for the DH study for participant 7 in the
phase 2 trial. Right: TIRs for the SH study for participant 7 in the
phase 2 trial.
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Table 3.14: Values of the glycemic targets for participant 7 in the phase 2 trial.
Quantity Target DH SH

Average glucose [mmol/L] < 8.55 8.95 7.18
GMI [%] < 7 7.16 6.40
GV [%] ≤ 36 38.08 29.62
Active CGM [%] 100 100.0 100.0
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Figure 3.28: Participant 7. Left: Results from the DH study for participant 7 in the
phase 2 trial with 54.4% time in range. Right: Results from the SH study
for participant 7 in the phase 2 trial with 85.0% time in range. From the
top: 1) CGM measurements (blue dotted line), YSI measurements (red
crosses), and setpoint (red dashed line), 2) meals, 3) exercise, 4) basal
insulin (blue line) and maximum allowed basal insulin (red dots), 5) meal
boli (blue line) and maximum allowed meal boli (red dots), 6) correction
insulin boli (blue line) and maximum allowed correction boli (red dots),
and 7) glucagon boli (blue line) and maximum allowed glucagon boli (red
dots).
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3.8 Participant 8
This participant had participated in an earlier study where the settings for the basal
rate were incorrect. The basal rate settings were tuned to the basal rate profile from the
participants pump, but the participant was not using that pump program. Therefore,
the study was restarted and the first visit erased.

3.8.1 Parameter estimation
We were also only able to find data from one night and one meal for this participant.
Figure 3.29 shows the data used for estimation and a simulation with the estimated
parameters. This participant was using the Medtronic 780G closed-loop system, which
means the basal rate is registered as multiple small insulin boli. Therefore, we tuned the
basal rate to the doctors recommendation. The participant used an ICR of 8 g/U during
the day and 13 g/U during the nigth. We chose an ICR of 8 g/U, which also corresponds
well with the meal responses in Figure 3.30. We fixed km, k1, and Qlog SI for this
participant and used GEZI is tune the basal rate to match the doctors recommendation
which was ∼ 15.0 mU/min. Table 3.15 shows the estimated parameters.

3.8.2 Results
Table 3.16 and Figure 3.31 shows the outcomes for the glycemic targets and Figure 3.32
shows the results. The participant had administered a correction bolus before entering
the clinic and had a rapidly decreasing glucose concentration in the DH study which
caused immediate administration of glucagon. Still, the participant went into level 2
hypoglycemia. The AP had trouble predicting the effect of glucagon as in some of

Table 3.15: Parameter estimates for participant 8 in the phase 2 trial.
Desc Param. init. lb. estim. ub. unit

inv. ins. TC k1 0.0182 0.0111 0.0167 0.2 1/min
ins. sens. log(SI(0)) -7.5 -10 -8.09 0 log((1/(mU/L))/min)

Endo. gluc. prod EGP 0.96 0.1 0.35 3 (mg/dL)/min
inv. dist. vol. 1/Vg 0.00402 0.00444 0.00444 0.125 1/dL
inv. meal TC km 0.027 0.0111 0.02 0.1 1/min
IC ins. sub. ISc(0) 0.0005 0 14 1e+06 mU/L
IC ins. plas. IP (0) 34.3 0 3.51e-05 1e+06 mU/L
IC ins. eff. IEff (0) 0.0567 0 0.0214 1e+06 1/min

IC gluc. conc. G(0) 103 0 104 1e+06 mg/dL
IC meal 1 D1(0) 0.5 0 10 10 mg
IC meal 2 D2(0) 0.5 0 10 10 mg
gluc. cov. Qg 5 0 11.3 30 -
ins. cov. log(Qlog SI) -11.5 -11 -11 -9.21 -
gluc. eff. GEZI - - 0.00015 - 1/min

ins. to carb. rat. ICR - - 8.000 - g/U
ins. sens. fac. ISF - - 2.000 - mmol/L/U
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Figure 3.29: Participant 8. Parameter estimation for participant 8 in the phase 2
trial. From the top: 1) CGM measurements (blue dots) and a simulation
with the estimated parameters (red line), 2) announced meals, 3) basal
insulin rate, and 4) bolus insulin.

the previous studies. The TIR in the DH study was very high despite the oscillatory
behavior and the AP handled the potential hypoglycemic event after the dinner. In the
SH study, there was a slight offset between the CGM and YSI measurements. The TIR
was also above the target with a low amount of time in hypoglycemia in the SH study
even though the participant entered the clinic in level 1 hyperglycemia.
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Figure 3.30: Participant 8. Evaluation of the meal responses with an insulin bolus
computed from different ICRs.
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Figure 3.31: Participant 8. Left: TIRs for the DH study for participant 8 in the
phase 2 trial. Right: TIRs for the SH study for participant 8 in the
phase 2 trial.
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Table 3.16: Values of the glycemic targets for participant 8 in the phase 2 trial.
Quantity Target DH SH

Average glucose [mmol/L] < 8.55 6.24 7.98
GMI [%] < 7 6.00 6.75
GV [%] ≤ 36 24.77 31.38
Active CGM [%] 100 100.0 100.0
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Figure 3.32: Participant 8. Left: Results from the DH study for participant 8 in the
phase 2 trial with 93.6% time in range. Right: Results from the SH study
for participant 8 in the phase 2 trial with 74.8% time in range. From the
top: 1) CGM measurements (blue dotted line), YSI measurements (red
crosses), and setpoint (red dashed line), 2) meals, 3) exercise, 4) basal
insulin (blue line) and maximum allowed basal insulin (red dots), 5) meal
boli (blue line) and maximum allowed meal boli (red dots), 6) correction
insulin boli (blue line) and maximum allowed correction boli (red dots),
and 7) glucagon boli (blue line) and maximum allowed glucagon boli (red
dots).
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3.9 Participant 9

3.9.1 Parameter estimation
We used data from a night followed by breakfast and lunch for this participant. We
shifted the meals 15 minutes earlier to match the meal response. The meal response
from the lunch seemed rather large which could indicate that the amount of carbs is
underestimated. Figure 3.33 shows the data used for estimation and a simulation with
the estimated parameters. We fixed km, k1, and EGP for this participant. We tuned
GEZI to correct the basal rate to match the participants’ normal basal rate which was
∼ 13.75 mU/min. The participant used different ICRs during day (5 g/U in the morning,
6 g/U for lunch, and 8 g/U in the afternoon and evening). We set the ICR to 6 g/U
to not be too restrictive. We computed ISF as the mean value. Table 3.17 shows the
estimated parameters. Vg was rather small for this participant. That means the glucose
concentration was predicted to reach a relatively high level after meals which is also
clear from the meal responses in Figure 3.33.

3.9.2 Results
Table 3.18 and Figure 3.35 shows the outcomes for the glycemic targets and Figure 3.36
shows the results. The AP administered the maximum allowed meal bolus for all meals
and also turns up the basal rate after meals, which might have been the reason for the
high time in hypoglycemia for this participant. The TIR was very high in the SH study,
but the exercise session was stopped preemptively and the participant received rescue
carbs. We also predicted that the participant would receive a lot of insulin for the meals
based on the meal responses during the parameter estimation and could have considered

Table 3.17: Parameter estimates for participant 9 in the phase 2 trial.
Desc Param. init. lb. estim. ub. unit

inv. ins. TC k1 0.0182 0.0111 0.0167 0.2 1/min
ins. sens. log(SI(0)) -7.5 -10 -8.13 0 log((1/(mU/L))/min)

Endo. gluc. prod EGP 0.96 0.1 0.47 3 (mg/dL)/min
inv. dist. vol. 1/Vg 0.00402 0.005 0.00759 0.125 1/dL
inv. meal TC km 0.027 0.0111 0.02 0.1 1/min
IC ins. sub. ISc(0) 0.0005 0 34.4 1e+06 mU/L
IC ins. plas. IP (0) 34.3 0 2.83 1e+06 mU/L
IC ins. eff. IEff (0) 0.0567 0 0.015 1e+06 1/min

IC gluc. conc. G(0) 142 0 143 1e+06 mg/dL
IC meal 1 D1(0) 0.5 0 5 5 mg
IC meal 2 D2(0) 0.5 0 5 5 mg
gluc. cov. Qg 5 0 13.5 30 -
ins. cov. log(Qlog SI) -11.5 -11.5 -9.21 -9.21 -
gluc. eff. GEZI - - 0.00159 - 1/min

ins. to carb. rat. ICR - - 6.000 - g/U
ins. sens. fac. ISF - - 2.200 - mmol/L/U
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Figure 3.33: Parameter estimation for participant 9 in the phase 2 trial. From the top:
1) CGM measurements (blue dots) and a simulation with the estimated
parameters (red line), 2) announced meals, 3) basal insulin rate, and 4)
bolus insulin.

to manually adapt the parameters. The high amount of insulin might also be the reason
for the comparably small glucagon response in the DH study and high amount of time
in hypoglycemia.
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Figure 3.34: Participant 9. Evaluation of the meal responses for participant 9 in the
phase 2 trial with an insulin bolus computed from different ICRs.
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Figure 3.35: Participant 9. Left: TIRs for the DH study for participant 9 in the
phase 2 trial. Right: TIRs for the SH study for participant 9 in the
phase 2 trial.
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Table 3.18: Values of the glycemic targets for participant 9 in the phase 2 trial.
Quantity Target DH SH

Average glucose [mmol/L] < 8.55 7.20 7.03
GMI [%] < 7 6.41 6.34
GV [%] ≤ 36 37.74 24.40
Active CGM [%] 100 100.0 100.0

0

5

10

15

20

G
lu
co
se

m
ea
su
re
m
en
ts

[m
m
ol
/L
]

0
50
100

M
ea
ls

[g
C
H
O
]

0

0.5

1

E
x
er
ci
se

ac
ti
v
e

0

2

4

B
as
al

[U
/h
]

0

10

20

M
ea
l

B
ol
u
s

[U
]

0

5

C
or
r.

B
ol
u
s

[U
]

20:00 23:00 02:00 05:00 08:00 11:00 14:00 17:00
Feb 01, 2022-Feb 02, 2022

0

200

G
lu
ca
go
n

[7
g
]

0

5

10

15

20

G
lu
co
se

m
ea
su
re
m
en
ts

[m
m
ol
/L
]

0
50
100

M
ea
ls

[g
C
H
O
]

0

0.5

1

E
x
er
ci
se

ac
ti
v
e

0

2

4

B
as
al

[U
/h
]

0

10

20

M
ea
l

B
ol
u
s

[U
]

0

5

C
or
r.

B
ol
u
s

[U
]

20:00 23:00 02:00 05:00 08:00 11:00 14:00 17:00
Feb 22, 2022-Feb 23, 2022

0

200

G
lu
ca
go
n

[7
g
]

Figure 3.36: Participant 9. Left: Results from the DH study for participant 9 in the
phase 2 trial with 68.0% time in range. Right: Results from the SH study
for participant 9 in the phase 2 trial with 90.4% time in range. From the
top: 1) CGM measurements (blue dotted line), YSI measurements (red
crosses), and setpoint (red dashed line), 2) meals, 3) exercise, 4) basal
insulin (blue line) and maximum allowed basal insulin (red dots), 5) meal
boli (blue line) and maximum allowed meal boli (red dots), 6) correction
insulin boli (blue line) and maximum allowed correction boli (red dots),
and 7) glucagon boli (blue line) and maximum allowed glucagon boli (red
dots).
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3.10 Participant 10

3.10.1 Parameter estimation
We used data from around one day that consisted of 3 meals. There were many missing
CGM measurements and the meals seemed to have been announced very late. Therefore,
we shifted the meals by 45 minutes in the estimation. Figure 3.37 shows the data used for
estimation and a simulation with the estimated parameters. We fixed km, k1, and EGP
and 1/Vg was on the boundary. EGP was estimated and then fixed to a slightly higher
value. We tuned GEZI to the correct basal rate to match the participants’ normal basal
rate which was ∼ 25.764 mU/min. We used the ISF reported by the participant. The
participant used an ICR of 8 g/U during the day and 10 g/U over night. Therefore, we
set it to 8 g/U. Table 3.19 shows the estimated parameters. Figure 3.38 shows the meal
response for an insulin bolus computed from different ICRs.

3.10.2 Results
Table 3.20 and Figure 3.39 shows the outcomes for the glycemic targets and Figure
3.40 shows the results. The participant entered the clinic in hyperglycemia in the SH
study and therefore the TIR was lower. The meal response after breakfast was very
low in both studies. Therefore, glucagon was administered in the DH study and rescue
carbs were given in the SH study. The AP handled the potential hypoglycemic events
with glucagon in the DH study and also reduced the post-prandial peak with correction
boli after dinner. In general, the AP worked well for this participant even though the
achieved TIR was not the highest.

Table 3.19: Parameter estimates for participant 10 in the phase 2 trial.
Desc Param. init. lb. estim. ub. unit

inv. ins. TC k1 0.02 0.0111 0.02 0.2 1/min
ins. sens. log(SI(0)) -7.61 -10 -7.59 0 log((1/(mU/L))/min)

Endo. gluc. prod EGP 0.92 0.1 0.96 3 (mg/dL)/min
inv. dist. vol. 1/Vg 0.005 0.005 0.005 0.125 1/dL
inv. meal TC km 0.025 0.0111 0.025 0.1 1/min
IC ins. sub. Isc(0) 1 0 1 1 mU/L
IC ins. plas. IP (0) 0.999 0 1 1 mU/L
IC ins. eff. IEff (0) 0.0164 0 0.0168 1e+06 1/min

IC gluc. conc. G(0) 198 0 198 1e+06 mg/dL
IC meal 1 D1(0) 0.0012 0 1.12e-05 10 mg
IC meal 2 D2(0) 10 0 10 10 mg
gluc. cov. Qg 30 0 30 30 -
ins. cov. log(Qlog SI) -9.12 -9.21 -9.12 -9.12 -
gluc. eff. GEZI - - 0.00023 - 1/min

ins. to carb. rat. ICR - - 8.000 - g/U
ins. sens. fac. ISF - - 2.200 - mmol/L/U

Basal rate uba - - 1.546 - U/h
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Figure 3.37: Participant 10. Parameter estimation for participant 10 in the phase 2
trial. From the top: 1) CGM measurements (blue dots) and a simulation
with the estimated parameters (red line), 2) announced meals, 3) basal
insulin rate, and 4) bolus insulin.

Table 3.20: Values of the glycemic targets for participant 10 in the phase 2 trial.
Quantity Target DH SH

Average glucose [mmol/L] < 8.55 8.00 7.94
GMI [%] < 7 6.76 6.73
GV [%] ≤ 36 36.27 45.67
Active CGM [%] 100 100.0 100.0
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Figure 3.38: Participant 10. Evaluation of the meal responses for participant 10 in
the phase 2 trial with an insulin bolus computed from different ICRs.
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Figure 3.39: Participant 10. Left: TIRs for the DH study for participant 10 in the
phase 2 trial. Right: TIRs for the SH study for participant 10 in the
phase 2 trial.
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Figure 3.40: Participant 10. Left: Results from the DH study for participant 10 in
the phase 2 trial with 78.3% time in range. Right: Results from the SH
study for participant 10 in the phase 2 trial with 69.0% time in range.
From the top: 1) CGM measurements (blue dotted line), YSI measure-
ments (red crosses), and setpoint (red dashed line), 2) meals, 3) exercise,
4) basal insulin (blue line) and maximum allowed basal insulin (red dots),
5) meal boli (blue line) and maximum allowed meal boli (red dots), 6) cor-
rection insulin boli (blue line) and maximum allowed correction boli (red
dots), and 7) glucagon boli (blue line) and maximum allowed glucagon
boli (red dots).
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3.11 Participant 11

3.11.1 Parameter estimation
The parameter estimation for this participant was very challenging as often either the
meals or CGM measurements were missing in the data. We ended up using around 10
hours of data, but had to shift the announcement of both meals. The first meal was
shifted 1 h back in time and the other meal was shifted 15 min back. Figure 3.41 shows
the data used for estimation and a simulation with the estimated parameters. We fixed
km, k1, and EGP and tuned GEZI to the correct basal rate to match the participants’
normal base rate which was ∼ 31.944 mU/min. In general, this participant received a
lot of insulin, but still spent a lot of time in hyperglycemia. We computed ISF and
ICR based on the participants’ settings during the day and evening and not during the
night and morning. Table 3.21 shows the estimated parameters. We focused on getting
a meal response in Figure 3.42 for 75-100g CHO meal and an ICR of 5 g/U that would
reach around 4.5 mmol/L due to the challenging data.

3.11.2 Results
Table 3.22 and Figure 3.43 shows the outcomes for the glycemic targets and Figure
3.44 shows the results. In general, the AP works very well in both studies, but rescue
carbs were required before the snack in the SH study. The AP was most likely unable
to prevent the requirement for rescue carbs due to the offset between the CGM and
YSI measurements on the second day in the SH study. The participant entered the
clinic in hypoglycemia in the DH study and received carbs before the study was started.

