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Abstract (in English)
The future energy system will rely on the production of renewable and low-carbon en-

ergy sources, many of which are weather-dependent, such as wind and solar energy. To

effectively implement this weather-driven energy system, there is a need to control energy

demand in a manner that aligns with the fluctuating supply. This requires flexibility in

various systems, such as adjusting indoor air temperatures in buildings, reactor temper-

atures in biogas production plants, and energy usage in wastewater treatment plants,

among others, such as power-to-X, district heating, and electric vehicles. Scheduling

energy usage optimally, however, poses a significant challenge. Model predictive control

(MPC) is a control method that accounts for future inputs, disturbances, and system dy-

namics, allowing for optimal scheduling of energy usage. This dissertation investigates

modelling techniques for various energy systems and applies predictive control methods

to quantify and improve control and flexibility concepts. A significant contribution of this

research is the proposal of embedded disturbance models for optimal control problems,

which provide the controller with continuous-time disturbance forecasts and potentially

more filtering information.

This dissertation considers various models for flexible control of the indoor climate in

buildings. Paper A introduces a non-linear model describing the aggregated indoor air

temperature of a building. Non-linearities come from the radiator thermostats and the

energy usage, which are difficult to consider as linear phenomenons. Paper B presents

the results and findings of a control experiment carried out using the continuous-time

model in Paper A. The results successfully showed that the building was able to shift

its heat load in time and react to varying prices. Paper C is a simulation study of

online control of the same building using the model in A. The paper reaches the same

conclusion that the building is suited for control and that significant economic and energy

savings are available. Paper D considers non-linear ARX-models describing the indoor

air temperature in single rooms. These take various inputs and disturbances into account

and are simple and fast to estimate and use—and are thus useful for control.

The present dissertation also focus on modelling and forecasting of disturbances in con-

trol. Paper E introduces the concept of embedding a disturbance model in continuous-

time into the formulation of the optimal control problem. This technique has the advan-

tage of being able to describe the disturbances’ influence on the system in continuous-time

(instead of e.g. zero-order hold discretisations) and supply more information for the fil-

tering of the system. Paper F uses this technique in a linear-quadratic controller used

to control the indoor air climate of a building. It demonstrates the potential improve-

ments of this forecasting technique used in a quadratic controller compared to standard

disturbance mitigation techniques and the trade-offs between variation in inputs and the

controlled system.

Choatic systems are dynamical systems governed by positive Lyapunov-exponents. This

means that the predictability is lost exponentially if the initial state is not known exactly

(which is rarely the case). Paper G introduces a method for controlling a chaotic system

into an arbitrary point on a Poincaré section. The proposed method consists in two steps:

first of solving an optimal control problem to obtain a periodically applied control signal

and afterwards applying an additional adaptive control.
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Abstract (in Danish)
Fremtidens energisystem vil være baseret på produktion af vedvarende energikilder med

lav CO2-udledning, hvoraf mange er vejrafhængige, f.eks. vind- og solenergi. For at

gennemføre en virkningsfuld implementering af det vejrbestemte energisystem, er der

behov for at styre energiefterspørgslen på en måde, der er i overensstemmelse med

det svingende udbud. Dette kræver fleksibilitet i forskellige systemer, f.eks. justering

af indendørs lufttemperaturer i bygninger, reaktortemperaturer i biogasproduktionsan-

læg og energiforbrug i spildevandsbehandlingsanlæg. Andre eksempler er power-to-X,

fjernvarme og elbiler. Det er imidlertid en stor udfordring at planlægge energiforbruget

optimalt. Model prædektiv regulering er en kontrolmetode, der tager højde for fremtidige

input, forstyrrelser og systemdynamik, hvilket giver mulighed for optimal planlægning

af energiforbruget. Denne afhandling undersøger modellleringsteknikker til brug i ener-

gisystemer og anvender prædiktive reguleringsteknikker med disse for at kvantificere og

bevise kontrol- og fleksibilitetsteknikker.

Denne afhandling betragter flere modeller til optimal styring af indendørsklimaet i

bygninger. Artikel A introducerer en ikke-lineær model, der beskriver den aggregerede

indendørstemperatur (i alle rum) i bygningen. Ikke-lineariteter stammer fra radiatorter-

mostaterne og energiforbruget, som er svære at betragte som lineære fenomener. Artikel

B præsenterer resultaterne og fundene fra et styringseksperiment udført med brugen af

kontinuerttidsmodellen fra Artikel A. Resultaterne viser at bygningen var i stand til at

flytte sit varmeforbrug og reagere på varierende priser. Artikel C præsenterer et simula-

tionsstudie af online styring af den samme bygning med brug af modellen i A. Artiklen

når til samme konklusion; at bygningen er egnet til optimal kontrol, og at der er po-

tentiale for signifikante energimæssige- og økonomiske besparelser. Artikel D betragter

ikke-lineære autoregressive modeller med eksterne inputs, der beskriver indendørstem-

peraturen i et enkelt rum i en bygning. Disse tager forskellige input og forstyrrelser i

betragtning og er simple og hurtige at identificere og bruge—og er derfor sandsynligvis

velegnede i kontrolsammenhænge.

Den foreliggendeafhandling fokuserer ogsåpåmodellingog fremskrivningaf forstyrrelser

til brug i kontrol. Artikel E introducerer konceptet at indlejre forstyrrelsesmodeller i kon-

tinuert tid i formuleringenaf optimal kontrol-problemer. Denne fremskrivningsteknikhar

fordelen at være i stand til at beskrive forstyrrelsernes påvirkning af systemet i kontinuert

tid (i stedet for f.eks. nul’te ordens ”hold” diskretisering) og giver mere information til fil-

treringsproblemet af systemet. Artikel F bruger den samme teknik i en lineær-kvadratisk

regulator, der bruges til at styre indendørsklimaet i en bygning. Den demonstrerer de po-

tentielle forbedringer fra den brugte fremskrivningsteknik i den lineære-kvadratiske reg-

ulator sammelignet med standard forstyrrelsesbehandlingsteknikker og de afvejninger,

der er mellem variationen af input og det regulerede system.

Kaotiske systemerdynamiske systemer, der er karakteriseret vedathavepositiveLyapunov-

eksponenter. Dette betyder, at systemets forudsigelighed tabes eksponentielt hvis sys-

temets begyndelsestilstand ikke er kendt eksakt (hvilket sjældent er tilfældet). Artikel

G introducerer en metode til at styre et kaotisk system ind på et vilkårligt punkt på et

Poincaré-plan. Den forslåede metode består i to trin; først at løse et optimalt kontrol-

problem for at beregne et periodisk anvendt styringssignal og derefter yderligere at an-

vende en adaptivt regulering.
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1 Introduction
The so-called planetary boundaries must be respected to ensure an inhabitable planet for

mankind (Steffen et al., 2015). One of these is climate change. In Denmark, it has been

politically decided to reduceCO2 emissions in 2030 by 70% compared to 1990 (Klimarådet,

2020). Production of energy from renewable sources such as solar and wind is therefore

expected to grow in the coming years to meet the current energy demand solely from

renewable sources (Klimarådet, 2019).

An arising challenge from the transition from fossil fuels to low carbon density energy

sources is the unstable energy production from wind and solar. Historically, common

practice has been to adjust the production to meet the demand at all times. With energy

sources as wind and solar, we are however no longer in control of the production. We

are, however, in control of the demand. This implies that the energy sector needs to

move from a production-regulating-scheme to a consumption-regulating-scheme. The

concept known as energy flexibility addresses this issue by utilising the ability of devices

to shift their energy usage in time to utilise the energy when it is available (Junker,

Kallesøe, et al., 2020; Dominković et al., 2020). Examples of such devices/units include

regular batteries (found in electric vehicles fx), thermal storage of buildings, Power-to-X

production, biogas production, district heating- and wastewater aeration operations, and

sector coupling units in general. All the above devices/units are able to regulate their

energy usage up and/or down to shift their energy usage to advantageous times while

meeting local constraints (such as a minimum temperature in buildings, the EV battery

needs to be fully charged at 17.00 o’clock, etc.). To align the energy consumption and

demand, it is believed that all flexible units should be controlled and regulated according

to a varying price signal (De Zotti, Pourmousavi Kani, et al., 2018; De Zotti, Kani, et al.,

2020; Madsen, Parvizi, et al., 2015; Santos and B. N. Jørgensen, 2019) to incentivise usage

of energy when it is available. This price signal has the purpose of making sure that the

total consumption aligns with the production at all times. Multiple proposes to change

the current market and tariffs as such has been made (Ma, B. N. Jørgensen, and Parker,

2019; Lund and Münster, 2006). Varying price signals can also be used to supply grid

services (Parvizi, John B. Jørgensen, and Madsen, 2018)

This dissertation includes applications ofmodelling, forecasting, and control for such flex-

ible energy systems (both simulation- and real-life cases). The results contribute to the

literature on flexibility and optimal control and support the generally accepted hypothe-

sis that energy flexibility via optimal control offers significant operational improvements

while at the same time saving energy and/or carbon emissions. This is done by including

better and more accurate disturbance forecasts in the optimal control problem while op-

erating the system closer to the given constraints (e.g. temperature bounds in buildings).

Some of the applications included in this dissertation are:

• Modelling of heat dynamics of buildings: This dissertation presents modelling

methods for building heat dynamics based on stochastic grey-box models. These

capture both the deterministic dynamics and the stochastic properties of the system.

• Control of heat dynamics of buildings: Using non-linear model predictive control,

we demonstrate (in simulation and real-life) the buildings’ abilities to be flexible.

• Stochastic disturbance modelling and forecasting techniques: Chapter 3, Paper E,

and F present a formalism for including stochastic disturbance forecasts directly
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into the optimal control problem.

• Control of chaotic systems: Chapter 4 and Paper G describes and introduces a

method for stabilising chaotic systems using optimal control techniques.

All the applications above can be used to optimise the operation of the given dynamical

systems. Better forecasts and system models makes it possible for the controller to better

predict the systembehaviour and thus is able to operate the system closer to its constraints.

In the end, this may increase performance and enable the controller to better monetise

and utilise the flexibility embedded in the system.

The rest of the introduction briefly introduces the reader to key concepts of modelling,

forecasting, and controlling for stochastic, dynamical systems.

1.1 Stochastic differential equations
For modelling time-varying stochastic systems, this dissertation focuses on stochastic

differential equations (SDEs). These generalises the ordinary differential equations by

adding a stochastic process to the dynamical forces of the dynamical system in the fol-

lowing way:

GC = G0 +
∫ C

0

5 (G� , D� , 3� , �;�)d� +
∫ C

0

6(G� , �;�)d$� , (1.1)

where G is the state vector, D is the input vector, 3 is the disturbance vector, � is a parameter

vector, and $ is Brownian motion. In this dissertation, we shall use an Itô integral as the

last integral in (1.1). A brief introduction to SDEs and small examples are given in Chapter

2. Iacus, 2008; Jazwinski, 1970; Thygesen, 2022 give more theoretical introductions.

1.2 Control of dynamic systems under influence by stochastic
inputs

This dissertation deals with control and forecasting for stochastic dynamical systems that

undergo inputs from (stochastic) disturbances and inputs. In (1.1), we shall distinguish

between the following three types of inputs of the dynamical system:

• Deterministic, controllable input, D: This is the type of input that the controller is

able to manipulate in order to control the system and is assumed to be deterministic

in this dissertation. We refer to D as an input.

• Stochastic non-controllable input, 3: This is the type of force/input that the con-

troller has no control over and is referred to as a disturbance. It is, however, not a

white-noise process and is (to some extend) forecast-able.

• Stochastic diffusion input, $: This is the type of force that is based on a white noise

process (and often scaled by some function 6) and is thus completely random and

non-predictable.

This dissertation includes publications that focus their attention towards the disturbances,

3, and how to deal with these in optimal control problems. E.g., for controlling energy

systems (like the indoor air temperature), disregarding the solar radiation gainmay cause

severe discomfort due to overheating since the sun delivers significant amounts of energy

in short time intervals (Candanedo and Athienitis, 2011). Typically, forecasts for these

disturbances are needed in the numerical optimisation of the optimal control problem. If

not provided, it may affect the control performance significantly. Otherwise, if ”clever”

forecasts are not available, simple and alternative methods like persistent forecasts may

improve control performance.

Stochastic Disturbance Models 3



As a different kind of ”stochastic” systems, this dissertation briefly discusses chaotic dy-

namical systems and different control schemes for these. Such systems are characterised

by differential equation models that have positive Lyapunov exponents and therefore

exponentially diverges away from solutions starting infinitesimally close to each other.

Stabilising these require special treatment, which Paper G discusses.

1.3 Model predictive control
Amodel of a systemgives thepossibilities to predict its future states. Themodel predictive

control principle in short exploits the predictability of the system to find an optimal future

input sequence to optimise its operations according to some objective. In the general case,

when the model is non-linear, the optimal control problem posed to find the optimal

input sequence can be written as

D∗ = arg min

D

{
): =

∫ C:+)

C:

@(G� , D� , 3�)d� + @1(GC:+))
}
, (1.2a)

s.t. GC = Ĝ: |: +
∫ C

C:

5 (G� , D� , 3�;�)d� , C ∈ [C: , C: + )[ , (1.2b)

DC ∈ UC C ∈ [C: , C: + )[ , (1.2c)

GC ∈ XC C ∈ [C: , C: + )[ , (1.2d)

where D∗ is the optimal input sequence that minimises the objective ): . The objective

has the role of making solutions comparable and should thus incentivise the desired

behaviour of the system. This dissertation includes examples of linear-, quadratic-, and

non-linear objectives. The linear objective is common if it is related to some economic

cost, the quadratic is popular for reference tracking, and the non-linear if other incentives

is embedded into the objective.

1.4 Applications
This dissertation includes two publications related to modelling of dynamical systems,

both of which are models for predicting the indoor air temperature of buildings (and in

fact the same building). The two papers approach the problem differently and both have

pros and cons.

• Paper A: The first paper presents a model for predicting the indoor air temperature

and heat usage of a Danish school building. The building gets heat from the local

district heating network and uses radiators to distribute the heat in the rooms. Prior

to the identification experiment, all radiators were equipped with smart Danfoss

thermostats and all rooms were equipped with temperature sensors. To be able to

predict the heat usage of the single rooms requires the supply- and return temper-

ature of the water of the radiators and the water flow. The supply temperature is

known (since it is set by the building managers). However, to measure the return

temperature requires installation of addition heat sensors and the water flow is ex-

pensive to measure since it requires hypersonic equipment. Therefore, instead of

modelling each roomof the building, the paper presents an aggregatedmodel of the

building based on SDEs where the arithmetic average of all room temperatures was

used as an estimate of the indoor air temperature of the entire building. The model

includes non-linearities from the thermostats (modelled by a sigmoid function) and

the heat usage. Based on the identification experiment, the model seems to perform

well.
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• Paper D: The conclusion from the results of a control experiment of a Danish school

building (presented in Paper B) is that some individual room control is needed.

In Paper D, the authors present an automated modelling technique for identifying

autoregressive models for predicting the indoor air temperature in single rooms.

These are readily used for predictive control.

The present dissertation also includes 4 (plus control of chaos and energy-planning arti-

cles) articles on predictive control of various dynamical systems.

• Paper D: During the winter of 2020/2021, the authors carried out a control experi-

ment of the same school asmodelled in PaperA and tested various control objectives

including a flexibility experiment. The aim was to illustrate that the building was

able to shift its heat load away from the peak hours (themorning and evening hours).

The building performedwell in terms of controlling the mean temperature of all the

rooms inside the given temperature bounds. But further investigations showed that

there was a significant spread in the individual room temperatures. The conclusion

of the paper is that sufficient comfort cannot be reached or guaranteed by controlling

the building on an aggregated level without taking the individual rooms difference

in size and/or heating capacity into account.

• Paper C presents the results of a control simulation of the building model in pre-

sented in A. The simulation compares a non-linear MPC to the performance of a

fixed heating schedule (that includes nightly set-backs). Results suggests that the

MPC improves performance by up to 10-15%.

• Paper E presents amethod for embedding disturbance forecasts into the formulation

of aMPC. Bymodelling the disturbances and including these in themodel formula-

tion, the model predictions automatically include the disturbances and their forces

on the system. The paper demonstrated the method in an example of controlling

the indoor air temperature of a building. Results suggest electricity savings and

comfort improvements of up to 10% and 90%, respectively, compared to standard

forecasting schemes.

• Paper F presents the linear-quadratic control scheme for stochastic differential equa-

tion models and motivates and discusses how to deal with disturbances. It derives

a discretisation of the system and the optimal control problem and applies this to

a building thermal optimal control problem. The results emphasise the trade-off

that linear-quadratic optimal control problems offer: minimisation of the variation

in the input signal versus minimisation of the variation of the system around the

reference trajectory.

• Paper G presents an optimal control problem for stabilising and controlling chaotic

systems. Such a system is characterised by lacking predictability in uncertain set-

tings. State-of-the-art methods for stabilising a chaotic system relies on stabilising

the system around an already existing unstable periodic orbit (UPO). But if a certain

path for the system is desired by the operator, and an UPO does not exists for this

path, existing methods do not suffice. In this paper, the authors present a method

for introducing an UPO at the desired path by solving an optimal control problem.

Next, after the introduction of the UPO, existing methods for stabilising the chaotic

system can be utilised.
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1.5 Notation
Throughout this dissertation, R and N are the real and natural numbers, respectively. R+

and R− means all non-negative and non-positive real numbers, respectively.

All time dependence is written as a subscript on the variable, e.g. GC instead of G(C). This
is however only the case for time dependence. If a variable depends on e.g. a set of

parameters, �, it is written in parenthesis as GC(�). To avoid confusions with indexes, if

a subscript is written with a � or C, it refers to a continuous dependence, whereas if the

subscript is an 8, :, <, or =, it refers to a discrete index. Consequently, in the rest of the

thesis, �, C ∈ R and 8 , :, =, < ∈ N.

Let 5 : R= ↦→ R< be a function. Then, in this dissertation,

% 5

%G
: R= ↦→ R< (1.3)

shall be the matrix representation of the linear transformation that constitute the total

derivative of 5 w.r.t. G ∈ R= (given that it exists) in the usual basis for R= .

1.6 Outline
This dissertation is structured in the following way:

• Chapter 2 briefly presents the background of stochastic differential equations and

the filtering principle. Stochastic differential equations form the basis of the models

used throughout the dissertation. Thefilteringprinciple is an important key for state

estimation and for estimation of parameters embedded in stochastic differential

equation models. It also briefly touches upon discrete-time models and semi-

parametric models. The chapter includes short and simple examples underway to

illustrate some of the theory in practice.

• Chapter 3 introduces the model predictive control principle and presents two com-

mon ways of discretising and solve such problems.

• Chapter 4 presents the applications of the background and theory priorly presented.

All applications are based on the publications included in this dissertation.

• Chapter 5 sums up the findings of the dissertation and supplies opinions on what

the future brings for this field of research.
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2 Stochastic Differential Equations and
Filtering

Stochastic differential equations (SDEs) are a useful and powerful tool for modelling and

representing stochastic processes. It can be shown that under certain conditions, all

stochastic processes with continuous trajectories can be written as a SDE (Bjork, 2009).

Thus, SDEs are a general class of stochastic models. This section briefly introduces the

theory of SDEs and filtering that is necessary to read the rest of the thesis. Further

introductions to SDEs and their applications can be found in e.g. (Oksendal, 1992;

Mikosch, 1998).

2.1 Stochastic differential equations
Let {GC , C ≥ 0}, GC ∈ R= be a continuous-time stochastic process governed by the following

equation

GC = G0 +
∫ C

0

5 (G� , �;�)d� +
∫ C

0

6(G� , �;�)d$� (2.1)

where 5 : R= × R+ × R< ↦→ R= and 6 : R= × R+ × R< ↦→ R= are the drift and diffusion

functions, respectively, � ∈ R< is a set of parameters, and G0 ∈ R
=G

is the initial state.

$ : R+ ↦→ R= is standard Brownian motion with the property $C − $B ∼ #(0, C − B) for
C > B. Since the Brownian motion is not differentiable, (2.1) does not have a differentiable

form. However, in short, we typically write (2.1) as

dGC = 5 (GC , C;�)dC + 6(GC , C;�)d$C (2.2)

We shall use the Itô interpretation of the SDE, i.e. the integral in 2.1 is an Itô integral.

Example
A simple example of an SDE is the Cox-Ingersoll-Ross (CIR) diffusion, G : R+ ↦→ R having

the form

dGC = �(� − GC)dC + �
√
GCd$C , (2.3)

where � = (�, �, �) ∈ R+ × R × R+ are parameters in the SDE. We will use this SDE

throughout this dissertation for examples.

2.1.1 Itô’s lemma
The chain rule in deterministic calculus applies as long as the function at hand is smooth.

However, due to the non-vanishing quadratic variation of Brownian motion, the deter-

ministic chain rule does not hold. The chain rule in stochastic calculus is an important

tool to analytically find a governing SDE of a transformed process. Let G be an Itô-process

governed by (2.1) and IC = #(GC , C), IC : R ↦→ R=I , # : R=G ×R ↦→ R=I , be some transforma-

tion of G. The question is then: Given #, what SDE governs I? Itô’s lemma tells us just

that and is

dI
(8)
C =

%#8
%C

dC +
%#8
%G

dGC +
1

2

dG
ᵀ
C

%2#8
%G2

dGC , (2.4a)

=

(
%#8
%C
+
%#8
%G

5 + 1

2

tr6ᵀ
%2#8
%G2

6

)
dC +

%#8
%G

6d$C , (2.4b)

where I
(8)
C and #8 is the 8’th coordinate of IC and #, respectively, and tr is the matrix

trace. From a modelling perspective, it is sometimes difficult to deal with processes with
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state-dependent diffusion terms. But Itô’s lemma supplies us with a tool to transform the

process into an equivalent process that has state-independent diffusion. Consequently,

we can answer the question: What transformation # should we use to make the diffusion

function of IC = #(GC , C) be state-independent? The tool for this is also known as the

Lamperti transformation (Møller and Madsen, 2010).

The Lamperti-transformation
Choose

#(G) =
∫ G

1

6(B)dB . (2.5)

Then IC = #(GC) is governed by an Itô’s process with state-independent diffusion term.

Example
Consider the CIR-process in (2.3). The diffusion function is 6(GC ;�) = �

√
GC . The Lamperti

transformation is then (leaving a constant on the diffusion of the Lamperti-transformed

process)

#(G) =
∫ G

1√
B
dB = 2

√
G . (2.6)

Inserting this into Itô’s formula in (2.4), we get the process:

dIC =
�(4� − I2

C ) − �2

2IC
dC + �d$C . (2.7)

(2.3) describes the same input-output relation as (2.7) and uses the exact same parameters,

but the latter considers a transformed state space.

2.1.2 Partially observed stochastic differential equation models
For modelling stochastic and dynamical systems, it can be shown that (under certain

regularity conditions) all continuous stochastic processes can be written as an SDE. This

is a powerful statement and solidifies the applicability of SDEs for modelling stochastic

time varying systems.

For a stochastic system, it may be the case that it is only partially observed—i.e. some

states are hidden. This principle is also known as hidden Markov processes where the

underlying system is observed through some function. Furthermore, observations are

often taken at discrete points in time. The underlying system evolves according to some

dynamics and the system is then observed through a function. Using SDEs to represent

the underlying model, we can write the framework as

dGC = 5 (GC , C;�)dC + 6(GC , C;�)d$C (2.8a)

H: = ℎ(GC: , E: ;�) (2.8b)

where H: : N ↦→ R=H is the observation variable, E: : N ↦→ R=E is i.i.d. random variables

and ℎ : R=G ×R=E ×R=� ↦→ R=H is the observation function. In engineering, the modelling

framework in (2.8) is often referred to as grey-box modelling or continuous-discrete time

modelling (Kristensen, Madsen, and S. B. Jørgensen, 2004; Juhl et al., 2016; Boiroux et

al., 2016). It is widely applicable to all continuous-time processes where observations

are taken discretely. This is a large class of processes and examples such as diabetes,

refrigerators, district heating systems, and bacterial growth can be found in e.g. (Duun-

Henriksen et al., 2013; Costanzo et al., 2013; Nielsen and Madsen, 2006; Møller et al.,

2012).
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2.2 Filtering
Assume we are dealing with a partially observed system with a hidden/latent process

GC in continuous (or in general also discrete) time. Ultimately, the filtering principle is to

associate and compute conditional distributions for the underlying stochastic process GC
given observations HC: , : ∈ N, by using the accumulated information as new observations

become available. This is useful for state- and parameter estimation in stochastic models.

The present section introduces the filtering principle and a practical approximation to the

exact filtering principle. In model predictive control, it may be critical to compute and

apply the optimal control in due time—therefore, approximations to the exact filtering

may be useful since the exact filter equations may be computationally difficult to solve.

Let us first consider generalised state space models, and consider a sequence of state

variables:

{G: ; : ≥ 1}

and a sequence of observations:

{H: ; : ≥ 1}

Here, we shall consider the so-called parameter-driven state-space models where the

model evolve independently of the past history of the observation process. Let the

history of {G:} and {H:} be denoted X:−1
andY:−1

:

X(:−1) = (G:−1 , G:−2 , . . .)
Y(:−1) = (H:−1 , H:−2 , . . .)

Furthermore,wewill assume that H: given (G: ,X(:−1) ,Y(:−1)) is independent of (X(:−1) ,Y(:−1))
(the Markov property) with conditional probability density:

?obs(H: |G:) = ?obs(H: | G: ,X(:−1) ,Y(:−1)) (2.9)

where the subscript ”obs” is short for ”observation” since this is the conditional density

of the observation variables. And similarly the prior conditional density of G:+1 given

information up till time C: is

?prior(G:+1 |G:) = ?prior(G:+1 |G: ,X(:−1) ,Y(:−1)) . (state eq.)

The objective is then to reconstruct (filter) the hidden process {G:} based on the observa-

tions {H:} using Bayes’ theorem. Recursive formulas for the filter densities exists and has

the following form (Bayes’ theorem)

?post(G: |Y:) =
?obs(H: |G:)?prior(G: |Y:−1)∫
?obs(H: |G:)?prior(G: |Y:−1)dG:

(2.10)

where Y: = {H1 , H2 , . . . , H:} is all observations up till time C: . Note that the denominator

is constant w.r.t. G: and is usually replaced by a normalisation constant 2: such that the

right-hand side integrates to unity. The density ?(G: |Y:−1) is given by:

?prior(G: |Y:−1) =
∫

?prior(G: |G:−1)?post(G:−1 |Y:−1)dG:−1 (2.11)
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The prior conditional density can be computed as the solution to the forwardKolmogorov

equation:

¤� = −∇ · (�� − �∇�) (2.12)

where �(G, C) = 1

2
6(G, C)6>(G, C) is the diffusivity matrix and �(G, C) = 5 (G, C) − ∇�(G, C) is

the advective flow vector field.

In general, the observation-, posterior- and prior distribution, ?obs, ?post, and ?prior, may be

any valid probability distribution function (non-negative and integrating to 1). Given an

underlyingmodel, 5 , 6, ℎ, and theprobabilitydistributionof E, an exact filtering algorithm

(in the sense that it uses the exact equations) can be summarised by the following:

1. Initialise with C0 = 0, ?post,0(G |Y0), and : = 0.

2. Compute prior density: Solve the forward Kolmogorov equations with initial con-

dition �(G, C:) = ?post,:(G |Y:) on [C: , C:+1]. Set the prior density as the solution

?prior,:+1(G |Y:) = �(G, C:+1).

3. Compute posterior density: Compute ?post,:+1 using Bayes’ rule in (2.10).

4. Put : := : + 1 and go to step 2 until finished.

The above algorithm computes the prior and posterior densities for each observation time,

{?prior,:}#:=1
and {?post,:}#:=1

, that in general may attain arbitrary distributions.

An example of a generalized state-space model and filtering using analytical expressions

for the densities is shown in (Peter Thyregod et al., 1998). The paper illustrates the use

of a Gamma-process for the dynamics, while the observations are Poisson distributed. In

practice, however, it may be cumbersome to compute the conditional transition densities

using the forward Kolmogorov equations, since numerical methods are needed. Espe-

cially if the system is high dimensional, the solution to (2.12) is practically infeasible to

compute. Therefore, approximations to the analytical filtering equations can be useful in

order to make filtering numerically tractable.

2.2.1 Maximum a posteriori estimation
The so-called maximum a posteriori estimation (MAP) is a filtering technique based on

Bayes’ formula in (2.10) and does not necessarily make any simplifications to the filtering

equations. From Bayes’ formula in (2.10), it is clear that the denominator is constant w.r.t.

the underlying state G: , hence

?post(G: |Y:) ∝ ?obs(H: |G:)?prior(G: |Y:−1) . (2.13)

The filtered estimate given by the maximum a posteriori estimation is the state that

maximises the posterior distribution

Ĝ: |: = arg max

G

{
?obs(H: |G)?prior(G |Y:−1)

}
. (2.14)

In general, to solve (2.14) requires numerical optimisation techniques since it is usually

non-linear. This might be numerically expensive to perform in each filtering step in an

optimal control setup.

The continuous-discrete extended Kalman filter (CDEKF) is a very applicable tool for

filtering in continuous-discrete models as the one in (2.8). It does, however, make critical

assumptions on the distributions involved. But as a consequence, the filtering equations

are given in closed form and are fast to compute. And one can show that under certain

conditions, the assumptions are often reasonable.

10 Stochastic Disturbance Models



2.2.2 The continuous-discrete extended Kalman filter
The CDEKF is a filtering technique for systems in continuous time with observations

taken discretely as in (2.8). Its filtering procedures are simplifications of the exact filtering

equations and thus supplies approximate estimates of the conditional transition densi-

ties (Kulikov and Kulikova, 2017). It makes the following assumptions to simplify the

computations:

1. The conditional transition probabilities are Gaussian,

!(G;�,Σ) = 1

(2�)=G/2det(Σ)1/2
exp

(
−1

2

(� − G)>Σ−1(� − G)
)
.

where ! : R=G × R=G × R=G×=G ↦→ R is the Gaussian density.

2. The observation noise is Gaussian and additive, i.e. H: = ℎ(GC: ;�)+E: , E: ∼ #(0, '),
' ∈ R=H×=H .

3. The observation function is well approximated by its linearisation, ℎ(GC ;�) ≈ �(GC −
G0) + ℎ(G0;�), where � : R=G ↦→ R=H is the linearisation of ℎ around G0.

Remark. Since the standard deviation of Brownian motion scales with the square root of

time (compared to the advective scale, which is linear), the dynamics of Brownianmotion

dominates the deterministic dynamics for small transition times. Thus, as the transition

time goes to zero, the conditional transition density approaches a Gaussian distribution.

Assumption 1 is therefore good for small enough transition times. Assumption 2 might

not hold directly if either the observation noise is non-Gaussian or the domain is bounded.

In the latter case, transformations are usually useful. Assumption 3 also holdswell if either

the observation function is close to linear or if the transition times are sufficiently small.

These assumptions can also be checked for a given model to see howwell it resembles the

assumptions of Gaussianity.

The CDEKF follows the algorithmic structure of the exact filtering having a prediction

step and an update step. The two schemes are given below and uses the notation as in

N. L. Brok, Madsen, and John Bagterp Jørgensen, 2018.

The prediction scheme
In the prediction step, the prior expectation of the state and its associated covariance

is predicted at time C: based on the posterior estimates at time C:−1. The estimates are

obtained by solving the coupled system of moment differential equations

¤̂G:−1(C) = 5 (Ĝ:−1(C), C;�) , (2.15a)

¤̂
Σ:−1(C) = �(C)Σ̂:−1(C) + Σ̂:−1(C)�(C)′ + �(C)�(C)′ , (2.15b)

with

�(C) =
% 5

%G
(Ĝ:−1(C), C;�) , �(C) = 6 (Ĝ:−1(C), C;�) , (2.16)

subject to the initial conditions Ĝ:−1(C:−1) = Ĝ:−1|:−1
and Σ̂:−1(C:−1) = Σ̂:−1|:−1

, being the

posterior estimates at the previous time C:−1. The prior estimates at time C: are then the

solution to (2.15) at C: , Ĝ: |:−1
= Ĝ:−1(C:) and Σ̂:−1(C:), respectively. The prior conditional

density is given by the Gaussian density !(G; Ĝ: |:−1
, Σ̂: |:−1

).
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The update scheme
In the update step, the observation H: and the prior density are used to compute the

posterior density. The innovation gain is

4: = H: − ℎ(Ĝ: |:−1
) . (2.17)

The Kalman gain is

�: =
%ℎ

%G
(Ĝ: |:−1

;�) , (2.18a)

': |:−1
= �:Σ̂: |:−1

�′: + ': , (2.18b)

 : = Σ̂: |:−1
�′:'

−1

: |:−1
. (2.18c)

The updated posterior Gaussian conditional density is given by the mean and covariance

Ĝ: |: = Ĝ: |:−1
+  :4: , (2.19a)

Σ̂: |: = (� −  :�:) Σ̂: |:−1
(� −  :�:)′ +  :': ′: . (2.19b)

The posterior conditional density is given by the Gaussian density !(G; Ĝ: |: , Σ̂: |:).
Example
We return to the CIR-process in (2.3) to demonstrate the CDEKF. First, to see how the

diffusion term of the CIR-process affects the conditional transition density, Figure 2.1

shows the conditional transition densities for the CIR-process starting at GC0 = 1 for

various values of � for two different transition times. One can show that these are Gamma

distributions. For the small transition time, the transition densities look approximately

Gaussian, even for large diffusion parameters. For longer transition times, the densities

lose their Gaussian shapes fast, even for small diffusion parameters.

To illustrate the prediction and update scheme of the CDEKF, we apply it to the CIR-

process. Figure 2.2 shows the conditional densities of the CIR process generated by the

CDEKF (which are Gaussian approximations to the Gamma distributions). The process

state is initially given by the density ?post,:−1(G) = �(G − 1) at time C:−1 (where � is the

Dirac delta function). The CDEKF then combines the predicted transition density and

the observation to compute the posterior distribution that maximises the joint density

function ?post,: at time C:—assumed all densities are Gaussian.

2.3 Parameter estimation in stochastic differential equation
models

A fundamental problem in modelling using stochastic differential equations is the iden-

tification and estimation of parameters. For such models, different estimation methods

exists, e.g. maximum likelihood- and least squares methods. The maximum likelihood

method is popular and relies on estimating the conditional probability densities. It is,

however, often difficult (or impossible) to compute the analytical likelihood if the model

does not satisfy the conditions for having Gaussian transition density functions (which

requires linear drift- and state-independent diffusion functions). Instead, it is common to

use the CDEKF to supply the transition densities and assume Gaussianity even though

the requirements are not fulfilled. It is believed that this approximation is often suffi-

cient to supply reliable parameter estimates and it also has the advantage of being fast to

evaluate.
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Figure 2.1: The conditional transition densities for the CIR-process with � = 1, � = 1, and

varying �. For the small transition time, the transition densities look pretty Gaussian,

even for large diffusion parameters. For larger transition times, the densities lose their

Gaussian shapes fast, even for small diffusion parameters.
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Figure 2.2: The conditional densities of the CIR process (with � = � = � = 1) computed

with the CDEKF. I.e., assuming all densities are Gaussian.
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The aim of this section is to introduce the maximum likelihood method for parameter

estimation in stochastic differential equation models and show how to approximate the

likelihood function using conditional densities supplied by the CDEKF.

2.3.1 The maximum likelihood method
One way of estimating parameters in SDE models is the widely used maximum likeli-

hood method. This is based on maximising the joint probability density function of the

observation variables evaluated at the observed values w.r.t. a set of parameters in the

drift, diffusion, and/or in the observation function.

Formally, 5 , 6, and ℎ as in (2.8) depends on a set of unknown parameters �. Now, the like-

lihood function !(�;Y# ), ! : R=� ×R=H×# ↦→ R+, is defined as the joint probability density

function of the observation variables evaluated at the observed values but considered as

a function of the parameters �,

!(�;Y# ) = ?.1 ,.2 ,...,.# (Y# ;�) . (2.20)

For time series data, the joint probability density function, ?.1 ,.2 ,...,.# , can be written as a

product of one-step ahead conditional transition densities. To do this, we single out the

observations one at a time, starting with the last and proceeding all the way through the

first

!(�;Y# ) = ?.1 ,.2 ,...,.# (Y# ;�) = ?.# |.#−1 ,...,.1
(H# ;�)?.1 ,...,.#−1

(Y#−1;�) , (2.21a)

=

#∏
:=1

?.: |Y:−1

(H1 , . . . , H: ;�) . (2.21b)

For numerical reasons, it is often advantageous to take the log of the likelihood function

ℓ : R=� × R=H×# ↦→ R:

ℓ (�;Y# ) = log !(�;Y# ) =
#∑
:=1

log ?.: |Y:−1

(H1 , . . . , H: ;�) (2.22)

Themaximum likelihood estimate of � is then the value of � thatmaximises the likelihood

function

�̂∗ = arg max

�
!(�;Y# ) . (2.23)

Thus, to evaluate the likelihood function (and then be able to perform some kind of

optimisation), the problem ultimately comes down to estimating the one-step conditional

transitiondensities. Twowell-knownandusedmethods for this estimating these arebased

on the CDEKF and the so-called Laplace approximation (Madsen and Poul Thyregod,

2011). The following section briefly introduces the method based on the CDEKF.

2.3.2 Parameter estimation using the CDEKF
The CDEKF as introduced in Section 2.2.2 makes the assumptions that the conditional

transition densities are Gaussian. And the log-likelihood function in (2.22) is the joint den-
sity function of the observation variables (evaluated in the observed values) as a function

of the parameters. Consequently, using the conditional transition densities supplied by

the CDEKF, the log-likelihood function can be written

ℓ (�;Y) =
#∑
:=1

log!(4: ; 0, ': |:−1
) , (2.24a)

=

#∑
:=1

log

(
1

(2�)=H/2det(': |:−1
)1/2

exp

(
−1

2

4>: '
−1

: |:−1
4:

))
. (2.24b)
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Figure 2.3: Upper plot: A realisation of the CIR process (with � = � = � = 1) and the

observed values. Lower plot: The profile likelihood of � computed using the conditional

transition densities supplied by the CDEKF. The solid grey line is the actual value of �
while the dashed line is the ML-estimate.

where 4: and ': |:−1
are supplied by the CDEKF. The evaluation of the log-likelihood

function using the CDEKF is thus recursive since the values 4: and ': |:−1
depends on the

history up till time C: of the system.

Example
To illustrate the CDEKF for estimating the joint density function of the observation vari-

ables, we again consider the CIR-process in (2.3) with � = � = � = 1 with the observation

equation:

H: = log(GC: ) + E: , E: ∼ #(0, ') , (2.25)

with ' = 0.1. The purpose of the log-transformation of GC is tomake the observation space

R (and hopefully the observations are more Gaussian). Figure 2.3 shows a realisation of

the process on the time interval [0, 100] with GC0 = 1 together with the discrete-time

observations with ΔC = C:+1 − C: = 0.02. The observations are evidently noisy as seen

from the significant scattering. The lower plot in Figure 2.3 shows the profile likelihood

function w.r.t. � together with the true value of � and the maximum likelihood estimate

�̂. The estimate is a bit off compared to the true value. This could be due to too few data

points, too large transition times between observations, the observation function being

too non-linear etc.

It is important to emphasise that the likelihood function is based on one-step ahead transi-

tiondensities. This is important for parameter estimation since for small enough transition

times, the transition densities are close toGaussians. This is despite the underlying system

being significantly non-linear.
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2.4 Discretisation of stochastic differential equation models
SDEs describe continuous state-space models in continuous-time. However, for MPC,

some discretisation or expansion of the system or the input variables are needed to make

the optimal control problemnumerically tractable. For linear SDEmodelswith zero-order

hold input and disturbances, closed form time-transition operators exists. If the system is

non-linear, other discretisation methods are needed, some of which are introduced and

discussed in Chapter 3.

Another problem, which is present for both linear and non-linear systems is how to de-

scribe the influence of disturbances on the system. The disturbances are often continuous

(and maybe even smooth) functions of time. The often applied discretisations of the

disturbances usually assume that they are constant between control points to make the

discretisations easier to apply. This section discusses the zero-order hold discretisation

scheme and use the arising linear discrete-time model as a motivation for autoregessive

models.

Consider the following linear SDE model

dGC = (�GC + �DC + �3C)dC + �d$C (2.26)

where � : R=G ↦→ R=G , � : R=D ↦→ R=G , � : R=3 ↦→ R=G , � : R=G ↦→ R=G . In the following, let

T : 0 = C0 < C1 < · · · < C: < . . . , (2.27)

be a set of discrete time points. Given GC: , DC , 3C , and $C in C ∈ [C: , C:+1], the value of GC:+1

is given by

GC:+1
= GC: exp(�)B) +

∫ )B

0

exp(��)�D�d� +
∫ C:+1

C:

exp(��)�3�d� + F: , (2.28)

where F: =
∫ C:+1

C:
exp(�(C:+1 − �))�d$� and is characterised by the distribution F: ∼

#(0, &)with& =
∫ )B

0

exp(��)��> exp(�>�)d�Hagdrup et al., 2016. Since DC is the input

variable, we can choose it be constant between each time sample (known as zero-order

hold). In the following, let the input be given by the zero-order hold scheme

DC =

#−1∑
:=0

"[C: ,C:+1
[(C)D: , � = {D:}#−1

:=0
, (2.29)

where "�(C) is the characteristic function that attains 1 if C ∈ � and 0 otherwise. We cannot

make the same zero-order hold assumption with the disturbances directly without error

terms appearing—but let us try anyway: Define the variable

3C =

#−1∑
:=0

"[C: ,C:+1
[(C)3: , � = {3:}#−1

:=0
. (2.30)

where � = {3:}#−1

:=0
is the true mean values of the disturbance process in the time intervals

[C: , C:+1[. Then the so-called zero-order hold discretisation of the linear diffusion process in

(2.26) is

GC:+1
= �3GC: + �3D: + �33: + F: + �: , (2.31)
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Figure 2.4: The discretisation related to the disturbances.

where

�3 = exp(�)B) , (2.32a)

�3 =

∫ )B

0

exp(��)�d� , (2.32b)

�3 =

∫ )B

0

exp(��)�d� . (2.32c)

�: =
∫ C:+1

C:
exp(�(C:+1 − �))�(3� − 3:)d� is an error term from the zero-order hold as-

sumption on the disturbances. If the true mean value is further replaced by an estimate,

3: = 3̂: + &: , an additional term appears:

GC:+1
= �3GC: + �3D: + �3 3̂: + �3&: + F: + �: . (2.33)

Figure 2.4 illustrates the zero-order hold scheme of the disturbances and depicts the error

terms appearing. As discussed in Paper F, it is not trivial how to further describe and

predict the error terms �&: , �: , and thus, it is easier to leave them out and assume they

equal zero. Another possibility may be to include them in the process F: such that the

filtering takes the increased uncertainty into account (which is not considered in this

dissertation).

For simplicity, we disregard the error terms �&: and �: in the discretisation in (2.33). I.e.,

the system ends up having the form:

ĜC:+1
= �3 ĜC: + �3D: + �3 3̂: + F: . (2.34)

The hat on Ĝ indicates that it is an estimate of G since the formulation is no longer exact and

is driven by the estimated disturbances, 3̂. This is the starting point for the motivation of

discrete-time Markov models in this dissertation. A special class of discrete-time models

are the AutoRegressive with eXogenous input (ARX) models.

2.4.1 Autoregressive Models with Exogenous Inputs
This section very briefly introduces the ARX model class. Paper D supplies a more

thorough and contextual introduction to the model class and its applications and how to

estimate embedded parameters. Let {.: ; : ∈ N}, .: ∈ R, be a stochastic process, then an

ARX model of order < is

(B).: = �(B)D: + �: , (2.35)
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where  and � are polynomials in the backshift operator B, B
8.: = .:−8 , such that (B) =

1�+2�
2+· · ·+<�< . D: ∈ R=D+=3 is the input vector containing all the inputs that drives

the system (including disturbances), and {�: ; : ∈ N}, �: ∈ R is a white noise process s.t.

�: ∼ #iid(0, �2

�). It relates to the discrete-time model in (2.34) by being a linear map from

the state space and input space to the state space, predicting the next state of the system.

Also, all autoregressive models can also be written as state models Madsen, 1985.

Given a series of observations of .: separated equally in time, Y= = (H1 , H2 , . . . , H=)>,
the parameters in (2.35) (8 and �8) are given in closed form. Maximum likelihood

estimation or least squares estimation ends upwith the same estimator for the parameters

� = (1 , . . . , < , �1 , . . . , �<)>¸

�̂∗ = (->= -=)−1->=Y= , (2.36)

where-= ∈ R=×<(1+=D+=3) is the so-called designmatrix (Madsen andPoul Thyregod, 2011).

