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ABSTRACT

Schizophrenia is a complex neuropsychiatric syndrome with a high internal heterogeneity (inter-
individual variations in neurobiological, genetic and phenotypic profile). Currently, the causes
and neurobiology of schizophrenia are not fully understood, and there is a large unmet medical
need, since many patients do not respond adequately to available treatments and have poor long
term outcomes. Even though various mechanistically plausible biomarkers for schizophrenia
have been suggested, none of these are so far used clinically. Having reliable and objective
biomarkers is important to better understand the disorder, to support clinical decision and to
assist the development of new treatments.

Early studies show that patients with schizophrenia have widespread impairments in neural
communication, which can be measured using functional magnetic resonance imaging (fMRI).
Abnormal brain activation has been linked to different aspects of the disorder, but firm conclusions
are yet to be made, since the results vary across studies. These variations are often attributed
to the high internal heterogeneity and limited sample sizes in most studies. In the last decade,
the use of data-driven methods and large multi-site datasets, have led to several advancements,
which is promising for future research progress. However, overall the field is still at a stage of
identifying solutions to methodological challenges, rather than developing specific biomarkers
for clinical practice (yet).

The goal of this PhD project was to address a part of the methodological puzzle, by exploring
different ways to use machine learning in the search for robust and reproducible fMRI biomarkers.
Throughout the analyses, we have used supervised machine learning to enable clinical predictions
and unsupervised machine learning for feature extraction (decomposition methods) and disease
subtyping. The work has been organized into four studies as summarized below.

In an attempt to search for early risk prediction biomarkers, the goal of Study 1 was to classify
healthy participants with schizotypal traits according to their degree of social anhedonia. We
developed a classification framework with a broad selection of feature extraction methods to
determine which of these could drive the classification. We found significant predictions when
using both temporal and spatial network features, and achieved the highest performances, when
using features from the two data-driven decompositionmethods: independent component analysis
(ICA) and multi-subject archetypal analysis (MSAA). Throughout our analyses, we discovered
how much the final results depended on the parameters within the analysis pipeline. Thus, for
the remaining studies, we focused our analysis to increase the robustness and reproducibility, e.g.
by using multi-site data which had been made publicly available through data-sharing initiatives.
This enabled us to train the models on a more heterogenous multi-site discovery dataset, and to
test the generalizability of our findings on external data.

In Study 2 the goal was to classify patients with schizophrenia using multi-site data. We
adjusted the prediction framework to handle multi-site predictions and furthermore aimed to
make each step as data-driven and robust as possible. For the decomposition methods, we also

i



ii Abstract

investigated different ways of using transfer learning to bridge feature extraction between datasets.
Using spatial network features from both the decomposition methods and parcellation-based
connectivity analysis we found high and reproducible classification performances that generalized
to the external data. The highest performances were obtained when using ensemble decision
models, which supports earlier findings that schizophrenia affects a wide range of brain networks.

In Study 3, we used the same features to predict the symptom severity (measured using the
Positive and Negative Syndrome Scale (PANSS)) and three PANSS subscales in an attempt to
address the internal heterogeneity of schizophrenia. We used Gaussian process regression (GPR),
which is a non-parametric Bayesian approach to regression that provides an uncertainty estimate
for the predictions. Here, we only found moderate prediction performances, which resembled
a positive trend around the mean PANSS score, and which generally did not reproduce on the
external data. These findings indicate that the study could be underpowered or that the between-
site differences are too large compared to the signal of interest. Another possible explanation
could be the internal consistency of the PANSS scales, or that the used datatype (resting state
connectivity) or applied methods are not the right path forward.

Finally, in Study 4, the goal was to search for data-driven disease subtypes using a multiple
co-clustering (MCC) method that is based on Bayesian mixture models. Since the subtyping
field is still at an exploratory stage, we dedicated a large part of our investigation to study the
stability of the MCC method. We found that the clustering solutions were highly dependent on
changes in the dataset, Nevertheless, we found subtypes with significant diagnosis association
that reproduced on the external data.

To conclude, we see our work providing important methodological contributions towards
using machine learning and multi-site data in the search for robust and reproducible fMRI
biomarkers. All our analyses were performed on fMRI data either from individuals at risk of
developing psychosis (Study 1) or from patients with schizophrenia (Studies 2−4), however the
developed methods can be directly used to study other clinical populations.



RESUMÉ

Skizofreni er en kompleks neuropsykiatrisk lidelse, og mange patienter har begrænset behan-
dlingsrespons og dårlig langsigtet prognose. I dag bliver patienter med skizofreni primært
diagnosticerede og evaluerede i forhold til graden af deres kliniske symptomer. En stor udfordring
i forhold i denne forbindelse er den høje interne variation i patienternes sygdomsbillede, som gør
at patienter, til trods for samme diagnose, er påvirkede af meget forskellige symptomer, mens der
samtidigt er et betydeligt overlap mellem symptomer på tværs af andre psykiatriske lidelser. I de
seneste år er der derfor blevet søgt efter nye sygdomsdefinitioner samt ‘sygdomsundertyper’, som
muliggør at patienter kan indeles i grupper med mere homogen biologi. Her spiller biomarkører,
som er definerede som objektive biologiske målinger, en vigtig rolle, da de har potentialet til at
overkomme de tidligere udfordringer.

Tidligere studier har vist, at patienter med skizofreni har udbredte svækkelser i den måde som
forskellige områder at hjernen kommunikerer med hinanden på, hvilket kan måles ved hjælp af
hjerneskanningsmetoden funktionel magnetisk resonans-billeddannelse (fMRI). Selvom atypisk
hjerneaktivitet er blevet forbundet med mange forskellige aspekter af lidelsen, er der stadig meget
variation på tværs af studier i forhold til resultater og metoder. Dette er ofte tilskrevet til den høje
interne heterogenitet af lidelsen (f.eks. inter-individuelle variationer i symptomer, neurobiologi
og genetik) samt at datasættene for de enkelte analyser har været af begrænenset størrelse. I de
seneste år har brugen af datadrevne metoder samt store datasæt, der er opsamlet flere forskellige
steder (multi-site), ført til hurtige fremskridt. Overordnet er feltet dog stadig i gang med at finde
løsninger på metodiske udfordringer frem for at bidrage med specifikke biomarkører til klinisk
brug.

Formålet med dette ph.d.-projekt var at udforske forskellige måder at bruge machine learn-
ing (maskinlæring) i søgen efter robuste og reproducerbare fMRI-biomarkører. Vi har brugt
supervised machine learning til at kunne prædiktere kliniske mål (som diagnose og symptom-
sværhedsgrad) og "unsupervised machine learning" til at ‘udtrække’ hjernenetværk og til at finde
nye sygdomsundertyper. Overordnet set har vi opdelt vores arbejde i fire studier.

Formålet med Studie 1 var at klassificere raske deltagere med skizotypiske træk i henhold til
deres grad af social anhedoni, og herved søge efter biomarkører, der kan estimere risikoen for at
udvikle skizofreni. Her undersøgte vi en række forskellige måder til at udtrække informationer
fra hjerneområder og -netværk, blandt andet ved at bruge de datadrevne dekompositionsmetoder:
independent component analysis (ICA) og multi-subject archetypal analysis (MSAA). Studiet
viste at det var muligt at opnå signifikant prædiktioner, når vi brugte temporale og rummelige
netværksinformationer, mens dette ikke var muligt med stationære hjerneaktivitetsmål. Yderligere
observerede vi at de endelige resultater afhang meget af paramterne for de enkelte analyser. For de
resterende studier fokuserede vi derfor på at øge robustheden og reproducerbarheden, f.eks. ved
at bruge multi-site datasæt, som var blevet gjort offentligt tilgængelige. Dette gjorde det muligt for
os at udvikle vores modeller på mere heterogene multi-site datasæt og at teste generaliserbarheden
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iv Resumé

af vores resultater på nye datasæt.
I Studie 2 var formålet at klassificere patienter med skizofreni på et multi-site datasæt. Vi

justerede vores klassifikations-modeller til at håndtere multi-site data og sigtede desuden efter at
gøre hvert trin så datadrevet og robust som muligt. For dekompositionsmetoderne undersøgte
vi også forskellige måder at bruge transfer learning til at bygge bro mellem datasæt. Vi fandt
høje og signifikante klassifikationsresultater, som også var signifikante, når vi testede dem på
det nye datasæt. De bedste resultater blev opnået ved brug af ensemblebeslutningsmodeller, som
inkluderede information fra alle hjernenetværk, hvilket understøtter tidligere studier, som har
vist at skizofreni påvirker mange forskelle hjernenetværk.

I Studie 3 brugte vi de samme hjernenetværksinformationer til at prædiktere symptomernes
sværhedsgrad (målt ved hjælp af Positive and Negative Syndrome Scale (PANSS)) og de tre
PANSS subskalaer i et forsøg på at adressere den interne heterogenitet af skizofreni. Vi brugte
Gaussisk process regression (GPR), som er en ikke-parametrisk Bayesiansk tilgang til regression,
der giver et usikkerhedsestimat for prædiktionerne. Her fandt vi dog kun moderat nøjagtighed af
prædiktionerne, som repræsenterede en positiv korreleret tendens omkring den gennemsnitlige
PANSS-værdi, og som overordnet set ikke generaliserede sig til det nye datasæt.

I Studie 4 var formålet at søge efter datadrevne sygdomsundertyper ved hjælp af metoden
Multiple co-clustering (MCC), som er en segmenteringsmetode (clustering), der er baseret på
Bayesiaske mixture models. Da feltet stadig er nyt og i udvikling, dedikerede vi en stor del af
vores analyser til at undersøge stabiliteten af MCC-metoden. Vi fandt ud af, at resultatet var
meget afhængigt af ændringer i datasættet. Ikke desto mindre fandt vi en subtype-løsning, som
havde en signifikant diagnosesammenhæng der også blev genfundet på de eksterne data.

Vi mener at vores arbejde bidrager med vigtige metoder til at bruge machine learning og
multi-site data i søgen efter robuste og reproducerbare fMRI-biomarkører. Alle vores analyser
blev udført på fMRI data fra enten personer med risiko for at udvikle skizofreni (Studie 1) eller
patienter (Studie 2-4). Det er dog også muligt at anvende de udviklede metoder direkte til at
undersøge andre kliniske populationer.



PREFACE

The work of this PhD project comprises four studies, which have been carried out during two
enrollment periods. I initially started my PhD in July 2017, where I carried out Study 1 (resulting
in Paper A and B) before going on maternity leave in the beginning of 2019. After my maternity
leave, I started a new job at H. Lundbeck A/S (2-year Graduate program based in the Clinical
Biomarker department). From September 2020 to December 2021, I was therefore not enrolled
as a PhD student, but worked full time at H. Lundbeck A/S. In December 2021, I then re-started
my PhD, this time in a collaboration between DTU and H. Lundbeck A/S, where I carried out
Studies 2-4 (resulting in Paper C and D). The total PhD enrollment period is therefore 3 years and
3 months, even though the project was started in 2017.

This PhD thesis consists of a brief introduction to the overall topics within the field, description
of the applied methods, summary of the research contributions and a discussion of these. The
thesis furthermore consists of four papers, of which two are accepted and two are in preparation.

The PhD project has been carried out at the section of Cognitive systems at the Department
of Applied Mathematics and Computer Science at the Technical University of Denmark, Kongens
Lyngby, Denmark. During my first enrollment I was also affiliated at the Danish Research Centre
for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Denmark. During my second
enrollment I have been fully employed at the Clinical Biomarker group at H. Lundbeck A/S. Five
months (April 2022–August 2022) were used for an external research stay in the Data science
group at the Department of Biometrics at H. Lundbeck A/S.

The research was collaboratively funded by H. Lundbeck A/S and the Department of Applied
Mathematics and Computer Science at the Technical University of Denmark and.

Lærke Gebser Krohne
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INTRODUCTION 1
The brain is often considered to be the last frontier in biological sciences, and even though
the field of neuroscience has made enormous progress over the past decades, much is still
unknown. This has large implications for our opportunity to understand and develop treatments
for patients suffering from brain disorders, which impact more than 3 billion people worldwide
[1, 2]. Traditionally psychiatric disorders are diagnosed based on their symptomatology using
diagnostic tools such as the Diagnostic Manual of Mental Disorders (DSM) [3]. Additionally,
clinical scales are used to measure disease related phenotypic measures, such as symptom severity,
disease progression and treatment responses. These are subjective measures, which are either
determined by the patient or a health care professional. A core challenge for these measurements
is the high internal heterogeneity of psychiatric disorders, implying that patients with the same
diagnosis can be affected by symptoms in several different domains, while there are also a
substantial overlap between symptoms across disorders. Several initiatives, such as the Research
Domain Criteria Project (RDoC) [4, 5], have therefore been established to find more mechanistic
disease definitions or even disease subtypes with more homogeneous biology. Here biomarkers,
which are objective measurements of biological processes, play an important role, as they have
the potential to overcome earlier challenges of symptomatology based measures [6, 7].

Schizophrenia is a complex neuropsychiatric syndrome with a high internal heterogeneity,
both within the neurobiology, genetics and symptomatic profile. The symptom severity is often
assessed using the Positive and Negative Syndrome Scale (PANSS), which is further organized
into three subscales: positive, negative and general psychopathology, reflecting some of the core
symptom domains of the disorder [8]. Whereas positive symptoms (such as hallucinations) are
generally effectively managed with antipsychotic medications [9], treatment options for negative
symptoms, such as anhedonia (the reduced ability to experience pleasure), and cognitive deficits
are limited [10, 11]. So far, there are no clinically used biomarkers [6], but they would be a valuable
tool for many applications, such as supporting diagnostic decisions, and in drug development
(where it has been suggested that the high internal heterogeneity and the use of clinical scales
to measure efficacy in clinical trials, have haltered the development of new treatments [12]).
Neuroimaging can be used to measure important biological processes, ranging from activation of
brain receptors to network interactions between brain regions, and is thus a strong candidate
for biomarker discovery. Functional magnetic resonance imaging (fMRI) is an indirect measure
of brain activation, which is often used to study activation in specific brain regions or in brain
networks. Many studies have already used fMRI to search for neurobiological underpinnings that
can support a range of clinical applications, but firm conclusions are still to be made, since earlier
studies have shown substantial differences both in their applied methods and results [13–15]. In
recent years, the field has started moving towards using more data-driven methods and larger
multi-site datasets [16, 17]. This carries a great potential to overcome earlier challenges and
advance fMRI biomarkers into clinical applications and drug development [15–18].

1



2 Chapter 1. Introduction

1.1 Structure and objectives

The overall aim of this PhD project was to explore ways of using machine learning to search
for data-driven and reproducible fMRI biomarkers for patients with schizophrenia. We have
investigated supervised machine learning methods to make clinical predictions, and unsupervised
machine learning for feature extraction and disease subtyping. Throughout our analyses, we
have focused on robustness and reproducibility.
The objectives of this PhD project were to:

• Explore ways of using feature extraction and supervised machine learning to obtain repro-
ducible predictions of phenotypic measures, such as diagnostic labels and outcomes from
clinical scales.

• Compare different feature extraction methods, hereby data-driven decomposition, with
regards to their stability, interpretability and predictive performance

• Investigate how multi-site data can be used to search for robust biomarkers that generalize
across datasets

• Search for data-driven subtypes with a more homogeneous biology by using unsupervised
clustering and investigate the stability of the clustering solutions

Studies included in this PhD project

The PhD work was structured into four studies as illustrated in Figure 1.1.

Figure 1.1: Overview of four studies. Brief overview of the main goals, datasets and corre-
sponding papers for the four studies of this PhD project. The DecNef and COBRE databases and
the way the data differed between the studies are described in section 2.6.

Study 1 was performed on a single-site dataset that included healthy participants with varying
degree of schizotypy (set personality traits that are related to schizophrenia). For the remaining
studies, we used multi-site fMRI data from patients with schizophrenia (SZ) and healthy controls
(HC), which were made publicly available between my two PhD enrollments (as described in the
preface). We used data from the Decoded Neurofeedback (DecNef) Project Brain Data Repository
[19] and the Center of Biomedical Research Excellence (COBRE) [20] databases.
The main goal(s) of each study was to:
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• Study 1: Classify participants with high and low anhedonia, by building a classification-
framework with various feature extraction methods including the novel multi-subject
archetypal analysis (MSAA) decomposition method

• Study 2: Classify participants according to their diagnosis (SZ or HC) using multi-site data,
and extend the classification-framework to focus more on robustness and reproducibility

• Study 3: Predict the symptom severity (using the total PANSS score) and three PANSS
subscales in an attempt to address the internal heterogeneity of schizophrenia

• Study 4: Search for data-driven subtypes with a more homogeneous biology by using
clustering, and evaluate the stability of the clustering solutions

More details on the goals and datasets used in all four studies can be found in section 2.5.
The four studies had a similar structure for biomarker discovery as illustrated in Figure 1.2.

First the raw data was converted into interpretable brain features (using prepossessing and feature
extraction), which were subsequently used for predictive modelling and subtyping to search for
disease related biomarkers.

Figure 1.2: Overall framework for all four studies. Throughout all four studies we used
preprocessing and feature extraction to obtain brain features, which were used for subsequent
prediction or subtyping.

1.1.1 Thesis outline

This thesis consists of four papers (two accepted and two in preparation), and several chapters
that tie together the contributions. Chapter 2 gives a brief introduction to the overall topics of this
thesis: schizophrenia, fMRI imaging for biomarker discovery, machine learning and multi-site
imaging. Chapter 3: “From raw data to brain features” describes how preprocessing and feature
extraction was used throughout the studies, and Chapter 4 describes how we used machine
learning for predictive modelling and disease subtyping. In Chapter 5 the research contributions
are summarized, and the overall contributions and future perspectives are discussed in Chapter 6.





BACKGROUND 2
2.1 Brief introduction to Schizophrenia

Schizophrenia is a psychiatric syndrome with a complex and heterogenous neurobiological,
genetic, and phenotypic profile [6, 21], which affects approximately 24 million (0.32 %) people
world wide [22, 23]. No single cause of schizophrenia has been identified, but it is believed to be
caused by a complex interplay of genetic and environmental risk factors, which influence the
brain development and the biological adaptation to life’s experiences [24]. These risk factors
include: prenatal events (e.g. complications during pregnancy or delivery), gender (more frequent
in men (1.4/1), which also have an earlier onset and more severe symptoms [24, 25]), drug abuse
and social adversity [24, 26]. This is not an exclusive list, and schizophrenia is also highly
heritable [27] where genetics constitute an important and complex risk factor [27–29]. The
diagnosis of schizophrenia is based on the symptomatology using diagnostic tools, such as the the
Diagnostic Manual of Mental Disorders (DSM) [3] or the International Classification of Diseases
(ICD)[30], which evaluates the severity and duration of the symptoms and other aspects such
as social and occupational functioning, comorbidity, and substance abuse [24]. Characteristic
symptoms of schizophrenia are commonly divided into positive, negative and cognitive categories.
Positive symptoms are behaviours and thoughts which are not normally present in healthy
individuals, such as hallucinations and delusions. Negative symptoms include social withdrawal,
diminished initiative and energy as well as anhedonia (inability to feel pleasure). Lastly, cognitive
disturbances span a broad set of cognitive dysfunctions such as problems with attention, memory
and reasoning.

The onset of schizophrenia is often diagnosed during late adolescence and most patients expe-
rience serious impairment in many domains of everyday life [31, 32]. Treatments mainly include
antipsychotic medications (all currently licensed treatments for schizophrenia are currently D2

blockers[29] ) and psychosocial interventions,such as cognitive-behavioural therapy [24]. Unfor-
tunately there is still a large unmet medical need, since many patients do not respond adequately
to currently available treatments (particularly for the negative and cognitive dimension) and have
severe side effects[33, 34]. Furthermore, even though treatments improved the quality of life, and
enables most patients to live on their own, the effect on social and professional functioning is
still limited [24, 29].

Two of the major hypotheses for the pathoetiology of schziophrenia relate to the importance
of i) the dopaminergic dysregulation [35] and ii) viewing schizophrenia as a neurodevelopmental
disorder where the pathogenesis begins already during early development1 [26, 37]. The former
highlights the importance of the dopaminergic neurotransmitter system where earlier studies
using positron emission tomography (PET) and amphetamine- fMRI studies have shown dopamine

1Recent studies have argued that the two hypothesis may be integrated with previous work on the excitation-
inhibition balance of schizophrenia [36]

5
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dysregulation, particularly in the striatum [38, 39]. Furthermore, other studies have shown that
schizophrenia is associated with circuit-level alterations including both cortical and subcortical
regions[6, 40–42], which can be measured with fMRI as described in section 2.5.2. The improved
neurodevelopmental understanding has further highlighted the importance of finding early
onset symptoms and biomarkers. One way to study the early course of the disorder is to look
at individuals with schizotypal traits. Schizotypy refers to a set personality traits (organized
into positive, negative and generalized) that are related to schizophrenia [43]. Individuals with
schizotypy have psychotic-like experiences, which have shown to reflect their vulnerability for
developing schizophrenia later in their life [44–46] as described in section 2.5.3.

2.1.1 The Positive and Negative Syndrome Scale (PANSS)

The Positive and Negative Syndrome Scale (PANSS) is a clinical scale that is often used to measure
the symptom severity in patients with schizophrenia. The scale consists of 30 items, which are
grouped into a positive (7 items), negative (7 items) and general psychopathology subscale (16
items, this subscale is also referred to as "generalized" in the remaining thesis)[47]. Patients are
rated from 1−7 (ordinal scale) for each of the 30 items, based on a clinical interview as well as
reports from family members or primary health care professionals [48]. The PANSS scale is widely
used in clinical practice to measure outcomes such as disease progression and treatment response
(also in clinical trials). Furthermore, the PANSS scale has been used to identify psychopathological
subtypes, in an attempt to disentangle the heterogeneity in schziophrenia, however so far with
inconclusive results [49, 50].

2.1.2 Biomarkers

A biomarker is defined as an biological indicator of a biological process (normal or pathological)
or response to an exposure or intervention [7]. Typically, the purpose of a biomarker is to give an
objective measure that can support clinical decisions. Figure 2.1 illustrates some of the relevant
types of biomarkers for schizophrenia. The line indicates the degree of symptoms over time,
ranging from no symptoms, to a prodromal phase (increasing degree of symptoms but below
diagnostic threshold) until the person is diagnosed with schizophrenia (active phase). Examples of
biomarker types include: ‘risk prediction biomarkers’ to identify individuals at risk for psychosis,
‘diagnostic biomarkers’ to assist diagnostic decisions, and ‘therapeutic monitoring biomarkers’,
to monitor the effectiveness of a treatment. During drug development, ‘pharmacodynamic
biomarkers’ can be used to evaluate the biological effect of the pharmacological intervention
(elaborated in section 2.5.1) .

Currently there are no clinically used biomarkers that can inform diagnostic and treatment
decisions in schizophrenia (SZ) [6, 15], but neuroimaging is a strong candidate for biomarker
discovery as recently described by Kraguljac et al. [6]. The list of potential neuroimaging
biomarkers covers a broad range, such as altered release of neurotransmitters, receptor occupancy,
neuroinflammation and dysconnectivity between brain regions [6]. In this PhD project we focused
on data from functional magnetic resonance imaging for biomarker discovery.
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Figure 2.1: Examples of biomarker types in schizophrenia. This figure illustrates the
symptom severity over time and examples of when different types of biomarkers would be relevant
. The line indicates the symptom severity over time. Commonly schizophrenia is described to
have a prodromal phase, where symptoms increase but are below a diagnostic threshold, and
an active phase which is the time after the symptoms have crossed the threshold. The figure
lists examples of relevant biomarkers, however this is not a comprehensive list. This figure was
inspired by Figure 2 from Kaguljac et al. in 2021 [6]

2.2 Functional MRI and brain connectivity

Functional magnetic resonance imaging (fMRI) is a non-invasive brain imaging technique that can
be used to study brain activation either during a specific task or during rest. Mostly fMRI imaging
leverages the blood oxygen level dependent (BOLD) contrast [51]. In short, when the activation
level of a brain regions changes, this will influence its energy consumption and thereby change
the the presence of oxygenated blood. Due to the magnetic properties of hemoglobin in the blood,
this can be measured with an MRI scanner [51, 52]. The BOLD signal is thus an indirect measure
of brain activation, which is related through the haemodynamic response function. Whereas other
fMRI method exist (e.g. arterial spin labelling [53]), these will not be described in this PhD Thesis.
Compared to other functional brain imaging methods (such as electroencephalography), fMRI is
limited to a lower temporal resolution due to the temporal smoothness of the haemodynamic
response function (in the order of seconds). However, in many applications it is still preferred to
other non-invasive functional imaging techniques since it has higher spatial resolution (1-4 mm2)
and subcortical brain areas are accessible for imaging.

When fMRI is used to study brain activation during a certain task, a control condition is
needed to contrast the brain activation between these two conditions. Traditionally, task based
brain activation studies have relied of univariate brainmapping approaches, where brain activation
in isolated brain regions are related to an phenotypic measure (observable characteristics of an
individual) of interest. Examples of health-related phenotypic measures include diagnostic labels
(e.g. healthy controls vs patients with SZ), symptoms severity, and cognitive scores. In this way,
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univariate mapping builds on a historical foundation of lesion studies [54], where the goal was to
understand the functions and processes encoded in isolated brain regions [17].

In 1995, Biswal and colleagues discovered that distinct brain regions exhibit synchronous
fluctuations in intrinsic activity which give rise to so-called functional connectivity (FC)
between regions. Given the FC patterns, several temporally coherent networks have been found
which sub-serve critical functions such as audition, vision, motor planning and directed attention
[55–57]. These networks have been shown to be surprisingly consistent (though not identical)
patterns of activation both during tasks and resting state [57, 58], and are often acquired while
the participant is resting with their eyes open or closed while not performing any explicit task in
the scanner. The large scale intrinsic brain networks are commonly referred to as resting state
networks (RSN), and they have been associated to many important functions and diseases[59, 60].
One RSN parcellation which is commonly used in the literature is the 7-RSN parcellation that
was presented by Yeo et al. in 2011, as illustrated in Figure 2.2.

Figure 2.2: Resting state network (RSN) parcellation. Illustration of the 7-RSN parcellation
presented by Yeo et al. in 2011. This RSN parcellation is widely used in the literature as well as
in Studies 2-4 of this PhD project. The seven RSN include: Visual, Somatomotor (SoMo), dorsal
attention (dATT), ventral attention (vATT), Limbic, Frontal-parietal (FPN) and Default mode
network (DMN).

So far, univariate brain mapping and functional connectivity studies have enabled much
progress for ‘traditional neuroscience questions’, e.g. fMRI has made large contributions to the
field of understanding cognition, such as fundamentally changing how we think about about
the aging mind [61–63]. However, there are only few fMRI applications (mainly in presurgical
mapping) in clinical practice so far [17, 64].

As for many fields in medical science and psychology, fMRI has been plagued by challenges of
reproducibility across studies [64, 65]. Main culprits for the reproducibility challenge have been
attributed to the intrinsic reliability of fMRI signal, the large number of parameters that differ
between studies (in acquisition, preprocessing, statistical analysis and reporting) and relatively
limited sample sizes [64, 66]. These topics will be a main focus throughout the thesis.

Applications of fMRI have been particularly challenging in psychiatric brain disorders, where
the heterogeneity of the disorders and the lack of precision in diagnostic categorizations have
further challenged the reproducibility between studies [15].

For the last decade, the focus has therefore been on the development of new analytical and
more data driven techniques (section 2.3) and large multi-site datasets (section 2.4), with the hope
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that these can overcome earlier limitations and transform the use of neuroimaging for clinical
applications [15, 17].

2.3 Machine learning in neuroimaging

The overall goal of machine learning is to make machines classify data without being explicitly
programmed. Typically machine learning methods are categorized into supervised and unsuper-
vised methods. Supervised methods aim to build a model that can predict a measure of interest
(label), in contrast unsupervised methods explore statistical dependencies in unlabeled data to
learn structures. Here, we will give a brief introduction to the overall concepts, while more
detailed descriptions of the machine learning methods that were used across our studies are given
in chapter 4.

Figure 2.3 is an adjusted version of Figure 1.2, where we have specified in which parts of the
PhD project we have used machine learning methods (red).

Figure 2.3: Use of machine learning throughout the studies. This figure is an adapted
version of Figure 1.2, which highlights parts of our data analysis where we used machine learning
(marked with red). The remaining (gray) steps were performed using more traditional fMRI
analytical approaches.

2.3.1 Supervised machine learning methods

These methods are conceptually similar to conventional brain mapping analysis (described in
section 3.2) but there are some important differences as specified by Woo et al. [17]:

1. the direction of inference is reversed such that the brain features are a set of predictors
while the label comprise one or more outcomes

2. the models include all available data features (multivariate) to make a single prediction
about the outcome

3. the models can capture information on multiple spatial scales and datatypes (e.g. combining
functional and structural imaging)

4. the diagnostic value of predictive models are evaluated on ‘out-of-sample´ individuals,
which means that the data that was used to train the model did not include the individuals
on which its performance was tested. This can be done either using cross-validation, or by
leaving out a part of the data for independent testing (preferably on external data which
comes from independent datasets) if sufficient data is available.

Whereas most fMRI studies so far have focused on binary classification (e.g., between diagnosis
labels such as SZ and healthy controls [6, 17]), an emerging trend is to predict individual differences
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in continuous outcomes, such as symptom severity or cognitive functions [16]. Compared to
binary classifications, these regression-based predictions can be more challenging, but have
the potential to shed light on more fine-grained differences, e.g. on the trajectory of brain
alternations with fluctuating symptom severity. Furthermore, they can be used to reduce the
internal heterogeneity which is inherent in most psychiatric diagnoses [16, 21].

A challenge of predictive modelling is that the model training and evaluation depends on the
phenotypic ‘labeling’, which is considered the gold standard. In psychiatry this can be challenging,
since even though considerable effort are put into standardizing clinical measurements, the
reliability of the labelling may not always be high [67, 68]. This can furthermore be a challenge
for multi-site dataset where different raters (and potentially even rating systems) have been used.

2.3.2 Unsupervised machine learning

The overall goal of unsupervised machine learning is to discover statistical dependencies in the
data without using labeled information. For fMRI data, two commonly used applications are i)
decomposition methods for feature extraction and ii) clustering for disease subtyping.

Feature extraction: Due to the high dimensional of fMRI data, feature extraction is an
important step that is included in most fMRI studies. Often, feature extraction is approached
by either using brain atlases (parcellation based approaches) or by unsupervised decomposition
methods, which can find data-driven patterns in the data. Themost commonly used decomposition
method for feature extraction in fMRI data is independent component analysis (ICA), which aims
to identify a latent representation of the data, such that the sources are maximally independent.
In practice, methods such as ICA find brain regions with consistent temporal fluctuations, which
means that they can be used to extract functional connectivity networks.

Subtyping: Unsupervised clustering methods can be used for disease subtyping, i.e. to find
subtypes within the fMRI data with a more homogeneous biology. Even though fMRI based disease
subtyping has been a goal for many years, the subtyping field has previously been challenged
by the relatively small sample sizes and the high dimensionality of the data. However in recent
years, several subtyping methods have been specifically developed for high dimensional data,
which carries great potential for future applications [69, 70].

2.3.3 External validation

As for many scientific fields, a core challenge in fMRI is that the findings from most studies are not
tested on external data, and for those that are, the findings often do not generalize well [71–73].
Even for supervised machine learning studies, where prediction performances are evaluated
on ‘out of sample’ individuals, the performance often drop drastically when applied to external
test datasets [17, 66]. E.g., in the review paper by Woo et al. they showed that the weighted
mean accuracy of classification studies in psychosis was around 80% on the ‘model development
sample’, while only few models were prospectively tested on external data. For those that tested
on external data, the accuracy dropped substantially to a weighted mean of approximately 60%

[17]. This is in contrast to neuroimaging studies in Alzheimer disease, where findings were
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reproducible on external data with similar prediction performances. It should be noted that these
findings are not specific for fMRI, but neuroimaging data in general.

The advantages of testing a model on external data is twofold. Firstly, it removes the‘data-
dependency bias’ and thereby the risk of reporting a model that is overfitted to a specific dataset.
Secondly, when only testing the final model on the external data, this further removes potential
‘model flexibility bias’ which can occur during model development, e.g., if several different
machine learning models are trained [17, 74].

2.4 Multi-site fMRI data

Since acquisition of fMRI data is expensive (economically, time-wise and with respect to the
burden that patients experience), most studies so far have relied on relatively small single site
studies. However, in the last two decades an increased focus has been on multi-site datasets,
which can be used to increase the sample size, speed up the data collection and which might
even be necessary in cases where it is difficult to recruit participants. 2 Multi-site datasets exists
in different formats. They can either come from coordinated initiatives, where MRI protocols,
phenotypic assessments and inclusion/exclusion criteria have been standardized across acquisition
sites. Examples of such coordinated initiatives include the ‘Human Connectome Project’ [75] and
‘UK Biobank’[76], as well as multi-center clinical trials in drug development.

Alternatively, multi-site datasets can also come from data sharing initiatives such as ‘OpenfMRI’
which enables researcher to share their datasets with others.

Apart from increasing the sample size, multi-site data also includes more sources of hetero-
geneity, which can lead to site specific biases. These biases should be kept in mind when designing
a study on multi-site data, particularly if the disease factors are confounded with the site bias. E.g.
a extreme case would be if data from all patients were acquired at site A, while healthy controls
from site B. In this case it would not be possible to determine if the found difference are related to
the disease or reflect site biases between the two groups. Site related biases have been described
in different ways in the literature, but we will use the description by Yamashiata et al. who have
categorized multi-site biases into sampling and measurement biases [77, 78].

Measurement bias: This bias occurs due to technical factors that are different between the
sites such as scanner manufacturer/types, image acquisition protocols, MRI coil use etc. Since
measurement biases are a sources of non-biological variability, the goal is often to minimize the
influence of these. This can be done in a number of ways as described in the next section.

Sampling bias: This kind of bias is related to biological differences in the population and
clinical assessments between site. For example, different sites have access to to different patient
populations, have different raters (and potentially rating systems) and might also differ in their
inclusion/exclusion criteria. When the data is acquired during a coordinated initiative, the
influence of the two latter examples can be reduced by standardizing protocols and assessment
procedures across the sites.

2E.g. when a study is performed on a very narrow clinical population.

https://www.humanconnectome.org/)
https://www.ukbiobank.ac.uk/
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Both for single, and multi-site studies, it is important to consider how the inclusion/exclusion
criteria are defined according to the question that is being studied. When using very strict criteria
(e.g., only including young females with first psychosis, no comorbidity and before treatment
onset), it will be difficult to recruit (often resulting in limited sample sizes) but the dataset would
be quite homogeneous. A biomarker found in such a study might have a large effect size, but
would likely generalize poorly to external data, since the biomarker was found on a small portion
of the ‘patient space’ [21, 67]. On the contrary, a study with broad inclusion criteria the sample
size will be much higher, however it might only be possible to find a limited number of biomarkers,
since these have to be shared by the majority of participants. Furthermore, a biomarker from such
a study might be non-specific, such as secondary effects related to differences in lifestyle [21].

2.4.1 Multi-site variability reduction

Measurement biases can be reduced through different steps all the way from data acquisition
and preprocessing to how the predictive modelling is performed. In this section we have mainly
focused on factors that influence the functional connectivity from multi-site studies, since this is
the setting in which we used multi-site data.

Data acquisition: When multi-site studies are planned (e.g. in a multi-site research initiative
of clinical trial), there are several factors that should be considered when attempting to standardize
the acquisition parameters across sites. The multi-site standardization will often have to be a
pragmatic choice, since most imaging sites sites are diverse in their equipment, which means
that it will be difficult to include different sites if too high standardization requirements are
set. A pragmatic choice can be to specify a recommended protocol, where some of the most
critical factors are fixed (e.g. the magnetic field strength), while others can be implemented with
more flexibility between sites. In 2009, Van Dijk et al. explored how the functional connectivity
reliability was affected by different parameters in the acquisition (as well as preprocessing and
other analytical procedures) across six sites [79]. Overall they found a moderate to high test-retest
reliability, and that the correlation strength depended on the task (open eyes with fixation cross
were best) and duration of the scan time (stabilized around 5 min), while other factors influenced
the stability to a lower degree [79]. Similar results were also found in a study by Noble et al in
2019 who also found the largest reliability effect depending on the scan time [80], and it has been
suggested that field maps (which allow for correction of distortion due to field inhomogeneity)
should be included when possible [81]. Finally, in a review paper from Carmichael et al. they
suggested that the following factors should be consistent across sites: type of pulse sequence,
temporal resolution (TR), voxel size and slice thickness/spacing, number of observations, flip
angle and field of view [18]. For studies that use data from retrospectively pooled data sharing
initiatives (e.g.‘OpenfMRI’) these factors can be considered when choosing what datasets to pool.
Whereas the parameters described above are related to technical factors, it should be noted that
good data quality also highly depends on that the technician that acquires the data is sufficiently
trained and that quality control is performed on the data.

Preprocessing: Preprocessing procedures aim to clean and standardize the data prior to
further analyses, to minimize the effect of non-neuronal sources of variability. Preprocessing can



2.5. fMRI biomarkers − where are we now 13

include many different steps, which has been shown to affect the final outcome [79, 80, 82, 83].
Overall, the degree of preprocessing can be considered in two ways. Firstly, a study can aim
to tailor the preprocessing for the specific dataset to remove as many sources of non-neuronal
variability as possible, the second approach is to keep the preprocessing at a minimal which can
give increased robustness and generalizability between studies [84]. This is described in more
details in the preprocessing section 3.1.

Multi-site harmonization (feature level): Even after standardizing imaging protocols and
using preprocessing, earlier multi-site studies have shown that there are still site biases between
the datasets [77, 85, 86]. This has motivated the development of multi-site harmonization methods.
Different kinds of multi-site harmonization methods exists both with [77, 86] and without [85–88]
travelling subjects. Multi-site harmonization methods and are further described in section 3.9.

Multi-site data in predictive modelling: Whereas the earlier methods attempt to remove
the multi-site bias, it has also been suggested that this might not be needed if a sufficient amount
of multi-site data is used to train the model. In an multi-site fMRI study on the Autism Brain
Imaging Data Exchange database, Abraham et al. made a structured comparison on how different
factors in the prediction pipeline, including the amount of data used for training (compared
to testing) impacted the prediction results [89]. They performed their predictions either using
‘inter-site’ prediction, where data from a whole site was left out for testing, and ‘intra-site’, where
a proportion of the participants from each site are used for the test dataset instead, as illustrated
in Figure 2.4.

Figure 2.4: Intra-site and inter-site testing. In Intra-site cross validation (Panel A) data from
all sites are used both in the training and testing set. In contrast, for inter-site cross validation
(Panel B) data from one or more sites are left out as test data (external data). This figure is inspired
by panel A of Figure 1 in Abraham et al. from 2017 [89].

Overall they found that the main difference between intra-site and inter-site site setting was
an increased variability of the inter-site predictions, but that this disappeared when sufficient
amount of data was used for training [89]. The influence of intra-site and inter-site predictions
are further described and illustrated in section 4.2.

2.5 fMRI biomarkers − where are we now

The search for fMRI biomarkers in brain disorders such as schziophrenia has been ongoing for
several decades. Whereas structural MRI biomarkers have already proven highly useful in many
clinical applications, such as stroke [90] and multiple sclerosis [91], the only routinely used
clinical application of fMRI is in presurgical mapping. Here, fMRI (often using a robust paradigm,
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e.g. to determine language areas [92, 93]) is used to localize an area for surgery, mostly in patients
with brain tumor or epilepsy [64]. A core challenge of clinical applications for other purposes, is
that they mostly require fMRI to provide not only the location (as in presurgical mapping), but
also the activation strength, for which there are still methodological challenges that need to be
addressed to get reliable estimates on single subject level [64].

In the last decade, where the field has started to focus on data-driven methods and large multi-
site datasets, there have been rapid advancement of multiple fronts 3, which give considerable
reason to be optimistic about the future [15]. Overall, the field is still at stage of finding solutions
for methodological challenges rather than contributing with specific and robust biomarkers for
clinical practice [6, 94]. However, even though there are important challenges to be overcome,
it has been argued that it is now a matter of when, rather then if, a solution to these is found
[94–96].

2.5.1 fMRI biomarkers in drug development

The use of fMRI biomarkers in drug development is an example of where there is great potential,
but which so far remains relatively limited due to a variety of biological, technical and strategic
barriers [18]. In this PhD project we have not used data from any clinical trials, but the use of fMRI
in drug development have been a strong motivation to look into the potentials and challenges
related to multi-site imaging and reproducibility of fMRI biomarkers (Study 2-4). In this section
we will thus give a short introduction to how fMRI can be used in drug development. For more
comprehensive descriptions of the potentials and challenges, we refer to earlier reviews on the
topic [18, 97, 98].

In early phases (Phase 1 and 2) of clinical drug development, fMRI can be used to detect
the functional effect of a pharmacological intervention (pharmacodynamic biomarker). While
positron emission tomography (PET) imaging is often used in drug development to measure the
effect of the compound on a receptor level in the brain, it can not be directly used to measure
multiple effects on more than one receptor type, nor target receptors for which no labelling has
been developed. In contrast, fMRI can be used as a circuit engagement biomarker that reflects
activity of multiple neurotransmitter systems on a brain circuit level [12, 18, 99].

In later phases (phase 3 and 4), fMRI is more likely to be used to demonstrate normalization
of a disease related fMRI signal or to give a more objective measure of disease modification, which
can be used as (additional) evidence for a regulatory submission [18]. Since clinical trials in later
phases include more patients, these trials are mostly carried out at multiple clinical sites which
should be considered when planning a study.

Even though there are still methodological challenges to be solved, fMRI has been used in
more than 1,000 clinical trials, and approximately one third of these had fMRI as the only primary
outcome, as shown i a review by Sadraee et al. [100]. In this paper, they described fMRI as
an outcome measure in clinical trails based on a systematic review in ClinicalTrials.gov from
1998−2018 [100].

3As recently described by Calhoun et al. some of the fields with remarkable growth in recent years include deep
learning, multi-modal fusion, and dynamic connectivity [15]

https://clinicaltrials.gov/
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To obtain an overview of fMRI trials in schizophrenia, we performed a brief search on
ClinicalTrials.gov and found 18 industry funded clinical trials in patients with schizophrenia
(excluding trials that were terminated). Figure 2.5 shows the distribution of the trials in different
phases (Panel A), the name of the industry sponsor (Panel B), and number of started trials per
year (Panel C). First of all, we found that a wide range of companies have sponsored these trials,
and that only few companies have funded more than one trial. Comparing the results of this
short search with the review from Sadraee et al. we also found that the majority of trials where
in phase 1, however whereas Sadaree et al. reporting an continuously increasing number of trials,
we found that for schizophrenia only two trials have been started since 2016. When comparing
the curve with the overall number of industry sponsored trials in schziophrenia, a similar trend
is seen, where the number of trials peaked around year 2008, and then have steadily decreased
thereafter [101]. This indicates that the decreased number of fMRI trials in schizophrenia are
related to the elevated failure rate and number of pharmaceuticals companies that have stopped
their activities in schizophrenia [12]. Other factors have likely also impacted this development
such as the increased awareness about not only the promises but also challenges of fMRI as
biomarker in drug development [18], lack of robust fMRI biomarker that are replicated across
studies[6], and the COVID pandemic which have decreased the initiation of clinical trials [102].

Figure 2.5: Overview of clinical trials in schizophrenia that used fMRI. A search on
ClinicalTrials.gov for industry sponsored trials in patients with Schizophrenia that have used
fMRI (performed on 6th of February 2023). This search included 18 studies, which here are listed
according to their phase (Panel A), industry sponsor (Panel B), and number of trials started each
year (Panel C). The full search history is added in appendix section, which also includes the full
name of the industry sponsors A.4.

Examples of potential biomarkers

To round off, we here want to give two examples of potential fMRI biomarkers that could be used
in drug development for patients with schizophrenia. Examples like these in part motivated our
studies.

A reliable PANSS biomarker: Since the PANSS scale is often used as a endpoint in clinical
trials, and is even considered the “gold standard” for assessment of antipsychotic treatment
efficacy [103], a fMRI biomarker that reliably reflects changes in the PANSS scale would be very
beneficial. E.g. such a biomarker could be included in an early clinical trial to investigate if the

https://clinicaltrials.gov/
https://clinicaltrials.gov/
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treatment intervention would alter the activation. In this way, the biomarker readout could help
to de-risk the clinical development plan, and even be used for regulatory support or even decision
making. However, the latter would require very rigorous validation of the biomarkers analytical
and clinical validity [7].

Patient stratification biomarker: Since schizophrenia is a very heterogenous disorder,
treatments targeting a specific disease-mechanism may not produce the desired response in all
patients. Here a fMRI biomarker that could be used to subtype patients into groups with a more
homogeneous biology, which could be used stratify or enrich the population of patients included
in a clinical trial.

2.5.2 fMRI biomarkers in Schizophrenia

Since fMRI can be used to study brain activation in the whole brain (including subcortical
regions) and brain networks, it has become a popular tool for investigating brain alterations
in schizophrenia. Abnormal brain activation have been linked to many different aspects of the
disease, such as specific symptoms and different disease stages [24]; however, with diverging
results which often have been attributed to the high heterogeneity of the disease and small
sample sizes [21, 67]. Over the last two decades, an increasing number of fMRI studies have
identified widespread functional connectivity changes in patients with SZ compared to healthy
controls, supporting the view that schizophrenia can be characterized as a disorder of disorganized
communication among brain networks[41, 104]. However, since the methods and results varies
across studies, firm conclusions that can lead to clinically applied biomarkers, are yet to be made
[6].

In the following sections we will give a short summary of the related literature for our four
studies.

2.5.3 fMRI biomarkers for Schizotypy (Study 1)

The goal of risk prediction biomarkers it to identify individuals with increased risk of developing
a disease, which provides the opportunity for early interventions and possibly even disease
prevention. One way to identify risk prediction biomarkers of schizophrenia is to study the
neurobiological underpinnings of schizotypy.

At the time when Study 1 was performed, only few studies had used fMRI in individuals with
schizotypy either with conventional brain mapping approaches [105–109] or using predictive
modelling [110–112]. Overall, these studies showed that various brain regions were altered in
relation to schizotypy, and Modinos et al. had shown that their machine learning analysis had
higher sensitivity compared to conventional brain mapping analysis [113].

In an a study from 2015 Wang et al. found positive correlations between the degree of social
anhedonia and the activation in the temporal parietal junction and medial prefrontal cortex,
during a social cognition fMRI task. Based on these findings, the goal of Study 1, was to build
a machine learning pipeline with a broad selection of different feature extraction methods, to
determine which of these were sufficiently strong to classify participants according to their degree
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of social anhedonia (high or low). Furthermore, we aimed to validate the classification pipeline,
including the use of decomposition methods for feature extraction through a task-paradigm
classification for which an reliable gold standard for the class labels exists (e.g. theory of mind vs.
physical control condition task).

2.5.4 Brain connectivity changes in Schizophrenia (Study 2)

Within the last five years, meta analyses and studies with relatively large sizes have consistently
found that patients with SZ have hypoconnectivity in a most parts of the connectome [13, 89, 114–
117], i.e., that the connectivity between brain regions are decreased in patients with schizophrenia
compared to healthy controls. When focusing on data from resting state fMRI, alterations have
been found for most resting state networks (RSN) [40]. These alterations are often categorized
as eitherwithin a certain RSN e.g., connectivity between brain regions within the frontoparietal
network (FPN), or between RSN connectivity constituting changes in connectivity between brain
regions of different RSN, e.g., between the FPN and sensory motor cortex as illustrated in Figure
2.6.

In a meta study from Dong et al. in 2018, they found that schizophrenia was mainly character-
ized by hypoconnectivity within in the thalamus, DMN, affective, ventral attention, auditory and
somatosensory network, as well as between several of the RSNs. In the latter, the ventral attention
and FPN where "hubs" for connectivity alterations [13]. The only instance of hyperconnectivity
was found between the affective and ventral attention network [13]. Furthermore, several earlier
studies have found an imbalance between the DMN, FPN and salience network in patients with SZ,
which supports the triple network model of psychopathology [40, 60, 117]. While these studies
show interesting trends, robust conclusions have yet to be made, since the individual studies vary
greatly in their methods and findings [13, 15, 40].

Figure 2.6: Illustration of within and between RSN connectivity. Panel A shows the 7-RSN
parcellation from Yeo et al. [118], and an example of within (e.g. between ROI 1 and 2) and
between (e.g. between ROI 1 and 3) RSN connectivity. Often parcellation based connectivity is
shown in a connectivity matrix as visualized in Panel B. Panel C shows the interpretation of
within (RSNW) and between RSN (RSNB) connectivity on a connectivity matrix. This figure is an
adapted version of Figure 5 from Paper C.

In goal of Study 2 was therefore to use one of the largest available multi-site datasets
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with schizophrenia patients to classify the disease diagnosis and to test if the classification was
reproducible on external data. To achieve this, we adjusted the prediction pipeline from Study 1
to have an increased focus on robustness and reproducibility. Furthermore, due to the missing
consensus of earlier studies on which RSN is important to differentiate patients with SZ from
healthy controls, we focused a substantial part of our analysis to determine if any individual RSN
could drive the classification, and how these results related to weightmaps which are typically
used to interpret the output from classification studies.

2.5.5 Prediction of PANSS scores (Study 3)

Since the PANSS scale is frequently used to measure the symptom severity of schizophrenia,
several studies have attempted to find brain patters that correlate or even predict PANSS scores.
This can be done by using the total PANSS score (overall measure of symptom severity), individual
items of the scale, or the three PANSS subscales indicating the positive, negative and generalized
dimension. The last two options can even be used to search for psychopathological subtypes in
an attempt to disentangle the heterogeneity in schizophrenia [50].

Within the predictive modelling field, we know of four studies that used fMRI data to predict
PANSS scores. The first was published by Koch et al. in 2015, who used fMRI data from the ventral
striatum during a reward processing task and predict the total PANSS score, and found a high and
significant correlation [119]. The other three studies used functional connectivity from resting
state data to predict the PANSS positive and negative subscales. These studies found significant
prediction performances when using an individualized connectivity extraction approach, while
no significant results when using traditional group atlases [120–122]. Furthermore, to evaluate
which brain regions were important for the predictions, they interpreted the weightmaps and
found that it was mainly between RSN connectivity that drove the predictions. All of these studies
were performed on single site data, and even though similar methods were used for the three last
studies, they were applied on different clinical populations (patients with schizophrenia [120],
adolescent-onset-schizophrenia [121] and first episode schziophrenia (before and after treatment
with Risperidone) [122]). Furthermore, some studies have used brain activation correlations
(instead of predictive modelling) to search for brain regions with a significant PANSS relation
[123–125]. All in all, findings and methods of earlier studies are divergent and there is so far no
fMRI biomarkers that have shown accurate and reproducible relations to the PANSS scale.

If it would be possible to find brain activation patterns that accurately and reliably predicted
the PANSS score, this biomarker would be valuable both in drug development (as described in
section 2.5.1) and to further understand how brain alterations are related to the symptom severity
(PANSS total) and the to the three symptom dimensions specified by the subscales.

The goal of Study 3 was to use regression-based predictive modelling to predict both the
total PANSS score and the three subscales. This was done using the same features as in Study 2,
such that multi-site data was used to train the model, and the reproducible was tested on external
data.
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2.5.6 fMRI based subtypes in Schizophrenia (Study 4)

Another way to tackle the internal heterogeneity of schizophrenia is to search for fMRI based
subtypes. Compared to PANSS based psychopathological subtypes, these would not rely on any
information from subjective measures such as diagnostic labels or clinical scales (e.g. PANSS),
and they therefore have the potential to find more data-driven subtypes. Within schizophrenia,
we know of three earlier studies that used fMRI for disease subtyping. The first studies from
Brodersen et al. [126] and Yang et al. [127], demonstrated that clustering can indeed be used to
subtype patients with SZ; however, these studies suffered from some methodological challenges
[14] and their findings have not year been replicated. The third study was by Tokuda et al.
from 2021 [128], where they seeked to identify a common brain network that could discriminate
between different psychiatric disorders (including schizophrenia) and healthy controls. Since
this study investigated "disorder differentiation networks" they did not aim to identify subtypes
within disorders themselves.

The discovery of robust and reproducible subtypes (either from clinical scales or from fMRI
data) would be highly beneficial to disentangle the high heterogeneity of schizophrenia, and
possibly even between psychiatric disorders [128, 129]. Subtypes with a more homogeneous
biology might even provide a natural basis for ‘stratified psychiatry’ [129] and can also have
applications in drug development as described in section 2.5.1.

The goal of study 4 was to use multi-site data to search for fMRI based subtypes and to
validate its reproducibility on external data. Since the fMRI based subtyping field is still at an
exploratory state, a large part of our analyses were focused on determining the stability of the
clustering solutions.