Table 3.21: Parameter estimates for participant 11 in the phase 2 trial.
Desc Param. init. lb. estim. ub. unit

inv. ins. TC k1 0.02 0.0111 0.02 0.2 1/min
ins. sens. log(SI(0)) -8.44 -10 -8.42 -6 log((1/(mU/L))/min)

Endo. gluc. prod EGP 0.48 0.1 0.52 3 (mg/dL)/min
inv. dist. vol. 1/Vg 0.005 0.005 0.005 0.125 1/dL
inv. meal TC km 0.025 0.0111 0.025 0.1 1/min
IC ins. sub. Isc(0) 39.1 0 51.8 1e+06 mU/L
IC ins. plas. IP (0) 23.9 0 14.1 1e+06 mU/L
IC ins. eff. IEff (0) 0.022 0 0.0232 1e+06 1/min

IC gluc. conc. G(0) 104 0 104 1e+06 mg/dL
IC meal 1 D1(0) 10 0 10 10 mg
IC meal 2 D2(0) 10 0 10 10 mg
gluc. cov. Qg 3.88 0 4.12 30 -
ins. cov. log(Qlog SI) -9.21 -9.21 -9.21 -9.12 -
gluc. eff. GEZI - - 0.000127 - 1/min

ins. to carb. rat. ICR - - 5.000 - g/U
ins. sens. fac. ISF - - 1.400 - mmol/L/U

Basal rate uba - - 1.917 - U/h
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Figure 3.41: Participant 11. Parameter estimation for participant 11 in the phase 2
trial. From the top: 1) CGM measurements (blue dots) and a simulation
with the estimated parameters (red line), 2) announced meals, 3) basal
insulin rate, and 4) bolus insulin.

Therefore, the AP immediately increased the basal rate to the maximum in the DH
study. The participant had a relatively high response to the glucagon administered after
the dinner compared to the glucagon administered during the day. The TIR was slightly
lower in the DH study, but glucagon prevented the need for rescue carbs and also seemed
to prevent hypoglycemia during exercise.
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Figure 3.42: Participant 11. Evaluation of the meal responses for participant 11 in
the phase 2 trial with an insulin bolus computed from different ICRs.

86.3%

13.7%

94.8%

5.2%

Figure 3.43: Participant 11. Left: TIRs for the DH study for participant 11 in the
phase 2 trial. Right: TIRs for the SH study for participant 11 in the
phase 2 trial.
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Table 3.22: Values of the glycemic targets for participant 11 in the phase 2 trial.
Quantity Target DH SH

Average glucose [mmol/L] < 8.55 7.39 6.88
GMI [%] < 7 6.27 6.27
GV [%] ≤ 36 29.41 28.70
Active CGM [%] 100 100.0 100.0
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Figure 3.44: Participant 11. Left: Results from the DH study for participant 11 in
the phase 2 trial with 86.3% time in range. Right: Results from the SH
study for participant 11 in the phase 2 trial with 94.8% time in range.
From the top: 1) CGM measurements (blue dotted line), YSI measure-
ments (red crosses), and setpoint (red dashed line), 2) meals, 3) exercise,
4) basal insulin (blue line) and maximum allowed basal insulin (red dots),
5) meal boli (blue line) and maximum allowed meal boli (red dots), 6) cor-
rection insulin boli (blue line) and maximum allowed correction boli (red
dots), and 7) glucagon boli (blue line) and maximum allowed glucagon
boli (red dots).
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CHAPTER 4
Conclusions

In this technical report, we described the phase 1 and phase 2 trial of the Diacon dual-
and single hormone artificial pancreas in adolescents. We described both the parameter
estimation and study outcomes for each participant individually. Each study lasted 26
hours and consisted of 3 meals, a snack and an exercise session of moderate intensity.
There were 3 participants in the phase 1 trial and 11 participants in the phase 2 trial.
The trials displayed that it is feasible to use NMPC for APs and that both the DH and
SH AP are able to control the blood glucose concentration, but identifying a model is
a challenging and time-consuming process due to missing data and sometimes also in-
correctly announced meals and insulin boli. Identifying a good model is also a learning
process and during the studies, we started to set, e.g., the ICR to a value that seemed
reasonable instead of using the participants’ average value. We also shifted the timing
of some of the meals to match the peaks in the glucose concentration instead of directly
using the reported data. These adaptations seemed to improve the performance of the
AP. There were some technical difficulties that influenced the performance of the AP.
PISAs are especially challenging for DH APs as glucagon can be administered even if
glucose concentration is not low. That was the case for, e.g., participant 5. Occlusions
in the glucagon pump and lost connections also influenced the performance of the AP. It
was a limitation that we did not have any data on how the participants would respond to
glucagon and used the same parameters for all participants. That caused the predicted
glucagon response to be very inaccurate for many participants. Therefore, many partici-
pants received too much insulin after glucagon was administered and caused oscillations.
We cannot expect to be able to receive glucagon data from each participant, but we
could consider to make the parameters related to glucagon adaptive as it is the case for
the insulin sensitivity. Despite the challenges related to administration of glucagon in
some studies it also prevented hypoglycemia and the need for rescue carbs in others.
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A one-size-fits-all artificial pancreas for people with type 1 diabetes
based on physiological insight and feedback control

Tobias K. S. Ritschel, Asbjørn Thode Reenberg, Emilie B. Lindkvist, Christian Laugesen, Jannet Svensson,
Ajenthen G. Ranjan, Kirsten Nørgaard, Bernd Dammann, John Bagterp Jørgensen

Abstract— We propose a model-free artificial pancreas (AP)
for people with type 1 diabetes. The algorithmic parameters are
tuned to a virtual population of 1,000,000 individuals, and the
AP repeatedly estimates the basal and bolus insulin require-
ments necessary for maintaining normal blood glucose levels.
Therefore, the AP can be used without healthcare personnel or
engineers customizing the algorithm to each user. The estimates
are based on bodyweight, measurements from a continuous
glucose monitor (CGM), and estimates of the meal carbohydrate
contents. In a virtual clinical trial with all 1,000,000 individuals
(i.e., a Monte Carlo closed-loop simulation), the AP achieves a
mean time in range of more than 87% and over 88% of the
participants satisfy several glycemic targets.

I. INTRODUCTION

Diabetes is a chronic disease where the pancreas produces
insufficient amounts of insulin or the body is resistant to
insulin. More than 10% of the world’s adult population
suffers from this disease, and in 2021, USD 966 billion
dollars were spent on diabetes (which corresponds to 9%
of the global health expenditure) [1]. Type 1 diabetes (T1D)
accounts for 5–10% of all cases, and it is caused by autoim-
mune destruction of the pancreatic insulin-producing cells.
Consequently, the pancreas does not produce any insulin.
Therefore, people with T1D require daily insulin treatment in
order to prevent high blood glucose concentrations (referred
to as hyperglycemia). Long periods of hyperglycemia can
cause damage to the nerves and eyes and lead to chronic
kidney disease and cardiovascular disease. Additionally, in-
correct insulin treatment can lead to low blood glucose
concentrations (referred to as hypoglycemia). Severe hypo-
glycemia can lead to a number of acute complications, e.g.,
loss of consciousness and seizures.

People with T1D spend significant amounts of time on
self-treatment. Therefore, there is considerable interest in de-
veloping automated insulin delivery systems which can assist
them. Such systems are referred to as artificial pancreases
(APs) [2], and they typically consist of 1) a sensor, often
a continuous glucose monitor (CGM), 2) a control system,
usually a control algorithm implemented on a smartphone or
a dedicated device, and 3) an actuator, e.g., an insulin pump.

This work was partially funded by the IFD Grand Solution project
ADAPT-T2D (9068-00056B). A. T. Reenberg, T. K. S. Ritschel, B.
Dammann, and J. B. Jørgensen are with the Department of Applied
Mathematics and Computer Science, Technical University of Denmark, DK-
2800 Kgs. Lyngby, Denmark. E. B. Lindkvist, C. Laugesen, J. Svensson, A.
G. Ranjan, and K. Nørgaard are with Steno Diabetes Center Copenhagen,
Clinical Research, DK-2730 Herlev, Denmark. Corresponding author: J. B.
Jørgensen (E-mail: jbjo@dtu.dk).

Many control algorithms have been considered for this
purpose. They can be divided into model-free and model-
based algorithms. Model-based algorithms typically use
model predictive control (MPC) [3]–[6] where a model is
used to predict the body’s response to, e.g., meal carbohy-
drates and insulin. MPC is a well-proven control method-
ology that has been applied to many different types of
processes [7]. However, it requires an accurate model. Au-
tomatic generation of such a model based on historical data
(e.g., CGM measurements, administered insulin, and meal
carbohydrates) is an ongoing field of research. Consequently,
it remains difficult to make model-based APs widely avail-
able because a model must be developed for each individual.
In contrast, model-free controllers only rely on a few pieces
of information about the body for which estimates are readily
available, e.g., the bodyweight, the basal insulin requirement,
the insulin-to-carb ratio (ICR), and the insulin sensitivity
factor (ISF). These controllers are often based on heuris-
tics [8], fuzzy logic [9], or proportional-integral-derivative
(PID) control. PID controllers have been successfully applied
in many different industrial applications [10], and several
researchers have proposed APs based on concepts from PID
control. Marchetti et al. [11] proposed a PID controller which
is switched off when a meal is announced and switched back
on based on heuristical rules. Huyett et al. [12] described
a PID control algorithm for intraperitoneal insulin delivery
(whereas most APs deliver insulin subcutaneously which
results in a more delayed insulin effect). However, these
AP algorithms have not been tested on large numbers of
real or virtual people. Therefore, it is currently unknown
whether they can be adopted without healthcare personnel
or engineers tuning the algorithms specifically for each
individual (or group of individuals).

In this work, we present a one-size-fits-all AP algorithm
with a single set of controller parameters tuned to a popula-
tion of 1,000,000 virtual individuals with T1D. It simultane-
ously estimates the basal insulin and the meal insulin bolus
curve. Therefore, it is straightforward for a user to start using
the system, and it can also be used for titration. Furthermore,
we demonstrate that, for a given objective function, the
optimal meal insulin bolus is a nonlinear function of the
meal carbohydrate content, and we argue that it can be
approximated well by a piecewise linear function. The AP
algorithm is an extension of our previous work [13], [14],
where we also estimated the basal rate using concepts from
PID control but assumed the meal insulin bolus curve to
be known (and linear). We test the AP using a previously
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developed virtual clinical trial with 1,000,000 participants
over 52 weeks [15]. The participants are represented by
an extension of the model by Hovorka et al. [16], and the
mean time in range (TIR) is 87.2%. Furthermore, all of the
participants meet the target on time in level 2 hypoglycemia,
and over 88% of the participants meet all targets on TIR,
time above range (TAR), time below range (TBR), average
glucose, and glucose management indicator (GMI) [17].

The remainder of this paper is organized as follows. In
Section II, we analyze the optimal insulin bolus as a function
of the meal carbohydrate content, and in Section III, we
present the AP. We present the results of the virtual clinical
trial in Section IV, and conclusions are given in Section V.

II. ANALYSIS

In this section, we present a dynamic optimization problem
for determining the optimal meal insulin bolus as a function
of the meal size. We only use this optimization problem to
analyze the meal insulin bolus curve. It is not used in the AP
algorithm presented in Section III because it would require
a model of each person using the AP.

A. The dynamic optimization problem

The dynamic optimization problem determining the opti-
mal meal insulin bolus flow rate is in the form

min
u0

ϕ =

∫ tf

t0

ρ(z(t)) dt, (1a)

subject to

x(t0) = x0, (1b)
ẋ(t) = f(x(t), u(t), d(t), θ), t ∈ [t0, tf ], (1c)
z(t) = g(x(t), θ), t ∈ [t0, tf ], (1d)
u(t) = uk, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (1e)
d(t) = dk, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (1f)
umin ≤ u0 ≤ umax. (1g)

The objective function in (1a) is the integral of the penalty
function ρ over the time horizon [t0, tf ] = [0, 12] h, and
N is the number of control intervals. Furthermore, t is
time, x are the state variables, u is a vector of manipulated
inputs (i.e., the basal and bolus insulin flow rates), d are
disturbance variables (i.e., the meal carbohydrate flow rate),
z is the output (i.e., the CGM measurement), and θ are model
parameters. The initial condition (1b) is the steady state
corresponding to a blood glucose concentration of 6 mmol/L,
and the dynamical constraint (1c) is the model presented
by Hovorka et al. [16] extended with a CGM model [18].
Next, (1d) is an output equation, and (1e)–(1f) are zero-order-
hold (ZOH) parametrizations of the manipulated inputs and
the disturbance variables. Finally, umin and umax in (1g) are
lower and upper bounds on the manipulated inputs in the
first control interval.

In the first control interval (k = 0), the person consumes
a meal with a specified meal carbohydrate flow rate, d0, and
an insulin bolus is administered. For the remaining control
intervals (k > 0), the disturbances and the bolus insulin flow

TABLE I
THE FIVE GLYCEMIC RANGES DESCRIBED BY HOLT ET AL. [17].

Category Range [mmol/L] Color
Level 2 hyperglycemia ]13.9, ∞ [ Orange
Level 1 hyperglycemia ]10.0, 13.9] Yellow
Normoglycemia [ 3.9, 10.0] Green
Level 1 hypoglycemia [ 3.0, 3.9[ Light red
Level 2 hypoglycemia [ 0.0, 3.0[ Red

rate are zero. The insulin basal rate is equal to its steady state
value (corresponding to 6 mmol/L) in all control intervals,
i.e., it is not a decision variable. Finally, the lower bound on
the insulin bolus flow rate in the first control interval (k = 0)
is 0 and the upper bound is infinity.

The penalty function penalizes the deviation from the
setpoint z̄ = 6 mmol/L and the violation of the soft lower
bound zmin = 3.9 mmol/L (see also Table I), i.e.,

ρ(z(t)) = ρ̄(z(t)) + κρmin(z(t)), (2)

where

ρ̄(z(t)) =
1

2
(z(t)− z̄)2, (3a)

ρmin(z(t)) =
1

2
max{0, zmin − z(t)}2. (3b)

As the main priority is to avoid hypoglycemia, κ = 106.

B. Optimal insulin bolus curves

For 6 virtual people with type 1 diabetes (i.e., 6 different
sets of parameters, θ), Fig. 1 shows the values of the objec-
tive function in (1a) for different combinations of (absolute)
meal carbohydrate contents and insulin boluses. The black
lines indicate the optimal boluses found by solving the
dynamic optimization problem (1) using a single-shooting
approach. The optimal insulin bolus curve is more nonlinear
for some sets of parameters than others. For instance, a linear
insulin bolus curve is a worse approximation for person 6
than for person 4. The first kink in the optimal insulin
bolus curve (starting from the left) appears because the
total non-insulin-dependent glucose flux decreases when the
blood glucose concentration comes below 4.5 mmol/L in the
model by Hovorka et al. [16]. Consequently, more insulin is
required to decrease the concentration below this value. The
second kink arises because of the soft lower bound, zmin,
in the penalty function. There are no kinks for person 4
because their blood glucose concentration increases very
little after meals, i.e., there would be kinks for meals with
more than 150 g carbohydrates. In conclusion, a piecewise
linear function is a reasonable approximation of the optimal
insulin bolus curve.

III. ALGORITHM

At time tk [min], the AP receives a CGM measurement,
yk [mmol/L], and computes the basal and bolus insulin flow
rates, uba,k [mU/min] and ubo,k [mU/min]. These are clipped
and collected in the vector of manipulated inputs,

uk = max

{
0,min

{
umax,

[
uba,k

ubo,k

]}}
, (4)
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Fig. 1. Values of the objective function (1a) for different (absolute) meal carbohydrate contents and insulin boluses. The black lines indicate the optimal
insulin boluses as functions of the meal carbohydrate content, i.e., the solutions to the dynamic optimization problem (1).

which is administered over the following control interval,
[tk, tk+1[. The upper bounds on the insulin basal and bolus
insulin flow rates (i.e., the elements of umax) are 55 mU/min
and 8000 mU/min, respectively. Furthermore, the control and
sampling intervals are identical, and their lengths are Ts =
tk+1 − tk = 5 min.

If the CGM measurement is above the target value of
ȳ = 6 mmol/L, the basal insulin flow rate is the sum of an
estimated nominal basal insulin flow rate, ūba,k [mU/min],
and a microadjustment term, uma,k [mU/min]. If the mea-
surement is between the target and the safety threshold
ys = 3 mmol/L, the microadjustments are clipped to be non-
positive (for safety reasons). Finally, if the measurement is
below the safety threshold, the basal rate is zero, i.e.,

uba,k =


ūba,k + uma,k if ȳ ≤ yk,

ūba,k + [uma,k]
− if ȳ > yk > ys,

0 otherwise,
(5)

where [ · ]− = min{0, · }. The nominal basal insulin flow
rate is estimated using an extended integral (I) controller,
and the microadjustments are computed using a proportional-
derivative (PD) controller:

ūba,k = Iba,k, (6a)
uma,k = Pma,k +Dma,k. (6b)

Here, Iba,k is an integral term (see Section III-A) and
Pma,k and Dma,k are proportional and derivative terms (see
Section III-B).

