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Summary

Remote attestation is the process in which one computing system, known as the prover,
supplies evidence about some claim to another computing system, known as the verifier,
which may be located at a remote location. For example, in claiming to be in a correct
software state, the prover might supply evidence in the form of a measurement of its cur-
rent software, or in claiming that a specific trusted authority has given it certain rights, it
might supply a cryptographic signature produced by that authority. It is a valuable tool
for maintaining the trustworthiness and security of devices and systems in the digital
age. However, one major challenge that needs to be addressed to encourage wider adop-
tion of certain remote attestation protocols is privacy. Remote attestation often requires
the exchange of sensitive information, which can compromise the privacy of the parties
involved and discourage adoption in privacy-critical sectors.

This PhD thesis focuses on developing enhanced remote attestation protocols that ad-
dress the privacy challenge inherent in remote attestation by leveraging Trusted Comput-
ing and Privacy-Enhancing Technologies (PETs). The main protocols include: a Trusted
PlatformModule (TPM)-based protocol that gives verifiers assurance of a platform’s con-
figuration integrity without revealing any platform information; a Control-Flow Attesta-
tion (CFA) protocol based onVerifiable Computation that enables even themost resource-
constrained computing systems to prove the correct execution of security-critical pro-
grams without disclosing any program details; and a protocol that joins commit-carrying
zkSNARKs and designated-verifier proofswithAnonymousCredentials as amore privacy-
respecting and expressive alternative to traditional authentication protocols.

The aim of these enhanced remote attestation protocols is to encourage wider adop-
tion of remote attestation in this connected world by providing a way for verifiers to
reason about a remote prover in a privacy-respecting way without sacrificing security.
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Summary (Danish)

Fjernattestering er processen, hvor et computingsystem, kendt som beviseren, leverer
beviser om en påstand til et andet computingsystem, kendt som verificereren, som kan
være placeret på et fjernsted. For eksempel kan beviseren, der påstår at være i en ko-
rrekt softwaretilstand, levere beviser i form af en måling af deres nuværende software,
eller hvis de påstår at en specifik betroet autoritet har givet dem visse rettigheder, levere
en kryptografisk signatur produceret af denne autoritet. Det er et værdifuldt værktøj til
at opretholde troværdigheden og sikkerheden for enheder og systemer i den digitale tid-
salder. En stor udfordring, der skal tages højde for for at opmuntre til bredere adoption af
visse fjernattesteringsprotokoller, er privatlivet. Fjernattestering kræver ofte udveksling
af følsomme oplysninger, hvilket kan udgøre en trussel mod privatlivet for de involverede
parter og afskrække adoption inden for privatlivskritiske sektorer.

Denne PhD-afhandling fokuserer på udvikling af forbedrede fjernattesteringspro-
tokoller, der tager højde for privatlivstruslen, der er indbygget i fjernattestering ved
at udnytte pålidelig computing og teknologier, der forbedrer privatlivet (PET’er). De
vigtigste protokoller inkluderer: en protokol baseret på Trusted Platform Module (TPM),
der giver verificererne sikkerhed for en platformkonfigurations integritet uden at afs-
løre nogen platformoplysninger; en Control-Flow Attestation (CFA) protokol baseret på
verificérbar beregning, der gør det muligt for selv de mest ressourcebegrænsede com-
putingsystemer at bevise korrekt udførelse af sikkerhedskritiske programmer uden at
afsløre nogen programdetaljer; og en protokol, der sammenkæder commit-carrying zk-
SNARKs og designated-verifier proofs med anonymous credentials som et mere pri-
vatlivsbevarende og udtryksfuldt alternativ til traditionelle autentiseringsprotokoller.

Formålet med disse forbedrede fjernattesteringsprotokoller er at opmuntre til bredere
adoption af fjernattestering i denne forbundne verden ved at give verificererne mulighed
for at evaluere en fjern beviser på en privatlivsbevarende måde uden at gå på kompromis
med sikkerheden.
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Chapter 1

Introduction

This introductory chapter gives some motivation and provides an overview of the main
works done in this thesis. Let us begin.

The computingworld is rapidly evolving, and the number of computing systems is in-
creasing, ranging from powerful desktop computers to deeply embedded systems. With
cloud computing, we can access data and applications from anywhere in the world, and
with our increasingly resourcefulmobile devices, we can stay connected and undisturbed.
With the Internet of Things (IoT), our devices can communicate and exchange data with
each other and the internet, leading to smart homes, connected cars, and industrial au-
tomation systems. With Cyber-Physical Systems (CPS) [134], the line between physical
and digital is diminishing even further as we attempt to combine the remaining physical
system infrastructure with theworld of computing systems. These CPSs are complex sys-
tems that combine cyber (digital) and physical elements to perform tasks or achieve goals.
Today, they are often found in critical infrastructure, at the core of healthcare devices,
electrical power grids, weapons systems, transportation management systems, industrial
control systems, and other sectors where the integration of computing and physical com-
ponents is necessary to achieve some desired level of automation and control. Here the
computing elements, such as computers and sensors, coordinate and communicate with
physical components, such as actuators and other mechanical machinery.

Generally, the purpose of a CPS is to control some physical process and maintain it
in some desired state. Such systems typically comprise a set of sensors, a controller, and
some actuators. The sensors are tiny devices capable of detecting andmeasuring physical
phenomena such as temperature, pressure, or motion and might be used to monitor the
state of the physical process under control by the CPS. These sensor readings are then
reported to the controller, which sends control signals to actuators (e.g., a valve) to main-
tain the system in some desired state by modifying the cyber and physical environment.
For example, an actuator might be used to open or close a valve or move a robotic arm.
The controller might also communicate with a supervisory or configuration device, such
as a Supervisory Control and Data Acquisition (SCADA) system [6], which can monitor
the system or change the controller’s settings. For example, in a power grid, the SCADA
systemmight be used to monitor and control the flow of electricity through the grid [53].

With the proliferation of such systems, the possibilities appear endless, and we are
reaping the rewards with greater convenience, faster communication, and access to vast
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information and resources. From controlling our home automation systems, including
saving costs by dynamically adjusting light and heating levels according to various sensor
readings and online intelligence, to better situational awareness control and increased
precision for self-protection systems onboard military vessels based on the integration
with sensor data, command and control (C2) systems, and high-precision actuators.

Nevertheless, despite its numerous benefits, there is no denying that this continuing
technological revolution raises important questions regarding privacy, security, and the
potential effects on society [79]. For example, as described in [53], industrial control sys-
tems [6] perform vital functions in critical national infrastructures, such as electric power
distribution, oil and natural gas distribution, water and wastewater treatment, and intel-
ligent transportation systems. The disruption of these CPSs can severely affect public
health and safety and lead to economic losses. For example, attacks on power grids can
cause blackouts, leading to cascading effects in other vital critical infrastructures. Attacks
on ground vehicles can create highway accidents, attacks on GPS systems can mislead
navigation systems, attacks on medical equipment can endanger human lives, and one
can only imagine the consequences of successful attacks against weaponry systems.

Some problems are already clear. Our systems, from cloud services to deeply embed-
ded CPSs, which often rely heavily on software-based automation, implicitly trust code
developers to write perfect software that operates expectedly and cannot be compro-
mised for malicious purposes [138]. However, this is not always the case, and malicious
cyber actors often find and exploit software vulnerabilities to gain remote code execu-
tion capabilities or cause other adverse effects. For example, one of the most common
software vulnerabilities is caused by insecure memory management, as corroborated by
numbers from Microsoft in 2019 [133], which revealed that in the period between 2006
to 2018, approximately 70 percent of their vulnerabilities were due to memory safety is-
sues. Such issues are found in software written in commonly used languages, such as
C and C++, which provide a lot of freedom and flexibility for developers to maneuver
memory but ultimately rely on the programmer to ensure that everything is done safely
and that memory is properly allocated and deallocated. Here, simple mistakes can lead to
exploitable memory-based vulnerabilities. For example, suppose the programmer forgets
to check that a write to a data variable (e.g., a C array) does not exceed the size of the al-
located memory buffer. In that case, the buffer can overflow by simply writing more data
than it was originally meant to hold, forcing the excess data to overwrite adjacent mem-
ory, whichmight belong to other program variables or even state information used by the
Central Processing Unit (CPU) to guide the program’s execution. With such vulnerabili-
ties, meticulous attackers can remotely crash or even alter the expected execution of the
affected program by purposely overflowing the vulnerable buffer and injecting carefully
constructed data or executable code snippets into the victim’s memory.

Therefore, in a proactive attempt to detect potential software vulnerabilities when
writing the software, developers might employ common code analysis tools and tech-
niques to identify and address potential vulnerabilities. These tools and techniques may
include static code analysis, which involves analyzing the program code carefully to find
vulnerabilities without executing the code, and dynamic code analysis, which involves
executing code and monitoring its behavior when given certain inputs. Other techniques
for developers of security-critical software might also include fuzz testing, software pen-
etration testing, and practicing general secure programming principles, including code
reviews, following standardized coding rules, and performing thorough compliance test-
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ing. However, even with such rigorous, proactive detection strategies to prepare the
logic in software for surprising conditions, commonly exploitable software vulnerabil-
ities, such as those based on memory issues, might still slip through the cracks. Thus,
in an effort to “patch” commonly used programming languages that are susceptible to
producing vulnerable code (e.g., C and C++), additional prevention strategies have been
introduced, such as dedicated and secure libraries that offer code developers access to
high-level APIs that take care of certain error-prone tasks, such as memory management,
by providing the developer with abstractions such as fat pointers, garbage collection, and
smart pointers. However, due to a continued risk of memory safety issues (among oth-
ers) leading to exploitable software vulnerabilities such as buffer overflows and other
wormable flaws, a shift has also recently begun towards more memory-safe languages
(e.g., C#, Go, Java, Ruby, Rust, and Swift). This transition towards newer, safe-by-design
programming languages is also urged by major software firms and national-level intelli-
gence agencies, including the National Security Agency (NSA) [138].

However, even with good techniques and tools to help prevent introducing vulnera-
bilities in new code, they may not be complete, are not enforced by everyone, and cannot
easily be applied to legacy code. Therefore, other complementary mitigation strategies
are commonly added directly to the execution infrastructure, e.g., the hardware and op-
erating system on which software is executed. Some common mitigations include data
execution prevention (DEP), for preventing code injection by marking certain memory
pages (e.g., the stack and heap) as non-executable during runtime, and obfuscation, such
as applying fine-grained code randomization [122] or address space layout randomiza-
tion (ASLR) [70, 168], for rearranging how programs are stored in memory to make it
harder for attackers to plan out effective attacks. Othermitigations often focus on specific
properties that are supposed to hold during a program’s execution. For example, stack
canaries [50] and shadow call stacks [74, 1] are often employed as mitigation against
buffer-overflow and Return-Oriented Programming (ROP) attacks [162], often by guard-
ing certain memory locations where return addresses are stored during a program’s exe-
cution (see, e.g., [188]). Program functions use these addresses to remember whom to call
after they are done executing and, if left unprotected, could be overwritten by malicious
attackers, giving them complete control over the program’s execution. Another well-
known technique for protecting a program’s execution is Control-Flow Integrity (CFI)
[1]. The general idea here is to monitor the program and ensure it executes as expected.
Given an allowlist or a reference copy of a program, CFI actively monitors a program
during its execution and continuously verifies that the instructions and functions are ex-
ecuted as expected (e.g., in the correct order) according to the trusted reference material.

However, CFI and similarmitigation solutionsmay not be desirable in all systems. For
example, CFI is an inherently program-specific solution that relies on program-specific
trusted reference materials. Due to scarce resources and a small trusted computing base,
such reference materials can be challenging to maintain with over-the-air software up-
dates for a deeply embedded CPS. Another problem is that the runtime verification af-
fects the program performance and the device’s power consumption. Thirdly, the typical
reaction when detecting a violation is to terminate the affected program, which might
inadvertently affect the device’s availability. This issue is of particular concern in certain
safety-critical sectors, where device unresponsiveness might cause physical and safety
hazards. Finally, note that CFI is generally intended as a purely local enforcement solu-
tion and, thus, provides no means for a device to report a program’s correct execution
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to remote devices. This is especially a problem if we are to rely on the data generated
on a remote device. For example, consider distributed power grids [40], where local con-
trollers might execute controls based on data generated on a sending device and received
over communication channels. Here the receiving controller should be able to remotely
verify the computational integrity of the control algorithm that produced the data before
relying on it to guide its controls. Additionally, it might be important for the receiving
controller to verify that the device that produced the data is authentic, has been prop-
erly configured, and is authorized to decide how the local controller should act. On the
other hand, the sending device’s control algorithm, configuration, and credentials might
be confidential. Solving this double-edged issue is of primary concern in this thesis.

We can essentially consider each of these problems (i.e., proof of correct: program ex-
ecution, configuration state, and credentials) as separate “proof statements” about which
a prover (e.g., the confidential device) wishes to convince a verifier (e.g., the local con-
troller) without having to reveal any sensitive information. The main contribution of this
thesis includes three privacy-respecting protocols, each dedicated to solving a particu-
lar problem using state-of-the-art Trusted Computing practices and Privacy-Enhancing
Technologies, as depicted in Fig. 1.1.

Figure 1.1: Problem statement and main idea. The big duckling (verifier) wants to inspect
the little duckling (prover), but the little duckling feels exposed. With Trusted Comput-
ing and Privacy-Enhancing Technologies, verifiers can reliably inspect provers without
infringing on their privacy (depicted as obscured inspection glass). Credit to DALL·E 2.

1.1 Summary of Main Contributions
Concerning the first problem, we consider the remote variant of CFI, called Control-Flow
Attestation (CFA) [2, 63, 186, 62, 3, 176, 95, 125, 169, 117, 140, 141, 187], where the idea is
for the device that executes the program (called the prover) to outsource the verification
to a remote device (called the verifier). Here, the prover does not need to spend additional
resources to perform the verification locally, nor does it have to maintain up-to-date ver-
sions of all trusted reference materials. In CFA, the prover is only tasked with recording
the program’s execution trace, signing the trace using a cryptographic key, and sending
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the signed trace to the verifier, who then performs the necessary verification. While CFA
schemes differ in certain aspects, such as how tracing is performed and how the trace
is structured, they generally follow this general idea on the surface. However, an issue
with existing CFA schemes is that they do not offer any privacy guarantees. For example,
suppose a device executes a confidential program (e.g., the control algorithm mentioned
above) or wants to keep sensitive program details hidden from potentially dishonest veri-
fiers. In that case, existing CFA schemes cannot be used since verifiers would need access
to the sensitive reference materials to perform the verification. To solve this issue, we
proposed a novel scheme called ZEKRA that uses privacy-preserving Verifiable Compu-
tation based on zkSNARKs [84, 114] to transform the CFA verification algorithm into an
outsourceable circuit for checking the correctness of a program’s execution trace accord-
ing to the program’s reference Control-Flow Graph (CFG). The idea is that since the CFG
models all legal paths in a program, we know that the program’s trace is free of control-
flow-based runtime attacks (e.g., Return-Oriented Programming attacks) if it is correct
according to the CFG. Then, in collaboration with a worker device, the prover can use
the circuit to create a zero-knowledge proof about the correctness of the recorded pro-
gram’s execution trace. Any verifier can then verify the proof without needing access to
any sensitive reference materials to check whether the program executed correctly and
in the absence of runtime attacks.

Similar to the idea behind CFA, remote attestation [7, 184, 156, 126, 127] has become
increasingly popular as a Trusted Computing method for reliably verifying the correct-
ness of devices in remote settings. As with CFA, it generally assumes that devices have
some form of a trusted computing base capable of securely measuring the device’s state,
e.g., taking a snapshot of the memory, the filesystem, or the firmware’s configuration and
signing the measurement using a securely kept cryptographic key. The signed measure-
ment can then be reported to remote verifiers, who might compare it against trusted ref-
erence values to determine if it is trusted. See, e.g., [10] for an overview of existing remote
attestation schemes and techniques. However, note that the use of remote attestation also
raises privacy concerns, like that of CFA. Specifically, it requires the device to collect and
report sensitive information, such as its hardware and software configuration, which can
foster discrimination attacks and provides valuable profiling intelligence to malicious ac-
tors planning to launch attacks against a system. It is, therefore, essential to ensure that
remote attestation is carried out in a secure and privacy-preserving manner. While some
remote attestation schemes offer different forms of privacy [185, 45, 9, 7, 184, 126, 127],
they tend to limit verifiability or introduce additional assumptions on the network setup.
We propose a novel scheme called ZEKRO [60] that uses the enhanced authorization
functionality in the Trusted Computing Module (TPM) [172] to allow a prover to con-
tinuously convince verifiers about its configuration integrity correctness (e.g., that its
filesystem or memory is in a correct state) without disclosing any concrete information.

Concerning the third problem, we consider anonymous credentials [14, 32, 90, 33, 31],
which is another increasingly popular technique for users and other entities (e.g., de-
vices) to hold cryptographic evidence about their identity and properties (e.g., a digitally
signed diploma, driver’s license, or bank statement). After being issued a credential from
a trusted authority (e.g., a governmental agency), the credential holder can prove to oth-
ers that it indeed possesses a valid credential and may also selectively reveal attributes in
the credential. For example, a person might reveal the age attribute in their digital pass-
port to enter a bar, or the confidential device in the power grid example above might re-
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veal the attributes specifying its role and cell (domain) to prove authorization to the local
controller. In this direction, we propose a novel, fully expressive, and designated-verifier
anonymous credentials scheme called RETRACT. The scheme utilizes Verifiable Com-
putation based specifically on commit-carrying zkSNARKs [37] to facilitate expressive-
ness (i.e., allow a credential holder to prove arbitrary criteria about its credentials), BBS+
signatures [31] to create the anonymous credentials, and trapdoors to make all proofs
designated-verifier [104] (i.e., ensuring that only a particular verifier can use the proof).
The developed scheme allows credential holders to prove, in a privacy-respecting man-
ner, possession of credentials and arbitrary statements about the credential attributes.
The scheme also ensures that only the intended verifier is convinced by a proof.

1.2 Publications
The set of publications which are included in this thesis is listed below:

A Heini Bergsson Debes and Thanassis Giannetsos. 2021. Segregating Keys from
noncense: Timely Exfil of Ephemeral Keys from Embedded Systems. In 2021 17th
International Conference on Distributed Computing in Sensor Systems (DCOSS). IEEE.

B Heini BergssonDebes and Thanassis Giannetsos. 2022. ZEKRO: Zero-Knowledge
Proof of Integrity Conformance. 2022 17th International Conference on Availability,
Reliability and Security (ARES). 1-10.

C Heini Bergsson Debes, Edlira Dushku, Thanassis Giannetsos, and Ali Marandi.
2023. ZEKRA: Zero-Knowledge Control-Flow Attestation. To appear in 2023 18th
ACM ASIA Conference on Computer and Communications Security (ACM ASIACCS).

D Heini Bergsson Debes and Thanassis Giannetsos. RETRACT: Expressive Desig-
nated Verifier Anonymous Credentials. (Under submission.)

Note that while Section 1.1 introduced the problems of proving correct program ex-
ecution (C), configuration state (B), and credentials (D) in an intuitive order, here we
have listed the publications in chronological order as they were produced (B, C, D). Ad-
ditionally, note that a fourth paper (A) was not directly introduced in Section 1.1. Before
investigating privacy-preserving security protocols aimed at detecting sophisticated at-
tacks and enhancing trust between mutually distrusting parties, this initial paper started
at the other side of the spectrum. Specifically, in this first paper [59], we investigated
how an advanced attacker can remotely infect resource-constrained embedded devices
(in our case, the Tmote Sky module) and systematically exfiltrate data likely to contain
cryptographic keys used by deterministic system routines (e.g., reception handlers) from
the memory stack without having any knowledge about the software. We also demon-
strated how the attacker could apply specific data mining approaches on the exfiltrated
data to reasonably reduce the search space, thus making the hunt for the cryptographic
key more efficient. While a different focus from the remaining contributions, we can
essentially think of this paper as a nice “motivation”, especially for the two succeeding
works (B and C) that investigated remote attestation schemes to detect such attacks.

Besides these four main works, the publications listed below were also produced dur-
ing the PhD study. The first (paper E) focused on using the enhanced authorization func-
tionality of the TPM to create policies that restrict a cryptographic key’s use to the state of
a Platform Configuration Register (PCR), thus preventing a prover from producing valid
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signatures unless it is in a correct state. Furthermore, since the number of such PCRs
is scarce on a TPM, the second paper (F) showed how to additionally utilize the TPM’s
non-volatile memory for holding more PCRs. This additional flexibility boosts privacy
in multi-tenant cloud environments by giving each tenant their exclusive PCR instead of
sharing. However, since these works are subsumed in the ZEKRO [60] protocol (paper
B), except for some technical differences, they are not included in this thesis.

E Benjamin Larsen,Heini BergssonDebes, and Thanassis Giannetsos. 2020. Cloud-
Vaults: Integrating Trust Extensions into System Integrity Verification for Cloud-
based Environments. In 2020 25th European Symposium on Research in Computer
Security (ESORICS). Springer, 197-220.

F Heini BergssonDebes, Thanassis Giannetsos, and Ioannis Krontiris. 2021. Blind-
Trust: Oblivious Remote Attestation for Secure Service Function Chains. arXiv
preprint arXiv:2107.05054 (2021). (In progress.)

1.3 Outline
Besides this introductory chapter, this thesis is organized into four main branches, each
dedicated to one of the main publications produced during the PhD study. The chapters
appear in the order in which the publications were made, as depicted in Fig. 1.2. Specifi-
cally, we begin with the “motivational” paper in Chapter 2, then Chapter 3 gives ZEKRO,
Chapter 4 gives ZEKRA, and finally, Chapter 5 gives RETRACT. Each of these chapters
has a similar format, beginning with an introduction to the topic, followed by a sum-
mary of the specific contributions, the related works, a description of the background,
the results and evaluation, and a conclusion. Finally, Chapter 6 concludes the thesis.
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Chapter 2

Segregating Keys from

noncense: Timely Exfil of

Ephemeral Keys from

Embedded Systems

Abstract
As lightweight embedded devices become increasingly ubiquitous and connected, they
present a disturbing target for adversaries circumventing the gates of cryptography. We
consider the challenge of exfiltrating and locating cryptographic keys from the run-time
environment of software-based services when their software layout and data structures
in memory are unknown. We detail an attack that can, without affecting the target sys-
tem’s operation, systematically exfiltrate certain keys during their use by leveraging the
strong causality between transceivers and keyed cryptosystems (authentication, autho-
rization, and encryption). We then propose how to effectively and efficiently reduce the
key material’s search space from a batch of stackshots (stack extractions) by leveraging
the stack’s innate composition, which, to the best of our knowledge, is the first method
to systematically infer and reduce the search space of semi-arbitrary keys. We instanti-
ate and evaluate our attack against MSP430 micro-controllers, which is one of the most
prominent embedded systems used in many IoT-based applications.

2.1 Introduction

With the advent of the Internet of Things (IoT), deployment of embedded systems has ac-
celerated, and systems have become unprecedentedly network-connected, autonomous,
and collaborative (e.g., smart homes, automotive, healthcare, agriculture, industrial). How-
ever, in current security, privacy, and safety-critical IoT application domains, a significant
portion of resource-constrained microcontroller-based embedded systems (MCUS) have
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the inherent lack, due to cost, of tamper-proof hardware or essential protection mecha-
nisms found in their desktop counterparts, e.g., cryptographic modules such as Trusted
Platform Modules (TPM), Data Execution Prevention (DEP), stack canaries, and Address
Space Layout Randomization (ASLR) [115, 8], thus leaving MCUS susceptible to an in-
creasing number of remote attacks [142], such as the remotely-exploitable vulnerabilities
in the RTL8195A module [142].

Coupled with resource-constrained Operating Systems (OS, e.g., Contiki, FreeRTOS,
or TinyOS [175]) or bare-metal (without any OS), MCUS run single binary images where
the application orchestrates all system resources and, due to the lack of onboard protec-
tion mechanisms, determines the system’s security posture, which, generally comprises
keyed authentication, authorization, or encryption cryptosystems. However, such cryp-
tosystems’ security lies solely in the secrecy of the secret key (Kerckhoffs’s principle); so
does that of MCUS.

To retain key secrecy in all stages (creation, dissemination, storage, and usage) is non-
trivial. Computing systems inherently require that any program, including its data and
instructions, be loaded into the main memory before being run by the processor. Thus,
while keys can be protected while stored [38], any conventional program that performs
keyed cryptographic operationsmust, at some point, have the keymaterial exposed [105],
which is known as the Key Exposure Problem (KEP). Note that the KEP might not be a
problem if we assume that key management is only performed behind closed curtains.
However, since adversaries are indeed able to infiltrate MCUS, we must opt to consider
adversaries peeking behind said curtain.

While there already exist ways to get a peek [163, 88, 76], the inherent deficiency
lies in assuming that keys are visible in memory at acquisition time. Until now, attempts
to narrow on the timeliness [171, 13] or locating (or reduce the search space of) key
material once the memory is obtained [163, 109, 150, 88, 92] have been limited to specific
cryptosystems or software implementations.

2.1.1 Contributions
We demonstrate how adversaries can, without knowing the software layout or memory
data structures of running services, exploit the KEP in network-connected MCUS to ex-
filtrate cryptographic keys, during system operation systematically, without affecting
system usability. We present generic methods for overcoming two significant challenges
revolving around successful key exfiltration: (i) how to acquire the memory contents sys-
tematically while the key is exposed (exfiltration phase) and (ii) how to efficiently reduce
the search space of arbitrary key material (localization phase). Specifically, targeting the
nature of MCUS, we demonstrate how to exploit the causality between transceiver in-
vocation and utilization of keyed cryptosystems to acquire timely memory extractions.
Concretely, since keyed cryptosystems inherently run post-reception (e.g., to verify or
decrypt an incoming payload), we can, by periodically exfiltrating conventionally used
memory regions for storing run-time data (e.g., the memory stack), capture data belong-
ing to the keyed cryptographic function during the inevitable Key Exposure Window
(KEW) caused by the KEP. Further, as a software- and cryptosystem-agnostic method of
locating key material, we propose to apply specific data mining techniques (Section 2.5.5)
that leverage the stack’s innate composition. The intuition behind the presented work
is to showcase how vulnerable the existing commodity MCUS are against sophisticated
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attacks and emphasize the need for appropriate prevention strategies (Section 2.8). To
encourage further work, we also make our prototype code publicly available [55].

2.2 Related Work: Toward Key Identification
In 1998, after observing the inherent randomness in cryptographic keys, Shamir et al.
[163] postulated that memory regions with unusually high entropy might infer a key’s
presence. However, their conjecture that keys have higher entropy than other data is not
always valid [88]. The approach becomes even less attractive when considering symmet-
ric keys, which are conventionally much smaller than asymmetric keys. For symmetric
keys, Halderman et al. [88] proposed searching for mathematical properties of the AES
key schedule and further conceptualized a semi-unified search for different types of keys
(symmetric and asymmetric) by incorporating heuristics about the cryptographic algo-
rithms, e.g., well-known RSA encodings wherein the key is encapsulated within fixed
structures [109] or the memory reflections of code structures containing key material in
standardized implementations [150]. The inherent deficiency of each approach is that it
is viable only for a target algorithm or is applicable only when implementations yield the
presumed structural representation in memory. For example, although the AES key sched-
ule has distinctive characteristics, it cannot be said about symmetric keys in general as
randomness is their only definite identifiable characteristic. Further, the schedule’s struc-
tural reflection in memory is also not fixed nor certain. Such issues make any attempt
toward unified key localization from memory contents difficult.

To narrow the search space on which key identification is conducted, the authors of
[92] propose reconstructing call stacks of functions that invoke security-sensitive Win-
dows APIs, known to accept keys as arguments. The premise (which is also used in this
paper) is that program functions generally use the memory stack to hold variables during
execution, and thus the stack of keyed functions will inevitably contain key materials.
However, besides being highly application dependent, in practice, compiler optimiza-
tions will severely complicate call stack reconstruction (e.g., its memory reflection and
which elements occur) [167, 41]. Further, as they note, there is no guarantee that a key
is in memory at the acquisition time.

Considering timeliness, authors of [13] target Ransomware keys by monitoring in-
vocations of specific cryptographic APIs to trigger memory extraction and authors of
[171] monitor the control-flow of network-related functions in Android applications to
trigger acquisition of TLS key materials. However, whereas they require direct control-
flow monitoring capabilities, we propose a more lightweight and application-agnostic
trigger heuristic. Further, where they employ algorithm- and implementation-aware key
identification techniques, we propose novel exploitation of the program stack’s nature
to isolate areas likely to contain whichever key that might be present.

2.3 Problem Statement

The strength of a cryptosystem, with key-length 𝑘𝑙 , is quantified by its ability to resist
brute-force attacks on the entire key-space 2 |𝑘𝑙 | , which should be computationally infea-
sible for large 𝑘𝑙 ’s. However, applying an exhaustive search on a considerably reduced

10



search space of memory is appealing and, in theory, more efficient, as the search space
reflects all possible key-sized blocks of contiguous bytes. Let 𝐷 denote a device with
volatile memory 𝑉𝑀 . The shared memory space is defined as 𝑆𝑀 = {𝑠, 𝑟, ℎ} ∈ 𝑉𝑀 ,
comprising the stack 𝑠 , registers 𝑟 , and the heap ℎ, respectively. Let 𝑃 be a program
running on 𝐷 which uses 𝑆𝑀 as its execution environment. For simplicity, assume that
𝑆𝑀𝑡 = ⟨𝑠𝑡 ∥𝑟𝑡 ∥ℎ𝑡 ⟩ is the finite sequence of bytes stored in 𝑆𝑀 at time 𝑡 and |𝑆𝑀𝑡 | denotes
the cardinality. Let SS = {𝑆𝑀𝑡 : 𝑡 ∈ 𝑇 ⊂ N∗} denote the search space comprising all
instances of 𝑆𝑀 in 𝐷’s universal time space T . Further, let K be a key used by 𝑃 such
that K is stored in its entirety somewhere in 𝑆𝑀 at times 𝑇 K ⊆ T .

Let Ext : 𝑇 × N∗ × N∗ → SS be a three-input extractor function accepting a time 𝑡 ,
a start index 𝑖 , and a range rg to return a subsequence from 𝑆𝑀 at time 𝑡 . It is defined
by Ext(𝑡, 𝑖, 𝑟𝑔) = ⟨𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑖+𝑟𝑔⟩ ⊑ 𝑆𝑀𝑡 , where 1 ≤ 𝑖 < 𝑖 + 𝑟𝑔 ≤ |𝑆𝑀𝑡 | and ⊑ denotes
subsequence of. Hence, ∀𝑡 ∈ T we define a map instance Ext𝑡 : N∗ × N∗ → SS by
Ext𝑡 (𝑖, 𝑟𝑔) = Ext(𝑡, ⟨𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑖+𝑟𝑔⟩).

We formalize the search space reduction (SSR), where we consider an adversary
(A) that, based on select subsequences from instances of Ext, tries to find the fewest
possible candidates for K . The SSR-complexity is defined as the number of candidates
and is over the choices of 𝑡 , rg, and any choice of A herself. Accordingly, A is given
oracle access to Ext so she can obtain subsequences of her choice and is not constrained
concerning the method she uses, leading to Definition 2.3.1.

Definition 2.3.1. Let 𝐵 be aSSR algorithm that takes the function map Ext and yields
a set of subsequences (candidate keys). Considering the experiment in Algorithm 1, the
SSR-complexity of 𝐵 is defined as: CXTYssr

Ext (𝐵) = ExpssrExt (𝐵).

Algorithm 1: Experiment ExpssrExt (B)
Input : SSR algorithm, B
Output: Cardinality of the set of candidate keys

1 𝜎 ← 𝐵Ext

2 if K ∈ 𝜎 then return |𝜎 | else return ⊥

The definition is made general enough to capture all types of key-localization attacks.
For example, performing a Variable Sliding-Window (VSW, i.e., linear scan [91]) attack
over the entire contents in SS, using window sizes 𝑛 = 1, . . . , 𝑁 ∈ N∗, yields an upper
bound of: CXTYssr

Ext (𝑉𝑆𝑊 ) =
∑𝑁
𝑛=1 |𝑆𝑀 | −𝑛+1,∀𝑆𝑀 ∈ SS. This motivates our question:

canA reduce the search spacemore efficiently (i.e., reduce the number of candidate keys)
by applying heuristics such as data mining, logical reasoning, and inference? However,
note that because the heap is rarely used in resource-constrained MCUS [78], it is not
considered. Also, although registers generally contain valuable information, we argue
that they are less likely to contain keys in resource-constrained MCUS (Section 2.5.3).
Therefore, for this paper, the stack is of exclusive interest.
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2.4 System and Adversarial Model

We consider how an software-oblivious A can methodically acquire ephemeral cryp-
tographic keys (i.e., keys that are non-existent before use and securely sanitized im-
mediately afterward) used for authentication, authorization, and encryption in remote
resource-constrained MCUS, following the four attack phases depicted in Fig. 2.1. We
assume thatA can: (i) access the shared memory, (ii) periodically transmit select shared
memory back to herself, and (iii) validate guesses for arbitraryK . Note that while acquir-
ing remote code execution is complementary to our work, we stress that A can achieve
this advantage through a wide set of attack vectors, e.g., through code injection [78] or
Return-Oriented Programming (ROP) [162] by exploiting software vulnerabilities [142].
As a running example, we consider the vulnerable reception handler in Fig. 2.4, where
the infamous C strcpy function is exploited to unboundedly overwrite a stack resident
buffer (the variable 𝑐), causing the stack frame’s return address to point to malicious code
(malcode) controlled by A as described in Section 2.5.4. Finally, although the software
running on the device is a black box toA (compellingA to resort to software-oblivious-
centric approaches that do not necessitate the source code), she is given knowledge about
the target system’s specifications, enabling A to leverage publicly accessible documen-
tation. As a case study, we consider the prominent MoteIV Tmote Sky module [49] as
our target.

2.4.1 Anatomy of the MoteIV Tmote Sky target
The Tmote Sky module is a TelosB sensor mote with an MSP430-F1611 microcontroller
unit (MCU) [102] featuring a 16-bit CPU, and an CC2420 transceiver. The MCU compo-
nents are interconnected following the Von Neumann architecture (i.e., where no hard-
ware barriers prohibit the execution of injected code), typical for most general-purpose
embedded systems, and employs theMemory-Mapped I/O (MMIO) paradigm for bilateral
peripheral communication.
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Figure 2.2: MSP430-F1611 memory and stack composition.

The MSP430-F1611 MCU’s CPU [102] has a maximum clock frequency of 8 MHz.
However, because the Tmote Skymodule is a TelosB sensor mote, the CPU is restricted to
4 MHz, corresponding to ≈ 4 000 000 Cycles Per Second (CPS). The CPU has 16 registers
of 16 bits, numbered from R0 to R15. Four of the registers, R0 to R3, are dedicated as
the Program Counter (PC), the Stack Pointer (SP), Status Register (SR), and Constant
Generator (CG), respectively. The remaining 12 are general-purpose registers.

Figure 2.2 presents the memory map, comprising one address space shared with pe-
ripherals, RAM, and flash code. The extended RAM includes two oppositely growing data
structures: the stack (discussed in Section 2.5.1) and heap. The stack is responsible for
storing data during program execution, and the heap usually contains dynamically allo-
cated memory. Flash code memory holds the executable program code and any constant
data. Finally, for every hardware interrupt, the interrupt vector table (IVTBL) contains
the 16-bit address of the appropriate Interrupt Service Routine (ISR).

2.4.1.1 Target Operating System

Many operating systems exist for cyber-physical systems besides TinyOS, such as MAN-
TIS, Contiki, and LiteOS, to name a few. We consider TinyOS [175] as our target operating
system, which is a simple C-based OS, as is valid for the majority of embedded systems.
It is minimalistic, has a small RAM footprint of 400 bytes, and is programmed using a
C-based dialect called nesC. It does not support dynamic memory allocation and, there-
fore, the heap (see Fig. 2.2) goes unused (unsupervised). Furthermore, TinyOS is single-
threaded (single execution context) and does not have any preemption. Therefore, while
any synchronous code is executing, it cannot be preempted by other synchronous code.
However, the execution model is also event-driven, where low-level hardware interrupts
(events) enforce task preemption. When an interrupt occurs, the processor immediately
jumps to the handling code, i.e., the ISR stored in the IVTBL corresponding to the inter-
rupt source.
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2.5 Preliminaries and Methodology

2.5.1 Dissecting The Stack’s Sequential Locality
The stack is a deterministic and sequential data structure. The structure is an aggregate
of several consecutively allocated stack frames. Each function in a program is appointed
one frame, serving as its scratch space and exists exclusively while the function is exe-
cuting. The stack frame emulates a data structure (as depicted in Fig. 2.1) wherein the
function organizes its local variables and other temporaries. As functions add (push)
and remove (pop) stack elements during run-time, the Stack Pointer (SP) continuously
points to the stack’s top (most recent element). Although specifics (e.g., order) of specific
frame elements may differ among architectures, the stack frames’ structural reflection is
always prevalent on the stack. When one function calls another, the caller must store a
return address on the stack, pointing to an instruction that effectively resumes its halted
execution once the callee finishes. The function prologue in the callee then stores spe-
cific volatile registers (states), which must be restored by the function epilogue before
returning. Subsequently, the callee is free to utilize the remainder of its allocated frame
for designated variables and temporaries (locals). Given these inherent characteristics,
nested function calls inevitably leave a continuous trace corresponding to the call chain’s
depth and order. Any trail on the chain is guaranteed to endure until all of its descendants
return; trails at the origin linger until the chain becomes completely unraveled. Thus,
computationally costly functions (e.g., cryptographic operations) earn the key-exposure
enablers’ ribbon as they force their predecessors to persist and their locals to remain
exposed on the stack.

Note that objects (arguments or locals) are eligible to be stored in a consecutive sub-
set of available general-purpose registers, sequentially on the stack, or jointly by both.
Although the compiler essentially decides which storage area to use, it must obey the
target architecture’s restrictions. For example, argument placement will inevitably de-
pend on the argument’s use (most registers do not support specific recursive operations),
size, and registers’ availability.

2.5.2 Inferring the Imminence of Key Exposure
Oblivious of when keys are used, A would have to consider all times as equally likely.
However, since the predominant function of network-connected MCUS is data transmis-
sion and reception, some software functionwill inevitably be invoked to process incoming
transmissions (e.g., to decrypt and verify). Thus, ifA exploits the reception event to trig-
ger A-controlled code, A can effectively align stackshots to the inevitable KEW.

Since reception involves a transceiver peripheral,A can, in a semi-software-oblivious
manner, exploit it. Specifically, transceivers (as other peripherals) will send signals on
designated MCU pins to interrupt the application Central Processing Unit (CPU) about
events, where, according to an Interrupt Vector Table (IVTBL), an Interrupt Service Rou-
tine (ISR) will run (e.g., to maneuver incoming data into application memory). Thus,
given the MCU specifications, A can identify which IVTBL entry holds the reception
ISR’s memory address.

Note that despite the ability to locate an ISR’s starting point, it is improbable to locate
and traverse call-chains leading up toOS functions in a software-obliviousmanner. Specif-
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ically, while A can locate the reception ISR’s starting address which causes invocation
of the receive function in Fig. 2.4, the concrete ISR offset pointing to the call-chain en-
try remains unknown, prohibiting A from systematically attacking the function. Note,
however, if A was unbounded, she could flush out the entire memory, attempt to de-
obfuscate the executable code, and then devise a software-dependent attack to acquire
the key material post-reconstruction. However, since we aim for a stealthy, generic,
and systematic method, such an attack is not in A’s favor. Nevertheless, if A inserts
a callback to commence periodic stackshots into the deterministically located reception
ISR’s prologue, stackshots will inevitably occur close to the KEW, assuming the causality
between reception and keyed cryptosystems holds, regardless of the software underpin-
nings. Additionally, since most MCUS use the Memory-Mapped I/O (MMIO) paradigm
for bilateral peripheral communication, another approach to align stackshots with the
KEW is to identify and poll memory locations reflecting peripheral states. We consider
both approaches to achieve timeliness in Section 2.6.

2.5.3 Inferring the Key’s Presence
We proceed to infer the whereabouts of cryptographic keys in MCUS. Although data
can theoretically reside anywhere (i.e., CPU registers, stack, heap, or other addressable
memory regions), in practice, its placement is constrained by several factors, e.g., system
resources, compiler, and adherence to the system’s Application Binary Interface (ABI). As
a running example, consider a reception handler that accepts and applies some arbitrary
cryptographic function F on a packet’s contents c using the key K (materialized using
reconstruct). The general uses of K , which affect its memory placement, are illustrated
in Fig. 2.3 and include: K is declared and initialized as a function variable and passed by
reference to F (use case #1);K is passed by value to F (use case #2);K is declared above
function level and passed by reference to F (use case #3).

Use Case #1

void recv(uint8_t*𝑐){
uint8_t K[16];
reconstruct(K);
F (K, 𝑐); }

Use Case #2

struct S{
uint8_t K[16]; }

void recv(uint8_t*𝑐){
F (reconstruct(), 𝑐); }

Use Case #3

void recv(uint8_t*𝑐){
reconstruct(K);
F (K, 𝑐); }

Figure 2.3: The key (K) is generally stored on the stack when it is a local variable or
passed by value (#1 and #2) but not when it is a global variable and passed by reference
(#3).