For a more theoretical introduction to regression models and more details, see (Madsen,

2007).

This kind of model is less related to physics in the sense that it is not as easy to induce

physical constraints and features in its structure. One could call it less grey and more

black. The parameters are simply chosen such that the past < observations and inputs

fit the next observation best in the least-squares sense. On the other hand, it has the

advantage of being fast and easy to perform parameter estimation from the closed-form

solution in (2.36). Due to its more black nature, one does not need to worry as much

about the physical interpretation. Another problem is that the parameters depend on

the sampling rate (the model is only valid for the given sampling rate), and we typically

need much more parameters to form state-space models compared to continuous-time

equivalents.

A limitation of the model is its linear structure: It is not directly possible to estimate

parameters that appear non-linearly in the model. But some times one needs to estimate

non-linearities in the model, fx where a parameter is expanded into a new basis such

that it can vary in either time or space. Paper D presents an extended ARX-model

type where parameters are split into linear- and non-linear sets, where they two sets

are estimated iteratively and in parallel. This extension makes it possible to estimate

non-linear dependencies of parameters in ARX-models and does it in a computationally

efficient and robust manner.
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3 Model Predictive Control
The difference between predictive and non-predictive control is the framework of being

able to decide the control signal based on future predictions. What makes this possible,

is the model of the system, which is able to predict the system behaviour as a function of

a system input.

This chapter outlines the model predictive control framework and introduces linear- and

non-linear model predictive control frameworks.

3.1 The Model Predictive Control Principle
In the following, let the following

T : 0 = C0 ≤ C1 ≤ C2 ≤ · · · ≤ C: ≤ . . . (3.1)

be a sequence of time points where the controller computes and applies a new control

signal to the controlled system.

Themodel predictive control principle is based on an algorithm constituting the following

steps that run in a recursive manner (closed loop)

1. Initialise C0 = 0, Ĝ
0|0 = G0, and : = 1.

2. Filtering: When the next observation H: becomes available, filter the mean and

covariance of the system state, Ĝ: |: and %̂: |: using an appropriate filter.

3. Optimal control: Given the filtered state, solve the optimal control problem and

apply the optimal control until the next control time D̂∗(C), C ∈ [C: , C:+1[.

4. Go to step 2 and repeat until finished.

The framework is also displayed in Fig 3.1.z As information becomes available, the filter

estimates the underlying system states. Based on the new information and state estimate,

the controller updates its optimal control trajectory. Many real life systems are stochastic

and models are not exact representations of the real life system, therefore closed loop

operation is necessary to update the input signal to mitigate stochasticity and model

errors. The following two subsections briefly introduce the filtering and optimal control

steps.

Disturbance forecasts

Optimal control

Smart building

Filter

MPC

Figure 3.1: The MPC framework. The MPC-part with the filter and optimal control steps

is highlighted by the dashed box. It takes as input future disturbances, the current input,

and the observed system.
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3.1.1 Filtering
The filtering principle was introduced in Sec. 2.2. Briefly, filtering accumulates informa-

tion and estimates the most likely underlying system state (given the underlying system

model) to generate the observed information. Fx, a very popular filtering method based

on the Kalman filter takes in prior information {Ĝ: |:−1
, %̂: |:−1

, H:} at time C: and returns

the posterior estimates of the mean and covariance of the system state. In many real life

cases, however, it is significantly wrong to use only the mean and variance if the objective

function (e.g.) is sufficiently asymmetric (Haessig et al., 2015). Still, the mean- and vari-

ance filtering is by far the most popular filtering technique in practice (Mantovani and

Ferrarini, 2015; C. Thilker, Bacher, and Madsen, 2022; Vukov et al., 2015; N. Brok et al.,

2022).

3.1.2 Optimal control
Optimal control—as indicated by its name—is the art of controlling a dynamical system

in an optimal manner w.r.t. an objective, @. An infinite-horizon optimal control problem

has the form:

min

DC

∫ ∞

C:

@(G� , D� , 3�)d� , (3.2a)

s.t. GC = Ĝ: |: +
∫ C

C:

5 (G� , D� , 3�;�)d� +
∫ C

C:

6(G�;�)d$� , C ≥ C: , (3.2b)

DC ∈ U(C) C ≥ C: , (3.2c)

GC ∈ X(C) C ≥ C: , (3.2d)

where @ : R=G × R=D × R=3 ↦→ R is the infinitesimal objective (or cost), U(C) is the set of

feasible inputs DC at time C, and X is the set of constraints imposed on the system states.

There are, however, two problems with the above formulation with regards to solving

the optimal control problem. First, the integral in (3.2a) is numerically intractable since

@ is not !1
-integrable in general (due to the infinite limit in time and in general @ 6→ 0).

Second, the stochastic differential equation in (3.2b) is on strong form, which cannot be

solved without knowledge of the Brownian motion’s trajectory.

To overcome the first problem, instead of considering an infinite horizon optimal control

problem, consider instead the following finite horizon objective function:

):(D) =
∫ C:+)

C:

@(G� , D� , 3�)d� + @1(GC:+)) (3.3)

where ): : R=D ↦→ R is the objective function and @1 : R=G ↦→ R is the end-point cost

(sometimes called cost-to-go) term. The integral in (3.3) is convergent assuming |@ |<
∞, ∀G, D, 3 or attains infinite only at a finite number of points. Instead of extending the

integral to infinity, the cost-to-go term should reflect the cost of the system state at the

final time C: + ). This is of course an approximation to infinite horizon control problem.

However, in closed loop, if ) is large enough and @1 is chosen properly, an optimal control

problem using (3.3) should perform close to that of a the infinite horizon control problem

(Schlüter et al., 2019).

To overcome the second problem, it is common to use the expectation of GC . And since

the Itô integral is a martingale, it disappears in the expression of the expectation of GC .

This is also called the certainty equivalent optimal control problem. This corresponds to

considering the first order Taylor expansion of the SDE. Likewise, higher order Taylor
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expansions can be used and may supply more accurate predictions. Other methods are

to include the variance in the objective function (as to minimise the variance) (Capolei

et al., 2015) and stochastic programming (Prékopa, 2013).

The two simplifications applied to the optimal control problem turns it into a numerically

tractable problem on the so-called Bolza form (Clarke, 1976)

min

DC

{
):(D; Ĝ: |: , 3) =

∫ C:+)

C:

@(G� , D� , 3�)d� + @1(GC:+))
}
, (3.4a)

s.t. GC = Ĝ: |: +
∫ C

C:

5 (G� , D� , 3�;�)d� , C ∈ [C: ,∞[ , (3.4b)

DC ∈ U(C) C ∈ [C: ,∞[ , (3.4c)

GC ∈ X(C) C ∈ [C: ,∞[ , (3.4d)

where the notation ):(D; Ĝ: |: , 3) emphasises the dependence of the optimal control prob-

lem on the initial value and disturbance sequence.

3.2 Linear (Quadratic) Model Predictive Control
In the case where the model equations are linear, the objective function is linear or

quadratic, and the constraints are linear, the optimal control problem becomes convex,

which enables fast solvers to be used to perform the numerical optimisation (Boyd and

Vandenberghe, 2004). And if only equality constraints are present and the objective is

quadratic, the optimisation problem has a closed form solution (Åström, 2012).

This section briefly introduces the linear quadratic optimal control problem and its solu-

tion including the discretisation of the objective function. It is necessary to discretise both

the system and objective function in order to make the problem numerically tractable.

The rest of this section gives a simple method for doing this.

In the following, let

T: : C: = �:
0
< �:

1
< · · · < �:# = C: + ) , (3.5)

be a discretised grid of time points in which we split the control horizon. Consider the

following optimal control problem

min

DC

∫ C:+)

C:

1

2

(G� − A(G)� )>&(G� − A(G)� )+ (3.6a)

1

2

(D� − A(D)� )>'(D� − A(D)� ) + 2>� D�d� , (3.6b)

s.t. GC = Ĝ: |: +
∫ C

C:

�G� + �D� + �3�d� +
∫ C

C:

�d$� , C ∈ [C: , C: + )[ , (3.6c)

�DDC ≤ 1(D)C , C ∈ [C: , C: + )[ , (3.6d)

�GGC ≤ 1(G)C , C ∈ [C: , C: + )[ . (3.6e)

where A
(G)
C : R ↦→ R=G and A(D)C : R ↦→ R=D are the desired reference trajectory of the system

and the input, respectively. We assume that these are also piecewise constant (as with the

input and disturbances):

A
(D)
C = A

(D)
8

and A
(G)
C = A

(G)
8
, C ∈ [�:8 , �:8+1

[ . (3.7)
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�D : R=D ↦→ R=2D and �G : R=G ↦→ R=2G are the linear operators defining the constraints on

the input and system states togetherwith 1
(D)
C : R ↦→ R=2D and 1(G)C : R ↦→ R=2G , respectively.

2C : R ↦→ R=D is the economic cost related to the input. When the system is linear (and

the diffusion function is state-independent), the zero-order hold discretisation derived

in Section 2.4 is a commonly used discretisation scheme. We have carefully treated the

errors that arise from the discretisation and we hence know the consequences and risks

associated with it. Therefore, we write the approximated discrete-time system model as:

G:+1 = �3G: + �3D: + �3 3̂: + F: . (3.8)

The objective function can be discretised in different ways. In the linear quadratic case as

in (3.6a), exact discretisation methods exists based on the matrix exponential. However,

if the time sample )B is sufficiently small, approximative discretisations may be simpler

— e.g. the Euler discretisation: Consider the first part of the objective in (3.6a) where we

use the left end point in each time interval as the approximating function value, G�:
8
:

∫ C:+)

C:

1

2

(G� − A(G)� )>&(G� − A(G)� )d� ≈
#−1∑
8=0

1

2

G>
�:
8

&G�:
8
+ B>

�:
8

G�:
8
+ 1

2

A
(G)
�:
8

>
&A
(G)
�:
8

, (3.9)

where s>
�:
8

= −A(G)
�:
8

>
&. Analogously, the second part of the objective function becomes

∫ C:+)

C:

1

2

(D� − A(D)� )>'(D� − A(D)� )d� ≈
#−1∑
8=0

1

2

D>8 'D8 + A
(D)
8

>
'D8 +

1

2

A
(D)
8

>
'A
(D)
8
. (3.10)

Assuming that 2C is also piecewise constant such that 2C = 28 for C ∈ [�:8 , �:8+1
[, the objective

function can be written as sum (disregarding terms that does not depend on either G or

D)

)3 =
:+#−1∑
8=:

1

2

G>
�:
8

&G�:
8
+ B>

�:
8

G�:
8
+ 1

2

D>8 'D8 + A
(D)
8

>
'D8 . (3.11)

With the discretised model, (3.8), and objective function, (3.11), it is straight forward to

evaluate the objective function and compute gradients. Using the closed form of the

discretised dynamics, the objective function can be written

*∗:(G0 , {3̂:+8 |:}#−1

8=0
) = arg min

*:

1

2

*>: %*: + @>*: , (3.12a)

s.t. D:+8 ∈ U8 , (3.12b)

G:+8+1 ∈ X8 , (3.12c)

8 = 0, . . . , # − 1 , (3.12d)

where *: = [D>: , D
>
:+1
, . . . , D>

:+#−1
]> is the vectorised input and *∗

:
is the optimal control

solution. The matrix % and vector @ are given by the following:

% = (Γ>D &̄ΓD + '̄) , (3.13a)

@ = (Γ>D &̄ΦG0 + Γ>D &̄Γ3�̂: + Γ>D (: + �: − '̄*̄:) , (3.13b)
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where

�̂: =

[
3̂>
: |: , . . . , 3̂

>
:+#−1|:

]>
(3.14a)

(: =
[
B>: , B

>
:+1
, . . . , B>:+#−1

]>
(3.14b)

Φ =
[
�> , (�2)> , . . . , (�# )>

]>
(3.14c)

ΓD =



� 0 . . . 0

�� � . . . 0

�2� ��
. . .

...
...

...
. . . 0

�#−1� �#−2� . . . �


(3.14d)

Γ3 =



� 0 . . . 0

�� � . . . 0

�2� ��
. . .

...
...

...
. . . 0

�#−1� �#−2� . . . �


(3.14e)

&̄ = diag(&, . . . , &) (3.14f)

'̄ = diag(', . . . , ') (3.14g)

*̄: =

[
A
(D)
:
, . . . , A

(D)
:+#−1

]>
(3.14h)

�: = [2>: , 2
>
:+1
, . . . , 2>:+#−1

]> (3.14i)

If& ≠ 0=G×=G or& ≠ 0=D×=D (0=×< is the zero matrix of dimension = ×<) andU andX are

only equality constraints, (3.12) has a closed form solution. Otherwise, numerical solvers

are needed. The CVXOPT library (Andersen, Dahl, and Vandenberghe, 2022), available

through Python, can be readily used for this purpose.

3.3 Non-linear Model Predictive Control
If themodel 5 is non-linear, a closed-formsolutionof the systempredictionsdoesnot exists

in general. A possibility to overcome this is to linearise the system around the predicted

point Ĝ: |:−1
and solve the arising linear optimal control problem. However, if the system

is sufficiently non-linear, this solution may produce suboptimal performance. Instead,

methods such as single- and multiple shooting can be used. This section introduces these

methods and how they work while giving illustrative examples.

Representation of the input
To numerically solve optimal control problems, it is necessary to formulate the input in

terms of optimisation variables. So far, we have seen the zero-order hold scheme where

each zero-order value is an optimisation variable. We could also have chosen a continuous

representation in terms of series expansions. E.g., a Fourier expansion or a polynomial

expansion:

D#
Fourier,C =

00

2

+
#∑
:=1

(
0: cos

2�
)
:C + 1: sin

2�
)
:C

)
, (3.15a)

D#
Poly,C

=

#∑
:=0

?:C
: , (3.15b)
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where 0: ∈ R 1: ∈ R, ?: ∈ R are parameters of the expansions and ) is the time horizon

of the optimal control problem. In practice, however, it is often easier to implement

zero-order hold inputs instead of continuous signals. But series expansions have the

advantage of some times reducing the amount of optimisation variables. Then afterwards,

a zero-order hold of the optimal continuous input can be implemented in the system.

Nonetheless, the system operator needs to decide how to best represent the input.

3.3.1 The adjoint method
To efficiently minimise a function requires the gradients of the function. The adjoint

method provides a way to evaluate gradients of the objective function in (3.4). The goal

of the following derivation is to end up with a set of ODEs that can be solved to compute

the gradients of the objective function w.r.t. the input variables. To derive the adjoint

equations, consider the objective function:

):(D) =
∫ C:+)

C:

@(G� , D�)d� + @1(GC:+)) . (3.16)

We now introduce the Lagrange multiplier �:C : R ↦→ R=G and add zero to the equation

):(D) = ):(D) −
∫ C:+)

C:

�>� ( ¤G� − 5 (G� , D� , 3�))d� , (3.17)

where the integral equals zero since ¤G� = 5 (G� , D� , 3�). In the rest of the derivation, the

dependences of functions will be omitted. Taking the derivative on both sides yields

%):
%D

=

∫ C:+)

C:

%@

%D
+
%@

%G
Bd� −

∫ C:+)

C:

�>
(
%B

%C
−
% 5

%G
B −

% 5

%D

)
d� + �C:+) , (3.18)

where B = %G
%D is the sensitivity of G and � =

%@1
%G (GC:+))

dG
dD (DC:+)) is the derivative of the

boundary term evaluated at time C: + ). By splitting the second integral and applying

integration by parts to the term �> dB
dC , we get∫ C:+)

C:

�>
(
%B

%D
−
% 5

%G
B −

% 5

%D

)
d� =

∫ C:+)

C:

�>
%B

%C
d� −

∫ C:+)

C:

�>
(
% 5

%G
B +

% 5

%D

)
d� ,

=
[
�>� B�

] C:+)
�=C:
−

∫ C:+)

C:

%�>

%C
Bd� −

∫ C:+)

C:

�>
(
% 5

%G
B +

% 5

%D

)
d� .

(3.19)

Inserting this into (3.18) yields

%)

%D
=

∫ C:+)

C:

%@

%D
+
%@

%G
Bd�−

[
�>� B�

] C:+)
�=C:
+
∫ C:+)

C:

%�>

%C
Bd�+

∫ C:+)

C:

�>
(
% 5

%G
B +

% 5

%D

)
d�+�C:+) .

(3.20)

Re-arranging the terms

%)

%D
=

∫ C:+)

C:

%@

%D
+�>

% 5

%D
d�−

[
�>� B�

] C:+)
�=C:
−
∫ C:+)

C:

(
�>

% 5

%G
+ %�>

%C
+
%@

%G

)
Bd�+�C:+) . (3.21)

Let’s now require that �> satisfies the following differential equation backwards in time

− %�>

%C
= �>

% 5

%G
+
%@

%G
, with �>C:+) =

%@1
%G
(GC:+)) . (3.22)
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But then the last integral in (3.21) vanishes! And even better; the boundary term at � =

C: + ) in integration by parts cancels out the cost-to-go term, �C:+) =
%@1
%G (GC:+))

dG
dD (DC:+)).

And since the sensitivity,
%G
%D , is initialised to zero, the other boundary term of [�>� B�]

C:+)
�=C:

at � = C: is also zero. Thus, if � satisfies (3.22), the derivative of the objective function in

(3.21) w.r.t. the input D simplifies to solving the integral

� =
%)

%D
=

∫ C:+)

C:

%@

%D
+ �>

% 5

%D
d� , (3.23)

where � ∈ R=D . Since ODEs are solved by integration, we can couple the equations in

(3.23), (3.22), and the system dynamics such that computing the derivative is equivalent

to solving the following system of ODEs:

%G

%C
= 5 , GC: = Ĝ: |: , (3.24a)

−%�
>

%C
= �>

% 5

%G
+
%@

%G
, �>C:+) =

%@1
%G
(GC:+)) , (3.24b)

%�

%C
=

%@

%D
+ �>

% 5

%D
, �C:+) = 0 . (3.24c)

where

%)
%D = �C: is the solution of � at the initial time. This is in perfect analogy to the

first order optimality conditions to an equality constrained optimisation problem. For a

deeper discussion on the derivation, see John Bagterp Jørgensen, 2007.

On solving the adjoint equations
Solving the adjoint equations in (3.22) (to compute the Jacobian of the optimal control

problem) requires the values of GC—but the dynamics of G, ¤G = 5 , are defined forward in

time (in contrast to (3.22) which is backwards in time). Solving the system in (3.24) can be

done in different ways:

1. Solve ¤G = 5 forward in time to retrieve GC:+) . Then, using GC:+) as initial condition,

solve the entire system (3.24) backwards in time. Numerically, this method might

be unstable (since we solve 5 backwards in time), and it might not produce the same

result as if it was solved forward in time.

2. Solve ¤G = 5 forward in time and interpolate between the saved points to retrieve the

solution at any given time when solving for � and

d)
dD backwards. This is fast but

memory-intensive.

3. Every time a value of G is needed, re-solve ¤G = 5 forward (expensive!). Alternatively,

save checkpoints of the solution of GC in a grid C ∈ {�0 , �1 , . . . , �# } and instead solve

¤G = 5 from the nearest point when needed.

Independently of the approach, implementational care needs to be given to solving (3.24).

The next section introduces the single shooting method, which suffers from the issues

raised above. Multiple shooting, partly, gets around the instability issues (Morrison,

Riley, and Zancanaro, 1962).

Example
This example demonstrates the adjoint method for a small example to illustrate how it

works and is used to solve optimal control problems. For this example, we use again the

CIR-process, but this time modified such that it includes a disturbance and input:

dGC = �(� − GC + G2

C 3C + DC)dC + �
√
GCd$C (3.25)
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Figure 3.2: The solution to the adjoint system equations in (3.24) of the system in (3.26).

where 3C : R ↦→ R is the disturbance process and DC : R ↦→ R is the controllable input.

The factor G2

C on the disturbance process makes sure that the disturbances goes to zero

as the process goes to zero (while adding non-linearities to the system). For numerical

purposes, we consider the Lamperti-transformed process in the optimal control problem:

dIC =
©«
�

(
4(� + DC) − I2

C +
I4

C

4
3C

)
− �2

2IC

ª®®¬dC + �d$C , (3.26)

with IC being the Lamperti-transformed variable. Consider now the optimal control

problem

min

D8

{
) =

∫ )=5

0

(I� − A�)2 + D2

�d�

}
, (3.27a)

s.t. ¤IC =
�

(
4(� + DC) − I2

C +
I4

C

4
3C

)
− �2

2IC
, C ≥ C: , (3.27b)

where AC is a reference signal that we wish to steer the system along and D2

C (with

 = 0.001) is a regularisation term on the input to ensure uniqueness. We use the

following discretisation of the input and disturbance:

DC =

2∑
8=0

D8"[8·)/3,(8+1)·)/3[(C), 3C =

2∑
8=0

38"[8·)/3,(8+1)·)/3[(C) (3.28)

The inputs used in this example are {D8}28=0
= (0.1, 0.2, 0.1) and {38}28=0

= (0.4,−0.2,−0.1)
and are depicted in Fig. 3.2. Consequently, there are three input variables in this optimal

control problem. Using these value for the input and disturbances together with the

reference trajectory AC = 1.9, the solution to the adjoint system in (3.24) is depicted in Fig.

3.3. The derivative of the objective function w.r.t. the input is values of �
(8)
C , 8 = 1, 2, 3 at

time C = 0. Notice that the derivative variables for each input only change within the time

interval in which it influences the system variable.

3.3.2 Single Shooting
The class of direct optimal control methods requires a discretisation of the input D before

performing the optimisation—known as first discretise, then optimise. Therefore, in the

following, it is assumed that the input and disturbance have the form as in (2.29).
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Figure 3.3: The solution to the adjoint system equations in (3.24) of the system in (3.27).

Direct methods rely on the consideration that given an initial condition, Ĝ: |: , the input D,
and the disturbances, 3, the entire trajectory of G is uniquely determined in (3.4) by the

solution to the differential equation. In this way, one is ”shooting” the system, which then

ends up somewhere at the boundary of the time domain at time C# . And by changing D,

the shooting trajectory of G changes. The optimal control problem can be written in the

following way

min

D8

{
):(D; Ĝ: |: , 3) = @1(GC:+)(D, Ĝ: |: , 3)) (3.29a)

+
#−1∑
8=0

∫ �:
8+1

�:
8

@(G�(D, Ĝ: |: , 3), D8)d�
}
,

s.t. GC(D, Ĝ: |: , 3) = Ĝ: |: +
∫ C

C:

5 (G� , D� , 3�;�)d� , C ∈ [C: , C: + )[ , (3.29b)

D8 ∈ U(�:8 ) for 8 = 0, 1, . . . , # − 1 , (3.29c)

GC ∈ X(C) C ∈ [C: , C: + )[ , (3.29d)

The summation of the integrals of each interval [�:
8
, �:
8+1
[ stresses the fact that the input

and disturbances are constant in each interval. The notation GC(D, Ĝ: |: , 3) indicates the

solution’s dependence on the input, initial condition, and the disturbance.

The adjoint method supplies the gradient of ):(D, Ĝ: |: , 3) directly by solving G forward

in time and saving the result (as in one of the proposals in 3.3.1), and afterwards solving
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the boundary value problem for all D8 , 8 ∈ N simultaneously,

%�>

%C
= −�>C

% 5

%G
(GC , DC , 3C) −

%@

%G
(GC , DC) , (3.30a)

�>C:+) =
%@1
%G
(GC:+)) , (3.30b)

%� :
8

%C
=

%@

%D
(GC , DC) + �>C

% 5

%D
(GC , DC , 3C) , (3.30c)

� :8,C:+) = 0 , (3.30d)

from time C: + ) to C: for 8 = 0, 1, . . . , # − 1. The gradient of the objective function w.r.t.

the 8’th input is then

%):
%D8

= � :8,C: . (3.31)

3.3.3 Multiple Shooting
A downside of the single shooting method is that shooting far into the future can give

massive gradients since all inputs might affect the future state trajectory G. An alternative

method is to divide the prediction horizon into smaller subintervals and solve many

smaller single shooting intervals: Since the input D: only affects the integration in a

single time step [C: , C:+1[, the integration becomes more robust compared to integrating

the entire prediction horizon. Of course, one will not know the ”initial conditions of

the future”, but one can instead make each initial condition a parameter in the optimal

control problem. By doing so, each subinterval in the optimal control problem can be

solved independently. One can then add to the optimisation problem that the end of

each interval must match up with the beginning of the next. To formulate this, divide the

prediction horizon [C: , C: + )[ into subintervals of T as in (3.1). Let {G 8C , C ∈ [�8 , �8+1]} be
the trajectory of the system in the 8’th time interval given by the initial value problem:

%G 8C
%C

= 5 (G 8C , D8 , 38 ;�) with G 8
�:
8

= G 8−1

�:
8

on the interval C ∈ [�:8 , �:8+1
[ . (3.32)

The requirement G 8
�:
8

= G 8−1

�:
8

means that the 8’th trajectory starts where the 8−1’th trajectory

ends—thereby ”gluing” the trajectories together. To formalise this, define the so-called

flow map, ΦC(B, �, D8 , 38), as the solution to the initial value problem

%G�
%�

= 5 (G� , D8 , 38) , with GB = � , (3.33)

at time C for C > B. The flowmap thus flows the system from one point � at time B forward

in time till time C. With this notation, the multiple shooting discretisation of the optimal

control problem in (3.4) becomes

min

D8 ,I8

{
):(D, {I8}; Ĝ: |: , 3) = @1(I# ) +

#−1∑
8=0

∫ �:
8+1

�:
8

@(G 8�(I8 , D8 , 38), D8)d�
}
, (3.34a)

s.t. I8+1 = Φ�:
8+1

(�:8 , I8 , D8 , 38) , 8 ∈ N , (3.34b)

I0 = Ĝ: |: , (3.34c)

D8 ∈ U:(�:8 ) 8 ∈ N , (3.34d)

I8 ∈ Z:(�:8 ) 8 ∈ N . (3.34e)
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To solve (3.34), the procedure is the exact same as for the single shooting problem, except

here, there are # shooting problems to solve. Let �8 ,C : R ↦→ R=G be the adjoint variable

for the 8’th shooting trajectory in the optimisation problem in (3.34). Then the gradient of

%):
%D8

w.r.t. the 8’th input variable is the solution to John Bagterp Jørgensen, 2007

%�>
8

%C
= −�>8 ,C

% 5

%G
(GC , D8 , 38) −

%@

%G
(GC , D8) , (3.35a)

�>8 ,�8+1

= 0 , (3.35b)

%� :

%C
=

%@

%D
(GC , D8) + �>8 ,C

% 5

%D
(GC , D8 , 38) , (3.35c)

� :�8+1

= 0 , (3.35d)

at time �:
8
for 8 = 0, 1, . . . , # − 2. For the boundary 8 = # − 1, the terminal value (3.35b)

changes to �>
8 ,�#

=
%@1
%G (I# ).

The procedures to compute all the required gradients for solving the optimal control

problem in (3.34) can be found in e.g. (Aydogmus and TOR, 2021) or (Grimm and Markl,

1997).

3.4 Embedded Stochastic Disturbance Models
Consider the following model

dGC = 5G(GC , DC , 3C , C;�G)dC + 6G(GC , C;�G)d$(G)C , (3.36a)

d3C = 53(3C , C;�3)dC + 63(3C , C;�3)d$(3)C , (3.36b)

HG,: = ℎG(GC: , E: ;�G) , (3.36c)

H3,: = ℎ3(3C: , F: ;�3) , (3.36d)

where 5G : R=G×R=D×R=3×R×R=�G ↦→ R=G is the systemdrift function, 53 : R=3×R×R=�3 ↦→
R=3 is the function governing the drift of the disturbances of G, and 6G : R=G ×R×R=�G ↦→
R=G and 63 : R=3×R×R=�3 ↦→ R=3 are likewise the diffusion functions of the systemand the

disturbances, respectively. ℎG : R=G ×R=G ×R=�G ↦→ R=H G and ℎ3 : R=3 ×R=3 ×R=�3 ↦→ R=H 3
are the observation equations with E: ∼ #iid(0, 'G: ) and F: ∼ #iid(0, '3:).

The above formulation indicates the nature of disturbances: They are influential elements

that the operator has no control over but must (or should, at least) include to sufficiently

describe the process G.

This formulation has multiple consequences and benefits for optimal control problems.

First, embeddedSDEmodels of thedisturbancesprovideknowledgeabout theuncertainty

of the disturbances. This can be utilised in the filtering-step of the MPC to improve the

updated system (and disturbance) estimates. Furthermore, the uncertainty may be used

in a stochastic model predictive controller to better respect constraints (e.g. change-

constrained MPC). Secondly, a continuous-time description of the disturbances gets rid

of the zero-order hold discretisation. The latter is typically a wrongful approximation,

which is imposed for simplistic reasons. The formulation can also be used for more

advanced control/decision problems as in (Blanco et al., 2018; Guericke et al., 2020).

3.4.1 Current practices and stochastic disturbance models
This section briefly shows and demonstrates (via an example) how stochastic disturbance

models are useful in forecasting and control. Ultimately, forecasting is typically used for

some kind of control or decision making. E.g.,
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• forecasting of solar radiation can be utilised for estimating the electricity production

from PV cells (Iversen et al., 2014),

• forecasting of the covid-19 related infection and hospitalisation rates can help de-

cision makers choose how closed/open the society should be in order to avoid too

occupied hospitals (Johnsen, Christiansen, and Græsbøll, 2022),

• forecasting of district heating loads can be used by the district heating companies

to decide the correct forward temperature in order to minimise the energy usage of

district heating (Hjörleifur G. Bergsteinsson et al., 2021).

Forecasting is thus a central part ofMPC since the underlyingmodel is integrated forward

in time. Thus, system disturbances are important to incorporate in the MPC formulation.

One currently standard way for dealing with unknown disturbances in the literature is to

use offset-free regulation (i.e. persistent forecasts, 3C+� = 3C , � > 0). For systems with

significant influence of fast changing disturbances, this method tends to be insufficient

for optimal control. We will show this by an example in the next section.

Instead, having stochastic models describing the disturbances in the model has multiple

advantages. First and foremost, the mean value is supplied and can be readily used in

certainty equivalent MPC. But, the knowledge of the stochasticity of the disturbances

can bu utilised in some kind of stochastic MPC (e.g. chance-constrained MPC). E.g. any

quantile may be extracted from the density that can be used to compute back-off values

to use in the MPC constraints.

Example
This example shows simulations of the transition probability densities of the advanced

disturbancemodel in articles E and F. For amore thorough introduction andwalk through

of themodel, the reader is referred to (C. A. Thilker, 2020). Themodel forecasts the values

of the following four climatic processes; cloud cover, global solar radiation, net radiation, and
air temperature. The purpose is to demonstrate themodels’ abilities to forecast the weather

variables characterised as densities.

We use a Monte Carlo-based approach for illustrating the transition densities. Figures

3.4, 3.5, 3.6, and 3.7 are computed using the following steps:

1. Given the history up till time C0, (that is all data from time C = 0 till C = C0) use

the model given in E to simulate a realisation of all the climatic processes. Do this

# = 1000 times.

2. Given # simulations of the climatic processes, we can compute properties of the

transition densities. In this example, we compute the mean and the 5-, 50-, and

95% quantiles. Additionally, the following plots illustrate the transition densities by

colouring small vertical columns. Warmer colours mean higher density.

Figure 3.4a shows 10 simulations of the cloud cover process 24 hours into the future. On

top is the actual observed realisation. By using all 1000 simulations and computing the

amount of simulation trajectories that lie in each small square at a given time, we can form

a density evolving in time shown in Figure 3.4b. Some quantiles and the mean value in

time are also indicated.

Figure 3.5 shows similar simulations and a realisation for the solar radiation. Here, the

distribution is more uniform in space (of course varying in time) compared to the cloud

cover process. The net radiation is shown in Figure 3.6 and the air temperature in Figure

3.7. The air temperature is described by a linear stochastic process, but depends on the
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(a) Simulation of the cloud cover and the actual realisation.
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(b) Density forecast of the cloud cover state and the actual realisation.

Figure 3.4: A Monte Carlo simulation of the density of the cloud cover process given the

initial condition at time C = 0, �0 = 7.5 (see Appendix E or F or (C. A. Thilker, 2020) for

moredetails). Theupperplot shows 10 simulations (computedusing theEuler-Maruyama

scheme) together with the actual realisation. The lower plot shows the a Monte Carlo

simulation of the forward density of the cloud cover state in time (using 1000 simulations).

Red is higher density while yellow is lower.
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(a) Simulation of the cloud cover and the actual realisation.
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(b) Density forecast of the cloud cover state and the actual realisation.

Figure 3.5: A Monte Carlo simulation of the transition density of the solar radiation (see

Appendix E or F or (C. A. Thilker, 2020) formore details). The upper plot shows the actual

realisation together with 10 simulations. The simulations are based on simulated values

of the cloud cover in Figure 3.4). The lower plot shows the density given by colours where

warmer colours mean higher density. The model is able to capture the very non-linear

dynamics with zero radiation during night and positive radiation during day time.
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(a) Simulation of the cloud cover and the actual realisation.
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(b) Density forecast of the cloud cover state and the actual realisation.

Figure 3.6: A Monte Carlo simulation of the transition density of the net radiation (see

Appendix E or F or (C. A. Thilker, 2020) for more details). The upper plot shows the

actual realisation together with 10 simulations. The net radiation depends non-linearly

on the cloud cover and solar radiation and the simulations are based on the simulated

values of the cloud cover in Figure 3.4 and solar radiation in Figure 3.5). The lower plot

shows the density given by colours where warmer colours mean higher density.
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(a) Simulation of the cloud cover and the actual realisation.
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(b) Density forecast of the cloud cover state and the actual realisation.

Figure 3.7: A Monte Carlo simulation of the transition density of the air temperature

process (see Appendix E or F or (C. A. Thilker, 2020) for more details). The upper

plot shows the actual realisation together with 10 simulations. The air temperature is

described by a set of linear stochastic differential equations and depends on the net

radiation depicted in Figure 3.6. The lower plot shows the density given by colours where

warmer colours mean higher density. Due to the linearity of the process, the transition

density is Gaussian, which is also visible by the collapsing mean and median in time.
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net radiation, which depends on the cloud cover- and solar radiation processes (all of

which are non-linear processes). The transition density is thus not Gaussian.
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3.4.2 Embedded disturbance model in MPC
The following example showcases the idea of having an embedded disturbance model

using the previously introduced modified CIR-process with an embedded disturbance

model.

Example
This example demonstrates the multiple shooting method for closed-loop control of the

modified CIR-process introduced in the previous example but with two states added; one

for the disturbance and one for the input. The integrated input adds delay to the effect

on the system state. The example also illustrates the MPC framework with embedded

disturbance forecasts. To do this, we here consider the following model

dGC = �1(� − GC + �C + G2

C 3C)dC + �C
√
GCd$

(G)
C , (3.37a)

d3C = �2(3̄C − 3C)dC + �3d$(3)C , (3.37b)

d�C = DCdC + �Dd$(D)C , (3.37c)

HG,: = log GC + E: , (3.37d)

H3,: = 3C + F: , (3.37e)

where DC : R ↦→ R is the controllable input that affects a state, which in turn controls

G. 3C : R ↦→ R is the disturbance, E: ∼ #(0, 'E) and F: ∼ #(0, 'F) are the observation

noises. The disturbance process in (3.37) is governed by a stochastic differential equation

itself—a mean reverting process that follows the signal 3̄C : R ↦→ R. The system state is

observed in the log-domain to ensure that the Kalman filter does not update the state

illegally (i.e. if G should end up as a negative number).

In the present control simulation, we use the following optimal control problem to com-

pute the optimal input at each time step:

min

{D8}19

8=0

{
):(Ĝ: |: , {D8}19

8=0
) =

∫ C:+)

C:

(G� − A�)2 + D2

�d�

}
, (3.38a)

s.t. Eq. (3.37) , (3.38b)

DC = D8 , C ∈ [C:+8 , C:+8+1[ , (3.38c)

D8 ∈ [−1, 1] , 8 = 0, . . . , 19 , (3.38d)

0 ≤ GC , C ∈ [C: , C: + )[ . (3.38e)

where  = 0.001, the prediction horizon is ) = 2, and the time step is C:+1 − C: = 0.1

such that the number of optimisation variables in the optimal control problem is # = 20.

Note that the disturbance model is embedded in the system model and description.

Consequently, the disturbances are continuous in themodel and in themodel description.

The current practice is usually to supply disturbances from external sources and assume

they are constant between time points as in Section 2.4 (see Paper E).

Figure 3.8 depicts the results of controlling (3.37) using the optimal control problem in

(3.38) with the multiple shooting scheme. In the optimal control algorithm, we use the

CDEKF to filter the system and disturbance state at every time point C: . As a comparison,

we make the same control experiment of (3.37) (considering the optimal control problem

in (3.38)) but using persistent forecasts instead of embedded forecasts in the optimal

control problem to supply disturbance forecasts. The system does therefore not include

knowledge about the disturbance dynamics and, consequently, the considered system
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Figure 3.8: A control example of the model in (3.38) WITH an embedded disturbance

model. The upper plot is the controlled process GC and the tracked reference signal AC .

The middle plot is the integrated input �C and the input signal DC . The lower plot is the

disturbance process 3C and the reference trajectory 3̄C .

gets the simpler form:

dGC = �1(� − GC + �C + G2

C 3C)dC + �C
√
GCd$

(G)
C , (3.39a)

d�C = DCdC + �Dd$(D)C , (3.39b)

HG,: = log GC + E: , (3.39c)

H3,: = 3C + F: , (3.39d)

where the disturbance forecasts are given by 3̂C+� = 3C for � > 0. The results of the

controlled system using persistent forecasts is shown in Fig. (3.9). It is visible (compared

to the results using an embedded disturbance model) that this controller performs worse.

The state of G persistently deviates from the set point at certain times. Compared to Figure

3.8, the controller does a better job especially when transitioning to different reference

points (e.g. in the intervals [2,4] and [5,7]). The objective function (given in (3.38a))

integrated over the simulated time interval [0, 10] is 0.95 for the embedded disturbance

forecast controller versus 1.33 for the persistent forecasts. I.e. an improvement of around

29%. This is allegedly due to 1) better state updates due to more information and 2) better

predictive performance from the extra disturbance equation in the model in (3.38).

To see the influence of the additional (and more accurate) information supplied by the

stochastic disturbance model on the Kalman filter update of the system state, Figure 3.10

shows the updated/filtered state deviation from the true state in time. It is visible that

the controller using persistent forecasts deviates significantly more from the true state.

Especially during the time interval [4, 8], the state deviates up to 0.3 from the true state.

The error done by the filter using the embedded disturbance model makes less errors and

deviates a maximum of 0.1 by the end of the simulation.
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Figure 3.9: A control example of themodel in (3.38)WITHOUT an embedded disturbance

model. The upper plot is the controlled process GC and the tracked reference signal AC .

The middle plot is the integrated input �C and the input signal DC . The lower plot is

the disturbance process 3C and the reference trajectory 3̄C . In general, the controller using

persistent forecasts performs significantlyworse compared to the oneusing the embedded

disturbance model.
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Figure 3.10: The state update deviation from the true state for the two control simulation

results, ‖GC: − ĜC: ‖.

Remark. Since the observation equation of the system and the system dynamics are

non-linear, the CDEKF is not exact and the Gaussian densities are only approximative.

Especially in the filter update where the observation equation is linearised, the posterior

system estimate may be significantly biased. In the case of the logarithm, this may occur

when the system in the natural domain is close to zero. Figure 3.11 illustrates this: It

shows the observation equation (log G) and three linearisations around different points,

G0. For large G0, the linearisation is better compared to smaller G0. When G0 is close to

zero, the linearisation becomesworse even for small deviations from G0 due to the stronger
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Figure 3.11: Linearisations of the function log G at different points. The linearisations

become worse as G → 0 since the curvature gets large.

non-linearities. This may affect the system, if it is operated close to zero—or in general,

if it is operated in areas of the observation space or system space with significant non-

linearities. However, seen from Figure 3.8, it does not seem to be a significant problem

in the given case. This is likely due to the time step being small enough compared to the

system dynamics.
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4 Applications
The previous sections introduced important concepts for modelling, forecasting, and

controlling stochastic dynamical systems. These are all based on SDE models, which

have proved very useful for these aspects. They provide the modeller with a tool for

stochastically model and predict/forecast the system’s state and also for controlling the

system while taking the stochasticity into account using some form of MPC. This could

be accounted for in e.g. the objective function (by penalising a certain quantile of the

system) or in the constraints (by tightening a constraint according to the uncertainty).

This chapter goes over some applications of the theory and concepts introduced in the

former chapters. These include stochastic modelling of buildings’ thermal dynamics

with the aim of controlling these. This has been done in both discrete and continuous

time. Real-life- and simulation based control of the buildings thermal dynamics are also

presented. Next, application of embedding a short-term disturbance model for MPC are

presented. The chapter ends with a small presentation of controlling a chaotic dynamical

system.

4.1 Temperature Modelling for Large Buildings
Paper A presents a modelling procedure for identifying a non-linear grey-box model for

the heat dynamics of large-scale buildings. It is commonly stated that buildings in the

western countries take up 40% of the total energy usage. Optimal operation of buildings

therefore constitute a great opportunity for delivering flexibility. Around 70% of Danish

buildings are heated by district heating, where the buildings use hydraulic systems to

distribute (using e.g. radiators or floor heating) the heat into every room.

Some of the modelling challenges arise from the many rooms of the building. Since the

water flowand returnwater temperature in each radiator is not known, the heat load of the

individual rooms is not known. However, on a building level, wemeasure these variables

and are able to predict them. Therefore, to simplify the air temperature modelling of the

building, we choose to aggregate the temperature of all the rooms of the building using

an average of all the room air temperatures. Likewise, we send the same set-point to all

radiator thermostats in the building, thus, controlling the aggregated building.

Othermodelling challenges include non-linearities of the system. One of these is the ther-

mostatic control of the water flow of the radiators. These are controlled by a temperature

set-point where the thermostatic valve opens according to the current air temperature.

Paper A suggests to use a sigmoid curve to approximate the behaviour of the thermostatic

valve state as a function of the indoor air- and set-point temperatures.

Another non-linearity comes from the heat load of the building. The heat load rate is

given by

)h = Φwater()forward − )return) (4.1)

where )h is the heat load rate of the building, Φwater is mass flow rate of the water of the

heating system, and )forward and )return are the forward- and return water temperature,

respectively. Evaluating (4.1) (i.e. to predict the heat load) requires the modeller to be

able to predict all three variables on the right-hand side. The future heat load is essential

to predict in order to enable flexibility.
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Figure 4.1 depicts the results of the model’s ability to predict the data: It shows a simula-

tion of the system variables given only the initial conditions at time C0 and the inputs and

disturbance time series’s. It indicate good capabilities of the model to predict the needed

variables with sufficient accuracy. Paper B and Paper C present real-life and simulation

control experiments, respectively, of the modelled school where this model was used.
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Figure 4.1: This plot is taken from Paper A. The identification experiment in December

2019 is used to form the state-space model of the indoor air temperature of Borgerskolen.

It shows the measured values together with the simulated ones (given only the initial

conditions). The upper plot shows the heat load of the building: The spikes in the heat

load when the heat is turned on is due to aggregated cold water in the system that is

heated up. The middle plot shows the return water temperature. The greyed-out periods

depicts the time periods where the heat load is zero (and where the return temperature

is not predictable). The lower graph shows the mean indoor air temperature and the

estimated thermostatic valve state.

4.2 Optimal Control for Indoor Air Temperature in large
Buildings

Paper B presents the results of optimal control of the indoor air temperature applied to

a large school building in Denmark (the same as in Paper A). The school is located in

Høje Taastrup andwas build in 1929, and is not insulated according tomodern standards.

Prior to the control experiment, the school had wireless air temperature sensors installed

in all rooms and all radiators had smart thermostats installed as well. The rooms are of

different sizes and have different radiator capacities.

To control the indoor air temperature of the building, the controller used the building

model presented in Paper A. Therefore, the controller considered only the mean indoor

air temperature for the optimal control problem. The set-point computed by the controller

was sent to all rooms,whichmeans all roomswere controlled identically. This aggregation

makes the optimal control problem much simpler compared to the case where rooms are

considered individually. To display the flexibility of the building, we used a variable
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price for the heat such that the heat was expensive in the morning and evening (and

cheap outside these hours). An introduction to flexibility concepts for buildings can

be found in (Junker, Azar, et al., 2018). ENFOR supplied the weather forecasts (air

temperature and global solar radiation).

