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Abstract
In this thesis, we present models and algorithms for monitoring and economic model
predictive control applied to a fermentation process for single-cell protein (SCP) pro-
duction in a U-loop bioreactor. We describe a modelling framework for compactly
describing stoichiometry and kinetics in chemical and biochemical systems. In a tech-
nical report, we outline and apply the modelling framework for batch (BR), fedbatch
(FBR), continuous stirred tank (CSTR), plug flow reactors (PFR), as well as their
combinations, and present numerical examples of chemical and biochemical systems.
We apply the modelling framework to existing and novel models describing growth of
the bacteria Methylococcus capsulatus (Bath) for single-cell protein (SCP) production.
Based on the modelling framework, we present a continuous U-loop fermentor model
combining CSTR and PFR compartments. We describe model-based monitoring and
control techniques for continuous-discrete nonlinear systems involving stochastic dif-
ferential equations (SDEs). In a FOCAPO/CPC 2023 paper, we present the extended
Kalman filter (CD-EKF), unscented Kalman filter (CD-UKF), ensemble Kalman filter
(CD-EnKF), and a particle filter (CD-PF), test the estimations algorithms on a non-
linear test system, and discuss their performance. In papers presented as CCTA 2019
and CDC 2020, we apply the CD-EKF, present economic optimal control for opti-
mal production economy, and perform a numerical experiment of economic nonlinear
model predictive control (ENMPC) for SCP production in a U-loop bioreactor based
on an SDE model. To include measurement information from commonly available
online sensors, e.g. dissolved oxygen, temperature, and pH-value, we present mon-
itoring and control techniques for continuous-discrete systems involving stochastic
differential algebraic equations (SDAEs). In a ECC 2023 paper, we present an SDAE
model describing cell growth and chemical equilibria, i.e. pH dynamics, and economic
optimal control for SCP production in a laboratory-scale CSTR. The laboratory-scale
CSTR model is based on a physical laboratory-scale bioreactor and is intended for
systems identification experiments. In chapter 8, we present the CD-EKF for SDAE
models and apply it to the laboratory-scale CSTR in chapter 11. As such, we outline
the main components necessary for the implementation of ENMPC for SCP produc-
tion in a U-loop bioreactor based on available online sensors. Finally, we present a
high-performance Monte Carlo simulation toolbox for uncertainty and performance
quantification in closed-loop systems. In a paper presented at CDC 2021, we describe
and apply the Monte Carlo toolbox in a numerical experiment of SCP production in
a fedbatch reactor with open-loop, PID, and model predictive control strategies.
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Summary
Modern society is faced with a number of struggles with global reach, e.g. climate
change and biodiversity. This has sparked an increasing focus among governments,
institutions, and consumers on sustainable consumption of resources, i.e. alternative
products with lower or net-zero environmental impact. Despite efforts from devel-
oped countries, the global population and meat consumption have a strong positive
correlation with little to no change over the past decades. This suggests that we
will have to look for alternative protein sources, not only for humans, but also for
livestock, i.e. animal feed in meat production. Currently, fishmeal and soy are the
most popular protein supplement products for animal feed. However, fishmeal, as
the name suggests, comes from animals itself, and therefore present obvious mass
balance issues - as one might ask, ”Where do the fish get the protein from?”. Soy be
considered a sustainable source of protein. However, it also presents a range of issues
regarding sustainability. Firstly, soy is mainly grown in South America, where the
arable land requirements for soy production cause issues with deforestation. Defor-
estation presents issues with regard to both of the global struggles presented above;
climate change and biodiversity. Secondly, the protein content of soy is significantly
lower than that of fishmeal, so larger quantities of soy-based protein products are
required compared to fishmeal. This only adds to the deforestation issue. A number
of alternative sources of protein have sparked interest in recent decades. Among them
are considered insect protein, duckweed protein, and single-cell protein. The former
sources have strengths of their own, e.g. growing on industrial waste material such
as pulp waste. However, in this work we focus on the ladder, single-cell protein.

In this thesis, we present advanced tools for monitoring and economic nonlinear model
predictive control for a nonlinear system describing single-cell protein production in
a novel bioreactor with good mixing and mass transfer properties. Unibio A/S is a
biotechnology company operating a patented U-loop bioreactor for single-cell protein
production. In the bioreactor, a bacterial culture is growing on cheap hydrocarbons
as carbon and energy sources, e.g. methanol or methane, to produce a protein rich
biomass (∼ 72%) which is serves as an alternative protein sources for animal feed
supplementation. Operation of the U-loop reactor displays stiff and unstable dynam-
ics, calling for advanced monitoring and process control systems to maintain stable
and high productivity and ensure financial viability of the alternative protein product
produced by Unibio; Uniprotein.



iv Summary

The subject of this thesis is economic optimising control, or economic model pre-
dictive control, for single-cell protein production in a U-loop bioreactor. Economic
model predictive control describe a model-based control strategy consisting two main
components; state estimation and economic optimal control. The state estimator
provides state feedback based on system measurements and the economic optimal
control problem provides open-loop control strategies which are optimal with respect
to economic measures of performance. The first control action from the solution to
the optimal control problem is then implemented in the process. The sequence of
state estimation and optimal control is then repeated when a new measurement be-
comes available. We present growth models for single-cell protein production using
the bacteria Methylococcus capsulatus (Bath). We present models based on methanol
and methane as carbon sources and several different nitrogen sources; nitric acid,
ammonia, ammonium, nitrite, and nitrate, and molecular nitrogen. Furthermore, we
describe chemical equilibrium reactions. These are included in growth models, result-
ing in differential algebraic systems, allowing for the inclusion of measurements from
common online sensors, e.g. pH-value, in the state estimator.

In the context of state estimation for monitoring and control, we present methods of
state estimation in nonlinear systems involving stochastic differential equations and
stochastic differential algebraic equations. We focus on methods based on Bayesian
inference and do not consider optimisation-based estimators in this work. For systems
involving stochastic differential equations, we formulate and implement four estima-
tors; the extended Kalman filter, the unscented Kalman filter, the ensemble Kalman
filter, and a particle filter. For systems involving differential algebraic equations, we
formulate and implement the extended Kalman filter. The extended Kalman filter
directly applies the Kalman filter update on a local linearisation of a nonlinear sys-
tems and is thus a direct extension of the Kalman filter to nonlinear systems. The
performance of the extended Kalman filter is largely dictated by the error associated
with the linearisation, i.e. the nonlinearity of the system. The unscented Kalman
filter propagates a set of deterministically sampled particles, so-called sigma-points,
through the nonlinear state and measurements dynamics. This results in better con-
vergence properties than the extended Kalman filter, but this estimator can also have
trouble converging for high-nonlinear systems. The ensemble Kalman filter is a type
of particle filter which approximates the nonlinear state and measurement distribu-
tion with a set of randomly sampled particles. The ensemble Kalman filter is a type
of particle filter. The ensemble Kalman filter still has Gaussian assumptions, but
avoids degeneracy issues by applying the Kalman filter update to each particles in
its ensemble when a measurement is available. The particle filter approximates the
nonlinear state and measurement distributions with a set of randomly sampled par-
ticles. In this work we consider Gaussian measurement noise, but the particle filter
can be applied for arbitrary measurement distributions as long as likelihood can be
computed for each particle in the measurement distribution. The particle filter can
suffer from degeneracy, where the particle set converges to a single point, causing the



Summary v

estimator to fail. Both the ensemble and particle filters suffer from coverage issues
for high-dimensional systems, i.e. the curse of dimensionality.

We present economic nonlinear model predictive control systems for single-cell protein
production. We present a conceptual description and direct formulation of the con-
trol technology and describe the economic optimal control problem. In the economic
optimal control problem, we directly optimise economic measures of performance in
the nonlinear systems, e.g. revenue generated from production, cost associated with
input or power consumption, or economic measured of sustainability, such as carbon
footprint. The model describing single-cell protein production in a U-loop bioreactor
presents a stiff and unstable system. Therefore, we consider a direct simultaneous
approach to the solution of the nonlinear programme to address the instability of the
system. Furthermore, we apply an implicit Euler method for temporal discretisation,
i.e. right rectangular rule, of integrals and system dynamics to address stiffness.

We present numerical experiments of single-cell protein production in U-loop bioreac-
tor with a methanol-based growth model. We present an optimal open-loop strategy
for optimal profit based on an economic optimal control problem. We apply the
extended Kalman filter for state estimation in an open-loop numerical experiment.
Finally, we apply an economic nonlinear model predictive control system in a closed-
loop numerical experiment on the U-loop bioreactor. The numerical experiment show
that the control system can stabilise the start-up of the reactor and maintain sta-
ble high productivity during continuous operation and production. Additionally, we
present a laboratory-scale continuous stirred tank bioreactor for single-cell protein
production. In the single-cell protein production model, we include chemical equi-
librium reaction dynamics, resulting in a differential algebraic systems. We present
modelling, simulation, economic optimal control, and state estimation for this system.
We solve an economic optimal control problem including the algebraic equations. We
apply the extended Kalman filter in an open-loop numerical experiment using the
optimal control strategy computed as the solution to the economic optimal control
problem. The state estimation converge to the true values of the state and algebraic
variables and accurately estimate a modelled parameter based on online measure-
ments of dissolved oxygen concentration and pH-value.

Finally, we present and implement a high-performance Monte Carlo simulation tool-
box. The toolbox is implemented in C with openmp for parallel Monte Carlo sim-
ulations of closed-loop systems. In Monte Carlo simulation for closed-loop systems,
all simulations are independent of all other simulation, i.e. embarrassingly parallel.
As such, the problem presents close to linear scaling with the number of cores. We
apply the toolbox for uncertainty quantification of four different control systems in
a numerical experiment for a fed-batch bioreactor. We test an open-loop controller,
two PID controllers, one hand-tuned and one with optimal tuning determined from
Monte Carlo simulations, and a nonlinear model predictive controller. The toolbox
executes 30,000 open-loop and PID closed-loop simulations in less than a second, and
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1,000 nonlinear model predictive control closed-loop simulation in approximately 30
minutes on the fed-batch bioreactor. This is a speed-up of more than 2,300 times
compared to a benchmark Matlab serial implementation.



Summary (Danish)
Det moderne samfund står over for en række udfordringer med global rækkevidde,
såsom klimaforandringer og biodiversitet. Dette har ført til et stigende fokus blandt
regeringer, institutioner og forbrugere på bæredygtigt forbrug af ressourcer, dvs. al-
ternative produkter med lavere eller net-zero miljøpåvirkning. Trods bestræbelser fra
udviklede lande har den globale befolkning og det globale kødforbrug en stærk positiv
korrelation med en lille eller ingen ændring over de seneste årtier. Dette antyder, at
vi bliver nødt til at lede efter alternative proteinkilder, ikke kun for mennesker, men
også for husdyr, dvs. dyrefoder i kødproduktionen.

I øjeblikket er fiskemel og sojabønneprotein de mest populære protein-tilskudsprodukter
til dyrefoder. Imidlertid kommer fiskemel, som navnet antyder, fra dyr selv og giver
derfor åbenlyse massebalanceproblemer - som man må spørge: ”Hvor får fisken pro-
teinet fra?”. Sojabønner betragtes på visse måder som en god alternativ proteinkilde,
men det giver også en række problemer med hensyn til bæredygtighed. For det
første dyrkes sojabønner primært i det sydlige Amerika, hvor de har problemer med
skovrydning på grund af kravet om dyrkbar jord til sojaproduktion. Skovrydning
skaber problemer med hensyn til begge af de globale udfordringer, der er præsenteret
ovenfor, klima og biodiversitet. For det andet er proteinindholdet i soja betydeligt
lavere end fiskemel, så større mængder er påkrævet. Dette tilføjer kun til skovryd-
ningsproblemet. En række alternative proteinkilder har vakt interesse i de seneste
årtier. Blandt dem betragtes insektproteiner, andemadproteiner og single-cell protein.
De tidligere kilder har styrker i sig selv, fx at vokse på industrielt affaldsmateriale
såsom papirmasseaffald. Men i dette arbejde fokuserer vi på sidstnævnte, single-cell
protein.

I denne afhandling præsenterer vi avancerede værktøjer til overvågning og økonomisk
ikke-lineær modelprædiktiv regulering af et ikke-lineært system, der beskriver pro-
duktionen af single-cell protein i en ny bioreaktor med gode blande- og masseover-
førselsegenskaber. Unibio A/S er et bioteknologifirma, der driver en patenteret U-loop
bioreaktor til produktion af single-cell protein. I bioreaktoren vokser en bakteriekul-
tur på billige substrater, f.eks. methanol eller metan, for at producere en proteinrig
biomasse (∼ 72%), der fungerer som en alternativ proteinkilde til supplementering
af dyrefoder. Drift af U-loop reaktoren viser stive og ustabile dynamikker, hvilket
kræver avancerede overvågnings- og processtyringssystemer for at opretholde stabil
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og høj produktivitet og sikre økonomisk bæredygtighed af det alternative proteinpro-
dukt, Uniprotein.

Emnet for denne afhandling er economic optimising control, eller economic nonlin-
ear model predictive control, for en U-loop bioreaktor. economic nonlinear model
predictive control beskriver en modelbaseret kontrolstrategi, der består af state es-
timation, der giver tilbagemelding om tilstanden baseret på systemmålinger og et
economic optimal control problem, der giver åben sløjfe kontrolstrategier, der er opti-
male med hensyn til økonomiske mål. Vi præsenterer vækstmodeller for produktion af
single-cell protein ved hjælp af bakterien Methylococcus capsulatus (Bath). Vi præsen-
terer modeller baseret på methanol og methan som kulstofkilder og flere forskellige
kvælstofkilder; salpetersyre, ammoniak, ammonium, nitrit og nitrat og molekylært
kvælstof. Derudover beskriver vi kemiske ligevægtsreaktioner. Disse kan inkluderes
i vækstmodeller, hvilket resulterer i differential-algebraiske systemer, men tillader
inkludering af målinger fra online sensorer, f.eks. pH-værdi.

I sammenhæng med state estimation til overvågning og kontrol, præsenterer vi metoder
til ikke-lineære systemer involverende stokastiske differential ligninger og stokastiske
differential-algebraiske ligninger. Vi fokuserer på metoder baseret på Bayesiansk in-
ferens og overvejer ikke optimeringsbaserede metoder i dette arbejde. For systemer
involverende differentialligninger, formulerer og implementerer vi fire metoder; det
udvidede Kalman filter, unscentede Kalman filter, ensemble Kalman filteret og et
partikelfilter. For systemer involverende differential algebraiske ligninger, formulerer
og implementerer vi det udvidede Kalman filter. Det udvidede Kalman filter an-
vender direkte Kalman-filteropdateringen på en lokal linearisering af et ikke-lineært
system og er derfor en direkte udvidelse af Kalman-filteret til ikke-lineære syste-
mer. Det udvidede Kalman filter er i høj grad dikteret af fejlen forbundet med
lineariseringen. Det uscentrede Kalman filter udbreder en sæt deterministisk sam-
plede partikler, såkaldte sigma-punkter, og propagerer dem gennem de ikke-lineære
tilstands- og måledynamikker. Dette resulterer i bedre konvergensegenskaber end
den udvidede Kalman filter, men denne estimator kan fejle for meget ikke-lineære
systemer. Ensemble Kalman filteret er en type partikelfilter, som approksimerer de
ikke-lineærer tilstands- og målefordelinger med en sæt tilfældigt samplede partik-
ler. Ensemble Kalman-filteret har stadig gaussiske antagelser, men undgår degener-
ingsproblemer ved at anvende Kalman-filteropdateringen på hver partikel i ensemblet
når en måling er tilgængelig. Partikelfilteret approksimerer den ikke-lineære tilstand
og målefordelinger med en sæt tilfældigt samplede partikler. I dette arbejde overvejer
vi gaussisk målestøj, men filteret kan anvendes til vilkårlige målefordelinger, så længe
likelihood kan beregnes for hver partikel i målefordelingen. Partikelfilteret kan have
problemer med degenering, hvor partikelsættet konvergerer til et enkelt punkt, hvilket
forårsager, at estimator fejler. Både ensemble Kalman filteret og partikelfiltre lider
af dækningsproblemer for højdimmensionelle systemer, dvs. curse of dimensionality.

Vi præsenterer economic nonlinear model predictive control til produktion af single-
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cell protein. Vi giver en konceptuel beskrivelse af kontrolteknologien og beskriver
økonomisk optimale kontrolproblem. Modellerne for produktionen af single-cell pro-
tein er ofte stive og ustabile. Vi overvejer en direkte simultan tilgang til løsning af det
ikke-lineære program for at håndtere systemets ustabilitet. Vi anvender en implicit
Euler tidsdiskretisering for at håndtere stivheden.

Vi præsenterer numeriske eksperimenter af produktion af single-cell protein i en U-
loop bioreaktor med en vækstmodel baseret på methanol. Vi præsenterer en optimal
åben-sløjfe strategi for optimal profit baseret på et økonomisk optimalt kontrolprob-
lem. Vi anvender den udvidede Kalman filter til state estimation i et åben sløjfe
numerisk eksperiment. Til sidst anvender vi et economic nonlinear model predictive
control system i et lukket sløjfe numerisk eksperiment på U-loop bioreaktoren. Det nu-
meriske eksperiment viser, at kontrolsystemet kan stabilisere opstarten af reaktoren
og opretholde stabil høj produktivitet. Derudover præsenterer vi en laboratorie-skala
kontinuert bioreaktor til produktion af single-cell protein. I modellen for produk-
tionen af single-cell protein inkluderer vi kemisk ligevægtsreaktionsdynamik, hvilket
resulterer i et differential-algebraisk system. Vi præsenterer modellering, simulering,
økonomisk optimal kontrol og state estimation for dette system. Vi løser et økonomisk
optimalt kontrolproblem, der inkluderer de algebraiske ligninger. Vi anvender den
udvidede Kalman filter i et åben sløjfe numerisk eksperiment ved at bruge den op-
timale kontrolstrategi, der er beregnet som løsningen på det økonomiske optimale
kontrolproblem. Estimatoren konvergerer til de sande værdier af tilstandene og de
algebraiske variable og estimerer en modelleret parameter nøjagtigt.

Endelig præsenterer og implementerer vi en high-performance Monte Carlo simulation
toolbox implementeret i C ved hjælp af openmp til parallel Monte Carlo-simuleringer
for lukkede-sløjfe systemer. I Monte Carlo simuleringer af lukketsløjfesystemer er
alle simuleringer uafhængige af alle andre simuleringer, dvs. pinligt paralleliserbart.
Problemet præsenterer derfor tæt på lineær skalering med antallet af kerner. Vi an-
vender softwaren til usikkerheds-kvantificering af fire forskellige kontrolsystemer i et
numerisk lukket-sløjfe eksperiment på et fed-batch bioreaktoreksempel. Vi tester en
åbensløjfe controller, to PID controllerer, en hånd-justeret og en med optimal tuning
bestemt fra Monte Carlo-simuleringer, og en nonlinear model predictive controller.
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CHAPTER1
Introduction

In this thesis, we present research on advanced monitoring and process control for
single-cell protein (SCP) production by cultivation of the methanotrophic bacteria
Methylococcus capsulatus (Bath) in a novel bioreactor. The work is conducted in col-
laboration with Unibio A/S (Unibio). Unibio is a biotechnology company producing
SCP in a U-loop fermenter. The U-loop fermentation technology has been developed
by Unibio to achieve good mixing and gas-liquid mass transfer properties for SCP
production with cheap hydrocarbons, e.g. methanol and methane, as carbon sources.

1.1 Motivation
The modern global society faces a number of struggles with world-wide reach, e.g.
climate change and biodiversity [1]. In response to this, a trend can be observed
in developed countries toward more sustainable consumption [2], i.e. an increasing
focus among consumers on the environmental impact of the products they consume.
However, consumers display a general unwillingness to replace traditional protein
sources, e.g. beef, pork, and chicken, with sustainable alternative protein sources [3].
As a result of this, and as the global population and wealth continues to increase,
there seems to be a clear positive correlation with global population and global meat
production and consumption [4]. Figure 1.1 illustrates the trends in global population
and meat production. We must look for sustainable alternatives to the currently
used sources of protein widely applied in the meat industry to address the need and
demand for protein in a growing global population. Fishmeal and soy are examples
of widely used animal feed protein supplements in the meat production industry,
however these sources are not inherently sustainable [5, 6]. Fishmeal presents an
obvious mass balance problem, as we utilise animal protein in the supplementation
for other animals, including fish. This leads to an increasing need for fishmeal which
leads to overfishing issues and thus also sustainability problems [7, 8]. Soy-based
protein sources seem a superior alternative, as this is a crop and thus often more
sustainable. However, the protein content in soybean meal is significantly lower than
that in fishmeal, ∼ 45% for soybean meal versus ∼ 65% for fishmeal. As such, greater
amounts of soy-based proteins are required for supplementation [9]. Additionally, soy
requires vast areas of arable land, and as the protein demand increases, the demand
for yet greater areas of arable land does as well. Soy is largely produced in South
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America and this leads to deforestation in that area of the world which also has
negative effects on both the climate and biodiversity [10].

Over the past decades, a number of alternatives to fishmeal and soy-based protein
supplements have been investigated for animal feed and direct human consumption
[11]. Examples of alternative sources are; insect protein [12, 13], duckweed protein
[14, 15], and SCP [16–18]. These alternative sources utilise readily available feed
stocks and industrial waste to produce proteins and do not present the same negative
environmental impacts that fishmeal and soy do. In this work, we focus on SCP as
an alternative protein source.

1.1.1 Single-cell protein
SCP describes the production of protein rich products by cultivation of microbial
or algal cells [19]. The concept has been known both in industry and academia for
decades and appear in the literature as early as the 1960s [20–22]. SCP can be
produced from a number of different micro-organisms, e.g. fungi, yeasts, algae, and
bacteria. The protein content varies depending on the method of production and
choice of microorganism. The protein contents ranges from ∼ 15 − 45% for fungi,
∼ 50 − 55% for yeasts, ∼ 20 − 80% for algae, and ∼ 50 − 80% for bacteria [23].
As can be seen here, fungi provide inferior protein content compared to most other
choices of microbe and algae display the greatest variability in protein content. SCP
has been studied in some detail for both human and animal consumption [24], but
in later decades the use has shifted toward protein supplements for animal feed in
the meat industry [25]. SCP production using methanotrophic bacteria and with
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Figure 1.1: Trends in global population and global meat production in the years
1961-2021. Data is taken from the united nations’ food and agriculture
organization [4].
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standard biomass is described by the stoichiometries [19]; for methane

CH4 + 1.454 O2 −−→ 0.520 X + 0.480 CO2, r, (1.1)

and for methanol

CH3OH + 0.954 O2 −−→ 0.520 X + 0.480 CO2, r, (1.2)

where X = CH1.8O0.5N0.2 is the biomass. It is important that SCP is produced
efficiently and using cheap substrates for it to be a financially viable alternative to
existing protein supplements. For that reason, this work focusses on fermentation
using methanotrophic bacteria. Methanotrophic bacteria, also known as methan-
otrophs, are methylotrophs. Methanotrophs are bacteria capable of utilising cheap
hydrocarbons, e.g. methane and methanol, as carbon and energy sources. Therefore,
these bacteria can be used for efficient SCP production under sufficiently favourable
growth conditions [26]. Methylococcus capsulatus (Bath) is a type X (earlier type
I) methanotroph and is currently used for SCP production Unibio A/S due to its
good growth properties, high protein content, and favourable amino-acid profile [27].
The metabolism of M. capsulatus is studied in detail and described in the literature
[28]. SCP can be produced by fermentation of M. capsulatus with either methanol
or methane as carbon source, but the availability, purity, and price of methane in
the form of natural gas or biogas makes it the most economical candidate for SCP
production [29]. However, methane is a gas and therefore involves mass transfer from
the gas phase to the liquid phase. As indicated by (1.1) and (1.2), growth on methane
is more oxygen intensive than growth on methanol. This means that the mass trans-
fer of methane to the liquid phase is limited by both the reactor properties and the
increased competition with oxygen mass transfer. These factors, along with the ex-
plosive risks related to methane/oxygen rich gas mixture, have traditionally made it
unfavourable to produce SCP with methane as carbon source. However, if high mass
transfer between the gas and liquid phases can be efficiently achieved, fermentation
of M. capsulatus with methane as carbon source could be a potential disruptor in the
market of protein supplements for animal feed.

1.1.2 U-loop bioreactor
To address the problem of energy efficiency and poor mass transfer properties of tra-
ditional bioreactors, Unibio A/S has designed a novel reactor; the U-loop fermenter
[30]. The U-loop reactor is a continuous bioreactor. In the reactor, the fermentation
broth is recirculated through a U-shaped pipe in through a series of static mixers to
achieve good mixing and high mass transfer [31, 32]. Unibio operates two such U-loop
reactors at their facility in Kalundborg, Denmark; a ∼ 150L pilot-scale reactor and a
∼ 2200L demonstration-scale reactor. Figure 1.2 illustrates the Unibio’s SCP produc-
tion process. Several models describing growth of M. capsulatus for SCP production
in a U-loop reactor have been presented [33–35]. The growth and reactor dynamics



4 1 Introduction

show that the optimal start-up trajectory of the reactor is unstable, i.e. an unsta-
ble retractor requiring active control to not diverge from the optimal trajectory [36].
Furthermore, the reactor is unstable at high concentrations because optimal steady
state productivities are placed close to regions of low productivity [37]. This calls
for model-based monitoring tools to guide operator decisions and advanced process
control solutions to stabilise production and reach high productivity.

1.2 Economic model predictive control
Model predictive control (MPC) is a model-based feedback control strategy [39, 40].
MPC can be described in terms of two main components;

• state estimation,

• and economic optimal control problem (EOCP).

State estimation describe methods which reconstruct unmeasured model states from
system measurements. In the context of MPC, optimisation involves solving and
OCP. An OCP is a dynamical optimisation problem which describes optimal system
behaviour, i.e. model behaviour, with respect to a pre-defined set of performance
measures over a finite horizon. MPC may be further separated into applications in
control of linear systems, so-called linear MPC (LMPC), and applications in non-
linear systems, so-called nonlinear MPC (NMPC). For LMPC, the state estimation
algorithm of choice is the Kalman filter which provides optimal state estimates in lin-
ear systems with Gaussian process and measurement noise [41, 42]. Furthermore, the
OCP in LMPC can in most cases be formulated as a convex quadratic program (QP).
Convex optimisation problems are characterised by having only one global minimum,
i.e. convergence guarantees a global optimum. Additionally, powerful open-source
and commercial solvers exist for the solution of convex QPs [43–48]. For nonlinear
systems, several state estimation algorithms exist and the best choice of algorithm
depends on the application. State estimation in nonlinear systems can be separated
into two main categories; optimisation-based method, e.g. moving-horizon estima-
tion, and methods based on Bayesian inference, e.g. the extended Kalman filter and
particle filters. In this work, we focus on Bayesian methods. The OCP in NMPC
is a dynamical optimisation problem that, when discretised, is a general nonlinear
program (NLP). For such optimisation problems, we usually consider locally optimal
solutions as computed by numerical local optimisation algorithms, e.g. sequential
quadratic programming (SQP) methods or interior-point (IP) methods [49, 50]. The
inclusion of numerical optimisation in MPC implementations make them more com-
putationally expensive than classical controllers, e.g. proportional-integral-derivative
controllers (PIDs) or linear-quadratic-regulators (LQRs), for which explicit closed-
form solutions can be formulated. MPC have advantages over classical controllers,
e.g. anticipatory action and the inclusion of process constraints. Anticipatory ac-
tion describes the ability of the MPC to anticipate future behaviour of a system and
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Figure 1.2: Conceptual illustration of single-cell protein production using a U-loop
bioreactor. The illustrations is from Unibio A/S [38].

act in response to that future behaviour, due to the inclusion of model predictions.
For process constraints, we may include operational and physical limitations in the
system directly as constraints in the OCP. An additional advantage of MPC is that
the objective of the OCP can be any nonlinear function of the states and inputs, e.g.
target tracking and input regularisation, but also economic measures of performance,
e.g. production revenue, input or power cost, or carbon footprint related to produc-
tion. LMPCs and NMPCs with such economic objectives are called economic LMPC
(ELMPC) and economic NMPC (ENMPC). In this work, we consider ENMPC for
control of the SCP production in a U-loop bioreactor. Figure 1.3 illustrates an MPC
system integrated with a process.

1.2.1 State estimation
Process operation, manual or automatic, is naturally limited by the information di-
rectly available from process measurements. However, effective decision-making may
often be best done in response to internal unmeasurable states of a process, such
as concentrations of substrates or inhibiting components. State estimation addresses
this issue of feedback given a model of the process. In state estimation, the dynamical
correlation between measured and unmeasured process states are used to infer unmea-
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MPC

Optimal Control
Problem

State Estimation

Process

Figure 1.3: Illustration of a model predictive control system integrated with a pro-
cess.

sured quantities. This means that even though only a few quantities can be measured
directly, it is possible to gain information about unmeasured quantities through those
measurements. State estimation algorithms may be separated into at least two cate-
gories; optimisation-based methods and methods based on Bayesian inference. In this
work, we focus on methods based on Bayesian inference. State estimation methods
based on Bayesian inference provides both estimates of state variables as well as the
uncertainties related to each state estimate. This provides operators, or automatic
control systems, information about the unmeasured states and the reliability of the
estimates. This allows for more effective decision-making when operating a process.
In the context of model-based control, the state estimator closes the control-loop by
updating model states with feedback from system measurements. The Kalman filter
provides optimal state estimates and has since its introduction in the 1960s [41, 42]
become ubiquitous in model-based monitoring and control systems. However, the
Kalman filter is limited to systems with linear dynamics. For nonlinear systems, the
state evolution is governed by the Fokker-Planck equation (also Kolmogorov’s forward
equation). However, this is a partial differential equation with the same dimension
as the state, making it’s application infeasible for systems with more than a few
states [51]. Figure 1.4 illustrates state estimation for a system with a measured and
unmeasured variable.

We consider nonlinear state estimation algorithms as the U-loop bioreactor is a
nonlinear system. State estimation in nonlinear systems are described in [51–53]. We
consider four Bayesian methods of state estimation; the extended Kalman filter [51,
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54], the unscented Kalman filter [55–61], the ensemble Kalman filter [62–65], and a
particle filter [66–69]. The extended Kalman filter is a direct extension of the linear
Kalman filter and applies the Kalman filter update to a local linearisation of the
nonlinear system. The extended Kalman filter is a computationally efficient state es-
timation algorithm, but its performance is largely dictated by the linearisation error
[66, 70]. The unscented Kalman filter propagates a set of deterministically sampled
particles, so-called sigma-points, through the nonlinear state and measurement dy-
namics. As such, the unscented Kalman filter has better convergence properties for
nonlinear systems, but can still be insufficient for highly nonlinear systems [71]. The
ensemble Kalman filter is a type of particle filter which utilises the Kalman update in
the filtering step. The state and measurement distributions are then represented by
propagated and filtered particles. This approach has proven to be effective for highly
nonlinear systems, but suffer from the the curse of dimensionality [72]. The particle
filter, similarly to the ensemble Kalman filter, performs well for highly nonlinear sys-
tems and can be applied regardless of noise distributions even if the measurement noise
is non-Gaussian. However, it also suffers from coverage issues for high-dimensional
systems and can suffer from particle degeneracy, where the particle set collapses to a
single point in the state-space [73]. We describe all four filters for nonlinear systems
involving stochastic differential equations (SDEs). Additionally, we consider the ex-
tended Kalman filter for nonlinear systems involving stochastic differential algebraic
equations (SDAEs). We include differential algebraic systems to include chemical
equilibrium reactions describing readily available online measurements, e.g. pH-value
and conductivity. State estimators for related systems in the petro-chemical industry
have been described in the literature [74].

1.2.2 Economic optimal control
The OCP describes the optimal system behaviour over a finite horizon with respect
to one or more chosen measures of performance. Consider the OCP formulated for a
nonlienar system involving SDEs

min
[x(t);u(t)]

tf
t0

ϕ, (1.3)

subject to

x(t0) = x0, (1.4a)
dx

dt
(t) = f(x(t), u(t), θ), (1.4b)

zm(t) = gm(x(t), θ), (1.4c)
cmin(t) ≤ c(x(t), u(t), θ) ≤ cmax(t). (1.4d)

The objective function, ϕ, describes the performance measures we wish to optimise
the process with respect to. Examples of performance measures may be traditional
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Filtering Prediction
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Unmeasured

Figure 1.4: Illustration of state estimation in a system with a measured and unmea-
sured variable described by a model. The red dots are measurements,
the blue lines are true values of the variables, the black dotted line is
the estimate of the unmeasured variable, and the green lines illustrate
the uncertainty in the estimate. Notably, the uncertainty is larger when
we predict the future behaviour of a system and lower when we have
measurement information.

measures, e.g. target tracking, input rate-of-movement penalty, or input regularisa-
tion, but it may also be economic measures, e.g. production revenue, input cost, or
even measures of sustainability, such as carbon footprint. In essence, ϕ may be any
nonlinear function of the state and input variables. In this work, we are controlling
a production process and as a result of this, economic performance measures are of
particular interest. The constraints in (1.4a)-(1.4c) defines the system dynamics and
(1.4d) describes operations and physical constraints on the system, e.g. nonnegativity
of variables, maximum reactor volume, and flow-rate limits. The OCP presented in
(1.3)-(1.4) is in continuous-time. We apply a temporal discretisation to apply numer-
ical optimisation algorithms. Three direct approaches to the formulation of the OCP
are [75];

• direct single-shooting,

• direct multiple-shooting,

• and direct simultaneous approaches.
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In direct single-shooting, all state variables are eliminated by the introduction of a
simulator. The states are determined only by the choice of manipulated inputs and the
initial condition for the state. This approach results in a lower-dimensional dense NLP,
which can be useful for computational efficiency in real-time applications. However,
the direct single-shooting approach can have trouble converging for systems with
unstable dynamics. The multiple-shooting approach similarly introduces a simulator,
but only simulates between discrete sampling intervals. This approach results in
a higher dimensional semi-sparse NLP, but with better convergence properties for
systems with unstable dynamics. The direct simultaneous approach includes the
temporal discretisation in the constraints of the OCP directly. This results in a
high-dimensional sparse NLP, but with good convergence properties for systems with
unstable dynamics [75]. In this work, we apply the direct simultaneous approach
to a stiff and unstable system. We note that the higher dimensional NLPs arising
from multiple-shooting and simultaneous approaches do not necessarily result in less
computationally efficient algorithms, as the use of sparse solvers can be applied for
these formulations [50]. Figure 1.5 illustrates a trajectory optimisation for an OCP
with a target tracking objective.

1.3 Objectives and contributions
The main objectives of this work are to;

1. describe growth models for cultivation of Methylococcus capsulatus (Bath) for
the purpose of SCP production,

2. describe a dynamical model for the U-loop bioreactor,

3. formulate and test state estimation methods in nonlinear systems involving
stochastics,

4. formulate an economic nonlinear model predictive control system for direct
optimisation of economic performance measures,

5. and formulate methods of investigating performance of nonlinear control solu-
tions.

In this work, we describe several different models describing growth of Methylococ-
cus capsulatus (Bath). We present models based on both methanol and methane as
carbon and energy sources, as well as several different nitrogen sources; nitric acid,
ammonia, ammonium, nitrite, nitrate, and molecular nitrogen. We apply a compact
framework for describing the stoichiometry in reactive systems and include chemical
equilibrium reactions modelling acid/based equilibrium dynamics. We describe com-
pact reactor models for batch reactors (BRs), fed-batch reactors (FBRs), continuous
stirred tank reactors (CSTRs), and plug flow reactors (PFRs) and combine some of
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Past Future

Figure 1.5: Illustration of an optimal trajectory computed as the solution to an
OCP with a setpoint tracking objective. The red line is the target, the
red dots are observations, the blue line is the filtered state estimation,
the black dotted line is the optimal trajectory, and the green lines are
uncertainties of the estimate computed by the state estimator.

these compartments, i.e. CSTR and PFR, to describe the U-loop bioreactor dynam-
ics. The growth and reactor dynamics results in SCP production models involving
nonlinear SDEs and SDAEs. We formulate four different state estimation methods
for monitoring and control for continuous-discrete nonlinear systems involving SDEs;
the extended Kalman filter, the unscented Kalman filter, the ensemble Kalman fil-
ter, and a particle filter. The choice of algorithm is depends on factors such as;
nonlinearity and requirements for computational efficiency in real-time application.
These advantages and disadvantages are discussed. Furthermore, we formulate the
extended Kalman filter for continuous-discrete nonlinear systems involving SDAEs.
This state estimation method can be applied in the differential algebraic systems aris-
ing from models including chemical equilibrium reactions. This is especially relevant
when including common online measurements, e.g. pH-value and conductivity. We
describe EOCPs and apply a direct simultaneous approach and an implicit numeri-
cal integration scheme to address the stiffness and instability of the U-loop reactor
for SCP production. We formulate an ENMPC system which directly optimises eco-
nomic performance measures in the SCP production process. We perform numerical
experiments testing the ENMPC systems. Finally, we describe and implement a
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high-performance Monte Carlo simulation toolbox for tuning and performance quan-
tification, i.e. uncertainty quantification (UQ), in closed-loop control systems.

1.4 Outline of the thesis
This work is structured as seven parts; modelling, estimation algorithms, economic
model predictive control, numerical examples, controller performance quantification
and tuning, conclusions and suggestions for future work, and appendix.

Part I - Modelling (Chapters 2-6)

In this part, we formulate models relevant to SCP production and describe model
formulations and numerical solution details. In Chapter 2 we present a compartment
model describing the reactor dynamics of the U-loop bioreactor. In Chapter 3, we
describe and discuss models describing growth of the methanotrophic bacteria Methy-
lococcus capsulatus (Bath) for SCP production. In Chapter 4, we describe models
describing chemical equilibrium reactions in the context of SCP production. Chapter
5 describes modelling and numerical simulation of nonlinear systems involving SDEs.
Finally, Chapter 6 describes modelling and numerical simulation of nonlinear systems
involving SDAEs.

Part II - Estimation Algorithms (Chapters 7-8)

In this part, we formulate state estimation methods for nonlinear systems involving
stochastic differential and differential algebraic equations (DAEs) model in the form
described in Part I. In Chapter 7, we describe four state estimation methods for
continuous-discrete nonlinear systems involving SDEs; the extended Kalman filter,
unscented Kalman filter, ensemble Kalman filter, and a particle filter. Chapter 8 de-
scribes the extended Kalman filter for continuous-discrete nonlinear systems involving
SDAEs.

Part III - Economic Model Predictive Control (Chapter 9)

In this part, we describe economic nonlinear model predictive control for SCP produc-
tion. In Chapter 9, we describe economic model predictive control and the integration
of the two main components; the state estimator and the EOCP. We present objec-
tive formulations for the EOCP, including; target tracking, input rate-of-movement
penalty, as well as economic performance measures, such as production revenue and
input cost.
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Part IV - Numerical Examples (Chapters 10-11)

In this part, we present numerical examples of simulation, state estimation, economic
optimal control, and economic nonlinear model predictive control for SCP production.
In Chapter 10, we describe modelling, state estimation, economic optimal control, and
economic nonlinear model predictive control for SCP production in a U-loop bioreac-
tor. The model presented in this chapter is a continuous-discrete nonlinear system
involving SDEs based on a growth model with methanol and nitric acid and carbon
and nitrogen sources, respectively. In Chapter 11, we describe modelling, simulation,
state estimation, and economic optimal control for a laboratory-scale CSTR for SCP
production. The model described in this chapter includes chemical equilibrium re-
actions, resulting in a continuous-discrete nonlinear system involving SDAEs based
on a growth model with methane and ammonium as carbon and nitrogen sources,
respectively.

Part V - Controller Performance Quantification and Tuning (Chapter 12)

In this part, we present a method of quantifying the performance of a control sys-
tems for tuning and uncertainty quantification, i.e. testing controller variability and
robustness. In Chapter 12, we describe a high-performance Monte Carlo simulation
toolbox and present an implementation in C using openmp for parallelisation of the
Monte Carlo simulations. The toolbox is applied for tuning and uncertainty quantifi-
cation of controller performance in closed-loop systems, testing open-loop, PID, and
NMPC.

Part VI - Conclusions and Suggestions for Future Work (Chapter 13)

In this part, we present conclusions for the work presented in this thesis, as well as
suggestions for future work based on and related to the work presented in this thesis
on advanced monitoring and control solutions for SCP production.

Part VII - Appendix (Appendices A-G)

In this part, we present papers and a technical report on which this work is partially
based. In Appendix A, we present a paper describing modelling and economic optimal
control for SCP production in a laboratory-scale CSTR. In Appendix B, we present
a publication describing state estimation in continuous-discrete nonlinear systems
involving SDEs. In Appendix C, we present a publication describing the formula-
tion and implementation of a high-performance Monte Carlo simulation toolbox for
uncertainty quantification in closed-loop systems. In Appendix D, we present a publi-
cation describing economic optimal control for SCP production in a U-loop bioreactor
applying direct simultaneous approaches. In Appendix E, we present a publication
describing the application of the extended Kalman filter for state estimation in the
U-loop bioreactor for SCP production. In Appendix F, we present a publication de-
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scribing economic nonlinear model predictive control for SCP production in a U-loop
bioreactor. Finally, Appendix G presents a technical report describing a compact
modelling framework for reactive systems, as well as models and implementation of
BRs, FBRs, CSTRs, and PFRs applying the modelling framework.

1.5 Publications and presentations
In this section, we present the papers and presentations prepared in relation to the
PhD project.

1.5.1 Paper I
Modelling and economic optimal control for a laboratory-scale
continuous stirred tank reactor for single-cell protein production.
This paper introduces a novel model for the growth and pH dynamics of Methylococcus
capsulatus in a laboratory-scale fermenter for SCP production. The model includes
DAEs, non-negativity constraints, and linear scaling for stability in simulations. The
study concludes with a numerical example for economic optimal control of biomass
growth and pH tracking in the reactor.

1.5.2 Paper II
State estimation in continuous-discrete-time nonlinear stochastic
systems
This paper presents and compares four state estimation methods for continuous-
discrete nonlinear systems involving SDEs; the extended Kalman filter, unscented
Kalman filter, ensemble Kalman filter, and a particle filter. The methods are imple-
mented in Matlab and evaluated using simulations of a modified four-tank system,
with accuracy determined by mean absolute percentage error. The study provides
an overview and comparison of state estimation methods for continuous-discrete time
nonlinear stochastic systems, aiding efficient implementation.

1.5.3 Paper III
A high-performance Monte Carlo simulation toolbox for
uncertainty quantification of closed-loop systems
This paper presents a parallel Monte Carlo simulation toolbox for uncertainty quan-
tification and tuning of controllers in nonlinear closed-loop systems. The toolbox
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demonstrates efficient scaling on multiple cores. The toolbox is applied in a numeri-
cal experiment for closed-loop control of a bioreactor in fed-batch operation. We test
an open-loop controller, two PID controllers, and an NMPC and apply the Monte
Carlo toolbox to quantify the performances.

1.5.4 Paper IV
Economic optimal control of a U-loop bioreactor using
simultaneous collocation-based approaches
This paper studies economic optimal control of SCP production in a U-loop reactor.
The model of the reactor contains both ordinary and partial differential equations,
resulting in a large-scale and challenging OCP. Two simultaneous collocation-based
approaches are applied to solve the problems and are implemented in C using IPOPT
for solution of the NLP. A performance study shows that it is feasible to solve the
EOCPs in real-time.

1.5.5 Paper V
The extended Kalman filter for nonlinear state estimation in a
U-loop bioreactor
This paper studies nonlinear state estimation in a U-loop reactor for SCP produc-
tion. The model of the reactor is a combination of stiff stochastic partial differential
equations and SDEs, resulting in a high-dimensional system of 83 states. The paper
investigates and discusses the use of the continuous-discrete extended Kalman filter
for state estimation in this challenging system.

1.5.6 Paper VI
Economic nonlinear model predictive control of a U-loop
bioreactor
A novel algorithm for economic nonlinear model predictive control of SCP produc-
tion in a U-loop bioreactor is presented. The model of the reactor consists of 87
state variables and combines stochastic ordinary and partial differential equations.
The algorithm combines a continuous-discrete extended Kalman filter and a direct
simultaneous collocation based approach to the discretisation of the OCP and is com-
putationally feasible for real-time implementation in the U-loop reactor.

1.5.7 Technical Report I
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Modelling of reactive systems
This technical report presents a compact approach to the description of stoichiometry
and kinetics for reactive systems, e.g. chemical and biochemical systems. The report
describes the modelling framework and presents example kinetics for chemical and
biochemical reactive systems. In the report, we present mass balances and differential
equation models for four reactor types applying the modelling approach. The four
types are; BRs, FBRs, CSTRs, and PFRs. Finally, we present examples of a chemical
and biochemical reactive systems in the presented reactor types. The appendix of the
report describes gas-liquid mass transfer, as well as Jacobians and implementation in
Matlab and Python of the presented reactor types.

1.5.8 Presentations
1. Nielsen, M. K., Ritschel, T. K. S., Christensen, T., Dragheim, J., Huusom, J.

K., Gernaey, K. V., Jørgensen, J. B. (2023). State estimation for continuous-
discrete-time nonlinear stochastic systems. Foundations of Computer Aided
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CHAPTER2
U-loop Bioreactor

The work presented in this chapter is partially based on the publications listed in
Appendices D, E, and F on control for a U-loop bioreactor, and the technical report
listed in Appendix G on modelling of reactive systems. In this chapter, we consider the
U-loop bioreactor for SCP production. The U-loop fermenter is designed and operated
by Unibio A/S at their production and development facility in Kalundborg, Denmark.
At the facility, reactors are operated at pilot- and demonstration-scale. The pilot-scale
reactor is operated exclusively for research and development and the demonstration-
scale reactor is operated for both research and development and production. In this
chapter, we present a compartment model describing the dynamics of the U-loop
bioreactor. We also describe the layout, actuator, and sensor capabilities for the
pilot- and demonstration-scale U-loop fermenters currently operated by Unibio A/S
in Kalundborg, Denmark.

The chapter is structured as follows: in section 2.1, we motivate the model for the
U-loop reactor, we consider in this work and describe the U-loop fermenters currently
operated by Unibio A/S at their facility in Kalundborg, Denmark. In this section, we
also provide schematics describing the actuator and sensor layout of the pilot- and
demonstration-scale reactors located and operated at the Kalundborg site. In section
2.2, we describe models for the major compartments in the U-loop reactor model and
finally present a description of the complete U-loop reactor model considered in this
work. Section 2.3 summarises the work presented in this chapter.

2.1 U-loop fermenter
In this section, we consider the U-loop reactor compartment model presented by [31,
33]. The compartment model of the U-loop reactor is defined by four compartments;
the top tank, U-loop leg, inlet mixer, and gas-liquid separator. We model the top
tank as a CSTR. The U-loop leg is modelled as a PFR and the resulting system of
partial differential equations (PDEs) is discretised using a finite-volume discretisation
to arrive at a system of ordinary differential equations (ODEs). We inlet mixer models
the mixing of inlet flows of gasses and liquids, and the liquid recycle flow from the
top tank. The gas-liquid separator describes the separation of gasses and liquid as
they flow back into the off-gas outlet and top tank, respectively. The resulting model
is a system of ODEs. Figure 2.1 illustrates the flow in the U-loop fermenter.
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The U-loop fermenter is a continuously operated bioreactor. The reactor layout
is designed with high flow rate recirculation and static mixers along the U-loop leg
for good mixing and high gas-liquid mass transfer properties [32]. In the bioreactor,
a culture of Methylococcus captulsatus (Bath) grows to a protein rich fermentation
broth. Gaseous and liquid substrates are continuously added and mixed with the
fermentation broth as it flows through the U-loop leg. As the content reaches the
top tank, it de-gasses as the pressure drops. The gas exits through the off-gas out-
let stream and the liquid content is either recirculated through the U-loop leg or
harvested through the liquid outlet if the biomass concentration is high enough for
down-stream processing. Unibio A/S currently operates two scales of U-loop fer-
menters at the facility in Kalundborg, Denmark; a pilot-scale reactor for research
and development, and a demonstration-scale reactor used for research and develop-
ment and SCP production. Figure 2.2 describes the actuator and sensor layouts for
the pilot-scale fermenter. Figure 2.3 describes the actuator and sensor layouts for the
demonstration-scale fermenter.

2.2 Modelling the U-loop reactor
In this section, we present the model of the U-loop bioreactor described by [31, 33, 36].
We describe models of the top tank, U-loop leg, inlet mixer, and gas-liquid separator.
We model the top tank as a CSTR with variable volume. We model the U-loop leg
as a PFR. We apply a finite-volume discretisation to discretise the PDE describing
the PFR. The discretised PDE gives rise to an ODE for the U-loop leg. Figure 2.4 is
a flow diagram illustrating the U-loop reactor model.

2.2.1 CSTR model
A CSTR is a single closed-vessel reactor with both in- and outflows of liquid (and
potentially gasses). In the CSTR, we assume that the context is completely and
perfectly mixed at all points in the reactor. This means that concentrations at all
points in the reactor are assumed identical [76–78]. The CSTR is described by the
system of ODEs

dV

dt
= eT F − eT

OutFOut, V (t0) = V0, (2.1a)

dn

dt
= CInF − ceT

OutFOut + R(c)V, n(t0) = n0, (2.1b)

where V ∈ R is the liquid volume, n ∈ Rnc are the mole numbers, and c = n/V are
the concentrations. F ∈ Rnu,In is the inlet flow rate vector and FOut ∈ Rnu,Out is the
outlet flow rate vector. CIn ∈ Rnc×nu,In are the inlet concentrations. e ∈ {1}nu,In

and eOut ∈ {1}nu,Out are vectors of ones, i.e. for computing the sum of the in- and
outlet flows. We compute the production rates using the reactive systems modelling
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Top Tank

U-loop Leg

Inlets

Off-gas

Harvest

Figure 2.1: Illustration of the U-loop reactor. Substrates are added to the reactor
fluid as it enters and flows through the U-loop leg to and from the
top tank. Biomass rich reactor fluid is harvested from the top tank to
produce single-cell protein.

framework presented in Appendix G, as

R(c) = ST r(c), (2.2)

where S ∈ Rnc×nr is the stoichiometric matrix, r(c) : Rnc −→ Rnr is a vector of the
reaction rates for each reaction, and R(c) : Rnc −→ Rnc are the production rates
for each component. We derive the system of ODEs governing the CSTR from mass
balances. The technical report listed in Appendix G describes the derivation.
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2.2.2 PFR model
A PFR is an idealised pipe reactor, where the mixture completely fills the reactor
and moves as a plug through the system, hence the name. In the PFR, we assume
that the reactor content is perfectly mixed through any pipe cross-section normal to
the linear flow direction, such that we can model the one-dimensional flow through
the pipe. Additionally, we assume that the linear velocity of the mixture is uniform
along the length of the reactor [76–78]. We describe the PFR by the system of PDEs

∂c

∂t
(t, z) = −∂N

∂z
(t, c(t, z)) + Q(t, c(t, z)), c(t0, z) = c0(z), (2.3)

where c are concentrations, N(·) are fluxes, and Q(·) are generation rates, i.e. pro-
duction and mass transfer rates. We consider Danckwerts’ boundary conditions [79],
as

c(t, 0) = cIn(t), (2.4)

and
∂c

∂z
(t, 0) = 0,

∂c

∂z
(t, L) = 0, (2.5)

where L is the total length of the reactor. We define the concentrations as

c(t, z) =

cl(t, z)
cd(t, z)
cg(t, z)

 . (2.6)

The concentrations are comprised of the concentration of the components only dis-
solved in the liquid phase, cl, the gaseous components dissolved in the liquid phase,
cd, and the gaseous components in the gas phase, cg. The fluxes are

N(t, c(t, z)) = v(t)c(t, z) − D
∂c

∂z
(t, z), (2.7)

where v(t) is the linear velocity and D is a diagonal matrix of dispersion coefficients
for each components. The linear velocity is

v(t) = Ft(t)
A

, Ft(t) = Ft,l(t) + Ft,g(t), (2.8)

where A is the (assumed) constant cross-sectional area of the reactor pipe, Ft is the
total flow rate, Ft,l = eT

l Fl is the total liquid flow rate, and Ft,g = eT
g Fg is the total

gas flow rate. The generation term is

Q(t, c(t, z)) =

Ql(t, c(t, z))
Qd(t, c(t, z))
Qg(t, c(t, z))

 , (2.9)
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where the generation is defined for the components only present in the liquid phase, Ql,
the gaseous components dissolved in the liquid phase, Qd, and the gaseous components
in the gas phase, Qg. The generation terms are

Ql(t, c(t, z)) = Rl(c(t, z)), (2.10a)

Qd(t, c(t, z)) = Rd(c(t, z)) + 1
1 − ϵ(t)

Jgl(c(t, z)), (2.10b)

Qg(t, c(t, z)) = Rg(c(t, z)) − 1
ϵ(t)

Jgl(c(t, z)), (2.10c)

where Ri(·) for i ∈ {l, d, g} are the productions for the components in the liquid phase,
gaseous components dissolved in the liquid phase, and gaseous components in the gas
phase, respectively, ϵ is the gas phase volume fraction, and Jgl(·) are the gas-liquid
mass transfer rates. The gas phase volume fraction is

ϵ(t) = Ft,g(t)
Ft(t)

. (2.11)

The gas-liquid mass transfer rates are

Jgl(c(t, z)) = kLa (cSat(t, z) − cd(t, z)) , (2.12)

where cSat(·) are the saturation concentrations for the gaseous components dissolved
in the liquid phase and kLa is a diagonal matrix of mass transfer coefficients. The
saturation concentrations are

cSat(t, z) = γcg(t, z), (2.13)

where γ is a diagonal matrix of saturation factors. The saturation factors are com-
puted with Henry’s law and the ideal gas law, as

γ = RT (Hcp)−1
, (2.14)

where R is the ideal gas constant, T is the temperature, and Hcp is a diagonal matrix
of Henry’s constants for the gaseous components. Values of Henry’s constants are
presented in [80, 81].

Finite-volume discretisation

We formulate the PFR as a system of ODEs by applying a finite-volume discretisa-
tion of the PDE. The finite-volume discretisation is described in the technical report
listed in Appendix G. Consider the system of ODEs arising from a finite-volume
discretisation with Nz discrete volumes

dc̄

dt
(t) = −D

(z)
Nz,nc

N̄(t, c̄(t)) + Q̄(t, c̄(t)), c̄(t0) = c̄0, (2.15)
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where c̄ are the concentrations in each discrete volume, N̄ are the fluxes through each
cross-section separating the discrete volumes, Q̄ are the generations for each discrete
volume, and D

(z)
Nz,nc

is a forward difference matrix, i.e. approximates the spatial
derivative of the fluxes with a forward-difference approximation. The concentrations,
fluxes, and generations are defined for all volumes in the discretisation, as

c̄ =


c̄1
c̄2
...

c̄Nz

 , N̄ =


N̄1/2

N̄1+1/2
...

N̄Nz+1/2

 , Q̄ =


Q̄1
Q̄2
...

Q̄Nz

 . (2.16)

The fluxes are

N̄(t, c̄(t)) =

 N̄1/2
N̄1:Nz−1
N̄Nz+1/2

 =

 v(t)cIn(t)
v(t)c̄1:Nz−1(t) − D̄D̄

(z)
Nz−1×Nz,nc

c̄(t)
v(t)c̄Nz

(t)

 , (2.17)

where N̄1:Nz−1 are the fluxes, N̄i+1/2, for the volumes i ∈ {1, 2, . . . , Nz − 1}, c̄1:Nz−1
are the concentrations, c̄i, for the volumes i ∈ {1, 2, . . . , Nz − 1}, and D̄ is a diagonal
matrix of dispersion coefficients. The forward-difference matrix is defined as

D
(z)
M,n = D

(z)
M ⊗ In, D

(z)
M =


−1 1

−1 1
. . . . . .

−1 1

 , (2.18)

where In ∈ Rn×n is an identity matrix and ⊗ is the Kronecker product. Note that
the size of the forward-difference matrix D

(z)
M ∈ RM×M+1 is not quadratic. The

dispersion matrix is

D̄ = D ⊗ INz−1, (2.19)

where D is the diagonal matrix of dispersion coefficients for each component. We
define the generation rates in each volume as

Q̄i(t, c̄(t)) =

Q̄l,i(t, c̄(t))
Q̄d,i(t, c̄(t))
Q̄g,i(t, c̄(t))

 , i ∈ {1, 2, . . . , Nz}, (2.20)

where Q̄l,i are the generations for the components only present in the liquid phase,
Q̄d,i are the generations for the gaseous components dissolved in the liquid phase,
and Q̄g,i are the generations for the gaseous components in the gas phase. We define
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each of those generations as

Q̄l,i(t, c̄(t)) = R̄l,i(c̄(t)), (2.21a)

Q̄d,i(t, c̄(t)) = R̄d,i(c̄(t)) + 1
1 − ϵ(t)

J̄gl,i(c̄(t)), (2.21b)

Q̄g,i(t, c̄(t)) = R̄g,i(c̄(t)) − 1
ϵ(t)

J̄gl,i(c̄(t)), (2.21c)

where R̄i are the production rates in volume i and J̄gl,i are the gas-liquid mass transfer
rates in volume i. The productions in volume i ∈ {1, 2, . . . , Nz} are defined by the
modelling framework for reactive systems in Appendix G, as

R̄i(t, c̄(t)) =

R̄l,i(t, c̄(t))
R̄d,i(t, c̄(t))
R̄g,i(t, c̄(t))

 = ST r(c̄i(t)), (2.22)

where S ∈ Rnr×nc is the stoichiometric matrix and r(c) : Rnc −→ Rnr is a vector
of reaction rates. The gas-liquid mass transfer rates in volume i ∈ {1, 2, . . . , Nz} are
define by (2.12), as

J̄gl,i(c̄(t)) = Jgl(c̄i(t)). (2.23)

2.2.3 U-loop model
The U-loop reactor is a compartment model consisting of a CSTR, as presented
in section 2.2.1, representing the top tank, a PFR, as presented in section 2.2.2,
representing the U-loop leg, an inlet mixer, and a gas-liquid separator. Figure 2.4
illustrates the U-loop compartment model. In this work, we consider the U-loop
reactor model as a system of ODEs in the form

dx

dt
(t) = f(t, x(t), u(t), θ), x(t0) = x0. (2.24)

The following is an overview of the variables and compartment dynamics.

Variables

The states of the U-loop reactor are comprised of the volume and mole numbers
in the top tank CSTR and the concentrations of each volume in the finite-volume
discretisation of the U-loop leg PFR

x(t) =
[
xCST R(t)
xP F R(t)

]
, (2.25)

where

xCST R(t) = n(t), xP F R(t) = c̄(t). (2.26)
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We note that the volume state of the CSTR is eliminated by the in- and outlet flows
being equal in the model considered in this work. The technical report listed in
Appendix G describes the derivation of the constant volume CSTR. The inputs for
the U-loop reactor are the liquid as gas inlet flow rates

u(t) =
[

Fl(t)
Fg(t)

]
, CIn =

[
Cl,In Cg,In

]
. (2.27)

The input to the CSTR model are

uCST R(t) =
[

FCST R,In(t)
FCST R,Out(t)

]
, cCST R,In(t) =

[
c̄l,Nz

(t)
c̄d,Nz (t)

]
, (2.28)

where the inlet concentrations are the liquid outlet from the PFR exiting the gas-
liquid separator and the in- and outlet flows are

FCST R,In(t) = Ft,l(t) = eT
l Fl(t) + Fr, (2.29a)

FCST R,Out(t) = Fh(t) + Fr, (2.29b)

where the recycle flow rate, Fr, is constant and the harvest flow rate, Fh = eT
l Fl, is

the sum of the liquid inlet flow rates, defining a constant volume CSTR as the top
tank. We note that the top tank is not required to have constant volume, but that
in this particular work we treat it as such. The elimination of the volume state for
the constant volume CSTR can be found in the technical report listed in Appendix
G. The inputs to the PFR are the inflows from the inlet mixer

uP F R(t) = Ft(t), cIn(t), (2.30)

where Ft is the total flow rate of liquids and gasses, and cIn are the total concentrations
of liquids and gasses exiting the mixer.

