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Summary (English)

The goal of this thesis is to wrap up my endeavours in the realm of modelling
and probabilistic forecasting. The work is anchored in my two quite different
papers and is therefore essentially two-legged. The first leg deals with the devel-
opment and estimation of a grey-box model suited for forecasting, and this is the
primary subject of the thesis. In this case, I study the modelling and forecasting
of rainfall-response in a Danish stormwater tunnel, but the focus is really on
the modelling process and its inherent challenges rather than the specific case.
This exploration would therefore be relevant for practical grey-box modellers
within many fields, e.g. wind power forecasting and financial forecasting. The
second leg deals with forecast evaluation, and is exemplified by applying some
evaluation metrics to the stormwater forecasting model developed in the first leg
followed by a discussion of what kind of value is gained from such an evaluation
effort. Again, the relevance of the demonstrated work on forecast evaluation is
not limited to the specific case, but can be equivalently applied to probabilistic
forecasts in other areas.



Summary (Danish)

Målet med denne afhandling er at sammenfatte mine studier af modellering og
fordelingsforudsigelser. Arbejdet er forankret i mine to ret forskellige artikler
og kan derfor inddeles i to dele. Første del omhandler opsætning, udvikling
og estimering af en grey-box model med henblik på forudsigelser, og dette er
det primære emne i afhandlingen. I dette tilfælde studerer jeg modellering og
forudsigelse af regnvejrsrespons i en dansk regnvandstunnel, men det egentlige
fokus er på modelleringsprocessen og de udfordringer der opstår snarere end
selve regnvejrsemnet. Dette studie kan derfor være relevant for anvendt grey-
box modellering inden for mange områder, f.eks. vindenergi og finans. Anden del
omhandler evaluering af forudigelser, som her bliver behandlet ved at anvende
nogle evalueringsmetrikker på forudsigelserne fra regnvejrsmodellen fra første
del. En diskussion af hvad sådan en evaluering af forudsigelserne fortæller, og
hvilken værdi det giver følger naturligt. Igen er relevansen af den demonstrerede
evaluering ikke blot begrænset til regnvandsforudsigelser, men kan anvendes
tilsvarende på fordelingsforudsigelser inden for andre områder.



Preface
In 2015, I attended the Time Series Analysis course on DTU as a part of my
Master’s programme. This would be my first encounter with the topic of fore-
casting of real processes, anchored in rigorous statistical theory. The course
would expose the participants to everything relevant for this topic, including
parameter estimation, model selection, filtering as well as computation of ℓ-step
predictions and associated covariances. Only linear methods and models were
considered, but the content strongly piqued my interest, so naturally I continued
to pursue this track by attending the Advanced Time Series Analysis course in
the autumn of 2016. In stark contrast to the limited, safe, well-understood, lin-
ear methods from the ordinary Time Series Analysis, the advanced course was
like the wild west. A chaotic potpourri of new and old, in some cases poorly
documented, methods of high complexity. A seemingly unlimited collection of
possible model classes to choose from. At first, the content felt overwhelming,
but I soon understood that this was a pretty close representation of the prac-
tical reality of real world modelling and forecasting: the real world is generally
non-linear and erratic, where each individual problem requires a tailor-made
solution. Among the many models encountered in the course was the stochastic
differential equation. I did not put much effort into studying it at the time, but
it would later become the dominant model class in my studies.

In early 2017 I began to write my Master thesis. Because of my interest in
forecasting, my supervisor suggested that I would work on the evaluation of
forecasts, which I agreed to. After the Master’s programme concluded, I con-
tinued to work on this topic with the intent of writing and publishing a review
article with a focus on probabilistic forecast evaluation, in particular for mul-
tivariate forecasts. Despite the importance of the latter, there was no review
available in the literature covering this family of forecasts, which thus made a
great and very relevant case for my first paper.

My work on forecast evaluation soon transitioned into a PhD programme on
forecasting and modelling of real, physical systems. This programme included a
predefined case, which would feature modelling, forecasting and control of urban
drainage systems with the study subject being a newly constructed stormwater
tunnel in Singapore. Obviously, considerable amounts of energy is consumed
in waste- and stormwater management, in particular due to the operation of
pumps. The philosophy of the project was that a more optimized pump control
strategy should be possible, given intelligent modelling and forecasting of the
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stormwater management system. Furthermore, if the surrounding energy sys-
tem could be integrated into the control scheme, the stormwater masses in the
tunnel would effectively be a deferrable load, which could be pumped out of the
system during the most cost-effective time window.

Stochastic differential equations appeared to constitute the ideal building blocks
for a model capable of the above for three reasons. Firstly, they generate full
probability distributions and hence complete information of the forecasts, which
is necessary for optimal decision-making. Secondly, they can be integrated in
model predictive control very naturally. Thirdly, when they have been esti-
mated, new forecasts can be generated extremely fast when new data is ob-
tained, which is a strong feature for control on a short time-scale.

Although the setup for the project was well in place, the modelling of the
stormwater tunnel turned out to be a very challenging task, which consumed
all the remaining time on my PhD programme. I am therefore tremendously
happy that I have been able to finish and document a fully satisfactory model
in the end. This PhD thesis summarizes the various challenges I faced on the
way, and how I solved each and one of them.

Mathias Blicher Bjerregård, Lyngby 2022
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Chapter 1

Introduction

1.1 The importance of forecasting

The ability to forecast what is going to happen in the future is an art with an
enormous impact on a virtually infinite range of problems. The reason why it
is so impactful is because forecasts provide the end users with information, that
allows them to act in the direction of their best interests (Hong et al., 2020). A
rather innocent, but very relatable example, is when short-term weather fore-
casts are used by people for decision-making on their outdoor activities.

However, the impact of forecasting also applies to more serious problem types
with higher stakes. In the financial sector, market forecasts are issued and
exploited by traders constantly, in order to maximize profits and minimize losses
(Xing et al., 2018). In the energy sector, wind power forecasts are very important
because the power generation changes rapidly with changes in wind speed. Since
power is sold on the day-ahead market before it is produced, too wrong wind
power forecasts can end up costing the suppliers a lot of money (Costa et al.,
2008).

These examples clearly demonstrate that knowing what object to forecast, why
it is relevant and who is going to use it, are necessary in order to generate any
value in a forecasting problem. But in order to take the problem to the practical
level, it is also necessary to ask how to generate said forecasts, i.e. which method
is going to produce them. This thesis specifies a forecasting problem according
to these questions and then focuses on developing a model that can be used to
produce the desired forecasts.
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1.2 Forecasting of stormwater flow in sewer sys-
tems

The management of stormwater in urban areas makes a great case for a relevant
forecasting problem.

Typical sewer systems are built primarily for wastewater drainage and can not
handle too large amounts of stormwater in succession of rainfall events. Without
a solution, heavy rainfall events will cause floods and inflict expensive damage
on the affected urban area (Borup, 2014). A working solution is to implement
some extra storage capacity that can contain the excess amounts of water, until
it can be dealt with. This has been done in practice e.g. with the Damhus tunnel
in a neighbourhood of Copenhagen in Denmark (Palmitessa et al., 2021).

Obviously, the accumulated stormwater from a rainfall event eventually needs
to be removed from the extended storage capacity, such that new rainfall events
can be handled. In the two real examples mentioned above, the stormwater
ends up deep underground and has to be pumped out and led to a wastewater
treatment plant, where it is cleansed before it is released into the adjacent sea.

The associated pumping activity consumes considerable amounts of energy due
to the vast volumes of stormwater which are lifted from various depths. In the
Damhus case this is currently handled by an automatic real-time control scheme
that acts based on the current state of the system only, not on any forecasts.
However, a more optimal strategy would be to apply model predictive control
(MPC) (Brok et al., 2018). A smart MPC scheme could take advantage of the
timely variations in the energy price, and schedule pumping for times where the
energy prices are lowest. For this to work, it would be necessary to ensure that
the hard constraint of not causing a flood is honored. Hence, reliable forecasts
would be required. The end users in this case would be the local authorities
who are financing the stormwater management (Lund et al., 2018).

Having identified stormwater forecasting as an interesting and relevant case
study because of the potentially money-saving intelligent control prospects (the
what, why and who), the most interesting question of how can then be addressed.
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1.2.1 An overview of the state-of-the-art in rainfall-runoff
modelling

For the already mentioned reasons, stormwater forecasting is already applied
in the industry. In the following, a brief summary of the state-of-the-art for
rainfall-runoff modelling is provided, inspired by Sitterson et al. (2018) and
Jehanzaib et al. (2022). Rainfall-runoff models can be categorized into physical,
empirical and conceptual models.

Physical models are deterministic white-box models of very high complexity.
They are always highly accurate but suffer from comparatively slow computa-
tional speed. Some examples of physical models are the MIKE Urban (DHI,
2019) and the Storm Water Management Model (SWMM) (Rossman et al.,
2010).

Conversely, empirical models are black-box models with no physical interpre-
tation. They are purely data-driven, which has the advantages that no prior
knowledge about the modelling case at hand is needed for model estimation, as
well as having a low number of parameters to estimate. A major drawback is the
coverage of data needed for reliable forecasting. If new events of a kind which
are not reflected by the data used to train an empirical model occur, then the
model cannot be expected to perform well. Some examples of empirical mod-
els are SCS-Curve Number models (Mishra et al., 2003) and machine learning
methods like artificial neural networks (Yokoo et al., 2022).

Conceptual models are grey-box models that can be regarded as a compromise
between physical and empirical models. They draw on the most crucial physi-
cal concepts without having to model every little corner of the catchment and
every single pipe and manhole of the target case. Whatever is not captured
by the physical parts of the conceptual model is accounted for by adding some
appropriate uncertainty structure. Some examples of conceptual models are
the TOPMODEL (Beven and Kirkby, 1979), the Hydrologiska Byråns Vatten-
balansavdelning (HBV) (Dakhlaoui et al., 2012), the Hydrological Simulation
Program-Fortran (HSPF) (Mohamoud and Prieto, 2012), and last but not the
least, the continuous-discrete-time stochastic state-space model (CTSM) (Brein-
holt et al., 2011; Juhl et al., 2013), which is the model used in this thesis.

Furthermore, rainfall-runoff models are also distinguished based on spatial vari-
ability in the catchment. The relevant categories are fully distributed, semi-
distributed and lumped models. Lumped models do not consider spatial vari-
ability and are thus the simplest. On the other hand, fully distributed models
ideally feature a full description of the spatial variability, i.e. the rainfall-runoff
hydrograph behaves differently in every single square meter of the cathcment.
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The semi-distributed model is a compromise between the two, where the catch-
ment is divided into a number of sub-catchments. Each sub-catchment behaves
like a lumped model locally, but has its own unique parameter estimates which
ensures some spatial variability on the global level (Sitterson et al., 2018). The
CTSM used in this thesis is a lumped model, but could in theory be upgraded
to a semi-distributed model if deemed necessary.

A look into recent applications of rainfall-runoff modelling reveals that all of the
model categories are still being used and developed. Machine learning methods
are both used in empirical models, see e.g. Van et al. (2020) and Tikhamarine
et al. (2020), but also for improving the output from conceptual models, thus
yielding hybrids between the two (Okkan et al., 2021). Purely conceptual models
are still researched for their computational speed (Lavtar et al., 2019; Lees
et al., 2021; Nearing et al., 2020) and physical models like SWMM are often
applied for validation, where accuracy is valued more than time (Perin et al.,
2020; Sañudo et al., 2020). For the future, researchers generally recommend
to pursue further development of the machine learning route because of its
ability to produce accurate forecasts without much physical, geographical and
infrastructural understanding of every individual case, which means it has great
potential for generalization and hence ubiquitous applicability. However, in my
opinion, the conceptual models continue to be extremely relevant due to their
unique combination of both being physically interpretable while at the same time
having a small number of parameters. Furthermore, they tend to be fast at both
deterministic simulation and uncertainty forecasting (Breinholt et al., 2012) and
hence relevant for practical applications involving control, optimization and risk
management in urban drainage.

1.2.2 Grey-box modelling as a base for forecasting

The ambition of being able to implement a future MPC scheme on the Damhus
case introduced in Section 1.2 relies on the ability to constantly adapt to a
changing environment and generate new forecasts quickly. If the forecasts must
be computed fast, then they should not be based on complex physical models or
data-heavy empirical models which are generally still too slow (Löwe et al., 2022;
Su et al., 2019; Zhao et al., 2019), although examples of MPC integrated with
physical models like the SWMM have been published (Sun et al., 2020). Instead,
it is appealing to base the forecasting on one of the simpler conceptual models.
But with simplification follows increased uncertainty. Improper handling of
uncertainty could quickly lead to financial losses or even floods, so an alternative
forecasting model must also cover this aspect.

A grey-box model such as the continuous-discrete-time stochastic state-space
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model (CTSM) (see Chapter 2 for details) belongs to the category of conceptual
models and seems like a compelling choice satisfying all of the above require-
ments. Grey-box models are usually data-driven, allowing them to be built on
extremely simplified physical descriptions. The simple structure of the CTSM al-
lows for simulation and hence forecast generation at a high computational speed,
and crucially, they have a stochastic part which ensures that any uncertainty
can be properly modelled as well. Indeed, a few CTSMs for urban drainage
modelling have been published (Breinholt et al., 2011, 2012; Löwe et al., 2014,
2016) which provide a good starting point for this particular case study. Aside
from the referenced papers, suprisingly, it has not been possible to find any
recent work on CTSMs for stormwater forecasting, most likely due to the hype
around machine learning approaches which tends to affect every modelling field
nowadays. As a final remark, it is already well-known that grey-box models are
generally very suited for MPC schemes (Thilker et al., 2021). Therefore, this
thesis aims to develop a grey-box model, specifically a CTSM, for stormwater
forecasting in the Damhus drainage system.

1.3 Objectives

The main objective of this thesis is to provide a comprehensive report on my
grey-box modelling of the stormwater response in a Danish sewer system, namely
the sewer system associated with the Damhus catchment in Copenhagen. To
spell that out wordly, it means I want to forecast how much water flows into a
stormwater tunnel at any given time, whenever it rains in the neighbourhood.

Meeting this objective yields two levels of contribution. Firstly, the modelling
case features non-linear stormwater response and hence demonstrates a way to
deal with this common problem. The principles used for solving it are quite
generic and can thus be expected to be applicable for other sewer systems too,
making this case study relevant for future work in the field of urban drainage
modelling.

Secondly, actually building the model structure, estimating its parameters, eval-
uate its performance and then iterate over this modelling framework until a sat-
isfying model has been achieved has been a time-consuming, challenging piece of
work. It has forced me to deal with a range of frustrating obstacles encountered
on the way, which relevance are not necessarily restricted to urban drainage
modelling only. I can easily imagine other grey-box modellers will encounter
these types of problems again and again in many different applications. By ex-
posing those problems and my solutions to them in this thesis, I believe I can
help other people solve some of their modelling problems faster, or even avoid



1.4 Outline of the thesis 6

them before they arise.

Finally, this thesis has a parallel objective of investigating methods for multi-
variate probabilistic forecast evaluation. This is primarily covered in Paper B on
its own. However, the forecasts produced by the developed grey-box model are
indeed both probabilistic and multivariate, and since the purpose of the model
is to produce proper forecasts, it makes a perfect case for a demonstration of
how the evaluation methods discussed in Paper B may be applied to a real fore-
casting problem. Hence, the last objective of the thesis is to demonstrate how to
properly evaluate the multivariate probabilistic forecasts of stormwater issued
by the developed grey-box model.

1.4 Outline of the thesis

The thesis is organized as follows:

• Chapter 2 recaps how grey-box models are built from stochastic differential
equations and estimated using the maximum likelihood principle.

• Chapter 3 explains how stormwater flow can be modelled with linear reser-
voir models.

• Chapter 4 combines the above methods to develop a grey-box model for
forecasting of stormwater response in the Damhus tunnel.

• Chapter 5 features a demonstration of how the forecasts generated by the
developed grey-box model can be evaluated.

• Finally, some concluding remarks on the presented work is provided in
Chapter 6.

As a reader’s guide, I strongly recommend reading Chapter 2.1-2.2 and all of
Chapter 3, as the most fundamental mathematical basis is covered there. Section
2.3 serves as a reference for parameter estimation and is optional.

Chapter 4 is structured such that Section 4.1 and 4.3 can be read without 4.2,
intended for the reader that just wants to understand the Damhus case and the
fully developed model. Section 4.2 on the other hand, is a comprehensive section
containing the more interesting details seen from a modeller’s perspective. It is
thus intended for the deep readthrough.
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Chapter 5 connects the two publications which this thesis is based on. It is
pretty brief and I recommend reading all of it.

That sums up the introduction to this PhD thesis. Enjoy the ride!



Chapter 2

Grey-box modelling

This chapter introduces the grey-box modelling skeleton used throughout this
study. The idea of a grey-box model is to describe both the deterministic as
well as the stochastic behaviour of the target system. The deterministic part is
typically derived from well-understood physics, while the stochastic part should
cover the distribution of system noise which is not captured by the determinis-
tic physics (Tulleken, 1993). Stochastic differential equations (SDEs) are intro-
duced as the perfect building blocks for such grey-box models. Furthermore, it
is explained how a set of SDEs can be assembled to form a continuous-discrete-
time state-space model (CTSM), which enables reconstruction of both observed
and unobserved states of the target system. Finally, the parameter estimation
framework for the CTSM is briefly summarized.

2.1 Stochastic differential equations

In the context of grey-models, SDEs provide a realistic way to describe the evo-
lution of random variables, which are affected by some physical drift, typically
with respect to time. A basic SDE may be given on the form (Øksendal, 2003):

dXt = f(Xt, t)dt+ g(Xt, t)dWt. (2.1)

Here, t is continuous time, Xt is a random variable, f(Xt, t) is called the drift
function and describes the physical behaviour of Xt, while g(Xt, t) is called the
diffusion function and describes the stochastic behaviour of Xt. Wt is a Wiener
process, sometimes also referred to as a random walk or standard Brownian
motion, i.e. it has the property that the ’steps’ Wt+dt − Wt are independent
and identically distributed (i.i.d) with Wt+dt −Wt ∼ N (0, dt2) (Wiener, 1923).

A very simple example of a SDE is for instance,

dXt = −Xtdt+ σdWt, (2.2)
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where σ is a constant. The drift term f(Xt, t)dt = −Xtdt drives the expectation
E[Xt] towards 0 over time, while the diffusion term causes the uncertainty to
tend towards a Gaussian distribution with variance V[Xt] = σ2. The evolution
of the Eq. (2.2) is visualized in Fig. 2.1 with X0 = 1 and σ = 0.05. Because
the evolution of Wt is random, the path of Xt will be different every time it
is realized. If Xt is realized over and over again, an ensemble of realizations
is obtained which in turn constitutes an approximation to the full probabilistic
evolution of the SDE. From this ensemble, any desired probabilistic structure
can be extracted, such as (univariate) marginal forecast densities, (multivariate)
joint forecast densities, quantiles or expectations. This is also demonstrated in
Fig. 2.1, by highlighting the marginal forecast density at time t = 2.

Figure 2.1: Evolution of the the SDE in Eq. (2.2) with X0 = 1 and σ = 0.05. The marginal
forecast density at time t = 2 is shown to the right. The yellow bands cover up
to and including the 95%-prediction interval in both plots.

2.2 The continuous-discrete-time state-space model

It is now established that SDEs are useful for describing the behaviour of real
systems. In practice, it is usually necessary to formulate a number of inter-
dependent SDEs to mimic the dynamics of the target system reasonably. The
next step is to determine the parameter values. Of course, parameter values
may simply be guessed or estimated offline. However, in grey-box modelling,
a data-driven approach is typically taken by observing the system and use the
obtained data to estimate the most likely parameter values.

A common way to realize this idea is to formulate a continuous-discrete-time
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state-space model (CTSM):

dXt = f(Xt, Ut, t)dt+ g(Xt, Ut, t)dWt,

Yk = h(Xtk , Utk , tk) + ek, ek ∼ N (0, σ2
e).

(2.3)

The first equation is called the system equation and governs the system be-
haviour in continuous time. It is a generalized version of Eq. (2.1) in the sense
that Xt is now a vector of a number of system states, and both the drift and
diffusion terms are also functions of external inputs, Ut in addition to states
and time. The second equation is called the observation equation which mod-
els the observation as a random variable, Yk. Its core interpretation is that
the continuous-time system is only observed at discrete time points, tk, hence
giving rise to the tag ’continuous-discrete-time’. Generally, Yk is a vector, but
since this thesis exclusively features CTSMs with only one observed state, Yk

will from now on be regarded as a univariate random variable.

An example of a CTSM with two states X1 and X2, where only the latter is
observed is given below,

dX1,t = −X1,tdt+ σdW1,t

dX2,t = X1,tdt+ σdW2,t

Yk = X2,tk + ek, ek ∼ N (0, σ2
e),

(2.4)

which can be rewritten into the form in Eq. (2.3), by putting Xt = (X1,t, X2,t)
′

and Wt = (W1,t,W2,t)
′:

dXt =

(
−1 0
1 0

)
Xtdt+ σdWt,

Yk =
(
0 1

)
Xtk + ek, ek ∼ N (0, σ2

e).

(2.5)

Due to being unobserved, a state like X1,t is popularly called a hidden state, but
crucially it can still be reconstructed due to its interaction with the observed
state, in this case X2,t. This is the most important feature of the CTSM - every
relevant state of the system is subject to reconstruction, even though only a
part of the system is directly observed.

2.3 Model estimation

When the exact structure of the CTSM has been chosen, the final step to deliver
a fully functional model is the estimation of its parameters. For grey-box models
it is a very common practice to base parameter estimation on the maximum
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likelihood principle (Kristensen et al., 2004) and the extended Kalman filter
(Hoshiya and Saito, 1984). The theory of this framework is outlined below,
while in practice it is all handled automatically by the R-package ctsmr (Juhl
et al., 2013).

2.3.1 The likelihood principle

Let θ be the vector of parameters for the grey-box model subject to estimation,
let Y = (y0, · · · , yN ) be a series of observations of the modelled system, and
let ϕ(Y|θ) be the joint probability of observing y0, · · · , yN given θ. Then the
likelihood of the model, L(θ|Y) is simply

L(θ|Y) = ϕ(Y|θ). (2.6)

The goal is to identify the set of parameters θ̂ that maximizes the likelihood,
i.e. maximizes the joint probability of having observed exactly Y:

θ̂ = argmax
θ

L(θ|Y). (2.7)

The joint probability can be expanded into a chain of conditional probabilities,
using the general product rule P (A ∩B) = P (A|B)(P (B) (Pitman, 1999),

ϕ(Y|θ) = ϕ(y0, · · · , yN |θ)
= ϕ(yN |yN−1, · · · , y0, θ) · · ·ϕ(y1|y0, θ) · ϕ(y0|θ).

(2.8)

Since every factor in Eq. (2.8) is a probability and hence a number between
0 and 1, this product quickly becomes an extremely small number. In most
modelling cases there will be hundreds or thousands of observations, and then
the product becomes so small that it is computationally impractical to work
with. Instead, consider the logarithm of the probability,

log(ϕ(Y|θ)) = log(ϕ(yN |yN−1, · · · , y0, θ)) + ...

+ log(ϕ(y1|y0, θ)) + log(ϕ(y0|θ)).
(2.9)

This is a sum and is hence computationally stable for practically infinitely large
sets of observations. Taking the logarithm on both sides of Eq. (2.6) gives

log(L(θ|Y)) = log(ϕ(Y|θ)), (2.10)

where the left-hand side is called the log-likelihood. Fortunately the maximum
likelihood estimate is invariant under this log transformation, and thus,

θ̂ = argmax
θ

log(L(θ|Y)). (2.11)
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Finally, it is common practice to think of the likelihood as a loss that has to be
minimized. For this reason, the negative log-likelihood,

ℓ(θ|Y) = − log(L(θ|Y)), (2.12)

is often used instead. It follows that

θ̂ = argmin
θ

ℓ(θ|Y). (2.13)

Fundamentally it does not really matter if the negative form is used or not, and
the method is still called "maximum likelihood" estimation even though Eq.
(2.13) rather looks like a "minimum negative log-likelihood" estimation. Either
way, throughout this thesis the negative form, ℓ(θ|Y), is used.

Clearly, in order to be able to calculate ℓ(θ|Y), a way to calculate the conditional
probabilities listed in Eq. (2.9) is needed. This is handled by the extended
Kalman filter, as outlined in the next subsection.

2.3.2 Kalman filtering

Consider again a CTSM as formulated in Eq. (2.3). In short, the Kalman
filter is an algorithm that alternates between doing one-step prediction and
reconstruction, respectively, of both the state expectation and covariance, where
’one-step’ refers to moving in time from tk to tk+1. The predictions are needed
to generate input for the negative log-likelihood. The reconstructions provide
informed estimates of both observed and hidden states, see Fig. 2.2.

Figure 2.2: Example of the usage of a Kalman filter for state reconstruction on the system
in Eq. (2.4) with σ = 0.05 and σε = 0.05.
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In the following, a very brief introduction to the Kalman filtering principle is
outlined, with most mathematical details omitted. The sole intent is to give
the reader an idea of how the filtering ultimately enables parameter estimation
through the negative log-likelihood.

The state prediction x̂k+1|k is found by letting the system equation propagate
forward in time. While the state is regarded as a continuous-time process,
in practice it is evaluated in very small discrete steps ∆t, using the Euler-
Maruyama method:

Xt+∆t = Xt + f(Xt, Ut, t)∆t+ g(Xt, Ut, t)(Wt+∆t −Wt). (2.14)

This recursion can be continued from t = tk up to t = tk+1, where the next
observation is due to be made, and hence:

x̂k+1|k = Xtk+1|tk . (2.15)

The predicted observation, ŷk+1|k, is then derived from Eq. (2.3),

ŷk+1|k = h(Xtk+1|tk , Utk+1
, tk+1) (2.16)

as is the predicted observation noise σ̂k+1|k in a similar manner.

As soon as the new observation yk+1 is available, the reconstruction step can be
executed. The reconstructed state x̂k+1|k+1 is calculated as

x̂k+1|k+1 = E[Xtk+1
|yk+1], (2.17)

with further elaboration omitted. The same goes for the predicted and re-
constructed state covariance, see e.g. Madsen (2007) for more details. Then,
Xtk+1 = x̂k+1|k+1 can be used as initial condition for the next prediction step
from tk+1 to tk+2. Continuing this alternating prediction/reconstruction algo-
rithm results in a series of one-step predictions.

Now, recall that the goal is to calculate ℓ(θ|Y), for which the conditional prob-
abilities in Eq. (2.9) are required. Assume for a moment that each conditional
probability ϕ(yk+1|yk, · · · , y0, θ) has the Markov property and can be charac-
terized by a Gaussian distribution with mean ŷk+1|k and variance σ̂2

k+1|k:

Yk+1|k,··· ,0,θ ∼ N (ŷk+1|k, σ̂
2
k+1|k). (2.18)

Assume also that all of the conditional probabilities are independent. Then the
negative log-likelihood can be derived from the multivariate log-normal distri-
bution and becomes,

ℓ(θ|Y) =
N

2
log(2π) +

1

2

N−1∑

k=0

(
log(σ̂2

k+1|k) +
(yk+1 − ŷk+1|k

σ̂k+1|k

)2
)
. (2.19)
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The assumptions above are in fact true, if and only if the CTSM is linear.
However, real systems are rarely linear in practical applications, so the non-
linear case must also be considered. In the non-linear case, the CTSM (Eq.
(2.3)) is linearized at each time step prior to prediction and reconstruction.
This modification is what defines the extended Kalman filter (Hoshiya and Saito,
1984).