Figure 4.2 shows the entire control experiment results: The indoor air temperature of

all the rooms, the mean indoor temperature, and the temperature bounds. Evidently,

the controller successfully keeps the mean air temperature inside the bounds and lowers

the heat usage in the hours with expensive heat. However, the spread of the individual

room air temperatures is big. Nearly all rooms violate the temperature bounds frequently

and are hence not steered well. This is not surprising since all rooms are different in

size and heating capacity. It shows that such a simple control setup (with an aggregated

model and an identical control signal for all rooms) is not sufficient to keep each room

comfortably heated while making the building flexible. The conclusion is that some kind

of room-based control is needed. Suggestions for this could be:

• Static room temperature models: A simple set-point offset is learned for each room

to figure out how much the aggregated control signal should be altered for the

individual rooms.

• Dynamic room temperature models: The different dynamical behaviour of each

room is taken into account by considering individual dynamical models for each

room. Paper D addresses this problem and proposes ARX models to model each

room temperature and have an individual MPC for each room as well.

It is difficult to determine the savings of applying an optimal controller in terms of money

and comfort compared to standard operations since it is very dependent on the current

weather. Instead, Paper C carries out a simulation study to determine an estimate of

the advantages of the optimal control operation of the indoor climate. The paper uses

historical weather data and the model presented in Paper A to perform the simulations.

A simulation based on a month of data suggests energy savings of 2.5% and economic

savings of 10%. The small energy savings is due to the building being poorly insulated

making the heat usage difficult to reduce. The economic savings come from the ability

of the controller to reduce the return temperature (since high return temperatures are

penalised by the district heating companies).

4.3 Temperature Modelling for Individual Rooms
Paper D presents a modelling technique for identifying parameters that appear non-

linearly in Auto-Regressive models with Exogenous inputs (ARX) models models—

dubbed ”non-linear ARX models”. The application of the modelling procedure is tem-

perature modelling for individual rooms in a large-scale building. The aggregated model

presented by Paper A predicts the mean temperature of the buildings’ rooms. But, as the

result of the real-life control experiment of the indoor air temperature in Paper B shows,

the control performance is not sufficient in terms of each room’s performance. This is

due to the significant individual behaviour of the rooms. This indicates that a room-level

control is necessary to conduct to obtain sufficient control performance on room-level.

A fundamental problem arises, though, when choosing amodel for the individual rooms.

Grey-box models are well suited for control compared to black-box models due to the

regularisation of the physics that are usually imposed. Black-box models on the other

hand tend to have unknown behaviour outside of the training data. For this reason, grey-

box models may be preferred over black-box models for real-time control. However, on

room level inmany large-scale Danish buildings, the heat load is not known (since neither
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Figure 4.2: This plot is taken from Paper B. It displays a part of the results of the control

experiment of Borgerskolen where all rooms were controlled in an identical manner. The

upper plot shows the variable heat load price together with the heat load. The controller

successfully moved the main heat load away from the expensive periods, however, since

we did not control all rooms, the heat load did not go to zero. Middle plot: The mean

indoor air temperature and the temperature bounds together with the set-point sent to

all the rooms. The lower plot shows all the room air temperatures and reveals the large

spread in the indoor air temperatures.

the mass-flow rate nor the return temperature of the individual rooms are known)! This

rules out the possibility of using the popular RC-based models for modelling the heat

dynamics. In paper D, the authors instead use ARX models where they include the non-

linearities that appear in the grey-boxmodel presented in Paper A. Furthermore, they use

B-spline (Christensen, 2010) and Hermite (Fritsch and Carlson, 1980) basis expansions to

model the solar radiation gain and thermostatic valve functions for each room.

Figure 4.3 shows the modelling results of a single room. The upper graph shows the

multi-step ahead predictions of the time series given only the initial conditions and the

actual inputs. The model is able to sufficiently predict the overall trend of the data in

all parts of the domain–without diverging. Stability is not guaranteed with this kind of

model, so this result is good. The solar radiation gain also seems to make sense from a

physical point of view since the particular room has windows to the east (and thus sun

is present only during the morning hours). The histogram of the residuals reveal a larger

spread compared to the corresponding Gaussian distribution. This may indicates that the

variance is varying in time and/or space. Model extensions to capture this exists, such as

GARCH-models (Lamoureux and Lastrapes, 1990) or variable transformations.
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Figure 4.3: This figure is taken from Paper D. It shows the modelling results of room

C1.09 together with its statistical properties.

4.4 Embedded Stochastic Disturbance Models for Optimal
Control Problems

Disturbance forecasts

Optimal control

Smart building

Filter

MPC

Figure 4.4: This plot is taken from Paper E. It depicts the MPC framework with an

embedded disturbance model.

Paper E presents a method for embedding a disturbance model into a controller such that

disturbance forecasts are supplied on the fly in continuous time. The paper considers SDE

models for both the system and disturbances and demonstrates the method via thermal

control of the indoor air in a building. For such a system, the outdoor air temperature and

solar radiation are considered the significant disturbances. The former acts through a low-
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pass filter (the walls) and does not influence the dynamicsmuch—instead, it determines a

base line heat load needed to keep a constant temperature at steady state. In contrast, the

solar radiation fluctuates significantly and delivers a lot of energy in short time intervals

and is the number one source of discomfort due to overheating inside buildings.

Figure 4.4 shows the control framework using the embedded disturbance model. Just

as with the system, the controller applies the filtering principle on the disturbances as

new information becomes available. It then uses the disturbance model to compute new

forecasts for each time an optimal control problem is being solved. It then computes the

expected disturbances forward in time. Figure 4.5 shows an example of the expected

and true disturbances: The accuracy decays with time since the forecasts are based only

on historical data and requires no inputs. Therefore, for forecasts beyond 5-8 hours,

meteorological forecasts might be preferred.

Results suggests, compared to current standards for mitigating disturbances, that using

the embedded disturbance model offers significant improvements. In a simulation study

where the indoor air climate in buildings is controlled, the paper compares the embedded

disturbance forecasts to perfect forecasts and finds that their performance is almost iden-

tical. The simulation study compares different heating devices (and heating strategies)

since the dynamics may differ significantly for different heating devices. These are

• Electrical heater (fast dynamics, coefficient of performance equal to 1)

• heat pump (slow dynamics, coefficient of performance between 3 and 6)

• heat pump plus electrical heater (can heat with both the slow/fast and efficient/in-

efficient device)

• heat pump plus electrical heater AND cooler (as the above setup but is able to cool

as well)

Results suggest electricity savings between 5-10% and reduction in comfort violations of

up to 90% compared to standard forecasting strategies. Paper F carries out a simulation

study using LQG control and finds that operational improvements of up to 25% percent

is available. Figure 4.6 shows a simulation of two weeks where the three forecasting

schemes (perfect, advanced, and persistent) are presented.
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Figure 4.5: This plot is taken from Paper E. It shows the conditional mean value forecasts

of the disturbances (ambient air temperature and global solar radiation) against persistent

forecasts. It also shows that the model reaches some steady state while the disturbances

of course continues its fluctuations.
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Figure 4.6: This figure is taken from Paper F. It displays a 14-day sample of the operation

of the different forecasting strategies carried out to compare the LQG control methods. It

shows the indoor air temperature as well as the heating inputs at the same point in the

time series of disturbances.

4.5 Optimal Control for Chaotic Systems
Paper G introduces a method for controlling chaotic dynamical systems. Chaotic systems

are characterised by having positive Lyapunov exponents. That is, given two infinites-

imally separated points at time C0, integrating the chaotic system forward will lead to

exponentially increasing separation of the two points. This implies that the dynamical

system loses its predictability exponential in time. For predictive control, this is an issue

since it is difficult to stabilise the system.

Current state of the art relies on stabilising the system around an already existing unstable

periodic orbit. This is done by pushing the system onto the stablemanifold of the unstable

periodic orbit with small perturbations.

But what if an unstable periodic orbit does not exist for the place in the state space we

wish to stabilise the system? In that case, current methods does not suffice. Paper G

introduces a method for altering the chaotic system such that an unstable periodic orbit

appears at the exact place we want. This is done by solving an optimal control problem.

The solution to the altered system now embeds the desired unstable periodic orbit. Now,

current methods for stabilising the system around the unstable periodic orbit can be

utilised to finish the job.

Paper G focuses on the driven Josephson junction governed by the equation

¥) +  ¤) + sin) = � + � sin($C) + D1 + D2 , (4.2)

where D1 and D2 are the control inputs. We apply D1 such that the system is altered to

make the desired unstable periodic orbit appear. D2 is then the small perturbations to

stabilise the system around the newly introduced unstable periodic orbit. Figure 4.7a

shows the Josephson junction before the input D1 is applied and all the period-1, -2, and

-3 solutions on the Poincaré map defined by )(2�=), = ∈ N. The plot in 4.7b shows the

chaotic attractor after D1 is applied and the desired unstable periodic orbit appears. The

plot in 4.7c shows a time series of )(2�=), = ∈ N where the arrows indicate when the
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control signals D1 and D2 are applied. It clearly shows how the system is stabilised by the

end of the time series. This solution was not obtainable without the newly introduced

method.

48 Stochastic Disturbance Models



0 1 2 3 4 5 6

φ(2πn) mod 2π

−1.5

−1.0

−0.5

0.0

0.5

φ̇
(2
π
n

)

η = 1.9

(a) The chaotic attractor of the Josephson junc-

tion together with all the period-1, -2, and -3

solutions of the system (colored dots). Each

color is a periodic solution. The pink crosses

are the desired unstable periodic orbit that we

wish to stabilise the systemaround (whichdoes

not exists for this chaotic attractor).

0 1 2 3 4 5 6

φ(2πn) mod 2π

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

φ̇
(2
π
n

)

(b) The chaotic attractor after the system

has been altered—it now embeds the desired

unstable periodic orbit marked with purple

crosses.

0 200 400 600 800 1000
Time, t

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

φ̇
(2
π
n

)
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Figure 4.7: These plots are taken from Paper G. It shows the chaotic attractor of the

Josephson junction together with the altered system (where the desired unstable periodic

orbit exists). The lower plot shows the Josephson junction when both of the controls are

turned on and stabilises the system.
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5 Conclusion, outlook, and future
perspectives

The main focus of this dissertation has been many-fold. However, the research has

primarily been centred around the following

• non-linear modelling based on stochastic differential equations,

• embedded disturbance modelling and optimal control based on such,

• optimal control of indoor air climate and energyusage of buildings (smart buildings,

if you will),

The main findings are, among many things, that non-linearities and disturbances are

crucial to include in system models for obtaining sufficient optimal control performance.

One focus has been on the description, modelling, and inclusion of advanced disturbance

models in optimal control problems. Paper E and F describe the principle of accurately

modelling the system disturbances and then including them in the model description.

This has the advantage of being readily used in optimal control and we have seen that

this increased the control performance significantly compared to current standards.

The second focus was on identifying and modelling non-linearities of building thermal

dynamics. The non-linearities become significant when using a centralised water-based

heating system, which is common in Denmark. Modelling the non-linearities compared

to using linear approximations increase the control performance drastically.

The last prime focus was on optimal control of building thermal dynamics. The non-

linearities pose a challenge towards the identifiability of the underlying model. Con-

sequently, in order to control the building’s heat consumption, an aggregated building

model is needed. Real life experiments suggest that such a control setup could work.

However, problems still remain and needs further investigation to be solved.

5.1 Modelling and control of building thermal dynamics
Paper A and D dealt with identification and modelling of building thermal dynamics.

Due to the water-based heating system of the building, the heat usage in each room is not

known. Therefore, to model the heat demand of the building, an aggregated building

model was needed (that used the average air temperature of the rooms as reference).

The real-life optimal control quickly revealed that some room-based control is needed,

since almost all rooms varied toomuch from the reference temperature because they need

different treatment. The room-based control could be based on either a static or dynamic

model:

• Astaticmodel could be an offset in the set-point temperature used in the thermostat.

This would presumably elevate the air temperature in the room by the offset value.

However, the rooms’ placement in the heating system graph also determines how

much water flows to each room, which requires more information to incorporate.

• A dynamic model could be an ARX-model as proposed in D (or even continuous-

timemodels)where the solar radiation and thermostatic dynamics are incorporated.

Additional information about the rooms’ interaction with each other could also be

included.
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Both of these approaches could improve the applied optimal control performance and

mitigate the evident variance of the room temperatures around the reference mean value.

However—as mentioned multiple times already—room-level control cannot quantify the

heat usage of the rooms. Therefore, a hierarchical control setup could be a solution

to control the heat usage. The aggregated building model constitute the upper level

controller, which computes a reference temperature forward in time. Each room then has

its own (say) dynamicmodel and controller, which tries to track the reference temperature.

Theupper level thus optimises over the heat usage and tries todecide the building’s overall

heat load. The lower level controllers thenmake sure that each room is comfortably heated

by following the reference by individually controlling each room.

This also resembleswellwith the fact that amulti-roombuilding typically has a substation

for the entire building and then individual controllers for each room. Today, the individual

control is typically provided by thermostats, but in the future a different set point for each

room might be advantageous. This also opens up for human-in-the-loop control.

Another promising avenue for future research could be derived from the temporal (and

spatial) hierarchical forecasting literature (Athanasopoulos et al., 2017). A hierarchical

forecasting example could be in the case of heat load forecasting (Nystrup et al., 2020),

where models predicting the heat load during different time intervals need to align with

each other. Specifically, the sum of the predictions made by two models forecasting the

heat load during hours 1-6 and 7-12, respectively, must be equal to the prediction made

by a single model forecasting the total heat load during hours 1-12. This idea of ensuring

agreement across different scales could prove useful as a regularization technique for

modelling individual rooms in a building. Specifically, the combined heat load on the

building level could serve as a regularization constraint on the combined temperature in-

crease across all rooms (somehow). This line of research could offer interesting directions

for further exploration.

5.2 Disturbance modelling for optimal control
For systems described in continuous time, continuous-time disturbances gets rid of the

zero-order hold assumption, which (as shown in this dissertation) gives rise to errors.

Thus, by including accurate continuous-time disturbance forecasts, the discretisation

errors disappear and may give more accurate control performance. Paper E and Paper F

introduces embedded continuous-time disturbance forecasts for building thermal control

and shows that significant improvements are available. More research is needed to

quantify the improvements that continuous disturbance forecasts may supply over zero-

order disturbances forecasts.

For building thermal control, the embedded forecasts has an addition advantage over,

e.g., meteorological forecasts for short term purposes. The solar radiation and outdoor

air temperature can vary significantly by location even for small geographical distances

(Hjörleifur G. Bergsteinsson et al., 2022). The embedded disturbance model utilises local

weather observation and thus eliminates local bias in the forecasts. Often, numerical

meteorological forecasts are made for larger areas—e.g. 10-by-10 kilometres. An em-

bedded disturbance model can correct for this local bias introduced by the numerical

weather forecasts. It is suggested to look further into this line of research to investigate

and quantify the benefits further and find the best use cases.
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Non-Linear Grey-Box Modelling for Heat Dynamics of Buildings

Christian Ankerstjerne Thilker, Peder Bacher, Hjörleifur G. Bergsteinsson, Rune Grønborg Junker, Davide Cali, Henrik Madsen

Technical University of Denmark, Department of Applied Mathematics and Computer Science,
Asmussens Allé, Building 303B, DK-2800 Kgs. Lyngby, Denmark

Abstract

This paper introduces a non-linear grey-box (GB) model based on stochastic differential equations that describes the heat dynamics
of a school building in Denmark, equipped with a water-based heating system. The building is connected to a local district heating
network through a heat exchanger. The heat is delivered to the rooms mainly through radiators and partially through a ventilation
system. A monitoring system based on IoT sensors provides data on indoor climate in the rooms and on the heat load of the
building. Using this data, we estimate unknown states and parameters of a model of the building’s heating system using the
maximum likelihood method. Important novelties of this paper include models of the water flow in the circuit and the state of the
valves in the radiator thermostats. The non-linear model accurately predicts the indoor air temperature, return water temperature
and heat load. The ideas behind the model lay a foundation for GB models of buildings that use different kinds of water-based
heating systems such as air-to-water/water-to-water heat pumps. Such GB models enable model predictive control to control e.g.
the indoor air climate or provide flexibility services.

Keywords: Grey-box models, Stochastic differential equations, Non-linear models, District heating, Smart energy systems

1. Introduction

The use of fossil-based energy sources does not belong in
a sustainable future [1]. Society must shift to energy sources
where CO2-emissions lie within the planetary boundaries; i.e.
we need to use resources that are renewable [2]. This future5

low-carbon society calls for fundamental changes of the energy
system. Today the systems are operated such that the produc-
tion follows the demand. However, an efficient implementa-
tion of a low-carbon society calls for a system where the de-
mand follows the weather-driven energy production. Most im-10

portantly we need methods for unlocking the flexibility at all
levels of the society; examples being buildings, supermarkets,
wastewater treatment plants, industrial process facilities, dis-
tricts, municipalities and cities. A lot of recent work, therefore,
centres around the concept known as energy flexibility [3, 4].15

The core idea is to control the energy consumption to align it
with energy production. For this purpose, model-based predic-
tive control is a very promising control framework [5]. This pa-
per introduces a novel grey-box (GB) model based on stochas-
tic differential equations (SDEs) that is designed for controller20

based optimisation of the heat load of buildings. The ultimate
purpose of developing such a GB model is to intelligently con-
trol buildings in order to minimise the CO2-emissions and un-
lock the flexibility. A reliable model (together with weather
forecasts) is essential for a good performance of model predic-25

tive control (MPC) for buildings [6].

Email addresses: chant@dtu.dk (Christian Ankerstjerne Thilker),
pbac@dtu.dk (Peder Bacher), hgbe@dtu.dk (Hjörleifur G. Bergsteinsson),
rung@dtu.dk (Rune Grønborg Junker), dcal@dtu.dk (Davide Cali),
hmad@dtu.dk (Henrik Madsen)

MPC for control of buildings’ indoor climate requires reli-
able building models that describe the heat dynamics. Com-
plex building energy performance models based exclusively
on physical equations, known as white–box models, are of-30

ten used for providing simulations. Occasionally, in white box
building models, stochastic models are used to simulate occu-
pants behaviour, as in [7, 8]. However, they are demanding
to build, computationally heavy, and difficult or impossible to
tune to real-world data, which makes them infeasible for con-35

trol. Especially for the existing building stock. On the contrary,
black–box models can be fast in terms of simulation time. But
they do not include laws of physics, and thus may be hard to
interpret and lack the ability to extrapolate and generalise be-
yond training data. GB models bridge the gap between white-40

and black-box models by leveraging both physical and statisti-
cal properties [9]. They are based on simple physical principles
and considerations of the system, which make them computa-
tionally light and ideal for parameter calibration using available
data. Linear GB models for buildings are widely seen in the45

literature [10]. Wang and Xu [11] use a genetic algorithm to es-
timate a linear heat dynamics model that describes the thermal
conditions in the wall envelopes and internal mass for an office
building. The goal is to predict the heat load and the indoor air
temperature. Massano et al. [12] uses an unscented Kalman fil-50

ter to estimate parameters in a linear RC-inspired model to pre-
dict the indoor air temperature. Bacher and Madsen [13] out-
lines a model development procedure for SDE-based GB mod-
els. However, it is a well known fact that non-linear systems ex-
hibit vast richness in the solution structure, far beyond what is55

seen in linear systems [14]. For instance, non-linear models are
necessary to sufficiently describe the heat dynamics of build-
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ing integrated photo-voltaic modules [15, 16]. Non-linear GB
models can also be found within industrial robotics [17] and in
aquatic ecosystems modelling [18], just to mention a few areas.60

To the knowledge of the authors, the literature on non-linear
GB models for radiator-based heating systems is scarce.

We propose SDEs as the modelling framework for the build-
ing model [19]. This has many advantages: First, SDEs pro-
vide a natural method to model physical phenomena as they65

are formulated in continuous-time. Second, they include proba-
bilistic uncertainty that accounts for modelling approximations,
unrecognised exogenous variables, and uncertainty related to
the provided input variables. Last, they lay a solid foundation
providing predictions of the system behaviour and for model-70

based optimal control, to predict system behaviour. It is well-
know that solutions to Ordinary Differential Equations (ODEs)
are functions of time, and this implies that an ODE modelling
framework assumes that we are able to predict the exact evo-
lution in time of the states. Solutions to SDEs are stochas-75

tic processes, which are characterised by the family of finite-
dimensional densities, and this implies that the future evolu-
tion of the states is encumbered with uncertainty, and this un-
certainty can be quantified. Optimal control theory based on
SDEs is well-established in the literature with numerous exam-80

ples of applications, e.g. for control of glucose concentration
in humans [20], building thermal control [21], and operation of
waste-water treatment plants [22].

1.1. Main contributions
The existing literature contains various examples of linear85

GB models of the heat dynamics of buildings. However, the lit-
erature seems to contain limited work on SDE-based non-linear
GB models for water-based heating systems, especially related
to district heating (DH). This paper presents and analyses the
development of a non-linear GB model for a school building90

in Denmark with water-based heating. We base the analysis
and estimation on a single week of data using meteorological
weather observations as inputs, and we will demonstrate that
one week of data is sufficient for identifying a good model. Due
to the generality of the model, it is argued that the model is ap-95

plicable to a wide range of buildings with water-based heating
systems and different heat sources (including heat pumps).

An important contribution of this paper is the model of the
thermostatic valves of the radiators. The radiator valves are me-
chanically adjusted by the thermostats that are configured with100

a set-point. The valves open and close proportionally to the dif-
ference between the set-point and actual air temperature. The
valves naturally do not behave discontinuously when heat is or
is not needed. Models for thermostatic valves exist in applica-
tions of white-box models [23]. Most are modelled as P, PI,105

or PID-based controllers for white-box building models [24].
Hansen [25] suggested detailed physical models of radiators
and thermostats. However, the models end up being too large
and detailed for grey-box purposes. To the knowledge of the
authors, the literature contains no examples of models for ther-110

mostat valves formulated as GB-models. This paper presents
a sigmoid-function to describe the continuous sensitivity of the
valves due to changes in the indoor air temperature according

to the set-point. Another important contribution is a model of
the water flow in the building heating system.115

1.2. Structure and outline of the paper

This paper has the following structure. Section 2 introduces
the building and its engineering systems, together with the over-
all experiment. Here, we also describe the data and how it was
gathered. Section 3 describes the model development process120

and the ideas behind the suggested model. Next, we present
and discuss the results; the parameter estimates, a simulation of
the variables compared to data, and a 1-step residual analysis.
Lastly, Section 6 sums up the essential findings of the paper.

2. The building and the experimental setup125

This section introduces the building and describes the exper-
imental data and the generation process.

2.1. The building

The building, a school with three floors and a basement, is
located in Høje Taastrup, Denmark. The uppermost floor is a130

part-refurbished roof attic. Bruun [26] provides all technical
information about the building.

Being built in 1929, the building is not insulated according
to modern standards. Figure 1 shows a digital reconstruction
and a photo of the building. It includes 10 classrooms that135

are ventilated by mechanical ventilation using an air handling
unit (AHU) for air circulation. The facade and internal walls
consist of solid bricks (300 mm and 180 mm thickness, respec-
tively). The windows have wooden frames and double-paned
low-E glazings. Floors are made from wood joists and the roof140

is partly uninsulated and partly insulated slate roof. The build-
ing is connected to the local electricity and heat grid, where
the ladder is a DH system. The building uses district heating
for domestic hot water (DHW), the AHU, and space heating.
The latter term governs the heating (and cooling) system of the145

indoor air. For this building, the space heating is a separate
water-based circuit with dedicated pumps. Radiators of differ-
ent types (cast-iron, panel convectors, plane conductors) with
individual thermostats establish the space heating system in the
individual rooms of the building. Individual thermostatic valves150

automatically regulate the water flow into the radiator units as
to maintain a pre-defined set-point. The space heating system
is separated from the DH system by a plate heat exchanger. In-
dependent PI-controllers regulate the water flow on both the
district heating and the building side of the heat exchanger.155

2.2. The experiment

The experiment carried out was planned in advance and de-
signed to generate data suitable for system identification pur-
poses. The main focus was to change the control input, the
thermostat set point, such that information about the essential160

dynamics of the system can be estimated. A sequence of the
set point was designed with four different parts. First part con-
tains a few long steps with set points set to a minimum (10 ◦C)
and back again to a base level (21 ◦C) to get information about
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Figure 1: Visual illustrations of the building site. The upper digital reconstruc-
tion is supplied by [26]

the dynamics governing the system. Second part is a multi-165

level signal, where the extremes (14 and 27 ◦C) are kept for
the longest time and then shorter periods are kept for relatively
shorter time. Third part contains short periods with drops to a
minimum from the base temperature. Finally, a step sequence
where the set point is stepped from 23 ◦C in two hours steps170

down to 17 ◦C and up again. The forward temperature of the
space heating water is set constant to 55 ◦C at all times. The
entire sequence was slightly shorter than 7 days and was ex-
ecuted during the Christmas vacation, where the building was
unoccupied.175

2.3. The data

Table 1 lists all the variables of the data. Figure 2 shows the
experimental data in the period December 21 through Decem-
ber 27. The upper graph displays the heat load of the building.
It seems to be characterised by a large peak whenever the heat180

turns on, before reverting to a lower and steady level. The sec-
ond graph shows the forward- and return water temperature,
which go to and from the space heating system. The forward
temperature fluctuates a lot when the thermostat set point is set
very low – because the thermostat valves are closed and thus185

the flow in the radiator circuit is nearly stopped, which results
in poor control of the forward temperature since the control was
not designed for this situation. The return temperature quickly
becomes large when the space heating is turned on. In absence
of heat load, the return temperature quickly decreases. But,190

the reversion and behaviour in absence of heat load seem to be

rather inconsistent. The third graph shows the indoor tempera-
ture of each room (in grey) and the mean of all rooms (in black).
Lastly, the bottom graph shows the exterior weather conditions,
i.e. the ambient air temperature and the global solar radiation.195

The latter is relatively small throughout the period, which com-
plicates the estimation of the solar radiation gain for the model.
We return to this matter later in Section 5.

The variables of the building we wish to be able to predict
are the following200

• The mean indoor air temperature, T i
t .

• The heat load of the building delivered by the DH system,
φh

t .

• The temperature of the returning water in the SH system
of the building, T ret

t .205

The subscript t indicates the dependence on time. These vari-
ables are of special interest when it comes to optimal control
of the indoor climate. In Denmark, building operators pay for
the amount of heat they consume. Additionally, the operators
pay fees for too high return temperatures since it is a source of210

poor energy efficiency in the DH network. First, the DH op-
erators have to increase the mass flow rate of the water, if the
users do not cool the return water. Secondly, if the return wa-
ter to the DH facilities is too hot, the efficiency of the central
heat production plant decreases. This payment scheme makes215

it economically advantageous for the building operators to use
heat when it is cheap and minimise the return temperature.

Table 1: Data interpretation.
Name Quantity Unit
T (i, j)

t Indoor air temperature in room j [◦C]
T i

t Mean indoor air temperature in the building [◦C]
T for

t Forward temperature [◦C]
T ret

t Return temperature [◦C]
T set

t Temperature set-point [◦C]
φh

t Delivered heat to the building [kW]
T a

t Ambient air temperature [◦C]
φs

t Solar radiation on a horizontal surface [kW/m2]

3. Model development

This section describes the model development process.
Due to the large parameter and state space, it is advantageous220

to perform the modelling in small steps. The main idea is to
split up the modelling processes into two parts. To identify the
steps, we need to realise that the building heat dynamics consist
of two parts (as a first simple assumption). The delivered heat
from the water in the radiator system operates independently225

and only interacts with the indoor air temperature of the build-
ing by the radiators themselves. This interaction involves only
two parameters. Therefore, we split the modelling part into the
following three steps:
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Figure 2: The data from the experiment performed in December 2019.

1. Given the observed time series of the delivered heat from230

the district heating system, we develop a model that pre-
dicts only the indoor air temperature of the building.

2. Given the observed time series of the indoor air tempera-
ture and set point, we develop a model that predicts only
the heat load from the district heating system to the build-235

ing. That is while keeping the parameters fixed, that con-
cerns the indoor air temperature model obtained in step 1.

3. We combine the two models and start the parameter opti-
misation from the results of the two independently suffi-
cient models to obtain a combined model structure.240

By developing the two system models individually at first, it
also becomes much easier to identify the necessary dynamical
features that govern the systems.

3.1. Stochastic differential equations
The model will be formulated using SDEs. A SDE typically

has the following form

dXt = f (Xt, t)dt + g(Xt, t)dωt (1)

where f and g are the drift and diffusion terms, respectively, and245

the subscript t denotes the dependence on time. The diffusion

term makes a SDE differ from an ordinary differential equation.
ωt is known as Brownian motion and is a fundamental process
for stochastic calculus. It is governed by independent Gaussian
increments; ωt−ωs ∼ N(0, t− s), for s ≤ t. This has remarkable250

consequences and relates it to the physical diffusion equation.
The purpose of the diffusion term is to describe chaotic phe-
nomena that are too complex to include in the drift part of the
model structure.

3.2. The building heat dynamics model255

The literature contains numerous examples of developing
heat dynamic models for buildings using continuous-time GB
models, see e.g. [27–31]. We do not give the model identifica-
tion steps explicitly for our case though but simply report the
final result.260

Figure 2 gives insights into what elements the building model
should include. Inspections of the two long periods, where the
heat is turned off, show that the mean indoor temperature seems
to drop fast at first and then flatten to a certain decay rate. This
indicates that we should include two time constants; one for the265

fast and initial drop and one for the slow long-term decay. We
may interpret these fast and slow dynamics as the temperature
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Figure 3: The model structure of the building heat dynamics. The model pre-
dicts the indoor air temperature, T̂i, given the delivered power φh.

of the indoor air and the temperature of the building walls. For
this reason, the wall temperature state exchanges heat with the
ambient air temperature and acts as a low-pass filter between270

the interior and exterior. We also choose to model the radiators
as an accumulating medium where the heat input enters directly.
The solar radiation gain enters the room air directly through
windows.

Figure 3 shows the heat dynamics structure for the building
as an RC-diagram. The equivalent SDE model has the follow-
ing form

dT i
t =

1
Ci

(
1

Rih

(
T h

t − T i
t

)
+

1
Riw

(
T w

t − T i
t

)
+ Awφ

s
t

)
dt + σ1dω1

t ,

(2a)

dT w
t =

1
Cw

(
1

Riw

(
T i

t − T w
t

)
+

1
Rwa

(
T a

t − T w
t
))

dt + σ2dω2
t ,

(2b)

dT h
t =

1
Ch

(
1

Rih

(
T i

t − T h
t

)
+ φh

t

)
dt + σ3dω3

t . (2c)

(2d)

3.3. The radiator circuit dynamics model275

The thermostatic valves regulate the water flow through the
radiators. An important novelty of this paper is to model the
thermostatic valves using the non-linear sigmoid function. The
idea is that the vales open when it is too cold and close when
it is too warm. Assuming that the valves react continuously to280

the indoor air temperature, the sigmoid function corresponds to
some kind of proportional control (0 being closed and 1 being
open).

3.3.1. The thermostatic valve function
To describe the thermostatic control, i.e. the amount of heat

that the heat exchanger delivers, we use a sigmoid function. To
be specific, it describes the sensitivity of the heating system to
deviations in the mean indoor temperature. We use the follow-
ing formulation

f valve
t =

1

1 + exp
(
−α(T set

t + Toffset − T i
t )
) . (3)

α is the slope of the sigmoid function and determines how285

quickly the heating system turns on and off. Toffset acts as an
offset: since the observations of the indoor temperature typi-
cally is taken some place in the rooms (probably not right next
to the radiators), the thermostats may respond to a temperature
that is warmer or colder than the observed one.290

The sigmoid function has the disadvantage that it cannot
reach 1 nor 0. For the purpose of this paper, it means that even
though the set-point is, say, 18 and the observed temperature is
20, the model predicts that the radiators still deliver some heat
(depending on the slope and offset). Depending on the specific295

thermostats and the valves in the radiators, this prediction may
be wrong. We address this problem further in Section 5.

3.3.2. Derivation of the space heating model structure
The space heating system proved hard to model. It is difficult

to describe all necessary dynamics in a simple manner. How-
ever, we found it fruitful to model the water flow in the radiator
circuit as a dynamical equation governed by a time-delay. The
governing physical equation of the net energy transferred to the
radiator, Qh

t , from the water is [24]

dQh
t = Φtcp,w(T for

t − T ret
t )dt (4)

where Φt is the flow of the water in the SH system, cp,w is the
specific heat capacity of water.300

As Section 2.1 describes, pumps that are controlled by some
PI controllers regulate the water flow in the SH system to main-
tain a certain pressure. Therefore, there is a delay from when
the valves open until the pumps increase the water accordingly.
For this reason, it seems reasonable to model the water flow as305

a differential equation itself.
To model the return temperature, a few observations are im-

portant. It is obvious that when the space heating system deliv-
ers heat, the hot/cold water has been round in the radiator cir-
cuit and returns to the heat exchanger in a colder state. This is310

clearly visible in Figure 2 that the return temperature varies be-
tween 40-50 ◦C when heat is delivered. However, when the heat
load equals zero, the return temperature acts rather inconsis-
tently. At these times, the return temperature mostly responds
with a quick decay to below 30 ◦C. But as Figure 2 shows,315

it sometimes drifts indescribably. Most times, when the wa-
ter flow stops, the water in the return pipes quickly delivers its
heat to the surroundings and arrives at some equilibrium. But
when no heat is delivered, the building operators do not pay
for larger return temperatures and gives no additional insights320

into the system. Therefore, we have no means to model the re-
turn temperature, when the heat load is zero. We thus disregard
the return temperature observations when the flow is zero for
simplicity. Section 5 explains how we implement this in the
parameter estimation.325

To recap the above thoughts; when heat is needed, the water
flows into the radiators to deliver heat and afterward returns to
the heat exchanger to be heated again. By combining (4) with
a state for the flow and the return temperature, we arrive at the
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following model

dΦt =
1
λ1

(Φmax fvalve − Φt) dt + σ3dω3
t , (5a)

dT h
t =

1
Ch

(
Φtcp,w

(
T for

t − T h
t

)
+

1
Rih

(
T i

t − T h
t

))
dt + σ4dω4

t ,

(5b)

dT ret
t =

1
λ2

(
T h

t − T ret
t

)
dt + σ5dω5

t . (5c)

where Φmax the maximum attainable flow of the radiator circuit
water. λ1 is a time constant that describes the delay of the move-
ment of the mass, since it needs to be accelerated in the heating
circuit. λ2 is a time constant that adds second order dynam-
ics to the return temperature, which we found more accurate330

to include. We found these This model cannot be depicted as
an electrical RC-diagram since there is no feedback from the
return temperature.

3.4. Heat load estimation equation

From (4) we estimate the heat load, i.e. the power from the
DH to the indoor air, as

φh
t = Φtcp,w

(
T for

t − T ret
t

)
. (6)

It should be natural to assume that the heat difference between335

the forward and return water is due only to the delivered heat
by the space heating system. The temperature difference multi-
plied by the flow and the specific heat capacity of water is thus
an estimate of the heat load. The flow state creates a time delay
on the heat load. The term

(
T for

t − T ret
t

)
is almost always large340

when the heat is turned off. Had there been no delay, e.g. for
the equation C1 fvalve

(
T for

t − T ret
t

)
, where C1 is an arbitrary pa-

rameter, the heat load would immediately spike when the valves
open. However, the heat load data is governed by delay which
suggests that such time delay is needed.345

3.5. The combined model

The combined model has the form

dT i
t =

1
Ci

(
1

Rih

(
T h

t − T i
t

)
+

1
Riw

(
T w

t − T i
t

)
+ Awφ

s
t

)
dt + σ1dω1

t ,

(7a)

dT w
t =

1
Cw

(
1

Riw

(
T i

t − T w
t

)
+

1
Rwa

(
T a

t − T w
t
))

dt + σ2dω2 ,

(7b)

dΦt =
1
λ1

(Φmax fvalve − Φt) dt + σ3dω3
t , (7c)

dT h
t =

1
Ch

(
Φtcp,w

(
T for

t − T h
t

)
+

1
Rih

(
T i

t − T h
t

))
dt + σ4dω4

t ,

(7d)

dT ret
t =

1
λ2

(
T h

t − T ret
t

)
dt + σtdω5

t . (7e)

where Φmax are the flow speed of the water on the building site.
The observation equations are

yi
k = T i

tk + v1 , v1 ∼ Niid(0,R1) , (8a)

yh
k = Φtcp,w

(
T for

t − T ret
t

)
+ v2 , v2 ∼ Niid(0,R2) , (8b)

yret
k = T ret

tk + v3 , v3 ∼ Niid(0,R3) . (8c)

4. Model identification and estimation

This section describes the identification method and the de-
tails governing the parameter estimation process. This paper
proposes maximum likelihood inference for parameter estima-350

tion in stochastic differential due to its ability to estimate noise
parameters. See e.g. Madsen [32] or Pawitan [33] for an intro-
duction to maximum likelihood methods.

4.1. The maximum likelihood principle
Given the sequence of observations YN = {Yi}Ni=1, Yk =

[yi
k, y

h
k , y

ret
k ]ᵀ ∈ Rny , and set-pointsUN−1 = {Tset,i}N−1

i=0 , define the
likelihood function as the product of the one-step ahead condi-
tional densities:

L(θ|YN ,UN−1) = p(X0)
N∏

k=1

p(Yk |Yk−1,Uk−1, θ) . (9)

Here, p is the probability of observing Yk given the previous
observations, set-points, and parameters θ. For linear stochastic
differential equations, where the noise is state-independent and
driven by Brownian motion, the conditional densities are also
Gaussian. For non-linear systems though, this is not the case
and the analytical density is in general hard (or impossible) to
find. But when the time between observations are small, the
Gaussian density approximates the analytical (unknown) den-
sity well. This motivates our choice of using the Gaussian den-
sity in the likelihood function. The Gaussian density is com-
pletely characterised by its conditional mean and variance; by
introducing the one-step prediction error

εk = Yk − Ŷk|k−1 , (10)

where Ŷk|k−1 = E[Yk |Yk−1,Uk−1, θ], and the associated covari-
ance Rk|k−1 = Var[Yk |Yk−1,Uk−1, θ], we can write the likeli-
hood function as

L(θ|YN ,UN−1) = p(X0)
N∏

k=1

exp
(
− 1

2ε
ᵀ
k|k−1R−1

k|k−1εk|k−1

)

√
det(Rk|k−1)(2π)ny

. (11)

Taking the logarithm on both sides, we obtain the log-likelihood
function

`(θ|YN ,UN−1) = log (p(X0|θ)) − 1
2

N∑

k−1

εᵀk|k−1R−1
k|k−1εk|k−1

+ log
(
det(Rk|k−1)(2π)

ny
2

)
(12)

The log-likelihood has some attractive advantages over the or-
dinary likelihood when it comes to numerical properties, which
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is why it is often preferred. The parameter estimates θ̂ is found
by maximising the log-likelihood function

θ̂ = arg max
θ

`(θ|YN ,UN−1) (13)

To evaluate the log-likelihood function, we need to com-355

pute the one-step prediction errors, εk, and the associated co-
variance Rk|k−1 (due to our assumption of Gaussian densities).
The continuous-discrete extended Kalman filter supplies ex-
actly these.

4.2. The continuous-discrete extended Kalman filter360

The continuous-discrete extended Kalman filter (CDEKF) is
a variant of the celebrated Kalman filter [34]. It considers sys-
tem models governed by continuous-time dynamics where the
observer observers parts of the system at discrete times. In
short, the CDEKF consists of a prediction step and an update365

step. The extended Kalman filter relies on a linearisation of
the non-linear system (1), which causes troubles if g is state-
dependent. In such cases, the Lamperti-transformation is an
important tool to transform (1) into a state-independent SDE
[35, 36]. The literature contains many introductions and appli-370

cations to Kalman filtering and the CDEKF, see e.g. [19, 37].

4.2.1. The prediction scheme
In this step, the CDEKF predicts the state of the building

X̂k|k−1 = E[Xk |Yk−1,Uk−1, θ̂], Xk =
[
T i

tk ,T
w
tk ,Φtk ,T

h
tk ,T

ret
tk

]ᵀ
, to-

gether with the state covariance P̂k|k−1 = Var[Xk |Yk−1,Uk−1, θ̂]375

at the next time step tk given the estimated state at time tk−1,
X̂k|k−1. This involves solving a set of coupled ordinary differ-
ential equations (ODEs). Any ODE-solver is sufficient for this
task.

4.2.2. The update scheme380

The updating scheme is about estimating the underlying state
and its covariance, denoted X̂k|k and P̂k|k, at the next time in-
stance tk, given our predictions, X̂k|k−1 and P̂k|k−1, and an ob-
servation Yk. Informally speaking, the updating scheme finds a
weight K, typically called the Kalman gain, which ”measures”
how much weight the observation should have on the estimate
X̂k|k. Consider the update equations for the state estimate

X̂k|k = X̂k|k−1 + Kεk . (14)

If K is small, the prediction weights more compared to the ob-
servation in the estimate of the state. The covariance of the
one-step prediction error, Rk|k−1, is usually calculated in the
updating scheme as well. With εk and Rk|k−1 at hand, we can
evaluate the conditional density associated with the k’th obser-385

vation. This recursion is applied to all observations in YN , and
with a given initial condition X0, the log-likelihood in (12) can
be computed.

Table 2: The parameter estimates together with their statistical properties
Parameter Estimate 95% confidence interval Unit
Toffset -0.101 [-0.081, -0.121] [◦C]
Ch 0.134 [0.128, 0.140] [kJ/◦C]
λ1 0.198 [0.194, 0.202] [h]
λ2 0.272 [0.254, 0.290] [h]
Ci 9.57 [9.40, 9.742] [kJ/◦C]
Cw 45.36 [42.80, 47.92] [kJ/◦C]
Rih 2.151 [2.121, 2.181] [◦C h / kJ]
Riw 0.199 [0.195, 0.203] [◦C h / kJ]
Rwa 2.251 [1.775, 2.727] [◦C h / kJ]
As 7.600 [-1.443, 16.64] [m2]
σ1 8.6e-4 [9.7e-5, 0.008] [◦C]
σ2 0.429 [0.419, 0.439] [◦C]
σ3 111.6 [107.6, 118.0] [kg/h]
σ4 1.647 [1.144, 2.370] [◦C]
σ5 6.469 [6.327, 6.612] [◦C]
R1 9.6e-7 [1.1e-7, 8.5e-6] [◦C]
R2 2.7e-4 [5.2e-6, 0.014] [kW]
R3 5.4e-3 [1.4e-3, 0.021] [◦C]
Φmax 1145.3 [1133.5, 1157.1] [kg/h]
α 1.592 [1.550, 1.634] [1/◦C]

4.3. Details in the parameter estimation

As previously described, the return temperature exhibits in-390

consistent behaviour when the heat load is zero. Also, at these
times, the return temperature is not of interest for control pur-
poses. For these reasons, we choose to disregard the return
temperature in the parameter estimation at times where the heat
load is zero. That is, we need to ensure that the return tem-395

perature for these times does not affect the likelihood function.
We thus add a very large constant (say 1020) to the observation
variance in the Kalman filter when the heat load is close to zero
(say < 0.01 [kW]). As a result, the observed return temperature
has negligible effect on the likelihood estimates during these400

times. Such actions are crucial to implement for applications
in general, e.g. MPC, where indescribable dynamics occur or
observations are not of interest and a Kalman filter is applied
for state estimation. The larger variance on the observed return
temperature ensures that it contributes very little to the state es-405

timate at that point in time.
To evaluate the log-likelihood in Eq. (12), this paper uses

the software CTSM-R [38]. To maximise Eq. (13), we use the
NLopt optimisation library in R [39].

5. Results and discussion410

This section presents the results in terms of parameter esti-
mates, simulation of the model, and residual analysis. We com-
pare a simulation of the model with the experiment data to see
the model’s performance over the entire data set given only the
initial conditions. For the simulations, we use the same weather415

observations and set-points as inputs. Finally, we discuss the
capabilities and strengths/weaknesses of the model.
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5.1. Simulation results
Table 2 displays the parameter estimates for the model pre-

sented in Section 3. All parameters are strongly significant,420

except the solar radiation gain As. The explanation is likely that
the data contains no significant solar radiation. The parame-
ter thus becomes hard to determine without large uncertainty.
But the solar radiation gain is an important disturbing factor
for building climate control [40]. We thus intend to describe425

the solar radiation gain better in the future, when more experi-
ments/data are available. The literature contains interesting ap-
proaches to model this, such as using B-splines to describe the
varying solar gain during the day [41].

Figure 4 shows a simulation of the experiment given only the430

initial states. The model does a good job for all three variables.
It predicts long into the future and still shows good accuracy
without large drifts. That is, the model performs very well on
long prediction horizons. This is crucial for the performance of
MPC. This simulation, however, uses the same weather distur-435

bances as the data. For practical purposes, weather forecasts are
not perfect, which affects the prediction performance [42, 43].

