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Foreword

This thesis was carried out at the Section for Cognitive Systems (CogSys), part of the Department

of Applied Mathematics and Computer Science (DTU Compute) for the degree of Doctor of Philosophy

(PhD/DPhil) at The Technical University of Denmark (DTU). Generously funded by the William Demant

Foundation (previously Oticon foundation) in combination with a travel grant from Stibo foundation

the projected spanned around 3.5 years where 3 months was spent on the University of Oxford and

the remaining time was spent physically at DTU or from home during the COVID-19 pandemic. Main

supervision was done by Professor and Head of Section Lars Kai Hansen and co-supervision was done by

Professor and and Head of Section Ulrik Lund Andersen together with Professor and Head of Department

Jan Madsen.

A total of four scientific contributions is included in this thesis: one published in Scientific Reports

— Nature, one currently under review at New Journal of Physics, one under review at the Uncertainty in

Artificial Intelligence (UAI) 2023 conference and one preprint. These papers are throughout this thesis

referred to as Paper A, B, C and D each having a dedicated chapter 4, 5, 6 and 7, respectively:

A J. Foldager, A. Pesah, and L.K. Hansen. Noise-assisted variational quantum thermalization. Sci-

entific reports, 12(1):1–11, 2022 [1] (Chapter 4)

B J. Foldager and B. Koczor. Can shallow quantum circuits scramble local noise into global white

noise? arXiv preprint arXiv:2302.00881, 2023 [2] (Chapter 5)

C J. Foldager. Actively learning quantum machine learning architectures from related problems.

2023 [3] (Chapter 6)

D J. Foldager, M. Jordahn, L.K. Hansen, and M.R. Andersen. On the role of model uncertainties in

bayesian optimization. arXiv preprint arXiv:2301.05983, 2023 [4] (Chapter 7)
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This thesis not only aims at connecting the relatively wide-spanning results of the papers; it also contains

a more general introduction and motivation aimed at being readable to an even broader audience before

diving into the mathematics and results.

On the structure and notation of this thesis

This thesis is aimed at readers both in the machine learning and quantum computing communities.

While the two communities are very different in many aspects, they also share a lot of the underlying

mathematics involved (e.g., linear algebra), however with different notation. Coming from the machine

learning side of things, I am convinced it should be possible to meaningfully explain at least some parts

of quantum mechanics to a broader audience without having to take an undergraduate degree in physics.

This thesis therefore aims at connecting the two areas, machine learning and quantum computing; some-

thing useful to both computer scientists and theoretical physicists. Also, I like telling stories and this

thesis is the perfect excuse to tell one; a story I wish there was written when I started my Ph.D. Thus,

careful considerations went into how the background theory is introduced, and as a consequence the

reader might notice occasional "double"-notation in some equations. For example,

⟨ϕ|ψ⟩ = c, (1a)

ϕHψ = c. (1b)

will throughout this thesis refer to "a" = "quantum"-notation and "b" = "machine learning"-notation.

Although the choice aiming at a wider audience results in a longer thesis, this effort hopefully pays of

for more readers.

Thank you for reading and I hope you enjoy my work.

- Jonathan
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English Popular Science Summary

When computers learn to recognize, predict and generate patterns from data without explicit pro-

gramming we call it machine learning (ML). Although we are starting to see the first glimpses of ML

becoming an integral part of society, there exists many mathematical problems requiring extensive com-

putational resources. Meanwhile, Quantum Computers (QCs), which holds great promise for speedups

and increased capacity, are being built with the ambition of revolutionizing specific areas of the infor-

mation technology industry; ML being one of the "killer applications". While building large, scalable

and fault-tolerant quantum computers is a difficult job likely to finish decades from now, we already

today have access to noisy intermediate-scale quantum (NISQ) computers. In this exciting NISQ-era,

the interface between QC and ML—referred to as quantum machine learning (QML)—has been born as

a rich and fast-moving research field which studies how a QC and ML can assist each other.

Despite practical applications of current QML is widely debated, at least three core questions are

considered important regardless of current practicality. The first question is, if there are useful tasks

NISQ computers which can be used to accelerate ML. The second question is, given the noisy nature of

NISQ hardware can one find key characteristics in the accumulated noise that leads us closer to practical

applications. And lastly, can we expand our ML toolbox working together with the quantum computer

in order to solve more general problem classes in QML.

In order to approach these questions, this thesis offers four scientific papers aiming at delivering

results that gets us closer to relevant answers. The first paper develops a quantum algorithm that ap-

proximates a specific quantum state which can be used in one of the most computationally hard ML

tasks: sampling from complicated high dimensional probability distributions. The second contribution

proposes metrics that evaluate noise characteristics in NISQ hardware such that algorithms running on

the hardware can be paired with appropriate error mitigation strategies which is paramount to achieve

practical NISQ protocols. The third article develops a meta-learning protocol exploiting similarity be-

tween key problems in quantum physics and thus enables one to learn across problems in minimum
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energy eigenstate estimation; a problem very relevant to machine learning as well. The fourth and last

paper studies how uncertainty calibration affects the aforementioned meta-learner, and hence this thesis

also provides ML investigation with applicability in QML.

In the end, the thesis aims both at drawing connections between all contributions as well as giving

an introduction to QML for computer scientists. While the marriage of NISQ and ML is still bumpy

and their combined future is hard to predict, we end on a positive and optimistic note on the progress of

QML in the near term.
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Dansk Populærvidenskabelig Opsummering

Når computere lærer at genkende, forudsige og generere mønstre fra data uden at være eksplicit

programmeret, kalder vi det maskinlæring (ML). Selvom vi begynder at se de første glimt af, at ML

bliver en integreret del af samfundet, er der stadig mange matematiske problemer, der kræver store

beregningsmæssige ressourcer. I mellemtiden bliver kvantecomputere (QCs), som har stor potentiale

for hastighedsforbedringer og øget kapacitet, bygget i håb om at revolutionere bestemte områder af

informationsteknologien, herunder ML som anses for en "killer application". Mens det at bygge store,

skalerbare og fejltolerante kvantecomputere er en vanskelig opgave, som sandsynligvis vil tage årtier,

har vi allerede i dag adgang til noisy intermediate-scale kvantecomputere (NISQ). I denne spændende

æra er grænsefladen mellem QC og ML, også kendt som kvantemaskinlæring (QML), blevet født som et

rigt og hurtigt-bevægende forskningsfelt, som undersøger, hvordan en QC og ML kan assistere hinanden.

Selvom de praktiske anvendelser af den nuværende QML debatteres, betragtes mindst tre kerne-

spørgsmål som vigtige; uanset den nuværende praktiske anvendelighed. Det første spørgsmål er, om der

er nyttige opgaver for NISQ, som kan bruges til at accelerere ML. Det andet spørgsmål er, om man—

givet den støjende karakter af NISQ-hardware—kan finde nøglekarakteristika i den akkumulerede støj,

der fører os tættere på praktiske anvendelser. Og sidst, men ikke mindst, kan vi udvide vores ML-

værktøjskasse og således assistere kvantecomputeren til at løse mere generelle klasser af problemer i

QML.

For at kunne besvare disse spørgsmål, tilbyder denne afhandling fire videnskabelige artikler med

formål om at levere resultater, der bringer os tættere på relevante svar. Den første artikel udvikler

en kvante-algoritme, der bringer computerens kvantebits i en specifik tilstand, som kan anvendes i en

af de mest beregningsmæssigt krævende ML-opgaver: at tage stikprøver fra komplicerede højdimen-

sionelle sandsynlighedsfordelinger. Den anden artikel foreslår metrikker, der evaluerer støjegenskaber i

NISQ-hardware, således algoritmer, der kører på hardwaren, parres med passende fejlreduceringsstrate-

gier, hvilket er afgørende for at opnå praktiske NISQ-protokoller. Artikel nr. 3 udvikler en meta-
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læringsprotokol, der udnytter ligheder mellem problemer i kvantefysik og dermed muliggør læring på

tværs af problemer i estimeringer af minimums energi-egentilstande; et problem, der er meget relevant

i generel mønstergenkendelse. Den fjerde og sidste artikel undersøger, hvordan usikkerhedskalibrering

påvirker den førnævnte meta-læringsalgoritme, og dermed giver denne afhandling også en undersøgelse

af klassisk ML metoder til anvendelse i QML.

Afhandlingen sigter både mod at illustrere forbindelserne mellem alle fire bidrag samt give en dyb-

degående introduktion til QML for ingeniøerer uden en fysik uddanelse. Selvom ægteskabet mellem

NISQ og ML stadig er uvist, og deres kombinerede fremtid er svær at forudsige, slutter afhandlingen i

et optimistisk udgangspunkt om fremskridtene i den nærtstående fremtid inden for QML.
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Chapter 1

Introduction

THE interplay between Machine Learning (ML) and Quantum Computing (QC) are at the same time

exciting, mind-blowing, very difficult to master, and holds great potential for high impact applica-

tions [5]. While we have already witnessed the first glimpses of ML products in several fields [6] perhaps

large language models [7, 8] currently being the most debated examples (Chat-GPT [9, 10] going viral

[11, 12]), quantum computers are still in their early development phase [13]. Quantum processors are

currently small, noisy, and they have little practical applicability [14]. However, a lot of work has gone

into the theory of quantum computation [15], that is, what algorithms we—at least in theory—should

be able to run with this new type of hardware. The key difference between normal (classical) com-

puters and quantum computers lies in how the information is stored and processed. Their fundamental

difference ties all the way back to how electrons, atoms and molecule behave; with properties such as

superposition, interference and entanglement. In this chapter, we will informally introduce the wonders

of quantum physics by taking us back to the physical realization of a computer and the chapter will end

with how ML fits into the picture.

Classical computers store information (e.g., text, images, movies) is bits, which are sequences of

zeros and ones; on’s and off’s. On’s and off’s of what? It does not matter but it could be light bulbs.

Can we store information in light bulbs? Yes! As long as we have enough light bulbs, and we agree

on a system of how to store (encode) and read (decode) information, we can store any information we

want. For example, we can make a small calculator using, say, three light bulbs. Each of them can be

either zero (lights off) or one (light on), and let us picture the three light bulbs being collected them the

following way: "[third, second, first]". That is, "[1, 1, 0]" means that light bulb three and two are on

but light bulb one is turned off. We can also refer to each light bulb as one bit of information since the
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smallest unit of information we can think of is if something is or is not. Let us agree that the number zero

is encoded as all light bulbs are turned off, that is [0, 0, 0] = 0. The number one, we can encode as the

first bulb being on and the two others turned off: [0, 0, 1] = 1. Further more, [0, 1, 0] = 2, [0, 1, 1] = 3,

[1, 0, 0] = 4, [1, 0, 1] = 5, [1, 1, 0] = 6, [1, 1, 1] = 7. In total, our collection of three light bulbs can be

in 1-of-8 states, since each light bulb can be on or off giving 2 · 2 · 2 = 8 states, or more general 2N

states for N bits. It does not take crazy imagination to see that having more light bulbs (N bigger than

3), we could store numbers over 7, or even letters, music and movies. As long as we agree on a system

to encode the information into the light bulbs and how to decode the light bulbs into pixel values on a

screen or how speakers should vibrate. Our three bits can be in one and only one of the 8 states at the

time and by turning one or more light bulps on or off, we can change the overall state of all the light

bulbs; a concept we will use to make our calculator. Let us for example add two the numbers [0,0,1] (i.e.

one) and [1,0,1] (five). For this we need an operation, call it Oadd, that takes two 3-bit numbers as input

and outputs the adding result a three-bit number, i.e. Oadd([0, 0, 1], [1, 0, 1]) = [1, 1, 0]. We thus need

some operation that leaves the first light off but turns on the second and third light bulbs. Physically

storing information in light bulbs is a waste of space and time, so in practice uses something smaller

than a light bulb but have the same properties of being able to be on or off: transistors. Each transistor is

one bit. For now, it still is abstract how one would build such the Oadd operator, but if we can build this

theoretical idea into something physical, for example using transistors to store the information, smart

wiring to operate on the transistors, buttons so we humans can control what operations to apply to which

bits, and a screen to display the result, we have a computer! Our smartphones, laptops, cars, planes,

ovens, and bike computers are all made up from this idea of storing and processing information, and

look how far it gotten us; do we even need fundamentally new computing technology?

A quantum computer is fundamentally different than a classical computer. It does not store infor-

mation in light bulbs, transistors or anything that only has two states. As a consequence of quantum

physics a quantum computer stores information in objects called quantum bits (qubits) which can be in

infinitely many states. Most importantly, classical computers do not take computational advantage of the

laws of quantum mechanics, but qubits do. And the results are astonishing, daunting and almost magical

which has led to future predictions of quantum computing to have profound consequences for society

[16]. To get a grasp of the potential power of QC, it is useful to introduce the concept of computational

time complexity classes: an important part of computer science that aims to categorize problems into

how much computational time their best known implementation takes to solve, worst case [17]. As an
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example, we can focus on a specific problem: given a number k of size N find the prime numbers q and

p that satisfy k = p · q. For example, if k is 161, an N = 3 digit number, the solution is q = 7 and

p = 23. This problem is known as the "prime factorization problem" and it is a hard problem to solve

for large digit numbers, i.e., when N is big [18] since we worst case have to check all combinations up

to the square root of N . It therefore acts as a cornerstone in so-called Rivest-Shamir-Adleman (RSA)

encryption schemes that banks use to protect sensitive information [19]. The best known factoring al-

gorithm [20] (running on normal/classical hardware) scales sub-exponentially in time with the number

size N which means that for a, for example, N = 600 digit number it takes on the order of the age of

the universe to find p and q. At least for factoring algorithms breaking bank encryption, it looks like our

pension are safe, for now. There exists several time complexity classes, but here are a few examples of

time scales for what it would take if the prime factorization problem had another time complexity than

sub-exponential. For N = 600 (assuming each run takes one the order of a second):

• Logarithmic time: order of a few seconds.

• Linear time: order of a few minutes.

• Polynomial time: order of a few years.

• Sub-exponential time: order of billions of years.

• Exponential time: order of ≈ 1070 universe lifetimes.

Compared to the age of the universe, polynomial time (a few years at worst) does not seem so bad.

Finding a new algorithm that turns the factoring problem into a polynomial time problem could have

huge consequences to society. So when Shor in 1994 came up with a quantum computing algorithm that

exactly did this [21], it surprised many. Shor’s algorithm showed that, at least in theory, factoring could

be done in polynomial time; much faster than any known algorithm up until then. Although exciting QC

results existed prior to Shor’s paper [22, 23], it can be argued that Shor’s factoring algorithm was a tipping

point where much "quantum excitement" (as well as fear) started—at least among some physicists [24].

Already in 1985, Deutch conjectured that a quantum computer should be able do things beyond

what classical ones could ever do [25], and in 1992 he and Jozsa published an algorithm demonstrat-

ing exponential speedups [26, 27] over classical counterparts, albeit with little known practical usage

[28, 29]. Following Shor’s prime factorization paper in 1994, came many exciting theoretical results,
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one being Grover’s database search algorithm [30] promising database search quadratically faster than

classical counterparts [31]. Moreover, Lloyd proved quantum computational universality [32] which, up

until then, was a Feynmann conjecture from 1982 [33] stating that a quantum computer could be used to

fully simulate any local quantum system1. Fast forward to today, an entire Zoo of quantum algorithms

exists with corresponding statements about the speedup over classical counterparts [34]. The Zoo also

include quantum simulating (which we have not yet defined what is) algorithms; a hard problem to do

for a normal/classical computer. To this date, simulating quantum systems is closely linked to state of

the art ideas in quantum machine learning (QML) and this will be one of the major focuses of this thesis.

In these years of increasing quantum excitement, some resistance and scepticism was present [35].

Given that quantum computers need quantum mechanical objects such as electrons (which we know

are extremely sensitive to interactions with the surroundings) to store information and do computations,

how can one ever make a scalable computer without almost immediately loosing the stored information

[36]? Inspired by ideas from classical computing, a major breakthrough, also co-developed by Shor

in 1995, came to be: quantum error correction (QEC) [37, 38]. Shor et al. showed that even if some

of the information in the subatomic particles was lost to surroundings it was still possible to do net

error-free quantum computation as long as the time factor it takes before information is lost (also called

decoherence time), was not too short [39]. Together with the threshold theorem [40, 41, 42], the com-

bined theoretical results meant that it all came down to engineering the hardware such that it had enough

physical qubits having long enough decoherence time to make up a sufficient amount of logical qubits

which has acceptable error rate relative to the problem one tries to solve. Although current state of the

art quantum hardware only houses a few hundred noisy qubits, ambitions are high in many of the estab-

lished information technology companies [43, 44] as well as several startups [45, 46]. Putting the state

of current quantum technology in perspective with latest estimates on the number of qubits required to

run Shor’s factoring algorithm (20 million physical qubits [47]) and thereby break RSA encryption in a

few hours, it might seem like a very long journey before quantum computers become a real thread/asset

to society. And indeed, the time scale of if/when quantum computing starts having an impact is being

debated, from a few years to decades [48] to "if ever" [49].

But we already have quantum computers today; they exist! Although these are noisy intermediate-

scale quantum (NISQ) computers, a term recently coined by Preskill [50], there might be useful infor-

1A paper with one of my favorite ways to start a conference article: "On the program it says this is a keynote speech–and
I don’t know what a keynote speech is" - Richard Feynmann.
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mation or applications to gain from studying them. This is exactly the subject of this thesis: to assume

that the quantum processor is small and noisy, and then ask what can we do or learn from this in relation

to machine learning. If one feels that quantum computing is in itself difficult to master, it can be mean-

ingfully argued that NISQ algorithms are even harder, the main reason being the need for knowledge

of other disciplines such as statistical mechanics, chemistry, optimization, and not forgetting quantum

information theory. In order to get there, we will take the following approach: we will introduce some

history and background of the quantum physical experiments performed in the twentieth century, and

subsequently lay out the language and tools necessary to build a quantum computer. Chapter 2 will high-

light the similarities, differences and potential interplay between NISQ computers and machine learning,

hopefully bringing it all together such that the motivation behind the scientific contributions is solid and

provides a meaningful overall story. Because, what is "quantum"? And how does machine learning

fit into the story? In the next section, we introduce superposition (Section 1.1.1), interference (Sec-

tion 1.1.2), and entanglement (Section 1.1.3), followed by sections on how to build a quantum computer

(Section 1.2) and what quantum machine learning is (Section 1.3), before we formalize everything in

Chapter 2.

1.1 Predicting the Outcome of Experiments

Physics is about finding and predicting patterns from observations [51]. The same can be said about

machine learning [52]. Does that mean physics = machine learning? No, but in many aspects, they indeed

share the same idea of using data and mathematical models to make predictions about the real world.

Maybe that also explains why many physicists find the methods and approaches interesting and some are

prominent in the research field. A key dimension the two subjects have in common is their immediate

closeness to the scientific method [53], by means of collecting and analyzing data that is used to infer

general behavior. But there are also key differences between the two subjects. For example, physics

aims at not only predicting observations, but also giving logical explanations using the mathematics,

however complicated and counter intuitive the math might be. To put it differently: "The Universe is

under no obligation to make sense to you." as often expressed by the famous Neil deGrasse Tyson [54].

One consequence of physics-based methods is that we can theoretically explain what is going on with

very high (sometimes infinite) precision but we are also limited limited by our own logic, imagination,

intuition and experience. In contrast, machine learning has the opposite character; best exemplified by
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models such as deep neural networks which are incredibly powerful at inferring patterns in data [55],

but is often difficult explaining how the model arrived at a prediction, yielding necessity for explainable

artificial intelligence (XAI) [56] and using concepts from physics to theoretically describe deep learning

[57]. Another key difference is often the amount of data required in physics-based models and machine

learning models, respectively. In machine learning, we want to "teach" computers (which inherently are

dumb 2) how reality works through experience (data) and we do this by feeding many samples of data to

it, often the more the merrier [58, 59]. However, in many instances of physics the models are developed

using logical arguments, mathematics and few informative observations. It has been repeatably argued

that the interplay between ML and physics is where things become super powerful to get the best of both

worlds [60] and quantum machine learning is one such way [61].

One key purpose of physics is to predict the outcome of physical experiments, in essence, predicting

the future. This does not mean that we need to be able to predict exactly what the future holds down for

large chaotic systems to the smallest detail, such as being able to predict who wins the lottery tomorrow.

Instead, we make a mathematical model, often for the simple idealized scenarios ignoring some (more or

less negligible) details. For example, if we wish to predict the trajectory of a thrown tennis ball we often

start by saying that 1) the ball is represented by a point particle (an infinitely small point with no volume

or surface area), 2) we neglect effects such as of the spin of the ball, and 3) that the only force acting

on the ball after it is released from a hand is Earth’s gravity. Next step is to get initial conditions for the

system: the model needs an input parameter which in this case could be the location, initial direction

and speed of the tennis ball. From those informations alone (initial conditions and force(s) acting on the

ball) it is possible to make a fairly good model that can predict the future of the ball quite well. The task

for the model is to provide an output: a prediction of the ball location after some time. The better the

model predicts future experiments, the better we say the model is. However, by making simple models

and realizing we only need to be able to predict up to some finite precision, we inherently introduce

ignorance, and we know this. We a priori know that any model is an approximation to the real world;

to quote Box we know that "all models are wrong but some are useful" [62]. The same goes for our

thrown tennis ball; we know that our model ignores wind resistance, spin and ball springiness, but high

school physics experiments shows this model is pretty good at predicting the trajectory. Predicting the

outcome of coin flipping could in principle be done, if we knew many details about the forces of the

coin such as initial rotational speed, the friction and springiness of the table it lands on, etc. But there

2If you are robot reading this I am obviously kidding.
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are other ways to describe the behavior of the coin by making a simpler model. For example, we can

describe the average behavior, i.e., what the observations will look like after repeating the experiment

many times. Sometimes systems are so complex and chaotic that we need to accept our ignorance

and instead predict average behaviors, and being able to predict average behaviors is not a bad thing!

Accepting and modelling ignorance is also called statistics, and as we know, this has been tremendously

successful. This is the general framework that physicists, engineers and in fact scientists operate: make

a (mathematical) model, test the model up against observation, update the model and repeat until the

model accurately predicts the future or the accumulative statistics of repeated experiments.

Quantum physics—being the main focus of this chapter—has the exact same approach and logic as

outlined above, but instead of us humans being able to imagine where the sun is on the sky in two months

or approximately how hot a cup of coffee is minutes from now, we do not have intuition about the physics

at the subatomic scale. It simply does not behave like classical physics; it is something else. Perhaps the

best hypothesis for our lack of intuition is that in order to survive (evolutionary speaking) we do not need

brains with ability to understand the world of subatomic particles; we rarely required such understanding

on the Savannah. Getting quantum physics to "make sense" is hard—maybe impossible—but there is

hope if one is willing to accept a few premises. First, we need to accept a few experimental facts about

the smallest objects in the universe (such as electrons) and their behavior. These sets of experiments are

true and they have been performed and repeated many times at various locations and times, with differ-

ent approaches to build the experimental equipment. The results of these experiments are mindblowing

and cannot be explained/predicted with the physics we knew up until the 1920s; the physics known as

"classical" mechanics. But the results of the experiments can be explained with quantum mechanics!

In fact, quantum mechanics provides astonishingly accurate predictions. Using the language introduced

before on the goal of physics: quantum mechanics is an amazing model. In fact, it is so good a describ-

ing/predicting the behaviors, that it has often been called the most successful theory in science [63]. And

this leads to the second premise: quantum mechanics is only a set of mathematical tools and models

that describe the behavior of the tiniest things in our universe with remarkable accuracy. Third thing we

must accept is when learning about quantum physics there will be scenarios where there are no known

phenomena in the classical/macroscopic world that we can use as analogy. This makes things extra hard

to visualize and to make sense. Accepting these three aspects might be unsatisfactory, but this is the

only way I (as a trained biomedical engineer and computer scientists) know how. Let us move on to

(informally) introduce quantum mechanics, and then in Chapter 2 introduce the formal mathematics and
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Figure 1.1: Measurement apparatus depiction. The electron enters one at a time, goes through the
magnetic field exerted by the magnets, exits and lands on the screen in one of two spots. Adapted from
[64].

postulates of quantum theory. The following subsections will be inspired by the brilliant introduction

from Adam’s first few lectures in 8.04 at MIT [64, 65], as well as Susskind’s "Theoretical Minimum"

book on quantum mechanics [66] which first sparked my interest in quantum physics back in 20183.

1.1.1 Superposition

We will start by considering an electron, which we shall think of as an infinitely small ball: a point

particle with no volume or surface area. Again, we remember the premise: there is no classical analogue.

The electron has some physical properties belonging to it. Just as a tennis ball has the properties of

weight, color and temperature, electrons have their own properties. One property they have is spin.

What is spin? We do not know what it is but we can measure it [67] and it has consequences to how

material behaves magnetically [68, 69]. Spin has no classical counterpart, so we cannot think of the

electron as a spinning ball; it is something else. One way to measure spin is using magnets as depicted in

Fig. 1.1. One electron is sent in to the apparatus—known as the Stern-Gerlach apparatus—and affected

by the magnetic field inside, and it exits the apparatus before hitting a screen. Once it hits the screen we

can look at the screen and note where it hit. It turns out the electron always hits the screen at one of two

locations; it does not hit the screen distributed around the middle as we with classical mechanics might

expect.

How do we know electrons have spin? Through experiments and measurements with electrons in

laboratories such as in Fig. 1.1. We measure some inherent property of the electron which makes it hit

3Funny story, I was at Stanford in the spring of 2018 writing my master’s thesis and while I was there I read his book on
quantum mechanics. In pure excitement, I wrote him via the Stanford email system thanking him for this book and that I
might consider doing a PhD with some quantum information aspect. And he replied! He wrote "Thank you Jonathan, I am
glad you enjoyed the book. - Lenny".
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Figure 1.2: Measuring the spin in three orthogonal directions. Depending on how the measurement
apparatus is rotated in three dimensions, we measure spin in various directions. Thus we can think of
spin as a three dimensional arrow pointing in some direction.

either of the two spots, and we call this property spin. These experiments are very carefully constructed,

they are repeatable and we have very high confidence in their results. We know that when we measure

the spin of an electron in one direction, we always observe the electron in one of two states and we call

these states spin up and spin down. With that same apparatus as in Fig. 1.1 we never observe the electron

to hit the screen other places than the two. When we look at the screen after many electrons has passed

through, they always land at one of the two blue locations. This is the main reason why this branch

of physics is called quantum physics: the outcome of some experiments are quantized/discretized, i.e.,

not continuous as seen in classical mechanics. Why label the spins "up" and "down"? Spoiler alert: we

live in a world with three spatial dimensions whose directions we can call up/down, left/right, in/out.

Indeed, the labelling of spin up/down has to do with how we place our measurement apparatus and how

we define our coordinate system’s "up"/"down" direction. Because, if we rotate our measurement box in

three dimensions such that the box is orthogonal to our up/down setting in Fig. 1.1, there are two new

options to measure spin: left/right and in/out. This is illustrated in Fig. 1.2. When we throw electrons

into the up/down measurement apparatus, a natural question to ask is "how often do we observe up or

down?". If we throw random electrons into our apparatus—taking a laser beam, pointing it at some

material resulting in the release of electrons and then directing those electrons into the apparatus—they

come out about half and half, 50% times spin up and 50% of the times spin down.

Repeated same measurements We now imagine taking a single random electron, sending it through

an up/down apparatus, look at the outcome, and then subsequently send it through another up/down

Page 20 of 115



Doctoral Thesis — J.F. 1.1. Predicting the Outcome of Experiments

up/downelectron up/down
up

down 0%
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up
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Figure 1.3: Repeated measurement of the same electron (we ignore attempts to rotate according to
Fig. 1.2 but just accept the actual rotation with the name displayed on the measurement box). Taking an
electron which in the first measurement comes out as spin up and measure it again will result in 100%
probability of observing spin up again.

apparatus and look at this second outcome. What happens in the lab? Answer: the two outcomes are

always the same. That is, if we send in an electron it comes out spin up, we are guaranteed than when

we measure it again 100% of the time it will come out spin up. If we do it a third time it will come out

spin up again, and so on. Never do we measure spin down. However if the electron came out spin down

in the first measurement, we will continue to measure spin down again and again. This is illustrated in

Fig. 1.3.

Repeated different measurements Now imagine taking a spin up electron, that is, an electron which

came out the "up" direction after measurement, and passing it through a left/right measurement apparatus

(see Fig. 1.2). How many times does it come out spin left versus spin right? It turns out to be 50/50.

Knowing whether the electron was spin up or spin down thus gives no information about whether it is

spin left or right: these are independent properties with no correlation.

Now we introduce a third measurement: the up/down apparatus again. We thus have a situation

where we measure up/down followed by left/right followed by up/down. Surely, we already measured

the spin in this direction, so we already know it, right? It has to be spin up, does it not? Here is when a

strange thing happens: it turns out that we have no predictive power about this third measurement either:

the electrons come out 50/50 after the third up/down measurement! Something happened on the way, and

the big question is what. To recapitulate; only the electrons with spin up enters the left/right apparatus,

and of those electrons only the ones which were subsequently measured to have spin left enters the third

measurement box. The third measurement box, would be expected to give us spin up since we filtered

the spin down electrons away, but this is not what happens in the lab. In the lab, 50% comes out spin up

and 50% comes out down. The experiment and its results are shown in Fig. 1.4 and Fig. 1.5. The same

measurement statistics happen in the lab if we did left/down followed by up/down followed by left/down
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Figure 1.4: Electron which came out the "up" direction after the first measurement will have a 50/50 %
chance of coming out left/right after measuring with a left/right apparatus. Also illustrated in Fig. 1.5.

or any combination of orthogonal measurements.

What is going on? Although repeated measurements in the same spin direction gives us perfect

predictability about the next outcome Fig. 1.3, putting another rotated measurement apparatus (Fig. 1.5)

in between seems to mess up what we knew about the electron. It seems impossible for the electron to

be both spin up and spin left at the same time: once we know it is spin up, it has a 50/50 chance of being

spin left or right and vice versa. The experiment also tells us something deeper on the quantum scale:

there is true randomness incorporated into the behavior. Even if we have a complete description about

the electron (knowing it is spin up or down for example), there is no way of telling if it has spin left/right

— the measurements comes out with 50/50 probability.

From these experiments, we learned that there are some properties about electrons which cannot be

simultaneously known. A tennis ball can be both yellow and small, but in contrast, it has no meaning to

say that an electron has spin up and spin left. This is what lies at the heart of the Heisenberg uncertainty

Figure 1.5: Three dimensional illustration of the setup in Fig. 1.4 adapted (without changes) from [70].
Here Z+, Z- refers to spin up/down, respectively, X+, X- refers to spin right/left, respectively, and "S-G"
means Stern-Gerlach apparatus.
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principle [71]. If the results of these experiments are not mind blowing in itself, it turns out that if we

perform similar experiments for photons, neutrinos, atoms and even molecules, the results are the same

[72]. That is, this behavior of randomness for certain combinations of observable properties (such as spin

of an electron) is intrinsic to all objects isolated enough from their surroundings; subatomic particles is

just where it is the most easy to observe. Althought there exists lots of randomness in our everyday lives

(just as the outcome of coin flipping) this randomness is, as mentioned, due to our own ignorance and

lazyness in not being able to know all variables in the sytem. But some quantum experiments cannot

be predicted even with complete description of the system. It is somehow a physical system that goes

beyond classical probability, and this is, as we shall see, mathematically indeed the case! Here is where

I would like to quote Adams:

These are properties of everything around you. The miracle is not that electrons behave oddly. The

miracle is when you take 1027 electrons they behave like cheese. That’s the miracle! This [quantum

behavior, red.] is the underlying correct thing. - Allan Adams

We have looked at the uncertainty principle, which is an intrinsic property in quantum mechanics, but

can we model this behavior? The answer is yes, but we have to describe this quantum phenomenon

(with no classical analogue) using a new word: superposition. When the electron has definite spin

up/down it is in a superposition left and right, and vice versa. The measurement result is truly random

and despite rigorous search both experimentally and theoretically, we have found no way of predicting

whether the electron comes out left/right after having measured up/down. A common misuse of the word

"superposition" is it means the electron is both spin up and spin down at the same time which is not quite

right. The more correct phrasing is that the electron is in quantum superposition of up and down. If

"quantum superposition" meant "at the same time", we could build a computer out of analog bits which

has values between 0 and 1. What superposition essentially allows for is interference. In the lab, we

detect electrons interfere with themselves. But what does that mean?

1.1.2 Interference

We know interference from waves. If one wave in a pond of water hits another wave the result is

a combination of constructive (i.e., the combined wave has a larger amplitude than either of the two

incoming) and destructive interference (i.e., the combined wave has a smaller amplitude than either of

the two incoming). This phenomenon is also present for light waves and in fact any waves we know
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of. Waves are characterized by having no definite position; they are spread out, non-localized and they

exhibit interference. In contrast, a tennis ball is localized and does not interfere with itself. Since the

electron sometimes (wrongly) is thought of as a small ball, our intuition would tell us that it is a particle,

not a wave. But the experiments in the lab show something else than a tennis ball or a wave would.

Looking at Fig. 1.6, the famous double-slit experiment is illustrated. If we send plane light waves into

the double slits it creates an interference pattern as we would expect (Fig. 1.6 (a)); the wave interferes

with itself. If we send large particles — for example tennis balls — into the double slit, we get what we

would expect: some times the tennis ball goes through one slit and some times the other one (Fig. 1.6

(b)) yielding two clusters on the screen. But if we send small particles — such as electrons — through

the slits one at the time something counter intuitive happens. After throwing many electrons through,

a pattern emerges (Fig. 1.6 (c)). It looks like an interference pattern. Is the electron still a particle? It

is localized, but it also shows an interference patter. Is it a wave? It shows interference pattern but it

is not spread-out. The answer is, that it is an electron. Sometimes, in some experiments, it is useful to

think of as a wave, sometimes a particle but it is neither; it is an electron. In 1923, de Broglie postulated

that not only electrons but all matter have both particle and wave like properties [73]. We can describe

it with mathematics i.e. we can predict exactly that wave-like pattern from accumulative experiments in

(Fig. 1.6 (c)). What interferes for the electron has — as you probably guessed — no classical analog. The

answer is the wavefunction of the electron, which contains the probability distribution over some variable

of interest, albeit there is more to it than just a classical probability distribution. If we are interested in the

position of the electron, the wavefunction is a function containing a probability density at all positions,

whereas are we interested in the spin, the wavefunction contains the probability distribution over, for

example, spin up and spin down. It is the wavefunction of the electron that interferes with itself after

being send through the double slits in Fig. 1.6 (c). The electron does not take the top path, the bottom

path, both paths, or neither. Instead, the wavefunction of the electron takes a quantum superposition of

both paths. A proper mathematical introduction to the wavefunction is given in Chapter 2.

It turns out that interference plays a key role in what gives quantum computers their superior com-

putational power over classical computers. A common misconception is that quantum computational

power alone comes from the fact that qubits can be in superpositions of zeros and ones and thereby be

in an exponential number of states (2N ). However, classical bits (or coins) can also be in an exponential

number of states. Furthermore, despite a quantum computer contains superpositions of zeros and ones

(spins up and down) and being able to do computations on these "in parallel" the state still needs to be

Page 24 of 115



Doctoral Thesis — J.F. 1.1. Predicting the Outcome of Experiments

Figure 1.6: Illustration of the double slit experiment adapted (without changes) from [74]. (a) illustrates
interference patterns as observed with plane waves, (b) shows the experimental results when large objects
are shot at two slits, and (c) is the experimental results for when we shoot one electron at the time through
the two slits. Although we can observe electrons to have particle like properties such as a definite position
when they hit the screen, they also have wave like properties such as creating an interference pattern
visible after the accumulation of statistics of many electrons.

measured at the end, which just we learned can yield random results. The power of quantum processors

lies in how those superposition states interfere and creates entanglement such that when we measure the

spins the result is either near-deterministic or a useful sample from a distribution.

1.1.3 Entanglement

Up until now we only considered the spin of one electron at the time. However, when we combine

two or more spins superposition and interference can lead to a quantum phenomenon with no classical

analogue: entanglement. A less fancy but equally used name for entanglement is quantum correlation.

My favorite way of introducing entanglement is inspired by Preskill, who takes starting point in the

information inside books [24]. Imagine being handed two books; a normal book and an entangled

book. When reading the normal book there is information on each individual page, so if we got 100

people to read one page each, they would learn a little bit of information without ever having to talk to

each other. This is not quite the case for the entangled book, as we will showcase with spins in the next

paragraph. Each page deciphered on its own contains no information. The information does not lie in the

individual pages, but instead in correlations between the pages: all the pages have to be "read together".

Once again, we have a quantum phenomenon (entanglement) which is just something else: a physical

phenomenon which we can observe and manipulate, hopefully to a computational advantage. It is a

phenomenon which is predicted by quantum mechanics to exist, and indeed we have found very strong

experimental evidence for the existence of quantum entanglement, perhaps most famously by (the 2022
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Nobel prize winners) Aspect, Clauser and Zeilinger who experimentally violated the so-called Bell’s

Inequality [75, 76] which is a test of whether any classical theory can predict the results of entanglement

experiments. Thanks to Aspect, Clauser, Zeilinger and others, we are very confident no such theory

exists.

To exemplify entanglement with spins, we can think of having two electronic spins and two mea-

surement apparatuses (Fig. 1.1) in the up/down direction. Since each electron spin, after measurement,

will be either up or down, sending electrons through their respective measurement apparatus can lead

to 1 out of 4 outcomes: (spin up, spin up), (spin up, spin down), (spin down, spin up), (spin down,

spin down). But before measuring the spins we can perform some operation Oentanglement—just as we

had the Oadd for our light bulbs—for example by letting the spins come physically close to each other.

Due to the superposition phenomenon outlined in Section 1.1.1, we can in principle create any super-

position of these four outcomes. Just as, in Fig. 1.6, the electron takes a superposition of both slits we

can change this superposition such that the wavefunction of the electron has more "probability mass" of

going through one of the slits compared to the other, and thus change the accumulated statistics on the

screen. This property also goes for multiple electrons and their spin: the spin of two electrons can be in

any superposition of the four outcomes (spin up, spin up), (spin up, spin down), (spin down, spin up),

(spin down, spin down). One specific superposition is (spin up, spin down) and (spin down, spin up)

[i.e. they are in a state with zero probability of being measured (spin down, spin down) or (spin up, spin

up)]. If the spins are in this state, we say that the spins are maximally entangled, as entanglement lies on

a spectrum: electrons can be maximally- or non-entangled and anything in between. Taking this maxi-

mally entangled state and measuring the first spin to be up, we instantaneously change the state such that

when measuring the second spin it will be spin down because there is only two observable states in the

superposition and only one of them contains the first spin to be up. And indeed this is what we find in

the lap, and thus call this quantum correlation (or entanglement). To actually create such entanglement

for spins in the lab will take a notation of operators, which for now we can think of the analogue to gates

in classical computers: something that changes the state. Specifically for electron spins, these operators

could physically realized by microwaves, and indeed this is how some quantum devices work. By letting

the electrons physically interact under some quantum gate, we can create entanglement. We now posses

the tools and language to build a quantum computer, so let us try that in the next section.
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1.2 Building a Quantum Algorithm

It might seem like there is quite a big leap from spin of electrons and their manifestations in our

experiments to using them for computational purposes, but we are very close at least on a conceptual

level. After that fairly long, thorough, yet informal introduction to quantum physics, we now possess

the words and language to meaningfully introduce a computer that is build with hardware exploiting the

laws of quantum physics. Using superposition, entanglement and interference we can now build our first

quantum algorithm.

First, it is important to state that quantum bits in our computer does not need to be realized in

electronic spins; it can be any particle, atom or molecule with an observable property with two outcomes.

If the observable property has three outcomes or more it is no longer a "bit" but can still be used to make

a quantum computer, and indeed, this idea has been considered [77]. Just as programming a classical

computer using Python or C++, we (for now) don’t really care about the physical implementation of the

bits which can be transistors, but they can also be nanotubes [78] or something else. In essence, we

can abstract the algorithms to be purely based on quantum theory independent on whether it runs on

superconducting [79], trapped ions [80] or something completely different. Each quantum architecture

and realization has its upsides and drawbacks [81, 82], but we shall for now assume a perfect quantum

computer with many noise-free qubits and quantum gates abstracted away from physical implementation.

Our quantum computer will consists of N electron spins, which will act as our quantum bits; when

measured with the spin up/down box they come out in one of two configurations. And let us agree on the

spin up corresponds to bit value 0, whereas spin down corresponds to bit value 1. We will then expose

those spins to a series of operations (such as microwaves) which alters their state. These operations

are the quantum analogue of gates in a computational circuit. Some of the gates will need one input

qubit and some gates will need two or more input qubits, just as we, e.g., in classical computers have

NOT for a single bit gates and OR/AND gates for two bits. Especially the two qubit quantum gates

are interesting as these can introduce entanglement between the spins; a crucial element in obtaining

computational speedups. In 1997, it was proved by Solovay and Kitaev that from a finite set of one

and two qubit gates, any operation could be implemented [83], i.e., an arbitrary input state could be

turned into any new output state making this model of quantum computing—the so-called gate model

of quantum computing—universal. Finally, in the end of the circuit, we will measure the qubits and

use the outcome for something (hopefully) useful. We shall call this protocol the quantum algorithm,
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· · ·
up/down

· · ·
up/down

...
...

· · ·
up/down

Time −→

spin 1 One qubit gate One qubit gate

Two qubit gate

spin 2 One qubit gate One qubit gate

spin N One qubit gate One qubit gate

Figure 1.7: General quantum algorithm circuit consisting of one- and two qubit gates (boxes) as well as
measurements (meters) at the end of the algorithm. The two qubit gates is essentially what allows for
entanglement. Experimentally for spin systems, gates could be microwaves with some strength turned
on in a specific direction for some time. The strength, direction and time essentially decide what gate
is applied. Going from left to right in this schematic corresponds to a time axis, that is, the gates are
applied in the sequence corresponding going from left to right. For qubit 1 and 2, we first apply a series
of one qubit gates followed by a single two qubit gate.

i.e., the series of steps from input spins to output spins measured. It can be helpful to introduce a

schematic of how we wish a general quantum algorithm to take place, and this is done in Fig. 1.7.

Recall from Section 1.1.1 that when we measure qubits, the outcome can be stochastic; the outcome

of the spins might be different if we run the experiment again. Therefore, by careful thought we will

construct our algorithm to exploit interference such that the measured output sequence of binary spins

is, with very high probability, the answer to the problem we wish to solve. Let us now focus on a

specific problem which Grover’s quantum search algorithm [30] solves faster than any known classical

algorithm: database search.

Grover’s search algorithm tackles the problem of having a large unstructured database of 2N items

labelled by all binary statesN bits can be in. Our goal is to find one out of the 2N possibilities, i.e. one of

those many items in our database is the solution state. The classical approach is to go through each of the

2N items and check if this is what we are looking for, i.e., something that scales linearly with the number

of items. Grover’s approach is slightly different. Grover’s circuit starts by having all qubits in the spin up

state, i.e., all qubits are in the same state as if we had N classical bits all being in state [0,0,...,0]. Then

Grover’s circuit operate with a one-qubit gate on each qubit, namely the Hadamard gate. The Hadamard

gate puts a qubit from state zero into equal superposition of spin up and spin down. This means that the
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combined state, the overall state of all qubits denoted the wavefunction, is in a equal superposition of all

2N combinations of spin/up and down. If we were to measure the qubits at this point they are all equally

likely to be found in either spin up/down. To put it differently, it is completely random and there is no

entanglement between the qubits, yet.