Reactor dynamics

The right-hand side function is

f(t, x(t), u(t), θ) =
[
fCST R(t, xCST R(t), uCST R(t), θ)

fP F R(t, xP F R(t), uP F R(t), θ)

]
, (2.31)

where fCST R are the CSTR dynamics defined in section 2.2.1 and fP F R are the
dynamics of the finite-volume discretisation of the PFR described in section 2.2.2.
The top tank dynamics are

fCST R(t, xCST R(t), uCST R(t), θ) =
(cCST R,In(t) − c(t)) Ft,l(t) + R(c(t))V,

n(t0) = n0. (2.32)
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The U-loop leg dynamics are

fP F R(t, xP F R(t), uP F R, θ) =

− D
(z)
Nz,nc

N̄(t, c̄(t)) + Q̄(t, c̄(t)),
c̄(t0) = c̄0. (2.33)

In the mixer, the liquid inlet flows are mixed with the liquid recycle flow from the
top tank. As such, the liquid inlet mix is

cIn,l(t) = CIn,l
Fl(t)
Ft,l(t)

+ c
Fr

Ft,l(t)
, Ft,l(t) = eT

l Fl(t) + Fr. (2.34)

As there is no modelled gas phase in the top tank, the gas mix is defined entirely by
the gaseous inlet flows. As such, the gaseous inlet mix is

cIn,g(t) = CIn,g
Fg(t)
Ft,g(t)

, Ft,g(t) = eT
g Fg(t). (2.35)

Given the liquid and gas inlet flows, the full gas-liquid mix may be defined as

cIn(t) = cIn,l(t)
Ft,l(t)
Ft(t)

+ cIn,g(t)Ft,g(t)
Ft(t)

, Ft(t) = Ft,l(t) + Ft,g(t). (2.36)

In the separator, we assume that the gas-liquid mixture is perfectly and instanta-
neously separated into the gas and liquid phases. The liquid phase flows into the top
tank, defining the inlet concentrations for the CSTR, and the gas phase exits through
the off-gas stream.

2.3 Summary
In this chapter, we presented descriptions and a model for the U-loop bioreactor. We
described the U-loop fermenters operated by Unibio A/S at their facility in Kalund-
borg, Denmark. We described the concept and design of the U-loop reactor and
presented schematics describing the actuator and sensor layouts for the pilot- and
demonstration-scale reactors operated by Unibio A/S. We presented a CSTR and
PFR, describing the major compartments of the U-loop reactor. We applied a finite-
volume discretisation to the system of PDEs arising from the PFR dynamics, and for-
mulated a system of ODEs describing the discretised reactor. Finally, we presented
the model of the U-loop bioreactor based on the four major compartments; the top
tank (CSTR), the U-loop leg (PFR), the inlet mixer, and the gas-liquid separator.
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Figure 2.2: Illustration of the pilot-scale reactor layout, A) the degassing unit (top
tank) and B) the U-loop leg. Left: Actuator layout of the plant (MVs),
1) recirculation pump, 2) inlet stream of gas and liquid substrates,
acid/base, water (fresh or recirculated), trace-metals, minerals, etc., 3)
pressure valve controlling leg pressure, 4) cooling jacket, and 5) harvest
outlet stream. Right: Sensor layout of the plant measurements, a)
pH-value, b) temperature (top tank temperature sensor is in the gas
outlet), c) dissolved oxygen (DO), d) pressure, e) top tank liquid level,
f) U-loop leg flow rate, g) K, NO3, and NH4

+ probe, and h) sampling
valve for offline measurements. For the offline measurements, samples
are taken every four hours for measurements of; pH, kH, conductivity,
and DCW (dry cell weight). Additionally, samples are taken every hour
for measurements of; NO2

−, NO3
−, and NH4

+.
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Figure 2.3: Illustration of the demonstration-scale reactor layout, A) the degassing
unit (top tank) and B) the U-loop leg. Left: Actuator layout of the
plant (MVs), 1) recirculation pump, 2) inlet stream of gas and liquid
substrates, acid/base, trace-metals, minerals, etc., 3) pressure valve
controlling leg pressure, 4) cooling jacket (currently not used in the
demonstration-scale reactor), 5) harvest outlet stream, 6) water inlet
stream (fresh or recirculated), 7) and active external cooling loop with
heat exchanger. Right: Sensor layout of the plant measurements, a)
pH-value, b) temperature (top tank temperature sensor is in the gas
outlet), c) dissolved oxygen (DO), d) pressure, e) top tank liquid level,
f) U-loop leg flow rate, g) K, NO3, and NH4

+ probe, h) sampling valve
for offline measurements. For the offline measurements, samples are
taken every 4 hours for measurements of; pH, kH, conductivity, and
DCW (dry cell weight). Additionally, samples are taken every hour for
measurements of; NO2

−, NO3
−, and NH4

+.



30 2 U-loop Bioreactor

Top tank (CSTR)

Inlet mixer Gas-liquid
separator

U-loop leg (PFR)

Gas inlet

Liquid inlet

Harvest flow

Off-gas flow
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Figure 2.4: Illustration of the compartment model of the U-loop bioreactor. States:
The top tank states are the mole numbers n (or concentrations c). The
U-loop leg states are the concentrations in each volume of the finite-
volume discretisation c̄. Inputs: The inlet are the liquid inlet flows Fl

and concentrations Cl,In and the gas inlet flows Fg and concentrations
Cg,In. Fr is the recycle flow, Fh is the harvest flow, Ft,l and Ft,g are the
total liquid and gas flows, respectively, and Ft is the total flow.



CHAPTER3
Growth Models

The work presented in this chapter is partially based on the technical report listed in
Appendix G on modelling of reactive systems. Additionally, the work presented in
this chapter is partially based on the publications listed in Appendices D, E, and F on
control for a U-loop bioreactor and paper listed in Appendix A on modelling, simula-
tion, and economic optimal control for a laboratory-scale bioreactor. In this chapter,
we present kinetic models describing the growth of Methylococcus capsulatus for SCP
production. We present models based on methanol and methane as carbon sources,
and several different nitrogen sources; nitric acid, ammonia, ammonium, nitrite, ni-
trate, and molecular nitrogen. For each of the models, we describe stoichiometry,
define the stoichiometric matrix, and describe growth kinetics to formulate the rates
of reaction. We compactly describe the production rates for each component as

R(c) = ST r(c), (3.1)

where R(c) : Rnc −→ Rnc are the production rate, S ∈ Rnr×nc is the stoichiometric
matrix, and r(c) : Rnc −→ Rnr is a vector of the reaction rates.

The chapter is structured as follows: in section 3.1, we present a model based
on methanol and nitric acid as substrates. section 3.2 presents a model based on
methane and ammonia as substrates. In section 3.3, we present a model based on a
metabolic study of the micro-organism. This model is based on methane as substrate
and includes the anabolism of several sources of nitrogen; ammonium, nitrite, nitrate,
and molecular nitrogen. Section 3.4 describes considerations and developments to
the presented in section 3.3. In section 3.5, we present a reduced model based on the
model presented in section 3.3. We apply the model in the paper listed in Appendix
A. Finally, we present a summary of the chapter in section 3.6.

Notes on notation

We apply the modelling framework for reactive systems listed in Appendix G for the
description of growth models for cultivation of M. captulatus. As such, we define each
reactive system in terms of their respective stoichiometric matrix and rate of reaction
vector. We describe the modelled components of each model as elements in the set
of modelled components

C = Cl ∪ Cg, (3.2)
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where Cl is the set of components only present in the liquid phase and Cg is the set of
components present in the gas phase and as gasses dissolved in the liquid phase. The
vector of concentrations is

c =

cl

cd

cg

 , (3.3)

where cl is a vector of components, ci = [i] for i ∈ Cl, only present in the liquid, cd is
a vector of gaseous components dissolved in the liquid phase, ci = [i] for i ∈ Cg, and
cg is a vector of gaseous components in the gas phase, ci,g = [i] for i ∈ Cg.

3.1 Methanol model
In this section, we present a growth model with methanol and nitric acid as sources
of carbon and nitrogen, respectively. The stoichiometry and kinetics of the model is
presented by [31]. The growth model is described and analysed in [33] and optimal
operating points are investigated in [37]. Economic optimal operation is investigated
for the U-loop reactor in [36] and real-time economic optimal control for growth in a
CSTR is investigated and presented in [82]. We describe the growth of M. capsulatus
on methanol and nitric acid in the presence of oxygen, i.e. aerobic conditions, by the
stoichiometry

1.366 CH3OH + 0.199 HNO3 + 0.600 O2 −−→
X + 0.366 CO2 + 1.933 H2O,

r1. (3.4)

Stoichiometry

In this model, we consider the liquid and gaseous components

Cl = {X, S}, Cg = {O}, (3.5)

where

X = CH1.8O0.5N0.2, S = CH3OH, O = O2. (3.6)

The resulting modelled reactive system is described by the stoichiometry

1.366S + 0.600O −−→ X, r1(c). (3.7)

We describe the stoichiometry defined in (3.7) by the stoichiometric matrix

S =
X S O Og

[ ]1 −1.366 −0.600 0 r1 . (3.8)
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Reaction rate

The vector of reaction rates for each reaction of the growth model is

r(c) = [r1(c)]. (3.9)

The reaction rate for reaction one, r1, is

r1(c) = µ(c)cX . (3.10)

The specific growth rate is

µ(c) = µmaxµS(c)µO(c), (3.11)

where µmax is the maximum specific growth rate, µS is the specific growth rate on
substrate, and µO is the specific growth rate on oxygen. The substrate, methanol,
inhibits growth at high concentrations. Therefore, we apply Haldane kinetics to
describe the specific growth rate on substrate, as

µS(c) = cS

KS + cS + c2
S/KS,I

, (3.12)

where KS is the saturation constant and KS,I is the substrate inhibition constant.
We apply Monod kinetics to describe the specific growth rate on oxygen, as

µO(c) = cO

KO + cO
, (3.13)

where KO is the saturation constant. Table 3.1 presents the kinetic parameters for
the model.

Optimal substrate concentration

The Haldane expression gives rise to a maximum growth rate and thus also an optimal
concentration of substrate for growth, c∗

S [83]. To determine c∗
S , we describe the

optimal growth as the constrained optimisation problem

min
cS

ϕ = −µS(cS), (3.14)

subject to

cS ≥ 0. (3.15)

The solution to the problem arises as the solution to the 1st order necessary optimality
conditions, i.e. Karush-Kuhn-Tucker (KKT) conditions, as

0 = dϕ

dcS
(c∗

S). (3.16)
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We solve (3.16) for the optimal concentration, c∗
S , and compute the optimal concen-

tration satisfying the non-negativity constraint, as

c∗
S =

√
KS,IKS . (3.17)

We apply this in control applications listed in Appendices D and F to stabilise the
system. Figure 3.1 illustrates the Haldane growth kinetics and optimal growth con-
ditions.

3.2 Methane model
In this section, we present a growth model with methane as carbon source and am-
monia as nitrogen source. The stoichiometry and kinetics of the model is presented
in [84]. The growth of M. capsulatus on methane and ammonia in the presence of
oxygen, i.e. aerobic conditions, is described by the stoichiometry

1.9186 CH4 + 0.1999 NH3 + 2.7874 O2 −−→
X + 0.9186 CO2 + 1.6351 H2O,

r1. (3.18)

Stoichiometry

In this model, we consider the liquid and gaseous components

Cl = {X, N}, Cg = {S, O, C}, (3.19)

where

X = CH1.8O0.5N0.2, N = NH3, S = CH4, O = O2, C = CO2. (3.20)

The resulting modelled reactive systems is described by the stoichiometry

S + 0.1042N + 1.4528O −−→ 0.5212X + 0.4788C, r1(c). (3.21)

We describe the stoichiometry defined in (3.21) by the stoichiometric matrix

S =
X N S O C Sg Og Cg

[ ]0.5212 −0.1042 −1 −1.4528 0.4788 0 0 0 r1 . (3.22)

Table 3.1: Kinetic parameters for the methanol model [33].

Symbol Value Unit
µmax 3.7 · 10−1 1/h
KS 6.6 · 10−4 mol/L
KS,I 1.2 · 10−2 mol/L
KO 2.0 · 10−6 mol/L
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Figure 3.1: Haldane kinetics with optimal growth rate for growth on methanol for
single-cell protein production.

Reaction rate

The vector of reaction rates for each reaction of the growth model is

r(c) =
[
r1(c)

]
. (3.23)

The reaction rate for reaction one, r1, is

r1(c) = µ(c)cX . (3.24)

The specific growth rate is

µ(c) = µmaxµS(c)µO(c), (3.25)

where µmax is the maximum growth rate, µS is the specific growth rate on substrate,
and µO is the specific growth rate on oxygen. We apply Monod kinetics to describe
the specific growth rate on substrate, as

µS(c) = cS

KS + cS
, (3.26)

where KS is the saturation constant. We apply Monod kinetics to describe the specific
growth rate on oxygen, as

µO(c) = cO

KO + cO
, (3.27)

where KO is the saturation constant. Table 3.2 presents the kinetic parameters for
the model.
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Table 3.2: Kinetic parameters for the methane model [84].

Symbol Value Unit
µmax 3.7 · 10−1 1/h
KS 1.3 · 10−6 mol/L
KO 3.0 · 10−7 mol/L

3.3 Metabolic model
In this section, we present a growth model with methane as carbon source and ammo-
nium, nitrite, nitrate, and molecular nitrogen as nitrogen sources. The growth model
is based on the metabolic study of M. capsulatus presented in [28]. The model includes
anabolic, catabolic, and co-metabolic reactions in the micro-organism. Co-metabolic
processes are investigated and described in [34]. Modelling and system identification
for the growth model applied in a U-loop reactor for SCP production is described
in [35]. The model is described in detail in [29]. The growth of M. capsulatus is
described by the catabolic reaction

CH4 + O2 −−→ CO2 + 4 H+ + 4 e−, r1, (3.28)

the anabolism of nitrogen sources

CH4 + O2 + 2
10

NH4
+ + 2

10
e− + �ATP −−→

CH1.8O0.5N0.2 + �ADP + 15
10

H2 O,

r2, (3.29a)

CH4 + O2 + 2
10

NO2
− + 14

10
e− + �ATP + 16

10
H+ −−→

CH1.8O0.5N0.2 + �ADP + 19
10

H2O,

r3, (3.29b)

CH4 + O2 + 2
10

NO3
− + 18

10
e− + �ATP + 20

10
H+ −−→

CH1.8O0.5N0.2 + �ADP + 21
10

H2O,

r4, (3.29c)

CH4 + O2 + 1
10

N2 + 8
10

e− +
(

α + 16
10

)
ATP + 8

10
H+ −−→

CH1.8O0.5N0.2 +
(

α + 16
10

)
ADP + 15

10
H2O,

r5, (3.29d)

and the co-metabolic reactions

NH4
+ + O2 −−→ NO2

− + 4 H+ + 2 e−, r6, (3.30a)

NO2
− + 1

2
O2 −−→ NO3

−, r7. (3.30b)
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Stoichiometry

In this model, we consider the liquid and gaseous components

Cl = {X, NH, NO2, NO3}, Cg = {N, S, O, C}, (3.31)

where

X = CH1.8O0.5N0.2, NH = NH4
+, (3.32a)

NO2 = NO2
−, NO3 = NO3

−, (3.32b)
N = N2, S = CH4, (3.32c)
O = O2, C = CO2. (3.32d)

The resulting modelled reactive system is described by the stoichiometry

S + O −−→ C, r1(c), (3.33a)

S + O + 2
10

NH −−→ X, r2(c), (3.33b)

S + O + 2
10

NO2 −−→ X, r3(c), (3.33c)

S + O + 2
10

NO3 −−→ X, r4(c), (3.33d)

S + O + 1
10

N −−→ X, r5(c), (3.33e)

NH + O −−→ NO2, r6(c), (3.33f)

NO2 + 1
2

O −−→ NO3, r7(c). (3.33g)

We describe the stoichiometry in (3.33) by the stoichiometric matrix

S =

X NH NO2 NO3 N S O C Ng Sg Og Cg


0 0 0 0 0 −1 −1 1 0 0 0 0 r1
1 − 2

10 0 0 0 −1 −1 0 0 0 0 0 r2
1 0 − 2

10 0 0 −1 −1 0 0 0 0 0 r3
1 0 0 − 2

10 0 −1 −1 0 0 0 0 0 r4
1 0 0 0 − 1

10 −1 −1 0 0 0 0 0 r5
0 −1 1 0 0 0 −1 0 0 0 0 0 r6
0 0 −1 1 0 0 − 1

2 0 0 0 0 0 r7

. (3.34)
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Reaction rate

The vector of reaction rates of the growth model is

r(c) =



r1(c)
r2(c)
r3(c)
r4(c)
r5(c)
r6(c)
r7(c)


. (3.35)

The reaction rates for i ∈ {1, 2, . . . , 7} are

ri(c) = µi(c)cX . (3.36)

The specific growth rate for reaction one is

µ1(c) =
(

α

2δ
+ 8

20

)
µ2(c) +

(
α

2δ
− 1

2

)
µ3(c)

+
(

α

2δ
+ 9

20δ

)
µ4(c) +

(
8α + 5

16δ
+ 1

5

)
µ5(c) + m

2δ
,

(3.37)

where α is a stoichiometry coefficient describing the ATP demand in biomass forming
reactions, δ is a stoichiometric coefficient describing ATP yield from the electron
transport chain, and m is the maintenance rate. There exists a strong correlation
between α and δ [29]. The specific growth rate for reaction two is

µ2(c) = µmaxamin10 (µS(c), µO(c), µNH(c)) , (3.38)

where µmax is the maximum growth rate, µS is the specific growth rate on substrate,
µO is the specific growth rate on oxygen, and µNH is the specific growth rate on
ammonium. This is a smooth approximation to the expression for growth on multiple
substrates described in [19], as the minimum of the growth rates

µ(c) = µmax min{µ1(c), µ2(c), . . . }. (3.39)

The smooth minimum approximation is

aminN (µa(c), µa(c), . . .) = wa(c)µa(c) + wb(c)µb(c) + · · ·
wa(c) + wb(c) + · · ·

, (3.40)

where the weights are described by the Nth order polynomial wi(c) = (1 − µi(c))N

and N is a positive integer, N ∈ N. The specific growth rates on substrate competes
with the co-metabolic reaction r6 and is therefore inhibited by the concentration of
ammonium. As such, the specific growth rate on substrate is

µS(c) = cS

KS

(
1 + cNH

KNH,ox

)
+ cS

, (3.41)
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where KS is the saturation constant for growth on substrate and KNH,ox is the
ammonium inhibition constant. The kinetic parameter KNH,ox is related to the
oxidation of ammonium to nitrite described by the co-metabolic reaction, r6. We
apply Monod kinetics to describe the specific growth rate on oxygen, as

µO(c) = cO

KO + cO
, (3.42)

where KO is the saturation constant. We apply Monod kinetics to describe the specific
growth rate on ammonia, as

µNH(c) = cNH

KNH + cNH
, (3.43)

where KNH is the saturation constant. The specific growth rate for reaction three is

µ3(c) = µmaxamin10 (µS(c), µO(c), µNO2(c)) ξNH(c), (3.44)

where µNO2 is the specific growth rate on nitrite and ξNH describe catabolic repression
related to ammonium. We apply Monod kinetics to describe the specific growth rate
on nitrite, as

µNO2(c) = cNO2

KNO2 + cNO2
, (3.45)

where KNO2 is the saturation constant. The catabolic repression function for a spe-
cific component, ξi for i ∈ C, is modelled by a sigmoid activation function

ξi(c) = 1
1 + eKcr,i−ci

, (3.46)

where Kcr,i is the activation constant, i.e. the system will be 50% at ci = Kcr,i. The
specific growth rate for reaction four is

µ4(c) = µmaxamin10 (µS(c), µO(c), µNO3(c)) amin100 (ξNH(c), ξNO2(c)) , (3.47)

where µNO3 is the specific growth rate on nitrate and ξNO2 is catabolic repression
related to nitrite. We apply Monod kinetics to describe the specific growth rate on
nitrate, as

µNO3(c) = cNO3

KNO3 + cNO3
, (3.48)

where KNO3 is the saturation constant. The specific growth rate for reaction five is

µ5(c) = µmax,N amin10 (µS(c), µO(c), µN (c))
amin100 (ξNH(c), ξNO2(c), ξNO3(c)) ,

(3.49)

where µmax,N is the maximum growth rate on molecular nitrogen, µN is the specific
growth rate on molecular nitrogen, and ξNO3 is catabolic repression related to nitrate.
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We apply Monod kinetics to describe the specific growth rate on molecular nitrogen,
as

µN (c) = cN

KN + cN
, (3.50)

where KN is the saturation constant. The specific reaction rate for reaction six is

µ6(c) = VNO2amin10 (µNH,ox(c), µO(c)) , (3.51)

where VNO2 is the maximum specific rate of the non-growth related reaction, r6. We
apply the same inhibition kinetics as for the anabolic reaction r2 and describe the
specific rate of reaction for ammonium oxidation, as

µNH,ox(c) = cNH

KNH,ox

(
1 + cS

KS

)
+ cNH

, (3.52)

where KNH,ox is the saturation constant and KS is the substrate inhibition constant.
The specific reaction rate for reaction seven is

µ7(c) = VNO3amin10 (µNO2,ox(c), µO2(c)) , (3.53)

where VNO3 is the maximum specific rate of the non-growth related reaction, r7.
We apply Monod kinetics to describe the specific rate of reaction of the nitrite co-
metabolic reaction, as

µNO2,ox(c) = cNO2

KNO2,ox + cNO2
, (3.54)

where KNO2,ox is the saturation constant. Table 3.3 presents the kinetic parameters
for the model.

3.4 Development of metabolic model
In this section, we present developments made for the model described in section 3.3.
Particularly, we investigate the formulation of the catabolic repression model and
propose improvements to better capture the desired dynamics.

3.4.1 Catabolic repression
Consider the catabolic repression function presented in section 3.3 for a component
of concentration, c,

ξ(c) = 1
1 + eKc−c

. (3.55)
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Table 3.3: Kinetic parameters for the metabolic model [29].

Symbol Value Unit
µmax 2.3 · 10−1 1/h
µmax,N 4.0 · 10−2 1/h
VNO2 3.2 · 10−2 molc/(molc X · h)
VNO3 2.3 · 10−2 molc/(molc X · h)
α 2.0 · 10−2 mol ATP/molc X
δ 2.0 · 10−2 mol ATP/mol(2e)
m 9.8 · 10−5 mol ATP/(molc X · h)
KS 7.5 · 10−5 mol/L
KO 5.5 · 10−7 mol/L
KNH 1.3 · 10−3 mol/L
KNO2 1.3 · 10−3 mol/L
KNO3 1.3 · 10−3 mol/L
KN 1.8 · 10−3 mol/L
KNH,ox 3.3 · 10−3 mol/L
KNO2,ox 1.3 · 10−3 mol/L
Kcr,NH 2.9 · 105 mol/L
Kcr,NO2 0.0 mol/L
Kcr,NO3 2.1 · 10−5 mol/L

The function presented in (3.55) is a so-called sigmoid activation function. A sigmoid
activation function, ξ : R −→ [0, 1], maps the input to a value between 0 and 1,
where 0 indicates that the system is inactive and 1 indicates that the system is active.
The parameter Kc is the activation constant, which describing the point where the
system is half active, i.e. ξ(c) = 0.5 for c = Kc. Sigmoid activation functions are
smooth approximations to the instantaneous activation represented by the piece-wise
constant function

ξ(∞)(c) =

{
0 for c ≤ Kc

1 otherwise
. (3.56)

The sigmoid activation function described in section 3.3 is illustrated in Figure 3.2.
Notably, the activation for the sigmoid function is not instant, but are asymptotically
achieved as the variable, c, tends to negative and positive infinity, respectively, i.e.
ξ(c) −→ 0 for c −→ −∞ and likewise ξ(c) −→ 1 for c −→ ∞. We may consider
the area within which the sigmoid achieves 95% activation, i.e. the interval between
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ξ(c) = 0.025 and ξ(c) = 0.975. We may compute this interval as

α% = 1
1 + eKc−c%

⇐⇒ (3.57a)

α% + α%eKc−c% = 1 ⇐⇒ (3.57b)
α%eKc−c% = 1 − α% ⇐⇒ (3.57c)

eKc−c% = 1 − α%
α%

⇐⇒ (3.57d)

c% = Kc − ln
(

1 − α%
α%

)
, (3.57e)

where α% is the activation decimal and c% is the concentration at which an activation
of α% is achieved. We denote the 95% activation points of the lower 2.5% activation
point, α%,l = 0.025, and the upper 97.5% activation point, α%,u = 0.975, the activa-
tion characteristics. Looking at a particular example of the activation characteristics
for the catabolic repression of nitrite in the presence of ammonium, ξNH(c), we find
that the activation characteristics are

α%,l = −3.6635, α%,u = 3.6636, (3.58)

for the activation constant Kc,NH = 2.9310 · 10−5. This indicates, that the catabolic
repression of nitrite is almost entirely inactive only when the concentration of am-
monium is less that −3.6635 and that it is almost entirely active only when the
concentration of ammonium is more than 3.6636. Figure 3.2 illustrates a sigmoid
activation function with these activation characteristics and compares it to the in-
stantaneous activation function, ξ(∞)(·). However, the concentration of ammonium
is unlikely to exceed molar concentrations of 1.0 M and will never decrease below 0
M. Evaluating the activation between these two points, 0 and 1 M, respectively, we
get

ξNH(0) = 4.9999 · 10−1, ξNH(1) = 7.3105 · 10−1, (3.59)

amounting to between 50% and 73% activation at all times. The same is true for the
remaining catabolic repression functions. The reason for this dynamic, is that [29]
applies an unscaled sigmoid activation function. Such an activation function always
has the same activation interval, but can shift its activation point by changing the
activation constant, Kc. To better represent the catabolic repression dynamic, we
introduce the scaled sigmoid activation function

ξ(β) = 1
1 + eβ(Kc−c) , (3.60)

where β is a scaling constant used to increase of decrease the activation interval. For
the scaled sigmoid activation function, we can choose the activation characteristics of
the function by choosing the value of β. To determine the value of β for an activation
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of 95% around Kc of ±α%, we derive the expression for the lower activation limit,
α%,l, as

ξ(β)(KC − α%) = 0.025 (3.61a)

= 1
1 + eβ(Kc−Kc+α%) ⇐⇒ (3.61b)

0.025 + 0.025eβ(α%) = 1 ⇐⇒ (3.61c)

eβ(α%) = 1 − 0.025
0.025

⇐⇒ (3.61d)

β (α%) = ln
(

1 − 0.025
0.025

)
⇐⇒ (3.61e)

β =
ln
( 1−0.025

0.025
)

α%
. (3.61f)

The symmetry of the function around the activation point means that this β gives
rise to the desired activation characteristics. Alternatively, we can derive a similar
expression for the upper activation limit, α%,u, and arrive at

β = −
ln
( 1−0.975

0.975
)

α%
, (3.62)

for the same value of β. Figure 3.3 illustrates the modified catabolic repression func-
tion for different scaling parameters, β. We note that the scaled sigmoid function
approximates the piece-wise constant activation function as the value of the scaling
parameter increases, i.e. ξ(β)(·) −→ ξ(∞) for β −→ ∞. A more reasonable implemen-
tation of catabolic repression can be implemented with the scaled sigmoid function,
where the value of the scaling parameter, β, is chosen or estimated for each of the
components; ammonium, nitrite, and nitrate.

3.5 Reduced metabolic model
The model presented in this section is based on the paper listed in Appendix A. In
this section, we present a reduced metabolic model based on the model presented
in section 3.3. We propose to include only two of the seven metabolic reactions for
control applications. The growth of M. capsulatus on methane and ammonium in the
presence of oxygen, i.e. aerobic conditions, is described by the stoichiometry

CH4 + O2 + H2O −−→ CO2 + 4 H3O+, r1, (3.63a)

CH4 + O2 + 2
10

NH4
+ −−→ CH1.8O0.5N0.2 + 15

10
H2O, r2. (3.63b)
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Figure 3.2: Illustration of activation functions ξ(·) (blue) and ξ∞(·) (purple). The
red region illustrates where the activation function is almost entirely
inactive, i.e. less than 2.5% activation. The yellow region indicates
that the activation function is transitional, i.e. between 2.5% and 97.5%
activation. The green region indicates that the activation function is
almost entirely active, i.e. more than 97.5% activation. The grey shaded
area indicates where c < 0, i.e. states which are not feasible in practice
for chemical systems.

Stoichiometry

In this model, we consider the liquid and gaseous components

Cl = {X, N}, Cg = {S, O, C}, (3.64)

where

X = CH1.8O0.5N0.2, N = NH4
+, S = CH4, O = O2, C = CO2. (3.65)

The resulting modelled reactive system is described by the stoichiometry

S + O −−→ C, r1(c), (3.66a)

S + O + 2
10

N −−→ X, r2(c). (3.66b)

We describe the stoichiometry defined in (3.66) by the stoichiometric matrix

S =
X N S O C Sg Og Cg[ ]
0 0 −1 −1 1 0 0 0 r1

1 − 2
10 −1 −1 0 0 0 0 r2

. (3.67)
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Figure 3.3: Illustration of scaled activation functions ξ(β)(·) for different choices of
scaling parameter, β. The illustrations are for: β = 1.0 and Kc = 0.1
(top left), β = 0.5 and Kc = 0.1 (top center), β = 0.25 and Kc = 0.1
(top right), β = 1.0 and Kc = 0.5 (bottom left), β = 0.5 and Kc = 0.5
(bottom center), and β = 0.25 and Kc = 0.25 (bottom right). The
red region illustrates where the activation function is almost entirely
inactive, i.e. less than 2.5% activation. The yellow region indicates
that the activation function is transitional, i.e. between 2.5% and 97.5%
activation. The green region indicates that the activation function is
almost entirely active, i.e. more than 97.5% activation. The grey shaded
area indicates where c < 0, i.e. states which are not feasible in practice
for chemical systems.

Reaction rate

The vector of reaction rates for each reaction of the growth model is

r(c) =
[
r1(c)
r2(c)

]
. (3.68)

The reaction rates for i ∈ {1, 2} are

ri(c) = µi(c)cX . (3.69)

The growth rate for the co-metabolic reaction, r1, is

µ1(c) =
(

α

2δ
+ 8

20

)
µ2(c) + m

2δ
, (3.70)
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where α is a stoichiometric coefficient describing the ATP demand in biomass forming
reactions, δ is a stoichiometric coefficient describing ATP yield from the electron
transport chain, and m is the maintenance rate. The growth rate for the anabolic
reaction, r2, is

µ2(c) = µmaxµS(c)µN (c)µO(c), (3.71)

where µmax is the maximum growth rate, µS is the specific growth rate on sub-
strate, and µN is the specific growth rate on ammonium. The specific growth rate
on substrate competes with a co-metabolic reaction and is therefore inhibited by the
concentration of the nitrogen source, i.e. ammonium. As such, the specific growth
rate on substrate is

µS(c) = cS

KS

(
1 + cN

KN,ox

)
+ cS

, (3.72)

where KS is the saturation constant and KN,ox is the nitrogen inhibition constant.
We apply Monod kinetics to describe the specific growth rate on nitrogen, as

µN (c) = cN

KN + cN
, (3.73)

where KN is the saturation constant. We apply Monod kinetics to describe the
specific growth rate on oxygen, as

µO(c) = cO

KO + cO
, (3.74)

where KO is the saturation constant. Table 3.4 describe the kinetic parameters for
the model.

3.6 Summary
In this chapter, we presented growth models for cultivation of Methylococcus capsu-
latus (Bath) for SCP production. We applied the modelling framework for reactive
systems and defined a series of growth models in terms of their stoichiometry ma-
trix and vector of reaction rates. We described a growth model based on methanol
and nitric acid as carbon and nitrogen sources, respectively. We applied Haldane
kinetics for the growth on substrate, i.e. methanol, and described optimal growth
conditions for the model. We presented a growth model based on methane and am-
monia as carbon and nitrogen sources, respectively. We presented a model based on
a metabolic study, including seven metabolic reactions describing the anabolism from
ammonium, nitrite, nitrate, and molecular nitrogen with methane as carbon source.
We presented developments made for this by introducing a scaled sigmoid activation
function as the model for catabolic repression. Finally, we presented a reduced model
based on the metabolic model including the anabolism of ammonium with methane
as carbon source. Control applications will be presented using this model later in this
work.
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Table 3.4: Kinetic parameters for the reduced metabolic model. The parameters
are from the paper listed in Appendix A.

Symbol Value Unit
µmax 2.3 · 10−1 1/h
α 2.0 · 10−2 mol ATP/molc X
δ 2.0 · 10−2 mol ATP/mol(2e)
m 9.8 · 10−5 mol ATP/(molc X · h)
KS 7.5 · 10−5 mol/L
KO 5.5 · 10−7 mol/L
KN 1.3 · 10−3 mol/L
KN,ox 3.3 · 10−3 mol/L
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CHAPTER4
pH Equilibrium

Dynamics
The work presented in this chapter is partially based on the paper listed in Appendix
A. In this chapter, we investigate pH equilibrium dynamics in reactive systems. We
describe general methods of modelling pH equilibrium by minimising Gibbs free en-
ergy and by applying thermodynamic equilibrium constants. Additionally, we present
equilibrium reactions relevant to the modelling of SCP production. In the models for
chemical equilibrium, we consider in this work, we assume that the reaction rates for
the equilibrium reactions are negligible compared to the other time-dependent system
dynamics, i.e. the equilibrium reactions are instantaneous.

The chapter is structured at follows: In section 4.1, we briefly describe chemical
equilibrium dynamics in the context of minimisation of Gibbs free energy. In section
4.2, we introduce the thermodynamic equilibrium constant and describe how this can
be used to compute chemical equilibrium. Section 4.3 presents chemical equilibrium
reactions relevant to the production of SCP. Finally, we summarise the chapter in
section 4.4.

4.1 Gibbs free energy minimisation
In this section, we present computations for chemical equilibria by Gibbs free energy
minimisation. Mole numbers in equilibrium reactions can be determined by minimisa-
tion of Gibbs free energy. Gibbs free energy is a thermochemical property describing
the free enthalpy of a chemical systems at constant pressure and temperature [19, 85].
Consider the general equilibrium reaction

x1X1 + x2X2 + . . . −−⇀↽−− y1Y1 + y2Y2 + . . . , (4.1)

where xi and yi are stoichiometric coefficients and Xi ∈ C and Yi ∈ C are chemical
species in the set of chemical species involved in the chemical equilibrium reaction, C.
We note that we can also express the reaction in the form of the algebraic equation

0 = y1Y1 + y2Y2 + · · · − x1X1 − x2X2 − · · · = ST C, (4.2)
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where S is the stoichiometric matrix and C is a vector of components, i.e. reactants
and products. The reaction is at equilibrium when the Gibbs free energy is minimised,
i.e. when the change in Gibbs free energy is zero. As such, we define the chemical
equilibrium problem

min
n

G(n), (4.3)

subject to

An = b, (4.4a)
n ≥ 0, (4.4b)

where n ∈ Rnc are the mole numbers for the chemical components, G(·) : Rnc −→ R
is the Gibbs free energy of the system, A ∈ Rna×nc is a matrix describing the atomic
composition of the chemical components, and b = An0, where n0 is the initial mole
numbers of the system. We describe the Gibbs free energy of the system of liquid
components as

G(n) = nT g(T, P, λ), λ = n

eT n
, (4.5)

where λ are the mole fraction of the components, e ∈ {1}nc is a vector of ones, g(·) is
the Gibbs free energy for the components, T is the temperature, and P is the pressure.
The component-wise Gibbs free energy is described by the vectorised expression

g(T, P, λ) = g0(T, P ) + RT ln (λ) . (4.6)

We may describe the equilibrium state as the solution to (4.5), i.e. by the 1st order
optimality, KKT, conditions, as

0 = ∇L(n, µ), (4.7a)
0 = An − b, (4.7b)
0 ≤ n, (4.7c)

and solve for the mole numbers n [49]. Standard thermodynamic quantities are de-
scribed in [86, 87]. Notably, we may use the algebraic equations in (4.7) together with
growth and reactor dynamics, to formulate a differential equation model describing
growth and chemical equilibrium in a reactor. Growth models are described in Chap-
ter 3 and chemical reactor models are described in Chapter 2 and in the technical
report listed in Appendix G. Nonlinear systems involving SDAEs are described in
Chapter 6.

4.2 Thermodynamic equilibrium constant
Closely related to the Gibbs free energy minimisation is the thermodynamic equilib-
rium constant, Kr, for a reaction, r. In this section, we describe models of chemical
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equilibrium applying thermodynamic equilibrium constants [19, 85]. Consider the
general equilibrium reaction

x1X1 + x2X2 + . . . −−⇀↽−− y1Y1 + y2Y2 + . . . , Kr, ∆G0
r, r+, r−, (4.8)

where r+ and r− are the forward and backward reaction rates for the equilibrium
reaction. The reaction rates are

r+ = k+
∏

[Xi]xi , (4.9a)

r− = k−
∏

[Yi]yi , (4.9b)

where k+ and k− are kinetics parameters for the forward and backward directions of
the equilibrium reaction, respectively. The reaction is at equilibrium when the change
in Gibbs free energy is zero

0 = ∆Gr (4.10a)
= ∆G0

r(T ) + RT ln (Kr) , (4.10b)

where ∆G0
r(T ) = ∆H0

r − T∆S0
r is the standard Gibbs free energy of the reaction and

∆H0
r and ∆S0

r are the standard enthalpy and entropy of the reaction, respectively
[19]. T is the temperature and R is the ideal gas constant. The equilibrium constant
arises from (4.10), as

0 = ∆G0
r(T ) + RT ln (Kr) ⇐⇒ (4.11a)

ln (Kr) = −∆G0
r(T )

RT
⇐⇒ (4.11b)

Kr = exp
(

−∆G0
r(T )

RT

)
. (4.11c)

At equilibrium, the concentrations of reactants and products satisfy

r+ = r− ⇐⇒ (4.12a)

k+
∏

[Xi]xi = k−
∏

[Yi]yi ⇐⇒ (4.12b)

Kr = k+

k−
=
∏

[Yi]yi∏
[Xi]xi

. (4.12c)

Using (4.12c), we may compute the chemical equilibrium of a reactive system. Con-
sider the general system of N coupled equilibrium reactions

x
(1)
1 X1 + x

(1)
2 X2 + · · · −−⇀↽−− y

(1)
1 Y1 + y

(1)
2 Y2 + · · · , Kr1 , ∆G0

r1
, (4.13a)

x
(2)
1 X1 + x

(2)
2 X2 + · · · −−⇀↽−− y

(2)
1 Y1 + y

(2)
2 Y2 + · · · , Kr2 , ∆G0

r2
, (4.13b)

... (4.13c)

x
(N)
1 X1 + x

(N)
2 X2 + · · · −−⇀↽−− y

(N)
1 Y1 + y

(N)
2 Y2 + · · · , KrN

, ∆G0
rN

. (4.13d)
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Assuming that all reactions reach equilibrium instantaneously, we can compute the
equilibrium concentrations as the solution to the system of nonlinear algebraic equa-
tions

0 =
∏

[Yi]y
(1)
i − Kr1

∏
[Xi]x

(1)
i , (4.14a)

0 =
∏

[Yi]y
(2)
i − Kr2

∏
[Xi]x

(2)
i , (4.14b)

... (4.14c)

0 =
∏

[Yi]y
(N)
i − KrN

∏
[Xi]x

(N)
i , (4.14d)

as well as mass and charge balance equations for the component concentrations, [Xi]
and [Yi] for i ∈ {1, 2, . . . , N}. Similarly to the previous section, we may use (4.14),
mass, and energy balance equations, together with growth and reactor models to
formulate a differential algebraic system describing growth and chemical equilibrium
in a reactor.

4.3 pH equilibrium reactions in single-cell protein
production

In this section, we present acid-base equilibrium reactions in aqueous solution rel-
evant to the production of SCP. In all equilibrium reactions, we assume that the
temperature and pressure are constant. Therefore, the thermodynamic equilibrium
constants will also be considered constant. Furthermore, we assume that all reaction
are instantaneous, i.e. the system is at equilibrium at all times. We note that pH is
computed as

pH = − log10
[
H3O+(aq)

]
(4.15)

4.3.1 Equilibrium reactions
Water

In aqueous solution, we describe the equilibrium of water, hydronium, and hydroxide
by the reaction

2 H2O(aq) −−⇀↽−− H3O+(aq) + OH−(aq), KW , (4.16)

where KW is the equilibrium constant for water. As such, the concentrations of
hydronium and hydroxide satisfies the algebraic expression

KW = [H3O+] [OH−]. (4.17)
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Carbon dioxide

In aqueous solution, we describe the equilibrium of carbon dioxide and carbonic acid
by the reaction

CO2(aq) + H2O(aq) −−⇀↽−− H2CO3(aq), KC,1, (4.18)

where KC,1 is the equilibrium constant for the reaction. As such, the concentrations
of carbon dioxide and carbonic acid satisfies the algebraic expression

KC,1 = [H2CO3]
[CO2]

. (4.19)

We describe the equilibrium of carbonic acid, bicarbonate, and hydronium by the
reaction

H2CO3(aq) + H2O(aq) −−⇀↽−− HCO3
−(aq) + H3O+(aq), KC,2, (4.20)

where KC,2 is the equilibrium constant for the reaction. As such, the concentrations
of carbonic acid, bicarbonate, and hydronium satisfies the algebraic expression

KC,2 = [HCO3
−] [H3O+]

[H2CO3
−]

. (4.21)

We describe the equilibrium of bicarbonate, carbonate, and hydronium by the reaction

HCO3
−(aq) + H2O(aq) −−⇀↽−− CO3

2−(aq) + H3O+(aq), KC,3, (4.22)

where KC,3 is the equilibrium constant for the reaction. As such, the concentrations
of bicarbonate, carbonate, and hydronium satisfies the algebraic expression

KC,3 = [CO3
2−] [H3O+]

[HCO3
−]

. (4.23)

Phosphoric acid

In aqueous solution, we describe the equilibirium of phosphoric acid, dihydrogen
phosphate, and hydronium by the reaction

H3PO4(aq) + H2O(aq) −−⇀↽−− H2PO4
−(aq) + H3O+(aq), KP,1, (4.24)

where KP,1 is the equilibrium constant for the reaction. As such, the concentrations
of phosphoric acid, dihydrogen phosphate, and hydronium satisfies the algebraic ex-
pression

KP,1 = [H2PO4
−] [H3O+]

[H3PO4]
. (4.25)
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We describe the equilibrium of dihydrogen phosphate, hydrogen phosphate, and hy-
dronium by the reaction

H2PO4
−(aq) + H2O(aq) −−⇀↽−− HPO4

2−(aq) + H3O+(aq), KP,2, (4.26)
where KP,2 is the equilibrium constant for the reaction. As such, the concentrations
of dihydrogen phosphate, hydrogen phosphate, and hydronium satisfies the algebraic
expression

KP,2 = [HPO4
2−] [H3O+]

[H2PO4
−]

. (4.27)

We describe the equilibrium of hydrogen phosphate, phosphate, and hydronium by
the reaction

HPO4
2−(aq) + H2O(aq) −−⇀↽−− PO4

3−(aq) + H3O+(aq), KP,3, (4.28)
where KP,3 is the equilibrium constant for the reaction. As such, the concentrations
of hydrogen phosphate, phosphate, and hydronium satisfies the algebraic expression

KP,3 = [PO4
3−] [H3O+]

[HPO4
2−]

. (4.29)

Ammonia

In aqueous solution, we describe the equilibrium of ammonia, ammoinium, and hy-
droxide by the reaction

NH3(aq) + H2O(aq) −−⇀↽−− NH4
+(aq) + OH−(aq), KN , (4.30)

where KN is the equilibrium constant for the reaction. As such, the concentrations
of ammonia, ammonium, and hydroxide satisfies the algebraic expression

KN = [NH4
+] [H3O+]
[NH3]

. (4.31)

Nitric acid

Nitric acid is a strong acid, and we therefore assume that nitric acid in aqueous
solution completely dissolves into nitrate and hydronium. The reaction describing
the dissolution of nitric acid is

HNO3(aq) + H2O(aq) −−→ NO3
−(aq) + H3O+(aq). (4.32)

Sodium hydroxide

Sodium hydroxide is a strong base, and we therefore assume that sodium hydroxide
in aqueous solution completely dissolves into sodium and hydroxide. The reaction
describing the dissolution of sodium hydroxide is

NaOH(aq) −−→ Na+(aq) + OH−(aq). (4.33)
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4.3.2 Mass and energy balances
Mass balances

We consider the sets of molecules relating to carbon dioxide, phosphoric acid, and
ammonia, as

CC = {CO2(aq), H2CO3(aq), HCO3
−(aq), CO3

2−(aq)}, (4.34a)
CP = {H3PO4(aq), H2PO4

−(aq), HPO4
2−(aq), PO4

3−(aq)}, (4.34b)
CNH = {NH3(aq), NH4

+(aq)}, (4.34c)

respectively. We note that, for strong acids and bases, the reactions are complete, and
therefore the concentration of the ions are equal to the total concentration. Therefore,
we do not describe mass balances for complete reactions. We define the mass balances
in terms of the known total concentrations equal, as

ci =
∑
j∈Ci

cj , i ∈ {C, P, NH}, (4.35)

where cj = [j] is the concentration of component j. We describe the mass balances
for carbon dioxide, phosphoric acid, and ammonia, as

0 = cC −
(
[CO2(aq)] + [H2CO3(aq)] +

[
HCO3

−(aq)
]

+
[
CO3

2−(aq)
])

, (4.36a)
0 = cP −

(
[H3PO4(aq)] +

[
H2PO4

−(aq)
]

+
[
HPO4

2−(aq)
]

+
[
PO4

3−(aq)
])

,
(4.36b)

0 = cNH −
(
[NH3(aq)] +

[
NH4

+(aq)
])

. (4.36c)

Charge balance

We define the general charge balance equation

0 =
∑
i∈P

αici −
∑
i∈N

αici, (4.37)

where P is the set of positively charged ions with charge numbers αi for i ∈ P and N
is the set of negatively charged ions with charge numbers αi for i ∈ N . We describe
the charge balances for the chemical equilibrium reactions, as

0 =
[
H3O+(aq)

]
+
[
NH4

+(aq)
]

+
[
Na+(aq)

]
−
([

OH−(aq)
]
] +
[
HCO3

−(aq)
]

+ 2
[
CO3

2−(aq)
]

+
[
H2PO4

−(aq)
]

+ 2
[
HPO4

2−(aq)
]

+ 3
[
PO4

3−(aq)
]

+
[
NO3

−(aq)
])

.

(4.38)

This results in a system of 8 equilibrium equations, 3 mass balance equations, and 1
charge balance equation, i.e. 12 algebraic equations with 12 algebraic variables.
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4.4 Summary
In this chapter, we presented models for calculation of equilibrium in chemical equilib-
rium reactions. We briefly described chemical equilibrium by minimisation of Gibbs
free energy of a system. Motivated by Gibbs free energy minimisation, we introduced
the thermodynamic equilibrium constant and relate it to Gibbs free energy minimi-
sation. We described chemical equilibrium calculations based on thermodynamic
equilibrium constants, as well as mass and charge balances. Finally, we described
equilibrium reaction related to single-cell protein production. We described water in
equilibrium with hydronium and hydroxide, as well as equilibrium reactions relating
to carbon dioxide, phosphoric acid, and ammonia. We also described strong acid
and base reactions for sodium hydroxide and nitric acid. We presented mass and
charge balances for these equilibrium reactions, resulting in an algebraic systems of 8
equilibrium equations, 3 mass balance equations, and 1 charge balance equation, for
a total for 12 algebraic equations solved for concentrations of algebraic components
at chemical equilibrium.



CHAPTER5
Systems Involving

Stochastic Differential
Equations

In this chapter, we present SDEs and describe methods for computing numerical
solutions to such systems, i.e. numerical integration schemes. We present the explicit-
explicit Euler-Maruyama method for numerical integration of systems with non-stiff
dynamics and an implicit-explicit method for numerical integration of systems with
stiff dynamics. We present Newton’s method for application in the implicit-explicit
numerical SDE solver. In this chapter, we consider SDE models in the form

dx(t) = f(x(t), u(t), θ)dt + σ(x(t), u(t), θ)dω(t), x(t0) = x0, (5.1)

where x(t) ∈ Rnx are state variables, u(t) ∈ Rnu are manipulated variables, ω(t) ∈
Rnω is a standard Wiener process, i.e. dω ∼ N (0, Idt), and θ are parameters.
f(·) : (x(t), u(t), θ) −→ Rnx are the drift state dynamics and σ(·) : (x(t), u(t), θ) −→
Rnx×nω are the state diffusion dynamics.

The chapter is structured as follows: in section 5.1, we describe the explicit-
explicit Euler-Maruyama scheme for numerical integration of SDEs with non-stiff
dynamics. In section 5.2, we describe an implicit-explicit scheme for numerical in-
tegration of SDEs with stiff dynamics. Section 5.3 presents Newton’s method for
iterative root-finding as it relates to solution of the residual equations arising from
the implicit-explicit integration scheme presented in the previous section. We also dis-
cuss non-negativity constraints in the context of Newton’s method. Finally, section
5.4 summarises the work presented in the chapter.

5.1 Explicit-explicit Euler-Maruyama method
In this section, we describe the explicit-explicit Euler-Maruyama method for numeri-
cal integration of SDEs. The Euler-Maruyama scheme is an extension of the explicit
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Euler (forward Euler) method for numerical integration of ODEs to stochastic sys-
tems [88]. Consider the solution to (7.1) over the interval t ∈ [tk, tk+1] on integral
form

x(tk+1) = x(tk) +
∫ tk+1

tk

f(x(s), u(s), θ)ds +
∫ tk+1

tk

σ(x(s), u(s), θ)dω(s), (5.2)

where the stochastic integral is an Ito integral [51]. The explicit-explicit Euler-
Maruyama method defines the solution at time t = tk+1 as the series of numerical
integrations applying the right rectangular rule at discrete times tk,n = tk + n∆tk,n

xk,n+1 = xk,n + f(xk,n, uk,n, θ)∆tk,n + σ(xk,nuk,n, θ)∆ωk,n, (5.3)

for n ∈ {0, 1, . . . , N −1}. We consider the definition the state variables xk,n = x(tk,n),
the inputs variables uk,n = u(tk,n) = uk for zero-order hold within the interval
t ∈ [tk, tk+1], and the process noise ∆ωk,n = zk,n

√
∆tk,n for zk,n ∼ N (0, 1) [89].

The initial state, xk,0 = x(tk,0), is assumed known. We note that for this numerical
integration scheme, we may explicitly compute the solution xk,N = x(tk+1).

5.2 Implicit-explicit method
In this section, we describe an implicit-explicit method for numerical integration of
SDEs. Consider the solution to (7.1) over the interval t ∈ [tk, tk+1] on integral form

x(tk+1) = x(tk) +
∫ tk+1

tk

f(x(s), u(s), θ)ds +
∫ tk+1

tk

σ(x(s), u(s), θ)dω(s). (5.4)

For the implicit-explicit method, we define the solution at time t = tk+1 as the series
of solutions at discrete times tk,n = tk + n∆tk,n

xk,n+1 = xk,n + f(xk,n+1, uk,n, θ)∆tk,n + σ(xk,n, uk,n, θ)∆ωk,n, (5.5)

for n ∈ {0, 1, . . . , N − 1}. We note, that as the name suggests, we cannot explicitly
describe the solutions at each time-step for systems with nonlinear state dynamics.
Instead, we define the solution at the next time-step implicitly as the roots of the
residual arising from (5.5), i.e. solutions satisfying

R(xk,n+1) = 0 (5.6a)
= xk,n+1 − xk,n − f(xk,n+1, uk,n, θ)∆tk,n − σ(xk,n, uk,n, θ)∆ωk,n. (5.6b)

The numerical solutions to the SDE, xk+1 = xk,N , arise as roots in the residual in
(5.6). We may compute roots iteratively by application of a root-finding algorithm,
e.g. Newton’s method. Newton’s method requires computation of the Jacobian of the
residual function. We compute the Jacobian of the residual function in (5.6), R(x),
as

∂R

∂x
(xk,n+1) = I − ∂f

∂x
(xk,n+1, uk,n, θ)∆tk,n. (5.7)



5.3 Newton’s method 59

5.3 Newton’s method
In this section, we describe Newton’s method (also called Newton-Raphson’s method).
Newton’s method is an algorithm for iteratively finding roots in a function. The
method is ubiquitous in numerical techniques, e.g. optimisation and simulation [49,
90, 91]. Consider the nonlinear function R(x) : Rnx −→ Rnx . Consider the problem
of finding roots for the function, R(x), i.e. values of x satisfying

0 = R(x). (5.8)

We apply Newton’s method to find a value of x which satisfy (5.8), by iteratively
solving

xn+1 = xn −
(

∂R

∂x
(xn)

)−1

R(xn), n ∈ {0, 1, . . . }, (5.9)

until the residual function defined in (5.6) converges to a desired tolerance, i.e.
R(xn) < ϵ. In cases where the Jacobian of the residual is singular, i.e. ∂R

∂x

−1 does
not exist, we apply the pseudo-inverse, ∂R

∂x

†, [92].

5.3.1 Non-negative roots
For some states representing physical quantities, the state variables have non-negativity
constraints, i.e. only non-negative states correspond to physically feasible solutions.
This applies, for instance, to chemical or biochemical systems, where the states repre-
sent mole number, concentrations, number of cells, or volumes in the reactor. There-
fore, enforcement of such non-negativity constraints is highly relevant in the context
of SCP production, and therefore the work presented in this thesis. We propose two
methods of enforcing non-negativity constraints in Newton’s method; 1) bounding
the solution to be non-negative in each iteration and 2) taking the absolute value
of the solution in each iteration. The methods proposed here do not maintain the
convergence properties of Newton’s method, but show good properties in practice
[93].

Bounded Newton

In the so-called bounded Newton, we compute the n’th iteration of Newton’s method
and bound the solution to the step by a small value, as

xn+1 = max

{
xn −

(
∂R

∂x
(xn)

)−1

R(xn), ϵ

}
, (5.10)

where ϵ is a small value close to zero or zero.
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Absolute Newton

In so-called absolute Newton, we compute the n’th iteration of Newton’s method and
take the absolute value of the solution, as

xn+1 = abs
{

xn −
(

∂R

∂x
(xn)

)−1

R(xn)

}
. (5.11)

5.4 Summary
In this chapter, we presented methods for numerical integration of SDEs. We pre-
sented the explicit-explicit Euler-Maruyama method and an implicit-explicit method
for numerical integration of SDEs. For the explicit-explicit Euler-Maruyama method,
the numerical solution to the state at the next time-step is defined explicitly in terms
of the states at the previous time-step. For the implicit-explicit method, we defineed
the solution to the state at the next time-step implicitly, as roots in a residual func-
tion, in terms of the state at the previous time-step. To compute roots in the residual
function, we presented Newton’s method for iterative root-finding. Finally, we pre-
sented two methods of introducing non-negativity constraints in the step computation
of Newton’s method. This is relevant for chemical and biochemical systems, where the
state variables represent physical states which cannot be negative, e.g. concentrations
or volumes.



CHAPTER6
Systems Involving

Stochastic Differential
Algebraic Equation

This chapter is partially based on the work presented in the paper listed in Appendix
A. In this chapter, we present SDAEs and describe methods for numerical integration
of such systems. We present an implicit-explicit numerical integration scheme for
systems with stiff (and non-stiff) state and algebraic dynamics. Finally, we describe
how differential algebraic systems may lead to ill-conditioning in the Jacobian which
may cause Newton’s method to diverge. We address this issue of ill-conditioning by
introducing linear scaling of the algebraic function and variables. In this chapter, we
consider SDAEs in the form

dx(t) = f(x(t), y(t), u(t), θ)dt + σ(x(t), y(t), u(t), θ)dω(t), x(t0) = x0, (6.1a)
0 = g(x(t), y(t), θ), (6.1b)

where f(·) : (x(t), y(t), u(t), θ) −→ Rnx is the drift function, σ(·) : (x(t), y(t), u(t), θ) −→
Rnx×nω is the diffusion function, and g(·) : (x(t), y(t), θ) −→ Rny is the algebraic func-
tion. The variable t is time, x(t) ∈ Rnx are states, y(t) ∈ Rny are algebraic variables,
u(t) ∈ Rnu are inputs, and θ are parameters. The process noise ω(t) ∈ Rnω is a
standard Weiner process, i.e. dω(t) ∼ N (0, Idt).

The chapter is structured as follows: in section 6.1, we present an implicit explicit
numerical integration scheme for solution of SDAEs. We present an implicit definition
of the solution at the next time-step and apply Newton’s method to solve the resulting
root-finding problem. Ill-conditioning in the Jacobian of the residual may lead to
divergence in Newton’s method. In section 6.2, we introduce a linear scaling of the
algebraic function and variables to address the problem of ill-conditioning. Finally,
we summarise the chapter in section 6.3
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6.1 Implicit-explicit method
In this section, we present an extension of the implicit-explicit numerical integration
scheme presented in Chapter 5 to SDAEs in the form presented in (6.1). Consider
the solution to (6.1) for t ∈ [tk, tk+1] on integral form

x(tk+1) = x(tk) +
∫ tk+1

tk

f(x(s), y(s), u(s), θ)ds

+
∫ tk+1

tk

σ(x(s), y(s), u(s), θ)dω(s),
(6.2)

where the state and algebraic variables satisfy the implicit relationship defined by

0 = g(x(t), y(t), θ), t ∈ [tk, tk+1]. (6.3)

The implicit-explicit method defines the solution at time t = tk+1 as the series of
solutions at discrete times tk,n = tk + n∆tk,n

xk,n+1 = xk,n + f(xk,n+1, yk,n+1, uk,n, θ)∆tk,n + σ(xk,n, yk,n, uk,n, θ)∆ωk,n, (6.4a)
0 = g(xk,n+1, yk,n+1, θ), (6.4b)

for n ∈ {0, 1, . . . , N − 1}. The states xk,n = x(tk,n), the algebraic variables yk,n =
y(tk,n), the inputs uk,n = u(tk,n) = uk for zero-order hold within the interval t ∈
[tk, tk+1], and ∆ωk,n = zk,n

√
∆tk,n for zk,n ∼ N (0, 1) [89]. The initial state xk,0 =

x(tk,0) is assumed known. We compute the solution to each iteration defined by (6.4)
by applying Newton’s method, as presented in 5.3, to the residual

0 = R(zk,n+1). (6.5)

We define the residual function

R(zk,n+1) =
[
xk,n+1 − xk,n − fk,n+1∆tk,n − σk,n∆ωk,n

gk,n+1

]
. (6.6)

The functions are

fk,i = f(xk,i, yk,i, uk,i−1, θ), (6.7a)
σk,i = σ(xk,i, yk,i, uk,i, θ), (6.7b)
gk,i = g(xk,i, yk,i, θ). (6.7c)

The variables are

zk,i =
[
xk,i

yk,i

]
. (6.8)
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The Jacobian of the residual in (6.6) is

∂R

∂z
(zk,n+1) =

[
I − ∂fk,n+1

∂x ∆tk,n − ∂fk,n+1
∂y ∆tk,n

∂gk,n+1
∂x

∂gk,n+1
∂y

]
, (6.9)

where

∂fk,n+1

∂x
= ∂f

∂x
(xk,n+1, yk,n+1, uk,n, θ), (6.10a)

∂fk,n+1

∂y
= ∂f

∂y
(xk,n+1, yk,n+1, uk,n, θ), (6.10b)

∂gk,n+1

∂x
= ∂g

∂x
(xk,n+1, yk,n+1, θ), (6.10c)

∂gk,n+1

∂y
= ∂g

∂y
(xk,n+1, yk,n+1, θ). (6.10d)

6.2 On ill-conditioning of the Jacobian
In this section, we present a method for linear scaling of the algebraic function and
linear parametrisation of the algebraic variables to arrive at a more well-conditioned
system for numerical integration of system in the form (6.1). In the context of chemi-
cal equilibrium reactions, but also more widely, the algebraic equations may introduce
large variations in the magnitude of the state and algebraic variables, and between
individual algebraic variables and equations. Such differences in scale can lead to
ill-conditioning in the Jacobian presented in (6.9). This ill-conditioning can in turn
lead to divergence in the Newton iterations. To address this issue, we present a linear
scaling of the algebraic function and linear parametrisation of the algebraic variables
[93]. Consider the algebraic equations from (6.1)

0 = g(x(t), y(t), θ). (6.11)

We introduce the linear parametrisation of the algebraic variables,

y(t) = Syȳ(t), (6.12)

and define the scaled algebraic function,

ḡ(x(t), y(t), θ) = Sgg(x(t), Syȳ(t), θ), (6.13)
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where Sg ∈ Rng×ng and Sy ∈ Rny×ny are diagonal scaling matrices, such that

Sg = diag (sg) =


sg,1

sg,2
. . .

sg,ng

 , (6.14a)

Sy = diag (sy) =


sy,1

sy,2
. . .

sy,ny

 . (6.14b)

We note that the scaled algebraic function in (6.13) and the algebraic function with
no scaling in (6.1) share the same roots, as

0 = g(x∗, y∗, θ) =⇒ 0 = Sgg(x∗, y∗, θ), (6.15)
and given that y∗ = Sy ȳ∗. The scaling introduced in (6.13) scales the algebraic
equations, but it also scales the Jacobians of the algebraic function, as

∂ḡ

∂x
= ∂ḡ

∂g

∂g

∂x
(6.16a)

= Sg
∂g

∂x
, (6.16b)

∂ḡ

∂ȳ
= ∂ḡ

∂g

∂g

∂y

∂y

∂ȳ
(6.16c)

= Sg
∂g

∂y
Sy, (6.16d)

and the Jacobian of the state drift function, as
∂f

∂y
= ∂f

∂y

∂y

∂ȳ
= ∂f

∂y
Sy. (6.17)

We introduce the linear scaling and parametrisation defined in (6.16) and (6.17) and
define the scaled residual

R̄(zk,n+1) =
[
xk,n+1 − xk,n − fk,n+1∆tk,n − σk,n∆ωk,n

ḡk,n+1

]
(6.18a)

=
[
xk,n+1 − xk,n − fk,n+1∆tk,n − σk,n∆ωk,n

Sggk,n+1

]
. (6.18b)

and residual Jacobian
∂R̄

∂z
(zk,n+1) =

[
I − ∂fk,n+1

∂x ∆tk,n − ∂fk,n+1
∂ȳ ∆tk,n

∂ḡk,n+1
∂x

∂ḡk,n+1
∂ȳ

]
(6.19a)

=

[
I − ∂fk,n+1

∂x ∆tk,n − ∂fk,n+1
∂y Sy∆tk,n

Sg
∂gk,n+1

∂x Sg
∂gk,n+1

∂y Sy

]
. (6.19b)
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Appropriate choice of scaling parameters, sg and sy, improves conditioning in the
residual Jacobian.