2.6 Overview of datasets

This section gives a overview of the datasets that were used for the four studies.
In study 1, (dataset D1), we included data from 76 college students from Guangzhou Medical

University, where participants were selected such that they covered a continuous range of
schizotypy. None of the participants had a history of drug abuse or psychiatric disorders. All MRI
scans were acquired on a 3T Siemens Verio MR scanner at Guangzhou First People’s Hospital in
2012 (single site study). We used fMRI data from a comic strip task that was designed to specifically
probe theory of mind and empathy processing (two active task conditions). Furthermore, the
comic strip task included two ‘physical control conditions’ which were designed to look similar
to the social cognition tasks. The MRI specifications can be found in our publication of this study
(Paper B). The study was approved by the Ethics Committee of the Institute of Psychology at
the Chinese Academy of Sciences, and data collection was finished already prior to the work
conducted in this thesis. The same dataset was also used in the master thesis of Lærke Gebser
Krohne, where a range of analysis were performed which inspired the work of this study. However,
all the analyses (apart from preprocessing) that are included in Study 1 and publications A and B,
were performed after the completion of the master degree.
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For study 2-4 we used multi-site data from two publicly available data bases: i) the Decoded
Neurofeedback (DecNef) Project Brain Data Repository (DecNef), where we used dataset 3 ‘SRPBS
Multidisorder MRI Dataset’ as described in Tanaka et al. [19], ii) the Center of Biomedical Research
Excellence (COBRE) datasets [20]. For all participants, we used the structural T1 weighted image,
and 5-10 min resting state fMRI data with eyes open. More detailed information about the number
of included participants and MRI acquisition parameters for each site can be found appendix
table A.1. For the DecNef database, the data from some of the sites were acquired with a unified
protocol [19, 77] (these sites are marked with an * in Supplementary table A.1), while data from
other sites where not. Studies 2-4 were approved by the Institutional Ethical Review Board at the
Technical University of Denmark, Department of Applied Mathematics and Computer Science
(COMP-IRB-2022-03).

For each study we split the data into a discovery dataset which we used to train the different
machine learning models, and an external test dataset to asses the reproducibility of our findings.
The exact number of participants and sites included in each dataset differed between studies as
specified in Table 2.1 and the following sections:

In study 2 (dataset D2) we aimed to maximize the amount of data, which means that we
had an unbalanced dataset with more healthy controls (HC) than patients with schizophrenia.
We constructed the splits between dataset such that approximately 70% of the data was used
for training the models in the discovery dataset (D2a) and data from the remaining two sites
were used in the independent test dataset (D2b), hence this splitting procedure served to assess
between-site generalization.

In study 3 (dataset D3) we kept the same split between the discovery (D3a) and test dataset
(D3b), but only included SZ patients that had a PANSS score available.

In study 4 (dataset D4)we created a balanced dataset in order to have the same amount of SZ
patients and HC for for both the discovery dataset(D4a) and external test dataset (D4b, including
the same two sites as in Study 2-3). The balanced dataset was constructed using the R package
MatchIt [130] with nearest neighbor matching based on propensity scores (age and gender). We
used exact matching on site and the quality of the matches were assessed through the balance of
the covariates (age and sex) before and after matching (using diagnostic quantile-quantile plot
(QQ) plots), and visual inspection of the propensity score distributions.

Further information and acknowledgement to the DecNef and COBRE datasets can be found
in section A.3.1.

Study 1 Study 2 Study 3 Study 4
D1 D2a D2b D3a D3b D4a D4b

Healthy HC SZ HC SZ SZ SZ HC SZ HC SZ
nparticipant 76 486 143 260 63 136 44 143 143 63 63
nsites 1 8 3 2 2 3 1 3 3 2 2
Sex (♂/ ♀) 37/39 256/230 100/43 179/81 35/28 99/37 20/24 101/42 100/43 37/26 35/28
Age (µ±σ) 19 ±1 40 ±16 36 ±12 34 ±12 42 ±10 36 ±12 42 ±10 35 ±10 36 ±12 42 ±11 42 ±10
Table 2.1: Demographics for the four studiesNumber of participants (healthy control(HC) and
patients with schizophrenia (SZ)), number of sites, gender and age for the participants included
in each of the four studies. For datasets D2-D4 (study 2 -4) the suffix "a" is used for the discovery
dataset, and "b" for the external data.

https://bicr.atr.jp/decnefpro/data/)
http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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This chapter describes the different steps that we used to move from raw data to interpretable
brain features, which will be used for the subsequent analysis. The overall steps are illustrated in
Figure 3.1 and include preprocessing, feature extraction, and multi-site harmonization methods.
Feature extraction is an important step for fMRI data, due to the very high dimensionality of the
raw data (in the order of 10-100.000 ). In this high dimensional feature space, the data lives on a
limited manifold which only makes up a relatively small part of the space, hence dimensionality
reduction can be used while retaining most relevant information [131]. If feature extraction is
not used prior to prediction, the trained models are likely to be too specialized and generalize
poorly to test data, which is known as overfitting. Furthermore, feature extraction is important
to ease the the interpretation of the extracted features [17].

The aim of this chapter is to give a conceptual understanding of the different steps and how
they have been used across the four studies of this PhD project. More detailed information about
the specific implementations in each study are given in the corresponding papers for each study.

Figure 3.1: From raw fMRI data to brain features. Illustration of steps included in Chapter 3:
i) preprocessing ii)feature extraction and iii) multi-site harmonization. From the preprocessed
data, a data matrix X is constructed, which includes the time series for each voxel (V ). This data
matrix is then converted into interpretable brain features using four feature extraction methods.
In a preliminary analysis, we have investigated the effect of applying multi-site harmonization as
described in section 5.5

3.1 Preprocessing

When fMRI data is acquired, the BOLD signal is mixed with non-neuronal sources of variability,
which can hamper the validity of inference and interpretability of the results [84, 132]. Therefore,
most fMRI studies include preprocessing procedures to clean and standardize the data before
statistical analysis. Preprocessing includes several steps, which can be split into two categories as
described by Esteban et al. [84]. Firstly, preprocessed time series are derived from the original data
after the use of signal corrections, spatio-temporal filtering and resampling onto a standard space

21
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1. Secondly, nuisance signals and experimental confounds are estimated to effectively remove
their contribution for further analysis.

Each preprocessing step include a range of different choices, which leads to a large number
of parameters in these procedures. One may view these as free parameters to optimize the
preprocessing procedures [133], however such an optimization may lead to overfitting, bias and
can compromise comparison of findings across studies [82, 134]. Even though there have been
several attempts to outline the best practices for preprocessing [83, 134], the large variability
in data acquisition protocols has led to the use of customized preprocessing pipelines for most
individual studies [135]. In 2019, Esteban et al. published ‘fMRIprep’, which is a data driven
preprocessing pipeline for fMRI data that automatically adapts a preprocessing workflow for
fMRI datasets with no or minimal manual intervention. fMRIprep has been developed to enable
robust and reproducible preprocessing, and the authors have shown that it produces high quality
results for fMRI data [84].

In Study 1, we used a customized preprocessing pipeline, while fMRIprep was used for Study
2−4. The different preprocessing steps and parameter choices for each of our studies can be
found corresponding papers.

3.2 Univariate brain mapping

For many years, the univariate brain mapping approach has been the traditional way to determine
which brain regions are related to an outcome of interest. This is mostly done using a mass-
univariate analysis where a parametric statistical test is performed for each voxel separately as
illustrated in Figure 3.2.

Figure 3.2: Illustration of Univariate brainmapping using Statistical ParametricMapping
(SPM). In a SPM analysis the following three steps are performed for each voxel. First, the time
series are extracted from the preprocessed data. Secondly, the β parameters are estimated for both
the task and the control condition, using the general linear model and a design matrix (which
includes all explanatory variables (incl. task onset and duration)). Finally, to perform statistical
inference on the parameter estimates, a parametric test (t-test) is performed to asses potential
differences between the active and the control condition. This is repeated for all voxels, which
results in a statistical parametric map to describe task activation.

We used mass-univariate brain mapping in Study 1, to determine the statistical parametric

1often using the the (Montreal Neurologic Institute (MNI) brain template, such that brain activation peaks can be
reported in MNI coordinates
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map between the task and control conditions. We did this using Statistical Parametric Mapping
(SPM)[136] as described in Paper B. In a SPM analysis, the general linear model is used to described
the observed data as a linear combination of exploratory variables and an error term. For each
voxel v , the observed data x ∈RT×1 (where t = 1, . . .T is the number of time frames, i.e. the time
series for the given voxel) is given by

xv = Dβv +ϵv , (3.1)

where D ∈RT×p is the design matrix including all p explanatory variables that are presumed
to influence the data, βv ∈ Rp×1 is a parameter vector and ϵv ∈ RT×1 is the noise term for each
time series. It is generally assumed that ϵv is normal distributed and approaches such as pre-
whitening are used to ensure that the elements are uncorrelated [137]. The parameter vector βv

is typically estimated by minimizing the sum of the squared residuals. Here eq. 3.1 is rewritten to
the so called ‘normal equation’, by multiplying each site with the transposed design matrix (D⊺) :
D⊺xv = DD⊺βv . It can be shown that any βv that satisfies the normal equation, will also minimize
the sum of squares of the residuals ϵ̂v

⊺ϵ̂v [138]. Therefore the parameters can be estimated such
that

β̂v = (D⊺D)−1D⊺xv. (3.2)

Statistical inference on the parameter estimates are then used to determine if there is a
significant difference between the active and the control condition. This is performed using
classical parametric testings, where the null hypothesis is that the task has no effect on the signal
H0 : cβ = 0 whereas the alternative hypothesis states the opposite H0 : cβ ̸= 0. Here c is the
contrast, given as a linear combination of βv . As the variance σ2

v is estimated from the data, the
value below is distributed according to a Student’s t-distribution under the null hypothesis

tv = cβ̂v√
c((D⊺D)−1c⊺σ̂2

v

. (3.3)

Since this test is performed for each voxel, multiple comparison correction is needed. In the
present study we used random field theory (RFT) which seeks to control the family-wise error
while taking into account smoothness of the residuals, effectively making it less conservative than
Bonferroni correction [139, 140]. The degree of smoothness includes both the intrinsic smoothness
of the image acquisition process, and the additional smoothing applied during preprocessing. The
intuition behind RFT is that the greater the smoothness the less severe is the multiple comparison
problem is, and thus less stringent correction is needed [140].

3.3 Parcellation based connectivity analysis

Parcellation based connectivity analysis is a commonly used feature extraction method to estimate
brain connectivity of fMRI data, and the main steps are illustrated in Figure 3.3. Different brain
parcellation methods exists, and earlier studies have found that the selection of an adequate brain
parcellation atlas is an important decision point for connectivity analysis[141]. However, so far
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there is no ‘gold standard’, and parcellation methods vary greatly between studies [142, 143]. In
this section, we shortly describe the theory of parcellation based connectivity methods, and then
describe how we have used this feature extraction method across the four studies.

Figure 3.3: Illustration of Parcellation based connectivity analysis. Step 1, choose a brain
parcellation, step 2: for each brain parcel (also called region of interest (ROI)), the time series is
extracted. Step 3, the correlation between time series is calculated pairwise for all ROIs. Step
4, these correlations can be shown either in a connectivity symmetric matrix or as correlation
strengths (edges) between ROIs on visualization of the brain.

The first step of a parcellation based analysis is to define a way to extract brain parcels (also
often referred to as regions of interest (ROIs)). Overall brain parcels can be defined in different
ways: i) a sphere around a center coordinate ii) parcels from a brain atlas or iii) using data-driven
approaches to parcel the brain into different regions (Figure 3.3). The second step is to extract
the time series from each brain parcel 2. Thirdly, for each pair of brain parcels (for K parcels,
this results in (K (K −1))/2 connectivity pairs), the correlation is estimated, e.g. this can be done
using Pearson’s correlation coefficient. Using the Fisher transform, the correlation coefficients
are then transformed to their corresponding Z-values, such that the probability density function
(PDF) of the distribution gets closer to the PDF of a normal distribution [144, 145]. Finally, the
connectivity is visualized directly as a color coded connectivity matrix, or as correlation strengths
(edges) between ROI on a visualization of the brain 3.3.

3.3.1 Brain atlases used in our studies

We have used parcellation based connectivity analysis in all four studies. In Studies 1−3 we have
used the ‘sphere approach’, where brain parcels were defined as a sphere around a set of center
coordinates, and in Study 4 we have used a brain atlas.

Parcellations using in Study 1

In Study 1, we used two different parcellations, where the center coordinates came from either a
literature study or a pooled condition analysis as described below. The ROIs were defined as all
voxels in a sphere with a radius of 8mm.

2This which can be done either by using the mean signal or first eigenvariate which reflects the strongest single
source across the included voxels of the brain parcel [138]
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Literature study coordinates: the first ROI definition included 25 center coordinates which
were determined through a literature study for the social cognition task (comic strip task of theory
of mind and empathy processing) that was used in the study. For each ROI, we took into account
both the specificity of the presented task [146–148] and the consistency across studies [149, 150].
The center coordinates are illustrated in Panel A of Figure A.1.

Pooled condition analysis coordinates: in an attempt to use a more datadriven approach
to find center coordinates, we also extracted center coordinates from SPM analysis of the given
task. Here we used a ‘pooled condition analysis’ which reflects the pooled effect of both of the
social tasks conditions compared the the controls. This analysis resulted in 16 cluster, of which
the coordinates are shown in Panel B of Figure A.1.

Parcellation used in Study 2 and 3

In Study 2 and 3 we used a center coordinate based brain atlas presented by Seitzman et al [151].
This atlas is an extension to the ‘Power atlas’ from Power et al [152] which included 264 ROIs.
In the Seitzman atlas rsfMRI data was used to get an improved representation of ROIs in the
subcortex and cerebellum [151], which resulted in a ‘300ROI’ atlas, that can be downloaded from
the Greene lab website. We excluded 25 ROIs since these were outside the the field of view for
most participants in our studies. For the remaining 275 ROIs (hencefort referred to as ‘275ROI
atlas’), we assigned a RSN label to each coordinate, using the 7-network parcellation from Yeo et
al. [118], since this was the RSN parcellation that we have used for the decomposition methods
in these studies.

Parcellations used in Study 4

In Study 4, we used two different atlases: i) the ‘275ROI atlas’ as described above, and ii) the‘Allen
atlas’ which is an ICA based atlas based on resting state data from 603 healthy controls which
was presented by Allen et al in 2011 [153]. The atlas includes 28 components that are each
assigned to one of the following RSNs: basal ganglia, auditory, sensory motor, visual, default
mode, attentional and frontal, as specified by Allen et al. [153].

3.4 Decomposition methods

Decomposition methods are instances of unsupervised machine learning algorithms that aim to
decompose the observed data as an outer product of matrices, often imposing a specific structure
and/or sparsity on these [154]. Given a dataset X ∈RT×V with T time frames and V voxels, the
goal of linear decomposition method are to find a basis set A = a1, . . . , aK such that the linear
space spanned by A is a close reconstruction of the data X

Xi = ϵi +
K∑

k=1
ak si (k) (3.4)

where the data from each subject Xi is characterized by unique coefficients si ∈RK for the basis
set of A and a residual noise term ϵi . Typically the goal is to find a solution such that K <<V ,

https://greenelab.ucsd.edu/data_softwar
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i.e, that the dimension of the basis set is much lower that the number of voxels, which gives
rise to the dimensionality reduction. In matrix notation, eq. 3.4 can be written as X ≈ AS where
S = s1, . . . , sn .

Decomposition methods such as independent component analysis (ICA) (described below)
are a model-free (do not rely on any brain atlas) alternative to parcellation based connectivity
analysis, which simultaneously explore connectivity across the whole brain, either on a individual
or group level [154].

We have used the decomposition methods ICA and multi-subject archetypal analysis (MSAA)
in Studies 1−3. Both methods result in a set of subject specific spatial maps, which reflect brain
networks and corresponding time series. These two methods are described in more detail below,
followed by a description of how we have labelled the spatial maps (section 3.7), and investigated
consistency of decomposition solutions across datasets (section 3.8).

3.5 Independent component analysis (ICA)

Independent component analysis (ICA) is one of the most frequently used data driven methods to
derive brain networks from fMRI data [155, 156]. In most neuroimaging applications spatial ICA
(illustrated in Figure 3.4) is used to find spatial maps that are maximally independent according
to a sparsity promoting prior distribution. Hence, the components are largely non-overlapping,
and the timeseries within each of the components will typically have high temporal correlation.

Figure 3.4: Illustration of Independent component analysis (ICA). For each of the K
components (specified by the user), ICA estimates a set of maximally independent sources (S)
and corresponding time series which have a high temporal correlation (included in the mixing
matrix A).

The classical (noise free) ICA decomposition model can be defined as

X = AS, (3.5)

where S ∈RT×V is the sources matrix. Here, each row represents a statistically independent map,
and A ∈ RT×T is the mixing matrix, which is formed by the time series of each component as
columns in the matrix. ICA aims to estimate an unmixing matrix W = A−1 such that

Y = WX. (3.6)

is a good approximation to the real sources, S.
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Group ICA Group ICA (GICA) is a commonly used method for fMRI analysis of group data,
which precedes ICA with a data compression steps using principle component analysis (PCA).

First PCA is applied to the data of each participant to reduce the dimensionality and hence
computational complexity, then these datasets are temporally concatenated, and finally group
PCA further reduces the temporal dimension, such that only K principle components are remain-
ing. Spatial ICA is then applied to decompose the compressed matrix X into spatially independent
spatial maps as given in equation 3.5. Finally, the participant specific spatial source and cor-
responding time series are obtained by using dual regression [157] (used in Study 2 and 3) or
back-reconstruction (used in Study 1) [158].

Prior to the ICA analysis, a number of components (K) needs to be specified. In all studies,
we have used the minimum description length (MDL) criteria, which is a model selection method
that penalizes the likelihood with respect to the number of comments for a given model [159, 160].
Throughout Study 1−3, we have applied ICA using the GroupICATv4.0a GIFT toolbox[161].
We have used the ‘Infomax’ algorithm, which separates the mixture of independent sources by
maximizing the mutual information which the output Y contains about its input X, using a fixed
Sigmoid non-linearly function [161, 162]. This algorithm produces a result which is equivalent to
maximizing the likelihood of the sources given an assumed independent source distribution.

3.6 Multi-subject archetypal analysis (MSAA)

Archetypal analysis is a decomposition method similar to ICA which includes additional con-
straints aimed towards easing the interpretation of the features [163, 164]. As for ICA the aim
is to identify a low rank representation X ≈ AS, where A includes the archetypes, which are
given by K distinct temporal profiles (analogous to the mixing matrix of ICA), S is the archetypal
source matrix (spatial maps), which reflect the contribution of the different archetypes to each
observation in the data matrix X. The archetype matrix A is defined as A = XC where C is the
seed region matrix, that specifies how the archetypes are generate from the data X.

Figure 3.5: Illustration of Multi-subject archetypal analysis (MSAA). For each of the K
components (specified by the user), MSAA finds a set of characteristic archetypes (time series,
columns in A) and their corresponding spatial maps (S), which reflect the fractional contribution
of each voxel to that specific archetype. The seed matrix (C) includes the voxels that generate the
archetype. Here the seeds for all K archetypes are shown. This process is shown in more detail in
Figure 3.6 and 3.7 for the whole brain and spotlight MSAA respectively.

The components are found by minimizing the sum of squares (Frobenius norm) reconstruction



28 Chapter 3. From raw fMRI data to brain features

error subject to a set of convex (non-negativity and sum-to-one) constraints

argmin
C,S

∥X−XCS∥2
F (3.7)

C, S ≥ 0, |ck |1 = 1 ∀k, |sv |1 = 1 ∀v .

The constraints on C enforce that the archetypes are a convex combination of the data X,
while they on S ensure that each observation in X is reconstructed by a convex combination of X.

Multi-subject archetypal analysis (MSAA) is an extension of archetypal analysis for group
analysis of fMRI data, which was presented by Hinrich et al. in 2016 [165]. Since MSAA is a
relatively recent decomposition method compared to ICA, this section includes more details
for the component estimation. In MSAA, the low rank representation for a subject i, is given
as X(i ) ≈ X(i )CS such that each subject have subject specific spatial maps S(i ) and archetypes
(A(i ) = X(i )C). On the contrary, the seed region matrix C is the same for all subjects, which ensures
the consistency across subjects.

Figure 3.6: Illustration of Multi-subject archetypal analysis (MSAA). Schematic overview
of spatial MSAA. For each subject i = 1,. . . , I , the data matrix X(I ) includes the time series (t
= 1,. . . , T ) for all voxels (v = 1,. . . , V ). Through alternating least squares optimization, MSAA
determines the common seed region matrix C, as well as a set of K temporal (A(i ) = X(i )C) and
spatial (S(i )) components for each of the I subjects. This figure is a slightly adapted version of
Figure 2 in Paper B [166]

MSAA enables heteroscedastic noise modelling, to overcome the challenge of inter-subject
variability which arises both due to changes in the brain activation (neuronal function and
cerebrovascular response) and noise sources (residual confounds that are not controlled for, such
as psychological noise or movement). This is done by including an additional noise term (σi ,v ),
which can capture both voxel (v) and subject (i ) specific noise.

In MSAA, the linear model for each subject can be formulated as:

X(i ) ≈ X(i )CS+E(i ). (3.8)

Where the noise (E(i ) with columns ϵi ,v ) is assumed to be independently distributed with
a Gaussian distribution such that ϵi ,v ∼ N(0, ITσ

2
i ,v ), where IT ∈RT×T is the identity matrix. In
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MSAA, the components are found by minimizing the negative log-likelihood (L) given by:

− log(L) =
I∑

i=1

V∑
v=1

Ti

2
log

(
2πσ2

i ,v

)
+
∥x(i )

v − X̃(i )Cs(i )
v ∥2

F

2σi ,v
(3.9)

Since the MSAA model includes the subject and voxel specific variances and mixing matrix,
the optimization is given as

argmin
C ;S1,S2,...,S I ;σ2

1,σ2
2,...,σ2

I

− log(L) (3.10)

C ≥ 0, |ck |1 = 1 ∀k

S(i ) ≥ 0, |s(i )
v |1 = 1 ∀v,k

As for other decomposition methods, estimating the components (C and S(i )) jointly leads to
a non-convex optimization problem [163, 165], and the solution is therefore found by alternating
optimization using projected gradient descent. Here, the gradient is calculated in the projected
space, holding one parameter fixed while optimizing the other (and vice versa), such that each
sub-optimization becomes a convex optimization problem. To do so, the matrices S(i ) and C are
rewritten to their ℓ1 normalization invariant variables as suggested by Eggert and Körner in 2004
[167]:

s̃(i )
k,n =

s(i )
k,n∑

i ′
s(i )

k ′,n

, and c̃n,k = cn,k∑
n′

cn′,k
(3.11)

with v = 1, ., . . .V . The gradients of the subject-specific archetypal mixing matrices S̃(i ) are
independent for each subject and can therefore be updated independently, while the gradient of
the common seed matrix C̃ is influenced by all subjects. The gradients are given by the following
two equations

G S̃(i ) = 2
(
C̃⊺X̃

(i )
)⊺(

X̃(i )C̃S̃
(i ) − X̃(i )

)
diag(σ−2

i ), (3.12)

and

G C̃ = 2
( I∑

i=1
X̃(i )

)⊺(
X̃(i )C̃S̃

(i ) − X̃(i )
)(

S̃(i )diag(σ−2
i )

)⊺
. (3.13)

To find the updates of S(i ) and C (in the normal space) the chain rule is used, resulting in the
updates

s(i )
k,v ← max{s̃(i )

k,v −µ
S(i )

v (g S̃(i )

k,v −
∑
k ′

g S̃(i )

k ′,v s̃(i )
k ′,v ),0}, (3.14)

and
c(i )

k,v ← max{c̃(i )
k,v −µ

C
v (g C̃

k,v −
∑
v ′

g C̃
v ′,k c̃v ′,k ),0} (3.15)

Given the ℓ1 normalization invariant variables for C and S(i ) the latent variables σ2
i ,v have

a closed form solution and can therefore be solved directly, differentiating the log-likelihood
function in Eq. 3.9 with respect to σ2

i ,v

∂ log(L)

∂σ2
i ,v

= Ti

2σ2
i ,v

−
∥x(i )

v − X̃(i )Cs(i )
v ∥2

F

2σ4
i ,v

. (3.16)
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Equalizing Eq. 3.16 to zero and isolating σ2
i ,v results in

σ2
i ,v =

∥x(i )
v − X̃(i )Cs(i )

v ∥2
F

Ti
. (3.17)

As seen in Eq. 3.9 when σ2
i ,v tends towards zero, the negative log-likelihood will approach

infinity. Therefore, to ensure the numerical stability, a minimal value for σ2
i ,v is

2∥x(i )
v − X̃(i )Cs(i )

v ∥2
F

Ti
≥σ2

i ,v . (3.18)

Since the joint estimation of parameters in MSAA is a non-convex problem, there is a risk
that the optimization identifies a local rather than a global minimum, which means that different
initialization (i.e., initial assignment of the components which are being estimated (S(i ) and C))
can lead to different solutions. A common way to tackle this, is to repeat the runs with different
initializations, and select the solution that maximizes the log likelihood given in Eq. 3.9. [163].

As for ICA, the user needs to specify the number of components, K. In our studies we used
the same K as for the ICA analysis, which was determined using the MDL criteria [159]. This is
expected to be a good approximation since the expressiveness of the models are largely equivalent
disregarding the constraints.

In the description of MSAA so far, the components are estimated using the full data matrix
X in equation 3.8. We will also refer to this approach as ‘whole brain’ MSAA (as introduced by
Hinrich et al. [165]), which is in contrast to ‘spotlight MSAA’ where only a subset of the columns
(voxels) of the data X are used to optimize the seed region matrix.

3.6.1 Spotlight MSAA

Spotlight MSAA can be a useful approach to search for archetypes that are related to a certain
set of brain regions. I.e., if the data comes from a task or patient population where there is a
hypothesis that brain region A plays an important role, then spotlight MSAA can be used to
enforce to algorithm to find archetypes with a seed in that region. The overall concepts and
mathematical derivations for spotlight MSAA were already given by Hinrich et al. in 2016 [165]
but the first application and investigation of its stability was performed during Study 1 or this
thesis.

For spotlight MSAA the subject specific model (equation 3.8 for wholebrain MSAA) is given
as:

X(i ) ≈ X̃(i )CS+E(i ), (3.19)

where X̃(i ) indicates the subset of voxels (M) in which the seed region matrix can find
archetypes. This is specified by a ‘spotlight mask’ which is given as an input to the algorithm as
illustrated in Figure 3.7.

The spotlight MSAA can be viewed as a bridged version of a data-driven decomposition
and a parcellation based connectivity analysis. On one hand, it is ‘less data-driven’ since the
seed regions are restricted within a user-defined spotlight mask. On the other, it can enable the
algorithm to find archetypes that are related to a certain brain region of interest which might
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Figure 3.7: Illustration of spotlight Multi-subject archetypal analysis (MSAA). Schematic
overview of spatial MSAA. For each subject i = 1,. . . , I the data matrix X(I ) includes the time
series (t = 1,. . . , T ) for all voxels within the spotlight mask (m = 1,. . . , M ). The spotlight mask is
given as an input to the algorithm, to specify in what brain regions MSAA can find archetypes.
This figure is a slightly adapted version of Figure 3 in Paper B [166].

otherwise not have been extracted due to the presence of other ‘sources’ that are more strongly
expressed in the data. E.g., if the study is focused on social cognition (as in our Study 1), then the
spotlight approach can be used to extract archetypes related to brain regions that are believed
to be involved in social cognition. These might otherwise not be found if they are less strongly
expressed than other non-task specific networks (e.g. sensory motor networks). Compared to
conventional parcellation based approaches, the spotlight MSAA still searches for the optimal
seed (C) within the spotlight mask, instead of using the average signal of the region.

3.7 Interpretation of decomposition components

The output of each decomposition method is a set of subject specific spatial maps and time series
for each component, which can be used for subsequent prediction. The interpretation of the
components are usually based on the brain regions that they include.

In Study 1, we have used both the time series and spatial maps for classification. We described
the networks by the regions that were included in the spatial networks. In study 2, where we
used resting state data, we defined the networks according to which resting state network (RSN)
it reassembled the most. There is no gold standard for how to do this, and in many studies the
‘network label’ is assigned based on visual interpretation. Others have assigned components to
a previously defined RSN parcellation using the spatial correlation of networks [168, 169]. We
opted for the latter approach, using the 7-RSN parcellation from Yeo et al [118] as described in
Paper C to make the assignment more objective.
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3.8 Transfer learning

Data-driven feature extraction methods such as ICA and MSAA find the brain networks or regions
that best explain the dataset, which can be both a benefit but may also generate challenges. On
the one hand, the extracted features represent strong trends for the specific datasets and the
networks can be more sensitive compared to parcellation based approaches where the atlas dictate
certain structure. On the contrary, the extracted features can be overfitted to the data on which
they are extracted, which would lead to lower generalizability between studies. Furthermore,
there is no guarantee that the same networks are found again when rerunning the analysis on
another dataset (or even the same dataset given that decomposition is in general non-convex).
When brain networks from decomposition methods are used for subsequent predictions, this
poses a challenge when testing the reproducibility on external data. One could argue that if
brain networks are “truly reliable” they should reproduce across datasets. In practice, this is
partly true, e.g. characteristic RSNs such as the DMN are found repeatedly across datasets, but
there will also be substantial differences between datasets. This means that it will not be exactly
the same brain networks that are found across datasets, even if the same task is performed.
Variability between datasets can arise both due to sampling and measurement biases as described
in section 2.4. In Study 2, we therefore looked into three different transfer learning approaches to
overcome this challenge. We use the term ‘transfer learning’ to indicate that information from
one decomposition is transferred to the next, similarly to what was done in Cai et al. [170]. In
these approaches that we investigated, the transfer learning was restricted to the ‘feature level’
and did not include any interventions on the predictions which were performed later on. This
is somewhat different from how the term transfer learning is also used in the machine learning
field, where it can also refer to methods that can be used to re-purpose a machine learning model
that is trained on one task to another, related task [171]

For both the decomposition methods, we investigated the following three transfer learning
approaches to find feature across the discovery dataset (D2a) and external test dataset (D2b).

Approach 1 Here we ran the decomposition analysis separately on the external test (D2b)
dataset. The only “transfer learning” information for this approach is that we used the same
number of components and algorithm settings as for D2a.

Approach 2: Here we ran the decomposition analysis on the merged dataset (D2a + D2b). In
this way, the decomposition was performed on data from all participants, which in a way breaks
the independence between the discovery and the test dataset. This will be described in more
detail in section 4.1.1. However, since the decomposition is not informed about the phenotypic
label, this does not bias the prediction performance as such.

Approach 3: Here we directly used the output from the discovery dataset to perform the
decomposition on the external test dataset. For ICA this was done by using the same dual
regression procedure that was also used to create subject specific spatial maps [157]. I.e., for
each participant in external data (D2b), we used dual regression with the ICA decomposition
map S from the discovery data. For MSAA, this was done by keeping the common seed matrix
C from the discovery dataset, and then we performed a few additional MSAA iterations (until
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convergence) to optimize the subject specific spatial maps S and heteroscedastic noise estimations
(σ2

i ,v ) for each participant in D2b.
Please note that these transfer learning approaches refer to how we found features on the

external test dataset. When training the models on the discovery data, we used features that were
found only on the discovery dataset.

3.9 Multi-site harmonization on feature level

A way to reduce multi-site bias is to apply multi-site harmonization on the feature level. This
kind of bias removal has been inspired from the field of genomics, where harmonization methods
have been developed to remove so called ‘batch-effects’ which arise when processing multi-site
genomics data at laboratories with different equipment and at different times. One popular
method to remove batch effects i called ComBat, which was developed in 2007 by Johnson et al.
[172]. In recent years, ComBat has been extended to other fields, including MRI where it has
been adapted to structural MRI [173, 174] and fMRI connectivity data [85, 86].

We used ComBat harmonization for a preliminary analysis on parcellation based functional
connectivity features, as described in section 5.5. Here we used the Matlab based implementation
of ComBat which is available at GitHub (https://github.com/Jfortin1/ComBatHarmonization).

Effect size of site effect

To quantify the ‘severity’ of the multi-site bias, we used Cohen’s d (CD) to measure the site related
effect size, similar to earlier multi-site studies [86, 175]. More specifically, for each connectivity
feature, we calculated the effect size of how different the connectivity from site i was from the
mean connectivity of the remaining sites. Cohen’s D was then calculated according to

CD = |x̄1 − x̄2|
σp

. (3.20)

Where x̄1 includes the connectivity features from the participants included in site i, x̄2 includes
data from the participants from the remaining sites, and σp is the pooled standard deviation
across all sites. This was repeated for all connectivity features and all sites (leaving out data from
one site each time).

ComBat harmonization of FC features

ComBat is a multi-site harmonization tool which uses empirical Bayesian estimation to estimate
and remove multi site variability. For a dataset X which is here a multiway-array including
functional connectivity data from site j = 1, . . . , J , subject i = 1, . . . , I and connectivity feature
k = 1, . . . ,K , the ComBat model can be written as

X =α+D⊺β+γ+δϵ. (3.21)

Where α ∈RK×1 is the mean connectivity value (across sites and subjects), D⊺ ∈RJ×I is the design
matrix (including covariates of interest which should stay in the data), and β ∈ RK×1 are the
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corresponding regression coefficients. Finally γ ∈RJ×K and δ ∈RJ×K are terms for the additive
and multiplicative site effect for each connectivity feature.

The goal of ComBat is thus to simultaneously estimate the biological and non-biological effect,
and then to remove these estimated additive and multiplicative site-related effects from the data.
The ComBat harmonized data is then given as

XComBat = X− α̂−Dβ̂−γ∗
δ∗

+ α̂+Dβ̂ (3.22)

where the asterisk symbol ∗ indicates that these are Empirical Bayes estimates. For more detailed
descriptions of the method we refer to earlier publication of ComBat on MRI data [86, 173].
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This chapter gives an introduction to the machine learning methods that were used for clinical
predictions and disease subtyping throughout the studies. In Studies 1−3 supervised machine
learning was used to predict a phenotypic measure (either classification using a binary group
membership or a continuous outcome), while we in Study 4 used a unsupervised clustering
algorithm to search for more homogeneous disease subtypes. The overall structure, including
aims and machine learning methods for each study are summarized in Figure 4.1.

Figure 4.1: Overview of methods for predictive-modelling and disease subtyping. In
Studies 1−3 we explored ways of using supervised machine learning (ML) to predict phenotypic
measures, while we in Study 4 aimed to search for data-driven disease subtypes using clustering
(unsupervised ML method).

4.1 Neuroimaging based predictions

The goal of predictive modelling is to predict individual differences in phenotypes using e.g.
neuroimaging (in our case fMRI) data. Figure 4.2 illustrates the overall steps involved in training
and evaluating a prediction model. Step 1: the data (brain features and phenotypic measure
for each participant) is split into a training and a test dataset. Step 2: On the training data,
the prediction algorithm selects the most relevant features, and summarizes these to produce a
model (mathematical function) which maps the high dimensional neuroimaging data onto the
low dimensional phenotypic measures. Step 3: the model is applied on the test data to predict
the phenotypic measure. Step 4: the model performance is evaluated by comparing the observed
and the predicted phenotypic measures. Since the performance of prediction models is tested
on data that was not used to train the model, they have the potential to uncover more robust

35
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Figure 4.2: Introduction to supervised machine learning. Four overall steps of predictive
modelling. In step 1, the data is split into a training and test dataset. In step 2 the model is trained,
and then in step 3, applied on the test dataset, for which the performance is evaluated (step 4).

biomarkers. However, as the last decade of predictive modelling has shown, these models also
have their limitations, and important considerations must be taken into account [15, 74].

4.1.1 Important considerations for cross validation

Cross validation is a internal validation strategy, where the process of splitting the data (step
1) is repeated multiple times for different combinations of the training and testing data. This is
commonly implemented using K-fold cross validation, where the dataset is randomly divided into
K non-overlapping subsets of equal size. The model is then trained on K−1 subsets and tested on
the remaining subset. This process is repeated K times, leaving a new subset out each time. The
choice of K affects the performance of the prediction. When K is large, much data is used for
training, which generally will improve the performance, but since less data is left for testing, the
variance will also increase [74]. Choosing K is hence a tradeoff between bias and variance.

There are two ‘special cases’ of K-fold cross validation which are commonly referred to as
‘leave-one-out cross validation’ (K = number of participants), and ‘split half cross validation’ (K
= 2). Leave-one-out cross validation has often been used in studies with small sample sizes to
maximize that data that is available for training, but it has been shown that the combination
of this validation strategy and small sample sizes can lead to overfitting and should therefore
performed with care [176]. For larger sample sizes (more than 200 participants), K = 5 or 10 have
shown to be a good compromise between variance and bias [177, 178].

Stratified cross validation: Whereas the cross validation strategies described above pre-
sumes random datasplits between the training and test data, it might be important to ensure a
balance of important characteristics between the dataset, which can be done using stratification.
For example, if the aim of the prediction is to classify the group membership, then stratified cross
validation can be applied to ensure that each cross validation subset has the same proportion of
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participants in each group. Furthermore, stratification can also be used to ensure a balance of
confounding factors, such as age and gender.

Nested cross validation: When a prediction model includes hyper-parameters that needs
to be tuned during the training phase, this should be performed using nested cross validation
to ultimately validate only a single model on the test dataset [176]. Here the data is divided
into three subsets: a training, validation and test dataset. The hyper-parameters are tuned by
running an repeated ’inner-loop’ cross validation using the first two datasets. Then the model
selected from the inner loop is validated on the outer loop with the test data. Participants may be
reassigned to subsets repeatedly to assess the robustness of model selection and performance.

4.1.2 Independence

: Since the performance of predictive models is evaluated on data that was not used to train
the model, it is often stated that the model is tested on unseen data, in other words that the
training and test datasets are independent. One example where this can become challenging is
during feature extraction which is typically done on the whole dataset prior to the prediction
analysis, as illustrated in Figure 4.1. It should therefore be carefully considered if, and how this
influences the independence of the training and test dataset. E.g. if a decomposition method,
such as ICA, is used to extract brain networks on the entire dataset, this means that the networks
of the training and testing are no longer completely independent. Since the decomposition did
not include any information about the phenotypic measures (which are later used for prediction)
this ‘dependence’ does not directly bias the prediction analysis but it should still be considered to
what degree this could influence the results. A suggested solution to this problem would be to
run the decomposition within each cross validation step [74]. Whereas this would overcome the
break of independence, it comes with other quite complex challenges. Firstly, re-estimating the
brain networks in each cross validation split, has a high computation burden, which can be severe
limitation if the dataset is very large (e.g. for multi-site datasets). Secondly, if the decomposition
is rerun, the same brain networks are not necessarily found between different cross validation
splits, which would severely hamper the interpretability of the prediction model. This is why we
have looked into different transfer learning approaches in Study 2 as described in section 3.8.

4.2 Testing models on external data

Even though cross validation has so far been the most frequently applied validation strategy,
testing the models on external dataset (independent dataset of which no data was used for training
the model) offers stronger evidence of the models reproducibility. When a model reproduces on
external data, it shows that model does not only fit the specific dataset, but provides evidence
that the model also generalizes to a more heterogenous group (more sampling and measurement
bias) which indicates that it could be representative for the general population.

The importance of having external data which is not at all used for model development has
been highlighted by many review papers, as well as in ‘prediction competitions’. In the latter,
a part of the data is shared with the participants for training a model, and the winner will be
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chosen based on the model which achieves the best performance on an external dataset which
is only made available after the model training has ended. Such studies have shown that it is
rarely the best performing models from the training data which generalize to the external dataset,
which indicates that the best performing models are overfitted on the training data[179, 180].

The benefit of testing models on external data are twofold. Testing the model on independent
samples, eliminates the ‘data-dependency bias’, and when only testing the final model on the
new data this further removes potential ‘model flexibility bias’ which can occur during model
development, e.g., if several different machine learning models are trained [17, 74]. Developing
models that reproduce on external data is therefore a crucial step towards moving biomarkers
from research to clinical practice [15, 17].

When multi-site data is used for predictive modelling, it is strongly recommended to leave
data from one or more sites for external validation. Such a prediction setup is called inter-site
validation. However, sometimes this might not be feasible, and it can even give rise to other
challenges. E.g. if the site factor is confounded with the phenotypic measure, inter-site validation
can become misleading. In such cases it might be necessary to perform ’intra-site’ validation.
In this setting a proportion of the participants from each site are used for the test dataset as
described in section 2.4.1 and Figure 2.4.

In Study 2 and 3 of this PhD project, we have used stratified intra-site cross validation to train
models on a multi-site ‘discovery dataset’, while keeping data from two sites as external data,
which was used to test the reproducibility of the models.

4.3 Classification of group membership

So far, most predictive modelling studies in the field have focused on group membership classi-
fication, where neuroimaging features are used to predict a binary phenotypic measure, e.g. a
diagnostic label. An advantage of binary classification is that it gives an intuitive outcome, which
can be compared with traditional group level analysis. However, if the heterogeneity within each
group is large, or the phenotypic measure is actually reflecting a continuum, binary classification
might not be very informative.

In this PhD project, we used binary classification in the first two studies. The goal of Study 1
was to classify participants with high and low social anhedonia, and the goal of Study 2 was to
classify patients with SZ and healthy controls. In both studies we used Support vector Machines
(SVM) to perform the classification analysis.

4.3.1 Support vector machines

The support vector machine (SVM) is one of the most frequently applied methods for classification
of fMRI data [181, 182]. For binary classification, the goal of SVM is to find a decision boundary
that separates the data from the two groups as illustrated in Figure 4.3. To minimize the risk
of overfitting, the decision boundary is chosen such that it maximizes the margin, which is the
perpendicular distance between the nearest data points in each class and the boundary [183, 184].
This is illustrated in Panel A of Figure 4.3, where each data point is a participant, and the shape
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(circle and triangle) indicates the class membership. For illustrative purposes this example uses
a two dimensional feature space, but the concepts readily generalizes to higher dimensional
settings.

Figure 4.3: Overview of Support vector machine (SVM). Panel A illustrates the overall
concept of a binary SVM classification in two dimensions. Here each data point represents a
participant and the shape (triangle and circle) indicates the group membership. The grey lines
show the maximum margin hyperplane between the samples of the two classes and b is the bias
(offset from origin). Panel B illustrates the soft margin SVM, where misclassifications are allowed
by introducing a slack variable ξn . Here 0 < ξn ≤ 1 for points which are inside the margin and
correctly classified, whereas ξn > 1 for points that are wrongly classified.

For the classification of data from a new participant x∗, the discriminant function y(x) is
given as

y(x∗) = wX⊺φx∗+b. (4.1)

Here X is the training dataset, w is a weight vector, b the bias (offset from origin) and φ denotes
the feature-space transformation (kernel). The kernel can be used to transform the data, in cases
where it is not possible to find a linear decision boundary that separate the two groups. The
rationale is, that if the data is not separable in the current dimension, then adding dimensions
can make them separable [185].

Given a training dataset of I participants x1, . . .xI and their corresponding phenotypic mea-
sures t1, . . . , tI which indicate a binary group assignment (-1 for group A and 1 for group B). A new
participant x∗ will be classified according to the sign of y(x∗), i.e., that participant is classified as
being in group A if y(x∗) < 0.

The solution for w and b, such that the margin is maximized can be found by solving the
optimization problem

min
w,b

1

2
∥w∥2. (4.2)

This is solved subject to a set of linear inequality constraints which ensure that all participants are
classified correctly. The equivalent dual problem can be obtained by using Lagrange multipliers,
allowing the use of efficient algorithms for inference. It can be shown that according to the
Karush-Kuhn-Tucker conditions, only datapoints (participants) that lie on the maximum margin
of the decision boundary form the basis for the classification model. These participants are called



40 Chapter 4. Predictive modelling and subtyping

support vectors, marked with green in Panel A of Figure 4.3. This makes SVM a sparse kernel
classifier which reduces the computational complexity [186].

Soft margin SVM: In descriptions above, it is required that all participants are classified
correctly. In practice, this is not always possible, nor preferable, since a model which separates
the training data perfectly might be overfitted and therefore may not generalize well to other
datasets. Soft margin SVM is a method which aims to overcome this by allowing the model to
misclassify some participants in the training dataset. This is done by introducing slack variables
ξn , which are 0 < ξn ≤ 1 for points which are inside the margin and correctly classified, whereas
ξn > 1 for points that are wrongly classified, illustrated in Panel B of Figure 4.3.

Adding ξn to eq. 4.2 the optimization function becomes

C
N∑

n=1
ξn + 1

2
∥w∥2 (4.3)

where the parameter C controls the trade-off between the slack (cost of misclassification) and
the width of the margin.

When a dataset is unbalanced (more participants in one group than the other), additional
weights can be used to penalize the class with more participants such that equation 4.3 becomes

CB
∑

i∈IB

ξB +C A
∑

i∈I A

ξA + 1

2
∥w∥2, (4.4)

where I A and IB indicate the participants for each group respectively. The soft-margin
constants (C) are typically chosen according to the ratio between the two classes C A

CB
= nA

nB
, which

is equivalent to upsampling the under-represented class such that sample sizes would be balanced.

4.4 Regression-based prediction

Regression-based prediction is a supervised machine learning method where the goal is to predict
a continuous outcome, instead of a binary group membership as for the classification. It holds
a great potential to provide more detailed understanding of phenotypic measures which are
better represented by a continuum rather than a group membership, such as symptom severity.
However, compared to binary classification, regression-based prediction can be more challenging
because it aims to quantitatively estimate the specific score of a continuous measure over a range
of that variable instead of ‘just’ determining the group membership [187].

In the Study 3we used regression-basedmodelling to predict the symptom severity (PANSStotal)
and PANSS subscales in an attempt to address the internal heterogeneity of schizophrenia. For
this, we used Gaussian process regression as described below.

4.4.1 Gaussian Process regression

Gaussian process regression (GPR) is a non-parametric, Bayesian approach to regression where
the model can provide uncertainty estimates and can learn the noise and smoothness parameters
from the training data. Unlike other supervised machine methods, such as SVM which aim to



4.4. Regression-based prediction 41

learn an exact value for each parameter in the function, the Bayesian approach infers a probability
distribution of all values.

Given a input data matrix X with I participants and d features and a phenotypic target vector
y which specifies the phenotypic measure for each participant, the goal of a GPR is to learn a
function from the training data such that a new target y∗ can be predicted given data from a new
participant x∗.

A Gaussian process (GP) can be uniquely defined by its mean function m(x) and covariance
function k(x,x′) such that GP ∼ N (m(x),k(x,x′) similarly to how a Gaussian distribution is
given by its mean and covariance. The mean function is typically a constant [188, 189], and the
covariance function could be any functional which takes two input arguments such that k(x,x′)

generates a non-negative definite covariance matrix K. The output can be thought of as a measure
of similarity between the two arguments. One of the most frequently used covariance functions
is the squared exponential, which commonly is referred to as radial basis function (RBF):

k(x,x′) =σ2
f exp

(
− 1

2ℓ2 |x−x′|2
)
. (4.5)

This function has the two parameters lengthscale (ℓ) which determines the smoothness of the
model, and magnitude (σ2

f ) which determines the distance from the function to its mean. This
means that k(x,x′) tends towards σ2 if the inputs are close to each other, and decreases exponen-
tially as the squared distance between the inputs increases.

There are two alternate and equivalent perspectives of GP models: Function space view:
Here the GP is seen as a distribution over functions f (x) where the distribution is directly used
to model the data. Predictions are made by placing a zero-mean GP prior over the functions and
subsequently using Bayes rule to find the posterior distribution evaluated on the training data.

Weight space view: Here it is more straight forward to see how GPR is a Bayesian extension
to a traditional linear regression problem, which is given by

y = f (x)+ϵ= x⊺w+ϵ (4.6)

where w is a weights vector and ϵ∼N (0,σ2
n) is a Gaussian noise term. For a GP model, prediction

is made by placing a zero-mean GP prior over the weights and then computing the posterior
distribution as

p(w|y,X,θ) = p(w|θ)p(y|X,w,θ)

p(y|X,θ)
(4.7)

Where θ is a vector of hyperparameters, p(w|θ) is the prior, p(y|X,w,θ) denotes the likelihood
and p(y|X,θ) is the marginal likelihood. The marginal likelihood (also called model evidence) can
be written as p(y|X,θ) = ∫ p(y|X,w)p(w)dw.

The prediction of a new test observation x∗ is found by integrating over all possible values
for w weighted by their posterior probability such that

p( f ∗|X,y,x∗,θ) =
∫

p( f ∗|w,x∗,θ)p(w|X,y,θ)dw. (4.8)

In this way, GP predictions are a weighted average of all possible linear models, given the prior
assumptions and training data X.



42 Chapter 4. Predictive modelling and subtyping

Figure 4.4 illustrates an example of regression-based prediction with a traditional regression
model, such as SVM (Panel A) and GPR (Panel B). Whereas the first returns the function that fits
the training data the best, GPR (Panel B) provides a mean prediction function and a certainty for
each input x. It can be seen that the model has a high certainty for x close to training points,
whereas it becomes more uncertain in regions where training data was not available.

Figure 4.4: Gaussian Process regression (GPR) example. Panel A shows the result from a
traditional regression model, which outputs the single function (blue line) that fits the datapoints
(red dots) the best. Panel B shows the result from a GPR, which includes both a mean prediction
function (blue line) that represents the most likely output, and a certainty estimate (blue shaded
area).

Since the likelihood and prior of a GPR model are GPs the posterior predictive distribution is
also Gaussian and can thus be computed in closed form

p( f ∗|X,y,w,x∗,θ) ∼N (µ,σ2) (4.9)

where µ= k∗⊺(K+σ2
n I)

−1y and σ2 = k(x∗,x∗)−k∗⊺(K+σ2
n I)

−1K∗

Here, K is a kernel matrix that describes the covariance between each observation, such that
Ki , j = k(xi,xj,θ), and k∗ is a vector with the covariance between the training data X and new test
observation x∗.

4.5 Disease subtyping using fMRI

As introduced in earlier sections, the aim of fMRI based disease subtyping is to search for
biologically defined subgroups of patients which have a more homogeneous biology. Even though
disease subtyping on neuroimaging data has been a goal for several decades, the field is still at
an exploratory state, where most studies are at a ‘proof of concept’ level and have not yet been
integrated in any clinical practices [14]. Mostly subtypes of patients are identified using different
unsupervised machine learning methods for clustering aiming to partition observations (here
participants) in a dataset such that those within the same group (referred to as a cluster) are more
similar to each other than those in other groups. Several different clustering algorithms exists,
which differ in terms of how they evaluate and handle within and between cluster similarity
[154].

As for predictive modelling, there are some inherent challenges in clustering to identify
disease subtypes. Firstly, clustering is an ill-defined problem, which means that there is neither an
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unique well-defined solution nor definition of what a cluster is [190]. Secondly, many clustering
algorithms requires the user to define the number of clusters prior to the analysis, which in most
cases is not a trivial task and can influence the outcome of the clustering to a large degree. Finally,
as for predictive modelling the generalizability is of great importance since the whole point of
unveiling a disease subtype from a given dataset is to extend these results to a broader subset of
the general population. If a clustering solution (set of subtypes) is only valid within the given
dataset, the model is overfitted to the data it has been trained on, and does not have much clinical
utility [14, 70].

The high dimensionality of fMRI data has been a challenge for earlier subtyping studies, since
the high number of features compared to observations (participants), enhances the challenges
described above. However, in recent years, an increasing number of clustering algorithms
have been developed specifically for high dimensional data, which holds a great potential for
the field [69]. One way to mitigate the high dimensionality of fMRI data is to use polytopic
learning methods, where clustering is performed on several datatypes (e.g. on data from fMRI
and clinical scales). Here, combining fMRI data with data from a clinical scale can help to
extract neurobiological information about disease related trends that might otherwise have been
‘overlooked’ [14, 191]. Another potential method is subspace clustering, where the clustering
solution only needs to be present in a part of the feature space, which can ease the discrimination
between group and also make it more reliable[69].

In Study 4, we used a multiple co-clustering method that is based on Bayesian mixture models,
and which has shown promising results in earlier studies [191, 192]. Our main motivation for
using this method is the ability to identify several different clustering solutions, and thereby
disease subtypes, on the same dataset (a kind of multi-view clustering). In the next section, we
will describe the multiple co-clustering algorithm, and specify how we have used it to search for
subtypes that are related to the schizophrenia diagnosis.

4.5.1 Multiple co clustering

Multiple co-clustering (MCC) is a polytopic learning method, that can deal with different types of
data, such as connectivity features and phenotypic measures, which are modelled with different
distributions. Furthermore, the algorithm can handle missing values, and infers the numbers of
clusters in a data driven way, such that they do not need to be specified by the user. The overall
idea is that MCC partitions the features into several groups (called views), and within these views
subject and feature clustering is performed. The algorithm simultaneously partitions the data
such that:

• views: features with similar subject clustering are assigned to different views
For each view, the data is further partitioned into:

• feature clusters: where features with similar distribution are grouped
• subject clusters: where subjects are grouped into subject clusters

Figure 4.5 illustrates and example of this, here the input data comprises of four numerical and
four binary features from five subject (Panel A). The solution of the MCC algorithm separates this
data into two views (Panel B) (this can be considered as a feature selection step), which makes it
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possible to obtain different subject clustering solutions (one of each view) for the same dataset.
Within each view, additional subject and feature clustering is performed to bundle observations
with similar distributions. E.g. in this example, the first three features are included in View 1,
which has three subject clusters (indicated by vertical colorbar to the left) and two feature clusters
(indicated by horizontal colorbar on the top). View 2 includes the remaining five features, which
are co-clustered into two subject clusters and three feature clusters. As shown in View 2, both
numerical (feature 3) and categorical (feature 4-8) features can be in the same view, but not in the
same feature clusters.

