

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 03, 2024

Formal Security and Privacy in Cryptoeconomic Systems

Chiang, James Hsin-yu

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Chiang, J. H. (2023). Formal Security and Privacy in Cryptoeconomic Systems. Technical University of
Denmark.

https://orbit.dtu.dk/en/publications/4c8f3a28-5bb1-4223-a276-7db39baf0ff3

Formal Security and Privacy in
Cryptoeconomic Systems

James Hsin-yu Chiang
姜欣宇

Ph.D. Thesis

May 2023

Document compiled on June 1, 2023.

Supervisor: Alberto Lluch-Lafuente DTU Compute
Co-supervisor: Bernardo David IT University of Copenhagen
Co-supervisor: Massimo Bartoletti University of Cagliari
Hosting supervisor: Ittay Eyal Technion - Israel Institute of Technology

Technical University of Denmark
Department of Applied Mathematics and Computer Science

i

Abstract

Cryptoeconomics is an emerging science concerned with the formal investigation of permissionless
consensus and the innovative ecosystem of financial applications hosted by such distributed computing
platforms. As a field it lies at the intersection of the study of consensus protocols, economic incentive
design and advanced cryptography for security and privacy.

Permissionless consensus, first introduced by Bitcoin, realizes a novel notion of serverless1 computing,
since any ephemeral, unauthenticated participant can be replaced anytime, even after sending just a
single message. Such protocols achieve global agreement on a history of inputs submitted by clients;
prior to the advent of the Bitcoin protocol, unauthenticated agreement was considered impossible.

The permissionless, “anybody can join” nature of such platforms has given rise to an ecosystem of
financial applications, called Decentralized Finance (DeFi). In contrast to traditional finance, which
is highly asynchronous and loosely coordinated across many institutions and parties, protocols in
DeFi are highly composable since interactions with multiple DeFi venues are settled immediately
with a single interaction, enabling financial innovations such as risk-free strategies or collateral-
free flash loans that are impossible in the traditional setting. The design of financial protocols in
DeFi differ significantly from their counterparts in traditional finance, since they require effective
incentivization mechanisms for rational, yet unknown participants; furthermore, their implementations
are constrained by limited scalability of permissionless consensus, requiring novel approaches to
overcome this. However, DeFi suffers from a lack of formalization impeding formal analysis of its
security. Furthermore, a general lack of privacy in DeFi exposes the system to economic, front-running
attacks which reduce impose a tax on the overall utility of the system.

In this PhD thesis, we investigate the formal security at the intersection of permissionless consensus
and financial applications deployed on top; we formalize the semantics and desired economic properties
of lending protocols and automatic market makers in decentralized finance and observe that a general
lack of privacy enables rational attacks by economic actors, called front-running or Miner-Extractable-
Value. In response, we investigate novel, privacy-enhancing techniques for lower-level, permissionless
consensus as well as higher-level application protocols to mitigate privacy leakage that enables such
economic attacks. We introduce novel realizations of long-running privacy for DeFi applications
enabled by secure multi-party computation and extended notions of differential privacy; we believe
our contributions open up a novel, practical design space for cryptoeconomic applications which
benefit from fine-grained control of user privacy.

This thesis also provides a gentle introduction to input fairness in consensus, security in decentralized
finance and privacy in cryptoeconomic systems; we hope this may serve the interested reader looking
to explore interdisciplinary research domains in cryptoeconomics.

1The term is overloaded. Server-less cloud computing is not permissionless (§3.3.1).

ii

Resumé

Kryptoøkonomi er et område i vækst, der beskæftiger sig med den formelle undersøgelse af tilla-
delsesfri konsensus og det innovative økosystem af finansielle applikationer der er skabt ovenpå
disse distribuerede computerplatforme. Som felt, kombinerer det studiet af konsensusprotokoller med
økonomisk incitamentdesign og avanceret kryptografi for sikkerhed og privatliv.

Tilladelsesfri konsensus, som først blev introduceret af Bitcoin, realiserer en ny forestilling om
serverless computing1, hvor enhver ny-kommen, uautentificeret klient kan erstattes når som helst i
protokollens forløb, selv efter blot at have sendt en enkelt besked. Sådanne protokoller opnår global
enighed om en historie af beskeder sendt af klienter. Inden offentliggørelsen af Bitcoin-protokollen
blev global enighed, mellem sådanne uautoriserede klienter, anset for at være umuligt.

Den tilladelsesfrie, "alle kan være med-karakter af sådanne platforme har været grobund for et økosy-
stem af finansielle applikationer, kaldet Decentralized Finance (DeFi). I modsætning til traditionel
finans, som er asynkron og sparsomt koordineret på tværs af institutioner og parter, er protokoller i
DeFi i stand til at samarbejde. Interaktioner mellem DeFi applikationer muliggør finansiel innovation
såsom risikofrie strategier eller såkaldte flash loans uden sikkerhedsstillelse, der ellers er umulige i
de traditionelle finansielle systemer. Design af finansielle protokoller i DeFi er markant anderledes
sammenlignet med deres modparter i traditionel finans. Blandt andet på grund af de indbyggede
incitament-mekanismer for rationelle klienter, der er nødvendige, samt deres begrænsede skalerbarhed.
Begge er problemer som kræver innovative, om end sikre løsninger indenfor protokoldesign. DeFi
økosystemet lider dog af en mangel på formalisering som gør det næsten umuligt at analysere sikker-
heden af applikationer. Dertil kommer en generel mangel på privatliv i DeFi systemet som muliggør
strategier fra højfrekvenshandel som fx front running og andre “angreb” som udnytter systemet
svagheder for egen vindings skyld.

I denne ph.d.-afhandling undersøger vi den formelle sikkerhed i området mellem tilladelsesfri konsensus
og de dertilhørende finansielle applikationer; vi formaliserer semantikken og de ønskede økonomiske
egenskaber ved låneprotokoller og automatiske markedsskabere i DeFi. Vi observerer at en generel
mangel på privatliv muliggør rationelle angreb fra økonomiske aktører såsom front running og
Miner-Extractable-Value. For at afhjælpe dette, undersøger vi nye teknikker for at fremme privatliv
i tilladelsesfri konsensus samt fjerne den lækage af private informationer på applikationsniveau,
der ellers ville muliggøre økonomiske angreb. Vi introducerer nye protokoller med private løsninger
for DeFi-applikationer, der er bygget op omkring sikker beregning mellem flere klienter - såkaldt
MPC (multiparty computation) - og nye tiltag inden for differential privacy. Dette åbner op for nye
muligheder for design af kryptoøkonomiske applikationer, som gør det muligt at finjustere kontrollen
med brugernes privatliv.

Denne afhandling giver også en skånsom introduktion til input fairness i konsensus, sikkerhed i DeFi
og privatliv i kryptoøkonomiske systemer. Vi håber at dette kan hjælpe den interesserede læser der
ønsker at udforske den tværfaglige forskning inden for kryptoøkonomi.

1Udtrykket refererede oprindeligt til cloud computing, som ikke nødvendigvis er tilladelsesfri (§3.3.1).

iii

Acknowledgements

This PhD was made possible by a 3-year scholarship awarded by the PhD school of DTU Compute;
their support has enabled me to freely investigate an emerging field in computer science. Contributions
presented in this thesis were joint work with 12 external researchers1 across 11 research institutes2 in
Belgium, Denmark, Finland, Israel, Italy and the USA.

A fellowship awarded by the Otto Mønsted foundation and the Innovation Centre Denmark in Tel
Aviv supported a research visit to Ittay Eyal at Technion, Israel for 6 months, expanding my research
horizons to permissionless consensus design and resulting in an important contribution of this thesis.
Ittay has co-authored one of the most cited papers in permissionless consensus and provided generous
mentorship during an unforgettable stay in Israel.

I had the fortune to be advised by Alberto Lluch-Lafuente. Without exception, Alberto has encouraged
me to pursue research questions most meaningful to me and to initiate external collaboration
opportunities to explore new research avenues. Most, if not all, projects in this thesis were made
possible with his support and guidance. This includes several fruitful collaborations with co-supervisor
Massimo Bartoletti, who has contributed some of the earliest formal languages for smart contracts in
cryptoeconomics; I am grateful for the exposure to his formal rigour in the research process, as it has
been an invaluable learning experience.

I wish to extend a special thank you to Bernardo David, who co-supervised this PhD project and
adopted me as a member of his cryptography research group at the IT University of Copenhagen;
Bernardo has contributed some of the most celebrated work in energy-free, permissionless proof-of-
stake consensus, and working under his tutelage opened up the investigation of many privacy-related
research directions in this project; undoubtably, the role of advanced cryptography in our digital
society cannot be underestimated, as it increasingly reconfigures who can do what, from what3.

I am grateful for willing collaborators; in particular, Carsten Baum and Tore Frederiksen were both
co-authors and generous with advice and guidance.

Anders Konring kindly provided the meticulous translation of the abstract into Danish.

This thesis is dedicated to my parents, sister and partner.

1Massimo Bartoletti, Carsten Baum, Bernardo David, Ittay Eyal, Tore Frederiksen, Tiantian Gong, Christian Janos
Lebeda, Mariana Gama, Lorenzo Gentile, Tommi Junttila, Massimiliano Mirelli, Andreas Vandin

2Aalto University, Aarhus University, Alexandria Institute, Basic Algorithms Research - University of Copenhagen, IT
University of Copenhagen, KU Leuven, Protocol Labs, Purdue University, Sant’Anna School for Advanced Studies,
Technion - Israel Institute of Technology, University of Cagliari

3The Moral Character of Cryptographic Work, Phillip Rogaway

iv

https://politics.media.mit.edu/papers/Rogoway_Moral_Cryptography.pdf

Contents

Abstract ii

Resumé iii

Acknowledgements iv

Contents v

I Introduction 1

1 Cryptoeconomics 2
1.1 Definition: Cryptoeconomic Layers 1 & 2 . 2
1.2 Open research problems . 2

2 Thesis Overview 4
2.1 Research questions & thesis contributions . 4

II Background 7

3 L1: Input Fairness in Consensus 8
3.1 Authenticated consensus . 9

3.1.1 Authenticated setting . 9
3.1.2 State Machine Replication . 9
3.1.3 Synchronous model. 10
3.1.4 Asynchronous model. 11

3.2 Input fairness in authenticated consensus. 12
3.3 Permissionless Consensus . 14

3.3.1 Permissionless setting . 14
3.3.2 Impossibility of unauthenticated agreement 14
3.3.3 Nakamoto Proof-of-Work . 15
3.3.4 Nakamoto Proof-of-Stake . 17
3.3.5 Proof-of-Stake + Byzantine Agreement . 18

3.4 Input fairness in the permissionless setting . 18

4 L2: Decentralized Finance (DeFi) 21
4.1 Constraints on L2 applications . 22
4.2 Application archetypes . 23

4.2.1 TradFi: Limit order books . 23
4.2.2 DeFi: Automatic market makers . 23
4.2.3 DeFi: Lending protocols . 25
4.2.4 Atomic composition & Flash loans . 27

4.3 Notions of fairness in DeFi . 28
4.3.1 Transaction ordering . 28

v

Contents

4.3.2 Pre- and Post-trade privacy . 29

5 L2: Privacy in Cryptoeconomic Systems 31
5.1 Update of single private states . 32
5.2 Update of multiple private states . 34
5.3 Differential privacy in smart contracts. 35

5.3.1 Definitions: differential privacy in the trusted curator model 36
5.3.2 Differentially private market mechanisms . 38

III Publications & Manuscripts 39

P1a. A Theory of Automated Market Makers in DeFi 40

P1b. A Theory of Automated Market Makers in DeFi (Journal version) 74

P2. SoK: lending pools in decentralized finance 121

P3. Formal Analysis of Lending Pools in Decentralized Finance 147

P4. Maximizing Extractable Value from Automated Market Makers 169

P5. SoK: Mitigation of Front-running in Decentralized Finance 192

P6. FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security 216

P7. Eagle: Efficient Privacy Preserving Smart Contracts 244

P8. Fuzzy Order Matching: Differentially Private Market Mechanisms with MPC 294

P9. SoK: Privacy-Enhancing Technologies in Finance 316

IV Conclusion 359

6 Future work 360
6.1 Incentive composition in cryptoeconomics . 360
6.2 Permissionless, privacy-preserving smart contracts 360
6.3 Universal, differentially private mechanisms for MPC 361

Bibliography 362

vi

Part I

Introduction

1

1 Cryptoeconomics

1.1 Definition: Cryptoeconomic Layers 1 & 2
The term “Cryptoeconomics” is believed to have emerged from the early years of the Ethereum
developer community. Cryptoeconomics is also the title of a rigorous, economic analysis of the Bitcoin
protocol grounded in the principles of Austrian economics by Eric Voskuil [Vos22].

Towards defining the emerging field or discipline with which this thesis is concerned, we choose to
reproduce the following definition from Brekke and Wassim [BA21] for its generality.

Definition 1.1 (Cryptoeconomics). Cryptoeconomics describes an interdisciplinary, emergent
and experimental field that draws on ideas and concepts from economics, game theory and related
disciplines in the design of peer-to-peer cryptographic systems. Cryptoeconomic systems try to
guarantee certain kinds of information security properties using incentives and/or penalties to
regulate the distribution of efforts, goods and services in new digital economies. Cryptoeconomics is
an embryonic field at present and can be taken to include several areas of focus: information security
engineering, mechanism design, token engineering and market design.

We categorize, as in [BA21], following layers of the crypteconomic stack.

• Layer 1 (L1) refers to the underlying, permissionless consensus system.
• Layer 2 (L2) refers to the token, market or mechanism capacities offered by emerging

cryptoeconomic platforms.