6.3 Summary
In this chapter, we presented methods for numerical integration of SDAEs. We pre-
sented an implicit-explicit numerical integration scheme for systems of SDAEs. This
integration scheme implicitly defines the solutions to the state and algebraic variables
in the next time-step as roots in a residual function. We applied Newton’s method
to iteratively find roots in the residual function. The algebraic variables can result in
ill-conditioning in the Jacobian of the residual, which may cause Newton’s method
to diverge. To address this, we introduced a linear scaling for the algebraic function
and linear parametrisation of the algebraic variables to improve conditioning in the
Jacobian.
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CHAPTER7
State Estimation for
Nonlinear Systems

involving Stochastic
Differential Equations

The work presented in this chapter is based on the publication listed in Appendix
B. In this chapter, we present methods for state estimation in continuous-discrete
nonlinear systems involving SDEs. We consider SDE models in the form

dx(t) = f(x(t), u(t), θ)dt + σ(x(t), u(t), θ)dω(t), x(t0) = x0, (7.1a)
ym(tk) = hm(x(tk), θ) + v(tk, θ), (7.1b)

where x(t) are state variables, u(t) are manipulated variables, ym(tk) are measure-
ment variables, and θ are model parameters. The process noise, ω(t), is a standard
Wiener process, i.e. dω(t) ∼ N (0, Idt) and v(tk, θ) ∼ N (0, R(θ)) is normally dis-
tributed measurement noise.

The objective of state estimation is to use noisy observations from a physical sys-
tem to infer states in the system which are not, or cannot, be measured directly. State
estimation is widely applied in industry for process monitoring [94], fault-detection
[95–97], and advanced process control [98, 99]. Methods for state estimation can
be separated into optimisation-based methods, e.g. least-squares and moving hori-
zon estimation as described by [100], and methods based on statistical inference, i.e.
Bayesian approaches such as Kalman filters as originally described in [41, 42]. In
this work, we consider Bayesian approaches. A significant advantage of statistical
methods is that they provide estimates of both the first and second (and sometimes
more) moments of a system, thus describing both the expected state of the system, as
well as a measure of the uncertainty of that estimate. We separate the methods into
two steps; the time update and measurement update. In the time update, we apply
the knowledge of the state dynamics to propagate the estimate of the state forward
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in time, including the uncertainty, i.e. prediction. In the measurement update, we
take observations of the physical systems and apply statistical inference to update the
state estimate, i.e. filtering. We consider four state estimation methods for systems in
the form (7.1); the continuous-discrete extended Kalman filter (CD-EKF), unscented
Kalman filter (CD-UKF), ensemble Kalman filter (CD-EnKF), and a particle filter
(CD-PF). As mentioned above, the methods are separated into two steps; the time
and measurement updates. In the time update, at time tk, we compute predicted
estimates of state expectation and covariance at time tk+1, i.e. x̂k+1|k and Pk+1|k, re-
spectively. In the measurement update, we obtain a measurement from the system at
time tk, yk, and apply it to update the estimates of state expectation and covariance,
i.e. compute the filtered estimates of state mean and covariance x̂k|k and Pk|k.

This chapter is structured as follows: in section 7.1, we present the CD-EKF which
directly extends the update from the linear Kalman filter to a local linearisation of
a nonlinear system. In section 7.2, we present the CD-UKF which approximates the
nonlinear state and measurement distributions with a set of deterministically sam-
pled particles. Section 7.3 presents the CD-EnKF, which approximates the nonlinear
state and measurement distributions with a set of randomly sampled particles and
apply the Kalman update to each particle. In section 7.4, we present a CD-PF which
approximates the nonlinear state and measurement distributions with a set of ran-
domly sampled particles and applies likelihood resampling to filter the set. Section
7.5 presents a discussion of the four different state estimation algorithms presented
in the chapter. Finally, section 7.6 summarises the work presented in the chapter.

7.1 Continuous-discrete extended Kalman filter
In this section, we consider the CD-EKF for systems in the form (7.1). As mentioned
previously, the CD-EKF is a state estimation algorithm which directly extends the
update equations of the linear Kalman filter [41]. Specifically, the CD-EKF applies the
prediction and filtering strategies for the linear Kalman filter on a local linearisation
of the nonlinear state and measurement dynamics. In this section, we describe the
initialisation of the CD-EKF, as well as time and measurement update. Figure 7.1
illustrates the update strategy for the CD-EKF.

7.1.1 Initialisation
We initialise the CD-EKF with the initial guesses for the state mean and covariance

x̂0|0 ∈ Rnx , P0|0 ∈ Rnx×nx . (7.2)

The initialisation of the CD-EKF is a measure of the prior knowledge of the system
and it is of crucial importance to the performance of the state estimator. For instance,
if the true state of the system is very unlikely in the initial distribution to the esti-
mator, the filter may trust model predictions to a too large extend and not converge
- even if the assumption of local linearity holds [51, 101].



7.1 Continuous-discrete extended Kalman filter 71

Figure 7.1: Illustration of the update for the extended Kalman filter. The true non-
linear distribution, green underlying to the left, is characterised by it’s
first two moments, i.e. mean and covariance. The state estimates of
mean and covariance are computed by applying the Kalman filter up-
date to a local linearisation of the nonlinear system. The true nonlinear
distribution, green underlying to the right, is approximated by the first
two moments propagated under the assumption of local linearity.

7.1.2 Time update
In the time update, we compute the one-step predictions of the state mean and co-
variance. We compute the predicted state estimate as the solution to the expectation
of the stochastic state dynamics, i.e. an ODE because (7.1) is a martingale, for
t ∈ [tk, tk+1], as

dx̂k

dt
(t) = f(x̂k(t), u(t), θ), x̂k(tk) = x̂k|k, (7.3a)

dPk

dt
(t) = Ak(t)Pk(t) + Pk(t)AT

k (t) + σk(t)σT
k (t), Pk(tk) = Pk|k, (7.3b)

where

Ak(t) = ∂f

∂x
(x̂k(t), u(t), θ), σk(t) = σ(x̂k(t), u(t), θ). (7.4)

The predicted state mean and covariance estimates are the solutions to (7.3) at time
t = tk+1

x̂k+1|k = x̂k(tk+1), Pk+1|k = Pk(tk+1). (7.5)

Alternatively, we may compute the predicted state covariance estimate by the integral
expression [102]. We compute the predicted state covariance estimate as the solution
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at time t = tk+1 of the integral expression

Pk(t) = Φxx(t, tk)Pk(tk)ΦT
xx(t, tk) +

∫ t

tk

Φxx(t, s)σk(s)σT
k (s)ΦT

xx(t, s)ds, (7.6)

where the sensitivities are
dΦxx(t, s)

dt
= Ak(t)Φxx(t, s), Φxx(s, s) = I. (7.7)

7.1.3 Measurement update
In the measurement update, we apply the filtering strategy in the linear Kalman filter
on a local linearisation of the nonlinear system. We compute the innovation and its
covariance, as

ek = ym
k − ŷm

k|k−1, (7.8a)
Re,k = CkPk|k−1CT

k + R, (7.8b)

where ym
k is a measurement taken at time tk and

ŷm
k|k−1 = hm(x̂k|k−1, θ), (7.9a)

Ck = ∂hm

∂x
(x̂k|k−1, θ). (7.9b)

We compute the Kalman gain,

Kfx,k = Pk|k−1CT
k R−1

e,k, (7.10)

and we compute the filtered state mean and covariance estimates,

x̂k|k = x̂k|k−1 + Kfx,kek, (7.11a)
Pk|k = Pk|k−1 − Kfx,kRe,kKT

fx,k, (7.11b)
= (I − Kfx,kCk) Pk|k−1 (I − Kfx,kCk)T + Kfx,kRKT

fx,k, (7.11c)

where (7.11c), so-called Joseph stabilising form, is for numerically stability.

7.2 Continuous-discrete unscented Kalman filter
In this section, we present CD-UKF for systems in the form (7.1). As mentioned
previously, the CD-UKF is a particle filter in which a set of deterministically sam-
pled particles, so-called sigma-points, represent the nonlinear state and measurement
distributions. The filter applies a so-called unscented transformation [55]. In the time
update, the sigma-points are propagated through the nonlinear system dynamics and
the predicted state mean and covariance estimates are computed statistically from
the sigma-points. In the measurement update, we apply the Kalman filter update
to the sigma-points. We computed the filtered state mean and covariance estimates
statistically from the filtered sigma-points. Figure 7.2 illustrates the CD-UKF.
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Figure 7.2: Illustration of the update for the unscented Kalman filter. The true non-
linear distribution, green underlying to the left, is characterised by it’s
first two moments, i.e. mean and covariance, and described by a set of
particles (sigma-points) deterministically drawn from the distribution
(unscented transformation). The particles are propagated through the
nonlinear state dynamics. The true nonlinear distribution, green un-
derlying to the right, is characterised by the approximations of the ex-
pectation and covariance determined statistically from the propagated
particles.

7.2.1 Initialisation
We initialise the CD-UKF with the initial guesses for the state mean and covariance

x̂0|0 ∈ Rnx , P0|0 ∈ Rnx×nx . (7.12)

The initialisation of the CD-UKF is a measure of the prior knowledge of the system
and it is therefore of crucial importance to the performance of the state estimator.
The initial value of the covariance matrix in large part determines the spread of the
sampled sigma-points. Consequently, the covariance also influences the quality of
the state estimates by influencing both the bias in the initial approximation of the
distribution, i.e. the sigma-points, as well as the emphasis given to observations in
the measurement update.

7.2.2 Time update
In the time update, we compute the parameters

c̄ = α2 (n̄ + κ) , (7.13a)
λ̄ = α2 (n̄ + κ) − n̄, (7.13b)
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where α ∈ ]0, 1] and κ ∈ [0, ∞[ are tuning parameters describing the spread and bias
in the sampling of the sigma-points, and n̄ = nx + nω. We compute the weights
associated with the sigma-point distribution

W̄ (0)
m = λ̄

n̄ + λ̄
, (7.14a)

W̄ (0)
c = λ̄

n̄ + λ̄
+ 1 − α2 + β, (7.14b)

W̄ (i)
m = W̄ (i)

c = 1
2
(
n̄ + λ̄

) , (7.14c)

for i ∈ {1, 2, . . . , 2n̄}, and where β ∈ [0, ∞[ is a tuning parameter associated with the
state distribution (β = 2 is optimal for a Gaussian distribution). We deterministically
sample a set of 2n̄ + 1 sigma-points from the state distribution. The sigma-points are
separated into two sets. We define the set of 2nx + 1 sigma-points

x̂
(0)
k|k = x̂k|k, (7.15a)

x̂
(i)
k|k = x̂k|k +

√
c̄
(√

Pk|k

)
i
, (7.15b)

x̂
(nx+i)
k|k = x̂k|k −

√
c̄
(√

Pk|k

)
i
, (7.15c)

for i ∈ {1, 2, . . . , nx} and denote them the deterministic set. In (7.15),
(√

Pk|k
)

i
denotes the i’th column in the Cholesky decomposition of the covariance matrix, Pk|k.
Alternatively, we can compute the sigma-points in the directions of the eigenvectors
[103]. Furthermore, we define the set of 2nω sigma-points

x̂
(2nx+i)
k|k = x̂k|k, (7.16)

for i ∈ {1, 2, . . . , 2nω} and denote them the stochastic set. Additionally, we compute
the process noise

dω
(2nx+i)
k (t) =

√
c̄ dt (I)i , (7.17a)

dω
(2nx+nω+i)
k (t) = −

√
c̄ dt (I)i , (7.17b)

where i ∈ {1, 2, . . . , nω} and (I)i denotes the i’th column of an identity matrix of size
nω×nω. We propagate the deterministic set of sigma-points through the deterministic
dynamics for t ∈ [tk, tk+1] and compute the predictions as the solution to

dx̂
(i)
k (t) = f(x̂(i)

k , u(t), θ)dt, x̂
(i)
k (tk) = x̂

(i)
k|k, (7.18)

for i ∈ {0, 1, . . . , 2nx}. We propagate the stochastic set of sigma-points through the
stochastic dynamics for t ∈ [tk, tk+1] and compute the predictions as the solution to

x̂
(2nx+i)
k (tk) = x̂

(2nx+i)
k|k , (7.19a)

dx̂
(2nx+i)
k (t) = f(x̂(2nx+i)

k (t), u(t), θ)dt + σ(x̂(2nx+i)
k (t), u(t), θ)dω

(2nx+i)
k (t), (7.19b)
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for i ∈ {1, 2, . . . , 2nω}. Solving the initial value problems (7.18) and (7.19), we arrive
at the predicted sigma-points

x̂
(i)
k+1|k = x̂

(i)
k (tk+1), i ∈ {1, 2, . . . , 2n̄}. (7.20)

The predicted state mean and covariance estimates are computed statistically from
the predicted sigma-points as

x̂k+1|k =
2n̄∑

i=0
W̄ (i)

m x̂
(i)
k+1|k, (7.21a)

Pk+1|k =
2n̄∑

i=0
W̄ (i)

c

(
x̂

(i)
k+1|k − x̂k+1|k

)(
x̂

(i)
k+1|k − x̂k+1|k

)T

. (7.21b)

7.2.3 Measurement update
In the measurement update, we compute a set of sigma-points which we propagate
through the measurement dynamics. We apply the Kalman filter update to each
sigma-point and compute the state estimate statistically from the propagated parti-
cles. We compute the parameters

c = α2 (nx + κ) , (7.22a)
λ = α2 (nx + κ) − nx, (7.22b)

and we compute the weights associated with the sigma-points

W (0)
m = λ

nx + λ
, (7.23a)

W (0)
c = λ

nx + λ
+ 1 − α2 + β, (7.23b)

W (i)
m = W (i)

c = 1
2 (nx + λ)

, (7.23c)

for i ∈ {1, 2, . . . , 2nx}. We compute a set of 2nx + 1 sigma-points

x̂
(0)
k|k−1 = x̂k|k−1, (7.24a)

x̂
(i)
k|k−1 = x̂k|k−1 +

√
c
(√

Pk|k−1

)
i
, (7.24b)

x̂
(nx+i)
k|k−1 = x̂k|k−1 −

√
c
(√

Pk|k−1

)
i
, (7.24c)

for i ∈ {1, 2, . . . , nx}. Similar to the time update, we may alternatively computed the
sigma-points in the directions of the eigenvectors [103]. We compute the innovation
as

ek = ym
k − ŷm

k|k−1, (7.25)
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where ym
k is a measurement taken at time tk and

ŷm
k|k−1 = ẑm

k|k−1 =
2nx∑
i=0

W (i)
m ẑ

m,(i)
k|k−1, ẑ

m,(i)
k|k−1 = hm(x̂(i)

k|k−1, θ). (7.26)

We compute the covariance and cross-covariance information from the sigma-points

Rzz,k|k−1 =
2nx∑
i=0

W (i)
c

(
ẑ

m,(i)
k|k−1 − ẑm

k|k−1

)(
ẑ

m,(i)
k|k−1 − ẑm

k|k−1

)T

, (7.27a)

Re,k = Ryy,k|k−1 = Rzz,k|k−1 + R, (7.27b)

Rxy,k|k−1 =
2nx∑
i=0

W (i)
c

(
x̂

(i)
k|k−1 − x̂k|k−1

)(
ẑ

m,(i)
k|k−1 − ẑm

k|k−1

)T

, (7.27c)

and we compute the Kalman gain as

Kfx,k = Rxy,k|k−1R−1
e,k. (7.28)

The filtered mean and covariance estimates are computed as

x̂k|k = x̂k|k−1 + Kfx,kek, (7.29a)
Pk|k = Pk|k−1 − Kfx,kRe,kKT

fx,k. (7.29b)

Similarly to the CD-EKF, square-root variations of the CD-UKF have been formu-
lated to improve numerical stability [104].

7.3 Continuous-discrete ensemble Kalman filter
In this section, we present the CD-EnKF for systems in the form (7.1). As men-
tioned previously, the CD-EnKF is a particle filter which approximates the nonlinear
state and measurement distributions with a set of randomly sampled particles, the
so-called ensemble. In the time-update, we propagate each particle in the ensemble
through the stochastic state dynamics. We compute the state estimates statistically
from the predicted ensemble. In the measurement update, a measurement ensemble
is computed by propagating the state ensemble through the nonlinear measurement
dynamics. For each particle, we draw a measurement from a measurement distri-
bution defined from a system measurement. We update each particle in the state
ensemble by applying the Kalman filter equations to pairs predicted measurements
from the ensemble and sampled measurement. We compute the filtered state estimate
statistically from the filtered state ensemble.
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Figure 7.3: Illustration of the update for the ensemble Kalman filter. The true non-
linear distribution, green underlying to the left, is characterised by it’s
first two moments, i.e. mean and covariance, and described by a set of
particles randomly sampled from the prior distribution (or approxima-
tion). The particles are propagated through the nonlinear state dynam-
ics. The true nonlinear distribution, green underlying to the right, is
characterised by the approximations of the expectation and covariance
determined statistically from the propagated particles..

7.3.1 Initialisation
We initialise the CD-EnKF by randomly sampling a set of particles, the ensemble,
from the prior state distribution, i.e. the initial distribution. We denote the initial
ensemble

{x̂
(i)
0|0}Np

i=1. (7.30)

The initial state distribution serves as the initial guess for the CD-EnKF since the
true nonlinear state distribution is usually unknown. A Gaussian distribution with
guesses on mean and covariance, similar to the CD-EKF and CD-UKF, may serve as
an initial guess to sample from.

7.3.2 Time update
In the time update, we propagate each particle in the ensemble through the system
dynamics. We compute the prediction ensemble as the solutions to the initial value
problem

dx
(i)
k (t) = f(x(i)

k (t), u(t), θ)dt + σ(x(i)
k (t), u(t), θ)dωk(t), x

(i)
k (tk) = x̂

(i)
k|k, (7.31)
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for i ∈ {1, 2, . . . , Np} and t ∈ [tk, tk+1]. From the predictions, we denote the predicted
state ensemble

{x̂
(i)
k+1|k}Np

i=1, (7.32)

where x̂
(i)
k+1|k = x

(i)
k (tk+1) are the solutions to (7.31). We compute the predicted state

mean and covariance estimates statistically from the predicted state ensemble, as

x̂k+1|k = 1
Np

Np∑
i=1

x̂
(i)
k+1|k, (7.33a)

Pk+1|k = 1
Np − 1

Np∑
i=1

(
x̂

(i)
k+1|k − x̂k+1|k

)(
x̂

(i)
k+1|k − x̂k+1|k

)T

. (7.33b)

7.3.3 Measurement update
In the measurement update, we compute the predicted measurement ensemble by
propagating the predicted state ensemble through the measurement dynamics. We
apply the Kalman filter update to each particle in the ensemble by sampling from a
measurement distribution defined by a system measurement, ym

k . We compute the
ensemble of predictions

{ẑ
m,(i)
k|k−1}Np

i=1, z
m,(i)
k|k−1 = hm(x̂(i)

k|k−1, θ). (7.34)

We compute the predicted mean and covariance estimates of the measurement distri-
bution and cross-covariance of states and measurements, as

ŷm
k|k−1 = ẑm

k|k−1 = 1
Np

Np∑
i=1

ẑ
m,(i)
k|k−1, (7.35a)

Rzz,k|k−1 = 1
Np − 1

Np∑
i=1

(
ẑ

m,(i)
k|k−1 − ẑm

k|k−1

)(
ẑ

m,(i)
k|k−1 − ẑm

k|k−1

)T

, (7.35b)

Ryy,k|k−1 = Rzz,k|k−1 + R, (7.35c)

Rxy,k|k−1 = 1
Np − 1

Np∑
i=1

(
x̂

(i)
k|k−1 − x̂k|k−1

)(
ŷ

m,(i)
k|k−1 − ŷm

k|k−1

)T

. (7.35d)

We compute samples from the measurement distribution, as

y
m,(i)
k = ym

k + v
(i)
k , (7.36)

where v
(i)
k are realisations of the measurement noise distribution, vk ∼ N (0, R(θ)),

and ym
k is a system measurement taken at time tk. We compute the innovations for

each particle in the measurement ensemble, as

e
(i)
k = y

m,(i)
k − ẑ

m,(i)
k|k−1, i ∈ {1, 2, . . . , Np}. (7.37)
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We compute the Kalman gain as

Kfx,k = Rxy,k|k−1R−1
yy,k|k−1, (7.38)

and compute the filtered state ensemble

{x̂
(i)
k|k}Np

i=1, (7.39)

where we apply the Kalman filter update to each particle in the ensemble as

x̂
(i)
k|k = x̂

(i)
k|k−1 + Kfx,ke

(i)
k . (7.40)

We compute the filtered state mean and covariance estimates statistically from the
filtered state ensemble as

x̂k|k = 1
Np

Np∑
i=1

x̂
(i)
k|k, (7.41a)

Pk|k = 1
Np − 1

Np∑
i=1

(
x̂

(i)
k|k − x̂k|k

)(
x̂

(i)
k|k − x̂k|k

)T

. (7.41b)

7.4 Continuous-discrete particle filter
In this section, we present a CD-PF for systems in the form (7.1). As mentioned
previously, the CD-PF is a particle filter which approximates the state and measure-
ment distributions by a set of randomly sampled particles, the particle set. In the
time update, we perform a stochastic simulation of each particle in the particle set.
We represent the predicted state distribution by the propagated particle set. We com-
pute the predicted state mean and covariance estimates statistically from the particle
set. As such, the time update for the CD-PF is identical to that of the CD-EnKF.
In the measurement update, we propagate the particle set through the measurement
dynamics and determine the likelihood of each particle being observed, i.e. the likeli-
hood of sampling the measurement particle from the measurement distribution. We
then resample the state particle set according to the likelihood. Likely particles may
thus appear several time and unlikely particles may be removed entirely from the
resampled particle set. The filtered state distribution is represented by the resampled
(filtered) particle set. We compute the filtered state mean and covariance statistically
from the filtered particle set.

7.4.1 Initialisation
We initialise the CD-PF by randomly sampling a set of particles from the prior state
distribution, i.e. the initial distribution. We denote the initial particle set

{x̂
(i)
0|0}Np

i=1. (7.42)



80 7 State Estimation for Nonlinear Systems involving Stochastic Differential Equations

Figure 7.4: Illustration of the update for the particle filter. The true nonlinear dis-
tribution, green underlying to the left, is characterised by it’s first two
moments, i.e. mean and covariance, and described by a set of particles
sampled from the prior distribution (or approximation). The particles
are propagated through the nonlinear state dynamics. The true nonlin-
ear distribution, green underlying to the right, is characterised by the
approximations of the expectation and covariance determined statisti-
cally from the propagated particles..

The considerations for the CD-PF are the same as for the CD-EnKF. Since the true
initial state distribution may be unknown, the initial distribution serves as the initial
guess. A Gaussian distribution with guesses on mean and covariance, similar to the
CD-EKF and CD-UKF, may serve as an initial distribution to sample from.

7.4.2 Time update
In the time update, we propagate each particle in the particle set through the stochas-
tic state dynamics. We compute The predicted particle set as the solutions to the
initial value problem

dx
(i)
k (t) = f(x(i)

k (t), u(t), θ)dt + σ(x(i)
k (t), u(t), θ)dωk(t), x

(i)
k (tk) = x̂

(i)
k|k, (7.43)

for i ∈ {1, 2, . . . , Np} and t ∈ [tk, tk+1]. From the predictions, we denote the predicted
particle set

{x̂
(i)
k+1|k}Np

i=1, (7.44)
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where x̂
(i)
k+1|k = x

(i)
k (tk+1) are the solutions to (7.43). We compute the predicted state

mean and covariance estimates statistically from the predicted state particles, as

x̂k+1|k = 1
Np

Np∑
i=1

x̂
(i)
k+1|k, (7.45a)

Pk+1|k = 1
Np − 1

Np∑
i=1

(
x̂

(i)
k+1|k − x̂k+1|k

)(
x̂

(i)
k+1|k − x̂k+1|k

)T

. (7.45b)

7.4.3 Measurement update
In the measurement update, we compute the set of predicted measurement particles
by propagating the predicted particle set through the measurement dynamics. We
apply a measurement from the system to compute the likelihood for each particle in
the measurement set. We resample the state particles according to their respective
likelihoods in the measurement distribution. The resampled set is denoted the filtered
particle set. We compute the filtered state mean and covariance estimates statistically
from the filtered state particle set. We compute the set of particles from the predicted
measurement distribution

{ẑ
m,(i)
k|k−1}Np

i=1, ẑ
m,(i)
k|k−1 = hm(x̂(i)

k|k−1, θ), (7.46)

and compute the innovations from each measurement particle, as

e
(i)
k = ym

k − ẑ
m,(i)
k|k−1, (7.47)

for i ∈ {1, 2, . . . , Np}. We compute a set of likelihood weights for each particle, as
the likelihood of sampling each particle from the measurement distribution, as

w̃
(i)
k = 1√

2πny |R(θ)|
exp

(
−1

2

(
e

(i)
k

)T

R(θ)−1
(

e
(i)
k

))
, (7.48)

where |R(θ)| denotes the determinant of the measurement covariance matrix, R(θ).
The likelihood weight are normalised, as

w
(i)
k =

w̃
(i)
k∑Np

j=1 w̃
(j)
k

, (7.49)

for i ∈ {1, 2, . . . , Np}. We resample the particles according to their normalised like-
lihood weights. For a single realisation of a uniform distribution, q1 ∼ U [0, 1], we
compute a set of ordered resampling points

q
(i)
k = (i − 1) + q1

Np
, (7.50)



82 7 State Estimation for Nonlinear Systems involving Stochastic Differential Equations

for i ∈ {1, 2, . . . , Np}. We resample the particles by storing m(i) copies of each
particle, x̂

(i)
k|k−1, in the set. The indices for the resampled particles, l, are chosen

such that q
(l)
k ∈

]
s(i−1), s(i)], where s(i) =

∑i
j=1 w

(j)
k . This resampling means that

particles with relatively high likelihood may appear several times, while particle with
relatively low likelihood may disappear. The set of resampled particles (the filtered
particle set) is denoted

{x̂
(i)
k|k}Np

i=1. (7.51)

The filtered state estimate is computed statistically from the filtered particle set, as

x̂k|k = 1
Np

Np∑
i=1

x̂
(i)
k|k, (7.52a)

Pk|k = 1
Np − 1

Np∑
i=1

(
x̂

(i)
k|k − x̂k|k

)(
x̂

(i)
k|k − x̂k|k

)T

. (7.52b)

7.5 Discussion
In this section, we discuss the different state estimation methods presented in this
chapter.

CD-EKF

As mentioned previously, the CD-EKF is essentially the application of the linear
Kalman filter to a local linearisation of a nonlinear system. As a result of this, the
performance of the CD-EKF is largely dictated by the error associated with the lineari-
sation. In the time update, the linearisation error is dependent on the discretisation
interval. As such, the error introduced in the time update can be reduced by increas-
ing the internal linearisation points between samples. The error introduced in the
measurement update can cause the CD-EKF to diverge for highly nonlinear systems.
The CD-EKF is a computationally efficient state estimation algorithm in most appli-
cations. The computational efficiency is largely dictated by the covariance update in
the time update. For non-stiff systems, i.e. applying explicit numerical integration
schemes, a disadvantage of the CD-EKF is that it requires the computation of the
Jacobian. For stiff system, i.e. applying implicit numerical integration schemes, the
numerical integration also requires the computation of the Jacobian, so the CD-EKF
does not present increased complexity in that regard.

CD-UKF

Like the CD-EKF, the CD-UKF is also a computationally efficient algorithm. The
nonlinear distributions are represented by a set of deterministically sampled parti-
cles. The particles are propagated through the true nonlinear state and measurement
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dynamics. The CD-UKF has higher order convergence than the CD-EKF. The parti-
cle representation means that it better represents the nonlinearities of the state and
measurement distributions. This introduces statistical error, but removes the error
associated with linearisation. The CD-UKF better represents nonlinearities in the
state and measurement distributions then the CD-EKF, but can still fail for highly-
nonlinear systems.

CD-EnKF

The CD-EnKF is a particle filter based on the filtering strategy of the Kalman fil-
ter. The CD-EnKF represents the state and measurement distributions with a set of
randomly sampled particles. The CD-EnKF has Gaussian assumptions in the mea-
surement update, but can be effectively applied to highly nonlinear systems in most
cases. The CD-EnKF is a particle filter and thus suffers from issues with coverage
for high-dimensional state distributions, i.e. the curse of dimensionality. This can
make the CD-EnKF computationally inefficient for high-dimensional systems if great
statistical accuracy is required.

CD-PF

The CD-PF is a particle filter which does not have assumptions on the distributions.
This means that the CD-PF can be effectively applied to arbitrary nonlinear systems.
It can be advantageous to apply the CD-PF for state estimation in systems, where
the distributions are bounded and can thus not be assumed Gaussian with high
accuracy. This means that the CD-PF has seen many applications in robotics, where
the initial particle distribution may fill up a physical space, i.e. a potentially highly
nonlinear distribution. As long as the likelihood can be computed, the CD-PF can be
applied. Similar to the CD-EnKF, the CD-PF suffers from coverage issues for high-
dimensional state distributions, i.e. the curse of dimensionality. This can make the
CD-PF computationally inefficient for high-dimensional systems if great statistical
accuracy is required.

7.6 Summary
In this chapter, we presented four methods of state estimation in nonlinear systems
involving SDEs. We presented the CD-EKF which applies the Kalman filter updates
to a local linearisation of the nonlinear system. We presented the CD-UKF which
represent the nonlinear state and measurement distributions by a set of deterministi-
cally sampled particles, so-called sigma-points. We presented the two particle filters;
the CD-EnKF and th CD-PF. The CD-EnKF applies the Kalman filter update to
the ensemble of particles. The CD-PF applies likelihood resampling to the particle
set to represent the filtered state distribution. The state estimates are determined
statistically from the particle sets.
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CHAPTER8
State Estimation for
Nonlinear Systems

involving Stochastic
Differential Algebraic

Equations
In this chapter, we present the CD-EKF for state estimation in nonlinear systems
involving SDAEs. We consider SDAE models in the form

dx(t) = f(x(t), y(t), u(t), θ)dt + σ(x(t), y(t), u(t), θ)dω(t), x(t0) = x0, (8.1a)
0 = g(x(t), y(t), θ), (8.1b)

ym(tk) = hm(x(tk), y(tk), θ) + v(tk, θ), (8.1c)
where x(t) are state variables, y(t) are algebraic variables, u(t) are manipulated vari-
ables, ym(tk) are measurement variables, and θ are model parameters. The process
noise ω(t) is a standard Wiener process, i.e. dω(t) ∼ N (0, Idt), and v(tk, θ) ∼
N (0, R(θ)) is the normally distributed measurement noise.

As mentioned in the introduction to Chapter 7, the CD-EKF is a direct extension
of the original Kalman filter applied to nonlinear systems. The CD-EKF applies
the Kalman filter update to a local linearisation of the nonlinear system and has
been widely applied in industry due to its close relation to the linear Kalman filter.
Formulating the CD-EKF for SDAEs makes it possible to include information from
measurements which are governed by algebraic variables, e.g. chemical equilibrium
reactions.

The chapter is structured as follows: in section 8, we present the CD-EKF for
nonlinear systems involving SDAEs. We apply the implicit function theorem to ex-
press the algebraic variables as functions of the states. We formulate the CD-EKF by
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applying the sensitivities arising from the implicit description. Finally, we present a
summary of the chapter in section 8.2.

8.1 Continuous-discrete extended Kalman filter
In this section, we consider the CD-EKF for systems in the form (8.1).

8.1.1 Initialisation
We initialise the CD-EKF with initial guesses for the state mean and covariance

x̂0|0 ∈ Rnx , P0|0 ∈ Rnx×nx . (8.2)

Given an initial state, we compute the algebraic variables at the initial time,

ŷ0|0 ∈ Rny
, (8.3)

as the solution to the algebraic equations,

0 = g(x̂0|0, ŷ0|0, θ). (8.4)

Given an initial state covariance, we compute the covariance of the algebraic variables
at the initial time, as

Py,0|0 = ΦyxP0|0ΦT
yx, (8.5)

where Φyx denotes the sensitivities of the algebraic variables wrt. to the states. The
sensitivities arise from the implicit function theorem as the solution to

∂g0

∂y
Φyx = −∂g0

∂x
, (8.6)

where

Φyx = ∂y

∂x
, (8.7a)

∂g0

∂y
= ∂g

∂y
(x̂0|0, ŷ0|0, θ), (8.7b)

∂g0

∂x
= ∂g

∂x
(x̂0|0, ŷ0|0, θ). (8.7c)

8.1.2 Time update
In the time update, we compute the one-step predictions of the predicted state mean
and covariance estimates as the solution to the initial value problem defined by the ex-
pectation of the stochastic state dynamics, i.e. an ODE because (8.1) is a martingale.
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Consider the initial value problem for t ∈ [tk, tk+1]
dx̂k

dt
(t) = f(x̂k(t), ŷk(t), u(t), θ), x̂k(tk) = x̂k|k, (8.8a)

0 = g(x̂k(t), ŷk(t), θ). (8.8b)

We compute the predicted state and algebraic variable mean estimates as the solution
to (8.8) at time t = tk+1, as

x̂k+1|k = x̂k(tk+1), ŷk+1|k = ŷk(tk+1). (8.9)

We compute the predicted state covariance estimate as the solution to the integral
expression defined in terms of the state sensitivities

Pk(t) = Φxx(t, tk)Pk(tk)ΦT
xx(t, tk) +

∫ t

tk

Φxx(t, s)σk(s)σT
k (s)ΦT

xx(t, s)ds, (8.10)

where

σk(t) = σ(xk(t), yk(t), u(t), θ). (8.11)

We compute the predicted state covariance estimate as the solution to (8.10) at time
t = tk+1,

Pk+1|k = Pk(tk+1), (8.12)

and compute the predicted algebraic variable mean estimate, ŷk+1|k, as the solution
to the algebraic equation,

0 = g(x̂k+1|k, ŷk+1|k, θ). (8.13)

We compute the predicted algebraic variable covariance estimate as

Py,k+1|k = ΦyxPk+1|kΦT
yx, (8.14)

and obtain the sensitivities as the solution to
dΦxx

dt
(t, s) = ∂f

∂x
Φxx(t, s) + ∂f

∂y
Φyx(t, s), Φxx(s, s) = I, (8.15a)

0 = ∂g

∂x
Φxx(t, s) + ∂g

∂y
Φyx(t, s), (8.15b)

where the partial derivatives of the state dynamics and algebraic expressions are
∂fk

∂x
= ∂f

∂x
(x̂k(t), ŷk(t), uk, θ), ∂fk

∂y
= ∂f

∂x
(x̂k(t), ŷk(t), uk, θ), (8.16a)

∂gk

∂x
= ∂g

∂x
(x̂k(t), ŷk(t), θ), ∂gk

dy
= ∂g

∂y
(x̂k(t), ŷk(t), θ). (8.16b)

The sensitivities are

Φxx(t, s) = ∂x̂k(t)
∂x̂k(s)

, Φyx(t, s) = ∂ŷk(t)
∂x̂k(s)

. (8.17)
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Numerical details

Within each sampling interval, t ∈ [tk, tk+1], we approximate the solution to (8.8) and
(8.10) with NInt equidistant subintervals of size h = Ts/NInt. As such, we describe
the internal solutions to the first and second moments of the state as

x̂k,n = x̂k(tk + nh), Pk,n = Pk(tk + nh), (8.18)

and describe the solution to the first and second moments of the algebraic variables
as

ŷk,n = ŷk(tk + nh), Py,k,n = Py,k(tk + nh). (8.19)

We discretise the differential algebraic equation using Euler’s implicit method, as

0 = x̂k,n+1 − x̂k,n − fk(x̂k,n+1, ŷk,n+1)h, (8.20a)
0 = g(x̂k,n+1, ŷk,n+1, θ), (8.20b)

where fk(x, y) = f(x, y, uk, θ). We describe the right-hand side of the algebraic
equations, (8.20), as the residual

R(x̂k,n+1, ŷk,n+1) =
[
x̂k,n+1 − x̂k,n − fk(x̂k,n+1, ŷk,n+1)h

g(x̂k,n+1, ŷk,n+1, θ)

]
, (8.21)

and obtain the state and algebraic variables, x̂k,n+1 and ŷk,n+1, as the solution to

0 = R(x̂k,n+1, ŷk,n+1). (8.22)

We apply Newton’s method to obtain the solution to (8.22). For the state covariance
(8.10), we apply Euler’s implicit method to approximate the solution to (8.16). We
obtain the sensitivities as the solution to[

I − ∂fk,n+1
∂x h − ∂fk,n+1

∂y h
∂gk,n+1

∂x
∂gk,n+1

∂y

] [
Φxx(tk,n+1, tk,n)
Φyx(tk,n+1, tk,n)

]
=
[
I
0

]
, (8.23)

where

∂fk,n+1

∂x
= ∂f

∂x
(x̂k,n+1, ŷk,n+1, uk, θ), (8.24a)

∂fk,n+1

∂y
= ∂f

∂y
(x̂k,n+1, ŷk,n+1, uk, θ), (8.24b)

∂gk,n+1

∂x
= ∂g

∂x
(x̂k,n+1, ŷk,n+1, θ), (8.24c)

∂gk,n+1

∂y
= ∂g

∂y
(x̂k,n+1, ŷk,n+1, θ). (8.24d)



8.1 Continuous-discrete extended Kalman filter 89

We apply a left rectangular rule to approximate the integral in (8.10). We obtain the
state covariance as

Pk,n+1 = Φxx(tk,n+1, tk)τk,nΦT
xx(tk,n+1, tk), (8.25a)

τk,n = Pk,n + σk(x̂k,n, ŷk,n)σT
k (x̂k,n, ŷk,n)h, (8.25b)

where Pk,0 = Pk|k. The covariance of the algebraic variables are obtained as

Py,k,n+1 = Φyx,k,n+1Pk,n+1ΦT
yx,k,n+1, (8.26)

where we apply the implicit function theorem to compute the sensitivities as the
solution to

∂gk,n+1

∂y
Φyx,k,n+1 = −∂gk,n+1

∂x
. (8.27)

The solutions over the sampling interval are

x̂k+1|k = x̂k,NInt
, Pk+1|k = Pk,NInt

, (8.28a)
ŷk+1|k = ŷk,NInt

, Py,k+1|k = Py,k,NInt
. (8.28b)

8.1.3 Measurement update
In the measurement update, we apply the filtering strategy of the linear Kalman
filter on a local linearisation of the nonlinear system. We apply the implicit function
theorem to compute filtered estimates of the algebraic variables and compute the
innovation and its covariance, as

ek = ym
k − ŷm

k|k−1, (8.29a)
Re,k = CkPk|k−1CT

k + R(θ), (8.29b)

where ym
k is a measurement taken at time t = tk. We obtain the one-step prediction

of the measurement as

ŷm
k|k−1 = hm(x̂k|k−1, ŷk|k−1, θ), (8.30)

and apply the implicit function theorem to compute the matrix Ck, as

Ck =
dhm

k|k−1

dx
(8.31a)

=
∂hm

k|k−1

∂x
+

∂hm
k|k−1

∂y

∂yk|k−1

∂x
, (8.31b)

where
∂hm

k|k−1

∂x
= ∂hm

∂x
(x̂k|k−1, ŷk|k−1, θ), (8.32a)

∂hm
k|k−1

∂y
= ∂hm

∂y
(x̂k|k−1, ŷk|k−1, θ). (8.32b)
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We compute the sensitivity, ∂yk|k−1
∂x , as the solution to

∂gk|k−1

∂y

dyk|k−1

dx
= −

∂gk|k−1

∂x
, (8.33)

where

∂gk|k−1

∂x
= ∂g

∂x
(x̂k|k−1, ŷk|k−1, θ), (8.34a)

∂gk|k−1

∂y
= ∂g

∂y
(x̂k|k−1, ŷk|k−1, θ). (8.34b)

The Kalman gain is

Kfx,k = Pk|k−1CT
k R−1

e,k. (8.35)

We compute the filtered state mean and covariance estimates as

x̂k|k = x̂k|k−1 + Kfx,kek, (8.36a)
Pk|k = (I − Kfx,kCk) Pk|k−1 (I − Kfx,kCk)T + Kfx,kRKT

fx,k. (8.36b)

We obtain the filtered algebraic mean estimate, ŷk|k, as the solution to

0 = g(x̂k|k, ŷk|k, θ), (8.37)

and compute the filtered algebraic variable covariance estimate, Py,k|k, as

Py,k|k =
∂yk|k

∂x
Pk|k

(
∂yk|k

∂x

)T

. (8.38)

We apply the implicit function theorem to obtain the sensitivities, ∂yk|k

∂x , as the solu-
tion to

∂gk|k

∂y

∂yk|k

∂x
= −

∂gk|k

∂x
. (8.39)

8.2 Summary
In this chapter, we presented the CD-EKF for nonlinear system involving SDAEs.
We formulated the CD-EKF for nonlinear systems involving SDAEs by expressing the
algebraic variables as a function of the state. We formulated the CD-EKF by applying
the sensitivities arising from the implicit description. We presented procedures for
predicted and filtered estimates mean and covariance for state and algebraic variables.
For the time update, we presented numerical details relevant to the implementation
of the state estimation algorithm.
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CHAPTER9
Economic Model
Predictive Control

The work presented in this chapter is partially based on the papers listed in Ap-
pendices D, F, A, and C. In this chapter, we present ENMPC algorithms applied
to systems described by nonlinear SDAEs. The description generalises to system
described by SDEs. ENMPC describes full state feedback model-based control al-
gorithms applied to nonlinear systems which directly optimises economic measures
of performance, e.g. maximising revenue, minimising raw materials or power cost,
or maximising sustainable energy use [40, 105]. Figure 9.1 presents an overview of
an ENMPC system. In the application of ENMPC, we take a measurement from ta
system and pass it to the state estimator. The state estimator computes an estimate
of the systems states at the time of the measurement. The state estimate is passed
to the optimiser. In the optimiser, an EOCP is solved numerically given the current
state estimate to produce an optimal open-loop control strategy over a finite horizon.
We implemented the first control action of the optimal open-loop control strategy
in the system. A new measurement is taken from the system and the control-loop
repeats. We consider continuous-discrete nonlinear SDAE models in the form

dx(t) = f(x(t), y(t), u(t), θ)dt + σ(x(t), y(t), θ)dω(t), x(t0) = x0, (9.1)
0 = g(x(t), y(t), θ), (9.2)

zm(t) = gm(x(t), y(t), θ), (9.3)
ym(tk) = hm(x(tk), y(tk), θ) + v(tk, θ), (9.4)

where x(t) ∈ Rnx are state variables, y(t) ∈ Rny are algebraic variables, u(t) ∈ Rnu

are manipulated variables, zm(t) ∈ Rnz,m are output variables, ym(tk) ∈ Rny,m are
measurement variables, and θ ∈ Rnθ are model parameters. The process noise, w(t) ∈
Rnω , is a standard Wiener process, i.e. dω(t) ∼ N (0, Idt), and v(tk, θ) ∼ N (0, R(θ))
is the normally distributed measurement noise. f(·) : (x(t), y(t), u(t), θ) −→ Rnx

is the state drift function, σ(·) : Rnθ −→ Rnx×nω is the state diffusion function,
g(·) : (x(t), y(t), θ) −→ Rny is the algebraic function, gm(·) : (x(t), y(t), θ) −→ Rnz,m

is the output function, and hm(·) : (x(tk), y(tk), θ) −→ Rny,m is the measurement
function.

The chapter is structured as follows: in section 9.1, we describe optimal control.
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We present an OCP for nonlinear systems involving SDAEs in Bolza form. Further-
more, we present classical measures of performance, e.g. target tracking and input
regularisation, as well as economic performance measures, e.g. product revenue and
input cost. Furthermore, we present hard constraints on independent variables, soft
constraints for dependent variables, and formulate an extended OCP. In section 9.2,
we present a conceptual overview of ENMPC and define the control system in terms
of the state estimator and EOCP. Section 9.3 summarises the work presented in the
chapter.

9.1 Optimal control
In this section, we present a brief overview of optimal control. We formulate OCPs for
nonlinear systems involving DAEs. We present examples of objective and constraint
functions relevant to the production of SCP.

The objective of optimal control, or dynamic optimisation, is to determine open-
loop control strategies for optimal operation of a dynamical system with respect to
one or more performance measures. The objective function of the OCP describes the
performance measure, e.g. a tracking error, a penalty on the rate-of-movement of the
manipulated variables, or a measure of profit or cost. The constraints represent the
dynamics of the operated system as well as operational and physical limitations, e.g.
minimum and maximum flow rates a pump can handle, the maximum volume of a
reactor vessel, or non-negativity of physical variables such as mass or concentration.
Finally, we describe a direct simultaneous approach for formulating OCPs as NLPs
for numerical solution.

9.1.1 Optimal control problem
Consider an OCP in Bolza form

min
[x(t);y(t);u(t)]

tf
t0

ϕ =
∫ tf

t0

l(t, x(t), y(t), u(t), θ)dt + l̂(x(tf ), y(tf ), θ), (9.5)

subject to

x(t0) = x0, (9.6a)
dx

dt
= f(x(t), y(t), u(t), θ), t0 ≤ t ≤ tf , (9.6b)

0 = g(x(t), y(t), θ), t0 ≤ t ≤ tf , (9.6c)
zm(t) = gm(x(t), θ), t0 ≤ t ≤ tf , (9.6d)
clb(t) ≤ c(t, x(t), y(t), u(t), θ) ≤ cub(t), t0 ≤ t ≤ tf , (9.6e)

where x(t) are state variables, y(t) are algebraic variables, u(t) are manipulated vari-
ables, and θ are parameters. (9.5) describes the objective function of the OCP. The
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ENMPC

Economic Optimal
Control Problem

Nonlinear State
Estmation

Process

Sensors

Figure 9.1: Illustration of the economic nonlinear model predictive control. Sensors
pass measurements from the process to the estimation block, where
a nonlinear state estimation algorithm computes an estimate of the
current state and covariance. The state information is passed to the
optimisation block, where an economic optimal control problem is solved
to yield an optimal open-loop control strategy. The current control
action is implemented in the process and the control-loop repeats.

functions l(·) and l̂(·) are the Lagrange and Mayer terms, respectively. (9.6a)-(9.6d)
describe the nonlinear system dynamics. (9.6e) describes general constraints opera-
tional and variable constraints, e.g. non-negativity for for states and input or volume
and flow equipment constraints.

9.1.2 Zero-order hold parametrisation
For the applications discussed in this work, we consider a zero-order hold parametri-
sation of the manipulated variables. For the control horizon t ∈ [t0, tf ], we define the
final time as

tf = t0 +
N∑

k=1

tk, tk = kTs, (9.7)

where Ts is the time-interval defining a series of equidistant control intervals, or
sampling intervals, for tk ≤ t < tk+1. We define for this equidistant grid, a zero-order
hold parametrisation of the manipulated variables

u(t) = uk, for tk ≤ t < tk+1, (9.8)
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where uk are constant values of the manipulated inputs within each control intervals.
As such, we note that we can define the controlled inputs in terms of the set of
constant input levels

{uk}N−1
k=0 . (9.9)

9.1.3 Measures of performance (objectives)
In optimal control, dynamical systems may be optimised with respect to several
performance measures. In this section, we describe objective function terms in Bolza
form to describe performance of dynamical systems. We consider objective functions
in the form

ϕ =
∑
i∈O

αiϕi, 1 =
∑
i∈O

αi, (9.10)

where O is the set of objectives, αi are objective weights, and ϕi are objectives. We
consider objectives for; setpoint tracking, input rate-of-movement penalisation, input
economy, product economy, as well as hard and soft constraints in this section.

Setpoint tracking

For tracking an output to a target trajectory, i.e. setpoint, we define the Lagrange
term

ϕz =
∫ tf

t0

lz(t, x(t), u(t), θ)dt + l̂z(x(tf ), y(tf ), θ). (9.11)

The Lagrange function is

lz(t, x(t), u(t), θ) = ∥z(t) − z̄(t)∥2
Qz

, (9.12)

where z̄(t) is the target trajectory and ∥ · ∥2
Qz

is a weighted 2-norm, defining the
Euclidean distance between the output and the target. The Mayer term is

l̂z(x(tf ), y(tf ), θ) = 0. (9.13)

Input rate-of-movement penalisation

For penalising the rate-of-movement of the manipulated variables, we define the La-
grange term

ϕ∆u =
∫ tf

t0

l∆u(t, x(t), u(t), θ)dt + l̂∆u(x(tf ), y(tf ), θ) (9.14)

=
N−1∑
k=0

∫ tk+1

tk

l∆u,k(t, x(t), u(t), θ)dt + l̂∆u(x(tf ), y(tf ), θ). (9.15)
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The Lagrange function is

l∆u,k(t, x(t), u(t), θ) = ∥∆uk∥2
Q∆u

, ∆uk = uk − uk−1. (9.16)

The input u−1 is not part of the decision variables, but is defined as the current
control action implemented before time t = t0. The Mayer term is

l̂∆u(x(tf ), y(tf ), θ) = 0. (9.17)

Input economy

We define the input economy objective

ϕu,eco =
∫ tf

t0

lu,eco(t, x(t), y(t), u(t), θ)dt

+ l̂u,eco(x(tf ), y(tf ), θ)
(9.18a)

=
N−1∑
k=0

∫ tk+1

tk

lu,eco,k(t, x(t), y(t), uk, θ)dt

+ l̂u,eco(x(tf ), y(tf ), θ).

(9.18b)

The Lagrange function is

lu,eco,k(t, x(t), y(t), u(t), θ) = pu,ecouk, (9.19)

where pu,eco is the unit cost per unit time of the inputs. The Mayer term is

l̂u,eco(x(tf ), y(tf ), θ) = 0. (9.20)

This is an example of an economic objective.

Product economy

Consider the U-loop reactor defined in Chapter 2. For a product harvested from the
reactor at a rate of F (t), where F (t) ∈ u(t), we define the product economy objective

ϕP,eco =
∫ tf

t0

lP,eco(t, x(t), y(t), u(t), θ)dt + l̂P,eco(x(tf ), y(tf ), θ). (9.21)

The Lagrange function is

lP,eco(t, x(t), y(t), u(t), θ) = −pP F (t)c̄P (t), (9.22)

where pP is the unit price per unit weight of the product, P , F (t) is the harvest rate
from the top tank, and cP (t) is the concentration of the product, P . The Mayer term
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is

l̂P,eco(x(tf ), y(tf ), θ) = pP

(
cP (t0)V +

∫ L

0
c̄P (t0, z)Adz

)

− pP

(
cP (tf )V +

∫ L

0
c̄P (tf , z)Adz

)
,

(9.23)

where V is the volume of the top tank, A is the cross-sectional area of the U-loop
leg, L is the length of the U-loop leg, and cP (t0) and c̄(t0, z) are the initial product
concentrations of the top tank and U-loop leg, respectively. The Lagrange term
defines the value of the product harvested from the reactor, i.e. the negative cost
for minimisation. The Mayer term defines the cost-to-go, by subtracting the value of
the initial product and including the value of the product remaining in the reactor at
the final time. The cost-to-go ensures that the reactor is not emptied for additional
profit at the end of the control horizon. This is an example of an economic objective.

9.1.4 Constraints
Hard constraints

It is often the case, that independent variables, e.g. manipulated inputs in the case
of control systems, are constrained in the OCP. This limits the search space in the
resulting NLP, as well as corresponding to physical or operational limitations in the
system, e.g. minimum and maximum flow-rates of a pump, minimum or maximum
actuator change, or nonnegativity of physical quantities. We may represent such box
constraints on inputs, as

cu,lb(t) ≤ u(t) ≤ cu,ub(t), (9.24)

or rate-of-movement of the inputs, as

clb,∆u(t) ≤ du

dt
(t) ≤ cub,∆u(t). (9.25)

Similarly, systems often present physical or operational constraints on dependent vari-
ables, e.g. states, algebraic variables, or outputs. We may represent such constraints
on the state and algebraic variables, as

clb,xy(t) ≤ cxy(x(t), y(t), θ) ≤ cub,xy(t). (9.26)

However, in real-time applications the dependent variables cannot always be guaran-
teed to remain within such hard constraints, as diffusion may drive those variables
into infeasible regions. Therefore, it can be beneficial to introduce soft constraints
instead of the hard constraints defined in (9.26).



9.1 Optimal control 99

Soft constraints

We introduce soft constraints to approximate the same restrictions on the values of de-
pendent variables as described in (9.26), while removing issues related to infeasibility.
Consider the modified constraints on the state variables

clb,xy(t) − p(t) ≤ cxy(x(t), y(t), θ) ≤ cub,xy(t) + q(t), (9.27a)
0 ≤ p(t), (9.27b)
0 ≤ q(t). (9.27c)

The variables p and q are slack variables introduced to increase in value if the state and
algebraic variables violate the hard constraints defined in (9.26). The introduction
of p and q thus increases the number of variables in the OCP, but removes issues
regarding feasibility, as the values of p and q can simply increase freely to account for
violations of the constraints. However, as mentioned previously, the slack variables
can increase freely and the softening, (9.27), therefore does not approximate the hard
constraints defined in (9.26). We introduce a penalty of the slack variables, as

ϕpq =
∫ tf

t0

lqp(t, x(t), y(t), u(t), θ)dt + l̂pq(x(tf ), y(tf ), θ). (9.28)

The Lagrange function is a linear and quadratic penalty on the slack variables

lpq(t, x(t), y(t), u(t), θ) = lp(t, x(t), y(t), u(t), θ) + lq(t, x(t), y(t), u(t), θ), (9.29)

where

lp(t, x(t), y(t), u(t), θ) = ∥p(t)∥2
Qp,2

+ |p(t)|Qp,1
, (9.30a)

lq(t, x(t), y(t), u(t), θ) = ∥q(t)∥2
Qq,2

+ |q(t)|Qq,1
. (9.30b)

The Mayer term is

l̂pq(x(tf ), y(tf ), θ) = 0. (9.31)

The penalty on the slack variables, (9.28), defines an optimum for q = p = 0, i.e.
where the hard constraints, (9.26), are satisfied. If we include other measures of
performance in the objective with the slack penalties, a sufficiently large value of
scaling weights Qp,2, Qp,1, Qq,2, and Qq,1 will make the OCP prefer feasibility in the
hard constrained problem over fulfilment of the remaining performance measures. If
the optimum lies on constraints, (9.26), the optimum in the soft constrained case will
violate the hard constraints to the smallest degree possible. The choice of scaling
determines the degree to which the constraints are violated. However, the problem
remains feasible. Note that one may also introduce several soft constraints on the
same variable to increase the strength of the penalty gradually. This can be useful
if small violations are not detrimental to performance, but larger violations are, e.g.
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in diabetes related model-based control solutions [106, 107]. The OCP with soft
constraints, (9.27) and (9.28), is

min
[x(t);y(t);u(t);p(t);q(t)]

tf
t0

ϕ, (9.32)

subject to

x(t0) = x0, (9.33a)
dx

dt
= f(x(t), y(t), u(t), θ), t0 ≤ t ≤ tf , (9.33b)

0 = g(x(t), y(t), θ), t0 ≤ t ≤ tf , (9.33c)
zm(t) = gm(x(t), θ), t0 ≤ t ≤ tf , (9.33d)
clb(t) ≤ c(t, x(t), y(t), u(t), θ) ≤ cub(t), t0 ≤ t ≤ tf , (9.33e)

clb,s(t) − p(t) ≤ cs(t, x(t), y(t), u(t), θ) ≤ cub,s(t) + q(t), t0 ≤ t ≤ tf , (9.33f)
0 ≤ p(t), t0 ≤ t ≤ tf , (9.33g)
0 ≤ q(t), t0 ≤ t ≤ tf , (9.33h)

where the function clb,s and cub,s, (9.33f), are the softened constraints in the form
(9.27) and the objective function ϕ includes the slack penalty objectives, (9.28).

9.1.5 Temporal discretisation
We apply a temporal discretisation of the continuous-time OCP presented in (9.5)-
(9.6) to formulate a numerical optimisation problem, i.e. an NLP. We apply a simul-
taneous approach to the formulation of the NLP.

Direct simultaneous approach

In the simultaneous approach, we include the numerical integration scheme directly
as constraints in the NLP, and integrate the objective function numerically with the
same points. For consistency, we apply the same numerical integration scheme in the
discretisation of the dynamical equations and the objective integrals. We apply the
implicit Euler scheme for numerical integration of the dynamical constraints and the
right-rectangular rule for numerical integration of the objective Lagrange terms. We
define the sets of discrete state, algebraic, and manipulated variables

{{xk,n}n∈Nk
}k∈Nc

, {{yk,n}n∈Nk
}k∈Nc

, {uk}k∈Nc
, (9.34)

where Nk = {0, 1, . . . , Nk} is the set of internal integration step within each sampling
interval and Nc = {0, 1, . . . , N −1} is the finite set of sampling times in the controller,
i.e. N is the control horizon. The evolution of the states and algebraic variables are
defined for the set Nk−1 = {0, 1, . . . , Nz − 1}, as

xk,n+1 = xk,n + f(xk,n+1, yk,n+1, uk, θ)∆tk,n, n ∈ Nk−1, k ∈ Nc, (9.35)
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and the continuity constraints are

xk+1,0 = xk,Nk
, k ∈ Nc. (9.36)

The initial value for the system is the state estimate at time t = t0

x0,0 = x̂0|0. (9.37)

For simplicity in notation, we define the dynamical constraints in 9.35 in residual
form as well as the algebraic equations, as

0 = D(xk,n+1, xk,n, yk,n, yk,n+1, uk, θ), n ∈ Nk−1, k ∈ Nc, (9.38)

where

D(xk,n+1, xk,n, yk,n, yk,n+1, uk, θ) =
[
R(xk,n+1, xk,n, yk,n, yk,n+1, uk, θ)

g(xk,n+1, xk,n, yk,n+1, θ)

]
. (9.39)

We note that this notation introduces redundant variables in the continuity con-
straints, which can be eliminates in the implementation. We similarly approximate
the Lagrange term of the objective function with the right-rectangular rule (equivalent
to implicit Euler), as

ϕ ≈ Φ (9.40a)
= Φ({{xk,n, yk,n}n∈Nk

, uk}k∈Nc
, θ) (9.40b)

= ΦL + ΦM (9.40c)
= ΦL({{xk,n, yk,n}n∈Nk

, uk}k∈Nc
, θ) + ΦM (xN−1,Nk

, yN−1,Nk−1 , θ), (9.40d)

where the Lagrange term is

ΦL =
∑

k∈Nc

∑
n∈Nk−1

l(tk,n+1, xk,n+1, yk,n+1, uk, θ)∆tk,n, (9.41)

and the Mayer term is

ΦM = l̂(xN−1,Nk
, yN−1,Nk

, θ). (9.42)

We define the NLP for numerical solution of the OCP defined in (9.5)-(9.6), as

min
{{xk,n,yk,n}n∈Nk

,uk}k∈Nc

Φ = ΦL + ΦM , (9.43)

subject to

x0,0 = x̂0|0, (9.44a)
xk+1,0 = xk,Nz

, k ∈ Nc, (9.44b)
0 = D(xk,n+1, xk,n, yk,n, yk,n+1, uk, θ), n ∈ Nk−1, k ∈ Nc, (9.44c)

zk,n = gm(xk,n, yk,n, θ), n ∈ Nk, k ∈ Nc, (9.44d)
clb,k,n ≤ c(tk,n, xk,n, yk,n, uk, θ) ≤ cub,k,n, n ∈ Nk, k ∈ Nc. (9.44e)

We apply an algorithm of choice for solving the NLP defined by (9.43)-(9.44), e.g.
interior-point algorithm [50] or sequential quadratic programming algorithm [49].
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9.2 Economic model predictive control
In this section, we present a conceptual overview of ENMPC. As mentioned previously,
ENMPC is a full state feedback control strategy in which a we take a measurement
from a system and pass it to a state estimator. The state estimator provides predicted
and filtered estimate of the system states. Given the state estimate, we solve an EOCP
for an optimal open-loop control strategy. We implement the first control action of
the solution to the EOCP in the system. At the following sampling time, we take a
new measurement repeat the control-loop.