Figure 4.5: Illustration of multiple co-clustering (MCC). Panel A shows the input data which
contains five subjects with four numerical and four categorical features. The output of the MCC
algorithm (Panel B) includes two views, which each include further subject and feature clusters.
The vertical colorbars (to the left of each view) indicate the subject cluster assignment, e.g. View
1 has three subject clusters. The horizontal colorbar (top) indicates the feature clusters, e.g. two
feature clusters for View 1. This figure is inspired by Figure 1 from an earlier publication of the
MCC method [192]

4.5.2 Model explanation

MCC is based on non-parametric Bayesian Mixture models, where each view can include features
that are modeled with different distributions. The current implementation of the MCC algorithm
can include Gaussian, Poisson and Bernoulli distributions, depending on the type of the underlying
data [191]. The distribution of each feature needs to be specified by the user such that the
data matrix X consists of M specified distribution families such that X = X (1), . . . , X (M) where
m = 1, . . . M .

Overall, the MCC algorithm uses a hierarchical Dirichlet process to model a set of feature
and subject partitioning tensors (which indicate the subject and feature cluster assignment), and
uses variational inference to optimize the hyperparameters of the model. Finally, a univariate
distribution is fitted for each cluster using conjugate priors.
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Generative model for feature and subject partitioning

The MCC models a feature partition tensor Y and a subject-partition tensor Z, using a hierarchical
Dirichlet process utilizing stick-breaking construction [193]. Overall, the process includes three
steps which are also illustrated in Figure 4.6

1. Generate a sequence of random variables (P ) from a beta distribution, given a concentration
parameter α. In principle this sequence is infinite, but will be truncated to B , such that
Pb ∼Beta(·|1,α)

2. Generate a probability of stick breaking (Cb) for each Pb (from step 1): Cb = Pb

b−1∏
j=1

(1−P j )

3. Generate the indicator tensor (feature and subject partitioning) from a multinomial distri-
bution using the weights (from step 2),

Figure 4.6: Dirichlet Process with Stick-breaking Panel A: Illustration of first two steps of
the Dirichlet Process utilizing stick breaking. Panel B includes a list of the notations that are used
for Dirichlet process in the remaining section. We have chosen to keep the same notation as in
the earlier publications of the method, e.g. the probability of stick breaking (C in Panel A) has the
notation π for the feature clusters and η for the subject clusters. Furthermore, V now refers to
the number of views (and not voxels as in earlier sections)

For the feature partitioning the Dirichlet process is performed in a hierarchical structure,
where views are generated first, followed by the generation of feature clusters. In contrast,
subjects are partitioned into subject clusters for each view. Here it should be noted that a feature
j can only belong to one of the views while subject i belongs to all views.

Feature partition tensor Y: For each distribution family m, a three dimensional feature-
partition tensor Y (m) ∈ Rd (m)×V ×G (m) is modelled, where V is the number of views and G (m) is
the maximal number of feature cluster for any view, and d (m) is the number of features for
distribution family m . Here Y (m)

j ,v,g = 1 if the feature j of distribution family m belongs to the
feature cluster g in the view v, and otherwise Y (m)

j ,v,g = 0. Combining the different distribution
families gives: Y = {Y (m)}m .
The view and feature cluster membership of a feature j of familym is generated using a hierarchical
Dirichlet process with stick-breaking construction to generate the variables as follows:
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wv ∼Beta(·|1,α1), v = 1, . . . step 1 (view)

πv = wv

v−1∏
t=1

(1−wt ) step 2 (view)

w ′(m)
g ,v ∼Beta(·|1,α2), g = 1, . . . ,G (m),m = 1, . . . , M step 1 (feature cluster)

π′(m)
g ,v = w ′(m)

g ,v

g−1∏
t=1

(1−w ′(m)
t ,v ) step 2 (feature cluster)

τ(m)
g ,v =πvπ

′(m)
g ,v combined probability (view and feature)

Y (m)
j ... ∼Mul(·|τ(m)) step 3.

(4.10)
Subject-partition tensor Z: Since Z is common to all distribution families, this implies that

the model estimates the subject cluster solutions using information from all distribution families.
Here Z ∈ RI×V ×K where K is the maximum number of subject clusters for all views, and I is the
number of participants. Zi ,v,k = 1 if a subject i belongs to the subject cluster k and 0 otherwise.
The subject cluster membership for a subject i in view v (Zi ,v.) is generated by the procedure
below

uk,v ∼Beta(·|1,β), v = 1, . . . ,V ,k = 1, . . . ,K step 1 (subject cluster)

ηk,v = uk,v

k−1∏
t=1

(1−ut ,v ) step 2 (subject cluster)

Zi ,v · ∼Mul(·|ηv ) step 3 (subject cluster).

(4.11)

Likelihood and prior distribution

The MCC algorithm assumes that each instance X(m) ∈ RI×J independently follow a given dis-
tribution conditional on the subject and feature partition tensors Y and Z. The parameters of
the distribution in view v, feature cluster g, and view v of family m is denoted θ(m)

v,g ,k and the
collection of parameters for all cluster blocks is Θ= {θ(m)

v,g ,k }v,g ,k,m

The log-likelihood of X is given by

log p(X|Y,Z,Θ) =
∑

m,v,g ,k, j ,i
I(Y (m)

j ,v,g = 1)I(Zi ,v,k = 1)log p(X (m)
i , j |θ(m)

v,g ,k ). (4.12)

Where I(·) is an indicator function returning 1 if the the statement is true and 0 otherwise.
Due to conditional independence the joint prior distribution of the unknown variables

φ= {Y,Z,w,w′,u,Θ} is given by

p(w)p(w′)p(Y|w,w′)p(u)p(Z|u)p(Θ). (4.13)

Variational Inference

Since it is computationally intractable to evaluate the marginal likelihood p(X) =
∫

p(X,φ)dφ,
variational inference is used to approximate the marginal likelihood by maximizing the lower
bound. More specifically, the MCC algorithm uses variational Bayes Expectation-Maximization
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for MAP (maximum a posteriori) where the logarithm of the marginal likelihood is approximated
using Jensen’s inequality:

log
(
p(X)

)≥
∫

q(φ) log
p(X,φ)

q(φ)
dφ=L(q(φ)), (4.14)

where q(φ) is an distribution where the parameters φ are determined such that the distribution
approximates the true posterior . For more details including the updating equations, we refer to
the earlier publications on this method [191].

Observation models

For each subject-feature cluster block of each view, the algorithm fits a univariate distribution
using conjugate priors of the specified distribution of the family. E.g. if a subject-feature cluster
includes features that follow a Gaussian distribution (such as purple cluster in view of Figure 4.5)
where the scaled variance has an inverse-gamma distribution, then the corresponding conjugate
prior is a normal-inverse gamma distribution. The observational models, including priors, log-
likelihood and update equations are specified in the supplementary section 1 of Tokuda et al.
from 2017 [191]. Furthermore, the relevant equations and parameters choices for the priors are
specified in Paper D.

4.6 Performance measures

Throughout the studies we applied different performance measures depending on the question of
interest. These will shortly be summarized here, and described in more detail in the respective
Papers.

4.6.1 Study 1-3, performance measure of predictive modelling studies

For a binary classification, the model performance is usually assessed using a summary measure
based on indices of the confusion matrix which give the number of true positive (TP), true
negatives (TN), false positives (FP) and false negatives (FN). For studies with balanced datasets,
the accuracy (proportion of correct prediction) is a standard measure, which we have used for
our task-paradigm classifications in Study 1.

However, for unbalanced datasets, the accuracy measure should be used with care, since
the unbalance between classes that influences the chance model performance such that it is no
longer 50%. For unbalanced classifications (schizotypy classification in Study 1 and schizophrenia
diagnosis classification in Study 2) we have therefore used alternative measures which are more
appropriate for unbalanced datasets, as specified in Paper B and Paper C respectively.

In regression-based prediction, the performance is measured by how close the predicted
phenotypic measure is to the observed. When the phenotypic measure is a continuous outcome,
the performance is often assessed using themean squared error, or Pearson’s correlation coefficient
between the predicted and observed variable. In study 3, we used Spearman’ s rank coefficient of
correlations (Rho), which is a nonparametric measure of correlation utilizing ranks [194]. We
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opted for this measure, because the PANSS scale is a summation of categorical subitems, and thus
not a continuous measure.

4.6.2 Study 4: performance measures of subtyping clustering

In Study 4, we used two different kinds of performance measures: i) adjusted rand index to asses
the stability of the clustering and ii) Pearson’s χ2 test to evaluate the diagnosis association of
each view.

Adjusted rand index

To measure the similarity between two cluster solutions we used the adjusted rand index (ARI),
which exists in the range between 0 and 1, where 1 corresponds to identical clustering and 0
implies random labelling [195]. The original rand index measures the proportion of observations
that are clustered the same way in the two solutions, such that

rand index= a +b

a +b + c +d
= a +b

( n
2 )

(4.15)

Where a and b are the number of observations where the clustering solutions (runs) agree,
whereas c and d are the observations that are clustered differently as shown in Figure 4.7.

Figure 4.7: Illustration of rand index. Example of the similarity between clustering solutions
(Run1 and Run2, with same data but different initialization). Here both runs result in a two-cluster
solution, but they differ by their allocation of two datapoints. The rand index is then calculated
according to eq. 4.15, where a: same cluster in run1 and same cluster in run2, b: different cluster
in run1 and different cluster in run2, c : same cluster in run 1 and different cluster in run2, d :
different cluster in run1 and same cluster in run2.

The ARI is a corrected-for-chance version of the random index, which establishes a baseline
using the expected similarity of all pair-wise comparisons:
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Where nr,c , ar ,bc are values from a contingency table which indexes the first clustering solution
in the rows (r = 1, . . . ,R), and the second in the columns (c = 1, . . . ,C ).

In Study 4, we investigated the stability of the MCC algorithm across initializations and
datasplits. As a main stability measure we used the ‘feature to view’ assignment (ARIview), but
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we also used (ARIsubject) and (ARIfeature) to asses the clustering stability of the subject and feature
clusterings within relevant views.

Pearson’s χ2 test for diagnosis association

To search for subtypes that were related to schizophrenia, we identified views with a significant
diagnosis association by using Pearson’s χ2 test for contingency tables to evaluate the association
between the subject-cluster (from clustering) and diagnosis label. The Pearson’s χ2 test statistic
is used to test the independence between the row and columns of the contingency table, where
independence implies that knowing the value of the row variable (here subject-cluster label out-
putted by the MCC clustering) does not change the probabilities of the column variable (diagnosis
label), and vice versa. The Pearson’s χ2 test statistics follows an asymptotic χ2 distribution with
(R-1)(C-1) degrees of freedom, and it is calculated as

χ2
P =

∑
r

∑
c

(Or,c −Er,c )2

Er,c
(4.17)

Where Or,c is the observed count for the r th row and c th column in the contingency table. Er,c is
the expected counts when assuming independence (null hypothesis of the test) which is calculated
as Er,c =

nr,.n.,c

N
where nr . and n.c are the row and column marginal totals, and N is the total

number of counts in the table.

4.6.3 Assessing significance with permutation testing

Permutation testing is a non-parametric alternative to the ‘classical parametric testing’. Here the
typical null hypothesis is that all observations come from the same distribution. As the variables
are interchangeable under the null hypothesis, an approximate distribution of the test statistic
assuming no effect can obtained by repeatedly measuring it while rearranging the observed data
[196].

E.g. in a situation of binary classification, the null hypothesis is there is no difference between
data from the two groups. To test this, the classification is performed both with the correct
phenotypic measures (indicating the true group membership) as well as on permuted labels (e.g.
using 1000 random permutations). The intuition is, that if there is no difference between the two
groups, then the labelling could be arbitrary. In this way, the random permutations are used to
create en empirical null distribution of the statistical measure (e.g. for classification this could be
accuracy). The p-value is then found as the proportion of permuted labels which obtain a test
statistical equal or larger than the one that is computed when using the correct labels.

Since permutation testing is a flexible and intuitive method which relies of minimal as-
sumptions, it has been used for statistical inference in all our studies. When multiple test were
performed, we used ’maximum permutation testing’ to correct for multiple comparisons. Here
we created an empirical null distribution by only considering the highest effect over the entire
set (i.e. over the different comparisons). This controls the family-wise-error over the set.
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In this PhD project, we used permutation testing to assess the significance of the predictions
in Studies 1–3 and for the diagnosis association measure in Study 4. More details on how this
was implemented is given in the corresponding papers.



RESEARCH CONTRIBUTIONS 5
In this chapter the main research contributions of this PhD project are summarized. For each
study, we start with a short introduction and motivation for the study followed by a summary
of the main contributions to the field. A discussion of the contributions can be found in the
corresponding papers and in the next chapter. We have also added a few additional contributions
that were not included in the papers, these are described in more detail.

5.1 Study 1, Prediction framework and social anhedonia

As described in section 2.5.3, the overall goal of Study 1 was to investigate if machine learning
could be used to obtain significant predictions of a dataset, which had previously shown correla-
tions between brain activation and the degree of schizotypy [148]. Furthermore, we wanted to
specifically evaluate which brain characteristics would drive this prediction. To do this, we built
a classification-framework that included 11 different feature extraction methods, which enabled
us to investigate the separate importance of static, temporal and spatial network features for
prediction. To validate the classification-framework and the utility of decomposition features,
we performed a task-paradigm classification for which the exact label was known (e.g. theory of
mind vs. physical control condition task). The findings from this study were published in Paper
B, and furthermore we wrote a perspective paper about the topic (Paper A).

Contributions

Perspective paper on potentials and challenges: To our knowledge, Paper A was the first
‘fMRI machine learning review and recommendation’ publication in the schizotypy field. It
includes a review of earlier fMRI studies in schizotypy (both using univariate brain mapping
and machine learning classification) and discussed the potential and challenges of data-driven
machine learning approaches. We also commented on best practices of procedures for future
studies to provide specific recommendations on how to plan a machine learning study to predict
schizotypy traits.

Expansion ofMSAA to enable spotlight analysis: We implemented the spotlight approach
to the MSAA model, which had previously been described by Hinrich et al. [165]. The goal of
the spotlight approach is to restrict the seed region matrix to predefined regions of interest,
which forces the method to find networks related to these brain regions. We hypothesized
that the spotlight restriction would result in components that could obtain better classification
performance. However, our results showed that the whole brain MSAA (without spotlight
restrictions) obtained superior classification for both the task-paradigm and social anhedonia
prediction.

Stability analysis of MSAA: As other decomposition methods, MSAA is a non-convex
optimization problem, which means that the final solution can change depending on the initializa-
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tion. For the whole brain MSAA model, we showed that the brain networks found by the MSAA
algorithm were quite stable when repeated initializations were used. We ran a stability analysis, in
which we repeated the MSAA decomposition with 100 different initializations, which we divided
into 10 groups of each 10 runs. We compared the stability of the spatial networks when the best
(lowest cost function of 10 runs within each group) were compared across the 10 groups. Using
this procedure, we found that the mean stability (averages over networks and participants) of the
networks was 86% compared to 80% when the decomposition was not repeated 10 times.

Validation of classification-framework: We validated the utility of using our classification-
framework through a task-paradigm classification for which the true label was known. Here,
we found that both temporal and spatial network features enabled significant classification
of the ongoing social cognition task, but that this was not possible with static brain features.
Interpretation of the predictive components (those that obtained significant classification) showed
that they included brain regions that are important for theory of mind and empathy processing
[149, 150].

Classification of social anhedonia: We found that it was possible to classify patients
with high and low social anhedonia when using features from the decomposition methods (both
temporal and spatial) and the parcellation based connectivity analysis. Both ICA and MSAA
found very similar brain networks to have the highest performance. These networks included
regions that had also previously been related to social anhedonia [148].

In summary: Using a broad range of feature extraction methods, we found that significant
classifications were obtained when using temporal and spatial network features, and that the best
performances were obtained with features from the decomposition methods. We showed that the
novel MSAA extracted stable brain networks, which were similar to those extracted by ICA, and
we successfully implemented the spotlight approach to the MSAA model.

Throughout the analyses of Study 1, we discovered how much the final results depended on
the parameters within the analysis pipeline, all the way from prepossessing, to parameters of the
feature extraction and classification. Thus, we considered Study 1 as an exploratory investigation
of features for classification, and highlighted that it would be important to validate our findings in
external data to draw conclusions on their validity [166]. This was also described by other studies
that were published around that time, which showed that even when using cross validation,
studies could still be overfitted, and that the limited reproducibility that was found by univariate
brain mapping studies, was also a problem for predictive modelling studies [74, 176].

5.2 Data and features used in Studies 2− 4

For the remaining studies we thus focused our analysis on efforts to increase the robustness
and reproducibility. One important step towards this was the use of multi-site fMRI data, which
had been made publicly available through data sharing initiatives since my first PhD enrollment.
Furthermore, we adapted our prediction framework to make it more robust, e.g. by using fMRIprep
for data-derived preprocessing to obtain a more streamlined and robust processing across sites.
Furthermore, we opted for focusing our further analysis on connectivity features (both in the
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form of parcellation based connectivity matrices and spatial maps from decomposition methods),
which consistently had proved superior to static features in Study 1. We did not continue with
the investigation of temporal features, since we now used resting state data.

5.3 Study 2, Diagnosis classification of multi-site data

Many earlier studies have investigated differences in functional brain activation between patients
with SZ and HCs, but few findings have been tested on external data, and for those that have, the
results showed substantially lower prediction performances on the external data [15, 21, 66, 197].
In addition, even though most recent studies demonstrated that patients with schizophrenia have
hypoconnectivity in a large part of the connectome, firm conclusions are still to be drawn on
what brain regions and networks that drive the differences, and there are so far no clinically used
biomarker to inform diagnostic decisions [6, 13, 198].

The goal of Study 2 was to use multi-site connectivity features for diagnosis classification of
schizophrenia and to investigate ways to increase the robustness and reproducibility of the devel-
oped models. All models were developed and optimized on a multi-site discovery dataset (D2a)
and the reproducibility of the final models were tested on an external dataset (D2b) comprising
data from two sites that were not used for model training.

Based on our experiences from Study 1, we chose to expand our analysis of the decomposition
features by considering different ways of ‘transfer learning’ and by creating ‘ensemble decisions’
across brain networks. We studied the effect of transfer learning by applying the decomposition
methods (ICA and MSAA) in three different ways. In approach 1, decomposition was performed
independently on D2a and D2b, in approach 2 it was performed on the combined dataset, and in
approach 3 we used the decomposition output from the discovery dataset to extract features from
the external test dataset. We then investigated how these different transfer learning approaches
influenced the stability of the networks and classification performance. This was important since
there is so far no consensus on how decomposition features should be used for predictions across
datasets. Furthermore, whereas we in Study 1 had performed the classification of each individual
brain network, we now also implemented ensemble models, which made one common decision
based on the predictions of the individual networks.

To increase the interpretability of the parcellation based connectivity features, we per-
formed a post-hoc analysis with repeated classifications on ‘subparts’ of the connectivity matrix
(only including features that were related to individual RSNs), to investigate if any of the RSN
could drive the classifications by itself. To our knowledge using separate ‘subpart’ classifications,
have not previously been performed, and we compared the results of these classifications with
the contributions as estimated by classification weightmaps.

Contributions:

MSAA on multi-site rsfMRI data: We showed that MSAA could be used to extract stable RSN,
which were similar to those found by ICA, even when it was applied on multi-site data. Due
to the large number of participants (and features), the time-complexity of the MSAA was high
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(O(V T K I ), V : voxels, T : time points, K : number of components, I : number of participants, as
described in Hinrich et al. [165]). A way to reduce the computational and time complexity is
to perform PCA prior to the decomposition analysis, similarly to what is typically done in ICA.
We therefore repeated the MSAA analysis where we performed a PCA analysis prior to MSAA
(applied in the temporal dimension for which the original data included 170–260 time frames
(depending on the site)). In this analysis we included 35 components for further analysis, since
this was the same number as we used in ICA as estimated by the minimum description length
[159], which was confirmed by visually inspecting a plot of the eigenvalues . By that we reduced
the computational complexity with a factor of five, and the time complexity with a factor 2, the
latter was not improved with a factor of five since the ‘PCA MSAA’ model needed approximately
twice the number of iterations before it converged. Overall, MSAA found similar RSNs with and
without the preceding PCA step, as illustrated in Figure 5.1. For the remaining part of the study
we continued to work with the full MSAA (no PCA) since this was consistent with the version we
previously used and performed stability analysis for. For future studies, we believe that including
a PCA step prior to MSAA can be a valuable tool to enable more efficient inference. It might even
be necessary step in cases where the available memory is insufficient to perform optimization on
all available data.

Figure 5.1: Comparison of MSAA networks with and without PCA. Spatial resting state
networks determined byMSAAwith (right) and without (left) a PCA preceding step. The networks
are sorting according to the the 7-RSN parcellation given by the Yeo et al. [118], as described
in section 3.7. The number of iterations were 129 for the MSAA model without PCA and 226
iterations for the model with PCA. 3D illustration produced using the VITLAM toolbox which is
available via GitHub at (https://github.com/JesperLH/VITLAM) [165].

Transfer learning for decomposition networks: Comparing the different transfer learn-
ing approaches for the decomposition methods, we found that transfer learning approach 3

https://github.com/JesperLH/VITLAM
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was superior for both MSAA and ICA. With this approach, we found that the networks were
stable across datasets, obtained superior classification performance, reduced the computational
complexity and ensured a direct matching of components between datasets.

Reproducibility on external data for our ensemble models: For all three feature extrac-
tion methods we found that the ensemble models generalized to the external dataset. Comparing
the performance of the features from the parcellation based connectivity analysis and the ensem-
ble prediction of the decomposition methods, we found that they were similar on the discovery
dataset, but that the parcellation based features obtained higher performance on the external test
data, possibly because they included both within and between RSN information.

Importance of individual RSNs: Overall, we found that there was no ‘single-best’ RSN
classifiers (with substantially higher performance than the remaining networks), and that the best
performance was obtained when using ensemble models that included data from all networks.
For the decomposition methods, the importance of each RSN was investigated by performing the
classification on individual spatial maps. Here, we found that it was not the same networks that
obtained best classification performance across the two datasets. We found, however, that RSNs
within the somatomotor, visual and ventral attention networks were consistently among the best
performing networks for both ICA and MSAA.

For the parcellation based connectivity analysis, we investigated the importance of different
RSNs using weightmaps and ‘subpart’ predictions. Figure 5.2 shows the results of within and
between RSN connectivity for each of the seven RSNs when using the weightmaps (top) and
subpart classifications (bottom). Overall, we found the same pattern for the two approaches,
where the between RSN connectivity shows a higher weight/classification performance, compared
to within RSN contributions. Both methods found the highest performance for the limbic RSN;
however, not with a substantial margin compared to the other RSNs. As for earlier studies, we
found that patients with SZ had hypoconnectivity (i.e., reduced connectivity between regions)
within the RSNs, whereas the between RSN connectivity was more mixed and included both
hyper- and hypoconnectivity (shown in Supplementary Figure 4 of Paper C) [13, 88].

In summary: In Study 2 we were able to build a classification model on multi-site rsfMRI
data, which generalized to the external dataset. To our knowledge, this is one of the first studies
to show a high and reproducible classification performance across datasets. Comparing the
different transfer learning approaches we found that approach 3 was superior on all parameters,
and we thus suggest this approach for future studies that want to use decomposition methods
across different datasets. The highest classification performance was found when using ensemble
prediction models, which supports earlier findings that schizophrenia affects a wide range of
brain networks.

5.4 Study 3, Prediction of PANSS scores on multi-site data

The overall goal of this study was to determine if the features from Study 2 could also be used
to predict the symptom severity (PANSStotal) and three PANSS subscale, in an attempt to tackle
the internal heterogeneity of schizophrenia [21]. For the decomposition method, we only used
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Figure 5.2: Comparison of RSN contribution with weightmaps and subpart classification.
The top panel shows the results of using the weightmap (adjusted version of Supplementary
Figure 3 of Paper C. The weightmap was adjusted using the data covariance as suggested by Haufe
et al. [199]. The methods are described in supplementary material of Paper B). Panel A shows the
absolute weightmap and Panel B shows the mean weight for each individual RSN, where black
and grey bars indicate between and within RSN connectivity contributions, respectively. The
bottom panel shows the results from subpart classification analysis (this is equivalent to Figure 5
in Paper C) where Panel C shows the average connectivity matrix (over participants) and Panel D
shows the classification performance of each RSN.

RSNs from transfer learning approach 3, and we also opted for using Gaussian process regression
(GPR) instead of support vector machines (as in the first two studies), since GPR require less
hyperparameter tuning and provide certainty estimates for the predictions. For the decomposition
methods, we used these certainty estimates to make an ensemble decision model across the RSNs,
as illustrated in Figure 2 of Paper C.

To our knowledge, there are only few earlier studies that used machine learning to predict the
PANSS scores of fMRI data, and none of these have used decomposition methods nor multi-site
data [119–122, 200]. Several of the earlier studies showed that the between RSN connectivity is
more important for the PANSS prediction than the within RSN connectivity [120, 121]. Initially
we therefore planned to study within and between RSNs contributions as we had done in Study
2; however, since the PANSS predictions were low to moderate, and did not generalize to the
external data, we did not perform any post-hoc analysis.
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Contributions

Predicting symptom severity: For the total PANSS scores all three ensemble methods found a
moderate prediction on the discovery dataset. However, the predicted values only resembled a
positive trend around the mean PANSS score, meaning that patients with high observed PANSS
score tended to have slightly higher predicted PANSS scores, and vice versa. The difference
between high and low predicted PANSS scores were, nevertheless, small. Additionally, we found
that these ‘trend-like predictions’ generally did not reproduce to the external dataset. For the
individual RSNs we found a similar pattern but with even lower prediction performances. The
best prediction was obtained when using the ventral attention (vATT) network. Interestingly this
was found for both the ICA and MSAA analysis.

PANSS subscale prediction: As for the PANSStotal the predictions of the PANSS subscale
had moderate performance on the discovery dataset and generally did not reproduce on external
data. For the prediction on individual RSNs we found that it was not the RSNs with the highest
prediction performance on the discovery dataset that performed the best on the external data.
This was particularly clear from the negative PANSS subscale. This finding relates to the “multiple
comparison paradox” described by Marek et al. [71], who found that correcting for multiple
comparisons (and thereby choosing the solution with the highest performance) reduced the
probability of successfully replicating results.

In summary: We found that the prediction performances were low to moderate on the
discovery dataset, where the predictions resembled a positive trend around the mean PANSS
score. Furthermore, the predictions did not generalize to the external data. This was the case
both for the ensemble prediction models and individual RSNs for the decomposition methods.
The moderate prediction performance and poor generalizability indicate that the study might
have been underpowered [71] or that differences between sites were too large compared to the
signal of interest. Other potential explanations could be the internal consistency of the PANSS
itself, or that the applied method or even datatype (resting state connectivity) might not be the
right path forward to find robust biomarkers as discussed in Paper C.

5.5 Harmonization of multi-site data (Related to Study 2 and
3)

In Study 2 and 3 we kept the prediction analyses as data-driven and robust as possible, e.g. in
the preprocessing we used a simple and robust pipeline that did not make any adjustments with
respect to site differences. The motivation for this was to search for biomarkers that did not
need site specific adjustments, but which could directly generalize to external data. However,
earlier studies have shown that post-acquisition multi-site harmonization of brain features can be
an advantage, and potentially even needed since the site-specific biases (as described in section
2.4.1) can be even larger than disease related factors [77]. This section includes results from a
preliminary multi-site harmonization analysis that we performed using the ComBat method as
described in section 3.9. As our initial investigations indicated that the improvement of applying
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harmonization was limited, we opted against performing a principle analysis.
We applied ComBat harmonization on the entire discovery dataset, as illustrated in Figure 5.3.

The inputs to the ComBat algorithm were the connectivity data, a site-indicator that specified the
site of each participant and a design matrix that included the known effects of interest (sources of
variability) that should not be ‘removed’ during harmonization.

Figure 5.3: Framework for ComBat harmonization. The inputs to the ComBat algorithm
were the original data, a site indicator that specified the site of each subject and a design matrix
which included the known effects of interest that should not be removed during harmonization.
The output was a harmonized dataset with the same size as the input data.

5.5.1 Effect of multi-site harmonization on the brain features

We applied the ComBat harmonization to the connectivity matrix from the parcellation based
analysis. Figure 5.4 illustrates the effect of the ComBat harmonization on the data. Panel A
shows the direct effect of the harmonization on the data, where the connectivity matrix is
concatenated (rows) for each participant (columns). The colorbar on the top indicates the site
allocation of each subject. To the right, the difference map between the original data (left) and
ComBat harmonized data (middle) is shown. Here, it is evident that most of the connectivity
values were not substantially affected by the harmonization procedure (difference is close to 0),
while the maximal harmonization values reached up to approximately Z = ±1.5. To increase
our understanding of how the connectivity between regions was affected by the harmonization,
Panel B in Figure 5.4 shows the average (mean over participants) connectivity matrix. Here, the
average harmonization is close to zero for each connectivity feature (max Z =±0.02), indicating
that none of the features were systematically affected by the harmonization procedure.

Another way to measure the effect of the harmonization is to assess the effect size (here
measured using Cohen’s D) of the site effect as described in section 3.9. Figure 5.5 shows the
effect size before (left) and after (right) ComBat harmonization, for each of the eight sites that
were included in the discovery dataset. Here we found that the mean Cohen’s D was already low
(below 0.4) on the original data, and that the ComBat harmonization mostly reduced site effect of
‘outliers in the connectivity values’ that displayed a large site effect on the original data.
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Figure 5.4: ComBat harmonization on connectivity matrix. Panel A illustrates of the
data (features as columns and participants as rows (colorbar on top indicates the site index of
each participant), both before(left), after ComBat harmonization (middle) and a difference map
(Original-ComBat) (right). Below the difference map is a histogram that shows the distribution of
the differences. Panel B illustrates the mean (over participants) connectivity matrix arranged by
the seven RSNs (original left, ComBat middle and difference to the right).

Figure 5.5: Cohen’s D of site effect before and after ComBat harmonization. Violinplot of
the effect size (Cohen’s D) for each of the eight sites (A-H) that were included in the discovery
dataset. The original data (no ComBat) is shown to the left, and the right panel shows the effect
size after ComBat harmonization.
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5.5.2 Effect of multi-site harmonization on the prediction results

The ultimate goal of multi-site harmonization is not only to reduce the site effect, but to increase
prediction performance on external datasets by removing site specific measurement biases on
the training (discovery) dataset. The rationale here is that when a model is trained on data that
includes less measurement bias, then it can better pick up signals that are related to the phenotypic
measures of interest, such that it can also predict these more efficiently when applied on another
(external) dataset.

As illustrated in Figure 5.3 the ComBat harmonization was applied on the whole discovery
dataset at once. This implies, that when the prediction performance on the discovery dataset is
measured using cross validation, this estimate will be biased, as the harmonized data was informed
about the phenotypic measure of interest (e.g. diagnostic label) as part of the harmonization.
This is a clear example of when the training and test datasets are no longer independent and
include factors that will bias the performance of the prediction. This could have been mitigated
by applying the harmonization within each cross validation loop. However, since our goal was to
determine how the ComBat harmonization on the discovery dataset influenced the prediction
performance on the external dataset, we opted against this here to reduce the computational
complexity.

Figure 5.6 shows the prediction performances on the discovery dataset (top) and external
dataset (bottom). We found that the ComBat harmonization on the discovery data did not increase
the performance on the external data, neither for the classification nor the PANSStotal prediction
analysis. Furthermore, even for the discovery dataset (where the prediction on the harmonized
dataset was biased as described above), the prediction performance was only increased for the
diagnostic classification (left panel), whereas the performance on the PANSStotal prediction was
actually reduced after harmonization.

The results presented here are valid for the setting where supervised machine learning is
used for predictive modelling. Arguably in this setting the algorithm actually automatically seeks
to disregard any site differences given that it is trained on multi-site data. The conclusion is
likely to be different in cases where a parametric model is used to test for statistically significant
differences between sites.

In summary: Based on these somewhat preliminary results, we opted against dedicating
further efforts to investigate harmonization procedures for the remainig analyses. However,
we believe that more structured investigations of harmonization methods would be beneficial
(e.g. also including methods that rely on data from travelling subjects) to further investigate the
potentials and limitations of these methods.

5.6 Study4, Subtyping using multiple co-clustering

Whereas Studies 1–3 focused on supervised machine learning to predict phenotypic measures,
the goal of Study 4 was to use unsupervised clustering for disease subtyping. In Study 3, we made
an attempt to address the internal heterogeneity by predicting the PANSS subscale scores instead
of classifying the diagnostic labels, but we did not identify any clinically meaningful predictions.
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Figure 5.6: Prediction results before and after ComBat harmonization. Prediction perfor-
mance on the discovery dataset (top) and external dataset (bottom), for the diagnosis classification
(left), and PANSStotal prediction (middle and right). The panel in the middle shows the results of
the PANSStotal prediction without harmonization (same figures as in Paper C).The scatter plots
show the predicted PANSS (y-axis) as and the observed PANSS (x-axis), where the line shows
the linear regression, and the shaded area indicates the standard error of the mean. The primary
prediction performance was Spearman’s rank coefficient of correlation (Rho) and we also listed
the Pearson’s correlation coefficient (r) as this is often used in earlier studies.

One possible explanation (which is discussed in Paper C) is that the PANSS scores did not capture
the main sources of the heterogeneity within the data, which highlights the importance of more
data-driven approaches to identify subtypes with a more homogeneous biology.

The performance of prediction models are typically evaluated by how close the predicted
outcome is to the observed value; however, measuring the performance of clustering is more
centered on the ability to separate the data and the stability clusters. If a clustering solution is
stable across different initializations and changes in the datasets, it is more likely to reflect a
meaningful structure in the data, than if the solution is variable (unstable) across these factors. A
large part of our analyses were thus focused on determining the stability across initializations
and changes in the datasets. To our knowledge, this was the first time that a study systematically
compared and reported how these factors affect the stability in a realistic setting on real fMRI data.
We used the adjusted rand index (ARI) to measure the similarity between runs, with the ‘feature
to view’ assignment (ARIview) as our primary stability measure, but we also used (ARIsubject) and
(ARIfeature) to asses the clustering stability within relevant views.

We used the multiple co-clustering (MCC) algorithm [191] since it has attractive properties
for fMRI data (e.g. multi-view and co-clustering abilities, polytopic learning and being able to
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handle missing data) and because it previously showed promising results for subtyping patients
with major depressive disorder [192]. We applied the clustering on a balanced dataset, with an
equal number of patients with SZ and healthy controls. The inclusion of healthy controls gave us
the possibility to select subtypes based on their ‘diagnosis association’, since it is otherwise not
trivial to assess whether specific characteristics that differentiate samples are indeed associated
with the disease rather than to subgroups of the general population. In principle the clustering
algorithm could be applied on all the spatial network features that we have investigated, but we
here opted for using connectivity features from a parcellation based analysis, where we used
the RSN parcellation presented by Allen et al. [153]. Furthermore, we performed a preliminary
analysis of how the stability was influenced by using a larger atlas (more brain regions and thereby
connectivity features). In this analysis, we compared the stability of the Allen atlas (results in
Paper D) and on the 275ROI atlas, which was also used in Studies 2–3.

Contributions

Stability across initialization: When using connectivity features from the Allen atlas, we
found that the view and feature clustering stability was high, while the subject clustering stability
was only moderate. Furthermore, we found that there were still occasional abrupt changes in
the cost function (log-likelihood over iterations) close to the final number of iterations (1000
iterations) indicating that the solution had not yet fully converged. Since earlier publications
have not reported the number of iterations (default number chosen by the method is 30) nor the
cost functions, we could not compare this finding to earlier studies. In future studies, we strongly
recommend to run additional investigations of how the stability of the clustering depends on the
number of iterations.

Stability across data splits: As expected, we found that the stability across data splits was
substantially lower than across initialization, which indicates that the solution is highly variable
depending on variations in the set of observations (participants) that are included.

Stability across atlases: Given the slow convergence of the algorithm and our results from
the initial stability analysis, we expected that the stability of the algorithm would also depend on
the size of the input data, i.e. the number of connectivity features included for each participant.
To test this, we conducted stability analysis 1 (initialization) and 2 (data splits) for an additional
atlases with more ROIs.

Figure 5.7 shows the setup for this analysis. First two datasets were created using either the
Allen RSN atlas [153] (28 ROIs = 378 features) or the 275ROI atlas (same as in Studies 2-3 with
275 ROIs = 37.675 features) [151]. We hypothesized that the clustering would be more stable on
the atlas with less ROIs (Allan atlas).

Figure 5.8 shows the stability results for the 275ROI atlas, while the results for the Allen atlas
are shown Figure 3 and 4 of Paper D. As expected we found the MCC was more unstable on the
high dimensional 275ROI atlas, where the mean ARIview dropped from 0.84 (Allen atlas) to 0.48
(275ROI atlas). We could not evaluate the subject and feature cluster stability for the 275ROI atlas,
since it was not possible to meaningfully match views between runs as the the feature to view
assignment was too low. This clearly shows that the clustering solutions was very unstable even
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Figure 5.7: Subtyping stability analysis over two atlases. Parcellation based connectivity
features were extracted using two different atlases, 1) The Allen atlas which included 28 ROIs
[153]and 2) the 275ROI atlas which was the same as we used in Study 2 and 3 [151]. For features
of both atlases we performed stability analysis 1 and 2, to determine how the size of the input
feature space affected the stability across initializations and data splits.

across initializations when using such a high dimensional atlas. For stability analysis 2 (data
splits), we found that the mean ARIview was similar (0.48 (Allen) and 0.42 (275ROI)) across the
two datasets, indicating that the clustering is relatively unstable across data splits for both atlases.
The remaining analyses were therefore performed using features from the Allen atlas.

Views with disease related subtypes: For the best solution (assessed by the stability and
log likelihood) of the Allen atlas, we found one view with a significant association between the
diagnostic label and the subject clustering solution as illustrated in Figure 5.9.

That view included eight subject clusters, where each cluster (potential subtype) had a
varying proportions of patients with SZ ( from 15−73%). Three of these had a predominance
of patients with schizophrenia (subject clusters 6−9) and could be described a “schizophrenia
related subtypes". However, it should be noted that there were both healthy controls and patients
with schizophrenia in all subject clusters. Furthermore, the view included three feature clusters,
where feature cluster 2 and 3 showed a linear trend in their connectivity values as illustrated
in Panel A of Figure 5.9. I.e., feature cluster 2 mostly included negative connectivity values for
subject clusters that had a predominance of healthy controls, and positive connectivity values for
schizophrenia-related subject clusters, and vice versa for feature cluster 3. With respect to brain
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Figure 5.8: Stability analysis of 275ROI atlas. Results from stability analysis 1 (top) and 2
(bottom) when using the 275ROI atlas. For stability analysis 1, the mean ARIview = 0.48, and
ARIview= 0.42 for stability analysis 2.

regions of the different feature clusters, we found that all six connectivity features included in
feature cluster 3 were related to the basal ganglia RSN (illustrated in Panel B of Figure 5.9). While
feature cluster 1 and 2 included more mixed RSN, however still, many connectives that were
related to the basal ganglia RSN (Figure 6 of paper D). The basal ganglia RSN of the Allen atlas
included several subcortical regions, including the striatum, which earlier has been described to
have a core role in schizophrenia, particularly in relation to the dopamine hypothesis and positive
symptoms. However, since the Allen atlas did not provide a more fine-grained representation of
regions within the basal ganglia RSN, we can not make firm conclusions on the contribution of
the striatum (compared to other brain regions in the basal ganglia). More details on the clustering
solution are described in Paper D.

Subject-cluster separability: For the view with a significant diagnosis association, we
performed a subject-cluster separability analysis, focusing on the separability of the clusters for
each of the included feature clusters (instead of averaging them as in earlier publications). We
found this to give valuable additional information that was important for the interpretation of
the feature clusters, since the subject clustering differences were not the same across feature
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Figure 5.9: Illustration of the viewwith significant diagnosis association. Panel A illustrates
the view with the significant diagnosis association, which includes eight subject clusters and thee
feature clusters as indexed with the vertical and horizontal colorbars respectively. Subject clusters
6−8 are referred to as schizophrenia (SZ) related clusters, since they include a predominance
(>50%) of patients with schizophrenia. Furthermore, these clusters also included all patients with
a PANSS score above 75 (moderately affected by schziophrenia [201]), and the subject cluster
separability was high between cluster 5 and 6, particularly for feature cluster 3. This feature
cluster showed a continuous-trend with positive connectivity values for HC clusters, and negative
connectivity values for SZ related clusters. Panel B illustrates that all RSN connectivity features
included in feature cluster 3 included the basal ganglia RSN, which includes several subcortical
regions, including the striatum.

clusters. We found high subject cluster separability between subject-cluster 5 and 6, which was
particularly strong for feature cluster 3. This result supported the same schizophrenia-related
clustering as we found by the proportion of patients with SZ as described above.

Correlation to PANSS scores: To evaluate if any of the data driven feature clusters were
related to clinical factors assessed by the PANSS scale, we performed a correlation analysis. First
of all, we found that patients within a subject clusters were grouped horizontally (i.e., similar
mean functional connectivity) which is accordance with our expectation since subject clusters
are formed based on participants with similar feature distributions. Furthermore, we found that
all patients with a PANSStotal above 75 (considered “moderately affected by schziophrenia" [201])
belonged schizophrenia-related clusters. However, it should be noted that these clusters also
included healthy controls and patients with a lower PANSS score. Lastly, we found that none
of the feature clusters were reproducibly correlated with any of the PANSS scales. This shows
that the feature clusters did not directly relate to any of the clinical representations that were
available through the PANSS scale, and indicates that the clustering solutions reflect other sources
of variability in the data.

Reproducibility of diagnosis association in subtypes: In our validation analysis we
showed that the diagnosis association of the subject clustering described above reproduced on
the external dataset. To our knowledge this is the first study that has shown a data driven
subtyping on schizophrenia patients that generalized across datasets. Furthermore, we found that
the continuous trend in the connectivity values were also reproduced on feature cluster 3, and
we again found support for the three schizophrenia-related subject clusters.

In summary: We found that the clustering solution of the MCC model was highly dependent
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on the changes in the fMRI connectivity dataset, and that the clustering became quite unstable
when an atlas with too many features were used. For the Allen atlas, we found that the feature to
view stability was high, but that the subject and feature clustering solutions were only moderately
stable across initializations. Nevertheless, we were able to find a subtyping solution which
had a significant diagnosis association both on the discovery and external dataset. We found
three schizophrenia-related clusters, for which the subject clustering had a predominance of
schizophrenia patietns on both datasets. Furthermore feature cluster 3, for which all connectivity
values were related to the basal ganglia RSN, showed a continuous trend on both datasets. Finally,
none of the feature clusters were reliably correlated to any of the PANSS scales, which indicate
that these reflect other sources of variability in the data.

We see these findings as very promising steps, and consider subtyping methods, such as
MCC, to have a great potential towards exploring more data-driven disease subtypes with a more
homogeneous biology. For example, it would be very interesting to further analyse the potential
schziophrenia related subtype solution found in feature cluster 3, e.g. by expanding the atlas to
include more subcortical regions to investigate the role of the striatum compared to other regions
in the basal ganglia.



DISCUSSION AND FUTURE DIRECTIONS 6
Throughout the studies of this PhD project we have explored different ways to use machine
learning and (multi-site) fMRI imaging for robust feature extraction, predictive-modelling and
disease subtyping. In this chapter, we highlight some of our contributions, which we see as
important methodological contributions towards discovering reproducible fMRI biomarkers for
schizophrenia, and share our thoughts on future directions.

Feature extraction

Even though the choice of feature extraction heavily influences the outcome of the study, there is
still no consensus nor standards for how feature extraction should be performed. E.g. within the
field of parcellation based connectivity analysis, it has been shown that the choice of atlas highly
influences the final result of the study [89, 143, 179]. A way to overcome the choice of atlas, is to
use decomposition methods, such as ICA and MSAA, which find the components that best explain
the data. However, there are also challenges for these methods, e.g. they are computationally
more expensive, the optimization of the model parameters is a non-convex problem (which means
that solutions change with different initializations), and there is so far no gold standard for how
to match the components across different datasets.

In our studies, we showed that both ICA and MSAA can extract stable brain networks, even
on multi-site data, for which the networks were also stable across datasets when using transfer
learning approach 3. Since we in Study 2 found that this transfer learning approach was superior
both in its stability, predictive performance, reduced computational complexity and because
it enabled a direct coupling across datasets, we consider this a promising solution for using
decomposition methods across datasets in future studies.

For the MSAAmodel, we showed that the extracted networks were comparable to those found
by ICA, and that the networks could be used for subsequent predictions, with similar (Study 2–3)
and even superior prediction performance (Study 1) . We successfully implemented the spotlight
approach, which restricts the seed regions to predefined regions of interest. Furthermore, we
showed that computational efficiency of MSAA can be improved by preceding the analysis with
PCA, which can be used to substantially reduce the computational and time complexity allowing
its application to even larger datasets.

Multi-site data and external validation for predictive modelling

When the fMRI field started using machine learning methods for predictive modelling, it was
hoped that the use of cross validation would make the findings more robust. However, in the last
decade, it has been shown that even predictive modelling studies can be overfitted and that these
studies also struggle with reproducibility across datasets [17, 176]. Increasing the sample size
has been one of the main suggestions for overcoming the reproducibility challenges; however,

67
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our studies and other recent publications, indicate that “it is not all about larger datasets" [202].
Whereas larger sample sizes in one way increase the statistical power for the analysis, the data
from such studies will typically be more heterogenous, because the data is acquired at different
sites or because it is collected with less strict inclusion/exclusion criteria. This can both be a
benefit, becausemodels that are trained on amore heterogenous groupmight bemore reproducible
to other datasets, but it can also be challenging if the sampling and measurement biases become
larger than the targeted biological signal [77]. These factors should thus be carefully considered
in relation to the question of interest for the study.

In Studies 2–3 we used intra-site cross validation to develop our models on a multi-site
discovery dataset, and tested the reproducibility on an external dataset. Throughout our analyses,
we opted towards using simple and robust steps rather than optimizing the performance on the
discovery dataset, with the goal to find reproducible biomarkers that would generalize towards
the external test dataset.

Using this approach, we were able to classify the diagnosis of the participants with high and
similar performance on both the discovery and the external test data. On the contrary, predictions
on the PANSS scales were low to moderate on the discovery data and generally did not reproduce
to the external test data. One potential explanation for the low performances of the PANSS
prediction could be that the amount of additional heterogeneity (multi-site data pooled from
different sites) was too large in comparison to the signal of interest (PANSS related variation) in
the data. More specifically, even though our sample size was relatively large compared to earlier
studies, since our data came from multiple sites, we only had data from 19–55 patients from each
site. This is one example of where the additional heterogeneity might outweigh the benefits when
using multi-site data. However, as discussed in Paper C, there are also other possible explanations
for this finding.

Predictions on individual RSNs

We also want to highlight another interesting observation which we consistently found (both
for the classification and particularly for the PANSS predictions) when performing individual
predictions of the RSNs from the decomposition methods.

First of all, the highest classification was always found for the ensemble decision model. A
similar result was found for the parcellation based connectivity analysis, where we investigated
the contributions of individual RSNs both through weightmap contributions and individual
subpart predictions. This finding shows that it, for all predictions, was an advantage to use
information from all RSNs, and that there was no ‘single best’ RSN. This supports earlier findings
that schizophrenia affects a wide range of brain networks.

Secondly, we found that the RSNs that yielded the highest prediction performance on the
discovery data did not obtain the best results on external test data. This finding relates to the
“multiple comparison paradox” described by Marek et al. who found that correcting for multiple
comparisons (and thereby choosing the solution with the highest performance) reduced the
probability of successfully replicating results of brain-wise association studies[71]. This result
highlights the importance of validating potential biomarkers on external data, instead of ‘just’
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reporting the solution that obtained the highest prediction performance, presuming that this
solution would also obtain the best performance on other datasets, and hopefully even to a broader
population.

fMRI biomarkers for subtyping

In the last decade, there has been a large focus on finding more mechanistic disease definitions
for psychiatric disorders, as highlighted by initiatives such as RDoC [4]. In this spirit, clustering
of fMRI data has the potential to discover disease subtypes with a more homogeneous biology.

In Study 4, we used the multiple co-clustering algorithm to search for disease-related subtypes
using connectivity data from fMRI. A major part of our analysis was focused on determining the
stability of the clustering, both in relation to different initializations and changes in the dataset
(atlases, datasplits and external data). Finally, we used the the most stable clustering solution to
search for subtypes with a significant disease association.

Overall, we found that the clustering method was very dependent on variability in the dataset,
as well as on the size of the input data (different atlases). Even for the Allen atlas, which only
includes 28 RSNs, we found subject clustering was only moderate across initializations. Neverthe-
less, using this atlas, we found a subtyping solution, which had a significant diagnosis association
both on the discovery and external test dataset. In this solution, there were three potential
schizophrenia-related subtypes, which included a predominance of patients with schizophrenia,
including all patients with a moderate to high total PANSS score. Furthermore, we found that
feature cluster 3 of this subject clustering solution, showed a reproducible linear trend in the
connectivity values, such that subject clusters with a predominance of healthy controls had
positive connectivity values, whereas subject clusters with a predominance of schziophrenia
patients showed negative connectivity. All six connectivity features that were included in this
feature cluster were related to the basal ganglia RSN, indicating the importance of subcortical
regions. Since the Allen atlas only included one basal ganglia RSN, and no further subdivision
into individual subcortical regions, we were not able to determine if this finding was specifically
related to activity changes in the striatum.

Based on our findings, we believe that fMRI based clustering methods, such as MCC, have a
great potential towards finding new disease related subtypes with a more homogeneous biology.
However, as for the predictive modeling studies, we still think there are important methodological
questions that need further investigations, particularly in relation to the stability of the methods.

In Study 4, we have performed the subtyping analysis directly on the fMRI data, which provides
the opportunity find completely data-driven disease subtypes. Alternatively, the clustering could
also be performed on combined datatypes (polytopic learning), such as combining the analysis
of fMRI connectivity features and data from clinical scales or other (neuroimaging) biomarker
modalities [14]. Finally, fMRI data can also be used to support subtypes that are defined based
on other biomarker outputs or clinical scales. E.g. Chen et al. recently used a large multi-site
PANSS dataset to search for a new factorization of the PANSS scale, and found a 4-factor model
with improved consistency compared to the traditional three subscales [50, 203]. This PANSS
factorization (also referred to as psychopathological subtype) was found solely on data from the
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PANSS scales, but the authors subsequently used fMRI to study the neurobiological foundation of
their findings [203].

6.1 Future directions

Looking back on our four studies, we believe that one of the most promising potentials of fMRI
biomarkers are within the field of disease subtyping, either by using clustering directly on the
fMRI data (as in Study 4) or by using fMRI to support subtypes found on other datatypes. There
are still important methodological challenges that need to be addressed, but the discovery of stable
and reproducible subtypes within or even between psychiatric disorders, would have great clinical
potential for many applications, such as better diagnostics, more efficient treatment opportunities
and personalized medicine [14, 129].

If we were to continue our research for another year, we would thus focus our efforts on
further explorations of the subtyping methods. Firstly we would like to continue our work on
mapping how the stability is affected by different factors. For example, it would be interesting
to determine how the stability depends on the iterations (and thereby convergence) and the
number of features in the input space, rather than ‘just’ comparing two atlases as done in Study 4.
Furthermore, we would be interested in further exploration of the potential of polytopic learning,
and combine the connectivity data with other available information, such as the individual items
of the PANSS scores where these are available. Finally, the authors of the MCC algorithm have
also developed another clustering method specifically for fMRI connectivity data, which keeps
the structure of the connectivity matrix without vectorization[128, 204]. This method, however,
comes with other limitations (as described in Paper D), and we think it would thus be interesting
to further investigate their models and to develop ways to overcome the limitations imposed by
the additional constraints.

With regards to future predictive modelling studies, we also believe that there are substantial
reasons to be optimistic, and that the combination of machine learning and multi-site data carries
great potential [15]. We have shown that it is already possible to perform multi-site classifications
on diagnostic labels, which have high performance and reproduce across datasets, demonstrating
the potential of using multi-site data and rigorous prediction frameworks, including data-driven
feature extraction methods. We hope that data sharing initiatives will continue to expand to
include even more data from patients in various diseases, and hopefully also more phenotypic
measures, by which it would be possible to study more fine-grained trends in the the future.

We also believe that it will be necessary to perform more structured investigations to explore
the test-retest variability of fMRI data. This includes developing standards and aligning best
practices for acquisition setups (e.g. scanner settings and calibration, but also proper training of
technical personal), experimental paradigms and data analysis. The required reliability might
vary depending on the question of interest. E.g. if a fMRI paradigm has a low within-subject
reproducibility, it is unlikely to have much utility for supporting clinical decisions, no matter how
advanced machine learning method are used to aim for individual predictions. However, if the
paradigm has a sufficient group-level reproducibility (which can be good, even for tasks with a low
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within-subject reproducibility[205]), it might still be suitable to use this task for parallel-group
designs in drug development, and might thus be considered in cases where the task has sufficient
sensitivity [18, 206].

Studies like ours are important towards solving methodological challenges, but we want to
highlight that different activities are also needed for the clinical translation of fMRI biomarkers.
For example, even if a fMRI biomarker is found to reliably obtain high prediction performances
across datasets, often real-world validation is still needed, because the datasets which are collected
for research purposes do not necessarily reflect the true clinical population1[207]. Furthermore,
for a biomarker to be included into clinical practice, it should be feasible to implement it in a
real-world setting (e.g. not be too costly or time-consuming), be safe and the methods needed
should be ‘accepted’ by the community [94]. This is particularly important in the field of machine
learning, where activities are still ongoing to determine how it can, and should, be used to support
healthcare [208, 209] and drug development [210, 211].