Based on the analysis in Section II, we compute the meal
bolus insulin flow rate as a continuous piecewise linear
function of the estimated normalized meal carbohydrate flow
rate, d̂k [g CHO/(kg min)]. That is, d̂k is the amount of
meal carbohydrates the user announces they will consume
in the k’th control interval, divided by the product of
their bodyweight and the length of the control interval, Ts.
Specifically, the meal bolus insulin flow rate is given by

ubo,k =

{
αkdth + αk

β (d̂k − dth) if d̂k > dth,

αkd̂k otherwise.
(7)

If the normalized meal carbohydrate flow rate is below the
threshold dth = 0.1 g CHO/(kg min), the insulin bolus flow
rate is proportional to the meal carbohydrate flow rate and
the slope, αk [mU kg/(g CHO)], is essentially the inverse of
the ICR. For higher normalized meal carbohydrate contents,
the slope is divided by β = 2 (unitless). Both the threshold
and β were identified by trial-and-error, and we estimate the
meal bolus factor αk using another extended I-controller, i.e.,

αk = Ibo,k, (8)

where Ibo,k is an integral term described in Section III-C.

A. Estimation of the basal rate
At time tk, when a CGM measurement becomes available,

we update the estimate of the basal rate and ensure that it is
non-negative:

Iba,k = max{0, Iba,k−1 +∆Iba,k}. (9)
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The increment is

∆Iba,k = wba,kKI,baeba,kTs, (10)

where the unitless binary weight wba,k is 1 if the last
meal was announced more than ∆tm = 9.5 h ago and
0 otherwise. Furthermore, the integrator gain is KI,ba =
4 ·10−4 mU L/(mmol min2), and the error is computed using
the deadband [yℓba, y

u
ba] = [3.9, 8.0] mmol/L and a (unitless)

hypoglycemia amplification factor, γ = 100:

eba,k =


yk − yuba if yk > yuba,

γ(yk − yℓba) if yk < yℓba,

0 otherwise.
(11)

B. Microadjustments of the basal rate

The proportional term in the microadjustment of the basal
insulin flow rate is

Pma,k = wma,kKP,maek, (12)

where the gain is KP,ma = 0.3 mU L/(mmol min), and the
error is

ek = yk − ȳ. (13)

The unitless binary weight wma,k is 1 if the CGM measure-
ment is below the target or if wba,k = 1. Otherwise, it is
zero:

wma,k =

{
1 if yk < ȳ or wba,k = 1,

0 otherwise.
(14)

The derivative term is

Dma,k = wma,kKD,ma
yk − yk−1

Ts
, (15)

where the gain is KD,ma = 10 mU L/mmol and we disregard
changes in the setpoint (which is also constant in this work).

C. Estimation of the meal bolus factor

As for the basal rate, we update the estimate of the
meal bolus factor whenever a CGM measurement becomes
available and ensure that it is non-negative, i.e.,

Ibo,k = max{0, Ibo,k−1 +∆Ibo,k}, (16)

where the increment is

∆Ibo,k = wbo,kKI,boebo,kTs. (17)

The unitless binary weight wbo,k is 1 for a time period
of ∆tm after every announced meal, i.e., wbo,k and wba,k

never have the same value. Furthermore, the gain is KI,bo =
0.05 mU kg L/(g CHO mmol min), and we use both a
deadband of [yℓbo, y

u
bo] = [3.9, 10] mmol/L, the hypoglycemia

amplification factor γ, and clipping to compute the error:

ebo,k =


ythbo − yubo if yk > ythbo ,

yk − yubo if yk ∈ [yubo, y
th
bo ],

γ(yk − yℓbo) if yk < yℓbo,

0 otherwise.

(18)

The clipping ensures that all CGM measurements above the
threshold ythbo = 13.9 mmol/L result in the same error.

TABLE II
THE COMPOSITIONS OF THE SEASONS AND THE WEEKS AND THE MEAL

CARBOHYDRATE CONTENTS IN THE PROTOCOL DESCRIBED IN [15].

Compositions of the seasons
Season Standard weeks Active weeks Vacation weeks
Winter 6 4 3
Spring 6 6 1
Summer 7 3 3
Autumn 9 3 1

Compositions of the weeks
Week type Standard days Active days Movie nights Late nights
Standard 4 1 1 1
Active 3 3 1 0
Vacation 5 0 0 2

Bodyweight-dependent meal carbohydrate contents
Meal size Amount of carbohydrates For a 70 kg person
Large meal 1.29 g CHO/kg 90 g CHO
Medium meal 0.86 g CHO/kg 60 g CHO
Small meal 0.57 g CHO/kg 40 g CHO
Snack 0.29 g CHO/kg 20 g CHO

Medium meal
Small meal

Large meal

snack

Medium meal
Small meal

Large meal

snack Exercise

snack

Medium meal
Small meal

Large meal

snack

snack

Medium meal
Small meal

Large meal

snack snack

Fig. 2. The different types of days in the autumn and winter of the protocol
proposed by Reenberg et al. [15]: standard (top), active (second from the
top), day with a movie night (third from the top), and day with a late night
(bottom). During spring and summer, the dinner is a medium meal and the
afternoon snack is consumed between breakfast and lunch instead.

IV. VIRTUAL CLINICAL TRIAL

In this section, we test the AP algorithm described in Sec-
tion III in a virtual clinical trial with 1,000,000 participants.
The trial starts on January 1st, 2021 and lasts 52 weeks. We
use 1) the virtual population and the protocol presented by
Reenberg et al. [15] and 2) a previously developed Monte
Carlo simulation framework [19], [20]. However, we replace
participants for which any time constant is more than 1
order of magnitude smaller or larger than the mean (i.e., we
generate new participants). The protocol mimics a Northern
European lifestyle, and it consists of 4 seasons lasting 13
weeks each. Each week is categorized as standard, active,
or vacation, and all weeks consist of standard days, active
days, days with a movie night, and days with a late night
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Fig. 3. A single participant’s CGM values (top), meal carbohydrate contents
(second from the top), exercise intensity (third from the top), basal insulin
flow rate (fourth from the top), and insulin boluses (bottom) over 4 days
(one of each type) starting at 6:00 AM on December 11th. The colored
ranges are described in Table I.

(see Table II and Fig. 2). Each participant is represented
using the mathematical model presented by Hovorka et
al. [16] extended with a CGM model [18] and an exercise
model [21]. The initial estimates of the basal rate and the
meal bolus factor are zero, i.e., Iba,0 = Ibo,0 = 0, and the
initial state is the steady state without insulin administration.

Fig. 3 shows the results of the virtual clinical trial for one
participant over four different types of days. The basal rate is
constant for most parts of the day, and it is decreased when
the CGM measurements are below the target of 6 mmol/L
(which mostly happens at night). A bolus is administered
for each meal, and for this participant, the majority of the
CGM measurements are within the normoglycemic range.
However, the estimated nominal basal rate is quite low.
Therefore, the CGM measurements increase over night.

In the following, we discuss the efficacy of the AP based
on the last 48 weeks of the trial as the estimates of the
nominal basal insulin flow rate and the meal bolus factor
vary significantly during the first 4 weeks. The participant
who obtains the lowest CGM measurement during all 52
weeks (specifically, 1.05 mmol/L) is referred to as the worst-
case participant, and Fig. 4 shows the mean and worst-
case TIRs. The mean of 87.2% TIR exceeds the target
of 70%, and the time in level 1 and 2 hypoglycemia is
low, even for the worst-case participant. Fig. 5 shows the
cumulative distribution of the CGM measurements. The left
tail shows that all participants spend less than 1% of the
time in level 2 hypoglycemia and less than 8% of the time
in level 1 and 2 hypoglycemia. This can also be seen in
Fig. 6 which shows box plots of the TIRs. It also shows that

Fig. 4. The mean TIRs (left) and the TIRs for the worst-case participant
(right) based on CGM measurements, G, and the ranges in Table I.

Fig. 5. The cumulative distribution of the CGM measurements for the
mean (blue solid line), the worst-case participant (red solid line), the 95%
central range (dark grey shaded area), and for all participants (light grey
shaded area). The target is 6 mmol/L (red dashed line). The colored ranges
are described in Table I.

most participants do not spend significant amounts of time
in level 2 hyperglycemia. Table III shows the percentages of
participants satisfying the glycemic targets described by Holt
et al. [17]. Almost 82% satisfy all targets, and nearly 89%
satisfy all average glucose, GMI, TAR, TIR, and TBR targets.
Finally, Fig. 7 shows that most of the participants’ average
total daily doses (TDDs) of basal and bolus insulin are in
the intervals [7.5, 25] U/day and [5, 20] U/day, respectively.
However, the distributions have long tails towards the right
indicating that a few participants require high insulin doses.

V. CONCLUSIONS

We propose a one-size-fits-all AP algorithm for people
with T1D, which estimates both the basal insulin flow rate
and the meal insulin bolus curve. It is based on physiological
insight and concepts from PID control, and it only requires
the bodyweight, CGM measurements, and meal carbohydrate
estimates. We compute the meal insulin bolus as a piecewise
linear function of the meal carbohydrate content normalized
with bodyweight, and we test the AP algorithm in a 52 week
virtual clinical trial with 1,000,000 participants. The mean
TIR is 87.2%, and almost 89% of the participants satisfy
targets on average glucose, GMI, TAR, TIR, and TBR.
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Fig. 6. Box plots of the TIRs with medians (red horizontal lines), boxes
spanning the first to the third quartile, and whiskers (solid black horizontal
lines). The whiskers are 1.5 times the interquartile ranges (the height of
the boxes) above or below the medians, unless the most extreme values are
closer to the medians. In that case, the whiskers are the most extreme values.
The red pluses are values that are beyond the whiskers (i.e., outliers). The
TIRs are based on CGM measurements, G, and the ranges in Table I.

Fig. 7. The distributions of the average TDDs of basal and bolus insulin.
Both distributions have long right tails which are hardly visible.
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Abstract: For people with type 1 diabetes and some with type 2 diabetes, the problem of
insulin titration, i.e. finding an adequate basal rate of insulin, is a complex and time-consuming
task. This paper proposes a simple model-free algorithm and a procedure for fast initial
titration in people with type 1 diabetes (T1D). A modified proportional-integral-derivative
(PID) controller (i) updates the estimated insulin basal rate, and (ii) administers micro-boli of
insulin every 5 minutes using glucose measurements from a continuous glucose monitor (CGM).
A bolus calculator mitigates the effect of meals and reduces postprandial peaks. We evaluate
the performance of our system qualitatively and numerically using a virtual clinic of 1,000 T1D
patients with a broad inter-patient variability representative of a real population of people with
T1D. We let the titration phase run for three consecutive days, followed by a three-day test
phase using the newly computed basal insulin infusion rate. The proposed algorithm is able to
provide a safe titration and individualized treatment for people with T1D.

Keywords: Control algorithm, PID, Feed-forward control, Run-to-run control, Diabetes,
Artificial pancreas.

1. INTRODUCTION

Type 1 diabetes (T1D) accounts for around 10% of the
463 million people living with diabetes worldwide. Due
to autoimmune β-cell destruction, people with T1D are
unable to produce insulin. Life-long treatment using daily
insulin injections is vital to avoid an elevated blood glu-
cose (BG) level (Riddle et al., 2018). Common ways to
administer insulin are multiple daily injections (MDI) and
continuous subcutaneous insulin infusion (CSII) therapy.
MDI therapy uses pens to administer long-acting insulin
once daily and rapid-acting insulin several times per day,
usually before meals. CSII therapy uses a pump to contin-
uously administer a rapid insulin analogue.

The artificial pancreas (AP) provides closed-loop insulin
therapy for T1D, and has even been considered to treat
some people with T2D (Bally et al., 2018; Taleb et al.,
2019). The AP consists of (i) a continuous glucose monitor
(CGM), (ii) a control algorithm and (iii) a CSII pump.
The CGM provides frequent glucose measurements, typ-
ically every 5 minutes. The control algorithm resides on
a smartphone for most prototypes (Cobelli et al., 2012;
Kovatchev et al., 2013), but for commercial systems the
control algorithm should preferably be embedded on the
pump.

Several control technologies have been considered for the
AP, such as linear model predictive control (MPC) (Eren-
Oruklu et al., 2009; Schmidt et al., 2013; Boiroux et al.,

� This project has partially been funded by the IFD Grand Solution
project ADAPT-T2D: 9068-00056B. Corresponding author: J.B.
Jørgensen (e-mail: jbjo@dtu.dk)

2018), nonlinear MPC (Hovorka et al., 2004; Boiroux
and Jørgensen, 2018), fuzzy logic control (Biester et al.,
2019), and proportional integral derivative (PID) control
(Marchetti et al., 2006, 2008; Ly et al., 2016). Although
MPC-based APs showed similar or slightly better perfor-
mance in clinical studies than PID-based APs (Steil, 2013;
Pinsker et al., 2016), PID technology has proven to be
successful in currently available hybrid control systems
(Laxminarayan et al., 2012; Ly et al., 2017). The PID-
controller can easily be implemented using simple tuning
rules, does not require any metabolic model of the insulin-
glucose dynamics, and mimics the behavior of the pancreas
for a healthy patient (Steil et al., 2004).

The initial use of CSII can be challenging considering the
need of estimating the insulin basal rate that brings the
BG level to a safe range (King et al., 2016). The basal
rate needs to be high enough to lower the glucose level.
However, too much insulin causes hypoglycemia and in
worst case can be fatal. To estimate the initial basal rate
for adult patients in todays CSII treatment, the healthcare
professionals calculate the initial basal rate. Either based
on the total daily dose (TDD) of MDI or on a combination
of the TDD with a body-weight-based method (King, 2012;
Chow et al., 2016; Bode et al., 2011). A recent study shows
that the TDD method underestimated the patients basal
rate with a median error of 10.06%, while the body weight-
based method overestimates the patient’s basal rate with
a median error of 11.1% (Chow et al., 2016).

As an approach to find a safe basal rate for CSII treatment
when the TDD is unknown, e.g. for insulin naive patients,
we present an implementation of a model-free controller
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463 million people living with diabetes worldwide. Due
to autoimmune β-cell destruction, people with T1D are
unable to produce insulin. Life-long treatment using daily
insulin injections is vital to avoid an elevated blood glu-
cose (BG) level (Riddle et al., 2018). Common ways to
administer insulin are multiple daily injections (MDI) and
continuous subcutaneous insulin infusion (CSII) therapy.
MDI therapy uses pens to administer long-acting insulin
once daily and rapid-acting insulin several times per day,
usually before meals. CSII therapy uses a pump to contin-
uously administer a rapid insulin analogue.

The artificial pancreas (AP) provides closed-loop insulin
therapy for T1D, and has even been considered to treat
some people with T2D (Bally et al., 2018; Taleb et al.,
2019). The AP consists of (i) a continuous glucose monitor
(CGM), (ii) a control algorithm and (iii) a CSII pump.
The CGM provides frequent glucose measurements, typ-
ically every 5 minutes. The control algorithm resides on
a smartphone for most prototypes (Cobelli et al., 2012;
Kovatchev et al., 2013), but for commercial systems the
control algorithm should preferably be embedded on the
pump.

Several control technologies have been considered for the
AP, such as linear model predictive control (MPC) (Eren-
Oruklu et al., 2009; Schmidt et al., 2013; Boiroux et al.,
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2018), nonlinear MPC (Hovorka et al., 2004; Boiroux
and Jørgensen, 2018), fuzzy logic control (Biester et al.,
2019), and proportional integral derivative (PID) control
(Marchetti et al., 2006, 2008; Ly et al., 2016). Although
MPC-based APs showed similar or slightly better perfor-
mance in clinical studies than PID-based APs (Steil, 2013;
Pinsker et al., 2016), PID technology has proven to be
successful in currently available hybrid control systems
(Laxminarayan et al., 2012; Ly et al., 2017). The PID-
controller can easily be implemented using simple tuning
rules, does not require any metabolic model of the insulin-
glucose dynamics, and mimics the behavior of the pancreas
for a healthy patient (Steil et al., 2004).

The initial use of CSII can be challenging considering the
need of estimating the insulin basal rate that brings the
BG level to a safe range (King et al., 2016). The basal
rate needs to be high enough to lower the glucose level.
However, too much insulin causes hypoglycemia and in
worst case can be fatal. To estimate the initial basal rate
for adult patients in todays CSII treatment, the healthcare
professionals calculate the initial basal rate. Either based
on the total daily dose (TDD) of MDI or on a combination
of the TDD with a body-weight-based method (King, 2012;
Chow et al., 2016; Bode et al., 2011). A recent study shows
that the TDD method underestimated the patients basal
rate with a median error of 10.06%, while the body weight-
based method overestimates the patient’s basal rate with
a median error of 11.1% (Chow et al., 2016).

As an approach to find a safe basal rate for CSII treatment
when the TDD is unknown, e.g. for insulin naive patients,
we present an implementation of a model-free controller
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2019). The AP consists of (i) a continuous glucose monitor
(CGM), (ii) a control algorithm and (iii) a CSII pump.
The CGM provides frequent glucose measurements, typ-
ically every 5 minutes. The control algorithm resides on
a smartphone for most prototypes (Cobelli et al., 2012;
Kovatchev et al., 2013), but for commercial systems the
control algorithm should preferably be embedded on the
pump.