Since general-purpose CPU registers are inherently scarce in MCUS, keys are rarely
eligible to be confined into registers. For example, the MSP430-F1611 has only 12 16-
bit registers and prohibits objects exceeding 64 bits from occupying any registers [102].
Thus, considering the relatively small 16-byte K (Fig. 2.3), it inevitably resides on the
stack in use cases #1 and #2. However, because K is declared above the function level in
use case #3, K does not occur explicitly on the stack. Instead, K is put together with
similarly scoped variables in a separate RAM region while its reference is passed to F ,
either in registers or on the stack. Note, however, that although we target the stack
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(Section 2.3),A could mitigate the uncertainty revolving around explicit and referenced
keys by regarding each word on the stack as a potential reference and substitute it with
a portion from the referenced memory if it references addressable memory. However, as
words of a key might also resolve to addressable memory, additional care must be done.
Nonetheless, for brevity, we assume that keys occur explicitly.

Despite A’s inability to know K’s definite stack placement, she can approximate
it. Since cryptographic functions are inherently designed as leaf functions to mitigate
key propagation issues [41], K likely remains within proximity of the SP during F ’s
execution. For example, in use cases #1 and #2, K occurs in either the current (F ) or
preceding (recv) stack frame. Thus, regarding effective use of Ext (Section 2.3), A has,
besides timeliness (Section 2.5.2), a start index (SP), and justification that a short range
(rg) can suffice for small cryptographic keys.

2.5.4 Exploiting the Stack Towards Arbitrary Code Injection and
Stack Extraction

To remotely acquire the memory stack, A must first manage to inject the prerequisite
code. The most prominent code injection method is to exploit neglected software vul-
nerabilities, such as buffer overflows, which enable sequences of code instructions to
be injected and stored in contiguous memory regions chosen by A [78]. For TinyOS,
because it is programmed using a C-based dialect, it inherits C’s traits, including the ab-
sence of code safety. Therefore, as a running example, let us consider the buffer-overflow
attack illustrated in Fig. 2.4 and our knowledge of the addresses in Table 2.1, where the
infamous C strcpy function is exploited to unboundedly overwrite a stack resident buffer
(the variable 𝑐), causing the stack frame’s return address to point to malicious code (mal-
code) controlled by A. For brevity, assume that the demonstrative reception handler
has a stack frame (in practice, it might be inlined), and A knows the dedicated (alas,
application-specific) memory buffer used to store received packets (Section 2.5.2) from
whichA can deduce the payload offset (ADDRpayload) by subtracting the packet’s header
length (controlled by A). Also, assuming that A has managed to determine where the
actual return address occurs on the stack,A can craft a malicious packet containing: suf-
ficient bytes to overwrite values on the stack up to the return address (ADDRcaller); the
substitute return address ADDRpayload pointing within the malicious packet where mali-
cious machine instructions (to be injected) are stored; a sequence of instructions which
(when executed) copy some hard-coded bytes into a target memory region (ADDRTR)
chosen by A; and finally, an instruction to restore normal control-flow (ADDRrestore).
Hence, when strcpy is invoked (Step 1), the packet effectively replaces ADDRcaller (𝑞◀)
with ADDRpayload (𝑞× , Steps 2 and 3), forcing the control-flow (PC) to 𝑞× once the re-
ception handler’s function returns (Step 4), where the copy instructions contained in the
packet’s payload (Step 5) will be executed. Further, because the reception handler’s nor-
mal execution flow starts at 𝑞⊲ (its prologue) and traverses through intermediate nodes
until eventually passing 𝑞𝑖 to reach 𝑞◀ , where the caller is back in control, a prudent A
must finish by joining the altered execution path with 𝑞◀ , e.g., by artificially reverting
the control-flow to 𝑞◀ (ADDRrestore, Step 6). Note that steps 1 through 6 repeat 𝑘 times,
where 𝑘 denotes the number of packets required to inject the entire malcode. The dor-
mant malcode is then triggered by redirecting the control-flow to ADDRTR (Steps 7 and
8).
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event message_t* Receive.receive( 
       message_t* buff, void* payload, 
       uint8_t len) { 
   Msg* msg = (Msg*) payload; 
   uint8_t  [16]; uint8_t c[17]; 
   strcpy(c, (uint8_t*)msg  data); 
   reconstruct( ); 
   call  ( , c); 
   destroy( ); 
   return buff; } 
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Figure 2.4: Multistage code injection through buffer-overflow.

Table 2.1: Requisite memory addresses for multi-staged code injection.

Address Description

ADDRTR Unoccupied memory region targeted by A
ADDRpayload Address of the payload in a received packet
ADDRrestore Original return address in reception handler’s stack frame to re-

store control

2.5.5 Sequentially Mining Towards Search Space Reduction
To summarize our methodology so far. Section 2.5.2 motivated that we should attempt
to align the memory extraction close to the reception of messages since a cryptographic
routine might be invoked to handle the message. Section 2.5.3 proceeded to justify that it
is reasonable to only consider the program stack, since the cryptographic key is likely to
be stored on the stack temporarily when the supposed cryptographic routine is execut-
ing. Then, Section 2.5.4 presented a methodology for injecting our attack into the target
device’s memory.

The final challenge, and the question in our problem statement in Section 2.3, is how
we can efficiently locate the supposed cryptographic key in the extracted data. Specif-
ically, since the adversary only knows when an invocation of a reception handler invo-
cation is imminent as described in Section 2.5.2, she must overestimate when the key
exposure window (KEW) begins and take stackshots intermittently to ensure some over-
lap, which will result in an unwieldy growing search space. Indeed, for cryptographic
keys with identifiable traits (e.g., entropy, statistical, structural, and mathematical), iden-
tification would be trivial. However, this is generally false, especially for symmetric keys
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(Section 2.2), and assumes that A is aware of the type of key. Nonetheless, instead of
resorting to an exhaustive search over the entire accumulated search space, A contin-
ues to devise an efficient SSR algorithm (by Definition 2.3.1) to keep the remaining
K-hammering effort within feasible levels. To A’s advantage, although keys can take
many forms, they behave like other objects on the stack.

Since keyed cryptosystems contain excessive use of calculations (e.g., XOR opera-
tions) and inherently require that keys remain intact during use, some values on the
cryptographic function’s stack framewill inevitably fluctuate, whereas the key will likely
remain constant. Thus, if we would pour a set of consecutive stackshots into a funnel that
filters infrequent values from frequent, we would essentially delimit areas likely to con-
tain the key. To achieve such a funnel, we use pattern mining. Specifically, since stack
frames are sequentially allocated and compartmentalized, we use Sequential PatternMin-
ing (SPM) [71] to exploit the sequential ordering property.

In SPM, a subsequence is a sequential pattern (Definition 2.5.1) if it appears frequently
in a dataset D, and its frequency is no less than a minimum support threshold (minsup),
i.e., ≥ minsup of stackshots must overlap with the KEW for keys to become frequent
(appear as a candidate). Although several SPM approaches exist, many have the criti-
cal drawback of presenting too many patterns [71]. We opted for Maximal Sequential
Patterns (MSP, Definition 2.5.2), which have also been used to find the frequent longest
common subsequences to sentences in texts and to analyze DNA sequences [71]. MSP
mining is appropriate since it presents: (i) a concise subset of unique patterns [72], which
prevents running a VSW over the same data unnecessarily and (ii) allows us to constrain
the number of permitted gaps (irregular words) between consecutive words in a pattern.
Since keys must usually remain intact, we use (ii) to require that each consecutive word
in a pattern also appears consecutively in a stackshot (i.e., no gaps).

The conjunction of both properties (i-ii) enables exploitation of the stack’s nature,
where, within small time windows, some values remain constant (e.g., return addresses
and keys) while others (e.g., temporaries in calculations) fluctuate. Note that since we
use fluctuations to split the search space, the omission of values due to compiler opti-
mizations (e.g., inlining and use of registers, see [167, 41]) can affect efficiency.

Definition 2.5.1 (Sequential patterns). A sequence dataset 𝐷 is an unordered set of
sequences: 𝐷 = {𝑆1, 𝑆2, . . . , 𝑆𝑠 }, where each sequence 𝑆 = ⟨𝑊1,𝑊2, . . . ,𝑊𝑛⟩ corresponds
to one stackshot and consists of an ordered list of words𝑊𝑖 (2 bytes in MSP430), where
𝑖 denotes its index. A sequence 𝑆𝑎 = ⟨𝐴1 , 𝐴2, . . . , 𝐴𝑚⟩ is contained in another sequence
𝑆𝑏 = ⟨𝐵1, 𝐵2, . . . , 𝐵𝑛⟩ if there exists integers 1 ≤ 𝑖 < 𝑗 < . . . < 𝑘 ≤ 𝑛 such that 𝐴1 =

𝐵𝑖 , 𝐴2 = 𝐵 𝑗 , . . . , 𝐴𝑚 = 𝐵𝑘 , and is denoted as 𝑆𝑎 ⊑ 𝑆𝑏 . Here, 𝑆𝑏 is a super pattern of 𝑆𝑎 ,
while 𝑆𝑎 is a sub pattern of 𝑆𝑏 . A sequential pattern 𝑃 is a sequence that is contained in
one or more sequences in 𝐷 .

Definition 2.5.2 (Maximal sequential patterns). A pattern 𝑃𝑎 is said to be closed if there
is no other pattern 𝑃𝑏 , such that 𝑃𝑏 is a super pattern of 𝑃𝑎 , 𝑃𝑎 ⊑ 𝑃𝑏 , and their support is
equal. A pattern 𝑃𝑎 is said to be maximal if there is no other pattern 𝑃𝑏 , such that 𝑃𝑏 is a
super pattern of 𝑃𝑎 , 𝑃𝑎 ⊑ 𝑃𝑏 [72].
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2.6 An Architectural Blueprint

We proceed by consolidating the conceptualized methodology (Section 2.5) into concrete
stages that can be translated into injectable malcode or stitched together from existing
code, depending on which vulnerabilities A exploits (Section 2.4).

2.6.1 A High-Level Overview
Figure 2.5 depicts the consolidation of the conceptualized methodology (Section 2.5). The
attack commences by A injecting (or stitching together) and triggering some malcode,
which, once activated, embeds system hooks to proactively secure its timely invocation
(Section 2.5.2). In the optimal case where it manages to attach callbacks directly onto the
reception ISR (RX ISR), the malcode proceeds to remain stealthy until reception occurs.
Upon reception, the reception interrupt flag (RXIFG, Step 1.1a) transitions, which causes
the RX ISR to be invoked and call the malcode (Steps 1.2a and 1.3a). However, if hook-
ing onto the RX ISR is too difficult, the malcode resorts to establish a periodic timer (T,
Step 1.1b), where, on subsequent firings of the timer (Steps 1.2b through 1.4b), the mal-
code polls some pre-identified MMIO transceiver state (flag) (Section 2.5.2) to determine
whether reception is occurring (Step 1.5b). Regardless of the method, once the recep-
tion has occurred, the malcode establishes a system timer to take stackshots periodically
(Step 2). On each firing of the timer (Steps 3 through 5), the malcode extracts a predefined
range rg from where SP currently points and stores it within some unused memory re-
gion (Step 6) - e.g., the heap, since OS-support for dynamic memory allocation in MCUS
is often lacking. When a sufficient number of stackshots have been accumulated, they are
marshaled into packets and transmitted back to A (Step 7), where A applies the search
space reduction (Step 8). Finally,A concludes by hammering the remaining search space
(e.g., by applying a VSW) for keys.

Note that A must dissect the target system’s underpinnings to set up the necessary
callbacks and timers. For the interested reader, see the technical details in Appendix A.
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2.6.2 Modular Building Blocks
On a coarse-grained level, we separate the stages (Figure 2.5) into three versatile com-
ponents. Two are interdependent and constitute the malcode – the Watchdog (WD)
and the Frame Extractor (FE). The final component, the Space Reductor (SR), is the
utilization of MSP data mining (Section 2.5.5).

• Watchdog (WD). The purpose ofWD is to commence a system timer to peri-
odically invoke FE when key exposure is imminent. Since we target the software-
oblivious causality between reception and keyed cryptosystems, we can narrow
the time window by periodically polling the transceiver’s MMIO states (obser-
vant mode) or riding the RX-designated ISR (dormant mode). Although either
approach effectively aligns the stackshots close to the KEW, dormant behavior is
more stealthy since the CPU is free to enter (and stay uninterrupted) in low power
modes (LPMs), but observer behavior might be easier to accomplish. For the tar-
get system, we opted for a hybrid construct to maximize timeliness, whereWD
rides the RX ISR and, upon invocation, starts a system timer to invoke FE peri-
odically. However, instead of taking stackshots immediately, FE resists until a bit
at a fixed memory location (which reflects whether transceiver communication is
occurring) transitions, shifting stackshots closer to the reception handler’s invo-
cation (see Appendix A.1).

• Frame Extractor (FE). The FE takes stackshots and transmits them toA once it
has accumulated a certain amount. Each stackshot comprises the region between
the current SP and SP ± rg bytes, depending on the direction of the stack. Note
that although increasing rg improves the probability of obtaining K it also affects
the amount of data to transmit, which translates to more memory resources and
increases the possibility of detection.

• Space Reductor (SR). Given stackshots D, MSP mining (Section 2.5.5) is used to
get a reduced search space (Figure 2.5). Note that we demonstrate the practicality
of SR in Section 2.7.

2.7 Experiments and Evaluation

Weproceed to evaluate theSR’s efficiency and effectiveness, where efficiency is quantified
by the degree of the search space reduction and effectiveness by the ratio of keys in the
initial (i.e., before applying SR) and reduced search spaces.

2.7.1 Experimental Setup
We consider the reception handler in Fig. 2.4, where F is substituted with two prominent
open-source implementations of the Advanced Encryption Standard (AES) algorithm,
namely: TinyAES [111] and one developed by Texas Instruments [100] (hereinafter re-
ferred to as TIAES). In short, the AES algorithm operates on 128-bit blocks, accepts key
sizes of either 128, 192, or 256 bits, and comprises several layers that are applied to ma-
nipulate an input block in several successive rounds Nr, where Nr is a function of the
key length (10, 12, or 14 rounds for 128-, 192-, or 256-bit keys). However, because TIAES
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works exclusively with 128-bit keys, we restrict both implementations to use 128-bit keys
(AES-128). Nonetheless, for each round, AES derives (expands) a separate round key (sub-
key) from the initial key (master key) using its key scheduling algorithm (resulting in a
total of Nr+1 subkeys, where Nr=10 for AES-128), which it supplies to the key addition
layer. However, whether the entire key schedule (set of subkeys) is precomputed or sub-
keys are derived as needed is a design choice. For example, since TIAES is developed to
accommodate memory scarcity, it reuses the same 16-byte memory area of the master
key for holding subsequent subkeys during run-time. Contrarily, TinyAES targets energy
scarcity and therefore precomputes the key schedule, enabling reusing the same schedule
on subsequent executions. However, since the schedule in TinyAES is stored consecutive
to the master key, it only increases the master key’s size, and given its dominating size,
necessitates a large rg for us also to capture surrounding values. Thus, for practical rea-
sons, the schedule is kept above the function level (Section 2.5.3), such that only themaster
key occurs on the stack. Therefore, for TinyAES, we assess SR’s effectiveness by its abil-
ity to retain the master key in the reduced search space. For TIAES, however, we assess
SR’s effectiveness by its ability to retain any subkey (master key inclusive), which is jus-
tifiable since the remaining schedule can be inferred (though the amount of key bytes
required to infer the remaining schedule differs between AES key sizes). Table 2.2 shows
each AES implementation’s cycle-accurate benchmarking results when executed within
an emulated environment using MSPDebug v0.25 [17] in AES-128-ECB/decryption mode
(including key expansion for TinyAES).

Table 2.2: Cycle Count (CC) and Execution Time (ET) in milliseconds for decrypting one
128-bit block at different optimization levels and considering a CPU running at 4 MHz.

Implementation O0 O1 O2 O3 Os

TinyAES CC 390,279 34,408 28,986 23,612 33,234
ET 97.57 8.602 7.247 5.903 8.309

TIAES CC 52,256 16,642 13,411 8,505 15,747
ET 13.064 4.16 3.353 2.126 3.937

To facilitate our experiments, we define a Capture Window (CW) as the estimated
KEW and Capture Frequency (CF) as the number of stackshots per CW, which enables us
to assess the stack at different temporal granularities by increasing and decreasing the CF.
In general, CW must be large enough (over-approximated) or positioned close enough
to overlap with K’s KEW, and CF be high enough to ensure sufficient K captures (≥ the
minsup, Section 2.5.5) once the windows overlap (see Fig. 2.6a).

Note, however, that the subkey lifespan is drastically different for TinyAES and TIAES.
For TinyAES, the master key K is kept intact, and its KEW will therefore be ≈ the em-
ulated ET (Table 2.2). Thus, for a CW ≤ ET, aligned perfectly with the actual KEW, we
could confidently use any relative minsup ≤ 100% to reduce the search space without
losing K . However, for TIAES, each of the eleven subkeys will have KEW’s of ≈ ET/11
(the KEW of some subkeys will, however, be different since not all rounds are identical).
Hence, in the same setup, where CW ≤ ET is aligned with the beginning of decryption,
then a relativeminsup ≤ 9.09% should suffice to retain all subkeys in the reduced search
space so long as CF ≥ 11. Nonetheless, for experimental purposes, we let 25% and 6.25%
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Figure 2.6: Illustration of the capture frequency 2.6a and capture window 2.6b in a run.

(1/16) be our sufficiently permissive relative minsup thresholds for TinyAES and TIAES,
i.e., K must appear in ≥ 25% of stackshots for TinyAES and ≥ 6.25% for TIAES.

Furthermore, given the high ET variation between implementations and optimization
levels (see Table 2.2), we consider a separate CW for each combination (i.e., CW = ET).
Although these CWs can be considered optimal, note that ET ≠ KEW and ET neglects
delays until the reception handler is invoked (might take several `s), the key reconstruc-
tion time, and interrupt processing time – which increases slightly as CF increases. Thus,
stackshots will inevitably occur at different offsets from the reception handler (see Fig.
2.6b), and the CWwill drift from the ET as CF increases. To reason about potential corre-
lations between the CF and our experimental metrics – efficiency and effectiveness – we
consider a set of CFs: {4, 8, 16, 32, 64, 128}. We use a common rg of 32 words (64 bytes)
as the key is expected to occur relatively close to SP (see Section 2.5.3), and a minimum
pattern length of 2 words.

2.7.1.1 Data Acquisition

We devised two scripts [55]: getStacks, for acquiring stackshots (using the malcode
in Appendix A) from a Tmote Sky attached via an MSP430-JTAG (MSP-FET430UIF), and
spaceReductor for MSP mining using seqwog v3.16 [26]. The getStacks script re-
peats 𝑛 times (we set 𝑛 = 15), where it: for each combination of AES implementation, CF
and optimization level, (i) erases the memory of the Tmote Sky, (ii) compiles and pro-
grams the reception handler with TinyOS v2.1.2 [175] on the Tmote Sky, (iii) extracts
ADDRrestore (see Table A.1 in Appendix A) from the handler’s assembly code, (iv) adjusts
the malcode according to the CF and ADDRrestore, and writes it into memory—emulating
injection (Section 2.4)—, (v) starts the Tmote Sky CPU, waits, and then stops the CPU,
and (vi) finally reads the accumulated stackshots to a file, i.e., performs the data exfil-
tration (Fig. 2.5). Note, to trigger the reception handler, we setup another Tmote Sky to
transmit packets periodically. Also, to emulate code injection and commence the mal-
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code, we added an inline assembly instruction at the tail of the reception handler, which
branches to ADDRSE at the first invocation of the handler. Once getStacks completed,
spaceReductorwas supplied with the 900 independent datasets, on which it: (i) prepro-
cessed each dataset by pruning repetitions of “FF3Fh” from stackshot tails, since these
words are read past the stack boundary (38FFh for the MSP430-F1611 MCU), and (ii)
applied the MSP mining and yielded the reduced datasets.

2.7.2 Empirical Results and Analysis
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Figure 2.7: Efficiency and effectiveness of the MSP data mining (SR). The figure shows
means and Standard Deviations (SDs) of 15 independent datasets per combination of:
AES implementation, CF and optimization level (O0 ; O1 ; O2 ; O3 ; Os ).

We proceed by considering Fig. 2.7, which presents details about the extracted datasets,
for each CF, before and after MSP mining with relative minsup thresholds of 25% and
6.25% for TinyAES and TIAES, respectively (implementations separated by rows and bars
colored by optimization level).

2.7.2.1 The case of TinyAES

Plot 2.7a illustrates how efficiently the search space is reduced in the case of TinyAES
(average reduction of 79.95%). Note that while A would run a VSW separately on each
stackshot or MSP to find keys, Plot 2.7a considers the concatenated (∥) search space, i.e.,
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the concatenation of all stackshots in a dataset before and all MSPs after applying SR.
Nonetheless, it is clear that even as we increase the CF significantly, the reduced search
space, comprising the MSPs found in a dataset (batch of stackshots), remains consider-
ably small (average size of 40.8 words). Furthermore, note that in the particular case
when CF is 4, the reduction is expected to be negligible for a relative minsup of 25%,
since the search space is only reduced when some patterns: (i) are infrequent, i.e., occur
in < 25% stackshots, which is not possible with four stackshots, or (ii) appear in multiple
stackshots – as only the super pattern is presented (Section 2.5.5). Excluding the insignif-
icant CF of 4, the efficiency increases to 95.27%, and the average reduced search space
decreases to 25.64 words. To better illustrate the effect of the data mining on a stack-
shot/MSP level, Plots 2.7b and 2.7c give further insights on the average stackshot/MSP
lengths and count, respectively.

Regarding effectiveness (accuracy), Plot 2.7d illustrates how often the entirety of the
master key appears on average in the datasets before the data mining, and the black
horizontal lines denote the considered relative minsup threshold of 25%. We can see
that the key almost always appears as frequent (above the threshold) and that for most
optimization levels, we could confidently raise the minsup threshold without losing the
key. Note that the key is observed less often for optimization level O0 because its final
word lies on the edge of our rg of 32 words, i.e., many stackshots only include the partial
key.

2.7.2.2 The case of TIAES

As with TinyAES, Plot 2.7e illustrates the reduction of the concatenated search space
when using the relative minsup of 6.25% (average reduction of 42.87% and an average
search space size of 228.31words), and Plots 2.7f and 2.7g show the average stackshot/MSP
lengths and count. As before, we expect negligible search space reduction for CFs {4, 8, 16},
since the support threshold comes into effect when the number of stackshots transcends
16. Excluding these CFs, we gain efficiency of 84.17% and a reduced search space size
of 220.30 words. Note that although this search space is indeed much larger than for
TinyAES, it contains several subkeys.

Regarding effectiveness, Plot 2.7h details how often the entirety of subkeys (the first
subkey is the master key) appear on average in the datasets before data mining, and the
black horizontal lines denote the considered relativeminsup threshold of 6.25%. Note that
the latter half of the subkeys appear more frequently than others because when AES runs
in decryption mode, it applies subkeys in reverse order (the master key last). Scrutinizing
the results reveals that we seem to lose some subkeys at different optimization levels
as we increase the CF. This trend occurs because our static CWs overlap less with the
ET as we increase the CF due to the system spending more time processing interrupts
(Section 2.7.1) – including the execution of some parts of the malcode. Nonetheless,
despite TIAES’s design approach making the key extraction more complicated – since
the KEW of subkeys ismuch smaller than that of TinyAES’s master key (Section 2.7.1) –,
the fact that some subkey always occurs above the horizontal line (theminsup threshold),
indicates that at least one subkey always appears in the reduced search space, as part of
an MSP.
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2.8 Discussion and Potential Defences

We have demonstrated how an A can systematically acquire highly ephemeral keys in
MCUS. To make matters worse, for asymmetric cryptosystems, the Key Exposure Prob-
lem (KEP) is evenmore extended, e.g., considering the F1611 CPU@ 8MHz, 1024-bit RSA
encryption takes hundreds of milliseconds and decryption several seconds [86]. Since
we target keys during use, sanitizing keys after use is insufficient, and so is keeping keys
above the function level as the key’s address on the stack is exploitable and challenging to
avert (see Section 2.5.3). However, since the attack’s effectiveness relies on our ability to
approximate the use of keyed cryptography post-reception and incorporate it as a trig-
ger mechanism, any distortion of the approximation (e.g., delayed processing) mitigates
the attack. Further, since carrying out the attack is difficult without disturbing program
execution, Control-Flow Integrity (CFI) solutions can be utilized to prohibit the attack,
and Control-Flow Attestation [2] can be used to detect whether an attack has occurred.
Nonetheless, such defensive and solutions are attack-specific and do not directly resolve
the KEP. To resolve the KEP, we must ensure that keys are either useless when observed
(captured) or unobservable.

2.8.1 Resolving the Key Exposure Problem
To resolve the KEP, we could decide never to store keys sequentially in memory. By (i)
storing key bytes in different endianness, (ii) permuting the bytes’ order, or (iii) scattering
bytes throughout memory, we can directly affectA’s ability to use the key. However, al-
though (i) and (ii) prevent a naive VSW attack, they fail to preventA from plainly trying
all byte (or word) permutations. The latter method (iii) ultimately compels A to resort
to an exhaustive attack since the search space might never contain all of the required
pieces. However, realizing either method requires careful code instrumentation. Compa-
rable strategies includewhite-boxing [48] andMoving Target Defense (MTD) [165]. With
white-boxing, a given key is transformed into code that performs cryptographic opera-
tions without using the key material explicitly. However, embedment of keys into soft-
ware makes key revocation difficult and is generally unsuitable in environments where
keys must be frequently updated. With MTD, we make the key a moving target by re-
arranging its bytes regularly during run-time, which can be a viable mitigation tactic –
assuming that the rearrangement scatters the bytes and not only permutes their order.
Toward unobservability using software, we could decide to confine cryptographic keys to
CPU registers. For example, TRESOR [136] proposed storing the key inside debug regis-
ters, Loop-Amnesia [166] inside MSRs, AESSE [135] inside SSE registers, and [146] inside
SSE XMM. However, achieving secure CPU-bound keys is presumptuous since it requires
a sufficient number of special registers that are guaranteed to remain inaccessible to the
adversary.

2.8.2 Prominent Hardware-Entangled Guards
Mechanisms based purely on software are desirable but have proven unsatisfactory. Fur-
thermore, in TinyOS, the advised approach is for the CC2420 radio chip to hold the cryp-
tographic keys and then perform in-line encryption and decryption of packets. However,
although this approach seems to make the keys unobservable, they can unfortunately be
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effortlessly requested back using SPI [101] due to the lack of protection on the target
device. Therefore, it is better to utilize more comprehensive solutions, e.g., Trusted Ex-
ecution Environments (TEEs, e.g., ARM’s TrustZone) and hardwareized cryptographic
modules (e.g., Trusted Platform Modules), which provide hardened interfaces for secure
storage and use. Though rarely available in resource-constrained commodity devices or
MCUs due to their weight and cost, such trusted computing solutions can perform all
necessary cryptographic operations while ensuring that keys remain unobservable. An-
other, arguably more lightweight and cheap alternative, would be to utilize Physically
Unclonable Functions (PUFs) [129] as a form of secure key storage. Although PUFs in-
herently result in some form of key exposure window as the cryptographic keys must
be reconstructed before use, it has been shown that PUFs can be entangled with existing
cryptographic primitives [129], leading to so-called hardware-entangled cryptography,
which eliminates the need to store keys in memory altogether. Further, as demonstrated
by [108], PUFs can also be integrated into the processor’s instruction pipeline to allow
run-time execution of encrypted code, making it difficult (if not futile) for an adversary
to attempt to observe softwareized keys on a target system.

2.9 Conclusions
There is a lack of adequate containment and trust regarding an embedded system’s be-
havior, where sophisticated software attacks can circumvent standard key management
techniques. By exploiting the strong causality between reception and keyed cryptosys-
tems and the fact that cryptosystem implementations inherently require keys to remain
exposed in memory during use, we have demonstrated how keys can be timely acquired
off the memory stack during run-time. Our work serves a three-fold purpose: to re-
veal how the determinism of wireless-capable (event-driven) MCUS can pose an ex-
ploitable threat, study the effects of severe key-exposure attacks, and motivate the need
for lightweight KEP-resilient protocols in resource-constrained MCUS.
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Chapter 3

ZEKRO: Zero-Knowledge Proof

of Integrity Conformance

Abstract
In the race toward next-generation systems of systems, the adoption of edge and cloud
computing is escalating to deliver the underpinning end-to-end services. To safeguard
the increasing attack landscape, remote attestation lets a verifier reason about the state
of an untrusted remote prover. However, for most schemes, verifiability is only estab-
lished under the omniscient and trusted verifier assumption, where a verifier knows the
prover’s trusted states, and the prover must reveal evidence about its current state. This
assumption severely challenges upscaling, inherently limits eligible verifiers, and natu-
rally prohibits adoption in public-facing security-critical networks. To meet current zero
trust paradigms, we propose a general ZEro-Knowledge pRoof of cOnformance (ZEKRO)
scheme, which considers mutually distrusting participants and enables a prover to con-
vince an untrusted verifier about its state’s correctness in zero-knowledge, i.e., without
revealing anything about its state.

3.1 Introduction
To make cloud computing services more resilient to increasing integrity concerns and
enable detection of malicious or vulnerable software (e.g., Apache Log4j [143]), several
proposals [7, 184, 156, 126, 127] have advocated leveraging trusted computing technology.
This technology relies on a Trusted Execution Environment (TEE) or more commonly
a Trusted Platform Module (TPM) [172] deployed on each node which acts as a trust
anchor to store and report integrity evidence about the node’s configuration. When a
node’s software stack boots up, it chronologically measures (hashes) each software com-
ponent and extends each measurement into a Platform Configuration Register (PCR) of
its TPM. To report the node’s configuration integrity, the TPM uses a unique key to sign
the aggregated PCR value, which a remote verifier can then compare against a list of
trusted reference values to determine whether it corresponds to a trusted state. For en-
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hanced integrity guarantees, we can also have nodes continue measuring their software
beyond the boot process, e.g., using the Integrity Measurement Architecture (IMA) [155]
or Policy-reduced IMA (PRIMA) [103].

Despite their benefits, most existing remote attestation protocols suffer scalability
issues since the complexity of the verifier grows with the complexity of the prover’s
configuration [128]. Specifically, the verifier must continuously maintain an extensive
allowlist of trusted reference values for each prover, which becomes prohibitively im-
practical for large networks. Besides inherent scalability issues, it is also easy to prove
that protocols that require the prover to disclose its configuration state to verifiers fail
under the honest-but-curious adversarial model [148] since curious verifiers can easily
link and identify the software executing on a prover. Such failure to respect a prover’s
configuration privacy is known to raise serious privacy issues, such as discrimination
[153] and can even foster dedicated software attacks against a vulnerable prover [185].
While catering to a platform’s configuration privacy is essential from a security perspec-
tive, omitting the exchange of such information can also promote services to mix more
seamlessly in multi-domain coordinated services, including multi-vendor environments
[15], where contractual differences could otherwise prohibit such collaboration.

To remediate the privacy issue and simultaneously reduce the verifier complexity
in remote attestation, some proposals [185, 45, 9, 7, 184, 126, 127] offer different, more
privacy-respecting mechanisms for a verifier to reason about a prover’s correctness.
However, these schemes tend to either require an intermediate trusted third party (TTP)
between the prover and verifier to distill or hide the integrity report from the veri-
fier [184, 7], which limits network design and overall responsiveness, assume that the
prover’s configuration is translatable into abstract properties which the verifier is knowl-
edgeable enough to interpret [45, 9], restrict who can verify a particular prover [185, 127],
incur high overhead [121], or consider only the load time measurements of a prover’s
software stack [126].

3.1.1 Contributions
This paper presents ZEKRO, a zero-knowledge proof of conformance scheme that uses
trusted computing abstractions to overcome the barriers of configuration privacy and
scalability. These abstractions provide another building block for constructing scalable
services that seamlessly mix in multi-domain environments and are more resilient to
integrity concerns. Our design includes two crucial main innovations to overcome the
limitations of existing TPM-based privacy-respecting remote attestation protocols.

First, the ZEKRO scheme provides the trusted computing abstraction, called policy-
restricted attestation key, that dynamically restricts a node’s attestation key (secured in its
TPM) to policies chosen by an authorizing entity (e.g., a domain orchestrator). By predi-
cating its ability to use its attestation key for signing on its configuration correctness, we
can verify a node’s conformance using a simple challenge-response protocol that neither
requires nor reveals any configuration information. Moreover, to update a node’s “trusted
configuration state” during runtime (e.g., in response to patches), the authorizing entity
can reactively or proactively authorize new policies restricting the node’s attestation key
to a new configuration state. Second, to control which of the already authorized policies
a node can satisfy during attestation, we propose creating policies that additionally re-
quire explicit, time-limited authorization, called leases, to be satisfiable, which allows an
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authorizing entity to control which policy can temporarily be satisfied.
To demonstrate ZEKRO’s performance, we evaluated a proof-of-concept prototype,

whose implementation is made publicly available [57] to ensure reproducibility and ver-
ifiability of our results.

3.2 Related Works

When measuring a node’s software during runtime, one idea, which IMA [155] employs,
is to record measurements both into a TPM PCR and a Measurement Log (ML). Due to
the unpredictable order in which components are loaded, the ML helps verifiers ver-
ify the reported aggregated PCR value and whether each loaded component is trusted
based on reference values. However, such information disclosure raises concern, espe-
cially if measurements belong to different tenants sharing a platform. To make it more
privacy-respecting, Container-IMA [127] proposed generating unique secrets to obscure
ML entries related to each tenant’s software, thus effectively restricting verification of a
particular tenant’s software to verifiers that know the secret, in addition to the trusted
reference values.

Similarly, to restrict verifiability only to “correct” verifiers, authors of [185] propose
obfuscating a PCR by recording random values into the PCR and ML, which ensures that
only a legitimate verifier can perform the verification and others learn nothing. However,
the problems of dishonest verifiers and verifier complexity remain.

To avoid disclosing configuration measurements (digests) and reduce the verifier
complexity, Property-Based Attestation (PBA) [153, 45] maps configurations to more se-
mantical requirements, called “properties”, which a prover can prove to fulfill without
disclosing its concrete configuration. However, bridging the semantic gap between di-
gests and properties, i.e., identifying what maps to which properties, is nontrivial and
must be agreed upon beforehand. The same applies to similar techniques, such as [9],
where the authors propose grouping sets of software versions using cryptographic func-
tions such as chameleon hashes [116], or group signatures [44].

To unload verifiers, authors of [7] propose having an intermediate third party be-
tween a prover and verifier who is trusted to verify the prover’s measurements and vouch
for the prover’s integrity. Similarly, the work in [184] proposes an attestation proxy to
mediate attestation requests between the prover and verifier and translate the prover’s
concrete configuration into properties that are returned to the verifier. However, while
effective, such approaches limit network flexibility in practice and incur overhead.

To reduce the involvement of the trusted third party, the work in [126] proposed hav-
ing the party only initially involved in instructing a node in sealing (i.e., encrypting) a
secret signing key to its trusted configuration state using its TPM. This way, a node can
only ever unseal (decrypt) its secret key if its configuration has not changed. Thus, veri-
fiers, who know a node’s public key, can determine its integrity simply by requesting it
to sign a challenge using its secret key. However, there are some inherent security issues
with the sealing operation. First, the unsealed key is exposed to software during attes-
tation. Second, as pointed out in [153], any configuration update (e.g., patches) would
render it impossible to unseal the key.

Therefore, to prevent exposing the signing key to software, the authors of [121] pro-
posed instead to create attestation keys, which is a special type of asymmetric keys cre-
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ated inside a TPM, where the secret part that is used for signing never leaves the pro-
tective shielding of the TPM. Then, similar to [126], these attestation keys are created
under the supervision of a trusted third party with an authorization policy that con-
strains the use of the secret part to a particular configuration state. However, due to
the brittleness of the authorization policy, nodes require new attestation keys whenever
their configuration changes, resulting in high computational and network overhead. Fur-
thermore, the approach disregards adversaries blocking update requests to lock a node
in a "trusted state" and lacks authentication to withstand adversaries impersonating the
entity responsible for measuring a node’s configuration, effectively allowing adversaries
to hide by reporting false measurements.

To solve these problems, we propose (i) creating attestation keys with “flexible” au-
thorization policies that allow a trusted authority (e.g., a domain orchestrator) to approve
new policies that restrict the same key’s use to new configuration states, (ii) enforcing a
leasing mechanism on the approved policies to ensure freshness, and (iii) authenticating
the entity responsible for reporting measurements.

3.3 Trusted Computing Concepts
This section presents the background necessary to understand the proposed approach by
describing the leveraged functionalities.

3.3.1 Enhanced Authorization
The TPM can be used as a combination lock for securing access to TPM objects, such
as cryptographic keys. To specify under which circumstances an object can be accessed
(i.e., what should be fulfilled before access is granted) and what operations are permitted
once access is granted, we must first create a policy statement that logically describes all
of our conditions and the scope of the authorization. To ensure statement interpretabil-
ity, we must use the available Enhanced Authorization (EA) TPM commands, which are
documented in part 3 of TCG’s specification [172]. For example, to allow the use of an
object only if a PCR has a specific value, we can use the PolicyPCR command to refer-
ence which PCR should have what value. We then translate our policy statement into
an “policy digest”, which is computed by aggregating a digest over each EA command’s
Command Code (CC) and command-specific arguments (like an onion) as detailed in the
documentation [172]. With a policy digest, we can ask the TPM to create an object (e.g.,
an attestation key) with this policy digest as its authorization policy.

To satisfy our object’s authorization policy, we must start a “policy session” with
the TPM, to which it will associate a policy digest internally. The rules are simple. To
satisfy our object’s authorization policy, we must invoke the correct combination of EA
commands and arguments to make the session’s internal policy digest match our object’s
authorization policy. Anytime we invoke the TPM to perform some action using our
object, e.g., to sign a message, the TPM will first check that the current session’s internal
policy digest satisfies the object’s authorization policy. For EA commands that restrict
an object’s scope to specific commands and arguments, another session-specific digest
called the command parameter hash 𝑐𝑝𝐻𝑎𝑠ℎ is also used and checked before performing
an action.
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3.3.1.1 Flexible Policy

This paper aims to use the EA functionality to create an attestation key whose autho-
rization policy is constrained to a node’s correct configuration as measured into some
PCR. Unfortunately, this is not possible with the PolicyPCR command since it only al-
lows one state. While we could create a policy statement to permit several possible states
by logically oring several PolicyPCR commands, this requires knowing all future “good”
states, making it inherently impractical. Fortunately, there is a workaround to this “brit-
tleness” problem using the PolicyAuthorize command, which allows creating a “flexible”
policy owned by a secret key whose public key is associated with the policy. In other
words, whoever owns the corresponding secret key of the public key that we commit to
in the policy digest has complete control to sign (approve) policies during runtime that,
when satisfied in a TPM session, will also cause the object’s authorization policy to be
satisfied. Suppose we only have the PolicyAuthorize command as part of our policy state-
ment. In that case, the resulting “flexible” policy digest 𝑝𝑜𝑙 is computed as 𝑝𝑜𝑙 ← H(H(
𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 ∥ pk)∥ 𝑟𝑒 𝑓 ), where pk is the public key, and 𝑟𝑒 𝑓 is an optional reference
that restricts the authorization policy. For example, we use each node’s unique identifier
as the corresponding reference value to distinguish between the authorization policy of
different nodes in a domain.

Once we have a flexible policy, we can have the node create an attestation key with
a flexible authorization policy, thus allowing the respective orchestrator to approve dif-
ferent restrictions to use the key, e.g., depending on its currently accepted configuration.

To approve a policy, the orchestrator first creates the policy digest to approve 𝑎𝑃𝑜𝑙
and then signs an authorization hash 𝑎𝐻𝑎𝑠ℎ ← H(𝑎𝑃𝑜𝑙 ∥ 𝑟𝑒 𝑓 ) using its secret key, where
𝑟𝑒 𝑓 references the node.

Finally, to use the approved policy to satisfy the attestation key’s authorization policy,
the node first satisfies 𝑎𝑃𝑜𝑙 in a policy session and then calls PolicyAuthorize with 𝑎𝑃𝑜𝑙 , a
public key pk, its identifier 𝑟𝑒 𝑓 , and a proof that H(𝑎𝑃𝑜𝑙 ∥ 𝑟𝑒 𝑓 ) was signed by the owner
of pk, which proves whether the current session’s policy digest was approved. Then, if it
holds, the TPM replaces the session’s policy digest withH(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 ∥ pk) ∥ 𝑟𝑒 𝑓 ),
which unlocks the use of the attestation key if it matches its authorization policy.

3.3.2 Trustworthy Runtime Measurements
While the TPM provides secure storage and reporting, the entity that stores measure-
ments into the TPM should be trustworthy. For example, to create a chain of trust of
the integrity of a platform’s boot sequence, we could have each component, such as
firmware and boot drivers, first measure the next component into a TPM PCR before
passing control to that component. However, if we cannot trust the code that measures
the first component, called the core root of trust for measurements, we cannot trust the
PCR aggregate.