We clarify commonly (mis)used terminology. Blockchain refers to a data structure, in which ordered
transaction batches form an integrity-preserving hash-chain; it is implemented in permissionless
consensus protocols (§3.3) where finality is probabilistic, and the protocol must permit parties
to switch between alternative chains or transaction histories. The term permissioned blockchain
is a misnomer, despite being widely used in marketing communication and even research papers.
Consensus or agreement in the permissioned or authenticated setting (§3.1) is final and does not
require blockchain data structures. Smart Contracts refer to user-defined programs deployed to
a distributed virtual state machine realized by parties executing an instance of permissioned or
permissionless consensus. The unit of interaction between client and smart contract is a Transaction
authorized by a digital signature.

1.2 Open research problems
We briefly highlight general problem domains in Cryptoeconomics exposed by the emergence of
permissionless consensus protocols in recent years and refer to the future work section in Chapter 6.

(1) Formalization. Cryptoeconomic systems are generally under-formalized in practice. The Bitcoin
protocol has no formal specification; the original open-source implementation is simply referred
to as the reference implementation. A lack of protocol formalization continues on layer 2, where

2

1 Cryptoeconomics

the infamous DAO bug1 resulted in roll-back of the Ethereum blockchain, violating the spirit of a
permissionless “world computer”. Formalization of layer 1 and 2 protocols are a necessary requirement
for rigorous security analysis and verification of systems which realize aggregate economic value in
the vicinity of the annual gross domestic product (GDP) of small to medium-sized, industrialized
countries.

(2) Rationality. In the permissionless setting (§3.3.1), identity and authentication cannot be assumed;
this stands in stark contrast to protocol design in the classical setting, where identities are known and
communication is authenticated (§3.1.1). Still, permissionless protocols require an honest threshold
of participants to behave honestly and according to protocol. In particular, the most effective way to
“engineer honest behaviour” without identity is to ensure that it represents the winning strategy for
rational agents; such a protocol is incentive-compatible. However, widely deployed cryptoeconomic
protocols have been shown to violate incentive compatibility, such as Bitcoin (§3.3.3). Many urgent
questions on the secure composition of incentives arising from cryptoeconomic layers 1 and 2 remain
open.

(3) Privacy. Despite the obvious reference to cryptography, permissionless cryptoeconomic layer 1
systems offer no privacy guarantees by default; still, most internet applications require some form of
privacy to be meaningful. The most widely deployed application class in cryptoeconomics is currently
called Decentralized Finance; here, the lack of privacy results in systemic front-running of user inputs,
taxing the utility of the system for all participants. We provide an overview of privacy-enhancing
techniques for cryptoeconomic systems in Chapter 5, and highlight open challenges.

(4) Scalability. Permissionless consensus is synchronous and must be parameterized by the worst-
case network delay (§3.3). This implies a constraint on its inherent scalability; proposals to scale
throughput often introduce trusted third parties for security and/or liveness.

In this thesis we investigate research questions concerned with problem domains (1), (2) and (3). We
motivate the specific research questions addressed by this thesis in Chapter 2.

1https://en.wikipedia.org/wiki/The_DAO_(organization)

3

https://en.wikipedia.org/wiki/The_DAO_(organization)

2 Thesis Overview

All papers in this thesis were authored within the duration of a 3-year Danish PhD, which included
a 6 month research visit to Technion in Israel, hosted by Ittay Eyal. In this chapter, we provide a
high-level discussion of the research questions addressed by the works in this thesis, and point to
relevant background in Part II for domain context.

A snapshot of the publication status of works in this thesis is provided below.

RQ Manuscript Status Venue(s)

1 A theory of Automated Market Makers in DeFi (P1a/P1b) C:
J:

COORDINATION’21
LMCS

SoK: Lending Pools in Decentralized Finance (P2) W: WTSC’21
2 Formal Analysis of Lending Pools in Decentralized Finance (P3) C: ISoLA’22
3 Maximizing Extractable Value from Automated Market Makers (P4) C: FC’22
4 SoK: Mitigation of Front-running in Decentralized Finance (P5) W: DeFi’22
5 FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security (P6) C: -
6 Eagle: Efficient Privacy Preserving Smart Contracts (P7) C: FC’23
7 Differentially Private Market Mechanisms with MPC (P8) C: W: DeFi’23 - prelim results
8 SoK: Privacy-Enhancing Technologies in Finance (P9) C: W: DeFi’23 - full paper talk

Conference, Journal, Workshop,
Paper published, Paper under submission, Peer-reviewed talk

2.1 Research questions & thesis contributions
Our investigations begin with a novel application class called Decentralized Finance (§4) - or DeFi
for short - that first emerged on permissionless consensus protocols (§3.3). Such applications differ
significantly from their counterparts in traditional finance, since they must satisfy the computational,
storage and communication constraints imposed by permissionless consensus. See §4 for a discussion
on how these constraints influence application design in DeFi. Furthermore, such applications
deployed to the permissionless setting must incentivize rational third parties to perform indended
actions to preserve economic safety. As a consequence, many of these applications feature interesting
and novel designs, yet the lack formal specifications of their key functionalities make any security
analysis challenging. Thus, we state our first research question as follows.

RQ 1: What are formal semantics & desired safety properties of DeFi?

We answer RQ 1 by providing the first formal models of the two most widely used DeFi applications,
namely Automatic Market Makers (P1a/P1b, background in §4.2.2) and Lending Protocols (P2,
background in §4.2.3). We formally specify their key functionalities and economic security properties
with appropriate abstraction to apply across different implementations; for example, key security
properties of our lending protocol model apply to all implementations parameterized with different
interest rate functions.

4

https://doi.org/10.1007/978-3-030-78142-2_11
https://doi.org/10.46298/lmcs-18(4:12)2022
https://doi.org/10.1007/978-3-662-63958-0_40
https://doi.org/10.1007/978-3-031-19759-8_21
https://doi.org/10.1007/978-3-031-18283-9_1
https://eprint.iacr.org/2021/1628
https://fc23.ifca.ai/preproceedings/132.pdf
https://fc23.ifca.ai/defi/program.html
https://fc23.ifca.ai/defi/program.html

2 Thesis Overview

Indeed, applications in DeFi must be appropriately parameterized in order to satisfy their intended
economic security properties. In particular, lending protocols in DeFi are exposed to volatile token
prices, which make formal security analysis challenging; the security of liquidations in lending protocols
is highly dependent on the appropriate choice of protocol parameters when exposed to stochastic
price behaviour. Thus;

RQ 2: Can lending protocols be securely parameterized with automated formal verification?

Given the probabilistic nature of such systems, we investigate how stochastic model checking can
be employed to harden liquidation security of lending protocols in P3 for chosen volatility regimes.
This work combines a formal verification environment implementing the lending protocol semantics
formally specified in P2, with a recently proposed statistical model checking framework.

Another major security challenge in DeFi arises from the lack of input fairness in permissionless
consensus systems (background in §3.4), allowing the adversary to censor, order and inject its own
transactions to the blockchain. This permits the block leader in permissionless consensus to extract
financial gain from user actions submitted to Automatic Market Makers, motivating our following
inquiry.

RQ 3: What is the optimal front-running attack on AMM’s?

We answer this research question in P4 (background in §4.3) with surprising results; we introduce the
optimal multi-layer sandwich attack that considers all action types that users can submit to automatic
market makers and name it the Dagwood Sandwich. Our results show that the adversary is never
incentivized to include redeem actions, implying potential difficulty for liquidity providing agents to
retrieve or reallocate their liquidity. In addition to financial loss for the honest user, front-running
introduces artificial demand for block space, implying a utility tax on all users (see §4.3). Naturally,
this leads us to ask;

RQ 4: How can front-running in DeFi be mitigated?

In P5 we survey and expose short-comings of folklore mitigation techniques such as commit-and-reveal,
where the adversary can induce selective aborts to its benefit. We survey proposals to introduce input
fairness; however, such approaches introduce assumptions from the authenticated setting (background
in §3.1.1). Thus, in order to achieve input fairness in the permissionless setting, we ask;

RQ 5: Can fair input ordering be realized in the permissionless setting?

We answer RQ 5 in the affirmative with FairPoS in P6, the first consensus protocol which achieves
input fairness in the permissionless setting (background in §3.4); this is accomplished my means
of delay encryption [BF21] and a novel protocol gadget named “longest extendable chain selection”
which mitigates adversarial attacks to desynchronize expensive, honest key extraction processes by
means of delaying adversarial blocks.

In P5 we also show that input fairness is not sufficient to mitigate front-running in some cases;
public balances can reveal the “direction” of a trade in decentralized finance, permitting a class
of front-running attacks even when input privacy is guaranteed. More generally, input fairness
provides no privacy guarantees on state or outputs from smart contracts. “Fully private” smart
contracts enabled by a trusted curator have been proposed in Hawk [KMS+16]; however, distributing
the trusted curator for security was previously thought to be impractical with secure multi-party
computation (MPC), due to high cryptographic overhead imposed on the MPC evaluation, motivating
the following line of research;

RQ 6: Can privacy-preserving contracts be realized in a practical manner?

We propose Eagle in P7, the first practical realization of privacy-preserving smart contracts with
general expressiveness and support for private state for each user, that succeeds in moving all the
cryptographic overhead outside the MPC evaluation. Eagle improves on [KMS+16] with long-running

5

2 Thesis Overview

private smart contract instances; our model permits clients to outsource computation to a static MPC
committee, and lazily collect their private outputs from the blockchain without server interaction,
even if these go offline.

We argue that the practical setting of Eagle opens up a novel design space for cryptoeconomic
applications by supporting private interaction with smart contracts and computation on private
state fragments. In particular, we revisit dark pool designs in traditional finance, which permit
traders to execute trades in a privacy-preserving manner; such dark pool designs have recently
been implemented in MPC with impressive real-world throughput [dGCSA22, dGCP+22] for the
traditional finance setting, but we observe that any market mechanism based on order-matching will
always leak information about the counter-party; an executed trade necessarily implies an executed
trade in the opposing direction. Thus, an adversary actively participating in a thinly traded dark
pool can directly infer the execution of the honest trader. Consider an honest user trading a large
volume of a given asset over period a fixed period time (time-weighted average price strategy). Here,
the adversary observing such an in-progress execution can anticipate and front-run any future honest
trades executed periodically. We investigate whether market mechanisms exist which provide “pre-
and post-trade” differential privacy [DR+14] over multiple rounds; the classic notion of differential
privacy protects the presence of a single trader in each interaction round and provides rigorous
guarantees for privacy leakage.

RQ 7: Can differentially-private markets be realized in the setting of Eagle P7?

In “Fuzzy Order Matching” (P8), we introduce the first differentially private market mechanisms
(background in §5.3.2) which can be applied equally to the dark pool setting in traditional finance,
or privacy-preserving smart contracts with Eagle [BCDF22] in decentralized finance. We introduce
an extended definition of differential privacy extended to the novel setting of a “trusted curator”
(background in §5.3.1); such a notion must protect the privacy of inputs, but also ensure that correlated
outputs do not violate chosen privacy parameters. We argue that differentially privacy in the trusted
curator model is useful for many other applications involving secure multi-party computations with
correlated outputs.

Finally, we survey the landscape in both traditional and decentralized finance and investigate the
wider potential of applying privacy-preserving techniques;

RQ 8: What problems can privacy-enhancing techniques solve in finance?

In P9, we survey privacy-enhancing techniques in the following categories in finance; identity, KYC,
AML, GDPR, digital asset custody, markets & settlement and future applications. We observe that
the full spectrum of zero-knowledge, secure multi-party computation, fully homomorphic encryption,
threshold secret sharing primitives are proposed to solve practical, privacy-related challenges in
(decentralized) finance; we anticipate increased interest and adoption of such advanced cryptographic
techniques in practice, which were previously mostly of theoretical interest less than a decade ago.

6

Part II

Background

7

3 L1: Input Fairness in Consensus

This chapter provides background and motivation for the following research question1;

RQ 5: Can fair input ordering be realized in permissionless consensus?

We highlight fair input ordering as a consensus property with key significance for application security
in layer 2 of the cryptoeconomic stack; a lack of input fairness in consensus or layer 1 is exploited by
economic actors interacting with layer 2 applications (see background in §4.3).

Notions of input fairness include encrypt-and-reveal, where blinded inputs are first finalized before
they are unblinded for all parties; we achieve the first permissionless consensus protocol which
guarantees such a notion of input fairness in FairPoS (P6). Another notion of input fairness is
receipt-order-fairness, where the arrival time of inputs at parties executing consensus determines
the final ordering; this fairness is only meaningful in the permissioned setting, where a weaker
network adversary is assumed that cannot manipulate arrival time of messages received by consensus
nodes. Thus, input fairness and its applicability differs between settings of authenticated (§3.2) and
permissionless (§3.4) consensus. Even today, many works do not formally delineate between the two,
referring to both classes as “blockchain protocols”, an ambiguous term applicable to either setting.

We dedicate a significant portion of this chapter to providing a minimal introduction to both
authenticated (§3.1) and permissionless consensus (§3.3) for the interested reader; the juxtaposition
of both settings illustrates trade-offs made by permissionless systems, and may provide valuable
context for discussions of input fairness in each model.

The expert reader may wish to jump directly to the discussion of input fairness in the authenticated
(§3.2) and permissionless (§3.4) model and our contributions to achieve input fairness in FairPoS
(P6) for the permissionless setting.

1See Chapter 2 for an overview of research questions addressed by this thesis

8

3 L1: Input Fairness in Consensus

3.1 Authenticated consensus
In this section, we state the underlying assumptions of the authenticated setting (§3.1.1) and provide
a minimal introduction to protocols which achieve authenticated consensus in both synchronous
(§3.1.3) and asynchronous models (§3.1.4). Proposals to achieve input fairness in the authenticated
setting are described in §3.2.

We hope this introduction to authenticated setting will provide useful context in its relation to
the permissionless setting, with respect to differing notions of input fairness that may be achieved.
Examples from this section are adapted from [Wat17] and [Shi20] for our purposes.

3.1.1 Authenticated setting
In the authenticated setting, the following must hold for each participant.

1. Authenticated channels have been established with all parties

2. Identities and numbers of participants are known

3. A public key infrastructure functionality is available

This is a realistic notion in the context of a data center operated by known entities, but may be too
difficult to achieve over the public internet with ephemeral participants which are not known a priori.
Still, it is in this authenticated setting that the notion of byzantine fault tolerant state machine
replication was first conceived and realized; furthermore, in contrast to permissionless consensus,
these can be realized in both the synchronous and asynchronous model; the latter permits the protocol
to execute as fast as network latency allows, enabling protocols with much higher throughput.