Fortunately, it turns out that if the time increments ∆t in the evolution of a
non-linear system are sufficiently small, then the characterization in Eq. (2.18)
is asymptotically approached. Consequently, it is viable to use the one-step
predictions of a non-linear CTSM provided by the extended Kalman filter, for
calculation of the negative log-likelihood (Brok et al., 2018).

In order to estimate the parameters of the CTSM, the negative log-likelihood
then has to be minimized w.r.t θ, and then this entire routine is passed to an
optimizing algorithm of choice. Throughout this thesis, the R-routine nlminb is
used for optimization. It is based on an L-BFGS-B method (Zhu et al., 1997).
Further details on optimization are not included in this thesis. For a pseudo-code
summary of the model estimation framework, see the Supplementary material
of Paper A (section E).



Chapter 3

Modelling stormwater flow

Chapter 2 recapped the CTSM-framework for the modelling of dynamical sys-
tems in general. Paper A, however, focuses on a specific kind of dynamical
system, namely, rainfall-response in a stormwater tunnel. A short introduction
to modelling of stormwater flow, is therefore appropriate.

Consider an arbitrary region such as a city with well-defined geographical bound-
aries. In rainfall-runoff modelling, this region is referred to as a catchment. The
goal is to model how a given distribution of rainfall over time runs off to one
or more locations of interest within the catchment. The graph of water volume
(or sometimes water level) over time at a location of interest is commonly called
a hydrograph, although in this thesis, it will instead be denoted the rainfall-
response, see Fig. 3.1. In the case of Paper A, there is just one location of
interest, which is the downstream end of the Damhus stormwater tunnel.

Figure 3.1: An example of rainfall-response (or hydrograph). In this case, the retention time
is several hours.
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3.1 The linear reservoir model

A classical way of modelling rainfall-response is to divide the catchment-sewer-
system into a discrete number of sections, and then model the mass transfer
between adjacent sections using differential equations. For example, if X1 and
X2 represent two adjacent sections, then the mass transfer from X1 to X2 can
be described by

dX1,t

dt
= −rX1,t

dX2,t

dt
= rX1,t,

(3.1)

where r is rate of transfer. This description is essentially a series of conceptual
reservoirs, and since the equations are linear differential equations, the model is
called a linear reservoir model (Pedersen et al., 1980). The order of the model is
denoted n, which is equal to the number of conceptual reservoirs in the model
(not counting the final section which represents the location of interest). While
higher n generally yields a better approximation to the true rainfall-response, a
practical model can be achieved with relatively few reservoirs, usually around
2-12, see Fig. 3.2.

Figure 3.2: Comparison of the water volumes at the input (upstream) and output (down-
stream) in linear reservoir models with different n. All models have time constant
K = 0.2.
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Figure 3.3: Linear reservoir model with n = 10 reservoirs. All the water is contained in
the leftmost (upstream) reservoir at time t = 0 and then immediately starts
transferring through the series of reservoirs towards the rightmost (downstream)
reservoir.
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n Average retention time
1 0.19276
2 0.19949
3 0.19996
4 0.20000
10 0.20000
100 0.20000

Table 3.1: Calculated average retention times for linear reservoir models with K = 0.2 and
various values of n. Indeed, the average retention approaches K very fast for
increasing n.

Often, the substitution r = n/K is used. Then, K is a time constant equal to
the average retention time, i.e. the average time it takes for the rainfall to travel
from the point where it hits the catchment surface until it reaches the point of
interest, see Table 3.1. Clearly, a large K translates to a slow rate of transfer,
and hence a long retention time, while conversely a small K translates to a fast
runoff with short retention time. Fig. 3.3 shows an example of a linear reservoir
model of a pipe consisting of n = 10 reservoirs with the distribution of rainfall-
runoff after different amounts of time elapsed. For example, after t = K/2, the
water is distributed around the half-way point between input and output, and
after t = K, roughly half of the water has reached its final destination.

3.2 Integration of linear reservoir models into the
CTSM framework

While the CTSM (see Chapter 2) serves as the skeleton for grey-box modelling,
the linear reservoir concept provides the physics needed to make the CTSM
resemble specifically rainfall-response. The integration of the two frameworks
has been demonstrated by e.g. Breinholt et al. (2011) and is pretty straight-
forward. Consider, for example, a linear reservoir model with time constant K
and n = 2. The rainfall input can be modelled as precipitation Ut measured in
m/h multiplied by the catchment area A measured in m2, and be added to the
first equation. Hence, the model becomes:

dX1,t

dt
= AUt −

2

K
X1,t

dX2,t

dt
=

2

K
X1,t −

2

K
X2,t

dX3,t

dt
=

2

K
X2,t.

(3.2)
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Indeed, the rainfall input is a volume per time, as should be expected in a mass
transfer equation, in this case measured in m3/h. In practice, the choice of units
depends on convenience.

All there is left to do now is to "upgrade" Eq. (3.2) to a CTSM by moving
dt to the right-hand side, add some diffusion terms and include an observation
equation. For instance, by borrowing the structure from Eq. (2.4), the resulting
CTSM could look like the following:

dX1,t = (AUt −
2

K
X1,t)dt+ σdW1,t

dX2,t = (
2

K
X1,t −

2

K
X2,t)dt+ σdW2,t

dX3,t =
2

K
X2,tdt+ σdW3,t

Yk = X3,tk + ek, ek ∼ N (0, σ2
e).

(3.3)

This concludes the methodological chapters and in turn the basic foundation
necessary for Chapter 4 - the modelling of the rainfall-response in the Damhus
stormwater tunnel.



Chapter 4
Development of the

SDE-based rainfall-runoff
model

4.1 Overview

This chapter intends to document the development of the rainfall-response fore-
casting model which was published in Paper A. As prepared by the two preced-
ing chapters, this is a CTSM that inherits its physical structure from the linear
reservoir model concept. It models the rainfall-response in a Danish stormwater
tunnel, which is located within the Damhus catchment in Copenhagen.

Paper A already documents the reasoning behind the final model, how it was
estimated and what its forecasting capabilities are. However, the actual mod-
elling process from the first attempt to the published version has been a long,
iterative process with a series of obstacles that had to be dealt with. I believe
that this model development process and its challenges are not unique to this
specific case study, but will reappear in some form in many future modelling
scenarios for all eternity. Therefore, this chapter focuses on the model develop-
ment process and its challenges, and keeps the detailed reporting on the final
model within Paper A itself.

4.1.1 The Damhus urban drainage case

The Damhus catchment is a 47 km2 large urban area located in Copenhagen. It
contains a combined sewer system, in which both household sewage and rainfall-
runoff is accumulated from all over the catchment and passed along to a wastewa-
ter treatment plant (WWTP) downstream. In addition, a dedicated stormwater
tunnel, ’the Damhus tunnel’, is connected to the combined sewer system via a
number of overflow structures. The tunnel adds extra storage capacity to the
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overall sewer system, intended to contain large amounts of stormwater during
heavy rain events and hence reduce the risk and frequency of floods in the urban
area. Finally, a storage tower with a pumping facility, ’the Bottle Bridge’, is
installed at the downstream end of the tunnel. From here, the stormwater can
be pumped back to the downstream part of the combined sewer system and ul-
timately led to the WWTP, just like the everyday sewage. The drainage system
is sketched in Fig. 4.1.

Figure 4.1: Conceptual drawing of the Damhus system with its key elements.

4.1.2 Why the Damhus case is worth modelling

The Damhus system as a case study for grey-box modelling is interesting for
two reasons.

1. The system carries potential for an application of MPC to the pumping
operation, which can cut expenses. This is discussed in Paper A, and will
not be repeated in this thesis.

2. The system has significant non-linearities in the relationship between input
(rainfall) and response (stormwater in the tunnel). The existing literature
on grey-box models applied to urban drainage has, to my knowledge, not
covered how to deal with this.

Paper A provides a solution to the second problem. It is case-specific, but while
the paper does not cover how the solution can be generalized to other drainage
systems, the principle is reasonably simple and can likely be applied to other
cases after some modification.



4.1 Overview 22

Loosely spoken, if the system was completely linear, then more rainfall would
always equal more stormwater in the tunnel. This is not the case, as the system
does have non-linearities, see Fig. 4.2. First, the tunnel has a maximum ca-
pacity, which means that if the tunnel is already filled, then additional rainfall
will not translate into more stormwater in the tunnel. Secondly, no water will
enter the tunnel until a certain water level, a crest level, in the combined sewer
system is met. At that point, water will start overflowing from the combined
sewer system into the tunnel. As a result, the rainfall-response will be close to
zero for smaller rain events and then increase dramatically when a rain event is
sufficiently intense or long-lasting. Both the maximum capacity and the over-
flow crest hence constitute natural non-linearities in the system. The research
in Paper A focuses on dealing with the latter non-linearity.

Figure 4.2: Comparison of 18 rainfall events in terms of total precipitation vs. total amount
of stormwater ending up in the Damhus tunnel. While events with higher total
precipitation does generally equate more water in the tunnel, the relationship is
not linear. Event ID numbers are attached to the points.

4.1.3 Data

A thorough description of the data used for the Damhus case is embedded in
Paper A, including characteristics of the raw as well as post-processed data.
Below follows a minimal overview of the post-processed data which are used for
the modelling of rainfall-response. Three different variables are needed, namely:
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1. Volume observations in m3, yt, (post-processed water level observations,
applied in units of 1000 m3).

2. Rainfall observations in mm/min, Ut, (average rainfall intensity computed
from two rain gauges in the catchment, applied in units of mm/h).

3. Pumping data in m3/min, Pt (applied in units of 1000 m3/h).

All of the above are available in 1-minute resolution, although a conversion
to 5-minute resolution is also used later in the modelling process. Altogether,
the dataset consists of 18 rainfall events, featuring a wide selection of different
intensities and duration, which is convenient for estimating a model intended for
reliable forecasting of any rainfall event. For example, event no. 7 is made up
by two rainfall events in quick succession, as is seen in Fig. 4.3. All 18 rainfall
events are visualized in Appendix A, see Fig. A.1, A.2 and A.3.

Figure 4.3: Post-processed data of event no. 7. Notice how the pumping activity coincides
with water seemingly disappearing from the tunnel.



4.1 Overview 24

4.1.4 Outline of the modelling progression

Section 4.2 documents the detailed development of the CTSM, which is executed
in 12 steps altogether. Every step is reported in terms of its system equations
(see Section 2.2), parameter estimates and a brief graphical representation of
model performance. In order to make it as easy as possible to follow the pro-
gression, the 12 steps may be boiled down to the following three blocks:

• Step 1-2: To start out, a naive CTSM with purely linear equations and
state-independent diffusion is formulated (Fig. 4.4 top).

• Step 3-8: It is recognized that a purely linear model will not suffice to
explain the long response delay. Consequently, a sigmoid function is in-
troduced as a representation of the overflow crest (Fig. 4.4 middle).

• Step 9-12: When the physical structure of the model is satisfactory, the
diffusion is upgraded to a state-dependent one in order to achieve a realistic
distribution of forecast uncertainty (Fig. 4.4 bottom).

Figure 4.4: Probabilistic forecasts of rainfall-response issued by the models in step 2 (top
row), 8 (middle row) and 12 (botttom row), respectively. The left and right
columns feature forecasts on training data and test data, respectively.
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4.2 Model development - step by step

4.2.1 Step 1 - the first linear reservoir model

The linear reservoir model embedded in a CTSM has already been introduced
and discussed in Chapter 3. In the context of the Damhus system, it is conve-
nient to consider the form in Eq. (3.3) with a couple of modifications. First,
in that example n = 2 was used for simplicity, but in the practical case, we
choose n = 4, because a higher model order makes it easier to get a smooth fit.
Secondly, recall that accumulated water is eventually pumped out of the sys-
tem (see Fig. 4.3), and this needs to be captured by the model. The pumping
signal is denoted Pt, measured in the same units as the system states, and is
subtracted from the last system equation. Hence, the first model is a CTSM
with 5 states and the following system equations,

d




X1

X2

X3

X4

X5




t

=




AUt − 4
KX1,t

4
KX1,t − 4

KX2,t
4
KX2,t − 4

KX3,t
4
KX3,t − 4

KX4,t
4
KX4,t − Pt




dt+




σ1dW1,t

σ2dW2,t

σ3dW3,t

σ4dW4,t

σ5dW5,t




(4.1)

and the observation equation,

Yk = X5,tk + ek, ek ∼ N (0, σ2
e). (4.2)

This system is characterized by one time constant, K, and the rate of transfer
from one state to another is thus 4/K. Ideally, the pumping signal, Pt, would be
modelled as a function of the system states in accordance with the actual existing
real-time control scheme. However, this has proved impossible to reconstruct
from the data. Instead, the measured Pt is simply used, independently of the
system states. Such a simplification is expected to be sufficient for parameter
estimation.

Until a good model structure has been identified, only one dataset will be used
for parameter estimation, specifically event no. 7 (see Fig. 4.3). Using the esti-
mation framework outlined in Chapter 2, the model parameters are estimated
to

A K σ1 σ2 σ3 σ4 σ5 σε

1.965 1.944 0.01 0.01 0.01 1.285 0.01 0.1

The behavior of the model can be examined in Fig. 4.5. The figure displays
10 random simulations (blue) of the fitted model given only initial conditions
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(Xi = 0 for i = 1..5) and external variables (rainfall and pumping signal). The
true volume observations are shown in black.

Figure 4.5: 10 realizations of event no. 7 by the CTSM estimated in step 1 (blue), compared
with the observed volume (black).

While the camel shape of the volume propagation is mimicked to some extent,
the variance seems extremely large. This is because the overall system variance
of the model has been estimated as very high, with pretty much everything
thrown into σ4. Also, noting that several ensemble members dive into negative
volumes, it is clear that the physics are not well-captured by this model. The
estimation is essentially compensating for a weak physical model structure by
attributing most of the variation in the data to system noise.

Figure 4.6: 10 realizations of event no. 7 by the CTSM estimated in step 1 with σ4 = 0.4
(blue), compared with the observed volume (black).
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This can easily be confirmed by lowering σ4 to constrain the system noise. In
Fig. 4.6, the same model with the same parameter estimates, except σ4 set to
0.4, is shown. This leaves no doubt that the physical description is completely
off, because way too much water is flowing into the system too early.

Before moving on to improve this seemingly deficient model structure, we will
limit each of the system noise parameters to at most 0.1, to see if that could
force the estimation to put more emphasis on the physics. The result is shown
in Fig. 4.7.

Figure 4.7: 10 realizations of event no. 7 by the CTSM in step 1 refitted with low maximal
variance, compared with the observed volume (black). Note that because of the
low variance, the 10 realizations shown in blue are almost identical to each other
and appear as one thick curve.

Not surprisingly, there is almost no variance in the model anymore, which has
indeed forced the prediction averages to come physically closer to the observa-
tions. However, it is seen that this happens at the expense of the camel shape.
The peaks are closer to reality, but the valleys are way off, making the slopes
flatter than desired. We conclude that the model has some promising features
but needs to be extended.

4.2.2 Step 2 - introducing additional time constants

The model in step 1 was able to mimic the camel shape, but failed to capture
the time delay from rainfall to response. For the second step, it is hypothesized
that having more than one time constant may improve the latter issue. With
only one time constant, it is assumed that the water travels with the same
rate everywhere in the system. This should not be the case, rather the water
would travel with different rates over the ground surface, through the combined
sewer system and in the tunnel, respectively. Therefore, we attach a unique
time constant to each of the four mass transfers (changes w.r.t Eq. (4.1) are
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highlighted in teal) and get:
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. (4.3)

The model parameters are estimated to

A K1 K2 K3 K4 σ1 σ2 σ3 σ4 σ5 σε

1.974 0.574 0.574 0.396 0.403 0.01 0.01 1 0.959 0.1 0.1

It is seen that K1 ≈ K2 and K3 ≈ K4. Thus, essentially 2 distinct time constants
are identified under this model structure. It is concluded that one time constant
is generally not enough. The exact amount may be subject to change in future
iterations. The sum of the time constants is 1.944, i.e. effectively the same
as K = 1.947 in step 1. The overall model performance is not improved with
respect to step 1, as evident by Fig. 4.8.

Figure 4.8: 10 realizations of event no. 7 by the CTSM estimated in step 2 with (blue),
compared with the observed volume (black). The realizations are produced
with σ3 = 0.01 and σ4 = 0.4 for the same reasons as for Fig. 4.6

4.2.3 Step 3 - modelling the overflow crest as a sigmoid
function

It is clear that increasing the model order and using multiple time constants
does not suffice to capture the time delay from rainfall to response. To find
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a solution, we consider the system layout again, see Fig. 4.1. While there is
a steady flow from the ground surface to the combined sewer system, nothing
really happens in the tunnel before a certain water level threshold is met, at
which point the water finally starts flowing into the tunnel. This threshold is
called an overflow crest.

If the overflow crest can be properly integrated in the model structure, the
rainfall-response time delay should be captured better than in the previous
steps. To accomplish this, we introduce the abundantly used sigmoid function
(Berkson, 1953),

q(x) =
1

1 + e−α(x−β)
(4.4)

where α and β are the sharpness and threshold of the function, respectively.
Consider then two arbitrary sewer states separated by an overflow crest, Xpre
and Xpost, with the following mass transfer relationship,

dXpre,t = (ωt −
1

K
Xpre,t)dt

dXpost,t = q(Xpre,t)
1

K
Xpre,tdt,

(4.5)

where ωt is some arbitrary inflow to Xpre. The inflow to Xpost from Xpre is thus
limited by q(x) roughly until x ≥ β. This effect is illustrated in Fig. 4.9, where
it is indeed seen that the water only starts flowing in around the time at which
the threshold β is reached in Xpre.

Figure 4.9: The system in Eq. 4.5 realized with K = 0.5, α = 10 and β = 5. The time at
which Xpre = β is marked by gray dashed lines.
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A natural way to integrate this crest representation into the Damhus system
equations, is to regard K2 as the time constant for the tunnel, and K1 as the
time constant for the flow leading up to that point. It follows that the overflow
crest is located between X3 and X4, and hence, the mass transfer between these
two states is multiplied by q(X3). The resulting system equations are as follows,
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. (4.6)

α and β are estimated in the optimization routine along with the other parame-
ters. Note that for numerical reasons, it is important that the product of α and
β is never too high, because it can cause the exponential part of q(x) to explode
and crash the optimization routine. The model parameters are estimated to

A α β K1 K2 σ1 σ2 σ3 σ4 σ5 σε

2.672 24.286 0.821 2.119 0.453 0.1 0.1 0.1 0.1 0.1 0.1

It is seen that both A and the sum of the time constants have increased compared
to the previous steps. Furthermore, K1 = 2.119 is much larger than K2 = 0.453,
which means that it takes much longer for the water to reach the crest level than
to flow through the tunnel afterwards. The realization of the model is shown
in Fig. 4.10, and for the first time, the time delay is really well captured while
the camel shape is kept intact simultaneously. Indeed, introducing the crest
function to the system is working as intended.

Figure 4.10: 10 realizations of event no. 7 by the CTSM estimated in step 3 (blue), compared
with the observed volume (black).
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4.2.4 Step 4 - reduction of parameter space

The model identified in step 3 is very promising. However, it has quite many
parameters. In particular, having 5 diffusion parameters which all get the same
estimate, might be overkill. Therefore, for step 4, we are going to test whether
the number of diffusion parameters can be reduced. It is compelling to imagine
that the first system equation should be very noisy due to being directly affected
by rainfall, a notoriously uncertain and volatile type of input. On the other
hand, the rest of the system is just a collection of mass transfers in a closed
system with no further external inputs. Thus, the latter could be considered
under one shared diffusion parameter, σ2, while leaving σ1 as unique. The
corresponding system equations become:
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. (4.7)

The physical parameter estimates of this model compared to the ones from step
3 are virtually unchanged:

A α β K1 K2

Unique σi for each Xi 2.67237 24.28629 0.82131 2.11916 0.45284
Only σ1 and σ2 2.67237 24.28596 0.82131 2.11915 0.45285

Furthermore, both models have a negative log-likelihood of −30.74976 and can
thus safely be regarded as equally performing. There is therefore no reason
to retain the extra diffusion parameters, and the system in Eq. (4.7) is hence
preferred over that in Eq. (4.6).

4.2.5 Step 5 - a revisit to time constants

After the crest function has been introduced to the system, the model has fun-
damentally changed from a linear to a non-linear one. Therefore, the previous
finding that the system only has two different time constants should be recon-
firmed. As in step 2, we now associate each mass transfer with its own unique
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time constant, and the resulting system becomes:
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. (4.8)

Here, K1, K2 and K3 are thought of as the time constants for the flow on the
ground surface, the combined sewer system and the tunnel, respectively, while
K0 refers to the overflow from the combined sewer to the tunnel.

The model parameters are estimated to

A α β K1 K2 K3 K0 σ1 σ2 σε

2.676 10.089 1.615 1.07 0.879 0.136 0.431 0.1 0.1 0.1

It is seen that all 4 time constants attain unique values. Furthermore, the
negative log-likelihood is −38.980 and hence slightly better than in the step 4.
It is concluded that all four time constants should be kept in the model going
forward.

4.2.6 Step 6 - selection of the number of states

With the time constant setup sorted, the next step is to determine the order
of the model sections associated with each time constant. Consider first the
simplest model where each section is of order 1 - this is equivalent to the model
from step 5 (Eq. (4.8)). Then a classical forward selection process is applied
(Blanchet et al., 2008), where a heuristic assessment of the difference in negative
log-likelihood is used to determine whether two models are significantly different.

In the first iteration of the forward selection, three new models are estimated.
In each model, one of the model sections associated with either of the three
time constants, K1, K2 and K3 respectively, has its model order increased from
1 to 2, while leaving the other model sections at order 1. The section associated
with K0 is always assumed to be of order 1. This yields the following negative
log-likelihoods,
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Order of (K1, K2, K3) ℓ
(1,1,1) −38.980
(2,1,1) −78.585
(1,2,1) −77.362
(1,1,2) −62.905

The best model is (2,1,1) with ℓ = −78.585, which is deemed to be sufficiently
better than (1,1,1) with ℓ = −38.980, and therefore (2,1,1) is selected.

In the second iteration (2,1,1) is tested against (3,1,1), (2,2,1) and (2,1,2), how-
ever no heuristically acceptable improvement in the negative log-likelihood is
found for any of those three new models, and hence we settle on the (2,1,1)-
model, i.e. the system equations:
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. (4.9)

All of the parameter estimates are quite different from step 5, although the
relation K1 > K2 > K0 > K3 is preserved:

A α β K1 K2 K3 K0 σ1 σ2 σε

2.729 16.540 0.568 1.821 0.383 0.067 0.141 0.1 0.1 0.1

4.2.7 Step 7 - reduction of sampling rate

At this point we are getting close to a final physical model structure, but before
moving on to the development of the stochastic part, we shall attempt to trim
the optimization load a bit.

Until this point, the original 1-minute resolution of the data has been used.
However, in step 7, we will reduce to a 5-minute resolution (see Fig. 4.11),
which gives the advantage that every evaluation of the negative log-likelihood
contains 5 times fewer one-step predictions, and in turn potentially improves the
runtime up to 5-fold. It is found that using 5-minute resolution, the runtime of
the estimation procedure is approximately 21.4 seconds, while it is 83.0 seconds
when 1-minute resolution is used. The flat amount of time saved is of course a
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Figure 4.11: Comparison of 1-minute resolution (gray) vs. 5-minute resolution (black) of
the rainfall-response in event no. 7. Here, it looks like the 5-minute resolution
should be sufficient to capture the dynamics of the system.

CPU-specific result, however the magnitude of a ∼4-fold improvement should
be representative regardless of the machine used for the computation.

The parameter estimates for the model with 5-minute resolution are as follows,

A α β K1 K2 K3 K0 σ1 σ2 σε

2.425 22.007 0.747 1.622 0.338 0.121 0.220 0.1 0.1 0.1

These are fairly similar to the corresponding estimates under the 1-minute res-
olution, and the model realization is still looking good, as seen in Fig. 4.12.
Therefore, it is decided that a 5-minute resolution is good enough for model
estimation and worth using over 1-minute resolution due to the time savings.

Figure 4.12: 10 realizations of event no. 7 by the CTSM estimated in step 7 (blue), compared
with the observed volume (black). This is the first time a 5-minute resolution
is used.
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4.2.8 Step 8 - modifying the combined sewer wastewater
flow

In this step, one final modification of the physical system structure is made.
In a 100% logical model building order this would happen in an earlier step,
however, chronologically speaking, this is how it happened and I am keen on
keeping it as an ’oops-by-the-way’-step.

Consider the state equation for X4 in Eq. (4.9). The outflow is here solely
characterized by K0 which is associated with the overflow from the combined
sewer to the tunnel, and the equation essentially assumes that whatever does not
go into the tunnel continues downstream through the combined sewer towards
the wastewater treatment plant. However, the latter flow should not be assumed
to have the same time constant as the overflow, but rather be associated with
K2 as the rest of the combined sewer. Therefore, the equation for X4 is altered
to include both of the two outflows, and the system becomes:
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. (4.10)

The most notable change in the parameter estimates is in A which is almost
twice as large.

A α β K1 K2 K3 K0 σ1 σ2 σε

4.496 2.763 5.026 0.977 1.866 0.158 0.136 0.1 0.1 0.1

Figure 4.13: 10 realizations of event no. 7 by the CTSM estimated in step 8 (blue), compared
with the observed volume (black).
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The model realization is still looking reasonable, as seen in Fig. 4.13. All in
all, the model in step 8 is not performing worse than previous models, while it
has a more realistic representation of the combined sewer flow. Therefore, we
proceed with this model for the next step.

4.2.9 Step 9 - introduction of state-dependent diffusion

A satisfactory physical structure has now been found. However, the uncertainty
of the forecasts issued by the model is not very realistic. First, in Fig. 4.13 it
is indicated that the spread is uniform regardless of whether there is no water
or a lot of water in the tunnel. This is to be expected given the additive
noise structure in Eq. (4.10). On the other hand, in a realistic model, there
should not be much variance when there is little to no water in the tunnel, and
considerably more variance when there is a lot of water. Secondly, it is clearly
seen in Fig. 4.13 that the naive noise structure allows for the water volume
forecast to sometimes attain negative values, which of course is absurd.

Both problems can be solved by switching to a system-dependent noise structure,
where the diffusion scales with some function of water volume. There are several
options for such a function, but we choose a direct scaling with the water volume
in each respective state, i.e. the diffusion is σ1X1,tdW1,t for the first state and
σ2Xi,tdWi,t for i = 2..6. The updated system equations thus read:
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. (4.11)

Figure 4.14: 10 realizations of event no. 7 by the CTSM stated in step 9 (blue), compared
with the observed volume (black).
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A quick test of the new model’s potential is done by setting σ1 = 0.15 and
σ2 = 0.01, while keeping the other parameter estimates from step 8 intact. A
realization of the model is displayed in Fig. 4.14. Clearly, it is working as
intended, as there is no longer any negative water, and the spread is extremely
narrow for low water volumes while much wider for higher water volumes. A
proper estimation of the parameters in the new model will take place in step
10-12.

4.2.10 Step 10 - applying the Lamperti transform

While the CTSM formulated in step 9 seems perfect for the case at hand, there
is a minor holdup. The estimation algorithm in ctsmr relies on the extended
Kalman filter which in turn requires the system noise to be Gaussian and hence
state-independent (Breinholt et al., 2011). Therefore, this model cannot be
estimated directly in its current form. Instead, we will consider a new set of
random variables Zi = log(Xi) for i = 1..6 and apply a Lamperti transform
(Møller and Madsen, 2010) to Eq. (4.11) (see Paper A, supplementary material
for the detailed calculation). The resulting system is as follows,
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(4.12)

This system form has state-independent noise and can thus be estimated with
ctsmr. The original states can trivially be reconstructed by

Xi = eZi , ∀i. (4.13)

However, when we try to run the estimation algorithm on the system in Eq.
(4.12), the process crashes almost immediately and ctsmr reports that it is
unable to find a numerical ODE solution, as seen in the console snippet below:

Figure 4.15: Console snippet from the failed optimization of the CTSM as defined in step
10.
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For the first time, the system is apparently infeasible. This problem is handled
in the next step.