The predicted heat was a challenge to model, but the simula-
tion suggests that the model captures the most crucial dynamics.
However, the simulation also indicates that the model is not able440

to ”turn off” the delivered heat fast enough compared to data,
as it seems to go slower to zero. This flaw comes from the fact
that we model the flow as an SDE itself, Φt. Thus, the flow goes
exponentially towards the term Φmax f valve

t (which never equals
zero due to the sigmoid curve).445

We found that the dynamics of the return temperature were
hard to mimic and capture, especially when the heat is turned
off. Figure 4 confirms that we are somewhat capable of pre-
dicting the return temperature whenever the heating system is
turned on.450

The indoor air temperature in Figure 4 seems to catch the
overall dynamics of the data. The building model, however,
does seem to be a bit too well insulated by the looks of the long
periods where no heat is delivered. The simulated tempera-
ture decreases slower compared to data. Also, from around De-455

cember 25th and onwards, the simulated indoor air temperature
seems to drift a bit upwards compared to data. In this period,
the estimated valve states are never fully opened, indicating that
the set-point and observed temperatures are very close. Thus,
the upwards drift of the simulation could come from the sig-460

moid curve of the valve function, since it never fully closes and
is still open even when the observed temperature is above the
set-point.

5.2. Residual analysis
Figure 6 shows the estimated autocorrelation function and465

the cumulated periodogram of the 1-step prediction errors for
each of the variables. Both the autocorrelation function and the
cumulated periodogram indicate that the residuals of the indoor
air temperature and the return temperature can be classified as
white noise. However, the heat load residuals are governed by470

some minor autocorrelation in the first few lags. Inspection of
the spectral density and the residual plots confirms that non-
uniformity of the spectrum primarily comes from the heater

state’s exponential decay towards zero when the heat is turned
off. However, this is a minor autocorrelation that is not going475

to impact MPC performance significantly.

5.3. Future work

Since the experiment took place during the Christmas holi-
day, the building was not occupied at any time. However, hu-
man occupancy/behaviour is important to model and include in480

MPC [44]. Also, due to the lag of occupancy, we do not know
how open windows affect the indoor air temperature. These are
important topics to investigate further to accurately model the
thermal dynamics of the building [45].

6. Conclusion485

This paper introduced a physically inspired SDE-based non-
linear model to describe the complex heat dynamics of a school
building with water-based heating. The purpose of the model
is to predict the indoor air temperature, the heat load, and the
return temperature of the water in the space heating (SH) sys-490

tem. We model the thermostats in the radiators using a Sig-
moid function to describe the level of water flow through the
radiators. We fitted the parameters in the model from time-
series data using maximum likelihood estimation. To validate
the estimated model, we compared a simulation of the model,495

only given the initial conditions and disturbances, to data. This
showed great accuracy over an entire week. The residual analy-
sis indicated that the model lacks some dynamical descriptions
of the heat load. We believe the reason might be that the model
does not shut down the heat load fast enough. Beside this, the500

model looks promising for enabling MPC and e.g. embedded
forecasts.
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Abstract

The paper presents the learnings from designing and run-
ning a model predictive control (MPC) of the heating sys-
tem in a school building. Several real-life applications of
MPC controlled heating have been presented in the liter-
ature. Most of them work by controlling the room tem-
perature usingn a heating system and thus need a refer-
ence measured temperature in the building. Some have
a single-zone temperature as the reference, while others
use some kind of mean temperature of multiple rooms. In
the present experiment, the MPC used the mean temper-
ature of all rooms as the reference and was able to keep
it within a lower and upper comfort bound, while mini-
mizing the heat costs by responding to a heat price signal.
However, the analyses of the temperature in each room re-
vealed that the temperature bounds were heavily violated:
some rooms were too cold and some too warm, while the
mean was within the bounds. The main conclusion from
the study is that, at least for buildings with different sized
rooms and room radiator capacities, it’s not reliable to use
a mean room temperature – rather, the control must con-
sider individual rooms in order to guarantee comfort.

Introduction

Control of HVAC systems in buildings is important for
the green energy transition, both in order to decrease the
heat demand and to increase flexibility for integration of
variable renewables, like wind and solar. The level of ac-
tivity in the field has been increasing over the last decades
and focus has centered around the use of Model Predic-
tive Control (MPC). The present paper describes an ac-
tual real-life experiment where MPC was applied to con-
trol the heating system in an older school building in a
cold climate. The main focus of the paper is on the learn-
ings achieved from the experiment, especially the way the
room temperatures were taken into account in the MPC
and the underlying model, and how they actually realized.
In the MPC, a simple mean of all room temperatures was
used, hence the control was carried out at a building level
and this temperature was kept well within comfort temper-
ature bounds. However at individual room level the tem-
peratures violated the comfort bounds, some rooms got
too cold and others too hot.
Recent overview papers provides a lot of insights into the
techniques and challenges of MPC for HVAC in build-
ings. Killian and Kozek (2016) pose ten questions that

should be considered for MPC in buildings, however of
the questions none related to building vs. room level tem-
perature. They emphasize that a main problem ”is the high
modeling efforts, where currently no commercial tools ex-
ist to derive easily a suitable model for MPC design”.
Drgoňa et al. (2020) provides a very comprehensive re-
view and overview of MPC of energy systems in building.
Not much on multi-zone temperature control is included,
though Table 5 lists several studies of modelling for con-
trol with multi-zone models, however none of these are
implemented in real-life experiments.
The the volume of literature on real-life experiments with
MPC in buildings is increasing. Liao and Dexter (2004)
identifies a single-zone model for a three storage building
where they model the mean room temperature of the en-
tire building. Each floor was similar in terms of the heat-
ing equipment, which made it easy to model. The results
were good in terms of controlling the mean temperature
to different levels, but no analysis on room-level is pre-
sented. Široký et al. (2011) present an experiment with
MPC of heating in a five-floor building block on a univer-
sity campus. The room temperature was measured in only
two reference rooms and parameters in a linear RC-model
was estimated using data from those rooms. An MPC ran
in closed loop for two weeks and energy savings were
achieved over a rule based control. However, the room
temperatures are not evaluated in detail in the paper and
there is no information about temperatures in other rooms
than the reference rooms. West et al. (2014) present an
MPC implemented in a large office building. They con-
sider varying costs in the objective function, however it
was implemented as constant in the demonstration period.
Indoor comfort were evaluated via feedback from occu-
pants, however no detailed evaluation of the measured
temperatures is presented. Huang et al. (2015) developed
an MPC for control of the indoor air temperature of an
airport terminal in Australia. They carry out a simulation
and an experiment to test the model and MPC both show-
ing increased comfort and cost reductions. De Coninck
and Helsen (2016) presents the results of implementing
an MPC in a two-storey office building. They do room
temperature averaging: ”To obtain a single-zone model,
all room temperature measurements are arithmetically av-
eraged into TZon.”. The objective was to minimize heat
demand, not with a varying price. A comparison to rule
based control is included, which showed 20% to 30% per-



cent reduction in heat demand. No evaluation of tempera-
tures on room level is included. Finck et al. (2019) present
and implement EMPC for a Dutch building. The models
for the building heat dynamics and the weather forecasts
are based on artificial neural networks. They tested the
controller for flexibility optimisation and to regulate on-
site power generation and grid-consumption and feed-in.
The results showed that the EMPCs increased the flexibil-
ity of the heat demand while maintaining the same heat
costs.
The existing literature presenting multi-zone control sys-
tems don’t deal with flexible demand – only control of air
temperatures. Scattolini (2009) explains and review hi-
erarchical and distributed control. Moroşan et al. (2010)
presents a simulation study demonstrating how different
MPCs for multi-zone temperature control in a building
perform. The focus is on the interaction between the
rooms in form of heat exchange due to temperature differ-
ences. The results indicate, that either a centralized con-
trol, which has a full multi-zone model, or a distributed
control, where the room models exchange information, is
preferable over a fully decentralized control, which does
not take the interactions into account. Elliott and Ras-
mussen (2013) present temperature control of multiple
zones with a multi-evaporator vapor compression system.
An architecture that is decentralized and modular, avoid-
ing competing controllers and the practical difficulty of
implementing a centralized controller, is presented. Eini
and Abdelwahed (2019) presents a distributed control,
which in a simulation study has a better performance over
a centralized control. The model is a detailed multi-zone
model, where the parameters are known in advance. Zong
et al. (2019) present a case study of MPC-based BEMS for
a multi-family residential building where a hierarchy con-
troller design is applied. The performance of the decen-
tralized controller strongly depends on the level of inter-
actions between the subsystems: The distributed, as each
controller knows about control actions of its neighbors,
keeps the same performance as the centralized. Results
are not presented in detail, only a plot for a single zone is
presented.
In the modelling carried out for the present paper, a single-
zone grey-box model was identified using the approach
presented in Bacher and Madsen (2011) describes. The
particular model used is the model presented by Thilker
et al. (2021). Some development in terms of automatic
model selection has been made, as presented by Andria-
mamonjy et al. (2019). Interesting multi-zone model iden-
tification studies have been carried out by Joe et al. (2020),
who present a grey-box model of room temperature fitted
for each room individually and compared to a model fitted
to all at the same time. The total RMSE is smaller for the
decentralized approach. Arroyo et al. (2020) presents a
divide-and-conquer approach to grey-box multi-zone pa-
rameter estimation, where first the parameters are esti-
mated on single-zone level and then used an initial guess
in the multi-zone model parameter estimation.

Figure 1: Photo of the building in question.

From the literature, it’s apparent that focus on MPC and
the underlying data-driven modelling is increasing, how-
ever experimenting with MPC in real-life is in an early
stage – especially the implementation and application of a
price responsive control in real-life experiments is novel.
Main contributions of the paper

The main contributions of the present paper are, first, the
presention of a successful real-life experiment with a price
responsive MPC, and second, to highlight some of the
challenges encountered using a single-zone model. In par-
ticular, it’s emphasized that by using the mean room tem-
perature of all rooms as the reference, which must be kept
inside a comfort bound, worked well on the single-zone
(or building) level, but caused violations in the individ-
ual rooms: some rooms got too hot while others too cold,
while the mean was still within the comfort bound.
First the building and data setup is described, and there-
after the two experiments carried out: the system identi-
fication and the MPC experiment. Second, the results are
presented and discussed, and finally the conclusions are
drawn.

Building, systems and data

The building

The building is located in Høje Taastrup, Denmark, and is
a school with three floors. The uppermost floor is a part-
refurbished roof attic.
Build in 1929, the building is not insulated up to mod-
ern standards. Figure 1 shows a photo of the building. It
includes 10 classrooms that are ventilated by mechanical
ventilation using an air handling unit for air circulation.
The ventilation was not active during any of the exper-
iments (due to absence of occupants). The facade and
internal walls consist of solid bricks (300 mm and 180
mm thickness, respectively). The windows have wooden
frames and double-paned low-E glazings. Floors are made
from wood joists and the roof is a partly uninsulated and
partly insulated slate roof. The building is connected to
the district heating grid. The heating system is used for
domestic hot water, air handling unit, and space heating.
The space heating is a separate water-based circuit with
dedicated pumps. Radiators of different types (cast-iron
and plane conductors) with individual smart thermostats
distribute the heat in the rooms. The thermostats work as



PI-controllers, which regulate the water flow into the radi-
ator units to maintain a pre-defined set point by the user.
See Bruun (2019) for further technical details about the
building.
Data

All main rooms are each equipped with a temperature sen-
sor (uncertainty is ±0.1◦C) to measure the indoor air tem-
perature. All radiators in rooms with a temperature sensor
are equipped with smart thermostats where a temperature
set point can be set remotely. Each thermostat have their
own temperature sensor, hence they are not controlled us-
ing the measured temperature included in the analysis.
The supply and return temperature of the water of the
building’s heating system is measured together with the
actual heat usage of the building.
Weather forecasts for the location are available with 6
hours delay and 48 hours ahead. The sampling time of
the forecasts is 1 hour. The forecasts were available in
real-time and were used in the filter update in the MPC.
To see how the weather was during the period, Figure 2
shows the observed ambient temperature and global solar
radiation. It can be seen that the weather conditions in-
clude both cold and mild days, as well as both sunny and
cloudy days.
System identification

The model used for the heat dynamics of the building is
based on stochastic differential equations. The identifica-
tion method is based on a maximum likelihood method
using a variant of the Kalman filter to compute the tran-
sition densities. The modelling procedure is thoroughly
described in Thilker et al. (2021). The model includes the
following states

x = [Ti, Tw,Φ, Th, Tret]
⊤ ,

where Ti is the indoor air temperature, Tw is the tempera-
ture of the building’s wall, Φ is the water flow of the heat
system, Th is the temperature of the average surface tem-
perature of the radiators in the building, and Tret is the
return water temperature.
The model is a significant simplification of the heat dy-
namics of the building. We use the arithmetic mean of the
air temperature of the rooms as a measure of the indoor air
temperature in the building as a whole. Since we didn’t
have knowledge about the heat released in the individual
rooms, we cannot easily employ a multi-zone RC-based
model. Also, the dimensionality of the model increases
drastically if multiple rooms were modelled, which com-
plicates real-time MPC due to a bad scaling in compu-
tational requirements to solve the optimal control prob-
lem. For these reason, we used a single-zone model, well
knowing that it might cause issues in the individual rooms.
System identification experiment

The system identification experiment carried out was
planned in advance and designed to generate data suitable
for system identification. The main focus was to change
the control input, the thermostat set point, such that infor-

mation about the essential dynamics of the system can be
estimated. A sequence of the set point was designed with
four different parts. First part, contained a few long steps
to get information about the slow dynamics governing the
system. Second part, was a multilevel signal, where ex-
tremes were kept for longer periods than values closer to
20 ◦C. Third part, contained short periods with drops to
a minimum from the base temperature. Finally, a step se-
quence where the set point was stepped down and back
up again. The forward temperature of the space heating
water was set constant to 55 ◦C at all times. The entire se-
quence was slightly shorter than 7 days and was executed
during the Christmas vacation, where the building was un-
occupied. The experiment is described in more details by
Thilker et al. (2021).

MPC experiment

The MPC experiment was carried out during January and
February 2021. The building was no used in the period,
due to the pandemic lockdown. This section introduces
a direct multiple-shooting method for solving the particu-
lar non-linear MPC problem. It also discusses a method
to discretise the optimisation problem to make it numer-
ically tractable. The optimisation problem results in the
set points applied for the radiator thermostats. However,
solving the optimisation problem requires us to know the
entire state of the system. For reconstructing the system
states the continuous-discrete extended Kalman filter is
used Kristensen et al. (2004).
The implemented optimal control problem has the follow-
ing (Lagrange) form

min
x,u,s

φk =

∫ tk+T

tk

ℓ(x(t), u(t),d(t), s(t))dt, (1a)

s.t. x(tk) = x̂k|k , (1b)

dx(t) = f(x(t), u(t),d(t))dt, t ∈ Tk, (1c)

umin(t) ≤ u(t) ≤ umax(t), t ∈ Tk, (1d)

∆umin(t) ≤ ∆u(t) ≤ ∆umax(t), t ∈ Tk, (1e)

Tmin(t) ≤ Ti(t) + s(t) ≤ Tmax(t), t ∈ Tk, (1f)

where x̂k|k is the reconstructed system state, T is the pre-
diction horizon, ℓ is the cost function, L is the termi-
nal cost, and f is the model dynamics. The time set is
Tk = [tk, tk + T [. s(·) is a slack variable that softens the
temperature constraints. In the next section, we describe
how we penalise a non-zero slack.
Optimal control problem

To make the optimal control problem in (1) numerically
tractable, we use a multiple shooting method to discre-
tise the problem. The problem is discretised in the sense
that the system considers x at discrete time points tk <
tk+1 < · · · < tk+N = tk + T . Now, define a function
ϕ(x, u,d) that computes the solution at time tk+1 to the
following initial value problem

ẋ(t) = f(x(t), u(t),d(t)) , (2a)

x(tk) = xk . (2b)
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Figure 2: Observed weather during the period.

Thus, ϕ(x, u,d) = x(tk+1) integrates the system forward
to the next time instance. Furthermore, we assume the
disturbances and input be constant between control points

u(t) = uk , t ∈ [tk, tk+1[ , (3a)

d(t) = dk , t ∈ [tk, tk+1[ . (3b)

The discretised optimal control problem can thus be writ-
ten as

min
xi,ui,si

φk =
k+N−1∑

i=k

Li(xi, ui,di, si) , (4a)

s.t. xk = x̂k|k , (4b)

xi+1 = ϕ(xi, ui,di) , i ∈ N , (4c)

umin,i ≤ ui ≤ umax,i , i ∈ N , (4d)

∆umin,i ≤ ∆ui ≤ ∆umax,i, i ∈ N , (4e)

Tmin,i ≤ Ti,i + si ≤ Tmin,i, i ∈ N (4f)

where Li(·) =
∫ tk+i+1

tk+i
ℓ(·)dt and the index set is N =

{0, 1, . . . , N − 1}. To approximate Li, we use a fourth-
order Runge-Kutta method with fixed step size of 3 min-
utes. The sampling time between control points is fixed
and is Ts = tk+1 − tk = 0.5 h.
We implement the optimal control problem using CasADi,
which offers easy numerical implementation and auto-
matic differentiation for optimal control problems as the
above.
Objective functions

The objective function in an optimal control problem has
the purpose of making solutions comparable. The objec-
tive function should thus reflect all considerations towards
the desired behaviour of the controller. We use the follow-
ing objective function

ℓ = c · Ph + ρ · s2, (5)

where c is the heat price, Ph is the heat load, ρ is slack
penalty and s is the slack. The objective function is non-
linear due to the heat term, Ph = Φcw(Tfor − Tret), which

depends on the product of two states, Φ and Tfor, and the
quadratic slack.
In the experiment carried out, we wanted to shift the heat
load away from peak hours (also known as peak shaving).
Therefore, we constructed a price signal accordingly:

c(t) =

{
1000 if t ∈ PEAKHOURS

10 otherwise
(6)

where we define the peak hours to be

PEAKHOURS = [06AM, 10AM[∪ [5PM, 9PM[ . (7)

The price for heating is thus expensive during the morning
and evening hours where the district heating peak hours
usually are.
MPC tuning

During the experiment we tuned several parameters of the
objective function in an iterative process as we learned
how the MPC behaved. The objective function consists of
two terms that need to be weighted such that the controller
prioritises in an appropriate manner. We found ρ = 10 to
be suitable together with the price in Equation (6). The
reason for the quadratic slack penalty (instead of linear)
is that it ensures a smooth objective function. We found
that a linear slack penalty caused a more sensitive solution
when it is close to the temperature bounds.
To avoid too large variations in the input signal, dampen
oscillations and make the solution more robust, we choose
to restrict the allowed variation between control points,
furthermore, too large increases in the set point will cause
large increases in the return temperature, which in general
is not desired. We choose the maximum allowed absolute
change to be 3 ◦C per hour. With Ts = 0.5, Equation (4e)
becomes −1.5 ≤ ∆ui ≤ 1.5.
We chose the maximum and minimum bounds of the input
to be the maximum and minimum temperature bounds,
umin,k = Tmin,k and umax,k = Tmax,k. The rationale behind
this, is to avoid overheating in some of the fast reacting
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Figure 3: Results from the period running with the tuned MPC. Upper plot is of the price and heat demand.
Mid plot is of the temperatures considered by the MPC. Lower plot is of the individual room temperatures and
the mean temperature. The latter plots also contain the temperature constraints.

rooms to limit the chance that they violate the temperature
bounds.

Results

The MPC was tuned for a period and thereafter it was
run for a period of nine days. The results from the nine
days period is presented and analysed in the following.
Selected variables recorded during the period are plotted
in Figure 3. The upper-plot shows the price signal and the
realized heat demand. It clearly shows that the MPC was
able to lower the heat demand in the high price periods,
although it was not decreased all the way to zero. The
mid-plot shows the lower and upper temperature bounds,
together with the set point and mean room temperature.
It’s clearly seen that the MPC managed to keep mean
room temperature within the bounds, except during the
first four days in the morning hours where the lower tem-
perature bound is stepped up. The lower-plot shows the
individual room temperatures. It’s easy to see that there
was a huge spread in the temperatures among the rooms.
Some responded very fast and became very warm when
the set point was increased, others responded slow and the
coldest rooms didn’t even to reach the set point – these
issues will be discussed in detail later. Finally, it’s noticed
that there was an increasing trend in the mean tempera-

ture over the period, which was caused by the increase in
outdoor air temperature over the period, as pointed out in
previously. The pattern in the heat demand and tempera-
ture response to the price signal is very regular. In order
to get more insight into the details, a zoom on the two first
days is shown in Figure 4.
From the two presented plots of the results, it becomes
clear that the MPC was capable of controlling the heat
demand in response to the price signal. However, there
is a potential for improvements. Firstly, the heat demand
was not able to decrease fully to zero in the periods of high
price, especially in the morning price peak. We identify
the two main reasons for that as:

• Some hours before the price peak in the morning the
set point was stepped down, which can seem to be
too early to be optimal, however it’s a compromise
between decreasing the demand during the peak and
the temperature lower bound violation. This could
most likely be tuned to achieve a lower demand dur-
ing the morning peak.

• Due to technical issues, not all the radiators were
controlled, so there was a lower limit to the heat de-
mand – probably around the heat level in the after-
noon price peak.
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Figure 4: Two days plot of the MPC results. Upper plot is of the price and heat demand. Mid plot is of the
temperatures considered by the MPC. Lower plot is of the individual room temperatures.

However, the biggest issue encountered with the imple-
mented MPC is the resulting huge spread in room tem-
peratures. As seen in the lower plots of Figure 3 and 4,
the spread of the realized room temperatures was huge.
This pose a real problem, since the comfort of occupants
would have been compromised – essentially the tempera-
ture bounds in the individual rooms cannot be guaranteed
when a mean temperature over multiple rooms is used as
reference. It is noted here, that the thermostats were not
controlling using the measure temperature, they had each
a sensor. In order to see more details of the rooms tem-
perature response a two days plot of the temperatures is
presented in Figure 5. The rooms are divided between the
types of rooms in order to see if there are any similarities
because of the type of room.
The main findings from this plot are:

• Clearly, the temperature bounds are violated in
nearly all rooms – some gets too hot and some gets
too cold.

• Similarities due to the type of room is mainly seen
for the hallways.

• The response to the temperature set point is very dif-
ferent among the rooms. Some rooms respond very
fast, indicating that the radiators heating power is
high relative to the room size and heat losses. Some

rooms respond very slow, indicating that the radia-
tor’s power is not sufficient to heat the rooms under
the conditions during the period.

Discussion

From the presented results, it is clear that there are var-
ious trade-offs between controllability, stability, and per-
formance. The MPC input was quite regularized, which
resulted in higher heat usage during the morning peak
hours (since the set point could not be lowered further).
It overall affected the ability of the MPC to adjust demand
when the price changes – and therefore affected the con-
trollability. However, the regularisation was necessary for
the MPC to increase stability of the solution. The slower-
changing set point resulted in a lower return temperature,
since the temperature in the rooms has more time to adapt
to the increased set point.
The performance is of course also affected by the regular-
isation and the model’s ability to predict the air tempera-
ture, which could be improved. This could be done using
an adaptive parameter estimate update as observations be-
come available.
From the presented room temperature plots, it is apparent
that their individual properties, such as radiator capaci-
ties, dimensions, etc., have a huge impact in the rooms’
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Figure 5: Plot of the temperature set point, the mean room temperature and the individual room temperatures.
The upper-plot contains the classrooms, the mid-plot the hallways and the lower-plot the smaller rooms.

individual response to set point changes. Potentially, an-
other interaction may be due to the thermostats opening
and closing at about the same time in all rooms, which can
create pressure losses, such that the radiators at the far end
of the heating circuit cannot supply enough heat. This is
a balancing issue, which may be fixed by tuning the max
valve openings of each radiator and installing additional
radiator capacity.
To which extend these results generalise to other buildings
cannot be concluded from the present results. Newer and
more well-insulated buildings are probably less likely to
suffer from dimensioning issues since less heat is needed
Knudsen et al. (2021).
Further work

Regarding the significant room temperature differences,
it’s a real fundamental issue, which must be solved for
MPC in buildings to be usable in practice. It’s possible to
make a few simple changes to the constraints, for example
keeping the upper limit of the set point to e.g. 23 ◦C could
avoid overheating rooms, however it also limits the control
capabilities.
Another approach could be to introduce a hierarchical and
distributed MPC (Scattolini, 2009; Moroşan et al., 2010):

• Constant room temperature model: Simply a room
temperature set point offset can be learned for each

room. This does not take the individual room dynam-
ics into account.

• Dynamic room temperature model: The dynamics of
the rooms taken into account by individual room tem-
perature models. One idea is to use an ARX model
(which are more black-box models compared to the
resistor-capacitor model in this paper) for each room
and have indivual MPCs run each room.

Conclusion

An MPC for price flexible heat demand was demonstrated
in an experiment. The results illustrate the ability of the
MPC to respond to a varying price and lower the heat de-
mand of the building in the high price periods, however,
there was potential for improvements.
Using the arithmetic mean temperature as a representa-
tive for all rooms led to a high spread in room tempera-
tures between rooms, thus violating the temperature com-
fort bounds. The rooms and radiator power in the building
were not uniformly sized, hence this behaviour is not sur-
prising, but pose a real problem for MPCs, which does not
take individual room’s dynamics into account. To which
degree this phenomena can be generalized to other build-
ings can of course not be concluded with the present study.
However, it is clear that when using temperature con-
straints on a mean temperature over multiple rooms, the



constraints cannot be guaranteed for the individual rooms.
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Abstract. Smart and flexible operation of components in district heating systems can play a crucial role in 

integrating larger shares of renewable energy sources in energy systems. Buildings are one of the crucial 

components that will enable flexibility in the district heating by using intelligent operation. Recent work 

suggests that such improved operation at the same time can increase thermal comfort and lower economic 

costs. We have digitalised the heating system in a Danish school by adding IoT devices, such as smart 

thermostats and temperature sensors to demonstrate the possibilities of making buildings smart. Based on 

experimental data, this paper introduces a non-linear grey-box model of the thermal dynamics of the 

building. A non-linear model predictive control method is presented for the thermostatic set-point control 

of the building's radiators. Based on the building model and the control algorithm, simulation studies are 

carried out to show the flexibility potential of the building. When used for lowering the return temperature 

the results suggest that operational costs can be lowered by around 10% using predictive control. 

1 Introduction 

 Digitalisation of heating systems, i.e., through smart 

thermostats and indoor climate sensors, creates the 

possibility of making buildings smart by having data of 

the building heat dynamic. This, however, does not 

alone make the building (or the heating system) smart as 

it does not yet use the data to make the system efficient 

or flexible. Without smartness, the system is just data-

rich. The system becomes smart when it uses the data to 

e.g. lower some cost functions, that could be to lower 

the heating costs without violating thermal comfort or 

reduce heat consumption during peak hours (known as 

peak shaving). The data can be used to formulate models 

that describe the dynamics of the building climate. Such 

models enable the system to become smart using e.g. 

Model Predictive Control (MPC) [1]. MPC is a control 

method that minimises some predefined cost function 

while satisfying a set of constraints. MPC has become 

very popular for the heating, ventilation, and air-

conditioning sector in the past years as it makes the 

system smart by making it efficient and/or flexible [2] 

[3] [4]. The advantage of the MPC over other control 

methods is its ability to predict the future behaviour of 

the system. Thereby, the MPC can take weather 

predictions and future activities into account when 

optimising the manipulated variables (e.g., desire 

temperature in a room) of the system [5]. MPC setups 

usually run in a closed-loop where the controller gets 

feedback on how the system reacted to the latest input 

or disturbance. The MPC is based on a model (e.g. a set 

of differential equations) that describes the behaviour of 
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the system and generates predictions of the system's 

future behaviour. 

 This article considers the heating system of an old 

Danish school building. The building has been 

“digitalised” with the use of smart thermostats and IoT 

sensing devices [6], to enable smart control of its heating 

system using MPC. For this building, a non-linear grey-

box model, hence a model based on physics and 

monitoring data, is formulated, with the purpose to 

describe the behaviour of the building's heat dynamics. 

Grey-box modelling is a well-known procedure used for 

system identification and modelling dynamics of 

buildings [7] [8]. The parameters of the building model 

are estimated using the CTSM-R software [9]. The non-

linear MPC (NMPC) uses the grey-box model to control 

the heating system according to some thermal comfort 

constraints. The MPC utilises weather predictions of the 

solar irradiance and outdoor temperature to compute the 

optimal radiator set-points, needed to obtain the desired 

indoor air temperature. The objective of the controller 

presented in this work is to lower the heating cost of the 

building. In order to demonstrate the flexibility potential 

of the model, we generated a fictive price signal for the 

energy delivered by the district heating (DH) network. 

The model developed here is able to use such a variable 

price signal and consequently minimise the heating 

costs (by heating when the energy price from the DH 

network is lower). 

 The methodology adopted in this work has already 

shown to be fruitful for lowering the electricity 

consumption of a smart solar tank for storing heat during 

sunny periods. The tank was modelled as a grey-box 



model, and the MPC takes advantage of future 

disturbances (solar radiation and outdoor temperature) 

and its flexibility [10]. The methodology was also 

successfully adopted in controlling the heat pump of a 

residential house, by lower the electricity expenses with  

varying electricity prices [11]. 

 The main contribution of this work is to 

demonstrate how to use a non-linear grey box model for 

MPC. We present a multiple shooting method to solve 

the optimal control problem related to the MPC [12] and 

incorporate numerical weather forecasts as future 

inputs. The second contribution of this work is to 

illustrate the effects of using the MPC through two 

different simulation studies. The first study shows how 

to make the building flexible by utilising the right price 

signal. The second study shows the potential for 

optimising the operations of the building in order to 

minimise the economic costs associated with heating a 

Danish building in a district heating network. The result 

of the MPC is compared to a simple fixed-schedule 

control strategy which is among the current standards in 

buildings. 

1.1 Structure and outline of the paper 

 The article is organized as follows. Section 2 

presents the building and the modelling scheme along 

with the parameter estimation method and its results 

from the estimation. Section 3 introduces the NMPC 

method that is used to control the building. The 

simulation results are presented and discussed in Section 

4. The article is concluded in Section 5. 

2 The building and the non-linear 
thermal model 

 This section introduces the building and the non-

linear building model used in the present work. The 

model is thoroughly introduced and discussed in [13], 

where also further details on the building and the model 

can be found.  

2.1 Building description and set-up 

 The building with an area of 1576 m2 acts as a 

school and has 12 classrooms, 3 meeting/office rooms, 

and 7 corridors/stairs/open spaces distributed over three 

floors. Fig. 1 shows a picture and a detailed, digital 

simulation model of the building. The building was built 

in 1929 and is not insulated- to meet today's standards. 

The building is equipped with a hydronic heating system 

and is connected to the local district heating network. To 

deliver heat to the rooms, radiators are used; the 

radiators are connected through a two-pipe system to the 

building heat exchanger It should be noticed that steady-

state analyses related to the heat load of the building 

indicated that the heating power of the radiators are 

under-sized in some rooms. As a result, in such rooms a 

comfortable temperature cannot always be maintained 

[14]. 

To make the building smart and enable real-time 

control, sensors and actuators were installed. 

Accordingly, temperature sensors have been installed in 

each room (the sensors are also able to measure CO2-

levels and humidity), and each radiator was equipped 

with a smart thermostat. Moreover, heat-meters have 

been installed to monitor the energy use of the building. 

Furthermore, the temperature of the supply- and return 

water to the heat exchanger connected to the district 

heating is measured (on the building side) by sensors on 

both sides of the heat exchanger. All sensor data are 

collected through servers installed at DTU and the data 

readings are executed every 15 minutes. 

2.2 Building model 

We consider a non-linear model on the form of Eq. (1a) 

and (1b) 

 

𝑑𝒙(𝑡) = 𝑓(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡))𝑑𝑡                          

              +𝑔(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡))𝑑𝝎(𝑡) (1𝑎) 

𝐲k = ℎ(𝒙(𝑡𝑘)) + 𝒘𝑘 ,        𝒘𝑘~𝑁(0, 𝑹) (1𝑏) 

 

where 𝒙(𝑡) is the state vector, 𝑢(𝑡) is the control input, 

𝒅(𝑡) is the disturbances, and 𝑹 is the observation error 

covariance. 𝝎(𝑡) is Brownian motion and reflects the 

uncertainty of the model. Eq. (1a) is structurally similar 

to ordinary differential equations except for the 

diffusion term. The use of the diffusion term has the 

advantages that it describes effects that are too complex 

and (nearly) impossible to model deterministically, and 

it predicts uncertainty as well, e.g. the variance of the 

estimates [15]. 

Figure 1. The building picture (top) and a screenshot of 

the digital model of the building (bottom) used as demo-

case in this work. 



 In order to simplify the control of the building, in 

this work we consider and model the building as a 

unique big room with uniform temperature, represented  

by the average of the measured temperature in all closed 

rooms (classrooms and meeting rooms) 

 

𝑇𝑖 =
1

𝑛
∑ 𝑇𝑘

𝑛

𝑘=1

. (2) 

 

Since the heating system is not correctly balanced, and 

some of the rooms have under-dimensioned radiators, 

this modelling and control approach consequently 

implies that some rooms are going to be warmer or 

colder; however, this simplification is needed at this first 

stage, since the problem is simplified significantly in 

terms of dimensionality. It is important for real-time 

MPC that the model is small enough to compute the 

control input without too much delay. In the following, 

we consider a system with the states  

 
𝒙(𝑡) = [𝑇𝑖(𝑡), 𝑇𝑤(𝑡), 𝛷(𝑡), 𝑇ℎ(𝑡), 𝑇ret(𝑡)], (3) 

 

where 𝑇𝑖  is the average indoor air temperature, 𝑇𝑤 is the 

temperature of the building wall, Φ is the flow of the 

water in the radiator circuit, 𝑇ℎ is the temperature of the 

radiators, and 𝑇ret is the temperature of the returning 

water (going to the heat exchanger of the building). The 

control input to the model, 𝑢(𝑡), is the set-points of the 

radiator thermostats. To estimate the valve-opening 

state of the thermostats, the following sigmoid function 

is used: 

𝑓valve(𝑡) =
1

1 + 𝑒−α(𝑢(𝑡)−𝑇𝑖(𝑡)+𝑇offset(𝑡))
, (4) 

 

where u is the thermostat set-point, α determines the 

slope of the sigmoid function, and 𝑇offset(𝑡) is an offset 

that models the physical distance between the 

temperature sensors in the room and the thermostats of 

the radiators. Fig. 2 shows the estimated 𝑓valve. The 

sigmoid function is attractive due to its fixed shape that 

fits the behaviour of thermostats and requires only two 

parameters, 𝛼 and 𝑇offset. The term 𝑓valve therefore 

estimates how open the radiator valves are (1 being fully 

open and 0 being fully closed), i.e. how much water 

flows through the radiators. The disturbances include 

the ambient air temperature and solar irradiance 𝒅(𝑡) =
[𝑇𝑎(𝑡), 𝜙𝑠(𝑡)]

T. 

 The building dynamics model are the following [1]: 

 

𝑓(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)) = 

[
 
 
 
 
 
 
 
 
 
 
 
 
1

𝐶𝑖
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1

𝑅𝑖ℎ
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1
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1
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1
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(

1

𝑅𝑓𝑟
(𝑇𝑡

ℎ − 𝑇𝑡
ret))

]
 
 
 
 
 
 
 
 
 
 
 
 

. (5) 

 

In Eq (5), to save space, we write time dependence 

as subscript, e.g. 𝑇𝑎(𝑡) = 𝑇𝑡
𝑎. 𝐴𝑤 is the effective area of  

the solar radiation gain, 𝑐𝑝,𝑤 is the specific heat capacity 

of water, and Φmax is the maximum water flow in the 

radiator circuit. 𝑇for is the supply temperature of the 

water on the building side of the heat exchanger and is 

Parameter Estimate Unit 

𝑇offset -0.101 [°C] 

𝐶ℎ 0.134 [kJ/°C] 

𝐶𝑓 0.198  

𝑅𝑟𝑓 2.030 [°C h/kJ] 

𝐶𝑖 9.57 [kJ/°C] 

𝐶𝑤 45.36 [kJ/°C] 

𝑅𝑖ℎ 2.151 [°C h/kJ] 

𝑅𝑖𝑤 0.199 [°C h/kJ] 

𝑅𝑤𝑎 2.251 [°C h/kJ] 

𝐴𝑠 7.600 [m2] 

𝜎1 8.6e-4 [°C] 

𝜎2 0.429 [°C] 

𝜎3 111.6 [kg/h] 

𝜎4 1.647 [°C] 

𝜎5 6.469 [°C] 

𝑅1 9.6e-7 [°C] 

𝑅2 2.7e-4 [kW] 

𝑅3 5.4e-3 [°C] 

Φmax 1145.3 [kg/h] 

𝛼 1.592 [°C-1] 

Table 1. The parameter estimates and their physical 

units 

Figure 2. The estimated valve function of the thermostats, 

𝑓valve, as a function of how much the room temperature 

deviates from the set-point. The sigmoid function is 

attractive for this model since it ranges from 0 to 1 and has 

an exponential transition. Also, it relies on only two 

parameters and makes the parameter estimation robust. 



kept constant at 55 °C. The diffusion term in Eq. (1), g, 

has the simple form of Eq. (6): 

 

 

𝑔(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)) = diag(σ1, σ2, σ3, σ4, σ5) (6) 

 

Naturally, not all states of the building are observed. 

Instead, we are limited to the information available in 

the non-linear observation equation 

 

𝒚𝑘 = ℎ(𝒙(𝑡𝑘)) = [𝑇𝑖(𝑡𝑘),  ϕℎ(𝑡),  𝑇ret(𝑡𝑘)]T (7) 

 

That is, we observe the average indoor air temperature 

𝑇𝑖(𝑡𝑘), the heat load ϕℎ(𝑡𝑘) = Φ(𝑡𝑘)(𝑇for − 𝑇ret(𝑡𝑘)), 

and the return temperature 𝑇ret(𝑡𝑘). Recall that the 

supply temperature is known and is Tfor =  55 °C. 

2.3 Model parameter estimation 

 We use the software CTSM-R [9] to estimate the 

parameters in the continuous-time stochastic model. The  

parameter estimation is based on the maximum 

likelihood principle [16]. That is, we maximise the 

likelihood function, which is a function of the 

parameters 

 

ℒ(𝛉) = 𝑝(𝒙0)∏𝑝(𝒚𝑘|𝒴𝑘−1; 𝛉)

𝑁

𝑘=1

(8) 

 

Where 𝒴𝑘−1 = {𝑦𝑘−1, 𝑦𝑘−2, ⋯ , 𝑦0} is the information 

up till time 𝑡𝑘−1, p is the probability of observing 𝒚𝑘 

with the model in Eq. (5) and Eq. (6) given the 

parameters θ and the information 𝒴𝑘−1. Given the 

model structure in Eq. (5) and Eq. (6), as well as 

appropriate informative data, any unknown parameters 

can be estimated.  

 Table 1 lists the parameter estimates from the 

estimation procedure. Fig. 3 compares the fit of the 

resulting model to the data and indicates a good match. 

It shall be noted that the return temperature 

measurements are not representative when the heat load 

is zero and the water flow in the building is zero. We 

thus put very low weight on the return temperature 

observations in the estimation procedure in these time 

intervals (indicated by the grey periods in the figure). 

3 Non-linear model predictive control: a 
multiple shooting method 

 This section introduces a direct multiple-shooting 

method for solving the particular NMPC problem. It 

also discusses a method to discretise the optimisation 

problem to make it numerically tractable. The 

optimisation problem lies the basis for computing the 

set-points for the radiators. However, solving the 

optimisation problem requires us to know the entire state 

of the system, 𝒙. For reconstructing the system states 

based on observation, 𝒚, the continuous-discrete 

extended Kalman filter is used [17]. 

 This paper considers an optimal control problem on 

the following form 

 

min
𝑥,𝑢

  φ = ∫ ℓ(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡))
𝑡𝑘+𝑇

𝑡𝑘

d𝑡 (9𝑎) 

Figure 3. Experimental data together with the estimated heat load, air temperature, and return water temperature by the model. 

The greyed-out periods in the secondgraph indicates periods where the return temperature is disregarded, because the 

observations do not represent the actual return temperature 



𝑠. 𝑡.       𝒙(𝑡𝑘) = 𝒙(0)                             (9𝑏) 

�̇�(𝑡) = 𝑓(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)) (9𝑐) 
𝑢𝑚𝑖𝑛(𝑡) ≤ 𝑢(𝑡) ≤ 𝑢max(𝑡) (9𝑑) 
𝑇min(𝑡) ≤ 𝑇𝑖(𝑡) ≤ 𝑇max(𝑡) (9𝑒) 

 

where T is the prediction and control horizon, ℓ is the 

cost function, and 𝑓(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)) is the model 

equations in Eq. (5). 

3.1 Discrete-time approximation of the optimal 
control problem 

 To make the optimal control problem in Eq. (9) 

numerically tractable, we propose a multiple shooting 

method to discretise the problem. Multiple shooting is a 

simultaneous method in the sense that the state variables 

also are a part of the optimisation problem. 

The problem is discretised in the sense that the 

system consider 𝑥 at discrete time points 𝑡𝑘, 𝑡𝑘+1, …,  

𝑡𝑘+𝑁 starting from the initial time 𝑡𝑘 till 𝑡𝑘 + 𝑇. Now, 

define a function ϕ(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡)) that computes the 

solution to the following initial value problem 

 

�̇�(𝑡) = 𝑓(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡))                    (10𝑎) 
𝒙(𝑡𝑘) = 𝒙𝑘  ,  (initial condition)   (10𝑏) 

 

at time 𝑡𝑘+1. Hence, ϕ(𝒙(𝑡𝑘), 𝑢(𝑡), 𝒅(𝑡)) = 𝒙(𝑡𝑘+1) is 

a function that integrates the system forward to the next 

time instance given the input and disturbances in the 

time interval [𝑡𝑘, 𝑡𝑘+1[. To simplify the optimisation 

problem, we assume that the set-points, 𝑢(𝑡), and the 

disturbances, 𝑑(𝑡), are piece-wise constant in each time 

interval [𝑡𝑘, 𝑡𝑘+1[ 

 

𝑢(𝑡) = 𝑢𝑘 ,  𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1[ (11𝑎) 
𝒅(𝑡) = 𝒅𝑘 ,  𝑡 ∈ [𝑡𝑘 , 𝑡𝑘+1[ (11𝑏) 

 

The optimal control problem therefore simplifies to 

min
{𝒙}𝑘=1

𝑁 ,{𝒖}𝑘=0
𝑁−𝟏

  𝜑 = ∑ 𝐿𝑘(𝒙𝑘 , 𝑢𝑘 , 𝒅𝑘)

𝑁−1

𝑘=0

(12𝑎) 

𝑠. 𝑡.        𝒙𝑘 = 𝒙(0)                          (12𝑏) 
𝒙𝑘+𝟏 = 𝜙(𝒙𝑘 , 𝑢𝑘 , 𝒅𝑘) (12𝑐) 

𝑢𝑚𝑖𝑛,𝑘 ≤ 𝑢𝑘 ≤ 𝑢max,𝑘               (12𝑑) 
𝑇min,k ≤ 𝑇𝑖,𝑘 ≤ 𝑇max,k            (12𝑒) 

 

In the above, 

𝐿𝑘 = ∫ ℓ(𝒙(𝑡), 𝑢𝑘 , 𝒅𝑘)d𝑡
𝑡𝑘+1

𝑡𝑘

  (13) 

 

is the quadrature of 𝑥(𝑡) w.r.t ℓ in the time interval 

[𝑡𝑘, 𝑡𝑘+1]. 
 For numerical computation of the minimisation 

problem in Eq. (12), we use CasADi [18], which offers 

easy numerical implementation and automatic 

differentiation for optimal control problems. 

4 Simulation results 

 This section presents the results of two simulation 

studies. The first simulation investigates the flexibility 

of the building. The second simulation investigates the 

ability of the NMPC to minimise the economic 

operational costs of heating the building (here, the 

objective is related to the minimisation of return 

temperature to the district heating, hence to the 

minimisation of penalty fees due to high return 

temperature to the grid). We use the Euler-Maruyama 

simulation scheme to simulate from the SDE-model and 

Figure 4. A small simulation of thermostatic set-point control of the building using a price signal that reflects peak hours and 

displays flexibility. The controller keeps the heat usage to a minimum during peak hours when the heat is expensive. 



the continuous-discrete extended Kalman filter to 

reconstruct the system state. 