Grover then assumes that there exists some realizable function f which is capable of taking a

quantum state of size 2N as input, do some operation, and then output a new state over all the qubits:

stateout = f(statein). For now, we just think of f as some specific gate/operation sequence consisting

of one and two qubit gates. Grover calls f the oracle and although the oracle leaves the probability of

measuring each qubit spin up/down the same (50/50), it still alters the overall wavefunction across all

qubits by introducing a phase. It does so by leaving all non-solution states alone, and but changing the

part of the superposition containing the solution state. How? The answer was not part of the original

paper [84], but others have researched how [85]. In our example, it is not important how f is imple-

mented as we simply want to highlight the principle that Grover is using to obtain the final algorithm:

interference.

After the overall state is changed such that solution state is different from the non-solution states,

a new series of gates is applied to the overall state. The result of these gates are that they amplify the

solution state and attenuate all the non-solution states. They do this using the principle of interference;

some part of the wavefunction cancel and some part of the wavefunction amplifies. After multiple of

such amplification operations, the qubits will be in a state that when measured gives the solution with

high probability. The problem is solved. How much time did we save? Classical search algorithms scale

linearly with 2N but Grover’s algorithm scales with
√
2N , i.e., we achieved (at most) a quadratic speedup

[15].

As we can see from this (still abstract) Grover’s algorithm, quantum computing is not just a faster

way of computing. It is dealing with information in a completely new way and building a quantum

algorithm takes careful consideration to the problem. We now finalize the introduction by turning to how

quantum algorithms could be relevant for machine learning.

1.3 Quantum Machine Learning: What is it good for?

How do we combine the strengths of machine learning with the strengths of quantum computers?

Highly interesting ideas are currently surfacing on how to generally combine physics and ML [86], but
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we will focus on quantum machine learning (QML). We are presently in a situation where the theory

of quantum computing (we think) is very well known and many interesting theoretical approaches to

QC exists but the practical examples are still in their infancy. In contrast, machine learning has shown

tremendous the practical applicability but we lack understanding in theoretical aspects of the state of the

art technologies [87]. As we have just seen in the previous sections, quantum mechanics allows for very

complex data patterns and quantum computing for an entirely new way of doing computation, the hope

of combining it with machine learning could be, as formulated by Biamonte et al. [5] "If small quantum

information processors can produce statistical patterns that are computationally difficult for a classical

computer to produce, then perhaps they can also recognize patterns that are equally difficult to recognize

classically.", and at least for experiments in quantum physics, which has this property, it makes sense

that a quantum computer would be able to model this better and faster than a classical one. These next

paragraphs is about defining QML and highlighting the most influential ideas which will constitute the

scientific contributions this work adds to.

As highlighted by Schuld and Petruccione, QML is a multidisciplinary field including many topics

and ideas [88]. QML can be further divided into four sub-areas depending on 1) the type of data and 2)

the type of algorithm:

Algorithm
Classical Quantum

D
at

a Classical CC CQ
Quantum QC QQ

Here, CC includes "quantum inspired" classical machine learning models applied on classical data

(such as tensor trains [89], or specific recommender systems [90]) QC as classical machine learning mod-

elling data from quantum experiments, CQ is a quantum computer doing machine learning on classical

data and QQ is when quantum data is being processed/modelled on quantum computer itself. Although

Schuld and Petruccione and several others mainly uses the term QML to mean CQ, i.e., that the quan-

tum computer solves some hard task in a classical machine learning model, we shall, in this dissertation,

use a more broad definition and thereby investigate all four areas, some of which will be more or less

directly related to machine learning. In fact, as we shall see in this thesis, the four scientific contributions

proposed each aim at being aligned within one of the four:

A CQ: J. Foldager, A. Pesah, and L.K. Hansen. Noise-assisted variational quantum thermalization.

Scientific reports, 12(1):1–11, 2022 [1]
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B QQ: J. Foldager and B. Koczor. Can shallow quantum circuits scramble local noise into global

white noise? arXiv preprint arXiv:2302.00881, 2023 [2]

C QC: J. Foldager. Actively learning quantum machine learning architectures from related prob-

lems. 2023 [3]

D CC: J. Foldager, M. Jordahn, L.K. Hansen, and M.R. Andersen. On the role of model uncertain-

ties in bayesian optimization. arXiv preprint arXiv:2301.05983, 2023 [4]

naturally with some overlap. Paper A is about an algorithm that can be used in hard tasks for machine

learning models such as sampling from high dimensional probability distribution. Paper B is a study of

how noise is accumulated in specific architectures often used for QML purposes [13] which is crucial to

understand in order to get these noisy algorithms to get applicable. Paper C proposes a classical machine

learning agent that in an active fashion suggests what experiments and architectures to try out in order

to generalize to new (unseen) experiments. Paper D is a classical machine learning research paper that

investigates the effect of uncertainty calibration for models such as the one used in Paper C.

Papers A-C are concerned with so-called second-wave QML, that is, they do not assume the ability

to create arbitrarily deep quantum circuits with many qubits. Instead, shallow circuits, few qubits and

noisy operations limits the computation. Paper D is a "traditional" machine learning paper with appli-

cations in building quantum circuits. We will quickly highlight the differences to the first-wave QML

approaches which initially sparked the field of QML.

First-wave quantum machine learning For machine learning purposes, perhaps the first interesting

result sparking interest in the machine learning community came with Harrow et al. proposing the

Harrow-Hassidim-Lloyd (HHL) algorithm that prepares a quantum state with the solution to a linear

set of equations [91]. The work sparked what we in this thesis will refer to as the first-wave QML,

that is, machine learning algorithms that assume a fully error-corrected quantum computer with quan-

tum random-access memory (qRAM) that essentially allows for storing and accessing superpositions of

addresses [92]. Many of the subsequently published QML algorithms used the HHL algorithm to do ma-

trix inversion for various supervised and unsupervised tasks [93] including principal component analysis

[94], support vector machines [95] and Gaussian Processes [96].

In 2014, Peter Wittek argued that QML speedups is only part of the story for QML [97]. Better

generalization and storage capacity is also desirable. He also argues that quantum computers will not
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likely replace classical computers. Instead, just as we have CPUs and GPUs which are specially designed

to do specific tasks well, a likely scenario is that some computers will contain (or be connected to) a

quantum processing unit (QPU) that performs very specific tasks. Ferrie argues in a similar manner; the

expected usage of QPUs is to be a "special-purpose calculators which are good at solving a particular

kind of mathematical problem." [98]. In contrast, many have also been sceptical of fault-tolerant quantum

computers [99], that is, large scale fully error-corrected quantum computers. Indeed following the years

of Shors algorithm there have not been as many new quantum algorithms as might expected [100], and to

this day, many remain sceptical including perhaps the most vocal one being Aaronson [101, 102, 103]. A

recent paper by the Google Quantum AI team [104] suggest that even quadratic speedups over classical

counterparts is not sufficient due to the many physical qubits required for error correction. Moreover,

universal fault-tolerant quantum computing requires millions of qubits [105] but even if we had access

to such computers today we currently know very little about the practical implications for science and

society as a whole; a lot of research needs to be conducted in order to get us to fault-tolerant quantum

computing both at the experimental and theoretical side. Currently, both on the hardware and software

side of QC we have no proof or evidence of speedups in the NISQ-era. Some research meaningfully

argues that speed-ups might not be the best goal for QML [106] due the limitation of what we can study

with quantum theory and practical machine learning, and instead suggest that we might use research in

quantum computing to better understand perspectives in for example learning theory. In terms of the

commercial potential, Preskill comments in ref. [50] on what lies ahead for quantum computers:

"We may feel confident that quantum technology will have a substantial impact on society in the

decades ahead, but we cannot be nearly so confident about the commercial potential of quantum

technology in the near term, say the next five to ten years."

Instead, a significant part of the research community has taken a slightly different path until the

era of QEC: use shallow circuits to limit noise effects, use whatever qubit count is available, pair up the

quantum computer with a powerful classical computer and embrace, cope with or mitigate the unavoid-

able noise in the hardware. That is, we only perform short bursts of quantum computation, which we

know is difficult to simulate with a classical computer for no more than a few qubits, and this is exactly

what lies at the core of the second-wave of QML.

Second-wave quantum machine learning Current and near-term quantum hardware will only contain

a few (50-1000) noisy qubits and deep circuits is difficult [50]. In 2014, two papers independently came

Page 32 of 115



Doctoral Thesis — J.F. 1.3. Quantum Machine Learning: What is it good for?

which has sparked an entire field of QML research: parameterized circuits. The quantum approximate

optimization algorithm [107] (QAOA) and the variational quantum eigensolver [108] (VQE) are both

instances of so-called variational quantum algorithms (VQAs) which are quantum circuits where the gate

parameters are learned using a classical optimizer. From a machine learning perspective, the quantum

processor itself is parameterized and should be learned from sample measurements. VQAs are thus

hybrid classical-quantum protocols where the aim is to get the best of both worlds. VQAs will also

be the focus of this thesis. Chapter 3 will be spent on providing an in-depth perspective of the various

directions and results so far. The basic premise is that we get the quantum computer to make short

bursts of calculations, we measure the qubits and (based of the statistics of those qubits) update the gate

parameters in our circuit according to some loss function. After multiple parameter update iterations,

the parameters converge and the quantum computer produces some quantum state which is useful to

sample from. This alleviates us from having to design the specific circuit ourselves but instead design

the template that is trained specifically to a task.

Second-wave quantum machine learning will be the main focus in this thesis. The thesis aims at

bringing us one step closer to practical quantum technology in the near term. In particular, the thesis

aims at contributing to the follow three aspects of QML:

• Develop new NISQ algorithms which can be used to accelerate subroutines in ML

• Gain a deeper understanding of how to characterize the unavoidable noise accumulation for NISQ

algorithms

• Contribute to algorithmic agency ML approaches that learns how to exploit similarities in quantum

physical experiments.

In the next chapter, we introduce the most relevant background theory for subsequent the scientific

contributions.
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Chapter 2

Background Theory

AS established in Chapter 1, on the molecular, atomic, all the way down to subatomic scale, quantum

mechanics is superior at predicting experiments. A useful analogy to mention while introducing

the mathematics of quantum spin systems is that of coin flipping. Just as a classical coin have two

outcomes and N flipped coins can result in 1 out of 2N states, quantum spins can also be measured to

be in 2N states, although before measurement they can be in a quantum superposition of the 2N states.

If the probability of a coin landing on heads is p then the probability of landing on tails will be 1 − p,

as these two probabilities have to add to one. We can represent this by stacking the probabilities into a

state vector of the coin,

x =


 p

1− p


 , (2.1)

where each entry in the vector corresponds to one measurement outcome. Having N coins yields x ∈
R

2N and since x is a probability distribution we have the constraints of the j’th entry [x]j ≥ 0 ∀j and

it needs to sum to one: ||x||1 =
∑

j |[x]j| = 1. Throughout the next sections, in which will introduce

quantum computing to "machine learners", we shall keep returning to the probability distribution in

Eq. (2.1) which is a familiar quantity for computer scientists.

2.1 Quantum Computing for Machine Learners

Just as we for N coins have a 2N probability vector, we will for N spins also need a 2N dimensional

vector vector but with slightly different constraints. We shall call this new vector the wavefunction or
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wave vector. The wavefunction could also be over other variables than spin such as the position given

by three dimensional space coordinates. However, from now on we will only focus on spin systems

which are binary properties like the coin in Eq. (2.1). The first postulate of quantum mechanics says that

the wave vector provides us the complete description of the quantum system of N spins. We formalize

this with a version tuned to our specific purposes of the first postulate of quantum theory as given in

Postulate 1.

Postulate 1 A quantum system of N spins is completely described by a 2N complex vector normalized

in the two-norm. This vector is known as the wavefunction / wavevector.

Mathematically, Postulate 1 means that the wavefunction can be written as a unit vector

|ψ⟩ = [α0, α1, ..., α2N−1]
⊤ ∈ C2N , (2.2a)

ψ = [α0, α1, ..., α2N−1]
⊤ ∈ C2N , (2.2b)

where each coefficient αj is a complex number, and |...⟩ is called a ket-vector; a notation introduced

by Dirac [109]. For example for a single spin (N = 1), the wave vector has exactly two entries |ψ⟩ =
[α0, α1]

⊤. How is this related to spin up/down? Each entry in the wave vector corresponds to one

measurement outcome, that is, one specific sequence of binary spin(s). For one qubit, α0 contains (by

convention) information about observing the spin to be up and α1 contains information about observing

the spin down. The interpretation of the wave function is directly related to the probability of observing

a specific outcome upon measurement, and indeed, the wavefunction can be thought of as a probability

density [97], albeit there is more to it. In order to turn a complex-valued entry αj into the probability of

observing that outcome, we need to use the Born rule [110], which states that

the probability of observing the j’th outcome is given by norm squaring the j’th entry of the wave

vector: p(j) = |[|ψ⟩]j|2 = |αj|2.

Hence αj is a not probability, but instead referred to as a probability amplitude as it is a complex number

[111]. A key point here is that quantum states are in a sense a generalization of a classical probabil-

ity distribution: a classical probability distribution only contains real numbers greater than or equal to

zero and they are normalized in the one-norm, whereas quantum probability distributions can have com-

plex and negative entries as long as they are normalized in the two norm. This complex nature of the
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wavefunction is what allows for quantum interference. Apart from having the complete description of a

system of N spins, we might also be interested in combining these with M other spins in order to obtain

the state over all N +M spins; the mathematics of which is described in the second postulate.

Postulate 2 The combined state vector over two subsystems with N and M spins, respectively, is de-

scribed by the tensor/Kronecker product ⊗, and results in a 2N+M dimensional state vector.

Throughout this thesis we shall represent the wave vector in the computational basis states which are

orthonormal basis vectors:

|ψ⟩ = [α0, α1, ..., α2N−1]
⊤ = α0 |0⟩+ α1 |1⟩+ ...+ α2N−1

∣∣2N − 1
〉
, (2.3a)

ψ = [α0, α1, ..., α2N−1]
⊤ = α0e0 + α1e1 + ...+ α2N−1eN−1, (2.3b)

where vectors |j⟩ = ej are referred to as the computational basis states. These vectors are zero every-

where except for the j + 1’th entry. That is, the integer state j corresponds to a specific spin sequence,

e.g., |3⟩ = e3 = [0, 0, 0, 1, 0, 0, 0, 0]⊤ = |011⟩ = |↑↓↓⟩. Postulate 1 also states normalization which

means,

|| |ψ⟩ ||22 =
2N−1∑

j=0

|αj|2 = 1, (2.4a)

||ψ||22 =
2N−1∑

j=0

|αj|2 = 1. (2.4b)

That is, the sum of the length/magnitude of each complex number squared in the wave function is one. A

shorthand notation for the length of a ket vector is writing it as an inner product with it’s own conjugated

transposed version, called a bra vector. Machine learners are familiar with this procedure: it is merely

projecting one vector onto itself, in this case for a complex vector. In quantum mechanics, the inner

product is referred to as a bra-ket (bracket), since we take a ket vector (Eq. (2.3)), transpose and conjugate

it, and multiply from the left with the ket itself. But it is just the inner product of two complex vectors
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given by,

⟨ψ|ψ⟩ = 1, (2.5a)

ψHψ = 1, (2.5b)

where ⟨ψ| = ψH is the Hermitian conjugate transpose of |ψ⟩ = ψ (can also be denoted with a dagger

ψ†).

2.1.1 Ignorance = Mixed states

It will later be useful to have a notation for quantum states which contain ignorance about what

quantum state the spins are in. We sometimes call this classical ignorance because there is nothing

quantum about it; it is merely a consequence of us not knowing. We can model this ignorance using

classical probabilities. For example, consider a friend sending us either the quantum state |ψa⟩ = ψa or

|ψb⟩ = ψb, each with probability 0.5. We can still model this state by incorporating classical probabilities

in the state; but we have to go beyond wave vectors. To represent the overall state, that includes our

classical ignorance, we use a matrix referred to as the density matrix defined by,

ρ :=
∑

a

pa |ψa⟩⟨ψa| , (2.6a)

ρ :=
∑

a

paψaψ
H
a . (2.6b)

We note that pa are normal/classical probabilities, i.e., pa ≥ 0 and
∑

a pa = 1. We note here that ρ is

a sum of outer vector products, that is, matrices with rank one. It is worthwhile spending some effort

explaining the details about this matrix as it is the very cornerstone of quantum mechanics and this entire

thesis.

Mixed states are crucial in order to model subsystems (a few spins out of many spins) or if we

want to model quantum states leaking information to an environment, i.e., open quantum systems. If we

are not modelling a sub system and the spins are completely isolated from their surroundings (thereby

not interacting at all with an environment), we call it a closed quantum system. Obviously, this is an

idealized description and in the real world and there will always be non-zero leakage of information to
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the surroundings, finite-precision gate operations or measurements etc. We model this by introducing a

classical probability distribution "on top" of our possible quantum states, yielding ρ being an ensemble

of quantum states. However, this ensemble interpretation is also ambiguous since we can make the

same density matrix from different ensembles and thus the same density matrix can arise from different

sources.

If one pa = 1, i.e. the density matrix has rank one and that means we have a pure quantum state. If a

pure quantum state evolves in a closed quantum system we do not need ρ to represent our quantum state;

a state vector will do. But in all other scenarios we have to use ρ. If two or more of the probabilities

pa > 0 the density matrix has rank larger than one and we call it a mixed quantum state. Any state

(mixed or pure) evolving in a open quantum system requires the density matrix formalism.

Once we knew the Born rule, the interpretation of the wave vector was somewhat easy as it was

very close to the probability vector in Eq. (2.1): each entry corresponds to one measurement outcome,

the probability of which was found by magnitude squaring the complex number at that position. What

about the density matrix? The diagonal of ρ in fact already has this classical probability in it (not

probability amplitudes) due to the outer product,

ρ =




p(0)

p(1)
. . .

p(2N − 1)



, (2.7)

where p(j) is the probability of observing the qubits in the sequence of binary spins corresponding to

integer j. An implication of the diagonal is that Tr[ρ] = 1. The off-diagonal is less obvious but it contains

information about how classical the state is: something crucial when modelling and dealing with noise

on a quantum computer as the effect of noise is turning the "quantumness" into "classicalness". By

"quantumness" and "classicalness" we refer to the difference between a qubit and a classical coin as later

summarized in Table 2.1. As illustration, we note that the pure state (having maximum "quantumness")

of equal superposition between 0 and 1, given by,
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|ψ⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ =




1√
2

1√
2


 , (2.8a)

ψ =
1√
2
e0 +

1√
2
e1 =




1√
2

1√
2


 , (2.8b)

has corresponding density matrix (from Eq. (2.6)),

ρ = 1.0 · |ψ⟩⟨ψ| =




1√
2

1√
2



[

1√
2

1√
2

]
=


0.5 0.5

0.5 0.5


 , (2.9a)

ρ = 1.0 ·ψψH =




1√
2

1√
2



[

1√
2

1√
2

]
=


0.5 0.5

0.5 0.5


 . (2.9b)

The above density matrix is completely different from the equal mixed state of 0 and 1 (having no

"quantumness"),

ρ = 0.5 · |0⟩⟨0|+ 0.5 · |1⟩⟨1| = 0.5 ·


1
0



[
1 0

]
+ 0.5 ·


0
1



[
0 1

]
=


0.5 0

0 0.5


 , (2.10a)

ρ = 0.5 · e0eH0 + 0.5 · e1eH1 = 0.5 ·


1
0



[
1 0

]
+ 0.5 ·


0
1



[
0 1

]
=


0.5 0

0 0.5


 . (2.10b)

The pure quantum state in Eq. (2.9) has off-diagonal elements and the classical probabilistic state in

Eq. (2.10) does not! The off-diagonal elements are also called coherences as these reveal information

about how coherent, i.e., how "quantum" the state is. The state in Eq. (2.10) is in a classical state and

no different from a probabilistic bit, or classical fair coin. The state in Eq. (2.10) is also called the

maximally mixed state as it is a uniform probability distribution (not quantum superposition) over all

possible states; it cannot be more random than this. More general, for multiple qubits the maximally

mixed state is the diagonal matrix with 1/2N in the diagonal; again, the uniform distribution over 2N

outcomes. Although Eq. (2.9) also has 1/2N in the diagonal and we are equally likely to observe the

qubits in all computational basis states, there exists some new basis in which the probability observing

the state is one and all other states is zero. Why? Because the qubits are in a definite quantum state. In

fact, if we observe the state in Eq. (2.9) with the left/right apparatus, the answer will be deterministic.
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This is not the case for Eq. (2.10). To emphasize, a quantum state can be written in its eigenbasis

yielding,

ρ =
∑

a

λa |λa⟩⟨λa| , (2.11a)

ρ =
∑

a

λaλaλ
H
a , (2.11b)

with eigenvalues λa and eigenvectors λa = |λa⟩ where ⟨λa|λb⟩ = λH
a λb = δab which equals one

when a = b and zero otherwise due to mutual orthonormality. The expressions in Eq. (2.11) is also

called spectral decomposition, where the eigenvalues λa is called the spectrum of ρ. The density matrix

can always diagonalized since it is positive semi-definite, and often it is useful to think of it being

diagonalized since we then obtain a probability distribution over all the observable orthonormal quantum

states, which can be more intuitive, albeit these new orthonormal vectors are no longer guaranteed to be

the computational basis states. If we diagonalize Eq. (2.9), we get,

ρ =


1 0

0 0


 , (2.12a)

ρ =


1 0

0 0


 , (2.12b)

i.e., a rank one matrix with eigenvalue 1 and eigenvector is precisely the state in Eq. (2.8). Moreover, the

spectral decomposition in Eq. (2.11) allows one to obtain the distribution of eigenvalues which is a key

component in describing the noise in the qubits. We return to this in Paper B (Chapter 5). A very useful

property to define is a measure of unpredictablity on our quantum state; we do so with the entropy.

Entropy Associated with a quantum state ρ is the Von Neumann entropy defined as,

SV N(ρ) := −Tr[ρ log ρ], (2.13a)

SV N(ρ) := −Tr[ρ logρ]. (2.13b)
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At first, SV N might seem like an abstract quantity since it is the matrix-logarithm of the density ma-

trix (i.e. not elementwise), but if ρ is diagonal (written in spectral decomposition Eq. (2.11)), the Von

Neumann SV N(ρ) reduces to the classical Shannon entropy, which we know from normal probability

distributions in machine learning to be

SS(ρ) = −
∑

a

λa log λa. (2.14)

The Shannon entropy in Eq. (2.14) is a measure of unpredictability for a probability distribution: large SS

indicate a more uniform distributions (we are less capable of predicting the outcome of sampling from

the distribution) where as smaller SS indicate more "spiky" distributions (we are more certain about

what the outcome of sampling the distribution will be). As a thought experiment, if we were able to

sample from a diagonalized density matrix, the outcome of a sampling process would be what quantum

state the spins are in, that is, if we were able to sample the a’th outcome which has probability λa of

being sampled, then the qubits were in state ρ = |λa⟩⟨λa|. If ρ is a pure quantum state (Eq. (2.12)),

it’s diagonalized version will always be zeros everywhere except for one diagonal element, and thus its

associated entropy will be SS(ρ) = 1 · log 1 = 0. If ρ is the maximally mixed state (Eq. (2.10)), the

entropy reaches its maximum S(ρ) = − log 1
d

where d = 2N is the dimension of the quantum system

and N is the number of qubits. The entropy is a key concept when we discuss Paper A in Chapter 4.

2.1.2 State evolution: Quantum gates

In machine learning, we are used to linearly transform one probability distribution into another one,

for example, this is done all the time in Hidden Markov Models [112]. Mathematically, this corresponds

to taking the probability vector in Eq. (2.1), applying a left stochastic matrix S via a matrix-vector

product that create a new probability distribution x′,

x′ = Sx. (2.15)

As long as the matrix S is constrained to contain column vectors that sum to one:
∑

i[S]i,j = 1 and

[S]i,j ≥ 0, to ensure a new well-defined probability distribution x′ whose entries sum to one and are all

greater or equal to zero. Physically, we can think of S as being some operation which alters the state of

the coin; for example, bends it in a certain way such that it is more likely to land on one of the sides.
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The concept of evolving a distribution with a constrained operator S, is exactly the same in quantum

mechanics, but now the constraint of the operator should produce a new state vector with unity in the

two-norm (as required by Postulate 1). Complex matrices that has this property of preserving inner

products of complex vectors is called unitary matrices. This leads us to the next postulate of quantum

theory given by:

Postulate 3 Time evolution of a closed quantum system is given by a linear unitary transformation

Mathematically, this corresponds to applying a matrix on the left of the state vector

|ψ′⟩ = U |ψ⟩ , (2.16a)

ψ′ = Uψ. (2.16b)

This is similar to our classical coin in Eq. (2.15) but where U = U is unitary meaning it satisfies

U †U = UHU = 1, where 1 is the identity matrix. As we outlined in Chapter 1, evolving/changing

the qubit state corresponds to applying a quantum gate as depicted in Fig. 1.7, and indeed every gate

in our circuit can be written as a unitary matrix. For example, the quantum NOT gate (denoted X)

corresponds to the unitary matrix X = X =


0 1

1 0


 acting on a single spin, which we can see switches

the probability amplitudes between the spin up and spin down states:

|ψ′⟩ = X |ψ⟩ =


0 1

1 0




α0

α1


 =


α1

α0


 , (2.17a)

ψ′ = Xψ =


0 1

1 0




α0

α1


 =


α1

α0


 . (2.17b)

It might seem surprising that with all the inherent unintuitiveness tied to quantum mechanics, we can

write deterministically how the state evolves, and that it evolves linearly. This ties back to how general

quantum states evolve over time, namely according to the Schrödinger’s (differential) equation [15]

which we return to in Section 3.3. Even though measurement outcomes can be completely random, the

time evolution of quantum systems is linear.
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Evolution of closed systems Applying a quantum gate operation to a mixed state ρ corresponds to a

unitary transforming the state with U given by

ρ′ = UρU †, (2.18a)

ρ′ = UρUH . (2.18b)

Evolution of open systems The extension of a unitary quantum gate to open systems is called a quan-

tum channel; a name originating from communication applications. The quantum channels we shall

examine and use can be represented as a linear but generally non-unitary map often denoted by E

ρ′ = E(ρ) =
∑

k

KkρK
†
k, (2.19a)

ρ′ = E(ρ) =
∑

k

KkρK†
k. (2.19b)

Just as we have constraints for stochastic and unitary matrices, the constraints of E is that it is a com-

pletely positive trace-preserving (CPTP) map [113] which means that they produce a valid density matrix

ρ′ = ρ′. Each Kk is called a Kraus operator. Some quantum channels have the useful interpretation of

each Kraus operator Kk being a gate happening with some probability pk,

E(ρ) =
∑

k

pkUkρU
†
k , (2.20a)

E(ρ) =
∑

k

pkUkρU†
k. (2.20b)

These quantum channels are essentially probability distributions over possible paths the density matrix

can take and are referred to as random unitary maps [114].

The Kraus operators need to satisfy the completeness relation which is
∑

kK
†
kKk = 1 in order to

produce a valid output quantum state. However, some quantum channels does not obey the probabilities

over unitaries, such as the damping channel which has the Kraus operators,
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Table 2.1: Summary of similarities and differences between classical coin flipping and vs. quantum spin
states.

Classical coin Quantum spin

State name Probability distribution Wavefunction
ML notation x = [x0, x1]

⊤ ψ = [α0, α1]
⊤

QM notation |x⟩ = [x0, x1]
⊤ |ψ⟩ = [α0, α1]

⊤

Domain xi ∈ R αi ∈ C
Measurement outcomes Heads (0), Tails (1) Spin up (0), Spin down (1)
Measurement probabilities P(0) = x0 P(0) = |α0|2

P(1) = x1 = 1− x0 P(1) = |α1|2 = 1− |α0|2
Requirement ||x||1 =

∑
i |xi| = 1 ||ψ||22 =

∑
i |αi|2 = 1

State change for closed and pure x′ = Sx, where ψ′ = Uψ, where∑
i[S]i,j = 1 U†U = 1

State change for closed and mixed - ρ′ = UρU†

State change for open systems - ρ′ =
∑

k KkρK†
k

K0 =


1 0

0
√
1− p


 , K1 =


0

√
p

0 0


 . (2.21)

The advantage of this operator-sum representation is that we do not need to possess knowledge about the

environment; only its effects on our system qubits.

After we have seen the mathematical objects of quantum states and how they can evolve with time

using gates (or more generally channels), it becomes obvious that quantum computing is all about trans-

forming one quantum state into another, that is, transforming one density matrix into another. We can

also think of it more classically: since all we can measure from a quantum circuit are classical descrip-

tions of the quantum state, quantum computing is essentially transforming one probability distribution

into another. We input a probability distribution, the state evolves according to our gates/channels, and

we measure a new probability distribution; hopefully a distribution which we can use for some task.

Table Table 2.1 summarizes the similarities and differences between classical probability and quantum

theory.
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2.1.3 Measurements

In the end of every quantum circuit we measure the qubits and store the result on a classical com-

puter (see Fig. 1.7). The concept of measurement in quantum mechanics is difficult to grasp and depend-

ing on how it is interpreted it can lead to different philosophical interpretations such as the Copenhagen

[63] or many-world [115] interpretations which, without devoting it too much attention to the philosoph-

ical aspects, goes as follows.

We just established that the time evolution of a quantum system is linear. However, when measuring

the quantum system— which is just one specific way of time-evolving a quantum system—the result is

only one specific real value; in the case of spin this could be spin up or down. The immediate post-

measurement state of the quantum system is classical relative to our measurement apparatus, that is, if

we measure spin up/down again we know the answer to be the same and thus the state of the spin. How

does this "collapse" of the state go together with a linear transformation? It appears that the smooth

wave vector instantaneously collapses to one specific spin state (according to the Born rule) and indeed

this is foundation of the Copenhagen interpretation; that measurement is a non-linear and non-unitary

operation in which the wave function collapses to one state.

In contrast, the many-world interpretation introduced by Everett [116] says that although we ob-

serve what appears to be a collapse, this is due to the fact that the entire universe evolves in a unitary

and linear manner but not the subsystem of us measuring the particle. After all, measurement is just in-

teracting one quantum system (the spins) with another quantum system (the measurement apparatuses)

which we know is exactly what entanglement describes. The many-world interpretation says that we

(the measurement apparatus and the human observer) become entangled with the state corresponding to

measurement outcome once we interact with the spins. Once we measure the spin, our version of reality

simply follows the part of the superposition which corresponds to whatever measurement outcome we

see in our apparatus. The effect is that entanglement splits reality into two (the spin up reality and the

spin down reality) and thus creating "new worlds" every time its sub parts entangle but leaves the overall

state of the entire universe to evolve unitarily and linearly according to the Schrödinger equation. Al-

though this thesis is written in the beautiful Copenhagen area, it is up to the reader to decide whatever

interpretation suits their mind the best; it is a huge mystery tying into our theory of the universe itself

[117]. Either interpretation has no consequence to our study here: in the end, we only care about our

quantum computer and the measurement statistics.
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Observables When measuring some observable quantity in the laboratory, the measurement outcome

will always be a real number; not a complex one. In contrast, as we have seen, quantum theory deals

with complex valued quantities such as state vectors and unitary gate matrices. Furthermore, we also

learned that some measurement outcomes are probabilistic, and just as we do in machine learning for

probabilistic objects, it is helpful to be able to express statistics over observable values such as we do

with the expected value (i.e., the average value). In summary, in order to bridge the gap between the

complex valued states and real-valued measurements, we need a mathematical object which has real

valued expectations given an arbitary state ρ. This leads us to quantum mechanics’ next postulate.

Postulate 4 Every observable has a corresponding Hermitian operator represented with a matrix H ∈
C

2N×2N for N spins. Measuring that operator will yield one of the eigenvalues of H and the post

measurement state vector will be the corresponding eigenvector.

The definition of a Hermitian matrix is H = H† and it can be deduced that H has real eigenvalues.

The next question is then which Hermitian matrices correspond to the three measurement apparatuses

in Fig. 1.2, corresponding to measuring spin up/down, left/right and in/out? The answer is the Pauli

matrices given by:

1 :=


1 0

0 1


 , X :=


0 1

1 0


 , Y :=


0 −i
i 0


 , Z :=


1 0

0 −1


 , (2.22a)

1 :=


1 0

0 1


 ,X :=


0 1

1 0


 ,Y :=


0 −i
i 0


 ,Z :=


1 0

0 −1


 , (2.22b)

where 1 is a trivial operator corresponding to not measuring the spin. The assignment of spin directions

are simply by convention to distinguish the three orthogonal spin directions. When referring to "the Pauli

matrices", these are the four matrices {1, X, Y, Z} [118]. The matrices X , Y , Z all have eigenvalues 1

and -1 but different eigenvectors/eigenstates. What Postulate 4 states is that when measuring spin, the

apparatus reads either 1 or −1 and the subsequent state will be the corresponding eigenstate.

Which Pauli matrix is spin up/down measurement? The answer is Z since its eigenvectors are the

spin up state and the spin down state, that is, the computational basis states. Another way to illustrate

it is by introducing the notion of expectation of a Hermitian operator H , i.e. over many measurements

what is the average value of the operator H . The next postulate of quantum mechanics formalizes this:
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Postulate 5 The expectation value of H when the qubits are in the pure state |ψ⟩ is given by

⟨H⟩ = ⟨ψ|H |ψ⟩ , (2.23a)

⟨H⟩ = ψ†Hψ, (2.23b)

and similarly for a mixed state ρ, the expectation value of observable H is

⟨H⟩ = Tr[Hρ], (2.24a)

⟨H⟩ = Tr[Hρ]. (2.24b)

Computing the expectation value of the spin up/down measurement apparatus is done by taking the

matrix Z and "sandwiching" it between the state and its conjugated transposed vector, and indeed, this

gives us a scalar value. For example, if the qubit state is |ψ⟩ = [i, 0]⊤ then the expectation of Z is

⟨Z⟩ = ⟨ψ|Z |ψ⟩ =
[
−i 0

]

1 0

0 −1




i
0


 = −i · i = 1, (2.25a)

⟨Z⟩ = ψ†Zψ =
[
−i 0

]

1 0

0 −1




i
0


 = −i · i = 1. (2.25b)

It is immediately clear, that the state |ψ⟩ = [i, 0]⊤ is an eigenvector—also referred to as eigenstate—of

Z with eigenvalue 1. In fact, all the states |ψ⟩ = [α0, 0]
⊤ are eigenstates of Z. Correspondingly, the set

of eigenstates |ψ⟩ = [0, α1]
⊤ of Z has eigenvalue −1. Multiplying the entire state vector with a complex

number eiθ has no observable implications. It does not change the state. Thus the state |ψ⟩ = [−i, 0]⊤ is

physically indistinguishable to all the states [α0, 0]
⊤ for α0 ∈ C. In general, we can write this as,

|ψ⟩ = eiθ |ψ⟩ , (2.26a)

ψ = eiθψ, (2.26b)

where eiθ is called a global phase. It turns out that the Pauli operators are tremendously important for
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both observables, the gates and the noise models considered in this thesis.

Are there matrices/operators which are both unitary (time evolving) and Hermitian (observable)?

The answer is yes, and in fact unitarity and Hermicity is closely related. The Pauli operators in Eq. (2.22)

are in fact both Hermitian and unitary, which is also why we have seen the Pauli-X matrix as a NOT-

gate. But even if they were not unitary, any Hermitian operator H can be turned into a unitary operator

by means of,

U = eiH , (2.27)

that is, the matrix exponential (in general not element wise exponentiation) of i times H yields a unitary

matrix. However, we might also be interested in the instantaneous time change of a quantum state, which

is exactly what the Schrödinger equation [15] describes. If our spins is in some state |ψ(t)⟩ at time t,

then this state changes instantaneous according to

∂

∂t
|ψ(t)⟩ = −iH |ψ(t)⟩ , (2.28a)

∂

∂t
ψ(t) = −iHψ(t). (2.28b)

where H is some hermitian operator such as spin left/right apparatus X = X that evolves the system

continuously. If we apply this operator for a discrete time t, we get exactly a unitary operation since this

corresponds to

|ψ(t)⟩ = e−itH |ψ(0)⟩ , (2.29a)

ψ(t) = e−itHψ(0), (2.29b)

We notice that gates and thus unitary matrices evolves the quantum state for some discrete time step t,

that is, changing it from one quantum state to another.

Although the Pauli operators themselves directly are gates they can also be thought of a π rotation

around their respective spin directions. In fact, we can create other rotations around the same axes using

the rotational unitary operators in Eq. (2.30). Once again when we compare to classical bit states and

gates, we can see that not only can the qubit(s) be in infinitely many states, the quantum gates can also

operate in infinitely many ways. For example, it is possible to rotate the spin around any of the three spin
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directions using the Pauli operators and a rotation parameter θ. This yields the three often used quantum

gates RX(θ), RY (θ), RZ(θ) given in Eq. (2.30).

RX(θ) := e−i θ
2
X =


 cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)


 ,

RY (θ) := e−i θ
2
Y =


cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)


 ,

RZ(θ) := e−i θ
2
Z =


e

−iθ/2 0

0 eiθ/2


 .

(2.30)

Moreover, the most general qubit rotation can be constructed by a sequence of only to of these gates:

Pauli Z → Pauli Y → Pauli Z rotations. The resulting unitary matrix is then

R(θ1, θ2, θ3) = RZ(θ3)RY (θ2)RZ(θ1) =


e

−i(θ1+θ3)/2 cos(θ2/2) −ei(θ1−θ3)/2 sin(θ2/2)

e−i(θ1−θ3)/2 sin(θ2/2) ei(θ1+θ3)/2 cos(θ2/2)


 . (2.31)

As an example of a concrete quantum circuit using these general rotations is the strong entangling

circuit [119]. Each qubit is rotated with the three gates in, followed by a two-qubit gate that creates

interference and entanglement between the qubits. The entanglement gate used is called the Controlled-

NOT (CNOT) and it the following effect on a general 2-qubit state,
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RZ(θ1) RY (θ2) RZ(θ3)

ρin RZ(θ4) RY (θ5) RZ(θ6) ρout

RZ(θ7) RY (θ8) RZ(θ9)

Figure 2.1: Strong entangling quantum circuit layer adapted from [119].

UCNOT |ψ⟩ =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




︸ ︷︷ ︸
CNOT matrix




α0

α1

α2

α3



=




α0

α1

α3

α2



, (2.32a)

UCNOTψ =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




︸ ︷︷ ︸
CNOT matrix




α0

α1

α2

α3



=




α0

α1

α3

α2



. (2.32b)

Fig. 2.1 draws the model of a circuit where each qubit of three qubits is exposed to a general qubit

rotation followed by pairwise CNOT gates. This circuit is also called a strong entangling layer, where

"layer" refers to the fact that this circuit pattern can be repeated multiple times before final measurements,

each with different parameters θi. We shall return to more general circuits in Chapter 3, but we will just

illustrate the key point from Chapter 1 and show superposition, interference and entanglement using the

introduced notation.

Quantum Interference Consider two seperate qubit states and with no entanglement between them

each prepared in the zero-state (spin up), that is, |ψ⟩A = ψA = |0⟩A = e0 and |ψ⟩B = ψB = |0⟩B = e0.

We now obtained the combined state using the tensor product (see Postulate 2),
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|ψAB⟩ = |0⟩A ⊗ |0⟩B =


1
0


⊗


1
0


 =




1

0

0

0



, (2.33a)

ψAB = e0 ⊗ e0 =


1
0


⊗


1
0


 =




1

0

0

0



, (2.33b)

which is also written as |00⟩ = e00. Exposing the first qubit to a specific gate called the Hadamard

gate, denoted H , creates the equal superposition of spin up/down but leaves the other qubit alone. This

corresponds to acting on the combined state |ψAB⟩ = ψAB with the unitary UH1 = H ⊗ 1,

UH1 = H ⊗ 1 =


 1√

2


1 1

1 −1






︸ ︷︷ ︸
Hadamard

⊗




1 0

0 1




 =

1√
2




1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1



. (2.34)

Since |00⟩ = e00 is exactly the first computational basis state (see Eq. (2.33)), the resulting state of acting

with UH1 on it simply yields the first column of UH1:

|ψAB⟩ = UH1 |00⟩ =
1√
2




1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1







1

0

0

0



=




1√
2

0

1√
2

0



, (2.35a)

ψAB = UH1e00 =
1√
2




1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1







1

0

0

0



=




1√
2

0

1√
2

0



. (2.35b)
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At this point, there is | 1√
2
|2 = 0.5 probability of measuring spin (up,up) and spin (down, up), respectively,

using the Born rule on the above state. Finally, let us now let the two qubits interfere with the CNOT

gate in Eq. (2.32),

|ψ′
AB⟩ = UCNOT |ψAB⟩ =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0







1√
2

0

1√
2

0



=




1√
2

0

0

1√
2



, (2.36a)

ψ′
AB = UCNOTψAB =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0







1√
2

0

1√
2

0



=




1√
2

0

0

1√
2



. (2.36b)

The right hand side state is the equal superposition of (up,up) and (down,down). Upon measurement

of one qubit which yields, say, spin up, the wave vector collapses (Postulate 4) to the (up,up) state i.e.

measurement immediately changes the state: by measuring one of the qubits we immediately know what

the outcome would be if we measured the other qubit. The state in Eq. (2.36) is one of four famous states

known as the Bell states and the particular one we created is often denoted |Φ+⟩ = Φ+. We can now

illustrate the effects of interference by applying a Hadamard gate to both qubits (denotedUHH = H⊗H),

UHH

∣∣Φ+
〉
=

1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1







1√
2

0

0

1√
2



=

1

2

(
2√
2
|00⟩+

���������
(
1√
2
− 1√

2
) |01⟩+

���������
(
1√
2
− 1√

2
) |10⟩+ 2√

2
|11⟩

)
,

(2.37a)

UHHΦ+ =
1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1







1√
2

0

0

1√
2



=

1

2

(
2√
2
e00 +

��������
(
1√
2
− 1√

2
)e01 +

��������
(
1√
2
− 1√

2
)e10 +

2√
2
e11

)
.

(2.37b)
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which—due to destructive interference—gets us right back to the original state, that is, UHH |Φ+⟩ =

|Φ+⟩ (or with ML notation: UHHΦ+ = Φ+)

2.2 Noisy Quantum Systems

We learned that a quantum algorithm can be made up from qubits, gates and measurements (Fig. 1.7).

To be more specific, this is also known as the gate model of quantum computing which is our main focus

in this thesis, however, other architectures exist such as adiabatic quantum computation [120], and topo-

logical quantum computation [121] also have interesting properties. In fact, many of the quantum circuit

architectures we are interested in draws inspiration from adiabatic quantum computation as we shall see

in Chapter 3.

Generally, one can divide the types of errors into two categories: systematic (called coherent) and

random errors (called incoherent) [122]. An example of coherent errors could be imprecise or finite

precision implementation of gates, that is, instead of implementing the U(θ), our quantum machine

systematically makes the operation U(θ + c) for some (hopefully) small and constant c. On the other

hand, incoherent errors can happen due to interaction with the surrounding environment (illustrated in

Environment

QPU

Figure 2.2: Depiction of a quantum processing unit (QPU) interacting with the surrounding environ-
ment.
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Fig. 2.2), measurement errors, or random gate errors such as gates are implemented with U(θ + ϵ)

for ϵ ∼ N (0, σ2). Random errors are typically much more complex processes which depends on the

quantum hardware. Furthermore, the source and nature of the errors might even change over time.