4.2.11 Step 11 - understanding and respecting physical
domain restrictions

In step 10, the optimization routine crashed before converging, and we need to
figure out why. The routine crashed already in its second iteration, when the
set of model parameters shown in Fig. 4.15 were selected. Specifically, it means
that given this set of parameters, the series of one-step predictions needed for
the negative log-likelihood could not be computed. Hence, a good starting point
for troubleshooting is to compute a partial series of one-step predictions up to
the point where it crashes, and then perform a visual inspection of the computed
partial series.

It turns out, that the series can be predicted up to and including the 188th
one-step prediction, corresponding to 15.67 hours into the series. The series is
shown in both the Lamperti transformed Z6-domain and the original X6-domain
in Fig. 4.16.

Figure 4.16: A series of one-step predictions (blue) produced by the CTSM from step 10 with
the parameters from Fig. 4.15, compared with the real observations (black).
The predictions are shown in both the Z6-domain (top) and the X6-domain
(bottom).
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Immediately, it is apparent that the last one-step predictions in the X6-domain
are very close to 0, and seem to be heading for the negative domain due to the
relentless pumping activity taking place in that time interval. To make it easier
to see, Fig. 4.17 zooms in on this time interval, where it indeed appears that
the prediction series could break through the X6 = 0 boundary within one or
two time steps.

Figure 4.17: Magnified view of the critical time interval, within which the prediction routine
crashes. The one-step predictions are shown in blue, and the observed water
volume is shown in black.

Keep in mind that the Lamperti system was derived with in order to avoid
exactly this physically absurd behaviour. Maybe, having a ’blind’ pumping
signal which does not refrain from pumping even when there is no water present
in X6, is breaking ctsmr in some way?

Having identified a potential flaw, we then consider a simplified ODE version
of the system equation governing Z6 (see Eq. (4.12)), where anything but the
pumping-affected term is disregarded. Denoting the simplified state variable z,
we have:

dz
dt

= p · e−z. (4.14)

Solving this ODE for z with the initial condition z(0) = z0 yields:

z = log(p · t+ ez0) (4.15)
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Hence, p · t+ ez0 must always be strictly positive. Since we want to consider a
situation where water is being pumped out, we can for example put p = −1 and
thus get

z = log(−t+ ez0). (4.16)

A situation with little to no water present translates to ez0 being small, which
means z0 is negative. Obviously, −t+ez0 will only remain positive before t = ez0 ,
at which point there is a singularity. This is illustrated in Fig. 4.18 with z0 = 0,
and hence with the singularity in t = 1.

Figure 4.18: The evolution of z = log(−t+ ez0 ) with z0 = 0.

Clearly, as the real water volume, ez approaches 0, z approaches −∞, and the
time interval until the singularity is reached shortens dramatically. Then, if
a one-step prediction is due to be computed, and the current pumping signal
would cause the water volume in the original system to go below zero, it is now
clear that even a very small time increment would cause −t+ ez0 to be negative
and thus cause Eq. (4.16) to break down.

It can be deduced that an analogous behaviour would happen in the Lamperti
system in question, and it is hence concluded that pumping more water out of
the system than is already present will inevitably cause the prediction routine
in ctsmr to crash.

Therefore, it is necessary to safeguard the system equations such that the pump-
ing signal will never cause the water volume to go below 0, no matter what. A
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great solution to this problem is once again to use a sigmoid function, as we did
in step 3 for the crest modelling. The new sigmoid function, qP (x), is given by

qP (x) =
1

1 + e−αP (x−βP )
, (4.17)

with αP = 200 and βP = 0.05 chosen. qP (x) is then multiplied with the pumping
signal to attenuate the latter when the water volume becomes small. This effect
is illustrated in Fig. 4.19.

Figure 4.19: Theoretical water volume (top row) as a result of a constant pumping signal
(bottom row) with a comparison of an unrestricted system (left column) vs. a
restricted system (right column). In the restricted system, the pumping signal
is multiplied by qP (x) and is thus increasingly attenuated for low values of
water volume, which in turn ensures that no more water than what is present
can be pumped out of the system.

Applying this solution to the system from step 10 changes the system equation
for Z6 to:

dZ6,t = (
1

K3
e(Z5,t−Z6,t) − qP (eZ6,t)Pte−Z6,t − σ2

2

2
)dt+ σ2dW6,t, (4.18)

while the rest of the system is the same as in Eq. (4.12). Conveniently, the new
system is successfully estimated by ctsmr and gives the following parameter
estimates:
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A α β K1 K2 K3 K0 σ1 σ2 σε

6.89 2.112 9.633 1.170 1.736 0.087 0.010 0.1 0.049 0.1

Again, A has increased compared to estimates in the previous steps, likely due
to the updated noise structure. The visual appearance (Fig. 4.20) is similar to
that of step 9 (Fig. 4.14) as expected, but this time all parameters have been
estimated together in the proper way.

Figure 4.20: 10 realizations of event no. 7 by the CTSM estimated in step 11 (blue), com-
pared with the observed volume (black).

4.2.12 Step 12 - fitting on multiple rainfall events

With step 11 every aspect of the CTSM structure has been resolved, and the
only remaining task is to estimate it based on more than just one rainfall event.
This is done in order to achieve a robust model that can handle as many kinds
of rainfall events as possible. We decide that a set of six events (no. 3, 7, 8,
10, 13 and 17, see Appendix A) provides a good span of the variety of rainfall
events that can occur.

Estimation based on multiple datasets is very straightforward with the existing
estimation method established. All one-step predictions across all events are
assumed to be independent, and hence the negative log-likelihood given the
combined dataset, ℓ(θ|Y3,Y7,Y8,Y10,Y13,Y17), is simply equal to the sum of
the individual negative log-likehoods given each of the corresponding datasets:

ℓ(θ|Y3,Y7,Y8,Y10,Y13,Y17) = ℓ(θ|Y3) + · · ·+ ℓ(θ|Y17). (4.19)

A graphical representation of the simultaneous fitting to the six datasets can be
found in the Supplementary Material of Paper A (Paper A Fig. 6). Since this
is the final step in the modelling process, the CTSM estimated on the combined
dataset is the final model of this thesis. It is therefore appropriately presented
and discussed in its own section (Section 4.3).
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4.3 The final model

A nonlinear CTSM for the rainfall-response in the Damhus tunnel has now been
identified. It has the following system equations,
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, (4.20)

and the observation equation,

Yk = X6,tk + ek, ek ∼ N (0, σ2
e), (4.21)

where t1, ..., tN are time points equally spaced with 5 minutes in between, i.e.
the sampling rate used for parameter estimation is 5 minutes. The parameter
estimates are as follows:

A α β K1 K2 K3 K0 σ1 σ2 σε

6.101 5.356 5.627 1.386 1.814 0.074 0.602 0.1 0.067 0.1

Figure 4.21: A series of probabilistic 1-hour forecasts on event no. 11 issued by the final
model (Eq. (4.20)). The true observations are shown in black, and the 10%-,
50%-, 70%-, 90%- and 95%-quantiles of the forecasts are shown in nuances of
blue.
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After the parameters have been estimated, the model is ready to use for fore-
casting. Note that even though the sampling rate used for identification is 5
minutes, the model can be used for forecasting at any desired horizon. This
property follows from the fact that the SDE-model provides a well-covering de-
scription of the system dynamics. For instance, as discussed in Paper A, 1-hour
horizons are of interest, both because the overall retention time of the system is
at the magnitude of a few hours, but also because if the model would later be
integrated in a control scheme which optimizes pump usage around the intra-
day power market, then 1-hour forecasts would be needed. An example of the
forecasting capabilities of the identified model is shown in Fig. 4.21. This graph
displays a series of probabilistic 1-hour forecasts of event no. 11 (see also Fig.
A.2).

Furthermore, Fig. 4.22 shows the reconstructed states for event no. 11. This
reveals how the water flows between the six states. For example, it is clearly
seen how the overflow crest prevents the water from flowing from X4 to X5

until the threshold of X4 = β = 5.627 is met. It is also seen that the water
does not spend much time in X5 but discharges to X6 very quickly, which is a
consequence of K3 being very small.
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Figure 4.22: Reconstructed states for event 11 in units of 1000 m3. The states from top
to bottom are X1, X2, X3, X4, X5 and X6, respectively. The left and right
columns show identical values, but the former has consistent scaling to enable
comparison between states, while the latter is scaled to each state for visibility
of the shape of the evolution of each individual state.
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4.3.1 Summary of the model estimation

The final model was identified over the course of 12 steps, as explained in detail
in Section 4.2. The modelling progression is summarized in Table 4.1. The
table reports the evolution of the two most interesting physical quantities: the
effective catchment area (A) and the overall average retention time (

∑
K). It is

seen that the choice of model structure has a big influence on A, which triples in
magnitude from step 1 to step 12. The biggest changes to

∑
K happen when the

overflow crest is introduced in step 3, and when the model is fitted to multiple
datasets in step 12. Furthermore, the negative log-likelihood, ℓ, as well as the
Bayesian Information Criterion (BIC) are reported. The latter can be used
for heuristic comparison of model quality, under the assumption that the exact
same response data were used to estimate the compared models (Neath and
Cavanaugh, 2012). This assumption breaks when the training data is changed,
hence in step 7 and in step 12. Generally it is seen that within comparable
models, the BIC decreases over the steps, indicating a steadily improving model.

Step A
∑

K ℓ BIC Keynote
1 1.965 1.944 -102.228 -149.036 Simple linear CTSM
2 1.974 1.946 -100.979 -125.755 More time constants
3 2.672 2.572 -30.750 14.703 Crest function introduced
4 2.672 2.572 -30.750 -6.080 Reduce parameter space
5 2.676 2.516 -38.980 -8.684 Settle on 4 time constants
6 2.729 2.413 -78.585 -87.894 Settle on 6 system states
7 2.425 2.300 12.500 78.181 5-minute resolution
8 4.496 3.136 9.406 71.993 Combined sewer flow
9 NA NA NA NA State-dependent diffusion
10 NA NA NA NA Lamperti transform
11 6.890 3.003 -14.604 23.973 Attenuate pumping signal
12 6.101 3.876 83.833 220.847 Fit on multiple datasets

Table 4.1: Summary table of the step-by-step development of the CTSM in Eq. (4.20). The
BIC column is highlighted in green, where the nuances indicate which models are
fitted to the same data and hence are comparable under the BIC. No parameters
were estimated in step 9 nor 10.
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The final model was estimated in its Lamperti transformed version with Zi =
log(Xi) for all i, i.e. with the system equations,
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(4.22)

The parameters were estimated in the logarithmic domain and the identified
optimum is nicely located in the interior of the log-parameter space, except in the
cases of σ1 and σε which are both on the boundary. This is all visualized in Fig.
4.23 in terms of the profile negative log-likelihoods (Murphy and Van der Vaart,
2000) of each of the 10 parameters. It is here indicated that the optimzation
routine wants to push σε to lower values and σ1 to higher values, thus trying
to shift the relationship between system noise and observation noise. This is a
typical behaviour from the CTSM optimization framework, and while one could
argue that the boundaries should then be expanded, that is not compelling seen
from a modeller’s perspective.

The reason for this behaviour is that a very low observation noise will cause the
filtered one-step predictions to stay very close to the observations, and thus make
it much easier to achieve a low negative log-likelihood value. However, having
very low observation noise while pushing the system noise up, is also equivalent
to neglecting the importance of a good system description and solely relying
on very precise observations. This will become a problem as soon as precise
observations are not available and will result in horrendous forecasts. Therefore,
it is necessary to impose a reasonable lower bound on the observation noise,
such that the optimization routine is forced to find good physical parameter
estimates on its crusade to minimize the negative log-likelihood. At the same
time, the system noise should not be allowed to completely explode either,
because forecasting with a too large system noise is equivalent to "anything can
happen". Such a forecasting model is of no value to anyone, and therefore, the
system noise is bounded as well.
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Figure 4.23: Profile negative log-likelihoods of the ten parameters in the final model.



Chapter 5

Forecast evaluation
Recall, the purpose of building a grey-box model for the Damhus case study
(in this chapter referred to as "the SDE-model") was to be able to forecast
the rainfall-response in the Damhus tunnel. Having completed this task, it is
natural to ask: how well does the model perform in terms of its forecasting
capabilities? Some forecast evaluation is appropriate in response to this.

Forecast evaluation is a surprisingly broad topic in the sense that a wide range
of methods exist. In practice, for any forecasting problem, the methods of
evaluation should be chosen with reason. Every evaluation method comes with
some advantages and disadvantages, and these will greatly influence the extent
to which said method evaluate the important aspects of the forecast in concern.

As previously stated, the forecasts issued by the SDE-model built in Chapter
4 are inherently probabilistic and temporally multivariate. Indeed, Paper B
constitutes an introduction to multivariate probabilistic forecast evaluation and
hence, the framework outlined in this work can be applied to the forecasts from
the Damhus case study. The case studies in Paper B are focusing on wind power,
so applying the framework to a different topic, namely stormwater forecasting,
goes to demonstrate its strong, general applicability.

This chapter is structued as follows: Section 5.1 gives a brief introduction to
the area of forecast evaluation and specifies what the aim is for evaluation in
the context of the probabilistic stormwater forecasts. Section 5.2 introduces the
actual methods used for the task, i.e. the so-called scoring rules, and finally,
these scoring rules are applied to the stormwater forecasts issued by the SDE-
model and compared with benchmark forecasts from a generic ARIMA-model
(Madsen, 2007) in Section 5.3. All in all, Chapter 5 essentially demonstrates
how the probabilistic forecast evaluation framework explained in Paper B can
be applied to a new case, in this case forecasts of stormwater in the Damhus
tunnel.
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5.1 Forecast evaluation in the context of proba-
bilistic stormwater forecasting

The following is based on the introduction from Paper B. Consider some arbi-
trary real process that is subject to forecasting. When the process is realized and
observed, the quality of the forecasts can be assessed with respect to the obser-
vations. This practice is denoted forecast evaluation. The evaluation is usually
performed in terms of a metric called a scoring rule (quantitative evaluation that
allows for comparison with competing forecasts) or a statistical test (qualitative
evaluation that allows for simple acceptance or rejection of the forecast).

For example, if the process is Gaussian, then the full distribution of the fore-
cast is characterized by only its mean and variance. In that case, quantitative
evaluation can reliably be performed by applying the usual root mean squared
error (RMSE), while qualitative evaluation can be done by considering whether
a sufficient share of the observations fall inside certain prediction intervals of
the forecasts.

However, if the process is not Gaussian, it can no longer be assumed that the
forecast distributions are symmetrical. Then the RMSE and the simple predic-
tion intervals will be more and more misleading, the further from Gaussian the
distributions are. Instead, it is better to find a generalized way to evaluate the
entire distribution, or at least a part of it (for example a set of quantiles). An
obvious (but not the only) choice is to consider the maximum likelihood of the
forecast distribution with respect to the observation. Note that in the Gaussian
case, the maximum likelihood and the RMSE will reach the same conclusions.

In the case of the stormwater forecasts produced by the SDE-model from Chap-
ter 4, we are dealing with forecasts with the following properties:

• The forecasts are probabilistic. This follows because the evolution of the
SDE-model is an evolution of a probability density

• The probabilistic forecasts are asymmetrical. This is a consequence of the
state-dependent system noise.

• The 1, 2, · · · -step ahead forecasts are autocorrelated and hence multivari-
ate.

Furthermore, keep in mind that the future ambition with the model is to inte-
grate it with a model predictive control (MPC) scheme. If we only cared about
saving energy and money on the pumping schedule, we might be able to just
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consider point forecasts (e.g. the mean or median taken from the forecast densi-
ties) and achieve a satisfactory MPC scheme. However, the risk of flood must be
taken into account, and this calls for an assessment of the uncertainty. This is
a strong argument for striving for an evaluation of the full forecast distribution.
Getting the autocorrelation right is a secondary objective but it is still impor-
tant, because if it is wrong, then the uncertainty of the predicted accumulated
water volumes will also be wrong, which in turn has impact on the assessment
of the risk of flood.

Having pinpointed the important features of the stormwater forecasts to be
that they are probabilistic and multivariate, we can now select the appropriate
methods for forecast evaluation. Indeed, Paper B gives suggestions on how to
do exactly that within the toolbox of scoring rules.

5.2 Scoring rules

A common way to evaluate a forecast is to apply a scoring rule. A scoring rule
is a scalar function S(G, y) of the forecast G and the corresponding observation
y, and the returned value is called the score (Gneiting and Raftery, 2007).
Typically, a scoring rule is defined such that lower scores reflect the better
forecasts. Hence, if e.g. G1 and G2 are two competing forecasts of the same
event, and if S(G1, y) < S(G2, y), then for that specific event, G1 is considered
a better forecast than G2 by S. For a robust evaluation, a suitable series of
observations Y = (y1, · · · , yN ) should be considered, in which case the average
score,

S̄(G,Y) =
1

N

N∑

i=1

S(G, yi) (5.1)

can be used as the overall evaluation metric.

Many different scoring rules are available in the literature, each one with its own
characteristics that may or may not be desirable for the evaluation problem at
hand. In the case of the rainfall-response model, we need to evaluate multivariate
probabilistic forecasts. Paper B finds that the most practical way to accomplish
this is to split the evaluation problem into two parts. The first part concerns
the calibration of the marginal distributions, and the second part concerns the
correlation structure, and in turn, the multivariate aspect of the forecast. Hence,
we introduce two scoring rules for those two evaluation parts.
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5.2.1 The continuous ranked probability score (CRPS)

The continuous ranked probability score (CRPS) is an excellent method for
evaluating univariate probabilistic forecast distributions (Matheson and Win-
kler, 1976). It considers the forecast in terms of its cumulative distributive
function F , and is defined as follows:

CRPS(F, y) =
∫ ∞

−∞
(F (u)− I(u ≥ y))2du, (5.2)

where I is the indicator function. The CRPS evaluates the entire forecast distri-
bution, and has the neat property that the true forecast distribution will always,
asymptotically, yield the best score. This property gives the assurance that if
the CRPS finds that model X is clearly better than model Y given a suitable
series of events, then the forecasts issued by model X are indeed more accurate
than those issued by model Y.

Although the CRPS evaluates the full distribution, it is mostly sensitive to the
calibration of the mean/median and overall shape, while it is not very sensitive
to the tails of the distribution. In forecasting scenarios where differences in
the tails are important, alternatives like the logarithmic score (Good, 1952)
should be considered. Both the CRPS and the logarithmic score are thoroughly
documented, investigated and compared in Paper B.

While the CRPS can be generalized to multivariate forecasts (Gneiting and
Raftery, 2007), it is computationally slow for higher dimension and does not
evaluate correlation structure very sensitively anyway, and is thus not worth
the hassle to use for the multivariate aspect.

5.2.2 The variogram score (VarS)

For evaluation of the correlation structure, the relatively newly proposed vari-
ogram score (VarS) is very convenient (Scheuerer and Hamill, 2015). It is defined
as follows,

VarSp(ϕ, y) =

k−1∑

i=1

k∑

j=i+1

wij(|yi − yj |p − E[|Xi −Xj |p])2, (5.3)

where ϕ is the joint probability density function of the multivariate forecast, and
Xi is a univariate random variable that follows the i’th marginal distribution
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of ϕ (and analogously for Xj). The weights wij should be chosen in a way that
reflects the relative importance of the individual correlations in the multivariate
probabilistic forecast. p may be chosen freely as well, but p = 0.5 is strongly
recommended for the nice sampling properties it yields (see Paper B).

The VarS is excellent at distinguishing between correctly and wrongly specified
correlation structure. Furthermore, it is very fast to compute, even for high-
dimensional forecasts. This is crucial, because it is intended for multivariate
forecast evaluation in the first place. Its main drawback, however, is its complete
lack of sensitivity to calibration of the mean. Consequently, two forecasts with
the exact same correlation structure, but with different offsets, would receive
the same score. Proper calibration of the forecasts are almost always important,
and therefore the forecast evaluation should not be based on the VarS alone.
The properties of the VarS are thoroughly investigated and demonstrated in
Paper B.

Hence, when evaluating forecasts with VarS, it must always be kept in mind
that only the multivariate aspect is properly evaluated, while the calibration
of the forecast distribution is not. This is why we address the latter with the
CRPS.

5.3 Applied stormwater forecast evaluation

It is now time to evaluate the probabilistic stormwater forecasts issued by the
grey-box model developed in Chapter 4. As motivated in the previous section,
we are going to split the evaluation into two parts, applying the CRPS and
VarS, respectively.

5.3.1 Calibration of marginal forecast distribution with
CRPS

In this subsection, the marginal forecast distributions are evaluated with the
CRPS. First, let us specify which forecasts are subject to evaluation. We are
both interested in how well the fitted SDE-model performs on different rainfall
events but also on different horizons. We have got:

• 18 rainfall events

• Forecast horizons ranging from 5 minutes to many hours ahead, in intervals
of 5 minutes.
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Evaluating every possible combination would be a large experiment beyond the
scope of this chapter. Instead, we evaluate:

• Every one of the 18 rainfall events in terms of 1-hour forecasts only (see
Fig. 5.2).

• 7 different forecast horizons (5-min, 10-min, 30-min, 1-hour, 2-hour, 4-
hour and 6-hour), but only on event no. 11 (see Fig. 5.3).

Doing the above should give an idea of both the forecasting capability on dif-
ferent events as well as on different horizons.

Furthermore, it is difficult to interpret the scores on their own in a meaning-
ful way. Therefore, we introduce a benchmark model to generate competing
forecasts, that can be held up against the forecasts issued by the SDE-model.
For benchmarking, we consider the classical autoregressive integrated moving
average (ARIMA) model of order (1,1,1), which has the form:

∇yt = ϕ∇yt−1 + θεt−1 + εt, εt ∼ N (0, σ2), (5.4)

where ϕ, θ and σ are the parameters of the model (NB: these symbols are already
used in this thesis, but are here reused briefly to state the ARIMA-model for
the sake of consistency with the literature), ∇ is the difference operator, and
the εt’s are i.i.d. Order (1,1,1) refers to the number of lags considered for the
observations, the order of differencing, and the number of lags considered for
the error terms, respectively (Madsen, 2007). The ARIMA-model is a black-box
model that requires nothing but a set of observations. This property makes it
easy to apply, which is why it is a common choice for benchmarking.

We proceed to fit an ARIMA-model to the same 6 datasets which the SDE-model
were fitted to. The estimated ARIMA-model is as follows:

∇yt = 0.898∇yt−1 − 0.385εt−1 + εt, εt ∼ N (0, 0.03522), (5.5)

Both coefficient estimates are significant with p < 0.05.

The model in Eq. (5.5) is much simpler than the SDE-model in the sense that it
consists of only one equation and does not depend on any physical assumptions.
It is therefore reasonable to expect a good SDE-model to have better forecasting
performance than the ARIMA-model. Fig. 5.1 shows some examples of compa-
rable forecasts issued by the two models. It is seen that both models produce
accurate and sharp forecasts on very short horizons, but the SDE-model scales
much better than the ARIMA-model, as the forecast uncertainty of the latter
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Figure 5.1: Probabilistic forecasts of rainfall-response in event no. 11 issued by the SDE-
model (left column) and ARIMA-model (right column), respectively. Three
different forecast horizons are shown for both models, namely 10-minute (top),
30-minute (middle) and 1-hour (bottom). The true observations are shown in
black, and the 10%-, 50%-, 70%-, 90%- and 95%-quantiles of the forecasts are
shown in nuances of blue.

quickly increases with horizon. 1-hour forecasts issued by both models on all 18
events are shown in Appendix A (Fig. A.4 and A.5).

It is also seen that the exact arrival time of the rainfall-response is not perfectly
captured by the SDE-model. In some cases the response starts a bit too early,
e.g. in event no. 10 and 11, while in other cases it starts too late, e.g. in event
no. 13, 14 and 17. The reason is either a too simple model structure (e.g. the
number of states or the parametrization of the overflow) or that more rainfall
events are needed for identification. However, it is also evident that as soon as
the first actual response is measured in the tunnel, the extended Kalman filter
takes this discrepancy into account and adjusts the reconstructed states (re-
estimates the amount of stormwater currently present throughout the system)
such that any forecasts beyond that point in time are well-calibrated.

All the probabilistic forecasts defined by the restrictions above are then evalu-
ated with CRPS. The result is displayed graphically in Fig. 5.2 and Fig. 5.3.
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Figure 5.2: CRPS of 1-hour forecasts on events 1-18 issued by the SDE-model (black) and
ARIMA-model(red), respectively.

Figure 5.3: CRPS of forecasts on event no. 11 issued by the SDE-model (black) and ARIMA-
model(red), respectively. Seven different forecast horizons are featured.

The scores behind the figures are listed in Appendix A (Table A.1 and A.2). The
immediate conclusion is that the SDE-model always performs better than the
ARIMA-model regardless of forecast horizon and event, although the difference
in skill between the two models varies and both models are best at forecasting
events with substantial amounts of rain (see e.g. event 11 in Fig. A.5). Neither
are well-geared towards very small rain events (see e.g. event 9 in Fig. A.4).
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Furthermore, as already indicated in Fig. 5.1, the performance of the SDE-
model scales much better with horizon than the ARIMA-model.

5.3.2 Temporal correlation with VarS

In this part, the correlation structure of the forecasts is evaluated with the
VarS. Again, it is in principle possible to do a mega-scale evaluation across
different events, different multivariate dimension and different times at which
the forecasts are issued. We will, however, just focus on providing a proof-of-
concept example, which allows for being restrictive and concise.

We consider only one multivariate forecast instance, specified by:

• A 4-hour forecast horizon and hence a 48-variate probabilistic forecast.

• The 48-variate forecast is issued at t = 100 of event no. 11 (equivalent to
8 hours and 20 minutes into the event).

For benchmarking, we could use the ARIMA-model from the previous subsec-
tion, but it has proven to be horrible for increasing dimension, so we will instead

Figure 5.4: 48-variate (4-hour) probabilistic forecasts of rainfall-response in event no. 11
issued by the SDE-models developed in the thesis (left) and published in Paper
A (right), respectively. 95%-prediction intervals are shown in pale green, with 20
random ensemble members shown in dark green. True observations are shown
as points.
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use the SDE-model from Paper A, which has slightly different parameter esti-
mates than the SDE-model from Chapter 4. The two 48-variate probabilistic
forecasts issued by those two models are shown in Fig. 5.4.

The VarS for the two models in this specific case are listed in Table 5.1. Weights
wij = 1/|i − j| are used in order to strengthen the importance of timely close
correlations (see Eq. 5.3).

Model VarS
Final SDE-model from Chapter 4 11.709
SDE-model published in Paper A 7.759

Table 5.1: Variogram scores for 48-variate forecasts of event no. 11 issued by the two com-
peting SDE-models.

Recall that VarS only evaluates the multivariate aspect of a forecast, and in
terms of this the model from Paper A is found to be performing the best. By
inspection of Fig. 5.4, this is likely because the forecast realizations resemble
the curved shape of the observation series better, i.e. the correlation structure is
better captured by the model from Paper A. In contrast, the forecast realizations
issued by the model from Chapter 4 diverge a bit from the observation series,
and do not bend as much as they should if they were to be on par with the
model from Paper A.