The most prominent method of extending such a chain of trust into the operating
system is IMA [155]. When IMA is used, it hooks onto file-related system calls to re-
measure a file (part of the trusted computing base) into an ML and a PCR whenever the
file is accessed. To only remeasure a file when it is modified, the filesystem must support
i_version and, if needed (e.g., EXT3, EXT4), bemountedwith this option. When enforced,
the filesystem updates the i_version field of the inode associated with a file when a file
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is modified.
As before, if we cannot trust IMA, we cannot trust its measurements. Similarly, we

must also rely on a trusted entity to measure a node’s configuration. This trusted entity
must be isolated and immutable. Note, however, that the choice of isolation, e.g., OS-
based process isolation, user/kernel-level isolation, or hypervisor-based approaches, will
depend on use-case-specific requirements. We assume some Trusted Execution Environ-
ment (TEE) for this paper, like ARMTrustZone or Intel SGX. However, note that since we
consider remote TEE invocation, it raises two problems. First, requests can be blocked
by an adversary to evade detection. Second, the adversary can spoof measurements. To
prevent both attacks, we must ensure that the measurements are authentic and approved
policies are only temporarily satisfiable. One way to achieve the first requirement, which
we utilize, is to create a TPM object inside the TPM’s non-volatile (NV) memory space
of type PCR, which allows us to associate an authorization policy to our PCR object as
described in Section 3.3.1 that allows the node’s TEE to authenticate the measurements.
Our solution to the second requirement is to enforce a leasing mechanism, which we
describe in Section 3.5.4.2.

3.3.3 Zero-Touch Enrollment
An attestation key (AK) is especially beneficial due to its inherent restriction. Whereas
unrestricted keys, when created inside a TPM, can be used to sign any data, an AK, which
is restricted, will not sign any externally provided data structure that appears to be valid
and TPM produced but is not. Thus, if an AK is known to be protected by a TPM, it may
be relied on to report that TPM’s contents accurately.

In the context of zero-touch provisioning of a remote platform equipped with a TPM,
we must first verify the authenticity of the TPM [174, 173, 181] and all other primitives
that enable the subsequent attestation. The core of zero-touch provisioning is the cor-
rect creation of the attestation key to secure the integrity of the attestation process. For
discrete TPMs, the manufacturer generally installs an Endorsement Key (EK) and an as-
sociated certificate inside the TPM, which allows verifying the EK’s authenticity and can
further be used to create a Local Attestation Key (LAK). However, the EK differs from an
AK. An EK is a “storage key” used to protect (encrypt) the secret key of other keys to
allow safe storage outside the TPM, and creating a LAK based on the EK requires some
extra steps [174].

Anothermethod is to install an Initial Attestation Key (IAK) and associated certificate,
which can be used to create the LAK. Specifically, by utilizing the inherent characteristics
of attestation keys, we can, after verifying the IAK’s certificate [174], verify that a LAK
is created in the same TPM by certifying it using the IAK.

3.4 System and Threat Model
Before we delve into details of the ZEKRO scheme, we present the considered setting and
assumptions regarding protocol participants.
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3.4.1 System Model and Security Assumptions
We consider a network setting with three types of entities:

1. Prover is an untrusted node equipped with a secure TPM provisioned with a certi-
fied Initial Attestation Key (IAK) and a secure element for providing secure runtime
measurements. We consider a TEE with a certified key pair for brevity for the rest
of the paper. Finally, to detect file modifications, we assume a trusted filesystem
that enforces i_version.

2. Verifier is an untrusted node that knows the orchestrator of a prover node and
wants to remotely check the correctness of the prover’s configuration (though not
limited to this role).

3. Orchestrator is a trusted entity that: (i) onboards each node by verifying its initial
key certificates, (ii) performs the zero-touch configuration of each node’s LAK, and
(iii) maintains and approves each node’s acceptable configuration. We assume that
the orchestrator has already done the onboarding (i), which lets us instead focus
on more relevant challenges.

3.4.2 Threat Model
We consider a software adversary who, on some prover, exploits a software vulnerability
that allows it to modify that node’s critical configurations that are part of the Trusted
Computing Base (TCB) as determined by the domain orchestrator. The adversary’s goal
is to remain undetected and may even attempt to disrupt the node’s communication with
the orchestrator to do so. Further, we assume that verifiers are dishonest and attempt to
infer information about the prover’s configuration. However, we assume that verifiers
do not collude with the prover’s adversary to obtain prover information.

3.4.3 Protocol Objectives
Our scheme’s objectives are threefold: (i) any tampering of a prover node’s TCB con-
figurations or continued disobedience is detectable, (ii) verifiers require no knowledge
except the trusted key certificate of a prover node’s orchestrator to verify the prover, and
(iii) verifiers learn no information from the verification process besides the correctness
of the prover’s configuration integrity. Note that while we consider challenges of con-
tinuous integrity verification, we defer the problem of continuous, in-memory runtime
attestation. This is covered by the next paper described in Chapter 4.

3.5 The Protocol
We continue with the terminology used in our description of the ZEKRO scheme. Then
we proceed to give an overview of the scheme before diving into its protocols with ex-
plicit reference to the required TPM commands found in part 3 of the TCG specification
[172].
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3.5.1 Notation
As an accompanying reference while reading the protocol diagrams, we consider the
following symbols and simplified TPM terminology:

H(𝑚) Compute𝑚’s digest using collision-resistant hash function H.
Sign(𝑘,𝑚) Compute a cryptographic signature over𝑚 using 𝑘 .
𝔗(@𝑐𝑜𝑛𝑓 ) Tracer, which, given a path, returns a tuple (𝑐, 𝑖𝑛𝑜, 𝑖𝑣𝑒𝑟 ) with the contents 𝑐 ,

inode number 𝑖𝑛𝑜 , and inode version 𝑖𝑣𝑒𝑟 .
Vf (𝑒𝑥𝑝𝑟 ) Verification of 𝑒𝑥𝑝𝑟 , which interrupts if the evaluation fails.

𝑃𝐶𝑅 Platform Configuration Register, which is an extend-only structure internal
to the TPM: 𝑃𝐶𝑅 ← H(𝑃𝐶𝑅 ∥ 𝑠𝑜𝑚𝑒𝑉𝑎𝑙)

𝑚𝑃𝐶𝑅 Mock PCR, which mimics a PCR and is used by the orchestrator and provers
to maintain the expected value of the NV PCR that is used for recording
measurements (needed for attestation).

𝐶𝐼𝐷 Configuration identifier associated with a𝑚𝑃𝐶𝑅 on the orchestrator to ref-
erence a prover’s current configuration version.

𝐼𝐷 A unique (prover) node identifier.
ℌ Handle, which references an internally loaded TPM object.

𝑡𝑚𝑝𝑙 Template for a TPM object that describes its type and attributes.
𝐶𝐶𝑐𝑚𝑑 Command Code of the TPM command 𝑐𝑚𝑑 .
𝑒𝑥𝑝 Expiration time in some unit of time.
𝑟𝑒 𝑓 Policy reference used in policies to differentiate authorizations.
𝑝𝑜𝑙 Policy digest as described in Section 3.3.1, which, for our purposes, is a chain

of computations: 𝑝𝑜𝑙 ← H(H(𝑝𝑜𝑙 ∥𝐶𝐶𝑐𝑚𝑑 ∥𝑛𝑎𝑚𝑒) ∥ 𝑟𝑒 𝑓 ), where 𝑛𝑎𝑚𝑒 de-
notes a TPM object’s (e.g., a key) name, which is generally a digest of its
public area.

𝑐𝑝𝐻𝑎𝑠ℎ Command parameter hash, which is computed from the parameters of a TPM
command as described in part 1 of TCG’s specification [172] and, for our
purposes, is computed as: 𝑐𝑝𝐻𝑎𝑠ℎ ← H(𝐶𝐶𝑐𝑚𝑑 ∥𝑝𝑎𝑟𝑎𝑚𝑠), where 𝑝𝑎𝑟𝑎𝑚𝑠
refers to the command-specific parameters. With a 𝑐𝑝𝐻𝑎𝑠ℎ, an authorizing
entity can restrict policies to a specific command and arguments.

𝑎𝐻𝑎𝑠ℎ Authorization hash as described in part 3 of TCG’s specification [172], which
for the: 𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 command has the form 𝑎𝐻𝑎𝑠ℎ ← H(𝑎𝑃𝑜𝑙 ∥ 𝑟𝑒 𝑓 ) to
enable an authorizing entity to dynamically approve a policy 𝑎𝑃𝑜𝑙 to use the
object, and for the 𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 command has the form𝑎𝐻𝑎𝑠ℎ ← H(𝑛 ∥ 𝑒𝑥𝑝 ∥
𝑐𝑝𝐻𝑎𝑠ℎ ∥ 𝑟𝑒 𝑓 ) to enable signed authorization for 𝑒𝑥𝑝𝑖𝑟𝑎𝑏𝑙𝑒 execution of 𝑐𝑝𝐻𝑎𝑠ℎ
in a TPM session whose nonce is 𝑛.

𝑡𝑘𝑡 Ticket, which the TPM computes for a specific command and its arguments
that later proves to the same TPM that it has already performed the necessary
(signature) verification.

{opk, osk} The orchestrator’s asymmetric keypair.
{tpk, tsk} A TEE’s certified asymmetric keypair.

𝐴𝐾 Attestation Key, a restricted signing key that can sign internal TPM struc-
tures and has a public part 𝐴𝐾𝑝𝑢𝑏 and private part 𝐴𝐾𝑝𝑟𝑖𝑣 , where 𝐴𝐾𝑝𝑟𝑖𝑣
never leaves a TPM unencrypted.

𝐼𝐴𝐾 Initial AK, which is initially created and certified inside a TPM.
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Figure 3.1: System model and conceptual work-flow after the orchestrator has verified a
prover’s TPM and TEE keys.

𝐿𝐴𝐾 Local AK, which is remotely certified to reside inside a node’s TPM by the
local (domain) orchestrator.

𝑆𝐾 Storage Key, which is a restricted decryption key used as a parent to wrap
(encrypt) the private part of descendant keys, thus ensuring child key secrecy
when stored outside the TPM.

3.5.2 High-Level Overview
Fig. 3.1 shows the conceptual work-flow of the ZEKRO scheme considering the different
entities described in Section 3.4.1. Our scheme aims to facilitate zero-touch enrollment
and configuration of deployed nodes that execute privacy-critical services such that any-
one can efficiently verify the correctness of the service in zero-knowledge, thus enabling
stitching of privacy-respecting services. Note that, for generality, our scheme succeeds
the initial onboarding of the nodes, where a domain orchestrator verifies a node’s TPM
and TEE certificates and (possibly) verifies that its filesystem enforces i_version. The
scheme comprises three protocols: (i) prover enrollment, (ii) configuration update, and
(iii) oblivious remote attestation. Let us start by clarifying the idea of each protocol while
regarding Fig. 3.1.

3.5.2.1 Enrollment

To enable a deployed node to become a “publicly” verifiable prover, it must first be se-
curely enrolled by a certified orchestrator that will then be responsible for continuously
determining the node’s correct state, whose truthfulness is asserted to verifiers in zero-
knowledge. For this, the orchestrator configures the node’s TPM with two objects: (i) a
local attestation key (LAK) created with a flexible authorization policy with the orches-
trator as its authorizing entity (step 1), and (ii) a non-volatile (NV)-based PCR created
with an authorization policy that binds the node’s TEE as its authorizing entity (step 2).
The former assures that only the orchestrator may approve policies that permit the use
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of the LAK. Similarly, the latter ensures that only the TEE may approve policies that per-
mit modification of the NV PCR. Together, the TPM objects enable the orchestrator to
continuously and securely predicate the use of the LAK to the node’s currently trusted
configuration state by approving policies that require the NV PCR to contain the cur-
rently expected (trusted) aggregate value, which is securely maintained by the node’s
TEE. Finally, although omitted from Fig. 3.1, the node must initially report the unique
number and current version of the inodes assigned to its configuration files to allow the
orchestrator to include inode information in approved policies to ensure detection of
unauthorized file modifications. Note that if the initially reported information is incor-
rect, the prover cannot satisfy approved policies since the TEE’s measurements would
cause the NV PCR to have a different value since the TEE always uses inode information
currently associated with the files.

3.5.2.2 Configuration Update

Once a prover is successfully enrolled, its orchestrator’s responsibility is to approve poli-
cies that restrict the prover’s use of its LAK, which can occur either routinely or upon
demand, e.g., due to a newly released patch. To approve policies for a specific prover
node, the orchestrator keeps a trusted reference copy of that node’s currently correct
configuration, including the associated inode information, and a mock PCR, which it
uses to deterministically compute the expected value of the TEE’s NV PCR once it has
remeasured the node’s configuration (step 3).

Upon receiving a new approved policy for its LAK (step 4), the prover invokes a
trusted application running inside the Secure World of its TEE, which: (i) securely mea-
sures the requested configuration, (ii) authorizes a one-use policy for extending the mea-
surement into its NV PCR, and (iii) returns the measurement and corresponding autho-
rized policy to the prover’s Normal World, where the prover uses the authorization to
extend themeasurement into the NVPCR on behalf of the TEE (step 5). Note that we elab-
orate on the motivation behind outsourcing the extension of the NV PCR to the prover’s
Normal World in Section 3.5.3.2. Furthermore, to protect against an adversary blocking
the orchestrator’s request to measure the node’s configuration from reaching the node’s
TEE in an attempt to evade detection, we describe in Section 3.5.4.4 the utilization of an
accompanying leasing mechanism that enables the orchestrator to grant the node only
temporary ability to satisfy a selected approved policy.

3.5.2.3 Attestation

The final, oblivious remote attestation protocol is executed solely between a prover and
a verifier, where the verifier represents anyone that, trusting the orchestrator, wishes to
determine the correctness of the prover. Like any remote attestation protocol, the verifier
initiates the execution of the protocol by challenging the prover with a fresh nonce (step
6). Then, due to the nature of the LAK object and its strong dependency on the TEE’s
NV PCR, the verifier knows that if the prover can correctly present a signature over the
nonce using a LAK that was certified by the orchestrator (steps 7 and 8), then this serves
as irrefutable evidence that it satisfies whichever policy that the orchestrator approved.
Thus, without knowing any of the prover’s configuration details or what is executing on
the prover, and without requiring the prover to disclose any information, the verifier is
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convinced, in zero-knowledge, that the prover’s configuration is correct. Conversely, if
the prover cannot supply such a signature, then the verifier can reasonably assume that
the prover cannot satisfy the orchestrator’s policy. Note, however, that the freshness of
the prover’s assertion is directly correlated to the orchestrator’s frequency of approving
new policies, i.e., a higher update frequency leads to faster detection.

3.5.3 Prover Enrollment
While the creation of a LAK and an NV PCR are both subsumed under the initial en-
rollment protocol as described in Section 3.5.2.1, we here separate them for clarity since
the creation of each object requires different operations that are unique to that specific
object.

3.5.3.1 Secure Local Attestation Key Creation

Fig. 3.2 shows how the orchestrator verifies that a node has correctly created a LAK in
the same TPM as the pre-provisioned IAK that was verified during the node’s initial on-
boarding, as follows. First, to prepare an authorization policy for the LAK which ensures
that the orchestrator is the object’s only authorizing entity, the orchestrator composes a
flexible policy digest which: (i) binds the orchestrator as the object’s authorizing entity,
and (ii) includes a reference to the specific node’s unique identifier (𝐼𝐷) which allows the
orchestrator, who potentially orchestrates several nodes, to distinguish between autho-
rizations. Then, to inform the node’s TPM about how it should create the LAK, including
the LAK’s attributes and authorization policy, the orchestrator sends a generic LAK tem-
plate together with the prepared authorization policy to the prover, who passes these
values as arguments in a call to its TPM to create the LAK. However, because the TPM’s
storage capacity is severely scarce, it cannot be used to store several keys persistently.
Thus, to protect the LAK’s private part when it is stored external to the TPM, it is cre-
ated as a child of some storage key 𝑆𝐾 , where the purpose of 𝑆𝐾 is to wrap (encrypt) the
LAK’s private part for safe storage outside the TPM.

To prove that the LAK was created correctly, the prover loads it back into its TPM,
where the same 𝑆𝐾 is used internally to decrypt its private part, and a handle referenc-
ing the loaded key is returned that enables cryptographic operations targeting the LAK.
Then, to prove that the LAK resides in the same TPM as the IAK, the IAK is used to sign
a TPM-generated certificate that includes all creation details of the LAK. The certificate
and signature are then sent back to the orchestrator for validation and assurance that the
key has the correct characteristics. Finally, if everything holds, the orchestrator signs a
certificate for the LAK using its secret key, which it gives to the prover node to show to
verifiers to prove its LAK’s validity.

3.5.3.2 Secure NV PCR Creation

Like the creation of the LAK, Fig. 3.3 shows the creation of the NV PCR, where, instead
of the orchestrator, the node’s TEE is now appointed as the object’s authorizing entity
to ensure authentic measurements. The orchestrator begins by preparing an object tem-
plate that instructs the node’s TPM when defining the NV object’s characteristics, e.g.,
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TPM Prover 𝑰𝑫 Orchestrator

𝐼𝐴𝐾, 𝑆𝐾 ℌ𝐼𝐴𝐾 ,ℌ𝑆𝐾 {opk, osk}, 𝐼𝐴𝐾𝑝𝑢𝑏, 𝐼𝐷, 𝑡𝑚𝑝𝑙

𝑎𝑢𝑡ℎ𝑃𝑜𝑙 ← H(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 ∥ opk) ∥ 𝐼𝐷)
𝑡𝑚𝑝𝑙, 𝑎𝑢𝑡ℎ𝑃𝑜𝑙ℌ𝑆𝐾 , 𝑡𝑚𝑝𝑙, 𝑎𝑢𝑡ℎ𝑃𝑜𝑙

TPM2_Create
(𝐿𝐴𝐾𝑝𝑢𝑏, 𝐿𝐴𝐾𝑝𝑟𝑖𝑣) ←$ KGen(1𝑛, 𝑡𝑚𝑝𝑙, 𝑎𝑢𝑡ℎ𝑃𝑜𝑙) 𝐿𝐴𝐾𝑝𝑢𝑏, {𝐿𝐴𝐾𝑝𝑟𝑖𝑣}𝑆𝐾

ℌ𝑆𝐾 , 𝐿𝐴𝐾𝑝𝑢𝑏, {𝐿𝐴𝐾𝑝𝑟𝑖𝑣}𝑆𝐾
TPM2_Load

𝐿𝐴𝐾 ← (𝐿𝐴𝐾𝑝𝑢𝑏, 𝐿𝐴𝐾𝑝𝑟𝑖𝑣) ℌ𝐿𝐴𝐾

ℌ𝐿𝐴𝐾 ,ℌ𝐼𝐴𝐾

TPM2_CertifyCreation
Sig← Sign(𝐼𝐴𝐾𝑝𝑟𝑖𝑣, 𝑐𝑒𝑟𝑡𝐿𝐴𝐾 ) Sig, 𝑐𝑒𝑟𝑡𝐿𝐴𝐾 Sig, 𝑐𝑒𝑟𝑡𝐿𝐴𝐾 Vf (Sig, 𝑐𝑒𝑟𝑡𝐿𝐴𝐾 , 𝐼𝐴𝐾𝑝𝑢𝑏)

Vf ({𝑡𝑚𝑝𝑙, 𝑎𝑢𝑡ℎ𝑃𝑜𝑙} ∈ 𝐿𝐴𝐾𝑝𝑢𝑏)
Sig′ ← Sign(osk, 𝑐𝑒𝑟𝑡 ′

𝐿𝐴𝐾
)

Sig′, 𝑐𝑒𝑟𝑡 ′
𝐿𝐴𝐾store

{
Sig′, 𝑐𝑒𝑟𝑡 ′

𝐿𝐴𝐾

}
Figure 3.2: Creation of a LAK with a flexible authorization policy based on an IAK.

that it should behave like a PCR. This object template, together with an authorization pol-
icy requiring signed authorization from the node’s TEE to modify (extend or delete) the
object, an index to reference the created NV object, and an initial value 𝑖𝑣 that should be
initially extended into the NV PCR, are then sent to the prover node. Given these values,
the prover first calls its TPM to create the NV PCR. Then, to extend the initial value into
the created NV PCR, which requires authorization from the TEE, the prover starts a TPM
session and then passes that session’s nonce together with the initial value and NV PCR
index to a trusted application executing inside the Secure World of its TEE. To authorize
the prover to extend the NV PCR only once and only with the correct value, the trusted
application composes a command parameter hash 𝑐𝑝𝐻𝑎𝑠ℎ to restrict its authorization
to a single TPM command and arguments, namely the 𝑁𝑉 _𝑒𝑥𝑡𝑒𝑛𝑑 command with the
initial value and NV PCR index as arguments. Then, to provide signed authorization for
the 𝑐𝑝𝐻𝑎𝑠ℎ, the trusted application signs an authorization hash 𝑎𝐻𝑎𝑠ℎ over the 𝑐𝑝𝐻𝑎𝑠ℎ
and the prover’s session nonce using its secret key that restricts the authorization only
to the currently active session.

Note that if the trusted application could communicate directly with the TPM (or we
had chosen another isolation mechanism), we would not necessarily need the command
parameter hash. However, it is impractical to communicate with the TPM directly from
within a trusted application due to their inherently small codebase and limited APIs, and
it would require a large chunk of the TPM software stack (TSS) to manage an entire
TPM session. Therefore, we instead have the TEE authorize permission to extend the
measurement into the NV PCR, which can be outsourced to the Normal World since it is
nonreusable and cannot be used to extend incorrect values.

Given signed authorization from the TEE, the prover runs the 𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 command
with the TEE’s signature, its active session nonce, 𝑐𝑝𝐻𝑎𝑠ℎ, and a handle to the TEE’s
public key. Assuming the authorization was correctly signed, the 𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 command
updates the session’s policy digest and sets the session’s command parameter hash to
the authorized 𝑐𝑝𝐻𝑎𝑠ℎ, thus restricting which command the prover can execute. Then,
to extend the TEE’s NV PCR, the prover runs 𝑁𝑉 _𝐸𝑥𝑡𝑒𝑛𝑑 , where, assuming the session’s
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𝐼𝐴𝐾, tpk ℌ𝐼𝐴𝐾 ,ℌtpk 𝐼𝐴𝐾𝑝𝑢𝑏, tpk, 𝑡𝑚𝑝𝑙, 𝑖𝑑𝑥, 𝑖𝑣

𝑎𝑢𝑡ℎ𝑃𝑜𝑙 ← H(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 ∥ tpk))
𝑖𝑑𝑥, 𝑡𝑚𝑝𝑙, 𝑎𝑢𝑡ℎ𝑃𝑜𝑙, 𝑖𝑣𝑖𝑑𝑥, 𝑡𝑚𝑝𝑙, 𝑎𝑢𝑡ℎ𝑃𝑜𝑙

TPM2_NV_DefineSpace
def 𝑁𝑉𝑖𝑑𝑥 with 𝑡𝑚𝑝𝑙 bound to 𝑎𝑢𝑡ℎ𝑃𝑜𝑙

start session for writing 𝑖𝑣 into 𝑖𝑑𝑥POLICY
TPM2_StartAuthSession

fresh POLICY session 𝑝𝑠
𝑝𝑠.𝑛 ←$ {0, 1}_ ℌ𝑝𝑠 , 𝑛 call TEE to authorize writing of 𝑖𝑣 into 𝑖𝑑𝑥

TEE

{tpk, tsk}

𝑖𝑑𝑥, 𝑖𝑣, 𝑛
store 𝑖𝑑𝑥

𝑐𝑝𝐻𝑎𝑠ℎ ← H(𝐶𝐶𝑁𝑉 _𝐸𝑥𝑡𝑒𝑛𝑑 ∥ 𝑖𝑑𝑥
∥ 𝑖𝑑𝑥 ∥ len(𝑖𝑣) ∥ 𝑖𝑣)

𝑎𝐻𝑎𝑠ℎ ← H(𝑛 ∥ 𝑐𝑝𝐻𝑎𝑠ℎ)
Sig← Sign(tsk, 𝑎𝐻𝑎𝑠ℎ)

Sig, 𝑐𝑝𝐻𝑎𝑠ℎ

unlock write access to 𝑖𝑑𝑥ℌ𝑝𝑠 ,ℌtpk, Sig, 𝑛, 𝑐𝑝𝐻𝑎𝑠ℎ

TPM2_PolicySigned
Vf (𝑝𝑠.𝑛 = 𝑛)

Vf (Sig,H(𝑛 ∥ 𝑐𝑝𝐻𝑎𝑠ℎ), tpk)
𝑝𝑠.𝑝𝑜𝑙 ← H(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 ∥ tpk))

𝑝𝑠.𝑐𝑝𝐻𝑎𝑠ℎ ← 𝑐𝑝𝐻𝑎𝑠ℎ

write 𝑖𝑣 into 𝑖𝑑𝑥ℌ𝑝𝑠 , 𝑖𝑑𝑥, 𝑖𝑣

TPM2_NV_Extend
Vf (𝑝𝑠.𝑝𝑜𝑙 = 𝑁𝑉𝑖𝑑𝑥 .𝑎𝑢𝑡ℎ𝑃𝑜𝑙)

Vf (𝑝𝑠.𝑐𝑝𝐻𝑎𝑠ℎ = H(𝐶𝐶𝑁𝑉 _𝐸𝑥𝑡𝑒𝑛𝑑 ∥ 𝑖𝑑𝑥
∥ 𝑖𝑑𝑥 ∥ len(𝑖𝑣) ∥ 𝑖𝑣))

𝑁𝑉𝑖𝑑𝑥 ← H(𝑁𝑉𝑖𝑑𝑥 ∥ 𝑖𝑣)
store𝑚𝑃𝐶𝑅 ← H(0 ∥ 𝑖𝑣)
finally certify the creation of 𝑖𝑑𝑥ℌ𝐼𝐴𝐾 , 𝑖𝑑𝑥

TPM2_NV_Certify
Sig← Sign(𝐼𝐴𝐾𝑝𝑟𝑖𝑣, 𝑐𝑒𝑟𝑡𝑖𝑑𝑥 ) Sig, 𝑐𝑒𝑟𝑡𝑖𝑑𝑥 Sig, 𝑐𝑒𝑟𝑡𝑖𝑑𝑥 store𝑚𝑃𝐶𝑅 ← H(0 ∥ 𝑖𝑣)

Vf (Sig, 𝑐𝑒𝑟𝑡𝑖𝑑𝑥 , 𝐼𝐴𝐾𝑝𝑢𝑏)
Vf ({𝑖𝑑𝑥, 𝑡𝑚𝑝𝑙,𝑚𝑃𝐶𝑅, 𝑎𝑢𝑡ℎ𝑃𝑜𝑙} ∈ 𝑐𝑒𝑟𝑡𝑖𝑑𝑥 )

Figure 3.3: Creation of a NV PCR controlled by the prover TEE’s public key.

policy digest matches the NV PCR’s authorization policy and the command arguments
match the session’s command parameter hash, the TPMwill update the NV PCRwith the
provided initial value. Afterward, to keep track of the value of the NV PCR, the prover
records the extension in its local mock PCR. Finally, similar to the LAK creation process
described in Section 3.5.3.1, the prover proves that the NV PCR was created correctly
by certifying it using its IAK, which the orchestrator verifies by inspecting the signed
certificate.

3.5.4 Configuration Update
Securely equipped with a LAK and an NV PCR, Fig. 3.4 shows how the orchestrator
can reliably approve policies that permit the prover to use its LAK only if its current
configuration is correct by predicating policies on the authentic contents of the TEE’s
NV PCR, as follows.
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opk, tpk ℌopk,ℌtpk,𝑚𝑃𝐶𝑅 {opk, osk}, 𝐼𝐷,𝑚𝑃𝐶𝑅, 𝑖𝑑𝑥, 𝑐𝑜𝑛𝑓 , 𝑖𝑛𝑜, 𝑖𝑣𝑒𝑟, 𝑒𝑥𝑝

ℎ ← H(𝑐𝑜𝑛𝑓 ∥@𝑐𝑜𝑛𝑓 ∥ 𝑖𝑛𝑜 ∥ 𝑖𝑣𝑒𝑟 )
update𝑚𝑃𝐶𝑅 ← H(𝑚𝑃𝐶𝑅 ∥ ℎ)
update 𝐶𝐼𝐷 ← H(𝑚𝑃𝐶𝑅 ∥ 𝐼𝐷)
𝑎𝑃𝑜𝑙 ← H(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 ∥ opk) ∥𝐶𝐼𝐷)
𝑎𝑃𝑜𝑙 ← H(𝑎𝑃𝑜𝑙 ∥𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑁𝑉 ∥H(𝑚𝑃𝐶𝑅) ∥ 𝑖𝑑𝑥)
𝑎𝐻𝑎𝑠ℎ ← H(𝑎𝑃𝑜𝑙 ∥ 𝐼𝐷)
Sig← Sign(osk, 𝑎𝐻𝑎𝑠ℎ)

@𝑐𝑜𝑛𝑓 , 𝑎𝑃𝑜𝑙, Sig, 𝑎𝐻𝑎𝑠ℎℌopk, Sig, 𝑎𝐻𝑎𝑠ℎ

TPM2_VerifySignature
Vf (Sig, 𝑎𝐻𝑎𝑠ℎ, opk)

generate 𝑡𝑘𝑡 𝑡𝑘𝑡 store 𝑡𝑘𝑡 that 𝑎𝑃𝑜𝑙 is authorized by opk
store approved policy 𝑎𝑃𝑜𝑙
start session for writing measurement into 𝑖𝑑𝑥POLICY

TPM2_StartAuthSession
fresh POLICY session 𝑝𝑠

𝑝𝑠.𝑛 ←$ {0, 1}_ ℌ𝑝𝑠 , 𝑛 call TEE to measure config and authorize write

TEE

{tpk, tsk}, 𝑖𝑑𝑥

@𝑐𝑜𝑛𝑓 , 𝑛 (𝑐, 𝑖𝑛𝑜, 𝑖𝑣𝑒𝑟 ) ← 𝔗 (@𝑐𝑜𝑛𝑓 )
ℎ ← H(𝑐 ∥@𝑐𝑜𝑛𝑓 ∥ 𝑖𝑛𝑜 ∥ 𝑖𝑣𝑒𝑟 )
𝑐𝑝𝐻𝑎𝑠ℎ ← H(𝐶𝐶𝑁𝑉 _𝐸𝑥𝑡𝑒𝑛𝑑 ∥ 𝑖𝑑𝑥

∥ 𝑖𝑑𝑥 ∥ len(ℎ) ∥ ℎ)
𝑎𝐻𝑎𝑠ℎ ← H(𝑛 ∥ 𝑐𝑝𝐻𝑎𝑠ℎ)
Sig′ ← Sign(tsk, 𝑎𝐻𝑎𝑠ℎ)

Sig′, 𝑐𝑝𝐻𝑎𝑠ℎ,ℎ

unlock write access to 𝑖𝑑𝑥ℌ𝑝𝑠 ,ℌtpk, Sig′, 𝑛, 𝑐𝑝𝐻𝑎𝑠ℎ

TPM2_PolicySigned
Vf (𝑝𝑠.𝑛 = 𝑛)

Vf (Sig′,H(𝑛 ∥ 𝑐𝑝𝐻𝑎𝑠ℎ), tpk)
𝑝𝑠.𝑝𝑜𝑙 ← H(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 ∥ tpk))

𝑝𝑠.𝑐𝑝𝐻𝑎𝑠ℎ ← 𝑐𝑝𝐻𝑎𝑠ℎ

write ℎ into 𝑖𝑑𝑥ℌ𝑝𝑠 , 𝑖𝑑𝑥, ℎ

TPM2_NV_Extend
Vf (𝑝𝑠.𝑝𝑜𝑙 = 𝑁𝑉𝑖𝑑𝑥 .𝑎𝑢𝑡ℎ𝑃𝑜𝑙)

Vf (𝑝𝑠.𝑐𝑝𝐻𝑎𝑠ℎ = H(𝐶𝐶𝑁𝑉 _𝐸𝑥𝑡𝑒𝑛𝑑 ∥ 𝑖𝑑𝑥
∥ 𝑖𝑑𝑥 ∥ len(ℎ) ∥ ℎ))

𝑁𝑉𝑖𝑑𝑥 ← H(𝑁𝑉𝑖𝑑𝑥 ∥ ℎ)
update𝑚𝑃𝐶𝑅 ← H(𝑚𝑃𝐶𝑅 ∥ ℎ)
start session to get lease for part (A) of 𝑎𝑃𝑜𝑙POLICY

TPM2_StartAuthSession
fresh POLICY session 𝑝𝑠

𝑝𝑠.𝑛 ←$ {0, 1}_ ℌ𝑝𝑠 , 𝑛 𝑛

Lease Renewal
𝑎𝐻𝑎𝑠ℎ ← H(𝑛 ∥ 𝑒𝑥𝑝 ∥𝐶𝐼𝐷)
Sig← Sign(osk, 𝑎𝐻𝑎𝑠ℎ)Sig, 𝑒𝑥𝑝,𝐶𝐼𝐷submit lease to get ephemeral ticketℌ𝑝𝑠 ,ℌopk, Sig, 𝑛, 𝑒𝑥𝑝,𝐶𝐼𝐷

TPM2_PolicySigned
Vf (𝑝𝑠.𝑛 = 𝑛)

Vf (Sig,H(𝑛 ∥ 𝑒𝑥𝑝 ∥𝐶𝐼𝐷), opk)
generate 𝑡𝑘𝑡 ′, which expires in 𝑒𝑥𝑝 𝑡𝑘𝑡 ′

store 𝑡𝑘𝑡 ′ that lease for 𝐶𝐼𝐷 is authorized
store policy (configuration) reference 𝐶𝐼𝐷

Part (A)

Part (B)

Figure 3.4: To enforce a new configuration state on a prover node, the orchestrator ap-
proves a policy for the prover node’s LAK that is (i) restricted to the new configuration
state and (ii) requires time-limited authorization to use.

3.5.4.1 Calculating the Golden Hash

Let us assume that the orchestrator wants to allow a prover to use its LAK if its current
configuration is correct. To simplify the discussion, we narrow the scope of the consid-
ered configuration to one file whose filesystem location on the prover is@𝑐𝑜𝑛𝑓 . To create
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such a policy, the orchestrator first computes the expected (trusted) value of the prover
TEE’s NV PCR after it has been extended with the correct measurement. To compute
this value, the orchestrator computes a hash over the contents of the currently correct
version of the prover’s configuration file, denoted 𝑐𝑜𝑛𝑓 , including its known location
@𝑐𝑜𝑛𝑓 , inode number 𝑖𝑛𝑜 , and current inode version 𝑖𝑣𝑒𝑟 , which it extends into its local
mock PCR. Note that by including (committing to) the file location, we effectively pre-
vent any adversary from feeding the prover’s TEE with a spoofed path since the TEE’s
measurement would differ. Similarly, the inclusion of the inode number and version en-
sure that any unexpected deletion or modification of the configuration file is detected.
Finally, the orchestrator computes a unique configuration identifier 𝐶𝐼𝐷 as a hash over
the current value of the mock PCR and the node’s identifier (𝐼𝐷), which now uniquely
references the prover’s current configuration version.

3.5.4.2 Approving the Policy

To approve a policy for the node’s LAK that is unique to the current configuration iden-
tifier𝐶𝐼𝐷 and requires that the TEE’s NV PCR contains the currently expected value, the
orchestrator creates an approval policy 𝑎𝑃𝑜𝑙 requiring that the node presents: (a) signed
authorization from the orchestrator with explicit mention of 𝐶𝐼𝐷 and (b) that the TEE’s
NV PCR contains the expected value. To authorize the approved policy, the orchestrator
signs an authorization hash 𝑎𝐻𝑎𝑠ℎ over the approved policy and a reference to the spe-
cific node’s 𝐼𝐷 , such that the approved policy will work (match) only with that node’s
LAK. Note here that the purpose of the first part (a) of the approved policy is to allow the
orchestrator to enforce a leasing mechanism on its approved policies. Specifically, for a
node to satisfy an approved policy 𝑎𝑃𝑜𝑙 whose part (a) references some𝐶𝐼𝐷 , the orches-
trator must sign an authorization hash referencing 𝐶𝐼𝐷 . Furthermore, by including an
expiration in the authorization hash, a node’s TPM will revoke the authorization after
the specified time, thus requiring a node to request a new “lease” to continue satisfying
an approved policy. Finally, because the orchestrator controls which 𝐶𝐼𝐷 it authorizes
during lease renewal and presumably chooses the most recent, we castrate any adversary
attempting to lock a node in a “good” state.

3.5.4.3 Configuration Remeasurement

Once approved, the orchestrator sends the policy, its signed authorization hash, and the
considered configuration file(s) path to the appropriate node. To ensure the signature’s
authenticity, the node uses its TPM to verify it under the orchestrator’s public key. How-
ever, since verification is expensive, and the node must prove the approved policy’s au-
thenticity every time it attempts to satisfy it to use its LAK, the TPM outputs a ticket if
the verification was successful, which is then later supplied as evidence to the TPM that
it has already done the verification.

Then, to remeasure its configuration (or part thereof), the node starts a TPM session
and passes the session’s nonce with the configuration file path in a call to the trusted
application executing inside the Secure World of its TEE. Then, using its accurate tracer
mechanism, the trusted application: (i) retrieves the specified file’s content and inode
information and then (ii) computes a hash (measurement) over the contents, its filesys-
tem location, and the associated inode number and version. Finally, similarly to how it
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authorized extending an initial value into its NV PCR as described in Section 3.5.3.2, the
trusted application signs an authorization hash for a one-time policy to extend the com-
puted measurement, which the prover node then uses to update the NV PCR and also its
mock PCR.

3.5.4.4 Leasing

Finally, depending on the update frequency and the considered expiration time for leases,
the prover must repeatedly request new leases from the orchestrator to continue satis-
fying part (a) of the currently approved policy. To get a new lease, the prover must start
a new TPM session and send the session’s nonce to the orchestrator, who then signs an
authorization hash that includes the session nonce, some expiration time, and the current
configuration identifier𝐶𝐼𝐷 . These values, together with the signed authorization hash,
are then returned to the prover who, in the same TPM session, must pass them in a call
to 𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 , where, if everything holds, a self-expiring ticket will be returned that
proves to the TPM that the orchestrator signed these specific arguments, which can be
used to temporarily satisfy part (a) of the currently approved policy.

3.5.5 Oblivious Remote Attestation
When challenging a prover with a nonce, Fig. 3.5 shows how the prover attempts to sat-
isfy an approved policy 𝑎𝑃𝑜𝑙 to use its LAK to sign the nonce. To satisfy 𝑎𝑃𝑜𝑙 , the prover
starts a new policy session, over which it runs (i) 𝑃𝑜𝑙𝑖𝑐𝑦𝑇𝑖𝑐𝑘𝑒𝑡 with a ticket proving that
it has signed authorization from the orchestrator, and (ii) 𝑃𝑜𝑙𝑖𝑐𝑦𝑁𝑉 with the index of its
TEE’s NV PCR and the expected value, which it maintains in its mock PCR. If the ticket
is correct and has not expired, the TPM updates the session’s policy digest with a value
corresponding to part (a) of 𝑎𝑃𝑜𝑙 . Similarly, if the expected value matches the actual PCR
contents, the TPM updates the session’s policy digest with a value corresponding to part
(b) of 𝑎𝑃𝑜𝑙 . Finally, assuming that the session’s aggregated policy digest matches 𝑎𝑃𝑜𝑙 ,
the prover can run 𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 with its 𝐼𝐷 , 𝑎𝑃𝑜𝑙 , the orchestrator’s public key, and a
ticket proving 𝑎𝑃𝑜𝑙 was signed by the orchestrator. If everything holds, the TPM replaces
the session’s policy digest with the “flexible policy digest”, which specifies the orchestra-
tor’s public key as the authorizing authority and references the node’s 𝐼𝐷 . Assuming the
session’s policy digest matches the LAK’s authorization policy, the prover can sign the
nonce using its LAK and subsequently send the signature and its LAK certificate back to
the verifier in a single pass, where, if everything holds, the verifier is convinced that the
prover is currently in a correct state.