While systematic errors can be mitigated [123] or for some quantum algorithms—as we shall see in

Chapter 3—under mild assumptions ignored, random errors are less trivial to model and the entire field

of quantum error mitigation (introduced in Section 3.5) deals with how to decrease the noise effect on

the expectation of observables. Choosing the noise model depends on the physical implementation of

the quantum hardware, and in fact, the experimentalist handling our quantum computer would need to

characterize the system at hand using e.g. quantum process tomography (QPT) [15]. QPT techniques

essentially perform a series of measurements such that we can describe the overall noise process of the

computer. Together with quantum error correction (QEC), QPT deals with modelling and correcting

for random errors happening in the hardware. QPT and QEC are both out of scope for this thesis, and

instead, we will outline one of the most commonly used noise models used in the VQA literature: the

Pauli Error Model.

2.2.1 Pauli Error Model

One of the most used noise model is the single-qubit Pauli Error Model (PEM) also known as Pauli

Channels. In fact, in our simulations we shall exclusively model noise as being discrete one-qubit Pauli

noise channels; a simulation strategy often used in VQA research such as in ref. [124].

Not only are Pauli Channels more convenient and easy to simulate, but it has been shown that more

general local quantum noise (both coherent and incoherent) can be mapped onto a Pauli channel via

randomized compiling [125] or twirling [126]. Moreover, it is possible to experimentally learning the

Pauli channel from given quantum hardware using measurements [127]. We shall thus in this thesis only

consider noise models which have the following stochastic unitary decomposition

E(ρ) = p01ρ1
† + p1XρX

† + p2Y ρY
† + p3ZρZ

†, (2.38a)

E(ρ) = p01ρ1
† + p1XρX

† + p2Y ρY
† + p3ZρZ

†, (2.38b)

where pi are classical probabilities.

The question of when and which error happens is thus modelled as a probability of one of the single-
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RZ(θ1) E RY (θ2) E RZ(θ3) E E E E

ρin RZ(θ4) E RY (θ5) E RZ(θ6) E E E E ρout

RZ(θ7) E RY (θ8) E RZ(θ9) E E E E

Figure 2.3: Strong Entangling Layer [119] with noise channels after each moment.

qubit Pauli matrices happening after, for example, each moment in our circuit. A moment is "a time-slice

of operations within a circuit.", that is, operations that happen at the same time [128]. We can now take

the quantum circuit in Fig. 2.1 and illustrate our noise model as in Fig. 2.3.

The PEM is widely used but it does not encounter for all types of errors such as the amplitude

damping channel. However, in our simulations we will exclusively be dealing with depolarization noise

as we shall define momentarily.

Bit-flip As example of a quantum noise channel the bit flip channel has the Kraus operators,

K0 =
√
1− p


1 0

0 1


 , K1 =

√
p


0 1

1 0


 . (2.39)

where with probability p the bit-flip happens and 1− p it does not.

Depolarization Another quantum noise channel example—used extensively in the scientific contribu-

tions of this thesis—is the depolarization channel which has the following Kraus operators

K0 =
√
1− p


1 0

0 1


 , K1 =

√
p/3


0 1

1 0


 , K2 =

√
p/3


0 −i
i 0


 , K3 =

√
p/3


1 0

0 −1


 .

(2.40)

corresponding to either a Pauli X,Y or Z gate has randomly been applied with probability p and with

probability 1 − p no random error occurred. The depolarization channel is also equivalent to a convex

combination of the original state and the maximally mixed state,
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Dλ(ρ) = (1− λ)ρ+ λ1, (2.41a)

Dλ(ρ) = (1− λ)ρ+ λ1, (2.41b)

where λ = p is the noise level. The depolarization channel is often called the "worst-case scenario"

channel [129], since it drags the qubit towards all computational basis states with equal probability; it

destroys the coherence (off-diagonals) of the density matrix.

2.2.2 Quantum Channels are generally irreversible

One very important thing happens to the quantum state when acted upon by as CPTP quantum

channel of the same dimensionality E is that information can be lost but not recovered. This is due to the

nature of CPTP channels, namely that they are contractive, in the sense that any two quantum states ρA

and ρB will be closer to each other / more similar after E has acted on each state. We mention that there

exists more general quantum processes such as not trace-preserving maps where information is gained

by measurement, but we leave further explanations to Nielsen and Chuang [15] for the curious reader.

One way to measure how well a specific quantum channel preserves the information, is to ask how

close the quantum state is to its previous self, that is, D(E(ρA), ρA) using some distance measure D

between quantum states. Given that D(E(ρ), ρ) both depends on E and ρ, the loss of information is

specific to both the state and the quantum channel. An often used similarity measure is the fidelity,

which is a distance measure between two quantum states ρA and ρB, defined by,

F (ρA, ρB) := Tr

[√√
ρAρB

√
ρA

]
, (2.42a)

F (ρA,ρB) := Tr

[√√
ρAρB

√
ρA

]
. (2.42b)

It is easy to verify that for two different quantum states ρA and ρB, their fidelity is the same or have

increased after an error channel has been applied, that is, F (E(ρA), E(ρB)) ≥ F (ρA, ρB) [15].
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2.3 Spin systems

As mentioned in the introduction, a key application of quantum computers is to simulate quantum

systems and it turns out that many interesting machine learning problems can be mapped into problems

of quantum simulation. Just as simulations of how the planets move around the sun can be simulated with

an orrery, we can use a quantum computer to simulate a quantum system. To get there, we introduce the

following statistical mechanics which shall constitute the foundation on which we introduce variational

quantum algorithms in Chapter 3.

In the introduction, we mentioned that the spin of an electron is related to magnetic moment and

in this section we will think of the spin as a tiny three dimensional magnet. The magnet can be in any

superposition of up and down but for now let us start putting all electrons either spin up or spin down, or

similar for magnets, magnetic north pointing either up or down, respectively. We imagine taking three

such magnets, placing them next to each other and putting a barrier between nearest neighbor magnets

(1,2) and (2,3), as depicted in Fig. 2.4. The barriers are parameterized with a number Ji,j indicating the

interaction strength between neighbor magnets i and j: a large Ji,j means a lot of interaction and vice

versa. We can think of 1/Ji,j as being the width of the wall seen in Fig. 2.4. If there is a thin wall, magnet

1 would naturally tend to flip in order to anti-align with magnet 2; in other words it takes more energy to

keep or put the magnetic north pointing up and less energy if they are anti-aligned. As the barrier width

increase (J1,2 decrease) this force will decrease and it would take more energy to flip the first magnet. We

could also apply an external strong magnetic field to each site which—if strong enough—would make

the effects of interaction between the small magnets negligible. The next paragraph concerns modelling

this behavior, that is, mathematically describe the energy with a function H of such system in order to

find magnet configurations (how they point) that lower the energy. The energy function H is also called

the Hamiltonian or energy operator of the system, and it is a function what state the magnets are in. As

we shall see throughout the thesis, the concept of the Hamiltonians will be used continuously.

The Ising model We model the energy of the magnets in Fig. 2.4 using the Ising model [130]. Hence

for a specific sequence of ups and downs, we can plug it into the Hamiltonian and get a scalar value.

When the spins are in the quantum state of up and down given by a state vector or density matrix, we need

to use the formalism of quantum mechanics to compute expectation values of the energy. As we know

from Postulate 4, observables—such as the energy of a system of spins—is associated with a Hermitian
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N

SN

S

Z direction

N

S
X direction

Magnet 1 Magnet 2 Magnet 3

Figure 2.4: Three magnets aligned with a barrier controlling their interaction strength. From the Ising
model in Eq. (3.7) the pairwise interaction strength of Ji,j indicates the interaction strength between
neighbor magnets i and j.

operator. For the particular system in Fig. 2.4 the Hermitian operator can be written as a sum of two

contributions: one from the interaction between the spins/magnets and one from the external magnetic

field,

HI = −
∑

i

biZi

︸ ︷︷ ︸
external

−
∑

<i,j>

Ji,jZiZj

︸ ︷︷ ︸
interaction

, (2.43)

where Zi is the spin up/down operator for the i’th qubit constructed using the following tensor product,

Zi =

i− 1︷ ︸︸ ︷
12 ⊗ 12 ⊗ ...12⊗Z ⊗

N − i︷ ︸︸ ︷
12 ⊗ ...⊗ 12, (2.44)

and Z is the Pauli-Z matrix from Eq. (2.22). The energy expectation of N spins in a pure state |ψ⟩ = ψ
is thus

⟨HI⟩ = ⟨ψ|HI |ψ⟩ , (2.45a)

⟨HI⟩ = ψ†HIψ. (2.45b)

We also learned from Postulate 4 that when we measure the state |ψ⟩ = ψ, it collapses into an

eigenstate of the measurement operator HI . The outcome value is the corresponding energy eigenvalue.
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Z direction

X direction

Transverse-field

Ising field

N

SN

S S

N

Figure 2.5: Three magnets with a barrier controlling their interaction strength and two orthogonal exter-
nal magnetic fields (Ising field in the Z direction and Transverse field in the X direction). This system
is modelled the energy Hamiltonian in Eq. (3.8).

The set of eigenvalues of an operator is also called the spectrum of the operator, and what Nature tries

to do via the principle of least action [131], is to put the system in the eigenstate corresponding to

the minimum eigenvalue, that is, the groundstate. However, this is hard due to many local minima.

For two-state magnets with no barriers or external field, the groundstate would be alternating magnets

(note that there would be two groundstates). But for more general systems of spins which can be in

any superposition of up/down, the energy function describing the situation in Fig. 2.4 with an external

magnetic field in the up/down direction is given by the Ising model in Eq. (3.7). It turns out that the

minimum energy eigenstate to Eq. (3.7) is a "classical" spin state, that is, one of the computational basis

states. This is because HI is made up from diagonal matrices (identities and Pauli Z) and hence it is

already written in its spectral decomposition with eigenvectors corresponding to all the computational

basis states. There exists more exotic Hamiltonians with eigenstates being quantum superposition states,

and one example is the Transverse-field Ising model [132]. The extension from the Ising model is simple:

we apply another magnetic field with strength hi at each spin/magnet but this time in the X-direction (see

Fig. 2.5). The updated Hamiltonian is then

HTFI = −
∑

i

biZi −
∑

<i,j>

Ji,jZiZj −
∑

i

hiXi, (2.46)
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where Xi is the Pauli X observable on qubit i. The eigenvectors of X are given by

∣∣λ(1)x

〉
=

1√
2
|0⟩+ 1√

2
|1⟩,

∣∣λ(2)x

〉
=

1√
2
|0⟩ − 1√

2
|1⟩ , (2.47a)

λ(1)
x =

1√
2
e0 +

1√
2
e1,λ

(2)
x =

1√
2
e0 −

1√
2
e1, (2.47b)

which are equal superposition states of up/down. Thus depending on the coefficients of the magnetic

fields (bi,Ji,j ,hi) the X terms would drag the eigenvectors towards superpositions whereas the Z terms

push towards classical eigenstates. There exists even more exotic Hamiltonians with multiple interac-

tion terms in various directions modelling different types of systems. The most general Hamiltonian

containing all Pauli interactions up to pairs of two qubits (called 2-local systems) can be written on the

form

Hgeneral = −
∑

i

aiXi −
∑

i

biYi −
∑

i

ciZi −
∑

<i,j>

Li,jXiXj −
∑

<i,j>

Ki,jYiYj −
∑

<i,j>

Ji,jZiZj. (2.48)

Finding the groundstate of arbitrary Hamiltonians is difficult [133]. For N spins, the Hamiltonian

is a 2N × 2N matrix and storing this matrix alone on a classical laptop is difficult for N not much bigger

than 20. However, quantum computers naturally contains spins and estimating ground state energies is

thus of high relevance which is indeed what the next chapter concerns. Furthermore, if one can encode

a specific problem into the form of Eq. (2.48), such that the groundstate is a useful state then a quantum

computer might be useful in assisting with such estimation. It turns out a lot of problems can be encoded

onto a energy minimization problem and this is the cornerstone of variational quantum algorithms as

described in Chapter 3.

Experimentally, for a quantum computer the expectation for general Hamiltonians (see Eq. (3.3))

might contain measurements not directly implemented on our quantum computer. For example, many

quantum computers only measure spin variables in the computational basis (our up/down). Thus in

order to measure in the X or Y basis, a gate operation applied to the qubit(s) needs to be applied such

that the state is projected onto the new basis. We can apply the inverse phase gate (S†) followed by a

Hadamard gate or only the Hadamard just prior to measurement in order to measure in the Y or X basis,

respectively. As such, general expectations are computed by estimating each term via measuring in the
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corresponding Pauli Basis and subsequently insert the estimates in Eq. (2.48).

2.3.1 The adiabatic theorem

We just saw that Hamiltonians can be both "simple" and "complex" in terms of how easy it is to put

spins in the groundstate. If we have a trivial Hamiltonian H0 and a complex Hamiltonian H1, we can

define a new time-dependent Hamiltonian for t ∈ [0, 1],

H(t) = tH1 + (1− t)H0. (2.49)

The adiabatic theorem [134] tells us, that if a quantum system in state ρ starts in the ground state of H0

and is evolved under Eq. (2.49) starting with t = 0, then slowly let t → 1, the system ρ will end up in

the ground state of H1 [135]. The speed limit of which t → 1 is determined by the so-called spectral

gap denoted g2(t) of H(t) which is the energy distance between the ground state and first excited state

energies, and that it must scale according to 1
mint g2(t)

.

One can discretize the adiabatic process, such that the adiabatic process is taken in steps of size ∆t

which is known as Trotterization [136, 137],

H(0) = H0,

H(∆t) = ∆tH1 + (1−∆t)H0,

H(2∆t) = 2∆tH1 + (1− 2∆t)H0,

...

H(1−∆t) = (1−∆t)H1 +∆tH0,

H(1) = H1,

where the smaller the step size ∆t, the more steps needs to be taken and the closer to the analog adiabatic

path the process will be. Adiabatic quantum computing (AQC) [138], such as the D-Wave quantum an-

nealer [139], is exactly about exploiting this fact. At its core, AQC encodes a problem in the groundstate

of a problem/cost Hamiltonian H1, starts the qubits in the groundstate of a initial/mixer Hamiltonian
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H0, applies the magnetic field in Eq. (2.49) starting with t = 0 and then slowly let t → 1 according

to the spectral gap. It should be, however, noted that the gap unfortunately can be exponentially small

[140] essentially meaning generally no exponential speedups for NP-hard problems. As we shall see

in Chapter 3, one of the key ideas for NISQ algorithms uses Trotterization to build a specific quantum

circuit.

2.4 The Boltzmann Distribution

Let us briefly consider a system of N classical magnets which can not be in any superposition state;

only 1 out of 2N states. Each outcome n has an associated energy En. If we know the probability pn

of magnets being in the n’th outcome—say, if someone prepared it for us—we can write the average

(expectation value) energy as

⟨E⟩ =
∑

n

Enpn. (2.50)

Associated with that distribution is the Shannon entropy (see Eq. (2.14))

S(pn) = −
∑

n

pn log pn. (2.51)

We now want to find the probability distribution p(n) according to the maximal entropy principle [141,

142] under two constraints,

∑

n

pn = 1 ⇐⇒
∑

n

pn − 1 = 0, (2.52)

⟨E⟩ =
∑

n

Enpn ⇐⇒
∑

n

Enpn − ⟨E⟩ = 0. (2.53)

Instead of maximizing S(pn) we will minimize −S(pn), again given the constraints. To do constrained

optimization, we define a new function G using Lagrange multipliers λ1 and λ2,

G = λ1

(∑

n

pn − 1

)
+ λ2

(∑

n

Enpn − ⟨E⟩
)

− S(pn), (2.54)
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and do unconstrained optimization to find the minimum ofGw.r.t. some pj . By differentiating Eq. (2.54)

and setting it equal to zero, we get

∂G

∂pj
=

∂

∂pj

[
λ1

(∑

n

pn − 1

)
+ λ2

(∑

n

Enpn − ⟨E⟩
)

+
∑

n

pn log pn

]
= 0,

=
∂

∂pj
[λ1pj + λ2Ejpj + pj log pj] = 0,

= λ1 + λ2Ej + log pj + 1 = 0.

Isolating the probability distribution yields,

log pj = −(λ1 + 1)− λ2Ej ⇐⇒ pj = e−(λ1+1)e−λ2Ej .

Given that e−(λ1+1) is just some constant, we can define Z := e(λ1+1) and not gain/loose anything. Same

thing for β := λ2. Thus we have derived a specific probability distribution known as the Boltzmann

distribution,

pn =
1

Z
e−βEn . (2.55)

The next question is what Z and β are. The first constraint gives us Z,

∑

n

pn =
1

Z

∑

n

e−βEn = 1 ⇐⇒ Z =
∑

n

e−βEn . (2.56)

We call Z the partition function and it is a function of β: Z(β) =
∑

n e
−βEn , when the energy levels En

are fixed. The second constraint gives,

∑

n

pnEn =
∑

n

1

Z
e−βEn

︸ ︷︷ ︸
pn

En = ⟨E⟩ .
(2.57)

Hence whatever β is, it determines the average energy and vice versa: high β minimizes the average

energy and small β increases the average energy. Differentiating the partition function w.r.t. β and

subsequently divide with minus the partition function itself, we get
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− 1

Z

∂Z

∂β
=
∑

n

1

Z
e−βEn

︸ ︷︷ ︸
pn

En = ⟨E⟩ .
(2.58)

This is also equal to ⟨E⟩ = − 1
Z

∂Z
∂β

= −∂ logZ
∂β

. We will see shortly, that β is the inverse temperature,

β = 1
T

, but first we will rewrite the entropy.

Rewriting the entropy Now that we know pn, we can plug this in to the definition of entropy

S = −
∑

n

pn log pn,

= −
∑

n

1

Z
e−βEn log

[
1

Z
e−βEn

]
, (insert Boltzmann dist)

= −
∑

n

1

Z
e−βEn [− logZ − βEn] , (rule of logarithm)

=
∑

n

1

Z
e−βEn [logZ + βEn] , (cancel minus)

=
∑

n

1

Z
e−βEn logZ +

∑

n

1

Z
e−βEnβEn, (expand product)

=
1

Z

∑

n

e−βEn

︸ ︷︷ ︸
Z

logZ + β ⟨E⟩ , (substitute def. of Z)

= logZ + β ⟨E⟩ .

The term logZ is related to the free energy, in fact, the free energy is defined by F := − logZ
β

, which by

rearranging the above derivation yields

F = H − 1

β
S, (2.59)

also known as the Gibbs free energy. We shall use the free energy as loss function in paper A in order to

approximate a thermal states which is a specific state a system can obtain for example when getting in

contact with an environment / heat bath.

The inverse temperature If we differentiate the entropy, we get
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dS = βd ⟨E⟩+ ⟨E⟩ dβ + d logZ

=
∂ logZ

∂β
∂β + ⟨E⟩ ∂β + βd ⟨E⟩

= ∂β



∂ logZ

∂β︸ ︷︷ ︸
−⟨E⟩

+ ⟨E⟩


+ βd ⟨E⟩

= βd ⟨E⟩

(2.60)

which is the definition of inverse temperature:

β =
dS

d ⟨E⟩ =
1

T
(2.61)

In Eq. (2.61), we see that β essentially describes how the entropy (chaos/unpredictability) of the Boltz-

mann distribution changes when we change the average energy of the system.

2.5 Thermal States

When we looked at the Hamiltonian for a set of spins Eq. (2.48) this was in fact for zero temperature

systems. If we take the spins a bring them in weak interaction with the surrounding environment—also

called a heat bath— the system does not naturally tend towards the lowest energy state. Instead, the

system approaches the thermal state, which is a state that does not minimize the energy but the free

energy (Eq. (2.59)). The same thing happens to a hot cup of coffee if we leave it for some time at a

room: it will approach equilibrium and get room temperature. We say that the system thermalize or

reaches thermal equilibrium. Once the state of spins has found the global minimum of the free energy

its energies has a particular form we just encountered: the Boltzmann distribution. The thermal state is

thus given as

ρ =
1

Z
e−βH, (2.62)

where H is the energy operator for the system (such as the Ising model) and β is the effective inverse

temperature that comes both from the thermometer but also from all the noisy interactions between
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system and environment. For β → ∞, i.e. for T → 0, the free energy F → H (see Eq. (2.59))

and thus ρ approaches the groundstate of H as this is the minimum (free) energy state. However if

we pull out samples from Eq. (2.62) for T > 0, that is, measuring the spin of each qubit, each spin

configuration comes with a certain probability of being observed. That probability, as we can see from

Eq. (2.62), follows a Boltzmann distribution with the minimum energy eigenstate being the most likely

one to sample, the first energy eigenstate being second most likely to sample, etc. As the temperature

T increases, all states approaches the same probability of being observed, that is, ρ approaches the

maximally mixed state (Eq. (2.10)). Many classical machine learning algorithms contain subroutines

which samples from distributions such as the Boltzmann distribution, i.e., states such as these thermal

states. If one is able to prepare such state with a quantum computer, we have a "natural" distribution to

sample from as compared to numerical approximations for computing gradients of Restricted Boltzmann

Machines.

2.6 Probabilistic Machine Learning

We spend some effort formalizing quantum mechanics with focus on quantum computing theory,

noise models and some of the underlying statistical mechanics. In this section, we formalize machine

learning concepts relevant to the scientific contributions of the thesis. In particular, we introduce the

general objective of learning and tools of the field relevant to all Papers. We subsequently derive Gaus-

sian processes which is the foundation for papers C and D. Finally, we go over the Restricted Boltzmann

Machine which is relevant for Paper A.

Machine learning (ML) is a sub discipline in artificial intelligence (AI) focusing on the mathemati-

cal, algorithmic and statistical aspects of modelling data [143]. The key task in machine learning is for

the computer to be able to learn without being explicitly programmed [144]. "Learning" here refers to a

process in which a model fits to a dataset such that a predefined loss function is minimized. As we shall

see in the next chapters, many of the ideas for NISQ algorithms come back to such a learning task. We

therefore spend some effort outlining key concepts which applies to all scientific contributions.

We take starting point in a dataset D = {(xi, yi)}ni=1 which is a collection of n samples of pairs of

inputs xi = [1, x1, ..., xD]
⊤ and output scalar value yi. For example, xi could contain weight, height and

age and yi could be blood pressure. We also refer to the collection of all data input vectors as the input

data matrix X = [x1,x2, ...,xn], and the collection of the corresponding outputs as the output data vector
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y = [y1, y2, ..., yn]
⊤. The goal is to find a function f that maps xi → yi. We let the model train/fit on a

subset of our data D, and then we test its performance on the remaining data to get an estimate for the

generalization error, that is, the average error the model makes on new unseen data [ref]. Let us initially

focus on a model fw(x) with parameters w that takes the input data vector x and outputs a scalar ŷ using

a linear function given by

ŷ = fw(x) = w0 + w1x1 + w2x2 + ...+ wDxD. (2.63)

The goal of learning/training is to estimate a good set of weights w = [w0, w1, ..., wD]
⊤ using the training

set such that when a new unseen test datapoint x∗ enters the model, the corresponding prediction ŷ∗ is

close to the actual output value, i.e., ŷ∗ ≈ y∗. All supervised machine learning models follow this

recipe, but the model—the input/output function f—might be linear, a polynomial, a neural network or

something different.

We can expand the type of model in Eq. (2.63) from a deterministic one to a stochastic one by

modelling an uncertainty on the output y. Instead of only providing one point estimate of the value ŷi

our model outputs a distribution p(ŷi|xi,w). The uncertainty over ŷ might be because the model itself

is uncertain due to limited data (known as epidemistic uncertainty) or it might be because the underlying

data is contaminated with noise (known as aleatoric uncertainty) or a combination. A common approach

is to model the data with normal distributed noise around the prediction in Eq. (2.63),

p(ŷi|xi,w) = N (w⊤xi, σ
2).

A normal distribution is meaningful when multiple error sources adds to the sampled output due to the

central limit theorem [145]. Given n training points—which we assume to be independent and identically

distribution (i.i.d.)—we can compute the likelihood function which can be seen as a goodness-of-fit

measure,

L := p(D|w) =
n∏

i=1

p(yi|xi,w) =
n∏

i=1

N (w⊤x, σ2), (2.64)

i.e. the better the weights w fit the data, the more "likely" the data will be under the model with param-

eters w will be. This is because the term N (w⊤x, σ2) will be numerically larger and thus we end up

multiplying together larger numbers yielding a larger likelihood. Finding w is often found using one of
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three following techniques. First approach is to maximize the likelihood function. That is, the maximum

likelihood coefficients wMLE are given by

wMLE = argmax
w

n∏

i=1

p(yi,xi|w). (2.65)

The second technique uses a prior probability distribution p(w) over the weights. This distribution is

often Gaussian p(w) = N (0, σ · 1). We now have two variables, each with a distribution: the data D
and the weights w, thus we can use Bayes theorem which connects two or more random variables in the

following relation,

p(w|D) =
p(D|w)p(w)

p(D)
. (2.66)

A set of weights wMAP can be found by maximizing this posterior, and the solution is referred to as

maximum a posteriori (MAP) solution given by,

wMAP = argmax
w

p(D|w)p(w)

p(D)
= argmax

w
p(D|w)p(w). (2.67)

If we not only want a point estimate of the weights but in fact a probability distribution over them, we

can use Bayes theorem once again to get Bayes estimate,

wBE =

∫
wp(w|D)dw. (2.68)

If everything is assumed to be normally distributed then wBE = wMAP given that the mean of a normal

distribution is also where the distribution has its maximum, but in general, this is not the case. If we plug

the Gaussian likelihood (Eq. (2.64)) and prior into Bayes theorem in order to obtain the posterior over

the weights we get the bayesian linear regression solution,

p(w|X,y) ∝ exp

{
− 1

2σ2
n

(y −X⊤w)⊤(y −X⊤w)

}

︸ ︷︷ ︸
likelihood

exp

{
−1

2
w⊤Σ−1

p w

}

︸ ︷︷ ︸
prior

,

∝ exp
{
(w − w̄)⊤A−1(w − w̄)

}
,

(2.69)
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where w̄ = 1
σ2
n

A−1Xy for A = 1
σ2
n
XX⊤ +Σp. We here see that the numerator is a also a Gaussian! It is

therefore possible to write in a more compact form

p(w|X,y) ∼ N (w̄,A−1). (2.70)

From this posterior it is possible to provide the predictive distribution over y. That is, given the training

set X,y and a test input x∗, we can write,

p(y∗|x∗,X,y) =

∫
p(y∗,w|x∗,X,y)dw,

=

∫
p(y∗|x∗,X,y,w)p(w|x∗,X,y)dw, (split joint distribution)

=

∫
p(y∗|x∗,w) p(w|X,y)︸ ︷︷ ︸

posterior

dw. (assume w independent of x∗)

In general this integral is intractable unless we assume likelihood p(y,X|w) and the prior p(w) are

Gaussian, which we, in fact, do for now. The predictive distribution thus becomes

p(y∗|x∗,X,y) = N
(
w̄⊤x∗,x

⊤
∗
1

σ2
n

XX⊤ +Σ−1
p x∗

)
. (2.71)

We note here that the mean in Bayesian linear regression is exactly the ordinary least square solution

[146].

2.7 Gaussian Processes

The Gaussian Process (GP) [147] can be seen as a generalization of Bayesian regression to go

beyond a linear predictive distribution. Once we have established bayesian linear regression, the idea is

sime: first project the inputs into some high dimensional space and then apply the linear model in this

space instead of directly on the inputs themselves. The projection can be in many different ways. For

example, for a scalar x, we can project it via

ϕ(x) = [1, x, x2, sin(x), ...]⊤. (2.72)
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How to choose this projection map? It turns out we don’t have to specify this specific map, but instead

have to specify something else known as the kernel function. In order to show this, we will first assume

the project is given: given a function ϕ : RD −→ RN then

y = w⊤ϕ(x)︸ ︷︷ ︸
f(x)

+ϵ (2.73)

for w ∈ RL. Replace x with ϕ(x):

p(y∗|x∗,x,y) = N
(

1

σ2
n

x⊤
∗ A−1Xy,x⊤

∗ A−1x∗

)

⇒ N
(

1

σ2
n

ϕ(x∗)
⊤A−1ϕ(X)y,ϕ(x∗)

⊤A−1ϕ(x∗)

) (2.74)

where A = 1
σ2
n
ϕ(X)ϕ(X)⊤ + Σ−1

p . The only problem here is that generally inverting a matrix has

complexity cubed in the dimension O(L3), hence if feature dimension L is large we are in trouble. It

turns out we can rewrite this to be in the dimension of the number of samples rather than the feature

space. Using the notation

ϕ := ϕ(x)

ϕ∗ := ϕ(x∗)

Φ := ϕ(X)

K := Φ⊤ΣpΦ

A :=
1

σ2
n

ΦΦ⊤ +Σ−1
p

(2.75)
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it is possible to rewriting the mean vector via:

1

σ2
n

Φ(K + σ2
n1) =

1

σ2
n

Φ(Φ⊤ΣpΦ + σ2
n1)

=
1

σ2
n

ΦΦ⊤ΣpΦ + Φ1

= (A −Σ−1
p )ΣpΦ + ΦI

= (AΣp − 1)Φ + Φ1

= AΣpΦ

⇐⇒

A−1 1

σ2
n

Φ(K + σ2
n1)(K + σ2

n1)
−1 = A−1AΣpΦ(K + σ2

n1)
−1

yielding

µy∗|x∗,X,y =
1

σ2
n

ϕ⊤
∗ A−1Φy = ϕ⊤

∗ ΣpΦ(K + σ2
nI)

−1

︸ ︷︷ ︸
1

σ2
n

A−1Φ

y
(2.76)

Similarly, one can rewrite the covariance matrix to depend on the data dimension rather than the feature

dimension [147]:

Σy∗|y = x⊤
∗
1

σ2
n

XX⊤ +Σ−1
p x∗ = ϕ

⊤
∗ Σpϕ∗ − ϕ⊤

∗ ΣpΦ(Φ
⊤ΣΦ + σ2

nI)
−1Φ⊤Σpϕ∗ (2.77)

Kernel Trick We note a specific re-occurring structure in the predictive mean and variance

µy∗|y =
︷ ︸︸ ︷
ϕ⊤

∗ ΣpΦ(
︷ ︸︸ ︷
Φ⊤ΣΦ+σ2

nI)
−1y,

Σy∗|y = ϕ⊤
∗ Σpϕ∗︸ ︷︷ ︸−ϕ

⊤
∗ ΣpΦ︸ ︷︷ ︸(Φ

⊤ΣΦ︸ ︷︷ ︸+σ
2
nI)

−1Φ⊤Σpϕ∗︸ ︷︷ ︸

namely the feature space is always on the form of an inner product (scalar)

ϕ(x)⊤Σpϕ(x
′)

Page 71 of 115



Doctoral Thesis — J.F. 2.8. Bayesian Optimization and Active Learning

where x and x′ are either training or tests points. Let us define the following function

k(xi,xj) = ϕ(xi)
⊤Σpϕ(xj) = ψ(xi)

⊤ψ(xj) = kij,

and call it a kernel. We note that a kernel can be seen as similarity measure between pairs of vectors.

Given the structure seen in the predictive mean and covariance, we can apply the so-called "kernel trick"

(see [52] for more details on the for kernel criteria), which is

If an algorithm is defined solely in terms of inner products in input space then it can be lifted into

feature space by replacing occurrences of those inner products by k(x,x′).

Kernels represent the data only through a set of pairwise similarity comparisons between the original

data observations x (in the lower dimensional space), instead of explicitly applying the transformations.

The consequence is that we don’t have to worry about the (potentially infinite dimensional) feature space

— only about the kernel (similarity measure in the input space). Applying this trick yields the following

predictive equations:

µy∗|y = K(x∗,X)⊤[K(X,X) + σ2
nI]

−1y, (2.78)

Σy∗|y = K(x∗,x∗)−K(x∗,X)⊤[K(X,X) + σ2
nI]

−1K(X,x∗). (2.79)

The GP predictive distribution is thus given by

p(y∗|x∗,X,y) = N (K(x∗,X)⊤[K(X,X) + σ2
nI]

−1y,

K(x∗,x∗)−K(x∗,X)⊤[K(X,X) + σ2
nI]

−1K(X,x∗)).
(2.80)

2.8 Bayesian Optimization and Active Learning

Gaussian Processes are not only powerful models at regression and prediction tasks. Due their

probabilistic nature of being able to provide predictions with uncertainty estimates they can also be used

in Bayesian Optimization (BO) [148, 149]. BO is a iterative gradient-free optimization method with

the goal of estimating the global minimum of some black-box function f(Θ) for Θ ∈ T where T can

be a hybrid space [150]. "Hybrid space" refers to spaces where some dimensions can be discrete (such

as batch sizes of neural networks) and other dimensions might be continuous (such as learning rate of
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neural networks). Formally, the aim of BO is to find a solution Θ∗ such that

Θ∗ = argmin f(Θ). (2.81)

Since our objective is to find the global minimum of the function, f(Θ) is sometimes referred to as the

objective function. For BO purposes, it is often the case that function f has no analytical form (e.g.

defined implicitly through simulation), hence the name "black box" function. Consequently, we cannot

write an equation f(Θ) = ... and find its gradients. We can only evaluate the function at that specific

point Θ and the evaluation itself might be time consuming. An often used specific example of such prob-

lem is Θ being hyperparameters of a neural network, and f(Θ) is some validation loss / performance

metric after training the network with hyperparameters Θ. Given large networks and thus long training

times (and perhaps monetary restrictions for access to GPU), optimizing for the best set of hyperparam-

eters Θ often only has allocated strict limited amount of trials. The problem of hyperparameter tuning

can be done with random or grid-search like strategies, where BO aims at finding better hyperparameters

on the same or smaller time budget, and indeed, it has been a successful story [151, 152].

Deploying BO requires two crucial decisions from the experimenter: 1) choice of surrogate function

and 2) choice of acquisition function. The surrogate function µ can be seen as a "model function" that

aims at mimicking the objective function, i.e., µ(Θ) ≈ f(Θ). But the surrogate function in BO also

goes beyond predicting the underlying objective by incorporating an uncertainty estimate σ(Θ) for the

prediction µ(Θ). Introduced in Section 2.7, the Gaussian Process (GP) is a popular choice of surrogate

function for BO protocols as [148], but any model capable of providing a distribution over output values

meets the requirements of BO including Random Forests (RFs) [153], Deep Ensembles (DEs) [154]

or mean-field Bayesian Neural Networks (BNNs) [155]. Although, the GP guarantees the predictive

distribution to be a normal distribution, this is not the case for general surrogates. However, a predictive

normal distribution is often used where the mean and standard deviation is computed empirically from

samples, and we shall assume the same from now on, that is, regardless of surrogate choice we assume

p(y|Θ∗,D) = N (µD(Θ∗), σ
2
D(Θ∗)), (2.82)

where D = {Θ, f(Θ)}ni=1 is a dataset of observations and µD and σD refer to a mean and standard devi-

ation function trained on D. Furthermore, we model the output as potentially being noisy observations

of the true underlying objective function y = f(Θ) + ϵ for additive noise ϵ ∼ N (0, σ2
noise).
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The mean µ(Θ) and uncertainty σ(Θ) from the surrogate function are key ingredients in how the

BO procedure sequentially chooses which hyperparameters Θ to try out via the acquisition function. An

acquisition function is thus a function which takes the entire history D as input, and returns a function

over Θ which is then used to choose the Θnext that maximizes the acquisition function. A popular choice

of acquisition function include the expected improvement (EI) which has the form

EI(Θ) = (µ(Θ)− f(Θ+))Φ(Z(Θ)) + σ(Θ)ϕ(Z(Θ)), (2.83)

where Z(Θ) = µ(Θ)−f(Θ+)
σ(Θ)

, f(Θ+) denotes the minimum observed objective value, Φ is the cumulative

distribution function (CDF) a standard normal distribution and ϕ is the probability density function

(PDF) of a standard normal distribution. The EI in Eq. (2.83) is motivated by finding the Θ which on

average maximizes the improvement I(Θ) = max(f(Θ+) − µ(Θ), 0). Plugging in the GP predictive

distribution into E[max(f(Θ+) − µ(Θ), 0)] yields Eq. (2.83) (see [156] for proof). Given a history

of observations D, the BO procedure works as follows. Choose a surrogate function with predictive

distribution p(y|Θ∗,D) = N (µ(Θ), σ2(Θ)) and acquisition function Acq(Θ). Iteratively repeat the

following steps until convergence or time/monetary budget has been met:

(i) Fit surrogate function to data D

(ii) Choose next input data point according to Θnext = argmaxΘ Acq(Θ) for example using expected

improvement: Acq(Θ) = EI(Θ)

(iii) Evaluate the objective function at f(Θnext)

(iv) Update data history D with (Θnext, f(Θnext)

Active Learning Active learning (AL) [157] is very similar to Bayesian Optimization (BO), except

for the acquisition functions being slightly different. Whereas the goal of BO is to find the global

minimum/maximum of a function f(Θ), the goal of AL is to end up with a predictive distribution

p(y|Θ∗,D) that approximates the underlying objective function. Thus AL is also sometimes called

optimal experimental design, since it is an active and iterative way of choosing/querying as few samples

as possible from a function in order to learn as much as possible [157]. One acquisition strategy is

uncertainty sampling, which queries the point according to argmaxΘ σ(Θ). A comparison between how

samples are queried for BO and AL is provided in Fig. 2.6.
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(a) Initial model fitted on objective y(Θ) = f(Θ) + ϵ
with noisy nature.
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(b) Model and samples after BO queries
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(c) Model and samples after AL queries

Figure 2.6: Comparison between samples and models from BO with expected improvement acquisition
(b) and AL with uncertainty sampling (c). Comparing to BO, AL aims at getting a good fitting of the
underlying function and thus samples more uniformly to minimize surrogate uncertainty whereas BO
aims at finding the global minimum.

2.9 Unsupervised Learning with Restricted Boltzmann Machine

In Sections 2.6-2.8 we dealt with supervised machine learning scenarios which is an important part

of the machine learning success history and is relevant for papers C and D. But there also exists a class of

models and approaches, equally (and sometimes argued even more) important, known as unsupervised

learning. Here we have datapoints X = [x1,x2, ...,xN ] but with no class labels or targets, i.e., no

"supervision". Unsupervised learning is important for more general pattern recognition and generation

[158]. One type of generative model known as the restricted Boltzmann machine (RBM) is of particular

interest for NISQ computing as this is closely related to the statistical mechanics discussed in Sections
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· · ·

Figure 2.7: Depiction of Restricted Boltzmann Machine (RBM). Adapted from [160].

2.3-2.5. RBMs are generative by means of their ability to learning patterns in data and being able to

generative new ones with same characteristics. More specifically, from samples x ∼ p(x) a RBM

aims at inferring a parameterized model pθ(x) ≈ p(x) such that new samples x∗ generated from pθ

follows x∗ ∼ p(x). It does so by employing a neural network model consisting of visible neurons

x = {x1, x2, ..., xV } and hidden neurons z = {z1, z2, ..., zH}. The "restrictiveness" of RBM comes from

the fact that there only exists connections between visible and hidden neurons, and thus no connections

in between the visibles as is the case for general Boltzmann machines . Normally, neurons in the RBM

are binary variables, but in principle this can also be relaxed to continuous values [159]. We consider

only binary variables for now. The energy function of the RBM is given in Eq. (2.84) which is equivalent

to the one in Eq. (3.7).

E(xv, zh) = −
∑

h

bhzh −
∑

v

bvxv −
∑

h

∑

v

wvhzhxv

= −b⊤
h z − b⊤

v x− x⊤Wz
(2.84)

where the RBM parameters θ = {bh,bv,W} are learned from a specific dataset. The probability of

observing a specific combination (xv, zh) is given by

p(x, z) =
1∑

x′,z′ e
−E(x′,z′)

e−E(x,z) (2.85)
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which is exactly the Boltzmann distribution in Eq. (2.55) for partition function Z =
∑

x,z e
−E(x,z). We

can now obtain the marginal distribution over the visible units marginalizing over the latent units

p(x) =
1

Z

∑

z

e−E(x,z)
(2.86)

Taking the log on both sides yields the log likelihood

log p(x) = log
1

Z

∑

z

e−E(x,z)

= log
1

Z
+ log

∑

z

e−E(x,z)

= − logZ + log
∑

z

e−E(x,z)

= − log
∑

x,z

e−E(x,z)

︸ ︷︷ ︸
Unclamped Fu

+ log
∑

z

e−E(x,z)

︸ ︷︷ ︸
Clamped Fc

(2.87)

that is, log likelihood equals the equilibrium (unclamped) free energy minus the free energy when the

visible units are clamped to the datapoint x; both at temperature β = 1. Derivatives of these energies

turns out to be expectations over inner products, that is, correlations between visible and hidden units.

The gradient of the unclamped free energy w.r.t. one of the parameters is the expected value of z⊤x,

∇θFc = Ez∼p(z|x)[z
⊤x] (2.88)

which is easy to do. However for the unclamped part,

∇θFu = Ez,x∼p(z,x)[z
⊤x], (2.89)

it is generally intractable and has to be estimated [161].

We close this chapter by summarizing that these sections constituted the main background theory

necessary to follow the next chapters in this thesis. We now move on to elaborate on the main topic,

parameterized quantum circuits, before we explain the scientific contributions.
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Quantum Neural Networks

WITH our established notation outlined in the previous chapter, we are ready to embark on the main

focus of this Ph.D. project: quantum neural networks (QNNs). A slightly less buzzing name

for these types of models are parameterized quantum circuits (PQCs) or variational quantum algorithms

(VQAs) but we shall use all three terms interchangeably, just as done extensively the literature [162, 163,

164, 165], albeit there are key differences between general VQAs and classical neural networks as we

shall see.

We saw in Chapter 2 that a quantum computers takes an initial state, represented as a density matrix

ρinit ∈ C2N×2N for N qubits, and produces an output state of same dimension ρout ∈ C2N×2N via a

series of gate operations acting on the initial state. The output state is measured in the computational

state (each spin yields up or down) which collapses the state onto one of the computational basis states

(Postulate 4). In order to create a quantum algorithm with specific application, careful consideration

needs to go in to what gates are applied in what order to obtain the optimal cocktail of superposition and

interference such that the resulting entangled output state is useful. Often, however, the result is a (very)

deep circuit which is not preferable for the noisy quantum hardware with few qubits we have access to

now and in the near-future.