This concludes the proof-of-concept oriented evaluation example. To summarize,
we first identified the important features of the stormwater forecasts in consid-
eration, namely the uncertainty and autocorrelation. Consequently, we selected
the two scoring rules that could appropriately evaluate these aspects, respec-
tively the CRPS and the VarS. We then selected a small subset of stormwater
forecasts generated by the SDE-model, to keep the example on a demonstrative
level. Finally, an ARIMA-model was fitted to the stormwater observations and
used for benchmarking where the CRPS and VarS of the forecasts of the two
competing models were compared. If desired, this evaluation framework may be
extended to any number of events, time points and forecast horizons, and other
benchmarking models may be included. It is my hope that the reader now has
a superficial understanding of how the evaluation of multivariate probabilistic
forecasts like the ones produced in this PhD project can be approached.
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Concluding remarks

6.1 Revision of the objectives of the work

So what could be learned from this joyous journey? First of all, there are some
conclusions which are directly tied to the objectives formulated in Chapter 1.

6.1.1 Contributions

• A non-linear SDE-based grey-box model of the stormwater response in the
Damhus system has been developed. All of its parameters make physical
sense, it is capable of producing ℓ-step probabilistic forecasts in a short
time and the temporal correlation of the stormwater response is taken into
account naturally.

• The step-by-step modelling section provides a read-this-first recipe for
modellers who want to successfully develop grey-box models for dynamical
systems in general.

• The question of how to evaluate multivariate probabilistic forecasts has
been investigated. The studies show that calibration and correlation of
forecasts, which are both very important, are almost impossible to evaluate
simultaneously in practice. Therefore, the current best approach is to
apply the univariate CRPS or the logarithmic score (LogS, see Paper B for
details) to the marginal forecast densities and then evaluate the correlation
with the VarS.

6.1.2 Suggestions for future work

• It would be good to test and re-estimate the SDE-model on rainfall fore-
casts rather than measured rainfall, to see what impact this difference
would have on the bias and variance of the stormwater response forecasts.



6.1 Revision of the objectives of the work 60

• The developed SDE-model is promising with respect to a future model
predictive control (MPC) application to the Damhus stormwater manage-
ment system. If successful, the result of this would be a reduction of the
energy consumption and financial expenses of the drain pumps associated
with the Damhus tunnel.

• For multivariate probabilistic forecast evaluation, a well-defined guide on
how to properly balance the weighting on calibration (with CRPS or LogS)
and correlation (with VarS) is desired. In its current state, the suggested
approach still requires heuristic decision making, when the CRPS/LogS
and VarS disagree on which forecast is the best.

6.1.3 Elaboration on the revision of the objectives

The SDE-based grey-box model

Indeed, the developed grey-box model of the Damhus system was successful. It
produced reasonable forecasts in a timely manner (see the documentation of run
time in Paper A, Supplementary Material Section G) on different time horizons,
with a reasonable covering of the forecast uncertainty.

The presence of an overflow structure in the modelled tunnel system meant that
the system was heavily non-linear, which could not be handled by the usual
linear methods. This was smoothly handled by adding a sigmoid function to
resemble the overflow structure in the system description. The sigmoid function
would ensure that a certain threshold of water had to be reached in the upstream
states before any water could transition to the downstream tunnel states.

Using a fixed pumping signal caused the water volume in the model to sometimes
attain negative values. This caused an unexpected problem, in the sense that
the likelihood could no longer be evaluated, and hence the parameter estimation
routine could not be completed. This was successfully solved, once again, with
the help of a sigmoid function. This time around, it worked by attenuating
the pumping signal whenever the present tunnel water got too close to 0. It
seems that in any model where there is some sort of threshold, shift, delay
or attenuation that has to be covered, the sigmoid option should always be
considered.
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Model predictive control

The above results are promising with respect to a future MPC integration into
the Damhus stormwater management system. For such an MPC to be feasible,
a handful of requirements must be met. First, it is required to have access to a
model that can produce multi-step forecasts given a rainfall input forecast series
and a pumping intensity sequence. Secondly, the forecasts must be produced
fast enough to be ready for use by the MPC in due time. Both of these conditions
are satisfied by the developed SDE-model (see the documentation of run time
in Paper A, Supplementary Material Section G). For the design of the MPC,
it is necessary to quantify the cost of pumping activity, both in terms of power
consumption as well as the varying price on that power. The former should be
possible to estimate from comparing the time series data of pumping volume and
power which are available from HOFOR (the company responsible for operation
of the Damhus tunnel). The latter is an integration of the power market into
an MPC, which has been done in the literature from which a proper approach
can probably be found and borrowed. It is also necessary to ensure that the
pumping sequence suggested by the MPC is always feasible in practice. It must
not change intensity at a rate faster than what is possible, and it must not
exceed its maximum capacity. This information should be trivial to obtain from
HOFOR. Finally, access to either rainfall forecasts or actual measurements in
real-time with a sufficient updating frequency is needed. For example, the free
API for the Danish Meteorological Institute data may be used to extract this
information. More discussion of my thoughts on a future MPC application can
be found in the discussion section of Paper A.

Forecast evaluation

With Paper B, I set out to shed light on the question of how to properly evaluate
multivariate probabilistic forecasts. Here, ’properly’ means to strive for forecasts
that are correct in every aspect, namely in calibration and correlation. End
users are mainly concerned with obtaining forecasts that maximizes value and
minimizes losses, and in its current state this is not necessarily equivalent to
finding the most correct forecasts. However, in my opinion this is a temporary
phenomenon. If we can just learn how to use the information of a fully evaluated
correct multivariate forecast distribution to construct appropriate cost functions
to each relevant application, then that should be superior to simply letting
forecast selection be a question of maximizing value among forecasts that lack
full information about the distribution. How to achieve this change of practice
will be a matter of future research.
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With the mindset that the best way to evaluate forecasts are to evaluate the full
multivariate distribution and select the most correct one, it is then concluded
through the case studies of Paper B that the best approach is to evaluate the
marginal forecast densities with the CRPS or LogS, and evaluate the correlation
with the VarS. Calibration should take priority over correlation in almost any
imaginable case. However, a problem arises, if one forecast clearly has the best
VarS compared to its competitor, but a slightly worse CRPS. What decision
should then be made? This question is currently at a heuristic state, and it is
probably impossible to make a simple relative weighting of the two. The answer
is rather to make well-covering guidelines that enable the user to make this
decision in a consistent manner.

Regarding forecast evaluation of the stormwater forecasts issued by the grey-box
model specifically, I reconfirmed what I already concluded in Paper B. Compet-
ing multivariate probabilistic forecasts can in practice be evaluated by applying
the CRPS to the marginal distributions and then cover the correlation struc-
ture with the VarS. These conclusions are reliable because they are consistent
with how said forecasts compared to each other graphically. I believe there is a
lot of application potential in the concerned evaluation methods, which can be
explored with additional relevant case studies in the future.

6.2 Lessons learned about modelling in practice

Secondly, there are some conclusions belonging to the ’fun challenges’-category.
While it is not something one would report as a result in a scientific paper, it is
certainly the kind of stuff that makes you a more skilled modeller when you have
been exposed to - and overcome it. The issues with the likelihood not evaluating
and the optimizer never converging led to several useful lessons learned:

1) If the likelihood fails to evaluate at some point, it is worth investigating
exactly when it is feasible and when it is not. This meant the difference between
being stuck indefinitely and finishing the development of the grey-box model and
publish it in a journal paper.

2) Graphical inspection is extremely important for troubleshooting. This is
probably well-known to every soul on the planet, but rest assured that I had to
be reminded of this a couple of times during this adventure. Those two times
(3+4) were the following:

3) Even after acknowledging lesson no. 1, it was very tricky to figure out why
that likelihood function could not evaluate. I only made the realizing break-
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through, when I made a graphical inspection of the temporary one-step predic-
tions produced by the currently guessed model. This was when it became clear
that the water could never be allowed to go into the negative. I had known
for a while that ideally this should not happen, but I did not know that the
restriction had to be rigorous to the point of no half measures. Even though
I did not yet understand the underlying mathematical reasons for this, at the
time, it was enough of a realization to propose a solution and apply it with a
perfect result almost immediately.

4) This is something I have decided not to spend paper-space on in the core
thesis. But I shall not refrain from reporting it in the concluding remarks.
Even with a robust likelihood function that always would evaluate, it was often
difficult to get the optimization routine to converge to a physically meaning-
ful parameter estimate. Getting a consistent estimate given slightly different
starting guesses or constraints were even more difficult. During optimization
attempts, I would always be monitoring the parameter jumps in a live-updating
table. Many times the model would seem to be converging for a while, but then
it would start moving out on an endless tangent towards some ridiculous bound-
ary point. And that would never end well. Making useful plots for graphical
assessment of models with 10 or more parameters was no easy task, and for a
long time I did not have any good ideas on how to graphically inspect this issue,
aside from constructing a ton of time-consuming profile likelihoods and tables.
However, one day when I was trying to optimize over the six training datasets,
I got the idea of adding a live-updating graphical view of all six datasets along
with the current model fit. I would describe this as a minor miracle. It led to
the realization that the optimizing algorithm actually did find a good fit across
all of the datasets, within a relatively small number of steps. After that point,
most of the iterations would be minor improvements with diminishing returns,
before moving in the famous endless no-prospect direction. The critical break-
through was that I could suddenly make an informed decision on when to stop
the optimization algorithm and deem a parameter estimate to be good enough.
This was of course not the end of the optimization quest, since just stopping the
alogrithm prematurely would return an estimate that wasn’t a local minimum.
But ultimately, it opened the door to the track that would eventually allow me
to find a set of parameter estimates worth publishing.

5) Having realized that I should not blindly trust the optimizing routine, discus-
sions with knowledgeable colleagues began. This led to the understanding that
the relationship between system noise and observation noise levels can greatly
affect the optimization flow. If unrestricted, the optimizer has a tendency to
let the observation noise surge to the bottom. With minimal observation noise,
the Kalman filter will correct the state estimations very aggressively, leading to
an almost perfect fit. The problem with this is that the prediction quality no
longer depends on the physical system structure, which is what we are trying
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to estimate, after all. It was clear that this was the reason why the model had
such a hard time getting properly estimated. To solve this issue, I would split
the optimization framework into two legs. The strategy was to first optimize
the physical parameters, and then optimize the noise parameters. In the first
leg, the system noise would be fixed to a small level to ensure some trust in the
physical part of the CTSM. It worked, and the model would converge to a phys-
ically reasonable parameter set. In the second leg, all the physical parameters
estimated in the first leg would be fixed, and all of the noise parameters were
due to optimization. This two-legged approach was successful and I ended up
with a working parameter estimate that I could vouch for, mathematically.

Finally, I will dare to conclude that one does not easily overcome modelling
challenges. You really need to stand up again after every time you fall, no
matter how many beatings you have to endure. However, by all means, do
consult someone when you are out of ideas, because simply trying the same
thing again which already failed several times, almost never leads to anything
productive. I am really happy to have finalized this marathon, knowing that I
have genuinely become a more experienced modeller than I was when I started.

This concludes the summary report of my PhD thesis.



Appendix A

Supplementary material

A.0.1 Equations

In Section 4.2.11, the differential equation

dz
dt

= p · e−z (A.1)

is stated (Eq. (4.14)) with its solution z(t) (Eq. (4.15)). The following elabo-
rates on how the solution is found. Multiply by ez on both sides to get,

ezdz = pdt. (A.2)

Integrate on both sides:
∫ z

z0

eudu =

∫ t

t0

pdw =⇒ ez = p · t+ c, (A.3)

where c is an integration constant. Take the logarithm on both sides to get:

z = log(p · t+ c). (A.4)

Set the initial condition z(0) = z0, then z0 = log(c) =⇒ c = ez0 . Inserting this
result into Eq. (A.4) yields the solution,

z = log(p · t+ ez0). (A.5)

The Bayesian Information Criterion (BIC) used in Section 4.3 is defined as

BIC = k log n+ 2ℓ, (A.6)

where k is the number of model parameters, n is the number of observations
and ℓ is the negative log-likelihood as usual.
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A.0.2 Visual overview of the Damhus case data

In the following, all 18 rainfall events featured in the Damhus case (see Section
4.2) are visualized with rainfall and rainfall-response shown. All events are
displayed on the same scale, such that individual comparison is straightforward.
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Figure A.1: Rainfall-response in rainfall events 1 to 6.
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Figure A.2: Rainfall-response in rainfall events 7 to 12.
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Figure A.3: Rainfall-response in rainfall events 13 to 18.
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A.0.3 Probabilistic 1-hour forecasts of the 18 rainfall events

In the following, probabilistic 1-hour forecast series for all 18 rainfall events,
issued by both the final SDE-model and the benchmark ARIMA-model (see
Section 5.3.1) are shown as prediction intervals up to 95%. Every event is
scaled with respect to itself, so careful attention needs to be payed to the axes
when comparing the events visually.
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Figure A.4: Probabilistic forecast of rainfall-response in rainfall events 1 to 9 under the SDE
and ARIMA models, respectively.
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Figure A.5: Probabilistic forecast of rainfall-response in rainfall events 10 to 18 under the
SDE and ARIMA models, respectively.
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A.0.4 CRPS tables for forecast evaluation

Below follows the CRPS values used for display in Fig. 5.2 and 5.3 in Section
5.3.1.

Event SDE ARIMA
1 1.649 3.746
2 0.024 0.100
3 0.304 0.884
4 0.286 0.315
5 0.113 0.363
6 0.051 0.223
7 0.239 1.352
8 0.162 0.811
9 0.015 0.099

10 0.231 0.594
11 0.303 1.010
12 0.009 0.095
13 0.179 0.425
14 0.221 0.909
15 0.016 0.098
16 0.012 0.093
17 0.303 1.115
18 0.310 0.562

Table A.1: CRPS for probabilistic forecasts of all 18 events at 1-hour horizon (12-step fore-
cast), for the final model (SDE) and the benchmark model (ARIMA) respectively.
The scores are also displayed in Fig. 5.2

Step-ahead Horizon SDE ARIMA
1 5-min 0.139 0.154
2 10-min 0.164 0.236
6 30-min 0.251 0.605

12 1-h 0.414 1.334
24 2-h 0.766 3.176
48 4-h 1.580 7.335
72 6-h 2.408 10.377

Table A.2: CRPS for probabilistic forecasts of event no. 11 at various horizons, for the final
model (SDE) and the benchmark model (ARIMA) respectively. The scores are
also displayed in Fig. 5.3



Appendix B

Publications
In the following, the published versions of my two journal papers are included.
These are:

1. Paper A: Probabilistic forecasting of rainfall response in a Danish stormwa-
ter tunnel (peer-reviewed, accepted and published in Journal of Hydrology)

2. Paper B: An introduction to multivariate, probabilistic forecast evalua-
tion (peer-reviewed, accepted and published in Energy and AI )

NB: The following errata have been identified and the journals have been con-
tacted in an effort to get the official versions corrected.

Paper A: In both Eq. (11) and Eq. (12) the first term is stated as N−1
2 and the

second term has a negative sign. The correct version should have N
2 as its first

term, and the second term should have a positive sign.

Paper B: In Table 5, the LogS for the "True SDE" model is reported as 1.217.
A negative sign is missing here, the correct value is −1.217.

Paper B: Fig. 7 reads: "PIT histograms of a fixed times series under the true
model (a), a mean-shifted, hence miscalibrated model (b), an underdispersed
model (c) and an overdispersed model (d)". It is (c) which is overdispersive and
(d) which is underdispersive.
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A B S T R A C T   

Sustainable urban drainage is an economically expensive necessity, partially due to the operation of water 
pumps. Reliable forecasting of stormwater response following a rainfall event has the potential to reduce those 
expenses, because it can be used in model predictive control schemes that optimize the energy consumption of 
pumps significantly better than the commonly applied real-time control systems. Urban drainage systems are 
traditionally designed around highly complex, deterministic models where an assessment of the uncertainty of 
the stormwater forecast is either absent or relies on computation–heavy simulations. With offset in a Danish 
stormwater tunnel, we propose a much faster, but reliable, non-linear continuous-discrete-time state-space model 
based on stochastic differential equations which can generate probabilistic forecasts that contain complete in-
formation about the distribution of uncertainty. We explain step-by-step how the model structure is built from 
simple physical assumptions, then how the parameters are estimated from maximum likelihood principles and 
finally we demonstrate the forecasting capabilities of the model. We believe this model would be well-suited for a 
subsequent model predictive control scheme.   

1. Introduction 

An accurate understanding of stormwater flow in sewer systems in 
cities is crucial for the prevention of floods caused by heavy rainfall 
events (Adams, 2000). If the dynamics of water flow in a system is well- 
described, it is possible to design the system in such a way that the ex-
pected abundance of flood is minimized to some level deemed accept-
able, e.g. to a 10-year-event or 100-year-event (Schmitt et al., 2004). 
However, there are considerable financial costs associated with the 
management of stormwater. For example, the costs of stormwater 
management in California have been estimated to $700 million annually 
(EFC-Sacramento, 2020). A significant part of the costs can be attributed 
to the energy consumption for operation of drain pumps (Goldstein and 
Smith, 2002; Fecarotta et al., 2018), which is usually governed by real- 
time control schemes that act based on the current state of the system 
(Schütze et al., 2002). However, this practice is neither optimal with 
respect to energy consumption nor the price dynamics of the energy 
market. Instead, forecasting-based control schemes like model predic-
tive control (MPC) (Morari and Lee, 1999) may be applied to reduce 
operational costs (Staden, 2011; Lund et al., 2018). Such schemes 
require reliable forecasting of the timing and scales of stormwater 
events, and hence there is a great potential in developing forecasting 

models for stormwater systems. 
In practice, state-of-the-art modeling of urban drainage and sewer 

systems features deterministic methods implemented in software solu-
tions like MIKE Urban (Wolfgang Rauch et al., 2002). In such frame-
works a large set of partial differential equations describing the complex 
system of often thousands of sewer links, manholes and basins is solved 
numerically. However, this approach has a few obvious drawbacks. 
First, it is computationally expensive which is a problem in the case 
where updated forecasts are requested more frequently than model 
output can be computed (Hansen et al., 2014). Therefore, it might be 
beneficial to look for computationally cheaper options in the form of 
much simpler models. Secondly, a deterministic forecast does not carry 
any immediate information about the uncertainty. This is not ideal 
because a proper modelling of the uncertainty has the potential to 
dramatically reduce the risk of making a wrong decision (Hsu et al., 
2012). Deterministic methods can handle this by feeding a range of 
perturbed inputs to the model and letting it propagate through time, 
thus generating a set of scenarios, to represent the uncertainty (Borup 
et al., 2015). However, this solution obviously suffers inherently from 
run time issues. Alternatively, stochastic differential equations (SDEs) 
can be used to model the uncertainty as well as the physical aspects of 
the system at the same time and thus constitute a method for probabi-
listic forecasting (Bechmann et al., 2000). 
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In this paper, we will consider the Damhus Tunnel system, a Danish 
stormwater tunnel not separated from the local wastewater sewer sys-
tem (Jensen and Bering, 2017). Based on ideas of Breinholt et al. (2011), 
our key contribution is the development of a non-linear SDE-based state- 
space model for probabilistic forecasting of the stormwater response in 
the Damhus Tunnel, that can be used as a base for applied MPC in future 
studies. Section 2 describes materials and methods, Section 3 explains 
the modelling process, including choice of model structure, estimation, 
forecasting and forecast evaluation with respect to a prominent deter-
ministic method. In Section 4, the results are presented, a discussion of 
the results follows in Section 5, and finally, Section 6 concludes. 

2. Materials and methods 

This case study features the Damhus tunnel in Copenhagen that ac-
cumulates stormwater from an approximately 47 km2 large area called 
the Damhus catchment (for the future, simply referred to as the tunnel 
and the catchment, respectively). Previously, the drainage system of the 
catchment consisted solely of combined sewers, which insufficient 
maximum capacity occasionally led to very expensive floods, e.g. in July 
2011. Therefore, the Damhus tunnel was constructed in 2017 to counter 
such events, offering an extra capacity of 29000 m3. It is connected to 
the combined sewer system via an overflow structure named the Middle 
link. A simplified description of the full system in consideration is shown 
in Fig. 1 and further elaborated on in Section 3. This system has previ-
ously been used for development of a data assimilation scheme for urban 
drainage tunnels (Palmitessa et al., 2021). 

2.1. Data 

The data used for modelling includes measurements from the Dam-
hus tunnel of water levels in meters above sea level (m(DVR)) and pump 
flows in m3/min as well as rainfall measured in μm/s from two rain 
gauges installed at two different locations in the catchment, see Table 1 
and Fig. 1. This data set spans five months of 2018 from August 1st to 
December 31st and contains 7 rainfall events where stormwater 
appeared in the tunnel. All the time series are available in 1-min reso-
lution. Furthermore, we have access to a highly complex MIKE Urban 
model of the entire catchment that enables simulation of deterministic 
rainfall response for comparison. More details about the tunnel, the 

Nomenclature 

Abbreviations 
c.d.f Cumulative distribution function 
CRPS Continuous ranked probability score 
CTSM Continuous-discrete-time state-space model 
LRM Linear reservoir model 
MPC Model predictive control 
PIT Probability integral transform 
RMSE Root mean square error 
SDE Stochastic differential equation 

Mathematical notation 
A Effective catchment area 
f(⋅) Drift function 
g(⋅) Diffusion function 
i Reservoir index 
k Discrete time index 
K Generic time constant 
K0 Time constant for overflow 
K1 Time constant for ground surface 
K2 Time constant for combined sewer 

K3 Time constant for tunnel 
l Forecast horizon in steps 
m Ensemble size 
N Number of observations 
Pt Pumping intensity at time t 
q(⋅) Sigmoid function for crest 
qP(⋅) Sigmoid function for pumping signal 
t Continuous time 
Ut Rainfall intensity at time t 
Wi,t Wiener process for reservoir i at time t 
Xi,t Water volume in conceptual reservoir i at time t 
Yk Observation at time tk as a random variable 
yk Observation at time tk as measured 
ŷk Prediction of yk 
Zi,t Lamperti transform of Xi at time t 
α Shape parameter for sigmoid function 
β Threshold parameter for sigmoid function 
θ Vector of SDE-model parameters 
σ1 System noise parameter 1 
σ2 System noise parameter 2 
σe Observation noise  

Fig. 1. Simplified diagram of the waste- and stormwater sewer system of the 
Damhus catchment. The presence of measurements used in this study are dis-
played as white circles. 
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rainfall events and the MIKE Urban model are included in Supplemen-
tary material. 

2.2. Methods 

The modelling framework consists of model structure selection, 
parameter estimation, forecasting, forecast evaluation and finally an 
assessment of the advantages and disadvantages associated with the 
proposed model. Throughout the case study we apply stochastic differ-
ential equations (SDEs) (Øksendal, 2003) as the building blocks for any 
model in consideration. A generic SDE describing the evolution of a state 
variable Xt can be formulated: 

dXt = f (Xt,Ut, t)dt+ g(Xt, t)dWt, (1)  

where f(⋅) is called the drift term, g(⋅) is called the diffusion term, Ut is 
the vector of inputs and Wt is a standard Wiener process (Wiener, 1923). 
It is often necessary to model more than one state variable, in which case 
several SDEs are formulated and coupled to form a set of SDEs. The 
dynamics of the system is conveniently described in continuous time by 
the set of SDEs, whereas the data is almost always available in discrete 
time. Most often also only a subset of or a function h(⋅) of the states are 
measured, which gives rise the observation equation, 

Yk = h
(
Xtk

)
+ ek, ek ∼ N

(
0, σe

)
, (2)  

where Yk is the observation at time tk. Together, the set of SDEs and the 
observation equation constitute a continuous-discrete-time state-space 
model (Johansson et al., 1999), which we will commonly refer to as an 
SDE-model. We use the open software CTSM-R for estimation of the 
parameters of the model which is based on the log-likelihood and the 
extended Kalman filter (Juhl, 2020). We also apply the Lamperti 
transform to the system of SDEs prior to estimation, in order to be able to 
let g(Xt , t) in Eq. (1) be state-dependent, because CTSM-R only accepts 
additive and state-independent system noise (Møller and Madsen, 
2010). 

For forecasting of Y at time k + l, i.e. Ŷk+l|k, we use the estimated SDE- 
model to propagate forward in time with stochastic Euler simulation (Par-
doux and Talay, 1985). This is repeated m times such that an m-dimensional 
ensemble is created. This ensemble is then considered a representation of the 
forecast distribution (Zhu, 2005), and is effectively a probabilistic forecast 
(Gneiting and Katzfuss, 2014). The performance of the probabilistic fore-
casts issued by the SDE-model is then evaluated against the corresponding 
deterministic forecasts generated from the MIKE Urban model. 

3. Modelling 

3.1. Physical drainage system overview 

The full process of rainfall-runoff from precipitation to accumulated 
waste- and stormwater at the wastewater treatment plant (WWTP) can 
be divided into 6 steps:  

1. The water hits the ground surface in the catchment.  
2. It runs off along the ground surface to reach the combined sewer 

system.  
3. It flows through the combined sewer system to reach the overflow 

structure (Middle link).  

4. If the water in the overflow structure is above a certain crest level, it 
flows into the tunnel, otherwise it continues downstream through the 
combined sewer towards the Sarcophagus.  

5. Water that has entered the tunnel flows downstream to the storage 
tower at the end (Bottle bridge).  

6. The water is pumped from the downstream end of the tunnel to the 
Sarcophagus where it is merged with the sewage from the combined 
sewer (cf. step 4) and everything then flows towards the WWTP. 

This breakdown of the process already reveals two important fea-
tures of the system. Firstly, there are several different time constants 
reflecting how long it takes for the stormwater to discharge through the 
different phases. Secondly, the crest in step 4 introduces a non-linearity 
to the system, because it means that only sufficiently strong rain events 
will cause water to enter the tunnel, while minor rain events will not. 

3.2. Water volume as response variable 

Ultimately, the water level in the tunnel must be controlled such that 
flooding events are prevented. Hence the immediate idea would be to 
model the water level at any given time, an approach well demonstrated 
by Breinholt et al. (2011). However, water levels are not conserved in an 
intuitive way between different parts of the physical system, but water 
volumes are. Since the volume is proportional to the mass, choosing 
water volume as the response variable makes it straight-forward to base 
the model on mass balance equations, which have a very intuitive 
physical interpretation. From a time series of minutely water level 
measurements where the completely filled tunnel was being fully 
emptied, we know very precisely the relationship between the water 
level and volume in the tunnel, making transformation between these 
two domains easy, see Fig. 2. Hence, the water level can always be 
reconstructed whenever it is needed. Furthermore, all water volumes 
will be modelled in units of 1000 m3 because estimation of the SDE- 
model tends to be easier when the order of magnitude of the numbers 
concerned is not too high. 

3.3. Continuous-discrete-time state-space model 

We shall formulate a continuous-discrete-time state-space model 
(Johansson et al., 1999) that can be estimated from the available data. 
First, consider an arbitrary sewer pipe. Let Xi,t be a random variable that 
represents water volume at location i in the pipe at time t and let K be an 
associated time constant, i.e. the average time it takes the water to flow 
from one end of the pipe to the other. Then the flow may be described by 
a linear reservoir model (LRM) (Pedersen et al., 1980) of order n, where 
the pipe is represented by a series of n reservoirs with the water content 
of each reservoir being a state. The water then flows from one state to 

Table 1 
List of observations used in the modelling framework.  

Sensor label Description Unit 

R1 Rainfall at location 1 μm/s 
R2 Rainfall at location 2 μm/s 
FP Total pump flow at the Bottle bridge m3/min 
LF Water level at the Bottle bridge m(DVR)  

Fig. 2. The relationship between water level and water volume in the Dam-
hus tunnel. 
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the next with the rate n/K, see Fig. 3. Ideally, the system consists of an 
infinite number of infinitely small reservoirs, but in practice only a 
limited number of reservoirs is needed. Because we are modelling water 
volumes, the dynamics of the i’th reservoir can now be described by a 
mass balance equation, typically formulated as 

dXi,t =
(n

K
Xi− 1,t −

n
K

Xi,t

)
dt. (3) 

In order to model the entire Damhus system, we will consider the 
ground surface, the combined sewer and the tunnel as three different 
“pipes”, each characterized by a time constant, K1, K2 and K3 respec-
tively, and use this idea to construct a state-space model consisting of 
three connected LRMs, each with 2 states, amounting to a total of 6 
states. The decision on the number of states per LRM was based on 
preliminary studies. The time variable is considered in units of hours, 
and hence, the three time constants also have units of hours. 