System description

Consider a system governed by a SDAE model in the form (9.1). We describe the
evolution of the system in discrete sampling intervals, as

zs
i+1 = F (zs

i , ui, ωs
i , θs), (9.45a)

ym,s
i = hm(zs

i , θs) + vs
i , (9.45b)

where the variable zs
i = (xs

i , ys
i ) are the state and algebraic variables, F s(·) is a

function evolving the system one sampling time forward in time according to to state
and algebraic dynamics described in (9.1), gm(·) are measurement dynamics, and
vs

ki ∼ N (0, Rs(θs)) is normally distributed measurement noise.

Controller description

We describe the control system in terms of the nonlinear state estimator and EOCP
solver in the same discrete sampling intervals, as

zc
i+1 = κ(zc

i , ui, ym,s
i+1 , θc), (9.46a)

ui = λ(zc
i , θc), (9.46b)

where zc
i = (xc

i , yx
i ) is a filtered estimate of state and algebraic variables at time t = ti

computed by the state estimation function, κ(·), and ui is the control action to be
implemented at time t = ti computed by the EOCP function λ(·).

ENMPC algorithm

We describe ENMPC in terms of the four base operations at time t = tk:
1) we take a measurement is taken from the system, as

ym,s
k = hm(zs

k, θs) + vs
k(θs), (9.47)

2) we compute filtered estimates of state and algebraic variables from the measure-
ment, as

zc
k = κ(zc

k−1, uk−1, ym,s
k , θc), (9.48)
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3) we compute an optimal control action based on the information from the state
estimate, as

uk = λ(zx
k , θc), (9.49)

4) we implement the optimal control action in the system and let it progress forward
on sampling time, as

zs
k+1 = F (zs

k, uk, ωs
k, θs), (9.50)

5) repeat from 1).

9.3 Summary
In this chapter, we presented ENMPC and described EOCP. We introduced OCPs
for nonlinear systems involving DAEs. We formulated the OCP. We describe classical
and economic measures of performance, e.g. target tracking and production revenue.
We described hard constraints on independent variables, i.e. manipulated inputs,
and soft constraints on the dependent variables, e.g. states and algebraic variables.
We formulated an extended OCP for the including of soft constraints. Finally, we
presented a conceptual description of ENMPC and described the implementation
algorithmically.
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Part IV

Numerical Examples





CHAPTER10
Pilot-Scale U-loop

Bioreactor for
Single-Cell Protein

Production
This chapter is a summary of the work presented in the publications listed in Appen-
dices D, E, and F. In this chapter, we present economic optimising control solutions
for SCP production in a U-loop bioreactor. We formulate and solve an EOCP for
revenue maximisation of the SCP production and minimisation of raw-material cost.
We present and implement a CD-EKF for nonlinear systems involving SDEs. We
perform a numerical experiment of state estimation using the CD-EKF on the U-loop
bioreactor and demonstrate that we can estimate uncertain parameters online. We
present and implement ENMPC for SCP production in the U-loop bioreactor. We
apply the CD-EKF and EOCP mentioned previously in the ENMPC. Additionally,
we apply a proportional (P) controller to stabilise the process between control actions
determined by the ENMPC. Finally, we perform a numerical closed-loop experiment
with ENMPC for SCP production in the U-loop bioreactor. Figure 10.1 illustrates
the ENMPC applied to the U-loop bioreactor.

The chapter is structured as follows: in section 10.1, we present a summary of
the publication listed in Appendix D. The publication presents an EOCP for profit
maximisation of SCP production in a U-loop bioreactor. In section 10.2, we preset
a summary of the publication listed in Appendix E. The publication presents the
CD-EKF, and we perform a numerical experiment applying the CD-EKF for state
estimation for SCP production in a U-loop bioreactor. In section 10.3, we present
a summary of the publication listed in Appendix F. In the publication, we present
an ENMPC, and we perform a closed-loop numerical experiment with ENMPC for
SCP production in a U-loop bioreactor. Finally, section 10.4 summarises the work
presented in the chapter.
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NMPC

Optimal Control
Problem

State Estimation

P-Controller

Process

Figure 10.1: Illustration of the economic nonlinear model predictive control systems
applied to the U-loop bioreactor in the publication listed in Appendix
F.

10.1 U-loop economic optimal control
This section is a summary of the publication listed in Appendix D. In this paper,
we formulate an EOCP for SCP production in a U-loop bioreactor. We apply the
methanol based growth model described in Chapter 3. We describe the growth model
by the stoichiometry

1.366S + 0.600O −−→ X, r1(c). (10.1)

We apply the U-loop bioreactor model described in Chapter 2 with 20 discrete volumes
in the spatial discretisation of the PFR. We formulate an ODE model in the form

dx(t) = f(x(t), u(t), d(t), θ)dt, x(t0) = x0. (10.2)

The model has 83 states and 3 manipulated inputs. We formulate an EOCP with
the objective of minimising input cost and maximising product revenue, i.e. optimal
profit, as

min
[x(t)]

tf
t0

,{uk}N−1
k=0

ϕ = ϕX,eco + ϕu,eco, (10.3)

subject to

x(t0) = x̂0|0, (10.4a)
dx(t) = f(x(t), u(t), θ)dt, , t ∈ [t0, tf ] , (10.4b)
u(t) = uk, t ∈ [tk, tk+1] , k ∈ {0, 1, . . . , N − 1}. (10.4c)
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The performance measure ϕX,eco is the SCP production revenue maximisation metric,
(9.21)-(9.23), and the performance measure ϕu,eco is the input cost minimisation met-
ric described in (9.18)-(9.20). The objective ϕ describes the maximisation of profit
associated with production, i.e. revenue minus expenses. We note that there are
other economic metric which could be considered in this context for a more complete
picture of profit, e.g. energy consumption or cooling. We apply two different direct
simultaneous approaches to discretise the EOCP; with and without explicit continu-
ity constraints. We apply an implicit Euler numerical integration scheme, i.e. right
rectangular rule, in the temporal discretisation of the EOCP. The NLP arising from
the temporal discretisation of the EOCP has 102600 decision variables and 100800
residual equations when continuity constraints are included and 52200 decision vari-
ables and 50400 residual equations in the reduced case. We solve the NLPs in less
than 30 seconds for sampling intervals of 3 minutes, indicating that the system is
real-time feasible. Figure 10.2 illustrates the optimal control profiles computed as
the solution to the NLPs.

10.2 U-loop state estimation
This section is a summary of the publication listed in Appendix E. In this paper, we
formulate a continuous-discrete SDE model for the U-loop reactor described in Chap-
ter 2. We apply the methanol based growth kinetics described in (3.7). We extend
the ODE model resulting from the growth kinetics and U-loop reactor dynamics with
the introduction of stochastic parameters, as

dθi(t) = κθi

(
θ̄i − θi(t)

)
+ σθi

dωθi
(t), (10.5)

where θi(t) is the new stochastic state representing an uncertain parameter, θ̄i is the
nominal value for the parameter, κθi describes the magnitude of the drift term, i.e.
how much the parameter is driven toward the nominal value, and σθi

describes the

Figure 10.2: Solution to economic optimal control problem for single-cell protein
production in a U-loop bioreactor.
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magnitude of the diffusion term, i.e. how much the parameter diffuses away from the
nominal value. We introduce four uncertain model parameters, as

dµmax(t) = κµmax (µ̄max − µmax(t)) + σµmaxdωµmax(t), (10.6a)
dγS(t) = κγS

(γ̄S − γS(t)) + σγS
dωS(t), (10.6b)

dγO(t) = κγO
(γ̄O − γO(t)) + σγO

dωO(t), (10.6c)
dCF,S(t) = κCF,S

(
C̄F,S − CF,S(t)

)
+ σCF,S

dωCF,S
(t). (10.6d)

Coupling the SDE model resulting from the introduction of uncertain parameters
described in (10.6) with a state estimator provides online parameter estimates for the
modelled parameters. We introduce a measurement model which measures dissolved
oxygen concentration in the U-loop leg at three separate points. Furthermore, we
introduce a stabilising P-controller to track the substrate concentration to the optimal
value as described in section 3.1. The P-controller assumes we can measure the
substrate concentration online, and is formulates as

F̃S = F ∗
S + KcS

(
C̄∗

S − C̄S

)
, (10.7)

where F̃S is the implemented substrate flow-rate, F ∗
S is the optimal open-loop control

strategy for the substrate flow-rate, C̄S is the measured substrate concentration in
the top tank, and C̄∗

S is the optimal substrate concentrations as described in 3.1. We
perform a numerical example with the open-loop control strategy determined by the
EOCP presented in section 10.1 and with the stabilising P-controller. Figure 10.3
presents the state estimates for the numerical experiment, and Figure 10.4 presents
the online estimates of the modelled parameters from the numerical experiment.

Figure 10.3: Results of numerical experiment of state estimation for the U-loop
bioreactor with CD-EKF. This figures describes the estimates of the
state variables.
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Figure 10.4: Results of numerical experiment of state estimation for the U-loop
bioreactor with CD-EKF. This figures describes the estimates of the
parameter variables.

10.3 U-loop nonlinear model predictive control
This section is a summary of the publication listed in Appendix F. In this paper,
we present an ENMPC for SCP production in a U-loop bioreactor. We formulate
a continuous-discrete SDE model based on the methanol growth model described
in section 3.1 and the U-loop reactor model described in Chapter 2. We measure
the dissolved oxygen at three points in the U-loop leg. We extend the model with
stochastic models describing the uncertain parameters described in section 10.2. We
also apply the stabilising P-controller described in section 10.2 and introduce clipping
at minimum and maximum substrate flow rates, as

F̃S = F ∗
S + KcS

(
C̄∗

S − C̄S

)
, (10.8a)

FS = max{FS,min, min{F̃S , FS,max}}. (10.8b)

In the ENMPC, we apply the CD-EKF described in Appendix E and solve the EOCP
using the direct simultaneous approach presented in Appendix D. Furthermore, we
introduce an input rate-of-movement penalty objective in the OCP, as described in
9.1. The EOCP is defined as

min
[x(t),u(t)]

tk+N
tk

ϕ = ϕX,eco + ϕu,eco + ϕ∆u + ϕs, (10.9)

subject to

x(t0) = x̂0|0, (10.10a)
dx(t) = f(x(t), u(t), θ)dt, , t ∈ [tk, tk+N ] , (10.10b)
u(t) = uk+j|k, t ∈ [tk+j , tk+j+1] , j ∈ {0, 1, . . . , N − 1}, (10.10c)
umin ≤ uk+j|k ≤ umax, j ∈ {0, 1, . . . , N − 1}. (10.10d)



112 10 Pilot-Scale U-loop Bioreactor for Single-Cell Protein Production

The performance measures ϕX,eco and ϕu,eco are as defined in (10.3). The performance
measure ϕ∆u is the input rate-of-movement penalty described in (9.14)-(9.17) and ϕs

is the penalty on the slack variables introduced by the including of soft constraints
as defined in (9.27)-(9.30). The numerical experiment was conducted over a 30 hours
with the NLP being solved once every hour over a 20 hour control horizon. The P-
controller stabilises the process between sampling times every minute. The maximum
computation time of the NLP was 70 seconds, which shows that the ENMPC is feasible
for real-time application. Figure 10.5 describes the states and manipulated variables
resulting from the numerical experiment. Figure 10.6 describes the estimates of the
modelled parameters computed by the CD-EKF.

10.4 Summary
In this chapter, we presented advanced process control tools for economic optimising
control for SCP production in a U-loop bioreactor. The chapter was a summary of the
publications listed in Appendices D, E, and F. We formulated and solved an EOCP
for profit maximisation of SCP production in the U-loop reactor. We described the
revenue in terms of the harvested biomass and cost in terms of the input raw material
expenses. Additionally, we included Mayer terms describing the value of the initial
and final biomass content of the U-loop reactor. This removed the tendency for
the ENMPC to empty the reactor at the final time-step in the control horizon. We
presented the CD-EKF and a model extension including uncertain parameters in the

Figure 10.5: Numerical closed-loop nonlinear model predictive control experiment
for the U-loop bioreactor. This figure describes the states and manip-
ulated inputs.
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Figure 10.6: Numerical closed-loop nonlinear model predictive control experiment
for the U-loop bioreactor. This figure describes the online estimates
of the modelled parameters.

state space. We applied the CD-EKF to estimate states and modelled parameters in
an numerical experiment for SCP production in the U-loop reactor with a stabilising
P-controller. Finally, we presented ENMPC and applied it in a numerical experiment
with the U-loop reactor. We demonstrated that the ENMPC system could successfully
stabilise the process through the start up and at high productivity while maximising
profit. Furthermore, the implementation was demonstrated to be real-time feasible.
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CHAPTER11
Laboratory-Scale
Continuous Stirred
Tank Reactor for

Single-Cell Protein
Production

This chapter is partially based on the work presented in the publication listed in Ap-
pendix A. In this chapter, we present economic optimising control for SCP production
in a laboratory-scale fermenter. We present a growth models based on methane as
carbon source and ammonium as nitrogen source. We include chemical equilibrium
reactions to determine the pH-value and concentrations of components relevant to
growth, e.g. ammonium. This results in a nonlinear system involving SDAEs. We
present an EOCP to maximise profit in the nonlinear system. We apply a direct
simulataneous approach and an implicit Euler temporal discretisation to formulate a
nonlinear NLP. We compute the optimal trajectory as the solution to the NLP. We
present the CD-EKF and extend the SCP production model with an uncertain model
parameter. Finally, we apply the optimal trajectory from the EOCP in an open-loop
numerical experiment for state estimation with the CD-EKF. The state and param-
eter estimates successfully converge to the true values in the numerical experiment.
Figure 11.1 is an image of the physical laboratory-scale fermenter.

The chapter is structured as follows: in section 11.1, we present a summary of the
paper listed in Appendix A. In the paper, we present a model for growth of Methy-
lococcus capsulatus (Bath) and chemical equilibrium in a laboratory-scale fermentor.
In section 11.2, we present the CD-EKF for state estimation in nonlinear systems
involving SDAEs. We apply the CD-EKF to the laboratory-scale fermenter in an
open-loop numerical experiment. Finally, 11.3 summarises the work presented in the
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chapter.

11.1 Modelling and economic optimal control
The work presented in this section is a summary of the paper listed in Appendix A.
In this paper, we present a growth model for SCP production of M. capsulatus and a
CSTR model describing a laboratory-scale fermenter. The resulting model is a DAE
model in the form

dx(t) = f(x(t), y(t), u(t), θ)dt, x(t0) = x0, (11.1a)
0 = g(x(t), y(t), θ). (11.1b)

The growth model is presented in section 3.5, as

CH4 + O2 + H2O −−→ CO2 + 4 H3O+, r1, (11.2a)

CH4 + O2 + 2
10

NH4
+ −−→ CH1.8O0.5N0.2 + 15

10
H2O, r2. (11.2b)

In addition to the growth kinetics, we include the chemical equilibrium reactions

H2O(aq) + H2O(aq) −−⇀↽−− H3O+(aq) + OH−(aq), Ke,W , (11.3a)
NH3(aq) + H2O(aq) −−⇀↽−− NH4

+(aq) + OH−(aq), Ke,N , (11.3b)
CO2(aq) + H2O(aq) −−⇀↽−− H2CO3(aq), Ke,C1, (11.3c)

H2CO3(aq) + H2O(aq) −−⇀↽−− HCO3
−(aq) + H3O+(aq), Ke,C2, (11.3d)

HCO3
−(aq) + H2O(aq) −−⇀↽−− CO3

2−(aq) + H3O+(aq), Ke,C3, (11.3e)

as well as the strong acid and base reactions for nitric acid and sodium hydroxide to
control pH-value in the reactor

HNO3(aq) + H2O(aq) −−→ NO3
−(aq) + H3O+(aq), (11.4a)

NaOH(aq) −−→ Na+(aq) + OH−(aq). (11.4b)

Figure 11.2 illustrates the gas-liquid CSTR model describing the laboratory-scale
fermenter. We define an EOCP for optimal biomass production, as

min
[x(t),y(t)]

tf
t0

,{uk}N−1
k=0

ϕ = ϕX,eco + ϕu,eco, (11.5)

subject to

x(t0) = x̂0|0, (11.6a)
dx

dt
(t) = f(x(t), y(t), u(t), θ), , t ∈ [t0, tf ] , (11.6b)

0 = g(x(t), y(t), θ), t ∈ [t0, tf ] , (11.6c)
u(t) = uk, t ∈ [tk, tk+1] , k ∈ {0, 1, . . . , N − 1}. (11.6d)
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Figure 11.1: Image of laboratory-scale fermenter for single-cell protein production.

The performance measure ϕX,eco is the SCP production revenue maximisation matrix
described in (9.21)-(9.23), but where the Mayer term is modified to only include the
CSTR biomass content. The performance measure ϕu,eco is the input cost minimisa-
tion metric described (9.18)-(9.20). We introduce a parametrisation of the algebraic
variables, as

y(t) = 10−a(t), (11.7)

such that the parametric variable, a(t), corresponds to the negative logarithm of
y(t), i.e. aC(t) = − log10 (yC(t)) = pC for an algebraic component, C. This means,
that for an algebraic variable describing the concentration of hydronium ion, we are
describing the pH-value directly with the parametric variable, a(t). We apply the
direct simultaneous approach described in section 9.1 and solve the resulting NLP
using IPOPT in Matlab. We compute model derivatives and formulate the NLP
using the automatic differentiation and optimisation toolbox Casadi [108]. Figure
11.3 describes a set of key performance indicators for the solution to the EOCP.
Figure 11.4 describes the states and algebraic variables for the solution to the EOCP.
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Liquid
Inlets
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Liquid
Outlets
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Figure 11.2: Illustration of the laboratory-scale continuous stirred tank reactor for
single-cell protein production.

11.2 State estimation
In this section, we apply the CD-EKF as presented in Chapter 8 to the laboratory-
scale bioreactor described in Appendix A. We introduce uncertainty in the DAE
model by introducing the uncertain parameter for the maximum specific growth rate,
as

dµmax(t) = κµmax (µ̄max − µmax(t)) + σµmaxdωµmax(t), (11.8)

where κµmax is a scaling parameter for the drift term, µ̄max is the nominal value for
the maximum growth rate, σµmax is the diffusion parameter, and the process noise,
ωµmax(t), is a standard Wiener process, i.e. dωµmax(t) ∼ N (0, Idt). We introduce
measurements of the pH-value and dissolved oxygen from the reactor at equidistant
discrete sampling intervals of length Ts. From this, we formulate an SDAE model in
the form

dx(t) = f(x(t), y(t), u(t), θ)dt + σ(x(t), y(t), θ)dω(t), x(t0) = x0, (11.9)
0 = g(x(t), y(t), θ), (11.10)

ym(tk) = hm(x(tk), y(tk), θ) + v(tk, θ), v(tk, θ) ∼ N (0, R(θ)).
(11.11)
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Figure 11.3: Key performance indicators for solution to the economic optimal con-
trol problem for single-cell protein production in a laboratory-scale
continuous stirred tank reactor.

To improve the conditioning of the residual Jacobian, (8.22), applied in simulation
and state estimation, we introduce the linear scaling described in 6.2, as

Sg = diag (sg) , sg =
[
107, 107, 104, 108, 1010, 100, 100, 100] , (11.12a)

Sy = diag (sy) , sy =
[
100, 100, 100, 100, 100, 100, 100, 100] . (11.12b)

We solve the EOCP formulated in Appendix A for a horizon of 48 hours. We apply
the direct simultaneous approach and implicit Euler numerical integration scheme as
described in Chapter 9 to formulate an NLP. We perform a numerical experiment
implementing the open-loop control strategy computed as the solution the NLP. We
measure pH and dissolved oxygen concentration in the reactor every 30 minutes, i.e.
Ts = 30 minutes. For the numerical experiment, we define a simulation and an
estimation model to simulate plant-model mismatch. We initialise the simulation
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Figure 11.4: States for solution to the economic optimal control problem for single-
cell protein production in a laboratory-scale continuous stirred tank
reactor.

and estimation models, as

x0 =



8.12 · 10−2

1.43 · 10−3

1.18 · 10−3

2.37 · 10−2

2.07 · 10−2

6.67 · 10−5

5.30 · 10−8

3.92 · 10−2

3.46 · 10−2

2.39 · 10−2

2.28 · 10−2


, p0|0 =



5.00 · 10−4

5.00 · 10−7

5.00 · 10−7

1.00 · 10−4

1.00 · 10−5

1.00 · 10−6

1.00 · 10−12

1.00 · 10−4

1.00 · 10−4

1.00 · 10−4

1.00 · 10−2


, (11.13)

where the estimation model is initialised with state x̂0|0 = x0 + 0.5x0 and state
covariance P0|0 = diag

(
p0|0

)
. The measurement covariances were chosen identically

for the simulation and estimation models, as

Rs(θs) = Re(θe) =
[
5.00 · 10−2

1.00 · 10−8

]
, (11.14)

where Rs is the measurement noise covariance for the simulation model and Re is the
measurement noise covariance for the estimation model. Table 11.1 list the param-
eters for the simulation and estimation models, respectively. Figure 11.5 describes
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the estimated states and algebraic variables including uncertainty for the numerical
experiment. We see that the CD-EKF provides reliable estimates of the states and
algebraic variables almost immediately and converges to the true values after between
1 and 10 hours. Figure 11.6 describes the estimate of the uncertain parameter, i.e.
the maximum growth rate, and the measured variables, i.e. pH and dissolved oxygen
concentration. Notably, the parameter estimate converges to the true value after
around 10 hours, corresponding well to the observed convergence in the states and
algebraic variables. The estimates of the measured variables converge after 1-2 hours.
It was evident from the simulation study that the initial guess for the state covariance
was of crucial importance to the convergence of the estimates. If the covariance was
chosen too large, the estimates would converge very slowly, and if the covariances
were chosen too small, the estimates would not converge at all.

11.3 Summary
In this chapter, we presented a summary of the paper listed in Appendix A and con-
ducted a numerical experiment of state estimation for a system described by nonlinear
SDAEs. In section 11.1, we presented a summary of the laboratory-scale fermentation
process for SCP. We briefly outlined the model equations and described the EOCP. In
section 11.2, we extended the model of the laboratory-scale fermenter by introducing

Figure 11.5: Estimates of state and algebraic variables in the numerical experiment
for the laboratory-scale bioreator.
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Table 11.1: Parameters in the simulation and estimation models in the numerical
experiment of single-cell protein production the laboratory-scale biore-
actor.

Simulation model Estimation model
Symbol Value Value Unit
µ̄max 2.28 · 10−1 2.00 · 10−1 1/h
κµmax 1.00 1.00 · 10−1 -
σµmax 5.00 · 10−2 5.00 · 10−2 -
α 2.00 · 10−2 2.00 · 10−2 -
δ 2.00 · 10−2 2.00 · 10−2 -
m 9.80 · 10−5 9.80 · 10−5 1/h
KN 1.30 · 10−3 1.30 · 10−3 mol/L
KN,ox 3.30 · 10−3 3.30 · 10−3 mol/L
KS 7.50 · 10−5 7.50 · 10−5 mol/L
KO 5.50 · 10−5 5.50 · 10−5 mol/L
Ke,W 1.00 · 10−14 1.00 · 10−14 -
Ke,N 5.62 · 10−10 5.62 · 10−10 -
Ke,C1 1.58 · 10−7 1.58 · 10−7 -
Ke,C2 4.27 · 10−7 4.27 · 10−7 -
Ke,C3 4.79 · 10−11 4.79 · 10−11 -
cIn,N 5.88 5.88 mol/L
cIn,Na 1.00 1.00 mol/L
cIn,NO 1.00 1.00 mol/L
cIn,Sg

1.90 · 10−1 1.90 · 10−1 mol/L
cIn,Og

1.90 · 10−1 1.90 · 10−1 mol/L
kLaS 3.89 · 102 3.89 · 102 1/h
kLaO 3.71 · 102 3.71 · 102 1/h
kLaC 3.26 · 102 3.26 · 102 1/h
Hpc

S 7.05 · 102 7.05 · 102 (atm L)/mol
Hpc

O 7.59 · 102 7.59 · 102 (atm L)/mol
Hpc

C 2.99 · 102 2.99 · 102 (atm L)/mol
T 3.15 · 102 3.15 · 102 K
V 1.00 1.00 L

uncertainty in the parameter describing the maximum growth rate. We preformed an
open-loop numerical experiment applying the resulting SDAE model and applied the
state estimation method described in Chapter 8. We demonstrated that all estimates
computed by the CD-EKF converged to the true values of the state after around 10
hours in the simulation.
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Figure 11.6: Estimates of uncertain parameter and measured variables in the nu-
merical experiment for the laboratory-scale bioreator.
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Part V

Controller Performance
Quantification and Tuning





CHAPTER12
High-Performance

Monte Carlo
Simulation

This chapter is a summary of the publication listed in Appendix C. In this paper,
we present a high-performance Monte Carlo simulation toolbox for tuning and un-
certainty quantification (UQ) for closed-loop nonlinear systems involving stochastic
differential equations (SDEs). We achieve large-scale computational feasibility of the
Monte Carlo approach by parallel implementation in C for shared memory architec-
tures. We present a test system of single-cell protein (SCP) production in a fed-batch
bioreactor and test four different controller for optimal biomass production; 1) an
open-loop bang-bang control strategy as described in [83], 2) a proportional-integral-
derivative (PID) controller, a PID control with clipping, and a nonlinear model pre-
dictive controller (NMPC). We perform 30,000 closed-loop simulations applying the
open-loop control strategy in approximately 1 second and 30,000 closed-loop simula-
tions tuning the two PID control strategies in approximately 8 second. We perform
1,000 closed-loop simulations for the NMPC in approximately 30 minutes. We show
close to linear scaling on a single NUMA node with 16 cores and a scale-up of 27.3
times on two NUMA nodes with a total of 32 cores. The toolbox has been applied
in a number of applications already for controller performance in diabetes treatment
[109, 110], for performance quantification of optimisation and control algorithms [111,
112], and for controller matching [113].

The chapter is structured as follows: in section 12.1, we present formulation and
implementation of a high-performance Monte Carlo simulation toolbox for UQ in
closed-loop systems. In section 12.2, we present a numerical study of the performance
of four controller; an open-loop controller, two PIDs, and an NMPC, on a fed-batch
bioreactor. We perform 30,000 Monte Carlo simulation for the open-loop and PID
controllers and 1,000 simulations for the NMPC. We quantify the performances of the
controllers using the numerical simulation results, i.e. UQ. Finally, in section 12.3,
we summarise the work presented in the chapter.
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12.1 Closed-loop simulations
In this section, we consider closed-loop simulation of nonlinear systems involving
SDEs in the form

dx(t) = f(t, x(t), u(t), d(t), θ)dt + σ(t, x(t), u(t), θ)dω(t), (12.1a)
z(t) = gm(t, x(t), θ), (12.1b)

ym(tk) = hm(tk, x(tk), θ) + v(tk, θ), (12.1c)
where

x(t0) ∼ N (x̄0, P0), dω(t) ∼ N (0, Idt), v(tk, θ) ∼ N (0, R(θ)), (12.2)
and where x(t) are states, u(t) are manipulated variables, d(t) are unmeasured distur-
bances, ym(tk) are measured variables, z(t) are output variables, and θ) are param-
eters. The process noise ω(t) is a standard Wiener process and v(tk, θ) is normally
distributed measurement noise. f(·) is the state drift function, σ(·) is the state dif-
fusion function, gm(·) is the output function, and hm(·) is the measurement function.
We describe discretised formulations of the system and controller and present a com-
pact description of closed-loop systems using these formulations.

12.1.1 System formulation
We describe the system in discrete time, using the explicit-explicit or implicit-explicit
numerical integration schemes for SDE models in the form presented in (12.1), as

xk+1 = Ψ(tk, xk, uk, dk, ωk, θ), (12.3a)
yk = hm(tk, xk, θ), (12.3b)
zk = gm(tk, xk, θ), (12.3c)

where Ψ(·) is the chosen numerical integration scheme and ωk is a set of Nt noise
realisation of the diffusion ∆ωk ∼ N (0, I∆t), where Nt is the number of internal
steps within each sampling time of the simulation.

12.1.2 Controller formulation
We describe the controller in terms of three base operations; state estimation, control,
and prediction. We consider controllers in the form

xc
k+1 = κ

(
tk, xc

k, ym
k+1, uk, θ

)
, (12.4a)

uk = λ (tk, xc
k, θ) , (12.4b)

zm,c
k = µ (tk, xc

k, θ) , (12.4c)
where xc

k is the filtered state estimate, ym
k is a measurement taken at time t = tk, and

zm,c
k are predictions. κ(·) is the state estimator, λ(·) is the controller, and µ(·) is the

predictor. We apply four control strategies in the closed-loop simulations; open-loop,
PID, PID with clipping, and NMPC.
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Open-loop control

We consider an open-loop controller in the form

uk = λ(tk, xc
k, θ) (12.5a)

= ūk, (12.5b)

where ūk is the pre-computed optimal open-loop bang-bang control strategy described
in [83]. The state estimator, κ(·), and predictor, µ(·), are not defined for the open-loop
controller.

PID

We consider a PID controller in the form

uk = λ(tk, xc
k, θ) (12.6a)

= ūk + Pk + Ik + Dk. (12.6b)

ūk is the nominal control action and

Pk = Kpek, (12.7a)
Ik = Ik−1 + TsKiek, (12.7b)

Dk = −Kd

Ts

(
ym,F

k − ym,F
k−1

)
, (12.7c)

where ek = ȳm
k − ym,F

k is the tracking error, ȳm
k is the target, and ym,F

k is a filtered
measurement computed by the discrete low-pass filter

ym,F
k = κ(tk−1, ym,F

k−1 , ym
k , uk−1, θ) (12.8a)

= (1 − α)ym,F
k−1 + αym

k . (12.8b)

The predictor, µ(·), is not defined for the PID controller.

PID with clipping

We consider a PID controller with clipping in the form

uk = λ(tk, xc
k, θ) (12.9a)

= max {umin, min {umax, ũk}} , ũk = ūk + Pk + Ik + Dk, (12.9b)

where umin and umax are the minimum and maximum inputs, respectively. The
proportional term, Pk, integral term, Ik, and derivative term Dk, are computed as
presented in (12.7).
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NMPC

In the NMPC, we consider a controller, λ(·), defined by the OCP

min
[x(t);u(t)]

tk+N
tk

ϕ = αzϕz + α∆uϕ∆u, (12.10)

subject to

x(tk) = x̂k|k, (12.11a)
dx

dt
= f(t, x(t), u(t), d(t), θ), tk ≤ t ≤ tk+N , (12.11b)

zm(t) = gm(t, x(t), θ), tk ≤ t ≤ tk+N , (12.11c)
u(t) = uk+j|k, tk ≤ t ≤ tk+N , j ∈ Nc, (12.11d)
d(t) = dk+j|k, tk ≤ t ≤ tk+N , j ∈ Nc, (12.11e)

umin ≤ uk+j|k ≤ umax, j ∈ Nc, (12.11f)
∆umin ≤ ∆uk+j|k ≤ ∆umax, j ∈ Nc, (12.11g)

where Nc = {0, 1, . . . , Nc −1} defines the Nc step control horizon of discrete sampling
intervals of length Ts. We apply the direct simultaneous approach and discretise the
system dynamics and integrals using the right rectangular rule, i.e. implicit Euler.
We apply IPOPT to solve the resulting NLP. We consider the the state estimator,
κ(·), to be the CD-EKF as described in Chapter 7 the publication. The predictions,
µ(·), are computed by the CD-EKF given the optimal input trajectory computed as
the solution to the NLP.

12.2 Numerical experiments
In this section, we present numerical experiments. We present an example system of
SCP production in a fed-batch reactor. We perform a series of scaling experiments to
evaluate the performance of the toolbox. We conduct numerical experiments testing
the different control strategies. We perform 30,000 closed-loop simulations for the
open-loop and PID strategies and 1,000 closed-loop simulation for the NMPC.

12.2.1 Fed-batch reactor
We consider a fed-batch reactor on the form presented in the technical report listed
in Appendix G. We consider an SDE model in the form

dV

dt
(t) = eT F (t) + σV dωV (t), V (t0) = V0, (12.12a)

dn

dt
(t) = CInF (t) + R(c)V + σnωn(t), n(t0) = n0, (12.12b)
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where V (t) is the reactor volume and n(t) = [nX , nS ]T are the masses of biomass and
substrate in the reactor, respectively, and F (t) = [FW (t), FS(t)]T are the manipulated
input flow-rates. σV is the diffusion parameter for the volume and σn is a diagonal
matrix of diffusion parameters for the masses. CIn are the inlet concentrations and
R(c) are the productions.

Stoichiometry and kinetics

We describe the growth of biomass in the fed-batch reactor by the stoichiometry

1.777S −−→ X, r(c), (12.13)

where S is the substrate, X is the biomass, and r(c) is the rate of reaction. The
system is described by the stoichiometric matrix

S =
X S

[ ]1 −1.777 r1 . (12.14)

We rate of reaction is

r(c) = µ(c)cX , (12.15)

where µ(c) is the growth rate and cX is the biomass concentration in the reactor. The
growth rate is

µ(c) = µmaxµS(c), (12.16)

where µmax is the maximum growth rate and µS(c) is the specific growth rate on
substrate. We apply Monod-Haldane growth kinetics to describe the specific growth
rate on substrate, as

µS(c) = cS

KS + cS + c2
S/KS,I

, (12.17)

where KS is the saturation constant and KS,I is the inhibition constant. We note
that the Monod-Haldane expression gives rise to an optimal substrate concentration
for growth, as

c∗
S =

√
KSKS,I . (12.18)

We elaborate further on the optimal substrate concentration in Chapter 3.

12.2.2 Scaling
Monto Carlo simulation provides an excellent problem for parallelisation, as each
individual simulation is independent of all other simulation, i.e. a so-called embar-
rassingly parallel problem. Due to this, we expect the problem to scale almost linearly
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with the number of cores. We perform numerical scaling experiments on one and two
NUMA nodes with each 16 cores. We run 10,000 closed-loop simulations in each
experiment and benchmark the results against a serial implementation in Matlab of
the same system. We observe a 2300 times speed-up on 32 cores for the C imple-
mentation compared to the serial Matlab implementation and a 27.3 times speed-up
relative to a a serial C version. We observe almost linear scaling on a single NUMA
node of 16 cores and a slight decrease in scaling on two NUMA nodes. The decrease in
scaling on several NUMA nodes is expected, as the implementation is not optimised
for parallelisation on multiple NUMA nodes. Figure 12.1 illustrates the results of the
numerical scaling experiments.

12.2.3 PID tuning
We apply the Monte Carlo simulation toolbox to choose optimal values of the gains
of the PID controller; Kp, Ki, and Kd. We generate 1,000 process noise realisations.
We choose 101 equidistant values for each constant Kj ∈ [0, 100] for j ∈ {p, i, d}. We
conduct a total of 3 × 101, 000 closed-loop simulations for the chosen PID tunings
and determine the optimal tuning in terms of the maximal biomass concentrations at
the final time. We optimise the gains sequentially, i.e. a type of coordinate descent
approach. The closed-loop simulations has a wall-time of ∼ 7.5 seconds. The optimal
PID gains are

Kp = 85, Ki = 3, Kd = 0. (12.19)

Figure 12.2 describes the tuning profiles generates by the Monte Carlo simulations.

12.2.4 Performance quantification
We apply the Monte Carlo simulation toolbox to determine performance distributions
for the different control strategies. We perform 30,000 simulations applying the open-
loop control strategy in 0.78 seconds and plot the biomass in the reactor at the
final time for all realisations. We perform 30,000 closed-loop simulations applying a
PID controller with sub-optimal tuning in 0.77 seconds and plot the biomass in the
reactor at the final time for all realisations. We perform 30,000 closed-loop simulations
applying a PID controller with the optimal tuning determined in this work in 0.76
seconds and plot the biomass in the reactor at the final time for all realisations. We
perform 1,000 closed-loop simulations applying the NMPC in ∼ 30 minutes and plot
the biomass in the reactor at the final times for all realisations. We do not observe
the same scaling profile for the NMPC, as dynamic memory-allocation is being done
inside the optimiser, i.e. IPOPT. Figure 12.3 presents the UQ of the different control
strategies applied to the fed-batch reactor example.
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Figure 12.1: Results of the numerical experiments to determine the scaling of the
parallel Monte Carlo simulation toolbox. Each numerical experiment
runs 10,000 simulations for the example fed-batch reactor for single-
cell protein production.

Figure 12.2: Optimal tuning for PID controller determined from 303,000 simulation
using the Monte Carlo simulation toolbox.

12.3 Summary
In this chapter, we presented a summary of the publication listed in Appendix C.
We presented a formulation of Monte Carlo simulation for closed-loop systems. We
presented a high-performance implementation of a Monte Carlo simulation toolbox
in C. We used Openmp to parallelise the independent simulations. We presented a
scaling experiment, demonstrating that the toolbox has close to linear scaling on 16
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Figure 12.3: Distributions resulting from the Monte Carlo simulations applying
open-loop, PID, tuned PID, and NMPC. Top left: Distribution of
biomass at final time for 30,000 closed-loop simulation applying the
open-loop control strategy. The simulations took 0.78 seconds. Top
right: Distribution of biomass at final time for 1,000 closed-loop simu-
lations applying NMPC. The simulations took approximately 30 min-
utes. Bottom left: Distribution of biomass at final time for 30,000
closed-loop simulations applying an untuned PID controller. The sim-
ulations took 0.77 seconds. Bottom right: Distribution of biomass
at final time for 30,000 closed-loop simulations applying an optimally
tunes PID controller. The simulations took 0.76 seconds.

cores on a single NUMA node and 27.3 times scale-up on 32 cores across two indi-
vidual NUMA nodes. We formulated a fed-batch bioreactor example for numerical
experiments. On the bioreactor, we conducted 303,000 closed-loop simulations in
∼ 7.5 seconds to determine an optimal tuning for a PID controller. We performed
UQ on four different control strategies applied to the bioreactor example. We per-
formed 30,000 simulations applying open-loop and two PID control strategies in less
than 1 second and 1,000 closed-loop simulations applying NMPC in ∼ 30 minutes.
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Finally, we quantified the performance of the control strategies statistically from the
simulation study.
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Conclusions and Suggestions for
Future Work





CHAPTER13
Conclusion

In this chapter, we present conclusions and suggestions for future work based on the
work presented in this thesis.

13.1 Conclusions
In this section, we present conclusions for the work presented in this thesis. Firstly,
we recall the main objectives of the work as described in the introduction to the thesis,
as

1. describe growth models for Methylococcus capsulatus (Bath) for the purpose of
single-cell protein production,

2. describe a dynamical model for the U-loop bioreactor,

3. formulate and test state estimation methods in nonlinear systems involving
stochastics,

4. formulate a nonlinear model predictive control system for direct optimising of
economic performance measures,

5. and formulate methods of investigating performance of nonlinear control solu-
tions.

In this work, we presented a set of growth models for the methanotropic bactria
Methylococcus capsulatus (Bath). We presented model based on methanol as carbon
source an nitric acid as nitrogen source and we presented a model based on methane
as carbon source and ammonia as nitrogen source. Based on a metabolic study of
the microorganism, we presented a growth model based on methane as carbon source,
which describes anabolic reactions from several nitrogen sources; ammonia, nitrite,
nitrate, and molecular nitrogen. Additionally, we discussed the model formulation for
catabolic repression in this model and suggested updates for the model formulation
to better describe the dynamics. We presented a reduced model based on the same
metabolic study with methane and carbon source and ammonium as nitrogen source.
Furthermore, we presented models describing chemical equilibrium reactions in the
context of single-cell protein production. We presented models describing a novel U-
loop bioreactor and a laboratory-scale continuous stirred tank bioreactor (CSTR). We
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formulate continuous-discrete nonlinear systems involving SDEs and SDAE describing
SCP production processes.

We presented state estimation methods for the purpose of monitoring and con-
trol in the nonlinear systems presented in this work. We presented four methods
for state estimation in continuous-discrete nonlinear systems involving SDEs; the
continuous-discrete extended Kalman filter (CD-EKF), unscented Kalman filter (CD-
UKF), ensemble Kalman filter (CD-EnKF), and a continuous-discrete particle filter
(CD-PF). We discussed advantages and disadvantages of each method, and where
they might be applied most successfully. Additionally, we presented the CD-EKF for
continuous-discrete nonlinear systems involving SDAEs. This was especially relevant
when chemical equilibrium reactions were introduced in the system descriptions to
include measurement information from common online sensors, e.g. pH-value.

We presented an economic nonlinear model predictive control (ENMPC) formula-
tion involving the state estimation methods discussed previously, as well as economic
optimal control problems (EOCP). We presented objectives in which the productivity
of the production process is directly optimised. The SCP production process resulted
in a stiff and unstable system. We applied a direct simultaneous approach to handle
system instability and discretised the continuous-time OCP with an implicit Euler
numerical integration scheme, i.e. right rectangular rule, to handle stiffness of the
high-dimensional system. We demonstrated in the control study, that the ENMPC
could stabilise start-up and maintain high productivity in the U-loop bioreactor. Fur-
thermore, we demonstrated that the ENMPC is real-time feasible for control of the
U-loop bioreactor.

We presented numerical experiments for modelling, economic optimal control,
state estimation using the CD-EKF, and a closed-loop simulation of ENMPC for
SCP production in a U-loop bioreactor. In the U-loop bioreactor experiments, we
observed stable start-up and high productivity over the control horizon. Addition-
ally, we presented numerical experiments of modelling, economic optimal control,
and state estimation for SCP production in a laboratory-scale bioreactor including
chemical equilibrium reactions. In the numerical experiments, we observed good es-
timates of states, algebraic variables, and modelled parameters including available
measurements of dissolved oxygen and pH-value.

Finally, we presented a high-performance Monte Carlo simulation toolbox for
quantification of controller performance in closed-loop systems. The toolbox was
implemented in C and applied Openmp for parallel computing in high-performance
closed-loop simulation with control applied to stochastic systems. We applied the
toolbox on a numerical experiment for SCP production in an FBR and show a 2300
times speed-up relative to a benchmark serial Matlab implementation. We applied
the Monte Carlo simulation toolbox for uncertainty quantification of controller perfor-
mance for open-loop, PID, PID with clipping, and NMPC control strategies applied
to the fed-batch bioreactor example.
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13.2 Suggestions for future work
In this section, we present suggestions for future work based on, and related to, the
work presented in this thesis on SCP production. We focus particularly on suggestions
regarding

• modelling,

• estimation,

• and implementation and testing.

Modelling

In the application of monitoring and control systems, it is important to incorporate as
much of the measurement information as possible in the reconstruction of the model
states. It is for this reason, that we have included chemical equilibrium reactions in
the model. pH-value is a common and readily available online measurement in chem-
ical and biochemical systems, and it should therefore also be included in the model.
We suggest that models describing chemical equilibrium reactions are investigated to
formulate models involving SDAEs. In this work, we have focused on models describ-
ing chemical equilibrium reactions by applying thermodynamic equilibrium constants,
but we suggest to also investigate formulations based on minimisation of Gibbs free
energy. Consider the optimisation problem for the minimisation of Gibbs free energy
in chemical equilibrium systems

min
n

ϕ = G(n), (13.1)

subject to

An = b, (13.2a)
n ≥ 0, (13.2b)

where G(n) is the Gibbs free energy in the system for the mole numbers of the
modelled components, n. We may formulate a set of algebraic equations arising from
the 1st order necessary optimality conditions, as

0 = ∇L(n, µ), (13.3a)
0 = An − b, (13.3b)

and then use a solver with a nonnegativity constraint on the mole number, n, to ensure
that the nonnegativity constraint is satisfied in the solution, i.e. n ≥ 0. It is suggested
that a close dialogue is maintained with the process experts in the development of new
fermentation models, such that they accurately reflect the pilot-scale reactor setup
operated in Kalundborg by Unibio A/S. The pilot-scale U-loop bioreactor is ideal for
testing the feasibility of monitoring and control systems.
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Estimation

We have formulated and implemented a number of state estimation algorithms in
this work. However, they have not been yet implemented as tools which can be
directly utilised by operators. Monitoring tools utilising state estimation based on
available online and offline measurements could potentially be of great benefit to
process operators. Instead of basing decisions on measured variables only, monitoring
tools would give operators information about internal unmeasured variables as well,
e.g. substrate concentrations and concentrations of inhibiting components, not only at
the present time, but also predictively as the process evolves in time. We suggest that
such tools are utilised actively in process operation. Furthermore, we suggest that
parameter estimation methods based on the state estimators are investigated, and
that the laboratory-scale setup is used for identification of kinetic parameters in the
growth model. We suggest formulating methods for maximum likelihood estimation
(MLE) and maximum a posteriori estimation (MAPE) for the estimation of kinetic
parameters.

Implementation and testing

Finally, we suggest that the methods and control systems developed in this work are
implemented and tested on physical bioreactors. The results suggest that the control
solutions can increase productivity and stability of the U-loop bioreactor significantly.
Given a model which accurately reflect the pilot-scale reactor setup in Kalundborg,
this would be an ideal location to test both monitoring and control systems. In
this context, the importance of closed dialogue with process operators and experts
should again be emphasised in the development of models and control systems which
accurately reflect process dynamics and the demands of operators.
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Modelling and Economic Optimal Control
for a Laboratory-scale Continuous Stirred Tank Reactor

for Single-cell Protein Production

Marcus Krogh Nielsen, Jens Dynesen, Jess Dragheim, Ib Christensen, Sten Bay Jørgensen,
Jakob Kjøbsted Huusom, Krist V. Gernaey, John Bagterp Jørgensen

Abstract— In this paper, we present a novel kinetic growth
model for the micro-organism Methylococcus capsulatus (Bath)
that couples growth and pH. We apply growth kinetics in
a model for single-cell protein production in a laboratory-
scale continuous stirred tank reactor inspired by a physical
laboratory fermentor. The model contains a set of differential
algebraic equations describing growth and pH-dynamics in the
system. We present a method of simulation that ensures non-
negativity in the state and algebraic variables. Additionally,
we introduce linear scaling of the algebraic equations and
variables for numerical stability in Newton’s method. Finally,
we conduct a numerical experiment of economic optimal control
for single-cell protein production in the laboratory-scale reactor.
The numerical experiment shows non-trivial input profiles for
biomass growth and pH tracking.

I. INTRODUCTION

Single-cell protein (SCP) provides an alternative source
of protein for the feed and food industries to meet the
growing demand for protein in the coming decades [1].
Methanotrophs are bacteria capable of metabolising methane
as their source of carbon. Methane is a cheap source of
carbon. Methylococcus capsulatus (Bath) are methanotrophic
bacteria with high protein content that is well-suited for
production of SCP [2].

M. capsulatus is aerobic and growth therefore involves
fixation of methane and oxygen gas. A U-loop bioreactor has
been developed for SCP production. It has been demonstrated
that the U-loop bioreactor have good mixing and mass
transfer properties [3]. Early work on kinetic modelling for
growth of M. capsulatus shows process instability for high
biomass concentrations [4]–[6]. Advanced process control
techniques have been applied in numerical experiments for
monitoring [7] and to increase stability and productivity in
both open- and closed-loop [8], [9]. The metabolism of M.
capsulatus is well-described in the literature and a metabolic
network model exists [10]. Metabolic knowledge and process
data show that the micro-organism can metabolise several
nitrogen sources: ammonium, nitrate, nitrite, and molecular
nitrogen. A kinetic growth model exists for growth on these
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Fig. 1. Laboratory-scale reactor for fermention of M. capsulatus.

nitrogen sources with methane as carbon source [11]. Kinetic
parameters for the model are estimated from experimental
data [12]. The micro-organism metabolises ammonium rather
than ammonia directly, pH-dynamics are therefore highly
relevant to model precise concentrations of growth-related
chemical components. A model including equilibrium reac-
tion in the growth of M. capsulatus exists, but the kinetics
do not depend explicitly on the algebraic variables [13]. To
the best of our knowledge, models coupling growth kinetics
and pH-dynamics for M. capsulatus as presented in this work
have not yet been introduced in the literature.

In this paper, we present a novel growth model for
SCP production by cultivation of the micro-organism M.
capsulatus. In the model, methane is the carbon source and
ammonium is the sole nitrogen source, i.e. growth on nitrite,
nitrate, and molecular nitrogen is not included in the model.
As such, we apply chemical equilibrium reactions to describe
relevant pH-dynamics. We model the fermentation process
in a laboratory-scale continuous stirred tank reactor (CSTR),
based on a physical laboratory-scale fermentor. Fig 1 shows
the laboratory reactor. The resulting set of differential al-
gebraic equations (DAEs) model reactor dynamics, growth
kinetics, and pH equilibrium dynamics. Optimal control,
optimal design of experiments, and parameter estimation



motivate the development of the model presented in this
work.

The paper is organised as follows. Section II describes
modelling of growth kinetics, pH equilibrium dynamics, as
well as reactor dynamics for a CSTR. Section III presents
methods for numerical solution of DAEs with non-negativity
constraints as well as scaling of algebraic equations and
variables for numerical stability. Section IV describes an
economic optimal control problem (OCP) for SCP produc-
tion in a CSTR. Section V presents a numerical experiment
of optimal biomass production in a laboratory-scale CSTR.
Section VI presents conclusions.

II. MODELLING

In this section, we describe a mathematical model for SCP
production in a CSTR. The model is a system of DAEs in
the form

dx

dt
(t) = f(x(t), y(t), u(t), θ), x(t0) = x0, (1a)

0 = g(x(t), y(t), θ), (1b)

where f(·) are state dynamical equations, g(·) are algebraic
expressions, t is time, x(t) ∈ Rnx are states, y(t) ∈ Rny are
algebraic variables, u(t) ∈ Rnu are manipulated variables,
and θ are system parameters.

A. Variable definitions

We define the sets

Cx,l = {X,N,NO,Na}, Cx,g = {S,O,C}, (2a)
Cx = Cx,l ∪ Cx,g, (2b)

Cy = {H3O
+,OH−,NH3,NH4

+,

CO2,H2CO3,HCO3
−,CO3

2−},
(2c)

Cf,l = {W,N,NO,Na}, Cf,g = {S,O}, (2d)
Cf = Cf,l ∪ Cf,g. (2e)

Cx,l is the set of dissolved state components, Cx,g is the set of
state components present as both in gas phase and dissolved
in water, Cx is the set of all state components, such that the
components in the state vector, cx, are the concentrations of
the state components, cx,i = [i] for i ∈ Cx. Cy is the set
of algebraic components, such that the components in the
algebraic variable vector, cy , are the concentrations cy,i for
i ∈ Cy . Cf,l is the set of liquid inlet flows, Cf,g is the set of
gaseous inlet flows, and Cf is the set of all inlet flows, such
that the components in the inlet flow vector, F , are Fi for
i ∈ Cf . The state components are

X = CH1.8O0.5N0.2, S = CH4, O = O2, (3a)

N = {NH3,NH4
+}, NO = NO3

−, Na = Na+, (3b)

C = {CO2,H2CO3,HCO3
−,CO3

2−}, (3c)
Sg = CH4(g), Og = O2(g), Cg = CO2(g). (3d)

For the inlet components, W is water.

B. Stoichiometry and kinetics
We describe a catabolic reaction and the anabolism of

ammonium (not including ATP and ADP) in M. capsulatus
in terms of the reactions

CH4 +O2 +H2O −−→ CO2 + 4H3O
+, r1, (4a)

CH4 +O2 +
2

10
NH4

+ −−→ X+
15

10
H2O, r2, (4b)

where X = CH1.8O0.5N0.2 is the biomass and ri(c) for
i ∈ {1, 2} are the reaction rates. The modelled stoichiometry
is

S + O −−→ C, r1(c), (5a)
S + O+ 0.2N −−→ X, r2(c). (5b)

The reactions in (5) correspond to the stoichiometric matrix

ν =

[
0 −1 −1 0 1 0 0 0 0 0
1 −1 −1 −0.2 0 0 0 0 0 0

]
. (6)

The reaction rates are

ri(c) = µi(c)cX , i ∈ {1, 2}, (7)

where cX is the biomass concentration. The specific growth
rates are

µ1(c) =

(
α

2δ
+

8

20

)
µ2(c) +

m

2δ
, (8a)

µ2(c) = µmaxµS(c)µO(c)µN (c), (8b)

where µmax is the maximum growth rate, α and δ are
parameters related to ATP production and consumption, and
m is a maintenance constant. The growth dependence for
methane, oxygen, and ammonium are

µS(c) =
cS

KS

(
1 +

c
NH

+
4

KN,ox

)
+ cS

, (9a)

µO(c) =
cO

KO + cO
, (9b)

µN (c) =
cNH+

4

KN + cNH+
4

, (9c)

The concentrations of dissolved methane, oxygen, and am-
monium are denoted ci for i ∈ {S,O,NH+

4 }, respectively.
Ki for i ∈ {S,O,N} are kinetic constants and KN,ox is
the ammonium inhibition constant. We note here that the
specific growth for methane, µS(·), directly depends on the
concentration of an algebraic component, cNH+

4
.

C. pH-balance

A set of chemical equilibrium reactions, stoichiometric
reactions, and mass and charge balances describe the pH
equilibrium dynamics in the system.

Weak acids and bases: The reactions describing weak
acid and base equilibrium are

2H2O(aq) −−⇀↽−−
H3O

+(aq) + OH−(aq),
Ke,W , (10a)

NH3(aq) + H2O(aq) −−⇀↽−−
NH4

+(aq) + OH−(aq),
Ke,N , (10b)

CO2(aq) + H2O(aq) −−⇀↽−−
H2CO3(aq),

Ke,C1, (10c)



H2CO3(aq) + H2O(aq) −−⇀↽−−
HCO3

−(aq) + H3O
+(aq),

Ke,C2, (10d)

HCO3
−(aq) + H2O(aq) −−⇀↽−−
CO3

2−(aq) + H3O
+(aq),

Ke,C3. (10e)

The equilibrium constants for water, Ke,W , ammonia, Ke,N ,
and carbon dioxide, Ke,C1, Ke,C2, and Ke,C3, govern the
equilibrium reactions.

Strong acids and bases: The reactions describing strong
acid and base dynamics are

NaOH(aq) −−→ Na+(aq) + OH−(aq), (11a)

HNO3(aq) + H2O(aq) −−→ NO3
−(aq) + H3O

+(aq). (11b)

The reactions are assumed to be instantaneous and complete.
System of algebraic equations: The chemical equilib-

rium reactions give rise to the algebraic equations

0 = [H3O
+][OH−]−Ke,W , (12a)

0 = [NH4
+][OH−]−Ke,N [NH3], (12b)

0 = [H2CO3]−Ke,C1[CO2], (12c)

0 = [HCO3
−][H3O

+]−Ke,C2[H2CO3], (12d)

0 = [CO3
2−][H3O

+]−Ke,C3[HCO3
−]. (12e)

The mass balance equations are

0 = [NH3] + [NH4
+]− cN , (13a)

0 = [CO2] + [H2CO3] + [HCO3
−]

+ [CO3
2−] + [CO2(g)]− cC .

(13b)

The charge balance equations are

0 = [OH−] + [HCO3
−]− 2[CO3

2−]

− cNO − [H3O
+]− [NH4

+]− cNa.
(14)

We denote the resulting algebraic system of 8 equations and
8 variables

0 = g(x(t), y(t), θ). (15)

D. Continuous stirred tank reactor

We model the laboratory-scale CSTR in the general form

dcx
dt

=
1

V

(
CIn − cxe

T
l − cxe

T
g

)
F +Q(c), (16)

where cx ∈ Rnx are concentration of the state components,
i.e. ci for i ∈ Cx, V is the constant reactor volume,
CIn ∈ Rnx×nu are inlet concentrations of each inlet flow,
F ∈ Rnu are inlet flows, and c are concentrations of all state
and algebraic components in the system. The inlet streams
F = [Fl;Fg], where Fl and Fg are the liquid and gas
inlet streams, respectively. The vectors el ∈ {0, 1}nu and
eg ∈ {0, 1}nu are indicator vectors for liquid and gaseous
inflows respectively, i.e. el is 1 for all liquid flows and 0 for
all gaseous flows and eg is 0 for all liquid flows and 1 for all
gaseous flows. The production and mass transfer is defined
for components in aqueous solution for i ∈ Cx,l as

Qi(c) = Ri(c), (17)

TABLE I
MODEL PARAMETERS FOR SINGLE-CELL PROTEIN PRODUCTION IN

CONTINUOUS STIRRED TANK REACTOR [12].

name value unit name value unit
µmax 2.28e−1 1/h m 9.80e−5 1/h
α 2.00e−2 - δ 2.00e−2 -
KS 7.50e−5 mol/L KN,ox 3.30e−3 mol/L
KO 5.50e−5 mol/L KN 1.30e−3 mol/L
Ke,W 1.00e−14 - Ke,N 5.62e−10 -
Ke,C1 1.58e−7 - Ke,C2 4.27e−7 -
Ke,C3 4.79e−11 - cIn,N 5.88 mol/L
cIn,Na 1.00 mol/L cIn,NO 1.00 mol/L
cS,g 1.90e−1 mol/L cO,g 1.90e−1 mol/L
kLaS 3.89e+2 1/h Hpc

S 7.05e+2 atm/M
kLaO 3.71e+2 1/h Hpc

O 7.59e+2 atm/M
kLaC 3.26e+2 1/h Hpc

C 2.99e+1 atm/M
R 8.21e−2 atm/(K M) T 3.15e+2 K
V 1.00 L - - -

and for i ∈ Cx,g as

Qi(c) = Ri(c) +
1

1− ϵ
Jgl,i(c), (18)

and for components in gas-phase for i ∈ Cx,g as

Qi(c) = −1

ϵ
Jgl,i(c). (19)

The production rate is

R(c) = νT r(c), (20)

where ν ∈ Rnr×nx is the stoichiometric matrix (6). The
gas-liquid mass transfers for i ∈ Cx,g are defined as

Jgl,i(c) = kLai (cSat,i − ci) , cSat,i = γici,g, (21)

The gas-liquid volume fraction is ϵ = Fg/(Fl + Fg), kLai
are mass transfer coefficients, cSat,i are saturation concen-
trations, and γi gas-liquid ratio. We apply Henry’s law to
compute the gas-liquid ratio

γi =
RT

Hpc
i

, (22)

Henry’s constants for chemicals components dissolved in
aqueous solution are described in [14]. Table I describes the
model parameters.

III. SIMULATION

In this section, we describe Euler’s implicit method for
numerical solution of DAEs. Additionally, we describe a
variation Newton’s method, which yields only non-negative
solutions.