3.6 Empirical Performance Evaluation

3.6.1 Implementation and Experimental Setup
We implemented our protocols described in Section 3.5 in C++ with IBM’s TPM Software
Stack (TSS) v1.6.0 [80] and OpenSSL v1.1.1i, compiled using the GNU GCC compiler. We
considered only elliptic curve keys and used SHA256 exclusively as our hashing function.
We evaluated our dockerized implementation [57] on a Raspberry Pi 4 Model B platform
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𝐿𝐴𝐾 ℌ𝐿𝐴𝐾 ,
{
Sig′, 𝑐𝑒𝑟𝑡 ′

𝐿𝐴𝐾

}
, opk, opk

𝑎𝑃𝑜𝑙, 𝑡𝑘𝑡, 𝑡𝑘𝑡 ′,𝐶𝐼𝐷,𝑚𝑃𝐶𝑅

𝑛 ←$ {0, 1}_
𝑛start policy session for satisfying the

approved policy 𝑎𝑃𝑜𝑙 to use the LAKPOLICY

TPM2_StartAuthSession
fresh POLICY session 𝑝𝑠 ℌ𝑝𝑠

show ticket for part (A) of 𝑎𝑃𝑜𝑙ℌ𝑝𝑠 , opk, 𝑡𝑘𝑡 ′,𝐶𝐼𝐷

TPM2_PolicyTicket
check 𝑡𝑘𝑡 ′

𝑝𝑠.𝑝𝑜𝑙 ← H(H(𝑝𝑠.𝑝𝑜𝑙 ∥𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 ∥ opk) ∥𝐶𝐼𝐷)
assert that 𝑖𝑑𝑥 has the expected
value to satisfy part (B) of 𝑎𝑃𝑜𝑙ℌ𝑝𝑠 , 𝑖𝑑𝑥,𝑚𝑃𝐶𝑅

TPM2_PolicyNV
Vf (𝑁𝑉𝑖𝑑𝑥 =𝑚𝑃𝐶𝑅)

𝑝𝑠.𝑝𝑜𝑙 ← H(𝑝𝑠.𝑝𝑜𝑙 ∥𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝑁𝑉 ∥H(𝑚𝑃𝐶𝑅) ∥ 𝑖𝑑𝑥) attempt to get LAK’s 𝑎𝑢𝑡ℎ𝑃𝑜𝑙ℌ𝑝𝑠 , 𝑎𝑃𝑜𝑙, 𝐼𝐷, opk, 𝑡𝑘𝑡

TPM2_PolicyAuthorize
check 𝑡𝑘𝑡

Vf (𝑝𝑠.𝑝𝑜𝑙 = 𝑎𝑃𝑜𝑙)
𝑝𝑠.𝑝𝑜𝑙 ← H(H(𝐶𝐶𝑃𝑜𝑙𝑖𝑐𝑦𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒 ∥ opk) ∥ 𝐼𝐷)

attempt to sign nonce 𝑛 with LAKℌ𝑝𝑠 ,ℌ𝐿𝐴𝐾 , 𝑛

TPM2_Sign
Vf (𝑝𝑠.𝑝𝑜𝑙 = 𝐿𝐴𝐾.𝑎𝑢𝑡ℎ𝑃𝑜𝑙)

Sig← Sign(𝐿𝐴𝐾𝑝𝑟𝑖𝑣, 𝑛) Sig Sig,
{
Sig′, 𝑐𝑒𝑟𝑡 ′

𝐿𝐴𝐾

}
Vf (Sig′, 𝑐𝑒𝑟𝑡 ′

𝐿𝐴𝐾
, opk)

Vf (Sig, 𝑛, 𝐿𝐴𝐾𝑝𝑢𝑏)

Figure 3.5: The Oblivious Remote Attestation protocol, where a verifier makes initial
contact to a prover and challenges it to prove its configuration integrity by signing a
nonce using a LAK certified by the prover’s orchestrator.

with a 1.5 GHz ARM processor, where we recorded the protocol’s performance against
IBM’s software TPM v1637 [80] and an OPTIGA SLB9670 hardware TPM.

3.6.2 Performance Benchmarks
Our performance results are summarized in Table 3.1, where, for each subprotocol, we
show: how long it takes to complete the protocol (first row) and how much time it takes
for the completion of each of the TPM commands when executed against either a hard-
ware or software TPM (next rows). Note that the timings are produced using C++11’s
chrono library’s system clock, and each timing statistic also includes the time spent by
the TSS to perform the necessary processing of our commands and its internal session
management. Furthermore, in the case of the hardware TPM, each timing statistic also
includes any Low Pin Count (LPC) bus delay.

Note that we omitted the timings for the orchestrator’s verification of the created LAK
and NV PCR and the verifier’s verification of the signed nonce since these operations do
not necessarily require interaction with the TPM and are near-instant operations. It is
also worth mentioning that, despite the empirical findings showing that a hardware TPM
is an efficiency barrier, it provides security guarantees against stronger adversaries than
a software TPM.

Regarding our protocols, note that the first two protocols, i.e., the protocols for creat-
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Table 3.1: Performance of the protocols over 15 iterations. The table shows the average
time in milliseconds (and standard deviation, 𝝈 ) to run each of the protocols at a prover
when considering a software (left) and hardware TPM (right).

Subprotocol Avg. (SWTPM) Avg. (HWTPM)

LAK creation 14.98 (𝜎 ≈ 0.96) 699.16 (𝜎 ≈ 10.90)
TPM2_Create 9.68 (𝜎 ≈ 1.61) 267.11 (𝜎 ≈ 2.34)
TPM2_Load 1.07 (𝜎 ≈ 0.25) 154.21 (𝜎 ≈ 26.73)
TPM2_CertifyCreation 4.22 (𝜎 ≈ 1.02) 277.83 (𝜎 ≈ 3.62)
Attaching a NV PCR 10.67 (𝜎 ≈ 0.48) 576.43 (𝜎 ≈ 6.35)
TPM2_NV_DefineSpace 1.24 (𝜎 ≈ 0.23) 26.70 (𝜎 ≈ 0.26)
TPM2_StartAuthSession 0.96 (𝜎 ≈ 0.24) 31.60 (𝜎 ≈ 0.91)
TPM2_PolicySigned 3.26 (𝜎 ≈ 0.79) 272.51 (𝜎 ≈ 26.13)
TPM2_NV_Extend 1.31 (𝜎 ≈ 0.37) 44.20 (𝜎 ≈ 2.30)
TPM2_NV_Certify 3.91 (𝜎 ≈ 0.75) 201.42 (𝜎 ≈ 2.16)
Measurement update 12.98 (𝜎 ≈ 0.61) 832.41 (𝜎 ≈ 7.70)
TPM2_VerifySignature 3.24 (𝜎 ≈ 1.02) 179.99 (𝜎 ≈ 1.47)
TPM2_StartAuthSession (X2) 1.91 (𝜎 ≈ 0.24) 63.19 (𝜎 ≈ 0.91)
TPM2_PolicySigned (X2) 6.51 (𝜎 ≈ 0.79) 545.03 (𝜎 ≈ 26.13)
TPM2_NV_Extend 1.31 (𝜎 ≈ 0.37) 44.20 (𝜎 ≈ 2.30)
ORA 7.37 (𝜎 ≈ 0.38) 474.67 (𝜎 ≈ 5.14)
TPM2_StartAuthSession 0.96 (𝜎 ≈ 0.24) 31.60 (𝜎 ≈ 0.91)
TPM2_PolicyTicket 0.75 (𝜎 ≈ 0.20) 68.77 (𝜎 ≈ 0.72)
TPM2_PolicyNV 0.73 (𝜎 ≈ 0.20) 61.07 (𝜎 ≈ 0.25)
TPM2_PolicyAuthorize 0.72 (𝜎 ≈ 0.19) 68.74 (𝜎 ≈ 0.58)
TPM2_Sign 4.21 (𝜎 ≈ 1.08) 244.49 (𝜎 ≈ 23.25)

ing a LAK and the protocol for creating an NV PCR, need only be executed once for each
node due to the flexibility of their authorization policies; thus, their performance is negli-
gible. After that, the most time-consuming protocol is the configuration update protocol
executed between a domain orchestrator and a node. However, note that the reported
timings include the time for (i) verifying the orchestrator’s newly approved policy, (ii)
extending the node’s measurements into the TEE’s NV PCR, and (iii) using a lease from
the orchestrator to get a ticket to satisfy the first part of the newly approved policy as
shown in Fig. 3.4. If we only consider the time to get a new ticket for a new lease, which
only requires one 𝑆𝑡𝑎𝑟𝑡𝐴𝑢𝑡ℎ𝑆𝑒𝑠𝑠𝑖𝑜𝑛 command and one 𝑃𝑜𝑙𝑖𝑐𝑦𝑆𝑖𝑔𝑛𝑒𝑑 command, then the
time is only ≈ 4.22 ms using the software TPM and ≈ 304.11 ms using the hardware
TPM. Finally, the ORA protocol, which nodes execute among themselves, takes a prover
≈ 0.5 seconds to complete on a hardware TPM and < 10 ms with a software TPM.

3.7 Security Properties
Our scheme is designed to achieve the following security properties:

Property 3.7.1 (Secure Enrollment). During a node’s zero-touch enrollment, its trusted
orchestrator (i) verifies that it created a LAK inside the same authentic TPM as its certified
IAK and (ii) certifies that the LAK only ever obeys policies approved by the node’s trusted
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orchestrator.

Property 3.7.2 (Policy Authenticity). By initially embedding a node’s identifier in its
LAK’s authorization policy, we ensure that policies approved for a node’s LAK by its
orchestrator must bear that node’s identifier to be satisfiable, thus effectively preventing
any adversary from using policies meant for one node to unlock the LAK on a different
node.

Property 3.7.3 (Measurement Authenticity). By predicating all policies approved for a
node’s LAK on an NV PCR that requires explicit TEE authorization for being written into
and having the TEE only authorize its measurements, we prevent adversaries from sup-
plying unauthentic measurements to unlock a LAK. Further, by including (committing
to) filesystem path(s) and inode details of the considered configurations in the approved
policies, we prevent path spoofing and ensure the detection of any unauthorized config-
uration modification that may have occurred since the last measurement, e.g., as a result
of transient malware. Specifically, since the attacks would cause the TEE’s measurements
to differ from the expected measurements used by the orchestrator in the approved pol-
icy, an affected node would become unable to satisfy the approved policy to use its LAK
to convince verifiers about its configuration correctness.

Property 3.7.4 (Policy Freshness). By predicating all policies approved for a node’s LAK
on additional authorization by the orchestrator with explicit mention of that node and
the approved policy it applies to (through the configuration identifier) and having the
orchestrator include expiration on such authorizations, we secure a leasing mechanism
to prevent nodes from satisfying approved policies beyond their intended timeframes,
thus preventing adversaries from satisfying policies approved for old configuration states
in an attempt to evade the remeasurement process of the node’s current configuration.

Property 3.7.5 (Implicit Revocation). Since continued use of a LAK requires continued
orchestrator authorization, nodes halt unless kept alive.

Property 3.7.6 (Zero-Knowledge Verification). Most importantly, our oblivious attes-
tation protocol ensures that verifiers need no reference materials to determine a prover
node’s correctness, nor can they infer anything about its configuration since the decision
is solely based on the prover presenting a correct signature over a fresh challenge.

3.8 Conclusions
We presented ZEKRO, a novel, scalable, efficient, and effective orchestration scheme that
utilizes state-of-the-art trusted computing technologies to facilitate the secure orches-
tration of a multitude of nodes over multi-domain networks while allowing mutually
distrusting nodes to partake in privacy-preserving remote attestation activities to deter-
mine the configuration correctness of one another.
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Chapter 4

ZEKRA: Zero-Knowledge

Control-Flow Attestation

Abstract
To detect runtime attacks against programs running on a remote computing platform,
Control-Flow Attestation (CFA) lets a (trusted) verifier determine the legality of the pro-
gram’s execution path, as recorded and reported by the remote platform (prover). How-
ever, besides complicating scalability due to verifier complexity, this assumption regard-
ing the verifier’s trustworthiness renders existingCFA schemes prone to privacy breaches
and implementation disclosure attacks under “honest-but-curious” adversaries. Thus, to
suppress sensitive details from the verifier, we propose to have the prover outsource the
verification of the attested execution path to an intermediate worker of which the verifier
only learns the result. However, since a worker might be dishonest about the outcome of
the verification, we propose a purely cryptographical solution of transforming the ver-
ification of the attested execution path into a verifiable computational task that can be
reliably outsourced to a worker without assuming any trusted execution environment
on the worker. Specifically, we propose a novel method of encasing a program-agnostic
execution path verification task inside an arithmetic circuit whose correct execution can
be verified by untrusted verifiers using a zero-knowledge proof system without the veri-
fiers learning any secret inputs. The asymptotic complexity of our construction, in terms
of the outsourceable circuit’s size, is O(3𝑁 +𝐸 +3𝐸

√
𝑁 +𝐸

√
𝐷), where 𝐸 is the execution

path size, 𝑁 is the number of nodes in the attested program’s Control-Flow Graph, and
𝐷 is the shadow stack depth. We also benchmarked our construction under the Groth16
zkSNARK proof system, showing <10 seconds performance with an AMD Ryzen 7 3700X
CPU to generate proofs with parameters 𝐸=1K,𝑁=1K,𝐷=15 that are verified in 2 ms.

4.1 Introduction

To safeguard the increasing computing system attack landscape [120, 112], traditional
remote attestation schemes let a (trusted) verifier reason about the state of a remote

46



prover’s computing platform. The security of such schemes generally relies on a trust an-
chor on the prover, capable of securely recording and authenticating platform evidence.
Building on this concept, Control-Flow Attestation (CFA) [2, 63, 186, 62, 3, 176, 95, 125,
169, 117, 140, 141] aims to determine whether a program was executed correctly on a
resource-constrained prover by verifying that no runtime attacks (e.g., ROP [162]) sub-
verted the program’s control-flow behavior. To ensure that a program was executed cor-
rectly, existing CFA schemes assume a trusted verifier who maintains complete reference
materials, such as the program’s Control-Flow Graph (CFG) and in-memory program
layout, and other acceptance criteria to decide on the legality of the attested program’s
execution path, as recorded and reported by the prover’s trust anchor. However, besides
severely degrading scalability due to the incurred verifier complexity, the unattractive
need to exchange comprehensive prover information discourages the adoption of CFA in
both public-facing and emerging multi-domain services [15] where privacy constraints
or contractual differences among vendors might prohibit such disclosure.

While not yet demonstrated for CFA, the concept of Property-BasedAttestation (PBA)
[45] could reduce the verifier complexity and prevent information disclosure by giving
the verifier only the verification result in the form of some semantical property. How-
ever, performing the necessary verification and property translation locally on the prover
would require a resourceful trust anchor capable of correctly maintaining all trusted ref-
erencematerials and performing the verification correctly, which is sometimes impractical,
especially for resource-constrained settings such as those generally considered in CFA.
Here, the provers are severely underpowered devices equipped with carefully designed
minimalistic trust anchors [63] whose sole purpose is to record and authenticate a pro-
gram’s execution path during attestation. Therefore, without complicating the prover,
another option is to introduce an intermediate, more powerful party, which we refer to
as a worker (sometimes called an “attestation proxy”), responsible for performing the
attestation verification on behalf of the verifier and conveying only the result back to
the verifier. However, to convince the verifier that the verification was done correctly,
we would again generally encounter heavy assumptions, such as requiring trusted hard-
ware or a Trusted Execution Environment (TEE) with attestable execution (e.g., Intel
SGX) [177] to protect the verification process on the worker.

Instead, we propose to utilize Verifiable Computation (VC) to transform the task of
verifying the prover’s attested program execution into an outsourceable arithmetic cir-
cuit whose proof of correct execution can be generated by the worker and efficiently veri-
fied by the verifier, proving the attestation verification’s correctness and outcome. Using
VC, we need no assumption of any trusted computing base on the worker while also protect-
ing against a wider range of attackers than approaches that consider some form of TEE.
Further, to hide certain inputs of the proof generation (e.g., the attested execution path
and program details) from completely untrusted verifiers, we use a privacy-enhanced VC
scheme called zero-knowledge Succinct Non-interactive Arguments of Knowledge (zk-
SNARK) [83].
Motivating use case. One sample scenario is an IoT-based Air Quality Decision Support
System (AQDSS) [151], wherein citizens employ smart sensors (publishers) that report
their readings onto a blockchain, which can then be consumed by the public (subscribers).
Here, the publisher devices are produced by trusted manufacturers, but we have no trust
assumptions about the subscribers. Thus, while the public (subscribers) wants guarantees
that the readings originate from uncompromised sensors, the manufacturers (or citizens)
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might not want to disclose sensor details to the subscribers, hence the need for privacy.
While [151] considered the case of providing evidence that the static state of a sensor
device was uncompromised along with its readings, our approach gives additional evi-
dence for the untrusted public to confirm that the expected function of the sensor was
executed correctly (i.e., in the absence of any control-flow attack) without disclosing any
sensitive information.

4.1.1 Contributions
We propose a novel protocol called ZEro-Knowledge contRol-flow Attestation (ZEKRA),
which is, to our knowledge, the first privacy-preserving CFA protocol. Without impos-
ing additional prover assumptions, we remove all trust and complexity assumptions re-
garding verifiers by outsourcing attestation verifications to intermediate workers who
employ VC to convince verifiers about the verification results. Our work offers the fol-
lowing contributions: (i) We present a novel scheme that lets underpowered provers
convince untrusted verifiers about a program’s correct execution in zero-knowledge by
offloading the verification to an intermediate worker that assures verifiers about the re-
sult without disclosing any secrets using zkSNARK technology; (ii) We detail our out-
sourceable circuit design, including the use of several circuit optimization techniques;
(iii) Realistic case studies, showing how ZEKRA can resolve privacy issues in privacy-
sensitive (non-time-critical) application domains; and, (iv) We validate and benchmark
ZEKRA with a proof-of-concept implementation, which we make publicly available [56]
to ensure reproducibility and encourage further work.

4.2 Related Works
Many prevention methods have been proposed to address program runtime attacks, e.g.,
shadow stacks and stack canaries [54], Control-Pointer Integrity (CPI) [118], andControl-
Flow Integrity (CFI) [1, 183, 75, 85, 124, 107] all aim to protect a program’s attack surface
during runtime. However, these methods fail to provide any assurance to a remote en-
tity since all enforcement happens locally and will (depending on the enforced policy)
abruptly stop–and possibly crash–a device upon violations, which can be dangerous in
certain safety-critical applications.
Runtime attestation. To detect control-flow attacks against a program, C-FLAT [2]
proposed instrumenting the program to self-report its control-flow events during run-
time to a Trusted Execution Environment (TEE), which is then hashed and reported to
a trusted verifier who checks that the digest exists in a set of trusted reference values.
LO-FAT [63] leverages a customized hardware module to intercept the executed instruc-
tions at runtime to improve C-FLAT performance. ATRIUM [186] enhances both C-FLAT
and LO-FAT to detect TOCTOU attacks that swap malign program segments with benign
segments during attestation to evade detection. It relies on a customized hardware mod-
ule that runs attestation parallel to the main processor. ScaRR [176] aims to apply CFA
to complex systems, e.g., cloud-native virtual machines. To deal with the challenge of
representing all the valid execution paths in complex systems, ScaRR follows C-FLAT’s
approach of splitting the control-flow execution into sub-paths, where the idea is basi-
cally to record each unique loop path only once in the execution path while maintain-
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ing associated counters to track the number of times each path was taken. Tiny-CFA
[140] is a CFA protocol that relies on the APEX Proof-of-Execution (PoX) architecture
[139] and, similar to C-FLAT, assumes that the software is instrumented. ReCFA [187]
performs control-flow attestation of complex software by relying on the static binary
analysis and binary instrumentation. In particular, the scheme compresses the control-
flow evidence efficiently and enforces control-flow integrity policy at the binary level
with a remote shadow stack. Note that other CFA schemes also exist, which additionally
consider: utilizing machine learning [95], a log-based approach and use of physically un-
clonable functions [125], distributed settings and use of multiset hash function to reduce
the size of the reported execution path [3], which despite its benefits, makes the verifi-
cation unable to detect certain attacks since the order of the control-flow transfers is not
preserved in the multiset representation. Some approaches also consider detecting some
data-oriented attacks [62, 169, 117, 141] by verifying the integrity of both control-flow
and data involved in the execution.

Note that our work is complimentary to the above approaches: prior work can lever-
age our scheme to weaken the trust assumptions concerning the verifier. Specifically,
whereas prior CFA works generally focus on recording and reporting the program’s exe-
cution path, we focus on the layer between provers and verifiers to remove the omniscient
and trusted verifier assumption by making the verification zero-knowledge.
Verifiable computation. Unlike CFA schemes that consider underpowered provers and
powerful verifiers, proof-based Verfiable Computation (VC) enables weak verifiers (our
provers) to outsource computationally intensive computations to powerful yet untrusted
provers (our workers) who return proof that the computation was done correctly. More-
over, to enable secret inputs in the computations, privacy-enhanced VC schemes, e.g.,
zkSNARKs [83], guarantee that the proof reveals nothing about the secret inputs. Fur-
thermore, whereas proof generation is slow, verification is remarkably fast, making zk-
SNARKs attractive, especially in Distributed Ledger Technology (DLT), e.g., the anony-
mous cryptocurrency Zcash [157] and Ethereum.

To verify general programs using zkSNARKs, specialized compilers, such as TinyRAM
[19], vnTinyRAM [20], and Buffet [180] have enabled the transformation of traditional
programs into low-level circuits, whose execution can be proven and verified securely.
For example, the TinyRAM [19] circuit compiler takes a high-level C program and a time-
bound𝑇 as input and compiles the program to special assembly instructions, whose em-
ulated execution on some input for up to 𝑇 cycles in a general-purpose MIPS-like CPU,
called TinyRAM, is expressed as an arithmetic circuit that verifies the correct execution
of the input program. However, the principal disadvantage is cost since the number
of circuit constraints (i.e., the size of the circuit) grows unwieldy as the program com-
plexity increases, which strongly correlates to the amount of time it takes to generate
proof over the circuit’s execution. Improving on the per-cycle cost, TinyRAM’s succes-
sor, vnTinyRAM [20], achieved a quasi-constant per-cycle cost of ≈ 1, 458 constraints,
and later Buffet [180] further improved control flow and random memory access by 1-3
and 1-2 orders of magnitude, respectively.

Nonetheless, directly expressing general programs as circuits remains expensive. For-
tunately, CFA schemes have demonstrated that verifying a program’s execution is enough
to convince a remote verifier that a program executed correctly with respect to its control
flow. While CFA’s security guarantee is only a subset of that of VC, this paper demon-
strates that combining the two allows underpowered provers to prove a program’s ex-
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if x == y 
  then data = temperature() 
  else data = humidity() 
broadcast(data) 
...
temperature: 
  while i < z 
    stmt 
  return temperature 
...
humidity: ...statements... 
broadcast: ...statements... 
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Figure 4.1: Abstract view of a program’s CFG and threats.

ecution correctness to potentially untrusted verifiers, with the only requirement being
that the prover can securely record and attest to the executed path, whose verification
on an intermediate worker is made verifiable using VC.

4.3 Background

4.3.1 Program Composition
A compiled program’s code can be represented by its Control-Flow Graph (CFG), which
encapsulates all possible program executions by modeling the legal control flow between
all of the program’s statements. However, since not all statements affect the control
flow, we typically fractionate the statements into maximal-length sequences of branch-
less statements that ultimately end in a branch, jump, or predicated operation. We denote
each such sequence as a basic block (BBL) and have the CFG model the control flow only
between program BBLs. Let 𝐺 = (𝑁, 𝐸) denote a directed graph (CFG), where nodes
𝑛𝑖 ∈ 𝑁 correspond to BBLs and edges 𝑒 = (𝑛𝑖 , 𝑛 𝑗 ) ∈ 𝐸 denote possible transfers of con-
trol. We refer to edges corresponding to (direct and indirect) jumps and calls as forward
edges and returns as back edges. We further label any node 𝑛𝑖 an entry node (𝑛▷) if it is
unreachable (i.e., has indegree 𝛿− (𝑛𝑖 ) of zero) and a final node (𝑛◀) if it has no reachable
nodes (i.e., has outdegree 𝛿+ (𝑛𝑖 ) of zero). (We denote with Δ(𝐺) the maximum outdegree
of𝐺 .) Finally, any continuous edge sequence is a legal execution path if it connects some
𝑛▷ to 𝑛◀ (denoted 𝑛▷ ⇝ 𝑛◀).

4.3.2 Runtime Attacks
We continue with a description of major runtime attack classes that can induce harmful
behavior by exploiting software vulnerabilities to corrupt a program’s control and data
planes. As a running example, let us consider the simple program skeleton in Fig. 4.1.
Control-based attacks. The most common attacks target a program’s control plane to
execute unintended code by explicitly diverting its execution path. There are essentially
two variants: code injection and code reuse. With code injection, an adversary crafts
and injects a payload into memory and redirects a benign program’s control flow to ex-
ecute the payload. As an example, consider that in Fig. 4.1 an adversary has injected
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node 𝑛𝑋 and diverted the control-flow from (𝑛3, 𝑛8) to (𝑛3, 𝑛𝑋 ), resulting in the execu-
tion of code in 𝑛𝑋 instead of 𝑛8. However, being an early attacking methodology, code
injection is easily defeated using common mechanisms such as Data-Execution Preven-
tion (DEP), where executable memory regions cannot be written to during runtime. For
the latter variant, however, it gets more difficult. Without injecting code, code-reuse at-
tacks reuse existing program code to achieve some unintended behavior–using control
plane maneuvers such as Return-Oriented Programming (ROP) [162] and Jump-Oriented
Programming (JOP) [22].

With ROP/JOP, an adversary fabricates a new program by stitching together a chain
of benign pieces of existing code (gadgets) that end in function returns (ROP) or indirect
jumps or function calls (JOP). The chain is thenwritten intomemory (e.g., through a stack
overflow vulnerability), where, once it is triggered (e.g., by replacing a function’s return
address with that of the first gadget), the gadgets execute in sequence. For example, in
Fig. 4.1, the adversary launches a ROP attack diverting the control-flow from (𝑛3, 𝑛8) to
(𝑛3, 𝑛2) to execute code in the other branch.
Non-control-data attacks. So far, we have only reflected attacks that explicitly mislead
program execution down imaginary or illegal paths, which we can detect by repeating
a path taken in the respective program’s CFG. However, a more subtle class of attacks
exists, called non-control-data attacks, which disregards a program’s control plane for its
data plane. Such attacks attempt to corrupt data variables to make programs yield unex-
pected outputs or indirectly drive program execution down unexpected or unauthorized
paths without explicitly hijacking the execution path (e.g., by replacing a function’s re-
turn address on the program stack). Because the path is still “legal”, such attacks are
difficult to detect using control-flow attestation that looks for illegal control flows.

The attacking methodology behind non-control-data attacks is the application of
Data-Oriented Programming (DOP) [47, 94], which we can call impure or pure, depend-
ing on whether we influence the program execution path (impure) or alter only data
variables with no effect on the path (pure). For example, in Fig. 4.1, an adversary cor-
rupts data variables in node 𝑛1 to change the result of the evaluation and thereby indi-
rectly lead the execution flow down the path of her choosing. Similarly, the adversary
corrupts the loop counter variable in node 𝑛5 to modify the number of loop iterations.
Both attacks are impure as their presence affects the execution path. While the attacks
will remain undetected when we differentiate legal paths from illegal only by whether
they conform to the program’s CFG, we could detect these attacks if we already suspect
a certain evaluation result in 𝑛1 and know how often the loop in 𝑛5 is supposed to iter-
ate. Although such supplemental information is not always available, existing runtime
attestation schemes [2, 63, 186, 62, 3, 176, 95, 125, 169, 117, 140, 141] inherently assume
that verifiers have general knowledge about a program’s expected behavior (e.g., loop
execution and authentication information) to aid in the verification process.

However, no amount of knowledge aids the schemes [2, 63, 186, 62, 3, 176, 95, 125,
117, 140] in detecting pure DOP attacks. For example, in Fig. 4.1, we see the program
blatantly transmitting data in node 𝑛4. Here an adversary, who knows the location of
sensitive data, could mount a pure DOP attack and swap the data variable’s destination
address with the address of the sensitive data and, thence unnoticeably exfiltrate the data.

While detecting pureDOP attacks is challenging in runtime attestation, some schemes
[169, 141] make their attempts. For example, in addition to recording the execution path,
[169] has provers perform local integrity verification of all program critical variables,
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which have either been identified through control-dependent variable discovery or ex-
plicitly annotated by the programmer. Data integrity is continuously verified by main-
taining a hash map of all critical variables, and whenever a variable is loaded, its value is
compared to its previously stored entry value. Any mismatch between a variable’s load
and store sites signifies a DOP attack and is propagated together with the program’s exe-
cution path to enable verifiers to “detect” pure DOP attacks. Contrarily, in [141], instead
of entrusting provers to verify the integrity of variables, they have provers record all
program data (e.g., inputs and values of accessed variables) in a log, which is delegated
to knowledgeable verifiers for verification.

However, due to the difficulty of effectively verifying a program’s data flow at the
verifier, CFA schemes (including ours) generally disregard such attacks or assume that
verification is done locally at the prover. The latter is generalized in OAT [169], where
they demonstrate how we can detect DOP attacks efficiently in a prover’s trust anchor
by continuously verifying a program’s critical variables.

4.3.3 Toward CFA in Zero-Knowledge
Section 4.3.2 explored how adversaries effectively dominate program execution by at-
tacking its control and data planes. To detect such software attacks, attestation schemes
[2, 63, 186, 62, 3, 176, 95, 125, 169, 117, 140, 141] have provers record program control
and data flows, which are subsequently presented to remote verifiers for verification.
However, besides the outsourcing of work to verifiers and requiring verifiers to maintain
trusted reference materials, the most notable deficiency of existing schemes is the lack
of privacy as provers must comprehensively disclose program execution details, which
is unattractive when program execution should remain secret, especially in sectors with
untrusted verifiers. Thus, to enable even the most security-critical and privacy-sensitive
application domains to benefit from remotely verifiable program executions, we propose
the novel coupling of zero-knowledge proofs to allow proving a program’s execution
correctness in a privacy-respecting manner among mutually distrusting participants.
Zero-Knowledge Proofs. First introduced by Goldwasser et al. [81] as an interactive
protocol and later made noninteractive in [23], zero-knowledge proofs [106, 132] enable
a prover to convince a verifier that a nondeterministic polynomial-time statement is true
by demonstrating knowledge of a satisfying witness without revealing anything about
the witness.
Path explosion problem. Two fundamental zero-knowledge proof system construc-
tions are range proofs [110] and set membership proofs [144, 21], respectively. With
range proofs, we can prove knowledge of a secret 𝑠 by demonstrating that 𝑠 belongs to
the interval [𝑢, 𝑣) for arbitrary integers 𝑢 and 𝑣 . With set membership, we can prove
that 𝑠 belongs to an arbitrary set 𝑆 . To create such set membership proofs, we would
generally utilize some cryptographic accumulator, e.g., Merkle trees [131], or RSA-based
[16]. Merkle trees, in particular, have become increasingly popular in the DLT domain,
e.g., they are used in the Pour circuit of the decentralized anonymous payment scheme
called ZeroCash [157] to maintain “coin commitments”. However, note that to use either
range proofs or set membership proofs to prove that a recorded path is legal, we would
need a clearly defined interval or set during the proof system instantiation. Therefore,
for us to use either approach on the worker to prove the validity of an attested execution
path, we would need to know all legal execution paths beforehand, which is sometimes
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impractical.
For a directed acyclic graph (DAG), we could enumerate all paths by performing a

depth-first search. However, for a CFG, a directed graph, the set of paths is unbounded,
which we can illustrate by considering the program in Fig. 4.1. For example, if the pro-
gram loop is only used as a busy-wait, the set of paths grows unwieldy since any number
of iterations constitutes a unique path. Moreover, as the complexity of the program in-
creases, so does the number of paths. Therefore, we must sacrifice precision if we insist
on a finite set of paths. One approach is simply transforming the CFG into aDAGby prun-
ing all back edges. Similarly, as described in [93], we can identify all strongly connected
components, i.e., maximal sets of nodes where a path exists between any two nodes in a
set (e.g., the component comprising nodes𝑛5 and𝑛6 in Fig. 4.1), contract each component
into a single node (e.g., fuse 𝑛5 and 𝑛6 in Fig. 4.1) to form a condensation graph (which is
acyclic), and then consider only the paths within this condensation graph. However, both
approaches are imperfect as the coarse-grained granularity of condensation or ignorance
when discarding back edges would leave certain attacks undetectable.
zkSNARKs. To let resource-constrained provers attest to arbitrary execution pathswith-
out enumerating paths beforehand or sacrificing precision, we opt to use zero-knowledge
Succinct Non-interactive Arguments of Knowledge (zkSNARK) [83, 157], where we cre-
ate a program that accepts a program’s CFG together with any path as input and verifies
that the path is legal according to the CFG. We then transform the program into a low-
level arithmetic circuitC representation [20] over a finite field F (typically a 254-bit prime
field F𝑝 ) composed of additions and multiplications mod 𝑝 . Given such a circuit, we can
instantiate a zkSNARK proof system that lets provers attest to arbitrary execution paths,
which can be proven correct by generating a proof 𝜋 that the circuit was satisfied when
executed on the attested path.

Note that in this paper, we consider what is called preprocessing zkSNARKs, where
we represent the whole verifiable program to be as a single circuit of constraints, and
a one-time offline (trusted) setup is needed to sample a circuit’s proving and verifica-
tion keys, which, afterward, must be distributed to appropriate entities in the network.
Specifically, let C be our arithmetic circuit. A zkSNARK allows the worker to prove that
she correctly executed C on public input 𝑥 and secret input 𝑢 (we use bar here to denote
secret input), as follows. After taking C as input, a trusted party conducts a one-time
setup that gives two public keys: a proving key pk and a verification key vk. The proving
key pk enables any untrusted worker to produce a proof 𝜋 attesting to the fact that 𝑥
and𝑢 satisfied C. The non-interactive proof 𝜋 is zero knowledge and a proof of knowledge.
The proof reveals nothing about 𝑢, but anyone can verify its correctness without prover
interaction using only vk.

In total, zkSNARK schemes consist of the following three algorithms:

• (pkC, vkC) ← KeyGen(C, 1_): given a circuit C and a security parameter, output
pkC and vkC as the public proving and verification keys.

• (𝑦, 𝜋) ← Prove(C, pkC, 𝑥,𝑢): given a circuitC, proving key pkC, public 𝑥 and secret
𝑢 inputs, output 𝑦 ← C(𝑥,𝑢), and the proof 𝜋 of the computation correctness.

• {0, 1} ← Verify(vkC, 𝑥,𝑦, 𝜋): given a verification key vkC and statement (𝑥,𝑦),
output 1 only if 𝑦 = C(𝑥,𝑢).
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In most constructions, C is expressed in the NP-complete languages called Rank-1-
Constraint-Systems (R1CS) and Quadratic Arithmetic Programs (QAPs) [77]. In R1CS,
computations are encoded as a set of conditions over its variables such that correct exe-
cution equals finding a satisfying variable assignment, whereas, with QAP, computations
are instead represented as a set of quadratic equations. However, as with any VC protocol
that requires the computation task to be expressed as arithmetic circuits over some field
F𝑝 , the size of the sets (i.e., constraints) corresponds to the circuit size and determines
the time needed to generate proofs. Specifically, the more constraints a circuit has, the
longer it usually takes to generate proofs. Hence, in Section 4.7, when we evaluate the
performance of our devised ZEKRA circuit, we will consider the number of constraints
as the primary performance metric of our solution.

4.4 System and Threat Model
Before we describe the technical details of the ZEKRA protocol, we briefly present the
considered setting and assumptions concerning the protocol participants.

4.4.1 System Model
We consider a network with four types of entities:

1. Prover is an untrusted and underpowered device equipped with a minimal trust
anchor capable of only tracing and authenticating a program’s execution. Note that
these capabilities (tracing and cryptographic functions for signing a program’s ex-
ecution path) constitute the minimum trusted computing base for guaranteeing
the security of the attestation and thus restrict as much as possible the influence
and performance footprint of the underlying trust anchor on the normal execu-
tion of the prover’s host operating system. See Section 4.4.4.2 for further clarifica-
tion and justification on the underlying trust assumptions concerning the prover.
However, note that the choice of tracing via (i) interfacing with the CPU’s pipeline
[63, 186, 62], or (ii) having instrumented programs, stored in DEP-enabled mem-
ory, self-report control-flow transfers [2, 3, 176, 169], is considered complementary
to our work.

2. Verifier is an untrusted device wishing to check the correctness of a program (or
part thereof) executed on the prover.

3. Worker is a semi-untrusted and computationally capable device that generates zk-
SNARKproofs for convincing untrusted verifiers about the correctness of a prover’s
attested execution paths without disclosing any secret inputs (e.g., the attested ex-
ecution path or reference materials). See Section 4.4.4.1 for further clarification on
the worker’s role.

4. Network operator is trusted party that executes the KeyGen algorithm (see Sec-
tion 4.3.3) and equips the protocol participants with necessary key materials. Note,
however, that while we consider the network operator as a central trusted entity
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who generates the cryptographic keys associated with a specific circuit, in prac-
tice, a secure multi-party sampling protocol would replace the zkSNARK circuit’s
trusted setup ceremony [27].

4.4.2 Adversarial Model
We assume a strong software adversary, who, on the prover, exploits a severe software
vulnerability to mount control-flow attacks to divert the attested program’s execution.
We then assume that the semi-dishonest worker is colluding with the prover in an at-
tempt to convince the verifier that the attested program was executed correctly when
in reality, it was not. Finally, we consider an untrusted verifier that attempts to infer
details about the prover’s program (without colluding with the prover’s or worker’s ad-
versaries). Note, however, that if the verifier also colludes, this is limited to violating the
protocol’s privacy objective.

4.4.3 Protocol Objectives
Our protocol’s objectives are threefold: (i) verifiers always reject a proof unless the prover
executed the expected program (or segment thereof) correctly and no control-flow attack
was present, (ii) any attempt by the worker to manipulate inputs during proof generation
results in a rejection, and (iii) verifiers neither require nor learn any program details from
the verification process.

4.4.4 Trust Assumptions
This section addresses frequently asked questions about our protocol which we describe
in Section 4.5. While some content repeats what is already stated in the paper, we reit-
erate some important points that a reader may miss.

4.4.4.1 On the Trustworthiness of the Worker

Our scheme considers a resource-constrained prover device capable of securely record-
ing and signing the execution path taken by a program during runtime. While the prover
wants to assure a verifier that the program was executed correctly (i.e., in the absence
of control-flow attacks), the prover wants to keep the path and program details private.
Therefore, the prover outsources the signed execution path to a resourceful worker who
produces a zero-knowledge proof of the path’s correctness which is publicly verifiable
and does not reveal the execution path. However, since the prover gives the secret inputs
(i.e., the recorded execution path and blinding factors) to the worker (who also knows
all reference materials) for producing the proof, it must trust that the worker keeps the
inputs secret. In other words, we trust the worker regarding the posterior privacy of the
secret circuit inputs to satisfy our protocol’s privacy goals as described in Section 4.4.
However, the worker is not a trusted party since the worker can attempt to cheat in pro-
ducing the proof (e.g., by tampering with the inputs), which is why we require verifiable
computation to let verifiers detect such dishonest behavior. Therefore, since the worker is
trusted regarding posterior input privacy but untrusted regarding proof generation, we
refer to the worker as semi-dishonest. For future work, we note the possibility of further
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weakening our trust assumptions (on the worker) by hiding the secret inputs, e.g., by
employing multiparty computation techniques based on Shamir’s secret sharing [159] in
networks comprising multiple workers.

4.4.4.2 Minimal Trusted Computing Base

Asmentioned in Section 4.4, a prover is a low-end embedded device with limited resource
capabilities. Hence, it is highly desirable to restrict the influence of the underlying trusted
component (i.e., trust anchor) on the normal execution of the host, which is a common
barrier affecting the generality and applicability of existing remote attestation schemes
to safety-critical systems [39]. Thus, ZEKRA’s design choice is to follow a minimal-
ist attestation approach [73], assuming the existence of a root-of-trust with only those
properties needed to attain remote attestation services. These include recording a pro-
gram’s execution path and cryptographic functions for signing the recorded execution
path to guarantee origin authentication. Note that for the latter, the resource overhead
is mainly determined by the hashing since the signing operation is independent of the
execution path size, as only a fixed-size hash is signed. For the former, one natural way
to extract an executing program’s execution path is to equip devices with tracing capa-
bilities, e.g., by leveraging existing processor hardware features and commonly-used IP
blocks, as done by the tracer proposed in LO-FAT [63]. Note that while tracing program
execution is relatively efficient with minimal perturbation, interpreting (i.e., translating
in our case) raw memory addresses and verifying the recorded execution path’s correct-
ness is complex as it relies on additional trusted reference materials. ZEKRA decouples
these two functionalities (recording and translating/verification). Thus, ZEKRA enables
a minimal trust anchor that only needs recording support without additional decoding
capabilities. Specifically, the trust anchor only records raw traces (capturing sequences
of memory addresses visited), which are then sent to the worker for the more complex
and program-specific task of convincing the verifier that the execution path was correct
according to a specific program’s trusted reference materials. Resolving this inherent
link between tracing and program-specific decoding, ZEKRA supports devices with con-
tinuous (non-intrusive) tracing capabilities (e.g., ARM Coresight) which offer negligible
impact on the performance of the programs executing in the normal world. Specifically,
note that recording execution paths is an efficient and program-agnostic process and,
thus, can easily fit inside a small trust anchor. Especially since only the hash of the
recorded execution path, which is being accumulated during program execution, needs
to be securely stored, while the path itself can reside in unprotected memory, as done
in most CFA schemes. However, since the verification is program-dependent, it would
require the trust anchor tomaintain all trusted referencematerials (i.e., CFGs and transla-
tor mappings, which can grow large for complex binaries, and also all possible entry/exit
node pairs, including semantical information to determine which pair to consider for
each attestation) in secure memory for each of the programs (and attestable segments
thereof) offered by a prover. We would also require additional mechanisms on provers to
guarantee attestation freshness to verifiers. Furthermore, the trust anchor’s responsibil-
ity becomes even more complex if we consider embedded systems with the possibility of
over-the-air updates since the trust anchor would need additional logic to set up secure
communication channels with trusted authorities for updating its trusted reference mate-
rials. Therefore, it becomes clear that reconciling the needs of safety-critical applications
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and RA security requirements through a minimal architecture for the underlying trust
anchor enables ZEKRA to support practical remote attestation with minimal require-
ments over the prover’s computational resources. In this process, we remain agnostic
regarding the underlying hardware by making the fewest possible assumptions about
specific devices. We believe that the outcome of our minimalistic design is valuable, as
it pushes towards a lightweight blueprint of remote attestation that can be realized on a
wide range of low-end devices, with minimal modifications and assumptions on required
secure hardware.