Several control technologies have been considered for the
AP, such as linear model predictive control (MPC) (Eren-
Oruklu et al., 2009; Schmidt et al., 2013; Boiroux et al.,
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2018), nonlinear MPC (Hovorka et al., 2004; Boiroux
and Jørgensen, 2018), fuzzy logic control (Biester et al.,
2019), and proportional integral derivative (PID) control
(Marchetti et al., 2006, 2008; Ly et al., 2016). Although
MPC-based APs showed similar or slightly better perfor-
mance in clinical studies than PID-based APs (Steil, 2013;
Pinsker et al., 2016), PID technology has proven to be
successful in currently available hybrid control systems
(Laxminarayan et al., 2012; Ly et al., 2017). The PID-
controller can easily be implemented using simple tuning
rules, does not require any metabolic model of the insulin-
glucose dynamics, and mimics the behavior of the pancreas
for a healthy patient (Steil et al., 2004).

The initial use of CSII can be challenging considering the
need of estimating the insulin basal rate that brings the
BG level to a safe range (King et al., 2016). The basal
rate needs to be high enough to lower the glucose level.
However, too much insulin causes hypoglycemia and in
worst case can be fatal. To estimate the initial basal rate
for adult patients in todays CSII treatment, the healthcare
professionals calculate the initial basal rate. Either based
on the total daily dose (TDD) of MDI or on a combination
of the TDD with a body-weight-based method (King, 2012;
Chow et al., 2016; Bode et al., 2011). A recent study shows
that the TDD method underestimated the patients basal
rate with a median error of 10.06%, while the body weight-
based method overestimates the patient’s basal rate with
a median error of 11.1% (Chow et al., 2016).

As an approach to find a safe basal rate for CSII treatment
when the TDD is unknown, e.g. for insulin naive patients,
we present an implementation of a model-free controller

for initial titration of people with T1D. The proposed
controller is a modified PID-controller in the sense that it
uses a deadband and contains an anti-windup algorithm.
A further modification is that at mealtimes, we suspend
the PID-controller for 5.5 hours and give bolus insulin
to compensate for the carbohydrates (CHO) intake. To
find the estimated basal rate, the patients use an AP with
the PID-controller in a three days titration phase. When
the estimated basal rate is obtained, we let the study
continue with a three days test phase, to test the suggested
basal rate. We evaluate the performance of the method
by simulating a cohort of 1,000 random generated virtual
patients.

The rest of the paper is structured as follows. Section 2
describes the control algorithm. We define the scenario
and the simulator used for in silico trials in Section 3. The
results are presented in Section 4, the discussion in Section
5, and the conclusion in Section 6.

2. CONTROL ALGORITHM

People with T1D need basal insulin to compensate for
the long-term endogenous glucose production, and bolus
insulin to control the glucose level after intake of CHO.
For each discrete time, tk, the insulin pump administers
the total amount of insulin, utot(tk), given by,

utot(tk) = umicro−bolus(tk) + ubolus(tk). (1)

umicro−bolus(tk) is the amount of micro-bolus insulin re-
quired to manage the endogenous glucose production, and
ubolus(tk) is the bolus insulin estimated to compensate for
the intake of CHO. The micro-bolus insulin basal rate is
calculated as,

ūmicro−bolus(tk) =
umicro−bolus(tk)

∆tk
= ūbasal(tk) + v̄(tk).

(2)

The nominal basal rate is described by ūbasal(tk) and v̄(tk)
is the adjustments in the basal rate. ∆tk = Ts denotes the
time interval the calculated basal rate will be applied for
i.e. the sampling time (Jørgensen et al., 2019).

2.1 Filter

The derivative term of the PID-controller is highly sen-
sitive to noise. Though modern CGM systems provide a
filtered signal, a first order low-pass filter in discrete time is
implemented before computing the basal rate. The filtered
CGM-signal yF (tk) is calculated as,

yF (tk) = αyCGM (tk) + (1− α)yF (tk−1), (3)

where the smoothing factor α = 0.2, corresponding to a
time constant of approximately 20 minutes, and yCGM (tk)
is the signal provided by the CGM.

2.2 Micro-bolus and basal rate

The basal insulin rate for controlling the glucose level is
conducted by a PID-controller using the filtered CGM-
signal yF (tk). In continuous time, we consider a PID-
controller defined by,

v̄(t) = Kp(ȳ(t)− yF (t))+Ki

∫ t

0

ei(τ)dτ −Kd
dyF (t)

dt
, (4)

where Kp,Ki, and Kd denote the proportional, integral,
and derivative gains. ȳ(t) is the glucose target and ei(τ) is
the error at the integral. The discrete-time PID-controller
corresponding to the continuous-time PID-controller is

v̄(tk) = Kp(ȳ(tk)−yF (tk))+I(tk)−
Kd

Ts
(yF (tk)−yF (tk−1)).

(5)

The sampling time, Ts, equals the sampling rate of the
CGM, commonly 5 minutes. I(tk) describes the changes
in the basal rate and can be expressed as,

I(tk) = I(tk−1) +KiTsei(tk). (6)

The error term ei(tk) has an integral deadband in the
range from 4 to 8 mmol/L. The deadband prevents the
integrator from integrating when the glucose level is inside
the range of the deadband,

ei(tk) =

{
llow − yF (tk), yF (tk) ≤ llow,
0, llow < yF (tk) ≤ lup,
lup − yF (tk), yF (tk) > lup,

(7)

where llow and lup are the lower and upper limits of the
target range. To avoid integrator windup and negative
micro-bolus rate, ūmicro−bolus(tk) is limited to the interval
[0, Umax], where Umax = 12 mU/min for the first 12 hours
of simulation while the virtual patients are fasting, and
afterwards at the time t = 12 hours, the limit is set to
Umax = 2I(tk−1). The micro-bolus rate ūmicro−bolus(tk) is
then,

ūmicro−bolus(tk) = min(max(0, ūbasal(tk) + v̄(tk)), Umax).
(8)

For patients with low insulin sensitivity the limit on
12 mU/min will in some cases be too insufficient to
influence the BG. Therefore, before Umax is changed from
12 mU/min to 2I(tk−1), we measure the filtered CGM
signal yF (tk). If yF (tk) is in the hyperglycaemic range above
yhyper = 10 mmol/L, and the basal rate after 12 hours is
limited to Umax, then I(t12hours) is set to Umax,

I(t12hours) =

{
Umax, (yF (tk) > yhyper)∧

(ubasal(tk) = Umax),
I(tk), otherwise.

(9)

The above definition of the micro-bolus rate consists of
the estimated basal rate as well as corrections computed
by the PD-controller. Hence, the estimated basal insulin
rate is

ûbasal(tk) = ūbasal(tk) + I(tk) (10)

2.3 Bolus calculator

To balance the glucose level after intake of CHO, people
with T1D need bolus insulin. The size of the bolus is
calculated using a bolus calculator. Common equations
for bolus calculation typically exist of three parts 1) meal
insulin, 2) correction insulin, and 3) insulin on board (IOB)
(Schmidt and Nørgaard, 2014). The equation is given as
(Jørgensen et al., 2019)
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uses a deadband and contains an anti-windup algorithm.
A further modification is that at mealtimes, we suspend
the PID-controller for 5.5 hours and give bolus insulin
to compensate for the carbohydrates (CHO) intake. To
find the estimated basal rate, the patients use an AP with
the PID-controller in a three days titration phase. When
the estimated basal rate is obtained, we let the study
continue with a three days test phase, to test the suggested
basal rate. We evaluate the performance of the method
by simulating a cohort of 1,000 random generated virtual
patients.

The rest of the paper is structured as follows. Section 2
describes the control algorithm. We define the scenario
and the simulator used for in silico trials in Section 3. The
results are presented in Section 4, the discussion in Section
5, and the conclusion in Section 6.

2. CONTROL ALGORITHM

People with T1D need basal insulin to compensate for
the long-term endogenous glucose production, and bolus
insulin to control the glucose level after intake of CHO.
For each discrete time, tk, the insulin pump administers
the total amount of insulin, utot(tk), given by,

utot(tk) = umicro−bolus(tk) + ubolus(tk). (1)

umicro−bolus(tk) is the amount of micro-bolus insulin re-
quired to manage the endogenous glucose production, and
ubolus(tk) is the bolus insulin estimated to compensate for
the intake of CHO. The micro-bolus insulin basal rate is
calculated as,

ūmicro−bolus(tk) =
umicro−bolus(tk)

∆tk
= ūbasal(tk) + v̄(tk).

(2)

The nominal basal rate is described by ūbasal(tk) and v̄(tk)
is the adjustments in the basal rate. ∆tk = Ts denotes the
time interval the calculated basal rate will be applied for
i.e. the sampling time (Jørgensen et al., 2019).

2.1 Filter

The derivative term of the PID-controller is highly sen-
sitive to noise. Though modern CGM systems provide a
filtered signal, a first order low-pass filter in discrete time is
implemented before computing the basal rate. The filtered
CGM-signal yF (tk) is calculated as,

yF (tk) = αyCGM (tk) + (1− α)yF (tk−1), (3)

where the smoothing factor α = 0.2, corresponding to a
time constant of approximately 20 minutes, and yCGM (tk)
is the signal provided by the CGM.

2.2 Micro-bolus and basal rate

The basal insulin rate for controlling the glucose level is
conducted by a PID-controller using the filtered CGM-
signal yF (tk). In continuous time, we consider a PID-
controller defined by,

v̄(t) = Kp(ȳ(t)− yF (t))+Ki

∫ t

0

ei(τ)dτ −Kd
dyF (t)

dt
, (4)

where Kp,Ki, and Kd denote the proportional, integral,
and derivative gains. ȳ(t) is the glucose target and ei(τ) is
the error at the integral. The discrete-time PID-controller
corresponding to the continuous-time PID-controller is

v̄(tk) = Kp(ȳ(tk)−yF (tk))+I(tk)−
Kd

Ts
(yF (tk)−yF (tk−1)).

(5)

The sampling time, Ts, equals the sampling rate of the
CGM, commonly 5 minutes. I(tk) describes the changes
in the basal rate and can be expressed as,

I(tk) = I(tk−1) +KiTsei(tk). (6)

The error term ei(tk) has an integral deadband in the
range from 4 to 8 mmol/L. The deadband prevents the
integrator from integrating when the glucose level is inside
the range of the deadband,

ei(tk) =

{
llow − yF (tk), yF (tk) ≤ llow,
0, llow < yF (tk) ≤ lup,
lup − yF (tk), yF (tk) > lup,

(7)

where llow and lup are the lower and upper limits of the
target range. To avoid integrator windup and negative
micro-bolus rate, ūmicro−bolus(tk) is limited to the interval
[0, Umax], where Umax = 12 mU/min for the first 12 hours
of simulation while the virtual patients are fasting, and
afterwards at the time t = 12 hours, the limit is set to
Umax = 2I(tk−1). The micro-bolus rate ūmicro−bolus(tk) is
then,

ūmicro−bolus(tk) = min(max(0, ūbasal(tk) + v̄(tk)), Umax).
(8)

For patients with low insulin sensitivity the limit on
12 mU/min will in some cases be too insufficient to
influence the BG. Therefore, before Umax is changed from
12 mU/min to 2I(tk−1), we measure the filtered CGM
signal yF (tk). If yF (tk) is in the hyperglycaemic range above
yhyper = 10 mmol/L, and the basal rate after 12 hours is
limited to Umax, then I(t12hours) is set to Umax,

I(t12hours) =

{
Umax, (yF (tk) > yhyper)∧

(ubasal(tk) = Umax),
I(tk), otherwise.

(9)

The above definition of the micro-bolus rate consists of
the estimated basal rate as well as corrections computed
by the PD-controller. Hence, the estimated basal insulin
rate is

ûbasal(tk) = ūbasal(tk) + I(tk) (10)

2.3 Bolus calculator

To balance the glucose level after intake of CHO, people
with T1D need bolus insulin. The size of the bolus is
calculated using a bolus calculator. Common equations
for bolus calculation typically exist of three parts 1) meal
insulin, 2) correction insulin, and 3) insulin on board (IOB)
(Schmidt and Nørgaard, 2014). The equation is given as
(Jørgensen et al., 2019)
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ubolus(t) =
d̂(t)

carbF
+ αcorr

yF (t)− ȳ(t)

corrF
− αIOBIOB(t).

(11)

For this paper we only use the meal insulin part of
the bolus calculator, and assume that the PID-controller
used for the basal rate will do the corrections of the
error (Jørgensen et al., 2019). The equation for the bolus
calculator is given by

ubolus(t) = ICR · d̂(t), (12)

where ICR = 1/carbF and d̂(t) is the estimated amount
of CHO in grams in the meal. ICR (U/gCHO) is the
insulin to CHO ratio, i.e. ICR denotes the amount of
CHO covered by 1 unit of insulin. Appendix A reports
the procedure for computation of the ICR in this paper.

3. SCENARIO

To evaluate the control algorithm, we use a simulator
based on the physiological model developed by Hovorka
et al. (2004). The Hovorka model describes the metabolic
system for people with T1D. It interprets the pharmacoki-
netic (PK) and pharmacodynamics (PD) response of sub-
cutaneous insulin infusion, CHO absorption, and insulin
action.

In the scenario, we simulate a population of 1,000 ran-
domly generated virtual patients. The parameter distri-
bution is stated in Hovorka et al. (2002); Wilinska et al.
(2010) and Boiroux et al. (2018). The first three days of the
scenario is the titration phase. In this phase, the virtual
patients use an AP with the PID-controller to estimate the
basal rate. The titration phase is followed by a three-day
test phase where we test the estimated basal rate.

We start the study at 18:00 assuming that the patient has
not taken any dinner to initiate the titration overnight. For
the remaining time of simulation an intake of 60 g, CHO is
simulated at 6:00 AM and at 12:00 PM, and an intake of
90 g CHO is simulated at 6:00 PM. The controller gets an
announcement at mealtimes, and a bolus is calculated to
correct the glucose level after CHO intake. In the titration
phase, the PID-controller is suspended for 5.5 hours after
a meal, and the basal rate is fixed to the last calculated
rate before the meal announcement.

4. RESULTS

Fig. 1 illustrates the glucose concentration, the CHO in-
take, the bolus insulin administration, the micro-bolus
insulin administration and the estimated basal insulin for
10 virtual patients. The first chart shows the glucose con-
centration, where the postprandial peaks are a response to
the CHO intake shown in the second chart. The amplitude
of the peaks depends on the amount of CHO and the
ratio between the time constants for CHO absorption and
subcutaneous (sc) insulin absorption (El Fathi et al., 2018;
Boiroux and Jørgensen, 2018). The third chart shows the
calculated bolus based on the estimated amount of CHO
intake and the virtual patients ICR. After the first 12 hours
of simulation, Umax is set to 2I(tk−1), which is reflected
by the adjustments in the micro-bolus rate in the fourth

Fig. 1. Simulation of 10 virtual patients. The titration
phase runs for three days, followed by a three-day test
phase using the estimated basal rate.

Table 1. Distribution of time spend in different
glucose concentration ranges during the titra-
tion phase for a population of 1,000 virtual

patients.

Glucose(mmol/L) Mean Q1 Q2 Q3

0 ≤ G < 3 0.0% 0.0% 0.0% 0.0%

3 ≤ G < 3.9 0.2% 0.0% 0.0% 0.0%

3.9 ≤ G ≤ 10.0 77.7% 71.9% 77.4% 84.6%

10.0 < G ≤ 13.9 19.2% 15.0% 19.7% 23.3%

13.9 < G ≤ 26.1 3.0% 0.0% 0.6% 3.8%

chart. The integrator value emulates the basal rate that
we aim to find and is shown in the fifth chart of the figure.

We evaluate the performance of the controller based on
the three-day test phase using the estimated basal rate.
The mean of the estimated basal rate for the virtual clinic
is 8.04 mU/min with a minimum of 5.06 mU/min and a
maximum of 29.86 mU/min.

A cumulative distribution was performed on the glucose
values of the 1,000 virtual patients in the test phase. Fig.
2 illustrates the result for the cumulative distribution with
a mean time in range (TIR) of 78.5%.

Tables 1 and 2 report the population distribution of
the time spent in different glucose concentration ranges.
Figure 3 illustrates the glucose concentration trajectory
for the patient having the worst hypoglycemic episodes
(lowest and most time spent in hypo). From these results,
it is clear that while the titration is not perfect, it improves
current practice and leads to no severe situations.

Recommendations from the International Consensus on
TIR (Battelino et al., 2019) states that people living with
T1D should spend above 70% time in target range (3.9
-10.0 mmol/L), less than 4% below 3.9 mmol/L, less than

Fig. 2. Cumulative distribution of glucose values, for 1,000
virtual patients in the test phase.

Fig. 3. Profiles for the patient with most time in the
glucose concentration range 0 ≤ G < 3. Notice that
the time in severe hypoglycemia is very limited and
not due to the basal insulin rate being too high.
Rather it is due to an overestimated insulin bolus to
compensate for the meal.