There is, however, another way to go about creating quantum algorithms; an idea which also fits

well into the idea of creating shallow circuits being more resilient to noise. Recall that in Chapter 2

we learned that the gates can be represented with a unitary matrix σ, which can be parameterized with

parameter θi, such that U(θi) = eiθiσ. Acting with the gate U(θi) to the state ρ, corresponds to changing

the density matrix according to ρ′ = U(θi)ρU(θi)
†. Without loss of generality, we can draw a general

unitary circuit as done in Fig. 3.1. Despite we in practice most often use only one- and two qubit gates
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· · ·

· · ·

· · ·

· · ·

· · ·

U(θ1) U(θ2) U(θL)ρ

Figure 3.1: General parameterized unitary circuit with parameters θ = {θ1, θ2, ..., θL}.

due to the aforementioned Solovay-Kitaev theorem [83], we often depict general unitary gates U as

acting on all the qubits since this simply corresponds to U = 1 ⊗ ...Ui... ⊗ 1 where Ui is a local gate

acting on one or two qubits and the rest are left alone revealed by the identity acting on the remaining

qubits. Mathematically, we represent the overall circuit unitary as

U(θ) = U(θL)U(θL−1)...U(θ2)U(θ1) (3.1)

We often write the state after all unitary gates but prior to measurement as ρ(θ), and in many of the first

VQA papers it was assumed that the initial state ρ (see Fig. 3.1) was a pure state |ψinit⟩ = ψinit as well

as—due to the short depth—the quantum circuit could keep unitary, creating the state

|ψ(θ)⟩ = U(θL)U(θL−1)...U(θ2)U(θ1) |ψinit⟩ (3.2a)

ψ(θ) = U(θL)U(θL−1)...U(θ2)U(θ1)ψinit (3.2b)

where |ψinit⟩ = ψinit often is the computational basis zero-state for N qubits denoted |0⟩⊗N = e⊗N
0

(see Eq. (2.3)). Note that Eq. (3.2) corresponds to the overall circuit unitary in Eq. (3.1) acting on the

initial state. The left hand side in Eq. (3.2) is sometimes referred to as an ansatz state, which is another

name for a trial state since a specific θ creates an initial "trial" out of many states. U(θ) is thus called

the ansatz and we explore ideas on how to design these in Section 3.3.1. The goal of VQAs is to use a

classical computer to optimize θ in Eq. (3.1), and this is what in 2014 sparked a new field of quantum

machine learning (QML) referred in this thesis to as second-wave QML, or more generally second-wave
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algorithms.

Although, Google in 2019 demonstrated quantum supremacy [166] for a proof-of-concept task, we

still do not have a seen experimental evidence for which second-wave quantum algorithms running on

noisy intermediate-scale quantum (NISQ) computers are superior. VQAs are generally considered the

best candidates for achieving computational advantages in the near-term for practical problems [167].

The research moves very fast and almost weekly we see new bold [168], concerning [169] and very

encouraging [170, 171] results and ideas. This roller coaster nature may indicate there are still a lot

of unknowns areas of QML waiting to be explored. In the remainder of this chapter, we dive into the

technical details of PQCs/QNNs/VQAs and highlight some of the key results many of which are provided

to give an overview as well as outline the work that sparked the ideas for the scientific contributions of

this thesis (Chapter 4-Chapter 7).

3.1 Hybrid Quantum-Classical Computation

As mentioned in the last part of Chapter 1, in 2014, two independent papers were published and to-

gether they shifted the field of QML from designing fully error-corrected quantum circuit (i.e. first-wave

QML) into designing shallow circuits that solve problems by partnering up with a classical computer:

Peruzzo et al. [108] introducing the variational quantum eigensolver (VQE) and Farhi et al. [107] in-

troducing the quantum approximate optimization algorithm (QAOA). Both papers were first instances

of a more general group of algorithms (PQCs/VQAs/QNNs), which are hybrid quantum-classical com-

putational protocols. The idea of PQCs is to have the quantum processor performing short bursts of

parameterized computation, measure the qubits and then based on those measurement statistics, update

the parameters inside the circuits such that some loss function is minimized (see Fig. 3.2). Limiting the

protocol to perform shallow computations means that fewer errors can accumulate in the output state.

The loss function encodes our problem of interest such that when we minimize an expectation we get

closer to a good solution. The most commonly used loss function is the expectation value of some energy

operator H. The VQE [108] uses a Hamiltonian of a molecule to find the groundstate of that molecule,

which is a hard task in quantum chemistry. The QAOA [107] encodes the combinatorial problem—the

so-called MaxCut problem [172]—in a Hamiltonian such that the solution encodes how one would cut

a graph with maximum distance between the two sets of nodes. It was later shown that these types

of circuits (VQAs) are universal quantum computing models [173, 174], and QAOA was later showed
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to—even with low depth circuits—produce probability distributions not efficiently simulated on classical

devices [175]. Furthermore, there has been interesting results from portfolio optimization in finance ap-

plications [176], and, as we shall see momentarily, quantum machine learning [177]. Another advantage

of VQAs is that they are inherently resilient to coherent/systematic noise c in the gates U(θ + c) since

the classical optimizer should be able to learn how to correct this when minimizing the loss such that it

converges to θ∗ = θ − c [178, 179].

The problem of finding minimum eigenvalues of large matrices is a well-known problem [180] with

applications in many fields, including e.g. machine learning and quantum chemistry, and it is gener-

ally argued that an important application of quantum computers is to find groundstates of Hamiltonians

[181]. PQCs aim at this task by using a classical optimizer to learn the quantum circuit that prepares the

groundstate. PQCs are thus often called QNNs due to their input-to-output structure, their (unitary) ma-

trix multiplication and their training via stochastic gradient descent. However, one crucial ingredient—

which is what gives classical neural network most of their power—is missing from general VQAs: non-

linearities. The idea of QNNs is not new [182] and people have been searching for meaningful quantum

counterparts to classical neural works for a while [183, 184, 185]. The results include ideas such as feed

forward networks [186] and quantum convolutional neural networks (QCNNs) [187] where operations

such as measurements and conditional unitary operations create non-linearities [188]. These ideas can

be more generally applied in quantum computing to create non-linearities [189] and Wan et al. showed

that classical neural networks can be embedded into QNNs [190]. Furthermore, despite gates are unitary

and the state consequently evolves linearly, the expectation value of some observables can be changed in

a non-linear way [191].

Another way to interpret some PQCs are as kernel methods when trained supervised [192]. Since

our input state needs to encode the data points, we are essentially embedding data into a high dimensional

(2N ) vector space using only N qubits. What kind of vector space? Since wave vectors and density

matrices are complex (see Postulate 1) and there exists an inner product (for example giving us the

normalization, see Eq. (2.5)), state vectors and density matrices live in a Hilbert space. If one embeds a

datapoint xi ∈ C2N as the initial quantum state at the beginning of our quantum circuit, and subsequently

updates the circuit U(θ) such that the expectation value of one of the qubits reflects the corresponding

classification label yi, then the QNN essentially computes inner products and is thus indeed a kernel

method [193]. In fact, there is a whole line of literature trying to use a quantum computer as a kernel

(i.e. computing inner products) and use this kernel in predictive tasks [194]. Other research considers
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Figure 3.2: Hybrid quantum/classical computation. An initial quantum state ρ (often all qubits are put
in the zero / spin up state) is passed through a paramterized quantum circuit, the spins are measured and
our measurement apparatus reads the eigenvalues of the Pauli Z matrix(spin up = 1, spin down = -1),
this process is repeated to gain measurement statistics which is then used to update the circuit parameters
such that a predefined loss function is minimized.

using quantum circuits as general machine learning models [195] or generative models [196], and in fact

some generative tasks have been implemented on actual hardware [197].

The key difference between first-wave quantum algorithms and second-wave algorithms (see Chap-

ter 1) is that second-wave algorithms designs are not just looking at one particular circuit but in fact a

family of circuits U(θ) which needs to be optimized in order to do some task, similar to how classical

neural networks operate. This family of circuits is sometimes also called a hypothesis class since we

hypothesize that a solution the problem lies in all the functions that U(θ) span. Whether the solution

actual lies inside U(θ) is not given and not at all trivial to express for general Hamiltonians, but we

return to this in Section 3.3.1. We summarize this section with Fig. 3.2 illustrating the general idea of

quantum-classical hybrid computation, where we use the following set of steps that are repeated until

convergence:

(i) Quantum computer makes one shot (a forward-pass) to prepare spins in the state ρ(θ)

(ii) Spins are measured (often in the computational basis)

(iii) Step (i) and (ii) is repeated to obtain measurement statistics

(iv) Use a loss function together with measurement statistics to update circuit parameters θ → θnew
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In the next section, we look at some of the most used loss functions.

3.2 Loss Function

The most commonly used loss function in VQAs is some energy operator H that encodes the prob-

lem at hand. For example it could be the Ising model (Eq. (3.7)), and hence the goal of optimizing θ is

to find the groundstate of H. The general framework is that we have a state over N qubits is prepared

by a parameterized circuit |ψ(θ)⟩ = ψ(θ) and a corresponding loss function being an energy operator

H(C) is given by its Pauli decomposition

H(C) =
M∑

m=1

cmPm, (3.3)

with coefficients C = {c1, c2, ..., cM} and where Pm is an observable (Hermitian matrix) that can be

written as a tensor product of exactly N one-qubit Pauli matrices (Eq. (2.22)) acting on at most k qubits.

We call these local Hamiltonians: k-local Hamiltonians means operators decomposable into local opera-

tors acting on k spins at max, and with the identity on the rest. We will almost exclusively be considering

2-local Hamiltonians, such as the one written in Eq. (2.48), which can be written even more compactly

as

H(C) =
∑

(αi,αj)

∑

i

J
(αi,αj)
ij σαi

i σ
αj

j +
∑

αi

∑

i

bαi
i σ

αi
i (3.4)

for C = {J (αi,αj)
ij , bαi

i } and αi ∈ {X, Y, Z} corresponds to a Pauli measurement (Eq. (2.22)) on the i’th

qubit, for example, σX
4 corresponds to a spin left/right measurement on qubit 4. The expectation ⟨H(C)⟩

is found by finding the expectation of the individual Pauli terms in the Hamiltonian,

⟨H(C)⟩ := ⟨ψ(θ)|H(C)|ψ(θ)⟩ =
∑

(αi,αj)

∑

i

J
(αi,αj)
ij ⟨ψ(θ)|σαi

i σ
αj

j |ψ(θ)⟩+
∑

αi

∑

i

bαi
i ⟨ψ(θ)|σαi

i |ψ(θ)⟩ ,

(3.5a)

⟨H(C)⟩ := ψ(θ)HH(C)ψ(θ) =
∑

(αi,αj)

∑

i

J
(αi,αj)
ij ψ(θ)Hσαi

i σ
αj

j ψ(θ) +
∑

αi

∑

i

bαi
i ψ(θ)

Hσαi
i ψ(θ).

(3.5b)
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Despite interesting methods have been proposed to minimize the number of samples required [198], it

generally takes a lot of shots/forward-passes/repetitions of the quantum circuit with the same parameters

θ in order to get stable statistics necessary for some applications. We return to this issue in Section 3.4,

but the number of samples is typically large because each term/sub-expectation in the above sum needs

needs an amount scaling with 1
ϵ2

for error ϵ and given that we change the state upon measurement (see

Postulate 4) we—worst case—need to run the circuit again for another term/sub-expectation.

Finding the circuit parameters θ∗ that minimizes Eq. (3.3) corresponds to the optimization problem

θ∗ = argmin
θ

⟨ψ(θ)|H(C) |ψ(θ)⟩ , (3.6a)

θ∗ = argmin
θ

ψ(θ)HH(C)ψ(θ). (3.6b)

If the groundstate is contained inside U(θ), obtaining θ∗ from the above equation yields our circuit uni-

tary U(θ∗) to prepare the groundstate (i.e. the minimum energy eigenstate) of H(C) and when we com-

pute Eq. (3.3) we get the minimum eigenvalue of H(C). There are also approaches to compute higher

energy eigenvalues (excited states) such as first estimating the groundstate and subsequently changing

the loss function to contain a penalty on the groundstate which yields slightly different parameter update

rules for the classical optimizer [199] or using hierarchical approaches [200]. Since finding eigenvectors

of matrices is at the very core of some machine learning models such as Principal Component Analy-

sis (PCA), there has been interesting ideas on how to diagonalize density matrices and to obtain both

eigenvalue and eigenvectors [201, 202] as well as how to actually implement the covariance matrix of

the dataset [203]. Furthermore, as mentioned in Chapter 1, we saw the HHL algorithm [91] was able to

solve linear systems of equations using deep fault-tolerant quantum algorithms, but it turns out that this

is also possible to reformulating it as a energy minimization problem [204]. In Section 3.3 we elaborate

on techniques to estimate θ∗.

Up until VQE was introduced, Quantum Phase Estimation (QPE) [205, 206] was the leading algo-

rithm in estimating eigenvalues of Hermitian matrices using quantum computers having an exponential

speedup compared to classical exact diagonalization [207]. However, since QPE requires deep circuits

it is not appropriate for NISQ devices [208]. Instead, given that many real-world quantum systems have

a sparse Hamiltonian, the expectation (Eq. (3.5)) often has at most a polynomial number of Pauli terms

relative to the number of spins making them effective to estimate on a quantum computer [167]. From
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the adiabatic theorem in Section 2.3.1, we learned that the speed at which we can walk on the analog

adiabatic pathway is inversely proportionally to the spectral gap in the Hamiltonian, and indeed, the

complexity of solving the general VQE problem is related to this property of the Hamiltonian. If there

is a spectral gap large enough (inverse-polynomial in the number of spins) in our Hamiltonian, finding

its groundstate using VQAs is QMA-complete for k ≥ 2 [209]. Quantum Merlin-Arthur (QMA) is the

quantum-extention of the probabilistic nondeterministic polynomial (NP) class—called MA— which

contain problems hard for even quantum computers to solve but given some constraints a solution can

be easily verified with a quantum computer [210]. We return to the practical difficulties for VQA in

Section 3.3 but note already now that no obvious existence of exponential speedups with VQAs is at

hand.

Essentially what VQAs are trying to accomplish is to use a quantum computer to simulate a quantum

system. This task was shown possible to do for a quantum computer when the quantum system of interest

are spins [211]. Although Nature "wants" systems to be in the lowest energy state, it is often a hard task

to perform in reality: even for rather simple Hamiltonians the system is likely to get stuck in local minima

of the energy landscape. For machine learners, this is not a new phenomenon as it is observed all the

time in computer science optimization problems, for example optimizing neural networks [212]. If a

local minimum has an energy very close to the global minimum, it might be an acceptable solution for

some applications, however, problems might arise in some applications when the loss function has many

local optima significantly different from the global minimum.

In the following we introduce some often used loss functions for QNNs, which is also used in the

Paper A-C.

Ising Spin Ring The Ising Spin Ring model is given by HTFI = HM +HC for

HM = −
∑

i

hiXi, HC = −
∑

i

JiZiZi+1. (3.7)

such that the spins are assumed to be on a lattice ring where it is sufficient to only model nearest neighbor

interactions.
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Transverse-field Ising Spin Ring The transverse-field Ising (TFI) Spin Ring model is given by HTFI =

HM +HC for

HM = −
∑

i

hiXi, HC = −
∑

i

JiZiZi+1. (3.8)

Heisenberg XXZ Spin Ring The Heisenberg XXZ spin ring model is given by HXXZ = HM +HC for

HM =
N∑

i=1

hiZi, HC =
N∑

i=1

[XiXi+1+YiYi+1+ZiZi+1].

Lithium Hydride The Lithium Hydride (LiH) Hamiltonian has a linear combination of 6-local Pauli

strings Pk ∈ {1, X, Y, Z} as

HLiH =

rh∑

k=1

hkPk. (3.9)

3.2.1 Free Energy as Loss Function

Another choice of loss function for VQAs is the free energy [163] which we derived in Eq. (2.59).

There are very deep connections to statistical learning theory, information theory, Bayesian inference and

more beyond the scope of this thesis but the curious reader could be directed to the lecture notes by Jose

et al. [213] or how the physics of energy based models work by Huembeli et al. [214]. Minimizing the

free energy, rather than the energy, yields the qubits to approximate the thermal state (Eq. (2.62)) rather

than the groundstate [215]. This is because the relative entropy D (also known as the Kullback-Liebler

divergence) between the circuit created state ρ(θ) and the Gibbs state at inv. temperature β denoted ρβ

can be written as the difference between their free energies Fθ and Fβ

D(ρ(θ)||ρβ) = Tr[ρ(θ) log ρ(θ)]− Tr[ρ(θ) log ρβ] = β(Fθ − Fβ) ≥ 0 (3.10)

which has its minimum (D = 0) when ρ(θ) = ρβ . We shall use the term variational quantum thermal-

izers (VQTs) to denote QNNs that aims at preparing thermal states of energy operators at some inverse

temperature β. In fact, the very first contribution (Paper A, Chapter 4) is centered around using the free

energy as loss function to approximate a thermal state of various spin models. Although the field of

groundstate preparation is rich and tons of other popular ideas such as qubitization [216] exist, we limit

our focus to VQE and VQT.

There is a caveat when minimizing the free energy rather than the energy: the entropy is not an
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observable and thus has to be estimated. Recall from Postulate 4 that observable operators needs to be

Hermitian, and the entropy (Eq. (2.51)) is not. Paper A (Chapter 4) lists ways to estimate the entropy

and thus use the free energy as loss function in practice.

3.3 Optimization

How QNNs are optimized has at least two interpretations: a "machine learning" and a "physical"

approach. The update rules turns out to be the same, and it is only of matter of how we get to the various

update rules proposed [217].

The machine learner can think of finding an optimal θ as an optimization task where we can use

gradient based methods, just as we do in deep learning. That is, for infinitesimal changes in a single

circuit θi, this expectation changes as

∂θi :=
∂

∂θi
⟨ψ(θ)|H(C) |ψ(θ)⟩ (3.11a)

∂θi :=
∂

∂θi
ψ(θ)HH(C)ψ(θ) (3.11b)

Schuld et al. [218] showed that these gradients can be obtained analytically from the quantum computer

using the parameter-shift rule,

∂θi =
1

2

〈
ψ
(
θ +

π

2
ei

)∣∣∣H(C)
∣∣∣ψ
(
θ +

π

2
ei

)〉

− 1

2

〈
ψ
(
θ − π

2
ei

)∣∣∣H(C)
∣∣∣ψ
(
θ − π

2
ei

)〉 (3.12)

where ei is an indicator vector (zero everywhere except a one at position i) of length L (number of

circuit parameters). In order to minimize the loss/expectation, the parameters are updated in the opposite

direction of the gradient, namely using gradient descent the n’th update iteration

θ(n+1) = θ(n) − η∂θ(n) (3.13)

for some learning rate η. Since expectation values like the ones in Eq. (3.12) always are experimentally

evaluated from finite sample sizes, it is argued to be analogous to stochastic gradient descent (SGD)

[219] although one could argue it is a slightly different source of stochasticity. Ideas on how to expand
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this parameter-shift rule using the geometry of the circuit was also shown to obtain multi-parameter gate

gradients on quantum hardware [220]. Although quantum circuits can be complicated and it is hard to

guarantee SGD convergence, it has been shown that gradient based method are better for some low-depth

circuits when comparing to gradient-free approaches [221].

For quantum systems, we learned that the probability distribution of observing the qubits in the i’th

computational basis state was given by the i’th diagonal element of the density matrix, that is,

p(i|θ) = [diagρ(θ)]i. (3.14)

The machine learner might use this to come up with higher order optimization methods such as natural

gradient descent [222], which optimizes the parameters by transforming the gradients using the Fisher

Information Matrix F

θ(n+1) = θ(n) − ηF−1(θ)∂θ(n) (3.15)

where F is an approximation to the Hessian [223] of the Kullback-Lieber divergence between p(i|θ) and

p(i|θ + δ) for infitesimal changes to the parameters δ [224]. The k’th row and l’th column of the Fisher

matrix F is given by

[F(θ)]kl =
∑

i

p(i|θ)∂ log p(i|θ)
∂θk

∂ log p(i|θ)
∂θl

, (3.16)

which describes how the probability of observing the i’th spin is affected by changing the l’th and k’th

parameter. The inverse of Eq. (3.16) adjusts the gradient in order to respect co-dependence between

parameters when changing the probability distribution p(i|θ). And exactly because p(i|θ) is isometric

to a classical probability distribution, F is referred to as the classical Fisher Information Matrix.

The physicist might think of optimizing the parameters with a different perspective. While evolving

a pure quantum state in a closed system for a discrete time step δt yields a unitary matrix multiplied with

the state,

|ψ(θ(t+ δt))⟩ = e−iδtH |ψ(θ(t))⟩ , (3.17a)

ψ(θ(t+ δt)) = e−iδtHψ(θ(t)), (3.17b)
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a continuous state change is found via the Schrödinger equation [15]. Let us denote the pure quantum

state that our parameterized quantum circuit makes at some initial time t is |ψ(θ(t))⟩ = ψ(θ(t)), then

the (time-independent) Schrödinger equation is

d

dt
|ψ(θ(t))⟩ = −iH |ψ(θ(t))⟩ , (3.18a)

d

dt
ψ(θ(t)) = −iHψ(θ(t)). (3.18b)

The equation describes the infinitesimal change of a quantum state when the spins are acted upon by

some energy operator H which generally describes the potential U and kinetic V energies of the system,

that is, H = U + V . We shall throughout this thesis only investigate time-independent Hamiltonians

where the kinetic energy V is zero (such models for spins on a static lattice) and the potential energy

U (such as is the case for all the Hamiltonians we considered in Section 3.2). We emphasize, that what

is evolving over time in Eq. (3.18) is the parameters θ(t) that produces our quantum state |ψ(θ(t))⟩ =
ψ(θ(t)). The variational principle [217] lets us to map the time evolution of the quantum state to time

evolution of the parameters [225]. From this principle, one can derived how the parameters should evolve

in order to simulate the Schrödinger evolution (Eq. (3.18)).

Despite simulating time evolution is an interesting and important problem in itself, a very peculiarly

thing happens if we substitute t to be τ = it in Eq. (3.29), that is, creating imaginary time evolution (ITE)

[226]

|ψ(θ(τ + δτ))⟩ = e−τH |ψ(θ(t))⟩ , (3.19a)

ψ(θ(τ + δτ)) = e−τHψ(θ(t)). (3.19b)

Although, it is an unphysical process, it is often used as a mathematical tool to solve problems more

generally in physics. ITE yields the following update equation to the parameters θ(t) over a small time

step δτ

θ(τ + δτ) ≃ θ(τ) + δτA−1(τ)c(τ) (3.20)

which turns out to be exactly the same update rule as we saw with natural gradient descent, since c(τ)
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is the gradient and F = A [227, 228]. However, it is only equivalent for pure states evolving in closed

systems. As Koczor et al. shows in [229], density matrices evolving in non-unitary circuits, one cannot

use the classical Fisher information; but should instead use the quantum Fisher information. Whereas

the classical Fisher information describes how the probability distribution p(i|θ) changes when the pa-

rameters θ are changed, the quantum Fisher information describes how the quantum state ρ(θ) changes.

The quantum Fisher information matrix is, however, more difficult to estimate and there exist multiple

approaches, including using VQAs to do so [230]. One estimate from ref. [229] is given by

[FQ(θ)]kl ≃ Re

{
Tr

[
∂ρ(θ)

∂θi

∂ρ(θ)

∂θj

]}
(3.21)

which reduces to F when ρ(θ) is pure.

When our estimate θ is in the vicinity of a local minimum, Koczor et al. showed that there was an

analytical solution to the optimization problem due to the periodicity in the parameters and the nature of

the cost function [231]. Other encouraging ideas include measuring covariances that yields update rules

to our circuit parameters which has shown great promise for VQE type problems, especially when we

are in the neighborhood of a minimum [232]. On the classical optimizer side of VQAs, there has been

extensive investigation of what works best. It is often argued that gradient-free methods as well as plain

gradient descent is not sufficient as they are easily stuck in local minima and even popular methods in

classical machine learning such as the Adam optimizer [233] does not scale well with qubit count [234].

It is generally argued that these quantum natural gradient descent methods outperform standard gradient

descent [61]. Another big question was also whether VQAs could be used in aiding QEC, and indeed

they could [235], which creates hope in the near future for a smoother transition to fault-tolerance.

3.3.1 Ansatz

The ansatz (plural: ansätze) is another word for the circuit unitary U(θ). Since U(θ) constraints

which quantum states our circuit can produce, or the expressiveness of the circuit, there has been put

extensive research into the design of the circuits in order to be expressive and still limit circuit depth.

Ref. [236] defines expressivity as the quantum circuit’s ability to generate states uniformly over all

possible quantum states. They also investigate the entangling capability which they measure through the

Meyer-Wallach (MW) entanglement metric due to its scalability and ease of computation. With these

two metrics they simulate a collection of circuit templates to see which template(s) are superior relative
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to their size and depth.

A particular type of ansätze known as hardware-efficient ansätze [237] is a family of unitary gates

easily implementable on quantum hardware aiming at reducing circuit depth and thus minimizing the

potential amount noise that can be accumulated. However, it turns out that these can be harder to train

since a good solution to the problem might not lie in the hypothesis class U(θ). Another line of research

have investigated Hamiltonian Variational Ansätze (HVA) which creates the ansatz according to the

Hamiltonian of interest [238]; very similar to QAOA which alternates between unitaries of initial and

problem Hamiltonian [107]. We saw with the adiabatic theorem (see Section 2.3.1) that it was possible

to Trotterize the analog adiabatic pathway, and using this idea, the layers in HVA corresponds to one

such discrete step. There also exists more exotic ansätze such as adaptively add/remove gates and thus

optimizing circuit structure [239]. It has also been shown that parameter initialization θ(0) is crucial

in order to converge to a good solution [240]. Meta-learning protocols such as using a classical neural

network to control the circuit has here been proposed [162].

In 2018, McClean et al. [241] discovered that in the training landscape of QNNs there was a

"vanishing gradient" like problem coined barren plateaus (BP). As the number of qubits increase, the

size of the wave-vector space increases exponentially and so too does the numerical size of the gradients

decrease exponentially [202]. This key result shifted the field of QNN quite a bit, as research was now

trying to come up with tactics to avoid or minimize the effect of BPs. In the light of BPs, subsequent

papers showed that there is an inherent balance between expressability and trainability in QNNs [242].

Here, trainability refers to expected gradients vanishing at most polynomially in system size. Moreover,

it is crucial when designing PQCs that the ansatz is complete, that is, it contains a good solution to the

problem Hamiltonian. Not only can the ansatz and bad initialization lead to BPs, but there also exists

noise-induced BPs which makes QNNs extra hard to train on actual hardware [124]. The convergence

results when noise is present is related to the quantum Fisher information [243]. Some results indicate

that BPs can be avoided for specific architectures such as quantum convolutional neural networks [244]

and exploiting parameter correlation can also lead to larger gradients [245]. However just as for classical

neural networks, training QNNs is NP-hard [246] given that there is exponentially many local minima

[247]. Recently, Anscheutz argued that there are for many QNNs trainabilty problems beyond BPs [169].

Cerezo et al. [248] showed that the cost function—i.e. the Hamiltonian—structure is also crucial for the

existence of BPs. They show that circuits finding performing VQE for local Hamiltonians (the one we

consider in this thesis) are trainable as long as the circuit-depth scales O(logN).

Page 91 of 115



Doctoral Thesis — J.F. 3.4. Estimating Expectation Values

Lately, a lot of research has been inspired by geometric deep learning by exploiting symmetries in

the data [249]. When comparing to classical neural networks, QNNs have in some instances been shown

to outperform in generative tasks [250]. However, a crucial element in this expressive advantage is how

the data is encoding in variational quantum-machine-learning models [251].

3.4 Estimating Expectation Values

One very critical aspect of VQAs is the number of measurements (also called shots) required to

obtain accurate and sufficient measurement statistics and subsequently update the cost function. This is

often argued to one of the mayor bottlenecks of practical VQA applicability [252, 253]. In Section 3.3.1,

we saw the phenomenon of Barren Plateaus (Section 3.3.1) when computing gradients. Here we empha-

size that if the gradients are smaller than the error in the expectation due to insufficient amount of shots,

we risk getting the wrong sign of the gradient which leads to a random walk [254]. Thus we would like

to know how many shots are required to get reliable gradients, and this turns out to be a non-trivial task.

Recall that when we optimize QNNs w.r.t. parameters θ, we need an estimate of the expectation

value of some Hermitian operator given a quantum state,

⟨H(C)⟩ = Tr[ρ(θ)H(C)], (3.22)

where H(C) =
∑M

m=1 cmPm is a general k-local Hamiltonian with coefficientsC = {c1, c2, ..., cM} and

ρ(θ) is the density matrix our parameterized quantum circuit produces. We do this experimentally by

computing the expectation value of each ⟨Pm⟩ = Tr[ρ(θ)Pm] and then subsequently plugging this into

⟨H(C)⟩.
We can now derive the variance of each estimator ⟨Pm⟩ in H =

∑M
m=1 cmPm given Nshots sam-

ples. Measuring the i’th spin at the end of our circuit, results in a binary outcome zi ∈ {−1, 1}. The

expectation ⟨zi⟩ := E[zi] ∈ [−1; 1] is itself a random variable. At large sample sizes (Nshots > 1000)

this expectation is well approximated by a normal distribution E[zi] ∼ N (µ, σ2) due to the central limit

theorem [145]. The standard error of the mean [255], denoted ϵ, scales with ϵ = O
(

1√
Nshots

)
, and

thus the number of samples required to obtain precision ϵ scales inversely Nshots = O
(

1
ϵ2

)
. Having M

terms ⟨Pm⟩ in our Hamiltonian, each needing O
(

1
ϵ2

)
samples, the total number of shots to estimate the

expectation in Eq. (3.22) scales as O(M
ϵ2
). We note that this is irrespective of if the state ρ(θ) is pure or
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mixed, albeit as we shall see momentarily, noise (as might be expected) increases Nshots even further.

Generally, some of the terms in Pm are likely to commute with other terms. Hence measuring Pu

does not affect the expectation value of another term Pv as the wavefunction only collapses the parts we

measured. Thus there is possibility for clever grouping the commuting terms and not having to repeat

the entire circuit [256] for each term. In fact, Huggins et al. provided a measurement strategy such that

the total number of measurements for a Hamiltonian expectation scales O(
√
M
ϵ
) even for non-commuting

terms Pm, however, with the price of increased circuit depth linear in the number of qubits and using an

additional O(M log 1
ϵ
) qubits [257]. Another highly cited approach is so-called classical shadows which

introduces random projections just before measurement to measure in the X , Y or regular Z basis [258].

This randomness allows one to compute a classical shadow—a classical representation of the quantum

state from its tomography—that can be used to estimate expectations in O
(
logM
ϵ2

)
runs and it has shown

to scale better asymptotically with the number of spins [259]. One can also formulate the grouping of

observable as a minimum-clique graph problem to obtain more efficient measurement protocols [260].

Another interesting proposal is to linearly combine unitary (LCU) operators in order to measure a group

of fully anticommuting terms of the Hamiltonian in a single series of single qubit measurements [261].

Although it has been argued that VQAs have a scalability problem due to the number of samples re-

quired to estimate expectations [253], other ideas such as multi-core quantum computing [262] proposes

the solution of distributing what can be parallelized, namely the repetitions/samples of the forward-

passes of quantum circuits. As there has been provable advantage for large scale data [263] and we

know theoretically that there is quantum advantage in learning from experiments [264], it seems logical

for the research field keep searching for solutions to these near-term problems, the biggest of which

arguably is the noise in NISQ devices. A big issue originating from the nature of the noise is that we are

not necessarily guaranteed we can just repeat the experiment enough times to get an accurate estimate

of ⟨H(C)⟩. In general, noise might introduce a bias in the estimate. In order to limit this bias and how

many extra samples are required to estimate the expectation value, the field of quantum error mitigation

is introduced in the next section.

3.5 Error Mitigation

Quantum error mitigation (QEM) is a relatively new sub-field in quantum computing aiming at

understanding how noise affects the expected value of measurement operators and how one can mitigate
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these effects. QEM is the "cheap" version of QEC in that it is a collection of techniques aiding in

computing more accurate expectation values at some cost such as requiring extra number of qubits,

increased circuit depth or extra measurements. Compared to QEC needing poly-logarithmic more qubits

and circuit depth [42], QEM does not correct errors in the quantum state, that is, it lets the quantum state

decohere and only focuses on estimating expectation values of operators. QEM often either assumes a

specific noise model or approximates the noise in the quantum computer. Thus QEM does not guarantee

errors in expectation to be suppressed unless the noise model or approximations are accurate. It is hard

to verify if the noise model is accurate (some QEM techniques try this) and the noise might change over

the course of multiple experiments as the hardware heats up.

In general, our goal is to accurately estimate ⟨H⟩ = Tr[ρ(θ)idH] (omitting the Hamiltonian pa-

rameters C for brevity) for some ideal, noise-free, state ρ(θ)id. However, our circuit produces a noisy

version ρ(θ) and we can only estimate ⟨H⟩ with finite measurements and so in practice we only obtain

an estimate ˆ⟨H⟩ by running the circuit Nshots times. To emphasize, there are two sources of error: from

the fact that ρ(θ)id ≈ ρ(θ) and that Nshots < ∞. Moreover, in general, the effect of the noise is that we

obtain a biased estimate ˆ⟨H⟩; to see why, we can ask: what is the average (squared) difference between
ˆ⟨H⟩ and ⟨H⟩? QEM techniques all aim at minimizing the mean square error between them, that is,

minimizing

MSE( ˆ⟨H⟩) = E
[
( ˆ⟨H⟩ − ⟨H⟩)2

]
. (3.23)

This is a very general problem and the above loss function is one of the most used regression losses in

machine learning [52]. Machine learners thus know that the MSE can be decomposed into the bias and

the variance (expanding the product) yielding

MSE( ˆ⟨H⟩) =
(
E
[

ˆ⟨H⟩
]
− ⟨H⟩

)2

︸ ︷︷ ︸
bias

+E
[

ˆ⟨H⟩2
]
− E

[
ˆ⟨H⟩
]2

︸ ︷︷ ︸
variance

(3.24)

If we denote ˆ⟨H⟩Nshots
to be the estimator after running the circuits Nshots times and thus averaging

Nshots expectation values, its mean square error is
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MSE
(

ˆ⟨H⟩Nshots

)
=
(
E[ ˆ⟨H⟩Nshots

]− ⟨H⟩
)2

+
1

Nshots

(
E
[

ˆ⟨H⟩2Nshots

]
− E

[
ˆ⟨H⟩Nshots

]2)

= (Tr[ρ(θ)H]− Tr[ρ(θ)idH])2 +
1

Nshots

(
Tr
[
ρ(θ)H2

]
− Tr[ρ(θ)H]2

)
.

(3.25)

Increasing the number of shots does nothing to the bias; it only decreases the variance, which we refer

to as shot noise. The goal of QEM is to limit the bias term, typically at the cost of increasing the number

of shots, qubits and/or circuit depth.

When the circuit state is different from the ideal state—such as when affected by noisy— that is,

ρ(θ) ̸= ρ(θ)id getting expectation values to precision ϵ generally requires even more samples than in

the pure case; how much depends on the circuit noise level as well as to which degree the noise affects

the density matrix uniformly (white noise) or there is structure in the noise. We shall use the model of

discrete single-qubit fault probability, that is, after every moment in our circuit (see example in Fig. 2.3),

some error happens with probability ϵ to each qubit. Thus having a total of N qubits and M moments,

there are ν = NM trials for an error to happen, and we can thus define the circuit error rate ξ as

ξ := ϵν. (3.26)

The error rate ξ can also be seen as the expected number of total errors happening in one run. If errors

are independent, it can be shown that the probability of no error occurring decays exponentially with ξ

and thus the number of extra shots needed—assuming the pauli noise model (Section 2.2.1)—increases

exponentially [265] and thus any potential speedup over classical attempts vanishes [61]. This exponen-

tial decay is easily shown for many noise models (such as the ones introduced in Section 2.2) that allow

the decomposition

ρ = (1− ϵ)ρid + ϵρerr (3.27)

Having ν of such channels, yields

ρ = (1− ϵ)νρid + (1− (1− ϵ)ν)ρerr (3.28)

and thus an exponential decay (1 − ϵ)ν with system size/depth. In fact, for many QEM techniques,
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an exponential cost is unavoidable even if one increases the number of qubits or the circuit depth, and

moreover, training of VQAs only in certain instances benefits from QEM [266].

For a noisy circuit, we can denote the initial quantum state ρ0 = ρ0 and the corresponding output

ρ(θ, ϵ) = ρ(θ, ϵ) is made by the overall CPTP map of the entire circuit

ρ(θ, ϵ) = Φc(θ, ϵ)ρ0, (3.29a)

ρ(θ, ϵ) = Φc(θ, ϵ)ρ0. (3.29b)

Here Φc is the circuit CPTP map that only approximately (due to possibly correlated noise) decomposes

as

Φc(θ, ϵ) ≈ Φν(θν , ϵ)...Φ2(θ2, ϵ) · Φ1(θ1, ϵ). (3.30)

For many types of errors, we can write the combined CPTP map of a unitary gate (which could be the

identity) followed by an error happening with probability ϵ, that is, for the k’th noisy quantum channel

we have

Φk(θk, ϵ)ρ = (1− ϵ)Uk(θk)ρUk(θk)
† + ϵ

J∑

j

KjkρK
†
jk (3.31)

where Uk is the unitary operation happening with probability 1 − ϵ and Kjk are the J Kraus operators

modelling some noise process.

Koczor investigates how the mismatch between the dominant eigenvector |λm⟩ = λm of the density

matrix ρ(θ) and the corresponding ideal pure state ρid(θ) = |ψideal(θ)⟩⟨ψideal(θ)| the circuit would

produce if it was noise-free [267]. This is an interesting problem since what we are interested in is

exactly the expected energy of the state for zero noise, and thus quantifying the mismatch is central to

understand how noise affects our expectations. Writing the density matrix in its spectral decomposition

(see Eq. (2.11)),

ρ(θ) = λm · |λm⟩⟨λm|+
2N∑

i=2

λi |λi⟩⟨λi| , (3.32a)

ρ(θ) = λm · λmλ
H
m +

2N∑

i=2

λiλ
H
i . (3.32b)
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we can extract the eigenvector with the highest eigenvalue from the sum (note the sum starts at i = 2),

and regard the remaining orthogonal states as noisy states arising from some non-trivial noise process.

In the special case, when the noise ρerr commutes with ρideal, we know |λm⟩⟨λm| = ρid(θ), however,

incoherent noise is not likely—an in fact very unlikely—to commute with the ideal state and thus in-

troduce mismatch between these two vectors. Koczor argues, however, that for sufficiently complex

circuits, such as the QNNs often used in quantum machine learning, the dominant eigenvector is a very

good approximation to the ideal state. In fact, it is possible to upper bounds the mismatch as defined by

the infidelity (one minus the fidelity in Eq. (2.42)) between the dominant eigenvector and the ideal pure

state c := 1− | ⟨ψideal(θ)|λm⟩ |2, to be

c ≤ (1−
√
1− δ2)/2 (3.33)

where δ := λm(ϵ
−1 − 1) i.e. the largest eigenvalue of the error terms.

One of the first QEM proposals was the zero-noise extrapolation [268] which considers the param-

eterized quantum circuit produced state ρξ(θ) at circuit error rate ξ. The corresponding loss function

Tr[ρξ(θ)H] is then considered a function of ξ, where it is assumed that the hardware can each some

minimum circuit rate but can always increase ξ ≥ ξmin. In fact it is fairly straightforward to increase

the circuit error rate, since the experimentalist would just let more time pass between operations, or to

spend more time applying gates, and thus letting more errors occur. The zero-noise extrapolation is thus

a method where a function f(ξ) = Tr[ρξ(θ)H] is fitted to various circuit error rates [ξmin, ξ1, ξ2, ..., ξk]

and then one can extrapolate back to the expectation at zero circuit noise noise f(0) = Tr[ρ0(θ)H].

As the Google team showed experimentally [166] and Dalzell et al. showed analytically [269],

some types of quantum circuits scrambles local one-qubit noise into global white noise on the overall

quantum state ρ(θ). For these white-noise generating circuits, error mitigation can be done but comes

at exponential cost in system size [270]. As there is not a contributing bias term in the MSE loss (see

Eq. (3.24)), i.e. only a rescaling factor, we get

Tr[ρ(θ)idH] =
Tr[ρ(θ)H]

η
(3.34)

for η := (1 − ϵ)ν where η can be estimated experimentally [271]. However, as we address in Paper

B (Chapter 5) this global depolarization model is not necessarily a good approximation for all types of

NISQ architectures to how local noise accumulates into the quantum state yielding the need for more
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advanced QEM techniques, one of which is Virtual Distillation (VD) [272] / Error supression by de-

rangements (ESD) [273]. The idea of VD/ESD is to prepare n copies of the state ρ(θ), entangle the

copies and then compute the expectation on the overall state Tr[ρ(θ)nH]. This guarantees exponential

decay of bias with n while still being NISQ friendly [274] by not needing that many copies (n = 4 show

promising performance in the original paper).
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Chapter 4

Paper A: Noise-Assisted Variational Quantum

Thermalization

4.1 Foreword

The first paper presented is

• J. Foldager, A. Pesah, and L.K. Hansen. Noise-assisted variational quantum

thermalization. Scientific reports, 12(1):1–11, 2022 [1]

which can be seen in its full extend in Appendix A 1. This is joint work with Arthur Pesah from University

College London in 2020-2021. The project started out with my first independent research idea which

was using imaginary time evolution to approximate a thermal state and use this to train a restricted

Boltzmann machine (RBM, see Section 2.9). While working a few months on this idea, a paper came out

[275] doing exactly the same and it even had slightly better performance than my simulations. Despite

being bummed out several weeks of the summer of 2020, we turned the idea into manipulating noise

channels and learning these noise parameters together with unitary parameters in order to prepare a

thermal state of a Hamiltonian. The following section includes a short summary of main findings in the

paper and subsequently a section on the applications of the algorithm for restricted Boltzmann machines

is provided in Section 4.3.

1This article is licensed under a Creative Commons Attribution 4.0 International License.
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4.2 Summary

Variational Quantum Thermalization (VQT) is a subclass of Variational Quantum Algorithms (VQAs,

see Chapter 3) which aims at putting qubits in a thermal state (Eq. (2.62)) that subsequently can be used

for sampling tasks. This is often by either using twice as many qubits 2N , entangle them pairwise and

only caring about the reduced state on N qubits, or choosing a mixed input state ρinit.

In ref. [1], we go beyond parameterizing the unitary components of the circuit and include parame-

terization the noise channels as well. Specifically, we use the fact that the depolarization channel has the

decomposition

Dλ(ρ) = (1− λ)ρ+ λd−1
1. (4.1)

This single-qubit depolarization channel is used after each qubit, and this is what essentially pumps in en-

tropy to our system by a convex combination of the input state and the maximally mixed state. Moreover,

we assume the probability λ to be constant across all qubits and layers, and include this noise parameter

as one of the learnable parameteres when minimizing the free energy (see Section 2.5 approximates the

thermal state). This protocol we coin Noise-assisted variational quantum thermalization (NAVQT).

In order to use the free energy (Eq. (2.59)) as a loss function, we derive an approximation to the

entropy of the quantum state by shifting all depolarization channels to the beginning of the circuit (see

Fig. 1 in the paper). Given that the entropy does not change with unitary operations, all entropy in the

system is introduced in the beginning and thus leaving our entropy approximation independent of the

unitary circuit parameters θ. The free energy approximation thus becomes,

F (θ, λ) ≈ L(θ, λ) := Tr[ρ(θ, λ)H]− β−1S̃(λ) (4.2)

where the approximate entropy S̃(λ) is derived in the paper and given by

S̃(λ) = −N
(
(1− λ)m +

(1− (1− λ)m)

d

)
·

ln

(
(1− λ)m +

(1− (1− λ)m)

d

)
+

(d− 1)(1− (1− λ)m)

d
ln

(
(1− (1− λ)m)

d

) (4.3)

for a circuit with m unitary layers (or it could be moments) and N qubits. The loss function L(θ, λ)
has gradients for all parameters and thus we can use gradient based method to optimize our quantum
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computer. We numerically validate in the supplementary material that the true free energy F (θ, λ)

follows the approximation very closely.