Regarding the input to the system, it is assumed that the amount of 
stormwater reaching the ground surface at time t is proportional to the 
rainfall intensity Ut with the proportionality constant being the effective 
area A, so the inflow is AUt. This assumption was shown to be reliable by 
Breinholt et al. (2011). The mass balance for the first state X1 of the LRM 
representing the ground surface thus becomes 

dX1,t =

(

AUt −
2

K1
X1,t

)

dt. (4)  

Here, A and Ut are given in units of km2 and mm/h, respectively, and 
hence, AUt is in units of 1000 m3/h as desired. Ut is taken as the average 
of the rainfall at the two measurement locations at time t, converted to 
mm/h, see Table 1. 

The mass balances for X2 and X3 inherit the form in Eq. (3). At X4, 
which represents the volume in the overflow structure, we address the 
non-linearity caused by the crest between the combined sewer and the 
tunnel. The discharge from X4 should reflect that only if the amount of 
water exceeds some threshold corresponding to the crest level, water 
will start flowing rapidly into the tunnel. This can be accomplished by 
attributing a special time constant K0 to the overflow, and multiplying 
the overflow-specific discharge − 1

K0
X4,t with a sigmoid function, 

q
(

x
)

=
1

1 + exp( − α(x − β))
, (5)  

where α determines the sharpness, such that for α→∞, q(x) approaches a 
step function, and β is the threshold where the step occurs. Meanwhile, 
some discharge from X4 downstream to the Sarcophagus will always 
take place, which is attributed to K2. Hence, we get 

dX4,t =

(
2

K2
X3,t −

(
2

K2
+ q
(

X4,t

)
1

K0

)

X4,t

)

dt. (6)  

The mass balance for X5 which represents the upstream part of the 
tunnel, inherits the form in Eq. (3) except the inflow is multiplied by 
1

K0
q
(
X4,t

)
, 

dX5,t =

(
1

K0
q
(

X4,t

)

X4,t −
1

K3
X5,t

)

dt. (7)  

The last state X6 represents the water volume at the end of the tunnel. 
Here, there is no discharge and the water accumulates until it is pumped 
out or the tunnel is filled. The mass balance equation is 

dX6,t =

(
1

K3
X5,t − Pt

)

dt, (8)  

where Pt is the pumping intensity at time t. This is an input signal, which 
depends on several factors in the real system. For this study, we use the 
pumping data at hand as a simplification, i.e. Pt is taken as the total 
pump flow at time t, converted to 1000 m3/h, see Table 1. This has the 
awkward drawback of allowing the water volume to drop below 0. In 
order to ensure that such an occurrence never happens, Pt is multiplied 
by q(X6,t) with α = 200 and β = 0.05, cf. Eq. (5). We denote this function 
qP(x). 

Finally, the diffusion terms in Eq. (1) must be selected. The simplest 
option is additive diffusion, i.e. gi(Xi, t) = σi for all i. However, Breinholt 
et al. (2011) demonstrated that state-proportional diffusion is the better 
option for flow modelling, i.e. gi(Xi, t) = σiXi. This causes the system 
noise to grow with larger volumes and converge to zero for smaller 
volumes. Consequently, no water volume state can attain any negative 
values, which keeps the system consistent with physics. Therefore, the 
latter option is chosen. 

The diffusion constants, σi, may be modelled as unique for each i or 
with some of them being identical to one another. Here, the distinction is 
made based on physical assumptions about the sources of system noise. 
Firstly, it is assumed a part of the system noise is attributed to the rainfall 
input which enters the system in Eq. (4). For this reason, σ1 is considered 
to be unique. Secondly, the remaining system noise is assumed to be 
attributed to random variation in the water flow which is not captured 
by the drift term of the model. We assume that this source of system 
noise is approximately the same throughout the entire drainage process 
and is hence only characterized by one diffusion constant, σ2. Hence, the 
full system description becomes 

d
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⎜
⎝
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⎞
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⎟
⎟
⎠
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)
1
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)
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q
(
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)
1
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1
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1
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X5,t − PtqP
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ1X1dW1,t
σ2X2dW2,t
σ2X3dW3,t
σ2X4dW4,t
σ2X5dW5,t
σ2X6dW6,t

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9) 

The observation equation simply relates the final state X6,t to the 
observed volume at the Bottle bridge, 

Yk = X6,tk + ek, ek ∼ N (0, σe). (10) 

All the parameters of the model are summarized in Table 2 of Section 
4. 

3.4. Estimation 

For estimation of parameters, we base our approach on the 
commonly applied minimization of the negative-log likelihood (Madsen 
and Thyregod, 2010): 

ℓ
(

θ; y

)

=
N − 1

2
log

(

2π
)

−
1
2
∑N− 1

k=0
log

(

σ̂2
k+1|k

)

+

(yk+1 − ŷk+1|k

σ̂k+1|k

)2

, (11)  

where θ = (A,α, β,K0,K1,K2,K3, σ1, σ2, σe)’ is the vector of model pa-
Fig. 3. A simple linear reservoir model with 4 reservoirs and one time constant 
K, hence the rate of discharge at each link is 3/K. 
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rameters. First of all, we consider a 5-min resolution of the data set 
instead of 1-min resolution. Preliminary studies have shown that the 
resulting estimates do not change significantly and the computational 
time gain is huge. Secondly, instead of minimizing the regular log- 
likelihood, we make two suitable changes. The first change is attrib-
uted to the impact of small observations. While the data contain a lot of 
observations with values close to 0, we are primarily concerned about 
obtaining a model that can accurately predict the system load when 
water is present, and therefore, we want to put less emphasis on pre-
diction of the former. This is accomplished by adding a variance 
contribution to σ̂2

k+1|k that has the largest effect on small observations: 

σ̃2
k+1|k = σ̂2

k+1|k +
(

a⋅ŷk+1|k

)b
, (12)  

where a and b are both chosen to be 0.1. The second change aims to give 
special attention to an accurate modelling of the stormwater response 
time, i.e. the delay from rainfall to measurable water in the tunnel. 
During optimization, the regular log-likelihood may very well compro-
mise w.r.t. this feature for the sake of a seemingly better fit overall, and 
therefore we add an extra penalty to Eq. (11) of the form 
(yk+1 − ŷk+1|k)

2
/(yk+1 + c), with c = 0.01, which penalizes a mis-

specified response time hard. The purpose of c is to avoid division by 
zero. Hence, the modified negative log-likelihood becomes: 

ℓ̃(θ; y) =
N − 1

2
log(2π) − 1

2
∑N− 1

k=0
log
(

σ̃2
k+1|k

)

+

(
yk+1 − ŷk+1|k

)2

σ̃2
k+1|k

+

(
yk+1 − ŷk+1|k

)2

yk+1 + c
.

(13) 

The total data set includes 7 rain events from 2018, cf. Section 2. For 
estimation, we select 6 events deemed sufficient to span the variation of 
the system, and one event for subsequent evaluation of the estimated 
model. Prior to estimation based on the 6 training events, we apply 
leave-one-out cross-validation (Cawley et al., 2003) to ensure approxi-
mately unbiased parameter estimates. 

To obtain the 1-step predictions needed for the log-likelihood func-
tion, it is necessary to apply an extended Kalman filter (Brok et al., 
2018). However, because the extended Kalman filter in CTSM-R only 
accepts additive and state-independent diffusion, the form in Eq. (9) can 
not be estimated. Instead, let Z = (Z1,⋯,Z6)

′ be a new multivariate 
random variable. We then apply a Lamperti Transform (Møller and 
Madsen, 2010) to the system, such that 

Zi = log(Xi), ∀i. (14)  

Hence we get a new system description of the form: 

dZt = f̃ dt + g̃dWt (15)  

with 
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(16)  

and g̃ is analogous to the diffusion term in Eq. (9) except with no Xi. 
Thus, the diffusion of Eq. (15) is additive and allows for application of 
the extended Kalman filter. The physical parameters are invariant under 
this transformation, hence they can be estimated as in Eq. (16), and the 
fitted values of Zi can be back-transformed to Xi by 

Xi = eZi , ∀i. (17)  

A detailed calculation of the Lamperti transform can be found in the 
Supplementary material. 

Finally, the modified negative log-likelihood in Eq. 13 is optimized 
using the nlminb function in R. Such optimization routines tend to 
converge more robustly if all the parameters are on a similar scale. For 
this reason, we let nlminb optimize over the log-transformed parame-
ters. The parameter estimates in the original domain can thus be 
restored by taking the exponential of the result of the optimization. See 
the Supplementary material for a summary of the estimation framework 
in the form of R code. 

3.5. Forecasting and forecast evaluation 

The fitted SDE-model is now evaluated by letting it forecast the 
stormwater response in the test event. We shall use two different fore-
casting setups. The first setup features probabilistic forecasts with a 
moving l-step horizon, which is the setup we have in mind for an MPC 
application in future studies. The second setup is a forecast of the full 
scenario, given only the rainfall input and the initial conditions. The 
purpose of this is to compare the performance of the probabilistic SDE- 
model to the deterministic MIKE Urban model. 

First, we cover the moving l-step forecasts. Based on the fitted SDE- 
model, using an extended Kalman filter we can reconstruct the full time 
series for all 6 states. These can then be used as initial conditions for 
forward Euler simulation of the model using the input series of the test 
set. We then save all the l-step forecasts generated this way, as a single 
series of l-step forecasts. By repeating that exercise m times, an ensemble 
of m members is obtained, from which predictive distributions can be 
extracted and used as probabilistic forecasts (Bjerregård et al., 2021). 

Secondly, we would like to evaluate the SDE-model against the MIKE 
Urban-model. However, we can not directly compare with the moving l- 
step forecasts from the SDE-model, because MIKE Urban just simulates 
the full event based on rainfall input, and can not benefit from new 
observations or start the simulation in the middle of the event. Instead, 
to ensure the most fair comparison, we let the SDE-model forecast the 
full event with no extended Kalman filter updates, and hence it only 
depends on the rainfall input like MIKE Urban. Furthermore, we remove 
the pumping signal from the scenario, i.e. set Pt = 0 for all t, which is 
equivalent to forecasting the accumulated inflow of stormwater. This is 
due to the fact that the real pumping signal is not properly modelled in 
either model, so forecasting the instantaneous stormwater volume is not 
practical. Under these conditions, we generate a deterministic forecast 
series with MIKE Urban and a probabilistic forecast series with the SDE- 
model. 

In order to evaluate the two competing models, we introduce the 
continuous ranked probability score (CRPS) (Matheson and Winkler, 
1976): 

CRPS
(

F̂ l|0, yl

)

=

∫ ∞

− ∞

(
F̂ l|0
(
x
)
− I
(
x < yl

))2dx, (18)  

with F̂ l|0 being the empirical cumulative distribution function (c.d.f) 
(Pitman, 1999) of the forecast and I(⋅) being the indicator function. This 
metric is usually applied to probabilistic forecasts, but is equally appli-
cable to deterministic forecasts as well (Gneiting and Raftery, 2007). In 
the latter case, the c.d.f becomes a step function. The overall CRPS is 
obtained by applying Eq. (18) to every l-step forecast and compute the 
average. As a second metric, we use the well-known root mean square 
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error (RMSE): 

RMSE

⎛

⎝ŷl|0, yl

⎞

⎠ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

l=1

(
yl − ŷl|0

)2

√
√
√
√ . (19)  

When applying RMSE to a probabilistic forecast, ŷl|0 in Eq. (19) is taken 
as the mean of the m ensemble members. 

Summarized, we use the fitted SDE-model to generate probabilistic 
forecasts of both the actual stormwater response and the accumulated 
inflow. The former are moving l-step forecasts based on adaptive state 
estimation, intended for integration into an MPC framework. The latter 
constitute a full event simulation which is used for evaluation against 
the deterministic MIKE Urban model under the CRPS and RMSE metrics. 

4. Results 

The parameter estimates of Eq. (9) with 95%-confidence intervals 
(CIs) are listed in Table 2. Notably A ≈ 6.02 km2 is reasonable w.r.t to 
the total catchment area of ∼ 47 km2 because only hard surfaces like 
roads and roofs really contribute to the sewer inflow while green areas 
like parks and gardens do not. The sum of the four time constants is 
∼3.57 h and is interpreted as the total travel time of rainfall-runoff, 
which is also reasonable, see Fig. 4. The 95%-CIs were first computed 
as symmetric Wald confidence intervals in the logarithmic domain 
where the parameters were estimated, and were then converted to 95%- 
CIs in the original parameter domain by taking the exponential. The 
standard errors of the parameter estimates in the logarithmic domain 
were derived from the diagonal elements of the inverse Hessian of the 
modified negative log-likelihood, under the assumption that the latter 
can be approximated by a second order polynomial around the optimum 
(Madsen and Thyregod, 2010). This assumption only holds true for 
parameter estimates not on the boundary, hence some of the standard 
errors could not be estimated and we have simply reported the associ-
ated 95%-CIs as ’NA’. 

A probabilistic forecast series of the stormwater response in the test 
event is shown in Fig. 4 (top). It is generated by m = 10000 realizations 
of the fitted SDE-model, and the forecast horizon is 1 h, i.e. l = 12. Fig. 4 
(center) displays a full simulation of the accumulated stormwater inflow 
in the same test event, based on rainfall input only. It features a com-
parison of the probabilistic SDE-model forecasts with the deterministic 
MIKE Urban forecasts. The SDE-model is here represented by the mean 
and 95%-prediction interval of the forecast series. The sample size is 
again m = 10000. The CRPS and RMSE of the two forecasting models 
are listed in Table 3. The SDE-model scores slightly better than MIKE 
Urban under the RMSE, and clearly better under the CRPS. The rainfall 
series of the test event is shown in Fig. 4 (bottom). Run time consider-
ations and tests are included in the Supplementary material. 

5. Discussion 

In this paper, we have motivated, developed and estimated an SDE- 
based linear reservoir model with a non-linear extension. We have used 
the estimated model to forecast the stormwater response in the Damhus 
tunnel for a rainfall event unknown to the estimation process. For this 
test case, we have found that the model performs promisingly at 1-h- 
ahead forecasting, and that it is competitive with respect to the MIKE 
Urban model of the Damhus system, when full event simulations are 
compared. 

The 1-h-ahead forecasts are strong in the sense that the observations 
generally fall within the 95%-prediction interval, while the forecast 
distributions are reasonably sharp at the same time. Hence, the uncer-
tainty of the forecasts is well captured at this horizon. The reasoning 
behind the choice of horizon is linked to the future goal of being able to 
apply MPC to the system. The MPC could take advantage of the hourly 
changes in energy market prices, when optimizing the timing and in-
tensity of the pumping activity. For a proof of concept, 1-h horizons are 
therefore considered to be relevant, but future studies may very well 
reveal shorter or longer horizons to be of higher importance. More de-
tails on the forecast horizons of interest are included in the Supple-
mentary material. Every 1-h-ahead probabilistic forecast was generated 
in less than a second, which makes the model very feasible for non-linear 
MPC because a control-scheme would rely on minutely or coarser data 
updates. 

The full event simulation setup shows that the response dynamics of 
the SDE-model can compete with the much more complex MIKE Urban- 
model. Both the SDE-model and MIKE Urban hit the response time from 
rainfall to stormwater in the tunnel convincingly. However, they also 
both overestimate the accumulated response, which could be an indi-
cation that the rainfall input series is over-representing the actual 
rainfall event. When compared to the performance of the moving l-step 
setup, this really emphasizes the strength of being able to adaptively 
estimate the states of the system, because over- or underpredicted 
rainfall responses can be corrected for. According to the RMSE and 
CRPS, the SDE-model outperforms MIKE Urban, at least in this particular 
test event. The difference is most noticeable under the CRPS, which is a 
consequence of the SDE-model taking the uncertainty into account. This 
again goes to show the potential of probabilistic forecasts over deter-
ministic forecasts. 

It is a key finding that the introduction of a simple sigmoid function 
to resemble the crest at the overflow structure is enough to account for 
the otherwise strong non-linearity, although the crest volume itself has 
proven somewhat tricky to estimate. The biggest liability with respect to 
estimation of the model in its current shape is the input. Since the 
catchment area is relatively large and the amount of rainfall sensors 
limited, the measured input is not guaranteed to be proportional to the 

Table 2 
Parameter estimates of the fitted SDE-model. Confidence intervals are not available for parameter estimates on the boundary of the parameter domain. Confidence 
intervals are available for all parameter estimates not on the boundary, except in the case of α. This is because the computed optimum is in fact a saddle point in the 
α-direction, and hence, its uncertainty can not be meaningfully calculated. We still consider the estimate of α to be valid, because the likelihood is sufficiently flat in the 
α-direction around the computed optimum to be accepted by the stopping criterion of the numerical optimization algorithm.  

Parameter Description Estimate 95%-CI Unit 

A Effective catchment area 6.0216 [5.4269; 6.6814] km2 

α Crest sharpness 6.0478 NA – 
β Crest level (volume) 6.8968 [6.0962; 7.8027] 1000m3 

K0 Time constant for overflow 0.0200 NA h 
K1 Time constant for ground surface 1.5010 [1.3034; 1.7286] h 
K2 Time constant for combined sewer 2.0440 [1.7279; 2.3903] h 
K3 Time constant for tunnel 0.0100 NA h 
σ1 Rainfall-related diffusion constant 0.0100 NA 1000m3 

σ2 System-related diffusion constant 0.0924 [0.0759; 0.1123] 1000m3 

σe Observation noise 0.1000 NA 1000m3  
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actual input, which in turn makes the effective catchment area and the 
overflow crest difficult to estimate from data consistently across 
different rainfall events. This problem could either be solved by 
increasing the number and spread of rain gauges in the catchment, or by 
introducing considerable noise on the input. As already discussed, 
however, adaptive state estimation alone can compensate for input 
uncertainties quite well. 

Another potential improvement would be to include additional ob-
servations at other locations in the system, to increase the level of in-
formation. Especially measurements reflecting some of the states 
upstream of the tunnel could be useful, as in the current setup there is no 
information about the upstream states as long as no water has over-
flowed to the tunnel. This may also help estimating the crest volume 
more reliably. Furthermore, to keep it simple, the tunnel as modelled, is 
not bounded from above even though the physical tunnel does have a 
maximum capacity. Indeed, in the full event simulation, the upper sec-
tions in the uncertainty band of the SDE-forecasts tend to exceed the 
maximum capacity of 29000m3 long-term. In a control-scheme a fore-

cast that exceeds the physical upper bound should then translate into the 
same control action that a forecast equal to the physical bound would. 

In this study, we have restricted ourselves to a model with a fixed set 
of parameters, where the success criterion is a model fit that is capable of 
producing reasonable probabilistic forecasts. A future study focusing on 
analysis of the parameters could lead to a deeper understanding of the 
capabilities and shortcomings of the model, and hence be grounds for 
improvements. Some examples of such analyses are the influence of the 
individual parameters, assessment of which parameters can be neglected 
as well as comparison with analogous parameters in other stormwater 
models. 

Generalization of the model framework to other sewer systems 
should be possible. Although the specific model developed in this paper 
is tailored to the Damhus case, it is built from flexible and case- 
independent principles. Porting the model framework to a new sewer 
system would require an initial qualified guess on the number of res-
ervoirs, time constants and crest functions. It would also require a basic 
physical understanding on how to properly embed these building bricks 
in the SDEs along with precipitation and pumping inputs. We believe 
that finding inspiration in our case-specific model would go a long way 
in accomplishing the above. 

All in all, the Damhus case definitely demonstrates that linear 
reservoir models can be generalized to non-linear systems, and coupled 
with the SDE structure, we have provided the first stepping stone to-
wards a smarter pumping control scheme in the Damhus system. 

Fig. 4. a) Probabilistic forecasting by the SDE-model of stormwater in the tunnel based on rainfall input from test data. Horizon  = 1 h. b) Comparison of the SDE- 
model with a deterministic MIKE Urban simulation, using accumulated inflow of stormwater as response. c) Rainfall input series. The time frame ranges from 22 
October 22:00 to 23 October 14:00 in 2018 UTC military time. 

Table 3 
Forecast evaluation of the two models on the test data.  

Method RMSE CRPS 

SDE-based probabilistic forecasting 5.0775 2.1887 
MIKE Urban deterministic forecasting 5.5021 4.3489  
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6. Conclusion 

We have successfully developed a non-linear continuous-discrete- 
time state-space model for forecasting of rainfall response in a storm-
water tunnel. The model is built from stochastic differential equations 
and is thus capable of producing probabilistic forecasts. When compared 
with deterministic forecasts from the MIKE Urban software, the proba-
bilistic forecasts generated by the SDE-model are very competitive. We 
have also demonstrated that the SDE-model performs promisingly on 1- 
h horizons, thanks to the adaptive state estimation by the Extended 
Kalman filter. Further, since the probabilistic forecasts provide complete 
information about the uncertainty and can be generated in a matter of 
seconds, we believe this model is well-suited for integration with a 
future model predictive control scheme for the associated pumping 
system. 
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SUPPLEMENTARY MATERIAL

A. Information about the Damhus tunnel

A graphic showing the location of the Damhus tunnel is
shown in Fig. 5 and relevant physical data are listed in Tab.
IV.

Tunnel length 3.4 km
Tunnel width 3 m
Tunnel slope -0.1044 cm/m
Invert level at Middle link -9.26 m(DVR)
Invert level at Bottle bridge -13.17 m(DVR)

TABLE IV
KEY SPECIFICS OF THE DAMHUS TUNNEL. M(DVR) = METERS ABOVE

SEA LEVEL.

B. Information about the rainfall data

A visual representation of the optimization of the model on
the 6 training events is displayed in Fig. 6. The corresponding
precipitation characteristics are listed in Table V.

Event ID Event duration Mean intensity Max intensity Total rainfall
(h) (mm/h) (mm/h) (mm)

1 14.9167 1.3409 5.7966 20.0019
2a 6.5833 0.8852 7.2004 5.8275
2b 0.6667 9.9000 30.000 6.6000
3 11.7500 1.1234 6.6996 13.1994
4 5.3333 1.5934 5.4000 8.4983
5 7.6666 0.7694 3.7800 5.8986
6 14.1667 0.9952 3.1392 14.0980

TABLE V
PRECIPITATION CHARACTERISTICS FOR THE 6 RAINFALL EVENTS USED

FOR ESTIMATING THE SDE-MODEL. EVENT 2 IS SPLIT INTO 2 SEPARATE

EVENTS IN THIS TABLE, SEE ALSO FIG. 6 (TOP-RIGHT).

C. Information about the MIKE Urban model

The MIKE Urban model is a description of every manhole,
pipe, basin, outlet, crest and weir etc. in the sewer system as-
sociated with the Damhus catchment. Every such component
has geographical coordinates and relevant geometry speci-
fied. Because of the relatively large size of the catchment,
the number of components is large. For instance, the model
contains 14261 manholes and 11320 pipes. The catchment
surface area is accurately described in three dimensions.

The deterministic forecast shown in this paper is based on
a two-fold simulation in MIKE Urban. First, a rainfall-runoff
simulation is run in order calculate the flow of stormwater on
the ground surface over the course of the rainfall event. The
calculation method is based on dividing the surface area into
a number of cells, and then let water discharge from cell to
cell in discrete time steps, always in downstream direction.
The rate at which this happens is determined by a time-
area curve (Sabol, 1988). The result of the rainfall-runoff
simulation contains the water volumes in each surface cell
in each time step (MOUSE Runoff Reference Manual, 2019).

Fig. 5. Approximate location of the Damhus tunnel in Copenhagen. The
image was made with OpenStreetmap (http://www.openstreetmap.org).

After completion of the rainfall-runoff simulation, the
second simulation can be computed. This is called the
network simulation, and it calculates the flow through the
sewer network during the defined event, using the rainfall-
runoff simulation result as an input (in MIKE Urban denoted
a ’catchment boundary condition’). The water flow in the
sewer network is modelled by the Saint Venant equations,
which is a set of 2 partial differential equations describ-
ing conservation of mass and conservation of momentum
(Strelkoff, 1970). The equations are solved numerically via
an implicit finite difference method (MOUSE Pipe Flow
Reference, 2019).

The result of the network simulation contains the water
level in each network component in each time step, and
thus, the results from any component can be singled out and
analyzed, including the end of the stormwater tunnel, which
is what we are interested in, in this study.

D. Lamperti transform

Let the Xi,t be a random variable representing the water
volume at conceptual reservoir i, and consider for instance
the first of the six SDEs in Eq. (9).

dX1,t = (AUt −
2

K1
X1,t)dt+ σ1X1,tdW1,t (20)

We shall use the Lamperti transform to derive the corre-
sponding SDE for the evolution of Z1,t. First, we define

h(x, t) = log(x), (21)



and let
Z1,t = h(X1,t, t) = log(X1,t), (22)

which implies that

X1,t = h−1(Z1,t, t) = eZ1,t . (23)

Next step is to calculate the following derivatives,

∂h

∂t
= 0,

∂h

∂x
=

1

x
,

∂2h

∂x2
=

−1

x2
(24)

Recall the we denote the drift and diffusion function of the
SDE as f and g, respectively. Ito’s lemma then states that

dZ1,t =

[
∂h

∂x
f(x) +

1

2

∂2h

∂x2
g(x)2

]
dt+

∂h

∂x
g(x)dW1,t. (25)

Inserting Eq. (24) into Eq. (25) yields

dZ1,t =

[
1

x
f(x)− 1

2x2
g(x)2

]
dt+

1

x
g(x)dW1,t. (26)

We can then insert the explicit expressions for f(x) and g(x),

dZ1,t =

[
1

x
(AUt −

2

K1
x)− 1

2x2
(σ1x)

2

]
dt+

1

x
σ1xdW1,t

(27)
Finally, we substitute x = h−1(Z1,t, t) = eZ1,t , reduce the
result and arrive at

dZ1,t =

[
AUte

−Z1,t − 2

K1
− σ2

1

2

]
dt+ σdW1,t, (28)

which is identical to the first SDE of the Lamperti trans-
formed system stated in Eq. (16). The other 5 SDEs of
Eq. (9) can then be Lamperti transformed using the exact
same procedure. Note that the classical Lamperti transform
normally implies a constant noise term in the transformed
SDE, i.e. dWt instead of σdWt, so strictly speaking we are
using a variant here. Yet, throughout the paper, we choose to
refer to this variant as a Lamperti transform as well (Møller
and Madsen, 2010).

E. Summary of the estimation algorithm

In the following, a condensed version of the model fitting
algorithm used in the paper is provided. The programming
language used is R. It should be seen as a summary of the
key parts of the algorithm, as individual helper functions
are not further documented here. The comments in the code
explain what happens in each step.