1% below 3.0 mmol/L, less than 25% above 10.0 mmol/L
and less than 5% above 13.9 mmol/L.

In respect to hypoglycemia in our scenario, 2 out of 1,000
virtual patients spend more than 1% below 3.0 mmol/L in
the titration phase. In the test phase the number increases
to 5 virtual patients, with a minimum of 2.4 mmol/L for
both phases. 20 out of 1,000 virtual patients spend more

Table 2. Distribution of time spend in differ-
ent glucose concentration ranges during the
test phase for a population of 1,000 virtual

patients.

Glucose(mmol/L) Mean Q1 Q2 Q3

0 ≤ G < 3 0.0% 0.0% 0.0% 0.0%

3 ≤ G < 3.9 0.9% 0.0% 0.0% 0.0%

3.9 ≤ G ≤ 10.0 78.5% 72.1% 78.0% 84.6%

10.0 < G ≤ 13.9 16.5% 13.3% 17.7% 20.8%

13.9 < G ≤ 25.9 4.1% 0.0% 0.0% 6.8%

than 4% below 3.9 mmol/L in the titration phase. In test
phase the number increases to 59 virtual patients.

200 out of 1,000 virtual patients did not achieve the goal
of 70% TIR during the titration phase. In the test phase
the number decreases to 183 virtual patients.

Regarding hyperglycemia 161 out of 1,000 virtual patients
spend more than 25% above 10.0 mmol/L in the titration
phase while the number decreases to 53 in the test phase.
204 out of 1,000 virtual patients spend more than 5%
above 13.9 mmol/L in the titration phase, and in the test
phase the number increases to 294.

By using the suggested method, we can get 61.9% of the
virtual patient to achieve the recommendations within a 6
days study.

5. DISCUSSION

We evaluated the performance of our system on a virtual
clinic of 1,000 T1D patients with a broad inter-patient
variability representative of a real population of people
with T1D.

It is important to note that the implemented model does
neither account for patient intraday variability nor changes
in ISF and ICR over time. The effect of exercising or
inactivity, e.g. during sleep, is not considered in this paper.
In real life, T1D patients in CSII treatment will schedule
their basal rates throughout the day. In our test phase we
do not tailor the basal rate to the time of the day, which
will leave room for improvement of the study. Before the
method can be implemented in a real life scenario, we need
to obtain the ICR for the patient (King, 2012). In this
paper, we use the approach described in Appendix A.

By analyzing our simulations, we can tell that the reason
some of the virtual patients suffer from hypoglycemia is
mainly due to the bolus insulin. Different bolus adminis-
tration strategies have an impact on glucose regulation for
people with T1D. A more sophisticated bolus calculator
could therefore be considered as described in Boiroux et al.
(2017), but that would require to identify a T1D model for
every patient, and is beyond the scope of this paper.

When the patients start the titration phase, the basal rate
is unknown. If we should have used an MPC instead of
a PID-controller, we would have needed a good guess on
the initial basal rate. Though the MPC might perform
better in the long run, it is not suited for the goal of this
paper. In addition, after the titration phase is over, and
the estimated basal rate is found, it could be considered to
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the titration phase. In the test phase the number increases
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than 4% below 3.9 mmol/L in the titration phase. In test
phase the number increases to 59 virtual patients.

200 out of 1,000 virtual patients did not achieve the goal
of 70% TIR during the titration phase. In the test phase
the number decreases to 183 virtual patients.

Regarding hyperglycemia 161 out of 1,000 virtual patients
spend more than 25% above 10.0 mmol/L in the titration
phase while the number decreases to 53 in the test phase.
204 out of 1,000 virtual patients spend more than 5%
above 13.9 mmol/L in the titration phase, and in the test
phase the number increases to 294.

By using the suggested method, we can get 61.9% of the
virtual patient to achieve the recommendations within a 6
days study.

5. DISCUSSION

We evaluated the performance of our system on a virtual
clinic of 1,000 T1D patients with a broad inter-patient
variability representative of a real population of people
with T1D.

It is important to note that the implemented model does
neither account for patient intraday variability nor changes
in ISF and ICR over time. The effect of exercising or
inactivity, e.g. during sleep, is not considered in this paper.
In real life, T1D patients in CSII treatment will schedule
their basal rates throughout the day. In our test phase we
do not tailor the basal rate to the time of the day, which
will leave room for improvement of the study. Before the
method can be implemented in a real life scenario, we need
to obtain the ICR for the patient (King, 2012). In this
paper, we use the approach described in Appendix A.

By analyzing our simulations, we can tell that the reason
some of the virtual patients suffer from hypoglycemia is
mainly due to the bolus insulin. Different bolus adminis-
tration strategies have an impact on glucose regulation for
people with T1D. A more sophisticated bolus calculator
could therefore be considered as described in Boiroux et al.
(2017), but that would require to identify a T1D model for
every patient, and is beyond the scope of this paper.

When the patients start the titration phase, the basal rate
is unknown. If we should have used an MPC instead of
a PID-controller, we would have needed a good guess on
the initial basal rate. Though the MPC might perform
better in the long run, it is not suited for the goal of this
paper. In addition, after the titration phase is over, and
the estimated basal rate is found, it could be considered to
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initialize a treatment using an AP with an MPC. Due to
cost or individual preferences other patients might prefer
to continue the treatment using CSII or MDI.

The goal we use for TIR is internationally recommended.
However, goal-settings for glucose regulation should be
individualized due to achievable goals for the single patient
(Battelino et al., 2019). Large real-world data and studies
shows that the average T1D patient’s TIR usually lies
between 50%-60% (Beck et al., 2019). Therefore, a goal
at 70% TIR may not be achievable for all patients. In our
results, we stated that it was not possible for all 1,000
virtual patients to reach the goals recommended by the
International Consensus within the 6 days scenario; but
the majority of patients are better off with the the titration
method suggested in this paper.

6. CONCLUSION

In this paper we propose a method for initial titration
based on a modified PID-controller combined with a
simple bolus calculator. We construct a 6 days scenario
consisting of a three days titration phase followed by a
three days test phase. In the titration phase, we use an
AP with the PID-controller. At mealtimes, we calculate
a bolus, suspend the controller for 5.5 hours, and set the
basal rate to a fixed rate. When the titration phase ends,
we switch off the controller and test the estimated basal
rate in a three days test phase. The performance of our
system is qualitatively and numerically evaluated using a
virtual clinic of 1,000 T1D patients.

Goal-settings and treatment of people living with T1D
should be individualized. While our method may not be
suited for all, we can get 61.9% of the virtual patients
to achieve the recommendations from the International
Consensus on TIR within a 6 days study.

The results indicate the potential of the method com-
pared to conventional titration. Further studies of the pro-
cess and clinical studies are required before the titration
method can be recommended for clinical practice.

Appendix A. BOLUS CALCULATOR AND
INSULIN-TO-CARB RATIO

To estimate the ICR for the virtual patients in the model,
we use the penalty function described below to find the
bolus size for meals in the range 20 g to 120 g of CHO
with an increment of 20 g CHO. When the bolus for the
different meal sizes are obtained, linear regression is used
to find the insulin to CHO ratio.

As described in Boiroux and Jørgensen (2018) and in
Jørgensen et al. (2019), the quadratic glucose penalty
function is given by

ρ̄(z(t), z̄) =
1

2
(z(t)− z̄)2, (A.1a)

ρmin(z(t), z̄min) =
1

2
(min{0, z(t)− z̄min})2, (A.1b)

ρmax(z(t), z̄max) =
1

2
(max{0, z(t)− z̄max})2, (A.1c)

in which z(t) denotes the predictive BG concentration, and
the glucose setpoint z̄ is set to 6.0 mmol/L. The lower

threshold is zmin = 5.3 mmol/L, and the upper threshold
is zmax = 8.3 mmol/L. The penalty function is defined as

ρ(z(t)) = ρ̄(z(t), z̄)+κρmin(z(t), z̄min)+λρmax(z(t), z̄max),
(A.2)

where κ and λ are weights associated with hypoglycemia
and hyperglycemia, respectively. Since we want the bolus
calculator to safely mitigate the effects of CHO intake,
i.e. to avoid postprandial hypoglycemia, we set κ � λ.
The optimal bolus size, ubolus, for a given estimated meal

size, d̂, from a steady state, xss, and with subsequent
administration of the basal insulin rate, ubasal, is given by
minimizing the area under the glucose penalty function

curve, i.e. ubolus = ubolus(d̂;xss, ubasal) is obtained by
solution of the following univariate optimization problem:

min
ubolus

φ =

∫ tN

t0

ρ(z(t))dt, (A.3a)

s.t. x(t0) = xss + Γuubolus + Γdd̂, (A.3b)

ẋ(t) = f(x(t), ubasal, 0), t ∈ [t0, tN ], (A.3c)

z(t) = g(x(t)), t ∈ [t0, tN ], (A.3d)

0 ≤ ubolus ≤ ubolus,max. (A.3e)
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Model Predictive Control of the Blood Glucose Concentration
for Critically Ill Patients in Intensive Care Units

Asbjørn Thode Reenberg, Dimitri Boiroux, Tobias Kasper Skovborg Ritschel, John Bagterp Jørgensen

Abstract— In this paper we present a linear model predictive
control (MPC) algorithm for control of the blood glucose
concentration of critically ill patients in an intensive care unit
(ICU). We present a version of the algorithm that is suitable
for automatic control. The algorithm can administer insulin
and glucose. The insulin and glucose are administered using
a parenteral (intravenous) route. We use a hysteresis logic to
switch between insulin and glucose administration to prevent
simultaneous administration of insulin and glucose. We test
our algorithm in silico using three different simulation models
to demonstrate the closed-loop performance of the algorithm.
The MPC algorithm is based on linear models in the form
of parsimonious second-order transfer functions describing
the effect of intravenously injected insulin and glucose on
the blood glucose concentration and a first-order disturbance
transfer function containing an integrator to ensure offset-free
control. The numerical results show that even in the ideal case
without any measurement delay, tight glycemic control (80-110
mg/dL) cannot be achieved. Moreover, parenteral glucose is a
requirement to avoid hypoglycemia and ensure extended tight
glycemic control (60-140 mg/dL).

I. INTRODUCTION

In a seminal paper, Van den Berghe et al. [1] demonstrated
that tight glycemic control (TGC) in the fasting normal
range, 80-110 mg/dL, reduces morbidities and mortalities of
critically ill patients in a surgical intensive care unit (ICU).
Another study, NICE-SUGAR [2], was not able to confirm
the benefits of TGC compared to conventional glucose con-
trol; TGC resulted in increased mortality and a significantly
increased occurrence of hypoglycemic episodes compared to
the conventional glucose control. In the Leuven study by
Van den Berghe et al. [1], normal glucose control is defined
as intervention when the measured glucose concentration
exceeds 215 mg/dL, while the NICE-SUGAR study [2] de-
fines normal glucose contol as intervention when the glucose
concentration exceeds 180 mg/dL and with a target of 140
mg/dL. Overall, the results from these studies suggest that it
is beneficial to avoid hypoglycemia (glucose concentrations
less than 60 mg/dL), hyperglycemia (glucose concentrations
above 180 mg/dL), and to stay in a glucose concentration
zone between 80 to 110 mg/dL, there is however no clear
consensus on the optimal range associated to TGC at the
moment [3], [4].

To achieve TGC, it is crucial to get accurate and fre-
quent measurements of the glucose concentration. Several
continuous or semi-continuous glucose monitoring (CGM)

*A. T. Reenberg, D. Boiroux,T. K. S. Ritschel and J. B. Jørgensen are with
the Department of Applied Mathematics and Computer Science, Technical
University of Denmark, DK-2800 Kgs. Lyngby, Denmark. Corresponding
author: J. B. Jørgensen (E-mail: jbjo@dtu.dk)

devices are available on the market, with different designs,
measurement methods, sampling frequency and analysis
time. Generally, there are three different ways of measuring
glucose concentration. It can be measured from 1) venous
blood or arterial blood, 2) dialysate from venous or arterial
blood or 3) interstitial fluid. Measuring glucose concentration
from interstitial fluid is common for people with type 1
diabetes, but appears to be inappropriate in the ICU as they
provide delayed and inaccurate glucose measurements and
are prone to technical failures [5]. The sensors using venous
or arterial blood provide higher accuracy and less analysis
time than sensors using interstitial fluid, which we show has
a large impact on TGC in the ICU. The benefit of sensors
using dialysis is that they provide accurate measurements
and avoid any antibody reaction. However, sensors using
dialysis have a delay varying between 5 and 45 minutes
[6]. The GlucoScout directly measures glucose concentration
from venous or arterial blood, has been FDA approved, and
has an analysis time of 50 seconds. The GlucoSet is another
sensor directly measuring glucose concentration from venous
or arterial blood. It is still in development and also has an
analysis time of seconds. Numerous sensors using venous or
arterial blood have however failed going from development
into production and being commercially available [7].

Feeding of critically ill patients can be done by enteral
nutrition (EN), i.e. through a tube, by parenteral nutrition
(PN), i.e. using an intravenous (iv.) route, or a combination
thereof (EN+PN). As a general guideline, it is preferable
to use EN [8]. However, using EN is not always possible,
e.g. if the digestive system is damaged, or if fasting of the
patient is required. In most cases, using EN alone may lead
to underfeeding [9] and would require to use PN as a com-
plementary source. From a control perspective, using PN to
provide glucose gives a direct access to the bloodstream, and
allows to immediately raise glucose concentration whenever
needed, whereas EN has a delay [10]. In general, there is no
clear consensus on the benefits of one way of nutrition over
the other, and using EN+PN has no negative effect compared
to EN alone [11].

Hyperglycemia and insulin resistance are common in
critically ill patients, even for patients without diabetes.
Conventionally, nurses use paper-based protocols for glucose
regulation in the ICU. Nevertheless, these protocols lead to
suboptimal glucose regulation [12]. To reduce the occurrence
of hyperglycemia and achieve TGC, it is necessary to use a
computer-based algorithm.
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Model predictive control (MPC) and proportional integral
derivative (PID) algorithms are the most popular algorithms
for glucose regulation in critically ill patients [13]–[16].
However, in clinical studies, using a control algorithm ad-
ministering insulin alone led to recurrent hypoglycemia [17],
[18], unless the glucose target is set to a value outside the
fasting normal range [19]. To reduce the risk of hyper-
and hypoglycemia, we consider an MPC-based algorithm
administering iv. insulin and iv. glucose. A hysteresis switch
ensures that insulin and glucose are not administered simul-
taneously.

This paper is structured as follows. Section II reviews the
physiological models of critically ill patients used in our
simulations. Section III describes our MPC algorithm and
the hysteresis switch logic between iv. insulin and iv. glucose
administration. In Section IV, we numerically evaluate the
performance of our controller using three patients based
on three different physiological models. We use the same
controller tuning for the three patients. The key contributions
of this paper consist of the design of an MPC algorithm
able to almost achieve TGC in the idealized case without
measurement- noise and delay for three different virtual
patients using identical controller parameters. The key con-
tributions will also be listed in more detail in Section V.

II. SIMULATION MODELS

Numerous models have been presented by multiple re-
search groups and the most accurate model has yet to be
found [20]–[22]. In this study we perform simulations using
three different models representing three different patients,
namely the Bergman’s Minimal model [25] slightly modified
in [23], the Hovorka ICU model [10] and the Chase ICU
model [24]. We present each model with the added term
Ra(t) = d(t) + uG(t)

VG
, where d(t) represents the disturbance

in the glucose concentration caused by stress and uG(t) is
the glucose infusion. We use the models with units according
to the parameters used. We note that the units are different
for each model and we change the inputs from the controller
in the simulations accordingly.

A. Bergman’s Minimal Model

We use the parameters presented in [26]. The model is

Ġ(t) = −X(t)G(t) + p1(Gb −G(t)) +Ra(t), (1a)

Ẋ(t) = −p2X(t) + p3(I(t)− Ib), (1b)

İ(t) = αγmax (G(t)− θI , 0)−

γI(I(t)− Ib) +
Fi
VI
.

(1c)

G(t) represents the glucose concentration, X(t) represents
the insulin action on glucose concentration, and I(t) repre-
sents the insulin concentration.

B. Hovorka ICU Model

In this paper, the model will be described in broad terms
and the equations describing the time-dependent parameters
will not be listed. We refer to [10] for a detailed description.