We test the algorithm for a range of different 1D spin chain models including the Ising chain,

transverse-field Ising chain and Heisenberg model as Hamiltonians H in Eq. (4.2). We find that for a

range of temperatures, the algorithm nicely converges for all three Hamiltonians but the fidelity with the

true thermal state depends on the temperature. In the next section, we shall see how one can use NAVQT

to train a restricted Boltzmann machine (see Section 2.9).

Correction to the original paper In the original paper, it says that the dimensionality in our entropy

approximation S̃(λ) is d = 2N . However, this should be d = 2, since we derive the the entropy approxi-

mation as being the sum of N (independent) entropy terms, where each term is the accumulated entropy

happening due to single-qubit depolarization noise living in a two dimensional Hilbert space and not in

an 2N dimensional space. See the supplementary material. See Appendix A for detailed derivation but

note that d should be 2.

4.3 Detecting Speech Patterns

As a proof of concept, an experiment detecting patterns in speech signals is provided to illustrate

the applicability of being able to sample from a thermal state.

Recall that the Hamiltonian (energy operator) of the restricted Boltzmann machine and correspond-

ing probability distribution is the thermal state given by

H := H(xv, zh) = −
Nh∑

h=1

bhzh −
Nv∑

v=1

bvxv −
Nh∑

h=1

Nv∑

v=1

wvhzhxv (4.4)

pβ(xv, zh) =
1

Z
e−βH (4.5)

that is, our Hamiltonian is the Ising model. Research has also tried out Hamiltonians with non-diagonal

elements such as the transverse-field Ising models performing better than comparable classical models

[276], but for illustration purposes we stick with the classical Ising model. Training restricted Boltzmann

machines (RBMs) can be done by minimizing the average negative log-likelihood. Thus requires one to

compute the gradient δ of each parameter in the RBM, that is,

Page 101 of 115



Doctoral Thesis — J.F. 4.3. Detecting Speech Patterns

δθj =

Ntrain∑

n=1

(Tr[∂jHcρcn ])− Tr[∂jHuρu], (4.6)

for Ntrain datapoints. Here ρcn is the thermal state of the Hamiltonian Hcn when the visible neurons are

clamped to the n’th datapoint and ρu is the thermal state of the unclamped Hamiltonian Hu, given by

Hc := −
Nv∑

v=1

bhZh −
Nh∑

h=1

Nv∑

v=1

wvhZhZv (4.7)

Hu := −
Nv∑

v=1

bhZh −
Nv∑

v=1

bvZv −
Nh∑

h=1

Nv∑

v=1

wvhZhZv (4.8)

where Z is the Pauli Z operator acting on a single qubit. Given the simulatable restrictions of NISQ

devices, the RBM in these experiments will contain Nv = 4 visible and two hidden Nh = 2 neurons,

that is, a total of N = 6 qubits. Since ∂jH only keeps the term where the j’th parameter is in the

Hamiltonian, the gradients for the biases and weights become, respectively

δbk :=

Ntrain∑

n=1

Tr[Zkρcn ]− Tr[Zkρu], (4.9)

δwij :=

Ntrain∑

n=1

Tr[ZiZjρcn ]− Tr[ZiZjρu]. (4.10)

We see that in order to do gradient descent for weights and biases in a RBM, we need to compute

expectation values of observables under some thermal state. Preparing the thermal state is exactly what

NAVQT does and a job which quantum computers is thought to beat classical computers in [277, 278].

The Audio MNIST [279] is a dataset of spoken digits from 0-9 by 60 different speakers each pro-

nouncing a digit 50 times. Using the last transformer layer from Wave2Vec2 [280] and Principal Com-

ponent Analysis (PCA) to get four dimensional embeddings of the recorded speech signal, we now make

a small proof-of-concept experiment where the job of the RBM is learn to classify between two digits (1

and 3). The result is displayed in Fig. 4.1 and we see that it is indeed possible to train a RBM to classify

the samples, albeit it should be straightforward for many models.
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Figure 4.1: Training a Restricted Boltzmann Machine for Speech Classification. We use two hidden
neurons and four visible units of the first four principal components. (a) Data projected onto the two first
principal components of the last layer Wave2Vec2 embeddings. (b) The pseudo log likelihood (LLH) as
a function of optimization iterations averaged over one hundred seeds. A mean test accuracy of 0.937 is
obtained with 95% confidence interval [0.931, 0.943].

Page 103 of 115



Chapter 5

Paper B: Can shallow quantum circuits

scramble local noise into global white noise?

5.1 Foreword

The next paper presented is

• J. Foldager and B. Koczor. Can shallow quantum circuits scramble local

noise into global white noise? arXiv preprint arXiv:2302.00881, 2023 [2]

which can be seen in its full extend in Appendix B. This is joint work with Balint Koczor from University

of Oxford carried out in the spring of 2022. The paper studies how noise accumulates in specific types

of NISQ quantum circuits relevant for quantum machine learning (QML).

5.2 Summary

The local Pauli Error noise Model (PEM) assumes that after each moment (or unitary operation) in

the circuit, every qubit is hit by a noise channel which can be described as a sum of Pauli gates. The

resulting noisy state ρ produced by the circuit depends on both which unitary gates are in the circuit as

well as which errors affected it. A previous result by Dalzell et al. [269] showed that random quantum

circuits transform local noise into global white noise, but before our contribution it was not clear if

104



Doctoral Thesis — J.F. 5.2. Summary

popular NISQ architectures often used in QML also does this. Since several QEM proposals works

well with white noise affected quantum states [281], it is not clear for which types of architectures this

assumption does not hold and how to get unified metrics that investigates this. This is what the paper is

about, as we propose two metrics given by

W :=
1

2
∥perr − punif∥1 =

1

2

d∑

k=2

∣∣∣∣
λk

1− λm
− 1

d− 1

∣∣∣∣ , (5.1)

C :=
|| [ρideal, ρ] ||1

1− λm
= ∥[ρideal, ρerr]∥1 +O(Ea). (5.2)

where Ea is some approximation error. Here d = 2N , perr is the spectrum of the density matrix ρ

without the dominant eigenvalue λm (see Section 3.5) . Whereas W (being the l1 distance to white

noise) describes how well the collection of non-dominating eigenvalues approximates white noise, C

describes the commutator norm between the ideal state ρid and the circuit produced state ρ such that the

dominating eigenvalue λm of ρ approximates the fidelity F (ρid, ρ)

λm = F (ρid, ρ) +O(|| [ρideal, ρ] ||1). (5.3)

We find that in most cases white noise is not a good approximation to the eigenspectra of ρ. Instead,

we find that both W and C as a function of the number of gates in the circuit is approximated well by

f(ν) = α
e−ξξ

(1− e−ξ)
√
ν
=

α√
ν
+O(ξ), (5.4)

The factor α, we find, initially grows with N but then saturates and then not increasing N for sufficiently

large systems. We simulate often used cost functions in QML including the Heisenberg XXX spin model,

transverse-field Ising model and the Lithium Hydride (LiH) Hamiltonians. We investigate both the strong

entangling layer and Hamiltonian variational ansatz (see Chapter 3) and find that when we initialize

the circuit parameters randomly, we get a reasonably good fit as the number of gates are increased.

However, when the parameters are not random such as when we approximate the adiabatic path, the

HVA ansatz produces non-dominating eigenvalues in the density matrix not well approximated by white

noise. However, it appears that the commutator norm C is sufficiently small and decreases as the number

of gates becomes sufficielty large. As also explained in the paper, we argue that given the HVA depends
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on the problem Hamiltonian, the circuit might not have sufficiently large Lie algebra, i.e., limited ability

to scramble noise into white noise, which explains the low white noise similarity. By inserting additional

gates into the circuit which increases the Lie algebra, we see significantly smaller C metric and a clear

decrease with the number of gates.

Given we find that popular QML architectures does not in general produce a dominating eigen-

vector close to the ideal state plus white noise, this implies that using QEM techniques relying on this

assumption might not be ideal. That is, if one applies QEM together with particular NISQ architetures

(strong entangling layer and Hamiltonian variational ansatz) to mitigate noise effects, one should con-

sider estimating metrics like C and W as these reveal efficacy about which QEM techniques will yield

accurate and robust results.
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Chapter 6

Paper C: Actively Learning Quantum

Machine Learning Architectures from Related

Problems

6.1 Foreword

The next paper presented is

• J. Foldager. Actively learning quantum machine learning architectures from

related problems. 2023 [3]

which can be seen in its full extend in Appendix C. The paper develops a meta-learning algorithm

that uses both Active learning (AL) and Bayesian optimization (BO) in order to learn quantum circuit

architectures across various Hamiltonians.

6.2 Summary

The variational quantum eigensolver (VQE) aims at learning the parameters θ∗ in a quantum circuit

U(θ) such that the output of the circuit is the groundstate of a Hamiltonian, that is,
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θ∗ = argmin
θ

⟨H(C)⟩ = ⟨ψ(θ)|H(C) |ψ(θ)⟩ , (6.1)

where H(C) is a parameterized 2-local Hamiltonian,

H(C) :=
∑

(αi,αj)

∑

i

J
(αi,αj)
ij σαi

i σ
αj

i+1 +
∑

αi

∑

i

bαi
i σ

αi
i (6.2)

for parameters C = {{J (αi,αj)
ij }, {bαi

i }}. Aside from the circuit parameters θ, we also have the VQA

hyperparameters which is the overall experimental design, i.e., how we design the circuit including

parameters such as the classical optimizer learning rate, number of ansatz layers, etc. We can therefore

expand the notation such that the circuit unitary UΘ(θ) is conditioned on the hyperparameters Θ. An

open question in quantum neural network research is how to design the ansatz and classical optimization

loop, that is, design the hyperparameters. The general hypothesis that sparked the idea of this paper

is that given different hyperparameters Θa ̸= Θb lead to different coverage of reachable states in the

Hilbert space that quantum states live in. But there is another dimension as well: how quick the VQA

converges to a solution |θ⟩ as well as the quality of that solution, which we can define as the infidelity

between |ψ(θ⟩ and the groundstate |ψ0⟩ given by

I = 1− | ⟨ψ0|ψ(θ)⟩ |2. (6.3)

If the infidelity is low (close to zero), it means that our circuit has found a good solution to the problem,

since | ⟨ψ0|ψ(θ)⟩ |2 ≈ 1 i.e. their inner product is close to unity. However, this is not the loss that the

classical agent uses to optimize as we would have to be able to calculate the inner product with the true

groundstate. Instead, we—as done in general VQE—use the energy as loss function.

In the paper, we propose a way of letting a classical meta-learning algorithm query a certain number

of Hamiltonians using AL, that is, a collection Ccollection = {C1,C2, ...,CK} and for each of them run

BO in order to optimize the hyperparameters Θ. The agent thus have an inner BO loop and an outer

AL loop, the former conditioning on a specific Hamiltonian and optimizing for hyperparameters and

the latter of which searches in the Hamiltonian parameter space to find areas where the uncertainty

in the groundstate energy is high. The agent is thus named the actively learned bayesian optimized

(ALBO) VQE. However, the approach is very general and could in principle be expanded to other types
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of problems as well.

The goal of training such agent is to being able to handle it a set of Hamiltonian coefficients (that

is, a new problem) and then it returns the optimal set of hyperparameters (VQA design) that solves the

groundstate problem in as few iterations as possible. Specifically, we consider the number of ansatz

layers as well as the learning rate as being the two hyperparameters we wish to optimize and learn, and

the transverse-field ising (TFI, see Section 3.2) model and Heisenberg chain (XXZ, see Section 3.2).

The numerical results show that ALBO outperforms both random search as well as standard choices of

hyperparameters such as having half as many layers as qubits and a fairly large learning rate in the Adam

optimizer. This suggest that it is possible learning across problems and that one benefits from actively

choosing which Hamiltonians to find optimal hyperparameters for.
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Chapter 7

Paper D: On the role of uncertainties in

Bayesian Optimization

7.1 Foreword

Finally, we present the paper:

• J. Foldager, M. Jordahn, L.K. Hansen, and M.R. Andersen. On the

role of model uncertainties in bayesian optimization. arXiv preprint

arXiv:2301.05983, 2023 [4]

which can be seen in its full extend in Appendix D. The paper addresses the role of uncertainty estimates

in Bayesian Optimization (BO) through an extensive study of the relationship between the BO perfor-

mance (regret) and uncertainty calibration. We provide both numerical and theoretical evidence that for

why uncertainty calibration might be difficult to combine with BO.

7.2 Summary

In the BO literature, there is a general consensus that the surrogate uncertainties (see Section 2.8)

are crucial for a good BO performance as most acquisition functions depends heavily on the uncertainty.

Moreover, it is often argued that one of the reasons why Gaussian Processes (GPs) often come out
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superior to other surrogate models is due better / calibrated uncertainty estimates. In fact, a recent

study [282] argues directly that re-calibrating these uncertainties enhances BO performance, i.e., the

BO routine reaches a better estimate of the global minimum.

The intuition for calibrated uncertainties, as we also write in the paper, is straightforward in clas-

sification tasks. If a model provides p % chance that a datapoint belongs to a class, then on average we

would expect p % of very similar datapoints to actually belong to that class. For example, if 10 data-

points gets 80% probability of belonging to classA, then if the model is calibrated, 8 of those 10 samples

indeed belong to class A. For regression tasks it is slightly more involved, but given that a calibrated

regression model generates a prediction µ and uncertainty estimate σ, we would see p percent of the

data lying inside a p percentile confidence interval of µ. In practice, this is done by binning p ∈ [0, 1]

and create a calibration curve which is the Expected Confidence Level versus the Observed Confidence

Level. Subsequently one can test how far a given regression model is to y = x using the mean squared

error, and we call this error the expected calibration error (ECE). Re-calibrating a regression model, as

suggested by Kuleshov et al. [283], is the process of taking a predictive model and changing the predic-

tive distribution such that the ECE is minimized. Recalibration is often done in an outer validation loop

such as in ref. [282] which uses a subset of the available datapoints. Our contribution investigates if this

is meaningful to do both through extensive numerical experiments as well as theoretically.

Our numerical experiments suggest that there are correlations between BO performance and cali-

bration level across models. That is, if one is handed two models, one being well calibrated and one

not being well calibrated, we would expect the calibrated one to arrive at the best solution on average.

However, the effect is not significant when controlling for the type of surrogate model, that is within each

model. In other words, our experiments show that as long as a practitioner chooses models that have a

fair calibration ability (such as Gaussian Processes and Deep Ensembles), it does not help on average to

be better calibrated when doing BO.

We also show that re-calibration does not (in general) improve BO performance, and importantly,

we establish a mathematical proof that at small samples (where BO typically operates due to expensive

queries of the objective function), a large variance in the calibration curve can be expected. Thus if one

re-calibrates using a small validation set, one is likely to change the predictive distribution based on noise

more than signal. We emphasize this in Proposition 1 in the paper, and this proposition is independent

of the type of surrogate model. In summary, we argue that re-calibration during BO might be difficult.
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Chapter 8

Conclusion

SOME day, maybe 10-100 years from now, a quantum computer migth be able to break current

bank-level encryption [284], accelerate drug discovery [285], and empower artificial intelligence

(AI) [97]. But today is not that day. Today, and the next several years, we only have access to noisy

intermediate-scale quantum (NISQ) computers. In Chapter 1, we listed three key aspects concerning

NISQ computers relevance for machine learning, it is hopefully now clear the author aspired to bring-

ing us one step closer to approaching these. Chapter 2 spend quite some effort introducing quantum

computing to computer scientists with little to no experience with quantum physics, taking all the way

from simple probability distributions such as coin flipping to the postulates of quantum physics (Sec-

tion 2.1), quantum computing noise models (Section 2.2), spin systems (Section 2.3) and thermal states

(Section 2.5). Using this handpicked selection of the key aspects of quantum information theory relevant

for this thesis, Chapter 3 introduced state of the art quantum neural networks as being hybrid quantum-

classical algorithms with a lot of potential, unknowns and obstacles. Lastly, the scientific contributions

in Chapters 4-7 were presented and summarized which leaves us with one last job of concluding on the

combined findings, and we do so by directly repeating and answering the three scientific goals listen in

Chapter 1.

• Develop new NISQ algorithms which can be used to accelerate subroutines in ML. There are

key tasks in machine learning which are computationally hard and where approximate methods are

the only way to go. Sampling high dimensional probability distributions is one of these challenges

and thus quantum machine learning methods have been proposed to put qubits—which when mea-

sured follow a specific high dimensional distribution—in a thermal state. We call this variational
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quantum thermalization (VQT), and the first paper, Paper A in Chapter 4, showed that by learning

the noise in the quantum device, one can prepare several types of thermal states using only as many

qubits as neurons in a restricted Boltzmann machine (RBM). The thermal state, we also showed,

can be used to sample the expectation values used in the gradients of the RBM weights. Thus we

have provided a novel way of training a RBM using a quantum computer

• Gain a deeper understanding of how to characterize the unavoidable noise accumulation for

NISQ algorithms. We still do not know when NISQ computers will be practically applicable.

We do know, however, that when we run quantum neural networks, there is a sampling overhead

when one wishes to obtain accurate expectation values of observables. For this, it is crucial to use

appropriate quantum error mitigation (QEM) techniques and Paper B in Chapter 5 proposes two

metrics which can help to decide which QEM protocol to follow. We justify this both numerically

and theoretically and thus we argue that our findings are crucial on the way to use NISQ computers

in practical applications. Hence Paper B ties nicely into Paper A, since we saw areas where the

proposed algorithm struggled, and it might be that utilizing appropriate error mitigation techniques

could enhance the performance in these ranges.

• Contribute to algorithmic agency ML approaches that learn how to exploit similarities in

quantum physical experiments. Exploiting similarities in physical experiments can possibly

lower the computational resources required. This might also be the case of quantum spin Hamil-

tonians. Using a combination of active learning (AL) and Bayesian optimization (BO), Paper C

(Chapter 6) proposes a novel active algorithmic agent which go beyond hyperparameter tuning of

quantum neural networks for specific spin models as it also finds the next Hamiltonians to try out

using uncertainty sampling. This contribution thus exploits the fact that some quantum physical

experiments are similar and that hyperparameters (and in some cases parameters for warm start)

can be transferred between experiments. We call the approach the actively learned bayesian opti-

mized (ALBO) protocol. An important aspect for the ALBO is the uncertainty estimates provided

by the surrogate model. Together with the mean function, they decide how to query new Hamil-

tonians as well as find the best set of hyperparamters with BO. Up until Paper D (Chapter 7), it

was generally argued that calibrated uncertainties leads to better BO performance. However, as

we show, this general statement might be misleading. In particular, we show that re-calibration

uncertainties might be difficult to combine with BO given the small sample sizes often used in BO.
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This finding is crucial for practitioners, as they should consider how to spend a potential limited

budget of experiments.

We started off developing a VQA exploiting the noise in quantum circuits in order to perform

sampling tasks, challenging for classical computers. However, there were certain instances of non-trivial

patterns in the algorithms ability to prepare thermal states with high fidelity and thus sparked two new

research directions. The first direction was getting to know the noise accumulation better and how this is

distributed for some popular QML ansätze which resulted in coming up with unifying metrics ultimately

tying into better coping with quantum error mitigation techniques. The second research direction was

trying to learn how to design one’s ansatz not only via Bayesian optimization, but also by exploiting

what can already be obtained from previous similar experiments; the used example being groundstate

estimation for popular spin models. By using a classical meta-learner, one learn from past experiences.

This second research direction ultimately sparked the fourth and final research project concerning the

role of the uncertainties in such meta-learners. Whereas the machine learning research community often

argued that calibrated uncertainties aids the optimization process, little to no work was done proving

focusing on this specific problem and getting rigorous results. With our fourth paper, we show that the

uncertainty plays big role, but whether these uncertainties are calibrated does not seem to be crucial; only

that they are in a range which allows for a useful balance of exploration/exploitation. However, going to

the extend of re-calibration during Bayesian Optimization might be unnecessary in many instances due

to the oftentimes small sample sizes used. The four contributions thus ties nicely together, and there is

at least some overall connection of the work laid out.

We conclude this Ph.D. thesis by mentioning some potential interesting future paths along the lines

of the contributed research for the QML research community. As companies are building larger NISQ

devices, for example IBM planning on reaching over 4000 qubits in 2025 [43], experimental QML could

potentially really start to take of in the coming years. Already now on the experimental side, there has

been multiple interesting implementations of variational quantum algorithms [179, 286]. The findings of

Paper A and B could be interesting to turn into actual physical experiments. Another interesting research

alley is that of expanding on quantum error mitigation techniques and how this ties into the experimental

side of things to use in practical applications as well as pave the way into quantum error correction.

Third, there potentially exists many interesting options within leveraging more classical computational

resources to empower noisy quantum experiments, just as we saw in Paper C. Specifically, we saw how

combining AL an BO could accelerate hyperparameter tuning and thus convergence of VQE protocols
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and one could imagine that more advanced ideas from state of the art machine learning could yield even

more impressive results in a broader collection of problems. Outside the scientific contributions in this

thesis exists several promising ideas; especially certain types of sequence learning [171] and exploiting

symmetries to create geometrically motivated [287] ansätze.

By continuing to invest in projects such as this one we get closer to answering key questions that

determines when and how we expect practical applicability of quantum machine learning.
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Noise‑assisted variational quantum 
thermalization
Jonathan Foldager 1*, Arthur Pesah2 & Lars Kai Hansen1

Preparing thermal states on a quantum computer can have a variety of applications, from simulating 
many‑body quantum systems to training machine learning models. Variational circuits have been 
proposed for this task on near‑term quantum computers, but several challenges remain, such as 
finding a scalable cost‑function, avoiding the need of purification, and mitigating noise effects. 
We propose a new algorithm for thermal state preparation that tackles those three challenges 
by exploiting the noise of quantum circuits. We consider a variational architecture containing a 
depolarizing channel after each unitary layer, with the ability to directly control the level of noise. We 
derive a closed‑form approximation for the free‑energy of such circuit and use it as a cost function 
for our variational algorithm. By evaluating our method on a variety of Hamiltonians and system 
sizes, we find several systems for which the thermal state can be approximated with a high fidelity. 
However, we also show that the ability for our algorithm to learn the thermal state strongly depends 
on the temperature: while a high fidelity can be obtained for high and low temperatures, we identify 
a specific range for which the problem becomes more challenging. We hope that this first study on 
noise‑assisted thermal state preparation will inspire future research on exploiting noise in variational 
algorithms.

Noise is often considered to be one of the strongest adversaries of practical quantum computation. Decoherence 
effects due to a noisy environment can create errors in the final output of a circuit, destroying the advantage of 
many quantum algorithms. In contrast, noise is also what underlies stochastic processes, and is therefore a crucial 
element in classical computing, solving tasks such as sampling and optimization. In quantum systems, noise has 
also been shown to be a useful resource in several applications: carefully engineered dissipative processes can lead 
to universal quantum  computation1, shot-noise in the measurement process can drive variational algorithms out 
of local  minima2,3, and amplitude-damping channels can significantly improve quantum autoencoders for mixed 
 states4. We investigate in the present paper a novel way to exploit noise in near-term quantum devices, with the 
objective of studying a central task in quantum computing: thermal state preparation.

Placing a quantum system driven by a Hamiltonian H and weakly-coupled to a reservoir with an effective 
temperature T = 1

β
 , the system will asymptotically reach a thermal equilibrium state, given by the quantum 

Gibbs distribution

where Z = Tr[e−βH ] is the partition  function5. Efficiently preparing a thermal state on a quantum computer is a 
problem of broad practical importance, with applications ranging from quantum chemistry and many-body phys-
ics simulations in an open  environment6–8 to semi-definite  programming9,10 and quantum machine  learning11,12. 
However, sampling from a general Gibbs distribution is a computationally hard task for classical computers, due 
to the complexity of calculating the partition  function13. Most techniques rely on Monte-Carlo Markov Chain 
(MCMC) algorithms, which are often provably efficient only above a certain threshold  temperature14.

Many algorithms have been proposed to prepare the thermal state on a quantum computer. A growing body 
of work has suggested using variational algorithms to solve the task of thermal state preparation on Noisy Inter-
mediate Scale Quantum (NISQ) devices. Since a unitary circuit acting on the zero-state cannot directly output 
a mixed state, most variational thermalization methods consist either in preparing a purification of the thermal 
state and tracing out the ancillary qubits at the end of the  circuit15–18, or in choosing an appropriate mixed state 
as  input19–21.

(1)ρβ =
1

Z
e−βH
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One of the main challenges associated to those methods is to design an appropriate cost function to be 
minimized during the variational training loop. While the ground-state of a Hamiltonian can be prepared by 
minimizing the average energy of the state, the thermal state can be prepared by minimizing the free energy 
F = H − TS of the state, where S = −Tr[ρ log(ρ)] is its Von Neumann entropy. However, the Von Neumann 
entropy is not an observable and can often only be computed  approximately18,22. A second problem is the need 
for additional qubits, which can be costly in near-term devices. Finally, none of those methods take into account 
the noise of the circuit, which can change the spectrum of the final state and affect the performance of the 
preparation  algorithm23.

In this paper, we propose a new method that we call Noise-Assisted Variational Quantum Thermalizer 
(NAVQT). Our algorithm assumes the ability to control the noise in the system down to some minimal noise level 
determined by the hardware. This type of control has been demonstrated in the context of error mitigation, where 
noise is increased in order to perform zero-noise  extrapolation24,25. More precisely, we construct a variational 
circuit with a parametrized depolarizing channel after each layer of unitary gates, as illustrated in Fig. 1(a). To 
simplify the optimization process, we have only considered the case where all the depolarizing parameters take 
the same value. By varying both gate and noise parameters, we seek to minimize the free energy of the final state.

In order to compute the free energy (and its gradient), we derive an analytical expression for the entropy of a 
slightly different circuit: one where all the depolarizing gates have been displaced at the beginning of the circuit, 
as shown in Fig. 1(b). Using this approximation, we can compute the gradient of the free energy with respect 
to both the noise and the unitary parameters. While this might be a rough estimate of the actual gradient, we 
show that this approximate optimization problem exhibits similar performance as when minimizing the true 
free energy.

We then empirically investigate our algorithm on three different types of Hamiltonians: the Ising chain, with 
and without a transverse field, and the Heisenberg model. For each model, we consider both uniform coefficients 
and coefficients drawn from a standard normal distribution, and train our variational algorithm for several 
choices of hyperparameters (number of layers, learning rates, initialization, etc.). To study the performance of 
our approach, we extract the fidelity of the prepared state compared to the actual thermal state for a range of 
different temperatures.

Our results reveal different patterns. On the one hand, fidelities above 0.9 are reached for uniform Ising chains, 
with and without a transverse field, for all temperatures and system sizes up to 7 qubits. On the other hand, the 
performance tend to decrease with the system size and for specific ranges of temperatures, with fidelities that 
can get below 0.7 for some of the most complex systems tested in this work.

Our paper is organized as follows. We start by reviewing previous work on variational thermalization in 
“Related work” section. We then introduce NAVQT in “Noise-assisted variational quantum thermalization” 
section. We follow this up by a description of our experiments in “Methods” section, and present our results 
in “Results” section. Finally, we discuss our work and provide ideas for future studies in “Discussion” section.

Related work
Variational circuits have recently been proposed for thermal state preparation, due to the existence of a natural 
cost function for this task: the free energy. Using variational circuits to prepare a thermal state presents two 
challenges specific to this task: (1) finding an ansatz that can prepare mixed states, (2) finding a scalable opti-
mization strategy.

Choice of the ansatz. A common approach to VQT consists in preparing a purification of the thermal 
state using a variational circuit that acts on 2N qubits—N system qubits and N ancilla/environment qubits—, 
and tracing the ancilla qubits out at the end of the  circuit15–18. An example of purification often considered in 
the literature is the thermofield double (TFD)  state15,16. For a Hamiltonian H and an inverse temperature β , it is 
given by

Figure 1.  Illustration of circuit components used in NAVQT. (a) General NAVQT ansatz: a sequence of unitary 
layers U(θi) followed by depolarizing gates D(�) on each qubit. (b) Approximation used in the free-energy 
calculations.
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where the {En, |n�}n are pairs of eigenvalue/eigenvector of H, and subscript S and E refers to the system and envi-
ronment, respectively. For instance, Refs.15,16 use a Quantum Approximate Optimization Ansatz (QAOA) ansatz 
acting on 2N qubits to prepare the TFD state of the transverse-field Ising model, the XY chain, and free fermions. 
One advantage of this approach is the ability to simulate the TFD, which can be interesting in in its own right, 
for instance for studying black  holes26. The obvious disadvantage is that it requires twice as many qubits that the 
thermal state we want to simulate. A converse approach consists in starting with a mixed state ρ0 and applying 
a unitary circuit ansatz on the N qubits of the system. The initial ρ0 can either be  fixed19 or modified during the 
optimization  process20,21. In Ref.19, ρ0 is the fixed thermal state of HI =

∑N
i=1 Zi , where Zi is the Pauli Z operator 

applied to qubit i of the system. It can easily be prepared using the purification

However, since the spectrum does not change when we apply the unitary ansatz, having a static ρ0 freezes the 
spectrum of the final state. Therefore, if the spectrum of the thermal state we want to approximate is far from 
the spectrum of ρ0 , this approach will fail. In Ref.20, they use the thermal state ρ0(ε) of H =

∑n
i=1 εiPi , where 

Pi = 1−Zi
2  as an initial state and ε = {ε1, . . . , εn} are parameters optimized during the training process. Finally, 

Ref.21 proposes to use a unitary with stochastic parameters to prepare ρ0 . More precisely,

where V(x) is a unitary ansatz and Xθ ∼ pθ is a random vector with parametrized density pθ . The density pθ can 
be given by a classical model, such as an energy-based model (e.g. restricted Boltzmann machine) or a normal-
izing flow, which will be trained to get a ρ0 with a spectrum close to the thermal state of interest.

Optimization strategies. Once the ansatz has been fixed, the parameters within needs to be optimized. 
Two main approaches have been proposed in the literature: (1) explicitly minimizing the free energy, (2) using 
imaginary-time evolution. In the following, we describe both these methods.

Free energy methods. The thermal state is the density matrix that minimizes the free energy. Therefore, in the 
same way as VQE uses the energy as a cost function, any thermal state preparation method can use the free 
energy as its cost  function15,16,19,21. However, one main difference with VQE is that the free energy cannot be 
easily estimated. Indeed, the Von Neumann entropy term, as a non-linear function of ρ , cannot be turned into 
an observable, and doing a full quantum state tomography would be very costly. Several methods have been 
proposed to solve this challenge:

• Computing several Renyi entropies Sα = 1
1−α

Tr[ρα] (using multiple copies of ρ ) and approximating the Von 
Neumann entropy with  them15,27.

• Computing the Von Neumann entropies locally on a small  subsystem15

• Approximate the Von Neumann entropy by truncating its  Taylor18 or  Fourier22 decomposition.

In our work, the entropy term does not come from a purification procedure, but from the presence of depolar-
izing gates in the circuits. This led us to propose a different type of approximation that we will study in “Noise-
assisted variational quantum thermalization”.

Imaginary-time evolution. Thermal state preparation can be seen as the application of imaginary-time evolu-
tion during a time �t = iβ/2 on the maximally-mixed state ρm = 1

d I , using the decomposition

This imaginary-time evolution can be simulated using a variational circuit and a specific update  rule28,29. In Ref.17, 
the authors use a variational circuit U(θ) on 2N qubits, initialized such that

where �+ is a maximally-entangled state. An imaginary-time update rule with a small learning rate τ will lead 
to a unitary U(θ0) such that:

Repeating it during k = β
2 steps will give the state

(2)|TFD� =
1

√
Z

∑

n

e−βEn/2|n�S ⊗ |n�E

(3)
⊗

j

√
2 cosh(β)

∑

b∈{0,1}N
e(−1)1+bβ/2|b�S|b�E .

(4)ρ0(θ) = V(Xθ )|0��0|V(Xθ )
†

ρβ =
(
1

C
e−βH/2

)(
1

d
I

)(
1

C
e−βH/2

)

U(θ0)|0�⊗2N ≈ |�+�

U(θ1)|0�⊗2N ≈
1

C
e−τH |�+�

U(θk)|0�⊗2N ≈
1

C
e−βH/2|�+�
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which will be the thermal state after tracing out the environment. In Ref.30, the authors also use imaginary-time 
evolution to prepare the thermal state, but manage to reduce the number of qubits to N when the Hamiltonian 
is diagonal in the Z-basis. Finally, an ansatz-independent imaginary-time evolution method has been proposed 
for thermal state  preparation31,32.

In this work, we optimize the ansatz parameters using the free energy approach. Adapting imaginary-time 
evolution to a noisy ansatz could however be an interesting alternative, that we let for future work.

Noise‑assisted variational quantum thermalization
We introduce here the Noise-Assisted Variational Quantum Thermalizer (NAVQT), a variational algorithm where 
depolarizing noise is used as the source of entropy for preparing the thermal state. We consider a noise model 
where each layer of unitary gates is followed by a one-qubit depolarizing channel

where I is the identity matrix. The channel is represented in Fig. 1. For the purpose of this work, we consider that 
we have the same noise value � ∈ [�min, 1] everywhere in the circuit, where �min is the minimum noise reachable 
by the hardware. We note ρθ ,� the output of the noisy circuit with unitary parameters θ and noise parameter � , 
and want to find the optimal parameters {θ∗, �∗} such that ρθ∗ ,�∗ ≈ ρβ where the latter is given by Eq. (1).

The thermal state ρβ can be approximated by minimizing the free energy of the system, given by:

where

is the energy and

is the Von Neumann entropy of the state.
The energy term and its gradient are easy to evaluate: we can use the parameter shift-rule33 to compute 

∇θE(θ , �) , and the finite-difference method to calculate ∂�E(θ , �) . The entropy term is much harder to evaluate 
as it is a non-linear function of the state. To approximate it, we consider the circuit where all the noise has been 
put at the beginning, as shown in Fig. 1(b). While the resulting free energy will not be equal to the free energy 
of our original circuit in general, they tend to follow similar trajectories when varying the noise level (see Sup-
plementary Fig. S1). The new entropy does not depend on θ and can be calculated analytically as if there were 
no unitary gates. For a circuit with N qubits and m layers, this approximate entropy S̃(�) is given by

where d = 2N . The full derivation is given in the Supplementary material. Using this approximation, we get the 
following gradient-based update rule at each optimization step:

where ηθ and η� are the learning rates for θ and � , respectively.

Methods
In this section, we will briefly describe the basis of conducted experiments. All quantum circuit simulations are 
done in  Cirq34 and TensorFlow-Quantum35.

Ansatz. For the unitary layers of our circuit, we chose an ansatz inspired by the Quantum Approximate 
Optimization Ansatz (QAOA) applied to the Ising chain  Hamiltonian36. More precisely, if we define a problem 
Hamiltonian

and a mixing Hamiltonian

(5)D(�)(ρ) = (1− �)ρ + �
I

2
,

(6)F(θ , �) = E(θ , �)−
1

β
S(θ , �)

(7)E(θ , �) = Tr[Hρθ ,�]

(8)S(θ , �) = −Tr[ρθ ,� log(ρθ ,�)]

(9)

S̃(�) = −N

(
(1− �)m +

(1− (1− �)m)

d

)
·

ln

(
(1− �)m +

(1− (1− �)m)

d

)

+
(d − 1)(1− (1− �)m)

d
ln

(
(1− (1− �)m)

d

)

(10)θ (n+1) = θ (n) − ηθ∇θE(θ , �)

(11)�
(n+1) = �

(n) − η�

(
∇�E(θ , �)−

1

β
∇�S̃(�)

)

(12)HP = −
∑

i

ZiZi+1 −
∑

i

Zi
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the QAOA ansatz with p layers is given by

This ansatz, whose explicit construction is represented in Fig. 2, has been well-studied in the context of ground-
state  preparation37 and has been shown to be  universal38 in the limit p → ∞ . We test two different versions of 
this ansatz. In the first one, denoted restricted QAOA, gates of the same type from a given layer share the same 
parameters βi and γi . In the second version, which we call flexible QAOA, every gate has its own parameter.

We ran some preliminary tests to verify that this unitary ansatz is at least able to express the ground-state of 
all the systems tested in our work, and found it to be the case when the number of layers is fixed at ⌈N2 ⌉ . Hence 
the noisy ansatz should in principle be able to represent the correct thermal state for large β , by setting � = 0 
and fitting the unitary parameters corresponding to the ground-state. Moreover, NAVQT is also able to represent 
the maximally-mixed state, corresponding to a low β , by setting � = 1 . In Supplementary Figure S3, we provide 
some results for a varying number of layers L ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10} at β = 1 for the three-qubit Heisenberg 
Hamiltonian with random coefficients, showing that the fidelity does not improve significantly compared to our 
heuristic number of layers. Hence we find evidence to rule out the number of ansatz layers as a limiting factor 
to achieve better performance. The ability of the ansatz to learn intermediate temperatures is an open question, 
that we tackle in our numerical analysis.

Hyperparameters. Since the choice of hyperparameters can have a substantial impact on the performance 
of variational  circuits37, we perform a grid-search to reduce the potential negative effects resulting from a single 
design choice. Hence we try all combinations in the search space defined by

• Restricted QAOA and flexible QAOA
• Initial noise level: � = {10−8, 0.001, 0.1}
• Unitary learning rate: ηθ = {0.01, 0.4}
• Noise learning rate: η� = {0.0001, 0.1}
• Seeds for unitary parameters: [0; 4].

We run our algorithm for N ∈ [3; 7] qubits and for maximum 1000 iterations. To test the per-
formance across temperatures, we take 10 different betas in the interval β ∈ [10−3; 102] , namely 
{0.001, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0, 5.0, 10.0, 100.0} . We initialize the unitary parameters by sampling from a uni-
form distribution in the interval [0.0001, 0.05] as done  in37. Finally, we extract the solution that gives the lowest 
(approximated) free energy among all the tested hyperparameters and initializations. We also include the same 
grid-search using finite-difference on the true free-energy in Supplementary Fig. S2.

Noisy circuit simulation. To simulate the noise in our circuit, we use the fact that depolarizing gates can 
also be written  as39

which can be interpreted as applying a random Pauli error with probability p = 3�
4  and nothing with probability 

p = 1− 3�
4  . We can therefore simulate depolarizing gates as stochastic mixtures over unitary circuits containing 

errors. More precisely, if we sample K unitaries U (k) , each being a combination of the unitary part of the ansatz 
and some random errors, we can extract the corresponding density matrix as:

(13)HM = −
∑

i

Xi ,

(14)U(γ ,β) = eiβpHM eiγpHP . . . eiβ1HM eiγ1HP

(15)D(�)(ρ) =
(
1−

3�

4

)
ρ +

�

4
(XρX + YρY + ZρZ)

Figure 2.  A layer of the unitary ansatz used in our experiments, inspired by QAOA for the 1D Ising model. RZ 
and RX are parametrized rotations around the corresponding axis, and RZZ = e−iθZiZj.
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We found that taking a sample size of K = 500N was sufficient to get stable gradients and reach the maximum 
entropy S ≤ log 2N . However, we also found that K could be smaller, especially when β was large and hence the 
target entropy was low.

Performance metric. For each experiment, we report the fidelity

between the thermal state and the output state of the trained circuit. Tracking the fidelity requires us to compute 
the true thermal state ρβ for each Hamiltonian H and temperature β . In practice, taking the exponential of a 
matrix containing potentially large numerical values (e.g. when β is large) can result in numerical issues. To 
alleviate those issues, we calculate the thermal state density matrix ρβ by taking the log on both sides of Eq. (1) 
and using the log-sum-exp  trick40:

 where c is the largest eigenvalue of H.

Models. We evaluated our algorithm on three different models: the Ising chain, with and without a transverse 
field, and the Heisenberg model. For each model, we considered two cases: when the coefficients Ji = hi = 1 for 
all i, denoted the uniform version, and when Ji , hi ∼ N (0, 1) for all i, denoted the random version. Between five 
seeds for the random version, we pick the Hamiltonian with the lowest spectral gap as this could be considered 
the hardest Hamiltonian. In the case for Hamiltonians with random coefficients, we normalized the set of all 
coefficients such that the vector containing all coefficients had unit length. See Supplementary Fig. S4 for a plot 
of the model energy scales.

Ising chain. The 1D Ising model, or Ising chain (IC), considers a set of spins on a chain such that all spins have 
exactly two coupled neighbors when considering N > 2 . The Hamiltonian associated with such system is given 
by

where Zi is the Pauli Z operator acting on qubit i.

Transverse field Ising chain. The transverse-field Ising chain (TFI) adds quantum effects to the previous model 
by including some non-diagonal terms in its Hamiltonian. It is defined as

where Xi is the Pauli X operator acting on qubit i.

Heisenberg model. Finally, we consider the 1D Heisenberg model, whose Hamiltonian is given by

The Heisenberg model is of fundamental importance in the study of quantum  materials41–44 and is therefore a 
standard benchmark for thermal state preparation  methods31,32,45.

Results
We first present the optimization curves for N = 4, at three different temperatures β ∈ {0.1, 0.5, 10} in Fig. 3. We 
report the fidelity between the learned state and the thermal state as a function of the inverse temperature β for 
all the different models in Fig. 4. Finally, we also report the final noise level � as a function of β for all models in 
Fig. 5. We can notice a few phenomena from those figures: 

(16)ρout ≈
1

K

K∑

k=1

U (k)ρin

(
U (k)

)†

(17)F(ρ1, ρ2) = Tr

[√√
ρ1ρ2

√
ρ1

]

(18)

log ρβ = log e−βH − log Tr[e−βH ]

= −βH − log
∑

i

e−β�i

= −βH −

(
−βc + log

∑

i

e−β(�i−c)

)

(19)HIC = −
∑

i

JiZiZi+1 −
∑

i

hiZi

(20)HTFI = −
∑

i

JZi ZiZi+1 −
∑

i

hZi Zi −
∑

i

hXi Xi

(21)

HHeisenberg = −
∑

i

JZi ZiZi+1 −
∑

i

JXi XiXi+1

−
∑

i

JYi YiYi+1 −
∑

i

hXi Xi
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1. The optimization curves presented in Fig. 3 show that the optimization procedure improves the solution 
compared to a random initialization, both when a very high fidelity is reached at the end and when the fidel-
ity is lower. It eliminates the possibility that random states being closed to the desired thermal states would 
explain our results. Moreover, the fidelity tends to increase with the number of iterations, showing that our 
approximate cost-function might be well-suited to our optimization goal.

2. Thermal states at low and high temperatures are easily approximated by our method, for all models and 
system sizes. Looking at the � curves, we see that the optimizer is indeed able to find � = 0 for very large β 
and � = 1 for very low β . Hence, when the thermal state gets close to a maximally-mixed state or to a pure 
state, the algorithm learns to respectively maximize or minimize the noise, independently of the initial noise 
level.