3.1.2 State Machine Replication
We restate the standard definition of bbyzantine fault-tolerant state machine replication (SMR).

Definition 3.1 (Byzantine fault-tolerant SMR). A state machine replication protocol is run by
n servers of which f are byzantine corrupted. Honest servers initialize their local state to a common
Γ0 and agree on a sequence of client inputs; for each input x in the finalized order, a deterministic
state transition function T is applied to the current local state Γ and input x to obtain both an
updated state and output value, namely (Γ′, y) = T (Γ, x). Let Γ0 →Tx ... →Tx′ Γ′ denote a valid
history of state updates on Γ0 induced by input sequence x = (x, ..., x′) and T .

• Consistency. For any two honest servers, the local input history of one party is the prefix of
the input history of the other party.

• Liveness. There exists a polynomial function Confirm, such that if an honest player sees an
input, it will be applied to the state update history within Confirm(∆) time, where ∆ is the
worst network delay induced by the adversary in an execution.

• Finality. For any single honest server, there exist a local input history prefix, which is also the
prefix of all local update histories in the future.

Byzantine state machine replication protocols (BFT-SMR) are closely related to single-shot Byzantine
Broadcast (BB) and Byzantine Agreement (BA) protocols. We restate standard definitions of BB
and BA and then sketch how BFT-SMR can be constructed from these primitives in the synchronous
model.

Definition 3.2 (Byzantine Broadcast). BB is run by n parties, of which f are byzantine corrupted.
A single sending party i receives an input to activate the execution, for which the following holds;

9

3 L1: Input Fairness in Consensus

• Agreement. All honest parties output the same value.
• Validity. If the honest sender receives input x, all honest parties will output x.
• Termination. If the sender is honest, all honest parties output (and terminate).

Definition 3.3 (Byzantine Agreement). BA is run by n parties, of which f are corrupted. Each
party i receives an input to activate the execution, for which the following holds;

• Agreement. All honest parties output the same value.
• Validity. If all honest parties receive input x, all honest parties will output x.
• Termination. All honest parties output (and terminate).

3.1.3 Synchronous model.
We begin with the synchronous model towards realizing authenticated consensus and BFT SMR. We
restate the standard definition of the synchronous model.

Definition 3.4 (Synchronous model). Protocols in the synchronous models proceed in rounds;
any message sent in a round is delivered by the beginning of the next round. Thus, messages are
delivered by the network adversary A within a finite delay ∆ that is known to all participants, who
have synchronized clocks;

We illustrate a naive attempt at synchronous BB tolerating f ≤ n− 1 for n ≤ 3.

Example 3.5 (Synchronous BB for n ≤ 3). In the first round, let the sending party signs
its input and sends it to each other party. In the second round, all servers forwards the signed
message received in round 1 to all other servers. In the final round, a server will output the identical,
signed message it received from all other parties, or output nothing. This protocol achieves byzantine
broadcast (Definition 3.2) for n ≤ 3:

• Agreement. If f = 1, where the sender is corrupt, honest receivers can detect inconsistent,
signed messages. If a single receiver is corrupt, it cannot forge signatures and can only remain
silent. If f = 2, only a single honest server remains; agreement is trivially achieved.

• Validity. If the sender is honest, all other honest parties will receive a single signed message
only, and output this.

• Termination. If the sender is honest, the synchrony of the protocol implies termination.

Example 3.5 fails to achieve byzantine broadcast tolerating f ≤ n− 1 for n > 3; consider a colluding
sender and receiver for a protocol execution with n > 3 parties. In round 1, the sender signs two
inconsistent messages and delivers sig(m) to honest servers and sig(m′) to the colluding server. In
round 2, the colluding server forwards sig(m′) to a subset of the honest servers only. Thus, in the
final round, a subset of honest parties has received inconsistent, signed messages (m, m′) and the
other subset has only observed a single, signed message (m), breaking agreement.

The Dolev-Strong protocol [DS83] overcomes this attack by requiring each party to append its own
signature when forwarding a message in a given round; a valid message in each round must include
the sender signature appended with signatures contributed by an additional forwarding party in each
prior round. Thus, it is no longer possible to inject inconsistent messages without prior detection in
the last round, thereby achieving synchronous BB tolerating f ≤ n− 1 for all n. Dolev-strong [DS83]
implies;

Theorem 3.6 (Synchronous BB corruption). Synchronous BB tolerates up to f ≤ n − 1,
assuming signatures.

10

3 L1: Input Fairness in Consensus

Next, we sketch how synchronous agreement can be constructed from synchronous broadcast with
the following example.

Example 3.7 (Synchronous BA). We construct sync BA from sync BB; upon receiving an input,
each party initializes an instance of synchronous BB (Example 3.5) with all other parties. Upon
termination of each BB sub-protocol instance, each party outputs the majority output from all BB
instances.

Together with [DS83], this implies the following;

Theorem 3.8 (Synchronous BA corruption). Synchronous BA tolerates up to f < n/2.

Proof. (Sketch) Assume an execution of ΠsyncBA with corruption f = n/2. All parties receive an
input value 1, but the corrupted parties immediately flip the input bit to 0 after receiving it; all
parties then proceed to execute ΠsyncBA honestly with inputs 0 and 1 respectively. Without an honest
majority, protocol ΠsyncBA has insufficient information to decide an output that is always consistent
with the input received by all honest parties.

Example 3.9 (Synchronous byzantine SMR). We can now construct synchronous BFT SMR
synchronous setting from BB; upon receiving inputs, each server initializes an instance of BB, such
that all honest servers obtain the set of honest inputs. Then, honest parties simply apply a canonical
ordering on the inputs output by the BB sub-protocol instances, and update the local state machine
accordingly.

3.1.4 Asynchronous model.
Next we introduce the asynchronous network model, as it permits modern asynchronous consensus
protocols to execute as fast as network communication permits; parties execute their protocol task
upon receiving an input or message, and do not wait for time-outs to perform protocol actions. We
restate the definition of the asynchronous model.

Definition 3.10 (Asynchronous model). In the asynchronous model, protocols permit participants
to be invoked upon receiving a message from the network, to then perform computation and output
messages to send. Participants do not have access to synchronized clocks, and cannot be activated
following time-outs.

From [DLS88], we restate;

Theorem 3.11. Asynchronous BB tolerates up to f < n/3.

Proof. (Partial sketch) We illustrate the impossibility of asynchronous BB for the case n = 3 and
f = 1, where the broadcasting party is corrupt. Towards contradiction, let us assume an instance of
asynchronous BB tolerating f = n/3. Here, the adversary executes the asynchronous BB protocol,
but ensures that the communication between the two honest parties is delayed by a large amount
relative to the fast communication between itself and the individual honest parties. It then initializes
the BB protocol with input 0 towards one party and with input 1 towards the other honest party.

Since we have assumed a protocol tolerating f = n/3, both honest parties must terminate before
receiving any messages from each other, as a long delay cannot be distinguished from silence, and
communication with the corrupted broadcaster is fast. Thus, one honest party outputs 0, and the
other honest party outputs 1, contradicting agreement.

11

3 L1: Input Fairness in Consensus

Early examples of asynchronous agreement were achieved by Ben-Or [BO83] and Bracha [Bra84]. For
completeness, we note deterministic asynchronous BA is impossible requiring randomized agreement
algorithms [FLP85]. Efforts to advance the state-of-the-art have not subsided; the field has arguably
been reinvigorated by the advent of permissionless consensus protocols. From [DLS88], we restate;

Theorem 3.12. Asynchronous BA tolerates up to f < n/3.

Any asynchronous state-machine-replication protocol cannot contradict the corruption threshold
of Theorem 3.12, as any state-machine-replication trivially realizes the original, one-shot notion of
byzantine agreement in Definition 3.3.

We highlight the asynchronous PBFT protocol as the gold standard for asynchronous state-machine-
replication, a seminal work of Castro and Liskov [CL+99]. A dedicated server plays the role of a
leader, proposing a block of received client inputs. Corrupt leader behavior is detected by honest
servers, triggering a view-change sub-protocol, upon which a new view with another leader is initiated.

Recent BFT-SMR protocols Tendermint [BKM18] and Hotstuff [YMR+19] introduce rotating leaders,
eliminating expensive view-changes when the leader is corrupted; the rotating-leader paradigm is
achieved with additional overhead in comparison to the stable leader view.

Leader-based Consensus Since consensus protocols are leader-based, it is important to note that the
leader or primary can arbitrarily decide the ordering of each batch of committed inputs. Any biased
ordering or censoring of inputs remains undetectable if the primary runs honestly otherwise. Such
“dishonest” behaviour motivates the following notions of input fairness in authenticated consensus.

3.2 Input fairness in authenticated consensus.
In leader-based consensus, the leader has the power to (1) inject its own inputs, (2) observe all
submitted inputs prior to finalization, (3) censor inputs it receives and (4) decide on a final order of
the input batch committed to the log.

As we describe in §4.3.1, this power can be exploited by a rational adversary when implementing
economic applications on the replicated state machine. We first describe several folklore solutions
to achieve input fairness in the authenticated setting and highlight their shortcomings.

• Time-stamped inputs. Each node may sign its own inputs with the current local time-stamp,
requiring each finalized input batch to respect the chronological order of the respective time-
stamps. However, a leader colluding with another client can ensure that a malicious input is
signed with a (manipulated) time-stamp which can then be ordered before or after any other
observed input.

• Commit-and-reveal. All parties first individually commit their inputs, and wait until the
commitments are finalized. The commitments are then opened to reveal the inputs which
are logically ordered according to pre-determined canonical ordering. This approach suffers
from selective abort; the adversary can decide whether to reveal or abort after observing the
commitment openings of all other parties.

• Rotating leaders. At a cost of protocol complexity, rotating leaders can reduce the number of
leaders which exploit censoring and ordering powers, but no input fairness guarantees can be
made in any given round.

Several orthogonal notions of input fairness have been proposed in the setting of authenticated
consensus, which mitigate the power of the adversary to (1) observe the plaintext of honest user
inputs and (2) decide on any arbitrarily input ordering.

12

3 L1: Input Fairness in Consensus

1. Encrypt-and-reveal. Several lines of work [MXC+16, ACG+18] avoid selective abort from
commit-and-reveal by means of threshold encryption. Here, the secret key is distributed across
its members; clients encrypt their inputs to the threshold public key and decryption follows
from an interactive protocol by committee members holding the secret shared key material. If
the corruption threshold is respected, no malicious party can prevent the decryption of inputs.

Alternatively, several proposals realize encrypt-and-reveal by piggybacking on the presence of a
randomness beacon or agreement protocol (in the authenticated setting). In Fairblock [MGZ23],
the presence of a BLS-based randomness beacon is sufficient to realize identity-based-encryption
(IBE) [BF01]; the signature of a given round number that is released by the beacon committee
enables decryption of any message encrypted to that round number. McFly [DHMW22] enables
a similar notion of encrypt-and-reveal but only assumes the presence of a committee performing
authenticated consensus.

2. Receipt-order fairness. Recent works [KZGJ20, CMSZ22, Kur20] implement a fairness notion
based on the “receipt time” of client inputs. A naive implementation permits all members
of the consensus committee to broadcast their local view of received client inputs ordered by
receipt time, and then to apply a deterministic ordering algorithm over all “receipt-order-views”
received from committee members to arrive at a final, fair ordering of inputs. The notion of
γ-receipt-order fairness introduced by [KZGJ20] guarantees agreement on a relative ordering
between two inputs if observed by a γ fraction of nodes.

We note that protocols realizing receipt-order-fairness cannot protect against the adversary
controlling the network between clients and servers running agreement. Instead, it is generally
assumed in [KZGJ20, CMSZ22, Kur20] that the network between client and committee is not
adversarially controlled, restricting the meaningfulness of receipt-order fairness to a very specific
setting with a limited network adversary.

We emphasize that notions of input fairness in the authenticated setting do not trivially apply to the
permissionless setting, introduced in the next section. We highlight our contribution of realizing the
first encrypt-and-reveal scheme for permissionless consensus and refer to §3.4 for relevant background
and the FairPoS manuscript P6.

13

3 L1: Input Fairness in Consensus

3.3 Permissionless Consensus
In this section, we clarify the underlying assumptions of the permissionless setting, in which consensus
was previously considered impossible (§3.3.2), and provide an overview of the different branches
of permissionless consensus and their inherent trade-offs. In contrast to authenticated consensus,
known permisionless protocols are synchronous, as they are parameterized by worst-case network
delays and therefore do not achieve throughput of modern, asynchronous consensus systems in the
authenticated setting. The main branches of permissionless consensus protocols are;

• Nakamoto proof-of-work (§3.3.3)

• Nakamoto proof-of-stake (§3.3.4)

• Proof-of-stake + Byzantine Agreement (§3.3.5)

In section §3.4, we discuss input fairness for the different flavours of permissionless consensus to
motivate a key contribution in this thesis; to the best of our knowledge, FairPoS (P6) is the first
consensus protocol to achieve input fairness in form of encrypt-and-reveal in the permissionless
setting.

3.3.1 Permissionless setting
The permissionless setting describes a model of protocols executed on the public internet without
the presence or setup of trusted authorities to authenticate users; without identification, (1) sybil
entities can be generated arbitrarily and (2) the true number of participants remains unknown.
Furthermore, (3) nothing can be assumed about the reliability of participants in any protocol role;
they can disappear at any point during the protocol execution and must therefore be replaceable.

1. No authentication of parties.

2. Number of parties are unknown.

3. Player replaceability. Protocol participants are replaceable anytime.

Nakamoto consensus protocols (§3.3.3, §3.3.4) satisfy all criteria for the permissionless setting,
whereas Proof-of-stake + BA (§3.3.5) sacrifices (2) to achieve finality of agreement; such a protocol
instance must be parameterized by the number of online participants.