A. Euler’s implicit method
For differential algebraic systems in the form presented in

(1), we may discretise with Euler’s implicit method as

xk+1 = xk + f(xk+1, yk+1, uk, θ)∆t, (23a)
0 = g(xk+1, yk+1, θ). (23b)

From this, we define the residual function

D(zk+1) = D(xk+1, yk+1)

=

[
xk+1 − xk − fk(xk+1, yk+1)∆t

gk(xk+1, yk+1)

]
,

(24)



where zk = [xk; yk], fk(x, y) = f(x, y, uk, θ) and
gk(x, y) = g(x, y, θ). Solutions to the difference equation,
(23), are roots in the residual equation, (24), obtained by
solving

0 = D(zk+1). (25)

For chemical systems modelling concentrations, only non-
negative solutions represent solutions in the physical system.

B. Newton’s method with asbolute step
Newton’s method provides a means of iteratively finding

roots given a function and its Jacobian. For a residual
function, D(z), the system of equations

0 = D(z), (26)

can be solved iteratively, where the search direction, ∆z, is
obtained as the solution of

0 =
∂D

∂z
(z)∆z +D(z). (27)

The Newton step in each iteration, n, is

zn+1 = zn +∆zn, ∆zn = −
(
∂D

∂z
(zn)

)−1

D(zn).

(28)

Implicit Euler discretisation of DAE systems in the form (1)
results in the residual Jacobian,

∂D

∂z
(z) =

[
I − ∂fk

∂x (x, y)∆t −∂fk
∂y (x, y)∆t

∂gk
∂x (x, y) ∂gk

∂y (x, y)

]
. (29)

In the case where only non-negative solutions to the residual
also represent solutions to the physical system, we may
apply so-called absolute Newton’s method, such that the step
becomes

zn+1 = |zn +∆zn| . (30)

This variation of Newton’s method ensures non-negativity in
the roots, but does not maintain the convergence properties
of the original formulation of the method. The method is
empirical, but has been successfully applied to chemical
equilibrium systems [15].

C. Scaling algebraic equations and variables
The different scales of the algebraic equations and vari-

ables may result in ill-conditioning in the Jacobian of the
residual (29). This can lead to numerical inaccuracies and
divergence in Newton’s method. As such, we introduce a
scaling of the algebraic variables and equations

g̃(x(t), ỹ(t), θ) = Sgg(x(t), Sy ỹ(t), θ), (31)
y(t) = Sy ỹ(t). (32)

The matrices, Sg = diag(sg) and Sy = diag(sy), are
diagonal scaling matrices. The vectors, sg ∈ Rny and sy ∈
Rny , define the scaling factors for the algebraic equations
and variables, respectively. The resulting scaled Jacobian is

∂g̃

∂ỹ
=

∂g̃

∂g

∂g

∂y

∂y

∂ỹ
= Sg

∂g

∂y
Sy. (33)

We choose Sg and Sy such that the conditioning of the
Jacobian (33) is improved.

IV. ECONOMIC OPTIMAL CONTROL PROBLEM

In this section, we present a formulation of an economic
OCP for SCP production in a CSTR. The presented system
is unstable, i.e. simulations with constants or poorly chosen
input profiles are likely to lead to washout (zero biomass
concentration). As such, we simulate the system using an
optimal economic open-loop profile, i.e. solution to an eco-
nomic OCP. Specifically, we modify and solve the OCP
defined for SCP production in a U-loop bioreactor presented
by Ritschel et al. [8], [9].

A. Formulation
We consider the economic objective of the OCP

ϕ = αecoϕeco + αpHϕpH + αduϕdu, (34)

where

ϕeco = ϕcost − ϕprofit − ϕctg. (35)

The economic objective terms are

ϕprofit =

∫ T

t0

pXcX(t)eTFl(t)dt, (36a)

ϕcost =

∫ T

t0

pTFF (t)dt, (36b)

ϕctg = pXV (cX(T )− cX(t0)) . (36c)

The objective term ϕprofit is the value of the harvested
biomass over the horizon, ϕcost is the cost associated with
the inlet streams of gaseous and liquid substrates, and ϕctg is
the cost-to-go. The cost-to-go term is included such that the
reactor is not emptied for additional profit at the end of the
control horizon. pX [USD/g] and pF [USD/L] are the unit
values of the biomass and inlets, respectively. Fl(t) [L/h]
are the liquid inlet streams, eTFl(t) [L/h] is the liquid outlet
stream, and V [L] is the reactor volume. We define the pH
tracking objective term, as

ϕpH =
1

2

∫ T

t0

∥∥pH − pH(t)
∥∥2
QpH

dt, (37)

where pH is the target, pH(t) = − log10
(
[H3O

+]
)
, and

QpH is a weight matrix. We define the input rate-of-
movement objective as

ϕdu =
1

2

∫ T

t0

∥∥∥∥dudt (t)
∥∥∥∥2
Qdu

dt, (38)

such that the changes in the manipulated inputs over time,
u(t), are penalised quadratically. The OCP is also subject to
state and algebraic dynamics, as well as box constraints on
independent and dependent variables.

V. NUMERICAL EXPERIMENT

In this section, we present a simulation example for
economic optimal control in a laboratory-scale CSTR for
SCP production. Fig. 2 is an illustration of the fermentor.

A. Laboratory fermentor

In the physical laboratory fermentor, operation is separated
into a batch phase and a continuous phase.
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Inlets

Gas Outlets

Liquid
Outlets

Gas Inlets

Fig. 2. Illustration of the laboratory-scale continuous stirred tank reactor.

Batch phase: The reactor is initialised from low
biomass concentration, cX < 0.1 g/L (inoculum), with
substrates present for growth to a biomass concentration of
cX ≥ 2 g/L. In this phase, only gasses flow in and out of
the reactor, i.e. Fi = 0 for i ∈ Cf,l and Fj ≥ 0 for j ∈ Cf,g .

Continuous phase: The reactor is initialised from a
biomass concentration high enough to consistently sustain
continuous operation, i.e. cX ≥ 2 g/L. In the continuous
phase, liquid substrates flow into the reactor. To keep the
volume constant, liquid reactor content is harvested at the
same rate as the inflow, i.e. Fi ≥ 0 for Cf,g , Fj ≥ 0 for
i ∈ Cf,l, and FOut,l =

∑
j∈Cf,l

Fj .

B. Implementation

We formulate the economic OCP for the continuous phase
of the laboratory-scale CSTR. We implement the discretised
OCP in Matlab with a simultaneous collocation-based
approach [8], [9]. We apply the implicit Euler discretisation
scheme (i.e. right rectangular rule). Casadi is applied to solve
the resulting nonlinear program [16]. The initial state is x0 =
[2.00, 2.31e−2, 3.77e−2, 4.03e−1, 9.10e−1, 3.07e−3,
2.23e−7, 6.29e−1, 1.11, 1.05]T [g/L] and the initial input is
u0 = [1.00e−2, 6.84e−5, 6.71e−7, 5.62e−11, 8.96e−3,
8.53e−3]T [L/h]. The unit prices for substrates are
pW = 0.00, pN = 1.00e−3, pNO = 1.00e−1,
pNa = 1.00e−1, pS,g = 1.00e−3, pO,g = 1.00e−3 [USD/L]
and for biomass pX = 1.0e−2 [USD/g]. αeco = 1.0,
αpH = 2.0e+2, and αdu = 1.0 are the scaling parameters
for the objectives in the OCP. The weight matrices for
the pH tracking and input rate-of-movement objectives are
QpH = I and Qdu = diag([1.0, 1.0, 10.0, 10.0, 0.1, 0.1]),
respectively. The algebraic equations are scaled with sg =
[1.0e+7, 1.0e+7, 1.0e+4, 1.0e+8, 1.0e+10, 1.0e+0, 1.0e+0,
1.0e+0] and variables with sy = {1}ny . The algebraic
variables are parametrised in the implementation, such

that y(α(t)) = 10−α(t), i.e. we describe the pH-value
directly as pH(t) = − log10(yH3O+(t)) = αH3O+(t).
This parametrisation also ensures non-negative during the
optimisation. We solve the discretised OCP over a horizon
of 48 hours with 200 discrete time-steps. All variables
have a lower boundary of 0. The biomass and ammonium
concentrations have upper boundaries cX ≤ 20.0 g/L and
cN ≤ 1.0 M (17.03 g/L), respectively.

C. Results

Fig. 3 illustrates the biomass concentration, biomass pro-
ductivity, pH-value, and liquid and gas inlet streams of the
numerical experiment. Fig. 4 illustrates the concentrations of
all state and algebraic variables in the numerical experiment.
We observe clear separation between growth and production
phases in the solution. We note that the nitrogen source,
ammonium, is at the upper limit during production. This
indicates that the nitrogen source is the limiting substrate
during production.

VI. CONCLUSION

This paper presented a novel growth model for SCP
production in a laboratory-scale CSTR. The DAE model
describes reactor dynamics, growth kinetics of the micro-
organism M. capsulatus, as well as pH equilibrium dynamics
in the system. The model couples growth and pH as the
growth directly depends on the algebraic variables. Finally,
we conducted a numerical experiment of economic optimal
control for the system. In the numerical experiment, we
demonstrated optimal biomass growth and production, while
tracking the pH-value in the reactor.
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Abstract

State estimation incorporates the feedback in optimization based advanced process control systems and is very important
for the performance of model predictive control. We describe the extended Kalman filter, the unscented Kalman filter, the
ensemble Kalman filter, and a particle filter for continuous-discrete time nonlinear systems involving stochastic differential
equations. Continuous-discrete time nonlinear systems is a natural way to model physical systems controlled by digital con-
trollers. We implement the state estimation methods in Matlab, illustrate and evaluate their performance using simulations of
the modified four-tank system. This system is non-stiff and the state estimation methods are implemented numerically using
an explicit numerical integration scheme. We evaluate the accuracy of the state estimation methods in terms of the mean
absolute percentage error over the simulation horizon. Each method successfully estimates the states and unmeasured distur-
bances of the simulated modified four-tank system. The key contribution is an overview and comparison of state estimation
methods for continuous-discrete time nonlinear stochastic systems. This can guide efficient implementations.

Introduction

State estimation is widely applied in advanced process
control (APC) systems, e.g. for monitoring, fault-detection,
and as part of model predictive control (MPC). The ob-
jective of state estimation is to predict and reconstruct the
states of a mathematical model using measurements from a
physical system. The Kalman filter provides optimal esti-
mates for systems with Gaussian process and measurement
noise, but is limited to system with linear dynamics (Kalman,
1960). For nonlinear systems, the exact evolution of the
state distribution can be computed as the solution to the
Fokker-Planck equation (Kolmogorov’s forward equation).
However, the Fokker-Planck equation is a partial differential
equation where the number of dimensions equal the number
of states in the system. The Fokker-Planck equation suffers
from the curse of dimensionality and solving it is therefore
impractical for systems with more than a few states (Jazwin-
ski, 2007). This paper describes four approximate methods
for state estimation, 1) the extended Kalman filter (EKF), 2)
the unscented Kalman filter (UKF), 3) the ensemble Kalman
filter (EnKF), and 4) a particle filter (PF).

In the EKF, the equations of the original Kalman filter are
applied on a local linearisation of a nonlinear system (Rawl-
ings et al., 2017). The EKF is a computationally efficient

1 Corresponding author: J. B. Jørgensen (E-mail: jbjo@dtu.dk).

method, but the quality of the estimates depend on the non-
linearity of the system (Frogerais et al., 2011). Additionally,
some stability issues may arise in relation to fixed step-size
solutions (Bucy and Joseph, 2005; Jørgensen et al., 2007).
In the UKF, an unscented transformation is used as an ap-
proximation for the first two moments of the true nonlin-
ear distribution. The unscented transformation is propagated
through the nonlinear dynamics and each sigma-point is up-
dated using observations from the physical system (Julier and
Uhlmann, 2004). For some systems, the UKF has shown
higher accuracy than the EKF, while still being computa-
tionally efficient (Wan and van der Merwe, 2000). How-
ever, the UKF also suffers from inaccuracy in highly non-
linear systems. For the UKF, some of the issues pertaining to
nonlinearity and numerical instability have been addressed
in more recent contributions (Kandepu et al., 2008; De Vivo
et al., 2017). In the EnKF, a set of particles, the ensemble,
is randomly sampled from the state distribution and propa-
gated through the nonlinear system dynamics. Each parti-
cle in the ensemble is updated separately using the Kalman
filter update when a measurement becomes available. The
state estimates are computed statistically from the ensem-
bles (Gillijns et al., 2006; Myrseth and Omre, 2010; Roth
et al., 2015). In PFs, a set of particles is sampled from the
state distribution and propagated through the nonlinear sys-
tem dynamics. When a measurement becomes available, the
particles are resampled in accordance with their likelihood



of being observed. The likelihoods are computed using the
innovation posterior distribution. Similarly to the EnKF, the
state estimates are determined statistically from the particles
(Arulampalam et al., 2002; Rawlings and Bakshi, 2006; Tul-
syan et al., 2016). The EKF and UKF provide efficient state
estimation, but suffers from loss of accuracy for highly non-
linear systems. The EnKF and PFs provide a set of sampled
particles from the true nonlinear distribution, but their com-
putational efficiency depends on the number of particles re-
quired for the estimates to reach the desired accuracy. As a
result of this, the EnKF and PF can be computationally inef-
ficient for high dimensional systems.

The aim of this paper is to provide a condensed overview
of available methods for state estimation in continuous-
discrete time nonlinear stochastic systems that are described
using stochastic differential equations (SDEs). The intention
is to guide efficient implementation by providing an overview
for the continuous-discrete nonlinear state estimation meth-
ods. The nonlinear state estimation methods can generally be
separated into two steps; prediction and filtering. In the pre-
diction step (time update), the system is propagated through
time based on past information from a physical system. In
the filtering step (measurement update), the state estimates
are updated with the latest measurement information.

The paper is structured as follows. In Section 2, we
present the nonlinear continuous-discrete stochastic differen-
tial equation models used in simulation and state estimation.
In Section 3, we present the EKF, the UKF, the EnKF, and a
PF, and finally present a discussion of the methods. In Sec-
tion 4, we present a numerical example of state estimation for
a modified four-tank system. Finally, we present conclusions
in Section 5.

Nonlinear Continuous-Discrete Stochastic Systems

We consider continuous-discrete systems, in which the
system state is described by nonlinear continuous stochastic
differential equations and measurements are taken at discrete
points in time. The nonlinear continuous-discrete stochastic
differential equation models are defined as

dx(t) = f (t,x(t),u(t),d(t),θ)dt

+σ(t,x(t),u(t),d(t),θ)dω(t),
(1a)

y(tk) = h(tk,x(tk),θ)+v(tk), (1b)

where f (·) is the drift function, σ(·) is the diffusion func-
tion, and h(·) is the measurement function. The states are
x(t) ∈ Rnx , the inputs are u(t) ∈ Rnu , the disturbances are
d(t) ∈ Rnd , the parameters are θ ∈ Rnθ , and the measure-
ments are y(tk) ∈ Rny . The process noise ω(t) ∈ Rnω is a
standard Wiener process, such that dω(t) ∼ N (0, Idt), and
v(tk) ∼ N (0,R) is the measurement noise. The initial state
is assumed to be distributed as x0 ∼ N (x̄0,P0).

State Estimation in Nonlinear Systems

In this section, we present methods for state estimation in
continuous-discrete nonlinear systems (1). These estimators
are called continuous-discrete estimators.

Continuous-discrete extended Kalman filter

The EKF is initialised with the mean and covariance of the
initial state of the system described in Section 2

x̂0|0 = x̄0, P0|0 = P0. (2)

Time update: In the time update, the mean and covariance
are computed as the solution to the ordinary differential equa-
tions (ODEs) for t ∈ [tk, tk+1]

dx̂k(t)
dt

= f (t, x̂k(t),u(t),d(t),θ), (3a)

dPk(t)
dt

= Ak(t)Pk(t)+Pk(t)AT
k (t)+σk(t)σT

k (t), (3b)

where x̂k(tk) = x̂k|k, and Pk(tk) = Pk|k. Ak(t) =
∂ f
∂x (t, x̂k(t),u(t),d(t),θ) and σk(t) = σ(t, x̂k(t),u(t),d(t),θ).
Alternatively, the covariance update can be represented and
solved on integral form as presented by Jørgensen et al.
(2007). The mean and covariance estimates are

x̂k+1|k = x̂k(tk+1), Pk+1|k = Pk(tk+1). (4)

Measurement update: In the measurement update, we
compute the innovation and its covariance as

ek = yk − ŷk|k−1, Re,k =CkPk|k−1CT
k +R, (5)

where

ŷk|k−1 = h(tk, x̂k|k−1,θ), Ck =
∂h
∂x

(tk, x̂k|k−1,θ). (6)

The Kalman gain is computed as

K fx,k = Pk|k−1CT
k R−1

e,k . (7)

The mean and covariance estimates are computed as

x̂k|k = x̂k|k−1 +K fx,kek, (8a)

Pk|k = Pk|k−1 −K fx,kRe,kKT
fx,k (8b)

=
(
I −K fx,kCk

)
Pk|k−1

(
I −K fx,kCk

)T
+K fx,kRKT

fx,k, (8c)

where (8c), Joseph’s stabilising form, is numerically stable.

Continuous-discrete unscented Kalman filter

The unscented Kalman filter is initialised with the mean
and covariance of the initial state of the system described in
Section 2

x̂0|0 = x̄0, P0|0 = P0. (9)

Time update: In the time update, we compute the parame-
ters

c̄ = α
2 (n̄+κ) , (10)

λ̄ = α
2 (n̄+κ)− n̄, (11)



where α ∈]0,1], κ ∈ [0,∞[, and n̄ = nx +nω. We compute the
sigma-point weights

W̄ (0)
m =

λ̄

n̄+ λ̄
, (12a)

W̄ (0)
c =

λ̄

n̄+ λ̄
+1−α

2 +β, (12b)

W̄ (i)
m = W̄ (i)

c =
1

2
(
n̄+ λ̄

) , (12c)

for i ∈ {1,2, . . . ,2n̄} and where β ∈ [0,∞[ (β = 2 optimal for
Gaussian distributions). We sample deterministically a set of
2n̄+ 1 sigma-points. For propagation through the determin-
istic dynamics (ODE), we compute 2nx +1 sigma-points

x̂(0)k|k = x̂k|k, (13a)

x̂(i)k|k = x̂k|k +
√

c̄
(√

Pk|k

)
i
, (13b)

x̂(nx+i)
k|k = x̂k|k −

√
c̄
(√

Pk|k

)
i
, (13c)

for i ∈ {1,2, . . . ,nx}.
(√

Pk|k

)
i

denotes the i’th column of
the Cholesky decomposition of the covariance. For prop-
agation through the stochastic dynamics, we compute 2nω

sigma-points

x̂(2nx+i)
k|k = x̂k|k, (14)

for i ∈ {1,2, . . . ,2nω}. Additionally, we compute the process
noise

dω
(2nx+i)
k (t) =

√
c̄ dt (I)i , (15a)

dω
(2nx+nω+i)
k (t) =−

√
c̄ dt (I)i , (15b)

where i ∈ {1,2, . . . ,nω}. We propagate the first sigma-points
through the deterministic dynamics for t ∈ [tk, tk+1] and com-
pute the predictions as the solution to

dx̂(i)k (t) = f (t, x̂(i)k (t),u(t),d(t),θ)dt, (16)

for x̂(i)k (tk) = x̂(i)k|k and i ∈ {0,1, . . . ,2nx}. We similarly prop-
agate the remaining sigma-points through the stochastic dy-
namics for t ∈ [tk, tk+1] and compute the predictions as the
solution to

dx̂(i)k (t) = f (t, x̂(i)k (t),u(t),d(t),θ)dt

+σ(t, x̂(i)k (t),u(t),d(t),θ)dω
(i)
k (t),

(17)

where x̂(i)k (tk) = x̂(i)k|k and i∈ {2nx+1,2nx+2, . . . ,2nx+2nω}.
The predictions are computed as the solution to (16) and (17),
as x̂(i)k+1|k = x̂(i)k (tk+1). The mean and covariance estimates are
computed as

x̂k+1|k =
2n̄

∑
i=0

W̄ (i)
m x̂(i)k+1|k, (18a)

Pk+1|k =
2n̄

∑
i=0

W̄ (i)
c

(
x̂(i)k+1|k − x̂k+1|k

)(
x̂(i)k+1|k − x̂k+1|k

)T
.

(18b)

Measurement update: In the measurement update, we
compute the parameters

c = α
2 (nx +κ) , λ = α

2 (nx +κ)−nx. (19)

We compute the sigma-point weights

W (0)
m =

λ

nx +λ
, (20a)

W (0)
c =

λ

nx +λ
+1−α

2 +β, (20b)

W (i)
m =W (i)

c =
1

2(nx +λ)
, (20c)

for i ∈ {1,2, . . . ,2nx}. We compute a set of 2nx+1 determin-
istically sampled sigma-points

x̂(0)k|k−1 = x̂k|k−1, (21a)

x̂(i)k|k−1 = x̂k|k−1 +
√

c
(√

Pk|k−1

)
i
, (21b)

x̂(nx+i)
k|k−1 = x̂k|k−1 −

√
c
(√

Pk|k−1

)
i
, (21c)

for i ∈ {1,2, . . . ,nx}. We compute the innovation as

ek = yk − ŷk|k−1, (22)

where the prediction of the measurement prediction is com-
puted as

ŷk|k−1 = ẑk|k−1 =
2nx

∑
i=0

W (i)
m ẑ(i)k|k−1, (23)

for ẑ(i)k|k−1 = h(tk, x̂
(i)
k|k−1,θ). We compute the covariance and

cross-covariance information from the sigma-points

Rzz,k|k−1 =
2nx

∑
i=0

W (i)
c

(
ẑ(i)k|k−1 − ẑk|k−1

)(
ẑ(i)k|k−1 − ẑk|k−1

)T
, (24a)

Re,k = Ryy,k|k−1 = Rzz,k|k−1 +R, (24b)

Rxy,k|k−1 =
2nx

∑
i=0

W (i)
c

(
x̂(i)k|k−1 − x̂k|k−1

)(
ẑ(i)k|k−1 − ẑk|k−1

)T
. (24c)

The Kalman gain is computed as

K fx,k = Rxy,k|k−1R−1
e,k . (25)

The mean and covariance estimates are computed as

x̂k|k = x̂k|k−1 +K fx,kek, (26a)

Pk|k = Pk|k−1 −K fx,kRe,kKT
fx,k. (26b)

Continuous-discrete ensemble Kalman filter

The ensemble Kalman filter is initialised with a set of par-
ticles, the ensemble, sampled from the initial state distribu-
tion from (2). The initial state ensemble is denoted {x̂(i)0|0}

Np
i=1.



Time update: In the time update, each particle in the en-
semble is propagated through the system dynamics. The pre-
diction ensemble is computed as the solution to

dx(i)
k (t) = f (t,x(i)

k (t),u(t),d(t),θ)dt

+σ(t,x(i)
k (t),u(t),d(t),θ)dωk(t),

(27)

for i ∈ {1,2, . . . ,Np} and t ∈ [tk, tk+1]. The initial value is
x(i)k = x̂(i)k|k. The set of solutions, x̂(i)k+1|k = x(i)k (tk+1), gives rise

to the prediction ensemble {x̂(i)k+1|k}
Np
i=1. The mean and co-

variance estimates are computed as

x̂k+1|k =
1

Np

Np

∑
i=1

x̂(i)k+1|k, (28a)

Pk+1|k =
1

Np −1

Np

∑
i=1

(
x̂(i)k+1|k − x̂k+1|k

)(
x̂(i)k+1|k − x̂k+1|k

)T
. (28b)

Measurement update: In the measurement update, we
compute the ensemble of predictions, {ẑ(i)k|k−1}

Np
i=1, where

z(i)k|k−1 = h(tk, x̂
(i)
k|k−1,θ), for i ∈ {1,2, . . . ,Np}. Furthermore,

we compute the mean and covariance of the measurement
distribution and cross-covariance of states and measure-
ments, as

ŷk|k−1 = ẑk|k−1 =
1

Np

Np

∑
i=1

ẑ(i)k|k−1, (29a)

Rzz,k|k−1 =
1

Np −1

Np

∑
i=1

(
ẑ(i)k|k−1 − ẑk|k−1

)(
ẑ(i)k|k−1 − ẑk|k−1

)T
, (29b)

Ryy,k|k−1 = Rzz,k|k−1 +R, (29c)

Rxy,k|k−1 =
1

Np −1

Np

∑
i=1

(
x̂(i)k|k−1 − x̂k|k−1

)(
ŷ(i)k|k−1 − ŷk|k−1

)T
, (29d)

and we compute samples from measurement distribution, as

y(i)k = yk + v(i)k , (30)

where v(i)k are realisations of the measurement noise, vk ∼
N (0,R). The innovations are computed for each particle in
the measurement ensemble, as

e(i)k = y(i)k − ẑ(i)k|k−1. (31)

The Kalman gain is computed as

K fx,k = Rxy,k|k−1R−1
yy,k|k−1. (32)

The filtered state ensemble, {x̂(i)k|k}
Np
i=1, is computed as

x̂(i)k|k = x̂(i)k|k−1 +K fx,ke(i)k . (33)

The mean and covariance estimates are computed as

x̂k|k =
1

Np

Np

∑
i=1

x̂(i)k|k, (34a)

Pk|k =
1

Np −1

Np

∑
i=1

(
x̂(i)k|k − x̂k|k

)(
x̂(i)k|k − x̂k|k

)T
. (34b)

Continous-discrete particle filter

The particle filter is initialised with a set of particles sam-
pled from the initial state distribution from (2). The initial
set of particles is denoted {x̂(i)0|0}

Np
i=1.

Time update: In the time update, each particle is propa-
gated through the nonlinear system dynamics. The set of
predicted particles is computed as the solution to

dx(i)
k (t) = f (t,x(i)

k (t),u(t),d(t),θ)dt

+σ(t,x(i)
k (t),u(t),d(t),θ)dωk(t),

(35)

for i ∈ {1,2, . . . ,Np} and t ∈ [tk, tk+1]. The initial value
x(i)k = x̂(i)k|k. The set of solutions, x̂(i)k+1|k = x(i)k (tk+1), gives rise

to the prediction set {x̂(i)k+1|k}
Np
i=1. The mean and covariance

estimates are computed as

x̂k+1|k =
1

Np

Np

∑
i=1

x̂(i)k+1|k, (36a)

Pk+1|k =
1

Np −1

Np

∑
i=1

(
x̂(i)k+1|k − x̂k+1|k

)(
x̂(i)k+1|k − x̂k+1|k

)T
. (36b)

Measurement update: In the measurement update, we
compute the set of measurement predictions, {ẑ(i)k|k−1}

Np
i=1,

where ẑ(i)k|k−1 = h(tk, x̂
(i)
k|k−1,θ), for i ∈ {1,2, . . . ,Np}. The in-

novations are computed for each particle, as

e(i)k = yk − ẑ(i)k|k−1, (37)

for i∈ {1,2, . . . ,Np}. We compute a set of likelihood weights
for each particle, arising from the posterior distribution of the
innovations

w̃(i)
k =

1√
2πny |R|

exp
(
−1

2

(
e(i)k

)T
R−1e(i)k

)
, (38)

where |R| denotes the determinant of R, and normalise

w(i)
k =

w̃(i)
k

∑
Np
j=1 w̃( j)

k

, (39)

for i ∈ {1,2, . . . ,Np}. The set of particles are then resampled
in accordance with their likelihood respective weights. For a
single realisation of a uniform distribution, q1 ∼ U [0,1], we
compute a set of ordered resampling points

q(i)k =
(i−1)+q1

Np
, (40)

for i ∈ {1,2, . . . ,Np}. We resample the particles by stor-
ing m(i) copies of each particle, x̂(i)k|k−1, in the set. The in-
dicies for the resampled particles, l, are chosen such that
q(l)k ∈

]
s(i−1),s(i)

]
, where s(i) = ∑

i
j=1 w( j)

k . Particles with rel-
atively high likelihood may appear several times in the re-
sampled set and particles with relatively low likelihood may



not appear at all. The resampled set is denoted as {x̂(i)k|k}
Np
i=1.

The mean and covariance estimates are computed as

x̂k|k =
1

Np

Np

∑
i=1

x̂(i)k|k, (41a)

Pk|k =
1

Np −1

Np

∑
i=1

(
x̂(i)k|k − x̂k|k

)(
x̂(i)k|k − x̂k|k

)T
. (41b)

Discussion of methods

The EKF is a computationally efficient method for systems
with a moderate number of states, while it is infeasible for
systems with a very large number of states. The complexity
in implementing the method is largely determined by compu-
tational aspects of solving the initial value problem (3) and
issues related to computation of the covariance matrix. The
accuracy of the EKF depends on how well the assumption
of local linearity holds. This means that for highly nonlinear
systems with relatively long sampling intervals, the EKF may
perform poorly, as the assumptions pertaining to the propa-
gation of the expectation and covariance will not hold. The
UKF is comparable to the EKF in terms of its computational
requirements. The computational efficiency partly arises by
utilising the unscented transformation, where the number of
deterministically sampled particles scales linearly with the
state dimension, instead of randomly sampling particles, as is
the case for other particle filters. The time update of the UKF
is simple to implement, as it simply involves propagating a
set of particles forward in time. For linear Gaussian systems,
the UKF and EKF provide equivalent solutions. However, for
nonlinear systems, the UKF propagates the particles through
the true nonlinear system dynamics and therefore may cap-
ture more information than the EKF. The particle filters, i.e.
the EnKF and PF, have computational efficiency which de-
pends on the tuning, i.e. the size of the sample set. They suf-
fer from the curse of dimensionality, as the sampling size re-
quired increases with the state dimension. However, the pre-
dictions more closely resemble the true nonlinear distribution
as the sampling size increases, at the cost of computational
efficiency. This means, that for highly nonlinear systems the
EnKF and PF may capture more information than the EKF
and UKF, but at the cost of computational efficiency. Never-
theless, the EnKF is often used for large-scale systems, but
with few samples.

Example – Modified Four-Tank System (MFTS)

The modified four tank system is modelled by a set of
ODEs describing mass balances as presented by Azam and
Jørgensen (2015). The model is further modified by mod-
elling the stochastic disturbances explicitly as states. The
disturbances are governed by the stochastic processes

dF3(t) = λ1 (F̄3(t)−F3(t))dt +σ1dω1(t), (42a)
dF4(t) = λ2 (F̄4(t)−F4(t))dt +σ2dω2(t). (42b)

The resulting system is described by a continuous-discrete
nonlinear system as described in (1).The performance of each

Table 1: run-times for time update (TU) and measurement
update (MU), and MAPE for states (MAPEx) and distur-
bances (MAPEd).

name EKF UKF EnKF PF
time TU [s] 3.09e-01 2.90e+00 3.38e+01 1.36e+02

time MU [s] 1.22e-02 4.14e-02 2.30e-01 1.05e+00
MAPEx [%] 2.55e+00 2.97e+00 2.35e+00 2.40e+00
MAPEd [%] 1.57e+01 1.75e+01 1.47e+01 1.37e+01

state estimation method is evaluated in terms of the mean
absolute percentage error (MAPE) , such that

MAPE =
1

nN

N

∑
k=1

n

∑
i=1

∣∣∣∣xi,k − x̂i,k

xi,k

∣∣∣∣ , (43)

where N is the number of observations and n is the dimension
of the state. The MAPE is computed separately for the states
representing the liquid mass and the state representing the
disturbances, as MAPEx and MAPEd respectively.

Simulation example

Fig. 1 illustrates the simulation of the modified four tank
system and Table 1 describes the results of the example.
We simulate for 30 minutes with 120 equidistant samples.
The simulation and estimation are computed with 1000 and
100 equidistant steps between samples, respectively. The
UKF has the parameter set [β,α,κ] = [2.0,0.001,0.0]. The
EnKF and PF has particle set sizes of 250 and 1000, respec-
tively. The disturbances are modelled with λ1 = λ2 = 0.1 and
σ1 =σ2 = 5.0 for the simulation. For the EKF, EnKF, and PF,
σ1 = σ2 = 5.0 and for the UKF σ1 = σ2 = 1.0. λ1 = λ2 = 0.0
for the EKF and UKF and λ1 = λ2 = 2.0e-3 for the EnKF and
PF. From the results presented in Fig. 1 and Table 1, we see
many of the properties described in the discussion of Sec-
tion 3. The EKF and UKF are demonstrated the be the most
computationally efficient methods, where EKF seem to be
outperforming UKF in this particular numerical experiment.
Furthermore, the EnKF and PF show better accuracy both in
estimating state and disturbance variables, but at the cost of
lower computational efficiency.

Conclusion

We present four methods for state estimation in
continuous-discrete nonlinear systems involving stochastic
differential equations: the EKF, the UKF, the EnKF, and a PF.
The state estimation methods are implemented for non-stiff
systems in Matlab, and a numerical experiment is performed
for a simulated MFTS. The performance of each state esti-
mation method is evaluated in terms of 1) the computational
times for the time- and measurement-updates and 2) the ac-
curacy measured by the MAPE for the state and disturbance
estimates.
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A High-Performance Monte Carlo Simulation Toolbox for
Uncertainty Quantification of Closed-loop Systems

Morten Ryberg Wahlgreen, Asbjørn Thode Reenberg, Marcus Krogh Nielsen,
Anton Rydahl, Tobias K. S. Ritschel, Bernd Dammann, John Bagterp Jørgensen

Abstract— We apply Monte Carlo simulation for perfor-
mance quantification and tuning of controllers in nonlinear
closed-loop systems. Computational feasibility of large-scale
Monte Carlo simulation is achieved by implementation of a
parallelized high-performance Monte Carlo simulation toolbox
for closed-loop systems in C for shared memory architectures.
The toolbox shows almost linear scale-up on 16 CPU cores on a
single NUMA node, and a scale-up of 27.3 on two NUMA nodes
with a total of 32 CPU cores. We demonstrate performance
quantification and tuning of a PID controller for a bioreactor in
fed-batch operation. We perform 30,000 closed-loop simulations
of the fed-batch reactor within 1 second. This is approximately
a 2300 times computational performance increase compared
to a serial reference implementation in Matlab. Additionally,
we apply Monte Carlo simulation to perform automatic tuning
of the PID controller based on maximizing average produced
biomass within 8 seconds.

I. INTRODUCTION

In closed-loop systems, we encounter unknown quantities
that need to be estimated, e.g., model parameters. Addition-
ally, it can be beneficial to quantify controller performance.
Currently, there exist well-defined methods for parameters
estimation [1], [2] and tuning of controllers in linear systems
[3]–[5]. However, for nonlinear systems, quantification of
controller performance and tuning is not as well developed.
We propose a Monte Carlo simulation brute-force tech-
nique for automatic performance quantification and tuning
of controllers in linear and nonlinear systems. With the
Monte Carlo approach, we can tune controllers with any
performance measure, e.g., maximizing economic yield or
minimizing the risk of low production, such as in modern
control applications [6], [7]. The Monte Carlo simulation
technique is made computationally feasible by implementa-
tion of a high-performance Monte Carlo simulation toolbox
parallelized for shared memory architectures in C.

Monte Carlo simulation is a widely used technique for
quantification of uncertainties. It is applied in various ar-
eas, e.g., portfolio management and epidemiology [8]–[10].
Monte Carlo simulation uses random sampling to obtain
numerical results about deterministic quantities. However,
the method requires many samples to be effective, and
thus computational efficiency becomes a bottleneck. The
development in central processing unit (CPU) technology
increases the number of possible applications for Monte

M. R Wahlgreen, A. T. Reenberg, M. K. Nielsen, A. Rydahl, T. K.
S. Ritschel, B. Dammann, and J. B. Jørgensen are with the Department
of Applied Mathematics and Computer Science, Technical University of
Denmark, DK-2800 Kgs. Lyngby, Denmark.

Corresponding author: J. B. Jørgensen (E-mail: jbjo@dtu.dk).

Carlo simulation. However, trends in CPU development show
that the clock frequency of new CPUs is no longer increasing
due to power consumption and heat issues [11]. Instead,
new CPUs have increased performance by increasing the
number of cores. Consequently, the full potential of modern
CPUs is only achieved with parallelized software executed
on multi-core processors. Not all problems are paralleliz-
able, but Monte Carlo simulation is a prime example of a
parallelizable problem, as each simulation is independent of
all other simulations. To achieve the full potential of Monte
Carlo simulation on modern CPUs, we require state-of-the-
art parallelized software in high-performance languages.

In this paper, we present closed-loop systems based on a
stochastic continuous-discrete model, a stochastic differen-
tial equation (SDE) solver, and a controller. We introduce
our implementation of a high-performance Monte Carlo
simulation toolbox for closed-loop systems. Additionally,
we introduce the SDE solvers and controllers contained in
the toolbox. Furthermore, we demonstrate applications of
the toolbox on a bioreactor in fed-batch operation [12].
In particular, we demonstrate that Monte Carlo simulation
can be used for performance quantification and tuning of a
proportional–integral–derivative (PID) controller.

The remaining part of the paper is organized as follows.
Section II introduces the stochastic continuous-discrete sys-
tem, two SDE solvers, and four controllers of increasing
complexity. Section III presents the Monte Carlo simulation
scheme for closed-loop systems and introduces our toolbox
for Monte Carlo simulation. Section IV presents an example
application of the toolbox. Section V presents our conclusion.

II. CLOSED-LOOP SIMULATIONS

This section presents our representation of closed-
loop systems for simulation. Our simulations consist of
1) an SDE model with discrete measurements, represented
as a stochastic continuous-discrete model, 2) an SDE solver,
and 3) a controller.

A. Stochastic continuous-discrete system
We consider stochastic continuous-discrete systems in the

form

x(t0) = x0, (1a)
dx(t) = f(t, x(t), u(t), d(t), pf )dt

+ σ(t, x(t), u(t), d(t), pσ)dω(t),
(1b)

y(tk) = g(tk, x(tk), pg) + v(tk, pv), (1c)
z(t) = h(t, x(t), ph), (1d)
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where x(t) are the states, u(t) are inputs, d(t) are dis-
turbances, and pf , pσ , pg , pv , and ph are parameters.
Additionally, x0 is a normally distributed initial condition,
ω(t) is a standard Wiener process, and v(tk, pv) is normally
distributed measurement noise at discrete time, i.e.,

x0 ∼ N(x̄0, P0), (2a)
dω(t) ∼ Niid(0, Idt), (2b)

v(tk, pv) ∼ Niid(0, R(tk, pv)). (2c)

Measurements are sampled with sampling time ∆t, such that,
tk+1 = tk + ∆t. We use zero-order-hold parameterization of
the inputs and disturbances:

u(t) = uk, tk ≤ t < tk+1, (3a)
d(t) = dk, tk ≤ t < tk+1. (3b)

B. Stochastic differential equation solvers

SDE solvers are required to simulate stochastic
continuous-discrete systems in the form (1). We consider
an explicit-explicit (Euler-Maruyama) solver and an
implicit-explicit solver [13], [14].

1) Explicit-explicit (Euler-Maruyama):

tk,n+1 = tk,n + ∆t, (4a)
xk,n+1 = xk,n + f(tk,n, xk,n, uk, dk, pf )∆t

+ σ(tk,n, xk,n, uk, dk, pσ)∆ωk,n,
(4b)

2) Implicit-explicit:

tk,n+1 = tk,n + ∆t, (5a)
xk,n+1 = xk,n + f(tk,n+1, xk,n+1, uk, dk, pf )∆t

+ σ(tk,n, xk,n, uk, dk, pσ)∆ωk,n,
(5b)

where tk,0 = tk, xk,0 = xk, and ∆wk,n ∼ Niid(0, I∆t).
Let Nk denote the number of steps of size ∆t in the

interval [tk, tk+1]. Then

tk+1 = tk,Nk
, (6a)

xk+1 = xk,Nk
. (6b)

The explicit-explicit solver is suitable for non-stiff systems,
whereas the implicit-explicit solver is suitable for stiff sys-
tems.

We let Φ represent the discretization of the state equation,
(1b), with either the explicit-explicit solver or the implicit-
explicit solver. To compactly describe simulation of closed-
loop systems, we introduce the notation for a discretized
version of (1),

xk+1 = Φ(tk, xk, uk, dk, wk, pf , pσ), (7a)
yk = g(tk, xk, pg) + vk, (7b)
zk = h(tk, xk, ph), (7c)

where vk = v(tk, pv).

C. Controller
The digital discrete-time controller in typical model-based

control applications is represented as the dynamic system

xck = κ(tk−1, x
c
k−1, yk, uk−1, pκ), (8a)

uk = λ(tk, x
c
k, pλ), (8b)

zck = µ(tk, x
c
k, pµ), (8c)

where xck are estimated states, zck are predictions of the
outputs and manipulated inputs, κ(·) is a state estimator, λ(·)
is a regulator, and µ(·) is a predictor.

We consider four controllers of increasing complexity.
1) Open-loop controller (no feedback): The open-loop

controller does not include feedback and outputs a target
value for the inputs

uk = λ(·) = ūk. (9)

The functions κ(·) and µ(·) are not necessary for the open-
loop controller.

2) Proportional–integral–derivative controller: The con-
tinuous PID controller is given by

u(t) = ū(t) +Kpe(t) +Ki

∫ t

t0

e(τ)dτ +Kd
de(t)

dt
, (10)

where Kp, Ki, and Kd are gain constants. The error,
e(t), is the difference between the set point, ȳ(t), and the
measurement, y(t), i.e.,

e(t) = ȳ(t)− y(t). (11a)

Notice, for the PID controller the output is assumed to be
measured, i.e., ȳ(t) = z̄(t). It can be advantageous to let the
derivative term act on the measurements, y(t), rather than
the error, e(t) [15], [16]. We get,

u(t) = ū(t) +Kpe(t) +Ki

∫ t

t0

e(τ)dτ −Kd
dy(t)

dt
. (12)

We discretize the PID controller (12) as

ek = ȳk − yFk , (13a)
Pk = Kpek, (13b)
Ik = Ik−1 + TsKiek, (13c)

Dk = −Kd

Ts
(yFk − yFk−1), (13d)

uk = ūk + Pk + Ik +Dk, (13e)

where Ts is the sampling time and filtered measurements,
yFk , are computed from the discrete-time low-pass filter

yFk = (1− α)yFk−1 + αyk, (14)

with α ∈ [0, 1].
For the PID controller, λ(·) is given by (13e), κ(·) is given

by (14), and µ(·) is not necessary.
3) PID controller with clipping: We incorporate input

bounds with clipping. The PID controller with clipping is,

ũk = ūk + Pk + Ik +Dk, (15a)
uk = max(umin,min(umax, ũk)). (15b)
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4) Nonlinear model predictive control: The nonlinear
model predictive controller (NMPC) includes a continuous-
discrete extended Kalman filter (CD-EKF) based on (1) for
state estimation and prediction [17], [18]. Given the filtered
state-covariance pair, x̂k−1|k−1 and Pk−1|k−1, the CD-EKF
obtains a one-step prediction

x̂k|k−1 = x̂k−1(tk), (16a)
Pk|k−1 = Pk−1(tk), (16b)

as the solution to

d

dt
x̂k−1(t) = f(t, x̂k−1(t), uk−1, dk−1, pf ), (17a)

d

dt
Pk−1(t) = Ak−1(t)Pk−1(t) + Pk−1(t)Ak−1(t)′

+ σk−1(t)σk−1(t)′,
(17b)

for tk−1 ≤ t ≤ tk with initial condition

x̂k−1(tk−1) = x̂k−1|k−1, (18a)
Pk−1(tk−1) = Pk−1|k−1, (18b)

and

Ak−1(t) =
∂

∂x
f(t, x̂k−1(t), uk−1, dk−1, pf ), (19a)

σk−1(t) = σ(t, x̂k−1(t), uk−1, dk−1, pσ). (19b)

The CD-EKF obtains a filtered state estimate, x̂k|k, and its
covariance, Pk|k, from the one-step prediction, x̂k|k−1 and
Pk|k−1, and the measurement, yk. The CD-EKF computes
the predicted measurement and derivative,

ŷk|k−1 = g(tk, x̂k|k−1, pg), (20a)

Ck =
∂

∂x
g(tk, x̂k|k−1, pg), (20b)

the innovation and its covariance,

ek = yk − ŷk|k−1, (21a)
Re,k = CkPk|k−1C

′
k +Rk, (21b)

and the Kalman gain,

Kfx,k = Pk|k−1C
′
kR
−1
e,k. (22)

We obtain the estimated state-covariance pair from (20)-
(22) as

x̂k|k = x̂k|k−1 +Kfx,kek, (23a)
Pk|k = Pk|k−1 −Kfx,kRe,kK

′
fx,k. (23b)

The CD-EKF is the state estimator, κ(·), that computes
filtered state estimates, xck = x̂k|k, from measurements yk,
and one-step state prediction, x̂k|k−1.

The NMPC uses a regulator based on a weighted least-
squares objective and regularization of the input rate-of-
movement. This regulator can be expressed in terms of the
optimal control problem (OCP)

min
x,u

ϕk = ϕz,k + ϕ∆u,k, (24a)

s.t. x(tk) = x̂k|k, (24b)
ẋ(t) = f(t, x, u, d, pf ), tk ≤ t ≤ tk + T, (24c)
z(t) = h(t, x, ph), (24d)
u(t) = uk+j , j ∈ N , tk+j ≤ t ≤ tk+j+1, (24e)
d(t) = dk+j , j ∈ N , tk+j ≤ t ≤ tk+j+1, (24f)
ul ≤ uk+j ≤ uu, j ∈ N , (24g)
∆ul ≤ ∆uk+j ≤ ∆uu, j ∈ N , (24h)

with f(t, x, u, d, pf ) = f(t, x(t), u(t), d(t), pf ) and the
objective terms

ϕz,k =
1

2

∫ tk+T

tk

‖Wz (z(t)− z̄(t))‖22 dt, (25a)

ϕ∆u,k =
1

2

N−1∑
j=0

∥∥W̄∆u∆uk+j

∥∥2

2
, (25b)

where W̄∆u = W∆u/Ts. The term ϕz,k is output target
tracking and ϕ∆u,k is input rate of movement penalty.
We use the prediction and control horizon, T , defined as
T = NTs, where Ts is the sampling time and N is the
discrete prediction and control horizon. Additionally, we
define N = {0, 1, ..., N − 1} such that tk+j = tk + jTs for
j ∈ N . We solve the OCP with a simultaneous approach,
where we discretize each control interval with M time steps
using Euler’s implicit method.

We denote the optimal solution
{
x̂k+j+1|k, ûk+j|k

}
j∈N .

The input corresponding to the first control interval, uk =
ûk|k = λ(·), is part of the solution of this optimal control
problem. Only uk is implemented in the system. Further-
more, {ẑk+j+1|k, ûk+j|k}N−1

j=0 = zck = µ(·) is the predicted
output and the predicted manipulated inputs from the con-
troller that can be used for visualization.

D. Simulation of closed-loop systems

We compactly write a closed-loop simulation as

yk = g(tk, xk, pg) + vk, (26a)
zk = h(tk, xk, ph), (26b)
xck = κ(tk−1, x

c
k−1, yk, uk−1, pκ), (26c)

uk = λ(tk, x
c
k, pλ), (26d)

zck = µ(tk, x
c
k, pµ), (26e)

xk+1 = Φ(tk, xk, uk, dk, wk, pf , pσ), (26f)

for k = 0, 1, ..., Ns − 1.

III. MONTE CARLO SIMULATION

Our Monte Carlo simulations are based on the closed-
loop simulation (26). We perform Nmc distinct closed-loop
simulations for different, e.g., process noise realizations.
Algorithm 1 presents an overview of the Monte Carlo simula-
tion scheme. For sufficiently large Nmc, the computed Monte
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Algorithm 1: Monte Carlo simulation
Result: Statistics and output data
// Monte Carlo loop
for i = 1, 2, . . . , Nmc do

// Closed loop simulation
for k = 0, 1, . . . , Ns − 1 do

// Measurement

y
(i)
k = g(tk, x

(i)
k , p

(i)
g ) + v

(i)
k

// Output

z
(i)
k = h(tk, x

(i)
k , p

(i)
h )

// State estimation

x
c,(i)
k = κ(tk−1, x

c,(i)
k−1 , y

(i)
k , u

(i)
k−1, p

(i)
κ )

// Regulator

u
(i)
k = λ(tk, x

c,(i)
k , p

(i)
λ )

// Output prediction

z
c,(i)
k = µ(tk, x

c,(i)
k , p

(i)
µ )

// Simulator

x
(i)
k+1 = Φ(tk, x

(i)
k , u

(i)
k , d

(i)
k , w

(i)
k , p

(i)
f , p

(i)
σ )

end
// Final measurement and output

y
(i)
Ns

= g(tNs
, x

(i)
Ns
, p

(i)
g ) + v

(i)
Ns

z
(i)
Ns

= h(tNs , x
(i)
Ns
, p

(i)
h )

end

Carlo data can quantify uncertainties in the closed-loop sys-
tem. Possible applications are; estimation of unknown model
parameters, tuning controllers, and testing performance of
controllers on different noise realizations.

A. Toolbox

We implement a Monte Carlo simulation toolbox for
closed-loop systems in C. The toolbox provides an inter-
face for closed-loop Monte Carlo simulations that currently
includes implementations of
• an explicit-explicit Euler-Maruyama SDE solver,
• an implicit-explicit SDE solver,
• an open-loop controller,
• a single-input single-output (SISO) PID controller with

clipping, and
• an NMPC based on the CD-EKF and a simultaneous

approach combined with IPOPT [19].
The toolbox includes three test examples, and the user can
provide a set of model functions for a system and perform
Monte Carlo simulations with the toolbox. Additionally, the
toolbox allows for user-provided controllers and SDE solvers
with specific interfaces. This allows the user to test and
benchmark controllers and SDE solvers using Monte Carlo
simulations. The toolbox supports perturbations of model
parameters, controller parameters, noise realizations, initial
conditions, and disturbances.

We include a parallelized version with OpenMP for shared
memory architectures. Each worker is assigned distinct
closed-loop simulations. Such parallelization requires that

TABLE I
PARAMETERS FOR FED-BATCH REACTOR.

Variable Value Unit
µmax 0.37 1/h
KS 0.021 kg/m3

KI 0.38 kg/m3
γs 1.777 kg substrate/kg biomass
cS,in 10.0 kg/m3

TABLE II
INITIAL CONDITION AND OPERATIONAL BOUNDS.

Variable Value Unit
V0 1.00 m3

cX,0 2.00 kg/m3

cS,0 0.0893 kg/m3

Vmax 12.39 m3

cX,max 2.00 kg/m3

cS,max 3.00 kg/m3

FS,max 10.00 m3

FW,max 10.00 m3

each worker has access to a local workspace for the SDE
solver and the controller to avoid data races. Additionally,
some controllers utilize information from previous steps, e.g.,
the integral term of a PID controller or the CD-EKF for an
NMPC. Each worker also requires a local version of such
information. The Monte Carlo simulation toolbox distributes
memory blocks to each local worker, such that workers
do not have overlapping cache lines. This consideration is
essential for achieving optimal parallel performance.

We demonstrate some applications of the toolbox in sec-
tion IV.

IV. BIOREACTOR IN FED-BATCH OPERATION

A. Model

We consider the SDE model for a bioreactor in fed-batch
operation [12],

dV = (FS + FW )dt+ σ1dω1(t), (27a)
dmX = (RXV )dt+ σ2dω2(t), (27b)
dmS = (FScS,in +RSV )dt+ σ3dω3(t), (27c)

where mX = cXV , mS = cSV , and

RX = r, r = µ(cS)cX , (28a)

RS = −γr, µ(cS) = µmax
cS

KS + cS + c2S/KI
. (28b)

We represent the system as a stochastic continuous-discrete
model in the form (1), where x(t) = [V (t);mX(t);mS(t)],
y(tk) = cS(tk) + v(tk), and z(t) = cS(t).

Table I presents the parameters of the system and Table II
presents the initial conditions and operational bounds of the
system.

B. Control strategy

We operate the bioreactor with an open-loop input tra-
jectory, ū = [F̄W ; F̄S ]. Additionally, we use a SISO PID
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TABLE III
SYSTEM INFORMATION.

Architecture: x86 64
CPU op-mode(s): 32-bit, 64-bit
CPU(s): 32
Thread(s) per core: 1
Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 2
Model name: Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
CPU MHz: 2900.000
L1d cache: 32 kB
L1i cache: 32 kB
L2 cache: 1024 kB
L3 cache: 22528 kB
RAM: 384 GB

controller with clipping, (15), that manipulate the substrate
inlet, FS , to achieve optimal substrate concentration, c∗S ,
achieved at the maximum of µ(cS),

c∗S =
√
KIKS . (29)

Thus, z̄(t) = c∗S . We use the bang-bang open-loop trajectory
[12]. In the deterministic case, the bang-bang trajectory
was one among infinitely many optimal solutions. However,
it was the least sensitive to uncertainties. The inputs are
computed as,

F̄W =

{
FW,max, 0 ≤ t ≤ tswitch,
0, tswitch ≤ t ≤ tf ,

(30a)

F̄S =
FW c

∗
S + γsβ

∗(t)

cS,in − c∗S
, (30b)

where

β∗(t) = µ(c∗S)cX,maxV0 exp(µ(c∗S)t). (31)

C. Simulation of the true system

We simulate the fed-batch reactor in closed-loop with an
Euler-Maruyama solver. The reactor runs for 10 hours from
time t0 = 0 to tf = 10 h. The sampling time is Ts = 36
seconds resulting in Ns = 1000 steps. At each step, we solve
the SDE with Nk = 10 Euler-Maruyama steps.

D. Monte Carlo simulations of fed-batch reactor

Here, we demonstrate an application of the Monte Carlo
simulation toolbox. The simulations are conducted on a
dual-socket Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
system (see Table III for CPU details).

1) Scaling: Fig. 1 shows the wall time and the scale-up for
10, 000 Monte Carlo simulations. We observe close to linear
scaling within one non-uniform memory access (NUMA)
node, and slightly decreasing scale-up when exceeding one
socket. We point out that the toolbox is not optimized to
utilize multiple NUMA nodes, so a decrease in performance
on more than one socket is expected.

2) Open-loop controller: We perform Monte Carlo sim-
ulations for the fed-batch reactor in open-loop. Fig. 3(a)
shows a probability density function (PDF) plot for 30, 000
realizations of process noise. The mean produced biomass is
m̄X(tf ) = 20.69 kg.

Fig. 1. Wall time and scale-up plots for 10, 000 Monte Carlo simulations.
The red dashed line is the number of cores on a single NUMA node. We
get a scale-up of 27.3 on 32 cores.

Fig. 2. Tuning of PID gains. Left: locate Kp = 85 as the optimum. Middle:
locate Ki = 3 as the optimum. Right: locate Kd = 0 as the optimum.
Total Monte Carlo simulations: 3 ·101, 000 = 303, 000. Computation time:
∼ 7.50 seconds.

3) Quantification of PID controller performance: Con-
sider a PID controller with Kp = 1.0, Ki = 0.0, and
Kd = 0.0. We perform a Monte Carlo simulation with
30, 000 process noise realizations. Fig. 3(b) presents a PDF
plot of the produced biomass. The PDF follows a long-tailed
distribution towards the lower values of produced biomass
with mean produced biomass m̄X(tf ) = 24.04 kg, i.e.,
a 16.19% increase in biomass production compared to the
open-loop controller. However, low produced biomass, for
some realizations of process noise, indicates poor controller
performance. The computation time of the Monte Carlo
simulation is 0.77s. That is approximately a 2300 times
speed-up compared to a reference serial implementation in
Matlab.

4) Tuning: We apply Monte Carlo simulation to tune the
value of Kp, Ki, and Kd in the PID controller. The tuning
is based on maximizing the average produced biomass,
m̄X(tf ), for 1000 realizations of process noise. We point out
that the tuning could have been based on other factors, e.g.,
maximizing the 10% quantile. We investigate 101 equidistant
values in [0, 100] of Kp, Ki, and Kd. Thus, the tuning of
each gain requires 101, 000 closed loop simulations. Fig. 2
shows the tuning results of the PID controller. The optimal
parameters for the PID gains are Kp = 85, Ki = 3, and
Kd = 0.

Fig. 3(c) shows a PDF plot for 30, 000 noise realizations
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(a) Open-loop controller. Computation time: 0.78s.

(b) Sub-optimal PID controller. Computation time: 0.77s.

(c) Optimal PID controller. Computation time: 0.76s.

Fig. 3. Probability density function of biomass production computed from
30, 000 closed-loop simulations with different process noise realizations.
The closed-loop consists of the fed-batch model, the Euler-Maruyama SDE
solver, and a controller specified in the subplot. The red dashed line is the
produced biomass in a simulation without process noise and the orange
dashed line is the 10% quantile.

with the tuned PID controller. The PDF is almost normally
distributed with mean produced biomass, m̄X(tf ) = 24.76.
Compared to the non-optimal PID controller, the tuned
controller results in an 2.98% increased average biomass

Fig. 4. Probability density function of biomass production computed
from 1000 NMPC closed-loop simulations with different process noise
realizations. The red dashed line is the produced biomass in a simulation
without process noise and the orange dashed line is the 10% quantile. The
computation time is ∼ 30 min.

production and reduced risk of low biomass production. It
is evident that the tuning improved the performance of the
PID controller.

5) NMPC: Initial investigation of an NMPC based on the
open source optimization software, IPOPT, does not show the
same scaling as the PID controller. We observe a significant
stall time in the memory allocation with malloc(), when
increasing the number of threads. These calls to malloc()
are located in IPOPT and give reason to believe that IPOPT
has internal memory allocation. Each memory allocation has
a lock that interrupts all activity, i.e., stalling all threads. In
future work, we will expand the toolbox to include an NMPC
based on optimization software that does not have internal
memory allocation. We believe that scaling similar to the PID
case can be achieved with such an NMPC. Fig. 4 presents
a PDF plot for 1000 process noise realizations. The NMPC
and the tuned PID controller show similar performance. The
experiment is conducted on 6 cores as performance decreases
above 6 cores due to the problem mentioned above. The
computation time is ∼ 30 min.

V. CONCLUSION

The paper presents a Monte Carlo simulation approach
for performance quantification and tuning of controllers in
linear and nonlinear systems. The approach is computation-
ally feasible due to the implementation of a parallel high-
performance Monte Carlo simulation toolbox in C for closed-
loop systems. In particular, we demonstrate performance
quantification and tuning of a PID controller for a bioreactor
in fed-batch operation. Our results show that large-scale
Monte Carlo simulations can be performed within seconds.
The computational performance of the toolbox show approx-
imately a 2300 times speed-up compared to a serial reference
implementation in Matlab.

High-performance closed-loop Monte-Carlo simulations,
as illustrated in this paper, has countless applications in
systems and control. Drug dosing, as in treatment of diabetes,
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is a very prominent example of this where several dosing
strategies must be compared by their probability density
functions [20], [21].
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Economic Optimal Control of a U-loop Bioreactor
using Simultaneous Collocation-based Approaches

Tobias K. S. Ritschel, Dimitri Boiroux, Marcus Krogh Nielsen, Jakob Kjøbsted Huusom,
Sten Bay Jørgensen, John Bagterp Jørgensen

Abstract— In this paper, we consider economic optimal con-
trol of single-cell protein (SCP) production in a U-loop reactor.
The model of the U-loop reactor contains both ordinary and
partial differential equations. Consequently, the optimal control
problems are large-scale. The optimal operating profile for the
SCP production is an unstable attractor. Therefore, we consider
two simultaneous collocation-based approaches for solving the
optimal control problems. We implement these two approaches
in C, and we use IPOPT to solve the involved nonlinear
program (NLP). Finally, we present a performance study that
demonstrates the feasibility of solving economic optimal control
problems that involve the U-loop reactor in real-time.

I. INTRODUCTION

The objective of optimal control is to compute an open-
loop control strategy that optimizes a performance measure
which either represents 1) the economics of the dynamic
process or 2) the deviation of the process outputs from pre-
defined setpoints. The solution of optimal control problems
is relevant to model predictive control algorithms which
use the moving horizon optimization principle to compute
a closed-loop feedback control strategy, i.e. they solve a
sequence of open-loop optimal control problems [1]. Such
applications involve strict computational requirements. It is
particularly challenging to meet such requirements if the
process involves a large number of state variables. This is
often the case when the model arises from the discretization
of partial differential equations, e.g. oil reservoir fluid flow in
porous media [2], [3], or from processes that involve several
interconnected units, e.g. distillation columns that consist
of several trays [4]. Furthermore, the solution of optimal
control problems can also be used for offline analysis of
process control strategies for transient operating conditions,
e.g. plant startup. The computational requirements are less
strict in such applications.