3. The performance tends to degrade at intermediate temperatures, reaching for instance a fidelity of 0.6 for 
the Heisenberg model with random coefficients. However, there are several temperatures for which a non-
trivial noise level is learned and the fidelity remains high, such as the same model at β = 10−1 , for which a 
fidelity above 96% is reached for all system sizes with a noise level between 0.5 and 0.8. Hence the algorithm 
can actually find the correct thermal state in non-trivial temperature regimes.

From those results, an important question to consider is whether the low fidelity obtained for some systems 
is due to a failure of the optimization procedure or to the potentially low expressibility of our noisy ansatz. To 
tackle this question, we tested different methods to optimize the parameters of the ansatz, including a grid-search 
in the parameter space for systems that are small enough to allow it to run in a reasonable time. We found no 
significant improvement in the fidelity compared to the original optimization method. We also tried to initialize 
the unitary ansatz to the ground-state solution before turning on the noise, but it did not result in a significant 
increase of fidelity neither. Finally, to evaluate the effect of our free energy approximation, we performed all the 
experiments previously mentioned using finite-difference on the true free energy. The corresponding results can 
be found in Supplementary Figure S2, where we observe very similar fidelities as with the approximate free energy 
method. It means that for the hardest systems tested in this work, the noisy ansatz was probably not expressible 
enough to output an accurate approximation of the thermal state, independently of the optimization algorithm. 

β = 0.1 β = 0.5

β = 10

Figure 3.  Optimization curves for the three models with uniform coefficients and N = 4 . We observe in all 
the cases a constant increase of the fidelity, showing that minimizing the approximate free energy cost function 
tends to result in a maximization of the fidelity. It also shows that the final result found by the algorithm is 
always significantly better than the random initialization.
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Changing the depolarizing gates to more general noise channels could help improve the expressibility of the 
ansatz and is let for future work.

Discussion
In this paper, we introduced a novel type of variational algorithms, in which the noise is parameterized and 
optimized together with the unitary gates. We used this architecture to prepare thermal states, overcoming some 
of the most common challenges for this task, such as the need of ancilla qubits and the adverse effect of noise. To 
optimize our ansatz, we used a closed-form approximation of the free-energy and performed gradient-descent 
with it. We investigated various Hamiltonians and deduced that the ability of our method to learn the correct 
thermal states strongly depends on the model, the temperature and the system size. While we systematically 

Figure 4.  Fidelities obtained using NAVQT as a function of the inverse temperature β , for various models 
and system sizes. For all the models, we observe that the algorithms reaches a high fidelity for low and high 
temperature, while it tends to decrease at intermediate temperatures. Overall, good performance is obtained 
at all temperatures for the two types of uniform Ising chains, while lower fidelities are reached with the other 
models.
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obtained fidelities above 0.9 for both the transverse-field and the classical Ising chain, we had fidelities below 
0.7 at some temperatures for the 1D Heisenberg model with random coefficients. We also identified a specific 
range of temperatures for each model, for which the task is harder for NAVQT to solve. Our experiments with 
different optimization algorithms reveal that the failure of the ansatz to learn the correct thermal state in those 
cases is probably an expressibility rather than an optimization issue.

This paper serves as a starting point in the study of noise-assisted thermalization, and many avenues are still 
open for future work. For instance, we only considered a single shared parameter � for all the depolarizing gates, 
as it allowed us to derive an approximation of the free energy, which simplified the optimization process. Vary-
ing the noise across each layer and each qubit independently could significantly increase the expressibility of 

Figure 5.  Final noise level � as a function of the inverse temperature β for various models and system sizes. 
We used a symlog scale for the y-axis, hence the scale becomes linear below 10−3 . We observe a clear decrease 
of the noise level with β , with � ≈ 1 for β = 10

−3 (corresponding to the maximally-mixed state) and � ≈ 0 for 
β ≈ 10

2 (corresponding to the ground-state). It shows that the general relationship between the noise and the 
temperature has overall been correctly learned by our model.
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the ansatz. More generally, replacing the depolarizing gates by channels that are more tailored for thermal state 
preparation would be an interesting avenue to improve our method. For instance, Davies maps are non-unital 
channels that can model the evolution of quantum systems weakly-coupled to a thermal reservoir, making them 
particularly adapted to thermal state  preparation46. Moreover, their unitary and dissipative parts commute, mak-
ing the calculation of the entropy potentially easier than for our ansatz.

A second important aspect for future work would be to better understand the theory behind noise-assisted 
variational circuits. For instance, what are the conditions on the Hamiltonian and the temperature under which 
NAVQT can approximate the thermal state with an arbitrary high fidelity? How does our method scale with the 
system size? What type of noise is necessary to approximate a given thermal state?

Finally, it could be interesting to study the optimization landscape of NAVQT and potentially come up with 
optimization algorithms that are more tailored to this problem. For instance, it has been shown that a barren pla-
teau phenomenon occurs in noisy circuits that are similar to our  ansatz47. It can potentially hinder the scalability 
of our method, as it relies explicitly on increasing the noise. Finding the relationship between the temperature 
β , the system size N and the magnitude of the gradient could be an interesting direction for future research.

Data availability
All code is available at https:// github. com/ jfold/ navqt.
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SUPPLEMENTARY INFORMATION

Supplementary Note: Estimating the free energy of a noisy circuit
In order to learn the thermal state with NAVQT, we need to minimize the free energy. Obtaining the free energy from the output
of a quantum circuit is hard, since the entropy is a highly non-linear function of the state. For unitary evolutions, the entropy is
constant, but for non-unitary circuits, including our ansatz, the entropy needs to be estimated for each change of parameters. To
simplify this task, we consider the following approximation, represented in Fig. 1c of the main manuscript: all the depolarizing
gates are shifted to the beginning of the circuit. Using this circuit, it is now possible to compute the entropy analytically.

If m is the number of layers of our unitary ansatz, the approximate circuit consists in the composition of m depolarizing
gates D(λ ) for each qubit. We can now use the fact that the composition of depolarizing gates is itself a depolarizing gate:

D(λ2)◦D(λ1) = D(1− (1−λ2)(1−λ1)) (S1)

or more generally

D(λm)◦ ...◦D(λ1) = D(1− (1−λm)...(1−λ1)) (S2)

Assuming that the noise parameter λ is the same for all the gates, then the above simplifies to D(1− (1−λ )m). If we note
Λ = 1− (1−λ )m this new parameter, the entropy of m consecutive noise gates acting on a single qubit initialized with |0⟩ can
be written as

S(ρΛ) =−Tr[ρΛ ln(ρΛ)]

=−Tr
[(

(1−Λ) |0⟩⟨0|+Λ
1

d

)
ln
(
(1−Λ) |0⟩⟨0|+Λ

1

d

)]

=−
[(

(1−Λ)+
Λ
d

)
ln
(
(1−Λ)+

Λ
d

)
+

(d −1)Λ
d

ln
(

Λ
d

)]
(S3)

and substituting for Λ = 1− (1−λ )m

S(ρλ ) =−
[(

(1−λ )m +
(1− (1−λ )m)

d

)
ln
(
(1−λ )m +

(1− (1−λ )m)

d

)

+
(d −1)(1− (1−λ )m)

d
ln
(
(1− (1−λ )m)

d

)] (S4)

We now use the fact the entropy of a product state is the sum of the individual entropies to write

S(ρ⊗N
λ ) = NS(ρλ ) (S5)

which directly gives us the entropy of the state preceding the unitary ansatz. Since applying a unitary operation to a state does
not change its entropy, it means that the overall entropy of the output state, that we call S(λ ), is given by the expression above.
To optimize over it, we need to compute its gradient, which can also be obtained analytically as

∇λ S(λ ) = N
d −1

d
m(1−λ )m−1

[
− ln

(
(1− (1−λ )m)

d

)
+ ln

(
(1− (1−λ )m +d(1−λ )m)

d

)]
(S6)



The overall free energy, which we want to minimize, is given by

F(θθθ ,λ ) = E(θθθ ,λ )−T S(λ ). (S7)

The gradient of the energy with respect to θ can be efficiently computed on a quantum device using the parameter shift-rule,
while its gradient with respect to λ can be computed using finite-difference (since E(λ ) itself can easily be extracted from the
output of the circuit). Therefore, the overall gradient, given by

∇θθθ F(θθθ ,λ ) = ∇θθθ E(θθθ ,λ ) (S8)
∇λ F(θθθ ,λ ) = ∇λ E(θθθ ,λ )−T ∇λ S(λ ) (S9)

can be efficiently computed using our circuit approximation.
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Figure S1. Comparison of the approximate ansatz with the true one, for both the entropy and the energy as a function of the
depolarizing noise, for random circuits with 6 qubits and 3 layers. (a) Entropy of the two circuit types. Since the entropy of the
true circuit depends on the unitary parameters, we sampled 100 random parameters and took the average, minimum and
maximum of the entropy (blue area). We see that the two curves follow a similar trajectory, with the approximate entropy being
a lower bound on the true one. (b) Energy of the two circuit types for the transverse-field Ising model with uniform coefficients.
Each color represents a circuit with different random unitary parameters. We see that the approximate energy tends to be close
to the true one, following an overall similar trajectory.
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(a) IC with uniform coefficients.
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(b) IC with random coefficients.
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(c) TFI with uniform coefficients.
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(d) TFI with random coefficients.
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(e) Heisenberg with uniform coefficients.
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(f) Heisenberg with random coefficients.

Figure S2. Fidelities obtained when minimizing the actual free energy (as opposed to the approximation), using
finite-difference to obtain the gradient. We see that the results are similar to those in Fig. 3 of the main manuscript, where the
approximate free energy is used for optimization. It shows that the approximation serves as a good heuristics for optimizing our
NAVQT ansatz.
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Figure S3. Thermal state fidelity as a function of ansatz layers for 3 qubits Heisenberg model with random coefficients over 5
random seeds. It illustrates that fidelity does not increase with ansatz layers, which suggest that it is not lack of circuit
expressivity, but instead either lack of precision in the the free energy approximation and/or that the depolarization channel is
not enough for thermalization. A similar pattern to this figure was kept for all the systems we studied. We were able to improve
the fidelity slightly when comparing to Fig. 4f (N = 3), but we also see that the median fidelity decreases as a function of
layers, which we hypothesize this is due to the entropy approximation gets worse with the number of layers and/or that the
depolarization noise accumulates.
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Figure S4. Largest eigenvalue for the models studied in the paper over five seeds. Here, H, IC and TFI refers to the Heisenberg,
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Can shallow quantum circuits scramble local noise into global white noise?
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Shallow quantum circuits are believed to be the most promising candidates for achieving early
practical quantum advantage – this has motivated the development of a broad range of error mitiga-
tion techniques whose performance generally improves when the quantum state is well approximated
by a global depolarising (white) noise model. While it has been crucial for demonstrating quantum
supremacy that random circuits scramble local noise into global white noise—a property that has
been proved rigorously—we investigate to what degree practical shallow quantum circuits scramble
local noise into global white noise. We define two key metrics as (a) density matrix eigenvalue
uniformity and (b) commutator norm. While the former determines the distance from white noise,
the latter determines the performance of purification based error mitigation. We derive analytical
approximate bounds on their scaling and find in most cases they nicely match numerical results.
On the other hand, we simulate a broad class of practical quantum circuits and find that white
noise is in certain cases a bad approximation posing significant limitations on the performance of
some of the simpler error mitigation schemes. On a positive note, we find in all cases that the
commutator norm is sufficiently small guaranteeing a very good performance of purification-based
error mitigation. Lastly, we identify techniques that may decrease both metrics, such as increasing
the dimensionality of the dynamical Lie algebra by gate insertions or randomised compiling.

I. INTRODUCTION

Current generations of quantum hardware can already
significantly outperform classical computers in random
sampling tasks [1, 2] and hopefully future hardware de-
velopments will enable powerful applications in quantum
machine learning [3], fundamental physics [4, 5] and in
developing novel drugs and materials [6–9]. The scale
and precision of the technology today is, however, still
below what is required for fully fault-tolerant quantum
computation: Due to noise accumulation in the noisy
intermediate-scale quantum (NISQ) era [10], one is thus
limited to only shallow-depth quantum circuits which led
to the development of a broad range of hybrid quantum-
classical protocols and quantum machine learning algo-
rithms [11–13].

The aim in this paradigm is to prevent excessive error
buildup via a parameterised, shallow-depth quantum cir-
cuit and then perform a series of repeated measurements
in order to extract expected values. These expected val-
ues are then post processed on a classical computer in
order to update the parameters of the circuits, e.g., as
part of a training procedure. A major challenge is the
potential need for an excessive number of circuit repe-
titions which, however, can be significantly suppressed
by the use of advanced training algorithms [14–16] or
via classical-shadows-based protocols [17–19]. As such,
the primary limitation of near-term applications is the
damaging effect of gate noise on the estimated expected
values which can only be reduced by advanced error mit-
igation techniques [12, 20].

∗ jonf@dtu.dk
† balint.koczor@materials.ox.ac.uk

Error mitigation comprises a broad collection of di-
verse techniques that generally aim to estimate precise
expected values by suppressing the effect of hardware im-
perfections [12, 20]. Due to the diversity of techniques
and due to the significant differences in the range of
applicability, the need for performance metrics was re-
cently emphasised [20]. This motivates the present work
to characterise noise in typical practical circuits, e.g.,
in quantum simulation or in quantum machine learning,
and define two key metrics that determine the perfor-
mance of a broad class of error mitigation techniques:
(a) eigenvalue uniformity as a closeness to global depo-
larising (white) noise and (b) norm of the commutator
between the ideal and noisy quantum states. While (b)
determines the performance of purification based error
mitigation techniques [21, 22], (a) implies a good perfor-
mance of all error mitigation techniques.

Our primary motivation is that gate errors in com-
plex quantum circuits are scrambled into global white
noise [1, 23]. This property has been proved for ran-
dom circuits by establishing exponentially decreasing er-
ror bounds; surprisingly, in our numerical simulations we
find that in many practical scenarios the same bounds ap-
ply relatively well. In particular, we find that both our
metrics, (a) the distance from global-depolarising noise
and (b) the commutator norm, are approximated as

f(ν) = α
e−ξξ

(1− e−ξ)√ν =
α√
ν

+O(ξ), (1)

where ν is the number of gates in the quantum circuit,
ξ is the number of expected errors in the entire circuit
and α is a constant. As such, if one keeps the error rate
small ξ � 1 but increases the number of gates in a circuit
then both (a) and (b) are expected to decrease. This is
a highly desirable property in practice, e.g., white noise
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does not introduce a bias to the expected-value measure-
ment but only a trivial, global scaling as we detail in the
rest of this introduction.

In the present work we simulate a broad range of quan-
tum circuits often used in practice and identify scenarios
where this approximation holds well, by means of gate
parameters and circuit structures are sufficiently random.
We also identify strategies that improve scrambling local
gate noise into global white noise, such as inserting addi-
tional gates into a circuit to increase the dimensionality of
its Lie algebra [24]. In most cases, however, we conclude
that white noise is not necessarily a good approximation
due to the large prefactor α in Eq. (1). Thus the per-
formance of some error mitigation techniques that rely
on a global-depolarising noise assumption is limited. On
the other hand, we find that in all cases the commutator
norm, our other key metric, is smaller by at least 1-2 or-
ders of magnitude guaranteeing a very good performance
of purification-based error mitigation techniques.

Our work is structured as follows. In the rest of this
introduction we briefly review global depolarising noise
and how it can be exploited in error mitigation, and then
briefly review purification-based error mitigation tech-
niques and their performance. In Section II we introduce
theoretical notions and finally in Section III we present
our simulation results.

A. Global depolarisation and error mitigation

In the NISQ-era, we don’t have comprehensive so-
lutions to error correction, which has led the field to
develop error mitigation techniques. These techniques
aim to extract expected values 〈O〉ideal := tr[Oρid] of
observables—typically some Hamiltonian of interest—
with respect to an ideal noiseless quantum state ρid.

A very simple error model, the global depolarising
noise channel, has been very often considered as a rela-
tively good approximation to complex quantum circuits.
For qubit states, the channel mixes the ideal, noise-free
state with the maximally mixed state Id/d of dimension
d = 2N as

ρwn := ηρid + (1− η)Id/d. (2)

Here η ≈ F is a probability that approximates the fi-
delity as F = η+ (1− η)/d. The white noise channel has
been commonly used in the literature for modelling errors
in near-term quantum computers [25] and, in particular,
it has been shown to be a very good approximation to
noise in random circuits [1, 23]. White noise is extremely
convenient as it lets the user extract, after rescaling by
η, the ideal expected value of any traceless Hermitian
observable O via

〈O〉ideal = tr[Oρwn]/η. (3)

Of course, for small fidelities η � 1 the expected value
tr[Oρwn] requires a significantly increased sampling to

suppress shot noise. In this model, the scaling factor η is
a global property and can be estimated experimentally,
e.g., via randomised measurements [25], via extrapola-
tion [26] or via learning-based techniques [27].

Global depolarisation, however, may not be sufficiently
accurate model to capture more subtle effects of gate
noise and thus rescaling an experimentally estimated ex-
pected value yields a biased estimate of the ideal one as
〈O〉bias := tr[Oρ]/η − 〈O〉ideal. The bias here 〈O〉bias is
not a global property, i.e., it is specific to each observable,
and requires the use of more advanced error mitigation
techniques to suppress.

Intuitively, one expects the bias is small for quantum
states that are well approximated by a global depolarising
model as ρ ≈ ρwn and, indeed, we find a general upper
bound in terms of the trace distance as

|〈O〉bias| =
| tr[Oρ]− tr[Oρwn]|

η
≤ ‖O‖∞‖ρ− ρwn‖1

η
.

(4)
Here ‖O‖∞ is the operator norm as the absolute largest
eigenvalue of the traceless O, refer to ref. [28] for a proof.
As such, a small trace distance guarantees a small bias
and thus indirectly determines the performance of all er-
ror mitigation techniques – and further protocols [19, 29].

In this work, we characterise how close noisy quan-
tum states ρ in practical applications approach white
noise states ρwn and consider various types of variational
quantum circuits that are typical for NISQ applications.
When the above trace distance is small then it guaran-
tees a small bias in expected values which allows us to
nearly trivially mitigate the effect of gate noise, i.e., via
a simple rescaling.

B. Purification-based error mitigation and the
commutator norm

Another core metric we will consider is the commu-
tator norm between the ideal and noisy quantum states
as EC := ‖[ρid, ρ]‖1, which determines the performance
of purification based error mitigation techniques [28] – a
small commutator norm has significant practical implica-
tions as it guarantees that one can accurately determine
expected values using the ESD/VD [21, 22] error mitiga-
tion techniques. In particular, independently preparing
n copies of the noisy quantum state and applying a de-
rangement circuit to entangle the copies, allows one to
estimate the expected value

tr[ρnO]

tr[ρn]
= 〈O〉ideal + EESD.

The approach is very NISQ-friendly [30, 31] and its ap-
proximation error EESD approaches in exponential or-
der a noise floor as we increase the number of copies
n [21]; This noise floor is determined generally by the
commutator norm EC but in the most typical applications
of preparing eigenstates, the noise floor is quadratically
smaller as E2C [28].
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Note that this commutator can vanish even if the quan-
tum state is very far from a white noise state, in fact it
generally vanishes when ρid approximates an eigenvector
of ρ. When a state is close to the white noise approx-
imation then a small commutator norm is guaranteed,
however, we demonstrate that the latter is a much less
stringent condition and a much better approximation in
practice than the former: in all instances we find that the
commutator norm is significantly smaller than the trace
distance from white noise states.

II. THEORETICAL BACKGROUND

In this section we introduce the main theoretical nota-
tions and recapitulate the most relevant results from the
literature.

A. General properties of noisy quantum states

Recall that any quantum state of dimension d can be
represented via its density matrix ρ that generally admits
the spectral decomposition as

ρ =

d∑

k=1

λk |ψk〉〈ψk| , (5)

where we focus on N -qubit systems of dimension d =
2N . Here λk are non-negative eigenvalues and |ψk〉 are
eigenvectors. Since

∑
i λi = 1, the spectrum λ is also

interpreted as a probability distribution.
If ρ is prepared by a perfect, noise-free unitary circuit,

only one eigenvalue is different from zero and the corre-
sponding eigenvector is the ideal quantum state as |ψid〉.
In contrast, an imperfect circuit prepares a ρ that has
more than one non-zero eigenvalues and is thus a proba-
bilistic mixture of the pure quantum states |ψk〉, e.g., due
to interactions with a surrounding environment. In fact,
noisy quantum circuits that we typically encounter in
practice produce quite particular structure of the eigen-
value distribution: one dominant component that ap-
proximates the ideal quantum state |ψ1〉 ≈ |ψid〉 mixed
with an exponentially growing number of “error” eigen-
vectors that have small eigenvalues. White noise is the
limiting case where non-dominant eigenvalues are expo-
nentially small ∝ 1/d and |ψ1〉 ≈ |ψid〉.

The quality of the noisy quantum state is then defined
by the probability of the ideal quantum state as the fi-
delity F := 〈ψid|ρ|ψid〉; We show in Appendix A that
for any quantum state it approaches the dominant eigen-
value λ1 as

λ1 = F +O(EC), (6)

where we compute the error term analytically in terms of
the commutator norm EC = ‖[ρid, ρ]‖1 from Section I A.
This property is actually completely general and applies
to any density matrix.

B. Practically motivated noise models

Most typical noise models used in practice, such as lo-
cal depolarising or dephasing noise, admit the following
probabilistic interpretation: a noisy gate operation Φ(ρ)
can be interpreted as a mixture of the noise-free opera-
tion U that happens with probability 1− ε and an error
contribution as

Φk(ρ) = (1− ε)UkρU†k + εΦerr(UkρU
†
k). (7)

Here Uk is the kth ideal quantum gate and the com-
pletely positive trace-preserving (CPTP) map Φerr hap-
pens with probability ε and accounts for all error events
during the execution of a gate. A quantum circuit is then
a composition of a series of ν such quantum gates which
prepares the convex combination as

ρ = ηρid + (1− η)ρerr. (8)

Here ρid := |ψid〉〈ψid| is the ideal noise-free state, ρerr is
an error density matrix and η = (1 − ε)ν is the prob-
ability that none of the gates have undergone errors.
This probability actually [23, 28] approximates the fi-
delity F := 〈ψid|ρ|ψid〉 given the noise model in Eq. (7)
as

F = (1− ε)ν + EF = e−ξ + EF +O(ε2/ν). (9)

Here we approximate (1 − ξ/ν)ν = e−ξ + O(ε2/ν) for
small ε and large ν where ξ := εν is the circuit error rate
as the expected number of errors in a circuit. In practice
the approximation error EF = 〈ψid|ρerr|ψid〉 is typically
small and in the limiting case of white noise it decreases
exponentially as EF = 1/d due to ρerr = Id/d.

Assuming sufficiently deep, complex circuits, ref. [28]
obtained an approximate bound for the commutator be-
tween the ideal and noisy quantum states as

‖[ρid, ρ]‖1 / const× e−ξξ/√ν. (10)

This bound confirms that as we increase the number of
quantum gates ν in a circuit but keeping the circuit error
rate ξ constant, the commutator norm decreases as ∝
1/
√
ν [28]. Furthermore, this function closely resembles

to Eq. (1) which is a central aim of this work to explore.

C. White noise in random circuits

Random circuits have enabled quantum supremacy ex-
periments using noisy quantum computers for two pri-
mary reasons: (a) the outputs of these circuits are hard
to simulate classically and (b) they render local noise
into global white noise [1], hence introducing only a triv-
ial bias to the ideal probability distribution similarly as
in Section I A.

Ref [23] considered random circuits consisting of s two-
qubit gates, each of which undergoes two single qubit
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FIG. 1. Simulating families of 10-qubit Strong entangling layer (SEL) ansatz circuits [32] at random gate parameters for an
increasing number ν of gates and per-gate depolarising error rates ε. (a) the uniformity measure W (ν) of the error eigenvalues
of the density matrix from Eq. (12) closely match the theoretical model (dashed lines) for random circuits and confirm that
increasing the number of gates in random circuits scrambles local noise into global white noise. (b) the commutator norm
C(ν) from Eq. (14) is significantly smaller in absolute value and decreases with a larger polynomial degree (steeper slope of the
dashed lines) than the uniformity measure – this suggests that the dominant eigenvector of the density matrix ρ approximately
commutes with ρ even when noise is not well described by white noise. The ε → 0 simulations were approximated using
ε = 10−8 (ε = 10−7) when calculating W (C).

(depolarising) errors each with probability ε̃ (assuming
single-qubit gates are noiseless). We can relate this to our
model by identifying the local noise after each two-qubit
gate with the error event in Eq. (7) via the probability
ε = 1− (1− ε̃)2 = 2ε̃− ε̃2. Ref [23] then established the

fidelity F̃ of the quantum state which one obtains from
a noisy cross-entropy score as

F̃ = e−2sε̃±O(sε̃2) = e−ξ±O(εξ).

This coincides with our approximation from Eq. (9) up
to an additive error in the exponent which, however, di-
minishes for low gate error rates. In the following we will
thus assume F ≡ F̃ .

Measuring these noisy states in a the standard mea-
surement basis {|j〉}dj=1 produces a noisy probability dis-
tribution p̃noisy(j) = 〈j|ρ|j〉. Ref. [23] established that
this probability distribution rapidly approaches the white
noise approximation p̃wn = Fpid + (1 − F )punif . In
particular, the total variation distance (via the l1 norm
‖x‖1 =

∑
i |xi|) between the two probability distribu-

tions is upper bounded as

1
2‖p̃noisy − p̃wn‖1 ≤ O(Fε

√
ν) = O(e−ξξ/

√
ν). (11)

This expression is formally identical to the bound on the
commutator norm in Eq. (10); Indeed if the noise in the
quantum state approaches a white noise approximation,
it implies that the commutator norm must also vanish in
the same order.

On the other hand, the reverse is not necessarily true
as Eq. (11) is a stronger condition than Eq. (10) as the
latter only guarantees that the dominant eigenvector ap-
proaches |ψ1〉 ≈ |ψid〉 but does not imply anything about
the eigenvalue distribution of ρ or ρerr.

III. NUMERICAL SIMULATIONS

A. Target metrics

In the NISQ-era comprehensive error correction will
not be feasible and thus hope is primarily based on
variational quantum algorithms [11–13, 33, 34]. In this
paradigm a shallow, parametrised quantum circuit is
used to prepare a parametrised quantum state that aims
to approximate the solution to a given problem, typically
the ground state of a problem Hamiltonian. Due to its
shallow depth the ansatz circuit is believed to be error
robust and its tractable parametrisation allows to explore
the Hilbert space near the solution. On the other hand,
such circuits are structurally quite different than random
quantum circuits and it was already raised in ref. [23]
whether error bounds on the white noise approximation
extend to these shallow quantum circuits.

We simulate such quantum circuits under the effect of
local depolarising noise – while note that a broad class
of local coherent and incoherent error models can effec-
tively be transformed into local depolarising noise using,
e.g., twirling techniques or randomised compiling [35–38].
We analyse the resulting noisy density matrix ρ by cal-
culating the following two quantities. First, we quantify
‘closeness’ to a white noise state from Eq. (2) by com-
puting uniformity measure W as the l1-distance between
the uniform distribution and the non-dominant eigenval-
ues of the output state as

W :=
1

2
‖perr − punif‖1 =

1

2

d∑

k=2

| λk
1− λ1

− 1

d− 1
|, (12)

which only depends on spectral properties of the quan-
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tum state and can thus be computed straightforwardly.
We show in Statement 2 that W is proportional to the
trace distance from a white noise quantum state as

‖ρ− ρwn‖1 = (1− λ1)W + Ew, (13)

uo to a bounded error Ew. The uniformity measure W
thus determines the bias in estimating any traceless ex-
pected value as discussed in Section I A.

Second, we calculate the commutator norm EC from
Section I A relative to 1− λ1 as

C :=
‖[ρid, ρ]‖1

1− λ1
= ‖[ρid, ρerr]‖1 +O(Eq), (14)

which we relate to the commutator norm between the “er-
ror part” of the state ρerr and the ideal quantum state
ρid in Lemma 1. In the following, we will refer to C as
the commutator norm – and recall that it determines the
ultimate performance of purification-based error mitiga-
tion as discussed in Section I A.

B. Random states via Strong Entangling ansätze

We first consider a Strong Entangling ansatz (SEA):
it is built of alternating layers of parametrised single-
qubit rotations followed by a series of nearest-neighbour
CNOT gates as illustrated in Fig. 5 – and assume a lo-
cal depolarising noise with probability ε. We simulate
random quantum circuits by randomly generating pa-
rameters |θk| ≤ 2π – note that these circuits are not
necessarily Haar-random distributed and thus results in
Section II C do not necessarily apply.

We simulate 10-qubit circuits and in Fig. 1 (a) we plot
the eigenvalue uniformityW (ν) while in Fig. 1 (b) we plot
the commutator norm C(ν) for an increasing number ν
of quantum gates – all datapoints are averages over ten
random seeds. These results surprisingly well recover the
expected behaviour of random quantum circuits as for
small error rates ε → 0 both quantities W (ν) and C(ν)
can be approximated by the function from Eq. (1) as we
now discuss.

In Section II C we stated bounds of ref. [23] on the dis-
tance between p̃noisy and p̃wn. Based on the assumption
that these bounds also apply to the probability distri-
butions pnoisy = 〈ψk| ρ |ψk〉 and pwn := 〈ψk| ρwn |ψk〉
we derive in Statement 4 the approximate bound on the
eigenvalue uniformity as

W = O

(
e−ξξ/

√
ν

1− e−ξ
)
.

Furthermore, by combining Eq. (14) and the bound in
Eq. (10) we find that the commutator norm C is similarly
bounded by the same function. On the other, Fig. 1
(b) suggests that the commutator norm decreases with a
larger polynomial degree and thus we approximate both
W (ν) and C(ν) using the function

f(ν) = α
ξe−ξ

νβ(1− e−ξ) = α/νβ +O(ξ) (15)

where we fit the two parameters α and β to our simulated
dataset. The second equation above is an expansion for
small circuit error rates ξ as detailed in Appendix A 2 a.
Indeed, in Fig. 1 (blue circles) for small ε→ 0 we observe
a nearly linear function in the log-log plot in Fig. 1 and
thus remarkably well recover the theoretical bounds with
the polynomial power approaching b→ 1/2.

Furthermore, comparing Fig. 1 (b, blue circles) and
Fig. 1 (a, blue circles) suggest that the commutator norm
has both a significantly smaller absolute value (smaller
α) and decreases at a faster polynomial rate (larger beta)
than the uniformity measure. In fact, the commutator
norm is more than two orders of magnitude smaller than
the uniformity measure which suggests that even when
ρerr is not approximated well by a white noise state it,
nevertheless, almost commutes with the ideal pure state
ρid.

We finally consider how the absolute factor α depends
on the number of qubits: we perform simulations at a
small error rate ε → 0 and fit our model function ανβ

to extract α(N) for an increasing number of qubits. The
results are plotted in Fig. 7 (e) and suggest that the pref-
actor α(N) initially grows slowly but then saturates while
note that a polylogarithmic depth is sufficient to reach
anticoncentration [23].

C. Variational Hamiltonian Ansatz

Theoretical results guarantee that the SEL ansatz ini-
tialised at random parameters approach for an increasing
depth unitary 2-designs thereby reproducing properties
of random quantum circuits [39, 40]. It is thus not sur-
prising that the model introduced in Section II C gives
a remarkably good agreement between the SEL ansatz
(dots on in Fig. 1) and genuine random circuits (fits as
continuous lines in Fig. 1).

Here we consider the Hamiltonian Variational Ansatz
(HVA) [41, 42] at more practical parameter settings: The
HVA has the advantage that we can efficiently obtain
parameters that increasingly better (as we increase the
ansatz depth) approximate the ground state of a problem
Hamiltonian – we will refer to these as VQE parameters.
We also want to compare this circuit against random cir-
cuits and thus also simulate the HVA such that every gate
receives a random parameter as detailed in Appendix B 1.

While the VQE parameter settings capture the rele-
vant behaviour in practice as one approaches a solution,
the random parameters are more relevant, e.g., at the
early stages of a VQE parameter optimisation. Further-
more, as the circuit is entirely composed by Pauli terms
in the problem Hamiltonian, the dimensionality of its dy-
namical Lie algebra is entirely determined by the prob-
lem Hamiltonian in contrast to an exponentially growing
algebra of the SEL ansatz [24].



6

101 102 103 104

ν

10-3

10-2

10-1

100

W
 (e

ig
en

va
lu

e u
ni

fo
rm

ity
)

(a) L1 distance, random parameters

101 102 103 104

ν

10-3

10-2

10-1

100

C
 (c

om
m

ut
ato

r n
or

m
)

(c) Commutator norms, random parameters

101 102 103 104

ν

10-3

10-2

10-1

100

(b) L1 distance, VQE parameters

101 102 103 104

ν

10-3

10-2

10-1

100

(d) Commutator norms, VQE parameters
ε→ 0 10−4 10−3 10−2 10−1

FIG. 2. XXX Hamiltonian: same simulations as in Fig. 1 but using 10-qubit HVA quantum circuits constructed for the
XXX spin problem Hamiltonian. (a, c) at randomly chosen circuit parameters of the HVA we find the same conclusions as for
random circuits in Fig. 1. (b) when the HVA circuit approximates the ground state of the Hamiltonian (VQE parameters) we
find the noise in the circuit is not approximated well by white noise, i.e., the uniformity measure W (ν) is large and does not
decrease as we increase ν. (d) On the other hand, the commutator norm C(ν) is significantly smaller than W (ν) confirming
that the the ideal quantum state approximately commutes with the noisy one. The ε→ 0 simulations were approximated using
ε = 10−8 (ε = 10−7) when calculating W (C).

D. Heisenberg XXX spin model

We first consider a VQE problem of finding the ground
state of the 1-dimensional XXX spin-chain model. We
construct the HVA ansatz from Section III C for this
problem Hamiltonian as a sum HXXX = H0 +H1 as

H0 =

N∑

k=1

∆kZk, H1 =

N∑

k=1

[XkXk+1+YkYk+1+ZkZk+1].

The Pauli operators XX, Y Y and ZZ determine cou-
plings between nearest neighbour spins in a 1-D chain
and we choose them to be of unit strength. Furthermore,
Zk are local on-site interactions |∆k| ≤ 1 that were gen-
erate uniformly randomly such that the Hamiltonian has
a non-trivial ground state.

First, we simulate the HVA ansatz for N = 10 qubits
with randomly generated circuit parameters as |θk| ≤ 2π
and plot results for an increasing number of quantum
gates in Fig. 2 (a, c). We a find similar behaviour for
the eigenvalue uniformity W (ν) as with random SEL cir-
cuits in Fig. 1 (a) and obtain a reasonably good fit for
ε→ 0 using our model function from Eq. (15). The com-
mutator norm in Fig. 2 (c) is again significantly smaller
in magnitude than the uniformity measure and decreases
faster with a higher polynomial order similarly to as with

the random SEL ansatz in Fig. 1 (b) .

Second, in Fig. 2 (b,d) we simulate the ansatz at the
VQE parameters that approximate the ground state.
Since the ansatz parameters become very small as one
approaches an adiabatic evolution, it is not surprising
that the output density matrix is not well-approximated
by a white noise state: the uniformity measure is very
large in Fig. 2 (b). The commutator norm in Fig. 2 (d)
again, is significantly smaller than W (ν) and although it
appears to slowly grow with ν, it appears to decrease for
ν → ∞. This agrees with observations of ref. [28] that
the circuits need not be random for the commutator to
be sufficiently small in practice.

Furthermore, in Fig. 7 (a, b) we investigate the depen-
dence on N and find that the prefactor α grows slowly
and appears to saturate for N ≥ 10.

E. TFI

In the next example we consider the transverse-field
Ising (TFI) model HTFI = H0 + H1 using constant on-
site interactions hi = 1 and randomly generated coupling
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FIG. 3. TFI same simulations as in Fig. 1 but using 10-qubit HVA quantum circuits constructed for the TFI spin problem
Hamiltonian. (a, c) at randomly chosen circuit parameters W (ν) decreases more slowly, in smaller polynomial order than
random circuits – see text and see simulations with added layers of Rz gates in Fig. 6. (b) at the VQE parameters white noise
is again not a good approximation, i.e., the uniformity measure W (ν) is large and does not decrease as we increase ν. (d)
the commutator norm C(ν) is smaller than W (ν) in absolute value by an order of magnitude. The ε → 0 simulations were
approximated using ε = 10−8 (ε = 10−7) when calculating W (C).

strengths |Ji| ≤ 1 as

H0 = −
∑

i

hiXi, H1 = −
∑

i

JiZiZi+1. (16)

We first simulate the HVA ansatz with random varia-
tional parameters in Fig. 3 (a, c). While at small er-
ror rates ε → 0 Fig. 3 (a, blue) can be fitted well with
our polynomial approximation form Eq. (15), we observe
that the eigenvalue uniformity W (ν) in Fig. 3 (a, blue)
decreases with a small polynomial degree.

Indeed, as the HVA ansatz is specific to a particular
Hamiltonian, its dynamical Lie algebra may have a low
dimensionality [24] resulting in a limited ability to scram-
ble local noise into white noise; this explains why in Fig. 3
(a) the uniformity measure decreases more slowly, i.e., in
a smaller polynomial order, than random circuits. For
this reason, we additionally simulate in Fig. 6 the TFI-
HVA ansatz but with adding Rz gates in each layer whose
generator is not contained in the problem Hamiltonian.
The increased dimensionality of the dynamic Lie algebra,
indeed, improves scrambling as the white noise approx-
imation is clearly better in Fig. 6 – while note that the
increased dimensionality may also lead to exponential in-
efficiencies in training the circuit [24].

In stark contrast to the case of the uniformity measure
W (ν), we find that the commutator norm in Fig. 3 (c,
blue) decreases substantially for an increasing ν despite

the low dimensionality of the Lie algebra. This nicely
demonstrates that a small commutator norm is a much
more relaxed condition than white noise as the latter re-
quires that the noise is fully scrambled in the entirety of
the exponentially large Hilbert space. Finally, we simu-
late the TFI circuits at VQE parameters and find qual-
itatively the same behaviour as in the case of the XXX
problem.

F. Quantum Chemistry: LiH

We consider a 6-qubit Lithium Hydride (LiH) Hamil-
tonian in the Jordan-Wigner encoding as a linear com-
bination of non-local Pauli strings Pk ∈ {Id, X, Y, Z}⊗N
as

HLiH =

rh∑

k=1

hkPk. (17)

We construct the HVA ansatz by splitting this Hamil-
tonian into two parts with H0 being composed of the
diagonal Pauli terms in Eq. (17) while H1 composed of
non-diagonal Pauli strings.

Such chemical Hamiltonians typically have a very large
number of terms with rh � 1 but a significant fraction
only have small weights hk thus the HVA would have
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FIG. 4. LiH same simulations as in Fig. 1 but using 6-qubit HVA quantum circuits constructed for a LiH molecular Hamiltonian.
(a, c) at randomly chosen circuit parameters both W (ν) and C(ν) decrease as expected for random circuits due our randomised
compiling strategy [43, 44]. (b) at the VQE parameters white noise is an increasingly bad approximation, i.e., the uniformity
measure W (ν) increases as we increase ν. (d) the commutator norm C(ν) is smaller than W (ν) in absolute value by 2 orders
of magnitude. The ε→ 0 simulations were approximated using ε = 10−8 (ε = 10−7) when calculating W (C).

a large number of gates with only very small rotation
angles. For these reasons we construct a more efficient
circuit whose basic building blocks are constructed us-
ing sparse compilation techniques [43, 44]: Each single
layer in the HVA ansatz consists of gates that correspond
to 100 randomly selected terms of the Hamiltonian with
sampling probabilities pk ∝ |hk| proportional to the Pauli
coefficients. This approach has the added benefit that it
makes the circuit structure random as opposed to the
fixed structures in Section III D and in Section III E.

Results shown in Fig. 4 (a,c) agree with our findings
from the previous sections: at randomly chosen circuit
parameters the uniformity measure decreases according
to Eq. (15); the commutator norm similarly decreases
but in a higher polynomial order while its absolute value
is smaller by at least an order of magnitude. In contrast,
Fig. 4 (b) suggests that the errors are not well approx-
imated by white noise with a large and non-decreasing
W (ν) ≈ 0.5. Furthermore, Fig. 4 (b) again confirms that
despite white noise is not a good approximation, the com-
mutator norm is small in absolute value, i.e., ≈ 10−3 in
the practically relevant region. This guarantees a very
good performance of the ESD/VD error mitigation tech-
niques sufficient for nearly all practical purposes.

IV. DISCUSSION

Random quantum circuits—instrumental for demon-
strating quantum advantage—are known to scramble lo-
cal gate noise into global white noise for sufficiently long
circuit depths [1]: general bounds have been proved on
the approximation error which decrease as ν−1/2 as we
increase the number ν of gates in the random circuit [23].

In this work we consider shallow-depth, variational
quantum circuits that are typical in practical applica-
tions of near-term quantum computers and answer the
question: can variational quantum circuits scramble lo-
cal gate noise into global depolarising noise? While the
answer to this question is relevant for the fundamental
understanding of noise processes in near-term quantum
devices, it has significant implications in practice: the
degree to which local noise is scrambled into white noise
determines the performance of a broad class of error miti-
gation techniques that are of key importance to achieving
value with near-term devices [20]. As such, we derive two
simple metrics that bound performance guarantees: first,
the uniformity measure W characterises the performance
of error mitigation techniques that assume global depo-
larising (white) noise [25]; second, the norm C of the
commutator between the ideal and noisy quantum states
determines the performance of purification-based error
mitigation techniques [21, 22] via bounds of ref. [28].

We perform a comprehensive set of numerical experi-
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ments to simulate typical applications of near-term quan-
tum computers and analyse characteristics of noise based
on the aforementioned two metrics. In all experiments
in which we randomly initialise parameters of the varia-
tional circuits we semiquantitatively find the same con-
clusions. First, both metrics, the eigenvalue uniformity
W and the commutator norm C are well described by
our polynomial approximation from Eq. (15) for small
gate error rates. Second, this confirms that, similarly
to genuine random circuits, local errors get scrambled
into global white noise with a polynomially decreasing
approximation error as we increase the number of gates.
Third, the commutator C decreases at a higher polyno-
mial rate and has a significantly, by 1-2 orders of mag-
nitude, smaller absolute value in the practically relevant
region than the eigenvalue uniformity W . This confirms
that purification based techniques are expected to have a
superior performance compared to error mitigation tech-
niques that, e.g., assume a global depolarising noise.

We then investigate the practically more relevant case
when the ansatz circuits are initialised near the ground
state of a problem Hamiltonian; in all cases we semiquan-
titatively find the same conclusions. First, the errors do
not get scrambled into white noise and the approxima-
tion errors are large thus effectively prohibiting or at least
significantly limiting the use of error mitigation tech-
niques that assume global depolarising noise. Second, the
commutator norm is quite small in absolute value, i.e.,
≈ 10−2 − 10−4 in the practically relevant region; Since
the ansatz circuit prepares the ground state, the square
of the commutator norm determines the performance of
ESD/VD thus for all applications we simulated we ex-
pect a very good performance of the ESD/VD approach.
Third, we identify strategies to improve scrambling of lo-
cal noise into global white noise as we increase circuit
depth: We find that inserting additional gates to a HVA
that is otherwise not contained in the problem Hamilto-
nian increases the dimensionality of the dynamic Lie al-
gebra and thus leads to a reduction of both metrics. We
find that applying randomised compiling to these non-
random, practical circuits also reduces both metrics.