3.3.2 Impossibility of unauthenticated agreement
Prior to Bitcoin [Nak08], unauthenticated consensus was deemed impossible. We restate and simplify
following theorems from [BCL+05] and [PS17b] respectively.

Theorem 3.13. Unauthenticated agreement in synchrony is impossible.

Proof. (Sketch) Without authenticated communication, the adversary can trivially simulate any
protocol role as honest parties cannot distinguish honest and adversarial messages. Assuming a
protocol featuring a fixed set of roles, the adversary can split any honest set into disjoint subsets, each
running “independent” executions without honest majority. Thus, these subsets cannot agree.

Theorem 3.14. Unauthenticated agreement in asynchrony is impossible, even if the adversary does
not corrupt any parties.

Proof. (Sketch) In the asynchronous setting, the adversary can delay messages indefinitely; it splits
the honest parties into two camps and permits the network delay for messages sent within each

14

3 L1: Input Fairness in Consensus

camp to be very small. Messages sent between the honest camps are delayed “indefinitely”. The
two honest camps performing asynchronous agreement must terminate and output as “fast” as the
communication within a camp permits, as they are asynchronous protocol executions. If the two
honest camps receive different inputs, they will therefore output different values before any messages
between the two camps are delivered by the adversary, violating agreement.

These impossibility results are overcome by permissionless consensus protocols in the subsequent
section with assumptions such as honest majority of computational power or honest majority of
online coin-holders.

3.3.3 Nakamoto Proof-of-Work
As defined in §3.3.1, the permissionless setting assumes that the number of online parties participating
in the protocol be unknown. Bitcoin overcomes the impossibility of unauthenticated consensus
highlighted in §3.3.2 by means of assuming honest majority of computation or proof-of-work; here,
a participant must provably expend an expected amount of computation work in order to append a
valid input batch or block to a blockchain.

We defer to [GKL15, PSS17, Ren19, KRS18] for a full formalization of the Bitcoin consensus or
Nakamoto proof-of-work, but emphasize the key protocol properties required for realizing state
machine replication (Definition 3.1).

In Nakamoto proof-of-work, parties initialize their local view of the state machine to an agreed upon
genesis block. Throughout the protocol execution, each generated block containing user inputs
must unambiguously point to another block, resulting in blockchains rooted in genesis. Honest block
leaders (elected by means of proof-of-work) will always extend the longest chain in its local view,
which represents the canonical input or transaction history. Dishonest block leaders may extend any
(sub)chain of blocks, potentially resulting in chain forks; this is indistinguishable from forks from
simultaneous generation of honest blocks or forks resulting from inconsistency in local views caused
by delayed delivery of messages, slowing the propagation of new blocks across the network. The
security of Nakamoto consensus is over defined by structural properties of the local blocktree of
honest parties.

For an execution of Nakamoto consensus of duration T , we restate from [GKL15] widely adopted
notions of consistency (or common-prefix), chain quality and chain growth as security properties over
honest blocktree views.

Definition 3.15 (k-Common Prefix). With overwhelming probability (in T and k), at any point,
the longest chains of two honest players can differ only in the last k blocks. The shared longest chain
prefix is called k-common-prefix.

Definition 3.16 (µ-Chain Quality). With overwhelming probability (in T), for any T consecutive
messages in any longest chain held by some honest player, the fraction of messages that were
“contributed by honest players” is at least µ.

Definition 3.17 (τ, s-Chain Growth). With overwhelming probability (in T), at any point in the
execution, the longest chain of honest players grows by at least τ · s blocks in the last s rounds; τ is
called the chain-growth of the protocol.

Corollary 3.18. CP ∧ CQ ∧ CG =⇒ Consistency ∧ Liveness.

Proof. (Sketch) Chain growth (Def. 3.17) and quality (Def. 3.16) necessarily implies liveness, as
honest blocks are guaranteed to be appended to the common-prefix; k-common prefix (Def. 3.15)
implies consistency.

15

3 L1: Input Fairness in Consensus

Assuming equal distribution of computational power, let us denote the expected block arrival rate as
λ = n ·p, where n is the number of online parties and p the probability for a single party of generating
a valid block in each round. Further, let ∆ denote the maximum message delay in a synchronous
network model. Both λ and ∆ are protocol parameters which must be fixed as a function of the
honest mining fraction α > 1/2 for security (CP, CQ and CG) to hold in Nakamoto proof-of-work.

Theorem 3.19 (Nakamoto proof-of-work satisfies CP, CQ and CG). For any honest mining
fraction α > 1/2, there exists parameters λ and network delay ∆ such that Nakamoto proof-of-work
satisfies k-CP, CQ and CG with overwhelming probability in runtime T and k.

We reproduce Figure 3.1 from [DKT+20] which plots the security thresholds for nakamoto proof-
of-work established in the following works [GKL15, PSS17, KRS18, Ren19, DKT+20], which relate
α, λ and ∆ for a secure parameterization of Nakamoto PoW. Below we highlight the main proof

Figure 3.1: Security bounds for Nakamoto PoW from [GKL15, PSS17, KRS18, Ren19, DKT+20]
relate the adversarial computational fraction (1− α) to the block interval normalized by
network delay (1/(λ∆)).

techniques from aforementioned works based on (1) honest convergence opportunities and (2) private
double-spend attacks.

1. Convergence opportunities are a key proof technique deployed in [GKL15, PSS17, Ren19,
KRS18]. Let a convergence opportunity be convergeH = silence∆ :: uniqueBlockH :: silence∆,
where silence∆ denotes an event where no blocks are generated in period ∆, and uniqueBlockH
the discovery of a single honest block. Such an event guarantees that all honest users converge
on the longest chain in their local view following the first silence period of ∆, as it provides
sufficient time for honest parties to share local block tree views over the network. Then the
isolated honest block occurrence extends this longest chain and is also seen by all honest parties
following another silence period of ∆. Informally, such a convergence event can be leveraged to
demonstrate consistency, chain growth and chain quality without reasoning about adversarial
strategies. Assume k distinct occurrences of convergeH in the absence of adversarial blocks; this
implies k-consistency, quality and chain-growth for honest users. To break k-consistency, A
must interrupt each of the k occurrences of convergeH with an adversarial block. The works
above prove this does not occur with overwhelming probability in runtime T and k.

2. Private double spend attacks are proven in [DKT+20] to represent the worst adversarial
attack in Nakamoto consensus, and thus bounding the success probability of such attacks
implies bounding probability of violating security. Double spend attacks were conjectured in the
original Bitcoin whitepaper [Nak08] to represent the worst adversarial strategy, but this was not
formally proven. Thus, the security threshold for Nakamoto PoW demonstrated in [DKT+20]
and plotted in Figure 3.1 is optimal.

Nakamoto PoW is permissionless. Nakamoto PoW is a permissionless protocol (§3.3.1). (1) Parties
require no authentication; any party can contribute proof-of-work which is publicly verifiable. (2)

16

3 L1: Input Fairness in Consensus

The number of online parties is unknown; the protocol is parameterized by total online hash-rate,
implied by the block arrival rate λ. (3) Any party can contribute a single message (or block) and be
replaced by another online party thereafter.

Nakamoto PoW is synchronous. A secure Nakamoto-PoW protocol is parameterized by honest
hash-rate fraction α > 1/2, block arrival rate λ and maximum network delay ∆ (Theorem 3.19).
Since parameterizing Nakamoto PoW secure implies knowing ∆, the protocol is synchronous (§3.1.3).

Nakamoto PoW is not incentive compatible. As first shown in [ES18], there exist adversarial
strategies for parties executing Nakamoto PoW which would be preferrable to honest behaviour for a
economically rational parties. This is particularly challenging in the permissionless setting without
identities and reputation; specifying honest protocol behaviour which also represents the best choice
for rational parties is desirable, but remains an open problem in the design permissionless consensus
protocols. The Fruitchain protocol [PS17a] extends and improves Nakamoto PoW in this regard.
It achieves δ-approximate fairness for honest mining behaviour; here, an α honest fraction of
computational power receives (1− δ)α fraction of monetary reward.

3.3.4 Nakamoto Proof-of-Stake
Ouroborous [KRDO17] introduced the first Nakamoto Proof-of-Stake consensus protocol in the
permissionless setting. In proof-of-stake, each coin is granted an equal probability of being elected as
block leader in a given slot. The obvious advantage of such an approach is elimination of “wasted
compute” and implied energy consumption. Nakamoto PoS is similar to PoW in that honest parties
always extend the longest chain in their local blocktree view; thus, the security of Nakamoto PoS
can be defined over the same structural properties of local block trees of honest users, as formalized
in definitions 3.15, 3.16 and 3.17.

Leader election in Proof-of-stake requires each party to register a verification key for a verifiably
random function (VRF); this function behaves similar to a keyed pseudo-random function, but also
outputs a proof which allows the owner of the verification key to attest the validity of a VRF output
relative to its pre-image.

At each slot or protocol round, each online party, with its private key, computes a VRF on the
current block, parent block pointer and current round number, which outputs a pseudorandom value;
similarly to PoW, a VRF threshold parameter determines whether the output was “successful”; in
this case, the party is elected block leader and is permitted to extend a blockchain in its local view.

Nakamoto PoS assumes availability of stake Informally, Nakamoto PoS can be considered a
permissionless consensus protocol in a weaker form. In particular, joining the protocol execution
requires availabiltiy of “coin stake”; if no other party is willing to transfer or sell coins, then the
player replaceability property in §3.3.1 cannot hold.

Simulation attacks Since VRF evaluations are “free” and “immediate”, nothing prevents the
adversary from simulating an alternative protocol execution beginning from the genesis block,
indistinguishable from any other honest execution. This is possible because Nakamoto consensus
relies on the longest chain rule; any longest chain appearing in the local view will be adopted, even
if new and old chains diverge significantly. Recent works [DKT21] have been proposed to mitigate
such attacks in the permissionless setting with verifiable delay functions, imposing a temporal cost to
each VRF evaluation, thereby thwarting a simulation attack to produce a new longest chain, as the
production of the adversarial chain cannot outpace that of the honest one.

17

3 L1: Input Fairness in Consensus

3.3.5 Proof-of-Stake + Byzantine Agreement
Algorand [GHM+17] introduces an alternative permissionless consensus protocol which differs from
Nakamoto, longest chain variants, which we denote Proof-of-stake + Byzantine Agreement; instead
of electing block leaders in each round of the protocol, a fresh committee is elected to perform each
step of a synchronous Byzantine Agreement protocol; player replaceability (in §3.3.1) is achieved be
allowing users to emit a single message in each BA role, and then to go silent. Upon completion of
the agreement phase, the block of inputs is finalized; in contrast to Nakamoto consensus, finality
holds with probability 1 once agreement is completed. We briefly highlight the trade-off made to
achieve finality; namely, that the number of honest, online participants must be known in order to
ensure safety in Proof-of-Stake + BA, thereby violating condition (2) of the the permissionless setting
in §3.3.1.

Number of online parties is known. For simplicity, we assume a single online player for each staked
coin. Thus, for a number of n online staking parties, each of the n parties participates in committee
election with equal probability of success. We now demonstrate that the number of online parties
must be known to safely parameterize a PoS + BA protocol instance.

Note that the BA protocol in PoS+BA must be parameterized by the threshold of votes required for
agreement. For an expected committee size of τ and required honesty fraction h, let the number of
honest votes required for BA agreement be fixed at hτ .

Towards bounding the probability that the honesty threshold is maintained in any elected committee
throughout the execution, we first restate the probability of electing exactly τ members from a set of
n online parties below, where the probability of election for each party is given by p;

(
n

τ

)
pτ (1− p)n−τ

For the safety of the protocol, we consider the probability of the “catastrophic event” in which fewer
than hτ honest parties are elected to the committee to illustrate the dependency of secure protocol
parameterization on the number of online parties. Assuming hn honest online parties participating
committee election and election probability p = τ/n, the probability of fewer than hτ elected members
is given by the following probability F .

F =
∑

k<hτ

(
hn

k

)
(τ

n
)k(1− τ

n
)n−k

Note that ensuring a sufficiently low F requires fixing h, τ and n; thus, the number of online players
n must be known to securely parameterize Proof-of-Stake + BA. We refer to [GHM+17] (Appendix
B.2) for a detailed analysis of honest committee election in the setting of Proof-of-stake.

3.4 Input fairness in the permissionless setting
Since permissionless consensus protocols introduced in this section are all leader-based, we refer the
reader to Section 3.2 for an initial description of the (adversarial) leader powers and approaches
towards realizing input fairness in the authenticated setting.

Several challenges arise when attempting to establish notions of input fairness in the permissionless
setting where parties are unauthenticated and future role-assignment of parties is unknown (player-
replaceability). We highlight the challenges and our contribution FairPoS in P6.

18

3 L1: Input Fairness in Consensus

Encrypt-and-reveal with threshold encryption. Whilst threshold encryption committee can be
deployed in the authenticated setting to realize encrypt-and-reveal without selective abort (§3.2),
this becomes challenging in the permissionless setting; realizing threshold key generation and thresh-
old key encryption schemes with player-replaceability remains an open research question; recent
works [GHK+21, CDGK23] have established first theoretical foundations in this direction.

Encrypt-and-reveal with timed-release cryptography. A promising approach is to turn to timed-
release cryptography to implement encrypt-and-reveal in a permissionless setting. First introduced
in the form of time-lock puzzles [RSW96], timed-release cryptography permits any party to extract
the encrypted message by performing a fixed number of operations, which resist parallelization.
In [RSW96], the extraction of a message from a time-lock puzzle requires the extracting party to
perform squarings of a RSA group element in a group of unknown order to obtain the decryption
key. Timed commitments [BN00] ensure well-formedness of the extraction task generated by the
sender. Timed-release cryptography promises encrypt-and-reveal in the permissionless setting since
any party can extract the original message thereby denying the adversary any selective abort attacks
plaguing commit-and-reveal schemes (See P5). Formal security of time-lock puzzles and timed
commitments have been established for the sequential squaring assumption [KLX20] and in the UC
model [BDD+21].