4.1 Simulation: Flexibility of the building 

 To investigate the flexibility of the building in a 

smart energy system, we use a cost function in the MPC 

that takes a price signal. In a flexibility setting, the price 

signal reflects how ''expensive'' it is to heat the building 

at any given time. We define the cost function as 

 

ℓ1(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡), 𝑠(𝑡))                                     

= 𝑐(𝑡)Φ(𝑡)(𝑇for − 𝑇ret(𝑡)) + 𝜌𝑠(𝑡) (14) 

 

where c is the price signal, s is a slack variable to 

soften the indoor air temperature constraints (to make 

the optimisation problem feasible outside of the 

constraints), and ρ is the slack penalty. Fig. 4 presents a 

simulation of the building model in Eq. (5) using the 

optimal control problem introduced in Section 3 with the 

cost function in Eq.(14). The control runs in a closed-

loop setting with the time between control inputs and the 

prediction horizon equal to one hour and 24 hours, 

respectively. Furthermore, the controller has access to 

the future weather disturbances. In the simulation, the 

heating price is simply designed in order to see the effect 

of the MPC. It is expensive at 100 DKK per kWh during 

peak hours in the mornings and evenings. The heat price 

is otherwise low at 10 DKK per kWh. As a result, the 

controller mainly heats outside peak hours and only does 

so if the indoor temperature gets too low. Due to the 

under-dimensioned heating system and the building's 

poor insulation level, the controller still needs to supply 

some heat during the peak hours to maintain the desired 

temperature. The results suggest that the building can 

supply some flexibility under these circumstances. 

However, considering that the outdoor temperature in 

Denmark can become even lower than in the present 

simulation, the building will have less flexibility in such 

situations. 

4.2 Simulation: Minimisation of operational 
costs by lowering return temperature 

 As a building owner in the Danish district heating, 

one pays an additional fee if the return temperature is 

high for two reasons. First, if the temperature difference 

is small, the mass flow rate needs to be higher. Second, 

high return temperature to the district heating sources 

decreases the production efficiency. The pricing scheme 

is very different between district heating areas. This 

holds for both the price of heat and the penalty for not 

cooling the return adequately. In the present analysis, we 

set it quite progressively, namely as follows: if the return 

temperature is above 40 °C, the heat price increases 2% 

per extra degree Kelvin of the return temperature. The 

cost-function where this is accounted for is 

 

ℓ2(𝒙(𝑡), 𝑢(𝑡), 𝒅(𝑡), 𝑠(𝑡), 𝑣(𝑡)) = 

𝑐(𝑡)𝛷(𝑡)(𝑇for − 𝑇ret(𝑡))(1 + 0.02𝑣(𝑡)) + 𝜌𝑠(𝑡) (15) 

 

where v is a slack variable that softens the upper 

constraint at 40 °C on the return temperature and the 

scalar 0.02 is the percent-wise increase in heat cost. 

Fig. 5 displays a simulation study of the building 

model in Eq. (5) using the cost function in Eq. (14). The 

figure also depicts a baseline, which uses a simple set-

point control that turns down the temperature during the 

Figure 5. A simulation study that compares a current standard set-point control in today’s buildings (Baseline) and the NMPC 

presented in this paper. The heat costs are constant at 0.71 DKK/kWh plus a penalty of 2% for each °C the return temperature is 

above 40 °C. Results suggest an economic reduction by around 10%. 



night and back on during the day. The baseline 

represents the current practice in most buildings using 

rule-based control: a fixed set-point pattern used every 

day. This experiment reflects the actual economic costs 

of operating the building together with the extra fee 

when the return temperature is too high. The results 

demonstrate the emphasis the controller puts on keeping 

the return temperature below 40 °C while supplying 

enough heat to comply with the constraints. The actual 

economic costs associated with each control strategy 

during the one simulated month are 4522.9 DKK and 

4066.6 DKK for the baseline and MPC, respectively. 

This points toward economic savings of around 10% by 

using the proposed control strategy. Much of this 

reduction is explained by the ability of the controller to 

lower the return temperature and avoid extra penalties, 

which account for 382.2 DKK and 89.5 DKK, 

respectively for the two strategies. Especially during the 

cold periods, where extra heat is needed, the economic 

savings are high. The total energy use is reduced from 

5891.4 kWh to 5742.5 kWh (around 2.5%) by the MPC, 

which comes from the ability of the MPC to lower the 

temperature closer to the constraints. This optimisation 

and the lower return temperature not only benefit the 

building operators, but also benefits the district heating 

operators by significantly decreasing the amount of heat 

loss in the district heating system. 

It should be stressed that these results apply only to 

the current settings and may vary according to different 

district heating areas and pricing schemes. Also, in a 

realistic setup with meteorological weather forecasts, 

building occupants, etc., the control performance may 

be affected. 

5 Conclusion 

 This article introduced a non-linear grey-box model 

describing the heat dynamics of an old school building. 

This model enabled us to predict and control the future 

evolution of temperatures and heating in the building. 

We presented a NMPC method and used it in a 

simulation study to cast light on the benefits. The results 

suggest that smart control of the heat supply unlocks the 

building's flexibility and supplies economic savings of 

up to 10% under a particular, but realistic, pricing 

scheme. The specific savings may vary depending on 

the district heating area since pricing schemes vary. 

Also, the controller had access to the actual future 

weather disturbances, which in a realistic setting must 

be replaced with weather forecasts potentially 

decreasing the savings. Future work involves 

implementation of the NMPC in the building and 

investigation of how well individual rooms behave 

under the simplified model [19]. 
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A B S T R A C T

This paper proposes non-linear autoregressive models with exogenous inputs to model the air temperature in
each room of a Danish school building connected to the local district heating network. To obtain satisfactory
models, the authors find it necessary to estimate the solar radiation effect as a function of the time of the day
using a B-spline basis expansion. Furthermore, this paper proposes a method for estimating the valve position
of the radiator thermostats in each room using modified Hermite polynomials to ensure monotonicity of the
estimated curve. The non-linearities require a modification in the estimation procedure: Some parameters
are estimated in an outer optimisation, while the usual regression parameters are estimated in an inner
optimisation. The models are able to simulate the temperature 24 h ahead with a root-mean-square-error
of the predictions between 0.25 ◦C and 0.6 ◦C. The models seem to capture the solar radiation gain in a
way aligned with expectations. The estimated thermostatic valve functions also seem to capture the important
variations of the individual room heat inputs.

1. Introduction

In Denmark, more than 65% of households are heated by district
heating [1]. It is standard practice to measure the heat consumption
for an individual household — to be able to bill each household for
its consumption. But for an individual room in a (large) building, the
heat each radiator emits is not known. Hence, room control relies only
on temperature measurements. It is an interesting and relevant task to
control a single room. Firstly, because rooms have different dynamics
due to differences in size and heating capacity and thus require differ-
ent treatment and control in order to keep them comfortably regulated.
Secondly, because occupants perceive the indoor climate individually
and therefore want individual settings in the rooms they use [2]. For
these reasons, it is desirable to control buildings on room level.

1.1. Literature review

Predictive room-level control obviously requires temperature-mod-
els of the individual rooms. However, the popular Resistor–Capacitor-
based models [3] are not possible to employ due to the missing knowl-
edge of the heat load on room-level. We are left, then, to use models
that relate less to physics. AutoRegressive with eXogenous input (ARX)
models are a popular class of models for time series modelling [4,5].
ARX models are a variant of AutoRegressive and Moving Average
(ARMA) models where the MA-part is left out and input-terms are

∗ Corresponding author.
E-mail addresses: chant@dtu.dk (C.A. Thilker), pbac@dtu.dk (P. Bacher), dcal@dtu.dk (D. Cali), hmad@dtu.dk (H. Madsen).

added [6]. Examples of applications are solar radiation forecasting [7],
wind power forecasting [8], and glucose level predictions [9]. For
thermal prediction of buildings, popular black-box models include ARX
and neural network models. The latter has received much attention
recently [10–16]. Standard Artificial Neural Networks (ANNs) are the
simplest kind of neural network model and Root Mean Square Error
(RMSE) between 0.77 and 0.9 are reported [10,11]. Long short-term
memory models, that are suitable neural networks for time series
predictions, are also studied intensively with various variations (e.g. in
combination with an error correction model or a convolutional neural
network) [13,14]. A combination of grey-box models with a neural
network to make correct prediction errors have also been done [12].
RMSE between 0.6 and 0.75 was reported. Conclusions regarding the
best kind of model is not unanimous, with some studies finding ARX
models performing [15] better and vice versa [16]. ARX models are in
general much simpler compared to neural networks making them more
robust toward overfitting and faster to fit [17,18]. Given time series
data of the system, the optimal set of parameters in linear ARX models
has a closed-form solution, equivalent to linear regression, which is fast
and robust to compute [6]. Sometimes, however, non-linear models
are necessary to sufficiently describe input effects due to their richer
solution structures compared to linear models [19].

https://doi.org/10.1016/j.egyai.2022.100165
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Neural network models can be thought of as (very high-dimensional)
non-linear variants of linear ARX models readily able to model non-
linearities. The present approach, however, use the low-dimensional
ARX models while including and isolating the non-linear contributions
in the model. The heat dynamics between the indoor and outdoor air
are well known to be linear [20,21], and therefore there is no need to
use non-linear models to capture this effect. However, the solar gain
can be very non-linear [22,23]. The proposed method isolates the non-
linearities to the solar gain using relatively few parameters compared
to neural network models. Thus, the presented approach keeps the
robustness and simplicity of the ARX model, while still modelling
non-linear effects. The few number of parameters and simple model
structure of the proposed ARX models impose and act as regularisation
in the model, which ensures robustness of the prediction capabilities.
ARX models are also readily used for control purposes.

In the present paper, it is described how important non-linearities
that affect the room air temperature can be modelled. The gain from
solar radiation is a significant source of heat in rooms. Solar radiation
forecasts are typically given as an average effect on a horizontal surface
during a time interval, i.e. in the units [W∕m2]. However, the solar gain
in rooms vary non-linearly throughout the day and is hence a non-linear
function of time [24,25]. Another non-linearity arises from the radiator
thermostats. A thermostat controls the valve (and mass flow rate in the
radiators) as a PI-controller. However, it is well-known that the map
from a measured temperature and set point to a valve state is a non-
linear function [26,27]. Even chaos in the valve dynamics has been
reported [28]. To model the entering non-linearities from the solar gain
and the thermostatic valve, functions are fitted to data using B-splines
and Hermite polynomials as basis functions.

1.2. Main contributions of the paper

This paper describes a method for estimating ARX-models where
the estimation problem is non-linear in the parameters. Conventional
methods cannot estimate parameters in such models, thus, the proposed
method generalises the identification procedure for ARX models. Ap-
plying the method for indoor air temperature models enables us to
estimate nonlinear effects such as varying solar radiation gain and heat
inlet from the heating system in each room. The room air tempera-
ture models are able to predict the temperature over a long period
with different conditions and may enable smart predictive control on
room level. Results indicate that the models perform on par or better
compared to the literature in terms of RMSE.

1.3. Structure and outline of the paper

Section 2 introduces the building and experimental setup carried
out to obtain the data. In Section 3, ARX models are introduced and
how to carry out the variable transformation and parameter estimation.
Next, Section 4 introduces B-splines and Hermite polynomials for data
fitting and explains how to use them for modelling inputs in the ARX
models. Section 5 showcases the results from fitting ARX models to the
individual room air temperatures of a Danish school building. Lastly,
Section 6 concludes and sums up the findings of the paper.

2. Case study: A Danish school building

This section presents the building and the experimental setup. Also,
it introduces and explains the problems related to operating the indoor
climate of the individual rooms and sets the stage for the rest of the
paper. It is identified how the following key heat gains of the room air
temperature to include in the models:

• The outdoor air temperature constantly affects the indoor air
temperature through walls and windows. The outer surfaces act as
a low-pass filter between the indoor and outdoor air temperature.

Fig. 1. A photograph of the building site.

Fig. 2. Floor plan of the school building.

• The solar gain may deliver significant amounts of energy to the
indoor air in short time periods by entering through windows and
heating floors, walls, furniture and other materials.

• The room radiators are the rooms’ main heating sources and are
controlled by a thermostatic valve that opens according to a given
set-point.

2.1. The building and rooms

The building, a school with three floors and a basement, is located
in Høje Taastrup, Denmark. The uppermost floor is a partly-refurbished
roof attic. A photo of the building is given in Fig. 1. Fig. 2 shows a
floor plan of the building. It has 10 classrooms while fewer rooms are
hallways, storage rooms, toilets, and teacher’s rooms. The following
paragraph gives an overview of the basic properties of the building
here. For more technical details, the reader is referred to Bruun [29],
Lex et al. [30].

The building was built in 1929 and thus is not insulated according to
modern standards. The facade and internal walls consist of solid bricks.
The windows have wooden frames and double-paned low-E glazings.
Floors are made from wood joists and the roof is partly uninsulated and
partly insulated slate roof. The building is connected to the local district
heating (DH) system. The building uses district heating for domestic hot
water and space heating. For this building, the space heating is a sep-
arate water-based circuit with dedicated pumps. Radiators of different
types (cast-iron, panel convectors, plane conductors) with individual
thermostats deliver the heat in the individual rooms. Each radiator has
an individual thermostatic valve that automatically and individually
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regulates the water flow into the radiator unit to maintain a certain air
temperature, and can be remotely controlled by temperature set-points.
To measure the room air temperature, each room is equipped with an
air temperature sensor, placed somewhere on the inner wall in around
2–3 m height.

2.2. Some room modelling problems

Since radiators do not heat up the room in a spacial uniform man-
ner, the measured room air temperature is only representative for the
air close to the sensor. There is thus a temperature difference between
the air temperature close to the thermostat and measured temperature
by the sensor on the wall. Thus, the measured room temperature may
react very differently to set-point increases based on room geometry,
room size, air circulation, number and placement of radiators and
thermostats etc. Such factors support the need for individual room
air temperature models. Due to the many complicated physical factors
related to modelling the thermostatic behaviour, a data-driven method
is proposed using interpolating polynomials to describe the state of the
radiator valves as a function of the room air temperature and the room
set-point.

Another significant challenge on room level arises from the solar
gain. The sun radiates large amounts of energy to rooms in buildings,
which leads to a fast increase in the indoor air temperature [31].
It is thus important to model the solar gain in thermal models of
buildings [32]. The solar gain pattern is individual for each room due to
the individual room and window sizes and different navigational orien-
tations of the windows. Furthermore, the solar gain changes throughout
the day as the sun traverses the sky (due to Earth’s rotation around
itself), which is difficult to describe using regular ARX models. To
describe the time-varying solar gain in each room, this paper propose
a data-driven approach using B-splines as a basis expansion [33].

2.3. The experiment and data

Each room has been equipped with a sensor, which measures the
indoor air temperature. The accuracy of the measurements are ±0.2 ◦C
and are taken in resolution of 0.1 ◦C. All radiators in the rooms are
also equipped with smart thermostats, where the operators can read
and write set-points in ◦C. Sensors located in buildings central heating
system measure the total heat load of the building and the forward
temperature. See Table 1 for an overivew of the experimental data.

The experiment was designed to produce dynamical responses from
the rooms to easier learn the thermal dynamics. The experiment lasted
from the 1st of March, 2021, through the 27th of March 27, 2021,
during which the school was only partly occupied (due to covid-19) but
most rooms were used. During the experiment, individual and indepen-
dent set-points were sent to each room. However, different schedules
were used during day- and night time, such that the temperature was
more comfortable during occupation times. The measured signals for
each room are: the indoor air temperature, 𝑇i,𝑡, and the thermostatic
set-point, 𝑇set,𝑡. The forward temperature of the space heating water
in the building was set constant at 60 ◦C. The ventilation system was
operating at a constant rate with inlet temperature set-point between
20 and 24 ◦C. The weather data is from a local weather station and is
provided by the Danish Meteorological Institute.

3. ARX-models for dynamical systems

This section introduces ARX models for modelling dynamical sys-
tems. In linear ARX models, the optimal parameters are given by
a closed-form solution to a linear regression problem. However, the
closed-form solution exists only for models that are linear in the pa-
rameters. This section addresses this problem and proposes a method
for estimating parameters that appear non-linearly in ARX models.

Table 1
Data interpretation.

Name Quantity Unit

𝑇 𝑗i,𝑡 Indoor air temperature in room 𝑗 [◦C]
𝑇 for
𝑡 Building supply temperature [◦C]
𝑇 set
𝑗,𝑡 Temperature set-point in room 𝑗 [◦C]
𝐼𝑡 Global solar radiation [W/m2]
𝑇 a
𝑡 Outdoor air temperature [◦C]

3.1. Introduction to ARX models

Let {𝑌𝑡; 𝑡 ∈ N}, 𝑌𝑡 ∈ Y ⊆ R, be a stochastic process and let the
time series 𝒚𝑁 =

(
𝑦1, 𝑦2,… , 𝑦𝑁

)⊤ be a realisation of 𝑁 consecutive
observations of 𝑌𝑡. Let 𝑿𝑁 =

{
𝒙𝑖
}𝑁
𝑖=1, 𝒙𝑡 = (𝑥1,𝑡,… , 𝑥𝑁𝑥 ,𝑡)

⊤ ∈ X𝑁𝑥 ⊆ R𝑁𝑥
be a vector time series containing the inputs to the system associated
with the realisation. An ARX model of order 𝑀 has the form

𝜑(B)𝑌𝑡 = 𝜷(B)⊤𝒙𝑡 + 𝜀𝑡 , (1)

where 𝜑(B) = 1 + 𝜑1B + 𝜑2B2 + ⋯ + 𝜑𝑀B𝑀 is a polynomial in the
back shift operator B, B𝑘𝑌𝑡 = 𝑌𝑡−𝑘. 𝜷(B)⊤ = (𝛽1(B), 𝛽2(B),… , 𝛽𝑁𝑥 (B)) is
a vector with back-shift polynomials where the 𝑖’th polynomial

𝛽𝑖(B) = 𝛽𝑖,1B + 𝛽𝑖,2B2 +⋯ + 𝛽𝑖,𝑀B𝑀 , 𝑖 = 1,… , 𝑁𝑥 (2)

is associated with the 𝑖’th input. {𝜀𝑡; 𝑡 ∈ N} is a white noise process
where 𝜀𝑡 ∼ 𝑁(0, 𝜎2) is i.i.d. Now, let 𝜷𝑖 = {𝛽𝑖,𝑚}𝑀𝑚=1 be the set of
coefficients in the 𝑖’th back-shift polynomial. Then {𝜑𝑖}𝑀𝑖=1 and {𝜷 𝑖}

𝑁𝑥
𝑖=1

are regression coefficients in the ARX model in (1). Isolating 𝑌𝑡,

𝑌𝑡 =
𝑀∑
𝑚=1

−𝜑𝑚B𝑚𝑌𝑡 +
𝑁𝑥∑
𝑖=1

𝛽𝑖(B)𝑥𝑖,𝑡 + 𝜀𝑡 (3)

we obtain the system on a regression form. Then the optimal set of
parameters in Eq. (3) when minimising the sum of squared errors is
given by the closed form solution [6]

({�̂�𝑖}𝑀𝑖=1, {�̂�𝑖}
𝑁𝑥
𝑖=1) = arg min

𝜑1 ,…,𝜑𝑀 ,𝜷1 ,…,𝜷𝑁𝑥

𝑁∑
𝑖=1

𝜀2𝑖 =

(𝑿(𝒚𝑁 ,𝑿𝑁 )⊤𝑿(𝒚𝑁 ,𝑿𝑁 ))−1(𝑿(𝒚𝑁 ,𝑿𝑁 )⊤𝒚𝑁 ) ,

(4)

where 𝑿 ∶ Y𝑁 ×X𝑁×𝑁𝑥 ↦ R𝑁×𝑀(𝑁𝑥+1) is the so-called design matrix of
Eq. (1), where each row constitute a time instance of Eq. (3).

3.2. Parameter estimation in ARX models

The overall goal of the parameter estimation procedure is to find
the set of parameters that minimises the sum of squared residuals (as
in Eq. (4)),
𝑁∑
𝑖=1

(𝑦𝑖 − �̂�𝑖)2 =
𝑁∑
𝑖=1

�̂�2𝑖 . (5)

Therefore, the central objective in order to enable us to minimise (5)
is to evaluate the squared residuals. Then, a numerical optimisation
routine may minimise the squared residuals w.r.t. the model param-
eters. Since our ARX model includes parameters that are non-linearly
coupled (e.g. some regression coefficients may depend non-linearly on
some parameters 𝜽tr , i.e. 𝛽𝑖,𝑚(𝜽tr )), the closed-form solution (4) cannot
be evaluated directly. Instead, to evaluate the sum of squared residuals
(5), the paper propose the following two-stage procedure:

• Transformation stage: Here, transform the regressors such that
they appear linearly in the ARX model (given the set of trans-
formation variables).

• Regression stage: Here, insert the transformed regressors into the
regression form in (3) to compute the regression coefficients using
(4), which afterwards allows us to evaluate the sum of squared
residuals.
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Performing the two above steps returns the sum of squared residuals,
which may be minimised by a numerical optimisation routine to find
the optimal set of parameters. This reduces the size of the numerical
optimisation to a subset of the model parameters compared to letting
all parameters be optimised by numerical means.

3.2.1. Step one: Transformation stage
The regular ARX-model in (1) is linear in the regressor coefficients

and does not directly allow terms that are non-linear in the parameters.
In order to include non-linear terms in the ARX model, the input
variables are transformed using a desired non-linear transformation
needed in the model. Let 𝑼 𝑡 = (𝒖1,𝑡,… , 𝒖𝑁𝑥 ,𝑡)

⊤ ∈ U𝑁×𝑁𝑥 be the ’’raw’’
input to the model, e.g. horizontal global solar radiation. Then, define
the transformed input variables by

𝑥𝑖,𝑡 = ℎ𝑖(𝑢𝑖,𝑡, 𝑦𝑡, 𝑡,𝜽tr ) , 𝑖 = 1,… , 𝑁𝑥 , (6)

where 𝜽tr ∈ Ptr ⊆ R𝑁tr are input-specific parameters that may enter
into e.g. a basis expansion such as a spline basis, a polynomial basis, a
Fourier basis etc., ℎ𝑖 ∶ U × Y × R+ × Ptr ↦ X𝑖 ⊆ R is the (in general)
non-linear transformation for the 𝑖’th input. Note that the variable 𝑥𝑖,𝑡
defines a new regressor as a function of the input 𝑢𝑖,𝑡. But now, a regular
ARX model, which is linear in the new regressors, 𝑥𝑖,𝑡, can be written

𝜑(B)𝑌𝑡 = 𝜷(B)⊤𝒙𝑡 + 𝜀𝑡 ,

⟹ 𝑌𝑡 =
𝑀∑
𝑚=1

−𝜑𝑚B𝑚𝑌𝑡 +
𝑁𝑥∑
𝑖=1

𝛽𝑖(B)𝑥𝑖,𝑡 + 𝜀𝑡 ,

⟹ 𝑌𝑡 =
𝑀∑
𝑚=1

−𝜑𝑚B𝑚𝑌𝑡 +
𝑁𝑥∑
𝑖=1

𝑀∑
𝑚=1

𝛽𝑖,𝑚B𝑚𝑥𝑖,𝑡 + 𝜀𝑡 .

(7)

where 𝒙𝑡 = (𝑥1,𝑡,… , 𝑥𝑁𝑥 ,𝑡)
⊤. Note that if ℎ𝑖 does not depend on any

parameters, i.e. if 𝜽tr = ∅, the model simplifies to a regular ARX model
that is linear in the regression coefficients.

3.2.2. Step two: Parameter estimation in the transformed regression vari-
ables

If one writes (7) for all observations, 𝑦𝑡, it may be write on the
following matrix–vector form

𝒀 𝑁 = 𝑿(𝜽tr ;𝑿𝑁 , 𝒚𝑁 )𝜽reg + 𝜺𝑁 , (8)

where 𝑿 ∶ Ptr×X𝑁×𝑁𝑥 ×Y𝑁 ↦ X𝑁×𝑀(𝑁𝑥+1)
𝑚 , 𝑿𝑁 = (𝒙1,𝒙2,… ,𝒙𝑁 )⊤, is a

function that returns the design matrix of the linear regression problem
in (7) as a function of 𝜽tr . Eq. (8) is now linear in the coefficients
{𝜑𝑚}𝑀𝑚=1 and {𝜷𝑖}

𝑁𝑥
𝑖=1. It can then be interpreted as a linear regression

problem with 𝜽reg = (−𝜑1,… ,−𝜑𝑀 , 𝛽1,1,… , 𝛽𝑁𝑥 ,𝑀 )⊤ ∈ Preg ⊆ R𝑀(𝑁𝑥+1)

as the regression coefficients and 𝑦𝑖 and 𝒙𝑖 as regressors.
Eq. (8) appears as a linear regression problem w.r.t. 𝜽reg. It is

immediately evident that the design matrix depends on 𝜽tr . There-
fore, consider the case where 𝜽tr is given and fixed, then the optimal
estimator of 𝜽reg when minimising the sum of squared residuals in (4) is

�̂�reg(𝜽tr ) =
(
𝑿(𝜽tr )⊤𝑿(𝜽tr )

)−1 (𝑿(𝜽tr )⊤𝒀
)

(9)

where 𝑿(𝜽tr ) = 𝑿(𝜽tr ;𝑿𝑁 , 𝒚𝑁 ) is simply a short-hand notation.

3.2.3. Optimisation of transformation parameters
The above implies that for each given value of 𝜽tr , the optimal

set of 𝜽reg is given in a closed form. With 𝜽tr and 𝜽reg at hand, the
sum of squared residuals can be evaluated. Thus, one can write a
function alone in 𝜽tr , which 1) transforms the regressors, 2) solves the
arising linear regression problem, and 3) evaluates the sum of squared
residuals. The optimisation problem in the transformation variables
become:

�̂�tr = arg min
𝜽tr

𝑁∑
𝑖=1

�̂�(𝜽tr )2𝑖 (10)

where 𝜀(𝜽tr )𝑖 is the 𝑖’th prediction error as a function of 𝜽tr . Any
numerical optimiser may be used to solve this problem. Practically, is
done by defining a function that takes as input 𝜽tr , computes 𝜽reg, and
in turn computes and returns the sum of squared errors. Algorithm 1
outlines the framework for evaluating (5). The function is fed into a
numerical optimiser. The ipopt solver through Python was used.

Algorithm 1 Evaluation of sum of squared residuals
require: 𝜽tr , 𝒚𝑁 , 𝑼𝑁

given 𝜽tr , 𝒚𝑁 , and 𝑼𝑁 , compute transformed input variables, 𝑥𝑖,𝑡, and
construct design matrix 𝑿 = 𝑿(𝜽tr ,𝑿𝑁 , 𝒚𝑁 )

compute regression variables �̂�reg = (𝑿⊤𝑿)−1(𝑿⊤𝒚𝑁 )

compute sum of squared residuals, SSE =
∑
𝑖 𝜀

2
𝑖 = (𝒚𝑁 −𝑿�̂�reg)⊤(𝒚𝑁 −

𝑿�̂�reg)

return SSE

4. Curve estimation and interpolation using B-splines and Hermite
polynomials

This section introduces the modelling techniques applied for mod-
elling non-linear effects to expand inputs and parameters into basis
functions. Curve fitting using splines or polynomials is usually a prob-
lem of estimating coefficients to basis functions. The basis functions
typically form a linear function space. The goal of the estimation is
to find the element from this space, 𝒙, that minimises some distance
between 𝒙 and the data points. This section shows how to model the
solar radiation and the thermostatic valve function using B-splines and
Hermite-polynomials expansion basis functions, respectively [34].

4.1. de Boor B-splines

Due to the properties of B-splines, they have proved useful in many
data fitting applications [35–37]. de Boor B-splines [38] are defined
on a finite interval [𝑎, 𝑏] ⊆ R by a recursion formula via a set of
control points 𝛥 ∶ 𝑎 = 𝑡0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑁𝑐 = 𝑏 and a polynomial
degree 𝑘. This uniquely defines a set of non-decreasing knot placements
𝑎 = 𝑧0 ≤ 𝑧1 ≤ ⋯ ≤ 𝑧𝑁𝑐+𝑘+1 = 𝑏, where the 𝑖’th B-spline of order 𝑘 is
given by

𝐵𝑖,𝑘 =
𝑧 − 𝑧𝑖
𝑧𝑖+𝑘 − 𝑧𝑖

𝐵𝑖,𝑘−1 +
𝑧𝑖+𝑘+1 − 𝑧
𝑧𝑖+𝑘+1 − 𝑧𝑖+1

𝐵𝑖+1,𝑘−1 , (11)

where 𝐵𝑖,0(𝑧) = 𝜒[𝑧𝑖 ,𝑧𝑖+1[(𝑧). Fig. 3(a) shows a set of six fourth order
de Boor B-splines with equidistant control points 𝛥 = (0, 1, 2, 3) on the
domain [0, 3]. The estimation problem then comes down to estimating
the scaling coefficients in a linear combination of basis B-splines to
form the estimated function.

4.1.1. Estimation of B-spline knot placements
In addition to the scaling coefficients, it is possible to optimise over

the placements of the control points. One strategy to place the control
points is to put them according to the quantiles of the data. This way,
the control points are put according to the amount of data in the state
space. This strategy, however, does not account for the amount of
curvature of the true function. By freely optimising the control point
placements, splines are able to ’’move closer’’ in parts of their domain
where more fluctuating and fast-changing dynamics occur. Define the
parameters 𝝉 = {𝜏𝑘}

𝑁𝑐−2
𝑘=0 as the distances between interior knots 𝑡𝑖 and

𝑡𝑖+1 for 𝑘 = 0,… , 𝑁𝑐 − 2 (minus two comes from the last distance
being uniquely given by the first 𝑁𝑐 − 1 distances). Fig. 3(b) shows
the de Boor B-splines as in Fig. 3(a), where now the control points are
𝛥 = (0, 1∕2, 1, 3). By moving the two central knots to the left in the
domain, the ’’density’’ of the spline variation has also moved. This can
be useful to capture large curvatures of the data.
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Fig. 3. de Boor’s B-splines with uniform and non-uniform knot placements.

4.2. Estimation of the solar gain using B-splines

The solar radiation is very fluctuating and is governed by seasonal,
diurnal, and hourly variations [39]. It becomes even more complex
when estimating the solar gain of a single room of a building since
it depends much on the size and orientation of the window(s) of the
room. It is very common to estimate models with a constant solar gain
parameter e.g. on the form

𝛽1(B)𝐼𝑡 = 𝛽1,1𝐼𝑡−1 + 𝛽1,2𝐼𝑡−2 +⋯ + 𝛽1,𝑀𝐼𝑡−𝑀 , (12)

where 𝐼𝑡 is the global solar radiation (typically given by a third party
source) at time 𝑡 and {𝛽1,𝑚}𝑀𝑚=1 are time-independent parameters. As
an example, imagine a room with a single window pointing toward
east. In that case, solar radiation enters the room in the morning and
disappears as the sun travels around south on the sky. The above
model formulation (12) is not able to catch such variable gains. Instead,
one can expand the coefficients in (12) in a basis formed by a linear
combination of B-splines and define a transformed input variable by
the expansion

𝑥𝐼,𝑡 = ℎ𝐼 (𝐼𝑡, 𝑡,𝜶, 𝝉) = (𝛼1𝐵𝝉
1 (𝑡) + 𝛼2𝐵

𝝉
2 (𝑡) +⋯ + 𝛼𝑁𝑐+𝑘𝐵

𝝉
𝑁𝑐+𝑘

(𝑡))𝐼𝑡 , (13)

where 𝐵𝝉
𝑛 (𝑡) is the 𝑛’th B-spline basis function evaluated at time 𝑡 with

given knot displacements 𝝉. 𝜶 = {𝛼𝑖}
𝑁𝑐+𝑘
𝑖=1 is the associated basis spline

coefficients. Here,𝑁𝑐 is a tuning paratemeter set by the user. The model
in (12) can thus be expanded to

𝛽1(B)𝑥𝐼,𝑡 =
𝑀∑
𝑚=1

𝛽1,𝑚ℎ𝐼 (𝐼𝑡−𝑚, 𝑡 − 𝑚,𝜶, 𝝉) . (14)

Fig. 4. The Hermite basis functions as given in Fritsch and Carlson [40] on the interval
[𝑎, 𝑏] = [0, 1].

Given 𝜶 and 𝝉, Eq. (14) is linear in the transformed regressors. Thus,
𝜶 and 𝝉 belong to the parameters related to the transformed regressors
𝜽tr , and {𝛽1,𝑚}𝑀𝑚=1 are the regression coefficients.

4.3. Estimation of the thermostatic control function using Hermite polyno-
mials

Thilker et al. [41] propose the following function to describe the
valve state of a radiator as a function of the measured room tempera-
ture and the thermostat set-point 𝑇 set

𝑡 ,

𝑓 valve
𝑡 = 1

1 + exp
(
−𝛼(𝑇 set

𝑡 + 𝑇offset − 𝑇 i
𝑡 )
) . (15)

This simple model is characterised by two parameters (𝛼, 𝑇offset) ∈
]0,∞[×R and has a relatively fixed shape that mimics the intuitive
behaviour of thermostats: It acts as a PI-controller, which opens when it
is too cold and closes when it is too warm (in a continuous way). The
advantage of the model in Eq. (15) is its simplicity and few number
of parameters. The disadvantage, however, is that the function’s shape
might be too restrictive to capture the actual room-specific behaviour.
The thermostatic behaviour depends on many parameters such as room
size, number of radiators, radiator placements etc. To simplify the com-
plicated thermostatic modelling while keeping the function reasonably
constrained, it is proposed to use a Hermite polynomial basis to fit a
curve to the valve states as a function of indoor air temperature and
the set-point.

In these settings, the estimation problem of the thermostatic valve
function comes down to estimating coefficients in a basis expansion.
But monotonicity in the solution is also required since it is natural to
think that the valve opens monotonically as the relative temperature
difference increases.

4.3.1. Cubic interpolation with Hermite polynomials
Let the following be given: an interval [𝑎, 𝑏] ⊂ R, function values at

the end points (𝑎, 𝑓 (𝑎)) and (𝑏, 𝑓 (𝑏)), and derivatives at the end points
𝑓 ′(𝑎) and 𝑓 ′(𝑏). Consider then the problem of finding a polynomial, 𝑃 ,
of degree three with 𝑃 (𝑎) = 𝑓 (𝑎), 𝑃 ′(𝑎) = 𝑓 ′(𝑎), 𝑃 (𝑏) = 𝑓 (𝑏), 𝑃 ′(𝑏) =
𝑓 ′(𝑏). A solution to this problem has the form [42]

𝑃 (𝑥) = 𝑓 (𝑎)𝐻1(𝑥) + 𝑓 (𝑏)𝐻2(𝑥) + 𝑓 ′(𝑎)𝐻3(𝑥) + 𝑓 ′(𝑏)𝐻4(𝑥) , (16)

where 𝐻𝑖 are the usual cubic Hermite basis functions (given in e.g.
Fritsch and Carlson [40]; see Fig. 4).

Consider now the partition 𝛥 ∶ 𝑎 = 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁𝑣 = 𝑏 over
the interval [𝑎, 𝑏] with associated function values and derivatives for
all partition points. This forms an interpolating polynomial between
each sub-interval [𝑥𝑖, 𝑥𝑖+1] by using the solution in (16). If one further
constrain the function values {𝑓𝑘}

𝑁𝑣
𝑘=1 to be monotonic increasing, 0 ≤
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Fig. 5. An illustration of the expanded basis formed by piece-wise Hermite interpo-
lations of the valve state function. Each interval of length 𝓁𝑖, 𝑖 = 1,… , 𝑁𝑣, consists
of cubic Hermite polynomials that interpolates the interval between function values.
The Hermite polynomials have been modified to be monotonic between the function
values, which makes the overall function monotonic due to the constraint 𝑓𝑖 ≤ 𝑓𝑖+1.

𝑓1 ≤ 𝑓2 ≤ ⋯ ≤ 𝑓𝑁𝑣 ≤ 1, a monotonic interpolation over the
entire interval [𝑎, 𝑏] is guaranteed. [40] describes an algorithm for
computing interpolating polynomials that are monotonic in each sub-
interval. However, data is usually given simply by (𝑥𝑖, 𝑓 (𝑥𝑖)), thus a
procedure to compute the derivatives at each partition point is also
needed. Algorithms for this also exists, see e.g. [40]. We can now
optimise over the partition placements and the associated function
values to estimate a monotonic increasing curve given by

𝑃 (𝑥) =𝑓𝑖𝐻1(𝑥) + 𝑓𝑖+1𝐻2(𝑥) + 𝑓 ′
𝑖𝐻3(𝑥) + 𝑓 ′

𝑖+1𝐻4(𝑥) ,

𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1[ .
(17)

To perform the piece-wise cubic interpolation, i.e. compute 𝑃 in
(17), the authors use PchipInterpolator from the SciPy li-
brary in Python. To optimise over the partition points, the lengths
of the sub-intervals by 𝓁𝑖 = 𝑥𝑖+1 − 𝑥𝑖 are defined as parameters.
Fig. 5 depicts and illustrates the ideas of this estimation scheme. The
parameters related to estimate the thermostatic valve function are
(𝓁1,… ,𝓁𝑁𝑣−2, 𝑓2,… , 𝑓𝑁𝑣−1) since the end points are fixed to 𝑓1 = 1
and 𝑓𝑁𝑣−1 = 0. The transformed regressors are

𝑥valve,𝑡 = ℎvalve(𝑇set,𝑡, 𝑦𝑡,𝓵,𝒇 ) = 𝑃𝓵,𝒇 (𝑦𝑡 − 𝑇set,𝑡)(𝑇for − 𝑦𝑡) , (18)

where 𝑃𝓵,𝒇 is given by (17), and the subscripts indicates the poly-
nomial’s dependence on the parameters. The term (𝑇for − 𝑦𝑡) is the
temperature difference between the supply (forward) water in the
heating system of the building and the room air temperature. This term
is then multiplied by ’’how open the valve in the radiator is’’. The
regression model related to the heat input becomes

𝛽2(B)𝑥valve,𝑡 =
𝑀∑
𝑚=1

𝛽2,𝑚ℎvalve(𝑇set,𝑡−𝑚, 𝑦𝑡−𝑚,𝓵,𝒇 ) . (19)

Again, given 𝓵 and 𝒇 , Eq. (19) is linear in the transformed regressors. 𝓵
and 𝒇 then belongs to 𝜽tr and {𝛽2,𝑚}𝑀𝑚=1 are the regression coefficients.

5. Modelling results

This section presents and discusses the modelling results and quan-
tifies their performance.

Fig. 6. The RMSE of the temperature predictions as a function of the prediction horizon
for the rooms. Most rooms reaches a point where the RMSE becomes rather flat after
6–8 h. The performance of the individual model varies a bit: a cluster of rooms whose
RMSE is significantly higher compared to the rest that constitute its own cluster.

5.1. The final non-linear ARX model

Based on the previous section, the following ARX model describes
the indoor air temperature, denoted 𝑦𝑡, based on inputs from the
outdoor air temperature, solar radiation, and radiators

𝜑(B)𝑌𝑡 =𝛽1(B)𝑥𝐼,𝑡 + 𝛽2(B)𝑥valve,𝑡 + 𝛽3(B)(𝑇𝑎,𝑡 − 𝑌𝑡) + 𝜀𝑡 ,

⟹ 𝑌𝑡 =
𝑀∑
𝑚=1

−𝜑𝑚B𝑚𝑦𝑡 +
𝑀∑
𝑚=1

𝛽1,𝑚B𝑚𝑥𝐼,𝑡

+
𝑀∑
𝑚=1

𝛽2,𝑚B𝑚𝑥valve,𝑡 +
𝑀∑
𝑚=1

𝛽3,𝑚B𝑚(𝑇𝑎,𝑡 − 𝑌𝑡) + 𝜀𝑡 .

(20)

The models are estimated using data sampled every 30 min. The
authors found that the order 𝑀 = 3 was optimal for almost all rooms
based on information criterions such as AIC or BIC (one room model
was optimal for 𝑀 = 2).

5.2. The estimation problem

We write up the optimisation problem as outlined in Section 3.

min
𝜽tr

𝑁∑
𝑖=1

�̂�(𝜽tr )2𝑖 (21a)

s.t. 𝜽tr =
[
𝜶⊤, 𝝉⊤,𝒇⊤,𝓵⊤

]⊤ (21b)

𝑨𝜽tr ≤ 𝒃 , (21c)

where the sum in (21a) is computed by Algorithm 1. The in-equality
constraints 𝑨𝜽tr ≤ 𝒃 specifies potential constraints that might be needed
on the parameters. For instance, the valve function values are required

to be monotonically decreasing, 𝑓𝑖 ≥ 𝑓𝑖+1 ⟹
[
−1 1

] [ 𝑓𝑖
𝑓𝑖+1

]
≤

0. Small minimal distances between knot points in the B-spline and
Hermite representations are also formulated as constraints. Keep in
mind that the optimisation problem is not necessarily convex and thus
a numerical solver may find local optimal solutions. However, the
authors did not find that the solution was sensitive to variations in the
initial condition.

5.3. Room air temperature model validation

Fig. 6 shows the RMSE of the individual room air models for each
room as a function of the prediction horizon. For day-ahead predictions,
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Fig. 7. Modelling results of room C0.06.

the rooms deliver an average RMSE of around 0.4◦ C with the highest
being 0.6◦ C and the lowest being 0.25◦ C. Most rooms lie in the
range of 0.25◦ C-0.45◦ C. However, four rooms seem to form a cluster
that performs worse compared to the rest. This section investigates the
resulting models of three of the rooms. The rest is omitted due to an
otherwise large space use.

5.3.1. Room C0.06
Fig. 7 shows the results related to the model of room C0.06. To

present an example of data and a model simulation to get an intuition
of the forecasting abilities, Fig. 7(a) shows a multi-step simulation of
the model for the room. Based on the first four days, where the set-
point is constant, the model seems to catch the offset of the measured
room temperature and the thermostat set-point well. Also, the model
does a proper job at catching the exponential decay and increase, when
the set-point is lowered or raised. However, there seems to be some
more random dynamics where the model struggles; around day 10, the
temperature drops much faster than predicted and around day 15/16,
the temperature suddenly increases. These random dynamics may be
due to occupancy. Lastly, it is also worth noting that the model seems to
be ’’stable’’ in time; it does not drift away from the measured trajectory.

Fig. 7(b) displays the estimated average solar gain during a day
based on the estimated B-spline representation. The shape of the es-
timated curve is large during the morning hours and close to zero
otherwise. This indicates that the sun has no influence in the afternoon,
which is in line with the fact that the windows point toward east and
only receives sun during the morning (see Fig. 2).

The estimated thermostatic valve function is displayed in Fig. 7(c).
It suggests that the valve is almost fully open at 1◦C above the set-
point and closes fast below that point. Notice that the knots are centred
around the data and where the estimated curvature is high.

Figs. 7(d) and 7(e) show the histogram and autocorrelation of the
1-step prediction residuals. The shape of the histogram is close to

a Gaussian distribution, however its tails seem to be too wide. This
could be due to a non-constant variance in either time or space. To
model spacial variation in the error variance, a transformation might
be suitable to mitigate this. For time-varying variance, using e.g. a
variant of the generalised autoregressive conditional heteroskedasticity
(GARCH) model may be used [43]. The autocorrelation function shows
only a few small significant lags. These may be due to e.g. periodic
occupant behaviour or some other dynamics that are not captured
properly. However, the small magnitude of the significant lags indicates
that the model captures the dynamics well overall.

5.3.2. Room C0.08
Fig. 8 shows the results related to the model of room C0.08. Fig. 8(a)

shows a multi-step prediction of the model for the room. The dynamics
for this room have spikes in the measured temperature. Looking at
8(b), it is immediately evident, that the estimated solar gain peaks
in the afternoon. This also supports that the room windows point
toward west and sees the sun in the evening. After proving the exact
placement of the sensor in the room, it is found that the temperature
sensor is placed such that it is hit by direct solar radiation. Hence,
the measured air temperature does not fully reflect the actual room
air temperature during the evening. However, the model still does a
good job at catching these spikes. Looking at Fig. 6, C0.08 has a large
RMSE which may arise from the difficulty of predicting the spikes.
Nevertheless, the model overall seems to catch the temperature offset
well together with the exponential decays/increases.

The estimated thermostatic valve function is displayed in Fig. 8(c).
It suggests a more linear shape of the valve function compared to room
C0.06 with a small flat step around 0. This shape may correspond more
to the expected shape the valve state in an ideal thermostat [26]. Again
the control points are placed around the largest parts of the density and
where the largest estimated curvature is.
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Fig. 8. Modelling results of room C0.08.

Figs. 8(d) and 8(e) show the histogram and autocorrelation of the 1-
step prediction residuals. Again, the shape of the histogram is close to a
Gaussian distribution, but again the tails seem to widen the distribution
too much. The autocorrelation function shows essentially no significant
lags. The spikes in the temperature due to the solar radiation hitting
seems to be captured quite well, since it could have shown in the
autocorrelation if it was not the case. This implies that the model
captures the dynamics well overall.