6.2 Conclusion

In conclusion, we see the contributions of our work as important methodological steps towards
using machine learning and multi-site data to find robust and reproducible fMRI biomarkers.
Even though important methodological challenges are yet to be resolved, we are optimistic about
the future of the field moving towards applications with increasing clinical utility. We hope that
data sharing initiatives will keep on growing, both in size and with respect to the kind of data
that are included, such that it will be possible to draw firm conclusions on specific phenotypic
measures in the future. Finally, although important contributions are being made on many fronts,
we believe that the field of subtyping in particular has a considerable potential to change the
clinical utility of future fMRI biomarkers.

1Patients that take part in research studies, particularly if these have a rather high patient burden, might have
higher functioning and lower disease severity and less comorbidity
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APPENDIX A
This chapter includes additional specifications and results and Figures that were not included in
the main thesis.

A.1 Additional specifications to Study 1

None of the data used in this thesis was collected as part of this PhD project. This section includes
additional MRI specifications for the datasets used in the four studies.

A.1.1 Brain atlases used in Study 1

Location of the ROIs used in the literature study atlas (top) and Pooled condition atlas (bottom).

Figure A.1: Center coordinates used in Study 1. Panel A) Literature study coordinates, ab-
breviations: Amyg, amygdala; AngG, angular gyrus; d/v ACC, dorsal/ventral anterior cingulate
cortex; d/v mPFC, dorsal/ventral medial prefrontal cortex; d/v Stri, dorsal/ventral striatum; IPL,
inferior parietal lobule; i/dL PFC, inferior/dorsolateral prefrontal cortex; Pcun, precuneus; STS,
superior temporal sulcus; TP, temporal pole; TPJ, temporoparietal junction Panel B) Pooled con-
dition coordinates; The MNI coordinates are listed in Supplementary table 1 and 3 of publication
B. This Figure is an adated version of the coordinate figure in Paper B.

A.2 Acknowledgement to Visualization tools

Throughout the studies we have used several toolboxes and visualization tools which we would
like to thank.

For most brain visualizations, we have used the “BrainNet Viewer" toolbox:
https://www.nitrc.org/projects/bnv/ developed by Xia et al. [212]

Furthermore, for 3D brain visualizations in Figure 5.1 we used the VitLam toolbox developed
by Hinrich et al [165]. The code for this toolbox can be found via Github:
https://github.com/JesperLH/VITLAM.
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A.3 Datasets used in Studies 2–4

Number of participants and MRI specifications for each site for datasets 2-4 (D2-4). Much of the
avalible information was given by the data descriptor by Tanaka et al from 2021 [19].

A.3.1 Acknowledgement to Multi-site datasets

We would like to thank all investigators and participants who from the data that we used in
Studies 2–4. Here we used data from the the DecNef Project Brain Data Repository (https://bicr-
resource.atr.jp/srpbsopen/), which was collected as part of the Japanese Strategic Research Pro-
gram for the Promotion of Brain Science (SRPBS) supported by the Japanese Advanced Research
and Development Programs for Medical Innovation (AMED).

The second dataset was from the Mind Research Network and the University of New Mexico
funded by a National Institute of Health Center of Biomedical Research Excellence (COBRE) grant
[20].
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A.4 Search on ClinicalTrials.gov

This section includes the search results for our search for trials in Schizophrenia that have used
fMRI. Search words were: “Schizophrenia” [Condition or disease], “fmri OR ’functional MRI’ OR
’functional magnetic resonance imaging” [other terms] and “Industry” [Funding type]. We have
chosen to exclude trials were the phase was listed as “not applicable” as well as trials that were
terminated or not performed in patients with Schizophrenia (this was the case for the last trial on
the list).

Some characteristics from this search are summarized in Figure 2.5



C
lin

ic
al

T
ri

al
s.

g
o

v 
S

ea
rc

h
 R

es
u

lt
s 

02
/0

6/
20

23

T
itl

e
S

ta
tu

s
S

tu
dy

 R
es

ul
ts

C
on

di
tio

ns
In

te
rv

en
tio

ns
Lo

ca
tio

ns

1
M

on
ot

he
ra

py
 B

re
xp

ip
ra

zo
le

 (
O

P
C

-3
47

12
) 

T
ria

l i
n 

th
e

T
re

at
m

en
t o

f A
du

lts
 W

ith
 S

ch
iz

op
hr

en
ia

 W
ith

 Im
pu

ls
iv

ity
C

om
pl

et
ed

H
as

 R
es

ul
ts

•S
ch

iz
op

hr
en

ia
 W

ith
 Im

pu
ls

iv
ity

•D
ru

g:
 B

re
xp

ip
ra

zo
le

•U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 a

t I
rv

in
e 

M
ed

ic
al

 C
en

te
r,

 O
ra

ng
e,

C
al

ifo
rn

ia
, U

ni
te

d 
S

ta
te

s

2
T

he
 E

ffe
ct

s 
of

 A
rip

ip
ra

zo
le

 o
n 

th
e 

P
ro

ce
ss

in
g 

of
 R

ew
ar

ds
 in

S
ch

iz
op

hr
en

ia
T

er
m

in
at

ed
H

as
 R

es
ul

ts
•S

ch
iz

op
hr

en
ia

•O
th

er
: f

M
R

I

•D
ru

g:
 A

rip
ip

ra
zo

le

•A
tla

nt
a 

V
A

 M
ed

ic
al

 C
en

te
r,

 D
ec

at
ur

, G
eo

rg
ia

, U
ni

te
d 

S
ta

te
s

3
T

he
 E

ffe
ct

 o
f K

et
am

in
e 

on
 A

tte
nt

iv
en

es
s

C
om

pl
et

ed
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•S
ch

iz
op

hr
en

ia
•D

ru
g:

 P
la

ce
bo

•D
ru

g:
 k

et
am

in
e

4
R

of
lu

m
ila

st
 P

lu
s 

A
nt

ip
sy

ch
ot

ic
s 

P
ro

of
 o

f M
ec

ha
ni

sm
 S

tu
dy

 in
S

ch
iz

op
hr

en
ia

C
om

pl
et

ed
H

as
 R

es
ul

ts
•S

ch
iz

op
hr

en
ia

•D
ru

g:
 R

of
lu

m
ila

st

•D
ru

g:
 P

la
ce

bo

•D
ru

g:
 S

ec
on

d 
ge

ne
ra

tio
n 

an
tip

sy
ch

ot
ic

•D
en

m
ar

k 
H

ill
, L

on
do

n,
 U

ni
te

d 
K

in
gd

om

5
M

od
ul

at
io

n 
of

 R
eg

io
na

l B
ra

in
 A

ct
iv

at
io

n 
in

 S
ch

iz
op

hr
en

ic
P

at
ie

nt
s 

by
 P

ha
rm

ac
ol

og
ic

al
 T

he
ra

py
T

er
m

in
at

ed
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•S
ch

iz
op

hr
en

ia
•D

ru
g:

 A
m

is
ul

pr
id

e

•D
ru

g:
 O

la
nz

ap
in

e

•D
ru

g:
 H

al
op

er
id

ol

6
S

tu
dy

 A
ss

es
si

ng
 S

E
P

-3
63

85
6 

in
 M

al
e 

an
d 

F
em

al
e 

V
ol

un
te

er
s

W
ith

 H
ig

h 
or

 L
ow

 S
ch

iz
ot

yp
e 

C
ha

ra
ct

er
is

tic
s

C
om

pl
et

ed
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•S
ch

iz
op

hr
en

ia
•D

ru
g:

 S
E

P
-3

63
85

6

•D
ru

g:
 A

m
is

ul
pr

id
e

•D
ru

g:
 P

la
ce

bo

•D
ep

ar
tm

en
t o

f P
sy

ch
ia

tr
y,

 U
ni

ve
rs

ity
 o

f O
xf

or
d,

 W
ar

ne
fo

rd
H

os
pi

ta
l, 

H
ea

di
ng

to
n,

 O
xf

or
d,

 U
ni

te
d 

K
in

gd
om

•U
ni

ve
rs

ity
 o

f M
an

ch
es

te
r,

 N
eu

ro
sc

ie
nc

e 
an

d 
P

sy
ch

ia
tr

y 
U

ni
t,

M
an

ch
es

te
r,

 U
ni

te
d 

K
in

gd
om

7
P

ha
rm

ac
od

yn
am

ic
/P

ha
rm

ac
ok

in
et

ic
 S

tu
dy

 o
f A

Q
W

05
1 

in
S

ch
iz

op
hr

en
ia

C
om

pl
et

ed
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•S
ch

iz
op

hr
en

ia
•D

ru
g:

 A
Q

W
05

1

•D
ru

g:
 P

la
ce

bo

•W
es

t L
A

 V
A

 H
ea

lth
ca

re
 C

en
te

r 
(U

C
LA

),
 L

os
 A

ng
el

es
, C

al
ifo

rn
ia

,
U

ni
te

d 
S

ta
te

s

•D
ep

ar
tm

en
t o

f P
sy

ch
ia

tr
y 

&
 B

eh
av

io
ur

al
 S

ci
en

ce
s,

 F
ei

nb
er

g
S

ch
oo

l o
f M

ed
ic

in
e 

(N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

),
 C

hi
ca

go
, I

lli
no

is
,

U
ni

te
d 

S
ta

te
s

•M
ar

yl
an

d 
P

sy
ch

ia
tr

ic
 R

es
ea

rc
h 

C
en

tr
e,

 S
pr

in
g 

G
ro

ve
 H

os
pi

ta
l

G
ro

un
ds

, B
al

tim
or

e,
 M

ar
yl

an
d,

 U
ni

te
d 

S
ta

te
s

•M
as

sa
ch

us
et

ts
 G

en
er

al
 H

os
pi

ta
l (

F
re

ed
om

 T
ra

il 
C

lin
ic

),
 B

os
to

n,
M

as
sa

ch
us

et
ts

, U
ni

te
d 

S
ta

te
s

•W
as

hi
ng

to
n 

U
ni

ve
rs

ity
, S

ai
nt

 L
ou

is
, M

is
so

ur
i, 

U
ni

te
d 

S
ta

te
s

•C
ol

um
bi

a 
U

ni
ve

rs
ity

, N
ew

 Y
or

k,
 N

ew
 Y

or
k,

 U
ni

te
d 

S
ta

te
s

•J
U

H
 C

lin
ic

al
 R

es
ea

rc
h 

(D
uk

e 
U

ni
ve

rs
ity

),
, B

ut
ne

r,
 N

or
th

C
ar

ol
in

a,
 U

ni
te

d 
S

ta
te

s

8
A

 D
2 

R
ec

ep
to

r 
O

cc
up

an
cy

 a
nd

 fM
R

I S
tu

dy
 in

 S
ch

iz
op

hr
en

ic
S

ub
je

ct
s 

T
re

at
ed

 W
ith

 L
ur

as
id

on
e

C
om

pl
et

ed
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•S
ch

iz
op

hr
en

ia
•D

ru
g:

 L
ur

as
id

on
e 

80
 m

g

•D
ru

g:
 L

ur
as

id
on

e 
12

0 
m

g

•D
ru

g:
 L

ur
as

id
on

e 
16

0 
m

g

•U
C

I M
ed

ic
al

 C
en

te
r,

 O
ra

ng
e,

 C
al

ifo
rn

ia
, U

ni
te

d 
S

ta
te

s

9
C

on
tr

as
tin

g 
th

e 
B

ra
in

 E
ffe

ct
s 

of
 R

is
pe

rid
on

e 
an

d 
In

ve
ga

 W
ith

F
un

ct
io

na
l M

ag
ne

tic
 R

es
on

an
ce

 Im
ag

in
g 

(f
M

R
I)

 a
nd

 P
os

itr
on

E
m

is
si

on
 T

om
og

ra
ph

y 
(P

E
T

) 
S

ca
nn

in
g

U
nk

no
w

n 
st

at
us

N
o 

R
es

ul
ts

 A
va

ila
bl

e
•S

ch
iz

op
hr

en
ia

•D
ru

g:
 R

is
pe

rid
on

e

•D
ru

g:
 P

al
ip

er
id

on
e

•U
C

 Ir
vi

ne
, I

rv
in

e,
 C

al
ifo

rn
ia

, U
ni

te
d 

S
ta

te
s

10
P

ilo
t S

tu
dy

 o
f A

to
m

ox
et

in
e 

T
o 

E
nh

an
ce

 C
O

gn
iti

on
 In

 P
at

ie
nt

s
W

ith
 S

ch
iz

op
hr

en
ia

C
om

pl
et

ed
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•S
ch

iz
op

hr
en

ia
•D

ru
g:

 A
to

m
ox

et
in

e
•P

ilg
rim

 P
sy

ch
ia

tr
ic

 C
en

te
r,

 B
re

nt
w

oo
d,

 N
ew

 Y
or

k,
 U

ni
te

d 
S

ta
te

s

•M
ou

nt
 S

in
ai

 H
os

pi
ta

l, 
N

ew
 Y

or
k,

 N
ew

 Y
or

k,
 U

ni
te

d 
S

ta
te

s

11
C

og
ni

tiv
e 

Im
pr

ov
em

en
t W

ith
 A

rip
ip

ra
zo

le
 (

A
bi

lif
y)

 in
 P

at
ie

nt
s

W
ith

 S
ch

iz
op

hr
en

ia
 (

B
M

S
)

T
er

m
in

at
ed

N
o 

R
es

ul
ts

 A
va

ila
bl

e
•S

ch
iz

op
hr

en
ia

•S
ch

iz
oa

ffe
ct

iv
e 

D
is

or
de

r

•D
ru

g:
 a

rip
ip

ra
zo

le
•P

sy
ch

op
ha

rm
ac

ol
og

y 
R

es
ea

rc
h 

C
lin

ic
, S

hr
ev

ep
or

t, 
Lo

ui
si

an
a,

U
ni

te
d 

S
ta

te
s

12
P

O
C

 S
tu

dy
 o

f P
ip

am
pe

ro
ne

 A
dd

ed
 to

 S
ta

bl
e 

T
re

at
m

en
t W

ith
R

IS
 o

r 
P

A
L 

in
 C

hr
on

ic
 S

ch
iz

op
hr

en
ia

C
om

pl
et

ed
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•C
hr

on
ic

 S
ch

iz
op

hr
en

ia

•S
ch

iz
oa

ffe
ct

iv
e 

D
is

or
de

r

•D
ru

g:
 P

ip
am

pe
ro

ne

•D
ru

g:
 P

la
ce

bo

•U
ni

ve
rs

ity
 P

sy
ch

ia
tr

ic
 In

st
itu

te
 S

in
t-

Jo
ze

f, 
K

or
te

nb
er

g,
 B

el
gi

um

- 
 P

ag
e 

1 
of

 4
  -



T
itl

e
S

ta
tu

s
S

tu
dy

 R
es

ul
ts

C
on

di
tio

ns
In

te
rv

en
tio

ns
Lo

ca
tio

ns

13
N

eu
ro

m
od

ul
at

io
n 

fo
r 

S
ch

iz
op

hr
en

ia
N

ot
 y

et
 r

ec
ru

iti
ng

N
o 

R
es

ul
ts

 A
va

ila
bl

e
•S

ch
iz

op
hr

en
ia

•D
ev

ic
e:

 N
on

-in
va

si
ve

 b
ra

in
st

em
 m

od
ul

at
io

n
de

vi
ce

 (
st

im
ul

at
io

n 
R

an
do

m
iz

ed
)

•D
ev

ic
e:

 N
on

-in
va

si
ve

 b
ra

in
st

em
 m

od
ul

at
io

n
de

vi
ce

 (
st

im
ul

at
io

n-
O

pe
n 

La
be

l)

•C
en

tr
e 

fo
r 

A
dd

ic
tio

n 
an

d 
M

en
ta

l H
ea

lth
, T

or
on

to
, O

nt
ar

io
,

C
an

ad
a

14
A

dd
 O

n 
T

re
at

m
en

t f
or

 C
og

ni
tiv

e 
D

ef
ic

its
 in

 S
ch

iz
op

hr
en

ia
C

om
pl

et
ed

N
o 

R
es

ul
ts

 A
va

ila
bl

e
•S

ch
iz

op
hr

en
ia

•D
ru

g:
 P

F
 0

36
54

74
6

•O
th

er
: P

la
ce

bo

•U
ni

ve
rs

ity
 o

f P
en

ns
yl

va
ni

a,
 P

hi
la

de
lp

hi
a,

 P
en

ns
yl

va
ni

a,
 U

ni
te

d
S

ta
te

s

15
A

 S
tu

dy
 to

 E
va

lu
at

e 
T

he
 E

ffe
ct

s 
of

 R
O

55
45

96
5 

in
 P

ar
tic

ip
an

ts
W

ith
 N

eg
at

iv
e 

S
ym

pt
om

s 
of

 S
ch

iz
op

hr
en

ia
 T

re
at

ed
 W

ith
A

nt
ip

sy
ch

ot
ic

s

C
om

pl
et

ed
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•S
ch

iz
op

hr
en

ia
•D

ru
g:

 P
la

ce
bo

•D
ru

g:
 R

O
55

45
96

5

•C
N

S
 N

et
w

or
k,

 G
ar

de
n 

G
ro

ve
, C

al
ifo

rn
ia

, U
ni

te
d 

S
ta

te
s

•P
ar

ex
el

 C
al

ifo
rn

ia
 C

lin
ic

al
 T

ria
ls

 M
ed

ic
al

 G
ro

up
, G

le
nd

al
e,

C
al

ifo
rn

ia
, U

ni
te

d 
S

ta
te

s

•S
t L

ou
is

 C
lin

ic
al

 T
ria

ls
, S

ai
nt

 L
ou

is
, M

is
so

ur
i, 

U
ni

te
d 

S
ta

te
s

16
T

he
 E

ffe
ct

s 
A

Z
D

85
29

 o
n 

C
og

ni
tio

n 
an

d 
N

eg
at

iv
e 

S
ym

pt
om

s 
in

S
ch

iz
op

hr
en

ic
s

C
om

pl
et

ed
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•S
ch

iz
op

hr
en

ia
•D

ru
g:

 A
Z

D
85

29

•D
ru

g:
 P

la
ce

bo
 to

 m
at

ch
 A

Z
D

85
29

•R
es

ea
rc

h 
S

ite
, P

hi
la

de
lp

hi
a,

 P
en

ns
yl

va
ni

a,
 U

ni
te

d 
S

ta
te

s

17
T

he
 E

ffi
ca

cy
 a

nd
 S

af
et

y 
of

 a
 S

el
ec

tiv
e 

E
st

ro
ge

n 
R

ec
ep

to
r

B
et

a 
A

go
ni

st
 (

LY
50

03
07

) 
fo

r 
N

eg
at

iv
e 

S
ym

pt
om

s 
an

d
C

og
ni

tiv
e 

Im
pa

irm
en

t A
ss

oc
ia

te
d 

W
ith

 S
ch

iz
op

hr
en

ia

T
er

m
in

at
ed

H
as

 R
es

ul
ts

•S
ch

iz
op

hr
en

ia
•D

ru
g:

 L
Y

50
03

07
 1

50
m

g

•D
ru

g:
 L

Y
50

03
07

 7
5m

g

•D
ru

g:
 P

la
ce

bo

•D
ru

g:
 L

Y
50

03
07

 2
5m

g

•I
nd

ia
na

 U
ni

ve
rs

ity
 C

en
te

r 
fo

r 
N

eu
ro

Im
ag

in
g,

 In
di

an
ap

ol
is

,
In

di
an

a,
 U

ni
te

d 
S

ta
te

s

•I
U

 B
io

st
at

is
tic

s,
 In

di
an

ap
ol

is
, I

nd
ia

na
, U

ni
te

d 
S

ta
te

s

•P
re

ve
nt

io
n 

an
d 

R
ec

ov
er

y 
C

en
te

r 
fo

r 
E

ar
ly

 P
sy

ch
os

is
,

In
di

an
ap

ol
is

, I
nd

ia
na

, U
ni

te
d 

S
ta

te
s

•L
ar

ue
 D

 C
ar

te
r 

M
em

or
ia

l H
os

pi
ta

l, 
In

di
an

ap
ol

is
, I

nd
ia

na
, U

ni
te

d
S

ta
te

s

18
A

 R
an

do
m

iz
ed

, D
ou

bl
e-

B
lin

d,
 P

la
ce

bo
 C

on
tr

ol
le

d,
 T

w
o-

P
er

io
d 

C
ro

ss
-O

ve
r,

 P
ro

of
 o

f A
ct

iv
ity

 S
tu

dy
 to

 E
va

lu
at

e 
th

e
E

ffe
ct

s 
of

 T
A

K
-0

41
 o

n 
M

ot
iv

at
io

na
l A

nh
ed

on
ia

 a
s 

A
dd

-O
n 

to
A

nt
ip

sy
ch

ot
ic

s 
in

 P
ar

tic
ip

an
ts

 W
ith

 S
ta

bl
e 

S
ch

iz
op

hr
en

ia

C
om

pl
et

ed
H

as
 R

es
ul

ts
•S

ta
bl

e 
S

ch
iz

op
hr

en
ia

•D
ru

g:
 T

A
K

-0
41

•D
ru

g:
 P

la
ce

bo

•D
ru

g:
 S

ec
on

d 
G

en
er

at
io

n 
A

nt
ip

sy
ch

ot
ic

s
(S

G
A

)

•K
in

gs
 C

ol
le

ge
 L

on
do

n,
 L

on
do

n,
 U

ni
te

d 
K

in
gd

om

19
A

ss
oc

ia
tio

n 
of

 A
m

is
ul

pr
id

e 
R

es
po

ns
e 

in
 S

ch
iz

op
hr

en
ia

 W
ith

B
ra

in
 Im

ag
e

U
nk

no
w

n 
st

at
us

N
o 

R
es

ul
ts

 A
va

ila
bl

e
•S

ch
iz

op
hr

en
ia

•S
ch

iz
op

hr
en

ifo
rm

 D
is

or
de

r

•D
ru

g:
 a

m
is

ul
pr

id
e

20
A

pp
et

ite
 In

cr
ea

se
 in

 S
ch

iz
op

hr
en

ia
 P

at
ie

nt
s 

T
re

at
ed

 W
ith

A
ty

pi
ca

l A
nt

ip
sy

ch
ot

ic
s

C
om

pl
et

ed
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•S
ch

iz
op

hr
en

ia
•D

ru
g:

 O
la

nz
ap

in
e

•C
en

tr
e 

de
 r

ec
he

rc
he

 F
er

na
nd

-S
eg

ui
n,

 M
on

tr
éa

l, 
Q

ue
be

c,
C

an
ad

a

21
T

he
 C

A
M

P
U

S
 P

ro
je

ct
: C

ho
lin

er
gi

c 
A

ug
m

en
ta

tio
n 

of
 C

og
ni

tiv
e

D
ef

ic
its

 in
 S

ch
iz

op
hr

en
ia

T
er

m
in

at
ed

N
o 

R
es

ul
ts

 A
va

ila
bl

e
•S

ch
iz

op
hr

en
ia

•D
ru

g:
 d

on
ep

ez
il 

(5
-1

0 
m

g/
da

y)

•D
ru

g:
 P

la
ce

bo

•C
en

te
r 

fo
r 

N
eu

ro
ps

yc
hi

at
ric

 S
ch

iz
op

hr
en

ia
 R

es
ea

rc
h,

 U
ni

ve
rs

ity
of

 C
op

en
ha

ge
n,

 D
ep

t. 
F

, B
is

pe
bj

er
g 

H
os

pi
ta

l, 
C

op
en

ha
ge

n 
N

V
,

D
en

m
ar

k

•D
ep

t. 
of

 P
sy

ch
ia

tr
y 

O
, R

ig
sh

os
pi

ta
le

t, 
B

le
gd

am
sv

ej
 9

,
C

op
en

ha
ge

n,
 D

en
m

ar
k

•P
sy

ch
ia

tr
ic

 C
en

te
r,

 G
lo

st
ru

p,
 G

lo
st

ru
p,

 D
en

m
ar

k

•D
an

is
h 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
M

ag
ne

tic
 R

es
on

an
ce

 Im
ag

in
g,

H
vi

do
vr

e 
H

os
pi

ta
l, 

H
vi

do
vr

e,
 D

en
m

ar
k

22
A

 T
ra

ns
la

tio
na

l a
nd

 N
eu

ro
co

m
pu

ta
tio

na
l E

va
lu

at
io

n 
of

 a
D

op
am

in
e 

R
ec

ep
to

r 
1 

P
ar

tia
l A

go
ni

st
 fo

r 
S

ch
iz

op
hr

en
ia

R
ec

ru
iti

ng
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•E
ar

ly
 C

ou
rs

e 
S

ch
iz

op
hr

en
ia

 S
pe

ct
ru

m
D

is
or

de
r

•D
ru

g:
 C

V
L-

56
2 

(P
F

-0
64

12
56

2)
 1

 m
g

•D
ru

g:
 C

V
L-

56
2 

(P
F

-0
64

12
56

2)
 4

 m
g

•D
ru

g:
 C

V
L-

56
2 

(P
F

-0
64

12
56

2)
 1

5 
m

g

•D
ru

g:
 C

V
L-

56
2 

(P
F

-0
64

12
56

2)
 2

5 
m

g

•O
th

er
: P

la
ce

bo

•Y
al

e 
U

ni
ve

rs
ity

, N
ew

 H
av

en
, C

on
ne

ct
ic

ut
, U

ni
te

d 
S

ta
te

s

•C
ol

um
bi

a 
U

ni
ve

rs
ity

, N
ew

 Y
or

k,
 N

ew
 Y

or
k,

 U
ni

te
d 

S
ta

te
s

•S
to

ny
 B

ro
ok

 U
ni

ve
rs

ity
, S

to
ny

 B
ro

ok
, N

ew
 Y

or
k,

 U
ni

te
d 

S
ta

te
s

•U
ni

ve
rs

ity
 o

f P
en

ns
yl

va
ni

a,
 P

hi
la

de
lp

hi
a,

 P
en

ns
yl

va
ni

a,
 U

ni
te

d
S

ta
te

s

- 
 P

ag
e 

2 
of

 4
  -



T
itl

e
S

ta
tu

s
S

tu
dy

 R
es

ul
ts

C
on

di
tio

ns
In

te
rv

en
tio

ns
Lo

ca
tio

ns

23
A

 S
tu

dy
 T

o 
E

xa
m

in
e 

S
af

et
y,

 P
ha

rm
ac

ok
in

et
ic

s,
 A

nd
P

ha
rm

ac
od

yn
am

ic
 O

f P
f 0

64
12

56
2 

In
 S

ub
je

ct
s 

W
ith

S
ch

iz
op

hr
en

ia

C
om

pl
et

ed
H

as
 R

es
ul

ts
•S

ch
iz

op
hr

en
ia

•D
ru

g:
 P

F
-0

64
12

56
2 

3m
g 

B
ID

•D
ru

g:
 P

F
-0

64
12

56
2 

9m
g 

B
ID

•D
ru

g:
 P

F
-0

64
12

56
2 

45
m

g 
B

ID

•O
th

er
: P

la
ce

bo

•A
rc

ad
ia

 M
R

I &
 Im

ag
in

g 
C

en
te

r,
 A

rc
ad

ia
, C

al
ifo

rn
ia

, U
ni

te
d

S
ta

te
s

•C
al

ifo
rn

ia
 C

lin
ic

al
 T

ria
ls

 M
ed

ic
al

 G
ro

up
, G

le
nd

al
e,

 C
al

ifo
rn

ia
,

U
ni

te
d 

S
ta

te
s

•G
le

nd
al

e 
A

dv
en

tis
t M

ed
ic

al
 C

en
te

r,
 G

le
nd

al
e,

 C
al

ifo
rn

ia
, U

ni
te

d
S

ta
te

s

•M
ar

yl
an

d 
P

sy
ch

ia
tr

ic
 R

es
ea

rc
h 

C
en

te
r 

(M
P

R
C

) 
of

 th
e 

U
ni

ve
rs

ity
of

 M
ar

yl
an

d,
 B

al
tim

or
e,

 M
ar

yl
an

d,
 U

ni
te

d 
S

ta
te

s

•C
B

H
 H

ea
lth

, L
LC

, G
ai

th
er

sb
ur

g,
 M

ar
yl

an
d,

 U
ni

te
d 

S
ta

te
s

•F
oe

rs
 L

on
g 

T
er

m
 C

ar
e 

P
ha

rm
ac

y 
LL

C
, R

oc
kv

ill
e,

 M
ar

yl
an

d,
U

ni
te

d 
S

ta
te

s

24
A

 P
la

ce
bo

-C
on

tr
ol

le
d 

S
tu

dy
 o

f P
hy

si
ol

og
ic

 E
ffe

ct
s 

of
 L

-
m

et
hy

lfo
la

te
 in

 S
ch

iz
op

hr
en

ia
 P

at
ie

nt
s

C
om

pl
et

ed
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•S
ch

iz
op

hr
en

ia
•O

th
er

: P
la

ce
bo

•O
th

er
: L

-m
et

hy
lfo

la
te

•M
as

sa
ch

us
et

ts
 G

en
er

al
 H

os
pi

ta
l (

M
G

H
) 

S
ch

iz
op

hr
en

ia
 P

ro
gr

am
at

 F
re

ed
om

 T
ra

il 
C

lin
ic

, B
os

to
n,

 M
as

sa
ch

us
et

ts
, U

ni
te

d 
S

ta
te

s

25
E

ffe
ct

s 
of

 T
A

K
-0

63
 o

n 
P

re
ve

nt
in

g 
K

et
am

in
e-

In
du

ce
d 

B
ra

in
A

ct
iv

ity
 C

ha
ng

es
 a

s 
W

el
l a

s 
P

sy
ch

ot
ic

-L
ik

e 
S

ym
pt

om
s 

in
H

ea
lth

y 
M

al
e 

A
du

lts

C
om

pl
et

ed
H

as
 R

es
ul

ts
•K

et
am

in
e-

In
du

ce
d 

B
ra

in
 A

ct
iv

ity
 C

ha
ng

es

•P
sy

ch
ot

ic
-li

ke
 S

ym
pt

om
s

•D
ru

g:
 K

et
am

in
e

•D
ru

g:
 T

A
K

-0
63

•D
ru

g:
 T

A
K

-0
63

 P
la

ce
bo

•T
he

 B
ra

in
 In

st
itu

te
, U

ni
ve

rs
ity

 o
f U

ta
h,

 S
al

t L
ak

e 
C

ity
, U

ta
h,

U
ni

te
d 

S
ta

te
s

26
N

eu
ro

bi
ol

og
ic

al
 a

nd
 N

eu
ro

co
gn

iti
ve

 D
is

tu
rb

an
ce

s 
in

 F
irs

t-
ep

is
od

e 
S

ch
iz

op
hr

en
ia

C
om

pl
et

ed
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•S
ch

iz
op

hr
en

ia
•D

ru
g:

 q
ue

tia
pi

ne
•N

eu
ro

bi
ol

og
y 

R
es

ea
rc

h 
U

ni
t, 

R
ig

sh
os

pi
ta

le
t, 

C
op

en
ha

ge
n,

D
en

m
ar

k

•C
en

te
r 

fo
r 

N
eu

ro
ps

yc
hi

at
ric

 S
ch

iz
op

hr
en

ia
 R

es
ea

rc
h,

 U
ni

ve
rs

ity
of

 C
op

en
ha

ge
n,

 P
sy

ch
ia

tr
ic

 C
en

te
r 

G
lo

st
ru

p,
 G

lo
st

ru
p,

 D
en

m
ar

k

•D
an

is
h 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
M

ag
ne

tic
 R

es
on

an
ce

 Im
ag

in
g,

H
vi

do
vr

e 
H

os
pi

ta
l, 

H
vi

do
vr

e,
 D

en
m

ar
k

27
D

op
am

in
er

gi
c,

 F
un

ct
io

na
l, 

S
tr

uc
tu

ra
l, 

an
d 

C
og

ni
tiv

e
D

is
tu

rb
an

ce
s 

in
 F

irs
t-

ep
is

od
e 

S
ch

iz
op

hr
en

ia
C

om
pl

et
ed

N
o 

R
es

ul
ts

 A
va

ila
bl

e
•S

ch
iz

op
hr

en
ia

•D
ru

g:
 z

uc
lo

pe
nt

hi
xo

l

•D
ru

g:
 r

is
pe

rid
on

e

•D
ep

t. 
of

 N
uc

le
ar

 M
ed

ic
in

e,
 U

ni
ve

rs
ity

 o
f C

op
en

ha
ge

n,
B

is
pe

bj
er

g 
H

os
pi

ta
l, 

C
op

en
ha

ge
n 

N
V

, D
en

m
ar

k

•U
ni

ve
rs

ity
 o

f C
op

en
ha

ge
n,

 D
ep

t. 
F

, B
is

pe
bj

er
g 

H
os

pi
ta

l,
C

op
en

ha
ge

n 
N

V
, D

en
m

ar
k

•U
ni

ve
rs

ity
 o

f C
op

en
ha

ge
n,

 D
ep

t. 
of

 P
sy

ch
ia

tr
y 

E
, B

is
pe

bj
er

g
H

os
pi

ta
l, 

C
op

en
ha

ge
n 

N
V

, D
en

m
ar

k

•N
eu

ro
bi

ol
og

y 
R

es
ea

rc
h 

U
ni

t, 
U

ni
ve

rs
ity

 o
f C

op
en

ha
ge

n,
R

ig
sh

os
pi

ta
le

t, 
C

op
en

ha
ge

n,
 D

en
m

ar
k

•C
en

te
r 

fo
r 

N
eu

ro
ps

yc
hi

at
ric

 S
ch

iz
op

hr
en

ia
 R

es
ea

rc
h,

 U
ni

ve
rs

ity
of

 C
op

en
ha

ge
n,

 P
sy

ch
ia

tr
ic

 C
en

te
r 

G
lo

st
ru

p,
 G

lo
st

ru
p,

 D
en

m
ar

k

•D
an

is
h 

R
es

ea
rc

h 
C

en
te

r 
fo

r 
M

ag
ne

tic
 R

es
on

an
ce

 Im
ag

in
g,

H
vi

do
vr

e 
H

os
pi

ta
l, 

H
vi

do
vr

e,
 D

en
m

ar
k

28
S

R
C

 In
hi

bi
tio

n 
as

 a
 P

ot
en

tia
l T

ar
ge

t f
or

 P
ar

ki
ns

on
's

 D
is

ea
se

P
sy

ch
os

is
U

nk
no

w
n 

st
at

us
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•P
ar

ki
ns

on
 D

is
ea

se
 P

sy
ch

os
is

•D
ru

g:
 S

ar
ac

at
in

ib

•D
ru

g:
 P

la
ce

bo
 O

ra
l T

ab
le

t

•M
itu

l M
eh

ta
, L

on
do

n,
 C

am
be

rw
el

l, 
U

ni
te

d 
K

in
gd

om

- 
 P

ag
e 

3 
of

 4
  -



T
itl

e
S

ta
tu

s
S

tu
dy

 R
es

ul
ts

C
on

di
tio

ns
In

te
rv

en
tio

ns
Lo

ca
tio

ns

29
E

ffe
ct

s 
on

 S
oc

ia
l a

nd
 C

og
ni

tio
n 

F
un

ct
io

ns
 o

f B
lo

na
ns

er
in

 in
F

irs
t E

pi
so

de
 S

ch
iz

op
hr

en
ia

 P
at

ie
nt

s
U

nk
no

w
n 

st
at

us
N

o 
R

es
ul

ts
 A

va
ila

bl
e

•F
irs

t E
pi

so
de

 S
ch

iz
op

hr
en

ia

•S
oc

ia
l F

un
ct

io
n

•C
og

ni
tio

n 
F

un
ct

io
n

•B
lo

na
ns

er
in

•D
ru

g:
 B

lo
na

ns
er

in

•O
th

er
: M

R
I a

nd
 s

er
um

 B
D

N
F

•B
ei

jin
g 

H
ui

lo
ng

gu
an

 H
os

pi
ta

l, 
B

ei
jin

g,
 B

ei
jin

g,
 C

hi
na

•P
ek

in
g 

U
ni

ve
rs

ity
 S

ix
th

 H
os

pi
ta

l, 
B

ei
jin

g,
 B

ei
jin

g,
 C

hi
na

•T
he

 S
ec

on
d 

X
ia

ng
ya

 H
os

pi
ta

l o
f C

en
tr

al
 S

ou
th

 U
ni

ve
rs

ity
,

C
ha

ng
sh

a,
 H

un
an

, C
hi

na

•S
ha

ng
ha

i M
en

ta
l H

ea
lth

 C
en

te
r,

 S
ha

ng
ha

i, 
S

ha
ng

ha
i, 

C
hi

na

•X
i'a

n 
M

en
ta

l H
ea

lth
 C

en
te

r,
 X

i'a
n,

 S
ha

nx
i, 

C
hi

na

•W
es

t C
hi

na
 H

os
pi

ta
l, 

S
ic

hu
an

 U
ni

ve
ris

ty
, C

he
ng

du
, S

ic
hu

an
,

C
hi

na

•T
ia

nj
in

 M
en

ta
l H

ea
lth

 C
en

te
r,

 T
ia

nj
in

, T
ia

nj
in

, C
hi

na

•T
he

 F
irs

t A
ffi

lia
te

d 
ho

sp
ita

l o
f Z

he
jia

ng
 U

ni
ve

rs
ity

 S
ch

oo
l o

f
M

ed
ic

in
e,

 H
an

gz
ho

u,
 Z

he
jia

ng
, C

hi
na

U
.S

. N
at

io
na

l L
ib

ra
ry

 o
f M

ed
ic

in
e 

 | 
 U

.S
. N

at
io

na
l I

ns
tit

ut
es

 o
f H

ea
lth

  |
  U

.S
. D

ep
ar

tm
en

t o
f H

ea
lth

 &
 H

um
an

 S
er

vi
ce

s

- 
 P

ag
e 

4 
of

 4
  -



PAPER A B
Title

Perspectives on machine learning for classification of Schizotypy using fMRI data

Authors

Madsen, Kristoffer H; Krohne, Laerke G ; Cai, Xin-Lu; Wang, Yi; Chan, Raymond CK;

Journal

Schizophrenia Bulletin

Year

2018

103



S480

Schizophrenia Bulletin vol. 44 suppl. no. 2 pp. S480–S490, 2018 
doi:10.1093/schbul/sby026
Advance Access publication March 15, 2018

© The Author(s) 2018. Published by Oxford University Press on behalf  of the Maryland Psychiatric Research Center. All rights reserved. 
For permissions, please email: journals.permissions@oup.com

INVITED ARTICLE

Perspectives on Machine Learning for Classification of Schizotypy Using 
fMRI Data

Kristoffer H. Madsen*,1,2, Laerke G. Krohne1,2, Xin-lu Cai3–5, Yi Wang3, and Raymond C. K. Chan3–6

1Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University 
Hospital Hvidovre, Hvidovre, Denmark; 2Department of Applied Mathematics and Computer Science, Technical University of 
Denmark, Kongens Lyngby, Denmark; 3Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory 
of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; 4Department of Psychology, University of 
Chinese Academy of Sciences, Beijing, China; 5Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China; 6These 
authors shared correspondence to this work.

*To whom correspondence should be addressed; tel: +45 38622975; fax:+45 36351680; e-mail: kristofferm@drcmr.dk.

Functional magnetic resonance imaging is capable of esti-
mating functional activation and connectivity in the human 
brain, and lately there has been increased interest in the 
use of these functional modalities combined with machine 
learning for identification of psychiatric traits. While these 
methods bear great potential for early diagnosis and better 
understanding of disease processes, there are wide ranges of 
processing choices and pitfalls that may severely hamper in-
terpretation and generalization performance unless carefully 
considered. In this perspective article, we aim to motivate the 
use of machine learning schizotypy research. To this end, we 
describe common data processing steps while commenting on 
best practices and procedures. First, we introduce the impor-
tant role of schizotypy to motivate the importance of reliable 
classification, and summarize existing machine learning lit-
erature on schizotypy. Then, we describe procedures for ex-
traction of features based on fMRI data, including statistical 
parametric mapping, parcellation, complex network analysis, 
and decomposition methods, as well as classification with a 
special focus on support vector classification and deep learn-
ing. We provide more detailed descriptions and software as 
supplementary material. Finally, we present current chal-
lenges in machine learning for classification of schizotypy 
and comment on future trends and perspectives.

Key words:   functional magnetic resonance 
imaging/feature extraction/neuroimaging/schizotypy/schi
zophrenia spectrum disorder

Introduction

The study of  schizotypy has received substantial interest 
in the field of  psychiatry and psychology and recently 

developments and increased interest in machine learn-
ing for neuroimaging is showing promising applications 
in computational psychiatry. Theoretically, schizotypy 
has been conceptualized as an important phenotype for 
schizophrenia spectrum disorders.1–3 Two competitive 
theories, the quasi-dimensional and the fully dimensional 
approach have been proposed to model the construct of 
schizotypy. The quasi-dimensional approach posits the 
view that schizotypy is a discontinuity in the general 
population.2,4 However, recent studies have suggested 
that this phenotype is distributed along a continuum, 
ranging from psychological well-being to full-blown psy-
chosis,5–7 supporting the fully dimensional approach that 
emphasizes the continuity of  schizotypy.8 Furthermore, 
empirical findings demonstrate that individuals with 
schizotypal traits exhibit similar but attenuated impair-
ments in cognition,9,10 emotion,7,11 and neurological func-
tions10,12 compared with patients with schizophrenia. 
Likewise, manifestations of  these schizotypal pheno-
types are found to be robust and stable across time and 
environment.5,13–15

With implications from the neurodevelopmental 
model of psychosis in schizophrenia,16,17 Insel18 further 
delineated 4 stages, ranging from risk to chronic disa-
bility. This 4-stage hypothesis highlights the importance 
of early risk stages for the understanding of the psycho-
pathology to facilitate early detection and intervention 
strategies for psychosis and mental disorders. Although 
schizotypy is not explicitly included in Insel’s model, 
there are important similarities within the cognitive, emo-
tional, and social impairments. This point toward under-
standing the psychopathology of schizophrenia spectrum 
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disorders through personality traits presented in the ge-
neral population.

Recently, schizotypy has recently been conceptualized as 
a construct well beyond the borders of schizophrenia spec-
trum disorders (e.g., Cohen et al19). These authors argue 
that the researchers interested in psychosis have mainly 
followed narrow research avenues, focusing on molecular, 
neurophysiological, environmental, and cultural correlates 
of psychotic expression or investigating potential endophe-
notypes relating to the extreme manifestation of schizo-
typy to schizophrenia. However, the unique emotional and 
social manifestations observed in individuals with schizo-
typy can actually provide insight into the nature of affective 
and social systems integral to general human functioning. 
For example, findings from functional neuroimaging have 
shown that individuals with social anhedonia exhibit sig-
nificant hypoactivation of the left pulvinar, claustrum, 
and insula to positive cues in the anticipatory phase of the 
affective incentive delay task compared with those without 
social anhedonia.14 Longitudinal studies also suggest that 
individuals with schizotypal traits have their unique trajec-
tories that may not necessarily develop into full-blown psy-
chosis.20–23 Recently, Wang et al24 identified 4 trajectories of 
schizotypy; including 2 stable and 2 reactive groups. The 
“stable low and high schizotypy” groups displayed the best 
and worst clinical and functional outcomes, respectively. 
The “high reactive schizotypy” group was characterized by 
a relatively rapid decline in function, while the “low reac-
tive schizotypy” group was characterized by low scores at 
baseline of the assessment but with gradual deterioration. 
These findings suggest that even within the nonclinical 
sample of schizotypal phenotypes, similar subtypes, and 
trajectories comparable to the clinical patients with schizo-
phrenia are observed. This highlights the importance of 
tracking schizotypy longitudinally because of their unique 
trajectories and outcomes.

Several studies have already applied neuroimaging data 
to investigate the neurobiological changes related to schiz-
otypy, reporting both structural and functional changes. 
For example, structural studies have found grey matter vol-
ume changes in many of the areas known to be altered in 
schizophrenia, such as prefrontal, temporal, and cingulate 
cortex, as well as insula and subcortical regions.25–28 These 
studies suggest that cortical changes exist on a dimensional 
continuum across the schizophrenia spectrum, likely to 
occur pre-onset of psychopathology. Furthermore, studies 
using functional magnetic resonance imaging (fMRI) to 
investigate social cognition, have reported similar regional 
brain activation changes, when comparing participants 
with different degree of schizotypy, or individuals with high 
schizotypy compared with controls.29–31 Finally, functional 
connectivity studies reported similar network changes to 
that of patients with schizophrenia,32–34 such as altered 
connectivity between striatum, medial prefrontal cortex 
(PFC), anterior cingulate (ACC), and insula. Importantly, 
almost all the above studies, reported different results for 

the positive and negative dimension of schizotypy, demon-
strating the heterogeneity of schizotypy.

The above findings emphasize the important role of 
schizotypy in psychiatry and psychology. On one hand, 
schizotypy is considered to be a trait marker for schiz-
ophrenia and the study of behavioral and neurobio-
logical bases of schizotypy may help us understand the 
underlying psychopathology of schizophrenia. This sug-
gests that schizotypy may be an important phenotype 
for studying schizophrenia spectrum disorders. On the 
other hand, schizotypy may serve as a unique entity to 
examine the underlying emotional and social systems in 
humans. Therefore, a better way to classify this pheno-
type will be meaningful to schizotypy scholars. However, 
to our knowledge, there are only few studies which have 
been identifying schizotypy based on neuroimaging data. 
Here, machine learning methods can serve to bridge this 
knowledge gap, and help elucidate the neurobiological 
abnormalities of at-risk individuals at an early stage of 
schizophrenia.

Machine Learning in the Field of Schizotypy and 
Schizophrenia

The overall aim of machine learning is to make comput-
ers classify data without being explicitly programmed. 
Typically, a distinction is made between supervised and 
unsupervised learning. The former refers to learning 
using labelled data, with the aim to generalize classifica-
tion to data with unknown labels. In contrast, unsuper-
vised learning methods explore statistical dependencies in 
unlabelled data, with the goal of learning structure in the 
data and possibly cluster data into distinct classes.

Recently, machine learning methods have been used as 
a neuroimaging-based tool to automatically discriminate 
individuals in schizophrenia spectrum disorders from 
healthy people.35–37 Empirical findings suggest that these 
methods are able to classify schizophrenia patients from 
healthy controls with an accuracy rate ranging from 75% 
to 98%.37–40 Furthermore, recent studies have had success 
with using support vector classification (SVC) to predict 
the transition of ultra-high risk individuals converting to 
full-blown psychosis,41–43 and discriminate converters and 
nonconverters.44,45 However, limited studies have investi-
gated individuals in the stages before onset of the illness.

As for studying schizotypy using machine learning 
methods, a range of studies have been exploring the neu-
ral mechanism related to schizotypy and classified indi-
viduals according to different groups. In 2006, Shinkareva 
et al46 used spatio-temporal dissimilarity maps to classify 
individuals with high levels of positive schizotypy and 
controls based on fMRI data from an emotional Stroop 
task. With the same aim, Modinos et al47 performed SVC 
on brain activation maps from an emotional task and 
found the alterations for the emotional circuitry, includ-
ing amygdala, ACC, and medial PFC, in individuals with 



S482

K. H. Madsen et al

high positive schizotypy. For comparison, they also per-
formed statistical parametric mapping (SPM), which did 
not detect any class differences, indicating the increased 
sensitivity to subtle changes in risk populations, by using 
multivariate approaches. From the view of the “full 
dimensional” model of schizotypy, Wiebels et  al48 used 
partial least square method, to demonstrate the relation-
ship between different facets of schizotypy with gray mat-
ter volume changes.

Furthermore, 2 studies have explored schizotypal scores 
in individuals with subclinical depression and an ultra-
high-risk group, respectively. First, Modinos et al49 found 
significant correlation between the positive dimension 
of schizotypy and the SVC weights which were obtained 
when classifying individuals with subclinical depressive 
symptoms and healthy controls. Secondly, in a longi-
tudinal study, Zarogianni et al45 applied SVC to classify 
ultra-high-risk individuals into converters and noncon-
verters. Whereas this study mainly used structural MRI 
data, it was shown that the classification performance was 
increased when adding schizotypy scores to the analy-
sis. Finally, other neuroimaging modalities than (f)MRI 
have been used to investigate schizotypy using machine 
learning methods. For example, in a study by Jeong et al50 
event-related potentials, measured by EEG during an 
audiovisual emotion perception task, were used for classi-
fication of individuals with schizotypy and controls.

To conclude, the research in schizotypy utilizing ma-
chine learning shows great promise in terms of improv-
ing our understanding of schizotypy, and is of particular 
relevance for early detection and potential interventions. 
The main advantage of machine learning methods is that 

they can offer higher sensitivity than their counterparts 
based on standard univariate statistics, due to being able 
to learn the likely complex manifestations of schizotypy in 
multimodal neuroimaging data. Currently, existing stud-
ies are still limited by quite small sample sizes (n = 7–18 
in each group45–47,49,50), and there is a risk that the reported 
classification rates are overfitted to the observed samples. 
This highlights the importance of having sufficient large 
sample sizes, and well-balanced groups to enable ade-
quate learning and ensure that the training data is repre-
sentative. Furthermore, it is important that future studies 
focus on independent validation of existing results to en-
sure that findings are generalizable to the population.

Classification and Feature Extraction Methods

In neuroimaging studies, fMRI data are mostly used to 
measure either activation changes in isolated brain areas, 
or to estimate functional connectivity (networks coupling) 
across regions.51 Because fMRI data are recorded in rela-
tively high spatial resolution with a limited number of time 
points, estimation of activation patterns and in particu-
lar connectivity, is in practice quite unstable.52 Therefore, 
approaches to reduce dimensionality are often considered 
to improve the stability of the estimated functional activa-
tion.53–55 In the current article, we focus on features derived 
from fMRI, but classification procedures readily general-
ize to other modalities and multi-modal settings.

When using supervised learning in the field of neuro-
imaging, the aim is generally to determine an unknown 
class  label of a subject based solely on the measured 
imaging data (eg, recorded fMRI data) as illustrated in 

Fig. 1.  Classification. The top row in panel A shows how a classification model can be trained on neuroimaging data. First feature 
extraction methods are used to identify features that can be used to train a classification model on samples with known labels. Once the 
classification model is trained, it can be applied to features extracted (using the same procedure) from subjects with unknown labels as 
indicated in the bottom row. *In principle the feature extraction step can be omitted. However, in practice for many imaging modalities 
(including fMRI), overfitting due to the high dimensionality of the input data will be detrimental to the classification performance. 
Panel B provides an illustration of the linear soft margin SVC algorithm in a 2-dimensional feature space. The SVC identifies the 
separating hyperplane that maximizes the margin, this hyperplane is only defined by the support vectors which are samples that are on 
the margin (marked by a circle). The soft margin SVC allows misclassification to avoid overfitting by introducing slack variables for each 
misclassified sample (marked with a dotted line). When the SVC is trained the labels of new samples (marked in gray) can be estimated 
according to the side of the hyperplane on which they reside.



S483

Perspectives on Machine Learning

figure  1, this procedure is also termed classification. In 
supervised classification, a model discriminating between 
the known labels in the training data is learned, subse-
quently enabling application of this model to unlabelled 
data to predict unknown labels.

Given a labelled dataset, one can determine the classifi-
cation performance using cross-validation (CV). The accu-
racy (rate of correctly identified class labels) is often used 
as a measure of performance. However, is important to 
note that this does not provide a full description of the per-
formance, but also sensitivity (also referred to as the true 
positive rate or recall) and the specificity (the true negative 
rate) are important quantities. To test if the obtained classi-
fication rate is significant, the performance is usually tested 
against a parametric or empirical null-distribution.56 If the 
classification step considers several separate classification 
procedures, corrections for multiple comparisons should 
be performed when assessing significance. The CV proce-
dure can be considered a simulation of the clinical setting, 
in which the labels of a set of subjects (test set) are assumed 
unknown and to be estimated through the training of a 
classification algorithm on the remaining subjects (train-
ing set). A frequently used method is the leave-one-out CV, 
where only one subject constitutes the test set, and the pro-
cedure is repeated for each subject as illustrated in figure 3. 
The leave-one-out scheme is often preferred because it min-
imizes the model bias by reserving the maximal amount of 
data for model training, but is has the disadvantage that 
there is a higher risk of overfitting to the training data. 
Therefore, other schemes such as K-fold (dividing the data 

into K nonoverlapping splits) CV are sometimes preferred. 
These enable testing of model stability by examining the 
variability of the identified model across splits. An example 
is the split half resampling procedure, where the difference 
between the models in the 2 independent splits can serve as 
an estimate of the model reproducibility.57

In principle, it is possible to train classification algo-
rithms directly on the raw neuroimaging data. However, 
due to the high dimensionality of the data compared with 
the small sample size the input data will appear sparse in 
the high dimensional space, often referred to as the curse-
of-dimensionality. This in turn causes the classification 
procedure to be too specialized and generalize poorly to 
the test data, a phenomenon known as overfitting.