We highlight challenges in timed-release cryptography in practice. Fundamentally, the parameterisa-
tion of timed-release cryptography to match physical time as intended by the sender naturally assumes
the existence and access to the state-of-the-art extraction machine that performs each sequential
operation in the shortest time possible; in practice, investment in specialized ASIC hardware is costly,
and does not preclude unknown or future computing advancements. Thus, relating the intended
timed-release duration to physical time in practice remains challenging. Alternative frameworks to
formalize this relation remains an open problem.

Nonetheless, if one is willing to accept the uncertainty in delay parameterisation, the state-of-the-art
in timed-release cryptography is Delay Encryption, first proposed by by De Feo et al. [BF21]; here,
clients to encrypt to a single session key in each round. The extraction process only needs to be
performed once for each round, thereby revealing the decryption key for all encrypted round inputs.
In contrast, naive usage of time-lock puzzles implies that participants must perform an extraction
process for each input submitted to the permissionless consensus protocol execution. The price paid
for this improvement in usability is complexity in cryptographic assumptions; delay encryption and
its related verifiable-delay-function (VDF) predecessor [DFMPS19] are based on supersingular elliptic
curves isogenenies, which are very memory intensive in practice.

Encrypt-and-reveal in permissionless consensus. In this thesis, we investigate the realization of
input fairness in form of encrypt-and-reveal with delay encryption in permissionless consensus. In
order to relieve clients from performing the costly extraction of delay encrypted inputs, we only
require parties participating in block leader election to perform this task, and to make extraction
keys public by including these in later blocks generated after encrypted inputs are finalized.

• Nakamoto consensus. In FairPoS P6, we realize a Nakamoto Proof-of-Stake protocol with input
fairness from encrypt-and-reveal with delay encryption. A key challenge in this work is to
overcome the network adversary’s ability to “delay” the initialization of honest key extraction
processes by deferring the broadcast of adversarial blocks containing delay encrypted inputs; in
contrast to standard Nakamoto consensus where elected honest leaders can choose to extend
any chain branch in their local view, honest leaders extracting decryption keys from prior
blocks need to have seen these “on-time”, so the decryption keys can be extracted by the
designated slot. FairPoS introduces a new protocol rule for Nakamoto PoS called the “longest
extendable chain selection” rule, which mitigates such synchronization attacks on honest delay

19

3 L1: Input Fairness in Consensus

extraction processes and restores the honest leader’s ability to extend other honest blocks,
thereby maintaining liveness and consistency properties despite the presence of a “stronger
adversary”.

We conjecture FairPoS can be adapted to the proof-of-work setting and consider it an interesting
extension for future work.

• Proof-of-stake + Byzantine Agreement. We briefly discuss applying encrypt-and-reveal with
delay encryption to the proof-of-stake & BA consensus introduced by Algorand [GHM+17].
Here, the same principle from FairPoS can be applied, tasking parties participating in leader
and committee election to post decryption keys after completing extraction, but since blocks
are finalized by a BA committee in each round, no block withholding attacks can be performed,
simplifying analysis.

In contrast to Nakamoto PoS (and by extension FairPoS), however, note that PoS & BA
inherently requires a very high number parties to participate in leader election to guarantee
honest BA committees in each round (§3.3.5); applying delay encryption to such protocols would
imply that all online participants are required to perform the expensive extraction of decryption
keys, even if the probability of getting elected is very low. This dramatically increases the cost
of participation, given the relatively rare event of obtaining block rewards in the PoS & BA
setting.

Thus, we argue that implementation of encrypt-and-release in the permissionless setting is best
motivated in Nakamoto Proof-of-Stake, where only an honest majority of online parties must be
assumed to perform the expensive key extraction.

Receipt-order-fairness in permissionless consensus. We note that receipt-order-fairness introduced
in [KZGJ20] was later extended to the permissionless setting in [KDK22]. We emphasize that the
notion of receipt-order-fairness implies a non-adversarial network between clients submitting inputs
and elected committee members performing consensus, thereby excluding any adversarially induced
receipt delays on inputs sent to nodes participating in consensus. In the spirit of the permissionless
setting, we argue that this is an overly optimistic assumption.

20

4 L2: Decentralized Finance (DeFi)

This chapter provides background and motivation for the following research questions1;

RQ 1: What are formal semantics & desired safety properties of DeFi?

RQ 2: Can lending protocols be securely parameterized with automated formal verification?

RQ 3: What is the optimal front-running attack on AMM’s?

RQ 4: How can front-running in DeFi be mitigated?

Whilst Bitcoin [Nak08] introduced a limited scripting language to implement simple “spending
conditions” for individual coins, it was Ethereum [But13] that first introduced support for general-
purpose programs on the Ethereum Virtual Machine (EVM). The EVM is an expressive stack-machine
and several high-level object-oriented programming languages have implemented which compile to
native EVM bytecode.

Such user-friendly smart contract programming languages opened the floodgates for an innovative
ecosystem of interoperable financial applications. In the EVM, each smart contract exposes user-
defined interfaces that support message-passing, allowing composition of smart contracts; to
facilitate contract composition across different applications, community-proposed smart contract
interface standards have emerged from the Ethereum Request for Comments (ERC) forums; notable
examples include standardized fungible token (ERC20) and non-fungible token (ERC721) interfaces.

The ecosystem built on standardized token interfaces that emerged in recent years is called Decen-
tralized Finance, or DeFi. We dedicate this chapter to providing background for the DeFi domain,
relevant to RQ 1-4 addressed by this thesis; DeFi applications feature similar functionalities as their
traditional finance counterparts, but generally achieve such goals with very different mechanisms -
we argue how these arise from the inherent constraints of building applications on permissionless
consensus in §4.1.

We outline key design features of automatic market makers (§4.2.2) and lending protocols (§4.2.3)
and detail how these are specifically designed to realize token exchanges and lending functionalities
in the permissionless setting (RQ 1,2). Here, we contribute the earliest formal modals of automatic
market makers (P1a/P1b) and lending protocols (P2); such executable specifications of DeFi permit
the formal investigation of structural and incentive properties (e.g. arbitrage and liquidation safety)
across different implementations. These models are amenable to automated formal verification; in P3,
we explore optimal parameterizations for lending protocols, to ensure liquidation safety. Here, our
formal lending protocol model from P2 is implemented in a statistical model-checking environment,
allowing the modelling of stochastic price behaviour and its affect on liquidations in lending protocols.

Another constraint on DeFi applications is the general lack of input fairness (§4.3.1), leading to
rampant front-running in DeFi (RQ 3,4); here, we present how such attacks represent a general tax
on the utility on consensus platforms for all users. We contribute the first optimal front-running
attack on constant-product automatic market makers in P4, a multi-layer sandwich attack on
all AMM action types; surprisingly, our results indicate that the redeem action type submitted by
honest liquidity providers are omitted from the optimal, adversarial strategy, as it does not contribute

1See Chapter 2 for an overview of research questions addressed by this thesis

21

4 L2: Decentralized Finance (DeFi)

to the adversarial profit. This illustrates the challenge of incentive composition; the block leader
participating in layer 1 consensus is incentivized by layer 2 applications to order transactions in an
manner unintended by protocol designers.

A key feature of DeFi is atomic composition, illustrated in §4.2.4; this enables risk-free strategies and
flashloans, which are not possible in traditional finance, where settlement across market venues and
financial institutions is highly asynchronous. Finally, we also discuss open questions on long-running
notions of fairness due to a general lack of pre- and post-trade privacy in DeFi (§4.3.2); this challenge
is addressed in our contribution P9 in this thesis and motivated in §5.3.

4.1 Constraints on L2 applications
We highlight selected constraints specific to the setting of permissionless consensus;

Limited scalability. Permissionless consensus is necessarily synchronous (§3.3) and parameterized
by the worst-case network latency. This implies a bound on block sizes and frequency of block arrival,
limiting the throughput of such systems. Such constraints necessarily effect the design of the smart
contract virtual machine. In the EVM, smart contract execution is bounded by EVM Gas semantics,
which limits computation and state access in each transaction and block. Thus, financial applications
adapted to the DeFi environment have emerged with efficient designs to satisfy compute and storage
constraints. In §4.2.2, we highlight how automatic market makers efficiently realize token exchanges
with constant compute and storage overhead.

A secondary consequence of limited throughput is the limited composability of DeFi applications.
An update in a decentralized exchange updating the asset price may, ideally, trigger liquidation of
collateral present in other DeFi protocols; however, the cost of updating the state of both decentralized
exchange and all collateral positions in dependent contracts is potentially unbounded. In practice,
price updates and liquidations in lending protocols are de-coupled (see §4.2.3). Agents must be
incentivized to explicitly perform individual liquidations with dedicated transactions submitted to
the platform.

Incentivization. Public applications in Decentralized Finance are updated by signed transactions by
pseudonymous participants. Ordering of transactions is determined by anonymous servers running
leader-based consensus. Thus, both clients and block-generating servers must be incentivized to act
according to protocol: Automatic market makers (§4.2.2) rely on arbitrageurs to align the exchange
rate with the fair market rate. Lending protocols (§4.2.3) require liquidators to exchange lender
collateral to recover outstanding loans. Maldesigned or malcomposed incentives may cause arbitrage
and liquidations to fail or block-producers to censor, re-order and inject transactions to their benefit
(Section 4.3.1).

Lack of fairness. Interaction between clients and smart contracts is public. The lack of input
fairness (§3.4) incentivizes the block leader to inject its own transactions and generate an ordering to
front-run or sandwich honest transactions (RQ 3,4 and §4.3). We sketch such attacks in §4.3.1 and
how it reduces the utility of platforms for all users.

22

4 L2: Decentralized Finance (DeFi)

4.2 Application archetypes
4.2.1 TradFi: Limit order books
We illustrate a traditional limit order book to motivate the design of automated market makers
intended for efficient execution in the setting of permissionless consensus protocols.

The task of trading financial assets is traditionally accomplished with limit order books (LOB). Let
such an application support the buying or selling of specific asset at a price denominated in a standard
numeraire currency; traders will submit limit orders, containing a buy or sell bit d ∈ {bid, sell}, a
price limit p, below (d = bid) or above (d = sell) which they are willing to execute the trade, and the
volume v or amount of the asset they wish to trade. A tradei authorized by Pi is the tuple (d, p, v).
We sketch the complexity overhead of performing a single trade at a venue with a limit order book
trade execution engine.

The limit order book maintains lists bids and sells containing unmatched trade orders sorted by price
limit; in the bids list, the bid order with the highest price limit is listed first, whereas in the sells list,
the sell order with the lowest price limit is located at the top. The difference in price limit between
the top of bids and sells lists is called the spread. Let the number of orders in bids and sells be m and
n respectively.

A new trade order entering the limit order book must be matched against the sorted list of trades in
the opposing direction. A (bid, p, v) order, for example, is matched against elements in sells, until
none of the volume v remains; in the worst case, the order volume may match against all orders in
sells, requiring O(n) matching operations, and still have remaining volume v′; in this case, (bid, p, v′)
must be inserted into bids, requiring O(m) complexity for insertion into a sorted list. Thus, the
worst-case complexity of performing a trade in a limit order book is O(m + n).

In the next section, we will see how trades can be performed with O(1) complexity in DeFi applications
called automated market makers .

4.2.2 DeFi: Automatic market makers
Automatic market makers (AMM) processes a trade with O(1) complexity by matching each trade
order with all the token reserves available in the AMM application.

Consider an AMM offering trades between asset pair (τ0, τ1), and holding token reserves (r0 : τ0, r1 :
τ1). Here, let swap(v0 : τ0, v1 : τ1) denote a user order authorizing to trade v0 units of τ0 for a
minimum of v1 units of τ1 in return. The AMM with reserve state (r0 : τ0, r1 : τ1) will always process
trade swap(v0 : τ0, v1 : τ1) if it satisfies the implemented AMM “strategy”, which is to maintain an
invariant over its reserves (r0 : τ0, r1 : τ1). Ignoring trading fees for brevity, any trade updating AMM
reserves from (r0 : τ0, r1 : τ1) to (r0 + v0 : τ0, r1 − v0 : τ1), must satisfy

I(r0, r1) = I(r0 + v0, r1 − v1) (4.1)

for a constant function or swap invariant I : R+ × R+ → R+. Thus, AMM’s are also referred
to as constant function market makers (CFMM) in the literature. A commonly deployed
swap invariant is the constant product function I×(r0, r1) = r0 · r1. Concretely, executing a trade
swap(v0 : τ0, v1 : τ1) means computing v′

1 in

r0 · r1 = (r0 + v0) · (r1 − v′
1) (4.2)

and asserting that v′
1 ≥ v1, where v1 is the minimum amount of τ1 the user is willing to accept for the

trade; the swap order is invalid if this assertion fails. Thus, any trade order is evaluated in constant
time and storage with only a few arithmetic operations. This represents a significant improvement in

23

4 L2: Decentralized Finance (DeFi)

execution cost when compared to limit order books with large lists of buy and sell orders, making
AMM’s suitable for deployment as smart contracts.

Constant functions. The swap invariant or constant function implemented in AMM’s is generally
convex and differentiable (smooth); this is satisfied by commonly implemented constant production
function I×(r0, r1) = r0 · r1. Given a submitted trade swap(v0 : τ0, v1 : τ1) executed on AMM state
(r0 : τ0, r1 : τ1), the amount of v′

1 : τ1 returned to the trader is determined by Eq. (4.2);

v′
1 = r1 −

r0 · r1
(r0 + v0) = r1 · v0

r0 + v0
⇐⇒ v′

1
v0

= r1
r0 + v0

(4.3)

We highlight two observations. (1) For v0 → 0, the exchange rate approaches v′
1/v0 = r1/r0; this is

called the marginal exchange rate. (2) For increasing v0, the amount v′
1 returned to the trader

decreases. Thus, the automated market making strategy of an AMM at state (r0 : τ0, r1 : τ1)
implied by (1) and (2) is to offer an initial, marginal exchange rate of r1/r0, and to decrease the
exchange rate with increasing trade volume in favor of the AMM. Ideally, the marginal exchange rate
of the AMM should be fair, reflecting the wider market prices for traded assets; otherwise, the AMM
would be offering an exchange at an unprofitable rate for itself, or conversely, it would represent an
unattractive market venue for traders.