4.5 The ZEKRA Protocol
The ZEKRA protocol augments existing CFA schemes by encasing the rigorous task of
verifying that a program’s execution path is benign according to the program’s CFG in
a circuit, which can be proven without disclosing the executed path or program CFG
(zero-knowledge property).

4.5.1 CFG Conformance
For the worker to convince an untrusted verifier that an execution path EP is benign
according to the reference program’s CFG in zero-knowledge, she must prove the state-
ment “I have successfully verified that EP is a legal path in 𝐶𝐹𝐺 , which began at node
𝑛▷ and ended at node 𝑛◀, where 𝐶𝐹𝐺 is the preimage of ℎ1”. To prove this statement,
we embed it in a circuit C, which we refer to as the ZEKRA circuit, where overlined

variables denote secret inputs to the circuit as described in Section 4.3.3, i.e., we have the
secret 𝑢 = {EP,𝐶𝐹𝐺} and public 𝑥 =

{
𝑛▷, 𝑛◀, ℎ1

}
inputs, respectively.

To allow verifiers to verify whether the correct program’s CFG was considered for a
given proof, we assume verifiers know the digest of the program’s CFG as a reference
value, ℎ1 = H(𝐶𝐹𝐺 ∥𝑟_1 ), where 𝑟1 is some sufficiently-long random padding (blinding
factor) added to the CFG preimage to protect against hammering and linkage attacks and
_ denotes the security parameter. (In our case, we consider _ = 254, corresponding to a
254-bit prime field F𝑝 .) Thus, given a valid proof 𝜋 over C and public inputs 𝑥 used in the
proof generation, verifiers can verify that the correct CFG was considered by checking
that the public input digest matches the expected reference value. However, verifiers
cannot infer anything about the CFG preimage, which was supplied as a secret input.

Similarly, to let verifiers determine whether the secret execution path supplied (at-
tested) by the prover also connects the expected CFG nodes, e.g., that it entered as ex-
pected at node 𝑛1 and exited at node 𝑛9 in Fig. 4.1 (thus marking a successful execution),
we grant verifiers knowledge about the CFG’s contextually relevant entry node 𝑛▷ and
exit node 𝑛◀, respectively. These nodes are public inputs to the ZEKRA circuit to let
verifiers observe them and are used internally to verify the start and end of the supplied
execution path. To simplify the discussion, we assume that each CFG has a unique entry
node, 𝑛▷, and a unique exit node, 𝑛◀. However, the procedure is the same regardless
of the considered granularity (e.g., program level or function level), where a CFG might
have multiple legal entries or exit nodes. Note that since the interlinking execution path
𝑛▷ ⇝ 𝑛◀ remains secret, the verifier cannot infer anything about the execution path
from observing the endpoints.
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Furthermore, note that here 𝑛▷ and 𝑛◀ do not refer to the actual memory addresses
of the corresponding BBLs in the program CFG but to numeric labels that have been
assigned to the corresponding nodes in the CFG. Specifically, because we must traverse
the CFG in the ZEKRA circuit, we must represent the CFG as a traversable data structure,
and using the nodes themselves to index the structure allows formore optimized lookups.
(We discuss how we represent the CFG in Section 4.5.4.) However, since the prover will
record and attest to the raw execution path, which includes the actual memory addresses,
we assume a mappingM to help the ZEKRA circuit first translate the recorded addresses
into their corresponding numerical label representation. The mapping is simply a list
of the possible memory addresses (i.e., nodes in the program CFG), where the index of
an address denotes its numeric label.1 Then, similar to the CFG, the circuit acceptsM
as secret input and ℎ3 = H(M∥𝑟_3 ) as public input, where 𝑟3 is the random padding
(blinding factor) added toM’s preimage, which the verifier (who knows only H(M∥𝑟_3 )
as a reference value) can verify by observing the circuit’s public inputs.

4.5.2 Path Authenticity
Note that anyone knowledgeable about the program or its CFG can identify paths that
will satisfy the ZEKRA circuit. Thus, to convince verifiers that the secret execution path
for a particular proof was recorded on the prover and not produced by someone else, we
assume that each prover’s trusted tracer has a certified asymmetric key pair {tpk, tsk},
where tpk denotes the public key, and tsk denotes the secret key, respectively. It follows
that verifiers must know a prover’s public key to verify the authenticity of attestation
materials signed using that prover’s secret key.

One method of convincing the verifier about the path’s authenticity is requiring a
prover to sign the recorded execution path Sig ← Sign(H(EP), tsk), have the circuit
accept Sig andH(EP) as secret inputs and tpk as a public input, and then have the circuit
use tpk to verify internally that Sig is a valid signature over H(EP) and H(EP) is the
correct digest of EP. Then the verifier can verify that the correct prover authenticated
the execution path by checking if the correct tpk was supplied. However, the problem
is that signature verification is expensive in terms of circuit size since most algebraic
signature schemes are not compactly expressed over a field F𝑝 . For example, expressing
the RSA algorithm, which heavily relies on modular exponentiation and long integer
arithmetic, yields close to 90K constraints [114], even considering a hardcoded modulus
and considerable optimizations. While there exist techniques to reduce the complexity,
e.g., by using a small public key exponent [137], there are currently, to the best of our
knowledge, no efficient general-purpose signature schemes for circuits.

Another method is to have the prover prove possession of the secret key behind its
public key. For example, assuming that the RSA cryptosystem is considered, we could
include the substatement “I know 𝑝 and 𝑞, where 𝑝 × 𝑞 = 𝑛” as part of the ZEKRA
circuit’s underpinning statement since knowledge of 𝑝 and𝑞 for some public keymodulus
𝑛 proves possession of the secret key. However, this would require the prover herself
to generate the proof, which is unsatisfactory, especially since CFA schemes generally

1Another benefit of keeping the CFG representation abstract inside the circuit is that we are not limiting
what is being mapped. For example, instead of mapping BBL addresses, we could also include the hashes of
the executed code as done in ATRIUM [186]. We show how this extension has negligible performance impact
in Section 4.7.2.
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consider resource-constrained or heavily embedded devices and have the prover only be
concerned with tracing the program before outsourcing the signed execution path to the
verifier. Therefore, without complicating the prover, we must design the ZEKRA circuit
with the intention of the proof generation being outsourced to workers.

For the third method of proving path authenticity, which we opted for in our current
version, signature verification is performed outside the circuit, as inspired by [137]. The
idea is for the circuit to accept ℎ2 = H(EP∥𝑛𝑐𝑒_ ∥𝑟_2 ) as public input, where 𝑛𝑐𝑒_ is a
fresh nonce generated by the verifier to ensure freshness, and 𝑟_2 is some random padding
(blinding factor) generated and added to the execution path by the prover. The nonce is
given as public input to the circuit to let verifiers ascertain freshness while the blinding
factor is kept secret. The circuit then verifies internally that the secret execution path
EP, padded with the nonce and blinding factor, is indeed the correct preimage of ℎ2. As
in the first method, the prover also signs the recorded execution path Sig← Sign(H(EP
∥𝑛𝑐𝑒_ ∥𝑟_2 ), tsk). The worker’s proof and prover’s signature are then given to the verifier,
who verifies that the public digest ℎ2 used in the proof generation matches the prover’s
signed digest.

We give more details on the ZEKRA circuit in Section 4.6. Let us first bring it all
together and clarify the overall protocol.

4.5.3 The Protocol
Fig. 4.2 shows a prover and a verifier engaging in the ZEKRA protocol after the network
operator has performed the required one-time setup of executingKeyGen for the ZEKRA
circuit C for some sound zkSNARK proof system and equipping participants with the
appropriate cryptographic materials. The protocol then executes as follows.

To ensure freshness, the verifier challenges the prover with a nonce 𝑛𝑐𝑒 and a refer-
ence @P to the program or procedure she wants to be executed and attested. In prac-
tice, the attested region is only a subset of the entire program [169, 3], e.g., a security-
critical function or code section. The prover then executes the program while its trusted
tracer chronologically traces the executed path EP when executing the region to be
attested. Once the program concludes, the trusted tracer hashes and signs the execu-
tion path padded with the verifier nonce and some freshly sampled blinding factor. The
signed digest is then given to the worker with its secret ingredients, where the worker
is responsible for computing proof over the ZEKRA circuit with the execution path as
secret input. Before generating a proof, however, the worker first converts the execution
path into its numerical label representation L using the address-to-label mapping M,
which the circuit can then verify to be done correctly instead of having to perform the
computationally-intensive conversion task (further optimizations are discussed in Sec-
tion 4.6). The worker then computes a zkSNARK proof by executingProve and passing in
as secret inputs: the attested program’s reference materials (i.e., the CFG and address-to-
label mappingM, along with their blinding factors), the attested execution path (includ-
ing its blinding factor), and the numerical representation of the attested execution path
L. As public input, the worker passes in the digests of the CFG, mappingM, and the
execution path, together with the relevant entry and exit nodes and the verifier nonce.

Once the proof is generated, the proof, its public inputs, and the prover’s signature
over the execution path commitment digest are sent to the verifier. (Note that the worker
is shown to transmit the data directly back to the verifier to simplify the message ex-
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Semi-dishonest Worker Untrusted Prover Untrusted Verifier

C, pkC,
{
@P,𝐶𝐹𝐺, 𝑟1,M, 𝑟3, 𝑛▷, 𝑛◀

}
P vkC, tpk,

{
@P,H(𝐶𝐹𝐺 ∥𝑟1),H(M∥𝑟3), 𝑛▷, 𝑛◀

}
𝑛𝑐𝑒 ←$ {0, 1}_@P, 𝑛𝑐𝑒

call tracer to attest execution of P

Trusted Tracer

{tpk, tsk}

EP ← Trace(P)
𝑟2 ←$ {0, 1}_
ℎ2 ← H(EP∥𝑛𝑐𝑒 ∥𝑟2 )
Sig← Sign(ℎ2, tsk)

outsource proof of correct verification@P, 𝑛𝑐𝑒, EP, 𝑟2, ℎ2, Sig
ℎ1 ← H(𝐶𝐹𝐺 ∥𝑟1)
ℎ3 ← H(M∥𝑟3)
L ←M(EP) // map addresses to labels
𝑥 ←

{
ℎ1, ℎ2, ℎ3, 𝑛▷, 𝑛◀, 𝑛𝑐𝑒

}
𝑢 ←

{
𝐶𝐹𝐺, EP,M, 𝑟1, 𝑟2, 𝑟3,L

}
(𝑦, 𝜋) ← Prove(C, pkC, 𝑥,𝑢) Sig, 𝑥,𝑦, 𝜋

Attested program executed correctly (𝑛▷ ⇝ 𝑛◀) if
Vf (Sig, ℎ2, tpk) ∧
Vf (𝑥 \ {ℎ2} =

{
H(𝐶𝐹𝐺 ∥𝑟1),H(M∥𝑟3), 𝑛▷, 𝑛◀, 𝑛𝑐𝑒

}
) ∧

Vf (Verify(vkC, 𝑥,𝑦, 𝜋) = 1)

Figure 4.2: The ZEKRA protocol, where, upon request, a prover attests to the execution
of a program before outsourcing the task of convincing the untrusted verifier about the
execution’s correctness in zero-knowledge to a semi-dishonest worker.

changes.) Finally, assuming the soundness of the considered proof system, the verifier
is convinced that the intended program was executed correctly, in the absence of any
control-flow attacks, on the prover if: (i) the proof is satisfied under the circuit’s ver-
ification key, (ii) the execution path commitment supplied as public input to the proof
generation–whose corresponding preimage ingredients were supplied as secret inputs
and verified internally in the circuit to hash to the public commitment digest–was signed
by the prover, (iii) the CFG and mappingM of the intended program were considered,
and (iv) the correct start and end nodes were visited. If these criteria are satisfied, the ver-
ifier is convinced that the intended program (or segment thereof) was executed correctly
on the prover.

4.5.4 Building Blocks
Before explaining our circuit’s design, we must understand how we represent and work
with execution paths and program CFGs.

4.5.4.1 Tracing

We consider a device which is equipped with a tracer capable of recording all control-
flow events during a program’s execution. This tracer can be realized either in software
[2, 3, 176, 169, 140, 141] or hardware (e.g., Intel Processor Trace, ARM CoreSight, or
custom hardware extensions [63, 186, 62]). Regardless, when chronologically tracing
a program’s execution, we assume that each execution path EP (of some length 𝐸) is
marshalled in the form of a sequence of control-flow transitions: EP = (𝑡1, 𝑡2, . . . , 𝑡𝑛),
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where each transition 𝑡𝑖 = ( 𝑗𝑚𝑝𝑘𝑖𝑛𝑑, 𝑛𝑑𝑠𝑡 , 𝑛𝑟𝑒𝑡 ) includes a 2-bit identifier for the type of
transition, i.e., whether the transition was caused by a jump, function call, or function
return, the destination addresss (supposed entry of the target BBL), and a return node
𝑛𝑟𝑒𝑡 , which for calls points to a BBL where the callee function should return. Note that
knowing the transition type enables shadow stack emulation for ensuring back edge
integrity, which we describe in Section 4.6.

4.5.4.2 Control-Flow Graph Representation

A core part of the ZEKRA circuit is how we represent and traverse a CFG. To model
the set of legal transitions, we can either encode the set of legal edges as an adjacency
matrix or adjacency list. In the matrix format, we can represent a digraph 𝐺 = (𝑁, 𝐸)
as a two-dimensional array 𝑀 of size 𝑁 × 𝑁 , where a slot 𝑀 (𝑛𝑖 ) (𝑛 𝑗 ) = 1 indicates that
an edge exists from node 𝑛𝑖 to node 𝑛 𝑗 . The advantage of the matrix is that we can
determine in O(1) whether an edge exists from 𝑛𝑖 to 𝑛 𝑗 . However, since the matrix
has space complexity of O

(
|𝑁 |2

)
it requires a prohibitively large data structure to be

expressed in an arithmetic circuit. Contrarily, in the adjacency list, we only store a node’s
reachable neighbors, which reduces the space complexity to O(|𝑁 | + |𝐸 |) but increases
query time complexity to O(|𝑁 |). While the space complexity is better than the matrix, it
can become expensive for dense areas in a CFGwhere a node might have many reachable
neighbors (e.g., a program switch with a large jump table).

To reduce the space complexity even further, we leverage the idea behind the In-

dexedBitArrayEdges representation as proposed in [123], which takes advantage of
the concentration of edges in specific areas of the adjacency matrix. With this encoded
representation we use a single byte to represent eight possible out-neighbors. Using an
array, we construct a data structure of (𝑏𝑢𝑐𝑘𝑒𝑡 + 8)-bit elements, one for each neighbor
label interval with the same quotient when divided by 8. Each element’s first 𝑏𝑢𝑐𝑘𝑒𝑡 − 8
bits represents the quotient (bucket), while the last byte serves as a set of 8 flags indicat-
ing whether each possible edge exists in this interval. Note that it follows that 𝑏𝑢𝑐𝑘𝑒𝑡
must at minimum be ⌊log2 ((𝑁 − 1)/8)⌋ + 1 bits for us to represent all possible quotients
of CFGs with 𝑁 nodes.

Since the circuit performs execution path verification on CFGs with all nodes rela-
beled using consecutive integers (where the relabeling is reflected in themappingM), we
can represent any 𝑁 -node abstract CFG as a single-dimensional adjacency list of size 𝑁 ,
whose indices correspond to CFG nodes and contain the indexed node’s encoded neigh-
bors. Also, since the maximum label is 𝑁 − 1 when numbered from 0, the circuit only
needs to allocate ⌊log2 (𝑁 − 1)⌋ + 1 bits per label to represent the execution path.

To better understand how we apply the encoding, assume that a node has the follow-
ing set of neighbors: {288, 289, 290, 291, 292, 293, 294, 614}. We can group the neighbors
in two sets: {288, 289, 290, 291, 292, 293, 294}, {614}, where the first set shares bucket 36
when divided by 8, and the second set share the bucket 76. We then iteratively store the
bucket of each neighbor set as the first ⌊log2 ((𝑁 − 1)/8)⌋ + 1 bits and the remainders
(𝑟𝑒𝑚𝑠) as the neighboring byte. We refer to each such (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pair as a level and
use ℓ to denote the maximum levels of the encoded adjacency list. Note, however, that
the number of levels needed depends on how the adjacency list’s labels are arranged. For
example, in our example, we require two levels to accurately represent all eight neigh-
bors, where the 0th to the 6th bit of the first level’s 𝑟𝑒𝑚𝑠 are set to 1 to indicate the first
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seven neighbors. However, if we could rearrange the numerical adjacency list such that
the considered node’s neighbors all shared the same quotient, it would only need one
level. (We defer this graph optimization problem and other CFG reduction/compression
methods as they complement our work.)

Finally, given an encoded adjacency listAL, we determine if node𝑛 𝑗 is a valid neigh-
bor of node 𝑛𝑖 by verifying that there exists some (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pair in AL, such that⌊
𝑛 𝑗/8

⌋
= 𝑏𝑢𝑐𝑘𝑒𝑡 ∧ 𝑟𝑒𝑚𝑠 [𝑛 𝑗 mod 8] = 1, where 𝑟𝑒𝑚𝑠 [𝑛 𝑗 mod 8] denotes a bit in 𝑟𝑒𝑚𝑠

at position 𝑛 𝑗 mod 8. In other words, we check that the destination node’s bucket exists
and the corresponding remainder bit is on.

4.5.4.3 Hashing

When selecting a suitable hashing functionH to utilize in our circuit for hashing the adja-
cency listAL, attested execution path EP, and address-to-label mappingM, the decid-
ing factor is how inexpensively it can be expressed in an arithmetic circuit. Fortunately,
several hash functions have been proposed due to increased attention to circuit-based
zero-knowledge proofs. The most recent, which currently offers the best performance, is
the cryptographic permutation function called Poseidon [82], which takes a set of ele-
ments of a certain field F, called scalars, as inputs and outputs one scalar. The number of
inputs determines the width 𝑤 = 𝑟 + 𝑐 of the internal state, where 𝑟 and 𝑐 are called the
𝑟𝑎𝑡𝑒 and 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 of the permutation function. Setting the capacity to one field element
in a 254-bit field F offers a 128-bit security level and using a rate (arity) of 4, the hashing
function essentially corresponds to a 4-to-1 compression function.

In our case, we configured Poseidon-128 with a width of 9 to achieve a rate of eight
field elements per call, which allows us to walk over the data structures during hashing
more quickly. Since the considered data structures can be arbitrarily/selectively large,
we used the proposed Poseidon constant-length sponge-based construction [82]. Let
𝑋 = (𝑥1, . . . , 𝑥𝑚) refer to an execution path EP = (𝑡1, . . . , 𝑡𝑚) of 𝑙-bit transitions, an
adjacency list AL = (𝑒1, . . . , 𝑒𝑚) of 𝑙-bit encoded neighbor entries, or a mappingM =

(𝑎1, . . . , 𝑎𝑚) of 𝑙-bit entries, respectively. We then hash 𝑋 into a single scalar (i.e., field
element) as follows:

1. Compress 𝑋 by successively fitting ⌊(F’s bitwidth)/𝑙⌋ 𝑙-bit values from 𝑋 into one
field element and storing the resulting value in 𝑋 ′. Let 𝑡 denote the size of 𝑋 ′.

2. Pad 𝑋 ′ with zero elements up to the multiple of 8, then split it into chunks𝑤1,𝑤2,

. . . ,𝑤 ⌈𝑡/8⌉ , each containing 8 scalars.

3. Apply the permutation function Poseidon to the capacity element and the first
chunk.

(ℎ11, ℎ21, . . . , ℎ91) ← Poseidon(𝑙𝑒𝑛 × 264 + (𝑜 − 1),𝑤1)

(Note that the capacity field is set to 𝑙𝑒𝑛 × 264 + (𝑜 − 1), where 𝑙𝑒𝑛 is the input
length and 𝑜 is the output length (usually 𝑜 = 1). In our case the input length is 8
field elements, and the output length is 1 field element.)

4. Until no more chunks are left, apply the permutation:

(ℎ1𝑖 , ℎ2𝑖 , . . . , ℎ9𝑖 ) ← Poseidon(ℎ1𝑖−1, ℎ2𝑖−1 +𝑤1
𝑖 , . . . , ℎ

9
𝑖−1 +𝑤8

𝑖 )
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1 : Vf (H(AL∥𝑟1 ) = ℎ1 ) Vf (H(EP∥𝑛𝑐𝑒 ∥𝑟2 ) = ℎ2 )
2 : Vf (H(M∥𝑟3 ) = ℎ3 ) Vf (M(L) = EP)
3 : 𝑛𝑐𝑢𝑟 ← 𝑛▷

4 : for ( 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 ) ∈ EP, (𝑛𝑑𝑠𝑡 , 𝑛𝑟𝑒𝑡 ) ∈ L do

5 : // Forward edge integrity
6 : if 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 ≠ ∅ then // not part of padding
7 : Vf (𝑛𝑑𝑠𝑡 ∈ AL(𝑛𝑐𝑢𝑟 ) )
8 : 𝑛𝑐𝑢𝑟 ← 𝑛𝑑𝑠𝑡

9 : // Back edge integrity
10 : if 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 = 𝑐𝑎𝑙𝑙 then

11 : push(𝑛𝑟𝑒𝑡 , 𝑠ℎ𝑎𝑑𝑜𝑤𝑆𝑡𝑎𝑐𝑘 )
12 : elseif 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 = 𝑟𝑒𝑡 then

13 : Vf (pop(𝑠ℎ𝑎𝑑𝑜𝑤𝑆𝑡𝑎𝑐𝑘 ) = 𝑛𝑑𝑠𝑡 )
14 : Vf (𝑛𝑐𝑢𝑟 = 𝑛◀ )

ZEKRA circuit C
ℎ1, ℎ2, ℎ3, 𝑛▷, 𝑛◀, 𝑛𝑐𝑒

AL, EP,M, 𝑟1, 𝑟2, 𝑟3,L

Figure 4.3: High-level algorithm of the outsourceable ZEKRA circuit, with its secret (top
left) and public (bottom left) inputs.

5. Output 𝑜 output elements from the rate part of the state, i.e., in our case, the digest
of 𝑋 is the second element:

H(𝑋 ) = ℎ⌈𝑡/8⌉ (2)

We utilize this sponge construction in our circuit to verify the considered secret
preimages against their corresponding public digests before relying on them to accurately
report on the expected program’s reference materials and the execution path. Thus, the
public digests must also be computed similarly on the outside.

4.6 On the Design of the ZEKRA Circuit
Before detailing our design choices, we briefly overview the different circuit compo-
nents/gadgets. The high-level algorithm of the ZEKRA circuit is presented in Fig. 4.3
along with its secret and public inputs. Note that we have replaced the CFG in Fig. 4.2
with the encoded adjacency list AL of size 𝑁 . After verifying the preimages and the
correctness of the translation of the attested execution path EP of size 𝐸 into its label
representation L, the circuit traverses the label version of the execution path to verify
its legality, according to the adjacency list and the expected entry and exit nodes.
Forward edge integrity. To verify that the execution path satisfies forward edge in-
tegrity, we maintain a state variable 𝑛𝑐𝑢𝑟 (initialized to 𝑛▷) as we walk the execution
path to verify its legality, i.e., that it is a continuous sequence of transitions that only flow
through neighboring (adjacent) nodes, as follows. For each transition 𝑡𝑖 in the execution
path, we consult 𝑛𝑐𝑢𝑟 ’s neighbors from the adjacency list and verify that 𝑡𝑖 ’s destination
node 𝑛𝑑𝑠𝑡 is indeed listed as a valid neighbor, and if so, we update 𝑛𝑐𝑢𝑟 to 𝑛𝑑𝑠𝑡 . Thus, by
verifying that it reached the final node 𝑛◀ on exit, we are certain, by transitivity, that
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the execution path is legal and also correctly connects the expected endpoints. However,
note that while a node can have several reachable and equally valid neighbors in the for-
ward direction, this is not true for backward edges. Specifically, when a function returns,
it should only return to where the caller intended.
Back edge integrity. Therefore, to ensure exact back edge integrity, we consider, similar
to other CFA schemes [176, 169], the use of a shadow stack (of some depth 𝐷) to simulate
the traditional program stack as we walk the execution path. For function calls, we push
the return node 𝑛𝑟𝑒𝑡 on the stack, and for returns, we verify that 𝑛𝑑𝑠𝑡 indeed is the stack’s
topmost element.

4.6.1 Circuit Design Challenges
Besides the challenges that have already been described, e.g., enabling execution path
authenticity in Section 4.5, representing the CFG as a space-efficient encoded adjacency
list, and selecting a circuit-friendly hashing algorithm in Section 4.5.4, we are missing
the actual execution path traversal.

Due to the complexity of expressing computations as circuits, many circuit construc-
tion tools include programmable interfaces and compilers to optimize the translation of
computations expressed in a higher-level language into circuits [67, 98, 114]. However,
while the circuit compilers let us not worry about the low-level wiring process, they
are not as mature as standard program compilers, and there are thus many employable
techniques to further reduce the number of constraints needed to express a particular
program. Specifically, note that the complexity of any program in terms of the number
of constraints it compiles down to is the sum of the cost of expressing all statements, all
loop iterations, and accounting for all branches. To illustrate what we mean by cost, first
imagine the ZEKRA algorithm in Fig. 4.3 as a standard program that we want to trans-
form into an arithmetic circuit. When the code is fed to a circuit compiler, it will flatten
out the code by unrolling the loop to the worst-case number of iterations (as determined
by the size of the execution path data structure, set to some value 𝐸) while taking each
branch of each conditional statement into account for each iteration. Then, the compiler
will convert the code to single static assignments, which are then transformed into one
or more constraints [28, 180]. The result is a concise set of constraints (or equations) that
is satisfied only when all variables hold all equations simultaneously. For a simple state-
ment “𝑎 = 𝑏”, the equivalent constraint set might consist of the constraints representing
𝑎, the constraints representing 𝑏, and an additional constraint relating the outputs of 𝑎
and 𝑏 [161]. Therefore, operations that cannot easily be expressed, e.g., modulo, division,
exponentiation, “bit twiddling”, and random-memory access, are costly. Fortunately, as
stated in [114], an essential strategy to optimize complexity is the observation that it usu-
ally suffices and is generally cheaper to have a circuit verify a computation’s correctness
instead of computing the function in the forward direction. For example, 𝑦 = 𝑥/𝑎 can be
verified more efficiently by checking that 𝑦𝑎 = 𝑥 rather than computing the division in
the forward direction. Similarly, when working with modular arithmetic, the joint state-
ments 𝑟 ≡ 𝑥 mod 𝑞, 𝑦 = ⌊𝑥/𝑞⌋, where 𝑞 is the modulus, can be verified more efficiently
by checking that 𝑦𝑞 + 𝑟 = 𝑥 ∧ 𝑟 < 𝑞.
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4.6.1.1 Random-Accessed Memory

While sequentially walking the execution path incurs a negligible cost, verifying each
transition’s destination node 𝑛𝑑𝑠𝑡 according to the 𝑛𝑐𝑢𝑟 th entry in AL requires random
memory access, which is expensive since no information is known about which element
is being accessed during compile-time. The same applies to verifying that the numeric
execution path L is a correct translation of EP according toM, as shown in (4.1).

Vf (∀𝑖 ∈ {0 . . . 𝐸} :M(L(𝑖) (𝑑𝑠𝑡)) = EP(𝑖) (𝑑𝑠𝑡)∧
M(L(𝑖) (𝑟𝑒𝑡)) = EP(𝑖) (𝑟𝑒𝑡))

(4.1)

The typical, naive approach for realizing dynamic memory is performing a linear
scan of the entire array memory to select one element for each memory access, which
results in O(𝑘𝑛) cost for making 𝑘 memory accesses where 𝑛 is the array’s total memory
size. Another approach, supported by recent compilers [180, 114], involves a permuta-
tion network with complexity O((𝑛 + 𝑘) (log(𝑛 + 𝑘))). However, seeing how the smart
memory recently proposed in xJsnark [114] has outperformed the permutation network
with a complexity of O

(
𝑘
√
𝑛
)
, promising 2

√
𝑛 + log2 𝑛 constraints per access, we opted

to express the current version of ZEKRA in xJsnark.

4.6.1.2 Representing the Adjacency List

Note that xJsnark currently only supports one-dimensional arrays with its smart mem-
ory type. Therefore, we have the circuit accept the adjacency list AL = (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠1,
. . . , 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑚) as a single, node label indexable array of field elements, whose sizes
correspond to the size of our finite prime field F𝑝 (in our case 254 bits), i.e., each node
𝑛𝑖 ’s (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pairs are consecutively concatenated into one 254-bit field element
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑖 = 𝑝1∥𝑝2∥ . . . ∥𝑝ℓ . However, the challenge with the concatenation is deter-
mining whether a specific destination node 𝑛𝑑𝑠𝑡 is a neighbor of some node 𝑛𝑖 when
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝑖 is given as a numeric value.

While we could enforce a specific type onAL’s elements, e.g., that they be unsigned
integers instead of native field elements, allowing us to iterate over the (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠)
pairs using either bitwise or division/exponentiation operations, recall that these opera-
tions are expensive. Furthermore, by restricting input values to 𝑛-bit unsigned integers,
the circuit must verify that the supplied values are 𝑛 bits while continuously ensuring
that any operation on the integers results in a value that fits within that range, essentially
resulting in 𝑛+2 additional constraints for each integer [114]. Contrarily, by keeping the
input values as native field elements, they are guaranteed to remain within a certain
bitwidth.

Therefore, instead of retrieving each (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) in the circuit, we apply the power
of SNARK verification by accepting (as secret input) another two-dimensional (non-
smart) arrayAL′ of size 𝐸×2ℓ , containing the pairs already split into separate elements.
However, contrary to AL, we access AL′ sequentially, which is made possible by re-
quiring AL′ to be ordered with relevance to the transitions, i.e., the 𝑖th index of AL′
contains 𝑛𝑐𝑢𝑟 ’s pre-split (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pairs at transition 𝑖 , which is easily arranged by
the worker. However, before relying onAL′ (𝑖), the circuit first verifies thatAL′ (𝑖) cor-
rectly represents AL(𝑛𝑐𝑢𝑟 ) by checking that AL′ (𝑖) computes to AL(𝑛𝑐𝑢𝑟 ) as shown
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in (4.2).

Vf
((∑︁2ℓ−1

𝑗=0,2,...
AL′ (𝑖) ( 𝑗 + 1) × 2⌊ 𝑗/2⌋ (𝑏𝑢𝑐𝑘𝑒𝑡 bitwidth+8)+8

+ AL′ (𝑖) ( 𝑗) × 2⌊ 𝑗/2⌋ (𝑏𝑢𝑐𝑘𝑒𝑡 bitwidth+8)
)
= AL(𝑛𝑐𝑢𝑟 )

) (4.2)

We continue by detailing howwe can apply further optimizations to efficiently check
whether a particular neighbor exists in the adjacency list in Section 4.6.1.3, and then we
summarize the final circuit design in Section 4.6.2.

4.6.1.3 Efficient Graph Traversal in a Linear System of Equations

While we can useAL′ to efficiently (i.e., inexpensively) access 𝑛𝑐𝑢𝑟 ’s encoded neighbors
as we iterate over the execution path as described in Section 4.6.1, which operations we
use to check whether a particular neighbor exists directly impacts the circuit’s perfor-
mance. For example, using the mathematical equations outlined in Section 4.5.4, we can
effectively determine if 𝑛𝑑𝑠𝑡 is listed as 𝑛𝑐𝑢𝑟 ’s neighbor at the execution path’s 𝑖th tran-
sition by checking that AL′ (𝑖) (𝑙) = ⌊𝑛𝑑𝑠𝑡/8⌋ and AL′ (𝑖) (𝑙 + 1) [𝑛𝑑𝑠𝑡 mod 8] = 1 hold
for some level 𝑗 , where 𝑗 is an even number and 0 ≤ 𝑗 < 2ℓ − 1. However, while the
integer division and modulo operations, ⌊𝑛𝑑𝑠𝑡/8⌋ and 𝑛𝑑𝑠𝑡 mod 8, are not exceptionally
expensive due to the constant divisor (arbitrary modulo operations, however, are expen-
sive, especially on prime fields as they require a range check: 𝑎 = 𝑞𝑏 + 𝑟, 𝑟 < 𝑏), the
latter equation assumes bitwise operations to access bit (𝑛𝑑𝑠𝑡 mod 8) of 𝑟𝑒𝑚𝑠 , which can
become prohibitively expensive if done repeatedly. Specifically, to access individual bits
of an 𝑛-bit integer-carrying wire, e.g., 𝑟𝑒𝑚𝑠 , in the circuit, we require, at a minimum, a
similar number of constraints to cover each bit of the wire. Thus, to alleviate the need
to access individual bits using bitwise operations, we transform the equations into pure
algebraic expressions as shown in (4.3), where the left-hand side of the latter equation
mathematically accesses the value of the (𝑛𝑑𝑠𝑡 mod 8)th bit of 𝑟𝑒𝑚𝑠 by first pruning the
bottom (𝑛𝑑𝑠𝑡 mod 8) bits using integer division and then cherry-picking the low order
bit of the result using modulo.

⌊𝑛𝑑𝑠𝑡/8⌋ = 𝑏𝑢𝑐𝑘𝑒𝑡⌊
𝑟𝑒𝑚𝑠/2𝑛𝑑𝑠𝑡 mod 8

⌋
mod 2 =

{
0, bit is unset
1, bit is set

(4.3)

Thus, if we find a pair (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) ∈ AL′ (𝑖) (𝑛𝑐𝑢𝑟 ) satisfying (4.3) for some tran-
sition 𝑖’s destination node 𝑛𝑑𝑠𝑡 , we know that 𝑛𝑑𝑠𝑡 is a valid neighbor of 𝑛𝑐𝑢𝑟 , i.e., 𝑛𝑐𝑢𝑟 ⇝
𝑛𝑑𝑠𝑡 is legal. The remaining challenge, however, is that the components of the latter
equation in (4.3) require expensive variable integer division and variable exponentiation.

However, applying the power of SNARK verification, rather than doing the variable
integer division ⌊𝑟𝑒𝑚𝑠/2𝑛𝑑𝑠𝑡 mod 8⌋ and variable exponentiation 𝑒 = 2𝑛𝑑𝑠𝑡 mod 8 in the
circuit, we make the prover supply the answer of the integer division (the quotient, 𝑞1,
and remainder 𝑟1) and exponentiation 𝑒 , and then in the circuit we verify that 𝑒𝑞1 +
𝑟1 = 𝑟𝑒𝑚𝑠 , where 𝑟1 < 𝑒 , and 𝑒 is the expected product of 2𝑛𝑑𝑠𝑡 mod 8. Note that we can
efficiently check whether 𝑒 is the expected product since we work with a constant divisor
of 8 and can therefore create a fixed sequence of all possible products: 𝑃 =

(
20, . . . , 27

)
.
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Table 4.1: Auxiliary variables (hints) that allow the circuit to efficiently verify that a
transition’s destination node 𝑛𝑑𝑠𝑡 exists in the current node 𝑛𝑐𝑢𝑟 ’s encoded neighbor list.
Basically, for some (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) ∈ AL′ (𝑛𝑐𝑢𝑟 ):

Worker computes Variable in 𝝅𝒆𝒙𝒊𝒔𝒕𝒔 Circuit verifies

2𝑛𝑑𝑠𝑡 mod 8 𝑒 𝑒 = 2𝑛𝑑𝑠𝑡 mod 8

⌊𝑟𝑒𝑚𝑠/𝑒⌋ 𝑞1 𝑒𝑞1 + 𝑟1 = 𝑟𝑒𝑚𝑠

𝑟𝑒𝑚𝑠 mod 𝑒 𝑟1 𝑟1 < 𝑒

⌊𝑞1/2⌋ 𝑞2 2𝑞2 + 𝑟2 = 𝑞1
𝑞1 mod 2 𝑟2 𝑟2 = 1

𝑏𝑢𝑐𝑘𝑒𝑡 = 𝑛𝑑𝑠𝑡/8

Thus, in the circuit we only need to check that ∃𝑖 : 𝑒 = 𝑃𝑖 ∧ 𝑖 = 𝑛𝑑𝑠𝑡 mod 8 holds, which
is integrated as a linear search over the elements of 𝑃 and made efficient by favoring the
discounted price of math operations in the native field F over a conditional statement,
i.e., we program the lookup as:

∏7
𝑖=0 ((𝑛𝑑𝑠𝑡 mod 8) −𝑖) + (𝑒−𝑃𝑖 ), which becomes zero if 𝑒

is as expected for 𝑛𝑑𝑠𝑡 . Further, to account for the modulo 2 in (4.3), we make the prover
supply the answer to the integer division 𝑞2 = ⌊𝑞1/2⌋ and corresponding remainder 𝑟2
= 𝑞1 mod 2, which we verify inside the circuit by checking that 2𝑞2 + 𝑟2 = 𝑞1. Note
here that 𝑟2 corresponds to the left-hand side computation of the latter equation in (4.3).
Thus, we know to accept 𝑛𝑑𝑠𝑡 as a neighbor if all equations hold and 𝑟2 = 1.

In total, the circuit accepts five additional secret inputs, 𝑒, 𝑞1, 𝑟1, 𝑞2, 𝑟2, which work
as hints for the circuit to more efficiently check whether a particular destination node
𝑛𝑑𝑠𝑡 is legal by verifying a system of linear equations. Similar to the adjacency listAL′,
which contains 𝑛𝑐𝑢𝑟 ’s (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pairs pre-split for every transition as we walk over
the execution path, the circuit accepts the additional five secret inputs that prove a tran-
sition’s destination node’s validity as a two-dimensional (sequentially accessed) array,
𝜋𝑒𝑥𝑖𝑠𝑡𝑠 , which is also ordered by transitions. See Table 4.1 for a summary of the input
variables (hints), how they are computed, and how they are verified inside the circuit.

4.6.2 Final Design of the ZEKRA Circuit
Fig. 4.4 shows the high-level codewith the optimizations described in Section 4.6.1, which
is compiled into the ZEKRA circuit. As secret input, the circuit accepts: an encoded
adjacency listAL of length𝑁 (or padded to equal𝑁 ) representing the attested program’s
CFG, some execution path EP of length 𝐸 (or padded to equal 𝐸) corresponding to the
recorded execution path, themappingM for translating the attested program’s addresses
into numeric labels, the random padding used as a blinding factor for the adjacency list
(𝑟1), execution path (𝑟2), and mapping (𝑟3), respectively, the auxiliary adjacency listAL′
containing the decoded 𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠 pairs of the expectedAL entry for each transition,
the translation of the execution path addresses into numeric labels L, and finally, the
auxiliary proofs 𝜋𝑒𝑥𝑖𝑠𝑡𝑠 to help verify each transition’s destination node’s validity. As
public input, the circuit accepts: the digests of the adjacency list (ℎ1), execution path
(ℎ2), and the mapping (ℎ3), respectively, an initial node 𝑛▷, a final node 𝑛◀, and the
verifier’s nonce𝑛𝑐𝑒 . Note that to transform our high-level program into a circuit, wemust
clearly define the bounds of all data structures we want to be expressed (i.e., for which we
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want constraints to be generated). However, while we can easily pad adjacency lists to
match𝑁 before supplying them as input (thus supporting different program complexities
with the same circuit), the same does not immediately apply to the execution paths.
Note that the execution path through a programmight vary drastically between different
executions. Thus, to support varying sizes of execution paths, it must be padded to the
appropriate length (𝐸) by appending “empty” transitions, which is detected in the circuit
when 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 = 2. Furthermore, to allow the translation of the padded transitions
throughM, we must reserve an entry (M+1) whose value is used as both the destination
and return addresses in each padded transition.

Given the inputs, we verify that the secret adjacency list, attested execution path,
and mapping are indeed the correct preimages of the corresponding public digests by
first compressing and then hashing each data structure using our implementation of the
circuit-friendly Poseidon [82] hashing functionH as described in Section 4.5.4. Assuming
that the digests were correct, the circuit proceeds to verify that the worker’s translation
L of the execution path addresses into their corresponding numeric labels was done cor-
rectly according toM. Then, knowing that L accurately reflects the attested execution
path in the abstract world ofAL, the circuit proceeds to traverseAL using L to verify
that the execution path: (i) began at the expected 𝑛▷, (ii) contains only transitions that
are conformant to the adjacency list, and (iii) ends at the expected final node 𝑛◀. The
traversal is done by instantiating a state variable 𝑛𝑐𝑢𝑟 to 𝑛▷, which, as we iterate over
each transition ( 𝑗𝑚𝑝𝑘𝑖𝑛𝑑, 𝑛𝑑𝑠𝑡 , 𝑛𝑟𝑒𝑡 ) in the execution path, we verify that 𝑛𝑑𝑠𝑡 is a valid
neighbor of 𝑛𝑐𝑢𝑟 by consulting 𝑛𝑐𝑢𝑟 ’s auxiliary adjacency list, as follows. We first retrieve
𝑛𝑐𝑢𝑟 ’s encoded neighbors by accessing 𝑛𝑐𝑢𝑟 ’s encoded entry in AL (which is expensive
since RAM is expensive), which we compare against the current transition’s 𝑛𝑑𝑠𝑡 ’s entry
in AL′ (whose access is cheap since we access it sequentially). If the entries match, we
know that we can securely rely onAL′ to accurately report 𝑛𝑐𝑢𝑟 ’s neighbors, which we
leverage to efficiently verify whether 𝑛𝑑𝑠𝑡 is a valid neighbor of 𝑛𝑐𝑢𝑟 by verifying that
the current transition’s proof in 𝜋𝑒𝑥𝑖𝑠𝑡𝑠 is valid with respect to some 𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠 pair
in AL′ as described in Section 4.6.1.3. If 𝑛𝑑𝑠𝑡 is determined to be a valid neighbor, we
update 𝑛𝑐𝑢𝑟 to 𝑛𝑑𝑠𝑡 and progress to the next transition. Moreover, while iterating over the
execution path, we maintain a shadow stack to ensure exact back edge integrity similar
to other CFA schemes [176, 169]. Finally, once we have walked the full path, we verify
that 𝑛𝑐𝑢𝑟 reached 𝑛◀. The circuit is only satisfied if all verifications were successful.