# Load rainfall observations,
# water volumes and pumping signal
data <- loadData()

# Vector of initial parameter guesses
par_initial <- c(A,alpha,beta,K0,K1,K2,K3,

sigma1,sigma2,simgae)

# Load parameter boundary values
par_lower <- loadLowerBounds()
par_upper <- loadUpperBounds()

# Setup SDE structure according to
# Eq. (16) and (17), details omitted here.
SDEmodel <- ctsmModelInitialize()

# Define log-likehood function
negativeloglik <- function(par_current){

# Set parameters to current guess
SDEmodel$par <- par_current

# Full series of 1-step predictions
predictions <- predict(model = SDEmodel,

newdata = data)

# Calculate negative log-likelihood
# based on the observations,
# predicted values and
# predicted standard deviations
# Here "nll" is as in Eq. (13).
result <- nll(data$y,

predictions$y,
predictions$sd)

# Output the negative log-likelihood
return(result)

}

# Optimize the negative log-likelihood
# using "nlminb" within the user-defined
# boundaries of the parameter space
fit <- nlminb(start = par_initial,

objective = loglik,
lower = par_lower,
upper = par_upper)

# Extract the parameter estimates
par_fitted <- fit$par

F. Forecast horizons of interest

Which forecast horizons are relevant to study depends on
the application at hand. In this case study, we assume that
the future application will be an MPC which receives a new
observation every 5 minutes. It follows, that the MPC will
update its recommended future pumping inputs at that same
rate (Brok et al., 2018). The shortest horizon of interest
is thus 5-minute. Determining exactly how far ahead the
furthest horizon of interest lies requires a deeper analysis
of the Damhus system in a control setting. Yet, we at least
assume that a forecast of when stormwater starts flowing
into the tunnel as a consequence of precipitation, can be
important information for the MPC. This horizon will depend
on the characteristics of the rainfall event, so we shall make
a heuristic assessment. A brief inspection of the 6 rainfall
events in the training data reveals that stormwater often
appears in the tunnel within 4 hours after the start of a rainfall
event, see Fig. 6.
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Fig. 6. Visual representation of the 6 rainfall events used for fitting the SDE-model.



We have hence decided that we are interested in horizons
from 5-minute to 4-hour. For a proof of concept, we just want
to show probabilistic forecasts at one horizon in between this
interval. This choice can be made freely, however, the 1-
hour horizon is of special interest, because the power price
on the energy market changes hourly, which could easily
be integrated in a future MPC application. Therefore, we
choose to issue and evaluate probabilistic forecasts on 1-hour
horizons.

G. Run time considerations

When testing the computational load of the forecast gen-
eration by the SDE-model, we will focus on the forecast
horizon in the interval of interest that requires the longest
run time, which in this case is 4-hour. Furthermore, the
reported run time will be the average time needed to generate
one forecast realization, i.e. m = 1. The expected run time
scales linearly with both horizon and m, so any combination
of the two can be calculated based on the reported run
time. In a typical MPC setting, the SDE-model will not
be evaluated as an ensemble, but will rather be integrated
into an optimization scheme through its moment equations
(Brok et al., 2018). Therefore, it is enough to check that
m = 1 forecast can be generated sufficiently fast, and have
this run time result be a benchmark for future studies of
competing models. The test set contains 193 different 4-hour
horizons. We record the run time of the forecast of every 4-
hour horizon 10 times, and then repeat the whole process
30 times, producing 10 × 30 × 193 = 57900 individual run
time measurements. A summary of the results are reported
in Table VI. Hardware specifics for the machine used for the
run time tests are listed in Table VII.

We no longer have access to the MIKE Urban model nor
to information about the server it was run on, when we
generated its deterministic forecasts. Therefore, no controlled
tests of its run time can be conducted and reported, however,
from our experience, the model always took at least 20
minutes and up to more than an hour to run under these
undocumented conditions. Such an order of magnitude is not
feasible for a 5-minutely updated MPC.

Metric Run time (seconds)
Mean 0.0655
Standard deviation 0.0105
Min 0.0600
Max 0.1749
Median 0.0623

TABLE VI
RUN TIME RESULTS FOR FORECASTING BY THE SDE-MODEL AT 4-HOUR

HORIZON.

Operating system Linux Mint 18.3
Kernel version 4.10.0-38-generic
Architechture x86 64
CPU Model name Intel(R) Core(TM) i7-7600U CPU 2.80GHz
CPU Max MHz 3900
L1d cache 32K
L1i cache 32K
L2 cache 256K
L3 cache 4096K

TABLE VII
HARDWARE SPECIFICATIONS FOR THE MACHINE ON WHICH THE

RUN/RESPONSE TIMINGS OF THE SDE-MODEL FORECASTS WERE

CONDUCTED.
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a b s t r a c t 

Probabilistic forecasting is becoming increasingly important for a wide range of applications, especially for en- 

ergy systems such as forecasting wind power production. A need for proper evaluation of probabilistic forecasts 

follows naturally with this, because evaluation is the key to improving the forecasts. Although plenty of excellent 

reviews and research papers on probabilistic forecast evaluation already exist, we find that there is a need for an 

introduction with some practical application. In particular, many forecast scenarios in energy systems are inher- 

ently multivariate, and while univariate evaluation methods are well understood and documented, only limited 

and scattered work has been done on their multivariate counterparts. This paper therefore contains a review of 

a selected set of probabilistic forecast evaluation methods, primarily scoring rules, as well as practical sections 

that explain how these methods can be calculated and estimated. In three case studies featuring simple autore- 

gressive models, stochastic differential equations and real wind power data, we implement, apply and discuss the 

logarithmic score, the continuous ranked probability score and the variogram score for forecasting problems of 

varying dimension. Finally, the advantages and disadvantages of the three scoring rules are highlighted, and this 

provides a significant step towards deciding on an evaluation method for a given multivariate forecast scenario 

including forecast scenarios relevant for energy systems. 

1. Introduction 

Forecast evaluation refers to the assessment of the quality of a fore- 

cast or to the selection between several competing forecasts. Tradition- 

ally, forecasters have used point forecasts [1] such as the conditional 

expectation for prediction of real processes. If the process is Gaussian, 

the uncertainty of the prediction is completely characterized by a sim- 

ple symmetrical confidence interval. However, since real processes are 

often far from Gaussian, in order to capture all information of a process 

of interest, it is generally necessary to consider the entire forecast distri- 

bution. The evaluation of this is called probabilistic forecast evaluation 

[2] . 

A reliable forecast of future events is of crucial importance in, but 

not limited to, the design and operation of energy systems. A classic ap- 

plication is in the wind power sector, where the associated revenue is 

very dependent on reliable wind power forecasts [3] . In particular, one 

unexpected extreme event under which an entire wind farm is forced 

to shut down temporarily, can easily negate several months of revenue. 

∗ Corresponding author. 

E-mail address: matbb@dtu.dk (M.B. Bjerregård). 

This is a powerful example of why not only the expectation, but also the 

uncertainty of the forecasted wind power must be taken into account to 

minimize such a risk, ideally by forecasting the full probability distribu- 

tion [4] . In order to obtain accurate probabilistic forecasts, it is neces- 

sary to have a good forecasting model, and in order to obtain the best 

forecasting model, it is necessary to be able to evaluate the forecasts in 

a meaningful way. Therefore, probabilistic forecast evaluation is clearly 

very important in energy systems. Besides energy systems, other exam- 

ples of relevant applications include weather and climate prediction [5] , 

economic and financial risk management [6] and epidemiological fore- 

casting [7] . A shift from point forecasts towards probabilistic forecasts 

is becoming increasingly important in all of these areas [8] . 

Forecasting of energy systems may concern univariate or multivari- 

ate forecasts. A forecast is multivariate when it consists of multiple vari- 

ables, which may refer to multiple time-steps, multiple sites or multiple 

parameters. Plenty of good research about probabilistic forecast eval- 

uation has been published in the univariate case [8] . However, most 

practical forecast applications consider a sequence of future time points 

https://doi.org/10.1016/j.egyai.2021.100058 
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Nomenclature 

AR(1) Autoregressive model of order 1 

ARMA(1,1) Autoregressive-moving-average model of order 1 

ARIMA(1,1,1) Autoregressive-integrated-moving-average model 

of order 1 

CDF Cumulative distribution function 

CdL Conditional likelihood score 

CRPS Continuous ranked probability score 

CsL Censored likelihood score 

DSS David-Sebastiani score 

LogS Logarithmic score/log score 

PDF Probability density function 

PIT Probability integral transform 

SDE Stochastic differential equation 

VarS Variogram score 

Mathematical notation 

𝑓 Probability density function 

𝐹 Cumulative distribution function 

𝑚 Number of members in an ensemble 

𝑁 Length of a time series 

𝑿 𝑡 Multivariate random variable at time 𝑡 
𝑋 𝑡 Univariate random variable at time 𝑡 
𝑥 𝑡 Univariate realized value at time 𝑡 
�̂� 𝑡 Univariate forecast of 𝑥 𝑡 at time 𝑡 
{ ⋅} Time series of ’ ⋅’ 

and are hence multivariate, e.g. simultaneous prediction of wind power 

production at different horizons. The wind power production levels at 

different time horizons are strongly correlated, and a proper modelling 

of this temporal correlation is required to obtain the best forecasts, and 

in turn, the highest revenue [3] . This is only possible with multivariate 

forecasting, so clearly, multivariate probabilistic forecast evaluation is 

relevant in energy systems. 

In our opinion, there is a need for an introduction that allows the 

reader to develop an intuitive and applicable understanding of multi- 

variate probabilistic forecast evaluation and that makes the topic more 

accessible to practitioners. The best way to accomplish this goal is to 

select the most suitable evaluation methods, and then review those 

methods through easy-to-follow examples with low-level calculations 

and illustrative content, first in the simpler, univariate setting and then 

eventually generalize to multivariate problems. Specifically, the meth- 

ods discussed here are three performance metrics labeled the logarith- 

mic score [9] , the continuous ranked probability score [10] and the 

variogram score [11] . To shorten the path from theory to practical use, 

we also give suggestions on how these metrics can be implemented nu- 

merically. Finally, the behaviors of the evaluation methods are demon- 

strated and compared in three simulation studies leading to an open- 

ended conclusion that highlights advantages and shortcomings of each 

of the discussed metrics. All in all, this paper is neither a full review 

nor a research paper, but a hybrid with just the right balance needed 

to satisfy the objectives described above. Our key contribution is thus a 

pedagogical introduction to probabilistic forecast evaluation that builds 

a bridge from theory to practical implementation, with a special focus 

on multivariate problems. 

In practice, forecasts are evaluated either qualitatively or quantita- 

tively. The former is usually executed by applying a probability inte- 

gral transform (PIT) and inspecting the resulting PIT histogram, which 

allows the forecaster to verify that a forecast is reasonable on its own 

[12] . Quantitative evaluation, on the other hand, lets the forecaster com- 

pare different competing forecasts and select the best candidate. This is 

done by applying scoring rules , i.e. functions that report a number for 

each forecast and hence allow direct ranking [2] . Clearly, the root mean 

square error is a very common example of a scoring rule. Previously, it 

was considered necessary to use a combination of qualitative and quanti- 

tative methods, e.g. to evaluate probabilistic wind power forecasts [13] . 

This involved evaluating a series of properties of the forecast one at a 

time, including reliability, sharpness, resolution and finally a skill score. 

While that framework is still used [14] , it seems slightly confusing to 

consider multiple features of a forecast at once. For instance, how do 

we make a decision if different properties point towards different con- 

clusions? With a desire to select the best forecast, it is ideal to collect 

all evaluation in one scoring rule instead, as long as that scoring rule 

is proper . A scoring rule applied in a forecast scenario is proper when it 

guarantees that the forecaster is being honest, i.e. selects the most cor- 

rect forecast given the information available [2] . This property holds 

true for all of the scoring rules applied in this paper. 

Unfortunately, no universal scoring rule is currently available that 

is considered to be superior for any forecasting problem, so a reasoned 

choice of scoring rule must be made for each individual problem. The 

choice of scoring rule depends on the type of variable to forecast (cate- 

gorical/continuous) and the dimension (univariate/multivariate). Cov- 

ering every possible scenario is far beyond the scope of this paper and 

hence we will narrow the focus in the following. First, we will restrict 

ourselves to continuous variables, since the majority of real forecast sce- 

narios assume this form. 

Second, we will mainly focus on evaluations methods applicable for 

multivariate forecasts, because of the importance of multivariate fore- 

casts in energy systems as motivated above. Also, an updated review 

of univariate forecast evaluation already exists, while this is lacking for 

multivariate forecast evaluation [8] . However, we will briefly cover uni- 

variate forecast evaluation, as this is fundamental for understanding the 

concepts and methods. 

With the focus on the evaluation of multivariate forecasts of con- 

tinuous variables specified, the number of suitable evaluation methods 

available in the literature is limited to only a handful. 

The following is an summary of published research relevant for the 

evaluation of multivariate probabilistic forecasts. The earliest approach 

concerns factorization of the forecast distribution into chains of univari- 

ate conditional distributions. Each conditional distribution is then eval- 

uated in terms of its PIT histogram [15] . The drawback of this method, 

however, is that the number of PIT histograms for each forecast in- 

creases quadratically with dimension. This issue has been tackled in for 

the bivariate case by applying a transformation of the PIT histograms 

that reduces the multivariate to a univariate problem [16] . The idea 

of transformation has later been extended with a location-adjustment 

[17] and finally, a generalized PIT histogram test applicable for any di- 

mension has been proposed [18] . Regarding multivariate scoring rules, 

the amount of published research is limited. Multivariate analogs of 

univariate scoring rules such as the logarithmic score (LogS) [9] and 

the continuous ranked probability score (CRPS) [10] which both evalu- 

ate the full forecast distribution have been stated in the literature, but 

rarely used and not deeply explored [19] . Occasionally, a generalized 

version of the CRPS, called the energy score has seen some application 

[2] , but both the CRPS and the energy score have been shown to be al- 

most useless for detecting differences in the correlation structure of the 

multivariate forecast [20] . To address this exact issue, the variogram 

score (VarS) has been suggested as an alternative [11] . Other multivari- 

ate scoring rules available in the literature include the Dawid-Sebastiani 

score [21] , the conditional and the censored likelihood scores [22] . The 

most recent contribution to the list is the Schaake shuffle [23] , where 

multivariate dependencies are evaluated by an extension of the ensem- 

ble coupla coupling method [24] . 

Because the focus of this paper is on probabilistic scoring rules, 

where the entire forecast distribution as well as the multivariate fea- 

tures are evaluated, we consider the LogS, the CRPS and the VarS to be 

most interesting methods among the options listed above and this is the 

reasoning behind the selection of methods for this paper. 

Finally, we apply the probabilistic forecast evaluation in terms of 

non-parametric forecast distributions, because this approach is always 

2 
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applicable and independent of the type of forecasting model. A distribu- 

tion is parametric if it has a parametric representation, like the Gaussian 

distribution, for example, and is non-parametric otherwise. In practice, 

probabilistic forecasts are often issued as non-parametric distributions, 

e.g. when generated from ensembles [25] , which in general might not 

be well approximated by parametric distributions, especially not in the 

multivariate case. On the other hand, if a probabilistic forecast does 

assume a parametric distribution, then it can easily be evaluated in the 

non-parametric framework, by sampling from it. Consequently, the non- 

parametric evaluation framework is not dependent on any assumptions 

about neither the forecast model nor the forecast distribution. The dis- 

tinction between parametric and non-parametric specifically concerns 

the forecast distribution and should not be confused with the forecasting 

model itself. Even though forecast of energy systems is normally based 

on parametric models with physical parameters, the forecast distribu- 

tions will most likely still have to be evaluated in the non-parametric 

framework. 

The evaluation framework demonstrated in this paper comes with a 

few assumptions. It is assumed that the forecaster has access to a series 

of probabilistic forecasts or a set of forecast models from which proba- 

bilistic forecasts can be generated. It is also assumed that the forecaster 

is in possession of an adequate amount of data to evaluate the forecasts 

on. The adequate amount of data is completely dependent on the fore- 

cast problem at hand, but ideally the data-set should always reflect all 

the possible types of scenarios within the system which is subject to 

forecasting. That is the point where additional data no longer provides 

any new information, and hence, the conclusion of the forecast evalua- 

tion will not change significantly. In terms of computational tractability, 

none of the evaluation methods discussed require a certain amount of 

data. 

The paper is organized as follows. In Section 2 , we motivate the con- 

cept of scoring rules and review our selected list of those. This section 

also contains a very short introduction to the PIT histogram technique. 

In Section 3 , we elaborate on how the scoring rules may be estimated 

numerically. The scoring rules are then applied, compared and discussed 

in three simulation studies in Section 4 , and finally Section 5 concludes. 

2. Methods 

First, we introduce some notation. Let 𝑿 𝑡 = ( 𝑋 1 ,𝑡 , ⋯ , 𝑋 𝑘,𝑡 ) ⊤ denote 

a 𝑘 -dimensional random variable at time 𝑡 . When considering a time 

series of length 𝑁 of 𝑘 -dimensional random variables, we use { 𝑿 𝑡 } = 

{ 𝑿 1 , ⋯ , 𝑿 𝑁 

} . When, as most often, 𝑡 is implicit, we simply let 𝑿 𝑡 = 𝑿 . 

The corresponding univariate version is 𝑋 𝑡 = 𝑋. 

Multivariate time series may be constructed in different ways. 

One way is to consider the univariate time series { 𝑋 𝑡 } = { 𝑋 1 , ⋯ , 𝑋 𝑁 

} 
and from this construct the multivariate random variable 𝒁 𝑡 = 

( 𝑋 𝑡 +1 , ⋯ , 𝑋 𝑡 + 𝑘 ) ⊤. For example, given 

{ 𝑋 𝑡 } = { 𝑋 1 , 𝑋 2 , ⋯ , 𝑋 𝑁 

} , (1) 

we can construct the bivariate time series 

{ 𝒁 𝑡 } = { 𝒁 1 , 𝒁 2 , ⋯ , 𝒁 𝑁−2 } 

= 

{ ( 

𝑋 2 
𝑋 3 

) 

, 
( 

𝑋 3 
𝑋 4 

) 

, ⋯ , 
( 

𝑋 𝑁−1 
𝑋 𝑁 

) } 

, 
(2) 

Another option is to consider two physically different univariate 

variables and combine them. For example, consider wind power 𝑊 𝑡 
and solar power 𝑆 𝑡 . We can then construct a bivariate random variable 

𝒁 𝑡 = ( 𝑊 𝑡 , 𝑆 𝑡 ) ⊤ and subsequently get the time series 

{ 𝒁 𝑡 } = 

{ ( 

𝑊 1 
𝑆 1 

) 

, 
( 

𝑊 2 
𝑆 2 

) 

, ⋯ , 
( 

𝑊 𝑁 

𝑆 𝑁 

) } 

. (3) 

As seen from the two simple examples above, there are several ways to 

construct a multivariate time series. Throughout this article, we will ex- 

clusively consider the former case, such that ’multivariate’ always means 

multivariate w.r.t. time. 

Since we are dealing with probabilistic forecasts, we frequently en- 

counter the cumulative distribution function (CDF) of 𝑿 

𝐹 𝑿 ( 𝑥 1 , ⋯ , 𝑥 𝑘 ) = 𝑃 ( 𝑋 1 ≤ 𝑥 1 , ⋯ , 𝑋 𝑘 ≤ 𝑥 𝑘 ) , (4) 

as well as the probability density function (PDF) 

𝑓 𝑿 ( 𝑥 1 , ⋯ , 𝑥 𝑘 ) = 

𝜕 𝑘 

𝜕𝑥 1 ⋯ 𝜕𝑥 𝑘 
𝐹 𝑿 ( 𝑥 1 , ⋯ , 𝑥 𝑘 ) . (5) 

Often, these functions are simply referred to as 𝐹 and 𝑓, respectively. 

Finally, we will occasionally need the indicator function 𝕀 ( 𝜔 ) , i.e. 𝕀 ( 𝜔 ) = 

1 if the statement 𝜔 is true and 0 otherwise. 

Forecasts may be evaluated either qualitatively or quantitatively. For 

qualitative evaluation, we issue the probability integral transform (PIT, 

cf. Section 2.2 ); for quantitative evaluation, we shall introduce the con- 

cept of scoring rules. 

2.1. Scoring rules 

A scoring rule 𝑆( 𝐺, 𝒚 ) is a function of any forecast 𝐺 (e.g. a point 

forecast, a quantile forecast or a PDF) and an observation 𝒚 . The scoring 

evaluates to a summary measure, which we denote the score . Given a 

time series { 𝒚 𝑡 } = { 𝒚 1 , ⋯ , 𝒚 𝑁 

} , every pair of forecast and corresponding 

realized observation ( 𝐺 𝑖 , 𝒚 𝒊 ) is evaluated, and the overall score of the 

model is then usually reported as the average score, i.e. 

�̄� ( 𝐺, 𝒚 ) = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝑆( 𝐺 𝑖 , 𝒚 𝑖 ) (6) 

although alternative weights like an exponential decay [26] 

𝑆 𝑁 

( 𝐺, 𝒚 ) = (1 − 𝜆) 𝑆( 𝐺 𝑖 , 𝒚 𝑖 ) + 𝜆𝑆 𝑁−1 ( 𝐺, 𝒚 ) , 0 < 𝜆 < 1 , (7) 

may be used if desired. Scoring rules can be regarded as loss functions, 

such that smaller scores are preferred. Hence, a meaningful scoring rule 

should be constructed such that we can build an optimizer around it. 

2.1.1. Logarithmic score 

Let us first consider a univariate time series { 𝑦 𝑡 } and the evaluation 

of a univariate density forecast, i.e. 𝐺 = 𝑓 . From likelihood theory, the 

logarithmic score , 𝑆( 𝐺, 𝑦 ) = LogS ( 𝑓, 𝑦 ) naturally emerges [9] . It is based 

on the PDF and defined as 

LogS ( 𝑓, 𝑦 ) = − log 𝑓 ( 𝑦 ) . (8) 

Elaboration on the practical use of LogS is found in Section 3.1 . Clearly, 

LogS rewards models under which the observed event is likely to occur, 

i.e. has high probability. It is optimal at the mode of 𝑓, as exemplified 

in Fig. 1 . When considering the multivariate forecast 𝑓 𝑿 and the obser- 

vation 𝒚 , the multivariate analog of LogS is simply 

LogS ( 𝑓 𝑿 , 𝒚 ) = − log 𝑓 𝑿 ( 𝒚 ) . (9) 

LogS is thus equivalent to the log-likelihood of the forecast model, 

and it enjoys ideal properties, as it captures all possible information 

about the observations in relation to the model, including the correla- 

tion between multivariate forecasts. However, this scoring rule has a 

potentially significant drawback, namely that it penalizes unlikely ob- 

servations very hard. Therefore, tiny changes to the tails of a density 

forecast can result in a dramatic change in LogS, even when the overall 

shape of the density is unchanged. This behavior is illustrated in case 

study No. 3, cf. Section 4.3 and may be stabilized by tuning down the 

emphasis on unlikely observations, cf. Section 2.1.4 . 

Example 1: calculation of LogS 

In the following, we apply scoring rules to two models and a simple 

data set, in order to illustrate how scoring rules work and what they 

reward. 

Consider a probabilistic forecast given by the Beta distribution, 

which can be parametrized as follows: 

𝑓 ( 𝑦 ) = 

1 
B ( 𝛼, 𝛽) 

𝑦 𝛼−1 (1 − 𝑦 ) 𝛽−1 . (10) 

3 
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Fig. 1. Probability density at the mode of 

Beta(2,5) ( 𝑦 = 0 . 2 , green dot) under the true 

model (blue) and a wrong model (red), respec- 

tively. (For interpretation of the references to 

color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 2. 10 observations (green dots), simu- 

lated from a Beta(2,5)-distribution. The true 

model (blue) is shown along with the PDF for 

a Beta(2,3)-distribution (red). (For interpreta- 

tion of the references to color in this figure leg- 

end, the reader is referred to the web version 

of this article.) 

We set ( 𝛼, 𝛽) = (2 , 5) and simulate 10 observations, 𝑦 1 , 𝑦 2 , ..., 𝑦 10 which 

are shown in Table 1 . Hence, 𝑓 is the true model. Let 𝑔 = Beta (2 , 3) be 

a competing - and obviously wrong – model. Both models as well as the 

observations are shown in Fig. 2 . 

LogS of model 𝑓 for the first observation, 𝑦 1 = 0 . 149 is calculated, 

− log 𝑓 ( 𝑦 1 ) = − log 𝑓 (0 . 149) 
= − log [ B (2 , 5) −1 0 . 149 2−1 (1 − 0 . 149) 5−1 ] 
= −0 . 852 . 

(11) 

All the other individual LogS are calculated in the same way and pre- 

sented in Table 2 . 8 out of 10 of the observations are more likely to 

occur under the true model, and the latter will also be favored when we 

calculate the final key quantity: the average LogS, cf. Eq. (7) , 

LogS ( 𝑓, 𝒚 ) = −0 . 34 , 
LogS ( 𝑔, 𝒚 ) = −0 . 23 . 

(12) 

Hence, as expected 𝑓 provides the best density forecast. 

2.1.2. Continuous ranked probability score 

Now, consider again the univariate time series { 𝑦 } , but let the prob- 

abilistic forecast take the form of a CDF, i.e. 𝐺 = 𝐹 𝑌 . We can then apply 

the continuous ranked probability score [10] , 𝑆( 𝐺, 𝑦 ) = CRPS ( 𝐹 , 𝑦 ) , 

CRPS ( 𝐹 , 𝑦 ) = ∫
∞

−∞
( 𝐹 ( 𝑢 ) − 𝕀 ( 𝑢 ≥ 𝑦 )) 2 d 𝑢. (13) 

Elaboration on the practical use of CRPS is found in Section 3.2 . CRPS 

is based on the forecast CDF, 𝐹 and measures the squared distance be- 

tween the observation and the median of 𝐹 . Hence, the model is re- 

warded for observations close to its median. 

To get a feeling of what is going on, consider the true 𝐹 to be 

Beta(2,5) and a wrong model to be Beta(1,5). The true model has its me- 

dian equal to 0.264. Hence, given the observation 𝑦 = 0 . 264 , the CRPS 

of this observation would be minimized under the true model, with the 

wrong model being inferior. Let us split the integral in Eq. (13) into two 

Table 1 

10 simulated observations following a Beta(2,5)-distribution. 

𝑖 1 2 3 4 5 6 7 8 9 10 

𝑦 𝑖 0.149 0.095 0.287 0.355 0.226 0.192 0.214 0.734 0.572 0.084 

4 
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Table 2 

Log scores of the two different beta-models w.r.t. the 10 individual observations. The superior scores 

for individual observations are highlighted with bold. 

𝑖 1 2 3 4 5 6 7 8 9 10 

LogS ( 𝑓, 𝑦 𝑖 ) −𝟎 . 𝟖𝟓 −𝟎 . 𝟔𝟓 −𝟎 . 𝟖𝟎 −𝟎 . 𝟔𝟏 −𝟎 . 𝟖𝟗 −𝟎 . 𝟗𝟎 −𝟎 . 𝟗𝟎 2.21 0.55 −𝟎 . 𝟓𝟖 
LogS ( 𝑔, 𝑦 𝑖 ) 0.26 0.07 0.56 0.57 0.48 0.41 0.46 𝟎 . 𝟒𝟕 −𝟎 . 𝟐𝟑 0.16 

Fig. 3. CRPS of the median of Beta(2,5) ( 𝑦 = 
0 . 264 , green dot) under the true model (left) 

and the wrong model (right), respectively. The 

solid black line is the CRPS integrand and the 

CRPS is equal to the colored area under the 

curve. The two parts of the integrand are il- 

lustrated fully as if they were evaluated in the 

entire range from 0 to 1 (non-evaluated part 

shown as grey dotted line). (For interpretation 

of the references to color in this figure legend, 

the reader is referred to the web version of this 

article.) 

parts, 

CRPS ( 𝐹 , 𝑦 ) = ∫
𝑦 

−∞
𝐹 ( 𝑢 ) 2 d 𝑢 + ∫

∞

𝑦 
( 𝐹 ( 𝑢 ) − 1) 2 d 𝑢. (14) 

Then it is seen that the two integrands intersect at the median of 𝐹 , 
which is illustrated in Fig. 3 . Thus, it is easy to see why observations 

close to the median are rewarded, as this minimizes the area under the 

curve, i.e. minimizes CRPS. 