Arbitrage. The marginal exchange rate of an AMM aligns with external, fair asset prices by means
of interaction with rational arbitrageurs. As we formalize in P1a/P1b, the arbitrageur performs a
trade such that the marginal exchange rate is consistent with that of the fair market exchange rate;
informally, the optimal arbitrage strategy is found by increasing the trade volume, which causes the
exchange rate to deteriorate (Eq. (4.3)). The optimal trade volume is found when additional increase
in trade volume has a negative impact on arbitrage profit.

Note that financial trades are inherently zero-sum. A profit by a rational arbitrageur implies a loss
for the AMM; specifically, it implies a loss for liquidity providers who have provided token reserves
that are matched against trades. This is called impermanent loss and is incurred by liquidity
providers who deposit funds in an AMM, which then experiences hanges in fair asset exchange rates,
resulting in arbitrageurs re-aligning the composition of tokens.

Liquidity providers. A party which deposits funds to an AMM is called a liquidity provider and
agrees to the automated market making strategy implied by the constant function implemented by
the AMM. Thus far, we have omitted trading fees for simplicity, but in our formal AMM model
(P1a/P1b), the rational liquidity provider anticipates that the fees from trading will exceed any
effects from impermanent loss; note that impermanent loss can be avoided by liquidity providers by
actively repositioning their funds, avoiding impermanent loss induced by rebalancing via arbitrage.
The AMM implementation Uniswap V3 [AZS+21] permits liquidity providers to dedicate liquidity to
chosen price ranges, thereby mitigating impermanent loss but not eliminating it; it represents a more
expressive interface for liquidity providers and has been shown to be equivalent to limit order books
in this regard [MMR23]. Still, it can be observed empirically that most liquidity providers in Uniswap
V3 remain unsuccessful in rebalancing AMM funds and suffer impermanent loss nonetheless [HSW22].

We refer to P1a/P1b for a full formalization and analysis of AMM’s and its interfaces exposed to
traders and liquidity providers. We highlight a concurrent line of work that formalizes AMM states as
sets of permissible trades [AECB22, AAE+22, DRCA23]; the proposed “valid trade set” abstraction
conveniently allows for compositional modelling of AMM’s, since it avoids the need for an analytical
treatment of each specific AMM constant function implementation.

24

4 L2: Decentralized Finance (DeFi)

4.2.3 DeFi: Lending protocols
Lending protocols (or “lending pools” in P2) intermediate between borrowers and lenders in the
DeFi environment, athough the dilineation between the two roles is not strict. Since participants are
pseudonymous and carry no identity or reputation, any loan must be collateralized in order to protect
against failure of repayment. A party depositing collateral is both borrower and lender; the collateral
itself is made available for borrowing in other loans, avoiding locked, “unproductive capital”. This may
appear to undermine the effectiveness of collateralization, but sufficient overcollateralization in
real-world lending protocols have shown impressive real-world resilience in recent years [GWPK20a].
We provide an intuition of the formal semantics of the lending protocol model introduced in P2 with
the following example execution.

Consider an initial state with two parties A and B, holding balances of 125 units of τ0 and 100 units
of τ1 respectively. For simplicity, we assume the prices of both assets to be equal P (τ0) = P (τ1).

A [125 : τ0] | B [100 : τ1]

Deposit. Both parties deposit funds to initialize a lending protocol and authorize A : dep(100 : τ0)
and B : dep(100 : τ1) respectively; each deposit of τ0 and τ1 also results in the minting of liquidity
tokens (“minted tokens” in P2), namely {τ0} and {τ1}, which are returned to the depositors; they
can be redeemed to withdraw the deposited tokens with additional interest, if the underlying funds
are loaned out to borrowers. The deposits initialize a lending protocol LP holding 100 : τ0 and
100 : τ1.

A [25 : τ0, 100 : {τ0}] | B [100 : {τ1}]

LP : (100 : τ0) | (100 : τ1)

We note that liquidity tokens {τ0} and {τ1} are transferable if the transfer does not result in the
sender becoming undercollateralized (See liquidation below).

Borrow. Having initialized the lending protocol, party B authorizes a borrow with B : bor(50 : τ0),
receiving 50 units of τ1, previously deposited to the lending protocol by party A; the loan extended
to B is recorded in the state of the lending protocol. Importantly, borrower B is able to receive the
loan of 50 units of τ0 because it holds liquidity shares consisting of 100 units of {τ1} that serve as
collateral; we assume a minimal collateralization factor of 2, which is the ratio of the collateral value
(100 : {τ1}) over the loan value (50 : τ0). Here, the collateral value of liquidity tokens is determined
by the value of the tokens it can be redeemed for (see redeem action below).

A [25 : τ0, 100 : {τ0}] | B [50 : τ0, 100 : {τ1}]

LP : (50 : τ0, {B : 50}) | (100 : τ1)

Since the collateralization factor of B is exactly 2, B’s entire balance of liquidity shares is now
non-transferable; otherwise, this would result in undercollateralization.

We now show that roles of borrowers and lenders are not clearly delineated; party A can also authorize
A : bor(25 : τ1), thereby utilizing its liquidity token balance of 100 : {τ1} as collateral. Thus, both A
and B are both lender and borrower in the resulting state.

A [25 : τ0, 25 : τ1, 100 : {τ0}] | B [50 : τ0, 100 : {τ1}]

LP : (50 : τ0, {B : 50}) | (75 : τ1, {A : 25})

Interest accrual. Over time or with increasing block height, interest accrues in all loans recorded
in the lending protocol. In our example, we apply a 20% interest to all outstanding loans taken
by both A and B. Recall, however, that the minimal collateralization of 2 was already previously

25

4 L2: Decentralized Finance (DeFi)

reached by B; given the increase in loan amount, this interest accrual will result in B becoming
undercollateralized.

A [25 : τ0, 25 : τ1, 100 : {τ0}] | B [50 : τ0, 100 : {τ1}]

LP : (50 : τ0, {B : 60}) | (75 : τ1, {A : 30})

Note that smart contracts deployed to the EVM cannot automatically activate with each block height
increase. Thus, any interest accrual is computed lazily in implementations; the update of the loan
balances with interest is deferred to the next interaction between any party and the lending pool.

Liquidate. A borrower can become undercollateralized if interest continues to accrue without
repayment or if token prices fluctuate: in such a state, the undercollateralized borrower can be
liquidated by any party. In our example execution, A observes that B is undercollateralized and
authorizes A : liq(B, 25 : τ0, 30 : {τ1}), which repays 25 : τ0 of B’s outstanding loan. In return, A
obtains collateral from B, namely 30 : {τ1} which is directly deducted from B’s balance.

A [25 : τ1, 100 : {τ0}, 30 : {τ1}] | B [50 : τ0, 70 : {τ1}]

LP : (75 : τ0, {B : 35}) | (75 : τ1, {A : 30})

Note that the liquidating party obtains a discount on the collateral. This is to ensure that liquidations
are performed in a timely manner by incentivizing rational parties.

Redeem. Finally, we illustrate how liquidity tokens can be redeemed for the underlying tokens,
thereby extracting a profit accrued over time from interest. Here, party A authorizes A : rdm(30 : {τ1}),
thereby returning 30 : {τ1} for 33 : τ1 in return. Since A originally deposited 1 : τ1 for each liquidity
share 1 : {τ1}, the redeem action realizes a profit.

A [58 : τ1, 100 : {τ0}] | B [50 : τ0, 70 : {τ1}]

LP : (75 : τ0, {B : 35}) | (42 : τ1, {A : 30})

We note that the actual interest accrual in lending protocol implementations is a function of liquidity
utilization; namely, the ratio of deposited funds which have been loaned away. If the utilization
ratio is too high, there are no funds that can be redeemed, potentially weakening the incentivization
of liquidating agents, as the collateral may then become unredeemable. If the utilization ratio is too
low, no interest can accrue and parties have no incentivize to deposit funds into the lending protocol.
Thus, the interest function is designed to equilibriate between these two extremes by adjusting interest
rates to incentivize more deposits (higher interest rate) or more borrows (lower interest rate). We
refer to an overview of interest rate functions deployed by implementations in [GWPK20b] and to
our formal model in P2 for full lending protocol semantics and their security properties.

Liquidation safety. The security of loans extended to borrowers in lending protocols is contingent on
the possibility of recovering the loan in case the borrower’s collateralization falls below the minimum
threshold. Whilst the accrual of interest, applied in lock-step with chain growth, is predictable and
gradual, the prices of loaned and collateralized token assets can be volatile, resulting in sudden
undercollateralization of borrowing parties; we contribute a formal analysis to determine secure
parameterizations of lending protocols by means of a stochastic model checking framework in P3,
which allows the exploration of liquidation security for different price volatility regimes and liquidator
behaviour. Further, we refer to [PWXL21] for an empircal study on the security of liquidation in
real-world lending protocols.

On-chain prices & incentive composition. Lending protocols rely on price oracles to securely
compute collateralization ratios of borrowing parties. In practice, third parties (price oracles) are

26

4 L2: Decentralized Finance (DeFi)

trusted to accurately post token prices to smart contracts which are then read by lending protocol
implementations during execution. In the spirit of the permissionless setting, it would seem preferable
to rely on prices implied by the marginal exchange rate of automatic market makers deployed to
the (on-chain) DeFi environment, but assessing fair token prices directly on AMM’s in decentralized
finance remains an open challenge. In particular, the liquidation incentive in lending protocols
motivates manipulations of AMM oracles in DeFi by means of large trades which perturb the price;
this price impact can then unlock liquidations exploited by the adversary for profit. Here, the
arbitrage incentive alone does not suffice to keep the AMM price aligned with global, fair token
prices when composed with the liquidation incentive of lending protocols.

This highlights an open challenge in DeFi to achieve secure composition of incentives, which in
isolation motivate intended behaviour, but in composition with external protocol incentives lead
to undesirable behaviour. In addition to composing poorly with AMM price oracles, the interest
incentive from lending protocols on deposited tokens also competes directly with the underlying
proof-of-stake consensus protocol, which rewards parties to stake coins and secure consensus with
staking incentives; here, the rational player will express a preference for depositing in the lending
protocol if the interest exceeds the staking reward, potentially weakening the security of the underlying
proof-of-stake consensus protocol. This phenomena was investigated in [Chi21] with agent based
simulations; a formal understanding of incentive composition remains an open problem of great
importance.

4.2.4 Atomic composition & Flash loans
In contrast to traditional finance, interactions with multiple venues in a DeFi ecosystem can be
performed within a single blockchain transaction, implying immediate or atomic settlement. More
generally, a signed transaction txId can authorize messages to multiple smart contract interfaces;
consider a txId that authorizes a sequence of calls to multiple contracts c1, ..., cn. Then, the txId
either succeeds to update the state from Γ to Γ′ by executing action1, ..., actionn or reverts entirely if
even a single of the actions does not execute successfully.

Γ txId−−→ Γ′ Γ txId:c1:action1−−−−−−−−→ · · · txId:cn:actionn−−−−−−−−−→ Γ′

Risk free strategies In practice, atomic composition of actions in the EVM environment is performed
by implementing a strategy in a user-deployed smart contract; let cusr denote such a contract instance.
When the user issues a transaction authorizing a call to cusr : exec, the evaluation thereof can issue
calls to external, DeFi contracts c1, c2, ... thereby executing the intended financial strategy:

Γ txId calls cusr:exec(cusr,v:τ)−−−−−−−−−−−−−−−−→ cusr asserts (cusr.bal>cusr.bal(Γ))−−−−−−−−−−−−−−−−−−−→ Γ′
cusr calls c1:action1−−−−−−−−−−−→ cusr calls c2:action2−−−−−−−−−−−→ ···−→

Importantly, such a strategy can be implemented in risk-free fashion for the user, by ensuring that the
implementation of cusr : exec concludes with an assertion that the balance of cusr increases following
execution. If this assertion fails, the entire transaction txId is reverted and the state is reset to Γ.

Flashloans Since atomic composition permits risk free strategies in the DeFi environment, lending
funds to a party performing such strategy can also be realized in a risk free manner.

In the following execution sketch, a transaction txId authorizes a call to a flash loan contract cflashLn,
indicating the requested loan amount and a pointer to the user-deployed contract cusr implementing
the user’s financial strategy to deploy the borrowed tokens. The implementation of cflashLn : borr then

27

4 L2: Decentralized Finance (DeFi)

transfers v : τ to cusr in a forwarded message to cusr : exec, permitting the user strategy to proceed
with the borrowed funds.

Γ txId calls cflashLn:borr(v:τ,cusr)−−−−−−−−−−−−−−−−−→ cflashLn asserts (cflashLn.bal>cflashLn.bal(Γ))−−−−−−−−−−−−−−−−−−−−−−−→ Γ′
cflashLn calls cuser:exec−−−−−−−−−−−−→

Importantly, once the function body implementing cusr : exec completes, the program evaluation then
returns to the remainder of cflashLn : borr, which finally asserts that the final contract balance exceeds
the initial balance at state Γ, thereby insuring repayment of the flashloan.

4.3 Notions of fairness in DeFi
4.3.1 Transaction ordering
As highlighted in §3.4, different notions of input fairness have been proposed in the permissionless
consensus setting; in practice, popular blockchain platforms such as Ethereum guarantee no input
fairness out-of-the-box; as a leader-based consensus protocol, the elected round leader can choose to
order, censor and inject transactions in each block. Given a set of pending transactions received
over the P2P gossip network, each block leader is incentivized to extract the maximum value from this
set of transactions with each block; this has been named Miner Extractable Value (MEV) and
formal definitions have been proposed in Clockwork finance [BDKJ21] and by Bartoletti et al. [BZ23].