4.7 Empirical Performance Evaluation

Our evaluation addresses the questions of: (i) how efficient is ZEKRA for different pro-
gram complexities and (ii) how tolerable are the combined costs for CFA of real-world
deeply embedded applications.

4.7.1 Asymptotic Performance
Table 4.2 shows the complexity of our design considering a 254-bit field F and a Posei-
don-128 implementation with an arity/rate of 8 field elements and a cost of ℭ = 405
constraints per call. For comparison, we also show the complexity without the space ef-
ficient adjacency list encoding described in Section 4.5.4, i.e., where each entry in AL
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1 : // public and secret circuit inputs
2 : public

{
ℎ1, ℎ2, ℎ3, 𝑛▷, 𝑛◀, 𝑛𝑐𝑒

}
3 : secret{AL[𝑁 ], EP[𝐸 ] [3],M[𝑁 + 1], 𝑟1, 𝑟2, 𝑟3,
4 : AL′ [𝐸 ] [2ℓ ], L[𝐸 ] [2], 𝜋𝑒𝑥𝑖𝑠𝑡𝑠 [𝐸 ] } // hints
5 : external{ // code executed by worker to compute hints
6 : 𝑛𝑐𝑢𝑟 ← 𝑛▷ // keep state during traversal
7 : for 𝑖 = 0 . . . 𝐸 do // compute hints for each step
8 : AL′ (𝑖 ) ← split(AL(𝑛𝑐𝑢𝑟 ) )
9 : L(𝑖 ) (𝑑𝑠𝑡 ) ← { 𝑗 |M( 𝑗 ) = EP(𝑖 ) (𝑑𝑠𝑡 ) }
10 : L(𝑖 ) (𝑟𝑒𝑡 ) ← { 𝑗 |M( 𝑗 ) = EP(𝑖 ) (𝑟𝑒𝑡 ) }
11 : 𝜋𝑒𝑥𝑖𝑠𝑡𝑠 ← Table 4.1(EP (𝑖 ) (𝑑𝑠𝑡 ),AL′ (𝑛𝑐𝑢𝑟 ) )
12 : 𝑛𝑐𝑢𝑟 ← L(𝑖 ) (𝑑𝑠𝑡 ) }
13 : // circuit code
14 : 𝑠ℎ𝑎𝑑𝑜𝑤𝑆𝑡𝑎𝑐𝑘 [𝐷 ]
15 : Vf (H(AL∥𝑟1 ) = ℎ1 )
16 : Vf (H(EP∥𝑛𝑐𝑒 ∥𝑟2 ) = ℎ2 )
17 : Vf (H(M∥𝑟3 ) = ℎ3 )
18 : Vf (∀𝑖 ∈ {0 . . . 𝐸} : M(L(𝑖 ) (𝑑𝑠𝑡 ) ) = EP(𝑖 ) (𝑑𝑠𝑡 )∧
19 : M(L(𝑖 ) (𝑟𝑒𝑡 ) ) = EP(𝑖 ) (𝑟𝑒𝑡 ) )
20 : 𝑛𝑐𝑢𝑟 ← 𝑛▷ // keep state during traversal
21 : for 𝑖 = 0 . . . 𝐸 do // walk the execution path
22 : 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 ← EP(𝑖 ) ( 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 )
23 : (𝑛𝑑𝑠𝑡 , 𝑛𝑟𝑒𝑡 ) ← (L(𝑖 ) (𝑑𝑠𝑡 ), L(𝑖 ) (𝑟𝑒𝑡 ) )
24 : if 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 ≠ ∅ then // not an empty (padded) transition
25 : 𝑏𝑢𝑐𝑘𝑒𝑡 ← ⌊𝑛𝑑𝑠𝑡 /8⌋
26 : 𝑝𝑜𝑠 ← 𝑛𝑑𝑠𝑡 mod 8

27 : 𝑒,𝑞1, 𝑟1, 𝑞2, 𝑟2 ← 𝜋𝑒𝑥𝑖𝑠𝑡𝑠 (𝑖 )

28 : Vf
((∑︁2ℓ−1

𝑗=0,2,...
AL′ (𝑖 ) ( 𝑗 + 1)2⌊ 𝑗/2⌋ (𝑏𝑢𝑐𝑘𝑒𝑡 bitwidth+8)+8

29 : + AL′ (𝑖 ) ( 𝑗 )2⌊ 𝑗/2⌋ (𝑏𝑢𝑐𝑘𝑒𝑡 bitwidth+8)
)
= AL(𝑛𝑐𝑢𝑟 )

)
30 : Vf

((∏7

𝑗=0
(𝑝𝑜𝑠 − 𝑗 ) + (𝑒 − 𝑃 𝑗 )

)
= 0

)
31 : Vf (2𝑞2 + 𝑟2 = 𝑞1 )
32 : Vf (𝑟2 = 1)
33 : Vf (∃ 𝑗 ∈ {0, 2, . . . , 2ℓ − 2} :
34 : AL′ (𝑖 ) ( 𝑗 ) = 𝑏𝑢𝑐𝑘𝑒𝑡 ∧
35 : AL′ (𝑖 ) ( 𝑗 + 1) = 𝑒 · 𝑞1 + 𝑟1 )
36 : 𝑛𝑐𝑢𝑟 ← 𝑛𝑑𝑠𝑡 // progress CFG state
37 : if 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 = 𝑐𝑎𝑙𝑙 then

38 : push(𝑛𝑟𝑒𝑡 , 𝑠ℎ𝑎𝑑𝑜𝑤𝑆𝑡𝑎𝑐𝑘 )
39 : elseif 𝑗𝑚𝑝𝑘𝑖𝑛𝑑 = 𝑟𝑒𝑡 then

40 : Vf (pop(𝑠ℎ𝑎𝑑𝑜𝑤𝑆𝑡𝑎𝑐𝑘 ) = 𝑛𝑑𝑠𝑡 )
41 : Vf (𝑛𝑐𝑢𝑟 = 𝑛◀ )

Figure 4.4: The high-level ZEKRA program code, which can be compiled into an out-
sourceable circuit.

is simply the concatenation of that node’s neighbors, where Δ denotes the maximum
supported neighbors of any node.

The first four rows in Table 4.2 give the complexity of verifying: the adjacency list
(with and without encoding), attested execution path, and mapping, respectively. Note
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Table 4.2: Component complexity in terms of the number of constraints when compiled
using xJsnark, where ℭ = 405 is the cost per call to Poseidon. The table also shows the
cost if we store digests in AL to emulate more space (beyond F’s bitwidth).

Circuit Component/Gadget Complexity Actual (Asymptotic) Total Cost Using Poseidon digests as AL elements

C1: Vf (H(AL∥𝑟1) = ℎ1) O(𝑁 ) ℭ⌈(𝑁ℓ (𝑏𝑢𝑐𝑘𝑒𝑡 ’s bitwidth + 8) + 1)/(8F’s bitwidth)⌉ ℭ⌈𝑁 /8⌉
- (wo. AL encoding) O(𝑁 ) ℭ⌈(𝑁Δ𝑙𝑎𝑏𝑒𝑙 ’s bitwidth + 1)/(8F’s bitwidth)⌉ ℭ⌈𝑁 /8⌉
C2: Vf (H(EP∥𝑛𝑐𝑒 ∥𝑟2) = ℎ2) O(𝐸) ℭ⌈(𝐸2𝑎𝑑𝑑𝑟 ’s bitwidth + 4)/(8F’s bitwidth)⌉ N/A
C3: Vf (H(M∥𝑟3) = ℎ3) O(𝑁 ) ℭ⌈(𝑁𝑎𝑑𝑑𝑟 ’s bitwidth + 1)/(8F’s bitwidth)⌉ N/A
C4: Vf (M(EP) = L) O(𝐸

√
𝑁 ) 2𝐸 (2

√
𝑁 + log2 𝑁 ) + 10𝐸 N/A

C5: Forward edge integrity O(𝐸
√
𝑁 ) 𝐸 (2

√
𝑁 + log2 𝑁 ) + 𝐸 (ℓ + 38 + 𝑙𝑎𝑏𝑒𝑙 ’s bitwidth) +𝐸ℭ⌈(ℓ (𝑏𝑢𝑐𝑘𝑒𝑡 ’s bitwidth + 8))/(8F’s bitwidth)⌉

- (wo. AL encoding) O(𝐸
√
𝑁 ) 𝐸 (2

√
𝑁 + log2 𝑁 ) + 𝐸 (Δ + 11 + 𝑙𝑎𝑏𝑒𝑙 ’s bitwidth) +𝐸ℭ⌈(Δ𝑙𝑎𝑏𝑒𝑙 ’s bitwidth)/(8F’s bitwidth)⌉

C6: Backward edge integrity O(𝐸
√
𝐷) 2𝐸 (2

√
𝐷 + log2 𝐷) + 𝐸 (28 + 2 log2 𝐷) N/A

that it takes a single constraint to verify that a computed digest matches its correspond-
ing public reference. Thus, we only consider the complexity of the hashing. Note here
that the bit-space needed when compressing the unencoded adjacency list into the least
number of field elements (to minimize the number of calls to Poseidon) is directly af-
fected by the number of supported neighbors Δ (second row). In contrast, the bit-space
needed for the encoded adjacency list is affected by the number of levels (ℓ) used for the
encoding (first row). To illustrate the power of the encoding, note that we can only store
25 10-bit labels in a 254-bit field element. Thus, since we only have a one-dimensional
adjacency list of field elements, we can only represent adjacency lists with Δ = 25. How-
ever, using the encoding, we can store a total of 16 levels ℓ of 15-bit (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pairs
(we need 7-bit buckets when considering 10-bit labels), which can hold 128 labels. Thus,
using the encoding, we can reduce the number of calls to Poseidon and also represent
more complex adjacency lists using fewer bits.

Note that verifying the correctness of the worker’s translation of an execution path
of length 𝐸 requires 2𝐸 accesses toM inside the circuit since we must verify each tran-
sition’s destination address and (possible) return address. This complexity is shown in
row five of Table 4.2, which evidently dominates the overall circuit complexity.

The complexity of verifying that each transition’s destination node is valid according
to an encoded or unencoded adjacency list is shown on rows six and seven of Table 4.2,
respectively. Note that we accept the pre-split version ofAL as a sequentially accessed,
two-dimensional structure AL′ in both cases. For the encoded version, AL′ contains
the (𝑏𝑢𝑐𝑘𝑒𝑡, 𝑟𝑒𝑚𝑠) pairs as described in Section 4.6.1. For the unencoded version, AL′
contains the individual neighbors. In both cases, we maintain our state variable (𝑛𝑐𝑢𝑟
in Fig. 4.3) as an unsigned integer, which is used to access AL and whose bitwidth
is determined by the maximum label. Furthermore, in both cases, we perform a linear
search over AL′ to find a match, which requires either ℓ (using a step size of 2) or Δ
iterations with and without the encoding. (Note that Δ quickly outgrows ℓ .) Finally,
while negligible, note that the slightly higher (constant) cost per transition in the case of
the encoded version is the cost of our proposed method of verifying a linear system of
equations as described in Section 4.6.1.3 to check if a destination node exists in a (𝑏𝑢𝑐𝑘𝑒𝑡,
𝑟𝑒𝑚𝑠) pair.

Recall that a verifiable program’s complexity in terms of the number of constraints
it compiles down to is the sum of the cost of all branches as described in Section 4.6.1.
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Thus, the complexity of the back-edge integrity component (last row) includes the sum of
both branches (push and pop) per transition. However, note that we can usually keep the
stack depth,𝐷 , small (unless attesting to highly nested/recursive code). Hence the double
memory cost for this component is less significant than that of the fourth component.

4.7.1.1 Supporting More Neighbors

To store more neighbors in AL, we need more space per node element. Without com-
piler support for two-dimensional RAM, a naive approach is to emulate it with more ar-
rays. However, in this case, the memory access cost grows proportionally to the number
of arrays, i.e., for two parallel arrays, the cost per transition becomes 2× (2

√
𝑁 + log2 𝑁 ).

Another approach, whose cost is also shown in Table 4.2, is to instead store the hash of
a node’s neighbors as a field element in AL whose preimage is then given as a two-
dimensional array inAL′. Then, for each transition 𝑖 we simply verify that H(AL′ (𝑖))
= AL(𝑛𝑐𝑢𝑟 ) before performing a neighbor lookup in AL′ (𝑖), where AL′ (𝑖) now sup-
ports an arbitrarily large neighbor space. Note, however, that this choice comes at a cost
proportional to the number of Poseidon calls we need to make per transition to perform
the verification and thus is only mentioned as an alternative method for our approach
to scale in support of attesting to arbitrary CFG complexities. Specifically, to get 8 field
elements (the considered arity) of neighbor storage per node (allowing for ≈ 1024 neigh-
bors using the encoding when considering 10-bit labels), this comes at the cost of one
Poseidon call per transition, i.e., giving an overall (additional) cost of 𝐸 × ℭ.

4.7.2 Empirical Performance

4.7.2.1 Datasets

Table 4.3 shows some extracted datasets for a selection of demonstrative applications
taken from the embench-iot suite [68], which comprises a set of real-world, deeply em-
bedded applications2. To ensure reproducibility, we coded helpers [56] to perform all
evaluation steps. For compilation, we use GCC options -Os -g0 and the -fno-optimize
-sibling-calls flag for deactivating sibling and tail recursive calls optimizations. We
then use the angr [164] binary analysis tool for extracting static CFGs and sample ex-
ecution paths through symbolic execution, where the sample paths simulate paths as
recorded by a prover. To generate the trusted reference material, we use the NetworkX
Python package [87] for translating the extracted CFGs into isomorphic, numerically la-
beled representations, which are then converted into corresponding adjacency listsAL
and used to derive the address-to-label mappingsM.

4.7.2.2 Labeling

Note that the minimum number of levels (ℓ) needed to encode a specific adjacency list
is determined by the maximum number of quotients (i.e., buckets) shared by any node’s
neighbors, which depends on the way the nodes are labeled numerically. In our exper-
iments, we labeled each extracted CFG’s nodes using consecutive integers in the order

2Note that these applications only served as data points in our performance evaluation andwere not selected
by their need for control-flow attestation in practice.
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Table 4.3: Sample datasets from the embench-iot suite of real-world embedded applica-
tions, each with 24-bit address space.

Control-Flow Graph 𝑮 Sample recorded execution path (through symbolic execution)

Application 𝑵 Edges 𝚫(𝑮) ℓ 𝑬 (pre
a
) 𝑬 (post

b
) # loops Avg. loop length Avg. # of repetitions 𝑫

aha-mont64 114 151 6 2 997 110 109 2.82 (𝜎 ≈ 1.55) 3.01 (𝜎 ≈ 1.50) 5
crc32 88 106 2 2 3,090 24 1 3.00 (𝜎 ≈ 0.00) 1,023 (𝜎 ≈ 0.00) 6
cubic 147 198 8 3 105 10 1 1.00 (𝜎 ≈ 0.00) 96.00 (𝜎 ≈ 0.00) 5
edn 152 195 2 2 4,889 422 16 5.81 (𝜎 ≈ 12.34) 89.19 (𝜎 ≈ 98.89) 5
huffbench 188 284 3 3 9,894 1,155 84 4.39 (𝜎 ≈ 4.27) 53.77 (𝜎 ≈ 155.81) 6
matmult-int 113 143 8 2 37 37 0 0.00 (𝜎 ≈ 0.00) 0.00 (𝜎 ≈ 0.00) 5
md5sum 129 176 4 3 8,399 382 6 54.33 (𝜎 ≈ 119.26) 537.17 (𝜎 ≈ 490.16) 7
minver 176 252 3 3 324 201 21 5.00 (𝜎 ≈ 6.20) 3.10 (𝜎 ≈ 2.43) 5
nbody 113 140 3 2 108 58 4 5.00 (𝜎 ≈ 0.00) 3.50 (𝜎 ≈ 1.12) 6
nettle-aes 156 211 3 3 1,821 199 11 14.00 (𝜎 ≈ 15.21) 34.27 (𝜎 ≈ 71.00) 7
nettle-sha256 173 245 4 3 295 106 10 2.70 (𝜎 ≈ 3.16) 17.60 (𝜎 ≈ 19.64) 6
nsichneu 853 1500 2 2 659 655 1 4.00 (𝜎 ≈ 0.00) 2.00 (𝜎 ≈ 0.00) 4
picojpeg 633 1168 37 7 1,875 335 6 12.50 (𝜎 ≈ 8.46) 31.67 (𝜎 ≈ 20.90) 11
primecount 105 127 3 3 1,742 1,001 66 8.62 (𝜎 ≈ 11.69) 2.36 (𝜎 ≈ 0.64) 5
sglib-combined 728 1084 5 3 8,191 868 105 12.63 (𝜎 ≈ 16.62) 7.90 (𝜎 ≈ 20.19) 8
slre 347 528 6 2 2,217 609 5 13.40 (𝜎 ≈ 12.47) 10.80 (𝜎 ≈ 16.12) 13
st 123 155 3 3 1,143 65 7 1.57 (𝜎 ≈ 0.90) 99.00 (𝜎 ≈ 0.00) 6
statemate 434 657 2 2 256 102 3 1.34 (𝜎 ≈ 0.47) 31.67 (𝜎 ≈ 22.16) 6
tarfind 102 137 3 3 12,070 443 38 147.0 (𝜎 ≈ 161.36) 13.82 (𝜎 ≈ 40.87) 5
ud 133 174 3 2 393 185 25 3.76 (𝜎 ≈ 2.20) 4.60 (𝜎 ≈ 7.31) 5
wikisort 425 645 7 3 4,610 152 7 26.71 (𝜎 ≈ 50.41) 66.57 (𝜎 ≈ 84.31) 7
abefore and bafter path compression (removing all consecutively repeated sequences).

they appeared. (We defer the graph optimization problem of finding the most optimal
ordering as future work.) Note, however, that even without any special preprocessing,
we can already observe in Table 4.3 for picojpeg how “consecutivity” among the neigh-
bors of a node allows us to effectively represent the maximum outdegree Δ = 37 using
only ℓ = 7 levels, meaning we need only 105 bits to encode each node’s neighbors (each
level is 15 bits). Without the encoding, we would need 370 bits to represent 37 neighbors,
which already exceeds the considered prime field F.

4.7.2.3 Compression

As noted in [2] and utilized in most CFA works, the most basic method of reducing the
path explosion problem without loss of accuracy is to prune repetitions in the execution
path since they do not affect the legality of the control-flow. Similarly, we consider that
recorded execution paths are compressed such that each unique loop path only occurs
once, i.e., all consecutively repeating sequences are discarded. Note that this compression
only removes duplicates in the path, allowing us to use a smaller circuit for verification.
However, the compression does not affect our ability to detect control-flow attacks (ex-
cept those that only affect the number of loop iterations). (We discuss extending our
approach to attesting to the number of loop iterations in Section 4.8.)

72



Table 4.4: This table shows the average time (and standard deviation, 𝜎), after 10 itera-
tions, for the worker to generate proofs over ZEKRA circuits compiled to support differ-
ent attestation data sizes. Proof verification takes ≈ 2 ms in all cases.

Circuit Config (Data Structure Sizes) Compiled Circuit w. Component Workload Dist. (in %) Worker

𝑬 𝑵 𝑫 ℓ 𝒍𝒂𝒃𝒆𝒍 𝒃𝒖𝒄𝒌𝒆𝒕 𝒂𝒅𝒅𝒓 pkC (MB) # Const. C1 C2 C3 C4 C5 C6 Prove (avg. s)

500 500 15 15 10 bits 7 bits 24 bits 64.638 336,230 7.6 1.6 0.8 38.3 32.1 19.6 4.316 (𝜎 ≈ 0.007)
500 500 15 15 10 bits 7 bits 88 bits 69.327 366,605 7.0 7.0 3.5 35.1 29.5 18.0 4.709 (𝜎 ≈ 0.001)
1000 1000 15 15 10 bits 7 bits 24 bits 134.180 703,669 7.3 1.5 0.7 39.3 32.5 18.7 8.974 (𝜎 ≈ 0.057)
1000 1000 15 15 10 bits 7 bits 88 bits 143.888 764,419 6.7 6.7 3.3 36.1 29.9 17.3 9.730 (𝜎 ≈ 0.008)
1200 1000 15 15 10 bits 7 bits 24 bits 158.907 809,043 6.3 1.6 0.7 39.4 32.5 19.6 10.552 (𝜎 ≈ 0.049)
1200 1000 15 15 10 bits 7 bits 88 bits 170.306 877,893 5.8 7.0 2.9 36.3 30.0 18.0 11.374 (𝜎 ≈ 0.026)

4.7.2.4 Experimental Setup

As described in Section 4.6.1, we implemented our solution using xJsnark [114], a high-
level code-to-circuit compilation framework that employs a mix of optimizations to min-
imize circuit complexity. The high-level code is compiled into arithmetic circuits in an
extension of the Pinocchio [147] intermediate opcode format, which, using the jsnark
interface [113], are translated into the R1CS constraint system and fed into the libsnark
[119] backend for instantiating a particular zkSNARK proof system over the circuit. In
our case, we considered libsnark’s implementation of the state-of-the-art Groth16 [84]
proof system (over the BN128 curve), whose proof is 1016 bits and contains 3 group ele-
ments (2 G1 elements and 1 G2 element), and 3 pairings dominate verification. We then
benchmarked our prototype using libsnark’s built-in profiler, which includes the gener-
ation of the circuit’s proving and verification keys and execution of the proof generation
and verification algorithms on our experimental inputs, which were formatted from our
real-world extracted datasets. As the worker, we considered a machine with an AMD
Ryzen 7 3700X processor and 16 GB of memory (experiments were conducted in a WSL2
environment).

4.7.2.5 Benchmarks

Table 4.4 shows benchmarks for generating proofs over some demonstrative circuits
(proof verification is constant due to Groth16’s underpinnings). Note that when com-
piling a particular circuit, we must define the sizes of the data structures we want to
express. However, even if we fix both 𝐸 and 𝑁 to 1K, we can still supply execution paths
and adjacency lists ≤ 1K by employing padding as described in Section 4.6.2. Thus, the
larger circuits in Table 4.4 (after the fourth row) support all datasets shown in Table
4.3. Furthermore, note that the reported running times assume that the proving key is
preloaded in memory, which holds when proof generation is performed by dedicated
workers that expect the key to be used regularly and thus retain it in memory. Fur-
ther, note that we only list the proving key sizes since Groth16’s verification keys have
a constant size of 3312 bits. From the reported timings, it is evident that we prove the
satisfaction of arithmetic circuits at a rate of ≈ 77.8 constraints/ms on our considered
experimental setup.

Whereas the complexity of VC methods that fully convert programs into circuits to
verify each emulated CPU cycle’s correctness grows with a program’s control-flow and
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assembly complexity as described in Section 4.2, our coarse-grained approach grows only
to the control-flow complexity. For example, the cost per CFG edge (i.e., control-flow) is
≈ 674 constraints for the fifth circuit in Table 4.4, which is less than the per-cycle cost of
≈ 1, 458 in [20]. (Note also that there are inherently more CPU cycles than control-flow
transitions during a program’s execution.) Thus, while we require a trust anchor on the
prover to record and authenticate a program’s execution path, we scale better to larger
programs. Finally, contrary to circuits crafted for particular programs, our circuit allows
attesting to the execution of arbitrary programs via its inputs.

4.7.2.6 Attesting to Executed Instructions

While generally not considered for CFA since the attested program is generally con-
sidered to reside in DEP-protected memory, [186] proposed having the prover hash the
executed instructions alongwith the BBL addresses to detect TOCTOU attackswhen con-
sidering physical (non-invasive) adversaries who can manipulate program code during
runtime. In this case, the only change in the recorded execution path EP is that it con-
tains digests instead of the destination and return addresses, i.e., it becomes a sequence
of transitions of the form ( 𝑗𝑚𝑝𝑘𝑖𝑛𝑑, 𝑑𝑑𝑠𝑡 , 𝑑𝑟𝑒𝑡 ), where 𝑑 = H(𝑎𝑑𝑑𝑟 ∥𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠). We can
easily support this approach by initially storing H(𝑎𝑑𝑑𝑟 ∥𝐵𝐵𝐿𝑎𝑑𝑑𝑟 ) as the elements of the
translatorM instead of only storing the addresses. Further, note that only the hashing of
the attested execution path EP and the translatorM are affected (rows 3 and 4 of Table
4.2). Specifically, assuming 88-bit digests as in [186], each transition will occupy 178 bits
(destination and return address and 2 bits for the jumpkind).

4.7.2.7 Benchmarks for Other Proof Systems

The jsnark interface alternatively supports libsnark’s implementation of the optimized
Pinocchio zkSNARK proof system [147] as proposed in [20]. However, using this latter
system [20] over Groth16 [84] showed an increase of ≈ 13% in proving time and ≈ 45%
in proving key size for the largest circuit in Table 4.4, including a larger proof size of
2294 bits (7 G1 elements and 1 G2 element). While current SNARK technology is on the
borderline of feasibility, proof systems are evolving increasingly, and thus we expect to
handle (and optimize) larger arithmetic circuits more efficiently shortly. Furthermore,
we note that the workload requirements of the worker can be further scaled up using
current systems like DIZK [182], which allows the generation of proofs to be distributed
across machines (workers) in a compute cluster (e.g., EC2). Additionally, note that proof
systems have also recently emerged that outperform the Groth16 proof system, such as
SpartanSNARK [160], which, compared to libsnark’s implementation of Groth16, appears
to be 2× faster on the worker. See the corresponding works for details on their proving
time and key size complexities.

4.8 Discussion and Security Properties

4.8.1 Rejection of Control-Flow Attacks
To evaluate ZEKRA in terms of detecting control-flow attacks (i.e., preventing proofs
from being accepted when execution paths are illegal), we tested several paths bearing
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real code injection or ROP/JOP attack patterns. Note that the ZEKRA circuit, when com-
piled, is a concise set of constraints (or equations) that is satisfied only when all variables
hold all equations simultaneously. This constraint system includes both the set of con-
straints from the forward-edge integrity component, which requires jumps and calls to
target valid neighbors, and the set of constraints from the backward-edge component
requiring returns to target the contextually-valid node. Thus, if an execution path con-
tains any transition that causes any constraint to fail, then the verifier rejects the proof.
Thus, as expected, conventional control-flow hijacking attacks that employ code injec-
tion result in rejected proofs since they add transitions to the execution path which target
nonexistent CFG nodes.

Similarly, code-reuse attacks such as ROP and JOP are detected and rejected by the
verifier since they cause an execution path to contain transitions that target invalid
neighbors. Furthermore, if a function’s return address is hijacked to execute a malicious
gadget sequence, then this will also cause an unfulfilled constraint in the backward-edge
integrity component since the shadow stack’s topmost entry will not match this new
node. Furthermore, note that the execution path must also, at a minimum, be trans-
latable to its numeric representation according to the program-specific address-to-label
mapperM. Therefore, in the case of control-flow hijacking, e.g., when stitching together
a chain of gadgets for ROP, where an adversary might include branches to unexpected
offsets within a BBL instead of its starting address, this is always caught sinceM will not
include such entries. However, note that the circuit is limited to detecting control-flow
attacks, i.e., DOP attacks (see Fig. 4.1), even impure, will remain undetected unless the
reference CFG forces legal executions through designated routes in the CFG.

4.8.2 Comparison with CFAWorks
While our scheme suffers on the intermediate worker due to the computational resources
currently needed to generate zkSNARK proofs3, we achieve (i) optimal cost on verifiers,
(ii) optimal transmission overhead (towards the verifier), and (iii) stronger security prop-
erties, as opposed to all existing CFA works [2, 63, 186, 62, 3, 176, 95, 125, 169, 117, 140,
187]. Both (i) and (ii) are due to the “succinctness” of zkSNARK proof constructions,
where verification is unaffected by circuit complexity, and the proof size is constant, e.g.,
with Groth16, the proof only contains three group elements (totaling 1019 bits). More-
over, besides the proof, the verifier only needs to receive the circuit’s public inputs, which
all have constant sizes, comprising the considered entry and exit node labels, three di-
gests, and the verifier’s nonce (whose echo signifies freshness). Note that in other CFA
schemes, the prover generally transmits the full execution path and a corresponding di-
gest directly to the verifier. Furthermore, with all other CFA schemes, all verifiers are
assumed to maintain an extensive reference database of all the possible execution paths
[2] (or, more commonly, the attested program’s CFG [62] due to the difficulty of exhaus-
tively discovering all such paths beforehand as described in Section 4.3.3) to check the
legality of attested execution paths. We cover (iii) in Section 4.8.5.

3Which makes it challenging to target complex software, such as that considered by ScaRR [176] and ReCFA
[187], using our scheme due to the worker resources needed.
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4.8.3 Execution Path Compression
While not related to our protocol’s effectiveness, the considered granularity of the pro-
gram CFG and execution paths directly affects the efficiency and scalability of our ap-
proach. As also noted by other works [2, 63, 186], we can, without sacrificing accuracy,
decrease granularity to increase code coverage by pruning unnecessary edges in a CFG
and ignoring repetitions in the execution path. For example, to simplify a CFG, we can,
similar to inlining, where callee functions are inlined into the caller functions to reduce
complexity, fuse connected nodes where only one path exists between the nodes, e.g.,
the nodes 𝑛2, 𝑛3 and 𝑛7 in Fig. 4.1. This, however, requires that the prover’s trust anchor
can identify and translate execution paths into their succinct form, e.g., if it observes the
path 𝑛1 ⇝ 𝑛3 ⇝ 𝑛8 ⇝ 𝑛4 during program execution, then it records it as a function call
from 𝑛1 to 𝑛8 and a function return to 𝑛4. Similarly, to mitigate path explosion caused
by loops, the prover can notice when a sub-path begins consecutively repeating itself,
e.g., 𝑛5 ⇝ 𝑛6 ⇝ 𝑛5 ⇝ 𝑛6, and record it as only occurring once as considered in our
evaluation in Section 4.7.2.

4.8.4 Current Limitations
However, on a contrary note, while the current ZEKRA circuit puts no restraints on
the number of loop iterations, ensuring a correct (or safe) number of loop iterations
can be significant depending on the application [2]. Thus, we note the possibility of
extending the circuit to accept a secret policy specifying such loop (upper and lower)
bounds. Furthermore,- while we currently assume a semi-untrusted worker, future work
can weaken this trust assumption as described in Section 4.4.4.1. Finally, besides further
optimizations to reduce the computational resources needed by workers, future work
should investigate the viability of constructing a similar scheme with post-quantum-
secure proof systems, e.g., using STARKs [18].

4.8.5 Security Properties
Besides its secure implementation, our scheme’s foundational security is given by the
underlying proof system’s security (and circuit compiler). Note that for all configurations
we ran our prototype on (hundreds of executions), we recorded no completeness errors.
In the following, we give an intuitive description of the different security properties our
scheme is designed to provide and how it achieves them.

Property 4.8.1 (Proof Unforgeability). Not only does our scheme have negligible error
probability for falsely rejecting or falsely accepting an execution path or claims about
an execution path as authentic, but our scheme is also provably secure against (com-
putationally bounded) adversaries attempting to pass manipulated execution paths as
authentic due to the utilization of an accompanying signature scheme with the consid-
ered zkSNARK proof system. Specifically, the verifier detects any adversary (e.g., the
worker) attempting to pass in an unauthentic execution path as part of the proof. For
example, suppose that (i) the execution path, the nonce, or the random noise passed in
secret to the proof generation result in a different digest than the public digest, or (ii)
the adversary computes and inputs benign values to the proof generation but the public
digest differs from the prover’s signed digest. In the first case (i), the verifier rejects the
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proof in the proof verification stage due to unmet constraints, and in the latter case (ii),
the verifier rejects the proof in the signature verification stage due to a digest mismatch.
Therefore, the worker cannot convince the verifier that an illegal (unsigned) execution
path (e.g., one that reveals the presence of an attack against the attested program on the
prover) is legal.

Property 4.8.2 (Zero Knowledge). Our scheme ensures that a verifier only learnswhether
the expected prover freshly recorded an execution path and whether the execution path
is legal according to the secret adjacency list’s (AL) preimage of a specific trusted refer-
ence digest. Specifically, we ensure that no execution path or CFG details are disclosed to
the verifier by accepting them as secret circuit inputs and making the reference digests
statistically-hiding commitments.

Property 4.8.3 (Forward & Back Edge Integrity). The ZEKRA circuit is only satisfied
if the provided execution path is legal according to the given AL. The rules are sim-
ple. Transitions target adjacent nodes, and back transitions are shadow stack compliant.
By verifying that the execution path consistently flows through adjacent nodes in the
forward direction (using the adjacency list) and that callees always return to the con-
textually correct caller (using the shadow stack), we ensure fine-grained detection of all
control-based attacks as described in Section 4.8.1.

Property 4.8.4 (Execution Path Completeness). Like how a CFG precisely models all
program executions, we support attesting to any execution path in a program’s CFG.

4.9 Conclusions
We presented ZEKRA, a novel and effective protocol that utilizes the combined strength
of verifiable computation and control-flow attestation to enable underpowered provers
to convince untrusted verifiers about the correct control-flow execution of deeply em-
bedded programs in zero knowledge. The proposed scheme guarantees the attested pro-
gram’s forward and back-edge correctness according to its reference CFG, using several
optimizations for representing and traversing CFGs. While currently only demonstrated
for deeply embedded applications, our research suggests verifiable computation based
on zkSNARK constructions as a feasible direction for enhancing CFA schemes with ad-
ditional privacy guarantees.
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Chapter 5

RETRACT: Expressive

Designated Verifier

Anonymous Credentials

Abstract

Anonymous credentials (ACs) are digital cryptographically-secure versions of paper and
digital credentials that let us selectively prove possession of encoded attributes (claims)
to verifiers such as digital services, employers, or government departments without dis-
closing any other information. While attributes by governmental issuers usually reflect
basic personal information about the credential holder (e.g., name, gender, age, address),
attributes can also reflect more extensive claims about holders, such as the holder’s plat-
form details and configuration. Since the attributes might be sensitive, it is popular to
embed additional attributes in the credential about the existing attributes, e.g., that age is
above 18, thus allowing a holder to show that their age satisfies some condition without
revealing the exact age. However, since each verifier might have different policies that
must be satisfied, it is becoming increasingly impractical for issuers to embed all possible
claims in a credential. To mitigate this problem and allow arbitrary policies to be checked
against individual attributes without complicating or overwhelming the credential, we
propose to let verifiers dynamically define policies as high-level programs which can be
verifiably executed by holders on their credentials. Furthermore, to mitigate the potential
risk of dishonest verifiers attempting to benefit or otherwise leak sensitive information
learned through this unlimited expressiveness of policies, we propose making the proofs
designated verifier. Thus, any proof produced for one verifier cannot be used to convince
another.

5.1 Introduction
An anonymous credential system allows an entity to obtain a verifiable credential from an
issuer containing several attributes, or claims, which it can later prove possession of to a
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verifier. However, instead of revealing the entire credential to the verifying party, anony-
mous credentials allow the holder to selectively disclose only a subset of the attributes.
Such digital credentials are becoming increasingly popular as they provide a supposedly
secure and meaningful way for entities to bear cryptographic evidence reflecting their
properties and claims. For example, to access cloud-based services, entities can directly
prove that they bear the necessary attributes to satisfy the service’s access policy without
involving their identity providers. One of the most well-known cryptographic methods
that provide the necessary properties to build such anonymous credentials is BBS+ sig-
natures [11], which have become widely adopted as a standard for building anonymous
credentials.

Besides selective disclosure, it is becoming increasingly popular to incorporate zero-
knowledge proofs [178, 65, 33, 152, 42, 66, 179, 96, 170], where credential holders can
prove that they possess attributes that satisfy some conditionwithout revealing any other
information. However, several schemes still only support a limited range of predicates
[178, 65, 33, 179, 170], such as basic boolean operators, or being limited to range proofs
or set membership proofs. Furthermore, another challenge, as mentioned in [90], occurs
when considering anonymous credentials on devices, such as smartphones, where we
encounter issues such as credential sharing and the need to cope with fewer computa-
tional resources. To address this issue, authors of [90] proposed the notion of core/helper
anonymous credentials, where credentials are split between a secure core (e.g., a SIM
card) and a more resourceful helper (e.g., a smartphone). Here the idea is that the helper
cannot use the credential without the core’s help. Though, as the authors mention, the
core’s effort must be minimal and independent of the credential’s size due to its limited
resources. Finally, most prior literature on anonymous credentials does not consider the
designated verifier property [104]. Specifically, in most schemes, there is no attempt to
prevent the verifier from leaking whatever information they learned from the verifica-
tion process to other third parties. The designated verifier property is needed to protect
against such malicious activities by dishonest verifiers. Regardless of whether the holder
discloses attributes or proves to possess attributes that satisfy a policy or a combination
of the two, it should not be possible for verifying parties to misuse or leak information
obtained from the verification process.
Motivating example. As a small motivating example, consider a scenario where uni-
versity graduates get a digitally signed graduation certificate containing all information
related to their completed studies. Then, when a graduate wants to apply for a job, they
might have to convince a party that it satisfies some policy defined for that particular job,
such as having completed some specific courses, having an average grade above some
threshold, and living within proximity. Regardless, the hiring department should not be
able to convince anyone else of this information to sell or otherwise misuse the infor-
mation, which is particularly important to align with the recent European General Data
Protection Regulation (GDPR).

5.1.1 Constributions
We present a fully expRessive dEsignaTed veRifier Anonymous CredenTials (RETRACT)
scheme in the core/helpermodel of [90] that uses BBS+ signatures for building credentials
and incorporates state-of-the-art verifiable computation techniques to allow holders to
prove arbitrary predicates on their credentials in zero knowledge. In a nutshell, to com-
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bine BBS+ signatures with verifiable computation, we consider commit-carrying zero-
knowledge Succinct Non-interactive ARguments of Knowledge (cc-zkSNARK) [84, 37]
proof constructions that accept predicates expressed as arithmetic circuits. We then show
how to use well-established proof statement composition methods [35] for extending a
proof of knowledge of a valid BBS+ signature with proof that the commitment contains
attributes from the BBS+ signature while also ensuring that the overall scheme remains
designated verifier. While the generation of zkSNARK proofs is generally considered
slow, the proofs are short and verified remarkably fast, making zkSNARKs attractive, es-
pecially in Distributed Ledger Technology (DLT), e.g., the anonymous cryptocurrency
Zcash and Ethereum, and for verifiable credentials. Our proof-of-concept prototype is
accessible online [58].

5.2 Related Works

5.2.1 Flexible Credentials
Following the initial work of Chaum [43], there has been a long line of work (e.g., [14,
32, 90, 33]) with successively more efficient and expressive anonymous credentials that
have been widely deployed in several real-world applications, such as U-Prove [145], and
Idemix [36]. Recently, we have also witnessed a synergy between anonymous creden-
tials and predicate proofs to improve expressiveness. For example, Trinsic [178] uses
BBS+ signatures [11] and allows for range-based predicate proofs using basic arithmetic
operators. Similarly, the Decentralized Identity Foundation (DIF) allows some algebraic
rules and set membership checks as part of their presentation exchange specification
[65]. Another recent solution is Dock [66], which uses BBS+ signatures for creating cre-
dentials and has recently upgraded from supporting basic predicate proofs, e.g., mem-
bership and range proofs, to supporting more arbitrary predicates expressed in Circom
[97] and proven correct using a CP-SNARK version of Groth16 [84], called LegoGro16
[37]. In [42], researchers proposed zero-knowledge credentials in the decentralized iden-
tity (DID) ecosystem, where holders can employ a general-purpose zkSNARK proof sys-
tem (described in Section 5.3.5) to produce proofs of arbitrary computations over their
credentials. Similarly, authors of [152] also consider zkSNARKs and propose a toolkit for
creating complex statements and the composition of credentials.

5.2.2 Designated Verifier
While not an anonymous credential scheme, authors of [89] propose a single-sign-on
(SSO) protocol that uses BBS+ signatures [11] and adopts a form of designated verifier.
Specifically, in their SSO scheme, authentication tags can only be validated by the verifier
of the service for which they were designated. However, as the authors note, this version
of “designated verifier” is slightly different from that defined initially by Jacobsson [104]
(described in Section 5.3.6). Specifically, in [104], the idea of a designated verifier is to
prevent the verifier from convincing others about a transcript since the verifier could just
as well have generated it, whereas in [89] anyone can verify the signer of authentication
tags. In [64], authors propose functional credentials based on homomorphic attribute-
hiding predicate encryption schemes. The idea for holders to prove statements is: given a
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ciphertext encoding a given policy, a holder decrypts the ciphertext to convince a verifier
that they know a key for a set of attributes that matches the policy. However, in their
scheme [64], the idea is to keep policies secret from designated verifiers. While useful
in certain applications, this definition of the designated verifier also differs from that of
[104]. Finally, [61] propose using smooth projective hash functions (SPHF) [52] to allow
holders to make designated-verifier proofs.