The differential equations describing the Hovorka ICU
model are

Q̇1(t) = −F c01(t)− k21(t)Q1(t) + k12Q2(t)− UR(t)

+
5.551

W

[
Ra(t)VG

60
+

A2(t)

tmax,G

]
+ EGP (t)

(2a)

Q̇2(t) = k21(t)Q1(t)

− [k12 + SI,MOD(t)SIDx2(t)]Q2(t)
(2b)

İ(t) =
1000

60W

UIX(t) + UIE(t)

VI

− ke
KM,I

I(t) +KM,I
I(t)

(2c)

ẋ1(t) = −ka1[x1(t)− I(t)] (2d)
ẋ2(t) = −ka2[x2(t)− I(t)] (2e)
ẋ3(t) = −ka3[x3(t)− I(t)] (2f)

Ȧ1(t) =
FGEUGE(t)

60
− A1(t)

tmax,G
(2g)

Ȧ2(t) =
A1(t)

tmax,G
− A2(t)

tmax,G
(2h)

Q1(t) and Q2(t) represent the glucose amount per kg as a
two-compartment model, I(t) represents the plasma insulin
concentration, x1(t), x2(t), and x3(t) represent the insulin
action on glucose concentration. A1(t) and A2(t) model
the enteral glucose absorption. We use the parameters from
Patient 3 in [10]. G(t) is the glucose concentration, UIE is
the endogenous insulin secretion, F c01 is the total non-insulin-
dependent glucose flux corrected for the current glucose
concentration. UR(t) is the renal glucose clearance and de-
pends on the glucose concentration. The endogenous glucose
production, EGP (t), depends on the action of insulin, x3(t).
k21(t) is the fractional transfer rate of glucose from the
accessible to the non-accessible compartment, and depends
on x1(t). SI,MOD is the insulin sensitivity modifier and is
time-invariant in this paper.

C. Chase Model

We use the parameters presented in [15], and based on the
model in [25]. The model is

Ġ(t) = −PGG(t)− SI(G(t) +GE)Q(t)

1 + αGQ(t)
+Ra(t), (3a)

Q̇(t) = −kQ(t) + kI(t), (3b)

İ(t) =
−nI(t)

1 + αII(t)
+
uex
VI

. (3c)

G(t) represents the glucose concentration as a deviation
from the glucose concentration at steady state, GE . Q(t)
represents the insulin action on the glucose concentration.
I(t) is the insulin concentration as a deviation variable from
the insulin steady state.
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III. MODEL PREDICTIVE CONTROL

In this section, we present a model predictive control
algorithm based on a stochastic continuous-discrete state
space model. The model is a multiple input single output
(MISO) transfer model function consisting of: 1) A second-
order transfer function describing the effect of iv. insulin on
glucose concentration, 2) a second-order transfer function
describing the effect of iv. glucose on glucose concentration,
and 3) a first-order transfer function without or with an
integrator for the stochastic part. The measurements are
corrupted by additive white noise.

A. Model
For the filtering and prediction, in the model predictive

controller, we use a continuous-time linear stochastic model:

Z(s) = ZD(s) + ZS(s) (4a)
= GI(s)UI(s) +GG(s)UG(s) +H(s)W (s), (4b)

in which ZD(s) = GI(s)UI(s) + GG(s)UG(s) describes
the deterministic part of the model, and ZS(s) = H(s)W (s)
describes the stochastic part of the model. The deterministic
part of the model is modelled using two second-order transfer
functions:

GI(s) =
KI

(τIs+ 1)
2 ; GG(s) =

KG

(τGs+ 1)
2 . (5)

The stochastic part of the model is a first-order transfer
function without or with an integrator, i.e.

H(s) =
Kw

τws+ 1
, (6)

or
H(s) =

1

s

Kw

τws+ 1
. (7)

The transfer function model (4) may be realized as a system
of linear stochastic differential equations (SDEs)

dx(t) = (Acx(t) +Bcu(t)) dt+Gcdω(t), (8a)
z(t) = Cx(t), (8b)

with x = [xD; xS ]. dω(t) is a standard Wiener process, i.e.
dω(t) ∼ Niid(0, dt), and

Ac =

[
AcD 0

0 AcS

]
, Bc =

[
BcD

0

]
, Gc =

[
0
GcS

]
, (9a)

C =
[
CD CS

]
. (9b)

The transfer functions (5) are realized in observer canonical
form by

AcD =

[
AcD;I 0

0 AcD;G

]
=


− 2
τI

1 0 0

− 1
τ2
I

0 0 0

0 0 − 2
τG

1

0 0 − 1
τ2
G

0

 , (10a)

BcD =

[
BcD;I 0

0 BcD;G

]
=


0 0
KI
τ2
I

0

0 0
0 KG

τ2
G

 , (10b)

CD =
[
CD;I CD;G

]
=
[
1 0 1 0

]
. (10c)

Similarly, the transfer functions in (6)-(7) may be realized in
observer canonical form by

AcS = − 1

τw
, GcS =

Kw

τw
, CS = 1, (11a)

AcS =

[
− 1
τw

1

0 0

]
, GcS =

[
0
Kw
τw

]
, CS =

[
1 0

]
. (11b)

Using a zero-order-hold discretization for the manipulated
variable, u(t) = [uk;I uk;G]′ for tk ≤ t < tk+1, (8) may be
converted to the linear stochastic difference equation

xk+1 = Axk +Buk + wk, wk ∼ Niid(0, Q), (12a)
zk = Cxk, (12b)

where

A = exp(AcTs), (13a)

B =

∫ Ts

0

exp(Acs)dsBc, (13b)

Q =

∫ Ts

0

exp(Acs)GcG
′
c exp(A′cs)ds. (13c)

Using the matrix exponential, (A,B,Q) in (13) may be
computed by the procedure [27][

A B
0 I

]
= exp

([
Ac Bc
0 0

]
Ts

)
, (14a)[

Φ11 Φ12

0 Φ22

]
= exp

([
−Ac GcG

′
c

0 A′c

]
Ts

)
, (14b)

Q = Φ′22Φ12, (14c)

where A, B, and Q have the structure:

A =

[
AD 0
0 AS

]
=

AD;I 0 0
0 AD;G 0
0 0 AS

 , (15a)

B =

[
BD
0

]
=

BD;I 0
0 BD;G

0 0

 , (15b)

Q =

[
0 0
0 QS

]
. (15c)

Consequently, we may use this structure as well as (4) to
separate the output, zk, into a deterministic part, zDk , and a
stochastic part, zSk :

zk = zDk + zSk . (16)

The deterministic output, zDk , is given by

xDk+1 = ADx
D
k +BDuk, (17a)

zDk = CDx
D
k , (17b)

where [
AD BD
0 I

]
= exp

([
AcD BcD

0 0

]
Ts

)
. (18)
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Let βi = Ts/τi, where i ∈ {I,G}. Then the transfer
functions (5) allow explicit expressions for AD;i and BD;i:

AD;i =

[
(1− βi)e−βi Tse

−βi

−βiτi e
−βi (1 + βi)e

−βi

]
, (19a)

BD;i =

[
Ki

(
1− βie−βi − e−βi

)
Ki

2−βie−βi−2e−βi

τi

]
. (19b)

The stochastic part of the output, zSk , is given by

xSk+1 = ASx
S
k +BSw

S
k , wSk ∼ N(0, QS), (20a)

zSk = CSx
S
k , (20b)

where BS = I and[
ΦS,11 ΦS,12

0 ΦS,22

]
= exp

([
−AcS GcSG

′
cS

0 A′cS

]
Ts

)
, (21a)

AS = Φ′S,22, (21b)

QS = ASΦS,12. (21c)

The matrices (AS , QS) for the stochastic state-space
model may be computed explicitly for the transfer function
in (6)-(7). Let βw = Ts/τw. In the case of a first-order filter
without an integrator (6), we have [27]

AS = e−βw , (22a)

QS =
K2
w

2τw

(
1− e−2βw

)
. (22b)

In the case of a first-order filter with an integrator (7), we
have [27]

AS =

[
e−βw τw

(
1− e−βw

)
0 1

]
, (23a)

QS = K2
w

[
α βw − 1 + e−βw

βw − 1 + e−βw βw
τw

]
, (23b)

where

α = τw

(
βw −

3

2
+ 2e−βw − 1

2
e−2βw

)
. (24)

B. Filtering and Prediction

1) No measurement delay: The measurement of the blood
glucose concentration, yk, is the output, zk, corrupted by
additive normally distributed noise, vk, i.e.

y(tk) = z(tk) + vk, vk ∼ Niid(0, R), (25)

where R = σ2
vv . The corresponding stochastic measurement

defined as ySk = yk − zDk may be expressed as

ySk = yk − zDk = zSk + vk (26)

such that we get the following model for filtering and
prediction

xSk+1 = ASx
S
k +BSw

S
k , (27a)

zSk = CSzx
S
k , (27b)

ySk = CSyx
S
k + vk, (27c)

where CSz = CSy = CS such that ySk = zSk + vk. The
corresponding Kalman filter for filtering is

x̂Sk|k−1 = AS x̂
S
k−1|k−1, (28a)

ek = ySk − CSyx̂Sk|k−1, (28b)

x̂Sk|k = x̂Sk|k−1 +Kkek, (28c)

where

Pk|k−1 = ASPk−1|k−1A
′
S +BSQSB

′
S , (29a)

Re,k = CSyPk|k−1C
′
Sy +R, (29b)

Kk = Pk|k−1C
′
SyR

−1
e,k, (29c)

Pk|k = Pk|k−1 −KkRe,kK
′
k. (29d)

Let P = limk→∞ Pk|k−1 and K = limk→∞Kk. The
limits exist if (AS , CSy) is detectable and (AS , BSQ

1/2
S ) is

stabilizable. P may be computed by fixed-point iteration in
(29) or by solution of the discrete algebraic Riccati equation

P = ASPA
′
S +BSQSB

′
S

− (ASPC
′
Sy)(CSyPC

′
Sy +R)−1(ASPC

′
Sy)′.

(30)

Given P , the Kalman filter gain, K, may be computed by

K = PC ′Sy(CSyPC
′
Sy +R)−1. (31)

The filtered states using the stationary Kalman filter gain can
be expessed as

x̂Sk|k = (I −KCSy)AS x̂
S
k−1|k−1 +K(yk − zDk ). (32)

The corresponding predictions are

x̂Sk+j+1|k = AS x̂
S
k+j|k, (33a)

ẑSk+j+1|k = CSzx̂
S
k+j+1|k. (33b)

Then the deterministic target values, z̄Dk+j|k, corresponding to
the overall target values, z̄k+j|k ((45), (46)), can be computed
as

z̄Dk+j|k = z̄k+j|k − ẑSk+j|k, j = 1, 2, . . . , N. (34)

Similarly, the value for deterministic soft minimum output
constraints,

zDk+j|k,min = zk+j|k,min − ẑSk+j|k, j = 1, 2, . . . , N. (35)

2) Measurement delay: We assume that the glucose mea-
surements are delayed with a delay of τm minutes, i.e.

y(tk) = ẑ(k − τm) + vk, vk ∼ Niid(0, R). (36)

Furthermore, we assume that the measurement delay is a
multiple of the sampling time, i.e. τm = mTs min with m
being an integer.

In that case, we model the measurement delay using
augmented states to represent the delay, i.e.

xDdk+1 = Adx
Dd
k +Bdz

D
k , (37a)

xSdk+1 = Adx
Sd
k +Bdz

S
k , (37b)

yk = Cdx
Dd
k + Cdx

Sd
k + vk, (37c)
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with

Ad =

[
0 I
0 0

]
, Bd =

[
0
1

]
, Cd =

[
1 0

]
, (38)

where I is an m × m identity matrix. Consequently, the
overall state model consisting of (17), (20), and (37) becomes

xDk+1

xDdk+1

xSk+1

xSdk+1

 =


AD 0 0 0
BdCD Ad 0 0

0 0 AS 0
0 0 BdCS Ad



xDk
xDdk
xSk
xSdk



+


BD
0
0
0

uk +


0
0
BS
0

wSk ,
(39a)

zk =
[
CD 0 CS 0

] 
xDk
xDdk
xSk
xSdk

 , (39b)

yk =
[
0 Cd 0 Cd

] 
xDk
xDdk
xSk
xSdk

+ vk. (39c)

The delay model (37) is constructed such that the model
(39) can be decomposed into a deterministic model and a
stochastic model. The deterministic sub model of (39) is[

xDk+1

xDdk+1

]
=

[
AD 0
BdCD Ad

] [
xDk
xDdk

]
+

[
BD
0

]
uk, (40a)

zk =
[
CD 0

] [ xDk
xDdk

]
, (40b)

yDk =
[
0 Cd

] [ xDk
xDdk

]
. (40c)

Define the stochastic observation as

ySk = yk − yDk . (41)

Then the stochastic sub-model of (39) may be expressed as[
xSk+1

xSdk+1

]
=

[
AS 0
BdCS Ad

] [
xSk
xSdk

]
+

[
BS
0

]
wSk , (42a)

zSk =
[
CS 0

] [ xSk
xSdk

]
, (42b)

ySk =
[
0 Cd

] [ xSk
xSdk

]
+ vk. (42c)

The stochastic sub-model (42) can be expressed in the
standard form

x̄Sk+1 = ĀS x̄
S
k + B̄Sw

S
k , (43a)

zSk = C̄Szx̄
S
k , (43b)

ySk = C̄Syx̄
S
k + vk, (43c)

where x̄Sk = [xSk ; xSdk ] and

ĀS =

[
AS 0
BdCS Ad

]
, B̄S =

[
BS
0

]
, (44a)

C̄Sz =
[
CS 0

]
, C̄Sy =

[
0 Cd

]
. (44b)

The structure of (43) is identical to the structure of the
stochastic state model for the situation without measurement
delay (27). Consequently, the Kalman filter gain, K̄, for
(43) may be computed by solution, P̄ , of the discrete
algebraic Riccati equation (30) and computation of K̄ in
(31) using (ĀS , B̄S , C̄Sy, QS , R). Similarly, the filtering
and predictions are done using (32)-(35) with the matrices
(ĀS , C̄Sy, K̄, C̄Sz).

C. Regulation

Let xk, {z̄k+j|k}Nj=1, {zk+j|k,min}Nj=1 and
{zk+j|k,max}Nj=1 be given along with umin and umax.
The optimal control problem (OCP) solved to determine the
optimal insulin or glucose infusion is the following convex
quadratic program (QP):

min φ (45a)
s.t. xk+j+1|k = Axk+j|k +Biuk+j|k;i, j ∈ N , (45b)

zk+j+1|k = Cxk+j+1|k, j ∈ N , (45c)
umin ≤ uk+j|k;i ≤ umax, j ∈ N , (45d)
zk+j+1|k + sk+j+1|k ≥ zk+j+1|k,min, j ∈ N , (45e)
zk+j+1|k − tk+j+1|k ≤ zk+j+1|k,max, j ∈ N , (45f)
sk+j+1|k ≥ 0, j ∈ N , (45g)
tk+j+1|k ≥ 0, j ∈ N , (45h)

with N = {0, 1, . . . , N − 1}, i ∈ {I,G}. The objective
function, φ, is defined as

φ =

penalty function︷ ︸︸ ︷
1

2

N∑
j=1

γz;i(zk+j|k − z̄k+j|k)2 + γs;is
2
k+j|k + γt;it

2
k+j|k

+

regularization︷ ︸︸ ︷
1

2

N−1∑
j=0

γ∆ui∆u
2
k+j|k;i, i ∈ {I,G}. (46)

To avoid the simultaneous administration of insulin and
glucose, we use a hysteresis switch logic. The switch uses
the following logic:
• If the glucose concentration falls under zmin +5 mg/dL,

we switch off the insulin administration and switch on
the glucose administration.

• If glucose concentration raises over zmax − 5 mg/dL,
we switch on the insulin administration and switch off
the glucose administration.

Since patients in the ICU usually enter the clinic with
elevated glucose concentrations, we always initialize our
controller using insulin administration.

IV. SIMULATION RESULTS

In this section, we test our MPC algorithm presented in
Section III using three virtual patients. To ensure offset-free
control of the glucose concentration during stress periods,
we use the first-order stochastic model with integrator (7).
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TABLE I
PARAMETER VALUES FOR THE CONTROLLER WITHOUT AND WITH

MEASUREMENT DELAY.

Parameter Value Value Unit
(w/o. delay) (w. delay)

KI -0.0044 -0.0044 [(mg/dL)/(µU/min)]
τI 85 85 [min]
KG 0.05 0.05 [(mg/dL)/(mg/min)]
τG 1 2 [min]
Kw 1 1 [mg/dL]
τw 10 1 [min]
Ts 5 5 [min]
R 1 2 [mg/dL]2
m 0 2 [-]
N 144 144 [-]

TABLE II
PENALTY VALUES FOR THE CONTROLLER WITHOUT AND WITH

MEASUREMENT DELAY.

Penalty Value (w/o. delay) Value (w. delay)
γz 1 1
γs 1 · 106 1 · 106

γt 1 · 104 1 · 104

γI∆u 1 · 10−9 1 · 10−10

γG∆u 1 · 10−3 1 · 10−2

We simulate 1) cases where the glucose concentration
is measured without any delay corresponding to a glucose
sensor with direct access to venous or arterial blood and
2) cases where the glucose concentration is measured with a
delay of 10 minutes (i.e. m = 2 time samples) corresponding
to a sensor measuring glucose concentration from a dialysate.
We assume that the three ICU patients have a body mass of
75 kg.