5.3.3. Room C1.09
Fig. 9 presents the results from the model of room C1.09. Fig. 9(a)

shows a multi-step prediction for the room. Again, based on the first
four days, where the set-point is constant, the model seems to catch the
offset of the measured room temperature and the thermostat set-point
well. Also, the model does a good job at catching the exponential decay
and increase, when the set-point is lowered or raised. C1.09 seems to
be governed by less random dynamics compared to the other rooms,
which makes the fit better (in terms of RMSE, see Fig. 6). The reason
hereof is, first, that the room seems not to be occupied. Second, the
magnitude of the estimated average solar gain in Fig. 9(b) is small. This
small contribution of the solar radiation matches the fact that the room
points toward north and less to none solar radiation enters during the
day.

The estimated thermostatic valve function is displayed in Fig. 9(c).
Its shape is simple and suggests that the valves close completely at 1◦C
above the set-point and opens fast below that point. It could indicate
that the room temperature reaction to the set-point is consistent.

Figs. 9(d) and 9(e) show the histogram and autocorrelation of the
1-step prediction residuals respectively. The shape of the histogram is
more narrow compared to the other rooms (and again too large tails),
and the autocorrelation function is insignificant. The good fit may again
be due to the few disturbances and few random fluctuations in the room
temperature.

5.4. Discussion and summary

The overall picture from the results is, that the models are very
suitable for temperature predictions for many hours ahead. The RMSE
indicates that the performance is on par or better compared to the state-
of-the-art in the literature. And at the same time, their consistency in
terms of RMSE emphasises the robustness of the identification. The
indoor air temperature has significant diurnal variations, which are
captured well. The solar radiation effect is successfully isolated by the
model and is easily interpreted and is in alignment with physics. The
estimated valve functions turned out being significantly different for
each room, which confirms the need for room-specific air temperature
models in general. A possibly significant effect neglected in the mod-
els presented in this paper, is the heat transmission between rooms.
However, to model this effect requires all models to be estimated
simultaneously, and to identify all neighbouring rooms. This is left for
further studies. The flexibility of the valve function is visible from the
results and captures what seems to be sudden changes in the dynamics.
E.g. for room C1.09 where the valve closes fast when lowering the
set-point below the measured temperature.

5.4.1. Potential energy savings in optimal control
The presented ARX models do not have knowledge of the heat load

of the individual rooms. This makes direct control of the heat usage
infeasible. However, the second regression term in (20) describes the
increase in air temperature caused by the radiators, ∑𝑚 𝛽2,𝑚B𝑚𝑥valve,𝑡.
Therefore, instead of using the heat load in an objective function in an
economic MPC, the air temperature increase as in (20) may be used
instead. In such a setup, the room temperatures respond to a price
signal instead of the heat load. But this produces the same result under
the assumption that the air temperature increase and the heat load are
significantly correlated. A possible optimal control problem for each
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Fig. 9. Modelling results of room C1.09.

room could look like the following

min
𝑇set,𝑡+𝑘

𝑁−1∑
𝑘=0

𝑐𝑘 ⋅ 𝑥valve,𝑡+𝑘 (22a)

s.t. Eq. (20) (22b)

𝑇min,𝑡+𝑘+1 ≤ 𝑌𝑡+𝑘+1 ≤ 𝑇max,𝑡+𝑘+1 (22c)

where 𝑐𝑘 is a time-varying price signal, and 𝑇min,𝑡+𝑘+1 and 𝑇max,𝑡+𝑘+1
are upper and lower temperature bounds. In such a control setup,
the price in the objective function, 𝑐𝑘, is related to the temperature
increase in the room at time 𝑡𝑘, and not the heat usage. However,
due to the presumably high correlation between the two variables,
the optimal control sequences of the two problems may be highly
correlated. Further work on this control strategy is needed to clarify
its potential.

6. Conclusion and future work

This paper presented room air temperature models for individual
rooms of a Danish school building, and identified non-linearities in
the system arising from the time-varying solar gain and the heat input
from the radiators. It is proposed to model the varying solar gain
by a B-spline basis expansion and the thermostatic valve state using
Hermite-polynomials that guarantees monotonicity of the function. The
proposed ARX model for each room was consequently non-linear in
the parameters, which required us to perform a two-stage identification
procedure to estimate these parameters.

However, the individual room temperature models have no knowl-
edge of the their individual heat usage, which is necessary for e.g. peak
shaving or load shifting optimisation. To estimate and control the heat
consumption, one needs a model of the entire building (since the heat
consumption on building level is known). An interesting future work
direction could be toward using the individual room models to predict

the entire building heat load. With such a model, it is possible to enable
flexible control of the building while considering each room’s needs.

The individual room temperature models may also be used for
fault detection and live diagnostics. For instance, to identify if a room
responds slowly or not at all to a set-point increase. They can also be
used to identify outliers in operations, to identify e.g. bad occupant be-
haviour or if a valve breaks etc. In an online monitoring and reporting
setup, this may help alert building operators and identify what rooms to
pay attention to in order to improve the indoor climate in the building
and optimise operations.
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A B S T R A C T

We describe a method for embedding advanced weather disturbance models in model predictive control
(MPC) of energy consumption and climate management in buildings. The performance of certainty-equivalent
controllers such as conventional MPC for smart energy systems depends critically on accurate disturbance
forecasts. Commonly, meteorological forecasts are used to supply weather predictions. However, these are
generally not well suited for short-term forecasts. We show that an advanced physical and statistical description
of the disturbances can provide useful short-term disturbance forecasts. We investigate the case of controlling
the indoor air temperature of a simulated building using stochastic differential equations (SDEs) and certainty-
equivalent MPC using the novel short-term forecasting method. A Lamperti transformation of the data and
the models is an important contribution in making this SDE-based approach work. Simulation-based studies
suggest that significant improvements are available for the performance of certainty-equivalent MPC based on
short-term forecasts generated by the advanced disturbance model: Electricity savings of 5%–10% while at the
same time improving the indoor climate by reducing comfort violations by up to over 90%.

1. Introduction

It is a well known fact that the energy consumption from buildings
is high. On a global scale it is estimated that buildings consume more
than 30% of the total consumed energy, and in Europe it is estimated
to be more than 40% [1]. The high energy consumption creates a
significant potential for energy savings by optimising the use of energy
for heating and cooling in buildings, without compromising the quality
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E-mail addresses: chant@dtu.dk (C.A. Thilker), hmad@dtu.dk (H. Madsen), jbjo@dtu.dk (J.B. Jørgensen).

of the indoor climate. Given the many opportunities of model-based
control and optimisation of energy consumption in buildings, a vast
body of research is available that describes the algorithms [2–5]. MPC
has gained much success within many applications due to its simplicity,
intuitive use, ability to handle multivariate and constrained systems,
and the availability of algorithms and software for embedded as well
as cloud computing [6]. However, most of this literature assumes
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that the system and disturbance models are perfect or use compu-
tationally complicated algorithms, e.g. stochastic or robust MPC, to
handle uncertainties in these models. The main novelty in the present
paper is a nonlinear disturbance model based on stochastic differential
equations (SDEs) for embedded short-term forecasting in certainty-
equivalent model predictive control (MPC) algorithms for energy and
climate control in buildings. The proposed disturbance model is based
on SDEs and forecasts the solar radiation and ambient air temperature.
The model combines physical description of the climatic processes
together with more statistical data-driven models. Beside providing
accurate short-term forecasts, the model also has the advantage that
it fits naturally into the MPC model framework, which is also based on
SDEs.

Much research suggest that SDEs are very competitive models for
modelling dynamical and physical phenomena. They also inherently
describe the distributions and uncertainties of processes by e.g. solving
the Kolmogorov-equations. Knowledge about the uncertainty can be
useful for sensitive systems that need extra operational care. SDEs have
extensive applications in finance to model e.g. interest rates, security
markets and yields [7]. They are also successfully applied in the area
of probabilistic power production. Multiple complexity-varying SDE-
models for wind power generation forecasts have been introduced and
applied [8]. Furthermore, models for forecasting wind speed up to
24 h ahead using SDEs have been proposed [9]. Recent research also
indicates that SDEs are well suited for probabilistic solar radiation
forecasting [10,11], where first order systems proves to be sufficient.
However, such models relies centrally on external long-term forecasts
from supplied by external sources. Using the external forecasts, the
models in turn supplies probabilistic forecasts. The model proposed
here relies purely on local observations and is independent of external
parties.

1.1. Literature review

The inclusion of weather forecasts for building climate control
has been investigated on multiple occasions in the literature [12–18].
In general, the predictive control schemes outperform non-predictive
control forms, such as rule-based-and PID-control, due to their ability
to consider future disturbances. The solar radiation is an important
disturbance in rooms that are considered for temperature control [12].
The fluctuating dynamics of solar radiation and the large amount of en-
ergy it delivers, complicates the indoor temperature control in buildings
with windows. These complications and uncomfortable overheating can
in many cases be avoided or minimised by accounting for the preva-
lent solar radiation using simple transfer function or regression-based
models [12,13]. MPC for buildings using models for weather forecasts
reports to significantly reduce energy consumption and increase indoor
comfort [14], increase flexibility indicators [15–17] present thorough
reviews and recent applications of MPC for building climate control
systems based on meteorological weather forecasts. Here, many studies
consider perfect forecasts or simple sinusoidal simulations and do not
take uncertainties into account. Using stochastic MPC to overcome
uncertainties in the weather predictions for temperature regulation
in integrated room automation, significant potential energy savings
compared to rule-based control are reported [18]. Such simulation
results also suggest that stochastic MPC is superior to conventional
MPC for this kind of task due to its ability to account for uncertainties
in forecasts. However, it remains an open questions whether these
differences could be mitigated by tuning or by using better forecasts.
In particular, the critical importance of also including local weather
measurements for predictive control operations of modern building
climate control systems has been noticed [19–22]. An example is to
quantify the errors of the supplied meteorological weather forecast.
These errors can be used to improve predictions of the heat load and
enables better control performance [19]. More complex models based
on neural networks has also been developed and applied for building

climate control [15,20]. Results suggest that such models offer good ac-
curacy but lacks the ability to generalise to arbitrary prediction lengths
or different setups [21]. Comparisons between neural networks and
simple time series models have also been carried out. Results are not
one-sided as evidence of both linear time series methods and complex
neural networks perform better than the other [23,24]. However, it
is pointed out the potential performance gain of using such complex
methods does not appear to outweigh the additional development and
data acquisition efforts [22].

It is also common in the literature to use offset-free control [25–
28]. Such approaches have the advantage that they can integrate out a
constant unknown contribution of the disturbance and thereby achieve
offset-free control [29]. However, the disturbances are not modelled
and the integration has poor forecasting abilities for fast-changing
disturbances such as the weather.

The conclusion from the literature is that weather predictions in
MPC offer significant potential energy savings and comfort improve-
ment. In general, two categories of weather forecasting methods for
MPC arise. The first category consists of cases that use meteorological
weather forecasts. In the second category, models are developed to
forecast disturbances. Here, the dominating standard is to use black-box
related models that have no physical relation such as regression-based
or neural network models.

1.2. Main aim and organisation of the paper

The main aim of this paper is to introduce a general method for
embedding forecasts and disturbance models in model-based control.
We model the local weather disturbances using advanced models based
on SDEs that includes physical descriptions of the climatic processes.
Using these advanced forecasts in certainty equivalent MPC simulated
for multiple smart building models, this paper suggests that increased
performance of building climate control is available. We compare the
advanced forecasts to offset-free control, a standard method for dealing
with uncertainty in MPC [17,30], and to controllers using perfect
forecasts.

In Section 2 we introduce the mathematical notation and system
framework. Section 3 proposes the continuous-time stochastic distur-
bance models. Section 4 introduces the MPC framework and how
to incorporate the forecasts. Section 5 analyses the dynamics of the
smart buildings considered in this paper. In Section 6 we present and
discuss the simulation-based results, while the conclusion are provided
in Section 7.

2. Stochastic differential equations and the smart building model

In general, we seek a combined model for the smart building that in-
cludes a description of the disturbances. That is, we consider stochastic
differential equation (SDE) models, sometimes called grey-box models,
in the form

d𝒙(𝑡) = 𝑓𝑠(𝒙(𝑡), 𝒖(𝑡),𝒅(𝑡))d𝑡 + 𝑔𝑠(𝒙(𝑡), 𝒖(𝑡),𝒅(𝑡))d𝝎𝑠(𝑡) , (1a)

d𝒅(𝑡) = 𝑓𝑑 (𝒅(𝑡))d𝑡 + 𝑔𝑑 (𝒅(𝑡))d𝝎𝑑 (𝑡) , (1b)

𝒚𝑠(𝑡𝑘) = ℎ𝑠(𝒙(𝑡𝑘)) + 𝒗𝑠,𝑘 , (1c)

𝒚𝑑 (𝑡𝑘) = ℎ𝑑 (𝒅(𝑡𝑘)) + 𝒗𝑑,𝑘 , (1d)

where 𝒙, 𝒖, 𝒅 are the smart building system states, the input and
the disturbances respectively. 𝑓𝑠 and 𝑓𝑑 are the drift functions and
𝑔𝑠 and 𝑔𝑑 are the diffusion functions for the smart building system
and disturbances. 𝝎𝑠(𝑡) and 𝝎𝑑 (𝑡) are standard Brownian motions and
𝒗𝑠,𝑘 ∼ 𝑁(𝟎, 𝑅𝑠) and 𝒗𝑑,𝑘 ∼ 𝑁(𝟎, 𝑅𝑑 ) are the observation noises. Notice
the causality between the system model and the disturbance model.

The combined structure in (1) differs from the literature, where the
dominating standard is to employ meteorological forecasts as described
in Section 1.1 (i.e. no disturbance model). Offset-free control [30,31]
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Fig. 1. An illustration of the smart building components and their interactions. The
arrows indicate the positive direction of the heat flows.

is another method for dealing with non-modelled disturbances, also
frequently used in the literature for smart energy systems [25–27].
The idea is to replace (1b) with an integrating state, d𝜼(𝑡) = 𝐵𝑑d𝝎𝜂(𝑡),
that integrates and estimates the disturbances. This is limiting in two
ways, however. First, the number of integrating states cannot exceed
the number of independently observed system states – the system
otherwise becomes unobservable. Second, the forecasts supplied by the
integrators correspond to persistent forecasts, �̂�(𝑡) = �̂�(𝑡𝑘), 𝑡 ≥ 𝑡𝑘.

We shall further assume that 𝑓𝑠 and 𝑔𝑠 in (1a) for the smart buildings
are linear, and that 𝑔𝑠 is state-independent, i.e. we consider a linear
model on the form

𝑓𝑠(𝒙(𝑡), 𝒖(𝑡),𝒅(𝑡)) = 𝐴𝑐𝒙(𝑡) + 𝐵𝑐𝒖(𝑡) + 𝐸𝑐𝒅(𝑡) , (2a)

𝑔𝑠(𝒙(𝑡), 𝒖(𝑡),𝒅(𝑡)) = 𝐺𝑐 , (2b)

where 𝐴𝑐 , 𝐵𝑐 , 𝐸𝑐 and 𝐺𝑐 are the continuous-time state evolution, input,
disturbance and diffusion matrices.

2.1. Smart building model

The rest of this section introduces the components of the smart
building model in (1a) and (2a).

2.1.1. System states
This paper considers a model of the heat dynamics of a building

based on Andersen et al. [32] and Halvgaard et al. [2]. Fig. 1 shows
an illustration of the smart building model components and its heat
flows. The smart building model thus considers three system states:
the room air temperature, 𝑇𝑟, the floor temperature, 𝑇𝑓 , and the water
temperature, 𝑇𝑤. The smart building model states thus become

𝒙(𝑡) =
[
𝑇𝑟(𝑡), 𝑇𝑓 (𝑡), 𝑇𝑤(𝑡)

]𝑇 . (3)

We usually observe only the room air temperature, i.e. the floor and
water temperatures are hidden states. Furthermore, the observation
equation in (1c) is linear, ℎ𝑠(𝒙(𝑡𝑘)) = 𝐶𝒙(𝑡𝑘), with 𝐶 = [1, 0, 0]𝑇 .

2.1.2. Inputs
The manipulative variable for the smart building model in [2] is

simply the input power (in Watt) given to the compressor of the heat
pump, 𝑊ℎ𝑝, that is

𝑢(𝑡) = 𝑊ℎ𝑝(𝑡) . (4)

As we will show, the smart building model equipped with a heat
pump is governed by slow heating dynamics. A simpler model that
uses electrical heaters where the heat enters the room air directly
makes the room air respond to heat inputs much faster. In the results

section, we compare smart building models that use different heating
strategies where we combine electrical heaters and heat pumps as
well as electrical coolers (e.g. an air conditioner). The heat pump,
though, is more efficient (a factor 3) compared to the faster heating
devices, making it an attractive heating strategy. We shall compare the
following heating strategies

𝑢1(𝑡) = 𝑊𝑒ℎ(𝑡) , (5a)

𝑢2(𝑡) = 𝑊ℎ𝑝(𝑡) , (5b)

𝒖3(𝑡) =
[
𝑊ℎ𝑝(𝑡),𝑊𝑒ℎ(𝑡)

]𝑇 , (5c)

𝒖4(𝑡) =
[
𝑊ℎ𝑝(𝑡),𝑊𝑒ℎ(𝑡),𝑊𝑒𝑐 (𝑡)

]𝑇 , (5d)

where 𝑊𝑒ℎ is the input to electrical heaters and 𝑊𝑒𝑐 is the input to
the electrical coolers. We assume that the heat from both the electrical
heaters and coolers enters the room air directly and that they do not
accumulate any heat themselves. We disregard the third system state,
𝑇𝑤, for the building model that only considers electrical heaters, 𝑢1(𝑡) =
𝑊𝑒ℎ(𝑡).

2.2. Disturbances

As extensively reported by the literature [12,18,33], the important
disturbances acting on a building are the solar radiation, 𝜙, and the
ambient air temperature, 𝑇𝑎. The ambient air temperature affects the
indoor air temperature through the walls and windows. The solar
radiation affects the indoor air temperature by passing through the
windows and heating either the room air or floor and furniture. For
building climate control, the literature considers the solar radiation the
most influential disturbance for short-term purposes. This is due to the
large amount of energy it delivers and its considerably fast dynamics.
For smart buildings with photo-voltaic cells (PVs), the solar radiation
also determines the availability of harvested electricity. We shall not
consider this case. Thus, the important weather disturbance states in
(1) are

𝒅(𝑡) =
[
𝑇𝑎(𝑡), 𝜙(𝑡)

]𝑇 . (6)

𝑇𝑎(𝑡) is the ambient air temperature and 𝜙(𝑡) is the solar radiation on a
horizontal surface.

3. Disturbance modelling and forecasting

This section establishes the non-linear dynamical model for the
disturbances in (1b).

The behaviour of the weather in Denmark varies throughout the
year. Hence, in-homogeneous- or regime models for the weather are
required in the general case. To model breaks or sudden shifts in the
dynamics, often seen in finance [34], jump–diffusion processes can be
suitable. See Bemporad et al. [35] for an introduction to a framework
for fitting such models. To deal with this, we focus our attention on
March and assume that the weather behaviour is constant during this
month. In Denmark, March can be both warm and cold and typically
with much sun and is therefore an interesting month to consider.

3.1. The data

To formulate, identify and validate the statistical weather models
used in this paper, we use data from two weather stations located
in Værløse and Taastrup in Denmark. [36] thoroughly presents and
discusses the data gathering process and setup. The data are gathered
every hour for 7 consecutive years from February 1st 1967 through De-
cember 31st 1973. Table 1 gives a description of the weather elements
of the data, how they are observed, and the observation frequency.
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Table 1
Facts about the data and how it is measured. The cloud cover unit, okta, is defined according to [37] - okta equal to zero
is completely clear skies and okta equal to eight is completely overcast.

Attribute Notation Unit Measurement method

Cloud cover 𝜅 okta Measured once every hour
Diffuse radiation 𝐼𝐷 W/m2 Average of 6 independent observations during an hour
Direct radiation 𝐼𝑁 W/m2 Average of 6 independent observations during an hour
Net radiation 𝑅𝑛 W/m2 Average of 6 independent observations during an hour
Ambient air temperature 𝑇𝑎 ◦C Average of 6 independent observations during an hour

3.2. Weather model components

The weather disturbance model consists of 4 components:

• Cloud cover
• Global solar radiation
• Net radiation
• Ambient air temperature

The parameters for these model are available in [38] that develops,
presents and discusses these models in detail. The rest of the section
explains each weather model component and its importance regarding
building climate control.

3.2.1. Cloud cover
Important factors governing the energy levels and balances at the

surface of the Earth are significantly affected by the amount of cloud
cover. Global solar radiation is one such important example. The vari-
ations in global solar radiation are primarily due to absorption and
reflection of energy by clouds. Other mechanisms such as the amount
of water vapour, ozone, dust etc. also play a role. However, it is well
known that cloud cover plays the absolute most important role.

Due to the discrete cloud cover data, [39] and [40] show that a
discrete state–space Markov model is sufficient for modelling the cloud
cover, and furthermore that a homogeneous model could be suitable.
However, since we formulate the rest of the disturbance models as con-
tinuous state–space models it is mathematically more convenient and
consistent to choose an SDE-representation that fits into the framework
of (1). We choose a non-linear, mean-reversion process of the form

d𝜅(𝑡) =

drift
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜃(𝜅(𝑡)) (𝜇(𝜅(𝑡)) − 𝜅(𝑡))d𝑡+ 𝜎𝜅(𝑡)(1 − 𝜅(𝑡))𝑑𝜔𝜅 (𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
diffusion

, (7a)

where

𝜇(𝜅(𝑡)) =
exp(𝑃𝑛(𝜅(𝑡)))

1 + exp(𝑃𝑛(𝜅(𝑡)))
, (7b)

𝜃(𝜅(𝑡)) = 𝜃
√
𝜅(𝑡)(1 − 𝜅(𝑡)) . (7c)

𝜅 is the cloud cover state and 𝑃𝑛(⋅) is the linear combination of Legendre
polynomials till order 𝑛 = 7. The mathematical structure of the drift
allows the model to have multiple stationary points.

The term 𝜎𝜅(𝑡)(1−𝜅(𝑡)) ensures that the diffusion goes to zero in both
ends of the support and requires a transformation of the cloud cover
state into the state–space [0, 1]. Thilker [38] describes how to choose
this transformation. The diffusion term 𝜎𝜅(𝑡)(1 − 𝜅(𝑡)) is dependent on
the system state. Some of the difficulties and problems that are linked
with a state-dependent diffusion term are [11,41,42]:

• Predictions can be wrong/illegal if they go outside of the domain
of the process. This can happen due to the linearisation in the
continuous-discrete extended Kalman filter (CDEKF) and the nu-
merical implementation of the differential equation solver. To
apply filtering techniques in practice, a state-independent SDE is
much more robust.

• Simulation of the process has slower convergence rate (e.g. using
the Euler–Maruyama scheme) compared to a state-independent
diffusion process.

To overcome these problems, the Lamperti transformation offers a bi-
jective transformation of the process into a constant diffusion process
that lives in the domain of the entire real line, 𝜓 ∶ [0, 1] → R. Let
𝑍𝜅 (𝑡) = 𝜓(𝜅(𝑡)), then the Lamperti-transformed process has the simple
form

d𝑍𝜅 (𝑡) = 𝑓𝜓 (𝑍𝜅 (𝑡))d𝑡 + 𝜎𝜓d𝜔𝜅 (𝑡) , (8)

where 𝑓𝜓 is the drift function in the Lamperti domain. For an in-
troduction to the Lamperti transformation, see e.g. [41]. In (8), the
noise process is Gaussian, which makes computations such as e.g. confi-
dence intervals easy. Estimation, prediction and simulation take place
in the Lamperti domain and are subsequently transformed back into
the original cloud cover domain, 𝜓−1 ∶ R → [0, 1]. We estimate
the parameters in (7) by means of the maximum likelihood method
using the CDEKF [43,44]. The program CTSM-R is used to conduct
these computations of the parameter estimates [45]. Also, automatic
Lamperti transformation is being integrated into CTSM-R.

3.2.2. Global solar radiation
The term global solar radiation covers all the short-wave radiation

coming from the sun and hitting the surface of the Earth. The global
radiation is typically split into two contributions; the direct, 𝐼𝑁 , and
diffuse, 𝐼𝐷, radiation. The direct radiation is all the short-wave radi-
ation coming from the sun without hitting anything on its way. The
diffuse radiation, in contrast, is all the reflected short wave radiation,
e.g. from objects like dust, water vapour etc. in the atmosphere. The
global solar radiation is simply the total radiation (on a horizontal
plane),

𝜙(𝑡) = 𝐼𝑁 (𝑡) sin 𝛼(𝑡) + 𝐼𝐷(𝑡) . (9)

To model the global solar radiation, 𝜙, this paper performs non-
parametric local linear regression as a function of the solar height,
𝛼(𝑡), and the cloud cover okta. The estimator is then the solution to
the following weighed least squares problem

argmin
𝜙,𝛽

𝑁∑
𝑖=1

𝐾ℎ(𝛼𝑖, 𝛼0)
[
𝑦𝑖 − 𝜙 − 𝛽(𝛼0 − 𝛼𝑖)

]2 , (10)

where 𝜙 is the estimator, 𝛼0 is the given solar height and 𝐾ℎ(⋅, ⋅) is
the Gaussian kernel function acting as the weights. We employ leave-
one-out cross validation for selection of the band width, ℎ. [38] also
estimates a variance and auto correlation structure for the model in
(10).

3.2.3. Net radiation
It is well known that the so-called net radiation is necessary to

predict the ambient air temperature. The net radiation is the net input
of both short- and long-wave radiation at Earth’s surface and is the main
source of thermal energy to the ambient air. [46,47] explains this in
more detail and also show that a static model is sufficient. [48] suggests
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Fig. 2. An illustration of the dynamical model in (12). Each box represents a state
given by a temperature and heat capacity. The arrows indicate the direction in which
the energy is transferred.

a simple linear model that depends on the cloud cover, solar radiation
and solar height

𝑅𝑛(𝜅(𝑡), 𝜙(𝑡), 𝑡) = 𝐾𝜅 + 𝑘𝜅𝜙(𝑡) + 𝑘𝛼(𝑡)2 + 𝜖(𝑡) . (11)

The subscript 𝜅 in 𝐾𝜅 and 𝑘𝜅 indicates the parameters’ dependence on
the cloud cover. That is one parameter for each cloud cover okta, 𝜅.

3.2.4. Ambient air temperature
[49] describes and explains the fundamental relationships of surface

fluxes and the relationship between the net radiation and the ambient
air temperature. Briefly explained, the net radiation heats the surface
soil, which in turn heats up the ambient air near the surface. The time
lag between the net radiation and the ambient air temperature requires
a dynamical model and is well approximated by a simple second-order
model Thilker et al. [50]. It is well known that larger annual temper-
ature differences happen in the middle of large continents. However,
for countries surrounded by sea, the sea highly regulates the land
temperature due to the large heat capacity of water. Fig. 2 illustrates
this model that has the mathematical SDE representation [49]

𝐶𝑠d𝑇𝑠(𝑡) =
(

1
𝑅𝑠𝑎

(𝑇𝑎(𝑡) − 𝑇𝑠(𝑡))
)

d𝑡 + 𝜎𝑠d𝜔𝑠(𝑡) , (12a)

𝐶𝑎d𝑇𝑎(𝑡) =
(

1
𝑅𝑠𝑎

(𝑇𝑠(𝑡) − 𝑇𝑎(𝑡))

+ 1
𝑅𝑎∞

(𝑇∞ − 𝑇𝑎(𝑡)) + 𝑅𝑛(𝑡)
)

d𝑡 + 𝜎𝑎d𝜔𝑎(𝑡) , (12b)

𝑑𝑇𝑎 (𝑡𝑘) = 𝑇𝑎(𝑡𝑘) + 𝑣𝑇𝑎 ,𝑘 . (12c)

𝑇𝑠(𝑡) and 𝑇𝑎(𝑡) are the temperature of the surrounding sea and the
land air respectively. 𝑅𝑠𝑎 and 𝑅𝑎∞ are resistances against the heat flow
between the states. 𝐶𝑠 and 𝐶𝑎 are the heat capacities representing the
amount of heat the states contain. 𝑅𝑛 is the net radiation as in (11) and
drives the process, 𝑇∞ is a constant in- or outflow of heat to stabilise
the system, 𝜔𝑎 and 𝜔𝑠 are standard Brownian motions and 𝑣𝑇𝑎 ,𝑘 is i.i.d.
random observation noise. Again, we estimate the parameters in (12)
using a maximum likelihood method and use the CDEKF to evaluate
the likelihood function.

3.3. Combined disturbance model and forecasting scheme

Combining the individual climate models, the combined continuous
state–space, stochastic-dynamic disturbance model, (1b) and (1d) in

Algorithm 1 Disturbance Forecast Algorithm

require: 𝒚𝑑,𝑘 =
[
𝑑𝑇𝑎 ,𝑘, 𝑑𝜙,𝑘

]𝑇
, 𝒅𝑘−1|𝑘−1, 𝑃𝑇𝑎 ,𝑘−1|𝑘−1, 𝑡𝑘

Cloud cover predictions:
Given 𝑑𝜙,𝑘, calculate the cloud cover estimate �̂�𝑘|𝑘 as the most likely
to generate the observation 𝑑𝜙,𝑘.
Compute {�̂�𝑘+𝑖|𝑘}𝑁𝑖=0 using Eq. (7) with �̂�𝑘|𝑘 as initial condition.

Solar radiation predictions:
For each 𝑖 = 0,… , 𝑁 compute the solar radiation �̂�𝑘+𝑖|𝑘 =
𝐼𝑁,𝑘+𝑖 sin 𝛼(𝑡𝑘+𝑖) + 𝐼𝐷,𝑘+𝑖.

Net radiation predictions:
For each 𝑖 = 0,… , 𝑁 compute the net radiation �̂�𝑛,𝑘+𝑖|𝑘.

Ambient air temperature predictions:
Given 𝑑𝑇𝑎 ,𝑘, calculate the filtered estimate, �̂�𝑎,𝑘, and its covariance,
𝑃𝑇𝑎 ,𝑘|𝑘, using the CDEKF and the model in Eq. (12). Next, compute
the Kalman predictions �̂�𝑎,𝑘+𝑖|𝑘 for 𝑖 = 0,… , 𝑁 .

Let 𝒅𝑘+𝑖|𝑘 = [�̂�𝑎,𝑘+𝑖|𝑘, �̂�𝑘+𝑖|𝑘]𝑇 be the 𝑖’th disturbance prediction.

return {𝒅𝑘+𝑖|𝑘}𝑁𝑖=0, 𝑃𝑇𝑎 ,𝑘|𝑘

(1), gets the form:

Disturbance
model

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d𝑍𝜅 = 𝑓𝜓 (𝑍𝜅 )d𝑡 + 𝜎𝜓d𝜔𝜅
𝜅 = 𝜓−1(𝑍𝜅 )
𝜙 = 𝐼𝑁 (𝜅, 𝑡) + 𝐼𝐷(𝜅, 𝑡)
𝑅𝑛 = 𝑅𝑛(𝜅, 𝜙, 𝑡)
d𝑇𝑠 = 𝑓𝑇𝑠 (𝑇𝑎, 𝑇𝑠)d𝑡 + 𝜎𝑠d𝜔𝑠
d𝑇𝑎 = 𝑓𝑇𝑎 (𝑇𝑎, 𝑇𝑠, 𝑅𝑛)d𝑡 + 𝜎𝑎d𝜔𝑎
𝒅 =

[
𝑇𝑎, 𝜙

]𝑇

Observation
equation

⎧⎪⎪⎨⎪⎪⎩

𝑑𝜙 = 𝜙 + 𝑣𝜙, 𝑣𝜙 ∼ 𝑁𝑖𝑖𝑑 (0, 𝑅𝜙)
𝑑𝑇𝑎 = 𝑇𝑎 + 𝑣𝑇𝑎 , 𝑣𝑇𝑎 ∼ 𝑁𝑖𝑖𝑑 (0, 𝑅𝑇𝑎 )

𝒚𝑑 =
[
𝑑𝑇𝑎 , 𝑑𝜙

]𝑇
,

(13)

The model in (13) returns the important weather elements in 𝒅 and
the corresponding observations in 𝒚𝑑 . Since (13) is based on (non-
linear) SDEs, we need to use e.g. the CDEKF to compute the certainty-
equivalent forecasts. This involves numerical solutions to differential
equations and requires local weather measurements as the initial con-
ditions preferably from the building site itself. In practice though, the
cloud cover is difficult to observe without specialised equipment. Due
to the strong correlation between the cloud cover and solar radiation
we instead estimate cloud cover at time 𝑡𝑘, �̂�𝑘|𝑘, as the most likely to
generate the observed solar radiation, 𝑑𝜙,𝑘. Due to the one-way cou-
pling of the SDEs in (13) between the cloud cover and air temperature
models, we split the computations into separate parts described in
Algorithm 1. We collect the forecasts in the sequence {�̂�𝑘+𝑖|𝑘}𝑁𝑖=0, where
𝑁 ∈ N is the prediction horizon. The subscript 𝑘+ 𝑖|𝑘 means that �̂�𝑘+𝑖|𝑘
is an estimate of 𝒅(𝑡𝑘+𝑖) given information up till time 𝑡𝑘.

4. Model predictive control

This paper uses linear Economic MPC (EMPC) based on SDEs. The
overall aim in linear Economic MPC is to mitigate disturbances and
control a linear dynamical system to meet operational constraints at
minimum cost [30,51]. It minimises the cost according to a price signal
that reflects the desired behaviour. The desired behaviour could be to
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Fig. 3. The MPC framework for the smart house control and how the disturbance modelling is incorporated. The ’’Disturbance forecasts’’-box corresponds to Algorithm 1 and the
’’MPC’’-box corresponds to Algorithm 2.

minimise the CO2 emission, the total electricity cost, or the total usage
of electricity [52–54]. The MPC algorithm is depicted inside the dashed
square in Fig. 3 and consists of a filter and an optimal control problem.
This section provides a short introduction to the general mathematical
framework of MPC based on SDEs with a particular emphasis on how
to embed disturbance forecasts.

4.1. Filtering

For stochastic systems or in cases where we do not observe all
states, i.e. a system with hidden states, we need to use a filter to
estimate the system. Due to the stochasticity, we cannot determine the
system states exactly. Instead, we seek an estimate of the present system
states, �̂�𝑘|𝑘 = E[𝒙(𝑡𝑘)|𝑘], and its uncertainty, 𝑃𝑘|𝑘 = Var

[
𝒙(𝑡𝑘)|𝑘]

where 𝑘 is the information up until time 𝑡𝑘. Due to the discrete
computational nature of computers, it is sometimes advantageous to
work with a discrete-time system. For SDEs in the form (2), we perform
an exact discretisation with 𝑇𝑠 = 𝑡𝑘+1 − 𝑡𝑘 assuming that the input and
disturbance are constant within each sampling period, 𝑇𝑠; 𝒖(𝑡) = 𝒖𝑘
and 𝒅(𝑡) = 𝒅𝑘 for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1[. This is also called zero-order-hold
discretisation and results in the discrete time linear state space model

𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝒖𝑘 + 𝐸𝒅𝑘 +𝒘𝑘 , (14a)

𝒚𝑠,𝑘 = 𝐶𝒙𝑘 + 𝒗𝑠,𝑘 , (14b)

𝒘𝑘 ∼ 𝑁𝑖𝑖𝑑 (𝟎, 𝑄𝑠), 𝒗𝑠,𝑘 ∼ 𝑁𝑖𝑖𝑑 (𝟎, 𝑅𝑠) , (14c)

with 𝐴 = exp(𝐴𝑐𝑇𝑠), 𝐵 = ∫ 𝑇𝑠0 exp(𝐴𝑐𝑠)𝐵𝑐d𝑠, and 𝐸 = ∫ 𝑇𝑠0 exp(𝐴𝑐𝑠)𝐸𝑐d𝑠
being matrices governing the discrete-time dynamics. 𝑄𝑠 = ∫ 𝑇𝑠0 exp
(𝐴𝑐𝑠)𝐺𝑐𝐺𝑇𝑐 exp(𝐴𝑇𝑐 𝑠)d𝑠 is the covariance of the process noise and 𝑅𝑠 is
the covariance of the measurement noise. The discretisation is exact
in the sense that at the discrete times 𝑡𝑘, 𝑘 ∈ N, the discrete- and
continuous-time systems are identical, 𝒙𝑘 = 𝒙(𝑡𝑘). When the system is
linear and the noise is Gaussian as in (14), the Kalman filter provides
an optimal estimate of the system states. Given an observation, 𝒚𝑠,𝑘,
and a one-step prediction of the state vector, �̂�𝑘|𝑘−1, the Kalman filter
algorithm computes the optimal filtered state estimate, �̂�𝑘|𝑘, and the
covariance of the filtered state estimate, 𝑃𝑘|𝑘.

4.2. Optimal control problem

The optimal control problem of MPC is based on a cost function,
𝜑𝑘, that is used to rank the feasible solutions and is formulated such
that it promotes a desired behaviour of the system. The optimal control
problem determines the optimal input sequence, which we denote with
a hat {�̂�𝑘+𝑖|𝑘}𝑁−1

𝑖=0 , to the system given an estimated initial state, �̂�𝑘|𝑘,
and the disturbance forecast, {�̂�𝑘+𝑖|𝑘}𝑁𝑖=0. By using the disturbance fore-
cast generated by Algorithm 1, {�̂�𝑘+𝑖|𝑘}𝑁𝑖=0, we decouple the disturbance
estimation and the system state estimation. From a theoretical point
of view, this is a sub-optimal estimate. But the approximation error is
small with the given external sensors and it has the advantage that
different parties can supply the disturbance forecast and MPC. The

general optimal control problem including the disturbances is defined
by the following Bolza problem [55]

𝐽 (�̂�𝑘|𝑘, �̂�𝑘−1|𝑘, {�̂�𝑘+𝑖|𝑘}𝑁𝑖=0) = (15a)

min
𝒖,𝒔

𝜑𝑘 , (15b)

𝑠.𝑡. 𝒙(𝑡𝑘) = �̂�𝑘|𝑘 , (15c)

𝒖(𝑡) = 𝒖𝑘+𝑖|𝑘, 𝑡 ∈ [𝑡𝑘+𝑖, 𝑡𝑘+𝑖+1[, 𝑖 ∈  , (15d)

𝒅(𝑡) = �̂�𝑘+𝑖|𝑘, 𝑡 ∈ [𝑡𝑘+𝑖, 𝑡𝑘+𝑖+1[, 𝑖 ∈  , (15e)

d𝒙(𝑡) = 𝑓𝑠(𝒙(𝑡), 𝒖(𝑡),𝒅(𝑡))d𝑡, 𝑡 ∈ 𝑘, (15f)

𝒖min ≤ 𝒖𝑘+𝑖|𝑘 ≤ 𝒖max, 𝑖 ∈  , (15g)

𝛥𝒖min ≤ 𝛥𝒖𝑘+𝑖|𝑘 ≤ 𝛥𝒖max, 𝑖 ∈  , (15h)

𝑐(𝒙(𝑡)) + 𝒔(𝑡) ≥ 𝟎, 𝑡 ∈ 𝑘, (15i)

𝒔(𝑡) ≥ 𝟎, 𝑡 ∈ 𝑘, (15j)

where the cost function is in the form

𝜑𝑘 = ∫
𝑡𝑘+𝑁

𝑡𝑘
𝓁(𝒙(𝜏), 𝒖(𝜏))d𝜏 + 𝓁𝑏(𝒙(𝑡𝑘+𝑁 )) + ∫

𝑡𝑘+𝑁

𝑡𝑘
𝓁𝑠(𝒔(𝜏))d𝜏. (16)

The stage costs, 𝓁(𝒙(𝑡), 𝑢(𝑡)) and 𝓁𝑠(𝑠(𝑡)), and the cost-to-go, 𝓁𝑏(𝒙(𝑡𝑘+𝑁 )),
are

𝓁(𝒙(𝑡), 𝑢(𝑡)) = 𝒄(𝑡)𝑇 𝒖(𝑡) , (17a)

𝓁𝑏(𝒙(𝑡𝑘+𝑁 )) = 0 , (17b)

𝓁𝑠(𝑠(𝑡)) = 𝝆(𝑡)𝑇 𝒔(𝑡) , (17c)

such that the cost function, 𝜑, becomes

𝜑𝑘 = ∫
𝑡𝑘+𝑁

𝑡𝑘

(
𝒄(𝜏)𝑇 𝒖(𝜏) + 𝝆(𝜏)𝑇 𝒔(𝜏)

)
d𝜏 , (18)

In the optimal control problem, 𝑘 = [𝑡𝑘, 𝑡𝑘+𝑁 [ is both the control
and the prediction horizon.  = {0, 1,… , 𝑁 − 1}. �̂�𝑘|𝑘 is the initial
condition of the system estimated by a state estimator. {�̂�𝑘+𝑖|𝑘}𝑁𝑖=0 is the
sequence of advanced forecasts obtained from the disturbance model
in Section 3. 𝑐(𝒙(𝑡)) represents the constraint functions. 𝒔(𝑡) are slack
variables that allow solutions outside of the desired domain and we
penalise them with 𝓁𝑠(𝒔(𝑡)). 𝒄(𝑡) is the electricity price signal and 𝝆(𝑡)
is the slack penalty. 𝝆(𝑡) should be large enough to make the preferred
solution satisfy the constraints whenever possible. We assume that the
price signal is piece-wise constant in each sampling period, 𝒄(𝑡) = 𝒄𝑘,
𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1[. 𝓁𝑏 is a cost-to-go term ranking the end-state, 𝒙(𝑡𝑘+𝑁 ). It can
be very useful to include for smart buildings with batteries or EVs [3].
However, for long prediction horizons it has negligible effect on the
closed-loop performance. Accordingly, we set it equal to zero which
makes (15) a Lagrange problem. For the optimal control problem, we
know the actual input during time [𝑡𝑘−1, 𝑡𝑘], �̂�𝑘−1|𝑘, should it differ from
the control signal �̂�𝑘−1|𝑘−1. The optimal control, denoted �̂�(𝑡), is the 𝒖(𝑡)
that minimises (15).

4.2.1. Discretisation of the optimal control problem
In the discretisation of the optimal control problem (15), we con-

sider the output constraints (15i)–(15j) as point-wise constraints. The
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input, 𝒖𝑘, is piece-wise constant. Consequently, the cost function (16)
becomes

𝜑𝑘 =
𝑁−1∑
𝑖=0

𝒄𝑇𝑘+𝑖|𝑘𝒖𝑘+𝑖|𝑘 +
𝑁−1∑
𝑖=0

𝝆𝑇𝑘+𝑖+1|𝑘𝒔𝑘+𝑖+1|𝑘 . (19)

The dynamics are linear and discretised and the soft output constraints
are assumed to be linear functions, i.e. 𝑐(𝒙𝑘) = 𝐻𝒙𝑘 + 𝒃. Consequently,
the optimal control problem (15) is the linear program

𝐽 (�̂�𝑘|𝑘, �̂�𝑘−1|𝑘, {�̂�𝑘+𝑖|𝑘}𝑁𝑖=0) = (20a)

min
𝒖,𝒔

𝜑𝑘 , (20b)

𝑠.𝑡. (20c)

𝒙𝑘|𝑘 = �̂�𝑘|𝑘 , (20d)

𝒙𝑘+𝑖+1|𝑘 = 𝐴𝒙𝑘+𝑖|𝑘 + 𝐵𝒖𝑘+𝑖|𝑘 + 𝐸�̂�𝑘+𝑖|𝑘, 𝑖 ∈  , (20e)

𝒖min ≤ 𝒖𝑘+𝑖|𝑘 ≤ 𝒖max, 𝑖 ∈  , (20f)

𝛥𝒖min ≤ 𝛥𝒖𝑘+𝑖|𝑘 ≤ 𝛥𝒖max, 𝑖 ∈  , (20g)

𝐻𝒙𝑘+𝑖+1|𝑘 + 𝒃 + 𝒔𝑘+1+𝑖|𝑘 ≥ 𝟎, 𝑖 ∈  , (20h)

𝒔𝑘+1+𝑖|𝑘 ≥ 𝟎, 𝑖 ∈  . (20i)

The solution to the optimal control problem is a sequence of inputs,
{�̂�𝑘+𝑖|𝑘}𝑁−1

𝑖=0 , and slack variables, {�̂�𝑘+𝑖+1|𝑘}𝑁−1
𝑖=0 , that minimises the cost

function, 𝜑𝑘.