Optimal MEV from AMM’s. We sketch how miner extractable value can be extracted from AMM
transactions by means of sandwich attacks. To illustrate such an attack, we first consider an
honest trace of trades performed by honest user A on an AMM in state (100 : τ0, 100 : τ1). Here, we
assume P (τ0) = P (τ1). In our initial, honest example, A authorizes the same swap twice, namely
two swap(15 : τ0, 10 : τ1) actions, which each trade 15 : τ0 for a minimum of 10 : τ1. Subsequently, A
restores the state of the AMM to its initial state by authorizing a swap in the opposing direction
swap(23 : τ1, 30 : τ0); since trading fees are omitted, A also restores its own initial balance after this
third and final trade. The execution is shown below and satisfies the constant product function
in Eq. (4.2).

(100 : τ0, 100 : τ1) | A[30 : τ0]
A:swap(15:τ0,10:τ1)−−−−−−−−−−−−→ (115 : τ0, 87 : τ1) | A[15 : τ0, 13 : τ1]
A:swap(15:τ0,10:τ1)−−−−−−−−−−−−→ (130 : τ0, 77 : τ1) | A[0 : τ0, 23 : τ1]
A:swap(23:τ1,30:τ0)−−−−−−−−−−−−→ (100 : τ0, 100 : τ1) | A[30 : τ0]

We highlight two key observations: (1) firstly, A receives a lesser exchange rate with the second trade,
even though the swap parameters of the first two trades are identical and (2) secondly, given that
prices of both token types are equal, the final trade by A is necessarily profitable.

We modify our initial, honest execution to obtain an optimal front-running sandwich attack
performed by malicious M on A’s authorized trade swap(23 : τ0, 30 : τ1); this sandwich attack
is obtained by simply allowing M to perform the first and final action from the previous honest,
execution. By observing the balance of M resulting from the attack and given P (τ0) = P (τ1), it is

28

4 L2: Decentralized Finance (DeFi)

apparent that M achieves a profit of 5.

(100 : τ0, 100 : τ1) | A[30 : τ0] |M[15 : τ0, 10 : τ1]
M:swap(15:τ0,10:τ1)−−−−−−−−−−−−→ (115 : τ0, 87 : τ1) | A[30 : τ0] |M[0 : τ0, 23 : τ1]
A:swap(15:τ0,10:τ1)−−−−−−−−−−−−→ (130 : τ0, 77 : τ1) | A[15 : τ0, 10 : τ1] |M[0 : τ0, 23 : τ1]
M:swap(23:τ1,30:τ0)−−−−−−−−−−−−→ (100 : τ0, 100 : τ1) | A[15 : τ0, 10 : τ1] |M[30 : τ0, 0 : τ1]

We argue the optimality of the attack; (1) honest A receives the minimum amount of 10 : τ1 permitted
by its authorized trade limit. (2) the marginal exchange rate of the AMM in the final state is aligned
with the asset prices of τ0 and τ1, since P (τ1) = P (τ0) and the marginal exchange rate is 1; thus no
additional arbitrage can be extracted by M. Thus, the attack is optimal as there is no additional
value for the attacker to extract.

We contribute the first formalization of the optimal MEV attack for constant-product AMM’s in
P4; here, we intrduce an optimal MEV strategy named the Dagwood sandwich which considers
all AMM action types, namely swap, deposit and redeem. Surprisingly, the optimal attack never
includes honest redeem actions, as it does not contribute to the attackers profit. This may imply
difficulty to redeem liquidity from AMM’s in times of high blockchain fees or congestion.

MEV penalizes utility. Consider the sandwich attack illustrated previously; in absence of the
front-running adversary, let there be the honest user A that is intending to submit a single swap
transaction to be finalized in the blockchain; here, the demand for block-space is for one transaction
only. With the introduction of a front-running adversary M, the demand for block-space now increases
to three transactions; namely, the adversarial front-run and back-run transaction in addition to the
original honest transaction. The increased demand induced by the promise of front-running profits
naturally increases the market fees for transactions finalized on the blockchain, thereby reducing the
utility for all users, not just A who experiences a worsened exchange rate on its trade due to the
sandwich attack.

Input fairness mitigates MEV. We survey proposals to prevent front-running in P5 and refer to our
discussion of input fairness notions realizable in the permissionless (§3.4) and authenticated (§3.2)
settings. We contribute FairPoS P6 which formally guarantees the encrypt-and-reveal notion of input
fairness in permissionless consensus.

4.3.2 Pre- and Post-trade privacy
While input fairness may prevent front-running attacks formalized in P4, it does not guarantee
post-trade privacy; the trade order is merely blinded temporarily prior to execution. However, there
are trading strategies which require pre- and post-trade privacy; namely, both submitted trade orders
and their execution remain private. Consider the time-weighted-average-price strategy [WRA21];
here, the trader breaks a larger trade volume into smaller trades, which are periodically executed
to minimize price impact. In traditional finance, such strategies are executed at dark pool venues,
where the venue operator is trusted to keep order flow and execution private. Realizing this in the
DeFi setting requires a notion of privacy-preserving smart contracts currently available on protocols
such as Ethereum.

This motivates a key line of investigation of this thesis; pre- and post-trade privacy requires privacy-
preserving smart contracts where users can privately input parameters to the contract execution
and preserve privacy of their individual private state (and balances). We introduce this model

29

4 L2: Decentralized Finance (DeFi)

of privacy-preserving smart contracts in §5.2 and propose the first practical realization thereof in
Eagle (P7), where private smart contract execution is performed in an outsourced secure multi-party
computation (MPC) setting; to achieve practical efficiency, all cryptographic overhead is moved
outside the costly MPC evaluation, leaving only the smart contract logic to be evaluated inside the
MPC protocol. Such a framework permits the implementation of dark pools in the decentralized
finance setting; dark pools are private trading venues in traditional finance which ensure that trades
can be executed privately, relying on a trusted venue operator to maintain the privacy of client trade
orders and execution.

Furthermore, we observe that even with privacy-preserving smart contracts, the classical design of
dark pools leak privacy, even when the dark pool venue operator is distributed with MPC. This
motivates the design of the first differentially private market mechanism in our work P8 that also
extends the classical notion of differential privacy to the trusted curator or MPC setting, where
individual, private outputs may be correlated. We refer to §5.3 for a discussion of differential privacy
in smart contract applications.

30

5 L2: Privacy in Cryptoeconomic Systems

This chapter provides background and motivation for the following research questions1;

RQ 6: Can privacy-preserving contracts be realized in a practical manner?

RQ 7: Can differentially-private markets be realized in the setting of Eagle?

RQ 8: What problems can privacy-enhancing techniques solve in finance?

Standard smart contracts, as those supported by the EVM platform, feature no privacy by default.
We have shown how this can lead to economic attacks in the §4.3.1 and P4; however, more generally
many internet application requires some form of privacy to be meaningful, thereby motivating the
investigation of meaningful computation over private states.

Informally, let the owner of a private state fragment in a smart contract be a user who has exclusive
knowledge or ability to access its current private state in “cleartext”. An owner cannot arbitrarily
modify its own private state; any update must adhere to the smart contract logic agreed upon apriori.
We argue that meaningful applications require the simultaneous update on private states of multiple
users, whilst maintaining the privacy of all private states following their updates. Achieving this
is goal non-trivial, motivating our work Eagle in P7 and our proposed differentially-private market
mechanisms in P8.

We provide an overview of current proposals to realize privacy-preserving smart contracts in Fig. 5.1
and organize the proposals to realize privacy-preserving smart contracts in the following two categories.

In §5.1, a single private states can only be updated by its owner in each smart contract state
update; this makes it challenging to apply contract logic over private states owned by separate
users, limiting its expressiveness. This is partially overcome in the privacy-preserving UTXO model
proposed by [BCG+20, XCZ+22, SCG+14].

In §5.2, the update of multiple private states is enabled with the introduction of the the contract
manager model, achieving higher expressiveness than in §5.1. Here, we highlight our contribution
Eagle (P7), the first practical and efficient privacy-preserving smart contract framework in this setting,
which extends the contract manager model by enabling long-running private contract execution,
where clients can conveniently submit private inputs and “receive” outputs whenever they come online
in a lazy fashion. In contrast to prior proposals, Eagle achieves its efficiency by moving expensive
cryptographic overhead outside the MPC evaluation, whilst achieving the security from private input
and output sub-protocols.

Note that even with privacy-preserving smart contracts permitting private inputs and privacy-
preserving state updates, private data from other users can trivially leak from the contract logic
itself; we propose the very first notions of differential privacy for smart contracts to address
this in §5.3 and refer to P8 for detailed definitions (§5.3.1), as well as our proposed “fuzzy order
matching” market mechanisms (§5.3.2) that satisfy these.

1See Chapter 2 for an overview of research questions addressed by this thesis

31

5 L2: Privacy in Cryptoeconomic Systems

Zkay Zexe Kachina Hawk zkHawk Eagle (P7)
State update single private state (§5.1) multiple private states (§5.2)
Contract logic public private public/(private)
User input private/public single private input multiple private inputs
User interaction concurrent non-concurrent concurrent round-based multi-round (& optional)
User funds private balance private balance and transfers
Security FHE ZK UC ZK UC MPC & ZK
Complexity FHE evaluation single prover ZK zkSNARK in MPC NIZK in MPC only contract logic in MPC

Figure 5.1: Overview of privacy-perserving smart contract proposals.

5.1 Update of single private states
Homomorphic encryption. Proposals Zkay [SBG+19], ZeeStar [SBBV22] and SmartFHE [SA21]
deploy homomorphic or fully homomorphic encryption (FHE) to permit smart contract computation
on encrypted data. In FHE, the holder of the public key can encrypt information, while only the
holder of the private key can decrypt; Given encrypted of data as well as the public key, anyone
can perform computations on the encrypted data and evaluate algorithms on encrypted inputs. For
example, given encryptions [x], [y], [z] of the values x, y, z, FHE allows to compute the encryption
[x · y + z] of x · y + z. In this setting, we consider the owner of the FHE key pair as the owner of the
encrypted private state stored on the blockchain.

Note that FHE computation can only be performed on data encrypted to the same public key. Thus,
each smart contract computation only updates individual private state fragments in isolation;
encrypted data of owner A cannot trivially be input to a computation on encrypted data of another
owner B that is encrypted under a different FHE key, making smart contract computation over
multiple, single-owner private states challenging.

Alternatively, proposals such as Penumbra [Pen23] require the FHE key pair to be generated by a
distributed key generation (DKG) committee; here, anybody can provide private inputs by encrypting
to the public key output by the DKG; computation is then performed over all encrypted inputs
resulting in a secret state fragment. Here, the notion of a “single owner private state” can no longer
be maintained; opening the private key material by the DKG committee following FHE computation
reveals the entire secret smart contract state to all parties.

Shared private states. Towards meaningful smart contract computation over multiple, single-owner
private states, the Unspent Transaction Output Model (UTXO) implemented by Zexe [BCG+20,
XCZ+22] extends the privacy cryptocurrency protocol Zcash [SCG+14] with smart contract func-
tionality. In the UTXO model, every state transition consumes previously “unspent” private state
fragments in cryptographic commitment form, and generates new private state fragments. In the
following example, we highlight that the privacy-preserving UTXO model leverages shared private
state fragments to achieve meaningful interaction between private states owned by separate users.

Let ⟨σi⟩ denote a private state fragment owned by party Pi ∈ P . Further, we assume an initial smart
contract state ⟨σa⟩ | ⟨σb⟩ where parties Pa and Pb are exclusive owners of their private states. Let
the smart contract state transition function be denoted F ; in this setting, each state transition is
performed over private states authorized by the owner of these private states.

In a first step, let party Pa authorize a state transition over the initial smart contract state. Thus,
Pa authorizes the “consumption” of single-owner private state σa, and provides input xa to the state
transition F , such that σab ← F (xa; σa). As a result, σa is removed from the smart contract state
and a new private state fragment σab is added to the updated contract state, shown below.

⟨σa⟩ | ⟨σb⟩
Pa authorizes F (xa;σa)−−−−−−−−−−−−−−−→ ⟨σb⟩ | ⟨σab⟩

32

5 L2: Privacy in Cryptoeconomic Systems

Here, private state σab is shared between parties Pa and Pb, meaning that this state is known and
can be spent by both Pa and Pb. Next, let party Pb authorize a state transition on both a private
state σb and the private state it shares with Pa, namely σab. The evaluation of the state transition
function over consumed state fragment σb and Pb’s input xb results in the creation of private state
σbc, now shared between Pb and Pc: namely, σbc ← F (xb; σb, σab).

⟨σb⟩ | ⟨σab⟩
Pb authorizes F (xb;σb,σab)−−−−−−−−−−−−−−−−−→ ⟨σbc⟩

Finally, party Pc authorizes a state transition, consuming σbc and outputting the final single-owner
state fragment σc.

⟨σbc⟩
Pc authorizes F (xc;σbc)−−−−−−−−−−−−−−−→ ⟨σc⟩

Thus, over the sequence of state transitions above, we have illustrated a smart contract update which
is performed over single-owner private state fragments σa and σb and resulted in the creation of
single-owner private state σc, thus enabling smart contracts over multiple, single-owner private state
fragments; here, each state transition is authorized by a party on private state fragments it (jointly)
owns. Inherent limitation in expressiveness remain, however; performing such a state update over
multiple, single-owner private states requires multiple authorization steps and cannot be achieved in
a single contract update (Section 5.2).

We briefly sketch how shared private state model is implemented and refer to [BCG+20, XCZ+22]
for details. Private states are realized as cryptographic commitments, generated by authorizing
clients in each state transition; these can be added to a cryptographic accumulator to break any
associations between creation and destruction of commitments. Consuming commitments previously
added to the accumulator requires a proof of membership and a public posting of a unique serial
number, preventing the re-use or double-spending of commitments. A state transition generating a
shared private state fragment requires that the authorizing client share the commitment opening
with the joint-owner of the new state fragment; thus, this assumes secure and private communication
between the two. Finally, an authorization is a valid non-interactive zero-knowledge proof, or
NIZK, that the authorizing party has knowledge of the private state(s) being consumed, and that
the newly created state commitment adheres to the transition logic F applied to consumed states
and a client-chosen input.