Table I shows the tuning parameters used in the MPC
algorithm. These tuning parameters are identical for the three
ICU patients. The gains associated with insulin and glucose
injections, KI and KG, can be personalized depending on
the body mass. The prediction and control horizon, N , is 144
samples, i.e. 12 hours. Having a long prediction and control
horizon ensures that the solution of the OCP (45) converges
back to the glucose setpoint. Therefore, the performance of
the controller in this paper is similar to a controller with an
infinite prediction and control horizon.

Table II shows the penalty values used for the controller
with and without delay. Again, these parameters are identical
for the three simulated patients. Since hypoglycemia should
be avoided, we set the penalty weight associated to hypo-
glycemia, γs, to a much larger value than the penalty weight
associated to hyperglycemia, γt. γz , γs and γt, are identical
for the insulin and the glucose controllers.

Table III shows the glucose setpoint for each patient. This
setpoint also corresponds to the basal glucose concentration.
For the Hovorka model, it corresponds to the steady state
solution of the Hovorka ICU model (2). For the Chase
model (3) and the Bergman minimal model (1), we set these
values to 90 mg/dL. The upper limits on insulin and glucose
injections, umax;I and umax;G, are set to high values and
are never reached. The glucose thresholds, zmin and zmax,
correspond to the tight glucose range (80-110 mg/dL).

TABLE III
SETPOINT (BASAL GLUCOSE CONCENTRATION) FOR EACH PATIENT.

Patient: Basal glucose conc Unit
Hovorka ICU Model (Patient 1) 97.16 [mg/dL]
Chase Model (Patient 2) 90.00 [mg/dL]
Bergman minimal Model (Patient 3) 90.00 [mg/dL]

Fig. 1 shows the glucose concentration, iv. insulin infusion
and iv. glucose infusion for the three considered patients. We
consider a 12-hour scenario with a stress period (highlighted
in yellow) corresponding to a steady state at around 200
mg/dL in the cases without any glucose control (black
curves).

In the cases without measurement delay (Figs. 1(a), 1(c),
and 1(e)), TGC with glucose concentrations between 80 and
110 mg/dL can almost be achieved. No glucose concentration
below 80 mg/dL has been reported for Patient 1 and Patient 3,
and Patient 2 spent 1.39% of the time with a glucose concen-
tration below 80 mg/dL. Moreover, no severe hypoglycemia
(i.e. G < 60 mg/dL) has been observed. For all three patients,
we can achieve offset-free control of glucose concentration
during and after the stress period. Due to the slow dynamics,
Patient 1 still requires an infusion of iv. glucose at the end of
the simulation. The iv. insulin infusions for patients 1 and 3
are slightly oscillating during the stress period. However, the
sequence of insulin infusions and the glucose concentration
stabilize during the stress period. These oscillations are due
to the fact that the tuning of the controller is common to the
three patients. For all three patients, insulin is administered
only during the stress period, and glucose is administered
only after the stress period. Patient 2 required the highest
amount of iv. glucose (30.4 g), which corresponds to a calorie
intake of approximately 121.6 kcal.

The performance of the controller deteriorates in the cases
with a 10-minute measurement delay (Figs. 1(b), 1(d), and
1(f)), particularly when the glucose dynamics are rapidly
changing, i.e. right after the onset of stress and right after the
end of the period of stress. After the end of the stress period,
all three patients experience a prolonged period of mild
hypoglycemia (i.e. G < 80 mg/dL). No severe hypoglycemia
(i.e. G < 60 mg/dL) has been observed for any of the
three patients. Similarly to the case without any measurement
delay, the controller is able to bring all three patients into
TGC during the period of stress by administering iv. insulin
and after the end of the stress period by administering iv.
glucose. Unlike the cases without measurement delay, iv.
insulin is injected for a short while after the end of the stress
period due to the glucose measurement delay. Iv. glucose is
administered only after the stress period.

These results demonstrate 1) the necessity of being able to
inject glucose in addition to insulin for critically ill patients,
2) the necessity of continuously monitoring glucose and 3)
the necessity of frequent adjustments in iv. insulin and iv. glu-
cose doses. Also, due to sudden and unpredictable metabolic
variations in glucose concentrations, minimizing the lags
and delays associated to glucose sensing, administration of
insulin and glucose is crucial to achieve TGC.
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(a) Simulation for the Hovorka ICU model (Patient 1) without measurement
delay. 87.50% in range 80-110 mg/dL.
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(b) Simulation for Hovorka ICU model (Patient 1) with 10 minutes mea-
surement delay. 67.36% in range 80-110 mg/dL.
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(c) Simulation for the Chase model (Patient 2) without measurement delay.
97.22% in range 80-110 mg/dL.
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(d) Simulation for the Chase model (Patient 2) with 10 minutes measurement
delay. 72.22% in range 80-110 mg/dL.
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(e) Simulation for the Bergman minimal model (Patient 3) without measure-
ment delay. 85.22% in range 80-110 mg/dL.
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(f) Simulation for the Bergman minimal model (Patient 3) with 10 minutes
measurement delay. 38.89% in range 80-110 mg/dL.

Fig. 1. Closed-loop simulation results for the different models with and without measurement delay. In each subfigure, Top: Glucose concentration with
(blue) and without (black) closed-loop control. Middle: Iv. insulin infusion rate. Bottom: Iv. glucose administration.
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In a real clinical study, the iv. glucose injections would
also be complemented with further nutrition in carbohy-
drates, fats and proteins to ensure an adequate supply of
calories. The problem of TGC in the ICU combined with
nutrition leads to further challenges that can also be solved
using model-based control algorithms, see e.g. [28], [29].

V. CONCLUSION

In this paper we applied MPC to regulate blood glucose
concentration in critically ill patients. The model used in
the MPC-based algorithm contains a deterministic part rep-
resenting the dynamics of iv. insulin and iv. glucose, and
a stochastic part capturing the uncertainties arising from
the mismatch between the model and the patient, and the
effect of unpredicted disturbances such as increased insulin
resistance during stress periods. Using iv. insulin in combi-
nation with iv. glucose is a requirement to get blood glucose
concentrations near TGC. In the idealized case without any
measurement noise and delay, it is possible to almost achieve
TGC without any overfeeding. Additional measurement lags
and delays associated to glucose sensing or EN make TGC
more difficult to achieve. The stringent range required for
TGC increases the risk of hypoglycemia.
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Summary
In this technical report, we describe and demonstrate a user interface for diabetes man-
agement. Specifically, we show a full-stack web application to visualize diabetes data
and describe the software tools used to build it. Furthermore, we briefly discuss and
compare with a user interface for an artificial pancreas mobile application. The web ap-
plication consists of a database, a backend to read and process data from the database,
a frontend to visualize and filter the data, and an application programming interface
(API) to communicate between the backend and frontend. The database is a PostgreSQL
database, the backend is a Spring Boot Java application, and the frontend is a Vue.js
application. The visualized data in the web application is simulated from 1000 virtual
people over 1 month. The web application allows people with diabetes to view different
representations of their own data, but also, e.g., medical personnel to log in and view
the data from all their patients.
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CHAPTER 1
Introduction

In this technical report, we describe and demonstrate a web application for visualiz-
ing diabetes data. The web application allows people with diabetes to get both quick
overview of the targets specified by Battelino et al. [1], but also to view more detailed
representations of the data and see statistics. Furthermore, it allows medical personnel
to log in and inspect data from all the patients. We briefly discuss differences between
the web application and a mobile application for an artificial pancreas and we describe
the software tools used to build the web application. Finally, we show a demonstration
of the web application. In this section we describe the motivation, the key details of the
web application, and provide an outline of the report.

Motivation More and more people with diabetes use devices that collect data such
as continuous glucose monitors (CGMs), pumps, and automatic dosing systems (e.g. an
artificial pancreas) [2]. Furthermore, various simulators that can be used for both virtual
clinical trials and education have become available [3, 4]. Therefore, there is a need for
tools to both visualize and analyze the large amounts of collected data. Applications that
allow people to see their data in real time can be on, e.g., a smartphone. The DiaCon
dual-hormone artificial pancreas is an example of an application with a real time user
interface implemented on a smartphone. However, a smartphone is not suitable for
viewing large amounts of data and performing large computations (e.g. simulations).
Therefore, we build a modern full stack web application in addition to the DiaCon
smartphone application. Figure 1.1 shows the concept, where the web application, the
artificial pancreas, and one or multiple simulators is connected through a database. The
web application serves multiple purposes, 1) it allows the user to see more detailed
representations of data that are not available on a smartphone, 2) it allows, e.g., doctors
or parents to remotely access data from the artificial pancreas, and 3) it allows the user
to perform simulations for educational purposes or researchers to test new treatment
strategies. In this technical report, we only describe the web application and assume
that the data from the artificial pancreas or simulator already exists in the database.

Architecture The web application consists of a PostgreSQL database, a Java Spring
Boot backend application, an application programming interface (API), and a Vue.js
frontend application. Figure 1.2 shows the architecture and tools used to build each
element. The architecture provides a flexible design where, e.g., multiple backend servers
can serve one or more frontends. Furthermore, the API provides a generic interface and
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Artificial Pancreas Web application

Simulator

Figure 1.1: The vision of an artificial pancreas, a web application, and a simulator
connected through a database.

ensures that the frontend can send requests to the backend without having information
about e.g. the database.

Database We use a PostgreSQL database. PostgreSQL is a free and open source
relational database management system with SQL compliance. The web application
works with any database system, but PostgreSQL was chosen here, as it was already
used by other members in John Bagterp Jørgensens’ research group and excels when
working with huge datasets.

Backend We use Spring Boot to create the backend application. Spring Boot is an
open source Java-based framework used to build stand alone applications without relying
on an external web server. The backend answers requests from the frontend application
through the API that we document with Swagger.

Frontend The frontend is a Vue.js application and provides a graphical user interface
(GUI). Vue.js in an open source model-view-viewmodel (Figure 1.4) frontend JavaScript
framework for building user interfaces. Vue.js builds on top of standard HTML, CSS,
and JavaScript and provides a declarative and component-based programming model
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DATABASE

Figure 1.2: Architecure of the web application that consists of a PostgreSQL database,
a Java Spring Boot backend application, an API, and a Vue.js frontend
application. The charts in the frontend are build with Chart.js.

that helps to efficiently develop user interfaces. In contrast, the frontend in the DiaCon
artificial pancreas, is an android application using the model-view-presenter framework
(Figure 1.3).

Structure of the report In Chapter 2, we list the dependencies and tools used
to build the web application. We describe the API in Chapter 3 and the database
in Chapter 4. In Chapter 5, we describe the backend and in Chapter 6 we show a
demonstration of the frontend and describe how it is build. Finally, in Chapter 7, we
provide conclusions and discuss future work and possible improvements.
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Figure 1.3: Model-view-presenter framework in the DiaCon Android application.
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Figure 1.4: Model-view-viewmodel framework used in Vue.js.
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CHAPTER 2
Dependencies

This chapter lists the tools and dependencies used to build the full-stack web application.

2.1 IDEs
We use integrated development environments (IDEs) to write and build the code. We use
Eclipse for the backend code and Visual Studio Code for the frontend code. Furthermore,
we use the Vue UI to manage dependencies and run the frontend application. These tools
are not mandatory and it is both possible to use other IDEs or run everything directly in
the terminal. Fig. 2.1 shows the Vue UI with the current status and where the frontend
application can be started.

Figure 2.1: A screenshot of the Vue UI that can run and manage the frontend appli-
cation.
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2.2 Coding languages
The web application is build using the following coding languages

• SQL (used for the database)

• Java (used for the backend)

• JavaScript (scripting language for the frontend)

• CSS (used to style the frontend)

• HTML (markup language for the frontend)

2.3 Dependencies
Here we list all the dependencies. Eclipse help with managing the dependencies in the
backend, e.g., Spring Boot and the Vue UI lets the user install and manage dependencies
directly from the interface as shown in Fig. 2.2.

• npm

• Node.js

• Vue.js

• Yarn

• PostgreSQL

• Spring Boot

• Popper.js

• Vue Router

• fontawesome

• Axios

• Bootstrap

• Chart.js

• chartjs-adapter-date-fns

• chartjs-plugin-datalabes

• cors
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• core-js

• date-fns

• Moment

Figure 2.2: Dependency manager in the Vue UI that gives an overview of the installed
dependencies and makes it straightforward to install new dependencies.
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CHAPTER 3
Rest API

In this chapter, we describe the API used to communicate between the backend and
the frontend. An API is a collection of HTTP endpoints known to both the server (or
more servers) and the client to manipulate resources. The communication happens via
the HTTP verbs; GET (retrieve a specific resource), POST (create a new resource),
PUT (update a specific resource), and DELETE (remove a specific resource). The API
should be identified and designed based on the purpose of the application. We use
Swagger https://swagger.io/ (Accessed: December 22nd, 2022) to document the API.
Swagger is an online tool for interactive documentation of APIs and allows the user to
test the endpoints without implementing a frontend. Figure 3.1 shows the frontpage of
the swagger documentation. In swagger, the keyword ’model’ is used for resources. The
following sections describe the models and endpoints.

3.1 Models
We define a model for patients, glucose measurements, basal insulin, bolus insulin, car-
bohydrates, and physical activity. Figure 3.2 shows a list of the models and their proper-
ties. The patient model contains basic information about each patient and the remaining
models describe glucose, insulin, meal and physical activity values for all patients. The
patient id is used to select the values for a specific patient. The ’deviceID’ property is
used to distinguish between the device that was used for the measurement to allow for,
e.g., selecting only the glucose measurements that were received from a CGM.

Figure 3.1: Swagger frontpage for documentation of the models and endpoints in the
API.

P Technical Report 363



12 3 Rest API

Figure 3.2: List and descriptions of the models and their properties in the API.
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3.2 Endpoints
We also use Swagger to document the endpoints that trigger a reply from the controller
in the backend. Figure 3.3 shows an example of the endpoint that gets the bolus insulin
values for a specific patient, delivered with a specific device (e.g. a pump) between
the start and end date. The Swagger documentation provides a description of each
endpoint, but also allows the developer to test if the backend responds the request
without implementing a frontend. We define a number of endpoints for each model, but
these are left out of this technical report for brevity. Each additional endpoint follow
the same structure as the one shown Figure 3.3.
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Figure 3.3: Example of the bolus insulin endpoint in the Swagger documentation.
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CHAPTER 4
Database

In this chapter, we describe the database. We describe how each table is defined and
how we generate the sample data that is inserted in the database. Here, we use a
PostgreSQL database, but any database system can be used. We use a Java Spring
Boot application in the backend where the pom.xml file defines the database type and
we add a PostgreSQL dependency, as shown in Listing 4.1. Listing 4.2 shows how
the properties of the database are defined in the application.properties file. Here,
we host the database on the localhost with port 5432 (this is the default port for a
PostgreSQL database) where the name of the database is diabetesebapplication and we
grant privileges to the user dbuser with the password thepassword.

1 <dependency>
2 <groupId>org . po s tg r e sq l </groupId>
3 <a r t i f a c t I d >pos tg r e sq l </a r t i f a c t I d >
4 <scope>runtime </scope>
5 </dependency>

Listing 4.1: Define database system in pom.xml.

1 sp r ing . datasource . i n i t i a l i z a t i o n - mode=always
2 sp r ing . datasource . p lat form=pos tg r e s
3 sp r ing . datasource . u r l=jdbc : p o s t g r e s q l : // l o c a l h o s t :5432/

d iabe t e swebapp l i ca t i on
4 sp r ing . datasource . username=dbuser
5 sp r ing . datasource . password=thepassword

Listing 4.2: Definition of the database properties in application.properties.

4.1 Tables
Each table in the database represents a model described in Figure 3.1. Listing 4.3 shows
an example of how to create a table in the database with SQL code. The table shows how
the table for the bolus insulin model is created and we create tables for the remaining
models in a similar way. The tables are created with a primary key for the user id and
the time stamp. The primary key ensures that each entry for a given user at a specific
time is unique, i.e., there cannot be two bolus insulin values for the same user at the
same time.
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1 drop tab l e i f e x i s t s b o l u s i n s u l i n ;
2 c r e a t e t ab l e b o l u s i n s u l i n (
3 user_id in t ege r ,
4 timestam timestamp ,
5 device_Id varchar (25) ,
6 b o l u s i n s u l i n f l o a t ,
7 primary key ( user_id , timestam )
8 ) ;

Listing 4.3: Create table for the bolus insulin model in the database.

4.2 Sample data
The database should be able to handle data from real people, but since we do not have
data available, we generate data to represent real people. The personal data is gen-
erated with Mockaroo https://www.mockaroo.com (Accessed: December 22nd, 2022).
Mockaroo allows for generation of random data of anything from names, emails to cars
or IP addresses. We use Mockaroo to generate names, date of birth, emails, and an
ID. The diabetes data is generated from a Monte Carlo simulation using an extension
of Hovorka’s model [5] for 1000 virtual people over 1 month similar to the procedure
described in [6].
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CHAPTER 5
Backend

In this chapter, we describe the backend. The backend is the server-side software and
handles everything that is not visible in the frontend. The backend communicates with
the database, can do computations, and replies the requests from the client (frontend).
Here, the backend is a Java Spring Boot application. Figure 5.1 shows the architecture
of a Spring Boot application. Spring Boot applications use multiple annotations that
automatically handle certain functions. The Spring Boot application consists of three
components: 1) Model, 2) Repository, and 3) Controller that each are a Java package.