A. Numerical solution of optimal control problems
There exist several approaches for numerical solution

of optimal control problems. Direct methods, i.e. single-
shooting, multiple-shooting [5], [6], and collocation-based

*This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 723661,
Spire project: ”Coordinating Optimisation of Complex Industrial Processes”
(www.cocop-spire.eu). This work also received funding in the project EUDP
64013-0558 in the IEA annex for energy efficient process control. Tobias
K. S. Ritschel, Dimitri Boiroux, Marcus Krogh Nielsen, and John Bagterp
Jørgensen are with the Department of Applied Mathematics and Com-
puter Science, Technical University of Denmark, DK-2800 Kgs. Lyngby,
Denmark. Jakob Kjøbsted Huusom and Sten Bay Jørgensen are with the
Department of Chemical and Biochemical Engineering, Technical University
of Denmark, DK-2800 Kgs. Lyngby, Denmark. Tobias K. S. Ritschel is also
with 2-control ApS, DK-2900 Hellerup, Denmark. jbjo@dtu.dk

approaches [4], are commonly used for real-life applica-
tions [1]. These methods transcribe the infinite-dimensional
optimal control problem to a finite-dimensional nonlinear
program (NLP) that can be solved using numerical optimiza-
tion algorithms [7]. In single-shooting, the solution of the
dynamical constraints is nested into the solution of the NLP
which leads to a small-scale NLP. In collocation-based ap-
proaches, the discretized dynamical constraints are incorpo-
rated directly into the NLP leading to a large-scale problem.
Multiple-shooting is a hybrid approach that attempts to com-
bine the advantages of both single-shooting and collocation-
based approaches. Two key advantages of multiple-shooting
and collocation-based approaches over single-shooting are
1) that they are applicable to unstable systems and 2) that
it is more straightforward to implement path constraints for
these approaches. However, both of these approaches lead to
large-scale NLPs.

B. Production of single-cell protein in a U-loop reactor

Methanotrophs are bacteria that grow on carbon sources
such as methane or methanol which are cheap. The protein
content of methanotrophs is high, and they can be used to
produce single-cell protein (SCP) which can be used for an-
imal feed. Consequently, SCP produced from methanotrophs
can be used to sustain the growing human population. The U-
loop reactor is a novel technology for producing SCP based
on methanotrophs. However, it is nontrivial to operate the
U-loop reactor, and in particular, the startup is challenging.

The dynamics of SCP production in a U-loop reactor have
previously been modeled as a set of partial and ordinary
differential equations [8]–[12]. Using this model, Olsen et
al. [13] computed optimal operating points for steady-state
operation. However, they did not consider the startup. In this
work, we extend previous work on economic optimal control
of the U-loop reactor [14] that involved the computation of
economically optimal startup profiles. The key contributions
of this work are that 1) we describe the numerical details
of two collocation-based optimal control algorithms, 2) we
provide details on computationally efficient C implementa-
tions of these algorithms which are based on the open-source
software IPOPT 3.12.12, and 3) we present a performance
study that demonstrates the feasibility of using the algorithms
in closed-loop nonlinear model predictive control. A key
aspect of SCP production in the U-loop reactor is that the
optimal operating profile turns out to be an unstable attractor
[14] (the system will diverge from the optimal trajectory if it
is not controlled). This is the reason that we use collocation-
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Fig. 1. A schematic of SCP production in the U-loop reactor.

based approaches. It would also be possible to use multiple-
shooting.

C. Paper organization

This paper is organized as follows. In Section II, we
present the model of SCP production in the U-loop reactor
(using methanol as the feed). In Section III, we describe
the optimal control problem that we consider as well as the
two collocation-based approaches. In Section IV, we discuss
the implementation of these two approaches, and in Section
V, we present two numerical examples together with the
performance study. Finally, we conclude this work in Section
VI.

II. MATHEMATICAL MODEL

Fig. 1 shows a schematic of SCP production in the U-loop
reactor [8], [9], [13], [14]. The feed substrate (methanol),
feed water, feed gas (oxygen), and the recirculated mixture
from the top tank are mixed together in a mixer and supplied
to the inlet of the U-loop pipe. The U-loop pipe is modeled
as a liquid-gas phase plug flow reactor (PFR), and the top
tank is modeled as a liquid continuous stirred tank reactor
(CSTR). At the end of the U-loop pipe, the gas phase
is separated (ideally) from the liquid phase which enters
into the top tank. Liquid (consisting of a mixture of water,
biomass, substrate, and dissolved gas) is harvested from the
top tank.

A. Mixing section

At the inlet of the PFR, the gas flow rate is equal to
the feed gas flow rate, FG, and the liquid flow rate, FL,
is obtained from a total static mass balance:

FL = FR + FS + FW . (1)

FR is the flow rate of recirculated liquid from the top tank
through the mixer to the U-loop pipe, and FS and FW are
the feed flow rates of substrate and water, respectively. The
concentrations of biomass, X , substrate, S, dissolved oxygen
in the liquid phase, O, and oxygen in the gas phase, gO, at

the inlet of the PFR are obtained using component mass
balances:

Cin,X =
FRC̄X

FL
, (2a)

Cin,S =
FSCF,S + FRC̄S

FL
, (2b)

Cin,O =
FRC̄O

FL
, (2c)

Cin,gO = CF,O. (2d)

C̄X , C̄S , and C̄O are the concentrations of biomass (X),
substrate (S), and oxygen (O) in the top tank, respectively.

B. The U-loop modeled as a plug-flow reactor

The phase fluxes at the inlet to the PFR, Ni, are

Ni(t, 0) = vCin,i(t), i ∈ {X,S,O, gO} . (3)

The linear velocity, v, is given by

v =
FL + FG

A
, (4)

where A is the cross-sectional area of the U-loop pipe. The
concentrations, Ci = Ci(t, z), of each of the components
i ∈ {X,S,O, gO} along the U-loop pipe are given by the
mass balances

∂CX

∂t
= −∂NX

∂z
+RX , (5a)

∂CS

∂t
= −∂NS

∂z
+RS , (5b)

∂CO

∂t
= −∂NO

∂z
+RO +

1

1− ε
Jgl,O, (5c)

∂CgO

∂t
= −∂NgO

∂z
− 1

ε
Jgl,O, (5d)

for the time interval t0 ≤ t ≤ tf and for 0 ≤ z ≤ L.
t0 and tf are the initial and final time, and L denotes the
length of the U-loop pipe. Ni = Ni(Ci(t, z)) = Ni(t, z)
for i ∈ {X,S,O, gO} are the fluxes of each component
along the U-loop pipe, and Ri = Ri(t, z) for i ∈ {X,S,O}
are the production rates of the components in the liquid
phase. Jgl,O = Jgl,O(t, z) denotes the rate at which oxygen
is transferred from the gas phase to the liquid phase, and
ε = FG/(FG + FL) is the fraction of gas in each cross
section which is assumed to be constant along the U-loop
pipe.

The outlet boundary conditions of the PFR are described
using Danckwerts’ conditions:

∂Ci

∂z
(t, L) = 0, i ∈ {X,S,O, gO} , t0 ≤ t ≤ tf . (6)

C. Gas-liquid separator

The gas and liquid are assumed to be instantaneously
and perfectly separated at the outlet of the U-loop pipe,
i.e. the gas phase is completely removed and the liquid
phase is supplied directly to the top tank. Consequently, the
concentrations at the inlet to the top tank are

C̄in,i(t) = Ci(t, L), i ∈ {X,S,O} , t0 ≤ t ≤ tf . (7)



D. Model of the top tank

The liquid volume of the top tank, V , is constant, and the
component mass balances for the components in the liquid
phase are

dC̄i

dt
= D̄

(
C̄in,i − C̄i

)
+Ri(C̄X , C̄S , C̄O), i ∈ {X,S,O} ,

(8)
for t0 ≤ t ≤ tf . D̄ = F̄ /V is the dilution rate where F̄ =
FL. The flow rate of the product stream out of the top tank
is

F = F̄ − FR = FL − FR = FS + FW . (9)

E. Convective and diffusive transport

The flux, Ni, contains a term that describes convective
transport, vCi, and one that describes diffusive transport, Ji:

Ni = viCi + Ji, i ∈ {X,S,O, gO} . (10)

Fick’s law is used to model the diffusive transport:

Ji = −Di
∂Ci

∂z
, i ∈ {X,S,O, gO} . (11)

F. Gas-liquid transport

The rate at which oxygen is transferred from the gas phase
to the liquid phase is

Jgl,O = (kLa)O(Csat,O − CO), (12)

where the saturation concentration of oxygen is obtained
using Henry’s law and the ideal gas law:

Csat,O =
PgO

HO
=

RT

MwOHO
CgO. (13)

Here, PgO denotes the partial pressure of oxygen in the gas
phase, and HO is the Henry constant for oxygen. R is the gas
constant, T denotes the temperature, and MwO is the molar
weight of oxygen. CgO is the concentration of oxygen in the
gas phase.

G. Stoichiometry and kinetics

The stoichiometric relation for the conversion of methanol
(S) to biomass (X) is

CH3OH + YSNHNO3 + YSOO2 →
YSXX + YSCCO2 + YSW H2O.

(14)

Alternatively, this relation can be formulated as

YXSCH3OH + YXNHNO3 + YXOO2 →
X + YXCCO2 + YXW H2O.

(15)

The yield coefficients (for both formulations of the stoi-
chiometric relation) are shown in Table I. The production
rates of substrate (methanol), RS , and oxygen dissolved in
the liquid phase, RO, are given in terms of the production
rate of biomass, RX :

RS = −γSRX , γS =
MwS

MwXYSX
, (16a)

RO = −γORX , γO =
MwOYSO

MwXYSX
. (16b)

TABLE I
YIELD COEFFICIENTS

i YSi YXi Mwi WXi

[mol/mol] [mol/mol] [g/mol] [g/g]
CH3OH S 1.000 1.366 32.042 1.778
HNO3 N 0.146 0.199 63.013 0.510
O2 O 0.439 0.600 31.999 0.779
CH1.8O0.5N0.2 X 0.732 1.000 24.626 1.000
CO2 C 0.268 0.366 44.010 0.654
H2O W 1.415 1.933 18.015 1.414

The biomass production rate is

RX = µ(CS , CO)CX , (17)

where µ = µ(CS , CO) is the specific growth rate which, for
Methylococcus Capsulatus, is given by the Monod-Haldane
expression:

µ = µ(CS , CO) = µmaxµS(CS)µO(CO). (18a)

The growth factors are

µS(CS) =
CS

KS + CS + C2
S/KI

, (18b)

µO(CO) =
CO

KO + CO
. (18c)

H. Profit

In this work, we use the expression for the profit of the
SCP production in the U-loop reactor described by Drejer et
al. [14]. The profit is the difference between the value of the
produced SCP (biomass) and the cost of the raw materials,
and we assume that the two most expensive raw materials
are the feed methanol (substrate) and oxygen, i.e. the cost of
other raw materials is not included in the expression for the
profit. Consequently, the profit is

φ =

∫ tf

t0

(
pXF (t)C̄X(t)− pSFS(t)− pOFG(t)

)
dt

+ pX

(
C̄X(tf )V +

∫ L

0

CX(tf , z)Adz

)

− pX

(
C̄X(t0)V +

∫ L

0

CX(t0, z)Adz

)
, (19)

where pX is the unit value of SCP, pS is the unit cost of
methanol (substrate), and pO is the unit cost of oxygen.

III. OPTIMAL CONTROL

We consider optimal control problems in the form

min
[x(t)]

tf
t0

,{uk}N−1
k=0

φ = φ([x(t);u(t); d(t)]
tf
t0 ), (20a)

subject to

x(t0) = x̂0, (20b)
ẋ(t) = f(x(t), u(t), d(t)), t ∈ [t0, tf ], (20c)
u(t) = uk, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (20d)

d(t) = d̂k, t ∈ [tk, tk+1[, k = 0, . . . , N − 1, (20e)



where the objective function is in Bolza form (as is the
expression for the profit (19)):

φ = φ([x(t);u(t); d(t)]
tf
t0 )

=

∫ tf

t0

Φ(x(t), u(t), d(t))dt+ Φ̂(x(tf ), u(tf ), d(tf )).

(21)

Φ is the stage-cost, and Φ̂ is the cost-to-go. The optimal
control problem (20) contains dependent decision variables
(the state variables), [x(t)]

tf
t0 , and independent decision

variables (the manipulated inputs), {uk}N−1
k=0 . (20b) is an

initial condition for the differential equations (20c) which
is obtained from the model of the U-loop reactor by dis-
cretizing the involved partial differential equations using a
finite-volume discretization. (20d)-(20e) are zero-order-hold
(ZOH) discretizations of the manipulated inputs, u(t), and
the disturbance variables, d(t).

A. Temporal discretization

The dynamical system in (20c) is stiff. Therefore, we use
an implicit method to temporally discretize the system. In
this work, we use Euler’s implicit method. In the k’th control
interval, we discretize the dynamical system using Nk time
steps, i.e.

xk,n+1 − xk,n = f(xk,n+1, uk, d̂k)∆tk,n, (22)

for n = 0, . . . , Nk − 1. We formulate the discretized differ-
ential equations in residual form:

Rk,n = Rk,n(xk,n+1, xk,n, uk, d̂k)

= xk,n+1 − xk,n − f(xk,n+1, uk, d̂k)∆tk,n

= 0. (23)

At the boundaries of the control intervals, we enforce conti-
nuity through

x0,0 = x̂0, (24a)
xk,0 = xk−1,Nk−1

, k = 1, . . . , N − 1. (24b)

B. The simultaneous approach

We transcribe the infinite-dimensional optimal control
problem (20) to a finite-dimensional NLP using the temporal
discretization based on Euler’s implicit method (23)-(24):

min
{{xk,n}

Nk
n=0}

N−1
k=0 ,{uk}N−1

k=0

Ψ, (25a)

subject to

x0,0 = x̂0, (25b)
xk,0 = xk−1,Nk−1

, k = 1, . . . , N − 1, (25c)

Rk,n(xk,n+1, xk,n, uk, d̂k) = 0,

n = 0, . . . , Nk − 1, k = 0, . . . , N − 1. (25d)

The objective function in (25a) is based on a discretization
of the objective function (21) using the right rectangle rule:

Ψ = Ψ({{xk,n}Nk
n=0}

N−1
k=0 , {uk}

N−1
k=0 , {d̂k}

N−1
k=0 )

=
N−1∑
k=0

Nk−1∑
n=0

Φ(xk,n+1, uk, d̂k)∆tk,n

+ Φ̂(xN−1,NN−1
, uN−1, d̂N−1). (26)

We use the right rectangle rule to be consistent with the dis-
cretization of the differential equations using Euler’s implicit
method.

We consider two approaches for solving the NLP (25).
In the first approach, we directly incorporate the continuity
constraints (25b)-(25c) into the NLP as actual constraints. We
refer to this as the standard approach. In the second approach,
we use the continuity constraints to eliminate the states at the
beginning of every control interval, {xk,0}N−1

k=0 . This leads to
a reduced number of decision variables and constraints in the
NLP. We refer to this as the reduced approach. A possible
advantage of the standard approach is that the constraints are
more loosely coupled which may lead to faster convergence
(i.e. fewer iterations) when solving the NLP, whereas the
advantage of the reduced approach is that the computational
cost per iteration in the numerical solution of the NLP is
lower (due to the lower number of decision variables and
constraints).

In both approaches, we solve an NLP in the form

min
s

Ψ(s, d̂), (27a)

subject to R(s, x̂0, d̂) = 0, (27b)

where d̂ = [d̂0; · · · ; d̂N−1]. In the standard approach, the
decision variables are

s = [s0; · · · ; sN−1], (28a)
sk = [xk,0; · · · ;xk,Nk

;uk], k = 0, . . . , N − 1, (28b)

and the residual equations (27b) include the continuity con-
straints (25b)-(25c). In the reduced approach, the decision
variables are

s = [s0; · · · ; sN−1], (29a)
sk = [xk,1; · · · ;xk,Nk

;uk], (29b)

and the residual equations (27b) do not include the continuity
constraints.

The total number of decision variables in the standard
approach is (Nt+N)nx+Nnu where Nt =

∑N−1
k=0 Nk is the

total number of time steps, nx is the dimension of the state
vector, and nu is the dimension of the manipulated inputs.
The total number of residual equations is (Nt +N)nx. The
total number of decision variables in the reduced approach
is Ntnx +Nnu, and the total number of residual equations
is Ntnx. Consequently, in the reduced approach, the NLP
involves Nnx fewer decision variables and constraints than
in the standard approach. This difference can be considerable
if Nt and N are of comparable size and if nx is significantly
larger than nu.



IV. IMPLEMENTATION DETAILS

We implement the two collocation-based approaches de-
scribed in Section III in C, and we use IPOPT 3.12.12 [15]
to solve the NLP (27). Apart from providing the objective
function, Ψ(s, d̂), and the residual function, R(s, x̂0, d̂),
we provide IPOPT with 1) the gradient of the objective
function, ∂Ψ

∂s , 2) the Jacobian of the residual function, ∂R
∂s ,

and 3) the Hessian of the Lagrangian, ∇2
ssL(s, d̂), where

the Lagrangian is L(s, d̂) = σΨ(s, d̂) + λTR(s, x̂0, d̂) [16,
Sec. 9]. IPOPT provides both the scaling factor σ and the
vector of Lagrange multipliers λ. The Jacobian matrix of
the residual function and the Hessian of the Lagrangian are
large and sparse, and we provide the exact sparsity patterns of
these two matrices (i.e. we do not represent any zero entries
unnecessarily).

IPOPT requires third party software related to the solution
of linear systems of equations. We use the MA57 routine
from HSL [17] as well as METIS 4.0.3 [18]. Further-
more, we compare the computational efficiency of using
the OpenBLAS 0.2.20 linear algebra software and Netlib’s
implementation of BLAS (downloaded using IPOPT). In
both cases, we use LAPACK 3.4.2 (also downloaded using
IPOPT).

We compile the C code (including IPOPT) using gcc 5.4.0,
and we carry out the computations presented in this paper on
a 64-bit workstation which uses the operating system Ubuntu
16.04 LTS. The workstation has 15.6 GB RAM and four
cores, each of which contains two Intel Core i7 3.60 GHz
processors (eight processors in total). The four cores share a
level 3 cache of 8192 KB, and the level 2 and level 1 cache
of each core have 256 KB and 64 KB (32 KB instruction
cache and 32 KB data cache), respectively.

V. NUMERICAL EXAMPLES

In this section, we present a performance study of the
solution of two optimal control problems. The objective in
both examples is to maximize the profit (19) over a control
and prediction horizon of 30 h consisting of N = 600 control
intervals with Nk = 1 time steps per control interval. The
first optimal control problem is the optimal startup problem
considered by Drejer et al. [14]. The second optimal control
problem is the one that would be solved next in a closed-loop
nonlinear model predictive control algorithm. The purpose of
the second problem is to test the computational efficiency of
warm starting.

In the first problem, at the initial time, the U-loop reactor
contains 0.1 kg/m3 biomass in the top tank and in the U-
loop pipe and no substrate or oxygen. We consider two initial
guesses, one that is constant in time, and one in which the
states are obtained from a linear interpolation of the states
in the first initial guess and the initial condition (the manip-
ulated inputs are identical in the two initial guesses). Fig. 2
and Fig. 3 show the optimal states and the manipulated inputs
(together with the corresponding initial guesses and bounds).
The initial guesses and the bounds on the concentrations of
biomass, substrate, and dissolved oxygen in the U-loop pipe
are the same as for the concentrations in the top tank. The

TABLE II
NUMBER OF DECISION VARIABLES AND RESIDUAL EQUATIONS IN THE

STANDARD AND REDUCED COLLOCATION-BASED APPROACHES. THERE

ARE 83 STATE VARIABLES AND 3 MANIPULATED INPUTS.

Approach Standard Reduced
Number of decision variables 102600 52200
Number of residual equations 100800 50400

initial guess of the oxygen in the gas phase of the U-loop pipe
is 2.0 kg/m3, and the upper and lower bounds are 6.0 kg/m3

and 0.0 kg/m3, respectively.
For the second problem, we construct an initial guess,

sws = [sws
0 ; · · · ; sws

N−1], by sws
k = s∗k+1 for k = 0, . . . , N − 2

and sws
N−1 = sws

N−2 where s∗ = [s∗0; · · · ; s∗N−1] is the solu-
tion to the first optimal control problem. We construct initial
guesses of the Lagrange multipliers in a similar manner. The
initial condition in the second problem is the optimal states
at the end of the first control interval (k = 0) in the first
optimal control problem, i.e. x̂0 = x∗0,N0

. The bounds are
identical in the two problems.

Table II shows the number of decision variables and
residual equations in the two approaches, and Table III shows
various key performance indicators for the solution of the
two optimal control problems. For the standard approach, it
is better to use the interpolated initial guess whereas for the
reduced approach, the interpolated initial guess leads to slow
convergence. The use of warm starting leads to a significant
reduction in the number of iterations and the computation
time for both approaches, and we are able to solve the
optimal control problem in 28.5 s which is less than the
length of the control intervals (3 min). This demonstrates
that it is feasible to solve the optimal control problems in
real-time. Finally, the use of OpenBLAS generally improves
the computational performance, and in some cases, it leads to
a significant reduction in the number of iterations in IPOPT.

VI. CONCLUSION

In this work, we consider economic optimal control of
SCP production in a U-loop reactor. The dynamical model
of the U-loop reactor consists of both partial and ordinary
differential equations. We use a finite-volume approach to
discretize the partial differential equations. This leads to a
set of ordinary differential equations with 83 states. Con-
sequently, the optimal control problems are large-scale. We
describe two collocation-based approaches for solving these
large-scale optimal control problems. We implement the
two approaches in C, and we use IPOPT 3.12.12 to solve
the involved NLP (which involves up to around 100,000
decision variables). Furthermore, we present a performance
study which demonstrates that it is feasible to solve optimal
control problems that involve a U-loop reactor in real-time.
Future work involves 1) the use of fully implicit Runge-
Kutta (FIRK) methods instead of Euler’s implicit method
in the collocation-based approaches and 2) implementation
of economic nonlinear model predictive control for SCP
production in a U-loop reactor.
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Fig. 2. Constant initial guesses (blue dashed), interpolated initial guesses (green dashed), and optimal values (black solid) of the concentrations of biomass,
substrate, and dissolved oxygen in the top tank together with their bounds (red dash-dotted). The constant initial guess of the biomass concentration coincides
with the corresponding optimal bound.
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Fig. 3. Initial guesses (green dashed) and optimal values (black solid) of the manipulated inputs (water, substrate, and oxygen feed flow rates) together
with their bounds (red dash-dotted). The manipulated inputs are identical in the constant and the interpolated initial guesses.

TABLE III
KEY PERFORMANCE INDICATORS OF THE STANDARD (STD.) AND

REDUCED (RED.) COLLOCATION-BASED APPROACHES USING DIFFERENT

STARTING GUESSES AND LINEAR ALGEBRA SOFTWARE.

Initial guess Constant Interpolated Warm started
Approach Std. Red. Std. Red. Std. Red.

Netlib BLAS
Iterations 328 317 159 624 60 24
Func. eval. 329 318 232 647 71 25
Con. eval. 329 318 232 647 71 25
Grad. eval. 329 318 88 617 61 25
Jac. eval. 329 318 161 629 61 25
Hess. eval. 328 317 159 624 60 24
CPU time (s) 302.3 268.9 164.4 1113.9 71.9 31.4

OpenBLAS
Iterations 330 299 145 426 29 24
Func. eval. 331 300 152 445 30 25
Con. eval. 331 300 152 445 30 25
Grad. eval. 331 300 126 419 30 25
Jac. eval. 331 300 147 430 30 25
Hess.eval. 330 299 145 426 29 24
CPU time (s) 284.7 238.6 199.9 703.3 36.9 28.5
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The Extended Kalman Filter for Nonlinear State Estimation
in a U-loop Bioreactor

Tobias K. S. Ritschel, Dimitri Boiroux, Marcus Krogh Nielsen, Jakob Kjøbsted Huusom,
Sten Bay Jørgensen, John Bagterp Jørgensen

Abstract— In this paper, we consider nonlinear state esti-
mation in the U-loop reactor for single-cell protein (SCP)
production. The model of the U-loop reactor is a mixture of
stochastic partial differential equations and stochastic differen-
tial equations which are stiff. By a typical finite-volume spatial
discretization, the resulting system of stochastic differential
equations for numerical simulation and state estimation has
83 states. We investigate and discuss the continuous-discrete
EKF for state estimation in this high-dimensional and stiff
continuous-discrete-time system.

I. INTRODUCTION

State estimation as a filter algorithm is a central com-
ponent in monitoring, fault detection, and model predictive
control. When the process is nonlinear, a nonlinear filter-
ing algorithm is needed. The nonlinear filtering problem
is a computationally hard problem. It is well known that
the solution of the Fokker-Planck equation (Kolmogorov’s
forward equation), i.e. the exact probability density function
of the states, is the optimal solution to the state estimation
problem [1]. However, due to the curse of dimensionality
and computational tractability, the Fokker-Planck equation is
restricted to low dimensional problems and cannot be applied
to most practical problems. It can certainly not be applied to
estimation in systems where the model is a number of partial
and ordinary differential equations. Therefore, a number of
alternative approximate nonlinear filtering algorithms are
used. These algorithms are also challenged by the high
state dimensionality of models arising from finite-volume
discretizaton of partial differential equation systems. Single-
cell protein (SCP) production in the U-loop reactor studied
in this paper gives rise to a coupled system of partial and
ordinary differential equations. Consequently, a finite-volume
spatial discretization gives rise to a high-dimensional system.
In this paper, we investigate the extended Kalman filter
(EKF) for nonlinear state estimation in this system.

*This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 723661,
Spire project: ”Coordinating Optimisation of Complex Industrial Processes”
(www.cocop-spire.eu). This article reflects only the author’s views and
the Commission is not responsible for any use that may be made of the
information contained therein. This work also received funding in the project
EUDP 64013-0558 in the IEA annex for energy efficient process control.
Tobias K. S. Ritschel, Dimitri Boiroux, Marcus Krogh Nielsen, and John
Bagterp Jørgensen are with the Department of Applied Mathematics and
Computer Science, Technical University of Denmark, DK-2800 Kgs. Lyn-
gby, Denmark. Jakob Kjøbsted Huusom and Sten Bay Jørgensen are with the
Department of Chemical and Biochemical Engineering, Technical University
of Denmark, DK-2800 Kgs. Lyngby, Denmark. Tobias K. S. Ritschel is also
with 2-control ApS, DK-2900 Hellerup, Denmark. jbjo@dtu.dk

A. Nonlinear filtering algorithms

The Kalman filter is an optimal filter for linear systems
with normally distributed process and measurement noise
[2]. When the system is nonlinear, high-dimensional, and
evolving in continuous-time, a number of different approxi-
mations such as the EKF and the unscented Kalman filter
(UKF) have been suggested, while approaches based on
the Fokker-Planck equation, hidden Markov models, parti-
cle filtering, or the ensemble Kalman filter (EnKF) suffer
from the curse of dimensionality [1]–[7]. Most literature
on nonlinear filtering algorithms for process applications
considers low dimensional and discrete-discrete systems with
only few details related to the numerical methods [8]–[13].
In this paper, we formulate the EKF for a high-dimensional
continuous-discrete system stemming from a mixed system
of stochastic partial and ordinary differential equations that
are measured at discrete times. Such systems are ubiquitous
in process systems engineering. We use the EKF because it is
computationally efficient and involves few tuning parameters,
e.g. compared to the UKF. Furthermore, we demonstrate the
relevance of the formulated EKF by application to a novel
process from industrial biotechnology.

B. Single cell protein production in a U-loop reactor

Methanotrophs can grow on cheap carbon sources such as
methane or methanol. They have a high protein content and
can be used to produce SCP. SCP can be used for animal feed
and thereby sustain a growing human population. SCP may
be produced using a U-loop reactor. However, the operation
of such a reactor and in particular the startup is non-trivial.
Using a mathematical model that describes the dynamics of
SCP production in a U-loop reactor [14]–[18], we use the
EKF to estimate the state of the reactor during startup based
on the economic optimizing control strategy described by
Drejer et al. [19]. The information provided by this state
estimation is central to economic nonlinear model predictive
control [20] for economically optimal operation and startup
of the U-loop reactor. Previously, Olsen et al. [21] computed
the optimal steady-state operating points, but did not consider
the startup. Furthermore, state estimation has not previously
been considered for the U-loop reactor. The computation and
implementation of the optimal startup profile is challenging
as the optimal profile turns out to be an unstable attractor, i.e.
an uncontrolled system diverges from this optimal trajectory.
Thus, using an open-loop control strategy would cause the
startup of the U-loop reactor to fail [19].
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Fig. 1. U-loop reactor diagram for mathematical modeling.

C. Paper organization

The remaining part of the paper is organized as follows.
Section II presents the mathematical model for SCP produc-
tion in a U-loop reactor with methanol as the feed. Section
III discusses the EKF for continuous-discrete systems, and
in Section IV, we present the numerical example of state
estimation during startup of the U-loop reactor. Section V
summarizes the conclusions.

II. MATHEMATICAL MODEL

Fig. 1 is a conceptual diagram used to derive a mathe-
matical model of SCP production in the U-loop reactor [14],
[15], [19], [21]. At its inlet, the U-loop section consists of a
mixer, in which the recirculated mixture from the top tank is
mixed with feed substrate (methanol), feed water, and feed
gas (oxygen). The remaining part of the U-loop is modeled
as a liquid-gas phase plug flow reactor (PFR). The end of
the U-loop is modeled as an ideal separator that completely
separates the gas phase from the liquid phase. The top tank
is modeled as a liquid phase continuous stirred tank reactor
(CSTR). A liquid mixture of water, biomass, substrate, and
dissolved gas is harvested from the top tank. The top tank
also recirculates part of the mixture.

A. Mixing section

The gas flow rate at the inlet of the PFR is equal to the
feed gas flow rate, FG. The liquid flow rate, FL, to the inlet
of the PFR is obtained by a total static mass balance:

FL = FR + FS + FW . (1)

FR is the flow rate of liquid from the top tank to the U-loop,
FS is the flow rate of feed substrate, and FW is the flow rate
of feed water. Component mass balances for the biomass, X ,
the substrate, S, the oxygen dissolved in the liquid phase, O,
and the oxygen in the gas phase, gO, give the following inlet

concentrations to the PFR

Cin,X =
FRC̄X
FL

, (2a)

Cin,S =
FSCF,S + FRC̄S

FL
, (2b)

Cin,O =
FRC̄O
FL

, (2c)

Cin,gO = CF,O. (2d)

C̄X , C̄S , and C̄O denote the concentrations of biomass (X),
substrate (S), and oxygen (O) in the top tank.

B. The U-loop modeled as a plug-flow reactor

The corresponding inlet fluxes, Ni, to the PFR are

Ni(t, 0) = vCin,i(t), i ∈ {X,S,O, gO} , (3)

where the linear velocity is computed as

v =
FL + FG

A
. (4)

A is the cross-sectional area of the U-loop pipe. The
concentrations, Ci = Ci(t, z), of all components, i ∈
{X,S,O, gO}, are computed as functions of time, t, and
position, z, by the following mass balances

∂CX
∂t

= −∂NX
∂z

+RX , (5a)

∂CS
∂t

= −∂NS
∂z

+RS , (5b)

∂CO
∂t

= −∂NO
∂z

+RO +
1

1− ε
Jgl,O, (5c)

∂CgO
∂t

= −∂NgO
∂z

− 1

ε
Jgl,O, (5d)

for ta ≤ t ≤ tb and 0 ≤ z ≤ L. ta is the initial time, tb is
the final time, and L is the length of the U-loop pipe. Ni =
Ni(Ci(t, z)) = Ni(t, z) denotes the flux of each component,
i ∈ {X,S,O, gO}, Ri = Ri(t, z) denotes the production
rate for i ∈ {X,S,O}, and Jgl,O = Jgl,O(t, z) is the transfer
rate of oxygen from the gas phase to the liquid phase. ε =
FG/(FG + FL) is the fraction of gas in each cross section.
It is assumed to be constant throughout the U-loop pipe.

Danckwerts’ conditions describe the outlet boundary con-
ditions of the PFR, i.e.

∂Ci
∂z

(t, L) = 0, i ∈ {X,S,O, gO} , ta ≤ t ≤ tb. (6)

C. Gas-liquid separating section

We assume that the gas and liquid are perfectly and
instantaneously separated when the fast flowing gas-liquid
mixture from the U-loop pipe enters the top tank. This is
modeled as an ideal static gas-liquid separator, where the
gas is completely removed, and the liquid phase enters the
liquid phase in the top tank. This implies that the inlet
concentrations of the liquid phase to the top tank are

C̄in,i(t) = Ci(t, L), i ∈ {X,S,O} , ta ≤ t ≤ tb. (7)



D. Top-tank model

The top tank is modeled as a CSTR with a constant liquid
volume. The mass balances for the components in the liquid
phase are

dC̄i
dt

= D̄
(
C̄in,i − C̄i

)
+Ri(C̄X , C̄S , C̄O), i ∈ {X,S,O} ,

(8)
for ta ≤ t ≤ tb. The dilution rate is D̄ = F̄ /V , where
F̄ = FL and V is the liquid volume in the top tank. As the
liquid volume in the top tank is constant, the flow rate of the
product stream from the top tank is

F = F̄ − FR = FL − FR = FS + FW . (9)

E. Convective and diffusive transport

The flux, Ni, consists of convective transport, vCi, and
diffusive transport, Ji:

Ni = viCi + Ji, i ∈ {X,S,O, gO} . (10)

The diffusive transport is modeled using Fick’s law:

Ji = −Di
∂Ci
∂z

, i ∈ {X,S,O, gO} . (11)

F. Gas-liquid transport

The transport of oxygen from the gas phase to the liquid
phase is governed by the relation

Jgl,O = (kLa)O(Csat,O − CO), (12)

where Henry’s law in combination with the ideal gas law
provides the saturation concentration of oxygen, i.e.

Csat,O =
PgO
HO

=
RT

MwOHO
CgO. (13)

HO is the Henry constant for oxygen, PgO is the partial
pressure of oxygen in the gas phase, R is the gas constant,
T is the temperature, MwO is the molar weight of oxygen,
and CgO is the concentration of oxygen in the gas phase.

G. Stoichiometry and kinetics

The overall conversion of methanol (S) to biomass (X) is
governed by the stoichiometric relation

CH3OH + YSNHNO3 + YSOO2 →
YSXX + YSCCO2 + YSWH2O

(14)

which can also be formulated as

YXSCH3OH + YXNHNO3 + YXOO2 →
X + YXCCO2 + YXWH2O.

(15)

Table I reports the yield coefficients for this overall reac-
tion. The stoichiometry implies that the production rate of
substrate (methanol), RS , and the production rate of oxygen
in the liquid phase, RO, are related to the production rate of
biomass, RX , by

RS = −γSRX , γS =
MwS

MwXYSX
, (16a)

RO = −γORX , γO =
MwOYSO
MwXYSX

. (16b)

TABLE I
YIELD COEFFICIENTS

i YSi YXi Mwi WXi

[mol/mol] [mol/mol] [g/mol] [g/g]
CH3OH S 1.000 1.366 32.042 1.778
HNO3 N 0.146 0.199 63.013 0.510
O2 O 0.439 0.600 31.999 0.779
CH1.8O0.5N0.2 X 0.732 1.000 24.626 1.000
CO2 C 0.268 0.366 44.010 0.654
H2O W 1.415 1.933 18.015 1.414

The production rate of biomass, RX , is given by

RX = µ(CS , CO)CX , (17)

where µ = µ(CS , CO) is the specific growth rate. The spe-
cific growth rate of Methylococcus Capsulatus in a methanol
medium is given by the Monod-Haldane expression

µ = µ(CS , CO) = µmaxµS(CS)µO(CO), (18a)

where the growth factors, µS(CS) and µO(CO), are

µS(CS) =
CS

KS + CS + C2
S/KI

, (18b)

µO(CO) =
CO

KO + CO
. (18c)

H. Stochastic effects and parameters

In this paper, we model the variation of some key param-
eters as stochastic processes,

dµmax(t) = κµ(µ̄max − µmax(t))dt+ σµdwµ(t), (19a)
dγS(t) = κγS (γ̄S − γS(t))dt+ σγSdwγS (t), (19b)
dγO(t) = κγO (γ̄O − γO(t))dt+ σγOdwγO (t), (19c)

around the mean (i.e. the nominal) values of the parameters.
Similarly, we consider stochastic variations of the feed
substrate concentration according to

dCF,S(t) = κCF,S
(C̄F,S(t)−CF,S(t))dt+σCF,S

dwCF,S
(t).
(20)

III. NONLINEAR STATE ESTIMATION

Using spatial discretization on Nz equidistantly spaced fi-
nite volumes, the mathematical model for the U-loop reactor
presented in Section II can be compactly represented as

dxd(t) = f(xd(t),xs(t), u(t), θ)dt, (21a)

and the corresponding compact model for the stochastic
effects described in Section II-H is

dxs(t) = fs(xs(t), u(t), θ)dt+ σsdws(t). (21b)

In this section, we describe the EKF for continuous-
discrete-time stochastic systems in the form

dx(t) = f(x(t), u(t), θ)dt+ σ(x(t), u(t), θ)dw(t), (22a)
z(t) = g(x(t), θ), (22b)

y(tk) = z(tk) + v(tk; θ). (22c)



The combined model (21) is a special case of the stochastic
differential equation (22a), (22b) is a model of the process
outputs, and (22c) is a model of the measurements. x is
the state vector, u is the vector of manipulated inputs, θ
is the parameter vector, z is the vector of outputs, and
y are measurements of the outputs (at discrete times, tk)
which are corrupted by measurement noise, v(tk; θ) ∼
Niid(0, Rv(θ)). w(t) is a standard Wiener process, i.e.
dw(t) ∼ Niid(0, Idt). The initial states are normally dis-
tributed: x(t0) ∼ N(x̄0, P0).

A. Simulation and temporal discretization

We use a semi-implicit method [22] to discretize the
stochastic differential equation (22a):

xk,n+1 − xk,n = f(xk,n+1, uk, θ)∆tk,n

+ σ(xk,n, uk, θ)∆wk,n.
(23)

∆wk,n is a realization of ∆wk,n ∼ Niid(0, I∆tk,n). The
states, xk,n+1, are obtained by solution of

Rk,n = Rk,n(xk,n+1)

= xk,n+1 − f(xk,n+1, uk, θ)∆tk,n

− xk,n − σ(xk,n, uk, θ)∆wk,n

= 0,

(24)

using a variant of Newton-Raphson’s method.

B. Extended Kalman filter

The EKF for the continuous-discrete-time stochastic sys-
tem (22) consists of a filter and a one-step predictor.

1) Initialization: The initialization of the EKF is based
on the prior information represented by the distribution of
the initial states. Consequently, x̂0|−1 = x̄0 and P0|−1 = P0.

2) Filter step: At each discrete time k, i.e. time tk,
the filter assumes that x̂k|k−1 and Pk|k−1 are available. It
computes the one-step prediction of the output, ẑk|k−1, and
the measurement, ŷk|k−1, by

ŷk|k−1 = ẑk|k−1 = g(x̂k|k−1, θ). (25)

Linearization of the output equation provides

Ck =
∂g

∂x
(x̂k|k−1, θ), (26)

such that the innovation, ek, and its covariance, Re,k =
〈yk|k−1,yk|k−1〉, may be computed by

ek = yk − ŷk|k−1, (27a)
Re,k = CkPk|k−1C

′
k +Rv(θ), (27b)

where yk is the measurement. The Kalman filter gain,
Kfx,k = 〈xk|k−1,yk|k−1〉〈yk|k−1,yk|k−1〉−1, is

Kfx,k = Pk|k−1C
′
kR
−1
e,k. (28)

The Kalman filter gain, Kfx,k, is used in the
computation of the filtered state, x̂k|k, and
its covariance, Pk|k = 〈xk|k−1,xk|k−1〉 −

〈xk|k−1,yk|k−1〉〈yk|k−1,yk|k−1〉−1〈yk|k−1,xk|k−1〉.
They are computed according to

x̂k|k = x̂k|k−1 +Kfx,kek, (29a)
Pk|k = Pk|k−1 −Kfx,kRe,kK

′
fx,k. (29b)

3) One-step predictor: The one-step prediction of the
states are computed by solution of the initial value problem

d

dt
x̂k(t) = f(x̂k(t), uk, θ), x̂k(tk) = x̂k|k. (30)

In order to compute the one-step prediction of the covariance,
we compute the sensitivities of the one-step prediction of the
states at time t with respect to the states at time s, Φk(t, s),
by solving the initial value problem

d

dt
Φk(t, s) = Ak(t)Φk(t, s), Φk(s, s) = I, (31)

where

Ak(t) =
∂f

∂x
(x̂k(t), uk, θ). (32)

Using these sensitivities, we compute the covariance at time
t by [23]

Pk(t) = Φk(t, tk)Pk|kΦk(t, tk)′

+

∫ t

tk

Φk(t, s)σk(s)σk(s)′Φk(t, s)′ds,
(33)

where

σk(t) = σ(x̂k(t), uk, θ). (34)

We use Euler’s implicit method (with multiple time steps in
between measurements) together with a variant of Newton-
Raphson’s method to solve the initial value problems (30)
and (31), and we use a left rectangle rule to approximate the
integral in (33).

IV. NUMERICAL EXAMPLE

In this section, we present a numerical example of state
estimation in the U-loop reactor during startup based on the
economic optimizing control strategy presented by Drejer
et al. [19] which is stabilized by a P-controller (i.e. using
feedback). The P-controller changes the substrate feed flow
rate every 15 s based on the substrate concentration in the
top tank. The feedback dynamics are not represented in the
dynamical model used by the EKF. Furthermore, the EKF
uses average values of the substrate feed flow rate computed
by the P-controller (averaged over each sampling interval).
We consider a time interval of 30 h, and the EKF uses
measurements of the concentration of the dissolved oxygen
at positions z = 4 m, z = 7 m, and z = 10 m in the
U-loop pipe. These measurements are obtained every third
minute. We discretize the U-loop pipe using 20 equidistant
finite volumes. Consequently, we measure the concentrations
of the dissolved oxygen in the 7’th, 12’th, and 17’th finite
volumes in the discretized U-loop pipe. The resulting dy-
namical system contains 83 state variables as well as the 3
uncertain parameters, µmax, γS , and γO, and the uncertain
substrate feed concentration, CF,S , as described in Section



II-H. Consequently, the EKF estimates the 87 state variables
in the combined dynamical system.

We use a stochastic simulation to represent the true U-loop
reactor and to compute the measurements of the dissolved
oxygen concentrations. In this stochastic simulation, we use
12 time steps in between the measurements corresponding
to the update frequency of the P-controller. We use 6 time
steps between the measurements in the EKF. We provide
more detail on this numerical example in the Appendix.

Fig. 2 shows the manipulated inputs, and Fig. 3 shows the
filtered estimates of the concentrations of biomass, substrate,
and dissolved oxygen in the top tank computed using the
EKF (in blue) together with the true concentrations (in
green). Furthermore, it shows the absolute deviations of the
filtered estimates from the true concentrations. The EKF is
able to accurately estimate the concentrations of biomass
and dissolved oxygen in the top tank. However, the esti-
mates of the substrate concentration in the top tank deviate
significantly from the true values. This is possibly because
the EKF does not estimate the substrate concentration in the
feed, CF,S , accurately during the first 15 h of the startup. The
filtered estimate of CF,S is shown in Fig. 4 together with the
filtered estimates of the uncertain model parameters µmax,
γS , and γO (in blue) as well as the true values (in green)
and the nominal values (in black) of these parameters.

In the implementation of the EKF, the evaluation of the
right-hand side function f(x(t), u(t), θ) in the combined
dynamical system (22) is implemented in C, and the rest is
implemented in Matlab R2016b. The average computation
times of the filtering step and the one-step predictor are
0.1 ms and 9.4 ms which are negligible compared to the
sampling time.

V. CONCLUSION

In this work, we describe the EKF for nonlinear state
estimation in a U-loop reactor for SCP production. The EKF
requires a dynamical model of the U-loop reactor. We present
such a dynamical model which consists of both stochas-
tic partial differential equations and stochastic differential
equations, and we use a finite-volume approach to spatially
discretize the stochastic partial differential equations. Fur-
thermore, we demonstrate, using a numerical example, that
the EKF can be used to estimate the state of the U-loop
reactor during startup. In this example, we use a previously
developed economic optimizing control strategy together
with a P-controller for stabilization. The EKF is implemented
using Matlab and C, and the computation time is negligible
compared to the sampling time indicating that real-time
implementation is feasible. Future work could involve using
the UKF for improving the accuracy of the state estimation
in the U-loop reactor.
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[13] S. Kolås, B. A. Foss, and T. S. Schei, “Noise modeling concepts in
nonlinear state estimation,” Journal of Process Control, vol. 19, pp.
1111–1125, 2009.

[14] D. F. Olsen, J. B. Jørgensen, J. Villadsen, and S. B. Jørgensen,
“Modeling and simulation of single cell protein production,” IFAC
Proceedings Volumes, vol. 43, no. 6, pp. 502–507, 2010.

[15] O. A. Prado-Rubio, J. B. Jørgensen, and S. B. Jørgensen, “Systematic
model analysis for single cell protein (SCP) production in a U-loop
reactor,” Computer Aided Chemical Engineering, vol. 28, pp. 319–324,
2010.

[16] A. M. Al Taweel, Q. Shah, and B. Aufderheide, “Effect of mixing on
microorganism growth in loop bioreactors,” International Journal of
Chemical Engineering, no. Article ID 984827, 2012.

[17] M. Wu, J. K. Huusom, K. V. Gernaey, and U. Krühne, “Modelling
and simulation of a U-loop reactor for single cell protein production,”
Computer Aided Chemical Engineering, vol. 38, pp. 1287–1292, 2016.

[18] L. A. H. Petersen, J. Villadsen, S. B. Jørgensen, and K. V. Gernaey,
“Mixing and mass transfer in a pilot scale U-loop bioreactor,” Biotech-
nology and Bioengineering, vol. 114, no. 2, pp. 344–354, 2017.

[19] A. Drejer, T. Ritschel, S. B. Jørgensen, and J. B. Jørgensen, “Economic
optimizing control for single-cell protein production in a U-loop
reactor,” Computer Aided Chemical Engineering, vol. 40, pp. 1759–
1764, 2017.

[20] L. N. Petersen and J. B. Jørgensen, “Real-time economic optimization
for a fermentation process using model predictive control,” in Euro-
pean Control Conference (ECC) 2014. IEEE, 2014, pp. 1831–1836.

[21] D. F. Olsen, J. B. Jørgensen, J. Villadsen, and S. B. Jørgensen,
“Optimal operating points for SCP production in the U-loop reactor,”
IFAC Proceedings Volumes, vol. 43, no. 5, pp. 499–504, 2010.

[22] K. Burrage and T. Tian, “The composite Euler method for stiff stochas-
tic differential equations,” Journal of Computational and Applied
Mathematics, vol. 131, pp. 407–426, 2001.

[23] J. B. Jørgensen, M. R. Kristensen, P. G. Thomsen, and H. Madsen,
“New extended Kalman filter algorithms for stochastic differential
algebraic equations,” in Assessment and Future Directions of Non-
linear Model Predictive Control, ser. Lecture Notes in Control and
Information Sciences. Springer-Verlag Berlin Heidelberg, 2007, vol.
358, pp. 359–366.

APPENDIX

Table II shows parameters used in the numerical example.
The units of the diffusion coefficients, σµ, σγS , σγO , and
σCF,S

, contain a factor of 1/h1/2 because the unit of the
increment of the Wiener process, dw(t), in the stochastic
continuous-discrete-time system (22) is h1/2, i.e. the unit of
the covariance of this increment is h.
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Fig. 2. Manipulated inputs: feed flow rates of water, substrate, and gaseous oxygen. For the substrate flow rate, the green curve represents the values
used in the stochastic simulation of the U-loop reactor, the blue curve represents the values used in the EKF, and the black curve represents the open-loop
economically optimal strategy computed by Drejer et al. [19] (the green and blue curves almost completely coincide). For the water and oxygen flow rates,
the green curve is used both in the stochastic simulation and in the EKF.
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Fig. 3. Top row: filtered estimates of the concentrations in top tank of the U-loop reactor obtained with the EKF (blue) together with the true concentrations
(green). Bottom row: absolute differences between the filtered estimates and the true values of these concentrations.
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Fig. 4. Filtered estimates of the maximum specific growth rate, µmax, the stoichiometric coefficients for substrate and oxygen, γS and γO , and the
substrate concentration in the inlet, CF,S computed using the EKF (blue) together with the true (green) and nominal (black) values of these parameters.

The mean of the initial states, x̄0, is constructed such that
the biomass concentration in the U-loop pipe and the top
tank are 0.1 kg/m3, and the reactor contains no substrate
or oxygen (neither dissolved or in gaseous form). The
covariance of the initial states, P0, used in the EKF and
to sample the true initial states is a diagonal matrix whose
entries are 10−4 (the units vary).

The P-controller used to stabilize the open-loop economic
optimizing control strategy presented by Drejer et al. [19] is

F̃S = F ∗S +KcS(C̄∗S − C̄S), (35a)

where F ∗S and C̄∗S are the optimized open-loop substrate feed
flow rate and the substrate concentration in the top tank. C̄S
is the actual substrate concentration in the top tank, and in
this example, we use KcS = 0.1.

TABLE II
PARAMETER VALUES USED IN THE NUMERICAL EXAMPLE.

Symbol Value Unit
µ̄max 0.37 1/h
γ̄S 1.78 -
γ̄O 0.78 -
C̄F,S 792 kg/m3

κµ 2 1/h
κγS 2 1/h
κγO 2 1/h
κCF,S

0.5 1/h
σµ 0.04 1/h3/2

σγS 0.1 1/h1/2

σγO 0.1 1/h1/2

σCF,S
10.0 kg/(m3h1/2)

Rv 10−4 · I3×3 (kg/m3)2
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Economic Nonlinear Model Predictive Control
of a U-loop Bioreactor

Tobias K. S. Ritschel, Dimitri Boiroux, Marcus Krogh Nielsen, Jakob Kjøbsted Huusom,
Sten Bay Jørgensen, John Bagterp Jørgensen

Abstract— In this paper, we present an algorithm for eco-
nomic nonlinear model predictive control (NMPC) of single-
cell protein production in a U-loop bioreactor. The model
of the U-loop bioreactor consists of both stochastic ordinary
and partial differential equations. Using a typical finite-volume
discretization, the model contains 87 state variables. The NMPC
algorithm is based on the continuous-discrete extended Kalman
filter and a simultaneous collocation method. We present a
closed-loop simulation which demonstrates the computational
feasibility of real-time implementation of the NMPC algorithm
for startup and steady state operation of the U-loop reactor.

I. INTRODUCTION

Nonlinear model predictive control (NMPC) algorithms
use the moving horizon optimization principle to compute
a closed-loop feedback control strategy, i.e. they solve a
sequence of open-loop optimal control problems (OCPs).
The objective of NMPC algorithms is to 1) optimize a
techno-economic performance measure or 2) track a set of
predefined setpoints. NMPC involves strict computational
requirements because it requires real-time solution of state
estimation problems and OCPs. It is particularly challenging
to meet such requirements when 1) the process involves both
fast and slow time-scales (feedback must be fast while the
control and prediction horizon must be long) and 2) the
model of the process involves a large number of state
variables, e.g. due to the discretization of partial differential
equations (PDEs) in the model. Single-cell protein (SCP)
production in the U-loop reactor studied in this paper is an
example of such a process.

A. Nonlinear model predictive control

NMPC algorithms combine state estimation algorithms [1]
with algorithms for solving OCPs [2]. It is common to use
the extended Kalman filter (EKF) for state estimation of
nonlinear processes [3]. Alternatives include the unscented
Kalman filter (UKF), particle filters (PFs), the ensemble
Kalman filter (EnKF) [4]–[6], and approaches based on

*This project has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No
723661, Spire project: ”Coordinating Optimisation of Complex Industrial
Processes” (www.cocop-spire.eu). This work also received funding in the
project EUDP 64013-0558 in the IEA annex for energy efficient process
control. Tobias K. S. Ritschel, Dimitri Boiroux, Marcus Krogh Nielsen, and
John Bagterp Jørgensen are with the Department of Applied Mathematics
and Computer Science, Technical University of Denmark, DK-2800 Kgs.
Lyngby, Denmark. Jakob Kjøbsted Huusom and Sten Bay Jørgensen are
with the Department of Chemical and Biochemical Engineering, Technical
University of Denmark, DK-2800 Kgs. Lyngby, Denmark. Tobias K. S.
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the Fokker-Planck equation or hidden Markov models. The
EKF and UKF are computationally tractable for models
with many state variables. However, the remaining methods
suffer from the curse of dimensionality [1], [6]–[11]. It is
common to use direct methods to solve OCPs. In direct
methods, the infinite-dimensional OCP is transcribed to a
finite-dimensional nonlinear program (NLP) which can be
solved using numerical optimization algorithms [12]. Di-
rect methods include single-shooting, multiple-shooting [13],
[14], and simultaneous collocation [15]. A key advantage of
multiple-shooting and simultaneous collocation over single-
shooting is their ability to handle unstable systems.

B. Single-cell protein production in the U-loop bioreactor

In the U-loop bioreactor, methanotrophs grow on cheap
carbon sources, e.g. methane or methanol. The protein con-
tent in methanotrophs is high, and they can be used to
produce SCP which is used for animal feed. Consequently,
using the U-loop reactor to produce SCP can help sustain
the growing human population. However, it is not trivial to
operate the U-loop reactor because the optimal operating
point is unstable (i.e. using an open-loop control strategy
would lead to divergence from this operating point). Sev-
eral authors have considered mathematical modeling of the
dynamics of SCP production in the U-loop reactor [16]–
[21], and Olsen et al. [22] computed optimal steady-state
operating points based on a mathematical model. Further-
more, Ritschel et al. [23], [24] described the continuous-
discrete EKF (CDEKF) and two simultaneous collocation-
based approaches for state estimation and economic optimal
control of the U-loop reactor, and Ritschel et al. [24] and
Drejer et al. [25] presented economically optimal open-loop
control strategies for the startup. However, NMPC of the U-
loop reactor has not previously been considered.

C. This work

The key contribution of this work is an NMPC algorithm
for economic optimizing control of the U-loop bioreactor.
We use the model of the U-loop reactor described in [23]. It
involves PDEs which are discretized in space using a finite-
volume method. Consequently, the number of state variables
in the model is large. Furthermore, the uncertainty of four
of the variables and parameters in the model is represented
using stochastic differential equations (SDEs). The NMPC
algorithm uses the CDEKF and the simultaneous collocation
method described in [23] and [24], respectively. Furthermore,
we use a P-controller to ensure sufficiently fast feedback,
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and the OCP is only solved once for every 20 control
intervals (once every hour). Finally, we present a closed-loop
simulation which demonstrates that real-time implementation
of the NMPC algorithm for economic optimizing control of
the startup and operation of the U-loop reactor is computa-
tionally feasible.

D. Paper organization

In Section II, we briefly describe the stochastic mathe-
matical model of the U-loop reactor, and in Section III, we
describe the numerical simulation of this stochastic model. In
Section IV, we present the CDEKF, and we describe the OCP
and the simultaneous collocation method in Section V. The
P-controller is described in Section VI, and we present the
closed-loop simulation in Section VII. Finally, conclusions
are given in Section VIII.

II. MATHEMATICAL MODEL

In this work, we consider a stochastic mathematical model
of the U-loop reactor. The model is described in detail in
[23]. In this section, we briefly discuss a few key aspects,
as well as the general mathematical form, of the model.
Fig. 1 shows a diagram of the U-loop reactor. It consists of
1) a pipe (referred to as the U-loop pipe) which is modeled
as a plug-flow reactor (PFR) and 2) a top tank which is
modeled as a continuous stirred-tank reactor (CSTR). In the
U-loop reactor, methanol (CH3OH), nitric acid (HNO3), and
dioxygen (O2) is converted into biomass (X), carbon dioxide
(CO2), and water (H2O):

YXSCH3OH + YXNHNO3 + YXOO2 →
X + YXCCO2 + YXW H2O.

(1)

The feed substrate, water, and gaseous oxygen is mixed with
recycled liquid (water, substrate, and dissolved oxygen) from
the top tank before entering the U-loop pipe. The gaseous
oxygen is partly dissolved in the liquid phase. At the end of
the U-loop pipe, the gas phase is separated from the liquid
phase which enters into the top tank. Finally, part of the
liquid is harvested from the top tank, and the remaining
part is recycled. The flow in the U-loop pipe is described
by a set of PDEs, and the model of the top tank consists
of a set of ordinary differential equations (ODEs). Both the
PDEs and the ODEs are nonlinear, and they are derived using
the principle of mass conservation. We use the method of
lines (based on a standard finite volume discretization) to
transform the PDEs to a set of ODEs. Furthermore, we use
SDEs to represent the uncertainty in 1) three of the param-
eters in the production rates of the reaction (1) (the specific
growth rate, µmax, and the stoichiometric coefficients related
to substrate and oxygen, γS and γO) and 2) the substrate feed
concentration, CF,S .

Consequently, the stochastic mathematical model of the
U-loop reactor that we consider in this work is in the form

dx(t) = f(x(t), u(t))dt+ σ(x(t), u(t))dw(t), (2a)
z(t) = g(x(t)), (2b)

y(tk) = z(tk) + v(tk). (2c)

PFR

Separator

Mixer

CSTR

FT , C(t, L)

FL, C̄in

FG,CgO(t, L)

F

FS , CF,S

FW

F,CF,Sin

FG, CF,O

FR

C̄

C(t, z)

FL, FG, Cin

Fig. 1. Diagram of the U-loop reactor used in the mathematical modeling.

The state variables, x(t), are 1) the concentrations of
biomass, substrate, dissolved oxygen, and gaseous oxygen in
the U-loop pipe and 2) the concentrations of biomass, sub-
strate, and dissolved oxygen in the top tank. The manipulated
inputs, u(t), are the feed flow rates of water, FW , substrate,
FS , and gaseous oxygen, FG, and w(t) is a standard Wiener
process: dw(t) ∼ Niid(0, Idt). The outputs, z(t), are the
concentrations of dissolved oxygen at three positions along
the U-loop pipe. Noisy measurements, y(tk), of the outputs
are obtained at discrete times, tk. The measurement noise,
vk = v(tk), and the initial states, x(t0) are normally
distributed, i.e. vk ∼ Niid(0, Rv) and x(t0) ∼ N(x̄0, P0).

The model (2) is used in the CDEKF, and (2a) is used in
the OCP (where the stochastic term is neglected). The model
does not include the dynamics related to the P-controller.
Furthermore, the P-controller uses noisy measurements of
the substrate concentration in the top tank.

III. STOCHASTIC SIMULATION

We use a semi-implicit method [26] to discretize the SDE
(2a), i.e.

xk,n+1 − xk,n = f(xk,n+1, uk,n)∆tpck,n

+ σ(xk,n, uk,n)∆wk,n, (3)

for n = 0, . . . ,Mk − 1 where ∆wk,n is a realization of
∆wk,n ∼ Niid(0, I∆tpck,n). For simplicity of notation, we
consider one time step for each time the P-controller is used
to compute the substrate feed flow rate (i.e. Mk time steps
in the k’th control interval). uk,n denotes the manipulated
inputs where the substrate feed flow rate is computed using
the P-controller and the water and oxygen feed flow rates are
given as the solution (in the k’th control interval) to the OCP
(17) described in Section V. We use a variant of Newton-
Raphson’s method to solve (3) for the states, xk,n+1.

IV. THE CONTINUOUS-DISCRETE EXTENDED KALMAN
FILTER

The CDEKF for the continuous-discrete stochastic sys-
tem (2) consists of 1) a measurement-update (i.e. a filter) and
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2) a time-update (i.e. a one-step predictor). The CDEKF is
initialized using the prior information which is represented
by the distribution of the initial states: x̂0|−1 = x̄0, and
P0|−1 = P0.