Therefore, classification is typically approached using 
a 2-step procedure in which features relevant to classifi-
cation are first identified (see feature extraction steps, as 
illustrated in figure 2) and subsequently used to train the 
classification algorithm. The feature extraction step might 
include feature selection, where features are selected for 
further training. It is important that feature selection 
should only use labels from the training dataset, as the 
evaluation of performance would otherwise be biased 
and potentially lead to overfitting. Therefore, nested CV 
schemes, where an additional independent test set is used 
to estimate optimal features or other free parameters can 
be advantageous. Overfitting may be mitigated by auto-
mated feature selection methods and ensemble learning 
methods58 such as forward selection, backward elimina-
tion, recursive feature elimination,59 decision trees, and 

Fig. 2.  Sketch of 4 feature extraction methods for fMRI. Panel A illustrates statistical parametric mapping, where information about the 
experimental design is used to test for significant activation in each voxel using a general linear model. Panel B sketches complex network 
analysis. Here, a network is derived by determining functional connectivity between parcellated brain regions, followed by analysis using 
graph theoretical measures. In panel C, the seed based correlation approach is illustrated, here the time series from a predetermined 
brain region is extracted and correlated to the rest of the brain. In panel D, decomposition methods are illustrated where fMRI data are 
decomposed into spatially independent components with corresponding time series.
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random decision forests.60 Also, several toolboxes in-
cluding scikit-learn,61 Nilearn,62 PRoNTo,63 pyMVPA,64 
and the NeuroMiner toolbox used by Koutsouleris et al41 
are tailored toward machine learning for neuroimaging 
and provide tools for automated feature selection.

Appropriate preprocessing steps are very important 
before feature extraction, since data which are contami-
nated by artefacts might not only lead to poor classification 
performance, but may also cause difficulties in the interpre-
tation of the results. For example, if movement artefacts 
are more dominant in one of the groups, the classifier might 
focus on movement artefacts and obtain good classification 
performance. For further information on common prepro-
cessing steps and software, see supplementary section A.

In the following subsections, we describe a selection of 
often used feature extraction procedures, and although 
not covered by this article, additional methods exist, 
including fALFF,65,66 and methods for estimating regional 
signal homogeniety.67

Statistical Parametric Mapping

SPM is currently one of the most frequent used methods 
for analyzing task-based fMRI data. The overall goal of 
SPM is to localize brain activation that differs significantly 

between tasks68 as illustrated in figure 2A. The technique 
is mass univariate, which means that an independent par-
ametric statistical test (t- or f-test) is performed for each 
voxel separately, typically using the general linear model. 
The 3 most common software packages for performing 
parametric mapping are SPM,69 FSL,70 and AFNI.71

When used for classification, the parameter estimates 
or statistical values (extracted across the entire brain or 
in regions of interest) are used as classification features, 
either directly or with an additional feature selection step. 
An advantage of using SPMs is that the localization of 
effects is already implied in the features, typically lead-
ing to more straightforward interpretation of models. 
However, because the procedure is essentially univariate 
it can miss important information shared across a range 
of variables, and therefore may be less sensitive than fea-
ture extraction methods that consider the multivariate 
structure of the data directly.

Parcellation, Complex Networks, and Seed-Based 
Analysis

To overcome instability problems due to the low temporal 
resolution as described above, approaches that parcellate 
the brain into fewer regions; either defined via atlases72,73 
or from data driven clustering methods53,74,75 are often 
preferred. Functional connectivity features can then be 
determined between the parcels using a statistical meas-
ure such as (partial) correlation or mutual information. 
The resulting features (typically represented in a symmet-
ric adjacency matrix representing the network coupling 
between each parcel) can either serve directly as feature 
for subsequent classification or be used for further extrac-
tion of features, eg, in a graph theoretical framework (fig-
ure  2B). Often the graphs are binarized by applying a 
threshold, and global measures such as the node degree 
distribution (number of connections between parcels/
nodes) graph structure via modularity76 or relational 
modeling77,78 are used to characterize networks. For a 
more complete description of graph theoretical measures 
see Bullmore and Sporns.79

A related technique is the simple and intuitive seed-
based correlation analysis (SCA),51 which determines the 
coupling between a number of predefined seeds (based on 
some a priori hypothesis, from either a localization exper-
iment or the literature). The time series data from each 
seed is then correlated with all other voxels of the brain, 
resulting in a whole-brain, voxel-wise functional connec-
tivity map for each seed as shown in figure 2C. For a more 
detailed description of SCA and how it has been used in 
resting state fMRI in comparison with data driven meth-
ods, please see Cole et al.80 In general, parcellation-based 
methods are attractive because they generate a more 
simplistic overview of the data, and often lead to more 
straightforward interpretation of features. However, the 
limited flexibility that is implied by fixed parcellation 

Fig. 3.  Leave-one-out cross-validation. The figure illustrates 
the leave-one-out LOO CV procedure. For each participant 
a classification model excluding that particular participant is 
trained. The model is then used to estimate the class label of the 
participant. This procedure is repeated for each participant to 
provide an unbiased estimate of the classification performance. 
Note that other CV schemes, including more complex nested CV 
are also possible.
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schemes can lead to selection of inappropriate features 
and result in decreased sensitivity.

Decomposition

Decomposition are unsupervised machine learning meth-
ods (sometimes also referred to as data driven methods) 
that seek to identify latent sources in the data from multiple 
measurements (ie, fMRI time series). In fMRI, this typically 
amounts to identifying a relatively low number of underly-
ing spatial sources (typically between 10 and 100) that are 
associated with time series as illustrated in figure 2D. The 
procedure can be viewed as a (lossy) compression of the 
information in the data. The sources are often considered 
representations of functional networks, because they rep-
resent consistent time courses across the brain. A  widely 
accepted method is spatial group independent component 
analysis (ICA), which results in individual component 
expressions (sources) across subjects with correspond-
ing time series. Most frequently ICA is performed using 
one of the open source toolboxes, such as GIFT81 or FSL 
Melodic.82 Decomposition is advantageous because consist-
ent activation patterns can be captured efficiently and auto-
matically. A potential disadvantage is that interpretation can 
be challenging because decomposition is prone to also cap-
ture prominent nuisance effects in the data including motion 
and physiological signals such as the cardiac and respiratory 
cycles. Also, there are typically a wide range of adjustable 
parameters (such as the number of sources) that are difficult 
to set manually and can lead to overfitting if considered part 
of the learning algorithm. More information on decomposi-
tion is provided in supplementary section B.

Support Vector Classification

Supervised classification methods seek to identify some 
function that would enable discrimination between the 
labels in the training dataset. Importantly, when the input 
dimensionality is high compared to the number of sam-
ples (typically the case in fMRI unless elaborate feature 
extraction and selection has taken place), it is actually 
trivial to obtain perfect classification in the training set 
(overfitting), but the performance may generalize poorly 
to the test set. Therefore, the real challenge in classifica-
tion is to ensure that the classification generalizes well to 
unseen samples.

There are many classification algorithms available. 
Here, we will focus on the SVC methods,83,84 because they 
have often been used in previous literature and are readily 
available in several easy to use software packages.61,85 For 
further reference and information on other classification 
methods, see, eg, Schmah et al.86 and Bishop.87

The simplest classification problem is a binary (2 classes) 
linear classification, where the SVC algorithm attempts 
to identify a discrimination function expressed as a lin-
ear projection across features, where the sign indicates 
the label. This is most straightforwardly illustrated in the 

2-dimensional case, where the so-called separating hyper-
plane is a straight line (figure 1B), here it is also evident 
that there are many lines that would lead to identical clas-
sification performance. The SVC chooses the hyperplane 
that maximizes the margin, ie, the perpendicular distance 
between the plane the closest data points. The SVC there-
fore focuses on the points on the margin (samples that are 
the hardest to classify, also called support vectors), and 
the classification of new samples only require information 
about the distances with respect to these so-called support 
vectors, allowing efficient evaluation. This is often referred 
to as a solution with sparse support in the training set, 
where sparsity here refers to samples rather than features. 
In practice, the soft margin SVC83 is mostly preferred as 
it allows misclassified samples, to obtain a larger margin, 
which will increase the stability of the classifier. In this 
case, the maximization of the margin is traded off against 
a penalty for misclassified samples which is proportional 
to the distance to the separating hyperplane. The trade-
off is controlled by a parameter (typically referred to as 
the C-parameter), which has to be selected or determined 
through an additional nested CV procedure.85 For unbal-
anced dataset (cases in which the no. samples in each group 
differs) the class imbalance can be taken into account by 
weighting the hyperplane such that the imbalance is coun-
teracted (by assigning more weight to the under-repre-
sented class). Also, for such datasets the accuracy alone 
may not be a good performance measure, as even a trivial 
classifier that always selects the most frequent label would 
appear to perform well. In these cases, using other metrics 
such as prediction-recall curves or Matthew’s correlation 
coefficient are usually more informative.88

Generalization to nonlinear discrimination is typically 
approached by projecting the data into another space 
(higher dimensional or even infinitely dimensional) which 
would enable linear separation. For the SVC, and a range 
of other classification methods, this can be efficiently 
implemented using kernels through the so-called kernel-
trick. Here, it is sufficient to calculate distances between 
the samples measured in the projected space (represented 
in a Gram matrix) which circumvents operating with 
the potentially high dimensional projection explicitly. 
Examples of frequently used kernels are the linear kernel 
(for linear classification), radial basis function kernel and 
the polynomial kernel. It is important to note that kernels 
typically introduce at additional parameters that need to 
be selected or optimized via CV,85 which can exacerbate 
problems of overfitting.

The classification performance is rarely the only 
quantity of interest. Often researchers are interested in 
determining which brain regions are important for clas-
sification. For the linear SVC weight maps, or sensitivity 
maps89 for nonlinear classifiers, are often visualized, as 
they indicate the importance of each feature for the clas-
sification performance. The interpretation of these weight 
maps is not straightforward as features can actually be 
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important for classification, not because they are di-
rectly related to the effect of interest, but rather because 
they serve to filter out nuisance effects. This issue was 
highlighted by Haufe et  al90 suggesting a procedure for 
transforming weight maps into more interpretable visual-
izations for linear classification.

In practice, data labels (eg, schizotypy score) are often 
determined using questionnaires, which utilizes either 
continuous or ordinal scales, where it might be difficult to 
define a clear division between classes. In such cases, it can 
be attractive to train the algorithms to predict this contin-
uous variable directly. This effectively turns the procedure 
into a multivariate regression problem. Here, support 
vector regression91 is analogous with SVC, where the mar-
gin is formed by considering how far the predicted value 
(in the training set) is from the measured value. When 
considering regression models in place of classification, it 
should be noted that other performance measures such as 
the mean absolute error have to be used. Unfortunately, 
the interpretation of such measures is in general less intu-
itive than classification rates. Furthermore, evaluation of 
statistical significance is more involved and researcher 
most often rely on random permutation tests to form 
empirical null-distributions.56

To illustrate the classification procedures described 
above, we have added an illustrative example to the sup-
plementary material, where we used SVC to classify 
participants into either a low of high social anhedonia 
group, using features from both SPM and ICA. For more 
details, please refer to supplementary material section A.

Deep Learning

Deep learning based on neural networks have recently 
received much attention in the machine learning com-
munity, and have also been used to classify neuroim-
aging data in several general92,93 and clinical settings.94–96 
The general philosophy behind deep learning is to train 
large neural networks with many layers and parameters 
that take the raw (or in most cases preprocessed) data as 
input and where the last layer in the network produces 
an outcome such as classification of subjects. If  properly 
trained the first layers of the network should then repre-
sent basic features of the data, that are then refined and 
specialized in the subsequent layers. As these networks in-
herently contain many parameters overfitting due to the 
limited amount of data is a major concern when attempt-
ing to train networks. Here, mitigation strategies include 
regularization, dropout sampling, and weight sharing.97 
Another option, is to use transfer learning approaches, 
which use networks that are pretrained on other datas-
ets (which may even be of a different modality) and only 
refine weights in the last layers of the network.98 We be-
lieve that such strategies, potentially combined with data 
argumentation99 (where more samples are created using 
transformations/perturbations of the original data), will 

be extremely important in the future to ensure the success 
of deep learning in schizotypy research.

Discussion and Future Perspectives

In the preceding paragraphs, we have motivated the impor-
tance for classification of schizotypy, presented previous 
literature that has used machine learning methods for 
classification, and described methods for feature extrac-
tion and classification. Machine learning approaches have 
a range of advantages, which make them very attractive 
for studying early risk stages and subtle differences, as it 
is the case for schizotypy. A clear example of how these 
methods can increase the sensitivity to subtle changes, was 
shown in Modinos et  al,47 who found significant altera-
tions in an emotional circuitry in individuals with schiz-
otypy when using SVC, whereas no class difference was 
detected when using a standard SPM analysis.

However, even though machine learning methods have 
shown very promising results so far, there are a wide range 
of pitfalls and challenges that needs to be considered. In 
the following, we will highlight some of the most impor-
tant aspects, which should be kept in mind when using 
machine learning methods for classification of schizo-
typy or similar early risk groups.

The high dimensionality and typical low sample sizes 
available in studies represent a challenging problem for 
machine learning algorithms. Thus, procedures to reduce 
dimensionality of the input data (feature extraction) and 
regularization are necessary to ensure good generaliza-
tion performance. While repeated nested CV procedures 
are useful for tentatively alleviating data availability 
issues, initiatives to encourage data sharing across sites 
are very important to overcome the problems of sparse 
sample availability.100,101

Appropriate pre-processing can have a profound impact 
on results and a wide range of choices are available both in 
terms of methods and parameters.102 This is also true for 
feature extraction, feature selection and classification steps, 
and it is important to note that if these choices are con-
sidered free parameters of the classification, the problem 
of overfitting is exacerbated and appropriate procedures to 
improve generalization such as CV should be considered. 
The feature extraction method of choice will depend on the 
research question. If the study is driven by specific hypoth-
eses, it can be an advantage to use feature extraction meth-
ods that specifically extract the relevant dimensions of the 
data. Whereas, if the study is more explorative, decompo-
sition methods may be preferred, as it avoids restriction of 
the analysis to a set of predefined hypotheses.

In general, the high degree of flexibility in choices of 
classification pipelines represents a challenge. It is very 
difficult for researcher to prove that none of the choices 
biased the reported classification performance (be-
cause the pipeline was optimized for classification per-
formance), which might happen even inadvertently. To 



S487

Perspectives on Machine Learning

circumvent these issues, it is highly recommendable that 
specific hypotheses and detailed analysis procedures are 
preregistered before studies are commenced. This can 
be done easily using, eg, the Open Science Framework 
(https://osf.io/). Note that such preregistration is valuable 
even for studies with explorative hypotheses. In addition, 
it is obviously important that studies with negative out-
comes are also published, and that specific studies that 
seek to reproduce previous findings are commenced.

Schizophrenia spectrum disorders are complex and con-
sist of a wide range of symptoms with heterogeneous dis-
ease progression across individuals. In practice, this poses 
challenges in clearly defining disease phenotypes and 
renders interpretation of potential results difficult. The 
view of schizotypy as a continuous range of symptoms 
and traits expressed by individuals, motivate the use of 
machine learning to predict multiple continuous measures 
of disease progression. Here, it is natural to consider mul-
tivariate regression models, such as support vector regres-
sion,91 to directly predict schizotypy traits. Also, to take 
advantage of the fact that multiple dimensions of schiz-
otypy are often assessed using a variety of rating scales, 
methods such as partial least squares regression103 can be 
used to establish compact relations between multivariate 
neuroimaging data and multiple schizotypy measures.

The use of these tools and more generally applicable 
methods based on deep learning, represent promising 
research avenues, which can help us gain a more complete 
understanding of schizotypy, lead to improved identifica-
tion of individuals with schizotypy and facilitate appro-
priate management and intervention for these individuals. 
Machine learning constitutes a paradigm shift toward 
quantitative evaluation, where we no longer need to rely on 
subjective rating and structured interviews. Consequently, 
the time spend on identification of subtypes of schizo-
phrenia spectrum disorders can be reduced while poten-
tially improving the accuracy in clinical practice.

In summary, classification of  schizotypy represents a 
promising application for the combination of  machine 
learning and neuroimaging, but there are still a range 
of  challenges, in particular, related to how robustness 
to overfitting, and thereby better generalization perfor-
mance can be archived. However, if  these challenges are 
appropriately addressed, machine learning can signif-
icantly improve our understanding of  schizotypy and 
schizophrenia spectrum disorders. Finally, the emerging 
field of  computational psychiatry had important appli-
cations in disease prevention, early diagnosis, identifi-
cation of  drug targets, and individual treatment plans 
for psychiatric diseases and may revolutionize modern 
neurology.
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Abstract

Previous studies have suggested that the degree of social anhedonia reflects the vul-

nerability for developing schizophrenia. However, only few studies have investigated

how functional network changes are related to social anhedonia. The aim of this fMRI

study was to classify subjects according to their degree of social anhedonia using

supervised machine learning. More specifically, we extracted both spatial and tempo-

ral network features during a social cognition task from 70 subjects, and used support

vector machines for classification. Since impairment in social cognition is well

established in schizophrenia-spectrum disorders, the subjects performed a comic

strip task designed to specifically probe theory of mind (ToM) and empathy

processing. Features representing both temporal (time series) and network dynamics

were extracted using task activation maps, seed region analysis, independent compo-

nent analysis (ICA), and a newly developed multi-subject archetypal analysis (MSAA),

which here aimed to further bridge aspects of both seed region analysis and decom-

position by incorporating a spotlight approach.We found significant classification of

subjects with elevated levels of social anhedonia when using the times series

extracted using MSAA, indicating that temporal dynamics carry important informa-

tion for classification of social anhedonia. Interestingly, we found that the same time

series yielded the highest classification performance in a task classification of the

ToM condition. Finally, the spatial network corresponding to that time series included

both prefrontal and temporal-parietal regions as well as insula activity, which previ-

ously have been related schizotypy and the development of schizophrenia.
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1 | INTRODUCTION

In the perspective of schizophrenia as a neurodevelopmental disease,

it is very important to study potential early risk groups (Insel, 2010;

Lewis & Levitt, 2002; Weinberger, 1987). Schizotypy refers to a set of

positive, negative, or disorganized personality traits that are related to
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schizophrenia (Ettinger et al., 2015). Individuals with schizotypy are

nonclinical subjects, but they have some psychotic-like experiences,

ranging from few (low schizotypy) to numerous (high schizotypy),

which reflect their vulnerability for developing schizophrenia-

spectrum disorders (Blanchard, Collins, Aghevli, Leung, & Cohen,

2011; Kwapil, 1998; Mason, 2015). The importance of studying

schizotypy is twofold. Firstly, it has been suggested that early detec-

tion and intervention of schizophrenia might yield substantial

improvements in treatment outcome, comparable to what has been

reported in preventive approaches to cardiac death (Insel, 2010). Sec-

ondly, schizotypy studies have shown to increase the understanding

of the psychopathology of schizophrenia.

Anhedonia, which is the reduced capability to experience pleasure

in normal pleasurable situations, is considered as a negative dimension

of schizotypy. High levels of anhedonia have consistently been

reported in patients with schizophrenia (Blanchard et al., 2011; Bora,

Yucel, & Pantelis, 2009) and ultra-high risk groups (Bora & Pantelis,

2013). Furthermore, longitudinal studies have shown that subjects

with a high level of social anhedonia (reduced pleasure experience in

social contexts) are more likely to develop schizophrenia-spectrum

disorders later on, compared to control groups or high scorers on pos-

itive schizotypy (measured by perceptual aberration scale and magical

ideation scale; Blanchard et al., 2011; Kwapil, 1998) (Gooding,

Tallent, & Matts, 2005; Wang et al., 2014). For these reasons, social

anhedonia will be the focus in this study.

On the other hand, the importance of social cognition research in

understanding psychopathology of schizophrenia has been acknowl-

edged (Green, Horan, & Lee, 2015; Penn, Sanna, & Roberts, 2007).

Studies have shown that social cognition is substantially impaired in

patients with schizophrenia and early risk groups (Bora & Pantelis,

2013; Fett, Viechtbauer, Dominguez M de, & Krabbendam, 2011), and

changes have even been reported in subjects with schizotypy

(Blanchard et al., 2011; Morrison, Brown, & Cohen, 2013). Theory of

mind (ToM) is often defined as the ability to attribute mental states to

ourselves and others, and consists of both a cognitive (centered about

processing of knowledge and believes) as well as an affective (emo-

tional processing) component (Sebastian et al., 2012; Shamay-Tsoory,

Harari, Aharon-Peretz, & Levkovitz, 2010). The affective aspect is very

similar to what is often defined as cognitive empathy (Sebastian et al.,

2012), and will for simplicity, be referred to as empathy (Emp) in the

rest of the article. The abnormalities of ToM or empathy ability has

been related to schizotypy (Bora & Pantelis, 2013; Pickup, 2006). In

particular, previous studies consistently suggested an association

between high negative schizotypy and poor metalizing ability mea-

sured by self-report scales (Bedwell et al., 2014; Henry, Bailey, &

Rendell, 2008; Thakkar & Park, 2010; Wang et al., 2013) and behav-

ioral tasks (Pflum & Gooding, 2018; Thakkar & Park, 2010).

Functional imaging studies have correlated the degree of schizotypy

and activity in isolated brain regions reviewed in (Ettinger et al., 2015;

Nelson, Seal, Pantelis, & Phillips, 2013), however, until now, only rela-

tively few studies have investigated how functional connectivity changes

in individuals with schizotypy. Lagioia et al. determined six resting state

networks and found that functional connectivity in the visual and

auditory networks were correlated to the degree of schizotypy (Lagioia,

Van De Ville, Debbané, Lazeyras, & Eliez, 2010). In terms of social anhe-

donia, studies found altered connectivity between the striatal seeds and

the cingulate cortex as well as the insula during resting state (Wang

et al., 2016) and altered functional connectivity of the amygdala during

facial emotion processing task (Wang et al., 2018). Although previous

studies have looked at correlations between brain activation or connec-

tivity and the degree of schizotypy, actual classification is of great impor-

tance to determine if these changes can be used to categorize or even

diagnose subjects already in early stages. Machine learning methods have

been used in classification of schizophrenia patients from healthy control

using functional imaging data (reviewed in (Madsen, Krohne, Cai, Wang, &

Chan, 2018)). So far there are a few studies that have investigated the

classification performance of individuals with schizotypy based on brain

activation during task-based fMRI using machine learning methods

(Modinos et al., 2012; Shinkareva, Ombao, Sutton, Mohanty, & Miller,

2006), but both studies only focused on the positive dimension of

schizotypy instead of negative schizotypy.

The aim of our studywas to investigate which features extracted from

functional networks during a social cognition task were sufficient to clas-

sify subjects according to their degree of social anhedonia using super-

vised machine learning. To this end, we extracted brain network features

using both standard activation maps and traditional seed region analysis

(Biswal, Yetkin, Haughton, & Hyde, 1995; Cole, Smith, & Beckmann,

2010), but also decomposition methods based on independent compo-

nent analysis (ICA; Beckmann & Smith, 2004; Calhoun, Adali, Pearlson, &

Pekar, 2001) and the multi-subject archetypal analysis (MSAA) described

in (Hinrich et al., 2016). Seed based analysis procedures extract features

from defined seed regions, whereas ICA uses unsupervised learning to

decompose the data into latent maximally independent spatial compo-

nents. Each of these components can be thought of as representing a

functional brain network. MSAA can be seen as seed region-based analy-

sis where the seeds are automatically defined based on unsupervised

learning. The features used for the classification, and the relation

between the approaches are illustrated in Figure 1.

The use of different methods helped us exploring the separate

importance of spatial and temporal network features.

Our second aim was to specifically investigate which features were

important for classification. We investigated time series extracted

from either specific brain regions or from networks, and hypothesized

that the features showing significant classification of subjects with

high social anhedonia would entail brain regions previously associated

with schizotypy and the development of schizophrenia. Such regions

include as prefrontal cortex, temporal–parietal regions, and insula

(Chan, Di, McAlonan, & Gong, 2011; Kühn, Schubert, & Gallinat,

2012; Takahashi, Wood, Yung, Velakoulis, & Pantelis, 2009).

2 | MATERIALS AND METHODS

2.1 | Participants

This study included 76 college students from Guangzhou Medical Uni-

versity (37/39 male/female) with age between 17 and 21 years
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F IGURE 1 Illustration of the feature extraction methods and aims of classification. We roughly divide the feature extraction methods considered
into statistical parametric mapping, unsupervised decomposition, and seed region analysis. Here the letters a–k refers to the results of individual
analyses as displayed in Table 1. (a) Refers to spatial maps extracted from statistical parametric mapping and classification approach (b,c) are based on
static measures from seed based analysis, (d,e) are expressions of functional connectivity within and between the seeds and (f,g) reflect temporal

dynamics of seed based analysis. In analyses (f–k) the time series are rearranged such that the order of the conditions is consistent across subjects, this
was necessary as the order of the tasks were randomized across participants. In approach (h) time series and spatial maps obtain from ICA are
considered, and approaches (i–k) are based on archetypical analysis which can be seen as seed based analysis with automatical extraction of seeds,
merging aspects of ICA and seed region analysis. For approaches (e,f and h–k) classification was performed for each ROI/component separately, and
thus multiple comparisons correction was used to assess the significance of the results [Color figure can be viewed at wileyonlinelibrary.com]
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(μ = 19.3 years, σ = 0.9 years). The subjects were chosen such that

they covered a continuous range of schizotypy and none had a history

of drug abuse, or psychiatric disorders. The Chapman social anhedonia

scale (CSAS) was used to assess the inability to experience pleasure

from social interactions (Chan et al., 2015; Chapman, Chapman,

Kwapil, Eckblad, & Zinser, 1994). The CSAS consists of 40 items

(e.g., “Just being with friends can make me feel really good”; “Making

new friends isn't worth the energy it takes”) and higher score indi-

cated more severity of anhedonia. The good reliability and validity of

the CSAS has been proved in Chinese context (Chan et al., 2015). The

internal consistency coefficient was 0.84 in our sample. The mean and

standard deviation of all four Chapman scales and the Becks Depres-

sion Inventory can be found in Data S1–Table S2. All subjects were

right-handed and a radiologist screened all scans to exclude subjects

with any incidental clinical abnormalities. The study was approved by

the Ethics Committee of the Institute of Psychology at the Chinese

Academy of Sciences.

In a previous analysis, the same dataset showed specific correla-

tion between the degree of social anhedonia and the mean activity in;

the middle temporal gyrus, the temporoparietal junction and the

medial prefrontal gyrus. (Wang et al., 2015). In contrast, this study

investigated if the measured changes were sufficient for actual classi-

fication of subject with high and low social anhedonia (HSA/LSA)

using support vector machines.

Subjects were defined in the HSA group if their CSAS score was

more than one standard deviation above the mean (based on a large

independent dataset including 887 subjects (Chan et al., 2012)). This

separation threshold was relatively low, but comparable with what

previously has been used in the literature (Wang et al., 2016). Further-

more, even when using this relatively low separation boundary, the

dataset was unbalanced (HSA = 14/LSA = 56 subjects). As it will be

discussed more carefully in Sections 2.9 and 3.4 this complicated the

classification procedure.

2.2 | Functional imaging task

A Chinese adaption of the visual comic strip task developed by Völlm

et al. was presented in a block design (Völlm et al., 2006; Wang et al.,

2015). The task included four different conditions namely ToM, empa-

thy, and two corresponding control conditions; “physical causality

with one character” (Phy1) and “physical causality with two charac-

ters” (Phy2). Whereas the ToM and empathy condition were designed

to probe the corresponding social cognition processing, the physical

conditions were designed to look as similar to the social cognition

conditions as possible. Hence, Phy1 included comic strips with only

one character, whereas Phy2 included two interacting characters.

Each condition was presented twice, resulting in a total of eight

blocks, with each block containing five trials of comic strips belonging

to the same condition. When the condition was presented the second

time, a new set of comic strips were used, hence each comic strip was

only seen once by each subject. In each trial, three pictures depicting

a short story were displayed in the upper half of the screen for 6 s.

Afterward, two pictures appeared in the lower half of the screen for

another 6 s. During the second 6-s period, participants were asked to

choose one of the two pictures from the lower half of the screen as

the appropriate ending to the story by pressing the corresponding

button with their right hand. For the ToM trials, the original cartoons

from the “Attribution of intention” (Brunet, Sarfati, Hardy-Baylé, &

Decety, 2000) condition was used and the question: “What will the

main character do next?” was asked. For the empathy condition, sce-

narios with emotional states attribution was showed and the question

“What will make the main character feel better?” was asked. The total

duration of the whole task was 8 min and 48 s. To control for effects

of practice and fatigue the blocks were randomized across subjects.

More details, as well as examples on the comic strip task, can be

found in (Völlm et al., 2006), who developed the task.

2.3 | Image acquisition and preprocessing

All scans were acquired on a 3T Siemens Verio MR scanner at Guang-

zhou First People's Hospital in 2012, using a T2* weighted gradient echo

based echo planar imaging (EPI) sequence with echo time = 28 ms, repe-

tition time = 2,000 ms and flip angle = 90�. 264 whole brain volumes

were acquired with a slice thickness of 4 mm, matrix size 64 × 64

(32 slices in coronal plane), field of view = 210 × 210 mm, voxel

size = 3.3 × 3.3 × 4 mm, and bandwidth = 2,232 Hz/px.

The images were preprocessed using Statistical Parameter Map-

ping (SPM) version 12 revision 6685. The eight first volumes of the

scans were removed to ensure T1 equilibrium, and slice-timing correc-

tion was performed to correct for the descending slice order with the

middle slice as reference. The EPI images were normalized to the EPI

template (ICBM-152) and the images were re-sliced to 3 × 3 × 3 mm.

As this study focused on functional connectivity modeling additional

preprocessing steps were included, since artifacts can lead to spurious

connections (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012).

First despiking was performed to remove transient phenomena with-

out scrubbing (Patel et al., 2014) using a Daubechies 4 mother wave-

let. Then additional nuisance regressors were included in a multiple

linear regression and the effect of them was removed from the data.

These included; (a) mean signal and second order detrending

(b) nuisance variable regressors (NVRs), (c) spike percentage from des-

piking, and (d) explicit modeling of specific time frames based on the

DVARS and frame wise displacement criteria as described in (Patel

et al., 2014; Power et al., 2012), using a threshold of 1% and 1 mm,

respectively. NVRs were used to remove both residual motion

(24-parameter Volterra expansion model (Friston, Williams, Howard, &

Frackowiak, 1996) based on the six head motion parameters esti-

mated during realignment) and physiological noise where the mean sig-

nals from nonneuronal brain regions was extracted. Nonneuronal

tissue included white matter, which was segmented using the SPM12

tissue probability map with a threshold of 0.5, cerebrospinal fluid in

the lateral ventricles according to the HarvardOxford atlas (Desikan

et al., 2006). To reduce the influence of partial volume effect with

gray matter, the white matter mask was eroded by two voxels. Finally,

the images were smoothed using an isotropic Gaussian 8 mm full

width at half maximum filter.
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2.4 | Classification using support vector classification

To classify subject into high and low social anhedonia, as well as for

the task classification, we used binary support vector machines to per-

form supervised classification (Cortes & Vapnik, 1995). The goal of

support vector classification (SVC) is to identify a function that dis-

criminates the labels (e.g., high or low social anhedonia) in a training

dataset, such that it is possible to use this function to classify the

labels of a test dataset. In principle, it is possible to apply SVC directly

to the (preprocessed) fMRI images. However, due to the very high

dimensionality of fMRI images in relation to the number of subjects,

perfect classification in the training dataset is trivial but with poor

generalization to the test data due to overfitting (see Madsen et al. for

a more thorough description of SVC for fMRI data (Madsen et al.,

2018)). We therefore applied SVC on 11 spatial and temporal features

(analysis a-k listed in Table 1), which were extracted from the fMRI

data to capture the network changes of interest.

In short, one feature included the task specific activation maps

determined by a SPM analysis (Section 2.5), six features resulted from

a seed region analysis (Section 2.6), and four came from the decompo-

sition methods (Section 2.7). For some of the seed region analysis and

decomposition methods, we extracted both time series and spatial

maps for each seed region/component respectively (analysis e,f and

h–k), and classification was then performed on each extracted feature

respectively. Table 1 lists the classification performances of the fea-

tures yielding the highest classification performance, and maximum

permutation statistics was therefore used to correct for multiple com-

parisons between the components as described in Section 2.9.

For classification, we used the SVC-C implementation from the

LIBSVM (Chang & Lin, 2011) library with a linear kernel. We used

nested cross validation to determine the soft margin penalty parame-

ter, and to evaluate the classification performance. For task classifica-

tion, the cross validation scheme was based on grouped stratified

cross validation where each subject was considered a group. In the

inner loop, the optimal soft margin penalty parameter (C-parameter)

was determined in a logarithmic grid containing 11 values C 2 [2−5,

2−3, …, 215] by 10-fold cross validation, and an unbiased estimate of

the classification accuracy was obtained in another outer 10-fold

cross validation loop.

For HSA classification, a similar scheme was followed but without

grouping as there was only one sample per subject in this case. Fur-

thermore, the C-parameter was adjusted for each class to counteract

the class imbalance (Chang & Lin, 2011). The inner and outer loops

where set to reserve exactly one sample of the least common class

(HSA) resulting in 13- and 14-fold cross validation, this ensured that

stratification across splits was achievable while preserving sufficient

data for training.

2.5 | Statistical parametric mapping

To determine task specific activity maps for all four task conditions

(ToM, Emp, Phy1, and Phy2), we ran a standard SPM analysis, per-

forming a parametric statistical test for each voxel separately. The

significance level was αRFT ≤ 0.05, where random field theory was

used to correct for multiple comparisons. The activation maps were

later used as features (classification approach [a]) for classification.

Since the activation maps were constructed based on information

about task onset and duration, we expected that they would obtain a

high performance for classifying the tasks conditions. However, for

the social anhedonia classification, which was not directly related to

the presented task, the static nature of this feature extraction step

might not identity information useful for classification. For the task

classification, we used one task activation map for each social con-

struct, that is, the ToM—Phy1 condition, and empathy—Phy2 condi-

tion, respectively. For the HSA classification, we used one single

contrast map, reflecting the pooled effect of ToM, and empathy in

comparison to the physical control conditions, as illustrated in

Figure 1.

Furthermore, we used SPM to perform a pooled condition analysis

(PCon) identifying the pooled effect of the social cognition tasks (ToM

and Emp) compared to the control conditions. This was used as input

for the spotlight MSAA as described in Section 2.7.

2.6 | Seed region analysis

Seed region analysis is a very intuitive way to investigate the brain by

determining the activity in predefined regions of interest (ROIs). In

this study, six different methods (approach b–g) were used to investi-

gate the ROI specific activity, which later were used for classification.

These included; approach (b): the mean activity and (c) variance within

each ROI, (d) the covariance between all N ROIs (calculated pairwise),

(e) the correlation between the time series of each ROI with all voxels

in the brain (classical seed based analysis) resulting in a connectivity

map for each seed, (f) the extracted time series of each ROI sepa-

rately, and (g) the time series of all ROIs concatenated. All of these are

illustrated in Figure 1, and enabled us to study the importance of tem-

poral dynamics (approach (f) and (g)), network coupling (approach

(d) and (e)), and static features separately.

The time series of each ROI were extracted as the first

eigenvariate, which reflects the most consistent source across all

included voxels. Compared to using the average across the ROI, this

can be an advantage if there are multiple sources in the given ROI

(Poldrack & Gorgolewski, 2014). When using the time series as fea-

ture for classification, they were rearranged (by simple temporal

reordering) such that they reflect the same structure (ToM, Emp,

Phy1, and Phy2) for all subjects, despite that the order of the condi-

tions were randomized across subjects. In approach (e) the correlation

between the time series of the ROIs, and that of all other voxels in

the brain, was determined using Pearson's correlation coefficient,

followed by conversion to Z-score through the Fisher Z-transform

(Fisher & Fisher, 1915).

In approach (e) and (f) classification was performed independently

for each ROI, highlighting the importance of multiple comparisons cor-

rection as described more carefully in Section 2.9.
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TABLE 1 Classification performance of both task and HSA

Description of classification feature

Task classification accuracy (%; p value) HSA vs. LSA
classification
MCC (p-value)ToM––Phy1 Emp––Phy2

Seed region analysis features

(a) Task activation maps Task specific activation maps determined

using SPM

84%

p = .001

1 × V

81%

p = .001

1 × V

0.13

p = .199

1 × V

Static measures (b) Mean activity Average activity of each ROI 41%

p = .801

1 × K

56%

p = .115

1 × K

-- (†)

(c) Variance Variance within each ROI 58%

p = .070

1 × K

58%

p = .091

1 × K

−0.02
p = .569

1 × K

Network coupling (d) Covariance

(network coupling)

Covariance of the time series of ROIs 60%

p = .039

1 × (K2+K)/2

60%

p = .037

1 × (K2+K)/2

0.43

p = .005

1 × (K2+K)/2

(e) Seed based network Correlation between time series

of a ROI and all voxels in the brain

73%

p = .001

K × V

73%

p = .001

K × V

0.19

p = .897

pUC = .125

K × V

Time series (f) Time series (ROI specific) Time series of each ROI separately 59%

p = .666

K × T1

61%

p = .393

K × T1

0.35

p = .189

pUC = .007

K × T2

(g) Time series

(concatenated)

Time series of each ROI,

concatenated

63%

p = .010

1 × KT1

68%

p = .001

1 × KT1

−0.15
p = .937

1 × KT2

Decomposition features

Feature type

TS TS SM

(h) ICA Time series and spatial maps from ICA 73%

p = .001

K × T1

79%

p = .001

K × T1

0.45

p = .072

pUC = .005

K × T2

0.24

p = .912

pUC = .093

K × V

(i) wbMSAA Time series and spatial maps from wbMSAA 74%

p = .001

K × T1

69%

p = .002

K × T1

0.56

p = .008

pUC = .002

K × T2

0.42

p = .097

pUC = .006

K × V

(j) sMSAALit Time series and spatial maps from spotlight

MSAA (using literature coordinates)

67%

p = .020

K × T1

73%

p = .001

K × T1

0.49

p = .032

pUC = .003

K × T2

0.25

p = .744

pUC = .059

K × V

(k) sMSAAPCon Time series and spatial maps from spotlight

MSAA (using PCon coordinates)

-- (*) --(*) 0.31

p = .463

pUC = .030

K × T2

0.25

p = .732

pUC = .066

K × V

Note: For each performed analysis, this table yields a short explanation of the input feature and classification performance measured in accuracy (task

classification) or Mathews correlation coefficient, MCC (HSA classification). For the HSA classification, both time series (TS) and spatial maps (SM) were

used as features for the decomposition methods. For seed region analysis features e–f and decomposition methods (h–j) the table lists the classification

performance of the component yielding the highest classification performance. The p-value was nonparametrically estimated with random permutation

testing and maximum permutation statistics was used to correct for multiple comparisons when necessary. The number of comparisons × feature

dimensionality are stated for each of the classification models, where the size of the voxel dimension is V = 60,704, T1 = 60 (time points for each

condition), T2 = 264 (total number of time points), and K = 25 (number of components or ROIs). The uncorrected p-value (pUC) was also based on random

permutation and is stated for some HSA classifications. (†) HSA was not classified as the overall mean per subject was subtracted during preprocessing. (*)
task classification was not calculated for the sMSAAPCon analysis, since this result would be biased.

Abbreviations: Emp, empathy; HSA, moderately high social anhedonia; LSA, low social anhedonia; MCC, Matthews correlation coefficient; ToM, theory

of mind.
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2.7 | Decomposition methods

One of the most frequently used decomposition methods in neurosci-

ence is the ICA, which determines a predefined numbers of maximally

independent sources (McKeown et al., 1998). For fMRI data, these

sources represent spatial networks, where all included regions have

similar time series. For multi-subject analysis, common spatial compo-

nents can be obtained by concatenating subject data in time (Calhoun,

Adali, & Hansen, 2003). More specifically, ICA seeks to identify latent

sources in the data from multiple mixed measurements via the per

subject linear mixing model

Xi =AiSi + Ei,

where Xi 2 RT × V is the data matrix measured at T timepoints and

across V voxels for the i'th subject, Ai 2 RT × K contains K source time

series as columns, Si 2 RK × V is comprised by the K spatial compo-

nents as rows, and Ei 2 RT × V is a residual error term. While the

expression above enforces no coupling across subjects, such depen-

dence is usually accomplished by enforcing dependence or equality of

Si across subjects, which we will consider later. Since minimizing the

residual leads to rotational ambiguity and thereby nonunique solu-

tions, additional assumptions, or constraints are typically imposed on

either the time series or spatial components or both. In spatial ICA,

this typically amounts to assuming a non-Gaussian source distribution

upon the spatial components.

MSAA is another data driven approach, which bridges aspects of

seed analysis and decomposition (Hinrich et al., 2016) (Cutler &

Breiman, 1994; Mørup & Hansen, 2012). MSAA is a latent variable

model, similar to ICA, but is constrained to have latent factors that

reflect representative points in the data, termed “archetypes.” For

fMRI data, the archetypes are a set of representative time-series, which

have a corresponding set of spatial networks. Whereas ICA represents

the fMRI data by a linear mixture of maximally independent spatial maps,

MSAA determines the components through iterative optimization of;

(a) a seed region matrix, C (that is identical for all subjects) and (b) a set of

subject specific spatial maps (S) corresponding to each archetype. The

archetypes for each subject are given as the weighted average of the

voxels specified in the seed region matrix, such that

Ai =XiC

where Xi is the subject specific data and Ai 2 RT × K includes all arche-

types defining distinct temporal profiles for the i'th subject. Figure 2 illus-

trates how MSAA represents the fMRI data as archetypes and spatial

maps. Each voxel time series is reconstructed by convex combinations as

defined in Si of the archetypes. Thus, both the columns of Si and C are

constrained to be nonnegative and to sum to one. The resulting spatial

maps can therefore be interpreted as the fractional contribution of all

voxels to the archetypal time series as specified in Ai.

The MSAA decomposition is in general unique (Mørup & Hansen,

2012) and the linear model (per subject) can be formulated as

Xi =XiCSi + Ei ,

Under the assumption of independently distributed additive

Gaussian noise with heteroscedasticity over voxels we have

ei,v �N o, σ2i,v
� �

,

Where ei,v is a time vector of the residual in voxel v for subject i

and σ2i,v is the voxel and subject specific noise variance. This lead to

the likelihood

F IGURE 2 Illustration of whole brain multi-subject archetypal analysis (wbMSAA). The columns data matrix X include the time series for all
V voxels. Through iterative optimization, the MSAA algorithm determines a seed region matrix C, specifying the optimal choice of K seed regions
across subjects, as well as a set of K temporal (Xi C) and spatial components Si for all B subjects. The model also includes a subject specific noise
map, which is not specified in this figure [Color figure can be viewed at wileyonlinelibrary.com]
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Optimizing this likelihood leads to a sparse seed region matrix C,

which selects the archetypical voxel time series that best span the entire

dataset, and a corresponding set of subject specific spatial maps Si. For

explicit derivation of update rules see (Hinrich et al., 2016). Determining

C, Si, and σi is a nonconvex optimization problem (Mørup & Hansen,

2012), but a solution can be found by alternating optimization, that is,

optimizing for C while keeping Si and σi fixed and vice versa.

2.7.1 | Connection between ICA, seed based
analysis, and MSAA

In the following, we show how the decomposition scheme of MSAA can

be used to bridge spatial group ICA with seed based analysis. The MSAA

directly finds subject specific spatial maps (Si) and temporal activations

(XiC) which through the common seed matrix (CMSAA) express variability

across subjects. In contrast, spatial group ICA assumes the spatial sources

are fixed across subjects (Calhoun et al., 2003), however, individual sub-

ject expressions (spatial maps) can be identified through either back

reconstruction or dual regression (Erhardt et al., 2011). When the spatial

sources are known and no additional constraints are imposed upon the

time series, solving for Ai reduces to an ordinary least squares regression

problem where the solution can be expressed as

Ai =Xi
�S
> �S�S

>� �−1
:

Here �S represents the shared spatial components. In back reconstruc-

tion, individual subject components are formed through the expression

Xi =Ai
eSi,

where eSi is the individual spatial components and inserting the expres-

sion for Ai we obtain

Xi =Xi
�S
> �S�S

>� �−1eSi,
which again allows the individual spatial maps to be formed by solving an

ordinary least squares problem. This establishes an attractive correspon-

dence between MSAA and group ICA, where, in this case, the nonsparse

“seed matrix” given by CICA = �S
> �S�S

>� �−1
can take on both positive and

negative values whereas the columns are not constrained to sum

to one.

2.7.2 | Spotlight MSAA

In this study, we considered an expansion to the MSAA algorithm by

implementing a spotlight approach that restricted the seed region

matrix to prespecified ROIs. This allowed specifying a subset of voxels

from which the seed regions were then defined,

Xi = eXiCSi + Ei,

where eXi is the subset of voxel time series in the ROIs as illustrated in

Figure 3. This approach is useful to investigate “archetypal generating

activity” in specific areas, or if only approximate ROIs are known. The

derivation is given in (Hinrich et al., 2016), though they did not inves-

tigate the restricted method or considered the stability of its solution.

In the remaining manuscript, we will refer to the restricted MSAA

as spotlight MSAA (sMSAA) in contrast to the original whole brain

MSAA (wbMSAA).

We have run two sMSAA analysis using seed region restriction

maps from; (a) a literature study (sMSAALit) and (b) from a pooled con-

dition analysis (sMSAAPCon) respectively, as described in Section 2.8.

Implementation

We applied group ICA through the GroupICATv4.0a GIFT toolbox

(Rachakonda, Egolf, Correa, Calhoun, & Neuropsychiatry, 2015), using

the Infomax algorithm and the corresponding default settings. The

number of components was selected using the minimum description

length as proposed in Li, Adali, and Calhoun (2007), which for our

dataset resulted in 25 components. Finally, subject specific spatial and

temporal components were determined using the default back recon-

struction method implemented in GIFT (Calhoun et al., 2003). For

visualization purposes, the spatial components where z-scored and

both positive and negative contributions were shown.

For the MSAA analysis, we used the same number of components as

for ICA. As the MSAA algorithm is a nonconvex optimization problem,

there was a risk that the solution would get stuck in a local and not

global minimum. As done for other nonconvex problems, we therefore

repeated the analysis several times with different random initializations

for each run, and chose the solution with the lowest final cost at the end

of the optimization. Optimization halted after either a maximum of

250 iterations or when the relative decrease in the cost function was less

than 10−6 as in Hinrich et al. (2016). Different initializations, such as the

FurthestSum initialization (Mørup & Hansen, 2012) have been suggested

for archetypal analysis. However, as these resulted in a higher final cost

function, random initialization was used in this study.

To increase the stability of MSAA the algorithm was rerun with

10 random initializations choosing the solution that obtained the lowest

cost function. To further investigate the stability of the algorithm we

repeated the fitting procedure 10 times and compared the spatial maps

across runs using spatial correlation, this indicated that components were

fairly stable across runs, providing an average correlation of 0.86. Visual

inspection revealed that the differences were primarily due to minor

changes in network expressions between runs for some components,

see the stability of wbMSAA section in Data S1 for further information.

Furthermore, the finding of significant classification of HSA using

wbMSAA times series reproduced in all 10 individual runs.
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2.8 | Predefined ROIs

For the seed regions, analysis and spotlight MSAA predefined ROIs

were a prerequisite for the analysis. We defined the ROIs as all voxels

in a sphere (8 mm radius) around a given center coordinate. These

were determined through a literature study of ToM and empathy

processing, taking into account both reproducibility of the areas (Abu-

Akel & Shamay-Tsoory, 2011; Shamay-Tsoory et al., 2010) and speci-

ficity for the comic strip task (Benedetti, Bernasconi, Bosia, &

Smeraldi, 2009; Völlm et al., 2006; Wang et al., 2015). The center

coordinates are illustrated and labeled in Figure 4 and the MNI coordi-

nates can be found in Data S1–Table S3.

Finally, for the classification of social anhedonia using spotlight

MSAA, center coordinates were also obtained using the peak coordi-

nates of significant clusters for the pooled condition analysis (PCon)

as described in Section 2.4. All center coordinates can be found in

Data S1–Table S3.

2.9 | Statistical tests and measures

We used the accuracy as performance measure for the task classifica-

tion, as it provides a straightforward interpretation for balanced sam-

ples. However, for the classification of unbalanced datasets the

accuracy measure can be misleading. That is, even in the case of a triv-

ial classification where all subjects were classified as the dominant

class (e.g., in this study: LSA = 56, HSA = 14), the accuracy would be

56/(56 + 14) = 80%. To mitigate this issue, we used the Matthews

correlation coefficient (MCC) for the social anhedonia classification,

as it is regarded as being one of the best summary statistic measures

for unbalanced datasets (Baldi, Brunak, Chauvin, Andersen, & Nielsen,

2000; Powers, 2011). MCC returns a value between −1 (worst) and

1 (best) where 0 indicates that the result is no better than random

classification.

For all classification procedures, statistical inference of the perfor-

mance was performed using a random permutation testing procedure

(Nichols & Holmes, 2003). For each of 1,000 random permutations

the entire classification procedure, including the inner and outer

nested cross validation loops, were repeated to obtain an empirical

null distribution of the performance measure (accuracy and MCC for

task and HSA classification respectively).

As mentioned above, for some features the classification was per-

formed for each ROI/network separately, and the significance of

these analyses therefore needed to be corrected for multiple compari-

sons. This was done by the use of maximum permutation statistics,

where an empirical null distribution was obtained by considering only

the most significant effect over the entire set (here regions or compo-

nents), which controls the family-wise error over the set.

3 | RESULTS AND DISCUSSION

This combined results and discussion section is split into five sub-

sections, covering different aspects of the study. The first

section includes a general discussion of the networks determined

F IGURE 3 Illustration of the spotlight (sMSAA) approach. For the spotlight MSAA C and X are restricted to only include a subset of the
voxels corresponding to some predefined regions of interest (for simplicity only two regions are shown here). However, the exact localization and
size of the seed regions are still optimized by the algorithm. Apart from the restriction, the model is identical to the wbMSAA shown in Figure 2
[Color figure can be viewed at wileyonlinelibrary.com]
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by the decomposition methods (ICA and MSAA), and comments on

the stability of these approaches. Sections 3.2 and 3.3 cover the

results from the task and social anhedonia classification, respec-

tively, and discuss how these findings correspond to our hypothe-

ses and previous literature. Since MSAA is a new decomposition

method, which previously only has been applied in one neuroimag-

ing study (Hinrich et al., 2016), we comment on the general inter-

pretability and stability of the MSAA networks, and compare it with

ICA in Section 3.4. Finally, in Section 3.5 we discuss general limita-

tions of our study, as well as suggestions for future development

and applications.

3.1 | Network extraction using decomposition
methods

Visual inspection of the spatial maps from ICA and MSA showed that

both methods captured networks which previously have been related

to ToM processing (Benedetti et al., 2009; Völlm et al., 2006; Wang

et al., 2015), without any a priori knowledge about the task onset and

duration (which was a requirement for the previous studies that used

SPM analysis). Furthermore, we observed that both ICA and MSAA

successfully captured effect of no interest (such as pulsation and

movement artifacts) as well as other specific activity (visual or motor

processing) in separate networks. This is an important sanity check, as

noise/unrelated activity would otherwise contaminate the task related

networks.

3.1.1 | Stability

As described in Section 2.7, the wbMSAA algorithm was run

10 × 10 times, comparing the stability of the spatial networks,

when the best (lowest final cost) solution of 10 runs was compared

for 10 repetitions. Using greedy matching a mean correlation of

86% was obtained. Visual inspection showed that the same net-

works were found in all 10 runs, but with minor differences,

resulting in the nonperfect matching. Using the 10 repeated runs to

investigate the classification stability, the same feature (discussed

later in Section 3.3) was found to result in the highest classification

performance (MCC varied between 0.49 and 0.56), which was sig-

nificant for all 10 repetitions. This stability analysis was only per-

formed for the wbMSAA. For the spotlight approaches the

algorithm was repeated 10 times, and the solution with the lowest

cost function was chosen.

3.1.2 | Cross validation

We used stratified k-fold cross validation as described in Section 2.4.

For cross validation, it is important that the test and training data sets

are independent. For the seed region analysis features, this is naturally

the case, as the feature extraction was performed for each subject

separately. However, in order to limit the computational complexity

and to ensure correspondence of components across cross validation

splits for ICA and MSAA, the decomposition was run on the entire

dataset. Note that this did not lead to biased estimates of the classifi-

cation performance, as no information about the class labels were

used in the decomposition step.

3.2 | Classification of task conditions

The aim of the task classification was twofold. Firstly, it was a proof

of concept of our classification approach, using either temporal or

spatial network features as input to the SVC. Secondly, we wanted to

investigate if the information captured by the networks was sufficient

to actually classify task conditions, and to see how the networks

F IGURE 4 Illustration of center coordinates determined based on the literature. These nodes were used both for the seed region analysis
approaches, and for the spotlight MSAA. Abbreviations: Amyg, amygdala; AngG, angular gyrus; d/v ACC, dorsal/ventral anterior cingulate cortex;
d/v mPFC, dorsal/ventral medial prefrontal cortex; d/v Stri, dorsal/ventral striatum; IPL, inferior parietal lobule; i/dL PFC, inferior/dorsolateral
prefrontal cortex; Pcun, precuneus; STS, superior temporal sulcus; TP, temporal pole; TPJ, temporoparietal junction [Color figure can be viewed at
wileyonlinelibrary.com]
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important for classification correspond to previous literature on ToM

and empathy processing. The classification performances are listed in

Table 1, and networks are illustrated in Figure 5.

First, we used the activation maps from the SPM analysis for classi-

fication. These activation maps yielded the highest task classification

performance (mean accuracy of 83%), which was expected since they

were informed about the onset and duration of the task conditions.

The center coordinates, cluster size, and z-score of the significant

clusters can be found in Data S1–Table S3. This result was mainly

used to validate that there was sufficient signal difference between

the task conditions.