5.1 Model
The model defines each entity as a Java class and match both the tables in the database
and models described in the API (Figure 3.2). The properties of each model should have
corresponding getters and setters. The properties must be same as each column in the
database tables. Listing 5.1 shows selected code from an example of how we define the
model for bolus insulin (dots represent missing lines of code). Similar classes should be
defined for the remaining models as well. Here, we define the name of the table in the
database, where the annotation @Column indicates that the class member is a column
in the database. The @Id annotation indicates that it is a primary key in the database
and Listing 5.2 shows the class that ensures that new entries in the database are unique
w.r.t. user ID and timestamp.

1 package dtu . model ;
2

3 . . . // imports
4

5 @Entity
6 @Table (name = ” b o l u s i n s u l i n ” ) // name o f t ab l e in database
7 @IdClass ( Bo lu s In su l i n Id . c l a s s ) // ensure unique id + time
8 pub l i c c l a s s Bo lu s In su l i n {
9 @Id

10 @Column
11 pr i va t e long use r Id ;
12 @Id
13 @Column
14 pr i va t e Timestamp timestam ;
15

16 @Column
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Figure 5.1: Architecture of a Java Spring Boot application consisting of 1) Model, 2)
Repository (service layer), and 3) Controller. The Spring Boot application
depends on a database and can answer requests from clients.

17 pr i va t e St r ing device_Id ;
18

19 @Column
20 pr i va t e double b o l u s i n s u l i n ;
21

22 . . . // g e t t e r s and s e t t e r s
23

24 }

Listing 5.1: The bolus insulin model.

1 package dtu . model ;
2

3 . . . // imports
4

5 pub l i c c l a s s Bo lu s In su l i n Id implements S e r i a l i z a b l e {
6

7 pr i va t e Long use r Id ;
8 pr i va t e Timestamp timestam ;
9

10 pub l i c Bo lu s In su l i n Id ( ) {
11 }
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12

13 pub l i c Bo lu s In su l i n Id ( Long UId , Timestamp time ) {
14 t h i s . u se r Id = UId ;
15 t h i s . timestam = time ;
16 }
17

18 @Override
19 pub l i c boolean equa l s ( Object o ) { // Ensure that id and timestamp i s

unique
20 i f ( t h i s == o ) return true ;
21 i f ( o == n u l l | | g e tC la s s ( ) != o . ge tC la s s ( ) ) re turn f a l s e ;
22 Bo lu s In su l i n Id measurementId = ( Bo lu s In su l i n Id ) o ;
23 re turn t h i s . u se r Id == measurementId . use r Id &&
24 timestam . equa l s ( measurementId . timestam ) ;
25 }
26

27 @Override
28 pub l i c i n t hashCode ( ) {
29 re turn Objects . hash ( userId , timestam ) ;
30 }
31 }

Listing 5.2: The bolus insulin id class.

5.2 Repository
The repositories provide an interface to the Spring Boot CRUD (create, read, update
and delete) repository that contains methods for CRUD operations and functions as a
service layer. Spring Boot automatically constructs classes that contains CRUD methods
for the specified interface for the given model. Spring Boot can automatically write the
query to the database for standard methods such as, e.g., findAll. Advanced queries can
not be automatically generated and need to be specified in the repository. Listing 5.3
shows selected code from the bolus insulin repository that works as an interface for the
bolus insulin model described in listing 5.1. Again, dots represent lines of code that are
left out for brevity. The @Query annotation is used to write queries to the database. The
queries should be defined above the interface. The query shown in Listing 5.3 selects all
non-zero bolus insulin values for a specific user between two timestamps and orders the
output based on the timestamps.

1 package dtu . r e p o s i t o r i e s ;
2

3 . . . // imports
4

5 import dtu . model . Bo lu s In su l i n ;
6

7 @Repository

P Technical Report 371



20 5 Backend

8 pub l i c i n t e r f a c e Bo lu s In su l i nRepos i t o ry extends CrudRepository<
Bolus Insu l in , Long>{

9

10 . . . // more i n t e r f a c e s
11

12 // query to database - only s e l e c t non - zero va lue s
13 @Query( va lue = ” s e l e c t t . ∗ from ( s e l e c t ∗ , row_number ( ) OVER( order by

timestam ) as row from b o l u s i n s u l i n where user_id=?1 ”
14 + ”And timestam BETWEEN TO_TIMESTAMP(?2 , 'YYYY-MM-DD HH24 :MI ' )

AND TO_TIMESTAMP(?3 , 'YYYY-MM-DD HH24 :MI : SS ' ) ) ”+
15 ” t where b o l u s i n s u l i n >0” , nativeQuery=true )
16 List <Bolus Insu l in > findByUserIdByTimeBetween ( Long userId , S t r ing

startDate , S t r ing endDate ) ;
17

18 }

Listing 5.3: Bolus insulin repository with a query to select non-zero values for a specific
user between two dates.

5.3 Controller
The controllers are the final layers in the backend and receive the HTTPS requests
from the clients, i.e., this is where the users request to receive or insert data enter the
backend. The controllers can manipulate the data before it is delivered to the user or
inserted in the database. The controllers can also perform computations to reduce the
load on the frontend. Listing 5.4 shows selected code from the controller that answers
requests for bolus insulin data. The API endpoint is defined with the @GetMapping
annotation and corresponds to the endpoint shown in Figure 3.3. This method calls the
findByUserIdByTimeBetween from the repository and checks the result. If the result is
not empty, the controller responds the request from the frontend.

1 package dtu . c o n t r o l l e r s ;
2

3 . . . // imports
4

5 import dtu . model . Bo lu s In su l i n ;
6 import dtu . r e p o s i t o r i e s . Bo lu s In su l i nRepos i t o ry ;
7

8 @Contro l ler
9 @CrossOrigin

10 pub l i c c l a s s B o l u s I n s u l i n C o n t r o l l e r s {
11

12 @Autowired
13 pr i va t e Bo lu s In su l i nRepos i t o ry r e p o s i t o r y ;
14

15 . . . // more methods
16
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17 // return a l l bo lus i n s u l i n va lue s f o r user between s t a r t and end date
18 @GetMapping ( ”/ api /v1/ b o l u s i n s u l i n /{ use r Id }/{ dev i c e Id }/{ star tDate }/{

endDate}” ) // API
19 pub l i c ResponseEntity<List <Bo lus Insu l in >> ge tA l l ( @PathVariable long

userId , @PathVariable S t r ing startDate ,
20 @PathVariable S t r ing endDate ) {
21 List <Bolus Insu l in > r e s u l t = r e p o s i t o r y . findByUserIdByTimeBetween (

userId , s tar tDate , end Date ) ;
22 i f ( r e s u l t . isEmpty ( ) ) { // check r e s u l t
23 re turn ResponseEntity . notFound ( ) . bu i ld ( ) ;
24 }
25 re turn ResponseEntity . ok ( r e s u l t ) ;
26 }
27

28 . . . // more methods
29

30 }

Listing 5.4: The bolus insulin controller.
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CHAPTER 6
Frontend

In this chapter, we describe the frontend. The frontend lets the user interact with the
application and shows the GUI. The frontend receives inputs from the user and sends
requests to the backend through the API. Figure 6.1 shows the structure of the frontend
application. The frontend application consist of multiple pages that each consist of
components. In the following sections, we describe the pages and components (e.g.
charts) used in the frontend and we describe how the frontend sends requests to the
backend. Finally, we show a demonstration of the GUI with selected screenshots. The
frontend is build using Vue.js and is a Vue.js application.

6.1 Backend and API
The frontend communicates with the backend through the API as described in Chapter
3. Listing 6.1 shows an example of how the endpoint to receive bolus insulin data is
defined in the frontend. All the endpoints that are used in the frontend should be defined
here.

1 export d e f a u l t c l a s s Backend{
2 con s t ruc to r ( ) {
3 t h i s . u r l = ” http :// l o c a l h o s t :8080/ api /v1”

App

Page 2Page 1 Page 3

Component 1 Component 2 Component 3 Component 4

Figure 6.1: Structure of the frontend that consists of different pages that each consists
of a number of components.
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4 }
5

6 getUr lBolusInsu l inBetweenDates ( id , dev ice Id , s tar tDate , end Date ) {
7 re turn t h i s . u r l + ”/ b o l u s i n s u l i n /” + id + ”/” + dev i c e Id + ”/” +

star tDate + ”/” + endDate
8 }
9 }

Listing 6.1: API endpoints in the frontend.

6.2 Pages
The GUI can display different pages where each page consists of components. The same
components can be used in multiple pages. We use the Vue router to navigate between
the pages. The different pages allow the users to switch between different views. In
this web application, we use a login page and depending on the users’ permissions, they
see different pages. We distinguish between patients and doctors. The patients can
only view their own data whereas the doctors can view the data from all their patients.
Additionally, the administrator login has similar permissions as the doctors, but should
also be able to compute statistics on all the data to see if there are specific trends in the
patient population, but this is currently work in progress.

1 import { createRouter , createWebHistory } from ' vue - route r '
2

3 . . .
4

5 const route s = [
6 {
7 path : ' / pages / pat ientAl lPat ientDataPage / : id / : PatientName / :

PatientEmail ' ,
8 component : pat ientAl lPat ientDataPage ,
9 name : ' pat ientAl lPat ientDataPage ' ,

10 meta : { showAllPatientData : t rue }
11 } ,
12 ]
13

14 const route r = createRouter ({
15 h i s t o r y : createWebHistory ( ) ,
16

17 route s : routes ,
18 l i n kA c t i v e C l a s s : ' a c t i v e '
19 }) ;
20

21 export d e f a u l t route r

Listing 6.2: Vue Router to navigate between pages.
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1 <template>
2 . . .
3 <Bolus Insu l inChart @dailyBolusEmit=” re c e i v eDa i l yBo lu s ” :

startTime=” t h i s . startTime ” :endTime=” t h i s . endTime” : use r Id=”
t h i s . Pat i ent Id ”/>

4 . . .
5 </template>
6

7 <s c r i p t >
8

9 . . .
10

11 export d e f a u l t {
12 components : { . . . } ,
13 methods : {
14 . . .
15

16 handleStartTimeEmit ( va lue ) {
17 t h i s . startTime = value ;
18 } ,
19

20 . . .
21

22 } ,
23 watch : {
24 startTime ( ) {
25 t h i s . r e f r e s h ( )
26 } ,
27

28 . . .
29

30 } ,
31

32 . . .
33

34 }
35 </s c r i p t >

Listing 6.3: Bolus insulin page build from components.

6.3 Components
The components allow us to split up the GUI into independent and reusable pieces.
Therefore, e.g., the charts are components that can be reused in different pages. The
charts are build using Vue Charts.js. Chart.js is a free and open source chart library that
works with multiple JavaScript frameworks (including Vue.js). Listing 6.4 shows selected
code from the bolus insulin chart. In general, the charts consist some properties, options,
methods (e.g. to update data), watches (do something when a variable changes), and
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computed values (define non-static variables, e.g., the chart data that is updated). We
also define the styling of the visualized data under chartData, where, e.g., the linestyle
and color is defined. Listing 6.4 also shows how we use Axios (Axios is a promise based
HTTP client for the browser and node.js) to handle HTTP request to get data from the
backend (line 21-22).

1 <s c r i p t >
2 import { Sca t t e r } from ' vue - c h a r t j s '
3 . . .
4

5 export d e f a u l t {
6 name : ' Bo lus Insu l inChart ' ,
7 components : { Sca t t e r } ,
8 props : {
9 . . .

10 } ,
11 emits : [ ' dai lyBolusEmit ' ] ,
12 opt ions : {
13 . . .
14 }
15 }
16 async mounted ( ) {
17 t h i s . updateData ( t h i s . userId , 'cgm ' , t h i s . startTime , t h i s . endTime )
18 } ,
19 methods : {
20 async updateData ( id , dev ice Id , s tar tDate , end Date ) {
21 t h i s . ax i o s
22 . get ( t h i s . $backend . getUr lBolusInsu l inBetweenDates ( id , dev ice Id ,

s tar tDate , end Date ) )
23 . then ( r e s => {
24 . . .
25 })
26 }
27 } ,
28 watch : {
29 startTime ( ) {
30 t h i s . updateData ( t h i s . userId , 'cgm ' , t h i s . startTime , t h i s . endTime ) ;
31 } ,
32 . . .
33 } ,
34 computed : {
35 chartData ( ) {
36 re turn {
37 data s e t s : [
38 {
39 . . .
40 }
41 ]
42 }
43 }
44 }
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45 </s c r i p t >

Listing 6.4: Bolus insulin chart component.

6.4 Demonstration
In this section, we show and discuss a selection of the pages from the GUI. The GUI
is designed to have different views depending on the permissions of the user. The user
privileges are granted through the login page. Currently, you can either login as a patient
and view your own data or you can login as a doctor and view the data from all the
patients. The doctors have the same view and can see the same data as the patients,
but are also allowed to switch between all their patients. It is also possible to login as
an administrator that can, e.g., compute statistics based on the patient population, but
the GUI for the administrator is work in progress and will not described here.

6.4.1 Login page
Figure 6.2 shows the login page where you can login as either a patient or a doctor. In
this example, the users are predefined and it is not possible to create new users. The
icons are imported from the fontawesome library.

Figure 6.2: Login page that allows the user to log in as either a patient to view your
personal data or as a doctor to view the data from all their patients.
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6.4.2 Personal login
The GUI lets the user view data in three different ways by switching between three
pages. All pages allow the user to select different time periods, change the unit and
switch between the pages. The persons name is also shown (this virtual person is called
Penrod Tetley). Figure 6.3 shows the first page that shows an overview of glucose data.
The top bar shows selected key performance indicators (KPIs) such as average glucose
and variability. The side bar shows the time in the different ranges during the selected
time period. Finally, the page shows a time series chart with the glucose data for the
selected time period. The user can then choose to add meals, insulin, and exercise data
beneath the glucose data as shown in Figure 6.4 by clicking on All timeseries. Here,
both the time series data and daily amounts are shown (we show session per week for
exercise data). Finally, the user can choose to view statistics by clicking on Glucose
statistics. Figure 6.5 shows the mean and 95% confidence intervals for an overlay of the
days in the selected period. This allows the user to see if, e.g., there are certain times
of the day where the user has a tendency to reach hypoglycemia. The 95% confidence
intervals are relatively narrow for this simulated data as the variability in the size and
time of the meals is limited. Figure 6.6 shows the time in the different ranges for each
day in the selected time period which allows the user to see trends in the time in range.
Here, the user improved the time in range during the month, but the chart would also
show if, e.g., the user is not in range during the weekends or maybe every Thursday the
user is exercising and reaches hypoglycemia.

Figure 6.3: An overview of personal glucose data with a chart of the glucose data in
the selected period. Top bar: select between different time periods, change
unit, and change to a different page. Second top bar: KPIs. Right bar:
time in the different ranges in the selected period.
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Figure 6.4: Time series for meals, bolus insulin, basal insulin, and exercise data. Right
bar: average daily amounts for meals and insulin and average weekly ex-
ercise sessions.

Figure 6.5: Mean and 95% confidence intervals of the glucose data for each time stamp
in the selected period.
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Figure 6.6: Time in the different ranges for each day in the selected period.

6.4.3 Doctor login
The doctors can see the exact same pages as the patients, but are able to view the data
from all the patients. Figure 6.7 shows the glucose overview page with the doctor login.
The components are the same as the individual patients can see, but in the left panel,
the doctors can see all the patients, search for them, and click on the one they would like
to inspect. In Figure 6.7, the doctor is viewing the virtual patient Hirsch Vell. Currently,
it is only possible to filter the patients based on their name or date of birth, but in the
next version it should also be possible to sort the patients based on their treatment, such
that the doctors can, e.g., identify the patients that have poor treatment and need care.
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Figure 6.7: Front page with the doctor login. Left bar: list of all the patients that the
doctor can view. Top bars and charts are the same as for the patient.
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CHAPTER 7
Conclusions

In this technical report, we introduced and demonstrated a web application for visualiz-
ing and interacting with diabetes data. The web application is build using a PostgreSQL
database, a Spring Boot Java application (the backend), a rest API, and a Vue.js ap-
plication (the frontend). The web application allows the user to login and get different
views based on the permissions of the user. Currently, it is possible to login as a patient
to view your personal data or as a doctor to view data from all their patients. The
architecture allows for a flexible design, where the backend or frontend application can
be replaced as long as the same API interface is used. The GUI is designed to show the
targets specified by Battelino et al. [1] and let the user choose between different time
periods and visualizations. In future versions, a number of improvements and extensions
can be made 1) the administrator user should be able to compute statistics based on the
population of the patients, 2) it should be possible for the users to perform simulations
directly from the frontend, 3) the web application should updated to make it possible to
upload data from, e.g., an AP or the DiaCon AP should be able to upload data directly
to the database, and 4) it should be possible for the doctors to sort and filter their
patients based on treatment represented by, e.g., TIR.
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