4.3. The economic model predictive control algorithm

Fig. 3 shows the overall MPC setup and the information flow.
Algorithm 2 provides a listing of the corresponding computational steps
to compute the input (manipulated variable) vector, �̂�𝑘|𝑘, based on
the system measurements, 𝒚𝑠,𝑘, the previous input 𝒖𝑘 = �̂�𝑘−1|𝑘, the
previous filtered state mean–covariance pair, (�̂�𝑘−1|𝑘−1, 𝑃𝑘−1|𝑘−1), the
previous filtered disturbance, �̂�𝑘−1|𝑘−1, and the disturbance forecast,
{�̂�𝑘+𝑖|𝑘}𝑁𝑖=0. In this work, Algorithm 1 provides the disturbance forecast.
The MPC algorithm (Algorithm 2) consists of (1) a Kalman filter algo-
rithm organised as a one-step prediction and a measurement update;
and (2) an optimal control problem, which in this case is a linear
program. Solution of the linear program consumes the majority of the
computational time to conduct Algorithm 2. Algorithm 2 is conducted
each sample time when a new measurement arrives.

5. Dynamics of the smart building model

The heating system of the smart building consists of a ground
sourced heat pump using a compressor that heats up water that then
flows into pipes underneath the floor. This has the advantage of be-
ing energy efficient (a COP of 3 is used) due to the thermodynamic
processes that extracts heat from some ambient environment, but is
disadvantaged by its slow dynamics. When the heat pump is turned
on, it takes a long time before the room air temperature responds. This
section briefly investigates the dynamics and time/frequency responses
of the heat pump model and compares it to that of the disturbances
and a standard electrical heater to give an idea and overview of what
effects the heat pump delivers in the settings of a smart building.

5.1. Pulse- and frequency-response analysis

Fig. 4 shows the pulse response of the smart building model for the
first 15 h and 90 days. The disturbances act much faster compared
to the heat pump. After 3 h, the disturbance responses have already
reverted back to a level of around half of their peak pulse response. The
heat pump, however, has not yet heated the room by any significant
amount. These large response differences between the heat pump and
disturbances indicate that the heat pump might not be sufficient at
all times for regulating the indoor air temperature. Fig. 4 shows that

Algorithm 2 MPC Algorithm

require: 𝒚𝑠,𝑘, �̂�𝑘−1|𝑘, �̂�𝑘−1|𝑘−1, 𝑃𝑘−1|𝑘−1,
𝒅𝑘−1|𝑘−1, {𝒅𝑘+𝑖|𝑘}𝑁𝑖=0

Filter:
Compute one-step Kalman predictions
�̂�𝑘|𝑘−1 = 𝐴�̂�𝑘−1|𝑘−1 + 𝐵�̂�𝑘−1|𝑘 + 𝐸𝒅𝑘−1|𝑘−1
𝑃𝑘|𝑘−1 = 𝐴𝑃𝑘−1|𝑘−1𝐴𝑇 +𝑄𝑠

Compute process noise and Kalman gain
𝑅𝑠,𝑘|𝑘−1 = 𝐶𝑃𝑘|𝑘−1𝐶𝑇 + 𝑅𝑠
𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶𝑇𝑅−1

𝑠,𝑘|𝑘−1

Compute filtered estimates
�̂�𝑠,𝑘|𝑘−1 = 𝐶�̂�𝑘|𝑘−1
�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 +𝐾𝑘(𝒚𝑠,𝑘 − �̂�𝑠,𝑘|𝑘−1)
𝑃𝑘|𝑘 = (𝐼 −𝐾𝑘𝐶)𝑃𝑘|𝑘−1(𝐼 −𝐾𝑘𝐶)𝑇 +𝐾𝑘𝑅𝑠𝐾𝑇

𝑘

Optimal control:
Given �̂�𝑘|𝑘, �̂�𝑘−1|𝑘, and {𝒅𝑘+𝑖|𝑘}𝑁𝑖=0 solve the optimal control problem
in Eq. (20) to obtain {�̂�𝑘+𝑖|𝑘}𝑁−1

𝑖=0

return �̂�𝑘|𝑘, �̂�𝑘|𝑘, 𝑃𝑘|𝑘

Fig. 4. The pulse response for 15 h (top) and 90 days (bottom). The step size of the
pulse is given in the legend (all from zero).

electrical heaters heat just as fast as the disturbances, and suggests that
the they are much better suited for dealing with fast responses.

Fig. 5 shows a bode plot of the frequency response of the heat pump
and the electrical heaters compared to the disturbances. It is again
clear, that the heat pump is governed by delayed dynamics for higher
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Fig. 5. Bode plot showing the frequency responses of the disturbances together with
the heat pump and the electrical heaters. The inputs have been normalised in order to
make the response have an amplitude equal to 1 for small frequencies.

frequencies. The response signal for the electrical heaters is identical to
those of the disturbances due to the direct input of heat into the room.

5.2. Summary of the section

The considerations and results of this section suggest that without
anything to provide faster heating or cooling, e.g. electrical heaters or
electrical coolers, the disturbances act with too high frequencies for the
heat pump to deal with. However, as the results will show, if the goal
is to keep the room temperature within some relatively large range,
say from 20 to 24 ◦C during cold months where heating is required at
almost all times, the heat pump can still be suitable. Electrical heaters
(or other faster heating devices) definitely make it easier to obtain good
solutions — but they are not as cheap as the heat pump.

6. Results and discussion

This section shows simulation-based results of the potential benefits
of including the advanced disturbance model (1) in MPC. As the
data we use for the true disturbances do not include meteorological
forecasts, we cannot directly compare the results to that part of the
literature. Instead, we compare the advanced forecasts to offset-free
control. We also present control results that use perfect forecasts to
give a theoretical upper bound on the performance. We use data for
all years during the 7 year period of data.

6.1. Visualisation of the advanced disturbance forecasts

As previously discussed, the typical offset-free control schemes in
the literature supply persistent forecasts, that is

�̂�𝑘+𝑖|𝑘 = �̂�𝑘|𝑘, 𝑖 = 0,… , 𝑁 . (21)

Fig. 6 shows a visual comparison of the advanced forecasts in (13) and
persistent forecasts using a prediction horizon of 𝑁 = 96 hours. The
complex dynamics of the advanced forecasts become visible against the
zero-order (constant) forecasts.

6.2. Simulation-based comparison of the forecasting schemes

As Section 5 shows, the heat pump heats up the smart building in a
slow manner. To diversify the results, we therefore also show the use
of a smart building with faster heating units such as electrical heaters
and/or coolers. The rest of the section describes and presents the
control results for each heating strategy based of the smart building in
Section 2. As the true disturbances, we use the weather data described
in Section 3.1. All results use a slack penalty value of 𝜌𝑘 = 5000, time
sample 𝑇𝑠 = 1 hour, and prediction horizon 𝑁 = 96 hours. We put
the electricity price constant and choose it to be the mean price over 7
months of March data from Nordpool, 𝑐𝑘 = 36.5 [EUR/MWh]. The MPC
thus minimises the amount of electricity spend and does not consider
varying prices.

For the simulation, we choose the temperature constraints to be
𝑇𝑟,𝑚𝑖𝑛 = 20 ◦C and 𝑇𝑟,𝑚𝑎𝑥 = 24 ◦C. Tables 2 and 3 shows the constraint
violation and the total electricity price for all heating strategies respec-
tively. Fig. 7 shows a 15-day sample of the simulations to illustrate the
behavioural differences.

6.2.1. Heating strategy 1: Electrical heaters
Due to the faster heating dynamics of the electrical heaters, we

expect that the persistent forecasts might perform well, since the MPC
can quickly respond to sudden changes of the disturbances. As ex-
pected, the differences between the control solutions in Fig. 7, are not
very visible. The room air temperatures and the heat inputs from the
electrical heaters are almost identical. Table 2 does show a difference in
the performance as the solution using the advanced forecasts perform
slightly better. The electricity prices are almost identical since the total
heat needed over the 7 months is the same for both buildings and the
unit price is the same.

6.2.2. Heating strategy 2: Heat pump
The second heating strategy simulation uses the smart building

equipped with a heat pump. We recall that the heat pump is 3 times
more efficient compared to the faster heating strategies. In contrast to
the electrical heaters, the heating pattern from Fig. 7 is very slow, due
to the heat pump dynamics. But the solution is also cheaper due to the
high efficiency of the heat pump. The difference between the persistent
and advanced forecasts becomes very visible here. Due to the slow
dynamics, the advanced forecasts of the disturbance dynamics matter
much more in this case. Tables 2 and 3 show that the solution using
advanced forecasts is both cheaper and supplies significantly better
indoor climate.

Fig. 6. An example of the advanced forecasts from (13) compared to persistent forecasts.
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Table 2
The constraint violations (the slack variables, �̂�𝑘, in the cost function in (19)) for all heating strategies for
each forecasting scheme. The number in parenthesis is the 𝑝-value of a t-test between the advanced- and
persistent forecasts.

Constraint violation of the control simulations

Heating strategy Persistent Advanced forecasts Perfect

Electrical heaters, 𝑢1 48.5 39.6 (𝑝 = 0.024) 25.1
Heat pump, 𝑢2 157.9 12.3 (𝑝 = 0.008) 1.7
Heat pump plus electrical heaters, 𝒖3 48.0 6.7 (𝑝 = 0.023) 1.2
Heat pump plus electrical heaters and coolers, 𝒖4 4.4 2.4 (𝑝 = 0.038) 0

Table 3
The electricity price in EUR (the first term in the cost function in (19)) for all heating strategies for each
forecasting scheme. The number in parenthesis is the 𝑝-value of a t-test between the advanced- and persistent
forecasts.

Electricity cost of the simulations

Heating strategy Persistent Advanced forecasts Perfect

Electrical heaters, 𝑢1 303.2 302.2 (𝑝 = 0.421) 302.0
Heat pump, 𝑢2 117.3 110.4 (𝑝 = 0.198) 107.7
Heat pump plus electrical heaters, 𝒖3 113.0 108.2 (𝑝 = 0.248) 107.5
Heat pump plus electrical heaters and coolers, 𝒖4 117.9 108.3 (𝑝 = 0.178) 107.5

Fig. 7. A 15-day sample of the total 7 months of simulation for each heating strategy. The black dashed lines are the constraints. It shows the indoor air temperature as well as
the heating inputs at the same point in the time series of disturbances.

6.2.3. Heating strategy 3: Heat pump plus electrical heaters
Heating strategy 3 combines the (fast but expensive) electrical

heaters and the (slow but cheap) heat pump. The input is therefore
𝒖 = [𝑊𝑐 ,𝑊𝑒ℎ]𝑇 . The idea is to have cheap heating from the heat pump
while being able to quickly adapt using the more expensive electrical
heaters. From Table 2 the persistent forecasts show large improvement
compared to only using the heat pump. The improvements for the
advanced forecasts are around 50% better. It is noteworthy that Table 3
indicates that the advanced forecasts supply results that are very close
the perfect forecasts in terms of electricity price and at the same time
improves the indoor climate conditions. Fig. 7 also indicates that the

controller using the advanced forecasting scheme uses the electrical
heater less often.

6.2.4. Heating strategy 4: Heat pump plus electrical heaters and coolers
An extension to heating strategy 3 is to include an electrical cooling

unit beside the electrical heaters to also enable cooling. The input
becomes 𝒖 = [𝑊𝑐 ,𝑊𝑒ℎ,𝑊𝑒𝑐 ]𝑇 . This has a great effect on the persistent
forecasts as seen in Table 2 compared with the other strategies. It also
leads to high electricity costs, which are much higher compared to the
other forecasting scheme. The advanced forecasts seem overall superior
and by all indications well suited for efficient temperature control while
improving the comfort regulation.
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Fig. 8. Histogram of the constraint violations for each week of the 7 months of
simulations. The vertical lines represents the mean value of the distribution of the
forecasting strategies.

6.3. Statistical results

To draw statistical conclusions from the results presented in this pa-
per, we carry out a 𝑡-test based on the following setup. We consider the
constraint violation and electricity price of each week of the 7 months

of simulation as an observation. This equals 7 ⋅ 4 = 28 observations
for each forecasting method for each heating strategy. Fig. 8 shows
the histograms of the simulation results where the vertical lines are
the mean-value for each forecasting strategy. Similar histograms can be
made for the electricity prices. Tables 2 and 3 show the 𝑝-values of the
t-tests between the mean values of the persistent- and advanced fore-
casts (shown in parenthesis). The constraint violations are all strongly
significant below the 95% confidence level. The cost reduction, though,
does not appear significant near usual confidence levels. However, the
weather is highly correlated over extended time periods, and therefore
we do not effectively have 28 observations for the tests. We note that all
𝑝-values are on the right side of the distribution, which indicates that
with more observations, the electricity reduction becomes significant.

6.4. Inclusion of meteorological forecasts

It is important to stretch that the advanced forecasts work best
for a short future time window. As pointed out by the literature,
meteorological forecasts in general provide more accurate predictions
beyond 4-10 h ahead compared to short-term forecasts. Assuming that
meteorological forecasts are strictly better after 10 h, we can then
expect even better results than presented here by using a combined
short - and long-term forecasting scheme. However this needs more work
to clarify the specific gains and what forecast setup is optimal.

7. Conclusions

This paper proposed a method for incorporating advanced distur-
bance models into a system model based on stochastic differential
equations for model predictive control (MPC). This approach leads
to a generic method for embedding forecasting and disturbance mod-
elling for MPC for energy systems. We illustrated the method by
statistically modelling the weather and controlling the indoor air tem-
perature for a smart building. But the method itself is much more gen-
erally applicable. We mathematically reviewed the disturbance models
and even argued that transformations were necessary for some of
the disturbance-elements to obtain better accuracy by the dynamical
equations.

We compared the advanced embedded forecasts to conventional
offset-free control, which suggested significant improvements of the
control performance. Results suggest electricity savings between 5%–
10% and reduction of constraint violations of up to 90% compared to
offset-free MPC. In fact, we were able to achieve results very close to
the performance supplied by perfect forecasts. We also illustrated the
issues of heat pumps being governed by very slow heat dynamics. Thus,
by combining different heating strategies, better control performance
was achieved. Nevertheless, the heat pump itself performed very well
in combination with the advanced disturbance forecasts and definitely
proved useful.

More work is needed on how to combine advanced, short-term fore-
casts with long-term, meteorological forecasts, since such a setup may
improve current forecasting standards. An example is to investigate the
best point in time to switch from short-term to long-term predictions.
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A B S T R A C T

This paper introduces a linear quadratic control scheme for a continuous-time system with observations taken
at discrete times. Particular attention is given to the derivation of the disturbance terms in the model. Control
performance may depend critical on accurate disturbance forecasts. This is the case for building climate control,
where solar rays pass through e.g. windows and deliver significant amounts of energy and the dynamics
can be very fast, fluctuating, and spontaneous. We thus argue that it is critical for control performance to
sufficiently describe and include disturbances in the control description to obtain satisfactory control accuracy.
We suggest and derive in details a control framework based on continuous-time stochastic differential equations
(SDEs) and linear quadratic Gaussian control using an advanced continuous-time disturbance model to supply
disturbance forecasts. The numerical simulation results suggest that control with embedded forecasts handles
uncertainties well and provides up to 26% performance improvements compared to standard disturbance
mitigation techniques. Furthermore, we demonstrate that the quadratic controller has a useful trade-off
between variability in the control signal, economic cost, and variability around the reference point.

1. Introduction

As the share of renewable energy in the electricity grid continues
to grow, related problems become more prominent. Among these prob-
lems are misalignments in energy production and consumption, voltage
overload, congestion, etc. The traditional solution up to modern times
has been to control the production such that the electricity demand is
covered. However, in an efficient implementation of future weather-
driven energy systems, this is no longer an option. One solution is to
focus on demand-response methodologies to unlock and control the
flexibility at the consumer side [1,2]. A lot of recent work therefore
centre around the concept known as energy flexibility [3,4]. The idea is
to control the demand to align it with the production by utilising the
inherent energy storage in households and buildings (such as thermal
mass or stationary batteries), see e.g. [5] for an introduction and spe-
cific application examples. A key technology for enabling this solution
is sophisticated predictive control of buildings. A well described energy
flexibility setup involves a two-level control structure, where the upper-
level controller (e.g. for voltage) computes a price signal which shifts
the overall energy demand of the lower level controllers (e.g. individual
buildings) to times where the CO2-concentration in the electricity mix
is lower [2,6].

Linear quadratic regulation (LQR) is a very well studied and applied
control scheme due to its optimal linear control law and simplicity [7,

∗ Corresponding author.
E-mail addresses: chant@dtu.dk (C.A. Thilker), jbjo@dtu.dk (J.B. Jørgensen), hmad@dtu.dk (H. Madsen).

8]. The linear quadratic Gaussian (LQG) regulator extends the LQR
scheme by also considering Gaussian system noise. Hence, LQG deals
with the stochastic case of LQR, which may be closer to reality [9].
Disturbances also constitute an important aspect of control [10]. The
literature identifies the solar radiation and ambient air temperature
as critical factors dictating the heating and cooling needs for build-
ings [11,12]. Model-based predictive control (MPC) for smart energy
systems is an active research area with many examples of e.g. con-
ventional [13], stochastic [14] and robust MPC [15]. The use of LQG
control in the literature is not as widely used for HVAC systems where
often the simpler LQR scheme is used instead [16–20]. Furthermore,
the common standard for mitigating disturbances in control (such as
weather disturbances for buildings) is to apply offset-free regulation,
see e.g. Errouissi et al. [21] or Taylor et al. [22] for applications in
building climate control. Here, one introduces an additional integrating
state that is able to cancel out a constant disturbance. LQG optimal
control minimises the quadratic deviation of a linear transformation
of the states to a set-point. Thus, compared to certainty-equivalent
linear control (such as economic MPC with linear costs on constraint
violations), LQG control inherently deals with uncertainty in a different
manner. The quadratic penalty steers the mean value of the system
state into the reference signal. Linear cost on the other hand steers the

https://doi.org/10.1016/j.apenergy.2022.120086
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median onto the reference point [23]. We discuss the differences and
their consequences in more detail later.

For building climate control that uses weather forecasts, one of
the dominating standards is to use meteorological forecasts [24]. Such
forecasts have the advantage of giving relatively accurate forecasts
potentially several days ahead. However, they typically do not include
solar radiation forecasts and tend to be less accurate for short-term pur-
poses [25,26]. Many examples of short-term forecasting models exist
in the literature, such as linear regression-based models [27], artificial
neural networks [28], and more advanced time series techniques [29].
Thilker et al. [10] propose an SDE-based model for predicting key
attributes such as the solar radiation and outdoor air temperature. This
form has the advantage that it fits naturally in the building model
description (which is also formulated using SDEs). This paper shows
the benefits of using an embedded model for disturbance forecasts in
a LQG control setup for a residential building and highlights possible
savings.

1.1. Main aim and contribution of the paper

This paper discusses the role of disturbances in dynamical sys-
tems in great details and relates it to building thermal control. We
derive a zero-order hold discretised system and optimal control prob-
lem from the continuous-time system model of a building undergoing
disturbances from the ambient air temperature and solar radiation.
Furthermore, this paper develops a LQG control framework for a build-
ing thermal model with an embedded disturbance model that supplies
short-term weather forecasts. We carry out a simulation study suggest-
ing that the proposed LQG controller with embedded disturbance model
performs almost as good as a controller that uses perfect disturbance
forecasts.

1.2. Structure and outline of the paper

This paper has the following structure. Section 2 describes the
standard LQG control scheme and derives the optimal control law and
state estimate. Section 3 presents, motivates and derives the optimal
control problem for the extended multi-step LQG control, which also in-
cludes the electricity prices and accounts for the weather disturbances.
Section 5 presents the numerical simulation-based results and Section 6
summarises the findings and discusses future work and possibilities.

2. Continuous-time LQG control with embedded disturbance fore-
casts

This section introduces the continuous-time linear quadratic con-
trol problem. We start by describing the importance of conditional
expectations of the future in predictive control. We also deal with the
discretisation in time of the dynamics and the objective function and
how to deal with disturbances in such discretisation. Zero-order hold
is the dominating discretisation standard. However, such discretisation
introduces additional error terms that may affect the performance, and
thus are important to characterise. In this section, we discuss errors and
their effects on the system.

In this paper, we denote time dependence in subscript 𝒙(𝑡) = 𝒙𝑡
and we use 𝒙𝑘 as short-hand notation for 𝒙𝑡𝑘 . This paper deals with
continuous-discrete time state space models on the following form [30]

d𝒙𝑡 =
(
𝐴𝑐𝒙𝑡 + 𝐵𝑐𝒖𝑡 + 𝐸𝑐𝒅𝑡

)
d𝑡 + 𝐺𝑐d𝝎𝑡 (1a)

d𝒅𝑡 = 𝑓𝑑 (𝒅𝑡, 𝑡)d𝑡 + 𝑔𝑑 (𝒅𝑡, 𝑡)d𝝎𝑡 (1b)

𝒛𝑡 = 𝐻𝒙𝑡 (1c)

𝒚𝑘 = 𝐶𝒙𝑘 + 𝒗𝑘 , 𝒗𝑘 ∼ 𝑁(0, 𝛴) (1d)

where 𝒙, 𝒖, and 𝒅 are the system, input, and disturbance states,
respectively. 𝐴𝑐 , 𝐵𝑐 and 𝐸𝑐 are matrices governing the state evolution,

input, and disturbances, respectively. 𝝎𝑡 is standard Brownian motion,
𝒚𝑘 is the observation, 𝒗𝑘 is the observation noise, and 𝒛𝑡 is the control
variable. The disturbance model in (1b) is non-linear and can be used to
forecast the disturbance states. Had the disturbances 𝒅𝑡 been described
by a linear model, we could couple the building and weather states into
a single state space model [𝒙⊺𝑡 ,𝒅

⊺
𝑡 ]

⊺. The weather is, however, governed
by strong non-linearities and cannot be treated as a linear system,
which is why it is necessary to uncouple them. Section 4.2 elaborates
on this.

2.1. Relation between forecasting and control

In the following, let 𝒛𝑡 be a continuous-time stochastic process (not
necessarily the same as in Eq. (1)). The following term measures the
expected 𝑝-order moment between 𝒛𝑡 and a signal 𝒈𝑡

E[‖𝒛𝑡 − 𝒈𝑡‖𝑝𝑝 |𝑘] , (2)

where ‖ ⋅ ‖𝑝 is the usual 𝑝-norm of vectors, 𝑝 ≥ 1, and 𝑘 =
{𝑦0, 𝑦1,… , 𝑦𝑘} is all historic observations up till time 𝑡𝑘. Putting 𝑝 = 2,
we obtain the non-central second order moment. Such an objective
measures the variance of a process. Now, let 𝒈𝑡 be controllable in the
sense given in [31]. Given information until time 𝑡𝑘, we can write the
minimum-variance optimal control problem as

min
𝒈𝑡

𝜙𝑘 = ∫
𝑡𝑘+𝑇

𝑡𝑘
E[‖𝒛𝑡 − 𝒈𝑡‖22|𝑘] d𝑡 , (3)

The optimal minimiser of the minimum-variance problem (3) can be
shown to be the conditional expectation, 𝒈𝑡 = E[𝒛𝑡|𝑘]:
E
[‖𝒛𝑡 − 𝒈𝑡‖22 |𝑘]

= E[‖𝒛𝑡 − 𝒈𝑡 + E
[
𝒛𝑡|𝑘] − E

[
𝒛𝑡|𝑘] ‖22 |𝑘]

= V
[
𝒛𝑡|𝑘] + ‖E[𝒛𝑡|𝑘] − 𝒈𝑡‖22 ,

where V
[
𝒛𝑡|𝑘] denotes the conditional variance with respect to 𝑘.

The above attains its minimum exactly for 𝒈𝑡 = E[𝒛𝑡|𝑘]. This implies
that we need to use conditional expectations to solve stochastic control
problems with a quadratic cost function as in (3). Hence, we need to
estimate the following

E[{𝒛𝑡 ∶ 𝑡 ≥ 𝑡𝑘} |𝑘] = {�̂�𝑡|𝑡𝑘 ∶ 𝑡 ≥ 𝑡𝑘} . (4)

For linear systems with Gaussian noise, the Kalman filter is an optimal
estimator of the conditional expectation. In a discrete form (which we
derive in Section 2.2), the continuous-time system in Eq. (1) can be
written

E[𝒙𝑡𝑘+1 |𝑘] = 𝐴�̂�𝑘|𝑘 + 𝐵𝒖𝑘 + 𝐸�̂�𝑘|𝑘 . (5)

Since the conditional expectation of the system state depends on dis-
turbances, 𝒅𝑡, we also need forecasts of the conditional expectations of
these to do optimal predictive control. That is, we need to supply the
following forecasts of the disturbances to the optimal control problem

E[{𝒅𝑘+𝑖}𝑁−1
𝑖=0 |𝑘] = {�̂�𝑘+𝑖|𝑘}𝑁−1

𝑖=0 . (6)

Note that putting 𝑝 = 1 in (2) yields the absolute value, for which
the median of 𝒛𝑡 is the optimal minimiser. By tilting the absolute value
function appropriately, certain quantiles become the minimiser. This
knowledge can be very useful in forming the right objective function
to mimic the desired behaviour of the system. It might be that one side
of the reference trajectory is a very expensive operational area, and
thus shaping the objective to make the reference trajectory align with
the 99% quantile may be appropriate.

The quadratic objective function thus measures the squared norm of
deviation between the conditional expectation of the stochastic process
and the signal 𝒈𝑡. However, as we shall also do in the present paper, it is
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very common to include additional terms in the quadratic cost function
in (2) [23] such that the problem becomes

𝜙𝑘 = ∫
𝑡𝑘+𝑇

𝑡𝑘
E[‖𝒛𝑡 − 𝒓𝑡‖2𝑄
⏟⏞⏞⏞⏟⏞⏞⏞⏟

objective

+ ‖�̄�𝑡 − 𝒖𝑡‖2𝑅
⏟⏞⏞⏞⏟⏞⏞⏞⏟
regularisation

+ 𝒄⊺𝑡 𝒖𝑡
⏟⏟⏟

economic
cost

|𝑘] (7)

where 𝒓𝑡 is a reference trajectory, 𝒖𝑡 is the control signal, and 𝒄𝑡 is
a cost related to the input at time 𝑡. The subscripts 𝑄 and 𝑅 denotes
the weighted 2-norm (with weights 𝑄 and 𝑅). For energy systems, this
objective is appropriate for stabilising e.g. voltages in grids, aligning
energy consumption of building stocks etc. The first regularisation
term reflects the cost of the input deviating too much from a desired
reference point. The second term typically reflects some economic costs
related to input in time. In the context of building thermal control using
a heat pump, the latter can be the electricity price related to the heat
pump operations.

2.2. Discretisation of the continuous-time dynamics

In this section, we derive a discretisation of the continuous time
dynamical system in (1). Due to the discrete nature of the way com-
puters perform numerics, it is necessary to somehow discretise the
optimisation problem in (7). For energy systems, the disturbances
typically play an important role and are themselves encumbered with
uncertainty. We shall therefore put extra attention towards how to
handle the disturbance term in (1), 𝐸𝑐𝒅𝑡, in the discretisation.

Let 𝑇𝑠 be the sample time between the control points, 𝑇𝑠 = 𝑡𝑘+1 −
𝑡𝑘. We assume that the input 𝒖 is constant during the time intervals
[𝑡𝑘, 𝑡𝑘+1[ for all 𝑘 ∈ N, i.e. zero-order hold. The solution to 𝒙𝑡 in (1)
gets the form

𝒙𝑡𝑘+1 = 𝐴𝒙𝑡𝑘 + 𝐵𝒖𝑘 + ∫
𝑡𝑘+1

𝑡𝑘
exp

(
𝐴𝑐 (𝑡𝑘+1 − 𝜏)

)
𝐸𝑐𝒅𝜏d𝜏 + 𝝃𝑘, (8)

where the matrices 𝐴, 𝐵 and process noise 𝝃𝑘 are defined by

𝐴 = exp
(
𝐴𝑐𝑇𝑠

)
,

𝐵 = ∫
𝑇𝑠

0
exp

(
𝐴𝑐𝜏

)
𝐵𝑐d𝜏 ,

𝝃𝑘 = ∫
𝑡𝑘+1

𝑡𝑘
exp

(
𝐴𝑐 (𝑡𝑘+1 − 𝜏)

)
𝐺𝑐d𝝎(𝜏) .

(9)

𝐴 and 𝐵 in (9) have known closed-form solutions and are easy to
compute. However, it is not straightforward how to deal with the
integral ∫ 𝑡𝑘+1𝑡𝑘

exp
(
𝐴𝑐 (𝑡𝑘+1 − 𝜏)

)
𝐸𝑐𝒅𝜏d𝜏 in (8). The rest of this section

deals with this integral when disturbance forecasts are supplied as
zero-order hold values.

As Section 4 describes, the embedded disturbance model in (1b)
estimates the mean value of the disturbances between time samples
[𝑡𝑘, 𝑡𝑘+1[, that is

�̄�𝑘 = �̂�𝑘|𝑘 + 𝝐𝑘 , 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1[ . (10)

�̄�𝑘 is the true mean value of the disturbances, �̂�𝑘|𝑘 = E[�̄�𝑘 |𝑘] is
the conditional mean value supplied by the disturbance model given
observations up till time 𝑡𝑘, and 𝝐𝑘 is i.i.d. Gaussian distributed white
noise. To rewrite the system in (1) with the weather predictions, we
can rewrite the integral in (8) as

∫
𝑡𝑘+1

𝑡𝑘
exp

(
𝐴𝑐 (𝑡𝑘+1 − 𝜏)

)
𝐸𝑐

(
𝒅𝜏 + �̄�𝑘 − �̄�𝑘

)
d𝜏 , (11a)

= 𝐸�̄�𝑘 + ∫
𝑡𝑘+1

𝑡𝑘
exp

(
𝐴𝑐 (𝑡𝑘+1 − 𝜏)

)
𝐸𝑐

(
𝒅𝜏 − �̄�𝑘

)
d𝜏 , (11b)

= 𝐸�̂�𝑘|𝑘 + 𝐸𝝐𝑘 + ∫
𝑡𝑘+1

𝑡𝑘
exp

(
𝐴𝑐 (𝑡𝑘+1 − 𝜏)

)
𝐸𝑐

(
𝒅𝜏 − �̄�𝑘

)
d𝜏 , (11c)

= 𝐸�̂�𝑘|𝑘 + 𝐸𝝐𝑘 + 𝜻𝑘 , (11d)

Fig. 1. An illustration of the calculations of the model discretisation. The disturbance
model estimates the mean value in the time sample [𝑡𝑘 , 𝑡𝑘+1]. The slanted hatched area
indicates the factor 𝒅𝑡 − �̄�𝑘 and the vertical hatched area shows the exponential factor
(in 1 dimension) in the integral in (11c).

≈ 𝐸�̂�𝑘|𝑘 + 𝐸𝝐𝑘 + 0 , (11e)

where 𝐸 = ∫ 𝑇𝑠0 exp
(
𝐴𝑐𝜏

)
𝐸𝑐d𝜏. In (11e), it is assumed (wrongfully) that

the disturbances act constantly on the system such that 𝒅𝜏 − �̄�𝑘 = 0 and
the integral 𝜻𝑘 = ∫ 𝑡𝑘+1𝑡𝑘

exp
(
𝐴𝑐 (𝑡𝑘+1 − 𝜏)

)
𝐸𝑐

(
𝒅𝜏 − �̄�𝑘

)
d𝜏 = 0 vanishes.

The term 𝜻𝑘 can be thought of as the error related to the zero-order
hold discretisation. Fig. 1 depicts the calculations involved in (11). The
hatched areas indicate the two factors in the integral in (11c) between
two time samples 𝑡𝑘 and 𝑡𝑘+1. It becomes evident that the integral of
the product of the two terms in general is not zero. Unfortunately, the
disturbance processes are strongly non-linear and behave indescribably,
which implies that 𝒅𝜏 − �̄�𝑘 becomes correlated in time (as Fig. 1
illustrates). For this reason, the easiest solution is to neglect the error
as in (11e). Since the uncertainty of the disturbances is described by
Brownian motions, it is possible to characterise the uncertainty of the
disturbances between time samples using a Brownian bridge. In such a
setup, by conditioning the Brownian bridge on attaining the estimated
disturbance values at times {𝑡𝑘, 𝑡𝑘+1}, the disturbance process between
the time steps is Gaussian. It is then straight forward to compute
uncertainties and densities for the disturbances at all points in time.

Inserting (11e) into (8) gives us the system

𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝒖𝑘 + 𝐸�̂�𝑘|𝑘 + 𝐸𝝐𝑘 + 𝝃𝑘 , (12)

with 𝒙𝑘 = 𝒙𝑡𝑘 and 𝝐𝑘 ∼ 𝑁(0,𝑊1) and 𝝃𝑘 ∼ 𝑁(0,𝑊2). 𝑊1 is the
covariance of the uncertainty related to the disturbance estimate and
𝑊2 = ∫ 𝑇𝑠0 exp

(
𝐴𝑐𝜏

)
𝐺𝑐𝐺⊤𝑐 exp

(
𝐴⊤𝑐 𝜏

)
d𝜏. Aggregating the noise terms,

𝒘𝑘 = 𝐸𝝐𝑘 + 𝝃𝑘, gives the conventional discrete-time stochastic state
space system

𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝒖𝑘 + 𝐸�̂�𝑘|𝑘 +𝒘𝑘. (13)

It immediately reveals that the computation of E[𝒙𝑘+𝑖 |𝑘], 𝑖 = 1,… , 𝑁
requires conditional mean forecasts of the disturbances.

2.2.1. Error quantification of the discretisation
Since 𝜻𝑘 is difficult to determine, the easiest solution is to disre-

gard it. But can we say something about the error we make by this
simplification? The discretised system (with all its terms) gets the form:

𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝒖𝑘 + 𝐸�̂�𝑘|𝑘 + 𝐸𝝐𝑘 + 𝝃𝑘 + 𝜻𝑘 , (14)

where 𝜻𝑘 = ∫ 𝑡𝑘+1𝑡𝑘
exp

(
𝐴𝑐 (𝑡𝑘+1 − 𝜏)

)
𝐸𝑐

(
𝒅𝜏 − �̄�𝑘

)
d𝜏. The error term 𝜻𝑘

can be bounded by the following:

‖𝜻𝑘‖22 ≤∫
𝑡𝑘+1

𝑡𝑘
‖ exp (𝐴𝑐 (𝑡𝑘+1 − 𝜏)

) ‖2𝐹 d𝜏 ⋅ ‖𝐸‖2𝐹
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Fig. 2. Due to the Gaussian noise acting on the system, we do not know the
deterministic position of the system — instead, the position is given by a Gaussian
density, centred around �̂�𝑘|𝑘.

⋅max
𝜏

{‖𝑑𝜏 − 𝑑𝑘‖22} (15a)

≤𝛥𝑡𝑘 ⋅max
𝜏

{‖ exp (𝐴𝑐 (𝑡𝑘+1 − 𝜏)
) ‖2𝐹 } ⋅ ‖𝐸𝑐‖2𝐹

⋅max
𝜏

{‖𝑑𝜏 − 𝑑𝑘‖22} (15b)

The first two norms of (15b) are related to the singular values of
the dynamics 𝐴 and 𝐸—i.e. if the dynamics are fast, the error might
be larger (due to the matrix exponential that acts as a weighting
factor) and vice versa. The last term relates the error to the maximum
quadratic variation between the continuous process 𝑑𝜏 and its mean
value in the interval [𝑡𝑘, 𝑡𝑘+1[. Note that the error term ‖𝜻𝑘‖22 scales
linearly in time, in line with the variance of a standard Brownian
motion. Also note that had the weighting factor exp

(
𝐴𝑐 (𝑡𝑘+1 − 𝜏)

)
not

been present, the integral would simply vanish. It is hence the system’s
dynamical influence that causes the error of the zero order hold.

2.3. Discretisation of the continuous-time objective function

The objective function has the purpose of weighting the perfor-
mance of control solutions to make them comparable. E.g., typically,
the purpose of controlling the indoor air temperature of a building is
to maintain a comfortable temperature while minimising the electricity
consumption and/or price (and perhaps more criteria such as variations
in the input signal). It is thus a tuning problem to correctly weight the
contributions to mimic desired behaviour.

In the previous subsection, we obtained the system on a discrete-
time form using a zero-order hold discretisation scheme. This has
the advantage of parameterising the input signal as a set of values
{𝒖𝑘+𝑖}𝑁−1

𝑖=0 , which is numerically tractable in an optimisation problem.
Given information up until time 𝑡𝑘, 𝑘 = {𝒚0, 𝒚1,… , 𝒚𝑘} the finite-
horizon continuous-time LQG control objective function from Eq. (7)
gets the form

E

[
∫

𝑡𝑘+𝑇

𝑡𝑘

1
2
(𝒛𝑡 − 𝒓𝑡)⊺𝑄(𝒛𝑡 − 𝒓𝑡)

+ 1
2
(�̄�𝑡 − 𝒖𝑡)⊺𝑅(�̄�𝑡 − 𝒖𝑡) + 𝒄⊺𝑡 𝒖𝑡d𝑡

||||𝑘
]
,

(16)

where 𝒓𝑡 and �̄�𝑡 are reference trajectories. Note that we employ the
weighted 2-norm. How to discretise the objective function is not
straight forward and can be done in multiple ways. In general, the dis-
cretisation is an approximation of the continuous-time objective. How-
ever, in the linear-quadratic case, an exact discretisation exists [32].

The derivation is tedious, though, and if the time between samples and
control inputs is small, the integral can be approximated well by an
Euler discretisation, i.e. evaluating the objective function point-wise.
Let

𝑡𝑘 ≤ 𝑡𝑘+1 ≤ ⋯ ≤ 𝑡𝑘+𝑁 = 𝑡𝑘 + 𝑇 (17)

be a partition of the future control times of the system. We discretise
the objective function point-wise such that the integral in (16) becomes
a sum over the values at the time points in (17)

𝜙 =E

[ 𝑘+𝑁−1∑
𝑖=𝑘

1
2
(𝒛𝑖 − 𝒓𝑖)⊺𝑄(𝒛𝑖 − 𝒓𝑖)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜙1

+ 1
2
(�̄�𝑖 − 𝒖𝑖)⊺𝑅(�̄�𝑖 − 𝒖𝑖)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜙2

+𝒄⊺𝑖 𝒖𝑖
||||𝑘

]
.

(18)

Using that 𝒛𝑖 = 𝐻𝒙𝑖, the first term in the sum simplifies to

𝜙1 =
𝑘+𝑁−1∑
𝑖=𝑘

1
2
𝒙⊤𝑖 𝑄

′𝒙𝑖 + 𝒔⊤𝑖 𝒙𝑘 +
1
2
𝒓⊤𝑘𝑄𝒓𝑘 (19)

where 𝑄′ = 𝐻⊤𝑄𝐻 and 𝒔⊤𝑖 = −𝒓⊤𝑖 𝑄𝐻 . The second part of the objective
function equivalently has the form

𝜙2 =
𝑘+𝑁−1∑
𝑖=𝑘

1
2
𝒖⊤𝑖 𝑅𝒖𝑖 + �̄�⊤𝑖 𝑅𝒖𝑖 +

1
2
�̄�⊤𝑖 𝑅�̄�𝑖 (20)

The combined discretised objective function (where we omit terms that
are independent of the system state or the input signal) is

𝜙𝑑 =E

[ 𝑘+𝑁−1∑
𝑖=𝑘

1
2
𝒙⊤𝑖 𝑄

′𝒙𝑖 + 𝒔⊤𝑖 𝒙𝑖

+ 1
2
𝒖⊤𝑖 𝑅𝒖𝑖 + �̄�⊤𝑖 𝑅𝒖𝑖 + 𝒄⊤𝑖 𝒖𝑖

||||𝑘
]
.

(21)

3. Solution to the LQG control problem with embedded distur-
bance model

The previous section presented and derived the discretisation of
the system dynamics and objective function to make computations
tractable for the computer. There are multiple ways to solve the LQG
optimal control problem. Singh and Pal [33] derive an optimal linear
feedback law based on the current state and future disturbance input —
an extension to the classical LQR feedback law. However, such laws are
not able to deal with constraints, which requires (in general) numerical
solvers to solve. In this section, we derive solutions to the finite horizon
constrained LQG optimal control problem.

When dealing with stochastic systems as in (1) governed by both
Gaussian system and observation noise, the LQG control problem can
be divided into two sub-problems due to the separation principle (under
certain conditions) [34]. Given a noisy observation of the system, 𝒚𝑘,
the steps are

1. Reconstruct the system states, 𝒙𝑘, using the regular Kalman filter
(which is an optimal state estimator in the linear case with
Gaussian noise), i.e. �̂�𝑘|𝑘 = E[𝒙𝑘|𝑘]

2. Solve the LQG optimal control problem using the reconstruction
as a certainty-equivalent state estimate.

The LQR and LQG optimal control problems are special cases when it
comes to their solutions and ability to separate the estimation and opti-
mal control problems. This section presents and solves both problems.
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3.1. State estimation (filter)

Due to the Gaussian error term in (13), 𝒘𝑘 = 𝐸𝝐𝑘 + 𝝃𝑘, the system
experiences random forces that pushes it away from its deterministic
path given by the linear system in Eq. (5). We thus do not know the
exact position of the system. To estimate the system state, filters and ob-
servers are common choices [30,35]. However, in case of a linear state
space model with Gaussian process noise, the Kalman filter provides
an optimal state estimator. It estimates a distribution of the system state
at time 𝑡𝑘, (𝒙𝑘 |𝑘) ∼ 𝑁(�̂�𝑘|𝑘, 𝑃𝑘|𝑘) given the past observations. Fig. 2
depicts the distributional development in the Kalman filter update: We
start out with an initial state estimate at time 𝑡𝑘 given by a distribution
𝑁(�̂�𝑘|𝑘, 𝑃𝑘|𝑘). The system development gives a predicted estimate of
the successive state, (𝒙𝑘+1 |𝑘) ∼ 𝑁(�̂�𝑘+1|𝑘, 𝑃𝑘+1|𝑘). When the next
observation, 𝒚𝑘+1, becomes available, the Kalman filter combines the
system prediction and the observation at time 𝑡𝑘+1, to compute the
optimal system state estimate, (𝒙𝑘+1 |𝑘+1) ∼ 𝑁(�̂�𝑘+1|𝑘+1, 𝑃𝑘+1|𝑘+1).

Algorithm 1 lists the necessary computational steps in the Kalman
filter to update the system state distribution.

Algorithm 1 Kalman Filter

require: 𝒚𝑘, �̂�𝑘−1|𝑘−1, 𝒅𝑘−1|𝑘−1, �̂�𝑘−1|𝑘−1, 𝑃𝑘−1|𝑘−1

Prediction:
Compute one-step Kalman predictions
�̂�𝑘|𝑘−1 = 𝐴�̂�𝑘−1|𝑘−1 + 𝐵�̂�𝑘−1|𝑘−1 + 𝐸𝒅𝑘−1|𝑘−1
𝑃𝑘|𝑘−1 = 𝐴𝑃𝑘−1|𝑘−1𝐴⊤ +𝑄

Filter:
Compute estimated process noise and Kalman gain
𝛴𝑘|𝑘−1 = 𝐶𝑃𝑘|𝑘−1𝐶⊤ + 𝛴
𝐾𝑘 = 𝑃𝑘|𝑘−1𝐶⊤𝛴−1

𝑘|𝑘−1

Compute filtered estimates
�̂�𝑘|𝑘−1 = 𝐶�̂�𝑘|𝑘−1
�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 +𝐾𝑘(𝒚𝑘 − �̂�𝑘|𝑘−1)
𝑃𝑘|𝑘 = (𝐼 −𝐾𝑘𝐶)𝑃𝑘|𝑘−1(𝐼 −𝐾𝑘𝐶)⊤ +𝐾𝑘𝛴𝐾⊤

𝑘

return �̂�𝑘|𝑘, 𝑃𝑘|𝑘

3.2. Solution to the LQG optimal control problem

Consider the following finite horizon, inequality constrained opti-
mal control problem given �̂�𝑘|𝑘 and {�̂�𝑘+𝑗|𝑘}𝑁−1

𝑗=0 ,

𝑼∗
𝑘
||| �̂�𝑘|𝑘, {�̂�𝑘+𝑗|𝑘}

𝑁−1
𝑗=0 = arg min

𝒖0 ,…,𝒖𝑁−1
𝜙𝑘 (22a)

s.t. �̂�𝑖+1 = 𝐴�̂�𝑖 + 𝐵�̂�𝑖 + 𝐸�̂�𝑘+𝑖|𝑘, (22b)

�̂�0 = �̂�𝑘|𝑘 (22c)

𝒖min ≤ 𝒖𝑖 ≤ 𝒖max (22d)

𝜟𝒖min ≤ 𝜟𝒖𝑖 ≤ 𝜟𝒖max (22e)

𝑖 = 0,… , 𝑁 − 1, (22f)

with the discrete-time objective function

𝜙𝑘 = E

[𝑁−1+𝑘∑
𝑖=𝑘

1
2
�̂�⊤𝑖 𝑄

′�̂�𝑖 + 𝒔⊤𝑖 �̂�𝑖+

1
2
𝒖⊤𝑖 𝑅𝒖𝑖 − �̄�⊤𝑖 𝑅𝒖𝑖 + 𝒄⊤𝑖 𝒖𝑖

||||𝑘
]
.