While purification-based techniques [21, 22] have been
shown to perform well on specific examples, the present
systematic analysis of circuit noise puts these results into
perspective and demonstrates the following: First, the
superior performance of the ESD/VD technique is not
necessarily due to randomness in the quantum circuits –
albeit, in deep and random circuits its performance is fur-
ther improved. Second, while some error mitigation tech-
niques perform well on quantum circuits well-described
by white noise [25–27], we identify various practical sce-
narios where a limited performance is expected.

The present work advances our understanding of the
nature of noise in near-term quantum computers and
helps making progress towards achieving value with noisy
quantum machines in practical applications. As such, re-
sults of the present work will be instrumental for identi-
fying design principles that lead to robust, error-tolerant

quantum circuits in practical applications.

Data availability
Numerical simulation code is openly available in the
repository: github.com/jfold/shallow-circuit-noise.
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Appendix A: Derivation of Eq. (6)

Recall that any quantum state can be transformed into
a non-negative arrowhead matrix following Statement 1
from [28] as ρ̃ = F |ψ̃id〉〈ψ̃id|+D + C with

ρ̃ =




F C2 C3 . . . Cd
C2 D2

C3 D3

...
. . .

...
Cd . . . Dd



. (A1)

We obtain the above matrix by applying a suitable
unitary transformation ρ̃ := UρU† such that |ψ̃id〉 :=
U |ψid〉 = (1, 0, . . . 0) while F,Ck, Dk ≥ 0 with k ∈
{2, 3, . . . , d} with d denoting the dimension, and all other
matrix entries are zero. Given the above arrowhead rep-
resentation of a quantum state, one can analytically com-
pute eigenvalues of the density matrix as roots of the

Rz Ry Rz

Rz Ry Rz

Rz Ry Rz

FIG. 5. A single layer of the Strong Entangling Layers ansatz
for three qubits: it first applies single-qubit gates Ry, Rz and
Ry on all qubits which is then followed by nearest neighbour
CNOT gates.
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following secular equation [28, 47]

P (x) = x− F +

d∑

k=2

C2
k

(Dk − x)
= 0. (A2)

With this we compute the deviation between dominant
eigenvalue λ1 and the fidelity as

λ1 − F =

d∑

k=2

C2
k

(λ1 −Dk)
≤ max

k
(λ1 −Dk)−1

d∑

k=2

C2
k

≤‖[ρid, ρ]‖2(2λ1 − 1)−1, (A3)

where we have used that Dk ≤ λ1 and that all sum-
mands are non-negative as Dk, Ck, λ1 ≥ 0, and in the
second inequality we have used the series of matrix
norms

∑
k=2 C

2
k = ‖C‖2HS/2 = ‖[ρid, ρ]‖2∞ as estab-

lished in [28]. We have also introduced the abbrevi-
ation ‖[ρid, ρ]‖ given all p-norms of the matrix [ρid, ρ]
are equivalent up to a constant factor. In particular,
any p-norm of the commutator can be computed as
‖[ρid, ρ]‖p = 21/p

√
Var[ρ] where we used the quantum

mechanical variance Var[ρ] := 〈ψid|ρ2|ψid〉 − F 2 as es-
tablished in [28]. Furthermore, in the second inequal-
ity in Eq. (A2) we have used that maxk(λ1 − Dk)−1 =
(λ1−D2)−1 ≤ (λ1−λ2)−1 ≤ (2λ1−1)−1 by substituting
the general inequality λ2 ≤ (1− λ1) due to the fact that
tr[ρ] = 1.

By denoting the commutator norm as EC , we can thus
finally conclude that λ1−F ∈ O(EC) as stated in Eq. (6).

1. Trace distance from white noise states

In this section we evaluate analytically the trace dis-
tance of any quantum state ρ from the corresponding
white noise state in Eq. (2) in terms of a distance be-
tween probability distributions.

Statement 1. We can approximate the white noise-state
in Eq. (2) in terms of the dominant eigengvalue λ1 and
the dominant eigenvector |ψ1〉 of the quantum state as

ρwn = λ |ψ1〉〈ψ1|+ (1− λ1)Id/d+ Ew, (A4)

up to an approximation error Ew that is bounded via
Eq. (A6).

Proof. We start by approximating the weight η in Eq. (2)
as η ≈ F ≈ λ1 via Eq. (9) as well as we approximate the
dominant eigenvalue using Eq. (6) and then collect the
approximation errors as

ρwn = λ |ψid〉〈ψid|+ (1− λ1)Id/d+ EF + EC +O(ε2/ν).

We now use results in [28] for bounding the distance be-
tween the ideal and noisy quantum states as

‖|ψid〉〈ψid| − |ψ1〉〈ψ1|‖1 =
√

1− 〈ψid|ψ1〉

= 1−O
( EC
λ1 − λ2

)
,

where EC is the commutator norm from Eq. (6). We thus
establish the approximation

ρwn = λ |ψ1〉〈ψ1|+ (1− λ1)Id/d+ Ew, (A5)

where we collect all approximation errors as

|Ew| ≤ |EF |+O(ε2/ν) +O

[
EC(1 +

1

1− λ2/λ1
)

]
. (A6)

Statement 2. We define the eigenvalue uniformity as
W := 1

2‖perr−punif‖1 via the non-dominant eigenvalues
of the density matrix perr := (λ2, λ3, . . . , λd)/(1 − λ1).
This metric is related to the trace distance from a white
noise state (as in Eq. (4)) as

‖ρ− ρwn‖1 = (1− λ1)W + Ew, (A7)

where the approximation error Ew is stated in State-
ment 1.

Proof. We substitute the approximation of ρwn from
Eq. (A4) including the error term Ew and then we use
the spectral decomposition of ρ to obtain the trace dis-
tance as

‖ρ− ρwn‖1 =‖
d∑

k=2

λk |ψk〉〈ψk| − (1− λ1)Id/d‖1 + Ew

=
1

2

d∑

k=2

|λk −
1− λ1
d
|+ Ew (A8)

=
1− λ1

2
‖perr − punif‖1 + Ew. (A9)

In the second equation we analytically evaluated the
trace distance and thus in the third equation we rewrite
the result in terms of perr which is our “error probability”
distribution as perr := (λ2, λ3, . . . , λd)/(1− λ1).

Statement 3. Alternatively to Statement 2, if a quan-
tum state admits the decomposition in Eq. (8) then we
can state the trace distance without approximation as

‖ρ− ρwn‖1 =
(1− η)

2
‖pµ − punif‖1. (A10)

This is directly analogous to the uniformity measure of
the non-dominant eigenvalues of ρ in Statement 2, how-
ever, this expression quantifies the uniformity of the prob-
ability distribution pµ which are eigenvalues of the error
density matrix ρerr.

Let us assume the decomposition in Eq. (8). We find
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the following result via a direct calculation as

‖ρ− ρwn‖1 = (1− η)‖ρerr − Id/d‖1

= (1− η)‖
d∑

k=1

µk |φk〉〈φk| − Id/d‖1

=
(1− η)

2
‖
d∑

k=1

|µk − 1/d|

=
(1− η)

2
‖pµ − punif‖1

where we have used the spectral resolution of the er-
ror density matrix and then analytically evaluated the
trace distance. Given ρerr is a positive-semidefinite ma-
trix with unit trace, its eigenvalues µk form a probability
distribution that we denote as pµ.

2. Upper bounding the uniformity measure

In this section we upper bound the uniformity mea-
sure based on the number of gates and error rates in a
quantum circuit.

Statement 4. We adopt the bounds of [23] in Eq. (11)
for the distance between probability distributions mea-
sured in the standard basis 1

2‖p̃noisy − p̃wn‖1 and assume
the same bounds approximately apply to any measure-
ment basis. Then, it follows that the uniformity measure
from Statement 2 is approximately bounded by the same
bounds as

W = O(
e−ξξ/

√
ν

1− e−ξ ) +O(
Ew

1− λ1
),

where the approximation error Ew is stated in State-
ment 1.

Proof. Let us consider measurements performed in the
basis as the eigenvectors of the density matrix which yield
probabilities as the eigenvalues as

pnoisy = 〈ψk| ρ |ψk〉 = (λ1, λ2 . . . , λd).

Measuring the white noise state in the same basis yields
the following approximation of the probabilities using the
error term from Eq. (A4) as

pwn := 〈ψk| ρwn |ψk〉

= (λ1,
1− λ1
d

. . . ,
1− λ1
d

) + Ew.

The distance of the above two measurement probabil-
ity distributions is then

1

2
‖pnoisy − pwn‖1 = (1− λ1)W + Ew,

where W = 1
2‖perr−punif‖1 is our eigenvalue uniformity

from Statement 2. Under the assumption that the upper
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FIG. 6. (left) TFI-HVA ansatz: same simulations as in Fig. 3
(a) but with added parametrised Rz gates after each layer.
The additional gates increase the dimensionality of the dy-
namic Lie algebra which leads to a faster scrambling of local
gate noise into white noise, e.g., the ε → 0 curve is steeper
than in Fig. 3 (a). See Appendix B for more details. (right)
the dependence on the number of qubits shows a very similar
trend as without the Rz gates, i.e., compare to Fig. 7 (c).

bound on the measurement probabilities 1
2‖p̃noisy−p̃wn‖1

from Eq. (11) approximately holds for any measurement
basis we can bound the eigenvalue uniformity as

W =
1

2(1− λ1)
‖pnoisy − pwn‖1 +

Ew
1− λ1

≤ O
(

F

1− λ1
ε
√
ν

)
+
Ew

1− λ1

= O

(
e−ξξ/

√
ν

1− e−ξ
)

+O

( Ew
1− λ1

)
.

In the last equation we introduced the approximation
of F from Eq. (9) as well as the approximate dominant
eigenvalue from Eq. (6).

a. Expanding the upper bound

We now expand the upper bound from Statement 4
for small ξ as. More specifically, we consider the
parametrised fit function from Eq. (15) and substitute
the Taylor expansion e−ξ = 1− ξ + ξ2 + . . . as

α
e−ξξ/

√
ν
β

1− e−ξ = α
e−ξ

νβ
ξ

ξ − ξ2/2 + . . .

= α
e−ξ

νβ
1

1− ξ/2 + . . .

= α
1

νβ
1− ξ + . . .

1− ξ/2 + . . .

=
α

νβ
+O(ξ).
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FIG. 7. Fit parameters α from Eq. (15) for an increasing number of qubits: The circuits in Figs. 1 to 4 at ε→ 0 were simulated
for an increasing number of qubits and the curve from Eq. (15) was fitted.

3. Commutator norm

Lemma 1. The commutators norms are approximately
related as

‖[ρid, ρ]‖1
1− λ1

= ‖[ρid, ρerr]‖1 + Eq, (A11)

up to the approximation error Eq.

Proof. Using the decomposition from Eq. (8) we obtain

‖[ρid, ρ]‖1 = ‖[ρid, ηρid] + [ρid, (1− η)ρerr]‖1
= (1− η)‖[ρid, ρerr]‖1

We can approximate η = λ1 +O(EF )+O(EC) via Eq. (9)
and Eq. (6) and obtain that

‖[ρid, ρ]‖1
1− λ1

= ‖[ρid, ρerr]‖1 + Eq. (A12)

The error term can be obtained via the triangle inequality
|Eq| ≤ [O(EFEC) +O(E2C)]/(1− λ1).

Appendix B: Further details of numerical
simulations

1. The SEL and HVA ansätze

The circuit structure of the SEL ansatz used in Fig. 1
is illustrated in Fig. 5: it consists of alternating layers

of parametrised single-qubit rotations and a ladder of
nearest-neighbour CNOT gates.

Let us now define the HVA ansatz. In particular, recall
that the HVA ansatz is a discretisation of the adiabatic
evolution

U(β, γ) =

ν∏

k=1

e−iγkH1e−iβkH0 ,

which is applied to the initial state as the ground state
of the trivial Hamiltonian H0.

The individual evolutions are then trotterised such
that a piece of time evolution e−iγkH1 is broken up
into products of evolution operators under the individ-
ual Hamiltonian terms as

e−iγkH1 →
rh∏

l=1

e−iγkhlPl .

Above we utilised the decomposition of the non-trivial
part of the Hamiltonian H1 =

∑rh
l=1 hlPl into Pauli

strings Pl ∈ {Id, X, Y, Z}⊗N .

We set the circuit parameter as γk = k/ν and βk =
1− k/ν, such that the circuit approximates a discretised
adiabatic evolution between H0 and H1 – and we will
refer to these as VQE parameters.

In the case of random parametrisation of the HVA
ansatz, every gate implementing the evolution under a
single Pauli string e−iγkhlPl is assigned a random param-
eter as e−iθqPl with |θq| ≤ 2π.
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2. Inserting additional gates to the TFI ansatz

In Fig. 6 we repeated the same simulation as in Fig. 3
(a), i.e., using a HVA ansatz for the TFI spin model
at random circuit parameters, but we appended to each
layer a series of parametrised Rz gates on each qubit.
This guarantees that the dynamic Lie algebra generated
by the Pauli terms of the TFI problem in Eq. (16) is
expanded by the inclusion of Pauli Z operators. Increas-
ing the circuit depth of the HVA ansatz thus leads to a
faster increase of the dimensionality of the Lie algebra
which demonstrably leads to a faster scrambling of local

noise into global white noise, e.g., steeper slope of the
ε→ 0 fit in Fig. 6 than in Fig. 3.

3. Scaling with the number of qubits

In Fig. 7 we simulate the same circuits as in Figs. 1 to 4
at error rates ε→ 0 and plot the fit parameter α—which
is the prefactor in Eq. (15)—for an increasing number of
qubits. The results appear to confirm an asymptotically
non-increasing trend confirming theoretical expectations
of [23] for random circuits whereby α is constant bounded
in terms of the number of qubits.
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With near-term quantum machine learning we can train variational quantum algorithms to per-
form hard tasks such as groundstate estimation of Hamiltonians. Such circuits typically involve
several design choices, with a number of hyperparameters. In this paper, a very general framework
using classical algorithmic agency is introduced. Based on a combination of Active Learning and
Bayesian Optimization to guide experimental design of quantum models the approach aims to pro-
vide better initialization strategies for unseen cost functions. The numerical experiments focuses on
the variational quantum eigensolver and results reveal that the agency outperforms several search
strategies and thus suggests that lessons learned on one problem Hamiltonian can be used for an-
other one. Results for different quantum Hamiltonians are presented and a discussion various agent
strategies is provided.

I. INTRODUCTION

The field of quantum machine learning (QML) com-
bines quantum computing and machine learning for a
multitude of tasks [1, 2]. Many of the so-called first-
wave QML proposals require capabilities, such as quan-
tum random access memory (QRAM), that current and
arguably near-future quantum technology cannot pro-
vide [3], and even if it could there are still unknowns
with respect to applicability[4]. Instead, periodic op-
timism and a lot of research has been directed at
the noisy intermediate-scale quantum (NISQ) technol-
ogy and many ideas on how to leverage the quantum
power here have been proposed [5, 6]. Problems involv-
ing learning a quantum circuit that prepares a quantum
state of interest, such as the groundstate of a quantum
Hamiltonian, have been argued to be a meaningful sub-
ject for NISQ machines and a potential area for early
stage quantum advantage. Some of the first ideas re-
alizing this include the variational quantum eigensolver
(VQE) [7] and the quantum approximate optimization
algorithm (QAOA) [8], which both are instances of varia-
tional quantum algorithms (VQAs); protocols which aims
at learning a low-depth quantum circuit preparing useful
quantum states.

The principle of VQAs is to parameterize the quantum
processor itself, that is, parameterize the quantum gates
(or more general quantum channels [9]) themselves, de-
fine a loss function and subsequently combine the quan-
tum device with a classical computer which learns these
parameters by minimizing the loss with respect to the
loss function. For a gate-model quantum computer, this
means that each gate is assigned a real number θi that
controls how the corresponding gate operates. Using
samples obtained from preparing and observing the out-
put state multiple times and a classical optimizer, the
parameters θ ∈ RP where [θ]i = θi are learned such that
the quantum computer prepares a quantum state of in-
terest. Formally, if U(θ) represents the parameterized

∗ Correspondence:jonf@dtu.dk

quantum circuit unitary acting on a reference state |0〉,
the produced state becomes U(θ) |0〉 = |ψ(θ)〉. The goal
of VQE is to learn the parameters

θ∗ = argmin
θ
〈(θ)|H |ψ(θ)〉 (1)

for a given Hamiltonian operator H, which we shall as-
sume is a parameterized sum of Pauli tensor products

H := H(J,b) =
∑

(αi,αj)

∑

i

J
(αi,αj)
ij σαi

i σ
αj

i+1

+
∑

αi

∑

i

bαi
i σ

αi
i

(2)

where J houses all interaction terms, b contains all bias
terms and αi ∈ {X,Y, Z} are local Pauli observables act-
ing on qubit i. In this work we only consider spin ring sys-
tems, hence it is sufficient to sum over neighboring spins
in eq. (2). Research has gone into investigating VQAs for
variety of tasks beyond ground state preparations [10–
13], and some have even considered these circuits them-
selves as generative machine learning models [14]. Ap-
plications of VQAs beyond quantum physics have been
proposed in other scientific areas such as drug-discovery,
material and molecular science, machine learning and op-
timization . Although the method and result in this pa-
per easily can be generalized to other applications with
VQAs, we shall focus on the task of VQE not only be-
cause the problem itself is interesting but also because
many problems can be reformulated into a VQE-like op-
timization problem.

A. Motivation

When designing the variational algorithm, a number
of ad hoc decisions are typically made: picking a cost
function, ansatz strategy (overall architecture of quan-
tum circuit, including circuit depth, number of ancillary
qubits, etc.), parameter initialization, classical optimizer
etc. These are so-called hyperparameters and can have
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considerable impact on expressiveness, learnability and
convergence speed [15]. This is also well known in clas-
sical machine learning, where hyperparameters often are
chosen based on grid-search. Such strategy can a rea-
sonable choice for small search spaces but is tedious and
scales exponentially in the number of hyperparameters.
Furthermore, and even more relevant for problems in
physics, it does not seek to exploit potential knowledge
on other perhaps very similar problems (for VQE this
could be slightly different Hamiltonians). One proposed
method to find hyperparameters in an automatic way is
Bayesian optimization (BO)[16]. BO is particularly well-
suited when 1) we can evaluate the loss objective, but
we do not have access to the gradients, and 2) we can
only allow a fairly small amount of samples e.g. due to
costs. Such is exactly the case for hyperparameters in a
VQA’s (or classically in neural networks), where we wish
to find the global optimum of a "black-box" function f(x)
with respect to input x while having no closed-form (and
therefore no gradients) of f w.r.t. x. In such problems,
we are allowed to query the function for specific xi, and
these samples might be noisy:

yi = f(xi) + ε (3)

where ε is noise term often assumed to follow a normal
distribution. However, in this paper we are not only in-
terested in BO performed for a particular problem. In
fact, we want to learn about the relationship

(hyperparameters,problem) → loss

with focus on hyperparameters of VQEs for various prob-
lems (Hamiltonians), hence our loss is the corresponding
achieved minimum energy estimate. With a near-term
quantum computer, we can perform VQE on a variety of
Hamiltonians and it might be of interest to an experimen-
talist wanting to learn how to design VQA in automatic
fashion across multiple Hamiltonians. The underlying as-
sumption is that, tiny changes in the Hamiltonian coeffi-
cients not only yields tiny changes in the corresponding
groundstate but also in optimal choice of hyperparame-
ters. We do not necessarily expect correspondingly tiny
changes in the optimal circuit parameters. A strategy to
choose which Hamiltonians to simulate in order to learn
as much as possible about the above relationship in as
few experiments as possible is therefore needed. For this
purpose active learning (AL) can be used. AL is very
similar to BO except the way to query new datapoints.
As opposed to BO, where the goal is to find a global min-
imum, AL seeks to learn the underlying loss landscape. If
a BO strategy of minimizing a Hamiltonian expectation
were to pick the coefficients of that same Hamiltonian it
would likely try out large numerical Hamiltonian coeffi-
cients, which is not of particular interest or meaningful-
ness. However, AL would choose Hamiltonian coefficients
that maximize how much we learn about the aforemen-
tioned relationship. We elaborate on differences in query
strategies in section II B and section IIC.

In this paper, we propose a simple but general protocol
that combines AL and BO to learn better initialization
and learning strategies for unseen problems. We call this
classical algorithm agency inspired by the classical ma-
chine learning literature. Applications of this method
include scenarios such as having a collection of Hamilto-
nians and wanting to automate experimental design by
learning across problems. Another application could also
be learning the expectation value of an operator for var-
ious inter-atomic distances/interactions expressed in the
Hamiltonian. In other words, we "reformulate" the VQE
as a quantum machine learning problem where VQE for
one specific Hamiltonian becomes one datapoint consist-
ing of hyperparameters and Hamiltonian coefficients. In-
stead of sampling randomly in this huge space, we em-
ploy AL to iteratively select the next Hamiltonian coeffi-
cients and subsequently perform BO. As a consequence,
we only have to specify the search space S and search
time t. Our approach illustrated in fig. 1 (right) and
compared to normal settings (left). Indeed this protocol
is very general and incorporating domain knowledge into
the search space+time can be beneficial. We note that
while our framework is very general, we only investigate
the specific case of VQE. Furthermore, we test our algo-
rithmic agent up against both random- and grid search
for spin-rings, and we discuss future work to compare to
the zoo of approaches in the VQA field. We illustrate the
framework in fig. 1.

B. Related work

An approach similar to ours, called Meta-VQE [17] was
recently published, and hence we adapted this name to
our procedure. Here the authors propose to use an encod-
ing layer in their quantum circuit followed by a processing
layer, the latter being the normal VQE part. The en-
coding layer should contain information about the prob-
lem Hamiltonian coefficients C and thus their proposed
ansatz is given by

|ψ〉 = Up(θp)Ue(C,θe) |0〉 (4)

where subscript p and e refers to processing and encod-
ing layers, respectively. Our method is different from Ref.
[17] in five important aspects. First, we don’t have an en-
coding quantum circuit layer, but instead, we hand the
task of learning this Hamiltonian manifold to our classi-
cal agent. Hence we use less quantum resources. Second,
the Hamiltonians (training points) our method chooses is
automatically, iteratively selected by the agent and not
by a human. Third, we incorporate the circuit architec-
ture as part of the agent decision process using Bayesian
Optimization compared to having a static circuit hyper-
parameters. Fourth, one of the goals of Ref. [17] was to
be able to predict the ground-state energy of the Hamilto-
nian within a certain trust region. Our method also pro-
vides this opportunity, however, it not only comes with
a prediction, but also an uncertainty estimate on that
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a) Standard VQE b) Actively Learned Bayesianly Optimized (ALBO) VQE

Figure 1: a) normal VQE protocol where the scientist designs the quantum circuit and optimization protocol with
hyperparameters Θ for optimizing the expectation of a single Hamiltonian with coefficients C. b) actively learned
and Bayesianly optimized (ALBO) VQA protocol where a search space for the hyperparameters are defined by the

scientist, but the optimal hyperparameters for each specific Hamiltonian with coefficients C are found using
Bayesian Optimization and multiple Hamiltonians are investigated with Active Learning.

prediction which can be useful to guide whether or not
to make the experiment or trust the prediction. Lastly,
we benchmark not only the final state fidelity with the
true groundstate, but also the regret which is a measure
of both fidelity and how convergence speed.

There are many complex aspects of finding an appro-
priate VQA archetectures to a given problem such as cost
function, avoiding traps and potential BPs [18], maximiz-
ing expressibility, hardware efficiency, error-mitigation
strategy while still keeping a low-depth to avoid error ac-
cumulations. Some of these challenges can be overcome
by use of different ansatz classes such as the quantum
convolutional neural networks[19] or exploiting problem
symmetries [20]. Better parameter initialization circuit
parameters of have also been proposed to minimize bar-
ren plateaus [21, 22]. Interesting theoretical insights into
parameter concentrations was also been introduced [23].
Ref. [15] studied the general expressiveness of quan-
tum circuits by introducing a expressiveness metric based
on the KL-divergence and subsequently comparing var-
ious VQA architectures. Other approaches implement
adaptive ansätze [24, 25], which can be thought of as
a reinforcement-like strategy. More general approaches
to circuit design have been proposed [26, 27] as well as
automated searches [28] and meta-learning the parame-
ters themselves [29, 30]. Interesting work has also been
put into differentiable circuit design [31] as well as us-
ing a combination of many classical machine learning ap-
proaches to learn the best architecture [32]. Using BO
with VQAs has been done before including parameter ini-
tialization [33], as a set in hyperparameter tuning [32],

and using BO to train the parameters instead of gradient-
based methods [34, 35]. We did not find any literature
on using active learning with quantum circuits, however,
active learning has been used before in learning to create
quantum experiments [36].

II. BACKGROUND

In this section, we introduce variational quantum al-
gorithms (VQAs) followed by a review of Bayesian Op-
timization (BO) and Active Learning (AL). We then ex-
plain how these two are combined into the classical al-
gorithmic agent performing meta-VQE, which we call
ALBO. Finally, we remark the details of the numerical
simulations constituting the results section.

A. Preliminaries

We investigate a pure qubit system consisting of N
qubits, which is represented by a complex vector |ψ〉 ∈
C2N in a d = 2N dimensional Hilbert space. The qubits
can be in a superposition of the d computational basis
states |ψ〉 =

∑2N−1
i=0 αi |i〉, where

∑
i |αi|2 = 1. The prob-

ability of observing the qubits in state |i〉 can be found by
|αi|2 using the Born rule [37]. Applying (noise-free) gates
to the qubits corresponds to unitary time evolution of the
state, i.e. |ψ′〉 = U |ψ〉, where U ∈ Cd×d is a unitary ma-
trix. If U encapsulates the entire quantum circuit param-
eterized by the real parameters θ, then the input/output
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relation can be written as |ψ(θ)〉 = U(θ) |0〉, where

U(θ) = UP (θP )UP−1(θP−1)...U1(θ1) (5)

represent the gate sequence with θ ∈ RP being a real
vector containing all the circuit parameters. We denote
UΘ(θ) to be the quantum circuit unitary with hyperpa-
rameters Θ and circuit parameters θ. By hyperparame-
ters, we refer to the choice of circuit design (number of
ansatz layers, choice of classical optimizer, learning rate,
etc.).

At the end of the quantum circuit, the qubits are mea-
sured and the state collapses to one of the computational
basis states. The measurement outcome is then used to
estimate the expectation of a parameterized Hamiltonian
H(C) as given by eq. (2) but for brevity we collect all
Hamiltonian coefficients in C = {J,b}. If the qubits are
in state |ψ(θ)〉, the expected value 〈H(C)〉 can mathe-
matically be found from "sandwiching" the matrix H(C)
between the state and its complex conjugate transpose:

〈H(C)〉 = 〈ψ(θ)|H(C) |ψ(θ)〉 (6)

We note that H ∈ Cd×d is a Hermitian matrix and hence
〈H(C)〉 ∈ R. If the task for the VQA is to minimize
eq. (6) with respect to θ, we call it a variational quantum
eigensolver (VQE) [7]. This corresponds to finding the
parameter vector

θ∗ = argmin
θ
〈ψ(θ)|H(C) |ψ(θ)〉 (7)

using a classical optimizer, often gradient descent[ref].
More sophisticated methods such as imaginary-time evo-
lution [38] — which for pure quantum states in unitary
evolution is equivalent to natural gradient descent [39]
— and other optimizers such as Adam[40] have also been
used with great success. A very recent approach went
beyond gradient-based methods by utilizing root-finding
for operator covariances [41] which combined with clas-
sical shadows [42] opens up fundamentally new avenues
for VQA optimization and research.

B. Bayesian Optimization

Bayesian Optimization (BO) [16] is well-suited for
black-box optimization problem such as given a prob-
lem Hamiltonian with coefficients C, find the best VQA
hyperparameters Θ∗ ∈ S in search region S, which min-
imizes some loss function L conditioned on the problem
Hamiltonian. Hence

Θ∗ = argmin
Θ∈S

[L(Θ|C) + ε] (8)

where ε is noise. Since our simulations are only concerned
with VQE, we have L(Θ|C) = 〈0|U†Θ(θ)H(C)UΘ(θ)|0〉
Note here that some dimensions of Θ might be discrete
(e.g. number of ansatz layers) or categorical (e.g. choice

of classical optimizer). Evaluating L might be expensive
in the sense of e.g. monetary or time costs. We can there-
fore only obtain a finite collection of such input-output
relations D = {Θj , 〈H〉j}Bj=1, where B is correspondingly
small. The goal of BO is that a good set of hyperparam-
eters for a particular problem Hamiltonian has been cho-
sen after B iterations, and that this choice is better than
the best one in a randomly selected pool of B hyperpa-
rameter configurations. BO requires 1) a choice of surro-
gate model, which is a machine learning model that learns
a map f : Θ → L(Θ|C), 2) acquisition function, which
is the strategy of how to query new datapoints based
on previously observed datapoints, and 3) a search-space
and overall time/iteration budget. As we will elaborate
on momentarily, we expand this model such that the D
contains both VQA hyperparameters and the coefficients
in the Hamiltonian, i.e. D = {Θj ,C, 〈H(C)〉j}Bj=1.

a. Surrogate model A popular choice of surrogate
model is the Gaussian Process (GP) [43] as that often
provides a good fit for relatively few datapoints by hav-
ing the option of incorporating prior knowledge into the
model via choice of kernel. In this work, we use the
radial basis function (RBF) kernel and learn the kernel
parameters using the log likelihood function of the GP.
Although the input space is hybrid (a combination of
categorical and continuous inputs), using the RBF ker-
nel has numerically been shown to perform competitively
against more advanced and computationally heavy ker-
nels on real-world problems [44].

We refer to Ref. [43] for a thorough explanation of
GPs, but mention that an important element is that they
not only provide a prediction for new unseen y’s, but also
an uncertainty associated with this estimate. For BO this
uncertainty is often used to query new datapoints via the
acquisition function.

b. Acquisition function The acquisition function
decides which new point xi to query, using the prediction
and associated uncertainty from the surrogate model. In
our case, input xi is the VQA hyperparameters. We use
the expected improvement (EI) as defined by

Acq(Θ,C|p(〈H〉 |C,Θ,D)) =

(µ(Θ,C)− f∗(Θ,C))Φ
(µ(Θ,C)− f∗(Θ,C)

Σ(Θ,C)

)

+ Σ(Θ,C)φ
(µ(Θ,C)− f∗(Θ,C)

Σ(Θ,C)

)
(9)

where Φ and φ are the cumulative and density function of
the standard (multivariate) normal, the term f∗(Θ,C)
is smallest energy obtained so far for the Hamiltonian
H(C), p(〈H〉 |C,Θ) is the surrogate posterior distribu-
tion trained on dataset D providing µ(Θ,C) as mean
(prediction of 〈H〉) and Σ(Θ,C) as covariance matrix
(diagonal contains uncertainty estimate for correspond-
ing prediction). The BO routine picks the hyperparam-
eters according the the maximum of this function, that
is, Θt+1 = argmaxΘ Acq(Θ,C). In the Appendix we
elaborate on how to incorporate prior weight to specific
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Figure 2: Illustration of the concept on fictitious problem. For a slice of a Hamiltonian, i.e. a specific problem with
Ji = −4.6, we can try out different hyperparameters Θj to minimize 〈H〉 using BO. When the procedure is done, we

subsequently use AL to try a new Ji drawing knowledge from previous experiments to warm start the set of
hyperparameters.

hyperparameter values.

C. Active Learning

Active Learning is almost equivalent to BO, except
that the goal is not to find global min/max of a black-
box function, but instead to "learn as much about the
function" in as few steps as possible [45]. In a sense, we
let the model select which data to learn from. The goal
of for AL is similar to regression (manifold fitting), but
"active" by means of having the possibility to iteratively
query specific datapoints. In this work, we use a GP as
surrogate, and share the information obtained in the BO
routine. We use Uncertainty Sampling (UC) as querying
strategy. Since we want to base the choice of next Hamil-
tonian with coefficients Ct+1 on the uncertainty in the
energy landscape as a function of C, that is, p(〈H〉 |C),
we can use Monte Carlo sampling to approximate this
distribution from the surrogate output distribution of the
agent GP, hence

p̂(〈H〉 |C) =

K∑

k=1

p(〈H〉 |C,Θk)p(Θk) (10)

where if Θk ∼ p(Θk) then p(Θk) = 1
K . We use this

distribution in the definition of uncertainty sampling

Ct+1 = argmax
C

−
∑

i

p̂(〈H〉i |C) log p̂(〈H〉i |C) (11)

For GPs this corresponds exactly to querying the point(s)
for which the uncertainty estimate, i.e. the diagonal el-
ement(s) in the covariance matrix, is largest. Instead
of picking the largest acquisition value, another strategy

could be to sample Ct+1 from a probability distribution
with probability mass inversely proportional to the agent
uncertainty. Hence by sampling points from this distri-
bution, one can execute multiple experiments in parallel
if suitable for the particular problem, which might accel-
erate the procedure but likely also require more experi-
ments.

III. ACTIVE META-VQE

Our goal is to be able to hand the algorithmic agent
a Hamiltonian with coefficients C, and in return the
agent outputs a set hyperparameters Θ which is 1) bet-
ter than a randomly sampled Θ from the search space,
2) at least as good as the overall best hyperparameter
settings and 3) an initial guess to circuit parameters θ.
Here we quantify "better" with two metrics: infidelity
(see eq. (12)) and regret (see eq. (13)). Our strategy for
the agent is as follows. First query ninit initial points
in the C subspace and run the VQA for each to get
the agent "warmed up"; this collects the initial dataset
D = {Ci, {{Θij}Bj=1}i, {{〈H〉ij}Bj=1}i}ninit

i=1 via ninit inde-
pendent BO routines. These BO routines can be done
in parallel. For each of these BO routines i, we per-
form BO to get a collection (indexed with j) of hyperpa-
rameters and corresponding energy expectations, namely
{Θij} and {〈H〉ij}, obtained via gradient descent of the
circuit parameters. Hence for every value of Ci, which
we can think of as a slice in the search space, we try out a
bunch of different hyperparameters (via BO) and record
the corresponding energy expectation. Next step is to be-
gin the main loop of ALBO, which consists of iteratively
alternating between Al and BO up to a maximum number
of iterations T . Via our AL strategy, the agent picks the
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next problem Hamiltonian at iteration t = ninit + 1, that
is, H(Ct) to investigate. Subsequently, the agent per-
forms BO in order to find the best hyperparameters for
that specific H(Ct). The protocol is summarized in algo-
rithm 1. Again, the crucial aspect here is that the agent
gets access to more and more slices {C1,C2, ...} and for
each slice Ci has a collection of {Θj , 〈H〉j}Bj=1 where B
is the number of BO iterations. The goal for the agent is
learn and use lessons across, between and to some extend
away from slices and thus be able to come up with better
VQA strategies for unseen problems. A pictorial scheme
is provided in fig. 2 to illustrate the concept. Here 8 dif-
ferent hyperparameter configurations were applied to a
specific Hamiltonian. The basic concept behind ALBO
is that the minimum found by BO will (hopefully) be a
better starting point when changing Ji, i.e. changing the
Hamiltonian, than randomly picking Θj . The algorithm
is summarized in algorithm 1.

In order to test these relatively broad yet potentially
powerful conjectures consisting of relatively weak as-
sumptions, we simulate the algorithm in algorithm 1
called ALBO as described in section IVA.

Algorithm 1 Actively Learned Bayesianly Optimized
(ALBO) VQE.

Require: Search space S, iterations {nAL,nBO, nVQE}, prior
p(Θ)
Initialize AGENT with S
Get ninit samples: {Ci}ninit

i=1 ← Uniform(SC)
Obtain D = {Ci, {{Θj}nBO

j=1 }i, {{〈H(Ci)〉j}
nBO
j=1 }i}ninit

i=1

Update AGENT surrogate with D
Procedure:
for t ≤ nAL do . AL

Compute p̂(〈H〉 |C) via eq. (10)
Get Ct ← AGENT(p̂(〈H〉 |C)) via eq. (11)
Set H := H(Ct)
for j ≤ nBO do . BO

Get Θj ← AGENT(p(〈H〉 |C,Θ)) eq. (9)
Get θ0 ← argminθk

K(Dk,D)
Initialize VQA UΘ(θ0)

Set L(Θj |Ct) := 〈0|U†Θj
(θ)HUΘj (θ)|0〉

for i ≤ nVQE do . VQE
Get 〈H〉i ,θi ← VQA(L(Θj |Ct),θi−1)
Compute I via eq. (12)

Compute R via eq. (13)
Set 〈H〉j := 〈H〉nVQE

Update D with {Ct,Θj , 〈H〉j}
Update AGENT surrogate with D

IV. EXPERIMENTAL RESULTS

In this section, we first outline the simulation strat-
egy in section IVA followed by experiments transverse-
field Ising model in section IVB and the Heisenberg XXZ
model in section IVC.

A. Simulation Strategy

We test ALBO up against a variety of alternatives:
random search (RS+RS) and random search + Bayesian
optimization (RS+BO), where (X+Y) refers to the
strategy X in the SC subspace plus the strategy Y in
the SΘ subspace, respectively. In the following results,
we report the infidelity with the true groundstate |ψ0〉 as
given by

I = 1− | 〈ψ0|ψ(θ)〉 |2 (12)

where ψ(θ) is the state at the end of the circuit opti-
mization procedure. We also report the total Regret R
defined by

R =

niter∑

i=1

1−
∣∣∣
〈
ψ0

∣∣∣ψ(θ(i))
〉∣∣∣

2

(13)

where niter is the number of variational circuit optimiza-
tion iterations. The infidelity reveals how good the fi-
nal state is, whereas the regret reveals is a measure of
how good the groundstate is found combined with how
fast the circuit parameters converge. As a proof of con-
cept, we simulate three qubit systems, and investigate
the Ising chain (IC), transverse field Ising chain (TFI)
and Heisenberg (HB) spin models together with the Gra-
dient Descent Optimizer. We use L (part of hyperpa-
rameter tuning) layers of the ansatz. We run T = 10
active learning iterations, B = 10 Bayesian optimization
iterations and K = 100 circuit parameter updates. The
search regions for the Hamiltonian coefficients and hy-
perparameters are, respectively,

SC = {C : C ∈ R|C|,−1 ≤ [C]i ≤ 1 ∀ i}
SΘ = {
{η : η ∈ R, 10−5 ≤ η ≤ 10−1},
{L : L ∈ Z, 1 ≤ L ≤ 10},
}

where η is the learning rate, L is the number of ansatz
layers. All simulations are done with Pennylane [46] and
with GP implementations in scikit-learn [47]. Code is
available on github: https://github.com/jfold/albo.

B. Transverse-field Ising Chain

The Hamiltonian for the Transverse-field Ising (TFI)
Chain is given by

HTFI = −
∑

i

biZi −
∑

<i,j>

Ji,jZiZj −
∑

i

hiXi, (14)

where Zi and Xi are the Pauli Z and X operators, respec-
tively, acting on the i’th qubit. In fig. 3, we show the re-
sult of running ALBO (a), RS+BO (B) and RS+RS (c)
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Figure 3: TFI Simulation of agent for various strategies. We observe ALBO beats both RS+BO and all methods
improve after initialization (blue).

on TFI test models. We see that across problems, the
agent when using both AL and BO outperforms random
search in the Hamiltonian space combined with BO in
the hyperparameter space.

C. Spin Hamiltonian: 1D XXZ model

The 1D antiferromagnetic XXZ spin Hamiltonian is
given by

H =
n∑

i=1

αZiZi+1 + YiYi+1 +XiXi+1 + λ
n∑

i=1

Zi (15)

with two parameters α and λ, and where {Xi, Yi, Zi}
refers to the Pauli-X,Y,Z observables acting on qubit i,
respectively. fig. 4 show test results for the XXZ and
again we see that AL+BO outperforms random search
even with BO in the hyperparameter space. Further-
more, we also compare with an often used standard
hyperparameter (SH) heuristic, that of dN2 e layers and
learning rate η = 0.4. In fig. 5a, results are displayed
and we see that AL+BO achieves significantly better re-
gret than all of the other strategy combinations.

V. CONCLUSION

In this paper, we proposed a new classical algo-
rithm that can guide experimental design across vari-
ous problems / Hamiltonians. In all experiments, the
meta-learner outperformed random search and standard
heuristics which suggest evidence of learnable patterns
in the space of hyperparameters and hamiltonian coeffi-
cients. Even with a vanilla Gaussian Process which as-
sumes normally distributed objective function works well.
An interesting question to be analyzed in further work is
how far apart the loss functions can be and how few initial
datapoints we can get away with in order to benefit from
the classical agent, that is, the number of initial points in

active learning part seemed crucial to get a good perfor-
mance. This is not an unknown phenomenon as there is
a "Goldilocks Zone" for when active learning yields good
results. Other potential ideas could include penalizing
agent’s search space by putting prior weight on shallower
circuits. In the simulations, we used the RBF kernel, but
more advanced kernels might be even more suitable as
we are dealing with a hybrid and partly categorical in-
put space. A big leap forward would be if we could use
parameters to warm start test problems, however, this is
not trivial for several reasons. First, close in state space
is not the same as close in parameter space. Second, the
hyperparameters suggested by the classical agent might
not be one that is in the training set, that is, we do not
posses the circuit parameters which prepares the solution.
One could think of adiabatic-like ideas where, if we had
the circuit parameter solution to one Hamiltonian, one
could slowly morph these into the solution for another
unseen Hamiltonian. Instead of taking the maximum of
acquisitions and having access to both p(Θ)p(Θ|C), we
can sample from this distribution instead. This is known
as posterior sampling, and might be an interesting future
direction — Appendix A suggest how one could do so.

Future work should investigate larger systems and how
one can apply ALBO to a specific search region of in-
terest. For example are there scenarios where the co-
efficients are not known exactly but their distribution
p(J,b) is known. Finding the optimal hyperparameters
on samples from this distribution will lead to learning
which hyperparameters work well on for that distribu-
tion. We thus hope that future work would exploit clas-
sical algorithmic agents like this in order to advance in-
teresting quantum computing research. Our framework
is very general and in principle allow for any loss function
and search regions.
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Appendix A: Incorporating priors to hyperparameter queries

Recall that the expected improvement acquisition function is defined by

Acq(Θ,C) =(µ(Θ,C)− f∗(Θ,C))Φ
(µ(Θ,C)− f∗(Θ,C)

Σ(Θ,C)

)

+ Σ(Θ,C)φ
(µ(Θ,C)− f∗(Θ,C)

Σ(Θ,C)

) (S1)

Instead of taking the maximum argument Θ of this quantity, we can normalize EI(Θ) and thereby interpret this as
a probability distribution

p(Θ|C) =
Acq(Θ,C)∫
Θ
Acq(Θ,C)

(S2)

In practice, we do so with a finite collection of Θ = [Θ1,Θ2, ...ΘK ] such that the numerator becomes a sum, that is,

p(Θj |C) =
Acq(Θj ,C)

∑K
k=1 Acq(Θk,C)

. (S3)

Given a prior p(Θ) distribution, we can find the maximum argument of the product of these two probability distri-
butions:

ΘMAP = argmax
Θ

p(Θ)p(Θ|C). (S4)

and thereby obtain a "MAP-like" Bayesian decision.
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ABSTRACT

Bayesian Optimization (BO) is a popular method for black-box optimization, which relies on un-
certainty as part of its decision-making process when deciding which experiment to perform next.
However, not much work has addressed the effect of uncertainty on the performance of the BO
algorithm and to what extent calibrated uncertainties improve the ability to find the global optimum.
In this work, we provide an extensive study of the relationship between the BO performance (regret)
and uncertainty calibration for popular surrogate models and acquisition functions, and compare them
across both synthetic and real-world experiments. Our results show that Gaussian Processes, and
more surprisingly, Deep Ensembles are strong surrogate models. Our results further show a positive
association between calibration error and regret, but interestingly, this association disappears when
we control for the type of surrogate model in the analysis. We also study the effect of recalibration
and demonstrate that it generally does not lead to improved regret. Finally, we provide theoretical
justification for why uncertainty calibration might be difficult to combine with BO due to the small
sample sizes commonly used.