A. Measurement-update

At each discrete time, tk, (i.e. whenever a set of measure-
ments, yk, become available) we assume that the one-step
prediction of the states and the corresponding covariance,
x̂k|k−1 and Pk|k−1, are available. First, we compute the one-
step prediction of the measurements, ŷk|k−1 = ẑk|k−1:

ŷk|k−1 = g(x̂k|k−1). (4)

Next, we compute the innovation and the corresponding
covariance, i.e.

ek = yk − ŷk|k−1, (5a)
Re,k = CkPk|k−1C

′
k +Rv, (5b)

where (5b) is obtained using linearization of the output
equation (2b) and

Ck =
∂g

∂x
(x̂k|k−1). (6)

The Kalman filter gain matrix is

Kfx,k = Pk|k−1C
′
kR
−1
e,k. (7)

Finally, we compute the filtered estimate of the states and
the corresponding covariance matrix:

x̂k|k = x̂k|k−1 +Kfx,kek, (8a)
Pk|k = Pk|k−1 −Kfx,kRe,kK

′
fx,k. (8b)

B. Time-update

The one-step prediction of the states is obtained by solving
the initial value problem

d

dt
x̂k(t) = f(x̂k(t), u(t)), x̂k(tk) = x̂k|k. (9)

In the computation of the covariance of the one-step predic-
tion, we use the sensitivities of the one-step prediction of
the states at time t with the respect to the states at time s,
Φk(t, s) = ∂x̂k(t)

∂x̂k(s)
, which satisfies the initial value problem

d

dt
Φk(t, s) = Ak(t)Φk(t, s), Φk(s, s) = I, (10)

where

Ak(t) =
∂f

∂x
(x̂k(t), u(t)). (11)

The covariance at time t is [3]

Pk(t) = Φk(t, tk)Pk|kΦk(t, tk)′

+

∫ t

tk

Φk(t, s)σk(s)σk(s)′Φk(t, s)′ds, (12)

where

σk(s) = σ(x̂k(s), u(s)). (13)

1) Numerical solution: We use Euler’s implicit method to
discretize the ODE in (9), i.e.

x̂k,n+1 − x̂k,n = f(x̂k,n+1, uk,n)∆tpck,n, (14)

for n = 0, . . . ,Mk−1 where x̂k,0 = x̂k|k. As in Section III,
we consider one time step for each time the P-controller
is used to update the substrate feed flow rate, and we use
a variant of Newton-Raphson’s method to solve (14) for
x̂k,n+1. We also use Euler’s implicit method to discretize
the ODE in (10), i.e.

Φk(tk,n+1, tk,n)− Φk(tk,n, tk,n)

= Ak(tk,n+1)Φk(tk,n+1, tk,n)∆tpck,n, (15)

where Φk(tk,n, tk,n) = I . We use a left rectangle rule to
approximate the integral in (12) such that

Pk,n+1 = Φk(tk,n+1, tk,n)Λk,nΦk(tk,n+1, tk,n)′, (16a)
Λk,n = Pk,n + σ(x̂k,n, uk,n)σ(x̂k,n, uk,n)′∆tpck,n, (16b)

where Pk,0 = Pk|k. The one-step prediction of the states and
the covariance are x̂k+1|k = x̂k,Mk

and Pk+1|k = Pk,Mk
.

V. OPTIMAL CONTROL

At the beginning of every Np’th control interval (i.e. at
time tk for k = 0, Np, 2Np, etc.), we solve the OCP

min
[x(t)]

tk+N
tk

,{uk+j|k}N−1
j=0

φ = φ
(

[x(t);u(t)]
tk+N

tk

)
, (17a)

subject to

x(tk) = x̂k|k, (17b)
ẋ(t) = f(x(t), u(t)), t ∈ [tk, tk+N ], (17c)
u(t) = uk+j|k, t ∈ [tk+j , tk+j+1[, j = 0, . . . , N − 1,

(17d)

umin ≤ uk+j|k ≤ umax, j = 0, . . . , N − 1. (17e)

The prediction and control horizon is N control intervals, the
states, [x(t)]

tk+N

tk
, are dependent decision variables, and the

manipulated inputs, {uk+j|k}N−1j=0 , are independent decision
variables. The initial states in the initial condition (17b)
are the filtered estimate of the states (8a) computed in the
CDEKF. In the OCP, we assume that there is no process noise
in the dynamic model, i.e. (17c) is deterministic. (17d) is a
zero-order-hold (ZOH) parametrization of the manipulated
inputs, and (17e) are bounds on the manipulated inputs. The
objective function is in Bolza form:

φ = φ
(

[x(t);u(t)]
tk+N

tk

)
=

∫ tk+N

tk

l(x(t), u(t))dt+ lf (x(tf ), u(tf ))

+

∫ tk+N

tk

ls(x(t))dt. (18)

The first term is the integral of the stage-cost, the second term
is the cost-to-go (where u(tf ) = uk+N−1|k), and the third
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term represents soft bound constraints on the state variables,
xmin ≤ x(t) ≤ xmax for t ∈ [tk, tk+N ], where

ls(x(t)) =

nx∑
i=1

(
αmax
i max{0, xi(t)− xmax

i }2

+ αmin
i max{0, xmin

i − xi(t)}2
)
. (19)

nx is the number of state variables, and αmax
i and αmin

i are
weights.

A. Simultaneous collocation

We use Euler’s implicit method to discretize the dynamical
constraints (17c), i.e.

xk+j,n+1 − xk+j,n = f(xk+j,n+1, uk+j|k)∆tk+j,n, (20)

where n = 0, . . . , Nk+j − 1, and j = 0, . . . , N − 1. We
formulate (20) as Rk+j,n = 0 where

Rk+j,n =Rk+j,n(xk+j,n+1, xk+j,n, uk+j|k)

=xk+j,n+1 − xk+j,n

− f(xk+j,n+1, uk+j|k)∆tk+j,n. (21)

Furthermore, the states must be continuous at the boundaries
of the control intervals:

xk,0 = x̂k|k, (22a)
xk+j+1,0 = xk+j,Nk+j

, j = 0, . . . , N − 2. (22b)

We substitute the discretized differential equations (21) and
the continuity conditions (22) for the initial value problem
(17b)-(17c) and the ZOH parametrization (17d) to obtain the
transcribed NLP

min
{{xk+j,n}

Nk+j
n=0 }

N−1
j=0 ,{uk+j|k}N−1

j=0

ψ, (23a)

subject to

xk,0 = x̂k|k, (23b)
xx+j+1,0 = xk+j,Nk+j

, j = 0, . . . , N − 2, (23c)
Rk+j,n(xk+j,n+1, xk+j,n, uk+j|k) = 0,

n = 0, . . . , Nk+j − 1, j = 0, . . . , N − 1, (23d)

umin ≤ uk+j|k ≤ umax, j = 0, . . . , N − 1. (23e)

We use a right rectangle rule to discretize the integrals in
the objective function (19), and we add a rate-of-movement
penalization term (the last term):

ψ =ψ
(
{{xk+j,n}

Nk+j

n=0 }
N−1
j=0 , {uk+j|k}N−1j=0

)
=

N−1∑
j=0

Nk+j−1∑
n=0

l(xk+j,n+1, uk+j|k)∆tk+j,n

+ lf (xk+N−1,Nk+N−1
, uk+N−1|k)

+

N−1∑
j=0

Nk+j−1∑
n=0

ls(xk+j,n+1)∆tk+j,n

+
N−1∑
j=0

1

∆tk+j
‖∆uk+j|k‖2R∆u

. (24)

The changes in the manipulated inputs are given by

∆uk|k = uk|k − uk−1|k−1, (25a)
∆uk+j|k = uk+j|k − uk+j−1|k, j = 1, . . . , N − 1. (25b)

VI. P-CONTROLLER

For n = 0, . . . ,Mk − 1 (in the k’th control interval), we
use a P-controller to compute the substrate feed flow rate,
FS , in the time interval [tpck,n, t

pc
k,n+1[:

F̃S = F ∗S +KcS(C̄∗S − C̄m
S ), (26a)

FS = max{0,min{Fmax
S , F̃S}}. (26b)

C̄m
S = C̄S + vS is a noisy measurement of the substrate

concentration in the top tank (at time tpck,n), C̄S , where vS ∼
N(0, RS). F ∗S and C̄∗S denote the optimal substrate feed flow
rate (in the k’th control interval) and the optimal biomass
concentration (at time tk,Nk

), i.e. they are part of the most
recently obtained solution of the OCP (17) which is solved
once for every Np control intervals. KcS is the proportional
gain, and Fmax

s is the maximum substrate feed flow rate.

VII. NUMERICAL EXAMPLE

In this section, we present a closed-loop simulation of
economic NMPC of the U-loop reactor over a period of 72 h.
We discretize the PDEs in the model using 20 finite volumes.
Consequently, the model contains 87 state variables. The
computations are carried out on an Ubuntu 16.04 LTS 64-bit
workstation with eight Intel Core i7 3.60 GHz processors
and 15.6 GB RAM.

A. Stochastic simulation of the U-loop reactor

We use a stochastic simulation to represent the true U-loop
reactor in the closed-loop simulation. The initial biomass
concentration is 0.1 kg/m3 (both in the top tank and in each
finite volume in the discretized U-loop pipe). The remaining
initial concentrations are 0 kg/m3. The volume of the U-loop
pipe is 1.068 m3, and the volume of the top tank is 0.25 m3.
The U-loop pipe is 12 m long, and its diameter is 0.089 m2.
The concentrations of the dissolved oxygen at 4 m, 7 m, and
10 m along the U-loop pipe (corresponding to the 7’th, 12’th,
and 17’th finite volumes) are measured every third minute.
The substrate concentration in the top tank is measured every
minute. For all four measured concentrations, the variance of
the measurement noise is 10−4 (kg/m3)2.

B. The NMPC algorithm

The prediction and control horizon in the NMPC algorithm
is 30 h, and the control intervals are 3 min each. We
use the economic objective function described in [24], [25]
which represents the difference between the value of the
produced biomass (40 $/kg) in the entire U-loop reactor
and the cost of raw materials (approximated by the cost of
substrate, 0.34 $/kg, and oxygen, 3 $/kg). The model of the
U-loop reactor used in this work is not realistic for very
high biomass concentrations. Therefore, we impose a soft
upper constraint of 30 kg/m3 on all biomass concentrations.
Furthermore, we impose a lower bound of 0.05 kg/m3 on all
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concentrations. Finally, we solve the OCP (17) once every
hour (i.e. Np = 20). The P-controller updates the substrate
feed flow rate every minute. The CDEKF uses 1) the initial
condition described above as the initial state estimate and
2) a diagonal initial estimate of the covariance, P0, where
all diagonal elements are 10−2 (the units vary).

C. Closed-loop simulation

Fig. 2 shows 1) the concentrations of biomass, substrate,
and dissolved oxygen in the top tank, and 2) the manipulated
inputs. The NMPC algorithm successfully operates the U-
loop reactor during startup such that steady-state operation
is reached after 30 h. The CDEKF accurately estimates
the concentrations of biomass and dissolved oxygen in the
top tank. However, the difference between the estimated
and the true substrate concentration is often relatively high.
Furthermore, the P-controller makes significant changes to
the optimized substrate feed flow rate in order to maintain
the substrate concentration at the optimized value. Fig. 3
shows the estimated and the true maximum specific growth
rate, µmax, and stoichiometric coefficients for substrate and
oxygen, γS and γO, which are estimated reasonably well.
Furthermore, it shows the estimated substrate feed concen-
tration which is almost equal to its nominal value, i.e. it is
not estimated accurately. Fig. 4 shows the true production
rate, harvest rate, and profit rate. During the startup, more
biomass is produced than harvested, i.e. it is accumulated
inside the reactor. This is desirable because the biomass
production rate is proportional to the biomass concentration.
During the subsequent steady-state operation, roughly all of
the produced biomass is harvested, and the profit rate is
around 380 $/h. Fig. 5 shows a histogram of the computation
times of solving the OCP (17) (excluding the first OCP which
can be solved offline). The majority of the computation times
are less than 45 s, and the worst-case computation time is
70 s. This demonstrates that real-time implementation of the
NMPC algorithm is computationally feasible.

VIII. CONCLUSIONS

In this paper, we consider economic NMPC of SCP
production in the U-loop reactor. We consider a dynamical
model of the U-loop reactor which consists of ODEs and
PDEs, and we use SDEs to represent four sources of uncer-
tainty. We discretize the PDEs using a finite-volume method.
The resulting stochastic model contains 87 state variables.
We present an NMPC algorithm based on the CDEKF and a
simultaneous collocation method (both developed in previous
work). Furthermore, we combine the NMPC algorithm with
a stabilizing P-controller. Finally, we present a closed-loop
simulation which demonstrates that 1) the NMPC algorithm
is able to successfully control the U-loop reactor during
both startup and steady-state operation, and 2) real-time
implementation of the NMPC algorithm is computationally
feasible (the worst-case computation time per control interval
is 70 s).
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Summary
In this technical report, we describe a framework for modelling of reactive systems. We
introduce the stoichiometric matrix, describing the stoichiometry of a reactive system.
We introduce the rate of reaction vector, describing the rate at which the reactions
happen. We introduce the production vector for reactive systems, defined as a function of
the stoichiometric matrix and the reaction rates. We describe and derive models for four
reactor types; batch reactors, fedbatch reactors, continuous stirred tank reactor, and plug
flow reactors. We apply the modelling framework, defining stoichiometric matrices and
rates of reaction, to two example reactive systems; an exothermic chemical reaction in an
adiabatic environment and a fermentation for single-cell protein production. Finally, we
present numerical examples for the two example reactive systems in the four presented
reactor types; batch, fedbatch, continuous stirred tank, and plug flow reactors.

The appendix introduces gas-liquid mass transfer dynamics for systems involving
both liquid and gas phases. Additionally, the appendix describes Jacobian wrt. states
and inputs as well as model implementations in Matlab and Python for the four presented
reactor types.



ii



Executive Summary
Objective

• Describe a general modelling framework for reactive systems.

• Present models describing batch, fedbatch, continuous stirred tank, and plug flow
reactors.

• Apply the modelling framework in numerical experiments on example reactive
systems.

Reactive Systems

• Introduce and formulate the stoichimetric matrix for reactive systems.

• Introduce and formulate the rate of reaction vector for reactive systems.

• Describe kinetic models describing chemical systems.

• Describe kinetic models describing biochemical systems, i.e. fermentation.

Batch Reactors

• Introduce batch reactors.

• Derive an ordinary differential equation model based on mass balances.

Fedbatch Reactors

• Introduce fedbatch reactors.

• Derive an ordinary differential equation model based on mass balances.

Continuous Stirred Tank Reactors

• Introduce continuous stirred tank reactors.

• Derive an ordinary differential equation model based on mass balances in the
variable volume case.

• Derive an ordinary differential equation model based on mass balances in the
constant volume case.



iv Executive Summary

Plug Flow Reactors

• Introduce plug flow reactors.

• Derive a partial differential equation model based on mass balances.

• Derive an ordinary differential equation model based on a finite-volume discretisa-
tion of the model.

Numerical Examples

• Apply the modelling framework to an exothermic chemical reaction in an adiabatic
environment.

• Perform numerical experiments for the chemical reaction example in batch, fed-
batch, continuous stirred tank, and plug flow reactors.

• Apply the modelling framework to a fermentation for single-cell protein production.

• Perform numerical experiments for the fermentation example in batch, fedbatch,
continuous stirred tank, and plug flow reactors.

Appendix

• Describe gas-liquid mass transfer for reactive systems involving both liquid and
gas phases.

• Present Jacobians wrt. states and inputs for four reactor types.

• Present implementations in Matlab and Python for four reactor types.
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CHAPTER 1
Introduction

In this technical report, we describe a modelling framework for reactive systems. The
technical report is structured as follows: In Chapter 2, we describe a modelling frame-
work for reactive systems defined by stoichiometry and reaction rates. We introduce
the stoichiometric matrix, for defining general reactive systems. We introduce the rate
of reaction vector, describing reaction rates for each of the stoihciometric reactions de-
fined in the stoichiometric matrix. We define production rates for each components as a
function of the stoichiometric matrix and the reaction rates. Finally, we present kinetic
models defining the rate of reaction in both chemical and fermentation processes.

In Chapters 3-6, we present descriptions and models stirred tank reactors (STRs)
and plug flow reactors (PFRs). STRs describe a class of ideally mixed (well-mixed)
reactors, where all points in the reactors are assumed to have the same characteristics, e.g.
temperature, pressure, and concentrations. In this technical report, we consider STRs in
batch operation (BR), in fed-batch operation (FBR), and in non-steady-state continuous
operation (CSTR). Finally, we consider the non-steady-state PFR. The reactors are
illustrated in Figure 1.1.

An STR in batch operation is characterised by a single closed vessel with no in- or
outflows of reactants and products during operation. In BRs, the reactor volume is
supplied with reactants at the prior to operation time in accordance with a set of proce-
dures (recipe), e.g. arising from scale-up of laboratory-scale experiments [13]. As such,
it is the operating conditions, e.g. temperature, pressure, etc. which are manipulated
during operation of a BR, as oppose to the in- and outflow of reactants and products.
In BRs, products are typically extracted from the reactor once the reaction is complete,
i.e. the concentrations of reactants are zero. Products extracted from BRs are easily
identifiable due to the uniformity of the product extracted from a particular batch. This
makes BRs ideal for production of foods, beverages, drug and other specialty chemicals.
The identifiability makes it possible to withdraw only a single batch if a problem is
identified instead of an entire product [3, 14]. Chapter 3 present first-principle ordinary
differential equation (ODE) models describing masses or concentrations. The models
are derived from mass balances. Appendix B describes the Jacobian wrt. the states, as
well as implementations of a BR model in Matlab and Python.

Fed-batch (or semi-batch) reactors describes STRs where reactants are continuously
supplied to the reactor during operation. FBRs share some of the same advantages of
BRs in batch identifiability, etc., but introduce operational complexities in the contin-
uous (or discrete) addition of reactants. The fed-batch process was developed during
the 1920s for more efficient production of baker’s yeast [14]. One of the advantages that
FBRs have other BRs, is when high concentrations of some reactants have an inhibiting
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Figure 1.1: Illustration of stirred tank (top) and plug flow reactors (bottom). Stirred
tank reactors are illustrated in batch operation (top left), fed-batch oper-
ation (top middle), and continuous operation (top right). In batch opera-
tion, reactants (feed 1 and 2) are not added during operation. In fed-batch
operation, reactants (feed 1 and 2) are added during operation. In contin-
uous operation, reactants (feed 1 and 2) and products flow continuously
in and out of the reactor..

(or toxic) effect on the productivity. In fed-batch operation, the concentrations of re-
actants can be stabilised at concentrations which are non-inhibiting to the productivity
of the process [9, 4]. Chapter 4 present first-principle ODE models describing volume
and mass or concentrations. The models are derived from volume and mass balances.
Appendix C describes Jacobians wrt. states and inputs, as well as implementations of
an FBR model in Matlab and Python.

Continuous operation of STRs is characterised by continuous feed (inflow) of reac-
tants, as well as continuous outflow of product (reactor fluid). Traditionally, CSTRs
have been applied in industry, but most commonly operated at steady state [3]. Non-
steady-state operation of the CSTR require the study of transient behaviour and thus
presents additional operation challenges [5, 15]. However, since start-up necessarily in-
volved such transients, it is necessary to understand the behaviour [14]. Chapter 5
present first-principles ODE models describing volume and mass or concentrations. The
models are derived from volume and mass balances. Appendix D describes Jacobians
wrt. states and inputs, as well as implementations of a CSTR model in Matlab and
Python.

The PFR is another example of a reaction in continuous operation. PFRs are pipe
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reactors, in which reactants flow from the inlet through the pipe to the pipe outlet where
products are harvested. PFRs are commonly applied in the biochemical and pharmaceu-
tical industries for microbial growth and product clean-up, e.g. waste-water treatment
and monoclonal antibody production [7, 6]. Chapter 6 presents a first-principle partial
differential equation (PDE) model describing concentrations. The model is based on
mass balances. Additionally, we describe an ODE model based on a finite-volume dis-
cretisation of the PDE model. Appendix E describes Jacobians wrt. states and inputs,
as well as implementation of the ODE model of the PFR in Matlab and Python.

In Chapter 7, we present numerical examples. We present an exothermic chemical
reaction example and a fermentation example of single-cell protein production. For the
example reactive systems, we apply the modelling framework, i.e. define the stoichio-
metric matrix, kinetics, reaction rates, and productions. We implement both examples
of reactive systems in all four reactor types; BR, FBR, CSTR with constant volume, and
the finite-volume discretisation of the PFR. For each of the examples, we also present
Jacobians of the rate of the reaction vectors wrt. the concentrations.

In Appendix A, we present methods of describing gas-liquid mass transfer in reactions
where both liquids and gasses are present in the reactors, e.g. fermentation processes
involving aerobic and/or methanotrophic microorganisms.

Chapter 8 presents conclusions.



4



CHAPTER 2
Reactive Systems

In this section, we present a framework for modelling reactive systems. We introduce the
stoichiometric matrix, defining the system stoichiometry in terms of the stoichiometric
coefficients. We introduce the rate of reaction vector, describing the rate at which the
reactions occur in the presence of reactants and products. We introduce the production
vector, describing the production or consumption of chemical components in the system.
Finally, we present kinetic models for chemical and biochemical systems.

2.1 Modelling Framework
Consider a general reactive system of N reactions with M components in the form

a1,1 C1 + a1,2 C2 + · · · + a1,M CM −−→ b1,1 C1 + b1,2 C2 + · · · + b1,M CM, r1, (2.1a)
a2,1 C1 + a2,2 C2 + · · · + a2,M CM −−→ b2,1 C1 + b2,2 C2 + · · · + b2,M CM, r2, (2.1b)

...
aN,1 C1 + aN,2 C2 + · · · + aN,M CM −−→ bN,1 C1 + bN,2 C2 + · · · + bN,M CM, rN . (2.1c)

We describe the stoichiometry in the reactive system via the stoichiometric matrix

S =

C1 C2 · · · CM


b1,1 − a1,1 b1,2 − a1,2 · · · b1,M − a1,M r1

b2,1 − a2,1 b2,2 − a2,2 · · · b2,M − a2,M r2
... ... . . . ... ...

bN,1 − aN,1 bN,2 − aN,2 · · · bN,M − aN,M rN

. (2.2)

Rows and columns in the matrix represent reactions and chemical components, respec-
tively. As such, elements in the stoichiometric matrix are differences between the amount
produced and consumed for all components in all reactions. We write the reaction rates
as the vector function

r(c) =


r1(c)
r2(c)

...
rN(c)

 , c =


c1
c2
...

cM

 , (2.3)
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where cj = [Cj] are the concentrations of component j ∈ C and where C = {C1, C2, · · · , CM}
is the set of chemical components involved in the reactions. We describe the production
of each of the chemical components in terms of the stoichiometric matrix and reaction
rates, as

R(c) = ST r(c). (2.4)

2.2 Rate of reaction
In this section, we describe kinetic models for chemical and biochemical systems. For
chemical systems, we present reaction kinetics involving partial and complete reactions,
as well as describing kinetics in systems with temperature variations influencing the
reaction rate. For biochemical systems, we present growth kinetics for uninhibited,
substrate inhibited, and product inhibited growth in the microorganism, i.e. rate at
which metabolic reactions take place in the cell, e.g. cell growth or production of co-
metabolic compounds.

2.2.1 Chemical processes
In chemical reactions, on the form (2.1), we describe the reaction rate for each reaction,
ri for i ∈ {1, 2, . . . , N}, as

ri(c) = k(T )
M∏

j=1
c

ai,j

j − kr(T )
M∏

j=1
c

bi,j

j , (2.5)

where cj = [Cj] is the concentrations of Cj. For complete reactions, i.e. reactions where
kr(T ) is negligible, we describe the reaction rates as

ri(c) = k(T )
M∏

j=1
c

ai,j

j . (2.6)

In this case, the reaction rate coefficient, k(T ), describes the effect temperature has on
the rate of reaction.

Arrhenius expression
We describe temperature dependence by the Arrhenius expression

k(T ) = k0 exp
(

− Ea

RT

)
, (2.7)

where k0 is the pre-exponential factor, Ea is the activation energy, T is the temperature,
and R is the ideal gas constant.
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2.2.2 Bioprocesses
In the case of bioprocesses, i.e. fermentation processes, we consider the stoichiometry in
the form presented in (2.1). In these systems, we consider the first component to be the
biomass, i.e. the cell concentration, C1 = X. As such, we describe the reaction rate for
each reaction, ri for i ∈ {1, 2, . . . , N}, as

ri(c) = µ(c)cX , (2.8)

where µ(·) is the growth rate, or metabolic reaction rate, and cX is the biomass concen-
tration catalysing the reaction.

Growth rate - µ(c)

In biochemical systems, we describe the growth rate in terms of the product of specific
growth rates related to each of the chemical reactants, as

µ(c) = µmax(T )
M∏

j=2
µCj

(c) (2.9)

or in terms of the minimum of the specific growth rates, as

µ(c) = µmax(T ) min {µC2(c), µC3(c), . . . , µCM
(c)} . (2.10)

The coefficient µmax(T ) describes the maximum growth rate of the reaction.

Maximum growth rate
The maximum growth rate is commonly considered constant

µmax(T ) = µmax. (2.11)

In cases where temperature variations influence the maximum growth rate, we apply the
Arrhenius expression

µmax(T ) = k0 exp
(

− Ea

RT

)
, (2.12)

where T is the temperature, k0 is the pre-exponential factor, Ea is the activation energy
of growth process, and R is the ideal gas constant.

Specific growth rate - µCj
(c)

The specific growth rates defines the growth on specific substrates used in the metabolism
of the cell.
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Uninhibited growth (Monod kinetics)
The uninhibited growth on a specific chemical substrate is described by the Michaelis–
Menten (or Monod) expression

µCj
(c) = cj

KCj
+ cj

, (2.13)

where KCj
is the half-velocity constant, i.e. when the concentration cj = KCj

the specific
growth rate µCj

(c) = 0.5.

Substrate inhibition (Haldane kinetics)
The specific growth rate on a substrate, inhibited by the concentration of the same
substrate, is described by the Haldane expression

µCj
(c) = cj

KCj
+ cj + c2

j/KI,Cj

, (2.14)

where KI,Cj
is the substrate inhibition constant.

Product inhibition
The specific growth rate on a substrate, inhibited by the concentration of a product, Cp

for p ∈ {2, 3, · · · , M} and p ̸= j, is described by

µCj
(c) = cj

KCj
+ cj

1
1 + cp/KI,Cp

, (2.15)

or

µCj
(c) = cj

KCj
+ cj

(
1 − cp

cp,max

)
, (2.16)

where KI,Cp is the product inhibition constant and cp,max is the maximum concentration
of the inhibiting product.



CHAPTER 3
Batch Reactors

In this chapter, we describe batch reactors (BRs). In section 3.1, we describe mass
balances for the BR. Section 3.2 describes a first-principles ODE model for the BR
based on mass balances. Figure 3.1 illustrates a BR.

3.1 First-principles description
In this section, we present mass (mole) balances for BRs. We consider the general mass
balance equation [3]

Accumulated = Inflow − Outflow + Generated. (3.1)

Mass balances
Over a small time-step, ∆t, we consider the well-mixed BR with inflow, outflow, gener-
ated, and accumulated terms, as

Inflow = 0, (3.2a)
Outflow = 0, (3.2b)

Generated = RV ∆t. (3.2c)

The accumulated mass is the change in mass over the small time-step, ∆t,

Accumulated = n(t + ∆t) − n(t). (3.3)

As such, we may describe the mass balance equation for the batch reactor as

n(t + ∆t) − n(t) = RV ∆t. (3.4)

The same mass balance may be described as

n(t + ∆t) − n(t)
∆t

= RV, (3.5)

which for ∆t −→ 0, results in the ordinary differential equation

dn

dt
= RV. (3.6)
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Figure 3.1: Illustration of a batch stirred tank reactor..

3.2 Modelling
The dynamics of the BR is described by the ODE model

dn

dt
= R(c)V, n(t0) = n0. (3.7)

where n are the masses and/or total energy, e.g. heat, in the system and V is the constant
liquid volume of the reactor. The production term is defined by (2.4), as R(c) = ST r(c).
The concentrations are c = n/V .

Concentration model:
Alternatively, the model can be expressed in terms of concentrations. We may write the
model (3.7) as

dc

dt
= R(c). (3.8)
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The derivation is as follows:

dn

dt
= R(c)V ⇐⇒ (3.9a)

d(cV )
dt

= R(c)V ⇐⇒ (substitute n = cV ) (3.9b)

V
dc

dt
= R(c)V ⇐⇒ (3.9c)

dc

dt
= R(c). (3.9d)
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CHAPTER 4
Fedbatch Reactors

In this chapter, we describe fed-batch reactors (FBRs). In section 4.1, we describe
volume and mass balances for the FBR. Section 4.2 describes a first-principles ODE
model of the FBR based on volume and mass balances. Figure 4.1 illustrates the FBR.

4.1 First-principles description
In this section, we present mass (mole) balances for FBRs. We consider the general
mass balance equation [3]

Accumulated = Inflow − Outflow + Generated. (4.1)

Volume balances
Over a small time-step, ∆t, we consider the well-mixed FBR with inflow, outflow, gen-
erated, and accumulated terms, as

Inflow = eT F (t)∆t, (4.2a)
Outflow = 0, (4.2b)

Generated = 0. (4.2c)

The accumulated term may be described by the difference in volume over the time-step,
∆t, as

Accumulated = V (t + ∆t) − V (t). (4.3)

As such, we may describe the volume balance equation for the FBR as

V (t + ∆t) − V (t) = eT F (t)∆t. (4.4)

The same volume balance may be described as

V (t + ∆t) − V (t)
∆t

= eT F (t), (4.5)

which for ∆t −→ 0, results in the ordinary differential equation

dV

dt
= eT F (t). (4.6)
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Figure 4.1: Illustration of a fed-batch stirred tank reactor.

Mass balances
Defining the small time-step, ∆t, we may describe the right-hand side terms as follow;
inflow

Inflow = CInF (t)∆t, (4.7a)
Outflow = 0, (4.7b)

Generated = RV (t)∆t. (4.7c)

The accumulated term is the difference in mass over the time-step, ∆t, as

Accumulated = n(t + ∆t) − n(t). (4.8)

As such, we may describe the mass balance equation for the FBR as

n(t + ∆t) − n(t) = CInF (t)∆t + RV (t)∆t. (4.9)

The same mass balance may be described as
n(t + ∆t) − n(t)

∆t
= CInF (t) + RV (t), (4.10)
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which for ∆t −→ 0, results in the ordinary differential equation

dn

dt
= CInF (t) + RV (t). (4.11)

4.2 Modelling
Consider the system of ordinary differential equations describing mass and energy bal-
ances in a FBR

dV

dt
= eT F, V (t0) = V0, (4.12a)

dn

dt
= CInF + R(c)V, n(t0) = n0, (4.12b)

where V is the reactor volume, n are masses, molecules, and/or total energy, e.g. heat,
in the system, F are the manipulated inlet flows of concentrations CIn, and e ∈ {1}nu .
The production term is defined by (2.4), as R(c) = ST r(c). The concentrations are
c = n/V .

Concentration model:
Alternatively, the model can be expressed in terms of concentrations. We may write the
model (4.12) as

dV

dt
= eT F, V (t0) = V0, (4.13a)

dc

dt
=
(
CIn − ceT

) F

V
+ R(c), c(t0) = c0. (4.13b)

The derivation is as follows:

dn

dt
= CInF + R(c)V ⇐⇒ (4.14a)

d(cV )
dt

= CInF + R(c)V ⇐⇒ (substitute, n = cV ) (4.14b)
dc

dt
V + c

dV

dt
= CInF + R(c)V ⇐⇒ (product rule) (4.14c)

dc

dt
=

CInF + R(c)V − cdV
dt

V
⇐⇒ (4.14d)

dc

dt
= CIn

F

V
− ceT F

V
+ R(c) ⇐⇒ (insert, dV

dt
) (4.14e)

dc

dt
=
(
CIn − ceT

) F

V
+ R(c). (4.14f)
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CHAPTER 5
Continuous Stirred Tank

Reactors
In this chapter, we describe continuous stirred tank reactors (CSTRs). In section 5.1, we
describe volume and mass balances for the CSTR in the cases where volume is variable
and constant. Section 5.2 described first-principles ODE models for CSTRs with variable
and constant volume. Figure 5.1 illustrates a CSTR.

5.1 First-principles description
In this section, we present mass (mole) balances for CSTRs with varible and constant
volume. We consider the general mass balance equation [3]

Accumulated = Inflow − Outflow + Generated. (5.1)

volume balance
Over a small time-step, ∆t, we consider the CSTR with inflow, outflow, generated, and
accumulated terms, as

Inflow = eT F (t)∆t, (5.2a)
Outflow = eT

OutFOut(t)∆t, (5.2b)
Generated = 0. (5.2c)

The accumulated term may be described by the difference in volume over the time-step,
∆t, as

Accumulated = V (t + ∆t) − V (t). (5.3)

As such, we may describe the volume balance equation for the CSTR as

V (t + ∆t) − V (t) = eT F (t)∆t − eT
OutFOut(t)∆t. (5.4)

The same volume balance may be described as

V (t + ∆t) − V (t)
∆t

= eT F (t) − eT
OutFOut(t), (5.5)
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Figure 5.1: Illustration of a continuous stirred tank reactor.

which for ∆t −→ 0 results in the ODE

dV

dt
(t) = eT F (t) − eT

OutFOut(t). (5.6)

mass balance
Over a small time-step, ∆t, we consider the CSTR with inflow, outflow, generated, and
accumulated terms, as

Inflow = CInF (t)∆t, (5.7a)
Outflow = c(t)eT

OutFOut(t)∆t, (5.7b)
Generated = RV (t)∆t. (5.7c)

The accumulated term may be described by the difference in mass over the time-step,
∆t, as

Accumulated = n(t + ∆t) − n(t). (5.8)
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As such, we may describe the mass balance equation for the CSTR as

n(t + ∆t) − n(t) = CInF (t)∆t − c(t)eT
OutFOut(t)∆t + RV ∆t. (5.9)

The same mass balance may be described as

n(t + ∆t) − n(t)
∆t

= CInF (t) − c(t)eT
OutFOut(t) + RV (t), (5.10)

which for ∆t −→ 0, results in the ordinary differential equation

dn

dt
= CInF (t) − c(t)eT

OutFOut(t) + RV (t). (5.11)

5.2 Modelling
In this section, we present models describing CSTRs with variable and constant volume.

5.2.1 Variable volume
Consider the system of ordinary differential equations describing mass and energy bal-
ances in a continuous stirred tank reactor

dV

dt
= eT F − eT

OutFOut, V (t0) = V0, (5.12a)
dn

dt
= CInF − ceT

OutFOut + R(c)V, n(t0) = n0, (5.12b)

where V is the reactor volume, n are masses, molecules, and/or total energy, e.g. heat,
in the system, F are the manipulated inlet flows of concentrations CIn, and e ∈ {1}nu,In

and eOut ∈ {1}nu,Out are vectors of ones. The production term is defined by (2.4), as
R(c) = ST r(c). The concentrations are c = n/V .

Concentration model:
Alternatively, the model can be expressed in terms of concentrations. We may write
model (5.12) as

dV

dt
= eT F − eT

OutFOut, V (t0) = V0, (5.13a)
dc

dt
=
(
CIn − ceT

) F

V
+ R(c), c(t0) = c0. (5.13b)
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The derivation is a follows:

dn

dt
= CInF − ceT

OutFOut + R(c)V ⇐⇒ (5.14a)

d(cV )
dt

= CInF − ceT
OutFOut + R(c)V ⇐⇒ (substitute, n = cV ) (5.14b)

dc

dt
V + c

dV

dt
= CInF − ceT

OutFOut + R(c)V ⇐⇒ (product rule) (5.14c)

dc

dt
=

CInF − ceT
OutFOut + R(c)V − cdV

dt

V
⇐⇒ (5.14d)

dc

dt
= CInF − ceT F + R(c)V

V
⇐⇒ (insert, dV

dt
) (5.14e)

dc

dt
=
(
CIn − ceT

) F

V
+ R(c). (5.14f)

5.2.2 Constant volume
A special case of the model presented in (5.12) is where eT F = eT

OutFOut. This describes
a constant volume CSTR. We describe such a system as

dn

dt
=
(
CIn − ceT

)
F + R(c)V, n(t0) = n0, (5.15)

where V is the reactor volume, n are masses, molecules, and/or total energy, e.g. heat,
in the system, F are the manipulated inlet flows of concentrations CIn, and e ∈ {1}nu,In

is a vector of ones. The production term is defined by (2.4), as R(c) = ST r(c).

Concentration model:
In the constant volume case, we may similarly expressed the model in terms of concen-
trations as

dc

dt
=
(
CIn − ceT

) F

V
+ R(c), c(t0) = c0. (5.16)

The derivation is as follows:

dn

dt
=
(
CIn − ceT

)
F + R(c)V ⇐⇒ (5.17a)

d(cV )
dt

=
(
CIn − ceT

)
F + R(c)V ⇐⇒ (substitute n = cV ) (5.17b)

V
dc

dt
=
(
CIn − ceT

)
F + R(c)V ⇐⇒ (5.17c)

dc

dt
=
(
CIn − ceT

) F

V
+ R(c). (5.17d)



CHAPTER 6
Plug Flow Reactors

In this chapter, we describe plug flow reactors (PFRs). In section 6.1, we describe mass
balances for the PFR. Section 6.2 describes a first-principles partial differential equation
(PDE) model for the PFR based on mass balances. Section 6.3 present an ODE model
for the PFR based on a finite-volume discretisation of the PDE model. Figure 6.1
illustrates a PFR.

6.1 First-principles description
In this section, we present mass (mole) balances for PFRs. We consider the general mass
balance equation [3]

Accumulated = Inflow − Outflow + Generated. (6.1)

mass balances
We define the small time-step, ∆t. Furthermore, we consider the partial reactor volume,
∆V , of dimensions ∆V = A∆z, where ∆z is a small spatial step. We consider the fluxes
in and out of each partial reactor volume through a pipe cross-section, N(t, z), as

Inflow = AN(t, z)∆t, (6.2a)
Outflow = AN(t, z + ∆z)∆t, (6.2b)

and generated within each volume

Generated = AR∆z∆t. (6.3)

The accumulated term is described by the difference in mass over the time-step, ∆t, as

Accumulated = n(t + ∆t, z) − n(t, z) (6.4a)

= A∆z
(n(t + ∆t, z) − n(t, z))

A∆z
(6.4b)

= A∆z (c(t + ∆t, z) − c(t, z)) . (6.4c)

As such, we may describe the mass balance equation for the PFR as

A∆z (c(t + ∆t, z) − c(t, z)) = AN(t, z)∆t − AN(t, z + ∆z)∆t + AR∆z∆t. (6.5)
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Figure 6.1: Illustration of a plug flow reactor (PFR) of length L.

The same mass balance may be described as

c(t + ∆t, z) − c(t, z) = N(t, z) − N(t, z + ∆z)
∆z

∆t + R∆t (6.6a)

= −N(t, z + ∆z) − N(t, z)
∆z

∆t + R∆t, (6.6b)

and as
c(t + ∆t, z) − c(t, z)

∆t
= −N(t, z + ∆z) − N(t, z)

∆z
+ R. (6.7)

For ∆t −→ 0 and ∆z −→ 0, this results in the partial differential equation
∂c

∂t
= −∂N

∂z
+ R. (6.8)

6.2 Modelling
In this section, we present a models describing the PFR. We present a first-principles
PDE model based on mass balances. Furthermore, we present an ODE model based
on a finite-volume discretisation of the PDE model. Consider the system of partial
differential equations

∂c

∂t
= −∂N

∂z
+ R(c), c(t0, z) = c0(z), (6.9)

where c(t, z) are concentrations, N(.) are fluxes, and R(.). The production term is
defined by (2.4), as R(c) = ST r(c). We compute the fluxes, as

N(t, z) = v(t)c(t, z) − D
∂c

∂z
(t, z), (6.10)

where v(t)c(t, z) is the convective flow and −D ∂c
∂z

(t, z) is the dispersive flow. The linear
velocity, v, is computed as

v(t) = Ft(t)
A

, Ft(t) = eT F (t), (6.11)

where F (t) ∈ Rnu are the manipulated inlet flows, Ft(t) ∈ R is the total flow, A ∈ R is
the cross-sectional area of the pipe, and e ∈ {1}nu is a vector of ones. D is a diagonal
matrix of dispersion constants.
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6.2.1 Boundary conditions
We consider Danckwerts’ boundary conditions [1]. As such, we consider an inlet flow of
known concentrations and no dispersive flow through either end of the reactor pipe.

Inlet conditions
We consider the boundary conditions at the inlet

c(t, 0) = cIn(t), ∂c

∂z
(t, 0) = 0. (6.12)

This yields the fluxes at the inlet (with no dispersion)

N(t, 0) = v(t)cIn(t). (6.13)

Outlet conditions
We consider the boundary condition at the outlet

∂c

∂z
(t, L) = 0. (6.14)

This condition defines the outlet flux (with no dispersion)

N(t, L) = v(t)c(t, L). (6.15)

6.3 Finite-volume discretisation
In this section, we present a finite-volume discretisation of the PFR. Figure 6.2 illustrates
the discretisation of the PFR. Consider the finite set of equally sized reactor volumes

∆Vi = ∆V = A∆z, i ∈ {1, 2, . . . , Nz}, (6.16)

where ∆V is the size of the volumes, A is the cross-sectional area of the reactor pipe
assumed to be constant along the reactor, and ∆z is the spatial discretisation. As such,
the total length of the pipe is L = Nz∆z. We assume each volume to be well-mixed.
The centre of each volume is chosen as discretisation point, such that

zi =
(

i − 1
2

)
∆z, i ∈ {1, 2, . . . , Nz}. (6.17)

The concentrations c(t, zi) = ci(t) thus represent the concentration in each discrete
volume. Similarly, we describe the positions of the in- and out-let faces of each volume,
as

zi+1/2 = i∆z, i ∈ {0, 1, . . . , Nz}. (6.18)



24 6 Plug Flow Reactors

.. . . .

Figure 6.2: Discretisation of a plug flow reactor (PFR) of length L. The spatial dimen-
sion of the reactor is discretised using a finite-volume discretisation with
Nz discrete volumes of size ∆z.

We describe the fluxes through each face of the discretisation, as

N(t, z + i∆z) = Ni+1/2(t), i ∈ {0, 1, . . . , Nz}. (6.19)

We consider the fluxes descried in (6.10), and apply a central difference approximation
for the spatial derivative of the concentrations, as

∂ci+1/2

∂z
(t) = ci+1(t) − ci(t)

∆z
, i ∈ {1, 2, . . . , Nz − 1} (6.20)

Considering the boundary conditions, we compute the fluxes at the volume faces, as

Ni+1/2(t) = v(t)cIn(t), i ∈ {0}, (6.21a)

Ni+1/2(t) = v(t)ci(t) − D
ci+1(t) − ci(t)

∆z
, i ∈ {1, 2, . . . , Nz − 1}, (6.21b)

Ni+1/2(t) = v(t)ci(t), i ∈ {Nz}. (6.21c)

We apply a central difference approximation to describe the spatial derivative of the flux
through each of the volumes, as

∂Ni

∂z
≈

Ni+1/2(t) − Ni−1/2(t)
∆z

. (6.22)

As such, we can describe the finite-volume discretisation of the PFR PDE in the form
of the ODE

dci

dt
(t) = −

Ni+1/2(t) − Ni−1/2(t)
∆z

+ R(ci(t)), i ∈ {1, 2, . . . , Nz}. (6.23)

6.3.1 ODE - finite-volume discretisation
Consider the ODE system arising from the finite-volume discretisation of the PFR

dci

dt
(t) = −

Ni+1/2(t) − Ni−1/2(t)
∆z

+ R(ci(t)), i ∈ {1, 2, . . . , Nz}, (6.24)
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with initial conditions ci(t0) = ci,0. The fluxes, Ni+1/2(t) = N(t, z + (i + 1/2)∆z) for
i ∈ {0, 1, . . . , Nz}, are computed as

Ni+1/2(t) = v(t)cIn(t), i ∈ {0}, (6.25a)

Ni+1/2(t) = v(t)ci(t) − D
ci+1(t) − ci(t)

∆z
, i ∈ {1, 2, . . . , Nz − 1}, (6.25b)

Ni+1/2(t) = v(t)ci(t), i ∈ {Nz}. (6.25c)

The concentrations are ci(t) = c(t, z + i∆z) for i ∈ {1, 2, . . . , Nz}.
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CHAPTER 7
Numerical Examples

In this chapter, we present examples of an exothermic chemical reaction and fermentation
process for the production of single-cell protein in batch, fed-batch, continuous stirred
tank, and plug flow reactors, respectively.

7.1 Exothermic reaction in adiabatic reactor
In this section, we consider the exothermic reaction in an adiabatic reactor as presented
by [12, 15]. Consider the stoichiometric description

Na2S2O3 + 2 H2O2 −−→ 1
2

Na2SO4 + 1
2

Na2S3O6 + 2 H2O, r1. (7.1)

Sodium thiosulfate is oxidized by hydrogen peroxide to form sodium sulfate and sodium
trithionate. The reaction is exothermic, i.e. generates heat. In the model, we consider
the reactants, A = Na2S2O3 and B = H2O2, as well as the heat generated by the
reaction, T . As such, the modelled stoichiometry is

A + 2 B −−→ βT, r1. (7.2)

The stoichiometric matrix arising from (7.2) is

S =
A B T

[ ]−1 −2 β r1 . (7.3)

The stoichiometric coefficient for the heat generated by the reaction, β, is computed as

β = −∆Hr

ρcP

, (7.4)

where ∆Hr is the enthalpy of the reaction, ρ is the density of the medium, and cP is the
specific capacity. The rate of reaction is computed as

r(c) = r1(c) = k(cT )cAcB, k(cT ) = k0 exp
(

−Ea

R
cT

)
, (7.5)

where k(cT ) is the rate constant governed by the Arrhenius expression as presented
in (2.7) and ci for i ∈ {A, B, T} are concentrations of the components A, B, and T .
The concentration of heat, cT [K], corresponds to the temperature in the reactor. The
relevant constants are presented in Table 7.1.
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variable value unit description
ρ 1.0 kg/L density
cp 4.186 kJ/(kg·K) specific heat capacity
k0 exp(24.6) L/(mol·s) Arrhenius constant
Ea/R 8500.0 K activation energy
∆Hr −560.0 kJ/mol reaction enthalpy

Table 7.1: Parameters for the examples involving the exothermic reaction.

Jacobian of r wrt. c - ∂r
∂c

The Jacobian of the reaction rate wrt. the concentrations

∂r

∂c
= ∂

∂c
(k(cT )cAcB) (7.6a)

= ∂k

∂c
cAcB + k(cT )∂cA

∂c
cB + k(cT )cA

∂cB

∂c
. (7.6b)

The Jacobian of the kinetics function wrt. the concentrations is

∂k

∂c
=
[
0 0 ∂k

∂cT

]
, (7.7)

where

∂k

∂cT

= ∂

∂c

(
k0 exp

(
−Ea

R
cT

))
(7.8a)

= k0
∂

∂c

(
exp

(
−Ea

R
cT

))
(7.8b)

= −k0
Ea

R
exp

(
−Ea

R
cT

)
. (7.8c)

The Jacobian of the concentration of component A wrt. the concentrations is

∂cA

∂c
=
[
1 0 0

]
. (7.9)

The Jacobian of the concentration of component B wrt. the concentration is

∂cB

∂c
=
[
0 1 0

]
. (7.10)
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7.1.1 Batch reactor
Consider an adiabatic, i.e. thermally insulated, BR described by (3.7). Table 7.2 de-
scribes the parameters and initial values of the numerical experiment. Figure 7.1 presents
results.

Table 7.2: Parameters for the adiabatic BR example involving the exothermic reaction.
variable value unit description
V 0.105 L reactor volume
nA,0 0.084 mol initial value of nA

nB,0 0.126 mol initial value of nB

nT,0 28.733 K L initial value of nT
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Figure 7.1: Open-loop simulation of an adiabatic BR with an exothermic reaction.
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7.1.2 Fed-batch reactor
Consider an adiabatic, i.e. thermally insulated, FBR described by (4.12). Table 7.3
describes the parameters and initial values of the numerical experiment. Figure 7.2
presents results.

Table 7.3: Parameters for the adiabatic FBR example involving the exothermic reac-
tion.

variable value unit description
cA,in 1.6/2 mol/L inlet concentration of A
cB,in 2.4/2 mol/L inlet concentration of B
cT,in 273.65 K inlet temperature
V0 0.0105 L initial value of V
nA,0 0.0084 mol initial value of nA

nB,0 0.0126 mol initial value of nB

nT,0 2.8733 K L initial value of nT
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Figure 7.2: Open-loop simulation of FBR with an exothermic reaction.
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7.1.3 Continuous stirred tank reactor
Consider an adiabatic, i.e. thermally insulated, CSTR described by (5.12). Table 7.4 de-
scribes the parameters and initial vales of the numerical experiment. Figure 7.3 presents
results.

Table 7.4: Parameters for the adiabatic CSTR example involving the exothermic reac-
tion.

variable value unit description
cA,in 1.6/2 mol/L inlet concentration of A
cB,in 2.4/2 mol/L inlet concentration of B
cT,in 273.65 K inlet temperature
V0 0.105 L reactor volume
nA,0 0.084 mol initial value of nA

nB,0 0.126 mol initial value of nB

nT,0 28.73 mol initial value of nC
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Figure 7.3: Open-loop simulation of CSTR with an exothermic reaction.
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7.1.4 Plug flow reactor
Consider an adiabatic, i.e. thermally insulated, PFR described by (6.9). Table 7.5 de-
scribes the parameters and initial vales of the numerical experiment. Figure 7.4 presents
results.

Table 7.5: Parameters for the adiabatic PFR example involving the exothermic reac-
tion.

variable value unit description
A 0.1 m2 cross-sectional area
L 10.0 m reactor length
DA 0.029 m2/s diffusion constant for A
DB 0.029 m2/s diffusion constant for B
DT 0.143 m2/s diffusion constant for T
Nz 20 - number of discrete volumes
cA,in 1.6/2 mol/L inlet concentration of A
cB,in 2.4/2 mol/L inlet concentration of B
cT,in 273.65 K inlet temperature
cA,0 0.0 mol/L initial value of cA

cB,0 0.0 mol/L initial value of cB

cT,0 273.65 K initial value of cT

FS 600.00 mL/min constant substrate flow-rate
FW 100.00 mL/min constant water flow-rate
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Figure 7.4: Open-loop simulation of PFR with an exothermic reaction.
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7.2 Single-cell protein production
In this section, we consider the single-cell protein production model presented by [8, 2,
9]. Consider the stoichiometric description

1.778 CH3OH + 0.510 HNO3 + 0.779 O2 + X −−→
2 X + 0.654 CO2 + 1.414 H2O ,

r1(c). (7.11)

The bacterium Methylococcus capsulatus (Bath) metabolises a carbon source, methanol,
and a nitrogen source, nitric acid, under aerobic conditions, i.e. in the presence of
oxygen, to grow. In the growth reaction, the bacterium produces carbon dioxide and
water. In the model, we consider the reactant, S = CH3OH, as well as the bacteria
(biomass), X = CH1.8O0.5N0.2. As such, the modelled stoichiometry is

1.778 S + X −−→ 2 X , r1. (7.12)

The stoichiometric matrix arising from (7.12)

S =
X S
[ ]1 −1.778 r1 . (7.13)

The rate of reaction is computed as

r(c) = r1(c) = µ(c)cX , µ(c) = µmaxµS(c), (7.14)

The growth rate, µ(c), is computed as presented in (2.9). The specific growth rates are
computed as

µS(c) = cS

KS + cS + c2
S/KI,S

. (7.15)

The relevant constants are presented in Table 7.2.

Jacobian of r wrt. c - ∂r
∂c

The Jacobian of the reaction rate wrt. the concentrations is
∂r

∂c
= ∂

∂c
(µ(c)cX) (7.16a)

= ∂µ

∂c
(c)cX + ∂cX

∂c
µ(c). (7.16b)

The Jacobian of the growth rate is
∂µ

∂c
= ∂

∂c
(µmaxµS(c)) (7.17a)

= µmax
∂µS

∂c
. (7.17b)
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Table 7.6: Parameters for the examples involving the exothermic reaction.
variable value unit description
µmax 0.370 1/h maximum growth rate
KS 0.021 kg/m3 kinetic parameter for S
KI,S 0.380 kg/m3 kinetic inhibition parameter for S

The Jacobian of the specific growth rate on substrate is

∂µS

∂c
= ∂

∂c

(
cS

KS + cS + c2
S/KI,S

)
(7.18a)

= 1
g(c)2

(
∂g

∂c
h(c) − ∂h

∂c
g(c)

)
, (7.18b)

where

g(c) = cS, h(c) = KS + cS + c2
S/KI,S, (7.19a)

∂g

∂c
=
[
0 1

]
,

∂h

∂c
=
[
0 1 + 2

KI,S
cS

]
. (7.19b)

The Jacobian of the biomass concentration wrt. the concentrations is

∂cX

∂c
=
[
1 0

]
. (7.20)
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7.2.1 Batch reactor
Consider a BR described by (3.7). Table 7.7 describes the parameters and initial values
of the numerical experiment. Figure 7.5 presents results.

Table 7.7: Parameters for the BR for single-cell protein production.
variable value unit description
V 1.0 m3 liquid reactor volume
nX,0 0.05 kg/m3 initial value of nX

nS,0 1.0 kg/m3 initial value of nS
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Figure 7.5: Open-loop simulation of BR for single-cell protein production.
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7.2.2 Fed-batch reactor
Consider a FBR described by (4.12). Table 7.8 describes the parameters and initial
values of the numerical experiment. Figure 7.6 presents results.

Table 7.8: Parameters for the FBR for single-cell protein production.
variable value unit description
cW,In [0.0, 0.0]T m3/h inlet concentration in water inlet
cS,In [0.0, 10.0]T m3/h inlet concentration of substrate inlet
V0 0.1 m3 initial value of V
nX,0 0.5 kg/m3 initial value of nX

nS,0 1.0 kg/m3 initial value of nS

0 5 10 15 20

0.1

0.15

0.2

0.25

[m
3
]

V

0 5 10 15 20

2

4

6

[k
g/

m
3
]

cX

0 5 10 15 20

0

0.5

1

[k
g/

m
3
]

cS

0 5 10 15 20

Time [h]

0

5

10

[m
3
/h

]

#10!3

FW FS

Figure 7.6: Open-loop simulation of FBR for single-cell protein production.



7.2 Single-cell protein production 37

7.2.3 Continuous stirred tank reactor
Consider a CSTR described by (5.12). Table 7.9 describes the parameters and initial
values of the numerical experiment. Figure 7.7 presents results.

Table 7.9: Parameters for the CSTR for single-cell protein production.
variable value unit description
cW,In [0.0, 0.0]T m3/h inlet concentration in water inlet
cS,In [0.0, 10.0]T m3/h inlet concentration of substrate inlet
V0 1.0 m3 initial value of V
nX,0 0.5 kg/m3 initial value of nX

nS,0 1.0 kg/m3 initial value of nS
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Figure 7.7: Open-loop simulation of CSTR for single-cell protein production.
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7.2.4 Plug flow reactor
Consider a PFR described by (6.9). Table 7.10 describes the parameters and initial
values of the numerical experiment. Figure 7.8 presents results.

Table 7.10: Parameters for the PFR for single-cell protein production.
variable value unit description
A 0.1 m2 cross-sectional area of pipe
L 10.0 m reactor length
DX 103.68 m2/h dispersion rate for biomass
DS 103.68 m2/h dispersion rate for substrate
Nz 20 - number of discrete volumes
cW,In [0.0, 0.0]T m3/h inlet concentration in water inlet
cS,In [0.0, 10.0]T m3/h inlet concentration of substrate inlet
nX,0 0.5 kg/m3 initial value of nX

nS,0 1.0 kg/m3 initial value of nS

FW 0.05 m3/h inlet flow-rate of water
FS 0.01 m3/h inlet flow-rate of substrate
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CHAPTER 8
Conclusions

In this technical report, we described a modelling framework for reactive systems. We
introduced the stoichiometric matrix and rate of reaction vector in the general case. We
presented kinetic descriptions for chemical and biochemical systems, involved in comput-
ing the reaction rates for those systems. We described and derived ordinary differential
equation models for batch, fedbatch, and continuous stirred tank reactors. We presented
a partial differential equation model the plug flow reactor based on mass balances and
formulated an ordinary differential equation model derived from a finite-volume discreti-
sation of the partial differential equation model. Jacobian information and implementa-
tions in Matlab and Python are described in the appendix. We presented two example
reactive systems; an exothermic chemical reaction in an adiabatic environment and a
fermentation for single-cell protein production. We conducted numerical experiments in
the four presented reactor types for example reactive systems. We describe gas-liquid
mass transfer for reactive systems involving both liquid and gas phases in the appendix.
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APPENDIXA
Gas-liquid Mass Transfer

In this chapter, we describe methods of computing the gas-liquid mass transfer in chem-
ical and biochemical systems. We consider the sets of components purely dissolved in
the liquid phase, i.e. with no gas phase, and components in the gas and dissolved liquid
phases, as

Cl, Cg, (A.1)

respectively. From these components, we define the mass (or mole count) vector

n =

nl

nd

ng

 , (A.2)

where nl is a vector of the components in Cl and nd and ng are vectors of components
in Cg dissolved in the liquid phase and in gas phase, respectively. We define the active
reactor volume as a function of the volumes of the gas and liquid phases, as

V = Vl + Vg. (A.3)

As such, we define the concentrations of the components in the gas and liquid phases, as

c =

cl

cd

cg

 . (A.4)

The concentrations of components dissolved in the liquid phase are computed as

cl = nl

Vl

= nl

(1 − ϵ)V
, cd = nd

Vl

= nd

(1 − ϵ)V
, (A.5)

where ϵ is the gas volume fraction. The concentrations of components in the gas phase
are computed as

cg = ng

Vg

= ng

ϵV
, (A.6)

such that the gas volume is Vg = ϵV . Gas-liquid mass transfer is described in detail in
[14].
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A.1 Mass transfer rate
In chemical and biochemical reactions, we consider volumetric gas-liquid mass transfer
rate

Jgl(c) = kLa (cSat − cd) , (A.7)

where kLa are the volumetric mass transfer coefficients, cSat are the saturation concen-
trations, and (cSat − cd) are the driving forces.

mass transfer coefficient - kLa

The mass transfer coefficient, kLa, describes the rate at which components are transferred
between liquid and gas phase. The value of kLa depends on, e.g. reactor type, power
input, as well as the specific surface (interfacial) area, a. The value of kLa can be
determined, e.g. experimentally, estimated using computational fluid dynamics (CFD),
or applying model-based techniques (e.g. state or parameter estimation).

saturation factor - γ

The saturation factors, γ, is computed using Henry’s law, as

γ = RTdiag (Hcp)−1 , (A.8)

where R is the ideal gas constant, T is the temperature, and Hcp is vector of Henry’s
constants for each of the components. A comprehensive list of Henry’s constants can be
found in [10] and is published online in [11].

gas phase fraction - ϵ

Consider the volume description for a reactor

V = Vl + Vg, (A.9)

where V is the total reactor volume, Vl is the volume of the liquid phase, and Vg is
the volume of the gas phase. The gas phase fraction, ϵ, describes the relative volume
fractions of the gas and liquid phases in the reactor. In practice, the value of ϵ will
depend on, e.g. reactor type and dimensions, mixing and viscosity, as well as flows of
gasses and liquids in the reactor. The gas phase fraction is computed as

ϵ = Vg

V
= Vg

Vl + Vg

. (A.10)

Note that we can compute similar fractions as a function of ϵ from (A.9), e.g. the liquid
phase fraction (1.0 − ϵ) and gas to liquid phase fraction ϵ/(1.0 − ϵ). The volume of the
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liquid phase, Vl, is given by the flows of liquid in and out of the reactor. Evaporation
can also be considered in computing the liquid phase volume. We apply the ideal gas
law to compute the gas volume as

Vg = eT ng
RT

P
, (A.11)

where eT ng = ∑
ng is the sum of molecules in the gas phase, R is the ideal gas constant,

T is the temperature, P is the pressure, and Vg is the gas phase volume. In plug flow
reactors, i.e. flow through pipes, at steady state, we compute the gas phase fraction as

ϵ = Fg

Fl + Fg

, (A.12)

where Fg is the total flow-rate of gas and Fl is the total flow-rate of liquid through the
reactor. We assume in all cases that the gasses are dispersed as bubbles in the liquid,
discounting head space in the reactor, as the interfacial area is small. In this report, we
will assume that temperature and pressure are constant, unless explicitly modelled. As
such, the volume will change with the mass of the gasses in the reactor, as described by
(A.11).

saturation concentration - cSat
The saturation concentration, cSat, describes the equilibrium concentration for the gas
phase dissolved in the liquid phase. We compute the saturation concentration as

cSat = ϵ

1.0 − ϵ
γcg. (A.13)
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APPENDIX B
Batch Reactor -
Derivations and

Implementations
In this chapter, we present Jacobians and implementations in Matlab and Python of the
BR model presented in (3.7).