The multivariate generalization of CRPS is given by 

CRPS ( 𝐹 , 𝒚 ) = ∫
∞

−∞
( 𝐹 ( 𝒖 ) − 𝕀 ( 𝒖 ≥ 𝒚 )) 2 d 𝒖 . (15) 

As LogS, CRPS has both advantages and drawbacks. In terms of its abil- 

ities as a scoring rule, CRPS is stable with respect to similar models, i.e. 

seemingly similar models are determined to be similar, while LogS pe- 

nalizes small differences in the probability tails very hard, even though 

these differences may not be of importance to the forecaster. As a draw- 

back, CRPS does a poor job of detecting misspecified correlation [20] , 

and this will be dealt with in Section 2.1.3 . Regarding numerical com- 

putation, CRPS has an advantage in being based on the CDF, because the 

latter is faster and more robust to estimate than the PDF. Therefore, it is 

quite fast to compute for lower dimensions, but since a part of the com- 

putation involves the estimation of an integral, efficient computation 

becomes increasingly challenging with higher dimensions. The choice 

of numerical integral approximation method thus has a huge impact on 

computation in higher dimensions. 

Example 2: calculation of CRPS 

Recall the simple calculation example from Section 2.1.1 featuring a 

Beta(2,5)-distributed random variable. We will now calculate the CRPS 

for this example. For this purpose, we need the CDF of the beta distri- 

bution, 

𝐹 ( 𝑦 ) = 

1 
B ( 𝛼, 𝛽) ∫

𝑦 

0 
𝑢 𝛼−1 (1 − 𝑢 ) 𝛽−1 d 𝑢. (16) 

Since Beta ( 𝛼, 𝛽) has support [0,1], the CRPS readily reduces to 

CRPS ( 𝐹 , 𝑦 ) = ∫
1 

0 
( 𝐹 ( 𝑢 ) − 𝕀 ( 𝑢 ≥ 𝑦 )) 2 d 𝑢. (17) 

Which may be split into two integrals seperated at 𝑥, 

CRPS ( 𝐹 , 𝑦 ) = ∫
𝑦 

0 
𝐹 ( 𝑢 ) 2 d 𝑢 + ∫

1 

𝑦 
( 𝐹 ( 𝑢 ) − 1) 2 d 𝑢. (18) 

For simplicity, we do not attempt to reduce further but simply evaluate 

(18) numerically. Subsequently, all the CRPS for the individual data 

points are presented in Table 3 . Again, the majority of the observations 

are most likely to occur under the true model, although the difference 

appears to be less significant compared to the conclusion of the log score. 

The average CRPS are calculated to 

CRPS ( 𝑓, 𝒚 ) = 0 . 11 , 
CRPS ( 𝑔, 𝒚 ) = 0 . 13 . 

(19) 

Even though CRPS agrees with LogS that the true model is superior to 

the wrong model, CRPS evaluates the two models to be more similar 

than LogS does. Note that this is only a small example with just 10 

observations. With larger sample sizes, differences between competing 

models according to CRPS will be more significant. 

2.1.3. Variogram score of order 𝑝 
Consider the multivariate time series { 𝒚 𝑡 } and the evaluation of a 

multivariate density forecast, 𝐺 = 𝑓 𝑿 . In order to address the problem 

of proper detection of correlation structure, we introduce the variogram 

score of order 𝑝 [11] : 

VarS 𝑝 ( 𝑓 𝑿 , 𝒚 ) = 

𝑘 −1 ∑
𝑖 =1 

𝑘 ∑
𝑗= 𝑖 +1 

𝑤 𝑖𝑗 ( |𝑦 𝑖 − 𝑦 𝑗 |𝑝 − 𝐸[ |𝑋 𝑖 − 𝑋 𝑗 |𝑝 ]) 2 . (20) 

Elaboration on the practical use of VarS is found in Section 3.3 . VarS 𝑝 
is based on pairwise differences of the components of the multivariate 

forecast. For example, if we consider the arbitrary three-dimensional 

forecast 

𝑿 = 

⎛ 
⎜ ⎜ ⎝ 

𝑋 1 
𝑋 2 
𝑋 3 

⎞ 
⎟ ⎟ ⎠ 
, (21) 

then we apply VarS over the three unique pairs, ( 𝑋 1 , 𝑋 2 ) , ( 𝑋 1 , 𝑋 3 ) and 

( 𝑋 2 , 𝑋 3 ) . When we consider a forecast that is multivariate in terms of 

time, the summation indices 𝑖 and 𝑗 then refer to forecast horizons. The 

parameter 𝑝 can be tuned to transform the distribution of absolute differ- 

ences into being closer to symmetric than when untransformed, which 

enhances model separation efficiency as well as the sampling properties 

of |𝑋 1 − 𝑋 2 |𝑝 . Setting 𝑝 = 0 . 5 is a good choice for this matter [11] , at 

least for Gaussian distributions, cf. Fig. 4 . The impact of the individual 
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Table 3 

CRPS of the two different beta-models, 𝑓 and 𝑔 w.r.t. the 10 individual observations. The 

superior scores for individual observations are highlighted with bold. 

𝑖 1 2 3 4 5 6 7 8 9 10 

CRPS ( 𝑓, 𝑦 𝑖 ) 𝟎 . 𝟎𝟕 𝟎 . 𝟏𝟏 𝟎 . 𝟎𝟒 0.06 𝟎 . 𝟎𝟒 𝟎 . 𝟎𝟓 𝟎 . 𝟎𝟓 0.36 0.21 𝟎 . 𝟏𝟐 
CRPS ( 𝑔, 𝑦 𝑖 ) 0.15 0.19 0.07 𝟎 . 𝟎𝟓 0.10 0.12 0.10 𝟎 . 𝟐𝟑 𝟎 . 𝟏𝟏 0.20 

Fig. 4. Distribution of absolute differences to the power 𝑝, |𝑋 1 − 𝑋 2 |𝑝 , where ( 𝑋 1 , 𝑋 2 ) ⊤ follows a bivariate Gaussian distribution. 

pairs may be adjusted by tuning the weights, 𝑤 𝑖𝑗 . As a generic choice, 

given any pair of components, it is reasonable to let the corresponding 

weight be proportional to the inverse distance between the components 

[11] . However, throughout this paper we will use identity weights for 

simplicity. 

Example 3: a closer look at the properties of VarS 

We will investigate the bivariate Variogram Score of order 𝑝 = 0 . 5 
in four different cases. As seen from Eq. (20) , in terms of the fore- 

cast model, VarS depends solely on a function of the expected abso- 

lute difference. Therefore VarS is optimized along the two straight lines 

𝑦 2 = 𝑦 1 ± 𝐸|𝑋 2 − 𝑋 1 | (cf. Fig. 5 a) and the line 𝑦 2 = 𝑦 1 consists of local 

maxima, except in the trivial case where the model is 𝑓 𝑿 = 𝟎 which 

never occurs in real applications. 

Bivariate normal distribution with different means and positive correlation 

Let ( 

𝑋 1 
𝑋 2 

) 

∼ 𝑁 

[ ( 

7 
1 

) 

, 
( 

6 4 
4 4 

) ] 
. (22) 

𝑋 1 and 𝑋 2 have an expected absolute difference ≈ 6 . 01 . Fig. 5 b shows 

a contour plot of VarS for the forecast distribution of ( 𝑋 1 , 𝑋 2 ) ⊤ along 

with sample observations generated from that same distribution. It is 

seen that if this distribution has its mean shifted by ( 𝛼, 𝛼) ⊤ with 𝛼 ∈ ℝ , 
VarS is unchanged for any observation. Furthermore any of these opti- 

mal distributions may be mirrored in the line 𝑦 2 = 𝑦 1 and fully preserve 

their respective VarS. The main point is, the true forecast distribution is 

only one among infintely many with an optimal VarS. 

Bivariate normal distribution with equal means and positive correlation 

Let ( 

𝑋 1 
𝑋 2 

) 

∼ 𝑁 

[ ( 

1 
1 

) 

, 
( 

6 4 
4 4 

) ] 
. (23) 

The expected absolute difference is ≈ 1 . 13 . This example is similar 

to the first one, with the main difference that the means of 𝑋 1 and 𝑋 2 
are equal. This has the funny consequence that the line 𝑦 2 = 𝑦 1 ”inter- 

sects ” with the distribution, as do both lines of optimality, c.f. Fig. 5 c. 

Hence, many observations close to the center of the distribution, i.e. ob- 

servations that are very likely to occur, are to some extent penalized. 

This would not happen under e.g. the logarithmic score. Generally, this 

penalizing behavior is expected to occur whenever the line 𝑦 2 = 𝑦 1 in- 

tersects with the forecast distribution, which happens when the means 

of 𝑋 1 and 𝑋 2 are sufficiently close to be equal. 

Bivariate normal distribution with equal means and negative correlation 

We repeat the previous example, except we ”flip ” the covariance 

matrix, to get negative correlation, i.e. 
( 

𝑋 1 
𝑋 2 

) 

∼ 𝑁 

[ ( 

1 
1 

) 

, 
( 

6 −4 
−4 4 

) ] 
. (24) 

The expected absolute difference is ≈ 3 . 41 . The resulting VarS plot is 

seen in Fig. 5 d. Here, VarS evaluates the forecast distribution in a way 

that may appear odd to the observer. Most observations fall within re- 

gions of high reward (dark regions in 5 d), however, a small area around 

the center of the distribution is penalized, as are the outer tails. From a 

quick glance one could easily get the impression that a distribution care- 

fully ”placed ” within the regions of high reward would yield a higher 

VarS than the true forecast distribution. The fact that VarS is a proper 

scoring rule, however, will prevent this, as is illustrated in the next ex- 

ample. 

Sensitivity of VarS to variance and correlation 

The final example demonstrates that, given that the mean and vari- 

ance are already correctly calibrated, VarS is minimized when the corre- 

lation structure is correct. At the same time, we provide an example on 
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Fig. 5. Contourplot of VarS of order 0.5 for bivariate normal forecast densities. Sample observations are shown as black circles. (a): the two lines of optimality 

highlighted in white; (b): unequal means 𝜇 = (7 , 1) ⊤, positive correlation; (c): equal means ( 𝜇 = (1 , 1) ⊤), positive correlation; (d): equal means ( 𝜇 = (1 , 1) ⊤), negative 

correlation, identical to (c) apart from the sign of the correlation. 

how VarS can be calculated semi-analytically, which does at present not 

appear to be published in the literature. Consider the random variable, 

𝑋 = 𝑋 1 − 𝑋 2 , where 
( 

𝑋 1 
𝑋 2 

) 

∼ 𝑁 

[ ( 

𝜇1 
𝜇2 

) 

, 
( 

𝜎2 1 𝜎12 
𝜎12 𝜎2 2 

) ] 
, (25) 

then 

𝑋 ∼ 𝑁( 𝜇1 − 𝜇2 , 𝜎
2 
1 + 𝜎2 2 − 2 𝜎12 ) . (26) 

In the special case where 𝜇1 = 𝜇2 , it can be shown (see proof in the 

Appendix) that the expectation of |𝑋 1 − 𝑋 2 |𝑝 with 𝑝 = 0 . 5 is: 

E [ |𝑋 1 − 𝑋 2 |𝑝 ] = 4 ∫
∞

0 

𝑢 2 √ 

2 𝜋𝜎2 𝑋 
e 
− ( 𝑢 

2 − 𝜇𝑋 ) 2 

2 𝜎2 𝑋 d 𝑢. (27) 

with 𝜇𝑋 = 𝜇1 − 𝜇2 and 𝜎2 𝑋 = 𝜎2 1 + 𝜎2 2 − 2 𝜎12 . Now, let 𝜌 be the correlation 

of ( 𝑋 1 , 𝑋 2 ) ⊤ and let 𝜇1 = 𝜇2 = 0 , 𝜎2 1 = 𝜎2 2 = 2 (we simply write 𝜎2 = 2 ) 
and 𝜌 = 0 . 7 . Then VarS is calculated for all 𝜎2 ∈ (0 , 3) and 𝜌 ∈ (−1 , 1) by 

substituting Eq. (27) into Eq. (20) . The resulting contour plot is showed 

in Fig. 6 a. Here it is verified that if 𝜎2 is correct from the beginning, 

then the true 𝜌 will indeed minimize VarS as expected. However, if 𝜎2 

is wrongly estimated, then 𝜌 will also turn out wrong. The analogous 

result for the same case with 𝜌 = −0 . 7 is shown in Fig. 6 b and yields the 

same conclusion. 

Summary of VarS properties 

When using the variogram score, one should keep in mind that the 

true forecast distribution is not unique in terms of optimality. In fact, 

there are (under VarS) infinitely many optimal forecast distributions 

for a given forecast scenario. Also, forecast distributions that intersect 

with the identity line are subject to a penalty that would not occur 

under traditional scoring rules like LogS or CRPS. Furthermore, nega- 

tively correlated forecast distributions are evaluated in a strange way, 

where many very probable observations are likewise penalized. All of 

the above, however, are not problematic as long as the forecast density 

is already calibrated w.r.t. mean and variance. 

2.1.4. Other multivariate scoring rules 

In the following, we list a brief summary of other multivariate scor- 

ing rules proposed in the literature. The Dawid-Sebastiani score [21] only 

depends on the first two moments of the predictive distribution, i.e. the 
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Fig. 6. Contourplot of VarS of order 0.5 for a forecast of a bivariate normal variable on the form Eq. (24) with 𝜇1 = 𝜇2 = 0 , 𝜎2 
1 = 𝜎

2 
2 = 2 and (a): 𝜌 = 0 . 7 ; (b): 𝜌 = −0 . 7 . 

Minimum given 𝜎2 is showed as a light blue curve. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 

mean 𝝁 and covariance 𝚺, 

DSS ( 𝑓, 𝒚 ) = − log det ( 𝚺) − ( 𝒚 − 𝝁) ⊤𝚺−1 ( 𝒚 − 𝝁) . (28) 

If the forecast is Gaussian, then, apart from an additive constant, DSS 

is proportional to LogS. However, several examples where DSS fails to 

pick the correct model have been published [11] . If one only wishes to 

evaluate a certain region 𝐴 of the predictive distribution, the conditional 

likelihood score [22] , 

CdL ( 𝑓, 𝒚 ) = − 𝕀 ( 𝒚 ∈ 𝐴 ) log 

( 

𝑓 ( 𝒚 ) 
∫𝐴 𝑓 ( 𝒖 ) d 𝒖 

) 

, (29) 

is suggested, which is essentially an extension of LogS where observa- 

tions outside the desired probability region are simply ignored. For in- 

stance, it may be used to counteract the hard penalization of small prob- 

abilities (cf. Section 2.1.1 ) while preserving the advantages of LogS. To 

achieve such a compromise without completely ignoring the occurrence 

of observations outside of 𝐴, the censored likelihood score [22] , 

CsL ( 𝑓, 𝒚 ) = − 𝕀 ( 𝒚 ∈ 𝐴 ) log 𝑓 ( 𝒚 ) − 𝕀 ( 𝒚 ∈ 𝐴 

𝑐 ) log 

( 

∫𝐴 𝑐 𝑓 ( 𝒖 ) d 𝒖 
) 

, (30) 

may be used instead, where 𝐴 

𝑐 is the complement of 𝐴 . 

2.2. Probability integral transform-based evaluation 

While scoring rules perform quantitative evaluation, forecasting 

models can also be evaluated qualitatively by inspecting probability inte- 

gral transform (PIT) histograms. Starting with the univariate case, given 

an observation 𝑦 𝑡 at time 𝑡 and a forecast density, 𝑓, the PIT, 𝑧 𝑡 , is defined 

as 

𝑧 𝑡 = ∫
𝑦 𝑡 

−∞
𝑓 ( 𝑢 ) d 𝑢. (31) 

If the 𝑓 is correctly calibrated, then 𝑍 𝑡 ∼ i.i.d 𝑈 (0 , 1) [12] . Hence, the 

model can be validated by applying this transformation for all observa- 

tions, then constructing and inspecting the PIT histogram and verifying 

qualitatively that the 𝑧 𝑡 series does not invalidate the uniformity as- 

sumption. A few examples of typical PIT histograms are illustrated in 

Fig. 7 . 

For multivariate forecast evaluation, the density is split into indepen- 

dent, conditional densities, which can then be checked individually for 

uniformity. For example, for two dimensions, we can factor the density 

of 𝒚 𝑡 = ( 𝑦 1 ,𝑡 , 𝑦 2 ,𝑡 ) ⊤ in two ways, 

𝑓 ( 𝒚 𝑡 ) = 𝑓 ( 𝑦 2 ,𝑡 |𝑦 1 ,𝑡 ) 𝑓 ( 𝑦 1 ,𝑡 ) , 
𝑓 ( 𝒚 𝑡 ) = 𝑓 ( 𝑦 1 ,𝑡 |𝑦 2 ,𝑡 ) 𝑓 ( 𝑦 2 ,𝑡 ) (32) 

Each of the four densities, 𝑓 ( 𝑦 1 ,𝑡 ) , 𝑓 ( 𝑦 2 ,𝑡 ) , 𝑓 ( 𝑦 2 ,𝑡 |𝑦 1 ,𝑡 ) and 𝑓 ( 𝑦 1 ,𝑡 |𝑦 2 ,𝑡 ) can 

then be transformed into its respective PIT series by Eq. (31) . For a 

reasonable model, all four of these PIT series should then be i.i.d 𝑈 (0 , 1) 
[15] . Theoretically, this approach can be extended to any dimension, 

but in practice it becomes less practical with increasing dimension. A 

more advanced PIT-based test that is practically applicable for arbitrary 

dimension is available in the literature [18] . 

3. Applied non-parametric forecast evaluation 

In the following, we give elaborate suggestions for how the scoring 

rules of concern may be applied to non-parametric probabilistic fore- 

casts. The corresponding R code is available on Github. 1 Throughout 

the entire section, we have the following setup. We consider the uni- 

variate time series of 𝑁 observations 

{ 𝑦 𝑡 } = { 𝑦 1 , 𝑦 2 , ⋯ , 𝑦 𝑁 

} , (33) 

and we want to forecast up to 𝑘 horizons ahead, i.e. a forecast of 

𝒚 𝑡 = ( 𝑦 𝑡 +1 , 𝑦 𝑡 +2 , ⋯ , 𝑦 𝑡 + 𝑘 ) ⊤. (34) 

For that purpose we construct the multivariate series 

{ 𝒚 𝑡 } = { 𝒚 1 , 𝒚 2 , ⋯ , 𝒚 𝑁− 𝑘 } 

= 

{ 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑦 2 
𝑦 3 
⋮ 

𝑦 1+ 𝑘 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑦 3 
𝑦 4 
⋮ 

𝑦 2+ 𝑘 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, ⋯ , 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑦 𝑁− 𝑘 +1 
𝑦 𝑁− 𝑘 +2 

⋮ 
𝑦 𝑁 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

} 

. 
(35) 

Consider first 

𝒙 𝑖 = �̂� ( 𝑖 ) 𝑡 = ( ̂𝑦 ( 𝑖 ) 𝑡 +1 |𝑡 , ̂𝑦 
( 𝑖 ) 
𝑡 +2 |𝑡 , ⋯ , ̂𝑦 ( 𝑖 ) 𝑡 + 𝑘 |𝑡 ) 

⊤, (36) 

1 https://github.com/matbbDTU/probforecasteval. 
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Fig. 7. PIT histograms of a fixed times series { 𝑦 𝑡 } under the true model (a), a mean-shifted, hence miscalibrated model (b), an underdispersed model (c) and an 

overdispersed model (d). Only the true model with the correct mean and shape of the PDF yields a PIT histogram that appears to be uniform. 

i.e. the 𝑖 ’th point forecast of 𝒚 𝑡 . We can then collect 𝑚 point forecasts to 

obtain an ensemble 𝒙 of 𝑚 forecast members, 

𝒙 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝒙 ⊤1 
𝒙 ⊤2 
⋮ 
𝒙 ⊤𝑚 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

�̂� (1) 𝑡 +1 |𝑡 �̂� (1) 𝑡 +2 |𝑡 ⋯ �̂� (1) 𝑡 + 𝑘 |𝑡 
�̂� (2) 𝑡 +1 |𝑡 �̂� (2) 𝑡 +2 |𝑡 ⋯ �̂� (2) 𝑡 + 𝑘 |𝑡 
⋮ ⋮ ⋱ ⋮ 

�̂� ( 𝑚 ) 𝑡 +1 |𝑡 �̂� ( 𝑚 ) 𝑡 +2 |𝑡 ⋯ �̂� ( 𝑚 ) 𝑡 + 𝑘 |𝑡 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
, (37) 

which forms a numerical representation of a probabilistic forecast. Sup- 

pose, we want to evaluate a series of probabilistic forecasts in terms of 

its marginal distributions with the LogS in R. If obs is a vector of N 
observations, and x is an m x N matrix of m ensemble forecast members 

each of length N , then a simple forecast evaluation framework could be 

implemented as shown below: 

More detail on how the individual scores can be implemented is sup- 

plied in the following subsections. 

3.1. Logarithmic score 

Since LogS is based on the conditional density, this density has to be 

estimated. This can be done by using a kernel density estimate [27] 

𝑓 ℎ ( 𝑦 ) = 

1 
𝑚ℎ 

𝑚 ∑
𝑖 =1 

𝐾 

( 𝑦 − 𝑥 𝑖 
ℎ 

)
, (38) 

where 𝑥 𝑖 = 𝑦 ( 𝑖 ) , ℎ is the bandwith and 𝐾 is a chosen kernel function, i.e. 

a symmetric function with 

∫
∞

−∞
𝐾( 𝑢 ) 𝑑𝑢 = 1 . (39) 

Many possible choices of kernels exist, e.g. the Gaussian kernel 

𝐾( 𝑢 ) = 

1 √
2 𝜋

e − 
1 
2 𝑢 

2 
, 𝑢 ∈ ℝ , (40) 

or the commonly chosen Epanechnikov kernel [28] 

𝐾( 𝑢 ) = 

3 
4 
(1 − 𝑢 2 ) , |𝑢 | < 1 . (41) 

By applying this method, we are able to obtain a non-parametric 

approximation of the conditional density. 

The multivariate analog of Eq. (38) is given by 

𝑓 𝑯 

( 𝒚 ) = 

1 
𝑚 

√
det ( 𝑯 ) 

𝑚 ∑
𝑖 =1 

𝐾( 𝑯 

− 1 2 ( 𝒚 − 𝒙 𝑖 )) , (42) 

where 𝑯 is the 𝑑-dimensional bandwith matrix. The accuracy of multi- 

variate kernel density estimation is strongly dependent on 𝑯 but only 

weakly on the choice of 𝐾 [29] . As for the univariate case, we can choose 

the Gaussian kernel for the multivariate case too. This kernel is given 

by 

𝐾( 𝒖 ) = 

1 √
2 𝜋

e − 
1 
2 𝒖 

𝑻 𝒖 . (43) 

The ks package in R provides an implementation of kernel density es- 

timation for 1-dimensional to 6-dimensional data, namely the function 

kde . It automatically takes care of optimal selection of 𝑯 ( ℎ in the 

univariate case) by fitting it to the data prior to actual kernel density 

estimation. The multivariate Gaussian kernel is used by default. Hence, 

kde is a suitable tool for calculation of multivariate LogS, by setting 

𝑓 ( 𝒚 ) = 𝑓 𝑯 

( 𝒚 ) in Eq. (9) . A possible R implementation of LogS is then 

simply: 

9 
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Numerical estimation of the 𝑘 -variate PDF with kde is based on a 

discrete grid of 𝑔 𝑘 cells. The resolution of the grid naturally affects the 

precision of the estimate. Thus, if one wishes to have the same precision 

for any dimension, 𝑔 should be kept constant and the time complexity 

of LogS is then  ( 𝑔 𝑘 ) , i.e. exponential w.r.t. dimension. By default, kde 
happens to estimate 3-dimensional densities faster than 2-dimensional 

densities, indicating that the precision of the former might be subopti- 

mal. However, this is not a vital issue for the message of this paper. 

3.2. CRPS 

Since CRPS is based on the conditional CDF, this CDF needs to be 

estimated. This can be obtained using the empirical CDF 

𝐹 ( 𝒚 ) = 

1 
𝑚 

𝑚 ∑
𝑖 =1 

𝕀 ( 𝒙 𝑖 ≤ 𝒚 ) . (44) 

This estimator is chosen due to its simplicity and the speed with which it 

can be calculated numerically. Alternatively, a smooth kernel estimator 

that converges faster than the empirical CDF in terms of sample size is 

available in the literature [30] . A third option would be to integrate the 

kernel density estimate ( Eq. (42) ) discussed in Section 3.1 , 

𝐹 𝑯 

( 𝒚 ) = ∫
𝒚 

−∞
𝑓 𝑯 

( 𝒖 ) d 𝒖 , (45) 

which requires a numerical multivariate integration method at hand (see 

below). 

After estimating the CDF, the CRPS can be evaluated as the sum of 

two integrals, as stated in Eq. (14) . A proper implementation of nu- 

merical multivariate integration must be chosen with care in order to 

deal with the ’curse of dimensionality’, which is neither trivially nor 

easily obtained. For the studies in this paper, we have chosen vegas 
from the R2Cuba package, which uses importance sampling [31] . It 

also automatically reports a measure of uncertainty. Alternatively, the 

cubature package offers adaptive multivariate integration, but from 

our experience it is slow compared to vegas . An R implementation of 

CRPS may be structured as follows, 

where the vegas integration is embedded in a custom function 

intCrps to maintain clarity in the crps function. Further relevant 

code is available on Github. 2 For univariate evaluation with CRPS, 

2 https://github.com/matbbDTU/probforecasteval. 

there is no need for multivariate integration and this simplifies the 

implementation substantially. An alternative way of evaluating CRPS, 

where the CRPS of an ensemble is shown to be equal to a weighted sum 

of quantile scores, has been proposed [32] . Thus the integration oper- 

ation is effectively avoided. However, this approach is only described 

for univariate scores, and no attempt on generalization to multivariate 

CRPS is known. 

3.3. Variogram score 

For VarS, the forecast variogram must be estimated for each unique 

pair of horizons, 𝑖 and 𝑗, cf. Section 2.1.3 . That is equivalent to the 

expected pairwise difference to the power 𝑝, 𝐸[ |𝑋 𝑖 − 𝑋 𝑗 |𝑝 ] . Given an 

ensemble of the form in Eq. (37) , this can be estimated as an average, 

𝐸[ |𝑋 𝑖 − 𝑋 𝑗 |𝑝 ] ≈ 1 
𝑚 

𝑚 ∑
𝑙=1 

|𝑥 ( 𝑙) 𝑖 − 𝑥 ( 𝑙) 𝑗 |𝑝 . (46) 

VarS can then be calculated using Eq. (20) , for example with the follow- 

ing R implementation: 

For this implementation, the time complexity of VarS is  ( 𝑚𝑘 2 ) , i.e. 

quadratic w.r.t. the dimension 𝑘 of the forecast and linear w.r.t. the 

ensemble size 𝑚 . The computation of every single VarS is furthermore 

made from simple and cheap arithmetic operations and therefore it is 

reasonable to consider VarS as a computationally fast and scalable scor- 

ing rule compared to multivariate LogS and CRPS. 

4. Simulation study 

In this section, we construct a simulation study in which we apply 

various multivariate forecasts with different characteristics to a time 

series of simulated observations. The aim is to highlight the strengths 

and weaknesses of the scoring rules previously discussed. 

We want to forecast a 𝑘 -dimensional random variable that is multi- 

variate by means of temporal correlation. Hence, we use the setup from 

Section 3 , i.e. we aim to forecast 

𝒀 𝑡 = ( 𝑌 𝑡 +1 , ⋯ , 𝑌 𝑡 + 𝑘 ) ⊤. (47) 

All probabilistic forecasts will be based on ensembles constructed as in 

Eq. (37) . All displayed prediction intervals are 95%-prediction intervals. 