To investigate our hypothesis about the importance of both tem-

poral and spatial network dynamics, we used six features from the

seed region analysis as illustrated in Figure 1. Firstly, we found that

classification was not significant when using static measures such as

the mean and variance, indicating that these simple measures do not

capture enough signal difference between task blocks for classifica-

tion in the considered sample. On the contrary, all spatial networks fea-

tures (covariance and seed based analysis) resulted in significant

classification with accuracies from 60 to 73%. As described in

Section 2.7, classification was performed for each of the 25 networks

extracted in the seed based analysis. Table 1 and Figure 5 include the

F IGURE 5 Mean spatial maps across subjects of the networks for ToM-Phy1 classification (left) and Emp-Phy2 classification (right), for SBA,
ICA, wbMSAA, and sMSAAlit, respectively. More significant networks can be found in Data S1–Figures S2–S4. For all four methods, the ToM-
Phy1 classifying networks have most activity in the temporoparietal regions, and prefrontal regions. For the Emp-Phy2, processing similar regions
are included, but generally more activity is located in posterior parietal regions. For visualization, the SBA networks include the most significant
10% of the network correlations, each ICA map was z-scored and thresholded at Z = 1, and the MSAA networks include voxels with 10% or more
fractional contribution [Color figure can be viewed at wileyonlinelibrary.com]
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networks that obtained the highest classification performance, how-

ever, more networks yielded significant classification, which can be

found in Data S1–Figure S1. For the empathy condition (Emp-Phy2),

the seed of the network yielding the highest classification perfor-

mance was located in the angular gyrus and the network further

included the inferior parietal lobule (IPL), precuneus, medial temporal

gyrus, and medial prefrontal cortex (mPFC). For the ToM classifica-

tion, the seed was located in the dorsal anterior cingulate cortex

(ACC), and the network included frontal lobe regions, caudate and the

precuneus. Most of these regions were suggested to be involved in

the ToM or empathy related processing in previous studies (Abu-

Akel & Shamay-Tsoory, 2011; Fan, Duncan, de Greck, & Northoff,

2011). In particular, the IPL, precuneus, middle temporal gyrus, mPFC,

and ACC are key regions of default mode network, which plays impor-

tant role in social processing, such as understanding others' beliefs

and feelings and self-referencing (Andrews-Hanna, Reidler, Sepulcre,

Poulin, & Buckner, 2010; Takeuchi et al., 2014).

Finally, we also tried to classify the conditions using the time

series from the 25 seed regions. Here significant classification was

only obtained when concatenating the time series from all compo-

nents (mean accuracy 65%), and not when using the TS from each

seed region separately.

For the decomposition methods, we used the time series from each

component extracted using the three methods: ICA, wbMSAA, and

sMSAALit. All decomposition time series yielded a high classification

performance with accuracies ranging from 67 to 79%, which were sig-

nificant after correcting for multiple comparisons. The reason for the

high classification performance when using time series from decom-

position methods compared to seed region analysis, might be that the

decomposition methods extract components which maximally explain

the data. They therefore captured networks (and corresponding time

series) which were the most prominent in the data, whereas, the seed

region analysis relied on seed region points that were manually cho-

sen based on previous literature, and thus were not specific for the

given dataset.

The corresponding spatial maps of the best components are

shown in Figure 5, and other significant networks can be found in

Data S1–Figures S2–S4. Generally, we found that the best networks

across most methods included similar regions. For the ToM-Phy1 clas-

sification (left column), the networks include inferior and medial fron-

tal gyrus, temporoparietal junction (TPJ), posterior cingulate cortex

(PCC), and postcentral gyrus activation, which all are known to be

involved in ToM processing (Amodio & Frith, 2006; Ettinger et al.,

2015; Frith & Frith, 2006; Pickup, 2006). For the Emp-Phy2 classifica-

tion, the networks included similar regions as for the ToM-Phy1 clas-

sification, but generally there was more activation in posterior parietal

regions, such as precuneus and PCC.

To summarize, our findings show that both spatial networks and

temporal dynamics capture important information, which enabled signifi-

cant classification of the ongoing social cognition task. The networks,

which yielded the highest classification performance, generally included

temporoparietal and prefrontal areas, which consistently have been

considered core regions for ToM and empathy processing (Frith & Frith,

2006; Schurz, Radua, Aichhorn, Richlan, & Perner, 2014).

3.3 | Classification of social anhedonia

In this section, we show and discuss the results from the social anhe-

donia classification. The classification performances, measured by the

MCC are listed in Table 1 and Figure 6 shows the spatial maps of the

features obtaining the highest classification performance.

Whereas the activation maps from the SPM analysis resulted in the

highest task classification performance of all methods, our results show

that neither the raw maps, nor the seed based static measures (mean

and variance) enabled significant classification of social anhedonia. In

fact, for the seed region analysis features, only the covariance feature

obtained significant classification with a MCC = 0.43 (p = .005). This indi-

cates that simple network coupling between regions that are known to

be involved in social cognition processing, seems to capture important

information to differentiate the high and low social anhedonia group.

Additional analysis of which part of the covariance were important for

classification, revealed that the only feature surviving correction for mul-

tiple comparisons was the variance within the left TPJ. This region has

been associated with social cognition and ToM in several previous stud-

ies (Bodnar et al., 2014; Dodell-Feder, Tully, Lincoln, & Hooker, 2014;

Kronbichler, Tschernegg, Martin, Schurz, & Kronbichler, 2017) and was

also a prominent region in the decomposition methods to presented

below. For more details on this analysis wee the “interpretation of

covariance features for HSA classification” section in Data S1. The sec-

ond highest classification performance was obtained when using the

time series from the inferior lateral prefrontal cortex seed (MCC = 0.35,

pun-corrected = .007), however, classification was not significant after multi-

ple comparisons correction, which was necessary since classification was

performed for each seed region separately.

On the contrary, several features from the decomposition methods

yielded significant classification even after multiple comparisons cor-

rection. Here, we used both the time series and spatial maps for each

network as classification feature, and corrected for multiple compari-

sons using maximum permutation statistics across components. For

each decomposition method, only one (or sometimes no) feature

yielded significant classification.

The highest classification performance was obtained when using

one time series from the wbMSAA approach (MCC = 0.56, p = .008).

Very interestingly this was the same TS that also obtained the highest

task classification performance for the ToM condition, highlighting

the coupling between schizotypy and ToM processing (Bora & Pan-

telis, 2013; Pickup, 2006). In future studies, such coupling between

schizotypy and a relevant task (e.g., ToM), could be used to preselect

relevant network features instead of testing the classification for all

features extracted by the MSAA.

Furthermore, the spatial map corresponding to this time series

also obtained the highest classification performance of all wbMSAA

spatial maps, which was borderline significant (MCC = 0.42, p = .09,

pun-corrected = .006). The seed of this network was in the TPJ, and the

network further included inferior and medial PFC and insula.
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Furthermore, the ICA feature (time series) that resulted in the

highest classification performance (MCC = 0.45, p = .07, pun-

corrected = .005), had a corresponding spatial map, that was nearly

identical to the network from the wbMSAA analysis (see Figure 6

and Data S1–Figure S5).

The second decomposition feature that yielded significant classifi-

cation, was the time series from the spotlight sMSAAlit approach

(MCC = 0.49, p = .03). The spatial map corresponding to this TS had

its seed region is in the dorsolateral PFC and furthermore the network

included cingulate cortex and motor areas. For the sMSAAlit approach,

we chose the seed regions which were known to be involved in ToM

and empathy processing, since it is well established that social cogni-

tion is reduced in patients with schizophrenia (Bora et al., 2009;

Brunet et al., 2000), and in subjects with schizotypy (Ettinger et al.,

2015; Pickup, 2006).

As described in Section 2.8, we also tested another spotlight

approach where we used the peak coordinates from a pooled condi-

tion analysis (sMSAAPCon), because this would be a more data driven

way to choose center coordinates. Since the pooled condition analysis

was specific for the given task, we hypothesized that the features

extracted by this approach would result in a higher classification per-

formance than for the sMSAALit approach. However, neither of the

time series or spatial maps from the sMSAAPCon analysis resulted in

significant classification after multiple comparisons correction. Only

one component (time series) obtained a classification performance,

with an un-corrected p-value <.05. Most activation in this network

was in the TPJ and angular gyrus, but also included thalamus, insula,

and i/m FG.

To summarize, the components from the decomposition methods,

which obtained the highest classification performance generally

included temporoparietal and prefrontal regions, as well as insula and

cingulate cortex. These findings are in accordance with earlier studies

which have reported lower white matter integrity in the fronto-

temporal tracts (measured by diffusion tensor imaging) in subjects

with a high degree of schizotypy (Nelson et al., 2011), and both struc-

tural as well as functional studies have related changes in the PFC to

schizotypy (Kühn et al., 2012; Raine, Sheard, Reynolds, & Lencz,

1992). Furthermore, earlier studies have shown a decrease in insula

gray matter volume in UHR groups (Chan et al., 2011), and it has even

been suggested that structural insular abnormalities might be related

to the vulnerability for the development of later psychosis (Takahashi

et al., 2009). In future studies, it could thus be interesting to investi-

gate if functional imaging could support the structural findings of

Takahasi et al., and maybe enable identification of schizotypy in even

earlier stages than what is possible with the structural changes. As for

insula, gray matter volume reductions in thalamus have also been

found in both schizophrenia (Ettinger et al., 2001) as well as in

schizotypy (Kühn et al., 2012). Furthermore, fMRI studies have shown

F IGURE 6 Mean spatial maps of the components yielding significant HSA classification performance. For all features, highest classification
performance was obtained when using the times series (TS). This figure shows the corresponding spatial maps. The top row shows the two
networks, corresponding to the TS features that obtained significant classification after multiple comparisons correction (wbMSAA and
SMSAALit). Visualization threshold was 10% fractional contribution. The networks in the bottom row are from the ICA and sMSAAPCon analysis,
where the un-corrected p-value was below .05. For visualization, the ICA map was thresholded at a Z-score of 1 and the sMSAAPCon network
include voxels with 5% fractional contribution [Color figure can be viewed at wileyonlinelibrary.com]
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correlation between reduced activation in thalamus and the degree of

schizotypy (Aichert, Williams, Möller, Kumari, & Ettinger, 2012;

Kumari, Antonova, & Geyer, 2008), but it should be noted that the

subjects performed another task in these studies.

In summary, the included areas of the two networks which are

able to significantly classify HSA, have consistently been related to

schizotypy and the schizophrenia development, which highlight the

potential importance of these networks.

Finally, we want to comment on the use of spatial and temporal

network features for the classification. Whereas many spatial network

features resulted in significant classification of the task conditions, the

time series generally resulted in a higher classification performance

for the social anhedonia classification. This finding indicates that the

temporal dynamics during the social cognition task captures important

information to differentiate between high and low social anhedonia.

In comparison, the connectivity measures used to extract spatial net-

work features in this study are regarded static. In future studies, it

would thus be interesting to look at dynamic functional connectivity,

where the connectivity is estimated repeatedly for different windows

of the time series, and thus also reflect the dynamic variations in the

time series (Hutchison et al., 2013) (Damaraju et al., 2014; Nielsen

et al., 2018).

3.4 | Discussion of the MSAA method

This study is one of the first to use the MSAA method on neuroimag-

ing data, and the first to implement the spotlight approach that further

bridges aspects of data-driven decomposition methods and seed

based analysis. We, therefore, highlight some of the important aspects

of MSAA.

3.4.1 | Interpretability

Due to the nonnegativity and sum-to-one constraints, the spatial

maps in MSAA have a clear interpretation, showing the fractional con-

tributions of the components (archetypes) at each voxel. We used a

threshold of 0.1 for visualization, meaning that for each voxel shown

in a spatial map, this component had a relative contribution of at least

10% to that given observation. A similar interpretation of the scale in

ICA is not immediately possible without additional post processing,

and furthermore as the ICA allows both positive and negative contri-

butions, the components can include cancelation effects leading to

less straightforward interpretation.

3.4.2 | Noise modeling

The MSAA approach enables heteroscedastic noise modeling, that is,

the noise can be estimated for each subject and each voxel separately,

instead of assuming it to be constant, which is done in previous

decomposition methods such as ICA. Visual inspection of the spatial

distribution of these noise levels (Data S1–Figure S3) showed that

most noise was present around the edges of the brain and close to

known major blood vessels, which probably reflects residual

movement effects and noise due to blood pulsation, respectively. A

more elaborate discussion of this noise modeling can be found in

(Hinrich et al., 2016).

3.4.3 | Spotlight

The spotlight restriction of MSAA showed to successfully enforce the

algorithm to reveal functional networks, which otherwise were

obscured by other salient signal features. This is somewhat similar to

what was done by seed based analysis, but for the spotlight MSAA

the optimal seed is determined by data driven optimization instead of

manual assignment. Restriction of the seed regions can be especially

valuable if a specific hypothesis needs to be tested, for example, how

the connectivity between the whole brain and a particular region

changes in relation to disease progression. However, compared to the

wbMSAA approach, it requires the user to choose a number of seed

regions, which can be difficult to choose. In this study, we have cho-

sen center coordinates based on the social cognition task, either

based on previous literature or from a pooled condition analysis.

Another approach could have been to choose seeds, which have been

related to social anhedonia and/or schizotypy progression.

3.4.4 | Nonconvex optimization and number of
components

As for ICA, the MSAA algorithm is a nonconvex optimization problem,

which means that the optimization might get struck in a local and not

global minimum. In practice, this means that repeated runs can result

in somewhat different networks. How severe this problem is, depends

on the stability of the given dataset (signal to noise ratio, intersubject

differences, etc.) as well as on the number of components chosen. In

this study, we used 25 components as this was found to be the opti-

mal number using the minimum description length criteria, which is

the default implemented in GIFT toolbox (Li et al., 2007). Using

25 components, resulted in relatively stable networks, with a mean

spatial correlation of 86% for the wbMSAA when choosing the best

(lowest cost) solution between 10 runs as described in Section 2.7.

Visual inspection of the networks showed that the overall network

structures between runs were very stable, and the nonperfect

machining resulted in small network differences between runs (net-

works illustrated in Data S1 section “stability of wbMSAA”). Further-

more, we noted that the number of components within one run

seemed reasonable, such that known networks were captured by sep-

arate spatial maps (mixing of e.g., task and visual processing networks

would indicate that the number of components was too low), and did

not split networks up into separate components (this would indicate

that the number of components was too high). All in all, this indicates

that the number of runs and components were appropriate for the

given study. However, we want to emphasize the importance of

investigating the stability in future studies applying MSAA.
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3.4.5 | Toolbox

We have implemented the MSAA (both whole brain and spotlight)

code into a SPM plugin (compatible with SPM 12), which interested

users can download here: http://www.brain-fmri.com/MSAA/. The

plugin enables the user to apply the MSAA algorithm on fMRI data, by

simply loading the preprocessed images and choose the optimization

parameters specified in the toolbox.

3.5 | Limitations and future perspectives

As discussed in the previous section there are some challenges for decom-

position methods, such as nonconvexity and choosing an appropriate

number of components. Another large challenge of this study was the rela-

tively small difference between subjects of the high and low social anhe-

donia respectively. Firstly, classification was challenged by the low

separation boundary which was used (mean plus one standard deviation).

Though similar boundaries have been used in previous group comparison

studies of schizotypy (Wang et al., 2016), it was challenging for the sup-

port vector machine to learn from the data of two relatively similar classes.

Secondly, even with this low separation threshold, we had an unbalanced

dataset, with 56 (LSA) and 14 (HSA) subjects in each group. This further

challenged the supervised classification procedure, and made the classifica-

tion performance sensitive the classification of few subjects. We tried to

mitigate this problem by (a) using weights in the support vector machine

to counteract the imbalance and (b) used the MCC measure to access clas-

sification performance. Additionally, it is important to note that while full

correction of multiple comparisons was considered within each feature

extraction method, this was not done across these different methods. This

was motivated by the main aim of comparing a set of, in many aspects,

very similar feature extraction methods. With these limitations in mind, we

consider the present study an explorative investigation of features for clas-

sification of social anhedonia rather than a study of the neural correlates

of social anhedonia itself. Still, we strongly expect that a larger group, par-

ticularly with more subjects with high social anhedonia, would make classi-

fication easier and more stable. Furthermore, including subjects with more

pronounced social anhedonia, or subjects belonging to other risk groups,

would also be very interesting from a clinical perspective.

However, even with these challenges, the whole brain and spotlight

MSAA algorithms extracted features that yielded significant classification.

Using the same methods on ultra-high-risk groups or patients with

schizophrenia would thus be very interesting to investigate how net-

works alterations are related to the development of schizophrenia. Opti-

mally, this could be investigated through a longitudinal study starting

with a large group of subjects with a continuous range of schizotypy and

a specific and well-designed experimental set-up.

4 | CONCLUSION

Using a variety of different feature extraction methods, we found signif-

icant classification of social anhedonia for two features, both consisting

of times series extracted by the MSAA decomposition methods. The

highest classification performance was achieved using the whole brain

MSAA. Importantly, the same time series also obtained the highest task

classification performance, making a strong coupling between the

processing of the ToM task and the degree of social anhedonia. This

indicates that future studies could focus on components representing

task-relevant networks for classification of schizotypy, thereby circum-

venting the need for correction for multiple comparisons across compo-

nents. The spatial map corresponding to the time series yielding highest

classification performance, included the TPJ, prefrontal cortex, angular

gyrus and insula, which all have been consistently related to schizotypy

as well as to the development of schizophrenia in earlier studies.

Finally, a nearly identical feature was also identified as the best

performing when using features extracted by ICA. The repeated

occurrence of the same feature highlights the potential importance of

this network for early identification of schizotypy. Thus, in future

studies, it would be very interesting to investigate if the same network

would also be important for subjects with more pronounced

schizotypy and other high-risk groups through the spectrum of schizo-

phrenia development.
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Supplementary Material 
This supplementary material includes additional figures and tables which are referred 
to in the main paper, and that are described by their corresponding captions.   
In short, supplementary table 1 lists the literature center coordinates that are used 
for the seed region analysis and spotlight multi-subject archetypal analysis (MSAA).  
Supplementary table 2 gives additional information on the Chapman and the Beck 
depression inventory scales. 
Supplementary figure 1-4 shows all networks that obtained significant task 
classification for either the “Theory of Mind” or “Empathy” condition, furthermore the 
figure lists the accuracies obtained by each network.  
Supplementary figure 5 shows axial slices of the networks that obtained significant 
classification for the social anhedonia classification.  
Supplementary figure 6 illustrates the average (over subjects) noise map for the 
whole brain MSAA. 
The section stability of wbMSAA describes the consistency of the wbMSAA analysis 
across multiple runs of the algorithm.  
The section Interpretation of covariance features for HSA classification investigate 
which ROIs were responsible for the significant classification of HSA based on 
covariance features. 
Finally, supplementary table 3 includes the center coordinates from the pooled 
condition analysis that were used for the spotlight MSAA classification.  
  



Supplementary table 1: MNI coordinates of the 25 center coordinates used for the seed region analysis 

and spotlight sMSAALit. The number in the brackets indicate the network number (right before left), e.g. 

TPJ (1-2) indicates that rTPJ was seed number 1. 

 
 
 
Literature coordinates  

 
Left hemisphere 
MNI coordinate 
 

 
Right hemisphere 
MNI coordinates 
 

 x y z X y Z 

 

Temporoparietal junction (TPJ) (1-2) -53 -59 20 53 -59 20 

Inferior parietal Lobe (IPL) (3-4) -45 -43 56 45 -43 56 

Angular gyrus (AngG) (5-6)  -45 -60 35 45 -60 35 

Superior Temporal Sulcus (STS) (7-8) -54 -12 0 54 -12 0 

Precuneus (Pcun) (9) -2 -52 39    

Amygdala (Amyg) (10-11) -20 -3 -18 20 -3 -18 

Ventral Striatum (12-13) -10 15 9 10 8 -8 

Dorsal Temporal Pole (dTP) (14-15) -54 -9 -21 54 -9 -21 

Dorsal Anterior Cingulate Cortex (dACC) (16-17) -10 32 24 10 32 24 

Ventral Anterior Cingulate Cortex (vACC) (18-19) -12 28 -10 12 28 -10 

Ventral medial Prefrontal Cortex (vmPFC) (20)    3 51 -15 

Dorsal medial Prefrontal Cortex (dmPFC) (21)    6 26 55 

Dorsolateral Prefrontal Cortex (dLPFC) (22-23) -33 38 37 33 38 37 

Inferiorlateral Prefrontal Cortex (dLPFC) (24-25)  -46 22 8 46 22 8 



Supplementary table 2: Chapman scale scores and Beck Depression inventory for all 70 included 

subjects.  

 

 Chapman scale scores Beck 
Depression 
Inventory 
(BDI) 

Chapman 
Social 

Anhedonia 
(CSAS) 

Chapman 
Physical 

Anhedonia 
(CPAS) 

Magical 
ideation 

(MIS) 

Perceptual 
aberration 

(PAS) 

Mean  7.97 12.59 6.59 10.44 4,06 
Standard 
deviation 

5.65 9.87 7.06 5.64 4.51 

 
 
 



Supplementary figure 1: Significant task classification networks from SBA analysis. 3D visualization of 
all networks that obtained significant task classification for either the theory of mind (left and middle 
column) and empathy (right column) classification using the 25 networks coming from seed based 
analysis (SBA).  The network number (no.) corresponds to the seed region number listed in 
supplementary table 1.  

 

  



Supplementary figure 2: Significant task classification networks from ICA.  3D visualization of all 
networks that obtained significant task classification for either the theory of mind (left column) and 
empathy (right column) classification using the times series (TS) from the 25 components coming from 
the independent component analysis (ICA).  The component number (no.) corresponds to the order of 
the networks when returned from the decomposition method, and corresponds to the order of the .nii 
files available at http://www.brain-fmri.com/MSAA/supplement/.   

 
  



Supplementary figure 3: Significant task classification networks from wbMSAA.  3D visualization of all 
networks that obtained significant task classification for either the theory of mind (left column) and 
empathy (right column) classification using the times series (TS) from the 25 components coming whole 
brain multi subject archetypal analysis (wbMSAA).  The component number (no.) corresponds to the 
order of the networks when returned from the decomposition method, and corresponds to the order 
of the .nii files available at http://www.brain-fmri.com/MSAA/supplement/.   

 
 
 
 
 
  



Supplementary figure 4: Significant task classification networks from sMSAALit.  3D visualization of all 
networks that obtained significant task classification for either the theory of mind (left column) and 
empathy (right column) classification using the times series (TS) from the 25 components coming 
spotlight multi subject archetypal analysis (sMSAALit).  The component number (no.) corresponds to the 
order of the networks when returned from the decomposition method, and corresponds to the order 
of the .nii files available at http://www.brain-fmri.com/MSAA/supplement/. 
 

 
 
 
  



Supplementary figure 5: Axial slices of the best HSA classifying networks determined by the 
decomposition methods; whole brain MSAA (top left), and spotlight MSAA (bottom) with center 
coordinates from the literature (sMSAAlit) (left ), and pooled condition analysis (sMSAAPcon) (right). 
Finally, axial slices from ICA (top right). For MSAA the visualization threshold was 10% fractional 
contribution for wbMSAA and sMSAALit and 5% for sMSAAPCon. For visualization, the ICA map was 
thresholded at a z-score of 1.  
 
 

 



 

Supplementary figure 6: Mean variance (estimate of noise) between subjects using the wbMSAA 
algorithm. It is clearly seen that the algorithm determined most noise at the edges and close to big 
blood vessels, which likely reflect residual movement artifacts and noise due to blood pulsation 
respectively. Please note that the color scale is arbitrary scaled to 1. 

  



Stability of whole-brain multi-subject archetypical analysis  
 
The cost function in multi-subject archetypical analysis is non-convex just like 
independent component analysis, hence it is not guaranteed that the same 
components will be identified across multiple runs with different random 
initializations. To alleviate this issue, the run which obtained the lowest value of the 
cost function out of 10 optimizations each with random initializations were chosen 
each time we used the algorithm. To further investigate the stability, we here rerun 
this procedure 10 times investigating the similarity of the spatial maps obtained. As 
there is a trivial ordering/permutation ambiguity of the components across 
components, they were matched across runs by successively pairing the components 
that were most correlated (based on correlation of the spatial maps). In this procedure 
we used the run that was used in the main article as reference, hence the ordering of 
the components is the same as in the main article.  
Supplementary figure 7 shows the spatial correlation of each of the components 
across the 10 runs. The reference run (run number 9 in supplementary figures 9 and 
10) is used as reference and is therefore not shown. For most of the components the 
components are quite consistent across runs generally obtaining spatial correlations 
above 0.9, however some components (in particular component 15) are poorly 
matched across runs. While this indicates some instability, it is not too unexpected in 
case of model mismatch as some components (in particular unstable nuisance 
components) may not be identified in all runs. For the components obtaining 
significant classification rates we generally observe very high correlation across runs 
indicating high stability, in supplementary figure 8 component number 13 (which 
obtained significant classification of HSA) is displayed across the 10 runs as an 
example. Similarly, the least stable component number 15 is displayed in 
supplementary figure 9. Note, that due to the high dimensionality of the spatial 
components the correlation value can be low even if the components are visually quite 
similar. 
 



 
Supplementary figure 7: Correlation of spatial maps across runs and components. 

 
 

 

Supplementary figure 8: Spatial maps of the least stable components. The figure shows the spatial 
maps of the components that were least stable across runs, for brevity only the refence run is shown.  



 
 

 

Supplementary figure 9: Spatial maps of component 13. This component obtained significant HSA 
classification is displayed across the 10 runs. The components are extremely similar across runs, and 
repeating the HSA classification for each run also showed significant classification in all 10 runs. 

 



 
Supplementary figure 10: Spatial maps of component, 15 which was the least stable across runs. 
Note that despite the low correlation value the components are visually similar across runs. 

 
  



Interpretation of covariance features for HSA classification 
 
To investigate which of the regions of interest (ROI) and functional connectivity 
between them were responsible for the significant classification of HSA using 
covariance features were significant we performed an analysis aiming at reveling the 
significant features. For this analysis the number of features was the diagonal the 
upper triangular part of the 25 by 25 ROI covariance matrix resulting in a total of 325 
features. 
As direct interpretation of weight maps in support vector classification is known to 
be ambiguous, we used the procedure suggested by Haufe et al. (Haufe et al., 2014) 
to invert the decoding model to identify an activation map. As statistical inference 
on activation maps is not immediately possible, we investigated the stability of these 
maps using repeated cross validation. To this end we used the split-half resampling 
approach suggested in (Strother et al., 2002) to identify reproducible Z-scored 
activation maps. 
The procedure involved randomly splitting the data into two equally sized 
proportions (while keeping the proportions of high and low HSA approximately equal 
in the two proportions). Then the support vector classification where fitted on each 
of the splits thereby identifying two feature weight vectors 𝒘1 and  𝒘2 in this case 
with dimensionality 325, these were then converted into activation maps  𝒂𝑖,1 and  
𝒂𝑖,2 following the procedure suggested in (Haufe et al., 2014) 

𝒂𝑖 = 𝑪𝒊𝒘𝒊. 
where 𝑪𝑖 is the estimated 325 by 325 data covariance for split 𝑖. Note, that scaling of 
𝒂𝑖  is arbitrary. Then a reproducible statistical map was constructed as 

𝒁 =
𝒂𝟏 + 𝒂𝟐

𝜎(𝒂𝟏 − 𝒂𝟐)
, 

Where 𝜎 is the standard deviation operator (here subtracting the mean of 𝒂1 − 𝒂2 is 
allowed as for each split as an equivalent opposite split exists). The main insight 
behind this equation is that 𝒂1 + 𝒂2 is an estimate of the activation map while 𝒂1 −
𝒂2 is an unbiased estimate of variability of the activation map (due to the 
independent splits) see (Strother et al., 2002) and (Rasmussen, Hansen, Madsen, 
Churchill, & Strother, 2012) for further details. In this case we are assuming equal 
variance across features by using a scalar covariance estimate. The result is an 
approximately z-scored (under an assumption of normality) activation map. The 
estimate can be improved by averaging across repeated splits, in this study we 
averaged across 100 splits of the data. To do inference on the significant features we 
compared the averaged z-scored map to a cumulative Normal distribution and 
Bonferroni corrected across the 325 multiple comparisons to control two-sided 

family-wise type I error at the 5% level leading to a 𝒁 threshold of Φ−1(0.05/2
325

) ≈

3.78, where 𝛷−1 denotes the inverse normal cumulative distribution function. 
Supplementary figure 11 shows the significant features. Note that only feature 
surviving the family-wise error correction is the variance within the left temporal 
parietal junction. 
 



 
Supplementary figure 11: Reproducible statistical map of covariance features for classification of 
HSA, z-scores significant at the two-sided 5% significance level is shown and significance at 5% 
Bonferroni corrected for multiple comparisions is indicated by a *. Only the covariance of the left 
temporal parietal junction, TPJ (L) reach significance.  

 
 
  



Supplementary table 3: Results from pooled condition (PCon) mass univariate analysis. Center 

coordinates from this analysis were used for the PCon spotlight mask used for MSAA.  Table shows peak 

Z score, cluster size, and MNI coordinates for all significant clusters (Significance level αRFT≤0.05, where 

random field theory was used to correct for multiple comparison correction). 

 
 Left hemisphere Right hemisphere 
 Peak Z Cluster 

size 
MNI coordinate Peak Z Cluster 

size 
MNI coordinates 

 x y z x y z 
 
Pooled condition analysis (PCon) 

Anterior middle temporal 
gyrus  

6.15 109 -54 -9 -21 7.28 235 54 0 -21 

Temporoparietal junction 7.30 287 -51 -69 24 7.12 332 51 -63 24 

Lateral Superior temporal 
sulcus 

4.75 6 -42 18 -33      

Medal superior temporal 
sulcus 

4.62 1 -36 21 -33      

Cuneus 7.56 135 -12 -108 9 7.23 93 15 -105 12 

Ventral medial prefrontal 
cortex 

     5 19 3 51 -15 

Dorsal medial frontal gyrus 5.63 46 -12 51 48 4.7 3 12 57 42 

Anterior parahippocampal 
gyrus 

5.38 30 -24 15 -21      

Posterior parahippocampal 
gyrus 

4.71 8 -21 -33 -18      

Fusiform gyrus  5.05 7 -36 -48 -21      

Middle occipital gyrus 4.81 7 -45 -84 0      

Precuneus 7.37 603 0 -57 39      
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Abstract:  
Schizophrenia is a complex psychiatric disorder with a high degree of psychopathological 

heterogeneity and currently there are no clinically used biomarkers to assist diagnostic or treatment 

decisions.  In the search for robust neuroimaging biomarkers, we here combined a large multi-site 

resting state fMRI (rsfMRI) dataset and machine learning methods for feature extraction and clinical 

predictions. We used resting state fMRI connectivity features to predict both the diagnostic labels and 

symptom scores defined using the Positive and Negative Syndrome Scale (PANSS). We merged data 

from several publicly available databases to obtain data from ten different sites, which we split into a 

discovery dataset (143 patients with schizophrenia (SZ) and 486 healthy controls (HC) from eight sites) 

and a validation test dataset (63 SZ patients and 260 HC, from two independent sites).  We focused 

on connectivity changes within and between resting state networks (RSN), which we assessed using 

three methods: parcellation based connectivity analysis and two decomposition methods: 

independent component analysis (ICA) and multi-subject archetypal analysis (MSAA). We then 

performed three prediction analysis, i) classifying patients with SZ from HC, ii) predicting the symptom 

severity using the total PANSS score, and iii) predicting the positive, negative, and generalized PANSS 

subscales to address the internal heterogeneity of schizophrenia.  For the decomposition methods, 

we investigated three different transfer learning approaches to determine ways to bridge 

decomposition features across datasets.  

For the feature extraction analyses, we found that both decomposition methods extracted 14 similar 

RSNs that were stable across datasets.  The diagnosis classification was high and significant on both 

the discovery and validation dataset for all three feature extraction methods, and the highest 

performance was found using classifiers that included data from all RSNs. On the contrary, the 

prediction of the PANSS scores were only low to moderate and overall, the models generalized poorly 

to the validation dataset. We see the outcomes of this study as important methodological 

contributions towards using machine learning and multi-site imaging for predictive modelling.  We 

hope that data sharing initiatives will continue and expand, as we believe that even more multi-site 

data from patients, including information about confounding factors, are needed to make firm 

conclusion on whether machine learning and rsfMRI is the right path to find robust biomarkers to 

guide clinical decisions for patients with schizophrenia. 

  



Highlights  

• ICA and MSAA extract similar and stable (across datasets) RSN from multi-site data 

• High and reproducible diagnosis classification with all three methods 

• Using transfer learning between the datasets increased the stability and predictive 

performance  

• Best performance with ensemble classifiers indicating no “single best” RSN   

• Prediction of PANSS was low to moderate and did not generalize to new data 

Keywords:  

Clinical predictions, Multi-site fMRI, Resting state connectivity, Schizophrenia, Machine Learning   



Introduction 

Schizophrenia is a psychiatric syndrome with a complex and heterogeneous neurobiological, genetic, 

and phenotypic profile. It is usually diagnosed based on the symptomatology using diagnostic tools 

such as the  Diagnostic Manual of Mental Disorders (DSM) manual [1] in the US, or the International 

Classification of Diseases (ICD)[2] in Europe. The symptom severity is often assessed using the Positive 

and Negative Syndrome Scale (PANSS), which includes thirty items that are organized into a positive, 

negative, and general psychopathology subscale [3].  A core challenge of using diagnostic labels and 

symptom scores,  is that they do not necessarily reflect the underlying mechanism that causes them, 

which means that a set of symptoms can arise from different causes while the same etiology might 

manifest as different symptoms and  phenotypes due to individual differences or environmental 

factors[4-6] . Unfortunately, there are currently no clinically used objective biomarkers that can inform 

diagnostic and treatment decisions in schizophrenia (SZ), but neuroimaging is a strong candidate for 

biomarker discovery [4].  The list of potential neuroimaging biomarkers covers a broad range, from 

measures of altered release of neurotransmitters (e.g., dopamine), receptor occupancy, 

neuroinflammation and dysconnectivity between brain regions [4]. In our study, we focused on 

dysconnectivity biomarkers from multi-site resting state functional magnetic resonance imaging 

(rsfMRI), i.e., measures of how the functional connectome changes in patients with SZ during rest. 

Traditionally neuroimaging biomarker discovery has relied on group-level mapping using univariate 

analytical techniques, but in the last decade an increasing number of studies have used supervised 

machine learning (ML) to make prediction on an individual level. So far, most neuroimaging predictive 

modelling studies have focused on classifying the diagnostic labels of participants [5, 6], i.e., using the 

fMRI data to train a model that can predict if a participant is a SZ patient or a healthy control. Currently 

there are more than 35  predictive-modelling studies that have used rsfMRI features to classify SZ 

patients, where most have obtained a high accuracy of 75-90% [7]. However, only few studies have 

tested their results on data from independent test sites, and for those that have, the predictions 

performances were substantially lower on the new data[6, 8-11].  Overall, earlier studies (including 

meta-analyses) have shown widespread functional connectivity changes in patients with 

schizophrenia, which support the view that it is a disorder of disorganized communication across brain 

networks[4, 12-15]. However, since the methods and results were variable across studies, firm 

conclusions are yet to be made [4, 16].  

There are some core challenges that have hampered the development of robust neuroimaging 

biomarkers in psychiatric disorders. These can be grouped into i) internal heterogeneity, ii) technical 

choices, and iii) clinical utility. For a complete discussion, we refer the reader to previous review 



papers, such as Kraguljac et al. from 2021[4-6], but here we introduce some of the main points, and 

how we aimed to mitigate them in our study.  

The internal heterogeneity of schizophrenia is a challenge since the current diagnosis only focusses 

on symptoms, which overlap with many other disorders, and patients with the same diagnosis can be 

affected by very different symptoms domains. This means that the clinical populations between 

studies often are different (particularly in studies with small sample sizes) which in turn hampers the 

generalizability between studies. Several initiatives have been started to find data-driven mechanistic 

disease definitions or sub-types which have more homogenous biology [16]. One way to do this, is to 

search for brain activation patterns that related to more find-grained disease definitions that are 

provided through clinical assessments. This carries great potential, both for biomarker discovery and 

many other applications such as the development of personalized treatment plans.  

With technical choices we here refer to challenges in defining best practices both for data acquisition 

and analysis. Regarding the former, most earlier studies have used single-site data with a limited 

sample size and strict inclusion criteria (e.g., only including young Caucasian males with first psychosis 

without comorbidities). Models trained on such datasets have a risk to be overfitted to the narrow 

“patient space” represented by the specific study, and thus have a poor generalizability to data from 

independent sites [9, 17]. Furthermore, it has been shown that acquisition parameters also highly 

influence the reliability and results of the study [18-21].   Secondly, it has been shown that the results 

of neuroimaging studies strongly depend on the steps included in the analysis, ranging from choices 

in preprocessing and feature extraction to statistical analysis.  All these steps have a high degree of 

flexibility, and it has been standard practice to adjust the analysis pipeline to the specific dataset 

(which again can give rise to overfitting) [8, 22, 23].  

With clinical utility we refer to the overall applicability and health impact of the biomarker. Here, 

biomarker discovery can be divided into three steps i) analytical validation to establish that the 

measurement technique reliably measures the intended outcome (for fMRI this is most frequently 

done using the intraclass correlation coefficient to measure test-re-test reliability [19-21]), ii) clinical 

validation to establish that the biomarker can adequately predict or measure the relevant clinical 

concept, e.g., symptom severity. And finally,  iii) show that the inclusion of the biomarker improves 

the outcome in a clinically meaningful way, when assessing both benefits, patient burden and 

potential risks[24, 25]. Furthermore, to have a clinically useful biomarker, explainability is important 

[23, 25] to evaluate what brain features were important for the predictions and thus could serve as 

potential biomarkers.  Currently, many activities are ongoing to move machine learning away from a 

“black box” towards a more refined understanding; however, so far it is often still challenging to 



interpret the outcomes of prediction models. For example, neural networks are often too complex to 

provide meaningful interpretations, and even for “simpler models” like support vector machines 

utilized in predictive modelling, interpretation of the classification weights should be approached with 

care [26, 27].  

In our study, we aimed to overcome some of these challenges by combining one of the largest 

available multi-site rsfMRI datasets with machine learning for both data-driven feature extraction and 

predictive modelling, while having a high focus on robustness and generalizability.  

We opted towards keeping all steps in our analyses as robust and data-driven as possible, and used 

multi-site data to train our models while also keeping data from two independent sites separate for 

external validation. We deliberately did not perform any site-specific adjustments in our prediction 

pipeline, with the goal to search for biomarkers that were sufficiently robust to between site 

variations.  

For the feature extraction, we investigated the stability and performance of unsupervised 

decomposition methods which can be used to extract brain features in a data-driven way. Most 

frequently, this is done using the decomposition method independent component analysis (ICA) or 

clustering approaches[28-30]. Multi-subject archetypal analysis (MSAA) is a low rank matrix 

factorization method that bridges aspects of decomposition and clustering [31, 32], which has shown 

promising results on an earlier prediction study that we performed on individuals with schizotypy [33]. 

In this study, we therefore used both ICA and MSAA to extract resting state networks (RSN).  Since 

there is so far no consensus on how to use decomposition methods to search for brain features across 

datasets, we have investigated three different transfer learning approaches, to bridge networks across 

datasets. Finally, we have compared the performance of the decomposition methods with features 

from a parcellation based connectivity analysis, which earlier multi-site prediction studies have used 

for feature extraction [10, 11, 34].  

Based on the connectivity features, we classified participants according to their diagnosis, i.e., 

classifying patients with schizophrenia from healthy controls.  Since firm conclusions are yet to be 

made about which (or even if any) specific RSNs could serve as potential biomarker for schizophrenia, 

we performed a comprehensive analysis of the predictive abilities of individual RSNs both for the 

decomposition methods and the parcellation based connectivity analysis. To our knowledge, no earlier 

studies have used decomposition methods on multi-site data to classify patients with schizophrenia, 

nor investigated how transfer learning and individual RSN prediction can be used to increase the 

stability and explainability of the results.  



We also determine if the RSN features could be used to predict the symptom severity (measured using 

the total PANSS scale) and the three PANSS subscales (positive, negative and generalized), in an 

attempt to disentangle the internal heterogeneity of schizophrenia. We only know of few earlier 

predictive modelling studies that have used fMRI data to predict PANSS scores [35-38] and none of 

these have used multi-site data, tested their findings on external data, nor used decomposition 

method in their analysis.  

We therefore see this work as an important step toward exploring how data-driven machine learning 

methods and multi-site datasets can be used to search for robust and reproducible biomarkers.  

Materials and Methods  
Overall, this study includes five different steps which are illustrated in Figure 1 and described in further 

details in the following sections.  

 

Figure 1 Graphical illustration of the five different steps of this study. 1) The study uses a rsfMRI dataset collected from 10 
different sites, which all went through the same robust preprocessing pipeline. The data was split into a discovery dataset 
(D1) on which the prediction models were trained, and a test dataset (D2) with data from two independent sites, that were 
used for model validation.  2) Features were extracted using either a parcellation based connectivity (also called region of 
interest (ROI)) approach, or by use of the data driven decomposition methods independent component analysis (ICA) and 
multi-subject archetypal analysis (MSAA). 3) For the decomposition methods, we used three different transfer learning 
approaches (A1-A3) where information from the D1 feature extraction was transferred to extract similar features on the test 
dataset D2. 4) The prediction models were then trained either for diagnosis classification (using support vector machines 
(SVM)) and symptom regression (using Gaussian process regression (GPR)). 5) Finally, we validated the models on the data 
from the independent test site. 



2.1 Participants and MRI acquisition  
We used data from two publicly available datasets: i) 812 participants came from the DecNef Project 

Brain Data Repository (https://bicr-resource.atr.jp/srpbsopen/)[39], ii) 140 participants came from 

the Center of Biomedical Research Excellence (COBRE) dataset [40]. We split this into two datasets, 

the discovery dataset, D1 containing data from 8 sites (COBRE + 7 DecNef sites) which we use to 

compare and train different ML models and the independent test dataset, D2 containing data from 

two independent sites (both from the DecNef database) to assess the generalizability. With 

generalizability, we here refer to high and significant predictive performance of the biomarker on both 

the discovery and test datasets. With the aim to build a ML model that generalizes across datasets, 

we choose to keep data from as many subjects and sites as possible, which means that we have an 

unbalanced dataset with more healthy controls (HC) than patients with Schizophrenia (SZ). We made 

the splits between D1 and D2 such that approx. 70% of the data was used for training.  For the 

prediction of the PANSS scores, we created a sub dataset, which included only data from SZ patients 

that had a PANSS score available, these datasets are referred to as D1a and D2a. Demographics are 

specified in Table 1.  For all included subjects, we had a structural T1 weighted image, and 5-10 min 

resting state fMRI data with eyes open.  More detailed information about the number of included 

participants and MRI acquisition parameters for each site can be found in Supplementary Table 10. 

This study was approved by the Institutional Ethical Review Board at the Technical University of 

Denmark, department for applied Mathematics and Computer Science (COMP-IRB-2022-03). 

 Diagnosis classification PANSS prediction 

 Discovery data (D1) Test data (D2) D1a D2a 

HC SZ HC SZ SZ SZ 

n participant  486 143 260 63 136 44 

n sites  8 3 2 2 3 1 

Sex (♂,♀) 256/230 100/43 179/81 35/28 99/37 20/24 

Age (µ,σ) 40 ±16 36 ±12 34 ±12 42 ±10 36 ±12 42 ±10 

PANSStotal   62 ±17 57 ±18 

Table 1) Participant demographics. Number of patients (nparticipant) and sites (nsite), sex, age and PANSS total 

(measure of general symptom severity). The machine learning models were trained on dataset D1 and D1a and 
finally we tested the generalizability of the model using data from an independent test dataset, D2, including 
data from two independent sites. The suffix “a” indicates a subset of the datasets than only includes patients 
with an available PANSS score thus PANSS total is only listed for D1a and D2a.  

 

2.2 Preprocessing 
We aimed to keep our preprocessing pipeline as simple and generalizable as possible. We converted 

the raw datafiles into BIDS format and used fMRIprep v. 20.2.6 for preprocessing [22]. We used 



fMRIpreps standard settings for slice timing correction, realignment, between modality registration, 

segmentation, and spatial normalization to standard space.  Additionally, we used high pass filtering 

with a cut-off frequency of 1/128 Hz and 6mm FWHM isotropic Gaussian smoothing. For scans where 

B0 field maps were available we estimated and applied a voxel displacement map based on the 

effective echo spacing and phase-encoding direction. “Fieldmap-less” distortion correction by 

matching the anatomical features to the T1-weigthed scan, was applied for scans where no B0 field 

map was available [22]. We regressed out the mean signal of nuisance compartments (global, white 

matter and cerebrospinal fluid), 24 motion parameters [41], and scrubbed volumes where the 

framewise displacement exceeded 1mm. We excluded participants where more than 30% of volumes 

were scrubbed (nine participants). Please note that the excluded participants are not part of the 

number and demographics in section 2.1. 

2.3 Feature extraction methods  
We used three feature extraction methods; i) parcellation based connectivity analysis, ii) independent 

component analysis (ICA), and iii) the novel multi-subject archetypal analysis (MSAA). 

Parcellation based connectivity analysis  
Parcellation based connectivity analysis is the most used feature extraction method for neuroimaging 

data that is used for subsequent ML analysis. The parcels can be defined either as a sphere around a 

center coordinate or using different brain atlases. In this paper, we will also refer to parcels as regions 

of interests (ROI). We used the functionally defined 300-ROI set that was recently presented by 

Seitzman et al [42], which is an extension to the 264 ROI atlas from Power et al [43], where rsfMRI 

data was used to get an improved representation of ROIs in the subcortex and cerebellum [42]. The 

300 ROI set can be downloaded on the Greene lab website.  We excluded 25 ROIs that were mostly 

outside our group mask (threshold: <5 voxels within ROI), these were mainly located in the cerebellum 

(16/25) (which was not in the field of view for our scans) and in orbitofrontal regions plagued by signal 

dropout due to field inhomogeneity.  We then used the MNI coordinates and sphere radius (5 or 4mm 

depending on the ROI) from the remaining ROIs and assigned the network labels of each ROI to the 7-

network parcellation from Yeo et al [44], since this is the RSN parcellation that we have used for the 

decomposition methods. The seven RSN include: Visual, Somatomotor, dorsal attention (dATT), 

ventral attention (vATT), Limbic, Frontal-parietal (FPN) and Default mode network (DMN). Functional 

connectivities (FC) were calculated using Pearson’s correlation coefficient with subsequent z scoring, 

which resulted in 37.675 FC (275 * (275-1))/2).  

Group independent component analysis (ICA)  
Group ICA is the most frequently used unsupervised ML method to extract brain networks from fMRI 

data, in particular, for the extraction of RSN from rsfMRI [29, 30]. This decomposition method aims to 



identify a low rank representation of the data, such that the spatial sources are maximally 

independent. This means that ICA components are constructed such that the connectivity between 

components is minimized. We applied group ICA through the GroupICATv4.0a GIFT toolbox[45] using 

the Infomax algorithm, and the number of components (NOC) were selected using the minimum 

description length [46], which resulted in 23 components (median). We used a group mask that 

preserved voxels included in 95% of all individual brain masks (output from fMRIprep). Subject specific 

components were obtained using dual regression [47], as this allowed extraction of component 

expressions for independent datasets in a straightforward and consistent manner without data 

reduction procedures. For further analysis, components were z-scored. For visualization purposes we 

thresholded the activation at |z|>1. 

Multi-subject archetypal analysis (MSAA) 
MSAA is a novel decomposition method that aims to find characteristic archetypes in the data, which 

are latent factors that represent extremal points in the data [32]. For fMRI data,  these archetypes are 

characteristic time-series, and a corresponding set of subject (denoted by i) specific spatial maps Si 

[25].  Each map reflects the fractional contribution of each voxel to this archetype. Whereas ICA 

represents the fMRI data by a linear mixture of maximally independent spatial maps, MSAA 

determines the components through iterative optimization of; i) a seed region matrix, C (which is 

constrained to be identical for all subjects), and ii) a set of subject specific spatial maps (Si) 

corresponding to each archetype. The archetypes for each subject are given as the weighted average 

of the voxels specified in the seed region matrix, such that Ai= XiC, where Xi is the subject specific 

data and Ai includes all archetypes, defining distinct temporal profiles, for the i'th subject. The 

columns of both Si and C are constrained to be nonnegative and to sum to one, which means that for 

each voxel, the time series is reconstructed by a convex combination as defined in Si of the archetypes. 

The resulting spatial maps can therefore be interpreted as the fractional contribution of all voxels to 

the archetypal time series as specified in Ai. MSAA allows heteroscedastic noise modelling over voxels 

and subjects, such that the linear model per subject can be formulated as  

Xi=XiCSi+Ei 

Where the noise (Ei with columns εi,v) is assumed to be independently distributed with a Gaussian 

distribution such that εi,v ~𝑁(0, 𝑰𝑇𝜎𝑖,𝑣
2 ) . Here 𝜎𝑖,𝑣

2  is the voxel (v) and subject specific noise variance 

and 𝑰𝑇 a 𝑇 × 𝑇 identity matrix, where 𝑇 is the number of timepoints. This leads to the following 

likelihood (L) function 

𝐿 = ∏ ∏
1

(2𝜋𝜎𝑖,𝑣
2 )

𝑇 2⁄ exp (
−‖𝑿𝑖𝑣−𝑿𝑖𝑪𝑺𝑖,𝑣‖

2

2𝜎𝑖,𝑣
2 )𝑉

𝑣
𝐵
𝑖 . 



Similarly, as for other decomposition methods such as ICA, determining C, Si, and σi,v jointly leads to 

a nonconvex optimization problem (Mørup & Hansen, 2012), and a solution can be found by 

alternating optimization using projected gradient descent. For more details on MSAA and its relation 

to ICA, we refer to our previous publications [31, 33].  

MSAA was implemented using the MultiSubjectAA code that is available via GitHub[48], and run 

using Matlab v. 2020b. We used the same group mask and number of components as for ICA (NOC 

= 23). We specified that the optimization should halt after either 1000 iterations or when the relative 

decrease in the cost function (𝐿) was less than 10-6, which was the same convergence criteria as used 

in our previous work [21, 25]. Since MSAA is a nonconvex optimization problem, there is a risk that 

the optimization identifies a local rather than the global minimum, and it is therefore suggested to 

repeat the analysis with several random initializations. In previous work, we specifically investigated 

the stability based on the number of initial repetitions and found that 10 repetitions increased the 

stability such that the same network were found for each run [33]. Here we therefore again repeated 

the analysis 10 times and chose the solution with the lowest final cost function (i.e., highest likelihood 

(L)).   

Assigning components to RSN: 

 We assigned a RSN label to each component from ICA and MSAA by using the 7-RSN parcellation 

presented in Yeo et al. [44] . We used the same approach as in previous studies[49-51], such that a 

decomposition component was assigned to one of the 7 RSNs if its absolute mean spatial correlation 

(over participants) was > 0.2. In this way each component of the decomposition methods represents 

a sub-part of one of the Yeo networks and thus they mostly include connectivity information from 

within a single RSN, and less information about between RSN connectivity compared to the 

parcellation based analysis. E.g.  the first two components for both ICA and MSAA both represent 

different parts of the visual cortex, as illustrated in Figure 3 and Supplementary Figure 1. The exact 

correlation values can be found in Supplementary Table 1. Decomposition components that had a 

correlation < 0.2% were regarded noise and hence not included in further analyses. Visual inspection 

of the discarded networks confirmed that these networks mainly included activation in non-neuronal 

tissue (e.g., in ventricles) or cerebellum which was outside the field of view for several sites, and 

therefore not included in this study.  For both ICA and MSAA, 14 RSNs were found. We matched and 

compared the similarity between the RSNs extracted by each method, by using the absolute mean 

spatial correlation (over participants). The components were assigned the same name across methods 

if their spatial correlation exceeded 50% (which was the case for 11/14 networks).  



2.4 Transfer learning  
Since decomposition methods determine the brain networks which best explain the data, there is no 

guarantee that the same networks are found across datasets. However, this is essential to assess the 

generalizability of a prediction model on a new independent dataset. This is particularly challenging if 

the two datasets are very different either due to differences in the populations (e.g., different clinical 

(sub) populations, demographics etc.) or due to measurement differences (e.g., scanner type, 

protocol, experimental procedures etc.). In these cases, brain networks that were well-suited in the 

first dataset, might fail to identify features that are important in the other dataset, which in turn will 

hamper the generalizability of the prediction model. We therefore investigated three different ways 

to translate RSNs found in the discovery dataset (D1) to the independent dataset (D2). As in previous 

publications, we refer to these as “transfer learning approaches” to indicate that information from 

one decomposition is transferred to the next [52]. For all approaches, we used the same number of 

components as for the D1 dataset.  

In approach 1 (A1) we simply rerun the decomposition analysis on the new dataset D2. The only 

“transfer learning” information is that we used the same number of components and algorithm 

settings as for D1. 

In approach 2 (A2) we rerun the decomposition analysis on the merged dataset (D1+ D2). In this way, 

the decomposition has access to data from all participants, and if D1 >= D2, this is likely to influence 

the decomposition such that the components are more similar to the initial decomposition on D1. In 

practice this is the approach taken in most cross-validated ML prediction studies that employ 

decomposition for feature extraction; however, it may not be desirable since merging the datasets 

mean that the features of the two datasets are then no longer independent. It is important to 

emphasize that the decomposition method is not informed about the prediction label, and thus does 

not bias the prediction performance as such. However, it still violates the assumption of independence 

between datasets, which is of particular importance in our study as our D2 set only contains data from 

independent sites.  