5.2.3 Core/Helper Setting
Asmentioned in [90], a prominent example of the core/helper setting is theDirect Anony-
mous Attestation (DAA) protocol [29], which was designed for privacy-preserving re-
mote attestation of platforms. Here the core device is the Trusted PlatformModule (TPM)
[172], and the helper is the hosting platform to which the TPM is connected. While DAA
is technically a group signature protocol for creating anonymous signatures (with op-
tional linkability) on messages to convince a verifier that an authorized TPM signed a
message, some recent works extend the DAA protocol with attributes (DAA-A), and se-
lective disclosure [46, 31, 30]. While [46] considered CL [34] and SDH [25] signatures
for credentials, the recent DAA-A schemes [31, 30] shifted to q-SDH BBS+ signatures
[11]. However, noting how DAA-A schemes are tailored towards a specific core (i.e.,
the TPM), authors of [90] proposed core/helper anonymous credentials (CHAC), which
uses a combination of signatures with flexible public keys (SFPK) [12] and a novel notion
of aggregatable attribute-based equivalence class signatures (AAEQ). In the generalized
core/helper model defined by [90], the core can be any secure element, such as a SIM card,
an NFC-based smart card, a “software-based” Trusted Execution Environment (TEE) like
TrustZone or SGX, or even a TPM.

5.3 Background and Preliminaries
This section presents the considered primitives and terminologies used in describing our
scheme. Note that we denote sequences and vectors in bold. Furthermore, by [𝑛] we
denote the set of integers {1, . . . , 𝑛} and by (𝑎𝑖 )𝑖∈[𝐿] , we denote the tuple (𝑎1, . . . , 𝑎𝐿).

5.3.1 Bilinear Groups and Pairings
LetG1,G2, andG𝑇 be three finite cyclic groupswith prime order 𝑝 . Weworkwith bilinear
groups (𝑝,G1,G2,G𝑇 , 𝑒, 𝑔1, 𝑔2), where 𝑒 defines the mapping 𝑒 : G1 × G2 → G𝑇 , which
is bilinear, i.e., 𝑒 (𝑔𝑥1, 𝑔

𝑦

2 ) = 𝑒 (𝑔1, 𝑔2)𝑥𝑦 , non-degenerate, i.e., for all generators 𝑔1 ∈ G1

and 𝑔2 ∈ G2, 𝑒 (𝑔1, 𝑔2) generates G𝑇 , and efficient, i.e., there exists an efficient algorithm
G(1_) that outputs the bilinear group and an efficient algorithm to compute 𝑒 (𝑎, 𝑏) for
any 𝑎 ∈ G1, 𝑏 ∈ G2. In our scheme, bilinear groups are used to support the prominent
BBS+ signature scheme described in Section 5.3.4, which we utilize to express verifiable
credentials as issued by some trusted issuer. Furthermore, note that pairings are often
classified into one of three types (see [31] for details). However, for the purposes of
this paper, it suffices to say that we consider the third type (Type-III), which allows for
efficient operations in G1 and is used in the considered BBS+ signature scheme, which
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has been proven secure under the JOC version (supporting Type-III pairings) of the q-
Strong Diffie-Hellman (qSDH) assumption [24]. Finally, we use 1G to denote the identity
element in the group G.

5.3.2 Pedersen Commitment
The Pedersen commitment scheme [149] is an unconditionally hiding and computation-
ally binding commitment scheme based on the discrete logarithm problem. It consists of
three algorithms Ped = (Setup,Commit,VerCommit) that work as follows and satisfy
the notions of correctness, binding, and hiding as defined below.

• Ped.Setup(1_, 𝑛) → ck: given a security parameter and a desired number of values
𝑛, take (ℎ0, . . . , ℎ𝑛) ←$ G𝑛+11 , and output ck← (ℎ0, . . . , ℎ𝑛) as the commitment key.

• Ped.Commit(ck, (𝑢1, . . . , 𝑢𝑛)) → (𝑡, 𝑜): given a commitment key and a sequence
of values, parse ck = (ℎ0, . . . , ℎ𝑛), take 𝑜 ←$ Z𝑞 , compute 𝑡 ← ℎ𝑜0

∏𝑛
𝑖=1 ℎ

𝑢𝑖
𝑖
, and

output 𝑡 as the commitment, and 𝑜 as the opening value (blinding factor).

• Ped.VerCommit(ck, 𝑡, (𝑢1, . . . , 𝑢𝑛), 𝑜) → 𝑏 ∈ {0, 1}: given a commitment key, a
commitment, a sequence of values, and an opening, parse ck = (ℎ0, . . . , ℎ𝑛), and
only accept (𝑏 = 1) the commitment if 𝑡 = ℎ𝑜0

∏𝑛
𝑖=1 ℎ

𝑢𝑖
𝑖
.

Correctness. For all _ ∈ N and any vector 𝒖 of 𝑛 values we have:

Pr
[

ck← Setup(_, 𝑛)
(𝑡, 𝑜) ← Commit(ck, 𝒖)

: VerCommit(ck, 𝑡, 𝒖, 𝑜) = 1

]
= 1

Binding. For every polynomial-time adversary A we have:

Pr
[

ck← Setup(_, 𝑛)
(𝑡, 𝒖, 𝑜, 𝒖′, 𝑜 ′) ← A(ck)

:

VerCommit(ck, 𝑡, 𝒖′, 𝑜 ′)
∧VerCommit(ck, 𝑡, 𝒖, 𝑜)
∧𝒖 ≠ 𝒖′

]
= negl

Hiding. For ck← Setup(_, 𝑛) and every 𝒖, 𝒖′, we require Commit(ck, 𝒖) ≈ Commit(ck,
𝒖′).

5.3.3 Proof of Knowledge of Algebraic Statements
To prove knowledge of the secret ingredients (𝑢, 𝑜) of a Pedersen commitment 𝑐 without
disclosing either value, i.e., neither the committed value 𝑢 nor its opening 𝑜 , we can run
a zero-knowledge proof of knowledge protocol. There are essentially two common ways
to design non-interactive zero-knowledge (NIZK) proofs: Sigma protocols and zkSNARK
constructions [4]. The former is highly efficient for proving algebraic statements, while
the latter is superior for more expressive arithmetic representations. In our scheme, we
utilize both: the latter to prove arbitrary predicates expressed as arithmetic circuits on
credential attributes and the former to prove that those inputs originated from a valid
credential.

When referring to zero-knowledge proofs of knowledge of discrete logarithms and
statements about them, we adopt the notation of [31]. For example, 𝑃𝑜𝐾{(𝑎, 𝑏, 𝑐) : 𝑦 =
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𝑔𝑎ℎ𝑏 ∧ 𝑦 = 𝑔𝑎ℎ̃𝑐 } denotes a “zero-knowledge proof of knowledge of integers (scalars) a, b,
and c such that 𝑦 = 𝑔𝑎ℎ𝑏 and 𝑦 = 𝑔𝑎ℎ̃𝑐 holds,” where 𝑦,𝑔, ℎ,𝑦, 𝑔, and ℎ̃ are elements of
some groups G = ⟨𝑔⟩ = ⟨ℎ⟩ and G̃ = ⟨𝑔⟩ = ⟨ℎ̃⟩, respectively. The convention is that the
values in the parenthesis (𝑎, 𝑏, 𝑐) represent the secret knowledge (witnesses) that is being
proven by using the other values to which the verifier has access. In our construction,
we consider the following, generalized Schnorr protocol [158] to create proofs of such
composite statements.

5.3.3.1 Schnorr Proof of Discrete Log

Given a protocol description in the notation in Section 5.3.3, a common method of com-
piling the actual protocol is following the idea behind the Schnorr proof of knowledge
of a discrete logarithm protocol [158], which is a traditional three-move zero-knowledge
Sigma protocol, i.e., a commit-challenge-response protocol. The idea is relatively simple.
For proving knowledge of the value 𝑎 in 𝑦 = 𝑔𝑎 , the prover generates randomness 𝑟 and
sends 𝑡 ← 𝑔𝑟 to the verifier. Then, the verifier generates a random challenge 𝑐 and sends
it to the prover. The prover now computes the challenge response 𝑠 ← 𝑟 + 𝑐𝑎, and sends
𝑠 to the verifier. The verifier is convinced that the prover knows the discrete log of𝑦 only
if 𝑔𝑠 = 𝑡𝑦𝑐 . Furthermore, to make it a NIZK, i.e., collapse the three moves into one single
move, we can use the Fiat-Shamir heuristic [69] in the random oracle model by replacing
the verifier’s random challenge with that of a value from a hash function H (modeled as
a random oracle) on the prover’s first message 𝑡 and the input. Thus, in one round, the
prover computes the challenge 𝑐 ← H(𝑔∥𝑦∥𝑡) and response 𝑠 ← 𝑟 − 𝑐𝑚, and then sends
𝜋 = (𝑐, 𝑠) to the verifier, who computes 𝑡 ′ ← 𝑔𝑠𝑦𝑐 and 𝑐′ ← H(𝑔∥𝑦∥𝑡 ′), and accepts the
proof if the challenges match: 𝑐 = 𝑐′.

Note that we can generalize the Schnorr method to prove knowledge of the solutions
(discrete logarithms) to several terms, each containing several exponents, where, for each
term, 𝑦 = 𝑔𝑎ℎ𝑎 , the prover transmits one group element and one response value for each
exponent. The general idea for proving the AND (i.e., conjunction) of multiple statements
is to execute them in parallel and use the same challenge. It gets more complicated for OR
proofs, i.e., the disjunction of statements. In our construction, we use the idea described
in [35] for composing a disjunction of statements to create designated verifier proofs.

5.3.4 BBS+ Signatures
Inspired by the group signature scheme in [25], BBS+ signatures [31] are a multi-message
digital signature scheme that allows for signing an ordered list of messages where the
specially produced signature has a constant size, regardless of the number of messages.
In the context of verifiable credentials, note that we consider “attributes” instead of “mes-
sages”, i.e., a verifiable credential is an ordered set of attributes (representing different
claims) with a corresponding BBS+ signature over those attributes from some trusted
issuer. Given such a BBS+ signature, the credential holder can create zero-knowledge
proofs of knowledge of the signature and the corresponding signed attributes and option-
ally disclose select attributes.

In total, a BBS+ signature scheme consist of three algorithmsBBS+ = (KeyGen, Sign,Verify)
that work as follows.
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• BBS+.KeyGen(𝐿) → (ick, ipk, isk): given a desired number of attributes 𝐿, take
(ℎ0, . . . , ℎ𝐿) ←$ G𝐿+11 , isk ←$ Z∗𝑝 , ipk ← 𝑔

isk
2 , and output ick ← (ℎ0, . . . , ℎ𝐿) as the

commitment key and ipk and isk as the public and secret keys, respectively.

• BBS+.Sign(isk, ick, (𝑎1, . . . , 𝑎𝐿)) → 𝜎 : given a secret key, a commitment key, a
sequence of attributes to sign, parse ick = (ℎ0, . . . , ℎ𝐿), choose a random 𝑒, 𝑠 ←$

Z𝑝 , compute 𝐴 ← (𝑔1ℎ𝑠0
∏𝐿
𝑖=1 ℎ

𝑎𝑖
𝑖
)1/(𝑒+isk) , and output 𝜎 ← (𝐴, 𝑒, 𝑠) as the multi-

attribute BBS+ signature.

• BBS+.Verify(ipk, ick, (𝑎1, . . . , 𝑎𝐿), 𝜎) → 𝑏 ∈ {0, 1}: given a public key, a com-
mitment key, a sequence of attributes, and a purported signature, parse ick =

(ℎ0, . . . , ℎ𝐿), 𝜎 = (𝐴, 𝑒, 𝑠), and accept (𝑏 = 1) the signature only if 𝑒 (𝐴, ipk · 𝑔𝑒2) =
𝑒 (𝑔1ℎ𝑠0

∏𝐿
𝑖=1 ℎ

𝑎𝑖
𝑖
, 𝑔2).

Note that in our construction, we employ an extension of the above notation, which
we describe in Section 5.5.2.1 to require the assistance of the credential holder’s core
element when producing presentations (i.e., proofs of knowledge of a BBS+ signature).

5.3.5 (Commit-Carrying) zkSNARKs
While Sigma protocols are efficient for algebraic statements, they are significantly slower
when it comes to non-algebraic ones [4], e.g., cryptographic hash functions represented
as arithmetic circuits. Fortunately, constructions called zero-knowledge Succinct Non-
Interactive ARguments of Knowledge (zkSNARKs) [84] present an effective alternative
approach to proving statements about functions represented as Boolean or arithmetic
circuits C, which, in turn, are expressed in NP-complete languages such as Rank-1-
Constraint-System (R1CS) or Quadratic Arithmetic Programs (QAPs).

In a nutshell, a zkSNARK allows the credential holder to prove that they have cor-
rectly executed an arithmetic circuit C on public input 𝑥 and secret input 𝑤 (called the
witness), as follows. After taking C as input, a one-time setup is performed to give two
public keys: an evaluation key ek and a verification key vk. The evaluation key ek en-
ables credential holders to produce a proof 𝜋 attesting to the fact that 𝑥 and 𝑤 satisfied
C. The non-interactive proof 𝜋 is zero knowledge and a proof of knowledge. The proof
reveals nothing about 𝑢, but anyone can verify its correctness using only vk.

Furthermore, note that a credential holder is expected to supply attributes from its
issued credential as secret witnesses to the arithmetic circuits to prove that its attributes
satisfy some arbitrarily complex predicate. However, since a holder might cheat, we
require that the holder additionally proves that the secret witness used in the proof gen-
eration matches the attribute in its issued credential. While the standard zkSNARK con-
struction has no such capability built-in (and it is costly to express directly in a circuit),
there, fortunately, exists an alternative construction called commit-carrying zkSNARKs
(cc-zkSNARKs) [37], where the proof additionally contains a commitment (in our case
we consider the Pedersen commitment described in Section 5.3.2) to some portion 𝑢 of
the witness, i.e., we assume that the witness can be split into two subdomains𝑤 = (𝑢,𝜔),
where 𝜔 refers to the non-committed part of the witness.

In total, cc-zkSNARK schemes consist of three algorithms ccΠ = (KeyGen,Prove,VerProof)
that work as follows and satisfy the notions of zero-knowledge, completeness, succinctness,
knowledge soundness, and binding as defined below.
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• ccΠ.KeyGen(C,𝑊 , 1_) → (ck, ek, vk): given an arithmetic circuitC, a desired num-
ber of witnesses to commit to𝑊 , and a security parameter _, output a common
reference string that includes a commitment key ck with 𝑊 + 1 generators, an
evaluation key ek, and a verification key vk.

• ccΠ.Prove(C, ek, 𝑥,𝑤) → (𝑡, 𝜋, 𝑜): given an evaluation key ek for a circuitC, public
input 𝑥 and secret witness 𝑤 = (𝑢,𝜔) such that C(𝑥,𝑤) holds, output a proof 𝜋 ,
commitment 𝑡 , and opening 𝑜 such that Ped.VerCommit(ck, 𝑡, 𝑢, 𝑜) = 1.

• ccΠ.VerProof (C, vk, 𝑥, 𝑡, 𝜋) → 𝑏 ∈ {0, 1}: given a verification key vk for a circuit
C, public input 𝑥 , a commitment 𝑡 , either accepts (𝑏 = 1) or rejects (𝑏 = 0) the proof
𝜋 .

Completeness. For any _ ∈ N and C where C(𝑥,𝑤) = 1, it holds:

Pr
[
(ck, ek, vk) ← KeyGen(C,𝑊 , _)
(𝑡, 𝜋, 𝑜) ← Prove(C, ek, 𝑥,𝑤)

: VerProof (C, vk, 𝑥, 𝑡, 𝜋)
]
= 1

Binding. For every polynomial-time adversary A the following probability is negl(_):

Pr
[
(ck, ek, vk) ← KeyGen(C,𝑊 , _)
(𝑡, 𝒖, 𝑜, 𝒖′, 𝑜 ′) ← A(C, ck, ek, vk)

:

VerCommit(ck, 𝑡, 𝒖′, 𝑜 ′)
∧VerCommit(ck, 𝑡, 𝒖, 𝑜)
∧𝒖 ≠ 𝒖′

]
Besides these notions, knowledge-soundness informally states that we can efficiently

“extract” a valid witness from proofs that pass verification. Succinctness means that
proofs are of size poly(_) · (_ + log |𝑤 |) and can be verified in time poly(_) (_ + |𝑥 | +
log |𝑤 |). Finally, zero knowledge essentially means that proofs leak nothing about the
witness. See [37] for further details.

Note that we only assume commit-carrying zkSNARKs in the formalization of our
scheme. Here the commitment key depends on the relation taken byKeyGen, and a com-
mitment is freshly created by the Prove algorithm and is tied to a single proof. However,
note that the cc-SNARK lifting compiler in [37] can turn any cc-SNARK into the more
versatile commit-and-prove zkSNARK version where the commitment key is relation-
independent and allows for finer composition of different CP-zkSNARKs. Thus, it follows
that our approach can be extended to work with modular CP-zkSNARKs.

5.3.6 Designated Verifier Proofs
Let Φ be our proof statement (e.g., proof of knowledge of a BBS+ signature). Jakobsson
in [104] introduced the concept of a designated verifier, which essentially means that in
a proof of Φ, we ensure that the proof can convince only a particular verifier. The idea
is simple, instead of directly proving Φ, we create a transcript 𝜋 of the disjunctive proof
statement Φ ∨ 𝜙𝐵𝑜𝑏 , where 𝜙𝐵𝑜𝑏 is a proof of knowledge of the designated verifier’s se-
cret key, in this case, Bob’s. It essentially becomes a designated verifier proof, as Bob,
the designated verifier, can always use his trapdoor to simulate a transcript without sat-
isfying Φ. However, we can convince Bob about Φ since we can only produce a correct
transcript if we satisfy Φ as we do not know Bob’s secret key. Furthermore, since a third
party, Cindy, cannot distinguish between a transcript where Φ holds or 𝜙𝐵𝑜𝑏 holds, she
reasonably rejects the proof and thus effectively stops a transfer of the conviction.
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5.4 System and Threat Model
Before delving into the protocol details, we present the considered setting and assump-
tions concerning the protocol participants.

5.4.1 System Model
We consider a network setting with four types of entities:

1. Holder (Helper) is an untrusted, computationally capable device with a credential
containing some attributes/claims and initially interacts with the issuer to obtain
signatures over its credential. Then, on request, the helper collaborates with its
core element to generate designated verifier proofs of knowledge of the issuer’s sig-
nature over select attributes while optionally disclosing a subset of attributes and
proving arbitrary relations on the remaining undisclosed attributes.

2. Holder (Core) is a trusted and resource-constrained element belonging to a holder
and is involved in that holder’s initial credential issuance phase. Before a credential
is issued to the holder’s primary device (helper), the core element generates a fresh
asymmetric keypair, whose public key is used in the issuer’s signature over the
credential to require the assistance of the core element in each presentation of the
credential.

3. Designated Verifier is a resource-constrained and potentially dishonest entity
with a certified keypair who wishes to check whether a holder’s credential satisfies
some predicate.

4. Issuer is a trusted entity with a certified keypair and is responsible for securely
issuing credentials to holders, which includes: (i) verifying the correctness of the
attributes claimed by a holder and (ii) guaranteeing that the involvement of the
trusted core element of the specific holder is needed in the generation of credential
presentations.

5.4.2 Threat Model
We assume that holders and designated verifiers are mutually distrusting. The holder
assumes that the designated verifier might later attempt to profit from its credential pre-
sentations by leaking them to third parties to sell whatever information can be inferred
from the underlying proof statement or disclosed attributes as being valid. Conversely,
the designated verifier assumes that the holder will attempt to cheat in the proof gener-
ation by posing an invalid credential as valid or claiming that its credential satisfies the
verifier’s predicate when it does not.

5.4.3 Trust Model
As in [104], we assume that Cindy, a third party, will not trust Bob, a designated verifier,
to have produced a proof 𝜋 = Φ ∨ 𝜙𝐵𝑜𝑏 , where 𝜙𝐵𝑜𝑏 is a proof of knowledge of Bob’s se-
cret key and Φ is some arbitrary proof statement (i.e., policy predicate) which the holder

86



(Alice) wishes to prove the truth of. We also assume that Cindy is not an observer of the
communication between a credential holder and the designated verifier. This assump-
tion holds in many use cases, especially those based on Distributed Ledger Technologies,
where proofs might be stored on a blockchain. We further elaborate on this decision in
Section 5.4.3.1.

5.4.3.1 On the Break of the “Strong” Designated Verifier

Note that [104] also proposed the strong designated verifier to essentially prevent Dave,
an observer of the protocol interaction between a holder (Alice) and the designated ver-
ifier (Bob), from being convinced about the statement being proven by Alice (without
Bob disclosing its secret key). They argue that we can promote a protocol to become
a strong designated verifier by having Alice probabilistically encrypt the transcript us-
ing Bob’s public key since then Bob cannot convince Dave about the decrypted message
(due to the probabilistic encryption) since Bob can produce indistinguishable transcripts.
Later, [154] proposed a more efficient method of achieving the same strongness property
without requiring the signature to be encrypted by instead requiring Bob’s secret key
in the verification. However, we note here that Bob might succeed in convincing Dave
if we assume that Dave initially observed the specific transcript being transmitted from
Alice to Bob with the help of verifiable computation (e.g., use of zkSNARKs as described
in Section 5.3.5). For example, in the first case, let 𝑐 be the probabilistically encrypted
transcript transferred from Alice to Bob (and observed by Dave). To convince Dave that
𝑐 decrypts to 𝜋 using Bob’s secret key 𝑥𝐵𝑜𝑏 (without having to disclose the key), Dave can
send a decryption cipher as an arithmetic circuit CDec to Bob, which takes an encrypted
message as a public input and a decryption key as the secret witness. Then Bob can gen-
erate a zkSNARK proof that CDec (𝑐, 𝑥𝐵𝑜𝑏) = 𝜋 and send it to Dave, who gets convinced
that Alice produced the specific transcript. However, this “attack” is only possible if Dave
initially observed the transmission to obtain the trusted reference value 𝑐 . Therefore, in
our current system, we assume that any third party, such as Dave, who is interested in
receiving a conviction from dishonest designated verifiers was not actively observing the
protocol interaction between the holder and the designated verifier.

5.4.3.2 Objectives

Let Φ be a predicate defined dynamically by a certified, designated verifier. Our pro-
tocol’s overarching objectives are two-fold: (i) a designed verifier, Bob, always rejects
transcripts for the proof of Φ∨𝜙𝐵𝑜𝑏 unless Φ correctly holds on credentials issued by the
trusted issuer and the core element of the corresponding credential holder was involved
in producing the transcript, and (ii) a proof produced to convince a designated verifier,
Bob, cannot be used later to convince another verifier, Cindy. Note that while we con-
sider the helper potentially dishonest, a well-known problem in such a setting is that a
corrupted helper can always break the privacy of an anonymous credential system, e.g.,
by adding identifying metadata. The core cannot check such de-anonymization attacks.
Nevertheless, as in [90], we do not tolerate a malicious helper producing valid credential
presentations without interacting with the core.
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Figure 5.1: System model and conceptual work-flow.

5.5 The Protocol

5.5.1 High-Level Overview
Fig. 5.1 shows a high-level work-flow of our scheme considering the different entities
described in Section 5.4.1, which follows the core/helper model of [90]. Before obtaining
verifiable credentials from the issuer, the core generates a cryptographic keypair (step
1), whose secret part never leaves the shielding of the core. The holder can now re-
quest credentials from the issuer (step 2), where the core is required to supply its public
key together with a proof of knowledge of the secret key (step 3) to ensure that the core
must be involved in all presentations of the issued credentials. After the issuing (step
4), the verifiable credentials are stored on the helper (step 5). Then, to check whether
a holder in the system has credentials that satisfy some arbitrarily complex predicate,
designated verifiers can craft a presentation request (step 6), which includes the predi-
cate, describes the predicate’s accepted attributes, and states which attributes should be
disclosed. Supposing that a holder decides to answer a presentation request, it asks for
its core’s contribution (step 7) before completing the proof over the predicate (step 8) and
finally sending the designated-verifier proof (and any disclosed attributes) to the verifier
(step 9) who either accepts or rejects the proof. Note that steps 2 to 4 must occur over
authentic channels, which can be realized in multiple ways. However, in this paper, we
are not interested in how the issuer verifies the holder’s claims before issuing authentic
credentials nor in how we can establish an authentic channel during the issuance phase,
i.e., we assume ideal functionality for the channel.

5.5.2 Building Blocks
We employ the cryptographic primitives described in Section 5.3 to create our protocol,
which has several resemblances to the DAA with attributes (DAA-A) protocol proposed
in [31]. Specifically, authors of [31] extend the BBS+ signature scheme described in Sec-
tion 5.3.4 to require the public part of a TPM-generated secret in the issuer’s BBS+ sig-
nature, thus requiring the TPM’s contribution whenever the platform wants to produce
proofs of knowledge of the signature. Similarly, we consider the same extension of the
BBS+ signature, which we describe in Section 5.5.2.1, to require contributions from the
trusted core element of credential holders in credential presentations. However, note that
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for clarity in presenting the primary objectives of this paper, we exclude the signature-
based revocation and the use of pseudonyms from the protocol in [31], which we instead
defer as extensions to decorate our protocol in Section 5.7.

Recall that the objective of this paper is: (i) extending the BBS+ scheme to support
arbitrary predicates over attributes expressed as arithmetic circuits using cc-zkSNARKs
and (ii) making credential presentations (i.e., proofs) designated verifier. However, note
that we are working with two separate proofs. The first proof a holder must produce
is a proof that its attributes satisfy the predicate using some sound cc-zkSNARK proof
system, which returns, besides a proof of correctness of the predicate, a Pedersen com-
mitment over the attributes that were passed as secret witnesses. The second proof is
a composite proof of knowledge of a valid BBS+ signature where certain undisclosed at-
tributes (as specified by the verifier) match the secret witnesses in the Pedersen commit-
ment associated with the zkSNARK proof, thus proving that the attributes that satisfied
the predicate originated from the issued credential. Note that both proofs must be made
designated verifier. We describe how to make the former proof designated verifier in Sec-
tion 5.5.2.2 and the latter in Section 5.5.2.3. We then put everything together in Section
5.5.4.

5.5.2.1 Split BBS+ Signatures

We denote the extended BBS+ signature scheme, wherein the issuer commits to the
trusted core’s public key in its BBS+ signature, as a split (core/helper) BBS+ scheme.
The scheme consist of three algorithms sBBS+ = (KeyGen, Sign,Verify) that work as
follows. Note that the scheme’s security follows [31].

• sBBS+.KeyGen(𝐿) → (ick, ipk, isk): given a desired number of attributes 𝐿, take
ick ←$ G𝐿+21 , isk ←$ Z∗𝑝 , ipk ← 𝑔

isk
2 , and output ick, ipk, and isk as the issuer’s

commitment key, public key, and secret key, respectively.

• sBBS+.Sign(isk, ick, cpk, (𝑎1, . . . , 𝑎𝐿)) → 𝜎 : given a secret key, commitment key, a
core’s public key, and a sequence of attributes to sign, choose a random 𝑒, 𝑠 ←$ Z𝑝 ,
compute 𝐴 ← (𝑔1ick𝑠0cpk

∏𝐿
𝑖=1 ick𝑎𝑖

𝑖+1)1/(𝑒+isk) , and output 𝜎 ← (𝐴, 𝑒, 𝑠) as the
multi-attribute BBS+ signature.

• sBBS+.Verify(ipk, ick, cpk, (𝑎1, . . . , 𝑎𝐿), 𝜎) → 𝑏 ∈ {0, 1}: in a public key, a commit-
ment key, a core’s public key, a sequence of attributes, and a purported signature,
parse 𝜎 = (𝐴, 𝑒, 𝑠), and accept (𝑏 = 1) the signature only if 𝐴 ≠ 1G1

and 𝑒 (𝐴, ipk ·
𝑔𝑒2) = 𝑒 (𝑔1ick

𝑠
0cpk

∏𝐿
𝑖=1ick

𝑎𝑖
𝑖+1, 𝑔2).

Before issuing verifiable BBS+ signatures to credential holders for credentials with
a certain number of attributes 𝐿, an issuer must first create its keypair: (ick, ipk, isk) ←
sBBS+.KeyGen(𝐿) and register its public key and commitment key (i.e., generators in
G1) at some trusted certificate authority as described in [31].
Assumptions. For brevity, we consider an already registered issuer. Furthermore, we
assume that protocol participants have been equipped with the system parameters con-
sisting of a security parameter _, a bilinear group G1,G2,G𝑇 of prime order 𝑝 with gen-
erators 𝑔1, ick0, . . . , ick𝐿+1 of G1 and 𝑔2 of G2 and a bilinear map 𝑒 , generated via G(1_).
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We further assume a random oracle H : {0, 1}∗ → {0, 1}_ , which is used for the Fiat-
Shamir heuristic [69] to make non-interactive zero-knowledge proofs in the random or-
acle model.
PoK of BBS+ Signature. Let 𝐷 ⊂ {1, . . . , 𝐿} denote the selection of attribute indices
that a holder wants to disclose as part of its proof of knowledge and 𝑈 = {1, . . . , 𝐿} \
𝐷 denote the set of undisclosed attributes. To prove knowledge of a BBS+ signature
while selectively disclosing attributes 𝑎𝑖 with 𝑖 ∈ 𝐷 , the holder first computes 𝑏 ←
𝑔1ick

𝑠
0cpk

∏𝐿
𝑖=1 ick

𝑎𝑖
𝑖+1 and then proceeds as follows. Randomize the credential by taking

𝑟1 ←$ Z∗𝑝 , set𝐴′ ← 𝐴𝑟1 , and set 𝑟3 ← 1/𝑟1. Set𝐴← 𝐴′−𝑒 ·𝑏𝑟1 (= 𝐴′isk). Choose 𝑟2 ←$ Z𝑝 ,
set 𝑑 ← 𝑏𝑟1 · ick−𝑟20 , and set 𝑠′ ← 𝑠 −𝑟2 ·𝑟3. The holder now proves knowledge of a BBS+
signature following (5.1).

𝜋 ∈ 𝑃𝑜𝐾{(csk, {𝑎𝑖 }𝑖∈𝑈 , 𝑒, 𝑟2, 𝑟3, 𝑠′) :

𝐴/𝑑 = 𝐴′−𝑒 ick𝑟20 ∧ 𝑔1
∏
𝑖∈𝐷

ick
𝑎𝑖
𝑖+1 = 𝑑𝑟3 ick−𝑠

′
0 ick

−csk
1

∏
𝑖∈𝑈

ick
−𝑎𝑖
𝑖+1 }

(5.1)

The resulting proof is (𝐴′, 𝐴, 𝑑, 𝜋). To verify a proof, the verifier checks 𝐴′ ≠ 1G1
,

𝑒 (𝐴′, ipk) = 𝑒 (𝐴,𝑔2), and verifies the proof 𝜋 .

5.5.2.2 Designated Verifier Circuits

Recall that a trapdoor allows us to simulate a valid proof without knowing the satisfying
witness, and the simulated proof is indistinguishable from a “real” proof. While typi-
cally, we would not want a prover to have access to a trapdoor, our scheme depends on
trapdoors to make proofs designated verifier. Without a trapdoor, a proof that a predi-
cate (i.e., circuit) was satisfied can be very revealing to third parties for which the proof
was not originally intended. This is particularly true for circuits representing more com-
plex functions, such as membership checks, knowledge of preimages (secrets), and range
checks.

While it might be ridiculous to include a trapdoor inside simple circuits where anyone
knows a satisfying witness, e.g., a circuit that only includes a range check, more complex
circuits must include a trapdoor since satisfying witnesses are not publicly known. We
continue by first defining designated verifier circuits in Definition 5.5.1, and then proceed
by giving three examples of trapdoor functions with Bob as the contextual designated
verifier. (We compare the performance of each trapdoor in our evaluation in Section 5.6.)

Definition 5.5.1 (Designated Verifier Circuit). Let C be a circuit for the function 𝑓 on
public input 𝑥 and secret witness𝑤 , i.e., C(𝑥,𝑤) holds only if 𝑓 (𝑥,𝑤) holds. We define a
designated verifier circuit, DVC, as a circuit that accepts 𝑥 = (𝑥1, 𝑥2) and𝑤 = (𝑢,𝜔), and
includes a second function ℎ, which we call the designated trapdoor, such that DVC(𝑥,
𝑤) holds either if 𝑓 (𝑥1, 𝑢) holds or ℎ(𝑥2, 𝜔) holds.

Example 5.5.2 (Trapdoor #1: PoK of RSA secret key). Bob has a certified RSA keypair
with some publicmodulus𝑛. We can define our designated trapdoorℎ in our circuitDVC(
(𝑥1, 𝑥2), (𝑢,𝜔)) as: ℎ(𝑛, 𝑝, 𝑞) : 𝑝 × 𝑞 = 𝑛, where 𝑝 and 𝑞 are passed as secret witnesses to
the circuit in 𝜔 and 𝑛 is passed in 𝑥2. Thus, anyone besides Bob who sees a proof with 𝑛
as a public input will reject it since Bob might have cheated. Conversely, anyone except
Bob can only create a valid proof over the circuit with 𝑛 in 𝑥2 if they know a satisfying
witness to 𝑓 (𝑥1, 𝑢) since they do not know Bob’s secret key.
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Example 5.5.3 (Trapdoor #2: PoK of EC secret key). Bob has a certified EC keypair with
public key 𝑦 = 𝑔𝑥 . We can define our designated trapdoor ℎ in our circuit DVC((𝑥1, 𝑥2),
(𝑢,𝜔)) as: ℎ(𝑦, 𝑥) : 𝑦 = 𝑔𝑥 , where 𝑥 is passed as a secret witness to the circuit in 𝜔 and 𝑦
is passed in 𝑥2. The conviction follows that of example 5.5.2.

Example 5.5.4 (Trapdoor #3: PoK of preimage). Bob has a secret value 𝑥 with a certified
image 𝑦 = H(𝑥 ∥ 𝑟 ), where H is a sound hashing function, and 𝑟 is some secret blinding
factor initially supplied by Bob. We can define our designated trapdoor ℎ in our circuit
DVC((𝑥1, 𝑥2), (𝑢,𝜔)) as: ℎ(𝑦, 𝑥, 𝑟 ) : 𝑦 = H(𝑥 ∥ 𝑟 ), where 𝑥 and 𝑟 are passed as secret
witnesses to the circuit in𝜔 and𝑦 is passed in 𝑥2. The conviction follows that of example
5.5.2.

In practice, we need assurance that a predicate includes a trapdoor to which the des-
ignated verifier has access. For example, consider a circuit C with a supposed trapdoor
from Example 5.5.3 and includes ek and vk as its evaluation and verification keys, respec-
tively. We can determine the existence of this trapdoor with (5.2).

(pk′, sk′) ←$ KGen(1_)
(𝑡 ′, 𝜋 ′, 𝑜 ′) ← ccΠ.Prove(C, ek, (𝑥, pk′), ({0, 1}𝑊 , sk′))

ccΠ.VerProof (C, vk, (𝑥, pk′), 𝑡 ′, 𝜋 ′) ?
= 1

(5.2)

If (5.2) holds, the circuit is designated verifier according to Definition 5.5.1. However,
note that such checks require an extra execution of the proof generation for a circuit,
which can be expensive for large circuits. Thus, in practice, we might outsource such
trapdoor verification either to a certification authority or distributed worker farms [182]
that return proof about the presence of the trapdoor. For brevity, in the remaining paper,
we denote by DVC a circuit that has been verified to be a designated verifier circuit.

5.5.2.3 Designated Verifier Sigma Protocols

Let us assume that we have a credential comprising 𝐿 attributes: (𝑎1, . . . , 𝑎𝐿). Let 𝐷
denote the attribute indices we are supposed to disclose. The remaining undisclosed
attribute indices are 𝑈 = {1, . . . , 𝐿} \ 𝐷 . Furthermore, let DVC be a circuit for which
we want to prove to the designated verifier that we have satisfying witnesses. Finally,
let 𝒖 = (𝑢1, . . . , 𝑢𝑊 ) specify the sequence of attribute indices that we must supply as
witnesses to the circuit, where 𝒖𝑖 ∈ 𝑈 and𝑊 denotes the slice of committed witnesses
as determined during the circuit’s key generation, i.e., the circuit’s commitment key ck
contains𝑊 + 1 generators.

To produce a designated-verifier proof over the circuit using the specified attributes
from our credential, where dvpk is the public key of the designated verifier, and 𝑥 is some
public input, we run:

(𝑡𝑢, 𝜋, 𝑜) ← ccΠ.Prove(DVC, ek, (𝑥, dvpk), ((𝑎𝒖𝑖 )𝑖∈[𝑊 ], 𝜔))

To prove knowledge of the secret ingredients of the Pedersen commitment while also
allowing the designated verifier to produce valid proofs, we form the following disjunc-
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tive proof statement:

𝜋 ∈ 𝑃𝑜𝐾{({𝑎𝑖 }𝑖∈𝒖, 𝑜) ∨ dvsk : 𝑡𝑢 = ck𝑜0
𝑊∏
𝑖=1

ck𝑎𝒖𝑖
𝑖
∨ dvpk = 𝑔dvsk} (5.3)

Then, to produce non-interactive proofs that we know of a solution to one of the
problems without anyone learning which solution we know, we use the idea described
in [35], which is based on the initial result proposed by Cramer et al. [51]. The idea is
based on the generalization of the Schnorr protocol [158] (described in Section 5.3.3.1),
where we execute the two proof systems in parallel, but we additionally allow the prover
to “cheat” in one of them in an indistinguishable manner, as follows (computations are
done modulo the curve order 𝑝). Pick 𝑟𝑎𝑖 ←$ Z𝑝 for 𝑖 ∈ 𝒖, 𝑟𝑜 , 𝑟dvsk ←$ Z𝑝 , and a random
(cheating) challenge 𝑐2 ←$ Z𝑝 for the second term of (5.3) since we are not the designated
verifier. We then compute the two commitments: 𝑡1 ← ck𝑟𝑜0

∏𝑊
𝑖=1 ck

𝑟𝑎𝒖𝑖
𝑖

and 𝑡2 ← 𝑔𝑟dvsk ·
dvpk𝑐2 . To get the challenge for the first term, 𝑐1, we first compute 𝑐 ← H(𝑡1 ∥ 𝑡2 ∥ ck ∥
𝑔 ∥ 𝑡𝑢 ∥ dvpk) and then 𝑐1 ← 𝑐 − 𝑐2. We can then compute the challenge responses as: 𝑠𝑎𝑖
← 𝑟𝑎𝑖 +𝑐1𝑎𝑖 for 𝑖 ∈ 𝒖, 𝑠𝑜 ← 𝑟𝑜 +𝑐1𝑜 , and 𝑠𝑟dvsk ← 𝑟dvsk. Our final proof transcript for (5.3)
is 𝜋 ′ ← (𝑐1, 𝑐2, 𝑡𝑢, {𝑠𝑎𝑖 }𝑖∈𝒖, 𝑠𝑜 , 𝑠𝑟dvsk ), which we give to the designated verifier together
with the zkSNARK proof 𝜋 .

To verify that 𝜋 ′ is a valid transcript for (5.3), where 𝑡𝑢 ∈ 𝜋 ′ is a satisfying com-
mitment to 𝜋 , i.e., ccΠ.VerProof (DVC, vk, (𝑥, dvpk), 𝑡𝑢, 𝜋) = 1 holds, the verifier first
reconstructs the commitments: 𝑡 ′1 ← ck𝑠𝑜0 · (

∏𝑊
𝑖=1 ck

𝑠𝑎𝒖𝑖
𝑖
) · 𝑡−𝑐1𝑢 and 𝑡 ′2 ← 𝑔

𝑠𝑟dvsk · dvpk𝑐2 ,
and then checks that 𝑐1 + 𝑐2 = H(𝑡 ′1 ∥ 𝑡 ′2 ∥ ck ∥ 𝑔 ∥ 𝑡𝑢 ∥ dvpk) holds. Note that the only
missing ingredient of (5.3) is proving that the attributes originated from a valid BBS+
signature, i.e., that the discrete logarithms of the Pedersen commitment 𝑡𝑢 match the
attribute indices specified by 𝒖 in a valid credential, which we explain in Section 5.5.4.

5.5.3 Core/Helper Credential Issuance
As described in Section 5.5.2.1, we assume that protocol participants have been equipped
with the system parameters and the issuer’s trusted cryptographic materials. Fig. 5.2
shows the issuance protocol initiated by a holder that wishes to get the issuer’s BBS+
signature over its claims. After the issuer has performed all the necessary steps to ver-
ify the authenticity of the holder’s claims, it opens a communication channel with the
holder’s trusted core element. Here the issuer ensures the core’s active participation
whenever the helper wishes to produce proofs of knowledge of the issuer’s BBS+ signa-
ture over the holder’s claims. To do so, the issuer sends a fresh challenge to the core,
requesting the core to generate a fresh key pair whose public key should be included in
the BBS+ signature. Note that by including the core’s public key in the signature, we pre-
vent the helper from independently producing proofs of knowledge of the signature since
only the core can produce the necessary contributions in the Schnorr protocol to prove
knowledge of the public key’s discrete logarithm, i.e., the core secret key csk in (5.1). Like
[31], we assume that this communication between the issuer and the core occurs over an
authenticated channel and, similarly, that there is a secure channel between the holder
and its core.