The relevant data are available on Github 3 . 

4.1. Case study 1 – a simple autoregressive model 

To begin with, consider a simple autoregressive model of order 1 

(AR(1)), 

𝑋 𝑡 = 𝜙𝑋 𝑡 −1 + 𝜀 𝑡 . (48) 

3 https://github.com/matbbDTU/probforecasteval. 
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Fig. 8. 5-dimensional (w.r.t. forecast horizon) probabilistic 

forecasts of 𝒚 (5) 𝑡 generated by simulating 𝑚 = 2000 realizations 

of Eq. (49) . The probabilistic forecasts shown here are issued 

every 5th time step (observations conditioned on are high- 

lighted in white). Autocorrelation is altered between the two 

models M1 and M2 by tuning the weights on the two noise 

parameters, 𝜎𝜀 and 𝜎𝑒 , cf. the model overview above. Top : 

model M1 with strong autocorrelation (sample autocorrelation 

= 0.91); Bottom : model M2 with weaker autocorrelation (sam- 

ple autocorrelation = 0.79). The difference in autocorrelation 

is indicated by displaying one random realization of each fore- 

cast model (dark red). The marginal distributions are identical 

between the two models. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web 

version of this article.) 

where 𝜀 𝑡 ∼ i.i.d  (0 , 𝜎2 𝜀 ) . By choosing 𝜙 = 0 . 99 , we have a stochastic 

process with strong autocorrelation. An example of a simulated real- 

ization along with 5-dimensional ensemble forecasts is shown in Fig. 8 

(top). The forecast series has a ”sawy ” look because the 5-dimensional 

forecasts are issued only at every fifth time step. 

We now want to construct a forecast that preserves all its marginal 

distributions, but with altered correlation structure, as illustrated in 

Fig. 8 (bottom). Therefore, we introduce an observation equation 

𝑌 𝑡 = 𝑋 𝑡 + 𝑒 𝑡 , (49) 

that adds observation noise, with 𝑒 𝑡 ∼ i.i.d  (0 , 𝜎2 𝑒 ) and 𝑒 𝑡 and 𝜀 𝑡 mu- 

tually independent. 𝑌 𝑡 is then effectively an autoregressive-moving- 

average model of order 1 (ARMA(1,1)). It follows that the total variance 

of 𝑌 𝑡 is 

Var [ 𝑌 𝑡 ] = 𝜎2 𝑒 + 

𝜎2 𝜀 
1 − 𝜙2 . (50) 

Adding more observation noise, i.e. increasing 𝜎𝑒 will lower autocorre- 

lation, and by tuning 𝜎𝑒 accordingly such that Var [ 𝑌 𝑡 ] is unchanged, we 

have obtained what we desired. 

For forecasting purposes, however, it is necessary to instead consider 

the conditional variance, which for the 𝑘 ’th horizon is 

Var [ 𝑌 𝑡 + 𝑘 |𝑡 ] = 𝜎2 𝑒 + 𝜎2 𝜀 ( 
𝑘 ∑
𝑖 =1 

𝜙2( 𝑖 −1) ) . (51) 

To initiate the simulation study, let 𝜙 = 0 . 99 , unconditional Var[ 𝑌 𝑡 ] 
= 1, and simulate one realization 𝑦 = ( 𝑦 1 , 𝑦 2 , ⋯ , 𝑦 𝑁 

) of 𝑁 = 100 obser- 

vations. Then, we consider three different prediction models, all with 

𝜙 = 0 . 99 and Var[ 𝑌 𝑡 ] = 1, 

• Model M1 : The true AR(1) model with 𝜎𝑒 = 0 , i.e. 𝑌 𝑡 = 𝑋 𝑡 . 
• Model M2 : Similar to M1, except with 𝜎𝑒 = 0 . 99 . Since the total vari- 

ance of 1 is preserved, 𝜎𝜀 is lowered compared to M1. 
• Model M3 : Identical to M1 apart from the addition of a constant 

𝜇 = 0 . 3 , i.e. 𝑌 𝑡 = 𝑋 𝑡 + 𝜇. 

Table 4 

Computation time in seconds per 

10,000 score evaluations. 

Dimension LogS VarS 

1 895.51 0.45 

2 697.77 0.86 

3 1819.81 1.45 

4 6450.73 2.27 

For each of the three models, we simulate ensembles of 2- 

dimensional to 5-dimensional predictive distributions yielding a total 

of 12 forecast series. Each series consists of 𝑚 = 100 ensemble mem- 

bers. The 5-dimensional series are illustrated for models M1 and M2 

in Fig. 8 (in this particular figure, 𝑚 = 20 , 000 for smoother predictive 

quantiles), while M3 is a trivial variant of M1 and thus not displayed. 

The sample 1-step correlations for M1 and M2 were found to be 0.91 

and 0.79, respectively. 

4.1.1. Forecast evaluation 

Each series is evaluated by all scoring rules considered in this arti- 

cle. For LogS and CRPS, both univariate and multivariate versions are 

applied to investigate the significance of the gain associated with up- 

grading from univariate to multivariate scoring rules. Since the marginal 

distributions of M1 and M2 are identical, the two models are expected 

to be deemed identical by univariate scoring rules, but separated by 

sufficiently effective multivariate scoring rules. 

The results of the AR(1) simulation study are visualized in Fig. 9 

(numbers can be found in Table 9 ). The following is observed for the 5 

scoring methods, 

1. Univariate LogS: M1 and M2 are equal as expected, M3 is inferior. 

2. Multivariate LogS: M1 is better than M2. This is not apparent for 

𝑑 = 2 in the boxplot, but the difference can be verified by consulting 

Table 9 in Appendix. M3 is inferior. 
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Fig. 9. Boxplots of scores resulting from the 

evaluation of M1, M2 and M3. Rows represent 

forecast dimensions, columns represent scoring 

rules applied. 

3. Univariate CRPS: M1 and M2 are equal as expected, M3 is inferior. 

4. Multivariate CRPS: M1 and M2 are equal, despite being evaluated 

by a multivariate scoring rule. M3 is inferior. 

5. VarS: M1 is better than M2, but equal to M3. 

Based on these observations, we can conclude: 

• All LogS and CRPS measures agree that M3 is much worse than M1 

and M2, across all dimension. M1 and M2 are generally not found to 

be different by LogS nor CRPS, except for higher-dimensional LogS. 
• Going from univariate to multivariate LogS increases the ability to 

separate M1 and M2, i.e. the correlation structure is evaluated. This 

becomes more apparent for increasing dimension. 
• Going from univariate to multivariate CRPS does not change any 

conclusions significantly, i.e. the correlation structure is not properly 

evaluated. 
• VarS separates M1 and M2 better than LogS and CRPS, but the mis- 

calibrated M3 is scored equally with M1. 

Overall, for multivariate forecast evaluation, case study No. 1 sug- 

gests using either solely multivariate LogS, or VarS accompanied by uni- 

variate LogS or CRPS. 

4.1.2. Run time comparisons 

Based on the conclusions above alone, it seems tempting to always 

apply the multivariate LogS instead of having to evaluate the marginal 

densities with one scoring rule and the multivariate contribution with 

another. However, as previously stated, VarS is in theory much faster 

than LogS, especially with increasing dimension. This difference may 

be of relevance to the forecaster, depending on the scale of the prob- 

lem at hand. Hence, timings of the scores evaluated above are reported 

and compared in Table 4 and Fig. 10 . Since CRPS has now been shown 

to be useless for multivariate problems, it is not included here. For the 

2-dimensional problem, VarS is about 2,000-times faster than LogS. Fur- 

thermore, in Fig. 10 , the exploding behavior of LogS w.r.t dimension is 

obvious when compared to the moderately increasing run time of VarS, 

as expected. However the increment in time complexity for LogS is still 

less dramatic than expected, which means that the resolution has been 

reduced with increasing dimension, which again implies less reliable 

Fig. 10. Average computation time per score ( ∗ per 2000 scores for VarS to align 

scales). 

estimates. The lesson learned is that there is an advantage in computa- 

tional efficiency associated with evaluating multivariate forecasts with 

VarS instead of LogS, possibly already at 2 dimensions, dependning on 

the problem of concern and the resources available. 

4.2. Case study 2 – a bounded point forecast-driven SDE model 

In order to demonstrate the application of scoring rules on a case 

that resembles wind power production, we now generate a new series of 

observations, { 𝑦 𝑡 } , this time by simulating from a stochastic differential 

equation (SDE). This is a common modelling choice for wind power 

forecasting [33] as well as for solar power [34] . We choose the following 

SDE as the generating process 

d 𝑌 𝑡 = 𝜃( 𝜇𝑡 − 𝑌 𝑡 ) d 𝑡 + 𝜎𝑌 𝑡 (1 − 𝑌 𝑡 ) d 𝑊 𝑡 , (52) 

where 𝑊 𝑡 is the Wiener process [35] . The purpose of using this equa- 

tion is to be able to simulate a quantity that resembles normalized wind 

power. This is in the sense that Eq. (52) has support on the interval 

(0,1) and the variance is dependent on the distance from 𝑦 𝑡 to the clos- 
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Fig. 11. 100-dimensional (w.r.t. forecast hori- 

zon) predictive distribution generated from 

Eq. (52) . Notice the sine structure which ap- 

pears due to the process being drived by the 

sine-based 𝜇𝑡 – a characteristic known from 

wind power prediction tools from the real 

world. 

Fig. 12. 100 1-step predictive distributions generated by esti- 

mating Eq. (54) to fit 𝑦 𝑡 originally generated from Eq. (52) . 

Table 5 

Scores comparing the two models Eqs. (52) and (54) . All three scores separate 

the two competing models correctly in this case. 

Model LogS CRPS VarS 

True SDE 1.217 0.052 84.560 

ARIMA(1,1,1) 0.085 0.120 237.955 

est boundary. 𝜇𝑡 represents a point forecast for which knowledge about 

its distribution is desired. Thus, we let 

𝜇𝑡 = 0 . 45 sin 
( 

2 𝜋
100 

𝑡 
) 

+ 0 . 5 , (53) 

𝜃 = 0 . 1 , and 𝜎 = 0 . 3 and simulate { 𝑦 𝑡 } . The realization is shown in 

Fig. 11 , where the state-dependent variance is noticable - largest around 

𝑦 𝑡 = 0 . 5 , and smallest close to the boundaries. 

We shall fit a competing autoregressive-integrated-moving-average 

model of order 1 (ARIMA(1,1,1)) 𝑍 𝑡 = 𝑌 𝑡 − 𝑌 𝑡 −1 to 𝑦 𝑡 

𝑍 𝑡 = 𝜙𝑍 𝑡 −1 + 𝜃𝜀 𝑡 −1 + 𝜀 𝑡 . (54) 

We choose to estimate the parameters of (54) in a rolling window, such 

that they are updated at every time step. In each time step, a one-step 

predictive distribution is generated; this is shown in Fig. 12 . 

Forecast evaluation 

For this case, we shall apply VarS to the 100-dimensional forecast, 

and LogS as well as CRPS to the marginal forecast distributions. The 

results are summarized in Table 5 and illustrated in Fig. 13 . Overall, 

we find that all three scores identify the correct model. Both LogS and 

CRPS identify the correct model in 78 out of 100 cases. VarS finds a 

seemingly huge difference between the two models, but it should be 

kept in mind that this is without any measure of uncertainty. The main 

purpose of case study No. 2 is to set the stage for case study No. 3, a 

more advanced and large-scale version of this case study. 

4.3. Case study 3 – Klim Wind Power Plant 

In the final case study, we shall examine a real data set, namely 

normalized wind power (w.r.t. maximum capacity) data from the Danish 

wind power plant, Klim. The data set consists of: 

• Observations: Hourly average normalized wind power production, 

𝑥 𝑡 . 
• Predictions: Multivariate 48-h forecasts, �̃� 𝒕 = ( ̃𝑝 𝑡 +1 |𝑡 , ̃𝑝 𝑡 +2 |𝑡 , ..., ̃𝑝 𝑡 +48 |𝑡 ) 

issued every six hours. The prediction horizon is denoted 𝑘 . 
• In total, there are 15,558 observations that can both be predicted 

and evaluated. 

Similar to the SDE model in case study no. 2, where the point forecast 

𝜇𝑡 drives the forecast density, we are going to simulate predictive distri- 

butions that depend on �̃� 𝒕 . We will use an already published SDE-model 

for forecasting [36] , given by 

d 𝑌 𝑡 = − 𝜃( 𝑌 𝑡 − �̃� 𝑡 − 𝑐 ̃𝑝 𝑡 (1 − �̃� 𝑡 )(1 − 2 𝑌 𝑡 )) d 𝑡 + 2 
√
𝜃𝛼�̃� 𝑡 (1 − �̃� 𝑡 ) d 𝑊 𝑡 , (55) 

where 𝜃, 𝑐 ≥ 0 and 𝛼 ∈ [0 , 1) are constant parameters. 

By simulating 300 realizations from Eq. (55) , we obtain empirical 6- 

dimensional predictive distributions. The choice of horizon 𝑘 = 6 is nat- 

ural due to new observations coming in every 6th step (hour). A subset 

of the observations { 𝑦 𝑡 } with 𝑡 = [100; 180] is shown along with the cor- 

responding known point forecasts �̃� 𝒕 , and the 6-dimensional predictive 

distributions are shown in Fig. 14 . The marginal predictive distributions 

of 𝑌 𝑡 are generally skewed. 

Forecast evaluation 

With 15,558 marginal distributions to evaluate, computation time 

starts becoming a concern. We could use the same techniques as de- 
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Fig. 13. Scores comparing the two models Eqs. (52) and (54) . From the boxplots in the left and middle section, it is seen that LogS and CRPS, respectively, are both 

able to separate the two models correctly, although the distributions of scores are by no means completely distinct. VarS also clearly identifies the correct model 

with a score three-times lower than the wrong model. 

Fig. 14. Subset of the Klim normalized wind power data. Ob- 

servations (white) as well as point forecasts issued by Klim (or- 

ange) along with 6-dimensional predictive distributions gen- 

erated from Eq. (55) are displayed. (For interpretation of the 

references to color in this figure legend, the reader is referred 

to the web version of this article.) 

scribed above, although non-parametric CRPS in particular can be tricky 

to evaluate fast. Therefore, in this example we shall approximate each 

marginal predictive distribution by a parametric density and evaluate 

the difference. 

Since 𝑦 𝑡 is double-bounded (0,1) and has a skewed distribution, the 

beta distribution is an obvious choice. Hence, we assume 

𝑌 𝑡 ∼ Beta ( 𝛼, 𝛽) , (56) 

where 𝛼 and 𝛽 are shape parameters that completely characterize the 

beta distribution and that will be fitted uniquely to each of the 15,558 

marginal distributions using maximum likelihood estimation. 

By applying both the non-parametric (kernel density estimate) and 

parametric (beta density estimate) approximation, we get two models 

that seem to capture the characteristics of the marginal distributions 

very well, cf. the example in Fig. 15 , which features the predictive den- 

sity at time 𝑡 = 1025 . This example is representative for the rest of the 

marginal predictive densities. 

Note that, even though the overall shape of the distribution in 

Fig. 15 is well-approximated by both models, there is a remarkable dif- 

ference in the 0-end of the tail. Due to the characteristics of the beta 

distribution, it is not possible to have a bell-shaped density that is at 

the same time non-zero at 𝑦 𝑡 = 0 , which is why we have 𝑓 (0) = 0 for 

the parametric density. Nevertheless, 0-observations occur frequently 

for wind power, which is nicely captured by the non-parametric kernel 

density estimate. 

For evaluation using LogS, the 0-probability creates a problem, since 

log ( 𝑦 ) has a singularity in 0. The immediate solution is to add a very 

small number 𝜈 to all 0-observations. The challenge is that the choice of 

𝜈 affects LogS greatly and thus creates potential for user-bias. Another 

possibility is to robustify the forecast density e.g. using Huber robusti- 

Table 6 

Average LogS and CRPS for the two models in concern. 

Model LogS CRPS 

Kernel (non-parametric) 11.648 0.0644 

Beta (parametric) 63.511 0.0643 

Table 7 

Computation time in seconds per 10,000 score evaluations. 

Model LogS CRPS 

Kernel (non-parametric) 0.363 17100 

Beta (parametric) 5.59e − 3 2.297 

fication [37] , however then LogS is no longer proper, and this has to be 

taken into consideration. 

With the important properties of VarS as well as multivariate vs. 

univarite LogS and CRPS well-covered in the first two cases, we shall 

just apply univariate LogS and CRPS for the final case. The results are 

summarized in Table 6 and visualized in Fig. 16 . 

The main observations are the following, 

• The two models are practically identical according to CRPS 
• The two models are significantly different according to LogS 

The reason for this is the difference in probability mass in the tails, 

as conjectured above. 

This case serves a second purpose, namely to examine the difference 

of computation speed between parametric and non-parametric models. 

Average running times of the computations above were thus estimated 

where each score evaluation was repeated 10 times. The results are 

shown in Table 7 in seconds of computation time per 10,000 scores. 
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Fig. 15. Predictive marginal distribution for a random point 

in time (here 𝑡 = 1025 ). A non-parametric (dashed line) as well 

as a parametric (solid line) approximation to the density are 

shown. Notice the difference in terms of probability mass in 

the left tail, while the overall shape is similar between the two 

models. 

Table 8 

Summary of the characteristics of LogS, CRPS and VarS revealed by the three case studies in Sections 4.1 –4.3 . The upper half of the table summarizes descriptive 

properties of the three scoring rules, where advantages are flagged with ’ + ’, and disadvantages are flagged with ’ ÷’. The lower half summarizes the characteristics 

of the three scoring rules in verbal terms. 

Advantages and disadvantages 

LogS CRPS VarS 

Calibration of mar-ginal distribution + Mean and variance are evaluated. + Mean and variance are evaluated. ÷ Mean is not evaluated. 

Correlation structure + Fully evaluated. ÷ Very poorly evaluated, models can 

not be separated in practice. 

+ Indirectly but effectively evaluated. 

Run time at the 𝑘 ’th dimension ÷ Increases exponentially with 𝑘 . ÷ Increases exponentially with 𝑘 . + Increases quadratically with 𝑘 . 
Viability for multivariate problems + / ÷ Theoretically useful but too 

computationally demanding at higher 

dimension. 

÷ Practically useless and 

computationally demanding. 

+ / ÷ Partially useful and completely 

computationally feasible. 

Summarized properties 

LogS CRPS VarS 

General characteristics Evaluates all information about the 

forecast distribution, but penalizes 

hard in the tails. Theoretically useful 

for any dimension, but not practically 

applicable at higher dimension. 

Evaluates the overall shape of the 

forecast distribution including mean 

and variance, but fails to evaluate 

correlation in multivariate scenarios. 

Useful for one dimension, useless for 

multivariate problems. 

Evaluates correlation and variance 

indirectly, but fails to evaluate the 

mean. Partially useful for evaluation 

of multivariate forecasts but cannot 

stand alone. 

Numerical methods required for 

implementation 

Estimation of PDF, e.g. using a kernel 

density estimate, cf. Section 3.1 . 

1) Estimation of CDF, e.g. using the 

estimated CDF. 2) 𝑛 -dimensional 

integration, e.g. using importance 

sampling, cf. Section 3.2 . 

Simple arithmetic operations, cf. 

Section 3.3 . 

Computational performance Fast and accurate for lower 

dimension, computation time and 

memory footprint quickly increases 

with higher dimension. 

Fast and accurate for lower 

dimension, computation time and 

memory footprint quickly increases 

with higher dimension. 

Very fast for lower dimension, 

increase in run time and memory 

footprint is limited. 

Fig. 16. LogS and CRPS evaluations of the non-parametric (kernel) and parametric (beta) model. The two barplots concern LogS only and are included to show that 

a larger proportion of the forecasts score badly in the parametric model, which is not possible to see from the boxplot. 

Clearly, in the univariate case it is much faster to evaluate a paramet- 

ric than a non-parametric distribution, especially for CRPS, where the 

difference is almost 1000-fold. Of course the computer in use as well 

as proper code optimization both play significant roles, and a more in- 

depth conclusion with regards to this issue requires a much more com- 

prehensive study which is beyond the scope of this work. 

4.4. Summary of characteristics of LogS, CRPS and VarS 

Based on the application framework in Section 3 and the case studies 

in Section 4 , we can summarize and compare interesting characteristics 

of the three scoring rules in question. These include calibration of the 

conditional expectation of a forecast, the ability to separate different 
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correlation structures, computation time required for non-parametric 

and parametric forecasts, respectively and finally scalability, i.e. the 

ability to maintain a reasonable computation time with an increasing 

number of dimensions. The findings are summarized in verbal terms in 

Table 8 . Most importantly, it is clear that no scoring rule performs op- 

timally at all aspects. 

5. Conclusion 

Probabilistic forecasts can be evaluated by applying different scor- 

ing rules, and we have discussed six, all applicable for multivariate fore- 

casts, namely LogS, CRPS, VarS, DSS, CdL and CsL. The latter three are 

variants of LogS, hence only the former three have been thoroughly re- 

viewed. To facilitate the bridge from formula to application, we have 

provided examples with basic calculations and suggestions for practical 

implementation in numerical scenarios. 

We have constructed three case studies where we have applied LogS, 

CRPS and VarS to forecasts of different numbers of dimensions in order 

to highlight their advantages and drawbacks. Case study no. 1 serves to 

demonstrate the scoring rules’ ability to separate competing forecasts in 

extreme cases. For multivariate problems, only multivariate LogS can 

handle calibration and correlation simultaneously. CRPS is sensitive to 

calibration but fails to detect misspecified correlation, while VarS excels 

at detecting misspecified correlation but fails to detect miscalibration. 

Despite LogS being superior in both disciplines, it also penalizes unlikely 

observations extremely hard compared to CRPS, which is clearly seen 

from the results in case study no. 3. This behavior may be adjusted by 

switching to CdL or CsL. 

Regarding speed, VarS is very fast to compute, even for 100- 

dimensional problems, as seen in case study no. 2. Conversely, the com- 

putation times of both CRPS and LogS increase fairly dramatically with 

the number of dimensions. Case study no. 3 also shows that it is much 

faster to use a parametric approximation to the PDF or CDF than a non- 

parametric approximation, especially when computing CRPS. 

Clearly, no scoring rule performs optimally at all aspects. In energy 

systems, both calibration, correlation and computation time are impor- 

tant, and in the general case it is therefore necessary to apply a combined 

evaluation approach rather than to apply only one of the scoring rules. 

Since multivariate evaluation is mainly of interest when the correlation 

structure of a forecast is assumed to be important, the multivariate part 

can be fully covered by applying VarS. However, in energy systems it is 

always crucial to have well-calibrated forecasts, and this can sufficiently 

be handled by applying univariate LogS or CRPS to all the marginal den- 

sities. This combined approach is demonstrated in case study no. 2 and 

ensures a fast computation time. The one question remaining for future 

studies is therefore precisely how a combination of VarS and one of the 

univariate scores in the best way can be formulated as one unified scor- 

ing rule, depending on the forecasting problem at hand. 

Our overall recommendation for evaluation of a multivariate prob- 

abilistic forecast is thus to apply VarS to the full, multivariate forecast, 

while simultaneously evaluating its marginal densities by either uni- 

variate CRPS or LogS, depending on whether the shapes of the tails are 

considered important (LogS) or not (CRPS). 
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Appendix 

Expectation of |𝑋 1 − 𝑋 2 |𝑝 

Consider the random variable, 𝑋 = 𝑋 1 − 𝑋 2 , where 
( 

𝑋 1 
𝑋 2 

) 

∼ 𝑁 

[ ( 

𝜇1 
𝜇2 

) 

, 
( 

𝜎2 1 𝜎12 
𝜎12 𝜎2 2 

) ] 
, (57) 

then 

𝑋 ∼ 𝑁( 𝜇1 − 𝜇2 , 𝜎
2 
1 + 𝜎2 2 − 2 𝜎12 ) . (58) 

In the special case where 𝜇1 = 𝜇2 , the distribution of 𝑋 is symmetric 

around 𝑋 = 0 , so we consider only 𝑋 > 0 for a moment. Let 𝑝 = 0 . 5 , 
𝑔( 𝑥 ) = 

√
𝑥 and 𝑌 = 𝑔( 𝑋) , i.e. 𝑌 = 𝑋 

𝑝 . Because 𝑔( 𝑥 ) is monotonic on 𝑥 > 

0 , the change of variable principle can be applied, 

𝑓 𝑌 = 

||||
𝑑 
𝑑𝑦 ( 𝑔 

−1 ( 𝑦 )) 
|||| ⋅ 𝑓 𝑋 ( 𝑔 

−1 ( 𝑦 )) 

= 2 𝑦 ⋅ 𝑓 𝑋 ( 𝑦 2 ) 
. 

(59) 

Table 9 

Case Study 1: average scores for the three competing models M1, M2 and M3. 

Dim. Score M1 (Cor) M2 (Unc) M3 (Add) 

𝑑 = 2 LogS (univ.) 0.4157 0.4196 0.9474 

LogS (multiv.) 1.0940 0.8574 1.6782 

CRPS (univ.) 0.0909 0.0903 0.2263 

CRPS (multiv.) 0.0499 0.0434 0.2751 

VarS 0.0153 0.0223 0.0153 

𝑑 = 3 LogS (univ.) 0.3486 0.3462 1.0574 

LogS (multiv.) 1.232 0.1704 5.7756 

CRPS (univ.) 0.0954 0.0949 0.2399 

CRPS (multiv.) 0.0521 0.0420 0.4044 

VarS 0.0584 0.1015 0.0584 

𝑑 = 4 LogS (univ.) 0.2413 0.2147 0.7879 

LogS (multiv.) 0.6793 0.3012 3.1261 

CRPS (univ.) 0.1089 0.1103 0.2252 

CRPS (multiv.) 0.0402 0.0419 0.4115 

VarS 0.1485 0.2588 0.1485 

𝑑 = 5 LogS (univ.) 0.1398 0.1800 0.8038 

LogS (multiv.) 0.3424 1.7897 5.9828 

CRPS (univ.) 0.1138 0.1139 0.2306 

CRPS (multiv.) 0.0617 0.0174 0.6282 

VarS 0.2330 0.4374 0.2330 
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Because of the symmetry of 𝑓 𝑋 around 𝑋 = 0 , the true density of |𝑋 1 − 

𝑋 2 |𝑝 is equal to 2 𝑓 𝑌 . Thus, the expectation of |𝑋 1 − 𝑋 2 |𝑝 is calculated 

from the usual expectation formula, which in this study in just evaluated 

numerically, 

E [ |𝑋|𝑝 ] = ∫ ∞
0 𝑢 ⋅ 2 𝑓 𝑌 ( 𝑢 ) d 𝑢 

= ∫ ∞
0 𝑢 ⋅ 2 ⋅ 2 𝑢 ⋅ 1 √

2 𝜋( 𝜎2 1 + 𝜎
2 
2 −2 𝜎12 ) 

e 
− ( 𝑢 

2 −( 𝜇1 − 𝜇2 )) 
2 

2( 𝜎2 1 + 𝜎
2 
2 −2 𝜎12 ) d 𝑢 

= 4 ∫ ∞
0 

𝑢 2 √
2 𝜋𝜎2 𝑋 

e 
− ( 𝑢 

2 − 𝜇𝑋 ) 2 

2 𝜎2 𝑋 d 𝑢. 

(60) 

with 𝜇𝑋 = 𝜇1 − 𝜇2 and 𝜎2 𝑋 = 𝜎2 1 + 𝜎2 2 − 2 𝜎12 . 

Supplementary material 

Supplementary material associated with this article can be found, in 

the online version, at 10.1016/j.egyai.2021.100058 
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