In approach 3 (A3) we directly use the output from the D1 decomposition to make the D2 

decomposition. For ICA this is done by using the same dual regression procedure that was used to 

create subject specific spatial maps for D1. I.e., for each participant in D2, we again use dual regression 

with the D1 ICA decomposition map S. For MSAA, this was done by keeping the common seed 

generator matrix C from the D1 decomposition fixed for the D2 decomposition, and then allow the 

algorithm to make a few iterations until convergence, to optimize the subject specific spatial maps (S) 

and heteroscedastic noise estimations (σi,v) according to the new dataset.  

 



To our knowledge, this is the first time that this transfer learning was applied to a MSAA 

decomposition. In principle A3 is the most straight forward option and ensures a direct matching 

between the components of the two datasets.  However, if the datasets are different, components 

obtained with this approach will not adequately capture the information in the new dataset, which 

can lead to poor generalizability performance, simply because the extracted features are poorly 

defined.  

A key challenge for A1 and A2 is that there is no guarantee that the same brain networks will be found 

(particularly if the datasets are different as described in the top section) and in these cases, it is difficult 

to match networks between the two datasets. We used a Procrustes alignment to match components 

between the datasets as done in earlier studies [33, 52], and confirmed all matches with visual 

inspection. In Supplementary table 2, we have listed the matching and correlations for each network, 

and visually shown all components that had a correlation below < 70% in Supplementary figure 2.  

2.5 Diagnosis classification 
For the diagnosis classification we use soft margin support vector classification (SVC), which has been 

applied in more than 50% of earlier neuroimaging classification studies in psychiatry [53, 54]. The SVC 

identifies a separating hyperplane that maximizes the margin (difference between the groups), this 

hyperplane is only defined by the support vectors which are datapoints from participants that are on 

the margin. The soft margin SVC allows misclassification to lower the risk of overfitting by introducing 

slack variables for each misclassified participant.  We implemented SVC using the libSVM 

implementation in scikit-learn v. 1.0.2 in Python v. 3.9.10 [55, 56], using a linear kernel with C = 1 and 

balanced class weights. To ease computational costs, we precomputed all kernel evaluations. As 

performance measure we chose the area under the ROC curve (AUC), which is reasonably robust to 

label imbalance as exhibited in the current dataset. We trained the model on dataset D1 using 10-fold 

cross validation (CV) and estimated the classification certainty (i.e., how often the same label was 

predicted) when repeating the procedure 100 times with different data splits. For the ROI analysis and 

single RSN decomposition classification, the final diagnosis label was assigned based on the mean of 

the 100 repetitions (SZ if mean SVM prediction was > 0.5), for the decomposition ensemble classifier 

(more details below) we used the certainty estimate as weights in the soft voting. Finally, we tested 

the generalizability by applying the model on the dataset D2, which consisted of data from two 

independent sites.   

For the ROI-based classification our main analysis used the whole connectivity matrix as the input 

feature, which measures how well the model classifies when using connectivity between all ROI pairs, 

as done in most previous studies. 

Furthermore, we performed the following post-hoc analysis to investigate the importance of different 

parts of the connectivity matrix. First, we ran the classification using only “within RSN” connectivity, 



i.e., connectivity between ROIs that all are within the same RSN. Secondly, we ran the classification 

only using “between RSN”, i.e., keeping connectivity values between ROIs from different RSNs (e.g., 

between ROIs from DMN and FPN). And finally, we repeated the three analyses above (either keeping 

all, within or between RSN connectivity) for each individual RSN. In this way, we can evaluate the 

importance of each individual RSN.  We preferred this approach over interpreting the classification 

weights, because interpretation of single weights are susceptible to misinterpretation[27, 57]. 

For the decomposition analysis (ICA and MSAA) we performed the following predictions:   

• Classification on each individual RSN where we used the spatial map of each RSN as the input 

for the SVM classifier (14 separate classifications for both ICA and MSAA) 

• Classification using all RSNs, using an ensemble decision across RSNs with a soft voting 

decision scheme. Here we used the certainty estimate of the 100 repetitions to weight each 

RSN, i.e., RSNs with a higher certainty    

Classification performance on the validation dataset D2 was estimated on each of the three transfer 

learning approaches described in section 2.4, and for the ensemble decision the certainty weights 

from the training dataset were used.  

Statistical significance was assessed using random permutation testing to obtain an empirical null 

distribution of the performance measure (AUC)[8, 58] . This was done by creating 1000 random 

permutations of the diagnosis label for each classification procedure (including all CV steps). For the 

classifications on individual RSNs from the decomposition methods, we corrected for multiple 

comparisons using maximum permutation statistics, i.e., we created an empirical null distribution by 

considering only the most significant effect over the entire set. This controls the family-wise error over 

the set.  

2.6 Prediction of PANSS scores 
Predictive assessment of the PANSS scores were performed using a Gaussian process regression (GPR) 

model utilizing a radial basis function kernel with automatic estimation of length scale and variance 

parameters via maximum likelihood estimation. GPR is a nonparametric, Bayesian approach to 

regression-based modelling, where the model infers a probability distribution over all possible values 

rather than attempting to predict an exact output.  We chose to use GPR instead of linear support 

vector regression (SVR) (which previous studies have used [35-37]) since the PANSS scale (both total 

and subitems) is an ordinal scale, and because the GPR has some analytical advantages compared to 

SVR. Firstly, the GPR model allows hyperparameter estimation directly via the training likelihood, such 

that explicit hyperparameter tuning via cross validation is not needed. Secondly, instead of assigning 

an exact estimate of the PANSS score, it returns a probability distribution. In this way, the GPR returns 

a predicted PANSS score (mean) and a certainty estimate (standard deviation), which is a measure of 



how confident the model is about its predictions. This can be extremely helpful when having to choose 

between different models, since it allows weighting more certain models higher. 

To measure the prediction performance, we calculated the correlation between the predicted and 

observed PANSS scores. Since the PANSS scale is a summation of categorical subitems (and thus not a 

continuous measure), we used the Spearman’ s rank coefficient of correlations (Rho), which is a 

nonparametric measure of correlation utilizing ranks [59], and has less sensitivity to outliers (patients 

with very high/low PANSS scores). Furthermore, we also calculated the Pearson’s correlation 

coefficient I, since this has been used in most of the earlier PANSS prediction studies[35-37], and 

therefore enables us to compare the performance to other studies.  

For the parcellation based prediction, we performed one main analysis which included features from 

the whole connectivity matrix. For decomposition methods, we performed two analysis steps i) PANSS 

prediction on each individual RSN (as for the diagnosis classification) and ii) ensemble decision across 

all RSNs by comprising the probability functions for all individual RSNs as illustrated in Figure 2.  

Our main goal was to predict the total PANSS score, which measure the overall symptom severity, the 

results of these findings will be discussed in section 3.4. Then we repeated the prediction using the 

three sub-subscales PANSS positive, negative, and generalized (discussed in section 3.5).   

We implemented GPR using scikit-learn v. 1.0.2 in python v. 3.9.10, using a radial basis function kernel. 

On the discovery dataset, we initially made a short model comparison for the PANSS total prediction, 

where we tested different ML methods (both linear regressions, SVR and GPR) and kernels (linear, 

radial basis function and Matérn with smoothness parameters 𝜈 = 1.5) using dataset D1 and 

parcellation features. We found that most models performed similarly, results can be found in 

Supplementary Table 4. We continued to use GPR for the remaining analysis due to advantages 

described above.  

As for the diagnosis classifications, the PANSS prediction models are trained on a multi-site dataset 

D1a and the generalizability is tested on data from an independent site, D2a. For the decomposition 

RSNs, we only tested the generalizability of RSNs that predicted significantly on dataset D1a. Overall 

the split between the datasets is the same as for the classifications; however, since we here only 

include patients with SZ, the datasets are smaller. The demographics are listed in Table 1.   

For statistical inference we used the same permutation approach (with 1000 random permutations) 

as described in section 2.5. We accounted for multiple comparisons using maximum permutation 

statistics, i.e., only considering the most significant effect over the set of RSNs for each decomposition 

method.  



 

Figure 2: Ensemble prediction of GPR for decomposition methods. The ensemble prediction model for the PANSS prediction 
is built using the GPR outputs for all the individual RSNs.  For each patient and RSN, the GPR outputs a probability density 

function which gives the predicted PANSS score (mean, µ) and certainty estimate (standard deviation, ). To make an 
ensemble decision, we summed and normalized the probability functions of each RSN forming a Mixture of Gaussians (MOG) 
posterior distribution, and then fitted a Gaussian approximation to the resulting distribution to quantify the ensemble 
estimate and the associated uncertainty.  The ensemble prediction for that patient is then given by the mean (predicted 
PANSS) and standard deviation (certainty estimate) for the Gaussian approximation. 

Results 
The results of our study are presented in the following five sections; 3.1: RSN extraction using 

decomposition methods, 3.2: classification of diagnosis, 3.3: transfer learning across datasets (for 

decomposition method), 3.4: prediction of symptom severity (PANSS total score), and 3.5: prediction 

of the PANSS subscales (positive, negative, and generalized).  

3.1 RSN extraction using decomposition methods  
ICA and MSAA both found 14 RSNs according to the 7-network parcellation presented in Yeo et al. 

[44]. The majority (11/14) of these networks were very similar between the two methods, and overall, 

we found that the MSAA RSNs were more distinctively expressed, as seen In Figure 3. This is 

particularly clear for the vATT network, which for MSAA includes strong bilateral expression in the 

frontal gyrus (inferior, medial, and superior), insula, superior temporal gyrus and inferior parietal 

lobule, whereas the vATT network for ICA included the same regions but to a lower extend. A more 

detailed visualization with several views for each RSN can be found in Supplementary Figure 1.  



 

Figure 3: Visualization of resting state networks (RSN) from ICA (top) and MSAA (bottom). Decomposition components 
were categorized as RSN if their mean (over participants) correlation was > 0.2 to the RSN presented in the 7-network 
parcellation in Yeo et al [44] . For both ICA and MSAA, 14 RSN were found and networks where z-scored for further analysis. 
For visualization the ICA RSNs were cut off at |Z| > 1, and for MSAA networks include voxels with >10% fractional 
contribution. Vis: Visual, SoMo: Somatomotor, dATT: dorsal attention, vATT: ventral attention (also referred to as salience 
network), FPN: frontoparietal network, DMN: default mode network.  

Transfer learning between datasets  
Using the three transfer learning approaches (A1-A3 as described in section 2.4), we found that the 

RSN were stable with a mean (over participants and RSNs) spatial correlation of 96% for ICA and 98% 

for MSAA when using transfer learning approach A3. The mean stability for A1 and A2 were generally 

~10% higher for MSAA (87% for both A1 and A2) than ICA (A1 = 73% and A2 = 79%). The mean stability 

for individual RSNs can be found in Supplementary Table 2. We performed a visual comparison of all 

networks that had a stability below 70% (Supplementary Figure 2), and found that even for these, the 

majority of larger brain regions included in each network were the same across the transfer learning 

approaches. High spatial correlations were also obtained for transfer learning approach A1 and A2, 

which showed that the extracted RSNs were also here relatively stable across datasets, but that signal 

strength and precise locations varied somewhat between datasets.  

 

3.2 Classification of diagnosis label   
For both the parcellation and decomposition analyses (ensemble classifiers, which included a soft 

voting scheme of all RSNs), we found a high classification performance with an AUC > 0.89 (p<0.001) 

on the discovery dataset D1, which generalized well to the independent validation set D2 with an AUC 

> 0.81 (p< 0.001). Overall classification performances were similar for all three methods, but the 

parcellation based features had the highest AUC, particularly on the validation dataset D2 as shown 



in table 2 and Figure 4. For the decomposition methods, we found that transfer learning approach A3 

yielded the best performance on the independent test dataset (AUCICA, D2 = 0.86 and AUCMSAA, D2 = 0.84). 

This shows that this transfer learning approach was superior both regarding the spatial stability of the 

components (as described in section 3.1) and classification performance. 

AUC Discovery data 
set (D1) 

Independent test set (D2) 

Parcellation connectivity  0.91 0.91 
Decomposition:  A1 A2 A3 

ICA ensemble 0.90 0.84 0.81 0.86 

MSAA ensemble 0.89 0.81 0.83 0.84 
Table 2: Diagnosis classification performance of parcellation and ensemble decomposition features. ROC AUC for the 
parcellation based (ROI) analysis and ensemble classifiers (soft voting) for the decomposition methods.  AUC listed for the 
discovery dataset D1 (using 10-fold CV) and on the validation test set D2 (data from two independent sites). For the 
decomposition methods, the performance on D2 is listed using all three transfer learning approaches, A1, A2 and A3. 
Performance of the individual RSNs can be found in supplementary table 3.   

 

Figure 4: ROC curve for diagnosis classification. ROC curve for the D1 (left) and D2 (right) datasets, using features from 
parcellation based connectivity analysis (blue), ICA (red) and MSAA (purple).  For the D2 data, only the ROC curve for transfer 
learning approach A3 is shown. Performance of the other transfer learning approaches can be found in Table 3 and 
Supplementary Table 1.  

Post-hoc analysis for parcellation based connectivity analysis 
We performed a post-hoc analysis to determine the separate importance of the different RSNs as 

well as the contributions of within and between RSN connectivity values.  As shown in Figure 5, we 

found that the highest performances were obtained when using the whole connectome or the 

between RSN connectivity (AUC > 0.80 for all RSNs), while classifications that only used within RSN 

connectivity values obtained substantially lower performance (AUC: 0.56-0.86).  Furthermore, the 

highest classification was obtained when using information from all RSNs (“ROI” columns to the left 

in Panel D and Panel E for Figure 5). For the individual RSNs, the highest classification performance 

was obtained with ROIs from the limbic RSN which yielded high classification performance (between 

RSN > 0.90, within RSN > 0.79) for both the discovery and validation test set. The other six RSNs also 



obtained high and significant performance for the between RNS connectivity (> 0.80 on both 

datasets) while the within RSN connectivity values were somewhat lower, yet significant for most 

networks (0.56-0.82). A similar pattern (between RSN connectivity > within RSN connectivity and not 

much difference between RSNs) was also found when looking at the individual RSN contributions on 

the weight vectors (Supplementary Figure 3), which were transformed to forward inference for 

easier interpretation using the approach suggested by Haufe et al [26]. Finally, to see the 

directionality of these connectivity changes, we have shown the difference map between patients 

with SZ and healthy controls in Supplementary Figure 4. Here we found that patients with SZ have 

hypoconnectivity within the RSNs, whereas the between RSN connectivity is more mixed, including 

both hyper and hypoconnectivity.  

 

Figure 5: Post-hoc parcellation based analysis Panel A) visualization of the average (across participants) functional 
connectivity (FC) matrix for all ROIs, sorted according to the Yeo 7-network parcellation (Panel C). Panel B) visualization of 
Somatomotor RSN, where RSNw refers within RSN connectivity for that RSN (grey) and RSNB refers to the between network 
connectivity (black). RSNAll refers to all connectivity for the given network (white). The classification performance for each 
RSN is shown for the discovery (panel D) and independent test (panel E) dataset. Supplementary Figure 5 shown the Yeo 7-
network parcellation in more details and views.  

Classification on individual RSN for decomposition methods 
When focusing on the classification of the individual RSNs, we see a similar trend as for the parcellation 

based post-hoc analysis. All networks resulted in significant classifications on the discovery dataset D1 

(AUCICA,D1 = [0.65-0.81], AUCMSAA,D1 = [0.67-0.81]), and most were also significant on the validation 

dataset D2 (AUCICA,D2 = [0.55-0.79], AUCMSAA,D2 = [0.53-0.79]) when using transfer learning approach 

A3. The performances of all RSNs, datasets and transfer learning approaches are listed in 



Supplementary Table 3.  RSN within the somatomotor, visual, and dorsal attention network were 

consistently among the top three highest classifying networks for both ICA and MSAA on the discovery 

dataset. Furthermore, they obtained significant (yet not the best prediction performances compared 

to other RSNs) when tested on the independent test dataset.   

3.4 Prediction of the PANSS total score  
In this section we show the results from the total PANSS score (PANSStotal) which is a measure of the 

symptom severity. Figure 6 shows the performance for the parcellation based analysis (of all ROIs) and 

ensemble models for the decomposition methods.  We found that the PANSStotal prediction 

performance on the discovery dataset D1 was significant with moderate correlation (Rho > 0.3, r > 

0.36, p < 0.001). However, when inspecting at the scatter plots in Figure 6, we see that even though 

the correlations between the observed and predicted PANSS score are significant, the predicted 

PANSS mostly reflect a trend around the mean (mean PANSSD1a = 62). This is also confirmed when 

looking at the predictions on the independent test dataset D2, where only the ICA features obtained 

significant classification, and even here the performance was modest (Rho = 0.27, r = 0.28, p = 0.01).  

 

Figure 6: PANSS total prediction of ROI and ensemble models for decomposition. PANSS total prediction on the discovery 
dataset (D1a, top) and independent test set (D2a, bottom), using features from the parcellation analysis (blue, left), ICA (red, 
middle) and MSAA (purple, left).  The primary prediction performance was Spearman’s rank coefficient of correlation (Rho) 
and furthermore we also listed the Pearson’s correlation coefficient (r), since this is mostly used in earlier studies. The scatter 
plots show the predicted PANSS (y-axis) as a function of the observed PANSS (x-axis), where the line shows the linear 
regression, and the shaded area indicates the standard error of the mean.  

Predictions on individual RSNs  
We did not find any RSN that obtained significant prediction on both datasets after correction for 

multiple comparisons. As shown in Supplementary Table 6,  nine RSNs provided significant 

predictions on D1a but not on D2a. When comparing the performance of the two decomposition 

methods, both ICA and MSAA found that the highest test prediction performance for the ventral 

attention (vATT) RSN networks. For this RSN both methods found a low to moderate performance 



(RhoICA = 0.27 and RhoMSAA = 0.33, p< 0.05) on the discovery dataset, while the performance on the 

test dataset only showed a low (not significant after multiple comparisons correction) correlation 

(RhoICA = 0.22 ,  RhoMSAA = 0.12, puncorrected < 0.1). Visual inspection of the scatter plots of these 

predictions (Figure 7), show the same pattern as for the ensemble decision models, where all 

predictions are close to the mean PANSS score. 

 

Figure 7: PANSS total prediction ventral attention (vATT) RSN for ICA and MSAA. Scatter plots of the vATT RSN, which 
obtained the highest prediction performance for both ICA (top, red) and MSAA (bottom, purple). Overall, the two vATT 
networks include similar brain regions, but the MSAA vATT network has stronger expressions in the bilateral frontal gyrus 
(inferior, medial, and superior), insula and superior temporal gyrus.  The prediction performance on the discovery dataset 
D1a (middle) and test dataset D2a (right) are both listed with the Spearman’s rank correlation coefficient (Rho) and Pearson’s 
correlation coefficient (r). The shaded area of the linear regression line shows the standard error of the mean.  Prediction 
performances of all RSNs that obtained significant prediction on D1a, can be found in Supplementary Table 6.  

3.5 Prediction of PANSS subscales 
In an attempt to disentangle the internal heterogeneity of schizophrenia, we also predicted the three 

PANSS subscales. For the parcellation-based features and ensemble decision of the decomposition 

methods, we found that the predictions were overall significant on the discovery dataset (apart from 

PANSSpositive with ICA and MSAA features as listed in Table 3). However, as for the PANSStotal 

predictions, the performance scores were low to moderate (Rho = [0.21-0.34]) and resembled a linear 

trend around the mean PANSS score. For the ICA model significant prediction was obtained for both 

the discovery and the test dataset for the generalized dimension (Table 3 and Figure 8), however with 

relatively low performances.  

  



 

PANSS subscale  Positive Negative Generalized 

D1a D2a D1a D2a D1a D2a 

rho p rho p rho p rho p rho p rho p 

Parcellation based  0.21 0.01 0.07 0.34 0.29 0.01 -0.03 0.53 0.25 0.01 0.07 0.48 

ICA 0.18 0.15 0.31 0.01 0.28 0.01 0.07 0.27 0.20 0.03 0.24 0.04 

MSAA 0.09 0.35 0.07 0.19 0.34 0.01 -0.10 0.93 0.27 0.02 0.16 0.28 

Table 3: Prediction performance on three PANSS subscales using ROI and ensemble prediction models.  Prediction 
performance for the three models that include information from all RSN (ROI and ensemble model for the decomposition 
methods ICA and MSAA).  Significance assessed using random permutation statistics with multiple comparison correction 
over the three subscales. r = Pearson’s correlation coefficient, D1a: SZ patients of discovery dataset, D2a: SZ patients of 
validation dataset.  

As for the ensemble predictions, several individual RSN obtained significant classification on D1a, but 

the performances were low to moderate, and none of the predictions were significant when tested 

on the validation dataset (Supplementary table 8 and 9). In Panel B of Figure 8, we show the prediction 

result for the RSN (ventral attention (vATT A) from ICA) which obtained the highest performance on 

both datasets, however, the predictions provided by this RSN were not significant after multiple 

comparison correction.   

 

Figure 8 PANSS subscale predictions.  Panel A) shows the ICA ensemble decision model which obtained significant prediction 
performance on the generalized dimension. Panel B) shows the PANSS positive prediction for the ventral attention (vATT A) 
RSN. This RSN from the ICA decomposition was the only RSN that obtained significant (uncorrected for multiple comparisons) 
classification on both the discovery (D1a) and test (D2a) dataset. No RSNs obtain significant classification of the other 
dimensions. 

  



Discussion and future perspectives  
In this section we will discuss our main findings as well as limitations and opportunities for future 

studies.  

4.1 Decomposition methods for feature extraction across datasets 
Data-driven feature extraction methods, such as ICA and MSAA, extract brain features (networks or 

regions) that are characteristic for the given dataset, which can both be an advantage as well as 

represent challenges. On the one hand, the features extracted with these methods represent strong 

trends for the specific datasets, and the networks can be more sensitive compared to parcellation 

based approaches, where the atlas does not necessarily fit the brain of the participant very well [60]. 

On the contrary, it also means that the extracted features can be overfitted to the specific dataset. 

This can lead to lower generalizability, and there is no guarantee that the same networks are found 

again when rerunning the analysis on another dataset1. To investigate these challenges, we compared 

three different transfer learning approaches which bridged networks from our discovery dataset (D1) 

and test dataset (D2). In summary these included, A1) rerun analysis on the new dataset (D2), A2) 

rerun analysis on the pooled dataset (D1 + D2) and  A3) directly use the decomposition from D1 to 

construct the features of D2.  

First of all, on the discovery dataset we found that both ICA and MSAA found 14 RSNs according to 

the 7-network parcellation presented in Yeo et al. [44]. Most of the networks were very similar 

between the two methods, and overall, the activation was more strongly expressed for MSAA 

networks as shown in Figure 3. From the investigation of network stability across datasets, we found 

that the highest spatial stability was obtained with transfer learning approach A3, where both 

decomposition methods extract similar RSNs that are stable (> 90%) across datasets.  For both A1 and 

A2, we also found a high mean stability across networks, which were generally ~10% higher for MSAA 

compared to ICA. This showed that the RSNs were stable across datasets, but that signal strength and 

precise activations varied somewhat between sites.  Furthermore, for A1 and A2 it was a challenge 

that there was no direct coupling of the RSNs between the datasets, and there was no guarantee that 

the same networks were found (as described in section 3.1 and supplementary Figure 2).  

Overall, we found that both decomposition methods extracted stable and similar RSNs on the multi-

site data, which were consistent with what has previously been presented in other single site studies. 

RSN extracted with MSAA were more distinctively expressed and obtained somewhat higher stability 

across datasets than ICA.  For both ICA and MSAA, transfer learning approach A3 provided the most 

stable networks across datasets. Furthermore, since this method also enables a direct matching of 

 

1 This is even the case when repeating the analysis on the same dataset, due to the non-convexity of the 
optimization problems. This and the mitigation strategy are further elaborated in section 2.3. 



components and a reduced computational complexity, we believe that this transfer learning approach 

is very promising.  

4.2 Diagnosis classification  
For our prediction analysis, we started with a diagnosis classification since this enables us to compare 

the utility of our multi-site prediction framework including the use of decomposition methods for 

feature extraction with previous literature (which have mostly focused on diagnosis classification [5]).  

We found that high and significant classification performance was obtained when using both the 

features from the parcellation based connectivity analysis and the decomposition method (AUCD1 > 

0.89) with similar performances as for earlier single-site classification studies [7, 54]. The best 

performances were obtained when using information from all RNS (whole connectivity matrix for 

parcellation based connectivity analysis and ensemble decision for decomposition methods), and 

these findings also generalized to the validation test dataset (D2).  Overall, the performances were 

similar, but the classifications using the parcellation based features had the highest AUC, particularly 

on the test dataset D2 as shown in table 2 and Figure 4.   

From the performances of individual RSNs, we still found significant classification with most networks, 

but we did find any “single best” RSN with substantially higher performance than the remaining 

networks. This was the case for both the classifications of the individual RSNs from the decomposition 

methods, and for the post-hoc analysis of the parcellation based connectivity analysis.  Furthermore, 

our post-hoc analysis showed that between RSN connectivity features were of great importance, 

which could be a potential explanation for why the parcellation based connectivity features obtained 

higher performances that the ensemble decomposition methods (particularly on the test dataset D2), 

as the decomposition methods mainly included information about within RSN connectivity changes.  

Taken together, these findings show that the best performances were obtained when using 

information from all RSNs, which is in accordance with earlier studies that have shown that patients 

with schizophrenia have affected connectivity changes in a large part of the connectome [14, 16].  

However, as described in the introduction, the usefulness of diagnostic biomarkers in SZ have been 

challenged, since it could be argued that they have limited clinical utility  [4, 25]. Instead, it has been 

suggested that it might be more fruitful to use fMRI to search for more biologically homogeneous 

subgroups  [4, 61], which is why the second part of our prediction analysis was centered on predicting 

the PANSS scores of the patients. 

4.2 PANSS predictions 
In the PANSS predictions we used the same brain features as for the classification analysis, but we 

now used regression-based prediction to predict the total symptom severity (PANSStotal) and three 

PANSS subscales (positive, negative, and generalized), to address the internal heterogeneity of 

schizophrenia.  



For both the PANSStotal and subscale predictions, the performances were low to moderate, even for 

the discovery dataset, where the predictions resembled a positive trend around the mean PANSS 

score, and overall, the findings did not reproduce on the test dataset. For the decomposition method 

we found that the ensemble models had a better performance than the predictions of the individual 

RSNs, just as for the classification analysis. For the parcellation based connectivity analysis we opted 

against performing a post-hoc analysis since the predictions on the whole connectivity matrix were 

already limited and did not reproduce to the validation test set D2a.   

For the individual RSN prediction of the  PANSStotal scores we found nine RSNs that predicted 

significantly on D1a but not on D2a, which highlights the importance of validating prediction models 

in an independent test dataset, to see if a prediction model, and thereby potential biomarker is 

reproducible to data from independent sites [23].   

Furthermore, for both the PANSStotal and PANSS subscale predictions, we found that it were not the 

RSNs that obtained highest performances on D1a, which obtained the best performances on the test 

dataset D2a. For example, for the PANSStotal prediction, one of the ICA networks (DMN B) obtained the 

highest prediction performance on D1a (Rho = 0.34, =0.01) but a low performance on D2a (Rho = 0.12, 

puncorrected = 0.12). On the contrary, the ventral attention network (vATT A) had a significant, but lower 

performance D1a (Rho = 0.27, p=0.05) but still showed a similar correlation on D2a (Rho = 0.22, 

puncorrected = 0.04). This supports the “multiple comparison paradox” that was recently described in 

Marek et al. [62], where they found that correcting for multiple comparisons reduced the probability 

of successfully replicating univariate brain-wide association studies (BWAS).  More specifically, they 

found that using a stringent statistical threshold (thereby selecting most strong BWAS effects), 

reduces the false positive rates, but increases the false negative rates and thereby lowers the 

statistical power. In underpowered studies, these strict statistical thresholds enforce detection of very 

large correlations, which are the most likely to be inflated due to sampling variability [62].  

This poor generalizability of the predictions indicates that the study might have been underpowered  

[62] or that differences between sites were too large compared to the signal of interest (this is further 

discussed in section 4.4).  Another explanation could be the internal consistency of the PANSS 

subscales itself, where items within a subscale have shown modest internal consistency [63], while 

scores tend to be correlated across subscales [64]. If the individual items of the PANSS scale had been 

available, it would have been interesting to see if those individual PANSS item predictions would be 

higher and more stable across datasets. Finally, in the light of our results, we also consider that our 

applied method (supervised machine learning) or even the imaging modality itself (connectivity in 

rsfMRI), might not be the right path forward to find robust biomarkers for symptom severity in 



schizophrenia. In the following section we will therefore discuss the limitations of our work, and our 

suggestion for future studies.  

4.4 Limitations and suggestions for future studies 
There are several limitations of our work, which we would here like to discuss together with our 

recommendations for future studies.  

First of all, even though we used a multi-site rsfMRI dataset, the number of schizophrenia patients 

was still not very high. For the classification analysis, we found that the sample size was sufficient to 

enable high and significant classification, which was reproducible across datasets. However, this was 

not found for PANSS prediction analysis. Regardless of the datatype, a more complex machine learning 

model requires more data to train a robust model. However, in our study we had much fewer 

participants for the PANNS regression analysis, since we here had to exclude data from healthy 

controls and patients that did not have a PANSS score available. This reduced the sample size to 136 

for the discovery and 44 on the test dataset. Furthermore, since these patients came from five 

different sites, we only had 19-55 patients with schizophrenia from each site (specific numbers for 

each site listed in supplementary table 10). Multi-site data will typically introduce both measurement 

and sampling bias into the data, if the sample size if sufficient, this can be an advantage as the final 

model will then be more robust to between-site differences[6, 9, 65]. However, with the relatively low 

sample sizes from each site, these biases can also introduce too much variability to enable meaningful 

prediction, particularly if the site differences are correlated with the outcome measures[66, 67].  We 

therefore believe that a study with a larger schizophrenia sample size, and more patient from each 

site are needed in future studies to make firm conclusions on the ability of the applied methods for 

clinically meaningful and reliable PANSS predictions.  

In future studies, we also suggest to investigate if multi-site variability reduction methods, with[67, 

68] or without [69] travelling subject, can help to get better prediction by removing “measurement 

bias” from the data. Whereas some earlier studies have shown that between-site measurement bias 

can be implicitly handled by the machine learning model when sufficient data is included [65], multi-

site variability reduction might be useful, and potentially even needed if it is not possible to obtain a 

large enough sample.  

Another challenge of our study was the limited information about confounding factors for most of our 

participants, such as lifestyle specifications and treatment history. As for the between site biases 

described above, it can be an advantage not to remove confounding factors (either by removing 

observations or regressing factor out) but to let the model learn from the non-disease related 

heterogeneity to get a more generalizable outcome[9], which is in line with a general trend in machine 



learning towards “more learning, less cleaning”[70].  However, since some of these factors have 

systematic differences between groups (such as lifestyle differences in smoking[71]), we would have 

preferred to have more information about confounding factors available to determine to what degree 

they influence our results. Similarly, for the PANSS prediction results, where we had a smaller dataset, 

it would have been interesting to investigate how factors such as disease duration, treatment history 

or clinical state of patients at the time of the evaluation would affect our results.   

In consistency with most earlier studies, we used supervised machine learning to perform our 

predictions, but recently many studies also started to investigate the use of deep learning methods 

for neuroimaging predictions. In a recent review from Sadeghi et al, they summarize the increasing 

number of deep learning methods used for diagnosis classification in schizophrenia, and it will be 

interesting to see if these methods can obtain better prediction of PANSS scores or other symptom 

domains. Another opportunity would be to use unsupervised machine learning methods to search for 

subgroups with a more homogenous biology without the use of any “labelling” such as diagnosis or 

PANSS scores. Whereas earlier subtyping studies in schizophrenia have had some challenges from a 

methodological point of view [72], they have shown the important potential of using unsupervised 

subtyping in schizophrenia [73, 74]. Given the recent advancements in clustering methods that are 

specifically developed for high dimensional data such as rsfMRI[72, 75, 76], we believe that this is a 

promising avenue for future studies, with high potential clinical utility.  

Finally, we also see a great potential for multi-modal studies, which combine different kinds of data, 

such as rsfMRI with structural imaging for their prediction analysis. Since all imaging modalities have 

different advantages and challenges, multi-modal methods carry a great potential to combine “the 

best of two worlds” if they can be implemented appropriately.  For example, earlier studies have 

shown promising results when combining multimodal fusion of MRI data for PANSS prediction, where 

they obtained a high prediction performance (r > 0.7 on PANSS positive and negative) [77] .  

Conclusion 
In this work, we used one of the largest available multi-site rsfMRI datasets in schizophrenia and 

applied machine learning for both data-driven feature extraction (using the two decomposition 

methods ICA and MSAA) and prediction of the diagnosis labels and PANSS symptom scores. Comparing 

ICA and MSAA, we found that both methods extract similar RSNs which were stable across the two 

datasets. Using these RSNs and features from a parcellation based analysis, we demonstrated that 

classification models trained on multi-site fMRI data could significantly classify patients with 

schizophrenia from healthy controls with a high performance, and which reproduced on the 

independent test dataset.  As in earlier studies we did not find any “single best” RSN that drove this 



classification, but rather that changes within and between most RSNs were important for robust 

classification.  When using the same features to predict the symptom severity and the three PANSS 

subscales, we did not find any clinically relevant predictions, since even the performances on the 

discovery dataset were low to moderate, and the models generally did not generalize to the 

independent test data.  

We see our work as an important step towards building robust pipelines that combine multi-site 

rsfMRI data with machine learning method, and we hope that the data sharing initiatives will continue 

and expand, as we believe that even more multi-site data from patients, including information about 

confounding factors, are needed to make firm conclusion on the biomarker potential using these 

methods.  
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Supplementary material 
 

In the following we have added additional figure and tables that were not included in the main 

manuscript.  
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Supplementary Figure 1:  Detailed view of all RSNs 
 

 

  

Supplementary Figure 1: Visualization of Resting state network (RSN) extracted with independent 
component analysis (ICA) and multi subject archetypal analysis (MSAA). For each, 14 RSN were 
found.  Vis: Visual, SenMo: Somatomotor, dATT: dorsal attention, vATT: ventral attention (also 
referred to as salience network), Lim: limbic, FPN: fronto parietal network, DMN: default mode 
network, corresponding to the Yeo 7-network parcellation. Components were assigned to a network 
if their mean correlation was above 0.2. The RSNs were mapped on the cortical surface by using the 
BrainNet Viewer package (http://www.nitrc.org/projects/bnv). 



Supplementary Table 1: RSN correlation to Yeo 7-network parcellation 

ICA MSAA 
RSN name Correlation RSN name Correlation 

Vis A 0.6 Vis A 0.6 
Vis B 0.6 Vis B 0.5 
SoMo A 0.5 SoMo A 0.6 
SoMo B 0.3 SoMo B 0.4 
dAtt A 0.2 dAtt C 0.5 
dATT B 0.2 dAtt A 0.2 
dATT C 0.4 vAtt A 0.6 
vATT A 0.4 Lim B  0.3 
Lim A 0.2 Lim A 0.3 
FPN A 0.2* FPN B 0.4 
FPN B 0.3 FPN A 0.4 
DMN A 0.5 DMN A 0.5 
DMN B 0.3 DMN B 0.4 
DMN C  0.4 DMN D 0.3 
Mean  0.42 Mean  0.38 

 

  
Supplementary table 1: Resting state network (RSN) correlation to Yeo. Mean absolute correlation 

(over participants) of decomposition components to the 7-network parcellation presented in Yeo et 

al [3]. Networks were categorized to a Yeo RSN if their correlation was >0.2. * For this RSN, there 

was a mean correlation > 0.2 for both FPN (0.22) and DMN (0.21). Here the assignment was based 

on the highest correlation, namely FPNS.  For both independent component analysis (ICA) and multi 

subject archetypal analysis (MSAA), 14 RSN were found.  Vis: Visual, SoMo: Somatomotor, dATT: 

dorsal attention, vATT: ventral attention (also referred to as salience network), Lim: limbic, FP: 

fronto parietal, DMN: default mode network.  



Supplementary Table 2: Stability of RSN across transfer learning  

Independent component analysis 
(ICA) 

Multi-subject archetypal analysis 
(MSAA) 

D1 D2 D1 D2 

A1 A2 A3 A1 A2 A3 
Ind RSN Corr Corr Corr Ind RSN Corr Corr Corr 

1 Vis A 0.96 0.97 0.98 1 Vis A 0.97 0.98 0.99 
2 Vis B 0.87 0.95 0.97 2 Vis B 0.85 0.89 0.97 
3 SoMo A 0.72 0.86 0.96 3 SoMo A 0.97 0.98 0.99 
4 SoMo B 0.87 0.80 0.94 4 SoMo B 0.97 0.97 0.98 
5 dAtt A 0.59 0.53 0.95 5 dAtt C 0.52 0.72 0.99 
6 dAtt B 0.58 0.59 0.96 6 dAtt A 0.77 0.92 0.99 
7 dAtt C 0.74 0.67 0.96 7 vAtt A 0.92 0.95 0.98 
8 vAtt A 0.58 0.52 0.96 8 Lim B  0.66 0.87 0.93 
9 Lim A 0.49 0.80 0.94 9 Lim A 0.81 0.91 0.95 

10 FPN A 0.75 0.75 0.97 10 FP B 0.94 0.96 0.98 
11 FPN B 0.93 0.95 0.96 11 FP A 0.96 0.98 0.98 
12 DMN A 0.88 0.93 0.96 12 DMN A 0.97 0.93 0.98 
13 DMN B 0.80 0.87 0.95 13 DMN B 0.87 0.57 0.98 
14 DMN C 0.77 0.91 0.96 14 DMN D 0.97 0.45 0.98 

 Mean  73% 79% 96%   87% 87% 98% 

 

Supplementary Table 2: Stability of transfer learning for decomposition methods.  Absolute mean 

(over participants) correlation between RSN from the Train and Test dataset, when using transfer 

learning approach A1, A2 and A3.  Test RSNs were matched according to highest correlation, while 

keeping a 1:1 matching constraint. RSN with a correlation < 0.75 are marked with bold, and these 

are visualized in Supplementary Figure 2. Vis: Visual, SoMo: Somatomotor, dATT: dorsal attention, 

vATT: ventral attention (also referred to as salience network), Lim: limbic, FPN: fronto parietal 

network, DMN: default mode network.  

 

  



Supplementary Figure 2: Visual QC: Stability of RSN across transfer learning 
 

 

  
Supplementary Figure 2: Stability of transfer learning for decomposition methods.  Visual QC of networks with a 

spatial correlation < 0.75 between the discovery (D1) and validation (D2) dataset, when using transfer learning 

approach A1 and A2 (networks that are listed with bold in Supplementary table 2). For visualization the ICA RSNs 

were cut off at |Z| > 1, and for MSAA networks include voxels with >10% fractional contribution. Vis: Visual, 

SoMo: Somatomotor, dATT: dorsal attention, vATT: ventral attention (also referred to as salience network), FPN: 

frontoparietal network, DMN: default mode network. 



Supplementary Table 3: Classification performance of individual RSNs 
 

ICA 
Train A1 A2 A3 

RSN AUC RSN AUC RSN AUC RSN AUC 
'SoMo A' 0.81 'dATT C' 0.78 'dATT C' 0.74 'dATT C' 0.78 
'vATT A' 0.80 'FP B' 0.71 'SoMo A' 0.69 'FP B' 0.71 
'Lim A' 0.80 'Vis A' 0.68 'FP B' 0.69 'Vis A' 0.68 
'SoMo B' 0.78 'Lim A' 0.68 'Vis A' 0.69 'Lim A' 0.68 
'dATT C' 0.76 'SoMo A' 0.67 'DMN A' 0.66 'SoMo A' 0.67 
'Vis B' 0.76 'DMN A' 0.64 'Lim A' 0.65 'DMN A' 0.64 
'DMN B' 0.74 'FP A' 0.64 'FP A' 0.65 'FP A' 0.64 
'dATT B' 0.73 'Vis B' 0.63 'Vis B' 0.63 'Vis B' 0.63 
'dAtt A' 0.73 'dAtt A' 0.63 'dATT B' 0.62 'dAtt A' 0.63 
'Vis A' 0.73 'SoMo B' 0.61 'vATT A' 0.60 'SoMo B' 0.61 
'FP B' 0.73 'DMN B' 0.60 'DMN C' 0.59 'DMN B' 0.60 
'FP A' 0.72 'DMN C' 0.60 'dAtt A' 0.59 'DMN C' 0.60 
'DMN A' 0.70 'vATT A' 0.59 'DMN B' 0.57 'vATT A' 0.59 
'DMN C' 0.67 'dATT B' 0.53 'SoMo B' 0.56 'dATT B' 0.53 

 

  

MSAA 
Train A1 A2 A3 

RSN AUC RSN AUC RSN AUC RSN AUC 
'SoMo A' 0.81 'SoMo B' 0.79 'SoMo B' 0.78 'SoMo B' 0.79 
'Vis B' 0.79 'Vis B' 0.71 'dAtt C' 0.76 'Vis B' 0.74 
'Lim A' 0.77 'SoMo A' 0.69 'Vis B' 0.76 'FP A' 0.69 
'Lim B' 0.77 'FP A' 0.68 'SoMo A' 0.69 'vATT A' 0.69 
'SoMo B' 0.77 'FP B' 0.65 'FP B' 0.67 'dAtt C' 0.68 
'Vis A' 0.75 'vATT A' 0.65 'FP A' 0.67 'SoMo A' 0.67 
'DMN D' 0.75 'DMN D' 0.64 'vATT A' 0.66 'DMN D' 0.67 
'vATT A' 0.75 'DMN B' 0.62 'Lim A' 0.63 'FP B' 0.65 
'dAtt C' 0.73 'DMN A' 0.61 'DMN A' 0.61 'Lim A' 0.65 
'FP B' 0.71 'Vis A' 0.59 'DMN D' 0.61 'DMN B' 0.62 
'FP A' 0.69 'Lim A' 0.56 'Vis A' 0.58 'DMN A' 0.61 
'DMN A' 0.68 'dATT A' 0.53 'dATT A' 0.58 'Vis A' 0.59 
'DMN B' 0.66 'Lim B' 0.52 'DMN B' 0.52 'dATT A' 0.56 
'dATT A' 0.65 'dAtt C' 0.51 'Lim B' 0.52 'Lim B' 0.55 

Supplementary Table 3. Classification performance (CP) of individual networks. CP measured 

using the ROC AUC for the individual resting state networks (RSN) for both multi-subject 

archetypal analysis (MSAA) and independent component analysis (ICA). AUC listed AUC listed for 

the training dataset (using 10-fold CV) and on the Test dataset (data from two independent sites), 

using all three transfer learning approaches, A1, A2 and A3. Vis: Visual, SoMo: Somatomotor, 

dATT: dorsal attention, vATT: ventral attention (also referred to as salience network), Lim: limbic, 

FP: fronto parietal network , DMN: default mode network. 

Interpretation:  overall all RSN  yield significant classification (accessed using maximum 

permutation statistics with 1000 permutations)  on the training dataset, and most on the Test 

dataset (those not significant marked with grey).  For the Train dataset, both ICA and MSAA found 

the highest CP  was obtained with the SenMo A network, whereas this network was still 

significant on the Test dataset, it was no longer the highest. The best Test CP for ICA is the dATT C 

and for MSAA the SenMo C. Overall there is a high alignment between the order of the CP 

between the transfer learning approaches A1-A3.  



 

Supplementary Figure 3: Weight vector for diagnosis classification with ROI features  
 

 

 

 

  

Supplementary Figure 3: Weigh vector for resting state networks (RSN).  Panel A shows the 

weightmap for the disease classification using the Haufe transform[2]. Significance was accessed 

using 1000 random permutations, i.e. the weightmap we only kept ROI connectivities that had 

significantly higher weight when classifying based on the true, compared to random permutations of 

the disease labels (p<0.05, resulted in 2684 significant weights). For visualization, the absolute 

values of the colormap is shown. Panel B shows the mean Z-score on non-zero weights for each ROI 

RSN.   SenMo: Somatomotor, dATT: dorsal attention, vATT: ventral attention (also referred to as 

salience network), FPN: fronto parietal network, DMN: default mode network. Colors of text 

correspond to colors on panel A.  

Interpretation:  Overall within (yellow) RSN connectivities have higher mean Z-scores than between 

(blue), though there is not much difference. Furthermore, the mean z-score of the RSNs are similar, 

with highest weight for the FP between network connecitivies.  



 

Supplementary Figure 4: Connectome difference between patients with Schizophrenia 

and healthy controls  

 

  Supplementary Figure 4: Connectome for Schizophrenia, Healthy controls and difference map   

FC matrix for patients with schizophrenia (left), healthy controls (middle) and difference map (left) 

between the two groups.  SoMo: Somatomotor, dATT: dorsal attention, vATT: ventral attention (also 

referred to as salience network), FPN: fronto parietal network, DMN: default mode network. Colors 

of text correspond to colors on panel A.  

Interpretation:  The difference maps shows that patients with SZ Have a consistent decreased activity 

along the diagonal, i.e., hypoconnectivity within each RSN, whereas the between RSN connectivity is 

a mixture of both hypo and hyper connectivity.  



 

 

Supplementary Table 4: Prediction performance with different ML models 
 

PANSS total prediction using ROI 
connectivities and different ML 
models  

 

Rho 

Linear regression 0.30 
SVR with linear kernel* 0.30 

GPR with linear kernel 0.31 

GPR with RBF Kernel 0.31 

GPR with Matern kernel 0.31 
 

  Supplementary table 4: Prediction performance of different machine learning (ML) models. Prediction 

performance measured using Pearson's correlation coefficient (r) on dataset D1a.  The aim was to compare 

different models regarding to their stability (from Train to Test) and performance.  All models were 

implemented using Pythons sklearn package[1]. On the Train dataset, 10-fold cross validation (CV) was used 

with 20 random splits. Performance was calculated on the mean predicted PANSS total score across splits.  

Specifications for models:  

- Linear regression (‘LinearRegression’) 
- Linear support vector regression (‘svm.SVR’), kernel range: 10^(-3,3) 
- Gaussian process regression (GRP) (‘GaussianProcessRegressor’) with 3 kernels:  

- Linear: kernel= C(1.0, (1e-3, 1e7)) + DotProduct(100,(1e-3, 1e7))  
- Radial basis function(RBF) : kernel = C(1.0, (1e-3, 1e7)) * RBF(100,(1e-3, 1e7)) 
- Matern: kernel = C(1.0, (1e-3, 1e7)) * Matern(100, (1e-3, 1e7), nu = 1.5)  



Supplementary Table 5: PANSS total prediction performance ROI and ensemble 

decomposition models 
 

Prediction 
performance  

D1a D2a 
rho p r p rho p r p 

To
ta

l  Parcellation 0.30 0.001 0.36 0.001 0.06 0.33 0.09 0.322 
ICA 0.31 0.001 0.39 0.001 0.27 0.01 0.28 0.006 

MSAA* 0.33 0.001 0.38 0.001 0.12 0.10 0.05 0.238 
 

  Supplementary Table5:  Prediction performance of PANSS total: Prediction performance for the 

parcellation based and ensemble decomposition methods. Values also shown in Figure 6 in the main 

manuscript.  Performance measured by Spearman’s rank correlation coefficient (Rho) and  Pearson’s 

correlation coefficient (r) and significance is accessed using 1000 permutations of the PANSS scores.   



Supplementary Table 6: PANSS total prediction of individual RSNs 
 

 
PANSS total of ICA and MSAA  

D1a D2a 

Rho p r P Rho PUC* r PUC* 

ICA 

dAtt A 0.31 0.03 0.30 0.04 0.19 0.08 0.22 0.06 

vAtt A 0.27 0.05 0.33 0.01 0.22 0.04 0.22 0.04 

DMN B 0.34 0.01 0.41 0.00 0.12 0.16 0.13 0.12 

DMN C 0.29 0.05 0.32 0.02 -0.14 0.80 -0.17 0.83 
MSAA 

Vis A 0.29 0.03 0.29 0.03 0.08 0.28 0.13 0.17 

Vis B 0.27 0.04 0.27 0.05 -0.08 0.68 -0.13 0.79 

vAtt A 0.33 0.01 0.32 0.01 0.12 0.16 0.17 0.10 

Lim B  0.33 0.01 0.36 0.00 -0.20 0.89 -0.11 0.70 

FP B 0.27 0.05 0.31 0.01 -0.24 0.90 -0.13 0.76 

FP A 0.27 0.05 0.29 0.03 0.04 0.32 0.08 0.26 

 

  
Supplementary table 6: PANSS total prediction for RSNs that are significant on both datasets. 

Prediction performance measured by Spearman’s rank coefficient of correlation (Rho) and Pearson’s 

correlation coefficient (r) for all RSNs that obtained significant prediction on the discovery dataset 

(D1a). Significance is accessed using 1000 permutations of the PANSS scores.  Both ICA and MSAA 

found the best performance to be for the vATT RSN (marked with bold), which are illustrated in 

Figure 7 of the main paper.  



Supplementary Table 7: Pearson’s correlation coefficient for the subscales  
 

 

 

PANSS prediction of subscales (r) 

Positive Negative Generalized  

D1a D2a D1a D2a D1a D2a 

Parcellation  0.22 0.15 0.38 0.07 0.3 0.09 

ICA 0.18 0.38 0.35 0.08 0.28 0.22 

MSAA 0.11 0.14 0.38 -0.16 0.33 0.11 

 

 

 

 

  

Supplementary table 7: Pearson’s correlation coefficient for ensemble prediction of PANSS 

subscales  Prediction performance measured by Pearson’s correlation coefficient (r) for the 

parcellation based and ensemble decomposition methods (ICA and MSAA) for the three PANSS 

subscales positive, negative and generalized.  



Supplementary Table 8: PANSS dimensions prediction of individual RSNs (ICA) 
 

ICA (Rho)   
Positive Negative Generalized 

D1a D2a D1a D2a D1a D2a 
Vis A 0.05  0.25  -0.01  
Vis B 0.06  0.17  0.25  

SoMo A -0.01  0.25 0.07 -0.02  
SoMo B 0.06  0.21  0.11  
dAtt A 0.13  0.22  0.27  
dAtt B 0.00  0.24  0.03  
dAtt C 0.05  0.19  0.18  
vAtt A 0.27 0.05 0.16  0.19  
Lim A -0.01  0.12  0.19  
FP A 0.04  -0.04  -0.17  
FP B 0.12  0.21  0.33  

DMN A 0.20  0.24  0.15  
DMN B 0.11  0.41 0.01 0.26 0.03 

DMN C 0.27 
0.14 

0.35 -0.11 0.29 -0.04 

 

 

 

 

  

Supplementary table 8: PANSS subscale prediction for RSNs for ICA. Prediction performance 

measured by Spearman’s rank coefficient of correlation (Rho) for all RSNs in the discovery dataset 

(D1a) and performance on the independent test dataset D2a, for those RSN that were significant on 

D1a. Significance is accessed using 1000 permutations of the PANSS scores. 



Supplementary Table 9: PANSS dimensions prediction of individual RSNs (MSAA) 
 

MSAA (Rho)  

Positive Negative Generalized 

D1 D2 D1 D2 D1 D2 

Vis A 0.13  0.28 -0.13 0.23  
Vis B 0.13  0.25 -0.07 0.27 -0.04 

SoMo A -0.13  0.25 0.04 0.04  
SoMo B 0.02  0.26 0.14 0.06  
dAtt C 0.08  0.16  0.17  
dAtt A -0.07  0.23 -0.14 0.16  
vAtt A 0.10  0.30 -0.02 0.23 0.10 

Lim B  0.06  0.35 -0.05 0.27 -0.15 

Lim A 0.06  0.23  0.19  
FP B 0.05  0.33 -0.24 0.18  
FP A 0.16  0.19  0.22  

DMN A -0.03  0.31 -0.03 0.17  
DMN B 0.11  0.22  0.23  
DMN D 0.10  0.22  0.14  

 

 

 

 

  

Supplementary table 8: PANSS subscale prediction for RSNs for MSAA. Prediction performance 

measured by Spearman’s rank coefficient of correlation (Rho) for all RSNs in the discovery dataset 

(D1a) and performance on the independent test dataset D2a, for those RSN that were significant on 

D1a. Significance is accessed using 1000 permutations of the PANSS scores. 