1 Introduction

Probabilistic machine learning provides a framework in which it is possible to reason about uncertainty for both
models and predictions [Ghahramani, 2015]. It is often argued that especially in high-stakes applications (healthcare,
robotics, etc.), uncertainty estimates for decisions/predictions should be a central component and that they should be
well-calibrated [Kuleshov and Deshpande, 2022]. The intuition behind calibration is that the uncertainty estimates
should accurately reflect reality; for example, if a classification model predicts an 80% probability of belonging to class
A on 10 datapoints, then (on average) we would expect 8 of those 10 samples actually belong to class A. Likewise –
but less intuitively – in regression, if a calibrated model generates a prediction µ and uncertainty estimate σ, we would
see p percent of the data lying inside a p percentile confidence interval of µ [Busk et al., 2021].

Uncertainty also plays a central role in Bayesian Optimization (BO) [Snoek et al., 2012], which will be the focus of
this paper. As a sequential design strategy for global optimization, BO has several applications with perhaps the most
popular ones being general experimental design [Shahriari et al., 2015] and model selection for machine learning models
[Bergstra et al., 2011]. BO is most often used when the objective function is expensive (e.g. monetary, time-consuming,
or ethically) to evaluate, gradients between in- and outputs are not available, noisy, and/or data acquisition is limited to
few training samples [Agnihotri and Batra, 2020]. A BO protocol works by iteratively fitting a probabilistic surrogate
model to observed values of an objective function, and using a so-called acquisition function (AF) based on the surrogate
model, to select where to query the objective function next. In AFs, there is an inherent trade-off between exploring
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input areas in which the surrogate model is uncertain of the underlying objective function, and exploiting areas where
the surrogate model already knows that the objective value is low. As such, it seems obvious that in order for this
exploration-exploitation trade-off to be good, the probabilistic model must be well-calibrated. It is, however, still not
well-described how much calibration actually affects BO procedures. One could imagine that if calibration leads to a
better model representation of the underlying objective function, as would be the general intuition, it would be natural
to expect that improving calibration via so-called recalibration [Kuleshov et al., 2018] will aid in finding the global
optimum of that same function.

1.1 Our Contribution

In this paper, we set out to investigate how the model uncertainties affect BO performance by means of both numerical
and theoretical perspectives. Our work is highly motivated by the general intuition and understanding in the community
that BO surrogate models with better / well-calibrated uncertainty estimates will perform better (i.e. reach better final
and/or total regret). In particular, our paper is concerned with studying statements such as ”BO crucially relying on
calibrated uncertainty estimates” [Springenberg et al., 2016] and that methods performing worse ”due to their frequentist
uncertainty estimates” [Deshwal et al., 2021]. But how well-calibrated do we need to be in order to achieve good BO
performance? In order to investigate these questions, we provide four major contributions:

• An extensive study of commonly used surrogate models and acquisition functions, where we study the
resulting calibration errors and regrets to assess the relationship between calibration and regret. This includes
an intervention study, where we manipulate model calibration and study the effect on regret.

• We show that Deep Ensembles is superior for hyperparameter tuning using BO.
• An investigation of whether recalibration during the BO protocol leads to better BO performance?
• Numerical and theoretical results to substantiate a discussion on the role of calibration in BO. Especially on

the relationship between the number of recalibration samples and the variance of the calibration curve.

1.2 Related Work

A great deal of work has been carried out for uncertainty calibration for regression models [Kuleshov et al., 2018,
Song et al., 2019, Ovadia et al., 2019, Busk et al., 2021, Nado et al., 2021] and the useful uncertainty toolbox [Chung
et al., 2021] makes it easy to assess the calibration level of various models. In the very recent work by Deshpande and
Kuleshov [2021], a procedure for calibrating Gaussian processes (GPs) during BO was proposed. Given the small
sample sizes available in BO, the idea is to use leave-one-out cross-validation and utilize the calibration algorithm
proposed in earlier work by Kuleshov et al. [2018]. We note that potential issues might arise from this procedure as the
earlier work by [Kuleshov et al., 2018] states multiple times their approach produces calibrated forecasts ”given enough
i.i.d. data”. However, the data available during BO is rarely large nor independent and identically distributed (i.i.d.), and
the goal of our work is to dive deeper into this. Other research on the role of uncertainty calibration includes examples
such as the work by Bliznyuk et al. [2008], where the authors propose a way of using Markov Chain Monte Carlo
(MCMC) to get calibrated predictions for GPs. In Belakaria et al. [2020], the authors investigate uncertainty-aware
multi-objective (multidimensional output) BO and argue that due to the uncertainty incorporating strategy, their model
outperforms state-of-the-art procedures.

2 Background

Bayesian Optimization (BO) is concerned with the optimization task of finding the global minimum x∗ =
[x∗1, x

∗
2, ..., x

∗
D]> of some objective function f(x), where x is a D-dimensional vector, i.e.

x∗ = argmin f(x). (1)

We assume that the optimization objective f(x) ∈ R is contaminated with noise, i.e. we observe y(x) = f(x)+ε, where
ε is additive noise often assumed to follow an isotropic normal distribution. In many scenarios such as hyperparameter
tuning of neural networks, the set of input variables x are rarely all continuous, and often no closed-form expression
for f exists. Hence, BO is well-suited when f is a so-called ”black-box” function [Turner et al., 2021]. At least two
crucial decisions are to be made when using BO in practice: 1) the choice of surrogate model, which is to learn the
underlying objective function f , and 2) the acquisition function (AF), which controls the strategy for deciding which
input x to sequentially pick by maximizing the AF. Popular choices for surrogate models include Gaussian Processes
(GPs) [Rasmussen, 2003, Snoek et al., 2012] and Random Forests (RFs) [Bergstra et al., 2011], but any model with a
probabilistic interpretation, e.g. Deep Ensembles (DEs) [Lakshminarayanan et al., 2017] or mean-field Bayesian Neural
Networks (BNNs) [Springenberg et al., 2016], can be used.

2
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Table 1: BO results for experiments with synthetic data. For each of the surrogate and acquisition pairs here, we ran a
total of 128 optimization problems, where each problem is repeated with 100 different seeds. For each pair, we report
the mean of all 128 · 100 = 12800 runs and the standard error of the mean for all metrics. The instantaneous and total
regret metrics are computed using eq. (8) and (9), respectively. ECE is the expected calibration error and is computed
using eq. (7) and sharpness denotes the negatige entropy of the predictive distributions. Rows with Acquisition=Average
(AVG) correspond to an average over all three acquisition strategies (EI, UCB, TS), but excluding random sampling
(RS). Best performing configurations in each of the three sections (i.e. RS, EI+UCB+TS, AVG) are reported in bold
font..

Surrogate Acquisition Inst. Regret Total Regret ECE Sharpness

GP RS 0.496 ± 0.018 67.117 ± 2.155 0.005 ± 0.000 -0.183 ± 0.012
DE RS 0.508 ± 0.019 67.345 ± 2.194 0.011 ± 0.000 0.030 ± 0.007
RF RS 0.511 ± 0.018 67.920 ± 2.205 0.006 ± 0.000 -0.478 ± 0.016
BNN RS 0.519 ± 0.019 67.990 ± 2.199 0.088 ± 0.001 1.253 ± 0.008

GP EI 0.036 ± 0.001 13.214 ± 0.325 0.016 ± 0.000 -0.224 ± 0.012
DE EI 0.043 ± 0.002 21.714 ± 0.524 0.029 ± 0.001 -0.353 ± 0.009
RF EI 0.099 ± 0.004 33.511 ± 0.994 0.025 ± 0.000 -0.386 ± 0.016
BNN EI 0.848 ± 0.026 91.221 ± 2.719 0.113 ± 0.001 0.602 ± 0.008

GP UCB 0.027 ± 0.001 12.829 ± 0.328 0.017 ± 0.000 -0.322 ± 0.012
DE UCB 0.046 ± 0.002 21.148 ± 0.508 0.028 ± 0.001 -0.375 ± 0.009
RF UCB 0.081 ± 0.003 31.173 ± 0.945 0.025 ± 0.000 -0.404 ± 0.016
BNN UCB 0.480 ± 0.016 64.604 ± 1.830 0.097 ± 0.001 0.861 ± 0.007

GP TS 0.041 ± 0.003 28.729 ± 1.044 0.010 ± 0.000 -0.436 ± 0.011
DE TS 0.042 ± 0.002 22.116 ± 0.508 0.027 ± 0.001 -0.333 ± 0.009
RF TS 0.279 ± 0.013 51.166 ± 1.783 0.013 ± 0.000 -0.451 ± 0.015
BNN TS 0.628 ± 0.021 76.086 ± 2.330 0.091 ± 0.001 0.997 ± 0.007

GP AVG 0.035 ± 0.001 18.257 ± 0.390 0.015 ± 0.000 -0.327 ± 0.007
DE AVG 0.044 ± 0.001 21.659 ± 0.296 0.028 ± 0.000 -0.354 ± 0.005
RF AVG 0.153 ± 0.005 38.616 ± 0.757 0.021 ± 0.000 -0.414 ± 0.009
BNN AVG 0.652 ± 0.013 77.303 ± 1.346 0.100 ± 0.001 0.820 ± 0.005

Acquisition Functions For the choice of AF, Expected Improvement (EI) as proposed by Jones et al. [1998] is often
used and is defined as follows:

EI(x) = (µ(x)− f(x+))Φ(Z) + σ(x)φ(Z), (2)

if σ(x) > 0 otherwise EI(x) = 0, and with Z(x) = µ(x)−f(x+)
σ(x) , where µ(x) and σ(x) denote the mean and standard

deviation, respectively, of the surrogate function at x, f(x+) denotes the best function value observed so far, and Φ
and φ denote the cumulative distribution function (CDF) and probability density function (PDF) of a standard normal
distribution, respectively. Another popular AF is the Upper Confidence Bound (UCB), proposed in Srinivas et al. [2012]
which is defined as:

UCB(x) = −µ(x) + β1/2σ(x), (3)

for minimization problems, where µ(x) and σ(x) once again denote the mean and standard deviation of the surrogate
function at x and β is a hyperparameter controlling the trade-off between exploitation and exploration. Finally, the
acquisition strategy coined Thompson Sampling (Thompson [1933]) works by generating a random sample from the
posterior of f and then locating the optimal value for the specific sample, i.e. for some sample f(x) ∼ p(f |D)

TS(x) = −f(x). (4)

For GPs and BNNs this is done by sampling a function from the posterior, whilst for DEs and RFs we sample a neural
network or tree, respectively (Elmachtoub et al. [2017]).

Calibration Following the work by Kuleshov et al. [2018], a regression model is well-calibrated if approximately q
percent of the time test samples fall inside a q percent confidence interval of the predictive distribution. For regression

3



A PREPRINT - APRIL 11, 2023

Table 2: BO results for hyperparameter tuning experiments. For each of the surrogate and acquisition pairs here, we ran
a total of 6 optimization problems, where each problem is repeated with 100 different seeds. For each pair, we report
the mean of all 6 · 100 = 600 runs and the standard error of the mean for all metrics. The instantaneous and total regret
metrics are computed using eq. (8) and (9), respectively. ECE is the expected calibration error and is computed using eq.
(7) and sharpness denotes the negative entropy of the predictive distributions. Rows with Acquisition=Average (AVG)
correspond to an average over all three acquisition strategies (EI, UCB, TS), but excluding random sampling (RS). Best
performing configurations in each of the three sections (i.e. RS, EI+UCB+TS, AVG) are reported in bold font.

Surrogate Acquisition Inst. Regret Total Regret ECE Sharpness

GP RS 0.0151 ± 0.0006 2.7021 ± 0.0995 0.0055 ± 0.0001 -0.7762 ± 0.0138
DE RS 0.0161 ± 0.0007 2.7822 ± 0.1033 0.0093 ± 0.0001 -0.2574 ± 0.0134
RF RS 0.0152 ± 0.0007 2.6977 ± 0.1018 0.0072 ± 0.0002 1.0302 ± 0.1017
BNN RS 0.0150 ± 0.0007 2.5948 ± 0.0942 0.1015 ± 0.0005 1.3499 ± 0.0102

GP EI 0.0031 ± 0.0002 1.5375 ± 0.0565 0.0153 ± 0.0004 -0.5433 ± 0.0155
DE EI 0.0011 ± 0.0001 0.9031 ± 0.0436 0.0363 ± 0.0010 -0.2927 ± 0.0096
RF EI 0.0043 ± 0.0003 1.0925 ± 0.0459 0.0146 ± 0.0004 0.8718 ± 0.0761
BNN EI 0.0332 ± 0.0018 4.8430 ± 0.2239 0.1052 ± 0.0007 0.7928 ± 0.0136

GP UCB 0.0026 ± 0.0002 1.5156 ± 0.0560 0.0149 ± 0.0004 -0.5297 ± 0.0154
DE UCB 0.0012 ± 0.0001 0.9159 ± 0.0437 0.0369 ± 0.0009 -0.2862 ± 0.0098
RF UCB 0.0043 ± 0.0002 1.0979 ± 0.0455 0.0157 ± 0.0004 0.9205 ± 0.0779
BNN UCB 0.0104 ± 0.0007 2.6292 ± 0.1176 0.1013 ± 0.0006 1.0458 ± 0.0088

GP TS 0.0046 ± 0.0003 1.7544 ± 0.0643 0.0125 ± 0.0003 -0.5814 ± 0.0173
DE TS 0.0016 ± 0.0002 1.0321 ± 0.0489 0.0364 ± 0.0009 -0.2522 ± 0.0100
RF TS 0.0017 ± 0.0002 1.3192 ± 0.0497 0.0101 ± 0.0002 0.8893 ± 0.0859
BNN TS 0.0176 ± 0.0009 2.9900 ± 0.1231 0.1025 ± 0.0005 1.0644 ± 0.0091

GP AVG 0.0034 ± 0.0001 1.6025 ± 0.0342 0.0142 ± 0.0002 -0.5515 ± 0.0093
DE AVG 0.0013 ± 0.0001 0.9504 ± 0.0263 0.0365 ± 0.0005 -0.2770 ± 0.0057
RF AVG 0.0034 ± 0.0001 1.1699 ± 0.0273 0.0135 ± 0.0002 0.8939 ± 0.0462
BNN AVG 0.0204 ± 0.0007 3.4874 ± 0.0965 0.1030 ± 0.0003 0.9676 ± 0.0069

GP (recal.) AVG 0.0060 ± 0.0002 1.8416 ± 0.0400 0.0149 ± 0.0002 -0.6552 ± 0.0058
DE (recal.) AVG 0.0019 ± 0.0001 1.1468 ± 0.0320 0.0418 ± 0.0005 -0.3123 ± 0.0042
RF (recal.) AVG 0.0029 ± 0.0001 1.1907 ± 0.0292 0.0112 ± 0.0001 -0.5700 ± 0.0047
BNN (recal.) AVG 0.0383 ± 0.0013 4.9472 ± 0.1458 0.0937 ± 0.0003 0.7728 ± 0.0136

tasks, the model calibration can be assessed using the expected calibration error

ECE =
∑

p

wp(Cy(p)− p)2, (5)

where Cy(p) is defined as

Cy(p) =
1

NT

NT∑

t=1

I[yt ≤ F−1t (p)], (6)

where F−1t is the quantile function, i.e. F−1t (p) ≡ inf
y
{y | p ≤ Ft(y)}, for the t’th datapoint evaluated at percentile p, I

is an indicator function and wp can be chosen to adjust the importance of percentiles with fewer datapoints. Throughout
this paper, we assume wp = 1 ∀ p. The closer the ECE is to zero, the better calibrated the model is.

Recalibration Kuleshov et al. [2018] also proposes a general procedure for recalibrating any model. A so-called
recalibrator model C is constructed using an independent and identically distributed (i.i.d.) validation set and subse-
quently, applied to adjust the CDF of the model’s predictive distribution Ft for some observation yt, i.e. the recalibrated
predictive distribution is C ◦ Ft. This is done via learning an isotonic mapping: C : [0, 1]→ [0, 1] from the predicted
probabilities of events of the form (−∞, yt] to the corresponding empirical probabilities. In Deshpande and Kuleshov
[2021], a recalibration method for BO specifically is proposed, in which the recalibrator model is learnt via leave-one-out

4
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CV on the samples gathered during BO. After training the recalibrator model C, the relevant summary statistics (e.g.
moments and intervals) of the recalibrated distributions can be computed numerically from C ◦ Ft. See Alg. 1 in
Kuleshov et al. [2018] for more details.

3 Experiments

In this section, we describe a collection of numerical experiments designed to study and investigate the relationship
between calibration and regret. We focus our study on four popular models, namely GPs, RFs, DEs, and BNNs. For
GPs, DEs, and BNNs, we assume an isotropic Gaussian likelihood and for RFs, we impose a Gaussian predictive
distribution, where the mean and variance are estimated as the sample mean and variance of the tree predictions. Our
experiments are based on both synthetic and real-world data: for experiments with synthetic data, we use a number
of problems from the common benchmark suites for optimization called Sigopt [Jamil and Yang, 2013, Dewancker
et al., 2016], and for the real-world data, we apply BO to hyperparameter tuning of various machine learning models
including feed-forward Neural Networks, Convolutional Neural Networks and SVMs used on on or more datasets such
as MNIST [Lecun et al., 1998], Fashion-MNIST [Xiao et al., 2017], AG News classification [Zhang et al., 2015] and
Wine classification [Dua and Graff, 2017]. For all experimental details, see Supplementary Material.
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(a) Test calibration vs regret of synthetic data experiments.

10-2 10-1

Expected Calibration Error (ECE)

10-2

10-1

100

101

To
tal

 R
eg

re
t (
R
T
)

GP
RF
BNN
DE
EI
UCB
TS

(b) Test calibration vs regret of real data experiments

Figure 1: Total Regret vs. ECE for synthetic data experiments and hyperparameter tuning experiments. The colors in
the scatter plot indicate the type of surrogate model, and the marker indicates the AF used. OBS: Each point in the
scatter plots corresponds to an average of 100 random seeds for each specific configuration of the experiment.

Experimental Setup In the synthetic setting, we perform BO experiments on a total of 128 optimisation problems
spanning input dimensions (D ∈ {1, 2, .., 10}) from the Sigopt benchmark. For each optimisation problem, we repeat
the experiment 100 times using different random initialization of both the BO routines and seeds. We do this for all
combinations of surrogates and AFs, of which we use the previously mentioned EI, UCB and TS. We consistently use
ten initial i.i.d. random samples followed by 90 BO iterations for all experiments. We add Gaussian distributed noise
to all Sigopt objective functions. For reference, we also include a random sampling (RS) acquisition function. In the
hyperparameter tuning setting, we perform BO experiments on a total of 6 different hyperparameter tuning problems.
The surrogate models and AFs are the same as in the synthetic setting, and we similarly sample 10 i.i.d. points to initiate
the BO session, and then run 90 BO iterations.

Our key performance metrics are regret, calibration error, sharpness as defined in the following. We report the calibration
error, ECE as being the mean squared calibration error evaluated on a large i.i.d. test set (Ntest = 5000) as

ECE =
1

P

P∑

j=1

(Cy(pj)− pj)2, (7)

where Cy(pj) is defined in eq. (6) and for 0 ≤ p1 ≤ p2... ≤ pP ≤ 1 as suggested by Kuleshov et al. [2018]. We use
P = 20 with equidistant pj values. We quantify the BO performance using the regret metric, where we define the
instantaneous regret for the last iteration T as follows

RI = ymin − y(x∗T ), (8)

5



A PREPRINT - APRIL 11, 2023

where y(x) is the objective function value obtained at point x, ymin ≡ min
x
y(x) is function value at the global minimum,

and x∗T ≡ arg minxt{y(xt)}Tt=1 is the input value for the best observation after T iterations. Similarly, the total regret
is the sum of the instantaneous regret across all iterations

RT =

T∑

i=1

[ymin − y(x∗i )] . (9)

All regret values are reported after standardizing objective function values. Finally, we report the sharpness as the
average negative entropy of the predictive distributions across all BO iterations. For the choices of surrogate models, we
use a GP with an RBF kernel, and optimize hyperparameters of the kernel at every BO iteration using the exact marginal
likelihood [Rasmussen, 2003]. The mean-field BNN has a single hidden layer with 10 hidden neurons, which is trained
using the ELBO loss [Blei et al., 2018]. The DEs consists of 10 neural networks with two hidden layers and are all
trained using the MSE loss and Adam optimiser [Kingma and Ba, 2014]. Finally, the RFs have their hyperparameters
tuned via CV on a grid of hyperparameters at each BO iteration. With regards to the AFs, we use EI as defined in Eq. 2,
UCB with β = 1, and only sample one posterior function at each BO step when using TS. See detailed experimental
details and descriptions in the Supplementary Material. Code will be released on GitHub along with the camera-ready
version.

Experiment results The results for the synthetic and real data experiments are summarized in Tables 1 and 2,
respectively. We observe that in the synthetic setting, GPs outperform all other models both in terms of instantaneous
regret and more importantly, total regret, although closely followed by DEs. RFs perform relatively well (at all times
better than random sampling), whilst the BNNs exhibit poor performance and are often outperformed by random
sampling. Finally, we see that the GP is best calibrated overall, and that all surrogate models have their lowest ECE
when random sampling is used. This is overall not surprising as the ECE is evaluated on a large i.i.d. test set, which is
more well-represented by i.i.d. training samples compared to strongly dependent samples acquired iteratively through
BO. For the real-data experiments in Table 2, we see that DEs outperform all other models in terms of both regret types,
and are closely followed by both GPs and RFs which perform comparatively. Once again, GPs are the best calibrated
when random sampling is employed.

Relationship between calibration and regret In order to investigate the relationship between BO performance
(regret) and calibration (ECE), we first compute the Pearson correlation coefficient between the total regret values
and the ECE values, which yield strong and statistically significant coefficients of 0.33 and 0.43 for synthetic and
hyperparameter tuning experiments, respectively (see Table 3). The strong positive association is also visually confirmed
by the scatter plots in Figures 1. It is also evident from these plots that the type of surrogate model is important for
both ECE and total regret. Therefore, we also compute the partial correlation coefficient controlling for the model type
yielding −0.03 and −0.22 for synthetic and real data, respectively. Interestingly, both correlations become weaker and
statistically insignificant (at level α = 0.05) leading to an instance of Simpson’s paradox [Wagner, 1982]. To further
investigate this, we conducted a multiple linear regression analysis for total regret vs ECE controlling for both the type
of model and the specific problem instance. The results showed that both the common slope and model-specific slopes
for ECE were generally weak and statistically insignificant (see all details in the Supplementary Material). In summary,
these results show that models with high ECE are generally associated with high regrets, however, this association
diminishes when we control for the type of surrogate model. To further scrutinize these observations, we conduct two
additional experiments: an intervention study and a recalibration study.

Table 3: Correlation values between regret and ECE.
Synth. Data Real Data

Correlation 0.33 (p < 10−9) 0.43 (p = 0.001)
Partial Correlation — Model −0.03 (p = 0.59) −0.22 (p = 0.076)

Intervention study: Perturbing Predictive Uncertainties In the intervention study, we explicitly manipulate cali-
bration by perturbing the predictive uncertainty of each model during the BO protocol. Specifically, we multiply the
standard deviation of the posterior distribution for all models by a constant c ∈

[
10−4, 102

]
and observe the resulting

effect on ECE and total regret. We conduct this experiment for the 6 different hyperparameter tuning problems using
the EI acquisition function and repeat the experiment with 40 different seeds. In Figure 2 we show the calibration
error (a) and total regret (b) as a function of the multiplicative constant c. Several interesting observations can be

6
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made from Figure 2. First, all models exhibit the smallest calibration error at c > 1, which indicates some degree of
overconfidence, and thus, increasing the predictive variance slightly generally improves calibration. Interestingly, DEs
and GPs are somewhat robust to these perturbations in their predictive uncertainties with regard to regret, while RFs
even seem to benefit from having the uncertainties reduced. Finally, in panel (c) we plot regret vs calibration error for
each value of c, where each marker is scaled with the size of c and c = 1 is marked with black. We have connected the
dots for each surrogate function, going from smallest to largest c. From this plot, we observe that perturbing by c > 1
rapidly increase both regret and ECE, but perturbations with c < 1 are less harmful and may actually lead to improved
performance. In other words, the results from this experiment suggest that miscalibration caused by models being
generally underconfident, i.e. c > 1, is more detrimental to BO performance compared to models being overconfident,
i.e. c < 1.

Recalibration study: Recalibration during BO In the recalibration study, we investigate whether recalibrating
the models during the BO protocol improves BO performance following the recalibration procedure proposed by
Deshpande and Kuleshov [2021]. We do this by re-running our BO experiments on real data, where we use leave-one
out CV on the training data obtained during BO to learn a recalibration model and adjust the resulting predictive
distributions accordingly. The results can be seen in the last section in the bottom of Table 2. Except for RFs, it is seen
that both regret and ECE are generally worse after recalbration. This may seem counter-intuitive, but then recall that
we compute the recalibration model using leave-one-out on the training set, but we measure the expected calibration on
an independent test set. The recalibration procedure may have improved the calibration metric on the training dataset,
but in our experiments, it does not generalize to an independent test set. We note that RFs do benefit from recalibration,
but this might be explained by the fact that sharpness is substantially reduced after recalibration. We will shed more
light on these observations in the next section.
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(c) Regret vs. ECE for various perturba-
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Figure 2: The effect on test calibration and regret when disturbing the posterior predictive uncertainty by c ·σ(x) during
the BO protocol. (a) Shows the overall ECE of each model when a perturbation of c · σ(x) is done in each iteration, (b)
shows the corresponding total regret, and (c) depicts how regret and calibration varies together for the same experiments.
The size of the markers here indicate how large c is, and the plot lines go from smallest to largest c. Black points are
when c = 1.

4 Discussion and Summary

In the previous section, we described and performed a number of numerical experiments to analyze the relationship
between calibration and regret for BO. In this section, we will summarize and discuss some of the key take-aways as
well as expand the analysis with a theoretical perspective.

Take-away 1: Gaussian Processes and Deep Ensembles work well for BO under most conditions. Our
results for synthetic data is consistent with the apparent consensus that GPs are strong surrogates for BO and that
they outperform the competing methods in terms of regret (both total and instant) (see Table 1), with DEs being close
followers. Surprisingly, in the hyperparameter tuning experiments, DEs perform exceedingly well, with RFs and GPs
performing equally well. One should however note the practical concern that DEs is computationally more expensive to
train during the BO procedure, but that this could be rationalized if such compute time is cheap relative to querying the
objective function. In both experiments, the mean-field BNNs perform significantly worse than all other methods,
including random search. Similar behavior has also been observed in other experimental design settings, e.g. active
learning [Foong et al., 2020]. In terms of ECE, the GPs performed slightly better than the RFs and DEs in the synthetic
setting, whilst RFs and GPs perform comparably in the hyperparameter tuning setting. Again, we notice that the
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mean-field BNNs are inferior to the other methods in both experiments.

Take-away 2: Correlation between BO performance and calibration diminishes when controlling for the
type of surrogate model. For the synthetic and hyperparameter experiments, our analysis showed strong positive
correlations 0.330 and 0.434, respectively, between total regret and ECE, when computed across all problems, seeds,
acquisition functions, and surrogate models. However, when we control for the type of surrogate model, the correlation
becomes much weaker and statistically insignificant (see Table 3). That is, within each model family, BO trials with
lower calibration errors are generally not linearly associated with lower regret and in turn better BO performance.

Take-away 3: Under-confidence might be more harmful to BO compared to overconfidence. In our intervention
study, we manipulated all surrogate models to be either under- or overconfident during the BO protocol by multiplying
their predictive uncertainties by a constant c > 0, where 0 < c < 1 implies more confident predictions, and c > 1
implies less confident predictions. The results showed that all models exhibited some degree of overconfidence,
which may not be surprising. However, the results also showed that BO performance decreased (i.e. regret increased)
rapidly for all models for c > 1, whereas BO performance was much more robust to perturbations with c < 1, which
actually caused an increase in BO performance in some cases. Only for the GP, we observed a slight temporary
improvement in regret for c > 1. It is also worth emphasizing that the value of c leading to optimal calibration did not
coincide with the values for optimal regret. Finally, it is evident from eq. (2) that changing c also affects the effective
exploitation-exploration trade-off which, in turn, may also impact the regret (the optimal trade-off is also likely to be
intrinsic to the optimisation problem). This can be observed in Figure 2, where both very small and very large values of
c caused the methods to behave more like random search.

Take-away 4: Recalibration does generally not improve BO performance. We further investigated the potential
benefit of recalibrating the surrogate models during the BO process using a leave-one-out procedure. However, in our
recalibration experiments on the hyperparameter tuning datasets, the recalibration procedure only lead to improved
ECE (measured on a proper independent test set) for two surrogate models, namely the BNNs and the RFs. In the other
cases, it actually worsened the ECE. Moreover, we also noticed that all models got worse total regret performance after
employing the recalibration procedure.

Hypothesis: Calibration curves are not reliable for small sample sizes. Recent work by Deshpande and Kuleshov
[2021] observed that re-calibration might aid BO by yielding smaller total regret in some trials and smaller instant regret
for the BO last iteration in fewer trials. However, our experiments suggest that recalibration might actually degrade
BO performance. Kuleshov et al. [2018] state that a sufficiently large i.i.d. validation set is a required condition for
successful recalibration, which is in stark contrast to the sample collection during BO which is not i.i.d. due to the
inherent sequential nature of BO algorithms and is often characterized by small sample sizes.

To investigate this hypothesis, our starting point will be a simple regression setting, where py(y|x) denotes the true data
generating distribution of y given an input x. We further assume a trained model with predictive distribution pt(y|x)
aiming to mimic py via training samples. Consider now the task of assessing the calibration of model using a set of i.i.d.
validation samples {y1, y2, ..., yN}. Given the small sample sizes typically used in BO, a natural question to ask is how
accurately can we assess the calibration curve as a function of the size of the validation set N? To answer this question,
we consider the variance of the estimator in eq. (6) and analyze its decay rate as a function of the sample size N . The
result is summarized in the following statement:
Proposition 1. Let Fi be the CDF of the predictive distribution for the i’th observation and let {yi}Ni=1 be i.i.d. samples
yi ∼ py . For Cy(p) = 1

N

∑N
i=1 I

[
yi ≤ F−1i (p)

]
, then the variance of Cy(p) decays as V [Cy(p)] = O(N−1).

Proof. Let Cy(p) = 1
N

∑N
i=1 zi for zi ≡ I

[
yi ≤ F−1i (p)

]
. The variance of Cy(p) is then given by

V [Cy(p)] = V

[
1

N

N∑

i=1

zi

]

by independence each zi, and

V [Cy(p)] ≤ 1

N2

N∑

i=1

sup
i

V [zi] =
1

N2

N∑

i=1

1

22
=

1

N

1

22
.

Hence, it follows the variance of Cy(p) is bounded by

V [Cy(p)] ≤ O
(
N−1

)
. (10)

See Supplementary Material for detailed proof.
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We also confirmed this result empirically and observe results perfectly consistent with the predictions from Proposition 1
(see in the Supplementary Material), i.e. the maximum standard deviation of the estimator for Cy(p) decays as 1√

N
.

Next, we assume our model is perfect, i.e. pt(y|x) = py(y|x), and ask what is the ECE caused by a small sample size
alone. The results are summarized in the next two statements:
Proposition 2. Let Fi be the CDF of the predictive distribution perfect model, i.e. pt(y|x) = p(y|x). If Fi is strictly
monotonic, it holds that V [Cy(p)] = p(1−p)

N for all p.

Proof. In this setting, we have

zi = I
[
yi ≤ F−1i (p)

]
= I [Fi(yi) ≤ p] = I [ui ≤ p] ,

where ui ∼ U [0, 1] are uniformly distributed on the unit interval due to the probability integral transform. Since
{ui}Ni=1 are also independent, it follows that Sn =

∑N
i=1 zi ∼ Binomial(N, p). Therefore, we have

V [Cy(p)] = V
[
N−1SN

]
= N−2V [SN ] = N−1p(1− p).

This completes the proof.

Proposition 3. Let ECE =
∑P
j=1 wj(pj−Cy(pj))

2 be the weighted mean square calibration error. Assume wi ∈ [0, 1]
and 0 < p1 < p2 < ... < pP < 1 are fixed, and assume the CDF of the predictive distribution is equal to the true data
distribution (almost everywhere), then it holds that E [ECE] = E

[
1
P

∑P
j=1 wjpj(1− pj)

]
= O(N−1).

Proof. See Supplementary Material.

Take-away 5: Calibration curves are not reliable for small sample sizes Proposition 1 and Proposition 2 state
that the variance of the estimator of the empirical calibration decreases with O

(
N−1

)
. This implies that empirical

calibration curves are likely to be unreliable for small sample sizes and to improve the accuracy of the estimates by one
decimal point, one needs to increase the size of the validation set by a factor of 100, which will often be infeasible in
practical BO settings. Furthermore, Proposition 3 states that even for a perfect model, the expected ECE is O

(
N−1

)
.

Therefore, for small sample sizes, one should be careful when concluding that a model is mis-calibrated, since the
observed ECE might as well be caused by the sample size. Even worse, when performing recalibration in this scenario,
one might risk adjusting the model in the ”wrong direction” causing the model to be more miscalibrated than the
original model. In the supplementary material, we show several examples of this phenomenon. Although our empirical
and theoretical analysis are focused on the i.i.d. setting, we expect the effect to be even more severe in the non-i.i.d.
case since the effective sample size is typically smaller for correlated samples [Thiébaux and Zwiers, 1984]. Therefore,
we claim that these effects may have profound impact on recalibration in BO protocols.

Future work Our study indicates that the common way to diagnose calibration (on a large test set) might not be
sensible for BO and that future studies about calibration metrics more relevant to BO are needed. It will also be of great
interest to explore the relationship between calibration and regret from a casual perspective. Lastly, it is interesting to
dig deeper into the effects of under- vs. over-confidence on BO performance.
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SUPPLEMENTARY MATERIAL

Hyperparameter Tuning Datasets

When collecting our hyperparameter tuning datasets, the combinations of models and datasets are as follows:

Table 4: Model and Data Combinations for Hyperparameter Tuning

MNIST FashionMNIST AG News Classification Wine Classification
FFNN X X X
CNN X X
SVM X

For each of the models we then select a number of hyperparameters which we want to tune, create a grid for these
hyperparameters and train a model for each of these hyperparameter sets (the BO input is thus hyperparameters and the
output is validation performance). The FFNN simply has a single hidden layer with a ReLU activation function and a
single dropout layer, except in the case of the AG News Classification where the ”hidden layer” is an embedding layer
using the nn.EmbeddingBag from torch. The CNN is a network with two convolution layers with kernel size (5, 5) of
output channels 16 and 32 respectively, and a single hidden and dropout layer. Max pooling is also used with a kernel
size of (2, 2) at every convolution layer. The SVM used is the sklearn .SVM.SVC from sklearn . The hyperparameters
and their grid specification can be seen here:

Table 5: Grid Specifications for Hyperparameter Tuning
Training Epochs Dropout Rate Learning Rate (log space) Batch Size Train Hidden Size C (log space) γ (log space)

FFNN np.linspace(1, 10, 10) np.linspace(0, 0.8, 10) np.linspace(-11.51, -2.23, 10) np.arange(8, 256, 32) np.linspace(1, 271, 10)
CNN np.linspace(1, 10, 10) np.linspace(0, 0.8, 10) np.linspace(-11.51, -2.23, 10) np.arange(8, 256, 32) np.linspace(1, 271, 10)
SVM np.linspace(-6.9, 4.6, 100) np.linspace(-11.51, -2.23, 100)

Mathematical Proofs

Proposition 1: Let Fi be the CDF of the predictive distribution for the i’th observation and let {yi}ni=1 be i.i.d. samples
yi ∼ py . For Cy(p) = 1

n

∑n
i=1 I

[
yi ≤ F−1i (p)

]
, then the variance of Cy(p) is bounded by 1/n, i.e. V [C] = O(n−1).

Proof: First, we show that the variance is bounded by O(n−1). We have

Cy(p) =
1

n

n∑

i=1

I
[
yi ≤ F−1i (p)

]
=

1

n

n∑

i=1

zi, (11)

where zi ≡ I
[
yi ≤ F−1i (p)

]
. The variance of Cy(p) is then by give
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V [Cy(p)] = V

[
1

n

n∑

i=1

zi

]

=
1

n2
V

[
n∑

i=1

zi

]

=
1

n2

n∑

i=1

V [zi]

≤ 1

n2

n∑

i=1

sup
i

V [zi]

≤ 1

n2

n∑

i=1

1

22

=
1

n

1

22

(12)

Hence, it also follows the standard deviation of Cy(p) is bounded by

√
Cy(p) ≤

√
1

n

1

22
=

1

2
√
n

= O
(

1√
n

)
. (13)

This completes the proof of the first statement.

Lemma 1: Given a perfectly calibrated model, it holds that V [Cy(p)] = p(1−p)
n for all p.

Proof: In this setting, we have

zi = I
[
yi ≤ F−1i (p)

]
= I [Fi(yi) ≤ p] = I [ui] ≤ p] , (14)

where ui ∼ U [0, 1] are uniformly distributed on the unit interval due to the probability integral transform. Since
{ui}ni=1 are also independent, it follows that

Sn =

n∑

i=1

zi ∼ Binomial(n, p). (15)

Therefore, it follows that

V [Cy(p)] = V
[

1

n
S

]
=

1

n2
V [S]

=
1

n2
np(1− p) =

p(1− p)
n

.

(16)

This completes the proof.

Proposition 2: Let Ec =
∑m
j=1 wj(pj − Cy(pj))

2 be the weighted mean square calibration error. Assume wi ∈ [0, 1]
and 0 < p1 < p2 < ... < pm < 1 are fixed, and assume the CDF of the predictive distribution is equal to the true
data distribution (almost everywhere), then it holds that E [Ec] = 1

n

∑m
j=1 wjpj(1− pj) = O(n−1) if yi ∼ py are i.i.d.

samples.

The calibration error EC is defined as follows

Ec =

m∑

j=1

wj(pj − Cy(pj))
2, (17)

where each wi ∈ [0, 1] is a weight and 0 ≤ p1 < p2 < ... < pm < 1 is predefined set of points.
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In order to compute the expectation of EC , we first expand:

E =

m∑

j=1

wj(p
2
j + Cy(pj)

2 − 2pjCy(pj)) (18)

=

m∑

j=1

wjCy(pj)
2 − 2

m∑

j=1

wjpjCy(pj)) (19)

Then it follows that

EC [E] = E



m∑

j=1

wjp
2
j +

m∑

j=1

wjCy(pj)
2 − 2

m∑

j=1

wjpjCy(pj))


 (20)

=

m∑

j=1

wjp
2
j +

m∑

j=1

wjE
[
Cy(pj)

2
]
− 2

m∑

j=1

wjpjE [Cy(pj)] . (21)

The first moment evaluates to

E[Cy(p)] =

∫ ∞

−∞
I[yt ≤ F−1t (p)]pydy (22)

=

∫ F−1
t (p)

−∞
pydy (23)

= Fy(F−1t (p)) (24)
= p. (25)

Similarly, the second moment evaluates to

E
[
Cy(p)2

]
= E



(

1

n

n∑

i=1

zi

)2

 (26)

=
1

n2
E




n∑

i=1

n∑

j=1

zizj


 (27)

=
1

n2

n∑

i=1

E
[
z2i
]

+
1

n2

∑

j 6=i
E [zizj ] (28)

=
1

n2

n∑

i=1

p+
1

n2

∑

j 6=i
E [zi]E [zj ] (29)

=
n

n2
p+

1

n2

∑

j 6=i
p2 (30)

=
1

n
p+

1

n2
(
n2 − n

)
p2 (31)

Rearranging the terms yields

E
[
Cy(p)2

]
=

1

n
p+

n2 − n
n2

p2

=
1

n
p− 1

n
p2 + p2

=
p(1− p)

n
+ p2

(32)
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Substituting the moments into eq. (20) yields

E [EC ] =

m∑

j=1

wjp
2
j +

m∑

j=1

wj

[
pj(1− pj)

n
+ p2j

]

− 2

m∑

j=1

wjp
2
j

=

m∑

j=1

wjp
2
j +

m∑

j=1

wj
pj(1− pj)

n

+

m∑

j=1

wjp
2
j − 2

m∑

j=1

wjp
2
j

=
1

n

m∑

j=1

wjpj(1− pj)

= O(n−1).

(33)

This completes the proof.

If py and pt are normal distributions

For non-perfect models we have that Fy(F−1t (p)) = g(p) where in general g(p) 6= p. If both py and pt are normal
distributions, the CDF and inverse CDF of a normal are, respectively, given by

F (x) =
1

2

[
1 + erf

(
x− µ
σ
√

2

)]

F−1(p) = µ+ σ
√

2erf−1 (2p− 1)

When data comes from yt ∼ N (µy, σ
2
y) and the model is N (µt, σ

2
t ), we can write the expectation of the calibration

curve as follows

g(p) = Fy(F−1t (p))

=
1

2

[
1 + erf

(
F−1t (p)− µy

σy
√

2

)]

=
1

2

[
1 + erf

(
µt + σt

√
2erf−1 (2p− 1)− µy
σy
√

2

)]

=
1

2

[
1 + erf

(
µt − µy
σy
√

2
+
σt
σy

erf−1 (2p− 1)

)]

=
1

2

[
1 + erf

(
µt − µy
σy
√

2
+
σt
σy

erf−1 (2p− 1)

)]

which also evaluates to p for a perfect model:

g(p) =
1

2

[
1 + erf

(
0

σy
√

2
+ 1 · erf−1 (2p− 1)

)]

=
1

2
[1 + 2p− 1]

= p
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Theoretical Calibration Experiment Figures
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Figure 3: Examples of calibration curves computed on various number of test examples N , when the true data comes
from a standard Gaussian and the model (left plots) varies (each row). Even in the best case scenario when samples
are i.i.d., a large sample-to-sample variance can be expected in the ranges of N for which BO normally operates.
Calibration curve distributions are made from 100 random seeds, and the intervals corresponds to two times the standard
deviation.
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Figure 4: Maximum uncertainty across p for calibration distribution Cp(y) when N samples of y is given for computing
the individual calibration curves. We sample 100 models (normal distributions) each with arguments µi ∼ Normal(0, 1)
and σi ∼ LogNormal(1, 1) each modelling data coming from a standard normal. For each experiment 100 calibration
curves, that is 100 independent samples of size N from the true model, constitutes the mean and std. We also plot the
function f(N) = a/

√
N for a ≈ 1.05.
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