When the core has created its key pair, it produces a signed proof of knowledge that it
knows the secret key behind its public key: 𝜋 ←$ 𝑆𝑃𝑜𝐾{(csk) : cpk = ickcsk

1 }(𝑛), where
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Holder (Core) Holder (Helper) Issuer

ick (ick, ipk, 𝑔1, 𝑔2), (𝑎𝑖 )𝑖∈[𝐿] ick, ipk, isk, 𝑔1 ∈ G1, 𝑔2 ∈ G2

Ask Issuer to sign credentials (𝑎𝑖 )𝑖∈[𝐿]
𝑛 ←$ {0, 1}_

𝑛𝑛
csk←$ Z𝑝 , cpk← ickcsk

1

𝑟 ←$ Z𝑝

𝑡 ← ick𝑟1
𝑐 ← H(ick1 ∥ cpk ∥ 𝑡 ∥ 𝑛)
𝑠 ← 𝑟 − csk · 𝑐 𝜋 = (𝑐, 𝑠), cpk 𝜋 = (𝑐, 𝑠), cpk

𝑡 ′ ← ick𝑠1cpk𝑐

𝑐′ ← H(ick1 ∥ cpk ∥ 𝑡 ′ ∥ 𝑛)

𝑐′
?
= 𝑐

𝜎 ← sBBS+.Sign(isk, ick, cpk, (𝑎𝑖 )𝑖∈[𝐿] )𝜎 = (𝐴, 𝑒, 𝑠)
sBBS+.Verify(ipk, ick, cpk, (𝑎𝑖 )𝑖∈[𝐿] , 𝜎)

?
= 1

store 𝑏 ← 𝑔1ick𝑠0cpk
∏𝐿
𝑖=1 ick𝑎𝑖

𝑖+1

Figure 5.2: Credential issuance using the split BBS+ signature scheme.

𝑛 is the verifier’s fresh challenge. The proof and public key are then sent to the issuer,
who, after verifying the proof, proceeds to use its secret key to generate a BBS+ signature
over the holder’s claims that also incorporates the core’s public key. Finally, given the
issuer’s signature, the holder checks the signature’s validity before storing it in persistent
storage. The holder also stores the product the issuer signed to ease the computational
effort needed to produce credential presentations.

5.5.4 Designated Verifier Credential Presentations
To demonstrate the protocol, let us consider a simple setting where a credential holder
knows of a designated verifier, and the designated verifier wants to determine whether
the holder has valid credentials whose attributes satisfy some designated verifier circuit
DVC. Like Section 5.5.2.3, we consider credentials with 𝐿 attributes, where the order
and meaning of the attributes are known1. Let 𝐷 denote the attribute indices the desig-
nated verifier wants to be disclosed such that𝑈 = {1, . . . , 𝐿} \ 𝐷 contains the remaining
undisclosed attribute indices. Finally, let 𝒖 = (𝑢1, . . . , 𝑢𝑊 ) specify the sequence of at-
tribute indices that should be passed as circuit witnesses, with 𝒖𝑖 ∈ 𝑈 . Fig. 5.3 shows the
participants engage in the protocol.

Like in Section 5.5.2.3, to prove that the specified attributes satisfy the predicate, the
holder generates a commit-carrying zkSNARK proof over the circuit with the specified
selection of attributes as the committed part of the witness:

(𝑡𝑢, 𝜋 ′, 𝑜) ← ccΠ.Prove(DVC, ek, (𝑥, dvpk), ((𝑎𝒖𝑖 )𝑖∈[𝑊 ], 𝜔))

Then, to generate a designated-verifier zero-knowledge proof of a valid BBS+ signa-
ture while proving that the committed witnesses 𝑡𝑢 from the zkSNARK proof equal the

1In practice, the credentials follow richer and standardized formats (e.g., the schema defined byW3C [179]),
where we encounter additional challenges, such as secure serialization.
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Holder (Core) Holder (Helper) Designated Verifier

ick, (csk, cpk) (ick, ipk, 𝑔1, 𝑔2), (𝑎𝑖 )𝑖∈[𝐿] , 𝜎 = (𝐴, 𝑒, 𝑠), 𝑏, dvpk (dvsk, dvpk = 𝑔dvsk), (ick, ipk, 𝑔1, 𝑔2), (DVC, ck, ek, vk), 𝑥

𝐷 ⊂ {1, . . . , 𝐿} attribute indices to disclose

𝒖 = (𝑢1, . . . , 𝑢𝑊 ) indices to pass as witness to circuit

𝑛 ←$ {0, 1}_(DVC, ck, ek), 𝐷, 𝒖, 𝑥, 𝑛
Generate cc-zkSNARK proof

𝑤 ← ((𝑎𝒖𝑖 )𝑖∈[𝑊 ] , 𝜔)
(𝑡𝑢 , 𝜋 ′, 𝑜) ← ccΠ.Prove(DVC, ek, (𝑥, dvpk),𝑤)
Randomize BBS+ credential

𝑟1 ←$ Z∗𝑝 , 𝑟2 ←$ Z𝑝 , 𝑟3 ← 1
𝑟1

𝐴′ ← 𝐴𝑟1

𝐴← 𝐴′−𝑒 · 𝑏𝑟1
𝑑 ← 𝑏𝑟1 · ick−𝑟20

𝑠′ ← 𝑠 − 𝑟2𝑟3
Schnorr PoK of discrete logarithms

𝑟𝑎𝑖 ←$ Z𝑝 for 𝑖 ∈ 𝑈 = {1, . . . , 𝐿} \ 𝐷
𝑟𝑒 , 𝑟𝑟2 , 𝑟𝑟3 , 𝑟𝑠′ , 𝑟𝑜 , 𝑟dvsk, 𝑐2 ←$ Z𝑝

get Schnorr commitment for secret key𝑟csk ←$ Z𝑝

𝑡csk ← ick
𝑟csk
1 𝑡csk

𝑡1 ← 𝐴′𝑟𝑒 · ick𝑟𝑟20

𝑡2 ← 𝑑𝑟𝑟3 · ick𝑟𝑠′0 · 𝑡csk
∏
𝑖∈𝑈 ick

𝑟𝑎𝑖
𝑖+1

𝑡3 ← ck𝑟𝑜0 ·
∏𝑊
𝑖=1 ck

𝑟𝑎𝒖𝑖
𝑖

𝑡4 ← 𝑔
𝑟dvsk · dvpk𝑐2

𝑐 ← H(𝑛 ∥𝐴′ ∥𝐴 ∥ 𝑑 ∥ 𝑡1 ∥ 𝑡2 ∥ 𝑡3 ∥ 𝑡4 ∥ 𝑡𝑢 ∥
𝑔 ∥ 𝑔1 ∥ 𝐷 ∥ 𝒖 ∥ ck ∥ ick ∥ ipk ∥ dvpk)

𝑐1 ← 𝑐 − 𝑐2
get Schnorr response for secret key𝑐1

𝑠csk ← 𝑟csk + 𝑐1 · csk
𝑠csk

𝑠𝑎𝑖 ← 𝑟𝑎𝑖 + 𝑐1𝑎𝑖 for 𝑖 ∈ 𝑈
𝑠𝑒 ← 𝑟𝑒 + 𝑐1𝑒
𝑠𝑟2 ← 𝑟𝑟2 − 𝑐1𝑟2
𝑠𝑟3 ← 𝑟𝑟3 − 𝑐1𝑟3
𝑠𝑠′ ← 𝑟𝑠′ + 𝑐1𝑠′

𝑠𝑜 ← 𝑟𝑜 + 𝑐1𝑜
𝑠𝑟dvsk ← 𝑟dvsk

𝜋 ← (𝑐1, 𝑐2, 𝜋 ′, 𝑡𝑢 , 𝑠csk, {𝑠𝑎𝑖 }𝑖∈𝑈 , 𝑠𝑒 , 𝑠𝑟2 , 𝑠𝑟3 ,
𝑠𝑠′ , 𝑠𝑜 , 𝑠𝑟dvsk )

{𝐴′, 𝐴, 𝑑, 𝜋, {𝑎𝑖 }𝑖∈𝐷 }dvpk Verify that ccΠ.VerProof (DVC, vk, (𝑥, dvpk), 𝑡𝑢 , 𝜋 ′)
?
= 1

𝑡 ′1 ← 𝐴′𝑠𝑒 · ick𝑠𝑟20 · (𝐴/𝑑)𝑐1

𝑡 ′2 ← 𝑑𝑠𝑟3 · ick𝑠𝑠′0 · ick
𝑠csk
1 · (∏𝑖∈𝑈 ick

𝑠𝑎𝑖
𝑖+1) · (𝑔1

∏
𝑖∈𝐷 ick𝑎𝑖

𝑖+1)
𝑐1

𝑡 ′3 ← ck𝑠𝑜0 · (
∏𝑊
𝑖=1 ck

𝑠𝑎𝒖𝑖
𝑖
) · 𝑡−𝑐1𝑢

𝑡 ′4 ← 𝑔
𝑠𝑟dvsk · dvpk𝑐2

𝑐′ ← H(𝑛 ∥𝐴′ ∥𝐴 ∥ 𝑑 ∥ 𝑡 ′1 ∥ 𝑡
′
2 ∥ 𝑡

′
3 ∥ 𝑡

′
4 ∥ 𝑡𝑢 ∥

𝑔 ∥ 𝑔1 ∥ 𝐷 ∥ 𝒖 ∥ ck ∥ ick ∥ ipk ∥ dvpk)

Verify that 𝑐′
?
= 𝑐1 + 𝑐2, 𝐴′

?
≠ 1G1

and 𝑒 (𝐴′, ipk) ?
= 𝑒 (𝐴,𝑔2)

Figure 5.3: Holder proves knowledge of a valid BBS+ signature whose undisclosed at-
tributes satisfy some arbitrary predicate only to a designated verifier. Since the desig-
nated verifier can also create the proof using the trapdoors, it is worthless to anyone
else.

attributes specified by 𝒖 in the signed credential, we merge the proof statements of (5.1)
and (5.3), resulting in (5.4). The holder first randomizes its BBS+ signature as described
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in Section 5.5.2.1 and then produces a proof of (5.4):

𝜋 ∈ 𝑆𝑃𝑜𝐾
{

(csk, {𝑎𝑖 }𝑖∈𝑈 , 𝑒, 𝑟2, 𝑟3, 𝑠′, 𝑜) ∨ dvsk :
(

𝐴/𝑑 = 𝐴′−𝑒 ick𝑟20 ∧ 𝑔1
∏
𝑖∈𝐷

ick𝑎𝑖
𝑖+1 = 𝑑𝑟3 ick−𝑠

′
0 ick−csk1

∏
𝑖∈𝑈

ick−𝑎𝑖
𝑖+1

∧ 𝑡𝑢 = ck𝑜0
𝑊∏
𝑖=1

ck𝑎𝒖𝑖
𝑖

)
∨
(
dvpk = 𝑔dvsk

)}
(𝑛)

(5.4)

This statement is a disjunction of two outer relations. The first outer relation is a
conjunction of three inner relations, which the holder attempts to prove together with
its core, and the second is for the designated verifier. Note that we create the outer
disjunction following the idea in Section 5.5.2.3. Specifically, we execute the Schnorr
proof of knowledge protocol for each of the four relations to prove knowledge of the
different discrete logarithms. However, we use a different half of the challenge in each
of the outer relations.

Finally, to verify that 𝜋 is a valid transcript for (5.4), where 𝑡𝑢 is a satisfying com-
mitment to 𝜋 ′, i.e., ccΠ.VerProof (DVC, vk, (𝑥, dvpk), 𝑡𝑢, 𝜋 ′) = 1 holds, the verifier re-
constructs and verifies the four commitments as shown in Fig. 5.3. Then, to verify the
accompanying, randomized BBS+ signature (𝐴′, 𝐴, 𝑑) against the issuer’s public key, the
verifier checks that 𝐴′ ≠ 1G1

and 𝑒 (𝐴′, ipk) = 𝑒 (𝐴,𝑔2).
Note that if the holder attempts to use an invalid sequence of attributes to satisfy the

predicate (i.e., one not specified by 𝒖), then the proof will be rejected. Specifically, since
the verifier’s reconstruction of the 𝑡 ′3 commitment considers the 𝑠-values corresponding
to the correct sequence of attributes as specified by 𝒖, the reconstructed commitment
would inevitably differ from 𝑡𝑢 , producing a different challenge 𝑐′ and thus causing the
proof to be rejected.

5.5.4.1 Simulating Transcripts

Demonstrating how the protocol is designated verifier, Fig. 5.4 shows the designated veri-
fier producing valid transcripts for arbitrary attributes using the demonstrative trapdoor
in the circuit and satisfying the latter outer relation in (5.4).

5.6 Performance Evaluation

Our evaluation aims to answer the questions of (i) how efficient our protocol is for cre-
ating credential presentations and (ii) how costly the considered method is for making it
designated verifier.

5.6.1 Implementation and Experimental Setup
To program demonstrative circuits, we used xJsnark [114], a high-level code-to-circuit
compilation framework that employs a mix of optimizations to minimize circuit com-
plexity. With xJsnark, our high-level code is compiled into low-level circuits, which,
using the jsnark interface [113], are translated into the R1CS constraint system and fed
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Simulate Transcript((𝐴′, 𝐴, 𝑑), (ick, ipk, 𝑔1), (DVC, ck), 𝐷, 𝒖, 𝑥, 𝑛)

(𝑎1, . . . , 𝑎𝐿) ←$ Z𝐿𝑝

𝑤 ← ((𝑎𝒖𝑖 )𝑖∈[𝑊 ] , dvsk)
(𝑡𝑢 , 𝜋 ′, 𝑜) ← ccΠ.Prove(DVC, ek, (𝑥, dvpk),𝑤)
𝑟𝑎𝑖 ←$ Z𝑝 for 𝑖 ∈ 𝑈 = {1, . . . , 𝐿} \ 𝐷
𝑟𝑒 , 𝑟𝑟2 , 𝑟𝑟3 , 𝑟𝑠′ , 𝑟csk, 𝑟𝑜 , 𝑟dvsk, 𝑐1 ←$ Z𝑝

𝑡1 ← 𝐴′𝑟𝑒 · ick𝑟𝑟20 · (𝐴/𝑑)𝑐1

𝑡2 ← 𝑑𝑟𝑟3 · ick𝑟𝑠′0 · ick
𝑟csk
1 · (

∏
𝑖∈𝑈

ick
𝑟𝑎𝑖
𝑖+1) · (𝑔1

∏
𝑖∈𝐷

ick𝑎𝑖
𝑖+1)

𝑐1

𝑡3 ← ck𝑟𝑜0 · (
𝑊∏
𝑖=1

ck
𝑟𝑎𝒖𝑖
𝑖
) · 𝑡−𝑐1𝑢

𝑡4 ← 𝑔
𝑟dvsk

𝑐 ← H(𝑛 ∥𝐴′ ∥𝐴 ∥ 𝑑 ∥ 𝑡1 ∥ 𝑡2 ∥ 𝑡3 ∥ 𝑡4 ∥ 𝑡𝑢 ∥
𝑔 ∥ 𝑔1 ∥ 𝐷 ∥ 𝒖 ∥ ck ∥ ick ∥ ipk ∥ dvpk)

𝑐2 ← 𝑐 − 𝑐1
𝑠𝑎𝑖 ← 𝑟𝑎𝑖 for 𝑖 ∈ 𝑈
(𝑠𝑒 , 𝑠𝑟2 , 𝑠𝑟3 , 𝑠𝑠′ , 𝑠csk, 𝑠𝑜 ) ← (𝑟𝑒 , 𝑟𝑟2 , 𝑟𝑟3 , 𝑟𝑠′ , 𝑟csk, 𝑟𝑜 )
𝑠dvsk ← 𝑟dvsk − 𝑐2 · dvsk

𝜋 ← (𝑐1, 𝑐2, 𝜋 ′, 𝑡𝑢 , 𝑠csk, {𝑠𝑎𝑖 }𝑖∈𝑈 , 𝑠𝑒 , 𝑠𝑟2 , 𝑠𝑟3 , 𝑠𝑠′ , 𝑠𝑜 , 𝑠𝑟dvsk )

return (𝐴′, 𝐴, 𝑑, 𝜋, {𝑎𝑖 }𝑖∈𝐷 )

Figure 5.4: Designated verifier simulating correct transcripts.

into the libsnark [119] backend for instantiating a particular zkSNARK proof system over
the circuit. In our case, we considered an implementation [130] of the LegoGro16 [37]
proof system (over the BN254 curve) for producing commit-carrying zkSNARK proofs.
The specific LegoGro16 implementation is essentially a commit-and-prove variant of lib-
snark’s implementation of Groth16 [84]. However, since we only require the zkSNARK
to be commit-carrying, we assume the complexity of the commit-carrying variant here.
As our testbed (holder), we considered a machine with an AMD Ryzen 7 3700X processor
and 16 GB of memory (experiments were conducted in a WSL2 environment).

5.6.2 Notation

By 𝑘G𝑖 , we denote 𝑘 exponentiations (scalar multiplications) in the group G𝑖 , by 𝑘G𝑗𝑖
we denote 𝑘 𝑗-multi exponentiations, and by 𝑘𝑃 we denote 𝑘 pairing operations. We
let𝑊 denote the number of witnesses committed to in the considered commit-carrying
zkSNARK proof system, 𝐿 denote the number of attributes, and 𝐷 and 𝑈 denote the
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Table 5.1: Comparison of our scheme’s complexity to similar schemes when creating cre-
dential presentations by the holder (helper) and its secure element (core) and verification
by the verifier.

Scheme Core Holder (helper) Verifier Credential size Presentation size

DAA-A [31] 3G1 O(𝑈G1) O(𝐿G1) + 2𝑃 2Z𝑝 + 1G1 O(𝑈Z𝑝 ) + 4G1 + 1_
DAA-A [30] 3G1 O(𝑈G1) O(𝐿G1) + 2𝑃 2Z𝑝 + 1G1 O(𝑈Z𝑝 ) + 4G1 + 1_
CHAC [90] 1G1 O(𝐷 (G1 + G2)) O(𝐷𝑃) O(𝐿(G1 + G2)) 6G1 + 3G2

This work (sBBS+) 1G1 O(𝑈G1) O(𝐿G1) + 2𝑃 2Z𝑝 + 1G1 O(𝑈Z𝑝 ) + 3G1 + 2_
This work (ccGroth16) O(2𝑊G1) + O((3𝑁 +𝑀)G1 + 𝑁G2) O(𝑊G1) + 3𝑃 3G1 + 1G2

number of disclosed and undisclosed attributes, respectively2. Finally, to reason about
the computational complexity incurred by varying arithmetic circuit sizes, we consider
circuits as R1CS instances where we use 𝑀 to denote the number of constraints and 𝑁
to denote the number of variables in the instance.

5.6.3 Asymptotic Performance
Table 5.1 shows the computational complexity of our construction described in Section
5.5.4 and includes a comparison with other related core/helper credential protocols as
described in Section 5.2. Note, however, that none of the other schemes consider desig-
nated verifiers nor zkSNARKs. Therefore, we split our protocol’s effort over two rows for
comparison purposes.

The difference between ours and the two DAA-A schemes is that we are not using
pseudonyms and we have two challenges (for the disjunction). Like CHAC [90], our core
only needs to compute a single EC scalar multiplication, regardless of the number of
attributes. Furthermore, note that for the considered curve, Groth16’s proof is 127 bytes
and contains 3 group elements (2G1 elements and 1G2 element), and 3 pairings dominate
verification. However, with the considered commit-carrying variant, we additionally
have a Pedersen commitment to the𝑊 witnesses in G1.

5.6.4 Empirical Performance
To determine the cost of the different trapdoors mentioned in Section 5.5.2.2, we used
xJsnark to generate the corresponding circuits. As also reported at [5], it costs only 2578
constraints to express a function for verifying knowledge of the two secret prime factors
of a 2048-bit RSA key’s modulus as an arithmetic circuit. However, proving knowledge
of an ECDSA secret key costs almost 700K constraints if we consider the NIST P-256
curve. For the third choice of a trapdoor, we mentioned that we could express a hashing
function in the circuit and then prove knowledge of the secret preimage. In our case, we
considered the recent permutation function called Poseidon [82] that was made to be
expressed inexpensively in an arithmetic circuit. With our implementation of Poseidon,
it cost only 241 constraints when considering an arity of 2 and 262 constraints for an arity
of 3, which allows for preimages fitting three field elements, i.e., a preimage bitwidth of
762 bits considering the BN254 curve. Note that from our timings of generating proofs
with libsnark, it was evident that we prove the satisfaction of circuits at a rate of ≈ 77.8

2Following the notation used in https://github.com/scipr-lab/libsnark/tree/master/
libsnark/zk_proof_systems/ppzksnark
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constraints/ms on our considered setup. Finally, computing the three pairings during
proof verification took approximately 2 ms using libsnark.

5.7 Security Properties and Extensions
Besides its secure implementation, the proposed RETRACT scheme’s foundational se-
curity is guaranteed by the security of the underlying BBS+ signature scheme [31] and
zkSNARK proof system [84, 37]. In the following, we give an intuitive description of the
different security properties our scheme is designed to provide and how it achieves them.
Note that we only cover essential properties here.

Property 5.7.1 (Unforgeability). As described in Section 5.5.4, the verifier will reject
a proof if the holder uses attributes whose indices were not specified by 𝒖. Thus, the
holder cannot cheat by choosing a different sequence of attributes to satisfy the pred-
icate. Furthermore, since a verifier only accepts a proof of (5.4) if the corresponding
randomized signature is valid under the issuer’s public key, only the actual holder of a
credential issued by the trusted issuer can produce correct transcripts that a verifier ac-
cepts. Therefore, an entity cannot use forged or otherwise invalid credentials to convince
a verifier about satisfying a predicate. Nor is it possible for an entity to present attributes
that it does not possess believably.

Property 5.7.2 (Designated Verifier). Only the designated verifier can be convinced by
a proof produced by a holder since the verifier can produce indistinguishable transcripts,
as demonstrated in Fig. 5.4. While malicious verifiers might attempt to infringe on the
privacy of credential holders by crafting predicates to lure out excessive information, we
note that proofs are always limited in convincing a particular verifier. Furthermore, simi-
lar to the revocation of credentials, it is possible to castrate such misbehaving verifiers in
an established credential system, or we could slightly modify the system setup to require
all predicates to be certified by trusted parties.

Property 5.7.3 (Unlinkability & Selective Disclosure). Inherent to anonymous creden-
tials, different credential presentations from the same holder should not be linkable, and
it should be possible to disclose attributes in a verifiable manner selectively. Both of these
properties are guaranteed by the underlying BBS+ signature scheme.

Property 5.7.4 (Dependability). Like [90], regardless of whether credentials are leaked
or a helper device is completely compromised, it should only be possible to produce valid
credential presentations with assistance from the trusted core associated with the holder
for which the credentials were initially issued. This property is guaranteed by the split
BBS+ signature scheme described in Section 5.5.2.1.

Extension 5.7.5 (Revocation). An important feature to effectively handle the dynamic
nature of the set of entities of a credential system is the possibility of revoking the cre-
dentials of misbehaving parties. While not explicitly considered in our construction,
there are several ways to enforce the revocation of specific credentials. For example,
leveraging the expressiveness of circuits, we can include a non-membership check (e.g.,
using Merkle trees or RSA accumulators) and add a conjunctive clause to prevent all re-
voked credentials from satisfying the predicate. Another method to enforce revocation
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is to require holders to produce separate non-revocation proofs when presenting their
credentials, e.g., using the signature-based revocation mechanism of [31].

5.8 Conclusions
We presented RETRACT, a novel and fully expressive anonymous credential scheme al-
lowing credential holders to prove knowledge of satisfying credentials to arbitrary pred-
icates while ensuring that only the designated verifier believes them. Our construction
demonstrated how to combine state-of-the-art commit-carrying zkSNARK constructions
with the widely used BBS+ signature scheme.
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Chapter 6

Conclusions

In this thesis, we have explored how an advanced attacker can remotely infect resource-
constrained embedded systems, like the Tmote Sky module, and systematically extract
data from memory, which, in certain circumstances, might include cryptographic keys,
without assuming any knowledge about the target system’s software. We also pro-
posed three privacy-preserving protocols: ZEKRO, a remote attestation scheme, wherein
a prover equipped with a Trusted Platform Module can continuously convince an un-
trusted verifier that its platform configuration is correct without disclosing any concrete
state details; ZEKRA, a Control-Flow Attestation scheme that utilizes Verifiable Compu-
tation based on zkSNARKs to let a prover convince an untrusted verifier that it executed
a specific program correctly according to its Control-Flow Graph (CFG), i.e., in the ab-
sence of runtime attacks (e.g., Return-Oriented Programming attacks); and RETRACT, an
anonymous credential scheme that lets a credential holder convince a designated veri-
fier that it holds a valid credential that satisfies arbitrary criteria by utilizing Verifiable
Computation based on commit-carrying zkSNARKs for facilitating expressiveness, BBS+
signatures for creating the credentials, and trapdoors for making all proofs designated-
verifier. By using Trusted Computing and Privacy-Enhancing Technologies (PETs), these
protocols allow a prover to convince an untrusted verifier of the correctness or validity
of a platform, program execution, or credential, without disclosing any specific details.
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Appendix A

Malcode Implementation

Details

This appendix describes themethotolody for realizing the building blocks in Section 2.6.2,
i.e., establishing the necessary callbacks and timers on the target device (described in
Section 2.4.1).

A.1 Challenges
Since ISRs are programmed together with program code into flash, we must reprogram
the flash segment containing the timer and RX ISRs (Section 2.6.1) to achieve the neces-
sary callbacks. Fortunately, MSP430 accommodates in-system programmable flash mem-
ory [101], as is typical for sensor motes to enable over-the-air field upgrades. Thus, with
the advantageous Von Neumann memory model and lack of no-execute (NX), an adver-
sary A can easily reprogram flash from RAM.

A.1.1 Administration of Periodic Invocation
The MSP430-F1611 MCU has built-in MMIO configurations for two flexible 16-bit (asyn-
chronous) timers, named Timer A (TA) and Timer B (TB), respectively. Each timer has
multiple capture-compare units (CCUs), one control register, TxCTL, for configuring the
timer, e.g., specifying a mode of operation and clock source, and is coupled with one
16-bit counter register, TxR, which increments or decrements (depending on the mode
of operation) with each rising edge of the selected clock signal [101]. Each CCU has one
capture/compare register (CCR), one capture/compare control register (CCTL) and oper-
ates in either capture or compare mode, as determined by the CCTL register. In compare
mode, the value to be compared to is first loaded into the TxCCR, and when TxR equals
that value, it raises the capture/compare interrupt flag (CCIFG) for that TxCCR. Thus,
to establish periodic interrupts, we configure TBCTL in up mode and say, TBCCR6, in
compare mode, such that TBCCR6’s CCIFG gets raised whenever TBR equals whichever
value we store in TBCCR0 (the period). To react to this interrupt, we must reprogram
the appropriate ISR, which for TBCCR6 is the IVTBL entry at FFF8h (used for TBCCR1
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to TBCCR6). However, since multiple TBCCR CCIFGs are merged into this ISR, we must
consult the timer interrupt vector register (TBIV) stored at 011Eh to determine whether
TBCCR6 caused the interrupt. Finally, as the clock source (to regulate the period between
stackshots), we use the auxiliary clock (ACLK), sourced from a 32 kHz watch crystal to
achieve a granularity of 32 Cycles Per Millisecond (CPMS).

A.1.2 Narrowing the Time Before the KEW
To position the stack acquisition closer to the reception handler’s invocation, we can
follow the documented behavior of the CC2420. The MoteIV Tmote Sky module [49]
has a CC2420 [99] transceiver, which the MCU controls using an SPI link managed by
UART0 and a series of I/O lines and interrupts. Specifically, MSP430 devices have up to 6
digital I/O ports, numbered P1 to P6. Each port has eight I/O pins, numbered Px0 to Px7,
and four MMIO registers: PxSEL, PxDIR, PxOUT, and PxIN. When the CC2420 interrupts
the CPU about an incoming packet, the packet is incrementally read from the CC2420
reception queue (RXFIFO) into the MCU’s U0RXBUF memory buffer (located at 76h). On
successive reads, the USART0 RX ISR (IVTBL entry FFF2h) [101] is invoked, and only
when the entire packet resides in application memory then the reception handler gets
invoked. Fortunately, the transceiver requires that the output of the Chip Select (CSn)
pin, which is connected to pin 2 (3rd bit) of port 4 on the MCU, must remain low while
there is any communication with it (read or write). Therefore, by polling the CSn (bit 3
in the P4OUT register located at 01Dh) and noticing a transition from low (0) to high (1),
then we are sure that the invocation of the reception handler is imminent.

A.1.3 Programming Flash
Flash can be programmed using a JTAG interface, the Bootstrap loader (BSL), or using a
custom solution through user developed software. Each method has some method of pro-
tection. The JTAG is protected by a fuse. Blowing the fuse completely disables the JTAG
port and is irreversible. Access to the MSP430 flash memory via the BSL is protected
by a 256-bit, user-defined password. But the flexibility of in-system programmable flash
memory is advantageous to A. Because the memory model is Von Neumann and there
is no no-execute (NX) protection, code can easily be executed from RAM. This includes
flash read and write operations. The F1611 has three dedicated read/write flash memory
control (FCTL) registers, FCTL1, FCTL2, and FCTL3 (located at 0128h, 012Ah, and 012Ch,
respectively). The FCTLx registers are 16-bit, “password-protected”, read/write registers.
Any read or write access must use word instructions and write accesses must include the
write password 0A5h in the upper byte [101]. The key violation flag KEYV is set when
any of the flash control registers are written with an incorrect password. When this oc-
curs, a PUC is generated immediately resetting the device. Furthermore, it is also advised
to disable the watchdog timer (WDT) through the WDT control (WDTCTL) register be-
fore writing to flash. The main task of theWDTmodule is to perform a controlled system
restart after a software problem occurs (obviously not desirable). As with the FCTL reg-
isters, the WDTCTL register is password protected and requires the password 05Ah in
the upper byte when reading or writing to it. Note, because this password is known to
A it is trivial to reprogram flash during run-time. Furthermore, reading flash memory
does not require a password. The only challenge when writing to flash is to properly
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configure the flash controller with clocks and sources. More importantly, when flash
operations are conducted with the CPU executing code resident in RAM the CPU is not
automatically held while the operation is being performed. Therefore, it is required that
the code (malcode) includes logic to poll the BUSY (FCTL3 register) flag. When FCTL3
transitions from 1 (busy) to 0 (idle) we know that we can access flash addresses again.

Note, on the MSP430, flash must first be erased (each bit set to 1) before a value can be
written (individual bits changed to 0). However, the MSP430 only supports flash erasure
at a segment granularity (see Figure 2.2 for the segmentation). Furthermore, identical to
write operations, when initiated from RAM the flash controller is skipped and the BUSY
flag must be polled for the end of the erase cycle. Some MSP430 MCUs allow block write
to accelerate the process when many sequential bytes or words need to be programmed.

A.2 Crafting the malcode
We proceed with a brief description of our devised and application-agnostic malcode,
which to recap, leverages TinyOS’s minimalism, the run-time programmability of the
MCU, and incorporates the methodology in Appendix A.1.

The malcode is a collection of five code segments and, for brevity, accepts 18 con-
figurable parameters, which are presented together with arguments used during our ex-
periments (Section 2.7) in Table A.1. Besides the predefinedWD (see Malcode 3) and
FE (Malcode 4), the malcode comprises a Setup Engine (SE, Malcode 1) and an ISR Injec-
tor (ISRI, Malcode 2), where SE is the initial triggering of the malcode (Section 2.6.1).
When invoked,SE usesISRI to inject callbacks toWD and FE into the RX and timer
ISRs. Note that for brevity, we omitted the final segment, which transmits stackshots to
A. Nonetheless, to maintain state and to reprogram flash, the malcode uses unoccupied
RAM space, which, because MSP430 requires flash programming on a segment granular-
ity, must be ≥ 512 bytes, such that ISRI can temporarily copy, reprogram, and write
back segments.

Note that during the experiments in Section 2.7 we set PARAMperiod = ⌈CW/CF ∗
CPMS⌉, where CPMS (Cycles Per Millisecond) is 32. Thus, for CW = 97.57 ms, the time
period at CF 128 will be 0.76 ms and PARAMperiod = ⌈24.39⌉ = 25.

A.2.1 Methodical Execution
Once theA sends an activator packet which tricks the CPU’s Program Counter (PC) reg-
ister to point to the beginning of SE (see Fig. 2.4), ISRI is used to inject a callback to
WD in USART0’s RX ISR and another to FE in TB’s ISR (Appendix A.1). On each invo-
cation, ISRI: (i) identifies in which flash segment the target ISR is located, (ii) copies
that segment into RAM (where it can manipulate it freely), (iii) overwrites the first two
push statements in the ISR’s prologue with a branch (jump) to the appropriate malcode
component, (iv) clears the segment in flash memory, and finally (v) writes the manipu-
lated segment back into its original slot. Thus, when either ISR triggers, the appropriate
malcode is invoked. Subsequently, SE gracefully resumes the reception handler by re-
verting control-flow to the reception handler’s original return address (ADDRrestore, see
Table A.1).
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Table A.1: Malcode parameters and demonstrative arguments.

Parameter Argument Description

Config

PARAMusartISR FFF2h Target USART0RX IVTBL entry
PARAMtimerISR FFF8h Target TB IVTBL entry
PARAMCCTL 018Eh Target TBCCTL6
PARAMCCIFG 0Ch Value of TBCCR6 CCIFG in TBIV
PARAMruns 1 # of successive runs (receptions)
PARAMstackshots CF # of stackshots in each run
PARAMperiod ⌈CW/CF ∗ CPMS⌉ Time between stackshots
PARAMrg 64 # of bytes to extract

States (updated during run-time)

ADDRrun 2000h Current run count
ADDRstackshot 2001h Current stackshot count
ADDRtmpPtr 2002h Current offset in temporary storage
ADDRtmp 2200h Temporary storage ≥ 512 bytes (see Fig. 2.5)
ADDRrestore ∗ Restoration memory address (Fig. 2.4)

Demonstrative memory placement of the malcode

ADDRSE 2004h Start address of Malcode 1 (Fig. A.1)
ADDRISRI 202Ch Start address of Malcode 2 (Fig. A.3)
ADDRWD 20C4h Start address of Malcode 3 (Fig. A.2)
ADDRFE 20FCh Start address of Malcode 4 (Fig. A.4)

At this stage, the malcode is armed but lies dormant as it awaits reception. Upon
reception, theWD awakens, and unless ADDRrun has reached the PARAMruns thresh-
old, TB is started to periodically (regulated with PARAMperiod) invoke FE. Since dif-
ferent timers can run contemporaneously and FE’s callback resides in TB’s ISR’s pro-
logue, FE consults TBIV to determine whether the CCIFG of the targeted CCU is raised
(i.e., since we consider CCU6, whether TBIV has the value 0Ch [101]). If so, FE de-
termines whether the CSn has become high (Appendix A.1), and if it has, advances to
copy PARAMrg bytes from where the SP currently points (excluding the first five words
emitted by the interrupt and the FE’s prologue) into ADDRtmp, using ADDRtmpPtr as an
offset, and updates ADDRstackshot and ADDRtmpPtr accordingly. Once the PARAMstackshots
threshold is reached, FE stops its timer, increments ADDRrun, and transmits the accu-
mulated stackshots to A. Finally, FE resumes the TB’s ISR.

A.2.2 Assembly
The assembly code for the malcode components, SE, ISRI,WD, and FE (omitting
the fifth component for transmitting stackshots), are presented in Fig. A.1, Fig. A.3, Fig
A.2, and Fig A.4, respectively, and take Table A.1 as input. Note, before reprogramming
flash, ISRI first disables the watchdog timer (WDT) module to halt controlled system
restarts. Further, because SE occurs in the reception task’s context (due to the buffer-
overflow described in Section 2.5.4), and bothWD and FE will occur in ISR contexts,
registers (states) must be preserved and restored upon returning, regardless of calling
conventions, not to disturb the original program’s data-flow. However, because ISRs
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conventionally preserve the Status Register (SR) and PC, these need not be considered
byWD nor FE.

Malcode 1: Setup Engine SE (40 bytes)
1: PUSH R15 - R14
2: MOV.B #0, &ADDRrun
3: MOV &PARAMusartISR, R14
4: MOV #ADDRWD , R15
5: CALL #ADDRISRI
6: MOV &PARAMtimerISR, R14
7: MOV #ADDRFE , R15
8: CALL #ADDRISRI
9: POP R14 - R15

10: BR #ADDRrestore

Figure A.1: Demonstrative Setup Engine’s malcode.

Malcode 3: WatchdogWD (≥ 54 bytes)
1: PUSH R15 - R14
2: CMP.B #PARAMruns, &ADDRrun // done?
3: JZ line 12 // if yes, skip
4: BIT #0x0010, &PARAMCCTL // timer started?
5: JC line 12 // if yes, skip
6: MOV.B #0, &ADDRstackshot
7: MOV #0, &ADDRtmpPtr
8: MOV #PARAMperiod, &0x0192 // store in TBCCR0

9: MOV #0x0010, &PARAMCCTL // enable interrupts

10: CLR &0x0190 // reset TBR
11: MOV #0x1910, &0x0180 // TBCTL in up mode
12: MOV &PARAMusartISR, R15
13: ADD #0x0004, R15 // skip branch to self
14: BR R15 // allow ISR to progress

Figure A.2: Demonstrative watchdog’s malcode.
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Malcode 2: ISR Injector ISRI (152 bytes)
1: PUSH R2, R13 - R10
2: MOV #0x5A80, &0x0120 // stop WDT module
3: MOV.B R14, R13 // copy LSB as offset
4: SWPB R14 // swap MSB and LSB
5: MOV.B R14, R12 // MSB = segment start
6: MOV.B R12, R11 // copy MSB for testing
7: AND.B #0x01, R11 // 1 if MSB is odd

8: TST.B R11 // test if even or odd
9: JZ 0x6 // skip if even

10: DEC.B R12 // else, decrement MSB
11: ADD #0x0100, R13 // make offset odd
12: ADD #ADDRtmp, R13 // add segment offset

13: SWPB R12

14: MOV R12, R11 // copy segment start
15: ADD #0x0200, R11 // end = start + 512B
16: MOV #ADDRtmp, R10
17: MOV R12, R14 // copy segment start
18: MOV R14+, 0x0000(R10)
19: INCD R10

20: CMP R14, R11 // end of flash segment?
21: JNZ -0xA // go back 10 bytes
22: MOV #0x4030, 0x0000(R13) // swap(PUSH, BR)
23: MOV R15, 0x0002(R13) // swap(PUSH, callback)
24: MOV #0xA542, &0x012A // use MCLK/3
25: MOV #0xA502, &0x0128 // set ERASE bit
26: MOV #0xA500, &0x012C // remove LOCK bit
27: CLR 0x0000(R12) // erase segment
28: BIT #0x0008, &0x012C // check write status
29: JZ -0x6 // loop until done
30: MOV #ADDRtmp, R10
31: MOV #0xA540, &0x0128 // set WRT bit
32: MOV R10+, 0x0000(R12) // write word

33: INCD R12

34: BIT #0x0001, &0x012C // check busy status
35: JNZ -0x6 // loop until not busy
36: CMP R12, R11 // end of flash segment?
37: JNZ -0x10
38: MOV #0xA500, &0x0128 // remove WRT bit
39: MOV #0xA510, &0x012C // set LOCK bit
40: POP R10 - R13, R2
41: RET

Figure A.3: Demonstrative ISR injector’s malcode.
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Malcode 4: Frame Extractor FE (≥ 88 bytes)
1: PUSH R15 - R14 and R13

2: CMP.B #PARAMCCIFG, &0x011E // did the target timer fire?
3: JNZ line 24
4: BIT.B #0x04, &0x001D // CSn high?
5: JNC line 24
6: MOV #ADDRtmp, R13
7: MOV &ADDRtmpPtr, R13 // continue from tmpPtr offset

8: MOV R1, R14 // R1 is the SP
9: MOV R1, R15

10: ADD #0x000A, R14 // ignore 10 bytes (SR, PC, 3xPUSH)
11: ADD #0x000A, R15
12: ADD #PARAMrg, R15
13: MOV@R14+, 0x0000(R13)
14: INCD R13

15: CMP R14, R15
16: JNZ -0xA
17: INC.B &ADDRstackshot
18: ADD #PARAMrg, &ADDRtmpPtr // increment offset

19: CLR &0x0190 // reset TBR
20: CMP.B #PARAMstackshots, &ADDRstackshot // done?
21: JNZ 0x8
22: MOV #0, &PARAMCCTL // disable interrupts
23: INC.B &ADDRrun

CC2420 TRANSMIT

24: MOV &PARAMtimerISR, R15
25: ADD #0x0004, R15 // skip branch to self

26: POP R13

27: BR R15 // allow ISR to progress

Figure A.4: Demonstrative frame extractor’s malcode.
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