Supplementary Table 10: Acquisition parameters for resting state fMRI data across 

10 protocols  
 

 Discovery dataset D1   Validation data D2 
Site number 1 2 3 4 5 6 7 8 9 10 
Site acronym  HKH COI KTT UTO ATV ATT CIN COBRE SUW KUT 
n participants  29 123 121 132 39 13 39 133 120 203 
n HC  29 123 75 96 39 13 39 72 101 159 
n SZ 0 0 46 36 0 0 0 61 19 44 
PANSS scores avaliable NA NA yes yes Na Na Na yes NA yes 
           

MRI aqucition parameters 

MRI Scanner 
SIEMENS 

Symp 
SIEMENS 

Verio  
SIEMENS 

Trio GE Discov 
SIEMENS 

Verio 
SIEMENS 
TimTrio 

SIEMENS 
TimTrio 

SIEMENS 
TimTrio 

SIEMENS  
Verio 

SIEMENS  
TimTrio 

Magnitic field strength 3T 3T 3T 3T 3T 3T 3T 3T 3T 3T 
Number of channels per 
coil 

head-
12ch 

head-
12ch head- 8ch  

head-
24ch 

head-
12ch 

head-
12ch 

head-
12ch 

head-
12ch 

head-
12ch 

head-
32ch 

TR (s) 2.7 2.5 2 2.5 2.5 2.5 2.5 2 2.5 2.5 
TE (ms) 31 30 30 30 30 30 30 29 30 30 
Flip angel (deg) 90 80 90 80 80 80 80 75 80 80 
Phase encoding AP AP AP PA PA PA AP  PA PA 
Matrix 64 x 64 64 x 64 64 x 48 64 x 64 64 x 64 64 x 64 64 x 64 64 x 64 64 x 64 64  x  64 
Field of view (mm) 192 212 256 x192 212 212 212 212 240 212 212 x 212 

In-plane resolution (mm) 3.0 x 3.0 3.3 x 3.3 4.0 x 4.0 3.3 3.3 x 3.3 3.3 x 3.3 3.3 x 3.3 
3.75 x 
3.75 3.3 x 3.3 

3.3125 X 
3.3125 

Slice thickness (mm) 3 3.2 4 3.2 3.2 3.2 3.2 3.5 3.2 3.2 
Slice gap (mm) 0 0.8 0 0.8 0.8 0.8 0.8 1.05 0.8 0.8 
Number of slices 38 40 30 40 39 39 or 40 41 33 40 40 

Slice acquisition order 
Ascending 

(IL) NA 
Ascending 

(IL) Ascending Ascending Ascending Ascending Ascending Ascending Ascending 

Number of volumes 
107 + 5 

(dummy) 
240 + 4 

(dummy) 182 
240 + 4 

(dummy) 
240  + 4 

(dummy) 
240  + 4 

(dummy) 
240 + 4 

(dummy) 
149 + 1  

(dummy) 
240  + 4 

(dummy) 
240 + 4 

(dummy) 

Total scan time ~5 min 10 min 6 min 10 min 10 min  10 mins 10 min  ~ 5 min 10min  10 min 
Eye closed/fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate 
Field map:           
E Echo spacing NA 0.0005 NA 0.00029 0.00049 0.00049 NA NA 0.0005 0.00056 
Echo time 1 NA 0.00492 NA 0.0049 0.00492 0.00492 NA NA 0.00492 0.00492 
Echo time 2 NA 0.00738 NA 0.0074 0.00738 0.00738 NA NA 0.00738 0.00738 
Blipdir NA j- NA j j j NA NA j j 
Supplementary table 10: Number of participants and MRI acquisition parameters for each site. The 

top part of this table indicates the site acronym (HKH, Hiroshima Kajikawa Hospital; COI, Center of 

Innovation at Hiroshima university; KTT, Kyoto University (Trio); UTO, University of Tokyo Hospital; 

ATT, Brain Activity Imaging Center ATR-Promotions Inc., Kyoto (Trio); ATV, Brain Activity Imaging 

Center ATR-Promotions Inc., Kyoto (Verio);  CIN, Center for Information and Neural Networks; 

COBRE, The Center for Biomedical Research Excellence ; SWA, Showa university; KUT, Kyoto 

University (TimTrio)) and number of participants for each site. The bottom indicates the MRI 

acquisition parameters. We chose to exclude all data from two DecNef acquisition sites (HUH and 

HRH ) since our visual quality control showed that the EPI images from these sites had many artifacts 

and a low signal to noise ratio, after the five first (excitation) volumes were excluded. More 

information about the sites from the DecNef database (all apart from COBRE), can be found in 

Tanaka et al. [4].  



Supplementary figure 4 Yeo 7-parcellaiton network  
 

 
 

Supplementary Figure 5: Yeo 7-network parcellation from atlas. Illustration of the 7 resting state 

networks (RSN) from the Yeo parcellation, as downloaded from: CorticalParcellation_Yeo2011 - Free 

Surfer Wiki (harvard.edu) . The parcellation map was mapped on the cortical surface by using the 

BrainNet Viewer package (http://www.nitrc.org/projects/bnv). 
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Abstract. For more than three decades, functional magnetic resonance imag-
ing (fMRI) data has been used to search for objective biomarkers for patients
with schizophrenia. However, so far, firm conclusions are still to be made, which
has often been attributed to the high internal heterogeneity of the disorder. A
promising way to disentangle the heterogeneity is to search for data-driven
disease subtypes, which has the potential to find subgroup of patients which
have a more homogeneous biological profile.
In this study, we have used an unsupervised multiple co-clustering (MCC) method
to identify subtypes on connectivity estimated from a multi-site resting state
fMRI dataset. We merged data from two publicly available databases, and split
the data into a discovery dataset (data from 3 sites including 143 patients and
143 matched healthy controls (HC)) and an external test dataset (63 patients
and 63 matched HC) including data from two independent sites. On the dis-
covery data, we investigated the stability of the clustering towards changes in
the dataset and different initializations. Subsequently we searched for clus-
ter solutions with a significant diagnosis association. We further evaluated the
clustering results by its subject and feature cluster separability, the included
brain features and correlations to clinical manifestations as measured with the
Positive and Negative Syndrome Scale (PANSS). Finally, we validated our find-
ings by testing the diagnosis association on the external test data.
We found that the stability of the clustering was highly dependent on varia-
tions in the dataset, and even across different initializations we only found a
moderate subject clustering stability. Nevertheless, we discovered one cluster-
ing solution which had a significant diagnosis association, which reproduced
on the external test data. This solution included three subject clusters with a
predominance of schizophrenia patients, and a feature cluster that showed a
linear trend in the connectivity values for groups with proportions of patients
with schizophrenia, which also reproduced on the external dataset. Finally, we
did not find any reproducible correlation between the feature clusters and the
PANSS scale, indicating the the cluster solution reflects other sources of vari-
ability in the data.
To conclude, we see the contribution of this work as an important steps to-
wards establishing the stability, reproducibility and potential of MCC for sub-
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typing psychiatric disorders such as schizophrenia, and we hope that it will
inform and inspire future work within this important field.

Keywords: fMRI · Subtyping · Schizophrenia · Multiple co-clustering · Stability
analysis

1 Introduction

Psychiatric disorders, such as schizophrenia, are typically classified based on diag-
nostic tools and clinical rating scales are used to measure specific symptoms. A chal-
lenge of such symptomatology-based outcomes is that they do not necessarily reflect
the underlying mechanism that causes them. In practice, symptoms can arise from
different causes, while the same biological cause can also lead to different symp-
toms and phenotypes [1]. Several initiatives have therefore been established with
the aim of uncovering data-driven mechanistic disease definitions to increase our
understanding of mental disorders themselves, advance biomarker discovery and to
identify best treatments for individual patients [2, 3]. For schizophrenia, there are
currently no clinically used biomarkers to assist decision for diagnostic or treatment
purposes, but there are substantial research efforts towards this. Functional mag-
netic resonance imaging (fMRI) is a neuroimaging modality that can be used to map
brain activation in the whole brain, including subcortical regions, as well as net-
work interactions, which makes it a promising modality to search for schizophrenia
biomarkers [4].

1.1 Functional MRI for disease subtyping

Functional MRI (fMRI) is a noninvasive neuroimaging method which gives an in-
direct measure of brain activation (most frequently done using the blood-oxygen-
level-dependent (BOLD) signal) either during task or at rest. Over the decades, many
studies have used fMRI data to determine difference in brain activation between
healthy controls and patients with schizophrenia (SZ). Earlier studies have mostly
used univariate group analyses [5,6] or supervised machine learning where the fMRI
data is used to make individual predictions [4,7,8]. However, due to the high internal
heterogeneity of psychiatric disorders such as schizophrenia, it has been argued that
it might be more valuable to use fMRI to search for potentially new data-driven dis-
ease definitions [1,4,9]. Another challenge of traditionally univariate brain mappings
analysis and supervised prediction studies is that they heavily rely on the “label" e.g.,
the diagnosis of a phenotypic measure of interest. Unfortunately, in psychiatric dis-
orders, the use of such labels as a “gold standard" is complex, due to the high het-
erogeneity within the disorder and other factors such as the test-re-test reliability
between raters [10, 11].

An increasing number of studies have therefore started to combine fMRI data
with clustering methods (type of unsupervised machine learning) to search for sub-
types with a more homogeneous biology [1, 12].

In a systematic literature review from 2021, Miranda et al, grouped earlier fMRI
studies that used clustering methods to find subtypes in psychiatric disorders into



Title Suppressed Due to Excessive Length 3

top-down and bottom-up approaches [1]. In the top-up approaches, fMRI is used
to validate subtypes that were found based on symptomatology based outcomes.
This is helpful to increase the neurobiological understanding, and to evaluate the
states of a patient at a given time. However, these subtypes are likely to yield dis-
ease symptomatic states rather than biological entities. On the contrary, bottom-up
approaches perform clustering directly on the data (e.g. fMRI data or other biomark-
ers) and thus have the potential to uncover subtypes with a more homogeneous bi-
ology, which might be closer to the pathological origin [1]. Finally, Miranda et al.
introduced a third category of polytopic learning methods, which can serve as an
interface between top down and bottom up approaches, that combine datatypes.
This can be done either by performing the clustering analysis on both kinds of data
(e.g., biomarker and clinical outcome assessments) at the same time, or by relying on
multi-model transformations such as canonical correlation analysis [13]. The goal of
the latter is to bridge the gap between origin and manifestations of the disease, but
these methods are also prone to the risk of overfitting if not applied correctly [1].
Polytopic learning can be beneficial if the data, such as fMRI, are of high dimension-
ality, where the combined clustering with data from a clinical scale can help to ex-
tract neurobiological information about disease related trends, that otherwise have
considerable risk of being overlooked [1].

Even though fMRI based subtyping has been a goal for many years, the field is
still in an exploratory state, where results and methods are largely divergent and re-
sults are rarely replicated [1]. One of the core challenges so far has been the high
dimensionality of FC data that has hindered an effective application when using
conventional clustering methods. This is both due to the the well-known problem
of the curse of dimensional [14], and that FC data has a complex structure such
that subjects cluster differently depending on the features of interest [15]. In recent
years, new methods have been developed specifically for high dimensional data,
which carry a great potential for future research to establish relevant and stable sub-
types [16, 17].

Within schizophrenia, we are aware of three bottom-up studies that used fMRI
for disease subtyping. The first studies were from Brodersen [18]and Yang et al. [19],
which demonstrated that clustering can be used to subtype patients with SZ. How-
ever these two studies suffered from a range of methodological challenges [1], and
their findings have to the best of our knowledge not yet been replicated. The third
study was presented by Tokuda et al. in 2021 [20], where the aim was to establish a
common brain network for discriminating between patients with various psychiatric
disorders (hereby SZ) and healthy controls. They found significant alterations in a
brain networks involving a cerebellum-thalamus-pallidum-temporal circuit, which
could differentiate between the different diagnosis. Since this study looked for "dis-
order differentiation networks" they did not aim to identify subtypes within disor-
ders themselves.

1.2 Multiple co clustering

In our study, we chose to focus on a multiple-co clustering (MCC) subtyping algo-
rithm developed by Tokuda et al. [21], which is specifically developed for high di-
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mensional data of different types, and which has shown promising results on fMRI
data [12]. The terminology “multiple" here refers to the algorithms ability to split the
features into several views, while “co-clustering" denotes that within each view, the
algorithm further clusters the data into both subject and feature clusters. Here, the
views serve as a "feature selection step", such that several different subject cluster-
ing solutions (and thereby potential subtypes) can be found depending of the feature
included in each view, which was our primary motivation for choosing the method.
Furthermore it has additional advantages including: i) it can include different data
types (e.g. both fMRI data and data from clinical scales which can have different dis-
tributions) which enables polytopic learning, ii) it can deal with missing data, iii) the
number of views, subject and feature clusters are automatically inferred [12,21]. The
method is described in more detail in the methods section 2.4.

1.3 Objectives of this study

In our work we aimed to: i) test the stability of the MCC algorithm on a multi-site rest-
ing state fMRI dataset, and ii) determine if we can find any subtypes with a significant
SZ diagnosis association. Here, we specifically focused on resting state functional
connectivity data. We performed the analyses on a multi-site discovery dataset, and
furthermore tested the reproducibility of our findings on a external dataset, which
included data from two independent test sties.

More specifically, on the discovery dataset we:

– Determined the stability across random initializations
– Determined the stability across data splits
– Searched for views with significant diagnosis association

For views with a significant diagnosis association, we then

– Evaluated the separability between subject clusters
– Determined the correlation to clinical scales for each feature cluster
– Determined the reproducibility of the diagnosis association on the external data

To the best of our knowledge, this study is the first to apply the MCC method
to search for schizophrenia subtypes using multi-site rsMRI data, and to perform a
comprehensive evaluation of the MCC algorithms stability using fMRI data.

2 Materials and methods

2.1 Participants and data

We used data from two publicly available datasets: i) the DecNef Project Brain Data
Repository (https://bicr-resource.atr.jp/srpbsopen/) [22] and ii) the Center of Biomed-
ical Research Excellence (COBRE) dataset [23]. We split the data into a discovery
dataset (D1) that contained data from 8 sites (COBRE + 7 DecNef sites) and a test
dataset (D2) containing data from two independent sites (both from the DecNef
database) which we used to test the reproducibility of our findings. To avoid that age
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and gender effects leads to apparent differences between control and schizophrenia
related groups, we constructed a balanced dataset using the R package MATCHIT

[24]. As the databases included much more data from healthy controls, each pa-
tient with SZ was matched to a control with nearest neighbor matching based on
propensity scores (age and gender) and exact matching on site. The quality of the
matches were assessed through the balance of the covariates (age and sex) before
and after matching (quantitatively and using diagnostic quantile-quantile plot (QQ)
plots), and visual inspection of the propensity score distributions. Participant demo-
graphics are given in Table 1.

Discovery (D1) Test (D2)
HC SZ HC SZ

nparticipant 143 143 63 63
Gender (♂, ♀) 101/42 100/43 37/26 35/28
nsites 3 3 2 2
Age (µ , σ) 35 ±10 36 ±12 42 ±11 42 ±10

Table 1. Participant demographics. Number of participants (healthy control(HC) and pa-
tients with schizophrenia (SZ)), gender, number of sites and age for the participants included
in the discovery (D1) and independent validation Test set (D2).

For all participants we used a structural T1 weighted MRI scan and functional
MRI data (5-10 min resting state fMRI recorded with open eyes). This study was
approved by the Institutional Ethical Review Board at the Technical University of
Denmark, department for applied Mathematics and Computer Science (COMP-IRB-
2022-03).

2.2 Preprocessing

The MRI data was preprocessed using the fMRIprep v. 20.2.6 pipeline [25] with stan-
dard settings for slice timing correction, realignment, registration between T1 and
fMRI, segmentation, and spatial normalization to standard (MNI) space [25]. We
then used a high pass filter with a cut off frequency of 0.008 Hz, and smoothed the
images with a 6mm FWHM isotopic Gaussian filter. For some sites, we had scans as-
sessing the B0 field inhomogeniety available, for which we estimated and applied a
voxel displacement map based on the effective echo spacing and phase encoding di-
rection. For the remaining data (sites where no B0 map was available), we used the
"Fieldmap-less" distortion correction by matching the anatomical features from the
T1-weighted scan [25]. We regressed out the mean signal of nuisance compartments
(cerebrospinal fluid, white matter and global mean signal) and 24 motion parame-
ters [26]. Finally, we explicitly modelled volumes where the framewise displacement
was higher than 1mm, to effectively remove their influence on the results.
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2.3 Parcellation based connectivity analysis

To extract the functional connectivity (FC) of the rsfMRI data, we used a parcella-
tion based connectivity approach . First we extracted the time series of the BOLD
signal from an atlas. Secondly the connectivity matrix was calculated using Pear-
son’s correlation coefficient with a subsequent Fisher transform and z scoring. For
the brain parcellation we used the Allen atlas, which is an ICA based atlas based on
resting state data from 603 healthy controls [27]. We implemented the atlas using
the MASKER function from NILEARN (version 0.9.0) in PYTHON (version 3.9). This at-
las includes 28 components which are assigned to one of the following resting state
networks (RSNs): basal ganglia, auditory, sensory motor, visual, default mode, atten-
tional and frontal, as specified by Allen et al. [27].

Fig. 1. Functional connectivity (FC) matrix by Allen parellation. Mean (across participants)
FC matrix for the discovery (D1) and test (D2) datasets. The colorcode on the axis indicates the
corresponding resting state network (RSN) for each brain parcel. Overall, we found a similar
connectivity pattern across the two datasets, with a dominance of positive connectivity within
the RSNs (along the diagonal) whereas the connectivity between RSN were more mixed.

2.4 Multiple-co clustering algorithm

The multiple co-clustering (MCC) method presented by Tokuda et al in 2017 [21], is a
polytopic learning method, that can deal with data types that follow different distri-
butions. As described in the introduction the key idea is that the algorithm optimally
partitions the features into several groups (called views) in which subject and feature
clustering is performed separately. The algorithm simultaneously partitions the data
in the following way:

– Partition features into several views (works as feature selection for different sub-
ject cluster solutions)

– Further partitions each view into feature clusters (bundling similar features)
– Partition participants into subject clusters

The clustering is based on non-parametric Bayesian Mixture models, where mix-
ing of several types of distributions are allowed. The current implementation of the
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algorithm allows for Gaussian, Bernoulli and Poisson distributions depending on the
underlying data types. The number of views, feature and subject clusters are auto-
matically inferred based on a Dirichlet process prior. The generative models for the
view, feature and subject clustering can be found in earlier descriptions of the model
by Tokuda et al. [12,21], where the feature clusters Y and subject clusters Z indicators
are given by a multinominal distribution (generated by hierarchical stick breaking
process) such that:

Y (m)
j ... Mul(·|τ(m)) (1)

denotes the view and feature cluster membership vector for feature j of the distri-
bution family m. And the subject cluster membership indicator for each subject i is
given by

Z (m)
i ... Mul(·|ηv ) (2)

The model assumes that each instance of the data matrix Xi , j independently fol-
lows a specified distribution conditional on Y and Z. The log-likelihood of the model
is

log p(X|Y,Z,Θ) =
∑

m,v,g ,k, j ,i
I(Y (m)

j ,v,g = 1)I(Zi ,v,k = 1)log p(X (m)
i , j |θ(m)

v,g ,k ). (3)

where θm
g ,k are the parameters of the distribution family m for feature cluster g ,

subject cluster k and view v .
In our study, most variables were from the functional connectivity matrix (Gaus-

sian distribution), but we also included a few additional features: age (Gaussian dis-
tribution) as well as gender and site allocation of each participant (categorical which
were modelled with a Bernoulli distribution). The conjugate priors for the Gaussian
distributed features were given by the normal inverse gamma distribution, which
is defined by four parameters, µ0 , σ2

0, λ0 and γ0 and the Bernoulli distributed fea-
tures are given by a single parameter β0 (supposing a symmetric Dirichlet distribu-
tion) [21]. The priors, expectation of the log-likelihood and update equations are de-
scribed in the supplementary section of Tokuda et al. in 2017 [21] and the source
code of the algorithm which is publicly available at Github
(https://github.com/tomokitokuda/Multiple-Co-clustering).

2.5 Missing data and non-imaging features

The MCC method can handle missing values if they occur at random, such that miss-
ing entries are considered as stochastic parameters, which in practice is done by
marginalizing across the missing entries such that it ignores these when it updates
the hyper-parameters, [21]. To evaluate the potential of polytopic learning with the
MCC algorithm, we would have preferred to include both functional connectivity,
demographics and clinical scales data. However, since the latter was only available
for patients with schizophrenia, and not our healthy control participants, we opted
against including data from clinical scales in our subtyping analysis such that we did
not violate the assumption of missing at random.

In this study, we therefore included the following features: 1) 378 FC connectivity
features from the Allen atlas 2) age and 3) five binary features indicating the gender,
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handedness and three binary labels to indicate at which site the data of the partici-
pant was acquired (the discovery dataset was from three different sites as specified
in section 2.1).

Different initializations The clustering solution of the MCC method will depend on
the initialization, which is given by a random configuration of views and clusters.
As in earlier studies, we used a “5-step heuristic" to balance how well the model
described the data (assessed by log likelihood) and the stability across initializa-
tions [14, 20]. The clustering stability was assessed by using the adjusted rand in-
dex (ARI), which is a measure of the similarity between two clustering (adjusted to
correct for chance by using the permutation model for clustering [28].) Our primary
stability measure was the “feature to view" clustering stability (ARIview), which mea-
sures the similarity of what features are assigned to what views (but does not evaluate
the subject and feature clustering within the view).

The “5-step heuristic" includes the following steps:

1. Run algorithm with 1000 different initializations
2. Find the 10 models with the highest log likelihood (equation 3)
3. Calculate the “feature to view" membership stability (ARIview) between the top

ten models
4. Identify the pair with highest ARIview (this will be referred to as “top-two-pair"

for the remaining paper)
5. The final model, used for subsequent analysis, is then the one in the top-two-

pair which had the highest log likelihood

2.6 Stability analysis

We two stability analyses to evaluate the stability of the algorithm with regards to 1)
different initializations and 2) data splits as summarized in Figure 2.

Fig. 2. Stability analysis of subtyping. In stability analysis 1 (left) the MCC algorithm is run
1000 times using the same dataset and different initializations. In analysis 2 (right), 10 sub-
datasets were created, where 10% of the data (28 participants) were left out for each dataset.
In this way, we tested the stability of the algorithm to the expected variability in the data.
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Stability analysis 1: initializations
To measure the stability across different initializations, we used the same "5-step
heuristic" as in the earlier publications by Tokuda et. al [14, 20], and we assessed
stability in the following way:

– View membership stability was measured using the ARIview (mean across all top
10 models from step 3)

– To get a better understanding of the similarity across runs, we also calculated the
subject (ARIsubject) and feature (ARIfeature) cluster similarity for the top-two-pair
with highest ARIview (step 4). We performed this analysis for each view separately,
where we used a Procrustes alignment procedure to match views across the two
runs with regards to maximal feature overlap.

We refer to each of the 1000 initializations as "runs", where each run has a new
random initialization that determines the initial assignment of the data into the views
as well as feature and subject clusters. For each run the algorithm performed 1000 it-
erations (this was a pragmatic choice since 1000 iterations already resulted in a run
time 10 hours per run). Whereas earlier studies have used the “ 5-step heuristic"
to choose the “best" solution of 1000 initializations, they have not reported the ARI
for the top 10 models nor top-two-pair. To the best of our knowledge there are also
no other studies that have reported stability measure of the MCC algorithm on neu-
roimaging data (the only formal stability analysis we have found reported was on
simulated data in the original publication of the method in 2017 [21]).

Stability analysis 2: data splits
Whereas the first stability analysis determined the clustering similarity when using
different initializations on the same dataset, the aim of this analysis was to investi-
gate how robust the clustering similarity was towards leaving out a part of the data.
For this analysis we kept the initialization constant (selected the best initialization
from stability analysis 1) at then reran the clustering on 10 "sub-datasets", where we
left out 10% of the data ( 28 subjects) for each dataset as illustrated in Figure 2. To the
best of our knowledge this is the first time that the stability of the MCC algorithm has
been investigated across data splits.

2.7 Views with diagnosis association

To search for potential subtypes that are related to the schizophrenia diagnosis, we
first identified views with a significant diagnosis association by using Pearson’s χ2

test for contingency tables, where we evaluated the association between the subject-
cluster label and diagnosis label. The Pearson’s χ2 test statistic is used to test the in-
dependence between the rows (R) and columns (C) of the contingency table, where
independence refers to knowing the value of the row variable (here subject-cluster
label as estimated by the MCC clustering) does not change the probabilities of the
column variable (diagnosis label), and vice versa. The Pearson’s χ2 test statistics fol-
lows an asymptotic χ2 distribution with (R-1)(C-1) degrees of freedom, which is cal-
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culated as:

χ2 =
∑

i

∑
j

(Oi , j −Ei , j )2

Ei , j
. (4)

Where Oi , j is the observed count for the i th row (i = 1 to R) and j th column ( j =
1 to C ) in the contingency table. And Ei , j is the expected counts when assuming

independence (null hypothesis of the test) which is calculated as Ei , j = ni ,.n., j

N where
ni . and n. j are the row and column marginal totals, and N is the total number of
counts in the table.

We assessed significance by using random permutation testing to obtain an em-
pirical null of χ2 by creating 1000 random permutations of the diagnosis label [29].
We corrected for multiple comparisons using maximum permutation statistics, i.e.,
we created an empirical null distribution by considering only the most significant
effect over the entire set (all views for that run). This controls the family-wise error
over the set.

Sorting of subject and feature clusters
To ease the visual interpretation of the views, we sorted the views such that subject
clusters were sorted in ascending order of proportions of patients with SZ, (i.e., sub-
ject clusters with highest proportion of HCs are on the top), and furthermore within
each subject cluster healthy participants are displayed first, and patients with SZ are
indicated with a black hyphen . Feature clusters were sorted by descending cluster
size. Please note that the diagnosis label was only used to sort the subject clusters,
but not included as a feature in the MCC at any point.

Separability between subject clusters
For views with a significant diagnosis association, we looked further into the dif-
ferent subject clusters to search for potential schziophrenia-related subtypes. As in
the earlier neuroimaging applications of the MCC clustering, we used the Cohen’s
D to measure the separability between two neighboring subject clusters (neighbor-
ing since the clusters are sorted according to the proportion of patients with SZ).
Cohen’s D (CD) is a commonly used measure of effect sizes for differences between
two distribution, and we use the following descriptors for magnitudes: < 0.5: small,
0.5-0.8: moderation, > 0.8 large, > 1.2: very large [30]. Whereas earlier studies eval-
uated CD for each view by taking the mean CD of all neighboring subject clusters
and feature clusters included within a view, we report the CD for each feature cluster
and subject-cluster pair separately. Finally, to gain more insight about the difference
between all the subject clusters (and not only the neighboring) we also showed the
histogram for each subject-feature cluster, as well as the probability density function
(PDF) using the posterior hyper-parameters from the MCC algorithm. The PDF for
the normal inverse gamma distribution is given as

f (x,σ2|µ,λ,α,β) =
p
λ

σ
p

2π

βα

Γ(α)

( 1

σ2

)α+1
exp

(
−2β+λ(x −µ)2

2σ2

)
. (5)
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Hereµ andλ are directly given by the hyper-parameters andα= γ0/2 andβ= γ0σ
2
0/2

are given as specified in the supplementary material of the earlier MCC publications
[12, 21], and Γ is the gamma distribution.

Relation to clinical scales
For views with a significant diagnosis association, we also investigated if any of the
subject-feature clusters were related to the clinical differentiation given by the PANSS
score. For this analysis we only included patients (no HC) with an available PANSS
score (4 patients did not have these available). More specifically, for each patient we
calculated the mean FC for each feature cluster, and correlated it to the PANSS score
for that patient. Since the PANSS scale is a summation of categorical subitems (and
thus not a continuous measure), we used the Spearman’s rank coefficient of correla-
tions (Rho), which is a non-parametric measure of correlation utilizing ranks [31],
and has less sensitivity to outliers (patients with very high or low PANSS scores).
We used the total PANSS score as a measure of symptom severity, and furthermore
the three subscales PANSS positive, negative and generalized, to determine if any of
feature clusters were specifically related to any of dimensions given by these three
PANSS subscales.

2.8 Reproducibility on independent test dataset

Whereas all previous steps were performed on the discovery dataset, we kept approx-
imately 30% of the data as an independent test dataset to evaluate the reproducibil-
ity of our findings. We aimed to determine if views that had a significant diagnosis
association on the discovery dataset (Viewdiagnosis, D1), also showed a significant di-
agnosis associated subject clustering on the test dataset (D2). This was done using
the following four steps:

1. Test data, ViewD2 : select features that were included in Viewdiagnosis, D1 and keep
the feature cluster solution fixed, such that that each feature is assigned to the
same feature cluster as in the discovery dataset

2. Model parameters θD1: extract the hyper-parameters from each subject-feature
cluster given the MCC solution of the discovery dataset.

3. Expectation Eq(θ): calculate the expectation of the conditional log likelihood for
each possible subject-feature cluster combination using θD1 on the test dataset
ViewD2

4. Final subject cluster solution: assign each participant to the subject-cluster that
maximizes the log likelihood

Since we found that Viewdiagnosis, D1 only included FC features (no binary feature
included in this view, as described in the results section 3.4) the model parameters
(step 2), where given by the hyper-parameters from the normal-inverse gamma dis-
tribution, µ, λ, γ and σ2 as described in section 2.4. Given these hyper-parameters,
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the expectation of the conditional log likelihood is given by:

Eq(θ)[log p(Xi , j |θg ,k ] =

−1

2

{
(Xi , j −µg ,k )2

σ2
g ,k

1

λg ,k
+ log

(
σ2

g ,k

)
+ log

(
γg ,k

2

)
−ψ(

γg ,k

2
)+ log(2π)

}
(6)

Where X is test dataset ViewD2 (step1). The feature clusters (k) were kept constant
(step 1) such that Eq(θ) was calculated for each subject subject clusters (g) (step 3).
The participants were then assigned to the subject-cluster that maximizes the log
likelihood given by equation 3.

3 Results

In this section we list and shortly describe the findings of our study. Section 3.1 and
3.2 list the stability analyses and section 3.3 described the views included in the final
clustering solution. For this solution, section 3.4, 3.5 and 3.6 include the results of
the diagnosis association, subject cluster separability and clinical scale correlation
analyses respectively. Finally section 3.7 includes the reproducibility analysis where
we tested the estimated subject clustering on an external dataset.

3.1 Stability analysis 1: initializations

In this stability analysis, we kept a constant dataset, and repeated the MCC cluster-
ing with 1000 different initializations (also referred to as runs). Our primary stability
measure was the ARIview, which measures the view membership similarity across
runs. The cost function (log likelihood (LE) as a function of iterations) is shown in
Panel A of Figure 3, which shows that some models still had occasional abrupt changes
close to the final number of iterations(1000 iterations), indicating that full conver-
gence had not been reached. Panel B of Figure 3 shows the ARIview for all combina-
tions of the top 10 models. The mean ARIview was 0.84 and the top-two-pair (step 4)
had an ARIview of 0.99, which indicates that the feature assignment to each view was
very similar for these runs.

To get a better understanding of the similarity across runs, we also calculated the
subject (ARIsubject) and feature (ARIfeature) cluster similarity for the top-two-pair (run
360 and 965, which will be referred to as Run A and Run B in the remainder of the
manuscript). We performed this analysis for each view separately, using a Procrustes
alignment procedure to match views across the two runs with respect to maximal
feature overlap. Table 2 shows that even though the two runs do not have the same
number of views (3 views for run B and 4 views for run A), the included features in
each view are very similar, with less that 10 features (out of a total of 378) that were
assigned to different views between runs. For view 1 and view 2 we found that the
ARIfeature was high (0.85 and 0.96), whereas the ARIsubject only was moderate (0.67-
0.77).
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Greedy matching
on views

N features
in view

ARIfeature
N feature

cluster
ARIsubject

N subject
clusters

Run
B

Run
A

Feature
match

Run
B

Run
A

Run
B

Run
A

Run
B

Run
A

1 1 0.99 331 326 0.85 7 6 0.77 11 10
2 2 0.97 51 52 0.96 4 3 0.67 6 8
3 4 1.00 1 1 1.00 1 1 1.00 1 1

3 1 1 1
Table 2. Stability analysis 1 of pair with highest ARIview. Subject and feature cluster stability
analysis for the pair of runs with highest ARIview (run A and B). Views between the two runs
were matched using greedy matching, where 1 indicates that the features in the two views
are identical, and 0 means that there is not overlap between features at all.Then the cluster
similarity was calculated for the subject clusters ( ARIsubject) and feature clusters (ARIfeatures)
for each view separately, and furthermore the table lists the number (N) of feature and subject
clusters for each view.

Fig. 3. Stability analysis 1 Panel A shows the log likelihood (LE) as a function of the number
of iterations (x-axis) for the ten best runs. Panel B shows the ARIview for all combinations for
the top 10 models. The mean ARIview is 0.84, and the top-two-pair with highest ARIview was
between run 360 (Run A) and run 965 (Run B). Of these two runs, Run A had the highest log
likelihood and will thus be the final model chosen using the 5-step heuristic described in sec-
tion 2.4
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3.2 Stability analysis 2: data splits

The aim of this second stability analysis was to evaluate the stability (ARIview) when
leaving out a small part of the data for each run.

Fig. 4. Stability analysis 2 Panel A shows the log likelihood (LE) as a function of the number
of iterations (x-axis). Panel B shows the ARIview for all combinations of the ten data split runs.
The mean ARIview is 0.48.

Figure 4 shows the result from stability analysis 2, where the cost function in
Panel A, shows that the increases in the LE over iterations are small compared to
the differences in LE across the runs with left out data. Panel B shows the ARIview for
each combination of the runs, which are substantially lower than for stability analy-
sis 1 (Figure 3). These findings showed that leaving out 10 % of the data for each run
does influence the stability to a higher degree than changing the initialization.

3.3 MCC results of best solution

When using the "5-step heuristic" (run as part of stability analysis 1), would found
that the final best MCC clustering model was for Run A (seed 360) which included
four views as listed in Table 2. For visualizations, the subject and feature clusters were
sorted according to their size and proportion of SZ patients as described in section
2.7. Figure 5 the views are visualized. View 1 and 2 (top) both included features that
all were FC values, where the red color indicates positive connectivity, and blue indi-
cates negative connectivity (i.e. anti correlation between time courses). View 3 and
4 only include binary features: view 3 included: gender, and the acquisition site of
each participants while view 4: included the handedness, where blue lines are par-
ticipants who had missing values. For the remaining sections we will not consider
view 4, since this view only included a single feature and no subject clustering.
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Fig. 5. Illustration of views from best model (Run A). For each view, the horizontal colorbar
shows the feature clustering, while the vertical colorbar indicates the subject clusters. Patients
with SZ are indicated with a black hyphen. )

3.4 Diagnosis association

To search for potential schizophrenia related subtypes, we used Pearson’s χ2 test for
contingency tables to find views (and thereby subject clustering) with significant di-
agnosis association, as described in section 2.7. We found that view 2 had a signifi-
cant diagnosis association with a high χ2

d f =7 = 35 (p < 0.001), whereas there was no

significant diagnosis association for view 1 ( χ2
d f =9 = 1.8 (p = 0.99)) nor for view 3 (

χ2
d f =1 = 0 (p = 0.98)). This pattern was also clearly seen on Figure 5, where view 1 and

view 3 had approximately the same number of patients with SZ (black hyphen) and
healthy controls in each subject cluster, whereas most subject clusters in view 2 had
a predominance of one of the groups (the proportion of SZ patients (SZ% is shown
in Panel A in Figure 7). To gain a better understanding of the features included view
2, we show the binary FC matrices for each of the feature clusters in Figure 6. Feature
cluster 3 contained six features, including connectivity between the basal ganglia
RSN (gray) and the auditory (yellow), sensory motor (blue) , visual (purple) and de-
fault mode (red) resting state networks. On contrast, feature clusters 1 and 2 included
more connectivity features which were also distributed between more RSN.

3.5 Separability between subject clusters

To gain further insight into the subject cluster differences within view 2, we used
Cohen’s D (CD) to asses the separability between neighboring clusters. Panel A in
Figure 7 shows the proportion of SZ patients in each subject cluster, Panel B shows
the histograms of each subject-feature cluster and Panel C shows the subject cluster
separability measured by Cohen’s D. We found a large mean (across feature clusters)
CD between subject cluster (SC) 2-3 and between SC 5-6. The latter was particularly
strong for feature cluster 3 (Cohen’ D > 2). When we look at feature cluster 3, we see
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Fig. 6. FC matrices for the three feature cluster solutions of view 2. Binary FC matrices for
each of the three feature clusters of View 2. The colorbars on the axes indicate the resting state
network (RSN) assignment of each brain parcel according to the brain parcellation by Allen et
al [27]

a linear trend with positive connectivity (red on Figure 5 and µ > 0 for in Panel B
of Figure 7) for subject clusters with a predominance of healthy controls (SC 1-5),
while subject clusters which are dominated by SZ patients (SC 6-8) show negative
connectivity vallues.

This is also seen in PDF of feature cluster 3 (Figure 8) where the subject cluster
PDFs follows a linear trend from positive to negative according to the proportion
of SZ in each cluster. For feature cluster 1, subject cluster 2 and 5 show a distinct
pattern, while there was a large overlap of the remaining subject clusters.

3.6 Relation of clinical scales

Finally, we wanted to determine if the mean activation within each feature feature
clusters were related to the clinical rating scales (PANSS) that we had available. We
were particularly interested to see if the linear trend for feature cluster 3 would be
related to the overall symptom severity measured by the total PANSS .

Figure 9 shows the scatter plots and correlation values (Rho) for each feature clus-
ters, with the total PANSS (measure of symptom severity) and PANSS subscales (pos-
itive, negative and generalized). Each participant is colored according to their sub-
ject cluster assignment. Overall we see that the patients within a subject cluster are
gathered around a horizontal line (indicating similar mean FC), which is in accor-
dance with our expectation since subject clusters were formed based by participants
with similar feature distributions. We did not find any feature clusters with a strong
correlation between the mean feature activation and any of the four PANSS scales.
And none of the correlations were significant after correction for multiple compar-
isons (using maximum permutation statistics over the three feature clusters and four
PANSS scales). The strongest correlation was found for feature cluster 2 and the neg-
ative (neg) PANSS subscale (ρ = 0.25 p = 0.01 (uncorrected)). Furthermore, we found
a weak positive trend (non adjusted p-value = 0.07, Rho = 0.16) between the mean
connectivity values of feature cluster 3 (which included basal ganglia RSNs) and the
positive PANSS subscale.
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Fig. 7. Subject cluster separability for View 2. Panel A shows the proportion of patients with
schizophrenia (SZ) in each of the subject clusters. Panel B shows the histogram of the FC values
for each subject-feature cluster, and Panel C shows the separability between subject clusters
measured by Cohens D.

Fig. 8. Probability density function (PDF) for each subject cluster of View 2.. The PDF of the
subject clusters for each feature cluster. The PDF is determined by the hyper-parameters for
each subject-feature cluster and the PDF given in Eq. 5.
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Fig. 9. Correlation between feature clusters activation and clinical scales. Scatter plots be-
tween the PANSS scale (PANSS total (measure of symptom severity), and three PANSS sub-
scales (positive (pos), negative (neg) and generalized (gen)) and the mean value of the feature
clusters. The correlation is measured using Spearman’s rank coefficient (rho) and significance
is assessed using a random permutation test (here not corrected for multiple comparisons).
Each participant is colored according to their subject cluster assignment, and the gray line in-
dicate a linear regression line.
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With respect to the subject clusters, we found that nearly all patients with a PANSS
total > 75 (considered "moderately affected by schizophrenia" [32]) were located in
the last three subject clusters, indicating that the first five subject clusters (which also
have a predominance of HC) do not include patients with a high symptom severity.
However, we found that a large part of the patients from the last three subject clus-
ters include patients with low symptom severity. A similar trend is found for the three
PANSS subscales.

3.7 Reproducible on independent test data (D2)

To determine the reproducibility of the diagnosis association for view 2, we per-
formed a validation analysis of the independent test dataset (D2) as described in
section 2.8.

Fig. 10. View 2 for discovery (D1) and Test (D2) datasets. Visualization of View 2 (significant
diagnosis association) for the two datasets. View 2 (D1) is the same as in Figure 5 but with an
adjusted colormap matched the one in View (D2).

Figure 10 shows view 2 for the discovery (D1) and independent test (D2) datasets.
Overall, it is seen that the views are similar across the datasets, but with higher con-
nectivity strength for the D2 dataset. The main result of the reproducibility analysis
was that the diagnosis association between the subject clusters and diagnostic la-
bel was still significant χ2

d f =7 = 25.8 (p < 0.001) on the independent test dataset (D2)

(Panel A of Figure 11. Figure 11 further shows that a similar trend for the subject clus-
ters are found, both in relation to proportion of SZ patients (Panel A) the histograms
(Panel B) and subject cluster separability (Panel C). Furthermore, feature cluster 3
also still showed a red-blue linear trend with increasing subject clusters, whereas
this was less clear for feature cluster 2.

Figure 12 shows the correlations between the feature clusters in the test view, and
the four PANSS scores. The positive correlation between feature cluster 2 and the
negative PANSS scale which was found on the discovery dataset, did not replicate on
the external data. Similarly, the positive trend between feature cluster 3 and the posi-
tive PANSS scale was also not replicated. On the contrary, for the test dataset, feature
cluster 3 showed a moderate negative correlation (ρ ≤−0.30, p ≤ 0.05 (uncorrected)
for all PANSS scales.
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Fig. 11. Subject cluster separability for View 2. Panel A shows the proportion of patients with
schizophrenia (SZ) in each of the subject clusters. Panel B shows the histogram of the FC values
for each subject-feature cluster, and Panel C shows the separability between subject clusters
measured by Cohen’s D.

4 Discussion

4.1 Multiple co-clustering result

The final solution (Run A) of the multiple co-clustering (MCC) included 4 views, of
which 2 views only included binary features representing handedness (view 4), as
well as gender and data acquisition site (view 3) respectively. Since view 4 only in-
cluded a single feature (handedness) and one subject cluster, no further analysis was
performed on that view. View 3 included two subject and two feature clusters. Inter-
preting the included features, showed that this co-clustering structure related mostly
to the site of the participants. I.e., feature cluster 1 includes the handedness (feature
1) and index for two of the sites (feature 2 and 3, both from the DecNef database),
whereas the second feature cluster includes data from the remaining site (feature
4, COBRE database). This finding illustrates the advantage of the multiple views ,
which allows the MCC algorithm to determine several subject clustering solutions
on the same dataset. For example, a clustering method which is only able to find one
subject clustering solution (which needs to fit all the data), could have chosen a so-
lution that relates to differences in acquisition site, gender or handedness instead of
subtypes within a disease. On the contrary, the MCC method can put these into sepa-
rate views. Furthermore, if there would have been brain connectivity features, which
would be highly related to e.g. site differences, these could be clustered together with
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Fig. 12. Correlation between feature clusters activation and clinical scales for D2. Scatter
plots between the PANSS scale (PANSS total (measure of symptom severity), and three PANSS
subscales (postive (pos), negative (neg) and generalized (gen)) and the mean value of the fea-
ture clusters. The correlation is measured using Spearman’s rank coefficient (rho) and signifi-
cance is assessed using a random permutations test (not corrected for multiple comparisons).
Each participant is colored according to their subject cluster assignment, and the gray line in-
dicate a linear regression line.
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the site-indicator features (polytopic learning), and thus separating these from the
remaining connectivity features.

4.2 Interpretation of the stability analyses

In the stability analysis we determined the clustering similarity between different
initializations (analysis 1) and datasplits (analysis 2). First of all, we found that the
similarity was much lower for the runs with different datasplits (ARIview = 0.48, Fig-
ure 3), than when re-running the clustering on the same dataset with different ini-
tialization (ARIview = 0.84, Figure 4). This was in accordance with our anticipation,
indicating that the clustering is more stable across initializations compared to the
stability caused by variability on the data. If this would not have been the case, this
would have raised severe concerns regarding the stability of the model estimation
procedure.

For both stability analyses, we still found occasional abrupt changes in the log
likelihood close to the maximum number of iterations (1000), indicating that the al-
gorithm was not yet fully converged. Originally, we started with 30 iterations (which
is the default setting in the implementation by Tokuda et al. [21]) but after inspect-
ing the log-likelihood, we gradually increased the number of iterations until 1000.
We did not include more iterations due to the high computational and time com-
plexity. In earlier publications using the MCC algorithm, the number of iterations
were not specified, and information about the cost function trajectory was not in-
cluded, which makes it difficult to compare the convergence of our work with earlier
results. Comparing the log-likelihood of the two stability analyses (Panel A in Figure
3 and 4 respectively) we find that the increases in the cost function over iterations are
relatively small compared to the differences between data splits. However, since the
datasets are not the same for these analyses, direct comparison of the cost functions
is not possible. For future studies, we strongly recommend to investigate a broad
range of iterations, and to report the number of iterations and cost functions when
sharing the results.

To gain a better understanding of the subject clustering stability, the second part
of the stability analysis 1 focused on the subject and feature clustering within the
views on the top-two-pair runs. We found that these two runs had a very high stabil-
ity on the view level (ARIview = 0.99), and furthermore the feature clustering stability
within each view was also high (ARIview 0.85 and 0.96 for view 1 and view 2 as spec-
ified in Table 2). However, even though the feature clustering was stable between
these runs, the subject clustering stability was somewhat lower with a ARIview 0.77
and 0.67 for for view 1 and view 2 respectively. This finding indicates, that even for
the most stable runs (step 4 of the 5-step heuristic presented in section 2.6) the sub-
ject clustering, and thereby potential subtype stability, was moderate.

To the best of our knowledge, this is the first study to report the clustering similar-
ity of the MCC algorithm across initializations and datasplits. Earlier studies also in-
vestigated 1000 initialization of the algorithm and used the ARI to choose the “best"
solution (as part of the 5-step heuristic); however, they did not report the actual sta-
bility values [14, 20]. The closest comparisons we have been able to find, were from
a paper by Tokuda et al. from 2018, where they in the supplementary material report
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the ARI across changes in the hyper-parameters (and concluded that these were sta-
ble, with ARI > 0.80). Furthermore, in Tokuda et al from 2017, they used the ARI on
simulated data to determine the difference to the true solution.

In summary, our stability analysis showed that the stability of the MCC algorithm
on the given datasets was higher between initializations that with datasplits. How-
ever, even though the feature to view clustering was nearly identical for the top-two
pair of runs, the subject clustering similarity was only moderate. This indicates that
the subject clusters, and thereby potential subtypes, are not very robust even across
initializations.

4.3 Diagnosis association and evaluation of subtypes

In the remaining sections we focus on the potential subtypes that were found by the
“best" solution (Run A) found in stability analysis 1. First we discuss the interpre-
tation of the subject clustering solution found by view 2, and then we will further
discuss the findings related to feature cluster 3.

4.4 Interpretation of subject clusters:

We found a reproducibly significant diagnosis association for the subject clusters in
view 2 (χ2

d f =7 = 35 (p < 0.001) on the discovery data and (χ2
d f =7 = 26 (p < 0.001) on the

external test data). This view included three feature clusters and eight subject clus-
ters. Three of these subject clusters had a higher proportion of SZ patients (>50 %)
and could thus be considered “SZ-related clusters" (subject cluster 6−8) compared
to five “healthy control clusters" (subject cluster 1−5). However, it should be noted
that there were still both SZ patients and HC in all clusters, and the diagnosis sepa-
ration between these clusters were therefore not as clear as in the earlier subtyping
work on patients with major depressive disorder, where a very clear separation was
found between the disorder and control clusters [12].

Looking at the PANSS scales, we found that nearly all patients with a PANSS total
> 75 (considered at least moderately affected by schizophrenia [32]) were located in
these three “SZ-related clusters". This shows that even though the “healthy control
clusters" included SZ patients, these patients had relatively low symptom severity.

To gain further insight into the separability between the clusters, we used the
histograms, PDFs and effect sizes of clustering differences for each subject-feature
cluster (Figure 7). Here, we found a high subject cluster separability between subject
cluster 5 and 6, which was particularly strong for feature cluster 3 (Cohen’s D > 2).

4.5 Interpretation of feature clusters 3

Overall view 2 included three feature clusters, as illustrated in Figure 6. Feature clus-
ter 3 showed a linear trend from positive (red) connectivity for HC-clusters, and neg-
ative (blue) connectivity for SZ-related clusters. This was most clearly observed for
the plot of the subject cluster PDFs (Figure 8) and could also be visually seen in Figure
10 and in the plot of the histograms (Figure 7). To determine if this linear trend was
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related to the symptom severity of the SZ patients, we performed a correlation anal-
ysis as shown in Figure 9. We did not find any solid (significant after multiple com-
parison correction) correlation between any of the feature clusters and the PANSS
scale, neither for the total PANSS (reflecting overall symptom severity) nor PANSS
subscales. This shows that the feature clusters did not directly relate to any of the
clinical representations that were available through the PANSS scale, which indicates
that the MCC clustering reflects other sources of variability in the data.

As shown in Figure 6, all six connectivity features included in feature cluster 3,
were related to the basal ganglia RSN. The basal ganglia RSN of the Allen atlas in-
cluded several subcortical regions, hereby the striatum [27]. Many earlier studies
have suggested that the striatum has a core role in schizophrenia, particularly in re-
lation to the dopamine hypothesis [33–35] and positive symptoms [36]. In our cor-
relation analysis, we found that there was a weak positive correlation on the discov-
ery dataset (Figure 9 , Rho = 0.16, puncorrected = 0.07) between the PANSStotal and the
mean activation of feature cluster 3. However, this was not reproduced on the exter-
nal data. On the contrary, for the test dataset, feature cluster 3 showed a moderate
negative correlation (Rho ≤ -0.30 puncorrected ≤ 0.05) for all PANSS scales. Since the
Allen atlas only included one RSN with subcortical areas, we can not draw any firm
conclusion on the role of the striatum nor its correlations to the PANSS scales. How-
ever we see this as a promising finding which would be interesting to investigate in
future studies, using a more fine grained atlas to study the influence of different sub-
cortical regions.

To summarize, we found a moderately stable subject clustering solution which
had a significant diagnosis association for view 2. Within this view, we found three
"SZ-related" subject clusters with a predominance of SZ patients, and one feature
cluster that showed a linear trend from positive to negative correlation with an in-
creasing number of SZ patients in each subject cluster. None of the feature clusters
showed a solid relation of the clinical manifestations measured through the PANSS
scale. This indicates that the subject clusters may represent another differentiation
than traditionally measured using the symptomatology based PANSS scale, however
further exploration would be needed to draw firm conclusions. Importantly, the sub-
ject clustering and diagnosis association reproduced to the external test data, which
indicates that the subject clustering was not only specific for the discovery dataset,
but carries information that generalizes to data from independent sites.

4.6 Future directions

With regards to the stability of the clustering, we believe that even more structured
investigation are needed. In future studies, we think it will be important to further
investigate how the stability depends on various factors such as the availability of
data (both the amount of participants included and features), different data types,
number of iterations and other external factors (e.g., when including multi-site vs.
single site data). For example, it would be interesting to see if the stability conver-
gences with the number of iterations, and if this could be used as a cut off measure
of the number of iterations, instead of using the default value or using convergence
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of the log likelihood. We also suggest that future studies consider other stability met-
rics than the ARI. In the current work used the ARI to keep consistency with earlier
publications. However, we note that the assumptions in permutation model can be
violated [28, 37], since different runs can show different numbers of clusters (views,
subject and feature clusters) and different numbers of features within each cluster.
Hence, alternatives such as the permutation method presented by Gates et al. [37,38]
could also be considered.

It would also be interesting to conduct a structured investigation of the posterior
probabilities of the subject-feature clustering (given by the MCC clustering) and to
compare these results to the stability analysis, to see if the clustering is more stable
when the model has a high posterior probability (as a measure of certainty) for the
subject-feature cluster assignments.

In this study, we used a relatively small RSN brain parcellation which included
28 RSN. In future applications it would be interesting to expand the analysis with a
more fine grained atlas, e.g. to be able to specifically study the role of striatum. It
should be noted that the stability analysis should be repeated on a new atlas, since
an increase in the feature space dimension will likely influence the stability.

Furthermore, whereas we have investigated if there were any correlations be-
tween the clustering solutions and the PANSS scale, there are many other factors
that could be interesting to include in a post-hoc analysis if available. For example, it
would be interesting to see if any of the subject clusters were related to external factor
such as smoking or treatment history, which we did not have available information
about in our study.

In this study we included both patients with SZ and healthy controls, since this
enabled us to evaluate views with a diagnosis association (as in earlier studies [12,
20]). However, with the goal of finding potential subtypes within patients with the
heterogeneous SZ diagnosis, we see a interesting potential for running the MCC only
on patients with SZ and then also including clinically relevant information, such as
PANSS scores and treatment history if available, to take better advantage of the poly-
topic learning potential of the MCC algorithm.

5 Conclusion

The goal of this study was to use the multiple co-clustering method on functional
connectivity data, to search for data-driven schizophrenia subtypes.

We found that the stability was higher across initializations than datasplits, but
that even for models with a high view and feature clustering similarity, the sub-
ject clustering similarity was moderate. This highlights the importance of studying
the stability of potential subtyping methods, and we believe that even more efforts
should be devoted to figuring out how the stability depends on various factors, such
as the size of the input data and convergence of the algorithm. Nevertheless, we
found a subtyping solution which had a significant diagnosis association both on the
discovery and the external dataset. This clustering solution included three subtypes
with a potential relation to schizophrenia, which had a predominance of schizophre-
nia patients on both datasets and included nearly all patients with a moderate to
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high PANSS score. Furthermore, we found a feature cluster where the connectivity
values showed a linear trend on both datasets, and where all features were related to
the basal ganglia RSN. Finally, none of the feature clusters were reliably correlated
to any of the PANSS scales, which indicates that the clusters reflect other sources of
variability in the data. In future studies, it would be very interesting to study if a sim-
ilar subtype can be identified using a more fine-grained atlas, which would enable
investigation of the potential influence of specific regions such as the striatum.

We see these results as very promising steps, and consider subtyping methods,
such as the MCC method, to have great potential for exploring more data-driven dis-
ease subtypes for patients with schizophrenia.
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