B.1 Jacobians
In this section, we present Jacobians for the batch reactor model (3.7). We consider the
right-hand side function

f(x, θ) = R(c)V, (B.1)
where x = n and c = n/V .

B.1.1 Jacobian of f wrt. x - ∂f
∂x

We describe the Jacobian of the function (B.1) wrt. x, as
∂f

∂x
= ∂f

∂n
(B.2a)

= ST ∂r

∂c
. (B.2b)

Jacobian of f wrt. n

∂f

∂n
= ∂

∂n
(R(c)V ) (B.3a)

= ∂R

∂c
(c) ∂c

∂n
V (B.3b)

= ∂R

∂c
(c) 1

V
V (B.3c)

= ∂R

∂c
. (B.3d)
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The Jacobian of the production term is

∂R

∂c
= ∂

∂c

(
ST r(c)

)
(B.4a)

= ST ∂r

∂c
. (B.4b)

Thus

∂f

∂n
= ST ∂r

∂c
. (B.5)

B.2 Implementations

B.2.1 Matlab

1 f unc t i on [ f , dfdx , dfdu , dfdd ] = dri ftBR ( t , x , u , d , theta )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % Authour ( s ) :
4 % Marcus Krogh Nie l s en
5 %
6 % Email :
7 % mkrni@dtu.dk
8 %
9 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10 % Cal l :
11 % [ f , dfdx , dfdu , dfdd ] = dri ftBR ( t , x , u , d , theta )
12 %
13 % Desc r ip t i on :
14 % D r i f t func t i on f o r a batch r e a c t o r .
15 %
16 % Inputs :
17 % t : time
18 % x : s t a t e s
19 % u : manipulated v a r i a b l e s
20 % d : d i s tu rbance s
21 % theta : parameters
22 %
23 % Outputs :
24 % f : s t a t e d r i f t f unc t i on
25 % dfdx : d r i f t d e r i v a t i v e wrt . s t a t e s
26 % dfdu : d r i f t d e r i v a t i v e wrt . manipulated v a r i a b l e s
27 % dfdd : d r i f t d e r i v a t i v e wrt . d i s tu rbance s
28 %
29 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
30

31 %% Parameters
32
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33 % Size
34 nx = theta .nx ;
35 nu = theta .nu ;
36 nd = theta .nd ;
37

38 % Kine t i c s
39 rFun = theta . rFun ;
40 rPar = the ta . rPar ;
41 S = the ta .S ;
42

43 % Parameters
44 V = theta.V ;
45

46 % Var iab l e s
47 % . . .
48 % s t a t e s
49 n = x ;
50 c = n/V;
51

52 %% Function
53

54 % Product ions r a t e s
55 [ r , � ] = rFun ( t , c , rPar ) ;
56 R = S ' ∗ r ;
57

58 % Evaluat ion
59 f = R∗V;
60

61 %% Der iva t i ve
62

63 i f nargout > 1
64 % k i n e t i c s d e r i v a t i v e wrt . c oncen t ra t i on s
65 [ � , drdc ] = rFun ( t , c , rPar ) ;
66

67 % d r i f t Jacobian wrt . s t a t e s ( x )
68 % . . .
69 % dfdx
70 dfdx = S ' ∗ drdc ;
71

72 % d r i f t Jacobian wrt . inputs (u)
73 % . . .
74 % dfdu
75 dfdu = ze ro s (nx , nu) ;
76

77 % d r i f t Jacobian wrt . d i s tu rbance s (d)
78 % . . .
79 % dfdd
80 dfdd = ze ro s (nx , nd) ;
81

82 end
83

84 end
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./code/matlab/driftBR.m.

B.2.2 Python

1 ## Imports
2 import numpy as np
3

4

5 #########################################################################
6 ## Authour ( s ) :
7 ## Marcus Krogh Nie l s en
8 ##
9 ## Email :

10 ## mkrni@dtu . dk
11 ##
12 #########################################################################
13 ## Cal l :
14 ## f , dfdx , dfdu , dfdd = dri ftBR ( t , x , u , d , theta , nargout )
15 ##
16 ## Desc r ip t i on :
17 ## D r i f t func t i on f o r a batch r e a c t o r .
18 ##
19 ## Inputs :
20 ## t : time
21 ## x : s t a t e s
22 ## u : manipulated v a r i a b l e s
23 ## d : d i s tu rbance s
24 ## theta : parameters
25 ##
26 ## Outputs :
27 ## f : s t a t e d r i f t f unc t i on
28 ## dfdx : d r i f t d e r i v a t i v e wrt . s t a t e s
29 ## dfdu : d r i f t d e r i v a t i v e wrt . manipulated v a r i a b l e s
30 ## dfdd : d r i f t d e r i v a t i v e wrt . d i s tu rbance s
31 ##
32 #########################################################################
33 de f dri ftBR ( t , x , u , theta , nargout=1) :
34 ## Parameters
35

36 # Size
37 nx = theta . nx
38 nu = theta . nu
39 nd = theta . nd
40

41 # Kine t i c s
42 rFun = theta . rFun
43 rPar = theta . rPar
44 S = theta . S
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45

46 # Parameters
47 V = theta .V
48

49 # Var iab l e s
50 # . . .
51 # s t a t e s
52 n = x
53 c = n/V
54

55

56 ## Function
57

58 # Production r a t e s
59 r = rFun ( t , c , rPar , nargout=1)
60 R = S .T@r
61

62 # Evaluate d r i f t term
63 f = R∗V
64

65

66 ## Der iva t i v e s
67 i f nargout > 1 :
68 # Kine t i c s d r i v a t i v e wrt . c oncen t ra t i on s
69 _, drdc = rFun ( t , x , rPar , nargout=2)
70

71 # D r i f t Jacobian wrt . s t a t e s ( x )
72 # . . .
73 # dfdx
74 dfdx = S . T@drdc
75

76 # D r i f t Jacobian wrt . inputs (u)
77 # . . .
78 # dfdu
79 dfdu = np . z e r o s (nx , nu)
80

81 # D r i f t Jacobian wrt . d i s tu rbance s (d)
82 # . . .
83 # dfdd
84 dfdd = np . z e r o s (nx , nd)
85

86 re turn f , dfdx , dfdu , dfdd
87

88 # Return statement
89 re turn f

./code/python/driftBR.py.
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APPENDIXC
Fed-batch Reactor -

Derivations and
Implementations

In this chapter, we present Jacobians and implementations in Matlab and Python of the
FBR model presented in (4.12).

C.1 Derivatives
In this section, we present Jacobians for the FBR model (4.12). We consider the right-
hand side function

f(x, u, θ) =
[
fV (x, u, θ)
fn(x, u, θ)

]
(C.1a)

=
[

eT F
CInF + R(c)V

]
, (C.1b)

where the states x = [V, n], the concentrations c = n/V , and u = F .

C.1.1 Jacobian of f wrt. x - ∂f
∂x

We describe the Jacobian of the function (C.1) wrt. x, as

∂f

∂x
=
[

∂fV

∂V
∂fV

∂n
∂fn

∂V
∂fn

∂n

]
(C.2a)

=
[

0 0
R(c) − ST ∂r

∂c
c ST ∂r

∂c

]
. (C.2b)

Jacobian of fV wrt. V

∂fV

∂V
= ∂

∂V

(
eT F

)
(C.3a)

= 0. (C.3b)
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Thus
∂fV

∂V
= 0. (C.4)

Jacobian of fV wrt. n

∂fV

∂n
= ∂

∂n

(
eT F

)
(C.5a)

= 0. (C.5b)

Thus
∂fV

∂n
= 0. (C.6)

Jacobian of fn wrt. V

∂fn

∂V
= ∂

∂V
(CInF + R(c)V ) (C.7a)

= ∂

∂V
(CInF ) + ∂

∂V
(R(c)V ) . (C.7b)

The Jacobian of the inlet flow term is
∂

∂V
(CInF ) = 0. (C.8)

The Jacobian of the production term is

∂

∂V
(R(c)V ) = ∂R

∂V
V + R(c)∂V

∂V
(C.9a)

= ∂R

∂V
V + R(c). (C.9b)

The Jacobian of the production function is

∂R

∂V
= ∂R

∂c

∂c

∂V
(C.10a)

= ST ∂r

∂c

∂c

∂V
(C.10b)

= −ST ∂r

∂c

n

V 2 . (C.10c)

Thus
∂fn

∂V
= R(c) − ST ∂r

∂c

n

V 2 V (C.11a)

= R(c) − ST ∂r

∂c

n

V
(C.11b)

= R(c) − ST ∂r

∂c
c. (C.11c)
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Jacobian of fn wrt. n

∂fn

∂n
= ∂

∂n
(CInF + R(c)V ) (C.12a)

= ∂

∂n
(CInF ) + ∂

∂n
(R(c)V ) . (C.12b)

The Jacobian of the inlet flow term is
∂

∂n
(CInF ) = 0. (C.13)

The Jacobian of the production term is
∂

∂n
(R(c)V ) = ∂R

∂n
V (C.14a)

= ST ∂r

∂n
V (C.14b)

= ST ∂r

∂c

∂c

∂n
V (C.14c)

= ST ∂r

∂c

1
V

V (C.14d)

= ST ∂r

∂c
. (C.14e)

Thus
∂fn

∂n
= ST ∂r

∂c
. (C.15)

C.1.2 Jacobian of f wrt. u - ∂f
∂u

We describe the Jacobian of the function (C.1) wrt. u, as

∂f

∂u
=
[

∂fV

∂F
∂fn

∂F

]
(C.16a)

=
[

eT

CIn

]
. (C.16b)

Jacobian of fV wrt. F

∂fV

∂F
= ∂

∂F

(
eT F

)
(C.17a)

= eT ∂F

∂F
(C.17b)

= eT . (C.17c)

Thus
∂fV

∂F
= eT . (C.18)
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Jacobian of fn wrt. F

∂fn

∂F
= ∂

∂F
(CInF + R(c)V ) (C.19a)

= ∂

∂F
(CInF ) + ∂

∂F
(R(c)V ) . (C.19b)

The Jacobian of the inlet flow term is

∂

∂F
(CInF ) = CIn

∂F

∂F
(C.20a)

= CIn. (C.20b)

The Jacobian of the production term is

∂

∂F
(R(c)V ) = 0. (C.21)

Thus
∂fn

∂F
= CIn. (C.22)

C.2 Implementations

C.2.1 Matlab

1 f unc t i on [ f , dfdx , dfdu , dfdd ] = driftFBR ( t , x , u , d , theta )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % Authour ( s ) :
4 % Marcus Krogh Nie l s en
5 %
6 % Email :
7 % mkrni@dtu.dk
8 %
9 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10 % Cal l :
11 % [ f , dfdx , dfdu , dfdd ] = driftFBR ( t , x , u , d , theta )
12 %
13 % Desc r ip t i on :
14 % D r i f t func t i on f o r a fedbatch r e a c t o r .
15 %
16 % Inputs :
17 % t : time
18 % x : s t a t e s
19 % u : manipulated v a r i a b l e s
20 % d : d i s tu rbance s
21 % theta : parameters
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22 %
23 % Outputs :
24 % f : s t a t e d r i f t f unc t i on
25 % dfdx : d r i f t d e r i v a t i v e wrt . s t a t e s
26 % dfdu : d r i f t d e r i v a t i v e wrt . manipulated v a r i a b l e s
27 % dfdd : d r i f t d e r i v a t i v e wrt . d i s tu rbance s
28 %
29 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
30

31 %% Parameters
32

33 % Size
34 nx = theta .nx ;
35 nu = theta .nu ;
36 nd = theta .nd ;
37

38 % Parameters
39 CIn = theta .CIn ;
40 e = ones (nu , 1) ;
41

42 % Kine t i c s
43 rFun = theta . rFun ;
44 rPar = th e t a . rPa r s ;
45 S = the ta .S ;
46

47 % Var iab l e s
48 % . . .
49 % s t a t e s
50 V = x (1) ;
51 n = x(2 :end ) ;
52 c = n/V;
53 % inputs
54 F = u ;
55

56

57 %% Function
58

59 % Product ions r a t e s
60 [ r , � ] = rFun ( t , c , rPar ) ;
61 R = S ' ∗ r ;
62

63 % Evaluat ion
64 f = [ e ' ∗F ;
65 CIn∗F + R∗V] ;
66

67 %% Der iva t i ve
68

69 i f nargout > 1
70 % k i n e t i c s d e r i v a t i v e wrt . c oncen t ra t i on s
71 [ � , drdc ] = rFun ( t , c , rPar ) ;
72

73 % d r i f t Jacobian wrt . s t a t e s ( x )
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74 % . . .
75 % pre - a l l o c a t i o n
76 dfdx = ze ro s (nx , nx ) ;
77 % dfVdV
78 dfdx (1 ,1 ) = 0 . 0 ;
79 % dfVdn
80 dfdx (1 ,2 :end ) = 0 . 0 ;
81 % dfndV
82 dfdx (2 :end ,1 ) = S ' ∗ drdc ∗n/V + R;
83 % dfndn
84 dfdx (2 :end ,2 :end ) = S ' ∗ drdc ;
85

86 % d r i f t Jacobian wrt . inputs (u)
87 % . . .
88 % pre - a l l o c a t i o n ;
89 dfdu = ze ro s (nx , nu) ;
90 % dfVdF
91 dfdu (1 , : ) = e ' ;
92 % dfndF
93 dfdu (2 :end , : ) = CIn ;
94

95 % d r i f t Jacobian wrt . d i s tu rbance s (d)
96 % . . .
97 % pre - a l l o c a t i o n
98 dfdd = ze ro s (nx , nd) ;
99 % dfdd

100

101

102 end
103

104 end

./code/matlab/driftFBR.m.

C.2.2 Python

1 ## Imports
2 import numpy as np
3

4

5 #########################################################################
6 ## Authour ( s ) :
7 ## Marcus Krogh Nie l s en
8 ##
9 ## Email :

10 ## mkrni@dtu . dk
11 ##
12 #########################################################################
13 ## Cal l :
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14 ## f , dfdx , dfdu , dfdd = driftFBR ( t , x , u , d , theta , nargout )
15 ##
16 ## Desc r ip t i on :
17 ## Druft func t i on f o r a fedbatch r e a c t o r .
18 ##
19 ## Inputs :
20 ## t : time
21 ## x : s t a t e s
22 ## u : manipulated v a r i a b l e s
23 ## d : d i s tu rbance s
24 ## theta : parameters
25 ##
26 ## Outputs :
27 ## f : s t a t e d r i f t f unc t i on
28 ## dfdx : d r i f t d e r i v a t i v e wrt . s t a t e s
29 ## dfdu : d r i f t d e r i v a t i v e wrt . manipulated v a r i a b l e s
30 ## dfdd : d r i f t d e r i v a t i v e wrt . d i s tu rbance s
31 ##
32 #########################################################################
33 de f driftFBR ( t , x , u , theta , nargout=1) :
34 ## Parameters
35

36 # Size
37 nx = theta . nx
38 nu = theta . nu
39 nd = theta . nd
40

41 # I n l e t concen t ra t i on s
42 CIn = theta . CIn
43 e = np . ones (nu , 1)
44

45 # Kine t i c s
46 rFun = theta . rFun
47 rPar = theta . rPar
48 S = theta . S
49

50 # Var iab l e s
51 # . . .
52 # s t a t e s
53 V = x [ 0 ]
54 n = x [ 1 : ]
55 c = n/V
56 # inputs
57 F = u
58

59

60 ## Function
61

62 # Production r a t e s
63 r , _ = rFun ( t , c , rPar )
64 R = S .T@r
65
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66 # Evaluate d r i f t term
67 # . . .
68 # fV
69 fV = e .T@F
70 # fn
71 fn = CIn@F + S .T@R
72 # f
73 f = np . array ( [ [ fV ] , [ fn ] ] )
74

75

76 ## Der iva t i v e s
77 i f nargout > 1 :
78 # Kine t i c s d r i v a t i v e wrt . c oncen t ra t i on s
79 _, drdc = rFun ( t , x , rPar )
80

81 # D r i f t Jacobian wrt . s t a t e s ( x )
82 # . . .
83 # pre - a l l o c a t i o n
84 dfdx = np . z e ro s (nx , nx )
85 # dfVdV
86 dfdx [ 0 ,0 ] = 0 .0
87 # dfVdn
88 dfdx [ 1 : , 0 ] = 0 .0
89 # dfndV
90 dfdx [ 0 , 1 : ] = S . T@drdc@c + R
91 # dfndn
92 dfdx [ 1 : , 1 : ] = S . T@drdc
93

94 # D r i f t Jacobian wrt . inputs (u)
95 # . . .
96 # pre - a l l o c a t i o n
97 dfdu = np . z e r o s (nx , nu)
98 # dfVdF
99 dfdu [ 0 , : ] = e .T

100 # dfndF
101 dfdu [ 1 : , : ] = CIn
102

103 # D r i f t Jacobian wrt . d i s tu rbance s (d)
104 # . . .
105 # dfdd
106 dfdd = np . z e r o s (nx , nd)
107

108 re turn f , dfdx , dfdu , dfdd
109

110 # Return statement
111 re turn f

./code/python/driftFBR.py.



APPENDIXD
Continuous Stirred

Tank Reactor -
Derivations and

Implementations
In this chapter, we present Jacobians and implementations in Matlab and Python of the
CSTR model presented in (5.12).

D.1 Derivatives - variable volume
In this section, we present Jacobians for the CSTR model (5.12). We consider the
right-hand side function

f(x, u, θ) =
[
fV (x, u, θ)
fn(x, u, θ)

]
(D.1a)

=
[

eT F − eT
OutFOut

CInF − ceT
OutFOut + R(c)V

]
, (D.1b)

where the states x = [V, n], the concentrations c = n/V , and u = [F, FOut].

D.1.1 Jacobian of f wrt. x - ∂f
∂x

We describe the Jacobian of the function (D.1) wrt. x, as

∂f

∂x
=
[

∂fV

∂V
∂fV

∂n
∂fn

∂V
∂fn

∂n

]
(D.2a)

=
[

0 0
c
V

eT
OutFOut − ST ∂r

∂c
c + R(c) ST ∂r

∂c
− Inx−1

1
V

eT
OutF

]
. (D.2b)
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Jacobian of fV wrt. V

∂fV

∂V
= ∂

∂V

(
eT F − eT

OutFOut
)

(D.3a)

= 0. (D.3b)

Thus

∂fV

∂V
= 0. (D.4)

Jacobian of fV wrt. n

∂fV

∂n
= ∂

∂n

(
eT F − eT

OutFOut
)

(D.5a)

= 0. (D.5b)

Thus

∂fV

∂n
= 0. (D.6)

Jacobian of fn wrt. V

∂fn

∂V
= ∂

∂V

(
CInF − ceT

OutFOut + R(c)V
)

(D.7a)

= ∂

∂V
(CInF ) − ∂

∂V

(
ceT

OutFOut
)

+ ∂

∂V
(R(c)V ) . (D.7b)

The Jacobian of the inlet flow term is

∂

∂V
(CInF ) = 0. (D.8)

The Jacobian of the outlet flow term is

∂

∂V

(
ceT

OutFOut
)

= ∂c

∂V
eT

OutFOut (D.9a)

= − n

V 2 eT
OutFOut (D.9b)

= − c

V
eT

OutFOut. (D.9c)
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The Jacobian of the production term is
∂

∂V
(R(c)V ) = ∂R

∂V
V + R(c)∂V

∂V
(D.10a)

= ST ∂r

∂V
V + R(c) (D.10b)

= ST ∂r

∂c

∂c

∂V
V + R(c) (D.10c)

= −ST ∂r

∂c

n

V 2 V + R(c) (D.10d)

= −ST ∂r

∂c

n

V
+ R(c) (D.10e)

= −ST ∂r

∂c
c + R(c). (D.10f)

Thus
∂fn

∂V
= c

V
eT

OutFOut − ST ∂r

∂c
c + R(c). (D.11)

Jacobian of fn wrt. n

∂fn

∂n
= ∂

∂n

(
CInF − ceT

OutFOut + R(c)V
)

(D.12a)

= ∂

∂n
(CInF ) − ∂

∂n

(
ceT

OutFOut
)

+ ∂

∂n
(R(c)V ) . (D.12b)

The Jacobian of the inlet flow term is
∂

∂n
(CInF ) = 0. (D.13)

The Jacobian of the outlet flow term is
∂

∂n

(
ceT

OutFOut
)

= ∂c

∂n
eT

OutFOut (D.14a)

= −Inx−1
1
V

eT
OutFOut. (D.14b)

The Jacobian of the production term is
∂

∂n
(R(c)V ) = ∂R

∂n
V (D.15a)

= ST ∂r

∂n
V (D.15b)

= ST ∂r

∂c

∂c

∂n
V (D.15c)

= ST ∂r

∂c

1
V

V (D.15d)

= ST ∂r

∂c
. (D.15e)
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Thus
∂fn

∂n
= c

V
eT

OutFOut − ST ∂r

∂c
− R(c). (D.16)

D.1.2 Jacobian of f wrt. u - ∂f
∂u

We describe the Jacobian of the function (D.1) wrt. u, as

∂f

∂u
=
[∂fV

∂F
∂fV

∂FOut
∂fn

∂F
∂fn

∂FOut

]
(D.17a)

=
[

eT −eT
Out

CIn −ceT
Out

]
. (D.17b)

Jacobian of fV wrt. F

∂fV

∂F
= ∂

∂F

(
eT F − eT

OutFOut
)

(D.18a)

= ∂

∂F

(
eT F

)
− ∂

∂F

(
eT

OutFOut
)

. (D.18b)

The Jacobian of the inlet flow term is
∂

∂F

(
eT F

)
= eT ∂F

∂F
(D.19)

= eT . (D.20)

The Jacobian of the outlet flow term is
∂

∂F

(
eT

OutFOut
)

= 0. (D.21)

Thus
∂fV

∂F
= eT . (D.22)

Jacobian of fV wrt. FOut

∂fV

∂FOut
= ∂

∂FOut

(
eT F − eT

OutFOut
)

(D.23a)

= ∂

∂FOut

(
eT F

)
− ∂

∂FOut

(
eT

OutFOut
)

. (D.23b)

The Jacobian of the inlet flow term is
∂

∂FOut

(
eT F

)
= 0. (D.24a)
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The Jacobian of the outlet flow term is
∂

∂FOut

(
eT

OutFOut
)

= eT
Out

∂FOut

∂FOut
(D.25a)

= eT
Out. (D.25b)

Thus
∂fV

∂FOut
= −eT

Out. (D.26)

Jacobian of fn wrt. F

∂fn

∂F
= ∂

∂F

(
CInF − ceT

OutFOut + R(c)V
)

(D.27a)

= ∂

∂F
(CInF ) − ∂

∂F

(
ceT

OutFOut
)

+ ∂

∂F
(R(c)V ) . (D.27b)

The Jacobian of the inlet flow term is
∂

∂F
(CInF ) = CIn

∂F

∂F
(D.28a)

= CIn. (D.28b)

The Jacobian of the outlet flow term is
∂

∂F

(
ceT

OutFOut
)

= 0. (D.29)

The Jacobian of the production term is

∂

∂F
(R(c)V ) = 0. (D.30)

Thus
∂fn

∂F
= CIn. (D.31)

Jacobian of fn wrt. FOut

∂fn

∂FOut
= ∂

∂FOut

(
CInF − ceT

OutFOut + R(c)V
)

(D.32a)

= ∂

∂FOut
(CInF ) − ∂

∂FOut

(
ceT

OutFOut
)

+ ∂

∂FOut
(R(c)V ) . (D.32b)

The Jacobian of the inlet flow term is
∂

∂FOut
(CInF ) = 0. (D.33)
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The Jacobian of the outlet flow term is
∂

∂FOut
= ∂

∂FOut

(
ceT

OutFOut
)

(D.34a)

= ceT
Out

∂FOut

∂FOut
(D.34b)

= ceT
Out. (D.34c)

The Jacobian of the production term is
∂

∂FOut
(R(c)V ) = 0. (D.35)

Thus
∂fn

∂FOut
= −ceT

Out. (D.36)

D.2 Derivative - constant volume
In this section, we present Jacobians for the CSTR model (5.15). We consider the
right-hand side function

f(t, x, u, θ) =
(
CIn − ceT

)
F + R(c)V, (D.37)

where the states x = n, the concentrations c = n/V , and the inputs u = F .

D.2.1 Jacobian of f wrt. x - ∂f
∂x

We describe the Jacobian of the function (D.37) wrt. x, as
∂f

∂x
= ∂f

∂n
(D.38a)

= − 1
V

eT F + ST ∂r

∂c
. (D.38b)

Jacobian of f wrt. n

∂f

∂n
= ∂

∂n

((
CIn − ceT

)
F + R(c)V

)
(D.39a)

= ∂

∂n

((
CIn − ceT

)
F
)

+ ∂

∂n
(R(c)V ) . (D.39b)

∂

∂n

((
CIn − ceT

)
F
)

= ∂

∂n
(CInF ) − ∂

∂n

(
ceT F

)
(D.40a)

= − ∂

∂c

(
ceT F

) ∂c

∂n
(D.40b)

= −I
1
V

eT F. (D.40c)
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∂

∂n
(R(c)V ) = ∂R

∂n
V (D.41a)

= ST ∂r

∂n
V (D.41b)

= ST ∂r

∂c

∂c

∂n
V (D.41c)

= ST ∂r

∂c

1
V

V (D.41d)

= ST ∂r

∂c
. (D.41e)

Thus

∂f

∂n
= − 1

V
eT F + ST ∂r

∂c
. (D.42)

D.2.2 Jacobian of f wrt. u - ∂f
∂u

We describe the Jacobian of the function (D.37) wrt. u, as

∂f

∂u
= ∂f

∂F
(D.43a)

= CIn − ceT . (D.43b)

Jacobian of f wrt. F

∂f

∂F
= ∂

∂F

((
CIn − ceT

)
F + R(c)V

)
(D.44a)

= ∂

∂F

((
CIn − ceT

)
F
)

+ ∂

∂F
(R(c)V ) . (D.44b)

∂

∂F

((
CIn − ceT

)
F
)

=
(
CIn − ceT

) ∂F

∂F
(D.45a)

= CIn − ceT . (D.45b)

∂

∂F
(R(c)V ) = 0. (D.46)

Thus

∂f

∂F
= CIn − ceT . (D.47)
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D.3 Implementations

D.3.1 Matlab - variable volume

1 f unc t i on [ f , dfdx , dfdu , dfdd ] = driftCSTR ( t , x , u , d , theta )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % Authour ( s ) :
4 % Marcus Krogh Nie l s en
5 %
6 % Email :
7 % mkrni@dtu.dk
8 %
9 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10 % Cal l :
11 % [ f , dfdx , dfdu , dfdd ] = driftFBR ( t , x , u , d , theta )
12 %
13 % Desc r ip t i on :
14 % D r i f t func t i on f o r a cont inuous s t i r r e d tank r e a c t o r .
15 %
16 % Inputs :
17 % t : time
18 % x : s t a t e s
19 % u : manipulated v a r i a b l e s
20 % d : d i s tu rbance s
21 % theta : parameters
22 %
23 % Outputs :
24 % f : s t a t e d r i f t f unc t i on
25 % dfdx : d r i f t d e r i v a t i v e wrt . s t a t e s
26 % dfdu : d r i f t d e r i v a t i v e wrt . manipulated v a r i a b l e s
27 % dfdd : d r i f t d e r i v a t i v e wrt . d i s tu rbance s
28 %
29 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
30

31 %% Parameters
32

33 % Size
34 nx = theta .nx ;
35 nu = theta .nu ;
36 nuIn = theta .nuIn ;
37 nuOut = theta.nuOut ;
38 nd = theta .nd ;
39

40 % Parameters
41 CIn = theta .CIn ;
42 e = ones ( nuIn , 1) ;
43 eOut = ones (nuOut , 1) ;
44

45 % Kine t i c s
46 rFun = theta . rFun ;
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47 rPar = th e t a . rPa r s ;
48 S = the ta .S ;
49

50 % Var iab l e s
51 % . . .
52 % s t a t e s
53 V = x (1) ;
54 n = x(2 :end ) ;
55 c = n/V;
56 % inputs
57 F = u ( 1 : nuIn ) ;
58 FOut = u( nuIn+1 :end ) ;
59

60

61 %% Function
62

63 % Product ions r a t e s
64 [ r , � ] = rFun ( t , c , rPar ) ;
65 R = S ' ∗ r ;
66

67 % Evaluat ion
68 f = [ e ' ∗F - eOut ' ∗ FOut ;
69 CIn∗F - c∗eOut ' ∗ FOut + R∗V] ;
70

71 %% Der iva t i ve
72

73 i f nargout > 1
74 % k i n e t i c s d e r i v a t i v e wrt . c oncen t ra t i on s
75 [ � , drdc ] = rFun ( t , c , rPar ) ;
76

77 % d r i f t Jacobian wrt . s t a t e s ( x )
78 % . . .
79 % pre - a l l o c a t i o n
80 dfdx = ze ro s (nx , nx ) ;
81 % dfVdV
82 dfdx (1 ,1 ) = 0 . 0 ;
83 % dfVdn
84 dfdx (1 ,2 :end ) = 0 . 0 ;
85 % dfndV
86 dfdx (2 :end ,1 ) = c/V∗eOut ' ∗ FOut - S ' ∗ drdc ∗c + R;
87 % dfndn
88 Inn = eye (nx - 1 ) ;
89 dfdx (2 :end ,2 :end ) = S ' ∗ drdc - Inn ∗1/V∗( eOut ' ∗ FOut) ;
90

91 % d r i f t Jacobian wrt . inputs (u)
92 % . . .
93 % pre - a l l o c a t i o n ;
94 dfdu = ze ro s (nx , nu) ;
95 % dfVdF
96 dfdu (1 , 1 : nuIn ) = e ' ;
97 % dfVdFOut
98 dfdu (1 , nuIn+1 :end ) = - eOut ' ;
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99 % dfndF
100 dfdu (2 :end , 1 : nuIn ) = CIn ;
101 % dfndFOut
102 dfdu (2 :end , nuIn+1 :end ) = - c∗eOut ' ;
103

104 % d r i f t Jacobian wrt . d i s tu rbance s (d)
105 % . . .
106 % pre - a l l o c a t i o n
107 dfdd = ze ro s (nx , nd) ;
108 % dfdd
109

110

111 end
112

113 end

./code/matlab/driftCSTR.m.

D.3.2 Python - variable volume

1 ## Imports
2 import numpy as np
3

4

5 #########################################################################
6 ## Authour ( s ) :
7 ## Marcus Krogh Nie l s en
8 ##
9 ## Email :

10 ## mkrni@dtu . dk
11 ##
12 #########################################################################
13 ## Cal l :
14 ## f , dfdx , dfdu , dfdd = driftCSTR ( t , x , u , d , theta , nargout )
15 ##
16 ## Desc r ip t i on :
17 ## D r i f t func t i on f o r a cont inuous s t i r r e d tank r e a c t o r .
18 ##
19 ## Inputs :
20 ## t : time
21 ## x : s t a t e s
22 ## u : manipulated v a r i a b l e s
23 ## d : d i s tu rbance s
24 ## theta : parameters
25 ##
26 ## Outputs :
27 ## f : s t a t e d r i f t f unc t i on
28 ## dfdx : d r i f t d e r i v a t i v e wrt . s t a t e s
29 ## dfdu : d r i f t d e r i v a t i v e wrt . manipulated v a r i a b l e s
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30 ## dfdd : d r i f t d e r i v a t i v e wrt . d i s tu rbance s
31 ##
32 #########################################################################
33 de f driftCSTR ( t , x , u , theta , nargout=1) :
34 ## Parameters
35

36 # Size
37 nx = theta . nx
38 nu = theta . nu
39 nuIn = theta . nuIn
40 nuOut = theta . nuOut
41 nd = theta . nd
42

43 # I n l e t concen t ra t i on s
44 CIn = theta . CIn
45 e = np . ones ( nuIn , 1)
46 eOut = np . ones (nuOut , 1)
47

48 # Kine t i c s
49 rFun = theta . rFun
50 rPar = theta . rPar
51 S = theta . S
52

53 # Var iab l e s
54 # . . .
55 # s t a t e s
56 V = x [ 0 ]
57 n = x [ 1 : ]
58 c = n/V
59 # inputs
60 F = u [ : nuIn ]
61 FOut = u [ nuIn : ]
62

63

64 ## Function
65

66 # Production r a t e s
67 r , _ = rFun ( t , c , rPar )
68 R = S .T@r
69

70 # Evaluate d r i f t term
71 # . . .
72 # fV
73 fV = e .T@F - eOut .T@FOut
74 # fn
75 fn = CIn@F - c@eOut .T@FOut + R∗V
76 # f
77 f = np . array ( [ [ fV ] , [ fn ] ] )
78

79

80 ## Der iva t i v e s
81 i f nargout > 1 :
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82 # Kine t i c s d r i v a t i v e wrt . c oncen t ra t i on s
83 _, drdc = rFun ( t , x , rPar )
84

85 # D r i f t Jacobian wrt . s t a t e s ( x )
86 # . . .
87 # pre - a l l o c a t i o n
88 dfdx = np . z e ro s (nx , nx )
89 # dfVdV
90 dfdx [ 0 ,0 ] = 0 .0
91 # dfVdn
92 dfdx [ 0 , 1 : ] = 0 .0
93 # dfndV
94 dfdx [ 1 : , 0 ] = ( c/V)@eOut .T@FOut - S . T@drdc@c + R
95 # dfndn
96 Inn = np . eye (nx - 1 )
97 dfdx [ 1 : , 1 : ] = S . T@drdc - Inn ∗1/V∗( eOut .T@F)
98

99 # D r i f t Jacobian wrt . inputs (u)
100 # . . .
101 # pre - a l l o c a t i o n
102 dfdu = np . z e r o s (nx , nu)
103 # dfVdF
104 dfdu [ 0 , : nuIn ] = e .T
105 # dfVdFOut
106 dfdu [ 0 , nuIn : ] = - eOut .T
107 # dfndF
108 dfdu [ 1 : , : nuIn ] = CIn
109 # dfndFOut
110 dfdu [ 1 : , nuIn : ] = - c@eOut .T
111

112 # D r i f t Jacobian wrt . d i s tu rbance s (d)
113 # . . .
114 # dfdd
115 dfdd = np . z e r o s (nx , nd)
116

117 re turn f , dfdx , dfdu , dfdd
118

119 # Return statement
120 re turn f

./code/python/driftCSTR.py.

D.3.3 Matlab - constant volume

1 f unc t i on [ f , dfdx , dfdu , dfdd ] = driftCSTRConstVol ( t , x , u , d , theta )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % Authour ( s ) :
4 % Marcus Krogh Nie l s en
5 %
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6 % Email :
7 % mkrni@dtu.dk
8 %
9 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10 % Cal l :
11 % [ f , dfdx , dfdu , dfdd ] = driftCSTRConstVol ( t , x , u , d , theta )
12 %
13 % Desc r ip t i on :
14 % D r i f t func t i on f o r a cont inuous s t i r r e d tank r e a c t o r with
15 % constant volume.
16 %
17 % Inputs :
18 % t : time
19 % x : s t a t e s
20 % u : manipulated v a r i a b l e s
21 % d : d i s tu rbance s
22 % theta : parameters
23 %
24 % Outputs :
25 % f : s t a t e d r i f t f unc t i on
26 % dfdx : d r i f t d e r i v a t i v e wrt . s t a t e s
27 % dfdu : d r i f t d e r i v a t i v e wrt . manipulated v a r i a b l e s
28 % dfdd : d r i f t d e r i v a t i v e wrt . d i s tu rbance s
29 %
30 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
31

32 %% Parameters
33

34 % Size
35 nx = theta .nx ;
36 nu = theta .nu ;
37 nd = theta .nd ;
38

39 % Parameters
40 V = theta.V ;
41 CIn = theta .CIn ;
42 e = ones (nu , 1) ;
43

44 % Kine t i c s
45 rFun = theta . rFun ;
46 rPar = th e t a . rPa r s ;
47 S = the ta .S ;
48

49 % Var iab l e s
50 % . . .
51 % s t a t e s
52 n = x ;
53 c = n/V;
54 % inputs
55 F = u ;
56

57
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58 %% Function
59

60 % Product ions r a t e s
61 [ r , � ] = rFun ( t , c , rPar ) ;
62 R = S ' ∗ r ;
63

64 % Evaluat ion
65 f = ( CIn - c∗e ' ) ∗F + R∗V;
66

67

68 %% Der iva t i ve
69

70 i f nargout > 1
71 % k i n e t i c s d e r i v a t i v e wrt . c oncen t ra t i on s
72 [ � , drdc ] = rFun ( t , c , rPar ) ;
73

74 % d r i f t Jacobian wrt . s t a t e s ( x )
75 % . . .
76 % dfdn
77 I = eye ( nx ) ;
78 dfdx = - I ∗1/V∗( e ' ∗F) + S ' ∗ drdc ;
79

80 % d r i f t Jacobian wrt . inputs (u)
81 % . . .
82 % dfdF
83 dfdu = CIn - c∗e ' ;
84

85 % d r i f t Jacobian wrt . d i s tu rbance s (d)
86 % . . .
87 % dfdd
88 dfdd = ze ro s (nx , nd) ;
89

90 end
91

92 end

./code/matlab/driftCSTRConstVol.m.

D.3.4 Python - constant volume

1 ## Imports
2 import numpy as np
3

4

5 #########################################################################
6 ## Authour ( s ) :
7 ## Marcus Krogh Nie l s en
8 ##
9 ## Email :
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10 ## mkrni@dtu . dk
11 ##
12 #########################################################################
13 ## Cal l :
14 ## f , dfdx , dfdu , dfdd = driftCSTRConstVol ( t , x , u , d , theta ,

nargout )
15 ##
16 ## Desc r ip t i on :
17 ## D r i f t f unc t i on f o r a cont inuous s t i r r e d tank r e a c t o r with
18 ## constant volume .
19 ##
20 ## Inputs :
21 ## t : time
22 ## x : s t a t e s
23 ## u : manipulated v a r i a b l e s
24 ## d : d i s tu rbance s
25 ## theta : parameters
26 ##
27 ## Outputs :
28 ## f : s t a t e d r i f t f unc t i on
29 ## dfdx : d r i f t d e r i v a t i v e wrt . s t a t e s
30 ## dfdu : d r i f t d e r i v a t i v e wrt . manipulated v a r i a b l e s
31 ## dfdd : d r i f t d e r i v a t i v e wrt . d i s tu rbance s
32 ##
33 #########################################################################
34 de f driftCSTRConstVol ( t , x , u , theta , nargout=1) :
35 ## Parameters
36

37 # Size
38 nx = theta . nx
39 nu = theta . nu
40 nd = theta . nd
41

42 # I n l e t concen t ra t i on s
43 V = theta .V
44 CIn = theta . CIn
45 e = np . ones (nu , 1)
46

47 # Kine t i c s
48 rFun = theta . rFun
49 rPar = theta . rPar
50 S = theta . S
51

52 # Var iab l e s
53 # . . .
54 # s t a t e s
55 n = x
56 c = n/V
57 # inputs
58 F = u
59

60
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61 ## Function
62

63 # Production r a t e s
64 r , _ = rFun ( t , c , rPar )
65 R = S .T@r
66

67 # Evaluate d r i f t term
68 # . . .
69 # fn
70 fn = ( CIn - c@e .T)@F + R∗V
71 # f
72 f = np . array ( [ [ fn ] ] )
73

74

75 ## Der iva t i v e s
76 i f nargout > 1 :
77 # Kine t i c s d r i v a t i v e wrt . c oncen t ra t i on s
78 _, drdc = rFun ( t , x , rPar )
79

80 # D r i f t Jacobian wrt . s t a t e s ( x )
81 # . . .
82 # dfdn
83 Inx = np . eye ( nx )
84 dfdx = - Inx ∗1/V∗( eOut .T@F) + S . T@drdc
85

86 # D r i f t Jacobian wrt . inputs (u)
87 # . . .
88 # dfdF
89 dfdu = CIn - c@e .T
90

91 # D r i f t Jacobian wrt . d i s tu rbance s (d)
92 # . . .
93 # dfdd
94 dfdd = np . z e r o s (nx , nd)
95

96 re turn f , dfdx , dfdu , dfdd
97

98 # Return statement
99 re turn f

./code/python/driftCSTRConstVol.py.
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In this chapter, we present Jacobians for the PDE and finite-volume discretised ODE
models, as well as implementations in Matlab and Python of the finite-volume discreti-
sation model presented in (6.24).

E.1 Derivatives - PDE Model
In this section, we present Jacobians for the PFR model in (6.9). We consider the
right-hand side function

f(x, u, θ) = −∂N

∂z
+ R(c), (E.1)

where

N(t, z) = v(t)c(t, z) − D
∂c

∂z
(t, z), v(t) = Ft(t)

A
, (E.2a)

where the states x = c(t, z) and the manipulated variables u = F (t).

E.1.1 Jacobian of f wrt. x - ∂f
∂x

We describe the Jacobian of the function (E.1) wrt. x, as

∂f

∂x
= ∂f

∂c
(E.3a)

= −v(t) ∂

∂c

∂c

∂z
(t, z) + D

∂

∂c

∂2c

∂z2 + ST ∂r

∂c
. (E.3b)
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Jacobian of f wrt. c

∂f

∂c
= ∂

∂c

(
−∂N

∂z
+ R(c)

)
(E.4a)

= − ∂

∂c

∂N

∂z
+ ∂R

∂c
. (E.4b)

The partial derivative of the flux term is

∂

∂c

∂N

∂z
= ∂

∂c

∂

∂z

(
v(t)c(t, z) − D

∂c

∂z
(t, z)

)
(E.5a)

= v(t) ∂

∂c

∂c

∂z
(t, z) − D

∂

∂c

∂

∂z

∂c

∂z
(E.5b)

= v(t) ∂

∂c

∂c

∂z
(t, z) − D

∂

∂c

∂2c

∂z2 . (E.5c)

The partial derivative of the production term is

∂R

∂c
= ST ∂r

∂c
. (E.6a)

Thus

∂f

∂c
= −v(t) ∂

∂c

∂c

∂z
(t, z) + D

∂

∂c

∂2c

∂z2 + ST ∂r

∂c
. (E.7)

E.1.2 Jacobian of f wrt. u - ∂f
∂u

We describe the Jacobian of the function (E.1) wrt. u, as

∂f

∂u
= ∂f

∂F
(E.8a)

= − 1
A

∂c

∂z
(t, z)eT . (E.8b)

Jacobian of f wrt. c

∂f

∂F
= ∂

∂F

(
−∂N

∂z
+ R(c)

)
(E.9a)

= − ∂

∂F

∂N

∂z
+ ∂R

∂F
(c). (E.9b)
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The partial derivative of the flux term is

∂

∂F

∂N

∂z
= ∂

∂F

∂

∂z

(
v(t)c(t, z) + D

∂c

∂z
(t, z)

)
(E.10a)

= ∂

∂F

(
v(t)∂c

∂z
(t, z) + D

∂2c

∂z2

)
(E.10b)

= ∂

∂F

Ft(t)
A

∂c

∂z
(t, z) (E.10c)

= ∂

∂F

1
A

∂c

∂z
(t, z)eT F (t) (E.10d)

= 1
A

∂c

∂z
(t, z)eT ∂F

∂F
(E.10e)

= 1
A

∂c

∂z
(t, z)eT . (E.10f)

The partial derivative of the production term

∂R

∂F
(c) = 0. (E.11a)

Thus, the partial derivative of the right-hand side wrt. inlet flows, F , is

∂f

∂F
= − 1

A

∂c

∂z
(t, z)eT . (E.12)

E.2 Derivatives - ODE Model
In this section, we present Jacobians for the PFR model in (6.24). We consider the
right-hand side function

f(t, x, u, θ) = −D
(z)
Nz×Nz+1,nc

N̄ + R̄, (E.13)

with initial conditions c̄(t0) = ci,0. The functions and variables in the finite-volume
discretisation are

f =


f1
f2
...

fNz

 , c̄ =


c1
c2
...

cNz

 , N̄ =


N1/2

N1+1/2
...

NNz+1/2

 , R̄ =


R(c1)
R(c2)

...
R(cNz)

 . (E.14)

The fluxes are computed as

N̄ =

 N1/2
N̄1:Nz−1
NNz+1/2

 =

 vcIn

vc̄1:Nz−1 − DD
(z)
Nz−1×Nz ,nc

c̄
vcNz

 . (E.15)
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The matrix D
(z)
M×M+1,n ∈ RnM×n(M+1) is the finite-difference operator. We define the

forward difference approximation, equivalent to a central difference in the finite-volume
due to the half step-size shift in fluxes and volume centres, as

D
(z)
M×M+1,n = D

(z)
M×M+1 ⊗ In, D

(z)
M×M+1 =


−1 1

−1 1
. . . . . .

−1 1

 , (E.16)

where In is an identity matrix of size n × n and ⊗ is the Kronecker product operator.

E.2.1 Jacobian of f wrt. x - ∂f
∂x

The Jacobian of the state equation wrt. the state, i.e. the concentrations, is
∂f

∂x
= ∂f

∂c̄
(E.17a)

= ∂

∂c̄

(
−D

(z)
Nz×Nz+1,nc

N̄ + R̄
)

(E.17b)

= −D
(z)
Nz×Nz+1,nc

∂N̄

∂c̄
+ ∂R̄

∂c̄
. (E.17c)

The Jacobian of the fluxes are computed as

∂N̄

∂c̄
=


∂N1/2

∂c̄
∂N̄1:Nz−1

∂c̄
∂NNz+1/2

∂c̄

 , (E.18)

where
∂N1/2

∂c̄
= ∂

∂c̄
(vcIn) (E.19a)

= 0, (E.19b)

∂N̄1:Nz−1

∂c̄
= ∂

∂c̄

(
vc̄1:Nz−1 − DD

(z)
Nz−1×Nz ,nc

c̄
)

(E.20a)

= v
∂c̄1:Nz−1

∂c̄
− DD

(z)
Nz−1×Nz ,nc

∂c̄

∂c̄
(E.20b)

= v
[
IncNz−1 0

]
− DD

(z)
Nz−1×Nz ,nc

, (E.20c)

∂NNz+1/2

∂c̄
= ∂

∂c̄
(vcNz) (E.21a)

= v
∂cNz

∂c̄
(E.21b)

= v
[
0 0 · · · 0 1

]
⊗ Inc . (E.21c)
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The Jacobians of the productions are computed as

∂R̄

∂c̄
=


∂R
∂c

(c1)
∂R
∂c

(c2)
. . .

∂R
∂c

(cNz)

 . (E.22)

E.2.2 Jacobian of f wrt. u - ∂f
∂u

The Jacobian of the state equation wrt. the inputs, i.e. the inlet flows, is

∂f

∂u
= ∂f

∂F
(E.23a)

= ∂

∂F

(
−D

(z)
Nz×Nz+1,nc

N̄ + R̄
)

(E.23b)

= −D
(z)
Nz×Nz+1,nc

∂N̄

∂F
+ ∂R̄

∂F
(E.23c)

= −D
(z)
Nz×Nz+1,nc

∂N̄

∂F
. (E.23d)

The Jacobian of the fluxes are computed as

∂N̄

∂F
=


∂N1/2

∂F
∂N̄1:Nz−1

∂F
∂NNz+1/2

∂F

 , (E.24)

where

∂N1/2

∂F
= ∂

∂F
(vcIn) (E.25a)

= ∂cIn

∂F
v + ∂v

∂F
cIn, (E.25b)

where

∂cIn

∂F
= ∂

∂F

(
CIn

F

eT F

)
(E.26a)

= CIn
∂

∂F

(
F

eT F

)
(E.26b)

= CIn

(
∂F

∂F
eT F − FeT ∂F

∂F

)(
IeT FF T e

)−1
(E.26c)

= CIn
(
IeT F − FeT

) (
eT FF T e

)−1
, (E.26d)
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and

∂v

∂F
= ∂

∂F

(
eT F

A

)
(E.27a)

= 1
A

eT ∂F

∂F
(E.27b)

= 1
A

eT . (E.27c)

∂N̄1:Nz−1

∂F
= ∂

∂F

(
vc̄1:Nz−1 − DD

(z)
Nz×Nz+1,nc

c̄
)

(E.28a)

= c̄1:Nz−1
∂

∂F
v − ∂

∂F

(
DD

(z)
Nz×Nz+1,nc

c̄
)

(E.28b)

= c̄1:Nz−1
∂

∂F

( 1
A

eT F
)

(E.28c)

= 1
A

c̄1:Nz−1e
T ∂F

∂F
(E.28d)

= 1
A

c̄1:Nz−1e
T . (E.28e)

∂NNz+1/2

∂F
= ∂

∂F
(vcNz) (E.29a)

= cNz

∂

∂F
v (E.29b)

= cNz

∂

∂F

( 1
A

eT F
)

(E.29c)

= 1
A

cNzeT ∂F

∂F
(E.29d)

= 1
A

cNzeT . (E.29e)

E.3 Implementations

E.3.1 Matlab

1 f unc t i on [ f , dfdx , dfdu , dfdd ] = driftPFR ( t , x , u , d , theta )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % Authour ( s ) :
4 % Marcus Krogh Nie l s en
5 %
6 % Email :
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7 % mkrni@dtu.dk
8 %
9 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10 % Cal l :
11 % [ f , dfdx , dfdu , dfdd ] = driftPFR ( t , x , u , d , theta )
12 %
13 % Desc r ip t i on :
14 % D r i f t func t i on f o r a plug f low r e a c t o r .
15 %
16 % Inputs :
17 % t : time
18 % x : s t a t e s
19 % u : manipulated v a r i a b l e s
20 % d : d i s tu rbance s
21 % theta : parameters
22 %
23 % Outputs :
24 % f : s t a t e d r i f t f unc t i on
25 % dfdx : d r i f t d e r i v a t i v e wrt . s t a t e s
26 % dfdu : d r i f t d e r i v a t i v e wrt . manipulated v a r i a b l e s
27 % dfdd : d r i f t d e r i v a t i v e wrt . d i s tu rbance s
28 %
29 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
30

31 %% Parameters
32

33 % Size
34 % . . .
35 % v a r i a b l e s
36 nx = theta .nx ;
37 nu = theta .nu ;
38 nd = theta .nd ;
39 nr = t h e t a . n r ;
40 % d i s c r e t i s a t i o n
41 Nz = theta .Nz ;
42

43 % Parameters
44 % . . .
45 % model
46 CIn = theta .CIn ; % i n l e t concen t ra t i on s
47 D = theta.D ; % d i f f u s i o n constant
48 A = theta.A ; % cros s - s e c t i o n a l area
49 % d i s c r e t i s a t i o n
50 Dz = theta .Dz ; % d i s c r e t i s a t i o n matrix
51

52 % Kine t i c s
53 rFun = theta . rFun ;
54 rPar = th e t a . rPa r s ;
55 S = the ta .S ;
56

57 % Var iab l e s
58 % . . .
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59 % s t a t e s
60 c = x ;
61 % inputs
62 F = u ;
63

64

65 %% Function
66

67 % Production r a t e s
68 [ r , � ] = rFun ( t , c , rPar ) ;
69 R = S ' ∗ reshape ( r , nr , Nz) ;
70 R = R( : ) ;
71

72 % Flow
73 FL = sum(F) ;
74 v = FL/A;
75

76 % Compute d i s p e r s i o n
77 % . . .
78 % d e r i v a t i v e
79 dcdz = Dz(1 :end -1∗nx , 1 :end -1∗nx ) ∗c ;
80 % d i s p e r s i o n
81 J = - kron ( eye (Nz - 1 ) , d iag (D) ) ∗dcdz ;
82

83 % Compute f l u x e s and s p a t i a l d e r i v a t i v e
84 % . . .
85 % i n l e t and o u t l e t concen t ra t i on s
86 cIn = CIn∗F/FL ;
87 cL = c ( end - nx+1 :end ) ;
88 % f l u x
89 N = [ v∗ cIn ; v∗c (1 :end -1∗nx ) + J ; v∗cL ] ;
90 % f l u x Jacobian wrt . z
91 dNdz = Dz∗N;
92

93 % Compute r ight - hand s i d e
94 f = - dNdz + R;
95

96

97 %% Der iva t i ve
98

99 i f nargout > 1
100 % k i n e t i c s d e r i v a t i v e wrt . c oncen t ra t i on s
101 [ � , drdc ] = rFun ( t , c , rPar ) ;
102

103 % d r i f t Jacobian wrt . s t a t e s ( x )
104 % . . .
105 % dNdc
106 dN1dc = ze ro s (nx , nx∗Nz) ;
107 dcIdc = ze ro s ( nx ∗(Nz - 1 ) , nx∗Nz) ; dcIdc (1 :end , 1 : nx ∗(Nz - 1 ) ) = eye ( nx ∗(

Nz - 1 ) ) ;
108 dNIdc = v∗ dcIdc - kron ( eye (Nz - 1 ) , d iag (D) ) ∗Dz(1 :end -1∗nx , 1 :end -1∗nx ) ;
109 dNNzdc = v∗kron ( [ z e r o s (1 , Nz - 1) , 1 ] , eye ( nx ) ) ;



E.3 Implementations 83

110 dNdc = [ dN1dc ; dNIdc ; dNNzdc ] ;
111 % dRdc
112 dRdc = ze ro s (Nz∗nx , Nz∗nx ) ;
113 f o r i =1:Nz
114 dRdc ( ( i - 1 ) ∗nx+1: i ∗nx , 1 :end ) . . .
115 = S ' ∗ drdc ( ( i - 1 ) ∗nr +1: i ∗nr , 1 :end ) ;
116 end
117 % dfdx
118 dfdx = - Dz∗dNdc + dRdc ;
119

120

121 % d r i f t Jacobian wrt . inputs (u)
122 % . . .
123 % dNdF
124 enu = ones (nu , 1) ;
125 Inu = eye (nu) ;
126 dcIndF = CIn ∗( Inu ∗( enu ' ∗F) - F∗enu ' ) /( enu ' ∗F∗F'∗ enu ) ;
127 dvdF = 1/A∗enu ' ;
128 dN1dF = dcIndF∗v + cIn ∗dvdF ;
129 dNIdF = 1/A∗c (1 :end -nx ) ∗enu ' ;
130 dNNzdF = 1/A∗c ( end - nx+1 :end ) ∗enu ' ;
131 dNdF = [ dN1dF ; dNIdF ; dNNzdF ] ;
132 % dfdu
133 dfdu = - Dz∗dNdF ;
134

135 % d r i f t Jacobian wrt . d i s tu rbance s (d)
136 % . . .
137 % dfdd
138 dfdd = ze ro s ( nx∗Nz , nd) ;
139

140 end
141

142 end

./code/matlab/driftPFR.m.

E.3.2 Python

1 ## Imports
2 import numpy as np
3

4

5 #########################################################################
6 ## Authour ( s ) :
7 ## Marcus Krogh Nie l s en
8 ##
9 ## Email :

10 ## mkrni@dtu . dk
11 ##
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12 #########################################################################
13 ## Cal l :
14 ## f , dfdx , dfdu , dfdd = driftPFR ( t , x , u , d , theta , nargout )
15 ##
16 ## Desc r ip t i on :
17 ## D r i f t func t i on f o r a plug f low r e a c t o r .
18 ##
19 ## Inputs :
20 ## t : time
21 ## x : s t a t e s
22 ## u : manipulated v a r i a b l e s
23 ## d : d i s tu rbance s
24 ## theta : parameters
25 ##
26 ## Outputs :
27 ## f : s t a t e d r i f t f unc t i on
28 ## dfdx : d r i f t d e r i v a t i v e wrt . s t a t e s
29 ## dfdu : d r i f t d e r i v a t i v e wrt . manipulated v a r i a b l e s
30 ## dfdd : d r i f t d e r i v a t i v e wrt . d i s tu rbance s
31 ##
32 #########################################################################
33 de f driftPFR ( t , x , u , theta , nargout=1) :
34 ## Parameters
35

36 # Size
37 # . . .
38 # v a r i a b l e s
39 nx = theta . nx
40 nu = theta . nu
41 nd = theta . nd
42 nr = theta . nr
43 # d i s c r e t i s a t i o n
44 Nz = theta . Nz
45

46 # Parameters
47 # . . .
48 # model
49 CIn = theta . CIn
50 D = theta .D
51 A = theta .A
52 # d i s c r e t i s a t i o n
53 Dz = theta . Dz
54

55 # Kine t i c s
56 rFun = theta . rFun
57 rPar = theta . rPar
58 S = theta . S
59

60 # Var iab l e s
61 # . . .
62 # s t a t e s
63 c = x
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64 # inputs
65 F = u
66

67

68 ## Function
69

70 # Production r a t e s
71 r , _ = rFun ( t , c , rPar )
72 R = S .T@np. reshape ( r , ( nr , Nz) )
73 R = np . reshape (R, ( nr∗Nz , 1) )
74

75 # Flow
76 e = np . ones (nu , 1)
77 FL = e .T@F
78 v = FL/A
79

80 # Compute d i s p e r s i o n
81 # . . .
82 # d e r i v a t i v e
83 dcdz = Dz [ : - nx , : - nx ] @c
84 # d i s p e r s i o n
85 J = np . kron (np . eye (Nz - 1 ) , np . d iag (D) ) @dcdz
86

87 # Compute f l u x e s and s p a t i a l d e r i v a t i v e
88 # . . .
89 # i n l e t and o u t l e t concen t ra t i on s
90 cIn = CIn@(F/FL)
91 cL = c [ - nx : ]
92 # f l u x
93 N = np . array ( [ [ v∗ cIn ] , [ v∗c [ : - nx ] + J ] , [ v∗cL ] ] )
94 # f l u x s p a t i a l d e r i v a t i v e
95 dNdz = Dz@N
96

97 # Evaluate d r i f t term
98 f = - dNdz + R
99

100

101 ## Der iva t i v e s
102 i f nargout > 1 :
103 # Kine t i c s d r i v a t i v e wrt . c oncen t ra t i on s
104 _, drdc = rFun ( t , x , rPar )
105

106 # D r i f t Jacobian wrt . s t a t e s ( x )
107 # . . .
108 # dNdc
109 dN1dc = np . z e r o s (nx , nx∗Nz)
110 dcIdc = np . z e r o s ( nx ∗(Nz - 1 ) , nx∗Nz) ; dcIdc [ : , : - nx ] = np . eye ( nx ∗(Nz - 1 ) )
111 dNIdc = v∗ dcIdc - np . kron (np . eye (Nz - 1 ) , np . d iag (D) ) ∗Dz [ : - nx , : - nx ]
112 aux = np . z e ro s (1 , Nz) ; aux [ - 1 ] = 1
113 dNNzdc = v∗np . kron (np . array ( aux , np . eye ( nx ) )
114 dNdc = np . array ( [ [ dN1dc ] , [ dNIdc ] , [ dNNzdc ] ] )
115 # dRdc
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116 dRdc = np . z e r o s ( nx∗Nz , nx∗Nz)
117 f o r i in range (Nz) :
118 dRdc [ i ∗nx : ( i +1)∗nx ] = S . T@drdc [ i ∗nr : ( i +1)∗nr , : ]
119 # dfdx
120 dfdx = - Dz@dNdc + dRdc
121

122 # D r i f t Jacobian wrt . inputs (u)
123 # . . .
124 # dNdF
125 enu = np . ones (nu , 1)
126 Inu = np . eye (nu)
127 dcIndF = CIn@( Inu ∗( enu .T@F) - F@enu .T) /( enu .T@F@F. T@enu)
128 dvdF = 1/A∗enu .T
129 dN1dF = dcIndF∗v + cIn@dvdF
130 dNIdF = 1/A∗c [ : - nx ] @enu .T
131 dNNzdF = 1/A∗c [ - nx : ] @enu .T
132 dNdF = np . array ( [ [ dN1dF ] , [ dNIdF ] , [ dNNzdF ] ] )
133 # dfdu
134 dfu = - Dz@dNdF
135

136 # D r i f t Jacobian wrt . d i s tu rbance s (d)
137 # . . .
138 # dfdd
139 dfdd = np . z e r o s ( nx∗Nz , nd)
140

141 re turn f , dfdx , dfdu , dfdd
142

143 # Return statement
144 re turn f

./code/python/driftPFR.py.
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