(23)

We solve the optimal control problem in (22) by introducing a notation
for the system for all points in time from 𝑘 = 0,… , 𝑁 − 1.

�̂�𝑘+1 = 𝛷�̂�𝑘|𝑘 + 𝛤𝑢𝑼𝑘 + 𝛤𝑑�̂�𝑘 (24)

where the matrices and vectors are

�̂�𝑘+1 =
[
�̂�⊤𝑘+1|𝑘,… , �̂�⊤𝑘+𝑁|𝑘

]⊤

𝑼𝑘 =
[
𝒖⊤𝑘|𝑘,… , 𝒖⊤𝑘+𝑁−1|𝑘

]⊤

�̂�𝑘 =
[
�̂�⊤𝑘|𝑘,… , �̂�⊤𝑘+𝑁−1|𝑘

]⊤

𝑺𝑘 =
[
𝒔⊤𝑘 , 𝒔

⊤
𝑘+1,… , 𝒔⊤𝑘+𝑁−1

]⊤

𝛷 =
[
𝐴⊤, (𝐴2)⊤,… , (𝐴𝑁 )⊤

]⊤

𝛤𝑢 =

⎡⎢⎢⎢⎢⎢⎣

𝐵 0 … 0
𝐴𝐵 𝐵 … 0
𝐴2𝐵 𝐴𝐵 ⋱ ⋮
⋮ ⋮ ⋱ 0

𝐴𝑁−1𝐵 𝐴𝑁−2𝐵 … 𝐵

⎤⎥⎥⎥⎥⎥⎦

𝛤𝑑 =

⎡
⎢⎢⎢⎢⎢⎣

𝐸 0 … 0
𝐴𝐸 𝐸 … 0
𝐴2𝐸 𝐴𝐸 ⋱ ⋮
⋮ ⋮ ⋱ 0

𝐴𝑁−1𝐸 𝐴𝑁−2𝐸 … 𝐸

⎤
⎥⎥⎥⎥⎥⎦

(25)

We also introduce the vector containing the prediction errors 𝜺𝑘+𝑖|𝑘 =
�̂�𝑘+𝑖|𝑘 − 𝒙𝑘+𝑖, 𝑖 ∈ N, which are due to the Gaussian error term in (13),
𝒘𝑘 = 𝐸𝝐𝑘 + 𝝃𝑘,

𝜺𝑘 =
[
𝜺⊤𝑘+1|𝑘,… , 𝜺⊤𝑘+𝑁|𝑘

]⊤
(26)

Inserting the new notation in to the objective function ultimately iso-
lates the stochasticity to the prediction errors (the predictions and pre-
diction errors are independent under the linear quadratic assumption)

𝜙𝑘 = E

[
1
2
(
�̂�𝑘+1 + 𝜺

)⊤ �̄� (
�̂�𝑘+1 + 𝜺𝑘

)
+ 𝑺⊤𝑘

(
�̂�𝑘+1 + 𝜺𝑘

)

+ 1
2
𝑼⊤
𝑘 �̄�𝑼𝑘 − �̄�⊤

𝑘 �̄�𝑼𝑘 + �̄�⊤
𝑘𝑼𝑘

||||𝑘
]

𝜙𝑘 =
1
2
�̂�⊤
𝑘+1�̄��̂�𝑘+1 + 𝑺⊤𝑘 �̂�𝑘+1 +

1
2
𝑼⊤
𝑘 �̄�𝑼𝑘 − �̄�⊤

𝑘 �̄�𝑼𝑘

+ �̄�⊤
𝑘𝑼𝑘 + E

[
1
2
𝜺⊤𝑘 �̄�𝜺𝑘 + 𝑺⊤𝑘 𝜺𝑘

||||𝑘
]
,

(27)

where �̄� = diag(𝑄′,… , 𝑄′), �̄� = diag(𝑅,… , 𝑅), and �̄�𝑘 =[
𝒄⊤𝑘 ,… , 𝒄⊤𝑘+𝑁−1

]⊤
. Since the last term does not depend on 𝑼 , we can

omit it in the optimisation problem. The next step is to insert (24) into
the cost function

𝜙𝑘 =
1
2
(
𝛷�̂�𝑘|𝑘 + 𝛤𝑢𝑼𝑘 + 𝛤𝑑�̂�𝑘

)⊤ �̄�
(
𝛷�̂�𝑘|𝑘 + 𝛤𝑢𝑼𝑘

+ 𝛤𝑑�̂�𝑘

)
+𝑺⊤𝑘

(
𝛷�̂�𝑘|𝑘 + 𝛤𝑢𝑼𝑘 + 𝛤𝑑�̂�𝑘

)

+ 1
2
𝑼⊤
𝑘 �̄�𝑼𝑘 − �̄�⊤

𝑘 �̄�𝑼𝑘 + �̄�⊤
𝑘𝑼𝑘 .

(28)

Notice that we eliminated the equality constraints (22b) since they are
now embedded in the cost function. We can write the objective, 𝜙𝑘, as
a quadratic function in 𝑼𝑘

�̃�𝑘 =
1
2
𝑼⊤
𝑘𝑃𝑼𝑘 + 𝒒⊤𝑼𝑘 , (29)

with the matrix and vector
𝑃 = (𝛤⊤𝑢 �̄�𝛤𝑢 + �̄�)
𝒒 = (𝛤⊤𝑢 �̄�𝛷�̂�𝑘|𝑘 + 𝛤

⊤
𝑢 �̄�𝛤𝑑�̂�𝑘 + 𝛤⊤𝑢 𝑺𝑘 + �̄�𝑘 − �̄��̄�𝑘)

That is, the optimisation problem in (22) is equivalent to the following
convex quadratic programme

𝑼∗
𝑘
||| �̂�𝑘|𝑘, {�̂�𝑘+𝑗|𝑘}

𝑁−1
𝑗=0 = arg min

𝒖0 ,…,𝒖𝑁−1
�̃�𝑘

s.t. 𝒖min ≤ 𝒖𝑖 ≤ 𝒖max

𝜟𝒖min ≤ 𝜟𝒖𝑖 ≤ 𝜟𝒖max

𝑖 = 0,… , 𝑁 − 1

(30)
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Fig. 3. A diagram of the smart building model and the interactions. The room air
exchanges heat with the floor and the ambient air and is heated by electrical heaters.
The solar radiation enters through the windows and typically delivers significant
amounts of heat.

Fig. 4. Two illustrations of how the climatic processes interact and how the disturbance
model is designed. In 4(a) the two components of the solar radiation is displayed: The
global radiation consists of direct- and diffuse radiation where the latter is reflected
off from objects in the atmosphere. In 4(b), the interactions of the components near
Earth’s surface is depicted. The net radiation is the net input of short- and long wave
radiation. It plays a crucial role in describing the ambient air temperature. The sea
surrounding Denmark highly regulates the air temperature. The heat capacity of water
is much larger compared to that of air, and the sea temperature (𝑇𝑠) thus acts as a
slow and regulating component in the model. 𝑇∞ represents a constant heat loss of the
air.

with �̃�𝑘 as in (29). The objective, �̃�𝑘, is convex and enables fast
numerical solvers such as interior-point methods, see e.g. [36]. Had
the problem been unconstrained, the solution to the quadratic optimal
control problem would have been given in closed-form [37]. This has
the advantages of being fast to evaluate and gives useful insights into
how the solution depends on the various parameters.

Algorithm 2 MPC Algorithm

require: 𝒚𝑡𝑘 , �̂�𝑘−1|𝑘−1, �̂�𝑘−1|𝑘−1, 𝑃𝑘−1|𝑘−1,
𝒅𝑘−1|𝑘−1

Filter:
Given 𝒚𝑡𝑘 , �̂�𝑘−1|𝑘−1, �̂�𝑘−1|𝑘−1, 𝑃𝑘−1|𝑘−1,
𝒅𝑘−1|𝑘−1, compute the filtered moments of the current system state;
�̂�𝑘|𝑘 and 𝑃𝑘|𝑘

Disturbance forecasts:
Given 𝒅𝑘−1|𝑘−1 compute {𝒅𝑘+𝑖|𝑘}𝑁𝑖=0 using the disturbance model in
(1b)

Optimal control:
Given �̂�𝑘|𝑘, �̂�𝑘−1|𝑘−1, and {𝒅𝑘+𝑖|𝑘}𝑁𝑖=0 solve the optimal control
problem in (30) to obtain {�̂�𝑘+𝑖|𝑘}𝑁−1

𝑖=0

return �̂�𝑘|𝑘, �̂�𝑘|𝑘, 𝑃𝑘|𝑘

The LQG control framework is now given by a filtering- and an
optimisation step. Given an observation, 𝒚𝑘, we reconstruct the current
state, �̂�𝑘|𝑘, in the filtering step, and solve the optimal control prob-
lem to retrieve the optimal input. In the MPC algorithm, we require
an addition computational step to compute the disturbance forecasts.
Algorithm 2 lists the LQG control framework.

4. The smart building and disturbance model

In the numerical case study (to simulate the performance of con-
trollers using different disturbance forecasting schemes) we consider
the heat dynamics of a building given by a model based on SDEs. Fur-
thermore, we use a SDE-based disturbance model to supply forecasts.
This section introduces both models briefly.

4.1. The smart building model

This paper considers a model based on SDEs with a linear model
for the building heat dynamics and a non-linear model for the distur-
bances. The SDE representation in (1) provides a natural way to express
physical systems due to the continuous-time formulation.

This paper uses the continuous-time heat dynamics model of a build-
ing identified and estimated by [38]. The authors show that a sufficient
model for describing the heat dynamics of the specific building involves
two heat accumulating media temperatures: the room air and the floor.
We denote the state variable 𝒙(𝑡) =

[
𝑇𝑟(𝑡), 𝑇𝑓 (𝑡)

]𝑇 , where 𝑇𝑟 and 𝑇𝑓
are the room air and floor temperature, respectively. Furthermore, the
authors identify how the important disturbances act on the smart build-
ing; that is the ambient air temperature, 𝑇𝑎(𝑡), and the solar radiation,
𝜙𝑠(𝑡). Lastly the room is equipped with an electrical heater to supply
heat. Fig. 3 illustrates the heat dynamics and interactions between the
model components. Mathematically, the following matrices govern the
continuous-time smart building model on linear form as in (1)

𝐴𝑐 =
⎡
⎢⎢⎣

− 1
𝑟𝑓𝑟𝐶𝑟

− 1
𝑟𝑟𝑎𝐶𝑟

1
𝑟𝑓𝑟𝐶𝑟

1
𝑟𝑓𝑟𝐶𝑓

− 1
𝑟𝑓𝑟𝐶𝑓

⎤⎥⎥⎦
, 𝐵𝑐 =

[ 1
𝐶𝑟
0

]
,

𝐸𝑐 =

[ 1
𝑟𝑟𝑎𝐶𝑟

𝐴𝑤
(1−𝑝)
𝐶𝑟

0 𝐴𝑤
𝑝
𝐶𝑓

]
, 𝐺𝑐 =

[
𝜎1 0
0 𝜎2

]
,

𝐶 =
[

1 0
]
, 𝐻 =

[
1 0

]

(31)

with the variables 𝒙(𝑡) =
[
𝑇𝑟(𝑡), 𝑇𝑓 (𝑡)

]𝑇 , 𝑢(𝑡) = 𝜙ℎ(𝑡), 𝒅(𝑡) =
[
𝑇𝑎(𝑡), 𝜙𝑠(𝑡)

]𝑇 .
Table 1 gives the values and descriptions of the parameters in (31). The
model in (31) is of course very simple and could be extended to include
many effects such as the relative humidity or CO2-levels, both of which
impacts the indoor climate [39].
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Fig. 5. The advanced dynamical disturbance model compared to persistent forecasts and true disturbances.

Table 1
The values used in the model for a single smart
building in (31).
Parameter Value Unit

𝐶𝑟 810 kJ/◦C
𝐶𝑓 3315 kJ/◦C
𝑟𝑟𝑎 0.036 kJ/(◦C h)
𝑟𝑓𝑟 0.0016 kJ/(◦C h)
𝐴𝑤 2.9 m2

𝑝 0.1
𝜎1 0.1
𝜎2 0.1

4.2. The disturbance model

An important contribution of this paper is to show that disturbance
modelling is crucial for control performance. We use the advanced
dynamical disturbance model introduced in [6,10]. The disturbance
model predicts the mean value of the solar radiation, 𝜙𝑠(𝑡), and the
ambient air temperature, 𝑇𝑎(𝑡), in the time interval [𝑡𝑘, 𝑡𝑘+1[. The model
is based on stochastic differential equations and incorporates many
climate processes. Fig. 4 gives an overview of the model: It includes
models of the following components

• Cloud cover, 𝜅
• Global solar radiation (based on the direct and diffuse radiation),
𝜙𝑠

• Net radiation, 𝑅𝑛
• Ambient air temperature, 𝑇𝑎

Fig. 4 illustrates the way the components are coupled and thoroughly
explains the dynamics and interactions. Ultimately, the model predicts
the amount of solar radiation hitting a horizontal surface (in Watts)
and the ambient air temperature. That is, given an observation of the
disturbances at time 𝑡𝑘, �̂�𝑑,𝑘, the disturbance model returns a sequence
of disturbance forecasts
{
�̂�𝑘+𝑖|𝑘

}𝑁−1
𝑖=0 (32)

where �̂�𝑘+𝑖|𝑘 =
[
𝑇𝑎,𝑘+𝑖|𝑘, 𝜙𝑠,𝑘+𝑖|𝑘

]𝑇 is the prediction of the disturbances
in the time interval

[
𝑡𝑘+𝑖, 𝑡𝑘+𝑖+1 [, 𝑖 ∈ N and 𝑁 is the prediction horizon.

The building- and disturbance systems in (31) are one-way coupled
and the observation of the building system does not contain much
additional information about the disturbance state. For this reason, we
let separate Kalman filters reconstruct each system for a given time
instance. Furthermore, we let the MPC use the weather forecasts as
input to the grey-box model for the disturbances to solve the optimal
control problem.

Fig. 5 shows a forecasting example with a prediction horizon of
four days. The disturbance model forecasts the expected value, which
visibly goes to a steady state after some time (after which the forecasts
corresponds to a mean value).

Remark. The presented model includes only a limited climatic pro-
cesses for predicting the ambient air temperature and global solar
radiation. If relevant for the control objective, other variables could
be added to the disturbance model — e.g. humidity factor, CO2, etc.

5. Numerical case study

In this section, we carry out a simulation study to quantify the
effects of using embedded disturbance forecasts for the continuous-
time LQG controller based on the optimal control problem in (30)
using the discretised dynamics and objective function in (13) and (21),
respectively. We compare the results with a controller that uses perfect
forecasts to give an upper bound on the possible control performance.
We also compare a controller that uses offset-free control — also known
as persistent forecasts. The latter is a standard way of dealing with
disturbances in the control literature, see e.g. [40–42] for introductions
to the technique.

5.1. Simulation setup

To include weather disturbances into the simulations and mimic
natural settings, we use actual weather data as the true disturbances
acting on the building model. The controllers use weather predictions
supplied by the disturbance forecasting schemes (either persistent,
advanced, or perfect forecasts). The results in this section (simulation
results in Figs. 7 and 8) are based on 7 months of weather data, where
observations are separated by 1 h. The data was collected from a
weather station located in Taastrup in Denmark in the period from 1971
to 1973. The data include the following variables:

• Cloud cover ([okta])
• Direct radiation ([W/m2])
• Diffuse radiation ([W/m2])
• Net radiation ([W//m2])
• Air temperature ([◦C])

For more details on the data, it is thoroughly described in [43].
The controllers use a prediction horizon of 84 h and a time sample of

1 h. The constraints on the input are 𝑢min = 0 W, 𝑢max = 1500 W, 𝛥𝑢min =
−500 W, and 𝛥𝑢max = 500 W. The electricity price is parameterised as
𝑐𝑖 = 𝑐𝑢𝑐𝑖, where 𝑐𝑖 is electricity price data taken from Nordpool and 𝑐𝑢
is a constant scalar to weight the electricity price in the optimisation.

To give a visual example of the control solution and better under-
stand the differences of the strategies, Fig. 6 shows the first two weeks
of the 7 months of the control simulation. The overall behavioural
pattern seems to be more or less the same for all controllers. They
tend to buy electricity at the same times. However, the controller
using persistent forecasts seems to consistently overheat in periods with
significant amounts of sun, compared to the other controllers. Here, the
controllers using advanced and perfect forecasts seem to supply more
equal control solutions.
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Fig. 6. A simulation of a 14 day period with electricity prices taken from Nordpool and weights 𝑐𝑢 = 2.5 ⋅ 10−5, 𝑟𝑢 = 1 ⋅ 10−6.

Fig. 7. Pareto fronts of the variation trade-off of the input and the set-point deviation
7(a) and the set-point deviation and the electricity price 7(b).

Fig. 8. The savings in terms of the objective of the controllers using advanced- and
perfect forecasts compared to a controller using persistent forecasts. The solid and
dashed lines use 𝑟𝑢 = 0 and 𝑟𝑢 = 0.5 ⋅ 10−5, respectively. E.g. The dashed lines at the
weight 𝑐𝑢 = 0.0002 shows that the advanced- and persistent forecasts performs around
10% better compared to the persistent forecasts for 𝑟𝑢 = 𝑟𝑢 = 0.5 ⋅ 10−5.

5.2. Comparison of performances between forecasting schemes

Fig. 7 shows the pareto-fronts displaying the trade-offs between
variance in the signals and economic costs. Fig. 7(a) shows the trade-
off between the variance of the solution and the control signal: If
we require less variance of the process around the reference signal,
the variance of the input increases and vice versa. This trade-off is a
consequence of the LQG control that weights the variance of solution
and the input. The controller using advanced forecasts is able to obtain
smaller variation of the solution for a given tolerable input variation
compared to persistent forecasts.

Fig. 7(b) shows the trade-off between the variance in the solution
and the economic costs. It shows again that it is more expensive
to require less variation in the solution. Again, the controller using
advanced forecasts is able to obtain a certain variation in the solution
for a smaller economic cost.

Overall, the advanced forecasts are able to deliver better solutions
in terms of economic costs and variations in the input and solution. The
performance is sometimes close to that of using perfect forecasts.

Lastly, Fig. 8 shows the savings of controllers using perfect and ad-
vanced forecasts as a function of the economic price weight compared
to a controller using persistent forecasts. The objective function savings



Applied Energy 327 (2022) 120086

9

C.A. Thilker et al.

are the realised savings:

Savings = 100 ⋅ 𝜙(method)

𝜙(persistent) , method ∈ {perfect, advanced} (33)

where 𝜙(method) is the realised objective computed by evaluating the
control solution (using either perfect- or advanced forecasts as fore-
casting scheme) in the objective function and 𝜙(persistent) is the control
solution using persistent forecasts evaluated in the objective function.
It shows the savings for two values of 𝑟𝑢 (solid and dashed lines)
where the results vary from 5% to 26% savings by varying 𝑐𝑢 when
using advanced forecasts (compared to a controller using persistent
forecasts). By including the electricity price in the objective function
(with varying electricity price) adds the objective of also using the
electricity when it is cheaper. The results thus also give an idea of
the strategies’ abilities to shift the heat input to beneficial times. This
result is in-line with the message from the pareto-fronts — the advanced
forecasts supply better forecasts for control compared to persistent
forecasts, and for certain choices of parameters the performance is
close to that of perfect forecasts. It is also visible that adding more
regularisation to the optimal control problem (by increasing the weight
𝑐𝑢) the performance between the methods gets smaller.

6. Conclusion

This paper introduced and treated in detail the continuous-time
linear quadratic Gaussian (LQG) optimal control problem where distur-
bances are supplied by an embedded disturbance model. We derived
a zero-order hold discretisation of the continuous-time dynamics and
treated the effects of the disturbances in depth. Next, we introduced
the LQG control framework consisting of a filter and an optimal control
problem and presented an algorithm to solve the problem. We carried
out a numerical case study that involved controlling the indoor climate
of a building using the proposed LQG control framework with an em-
bedded disturbance model to supply weather forecasts. We compared
the control performance to controllers using persistent forecasts (which
is the otherwise dominating standard to supply forecasts). Results
suggest control performance improvements up to 26% are available
from using an embedded disturbance model. We also showed that the
LQG control framework leads to a useful trade-off between variation of
the input, variation of the output, and economic costs.
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Abstract

This paper introduces a two-step procedure for stabilising a chaotic system around an arbitrary periodic orbit on a
Poincaré map. Chaotic systems lack predictability due to positive Lyapunov exponents. For this reason, predictive
control methods tend to perform poorly because the predictable horizon may be short. Current methods for stabilising
chaotic systems works by putting them onto already existing unstable periodic orbits, where the dynamics on the Poincaré
map disappear. This paper proposes a method for stabilising the system on an arbitrary point on the Poincaré section.
The method in this paper consists of two steps. In the first step, we pose an optimisation problem that computes
an input signal that, when applied to the system, introduces the desired periodic orbit. In the second step, we use
existing methods, such as the method using delay coordinate embedding developed by Ott, Grebogi and Yorke in 1990,
to stabilise the system around the newly introduced periodic orbit. As an example, we demonstrate the method on the
resistively and capacitively shunted driven Josephson junction.

Keywords: chaos, control

1. Introduction

In the present paper we suggest a two-step method
for controlling a nonlinear dynamical system exhibiting
chaotic dynamics such that it follows a predefined periodic
path in a Poincaré map of the system. Choosing one point5

in the Poincaré map corresponds to a simple period one so-
lution intersecting the Poincaré plane in this chosen point.
Choosing n points, where n is a positive integer, corre-
sponds to a period-n solution, intersecting the Poincaré
plane n times before completing the periodic cycle. The10

order of these intersections are also chosen arbitrarily.
In the first step we invoke an optimal control problem

with an objective function which minimises the distance
between the points calculated from the Poincaré map and
the arbitrarily chosen points. The objective function only15

restrains the solution to the chosen points in the plane
of intersection of the Poincaré map. The dynamics out-
side the plane of intersection we do not care about. The
optimal control provides a periodic input signal leading
to the desired period n solution, which may coexists with20

other attractors or repellers, including chaotic attractors.
If the desired solution is stable we are done. However, if
the optimal control leads to an unstable period n solution
with the found control signal, we shall apply an additional
adaptive control scheme in a second step, such as the ones25

Email addresses: chant@dtu.dk (Christian Ankerstjerne
Thilker), mpso@dtu.dk (Mads Peter Sørensen)

given in [14] or [4], to stabilise the system around the given
unstable fixed points. The method can also constrain the
magnitude of the altering periodic signal such that they
remain small, that is multiple orders of magnitude smaller
than the system dynamics.30

The above two-step method is used on the the model of
the resistively and capacitively shunted driven Josephson
junction. Alternatively the same model arise for the dy-
namics of a driven and damped fysical pendulum in the
gravity field and subject to full rotations around its sus-35

pension point.

The paper is organised as follows: Section 2 introduces
the model for the driven and damped Josephson junction
and provides properties of chaotic dynamical states with-
out control. Section 3 introduces the methods for stabil-40

ising the chaotic system using optimal control. Section
4 presents the case study where we apply the introduced
stabilisation method on the Josephson junction model. Fi-
nally, Section 5 concludes the paper and the findings.

2. The driven damped Josephson junction and the45

pendulum

The Josephson junction is a tunnel diode consisting of
two superconductors separated by a thin barrier with a
thickness of order 10 Å [7, 2]. The dynamics of a point
Josephson junction is governed by the Resistively and Ca-50

pacitively Shunted Junction (RCSJ) model for the phase
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difference φ = φ(t) across the barrier [2].

φ̈+ αφ̇+ sin(φ) = η +A sin(ωt) + u . (1)

In (1) the time derivative is written shortly as φ̇ = dφ/dt.
The term in α is the tunnel resistance due to quasi parti-
cles, and sin(φ) is the normalized tunnel current of Cooper55

pairs across the junction barrier. On the right hand side
we have added a constant external bias term η, an external
driving signal with amplitude A and frequency ω. Finally,
we have added a time dependent control signal u = u(t).
The instantaneous voltage v(t) across the junction is pro-60

portional to φ̇. Current voltage characteritics are plots of
the bias current versus the time average of the voltage.

The model in Eq. (1) also governs a driven and damped
pendulum, which is allowed to make full rotations in the
gravity field. The variable φ is the angle of deviation from65

the vertical hanging pendulum, the term in α models vis-
cous damping and sin(φ) is the torque exerted on the pen-
dulum from the gravity force. In the right hand side of
Eq. (1) the η-term is a constant external torque and the
sinusoidal term models a time dependant driving torque.70

Here u denotes a time dependant control torque. In refer-
ence [2] a more detailed derivation and comparison is found
of the RCSJ Josephson junction model and the pendulum
model. The pendulum is a mechanical analog of Jospehson
junctions and is used for enhancing the insight into the dy-75

namics of Josephson point juncions.
We can rewrite Eq. (1) as an autonomous system of

three coupled ordinary differential equations as follows

ẋ1 = x2 , (2a)

ẋ2 = −αx2 − sin(x1) + η +A sin(x3) + u , (2b)

ẋ3 = ω , (2c)

where x1(t) = φ(t). This system is used in the numerical
implementation, where we applied the Runge-Kutta 4-580

numerical scheme from Matlab [13].

2.1. Chaos in the driven Josephson junction

The driven Josephson junction is well studied [16] and
has a rich solution space showing bifurcations, periodic at-
tractors, chaotic dynamics, phase locking and more. In or-85

der to illustrate these phenomena we shall follow reference
[16] and focus our attention to a small parameter space
with ω = 1, α = 0.2, A = 10.198039027, and a variable
bias current η.

In figure 1 we show the value of φ̇(Tn) with Tn = 2πn/ω,90

n ∈ N, as a function of the bias current η. Here the period
of the external sinusoidal drive is 2π/ω. For each value of
η we calculate a series of φ̇(Tn), which are plotted as black
dots in the Fig. 1. We can define a Poincaré map from Eq.
(1) through the sequence (x1(Tn) mod 2π, x2(Tn)) and de-95

manding x1(Tn) mod 2π ∈ [−π;π[. The data points φ̇(Tn)
= x2(Tn) is then a projection of the Poincaré map onto
the x2-axis. Following the reference [16] we recapitulate
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Figure 1: The chaotic attractor as a function of η. The coloured lines
indicate unstable periodic orbits (UPOs); each colour is a distinct
UPO. The parameter values are ω = 1, α = 0.2, A = 10.198039027.

that as η increases from η = 1.78, the chaotic attractor
disappears at η = 1.822 in a boundary crisis as it collides100

with the unstable period-1 orbit [9]. The system then un-
dergoes a period-doubling sequence as η increases further
up to around 1.8772 where the system becomes chaotic.
The chaotic attractor is rather small or narrow in φ̇(Tn)
until it collides with the unstable period-3 solution, where105

it suddenly expands at η = 1.888 in a so-called interior
crisis [9, 11, 12]. The unstable period-3 solution appears
at η = 1.851.

In the current study, we have identified a number of
new unstable periodic orbits (UPO) in Eq. (1) and they110

are depicted as the coloured lines in Fig. 1, where each
colour is a distinct UPO. As an example the three red
lines depict a period-3 fixed point. For η = 1.82, a chaotic
attractor co-exists with a stable period-1 orbit indicated
by the black dots to the right in Figure 1.115

Chaotic dynamics can be characterised by the Lyapunov
exponents of the system [3, 18]. The Lyapunov exponents
are the rate of separation of two orbits with an infinites-
imal small initial separation. When the Lyapunov expo-
nents become positive for a given system, two initially close120

orbits separate at an exponential rate. Figure 2 shows the
three Lyapunov exponents of the driven Josephson junc-
tion model in (2) as a function of η with the parameters
as previous. For calculating the Lyapunov exponents we
have applied the numerical method described in reference125

[18]. From Fig. 2 we can identify the period-doubling
sequence by the points, where the largest Lyapunov expo-
nent, λ1, becomes zero, but do not cross λ = 0. The point
at which the system becomes chaotic is the point where
the largest Lyapuonv exponent crosses the zero-axis. The130

internal crisis is also visible by the sudden increase in the
positive Lyapunov exponent around η = 1.887, due to the
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Figure 2: The three Lyapunov exponents as a function of η. Ev-
ery time a period doubling happens, the Lyapunov exponents reach
zero. At the point of chaos the largest Lyapunov exponent becomes
positive and the system goes into a non-predictive state.

expansion of the chaotic region. The irregularity of the
Lyapunov exponents is also larger after this point with
more significant fluctuations. These results comply with135

those in reference [10].
Figure 3 shows a Poincaré section for η = 1.9 of the

chaotic attractor depicted in Figure 1. An UPO corre-
sponds to an ordered sequence of points in the Poincaré
section. The large coloured dots are the locations of the140

UPOs also depicted in Figure 1.
Figure 4 depicts a current-voltage characteristic, show-

ing the bias current η as function of the average voltage v
= < φ̇ > across the junction barrier. For 1.825 < η < 1.88
the average voltage is phase locked to the value 10. In-145

creasing the bias current from η = 1.88 to η = 2, we ob-
serve chaotic dynamics and loss of the phase locked state.
As a result the average voltage across the junction de-
creases and becomes irregular. From an operational point
of view, the irregularity may not be desired as the system150

does not operate in a specified periodic state. Appropriate
control is a useful tool for stabilising the system in a state
that benefits operations.

2.2. Control of UPOs embedded in the chaotic attractor

Unstable periodic orbits may be embedded within a155

chaotic attractor. The idea of controlling a chaotic sys-
tem onto an unstable periodic orbit (UPO) using small
perturbations originates from Ott et al. [14]. The goal of
the method is to steer the system onto a fixed point in
a Poincaré section. That is, the operator first needs to160

identify an UPO that is desirable to operate the system
on. Next, the operator needs knowledge about the local
behaviour of the system around the fixed point. The fun-
damental requirement of the method is the existence of
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Figure 3: The chaotic attractor in the Poincaré map for the specific
value η = 1.9. The coloured dots indicate the points of the UPOs
from figure 1. They all lie within the chaotic attractor.

an UPO – but what if we cannot find an existing UPO165

that suits the needs of the operation we wish do? Figure 3
shows some, there might be more, of the UPOs with period
up to 3 of the Josephson junction model in (2). The next
section introduces a method for constructing an arbitrary
fixed point on the Poincaré section using small perturba-170

tions such that the system is not altered too much.

3. A method for stabilising an arbitrary unstable
periodic orbit

In this section we introduce a method for creating an
arbitrary fixed point in the Poincaré section of a chaotic175

dynamical system (2) and the method for stabilising the
system around this fixed point. The idea is to perturb
the system using not too large inputs such that a desired
sequence of points appear in the Poincaré section, which
was not already there. The method consist of two steps:180

First, we pose an optimal control problem in order to find
an input signal that alters the chaotic behaviour such that
the desired UPO appears in the Poincaré map of the sys-
tem. Next, we use existing methods, such as the OGY [14]
or the adaptive method [4], to stabilise the system around185

the newly introduced UPO.

The system is thus altered by two inputs. We therefore
consider an input of the form u(t) = u1(t)+u2(t), where u1
is the input that alters the system such that the desired
UPO appears and u2 is the adaptive control to stabilise
the system dynamics onto the UPO. Consequently, the
Josephson junction model has the form

φ̈+ αφ̇+ sinφ = η +A sin(ωt) + u1(t) + u2(t) . (3)

3
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Figure 4: The IV-characteristic of the Josephson junction with the
parameters as in Figure 1. < · > is the time average operator. The
average voltage is initially locked on step 10. When the system enters
the chaotic state around η = 1.8772, the system leaves the step and
the IV-characteristic becomes irregular.

3.1. Optimal control problem

An optimal control problem is the optimisation problem
that arises in the search of an optimal control of a system
[15]. The problem is based on a cost function, that is
used to rank the feasible solutions. The problem should
be formulated such that it promotes a desired behaviour of
the system. An example is optimal control of the heating
system of a building [17]. Here, the problem is to find
the optimal times to heat (or cool) the indoor air given
the acceptable constraints on the indoor air temperature,
the heating prices, and the weather forecasts of outdoor
temperature and solar radiation. In many situations, the
optimal control problem is based on a Bolza problem [6]

min
u1

V (x, u1) (4a)

s.t. ẋ(t;u1) = f(x, t;u1) (4b)

x(t0;u1) = x0 (4c)

cx(x) ≥ 0 (4d)

cu(u1) ≥ 0 (4e)

with

V (x, u1) =

∫ t0+T

t0

`(x(t;u1), u1)dt+ `T (x(t0 + T ;u1)) .

(5)
In (4), x : R → Rn where n ∈ N and cx, cu are functions
that constrain the state-space of the system and the input.
V is the objective function that the operator wishes to min-190

imise: ` is the infinitesimal cost that penalises the system
for unwanted behaviour while `T is a terminal cost, some-
times called cost-to-go, that penalises the terminal state
of the system. In our case, we are interested in planning a
path that makes the system travel through specified points195

in the Poincaré section. We hence do not care about the

transient state of the system between these discrete points.
This consideration leads us to an attractive formulation of
the optimal control problem for planning the desired path
described in the following section.200

3.2. Constructing an arbitrary unstable periodic orbit em-
bedded into the chaotic attractor

We shall now show how an unstable periodic orbit of our
choosing can be constructed as a solution of Eq. (3) by
applying an external control function u1 determined from
an optimal control problem. Let

Tx : 0 = tx0 < tx1 < · · · < txN = TxN (6a)

Tu : 0 = tu0 < tu1 < · · · < tuM = TuM (6b)

be sequences of equidistant time points such that txk = Txk,
k = 0, ..., N and tum = Tum, m = 0, ...,M . Tx is the
collection of time points where the system traverses the
Poincaré section while Tu is the time points where the
input signal changes. The operator now chooses a de-
sired ordered sequence of points in the Poincaré section,
{x∗k}N−1k=0 . These points do not necessarily correspond to
an already existing UPO. To introduce an UPO travers-
ing these points, {x∗k}N−1k=0 , we solve the optimal control
problem in (4) with a special infinitesimal cost, which is
often used in optimal control and parameter estimation
of differential equation models [5]. In the optimal con-
trol problem, we consider a piecewise constant input sig-
nal u1(t) = u1,m, t ∈ [tum, t

u
m+1[, m = 0, . . . ,M − 1. This

makes the parameters in the optimal control problem a se-
quence of values {u1,m}M−1m=0 . Note that txN = tuM since the
input signal also needs to be TxN -periodic. As described
in the preceding section, we care only about the state of
the system when it traverses the Poincaré map. Therefore,
the following infinitesimal cost reflects this ”interest”

`(x, u1) =
N∑

k=0

δ(t− Tk)`k(x;u1) , (7)

where δ is the Dirac delta function and

`k(x, u1) = ‖x∗k − x(txk;u1)‖22 , (8)

penalises the distance between the system at time txk and
the desired point. We wish to minimize the distance be-
tween x(txk;u1) and x∗k. As a result, the objective function
of the optimal control problem becomes a sum:

∫ tk+T

tk

`(x, u1)dt =

N−1∑

k=0

`k(x, u1) . (9)

If we now let `T (x(txN )) = ‖x∗0−x(txN )‖22, we can write the
objective function for our application as

V =
N−1∑

k=0

(
‖x∗k − x(txk;u1)‖22

)
+ ‖x∗0 − x(txN ;u1)‖22 . (10)
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The terms
(
‖x∗k−x(txk;u1)‖22

)
, k = 0, . . . , N−1, penalises

the system x if it does not traverse the points x∗k in the
correct order while the terminal cost, ‖x∗0 − x(txN ;u1)‖22,
makes sure that x arrives at the starting point x∗0 and
closes the loop at the end t = txN . In practice, it may
not be desirable to let u1 be too large. By constraining
the magnitude of u1, the optimal control problem finally
becomes

min
{u1,m}M−1

m=0

V (x, u1) , (11a)

s.t. ẋ(t;u1) = f(x(t), t;u1(t)) , (11b)

x(0;u1) = x∗0 , (11c)

u1(t) = u1,m for t ∈ [tum, t
u
m+1[ , (11d)

umin ≤ um ≤ umax , m = 0, . . . ,M − 1 . (11e)

In (11), u1(t) is piecewise constant and M is the number
of piecewise steps it takes on during the time [tu0 , t

u
N [, umin

and umax are the minimum and maximum admissible val-205

ues for u1. The optimal control problem minimises the
pointwise deviations from the sequence of points in the
Poincaré section. That is, we only make specifications or
requirements on the system, when it is on the Poincaré
section.210

Remark : We are only interested in solutions where the
altered system traverses all fixed points arbitrarily close.
That is, given ε > 0, we accept a solution û1(t) to (11)
if û1(t) implies that V < ε. If such a solution exists,
the system traverses the points in the Poincaré section215

sufficiently close. If such a solution does not exist, one can
for instance relax the bounds on u1,m in (11) if possible to
enlarge the solution space.

The method described above introduces an arbitrary or-
der of fixed points in the Poincaré section. If the opti-220

mal perturbations û1 are not too large, the system is still
chaotic, and we still need to stabilise the system around
the UPO somehow. For this, we are able to employ ex-
isting methods to stabilise the system onto it. Note that
(11) is not necessarily convex, and consequently, we are225

not guaranteed a unique solution.

3.3. The OGY method for stabilising the system around
the introduced unstable periodic orbit

Applying u1 alters the system such that the desired
UPO appears. Various methods for stabilising the system230

around an UPO embedded in a chaotic attractor exists.
The OGY method [14] exploits the local dynamics of the
fixed points in the Poincaré section to ”push” the system
onto the stable direction of the UPO whenever the system
visits a close neighbourhood of the UPO. By linearising235

the system around the fixed point in the Poincaré section,
it is possible to perturb the system such that it coincides
with the stable manifold of the fixed point, provided a sta-
ble manifold exists. This method is easy to implement and
in fact requires no knowledge about the global dynamics.240

The local dynamics can typically be learned from exper-
imental data [8]. Boccaletti and Arecchi [4] introduces
an alternative method for stabilising the system around
an unstable orbit. The method is adaptive in nature and
tracks the local rate of variation from the desired UPO.245

Based on the variation, the method choose the next step
size before taking the next observation: If the local varia-
tion rate is large, the step size is small and vice versa. The
OGY method is chosen in the current study.

Consider here the Josephson junction in (3) where u2 is
the perturbations supplied by the OGY method. Using the
notation as in Arecchi et al. [1], let ξ = 0 be a given fixed
point and λs and λu be the stable and unstable eigen-
values, respectively. The corresponding eigenvectors are
denoted es and eu. Here, we assume a stable manifold and
an unstable manifold. When we change u2 from u2 = 0 to
some small value u2 = ū2 � |1|, the fixed point ξ changes
to some nearby point ξ(ū2). In a small neighbourhood
around ξ, the following linearisation describes the systems
dynamics

ξn+1 − ξ(u2) = M · (ξn − ξ(u2)) (12)

where M is the Jacobian in the point ξ = 0 and M can250

be determined from experiments by perturbing the sys-
tem and observing how the fixed point displaces as u2
varies. ξn = x(pTn) mod 2π is the actual sequence of
points in the Poincaré map of the controlled system. In a
small neighbourhood around ξ(u2), the linear approxima-255

tion ξ(u2) = Gu2 describes the local dynamics of how the
fixed point changes as a function of u2, where G = ∂

∂u2
ξ.

Inserting Gu2 = ξ(u2) into (12), we get

ξn+1 = Gu2 + (λsesfs + λueufu) · (ξn −Gu2) (13)

where fs and fu are the stable and unstable contravariant
basis vectors, respectively. Taking the dot product of the
linearised dynamics in Eq.(13) and fu gives us the feed-
back u∗n that puts the system onto the stable manifold of
the linear dynamics — or, equivalently, the system is or-
thogonal to the unstable manifold. The dot product leads
to

u∗2 =
λu

λu − 1

fu · ξn
fu ·G

(14)

The contravariant basis vectors fs and fu are determined
from the relations fs · es = 1, fs · eu = 0, fu · eu = 1 and260

fu · es = 0 [14].

4. Case study: control of the driven and damped
Josephson junction

This section implements and demonstrates the method
described in Sec. 3 applied to the driven and damped265

Josephson junction. As described in the previous section,
this paper considers the dynamical equation (3), which
governs the dynamical behaviour of the Josephson junc-
tion. The control u1 is the input signal for altering the
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Figure 5: The chaotic attractor of the Josephson junction together
with the natural UPOs (circles) and the chosen and desired UPOs
(crosses). Each colour is a distinct UPO. Parameter value η = 1.9
and u1(t) = u2(t) = 0.

solution such that the desired UPO appears, and u2 is the270

input signal for stabilising the system around the newly
introduced UPO, using e.g. the OGY method. This sec-
tion demonstrates the presented method for for stabilising
the chaotic system around an arbitrary UPO.

4.1. Introducing the desired UPO. u1(t) 6= 0 and u2(t) = 0275

Let us for demonstrative purposes choose a period-3
UPO that we wish to stabilise the system around. The
placement of the selected UPO in the Pointcaré map is
shown in Figure 5 by the purple crosses. The UPO is ran-
domly chosen for the sake of proving the concept but still280

lying close to the chaotic attractor or at least in its basin
of attraction. Solving the optimal control problem in (11)
with these points on the Poincaré map, we obtain an in-
put signal that alters the system such that a UPO appears
exactly where we want it. Figure 6 shows the input signal285

obtained from the optimal control problem together with
the voltage of the UPO. Notice that the magnitude of the
input signal is one and two orders of magnitude smaller
than the dynamics of the system.

Figure 7 shows the new chaotic attractor that appears290

from altering the Josephson junction with the input signal
u1, with u2(t) = 0 shown in Fig. 6. The system is still
chaotic for η = 1.9, which the Lyapunov exponents confirm
shown in Fig. 8.

Figure 2 shows the estimated Lyapunov exponents for295

the driven and damped Josephson junction. It clearly
shows the period-doubling sequence towards the chaotic
region. When we turn on the periodic control signal u1,
we of course alter the system. But it is not given that the
system remains chaotic after altering it. It could be that300

the desired periodic solution is stable and no further con-
trol is needed. To investigate the behaviour of the altered
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Figure 6: The periodic input signal u1, with u2 = 0, as function
of time t (lower graph) we apply to the system in order to create a
desired period-3 solution (upper graph). Notice that the magnitude
of the signal is 1 to 2 orders smaller in magnitude compared to the
magnitude of the dynamical system.

system, we inspect Figure 8, which shows the altered sys-
tem’s estimated Lyapunov exponents. The system clearly
remains chaotic for nearly all values of the bias current—305

except for a small window around η ∈ [1.960, 1.981] where
the Lyapunov exponents suddenly drop and large irregu-
larities appear (see Fig. 9). It indicates that for bias cur-
rents in this interval, multiple periodic and quasi-periodic
solutions exists.310

4.2. Stabilising the system around the period-3 UPO. u1 6=
0 and u2(t) 6= 0

At this point, the system now embeds a period-3 UPO
chosen by the authors. The reason for choosing the exact
UPO could be to optimise the operations of the system315

or minimise some costs/risks related hereto. The next
step is to stabilise the system around the chosen UPO.
As explained in Sec. 3.3, various methods for stabilising
chaotic UPOs exist. Had the system been unstable and
non-chaotic, other methods exist. These include feed-320

forward control, model predictive control, proportional-
integral-derivative control etc.

Figure 10 shows a time series of the Josephson junction
where we apply the two types of control. The first black
arrow from the left shows the point in time, where we alter325

the system with the periodic signal u1 and with u2(t) =
0. The behavioural difference of the new altered system
is quite clear after this point. The second black arrow
indicates the point in time where the altered system gets
close to the desired orbit and where the adaptive control330
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Figure 7: The chaotic attractor of the altered Josephson junction.
The purple crosses indicate the unstable period-3 solution on the
Poincaré map, embedded in the attractor. Parameter values are
η = 1.9 and u1 is taken from Fig. 6 and u2(t) = 0.

u2 is turned on. From this point onwards, the system is
stabilised around the period-3 UPO until we choose to turn
off either the periodic signal or the adaptive control.

5. Conclusion

This paper presented a two-step method for stabilising335

a chaotic system around any, even initially non-existing,
UPO inside a chaotic attractor. The method is inspired by
optimal control problems and uses this for introducing the
desired UPO. Existing methods is then used for stabilis-
ing the system around this UPO. In order to demonstrate340

this approach, we have chosen a random set of points in
the Poincaré map of the driven and damped Josephson
junction and then force the dynamics to pass through the
Poincaré plane at the chosen points. The method is gen-
erally applicable to chaotic systems.345
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