Input concurrency. The authors of Kachina [KKK21] highlight a lack of input concurrency in the
preceding shared private state model. Consider extending our shared private state model with public
state fragment σ. Let an initial contract state with private and public state fragments be updated by
the following two transitions governed by smart contract function F ;

⟨σa⟩ | ⟨σb⟩ | σ
Pa authorizes F (xa;σa,σ)−−−−−−−−−−−−−−−−→ ⟨σb⟩ | ⟨σab⟩ | σ′ Pb authorizes F (xb;σb,σ′)−−−−−−−−−−−−−−−−→ ⟨σab⟩ | ⟨σbc⟩ | σ′′

The validity of the execution above implies the following;

(a) (σab, σ′)← F (xa; σa, σ)

(b) (σbc, σ′′)← F (xb; σb, σ′)

Informally, let us assume that the two state updates are logically concurrent; namely,

(c) (σbc, σ′)← F (xb; σb, σ)

(d) (σab, σ′′)← F (xa; σa, σ′)

Thus, the reversed ordering of authorized transitions results in the same final contract state;

⟨σa⟩ | ⟨σb⟩ | σ
Pb authorizes F (xb;σb,σ)−−−−−−−−−−−−−−−−→ ⟨σa⟩ | ⟨σbc⟩ | σ′ Pa authorizes F (xa;σa,σ′)−−−−−−−−−−−−−−−−−→ ⟨σab⟩ | ⟨σbc⟩ | σ′′

33

5 L2: Privacy in Cryptoeconomic Systems

However, even though our example shows logically concurrent transitions over private and public state
fragments, in practice, the NIZK proofs generated by Pa and Pb cannot be used in arbitrary order;
namely, a ZK proof of statement (a) above, for example, does not imply a valid proof of (d), as the
statement is proven over different public states (σ vs. σ′). Similarly, this holds for statement (b) and
(c). Since orderings of transactions finalized to the blockchain are unknown at the time of generating
transactions, authorized transactions may fail if they are interacting with public state fragments
commonly updated by users. This makes the implementation of applications in decentralized finance
challenging, as market applications are frequently updated by interactions with different clients.

In Kachina [KKK21], an alternative to the UTXO model is proposed for privacy-preserving smart
contracts. Here, each update is still authorized by a single user, thereby updating private state(s) as
well as a public one; input concurrency is achieved by introducing an oracle transcript model. A
key idea here is the following; instead of proving a relation over the public state fragment σ explicitly,
such as in statements (a-d) above, a statement over a valid interaction transcript T with a public
state oracle O(σ) is proven in zero-knowledge. If the same authorized state update is performed on
a different public state σ′, the zero-knowledge proof remains valid as long as the interaction with
O(σ′) returns the same transcript T , to which the zero-knowledge proof is bound. Thus, this enables
concurrency for input authorizations on private smart contract updates that are logically concurrent.
Kachina [KKK21] formalizes the oracle transcript model in the universal composability [Can01]
framework. We refer to their work for further details on the oracle transcript model.

5.2 Update of multiple private states
Contract manager model. Towards a model of updates over multiple, single-owner private states,
Hawk [KMS+16] proposes a “minimally trusted” contract manager; a corrupted contract manager
breaks privacy, but the integrity of smart contract updates is preserved. In this model, state transitions
occur in round-based interactions between users and contract manager, where clients are assumed
to have established secure and private communication channels with the contract manager. Thus,
such a model of privacy-preserving smart contracts is not permissionless (§3.3.1). Still, if this can
restriction can be accepted in practice, this model realizes a level of expressiveness unmatched by
other proposals.

In the contract manager model, each round consists of a input, evaluation and output phase, where
updates to all individual private state fragments is finalized on the blockchain authorized by the
contract manager. We illustrate the case for a non-reactive, single-shot contract execution consisting
of a single update over single-owner private states. In the input phase, let users Pa, Pb and Pc

provide private inputs and the cleartext of their private state to the contract manager, who computes
contract transition function F over private inputs and state during the evaluation phase;

(ya, yb, yc; σ′
a, σ′

b, σ′
c)← F (xa, xb, xc; σa, σb, σc) (5.1)

The contract manager computes both state updates and explicit output values which are privately
returned to each participant during the output phase; here, the contract manager M also authorizes
the update to private state fragments on the blockchain;

⟨σa⟩ | ⟨σb⟩ | ⟨σc⟩
M authorizes F (xa,xb,xc;σa,σb,σc)−−−−−−−−−−−−−−−−−−−−−−→ ⟨σ′

a⟩ | ⟨σ′
b⟩ | ⟨σ′

c⟩

In Hawk [KMS+16], the contract manager authorization of such a privacy-preserving update to
individual private states requires it to generate a verifying zero-knowledge Succinct Argument of
Knowledge (zkSNARK) proof, attesting that the update of private states is faithful to a valid
evaluation of F over client inputs and their private states. Note that clients must also prove the
validity of their “private state” provided to the contract manager during the input phase, as only

34

5 L2: Privacy in Cryptoeconomic Systems

the owner can access the the current state of its private state fragment. Private state fragments
are implemented as in the UTXO model of [SCG+14, BCG+20, XCZ+22]; each round of interaction
with the contract manager consumes cryptographic commitments of private states and generates new
commitments, each binding an updated private state.

Distributed contract manager. A natural idea is to realize the contract manager by means of secure
multi-party computation (MPC), thereby preventing partial committee corruption from breaking
privacy; indeed, this is proposed in [KMS+16], but remains impractical due to the requirement for
the contract manager to generate a zkSNARK proof inside the MPC protocol itself; computation
performed in a MPC incurs a significant overhead, which is compounded by the need to compute
cryptographic primitives in addition to the smart contract logic itself. Recent work zkHawk [BCT21]
realizes the contract manager model with a relaxed proof obligation for the MPC committee
acting as the distributed contract manager; here, the contract manager is only required to prove that
no tokens were minted during the output phase, but the zero-knowledge proof is still computed inside
an MPC circuit, incurring the overhead of MPC computation.

Our contribution Eagle in P7 represents the first efficient realization of the distributed contract
manager with secure multi-party computation (MPC), which only evaluates the contract logic
inside the MPC protocol over private inputs and state. This is achieved by moving all other
cryptographic overhead outside the MPC computation; our proposed input protocol permits clients
to efficiently prove consistency between their inputs and private state during the input phase. The
output phase of Eagle guarantees that a fully corrupted MPC committee cannot arbitrarily mint
tokens on the blockchain, thereby preserving integrity of the underlying assets.

Eagle also extends the contract manager model with long-running, privacy-preserving smart contracts,
where a privacy-preserving smart contract is executed over multiple rounds in a reactive manner.
Here, clients can optionally choose to participate in a given round and then go offline - the outputs
and openings to the updated private state commitments are posted to the blockchain in “masked”
form, and thus can be collected and “unmasked” by clients whenever they come online. We establish
UC security [Can01] for the Eagle protocol, carefully composing our protocol from UC primitives
and demonstrating simulatability of our proposed ideal functionality. We argue that this opens up a
novel design space for cryptoeconomic applications, further extended in §5.3 and P8 with notions of
differential privacy adopted to this setting that also enable our proposed differentially private market
mechanisms.

Permissionless contract manager. We note that permissionless consensus has inspired a recent line
of work to investigate multi-party computation in the permissionless setting. Inspired by electing
parties to roles via “cryptographic sortion” introduced by Algorand [GHM+17], each party, upon
election to a protocol role, computes a single message to send and can then go offline. This has been
formalized as the “you-only-speak-once” (YOSO) setting in [GHK+21]; realizing general MPC in this
setting requires encrypting and securely forwarding secret-shared state to committee members elected
in the future [BGG+20, CDGK23]; achieving this in a practical manner remains an open research
question. MPC in the YOSO model would enable permissionless instantiation of the contract
manager model for privacy-preserving smart contracts.

5.3 Differential privacy in smart contracts.
Having established the contract manager model of privacy-preserving smart contracts, which securely
updates private states owned by individual participants, we observe that privacy leakage can still
occur trivially due to contract logic itself; consider the contract update function F in eq. 5.1, which is

35

5 L2: Privacy in Cryptoeconomic Systems

evaluated over private inputs and state and returns private outputs y1, ..., yn. Here, any single output
may trivially reveal information that the contract manager privately exchanged with parties. Even
though communication between a client and the trusted curator is private, the smart contract logic
itself may leak private data to computed outputs y1, ..., yn. In fact, in most meaningful smart contract
applications enabling economic coordination between participants, this is necessary. In this thesis,
we propose to mitigate such leakage by contributing a novel extension of differential privacy [DR+14]
to the setting of the trusted curator model. This represents a generalization of the contract manager
model of private smart contracts (P7). Towards achieving function privacy, we propose the first
market mechanisms which are differentially private in P8. To the best of our knowledge, we are the
first to consider differential privacy in such a setting, as classical differential privacy is defined to
protect a private data base from queries performed by an analyst; in the trusted curator model, we
must protect the entire client transcript from each round of client-curator interaction.

Our definitional framework for differential privacy in the trusted curator model extends directly to
secure multi-party computation (MPC), where the trusted curator is realized in a distributed
manner by interacting servers. The following definitions are relevant whenever function privacy is
required in MPC computation, and is likely of independent interest.

5.3.1 Definitions: differential privacy in the trusted curator model
We restate a selection of definitions from P8 to introduce our proposed notion of round-differential
privacy (Def. 5.3) in the trusted curator model.

The trusted curator model. We restate our model of computation in the trusted curator setting
from P8, which is consistent with the contract manager setting model except that any interaction
with a blockchain is not explicitly modelled; still, this is sufficient to capture all leakage caused by
the evaluated (contract) function. Interaction between clients and trusted curator occur in rounds;

1. Input phase All parties send their individual inputs to the trusted curator C, which obtains the
input set x1, ..., xn from clients P1, ..., Pn respectively.

2. Evaluation phase Upon receiving all inputs, the trusted curator locally computes a known
algorithm M over inputs received in the input phase: namely, y←M(x) where x = (x1, ..., xn)
and y = (y1, ..., yn). Further, curator C is assumed to have access to to randomness to evaluate
randomized algorithms.

3. Output phase The trusted curator privately sends each output element yi in y to client Pi, and
enters the input phase again.

The adversary A is defined such that it can corrupt up to n− 1 individual clients, but not the trusted
curator; the adversary decides the corrupted client input and observes the output received from the
trusted curator. We refer to P8 for a detailed discussion of of the trusted curator model.

Round-differential privacy. In the spirit of standard differential privacy (DP) [DR+14], we capture
a privacy notion for inputs and outputs each round, such that any “perturbation” in honest input or
output values are not “observable” in the input and output of the adversary. In other words, we wish
to “bound” the sensitivity of the adversarial transcript to any changes in the honest transcript; here,
let transcript simply denote the input and output from a given round.

Towards formal definitions, we first define neighbouring input vectors x ∼ x′ received by the trusted
curator to differ only in a single input xi received from the honest party Pi. Any change to a single
honest input element in x results in neighboring input vector x′. We limit the affect of such a change
on adversarial view corrupting up to n− 1 clients in a given round. Let M denote the function or

36

5 L2: Privacy in Cryptoeconomic Systems

mechanism evaluated by the trusted curator and MA(x) the output distribution(s) received by the
corrupted clients from an evaluation of M on inputs x.

Definition 5.1 ((ε, δ)-input-DP). For an evaluation of (ε, δ)-input differentially private algorithm
M in the trusted curator model over neighboring private input vectors x ∼ x′, the following must
hold for any adversarially observable output event SA.

Pr[MA(x) ∈ SA] ≤ exp(ε) · Pr[MA(x′) ∈ SA] + δ

In other words, the probability of any set of corrupted outputs observed by A should differ no more
than factor exp(ε) when an honest client applies any change to its input. With probability δ, the
mechanism is permitted to violate this guarantee; in practical terms, this can be interpreted as a
“slack” budget granted to the mechanism designer.

We emphasize that today’s prevalent market venues designed to preserve trader privacy do not satisfy
input-differential privacy. Here, we consider dark pools [CSTA19, dGCP+22] in traditional finance;
trade orders are privately submitted to the trusted venue operator, which then outputs the resulting
trade executions in private to clients. Note that this setting is consistent with that of the trusted
curator. We show how input-differential privacy is violated even by dark pools; assume a corrupted
client submitting a sell order observes that its trade order is executed. Any change in the honest
counter-party’s (privately submitted) buy order may cancel the matching of this order pair, observable
to adversary with probability 1, thereby violating Definition 5.1. We overcome this with a technique
named fuzzy matching in P8.

Next, we introduce correlated-output differential privacy to protect the honest output against
correlation with other corrupted client outputs.

Definition 5.2 ((ε, δ)-correlated-output-DP). For an evaluation of (ε, δ)-correlated output
differentially private algorithm M in the trusted curator model over fixed input vector x, the following
must hold for any adversarial output event SA and any honest output event Sh.

Pr[MA(x) ∈ SA |Mh(x) ∈ Sh] ≤ exp(ε) · Pr[MA(x) ∈ SA |Mh(x) ̸∈ Sh] + δ

In words, given a fixed set of inputs submitted to the trusted curator, with probability 1− δ, any
change to the honest output will, at most, affect the probability of an adversarial output event by
factor exp(ε). Note that outputs can vary despite fixing inputs, since input-differentially private
mechanisms are necessarily randomized.

We argue that achieving this notion of privacy is non-trivial in economic applications or smart
contracts, where outputs are necessarily correlated; here, the mechanism is often intended to “allocate”
resources or assets over all participating clients. An adversary corrupting n− 1 clients can trivially
infer funds privately output to the single honest client by just observing its own outputs, if the total
supply of funds is known. In our differentially private market mechanisms introduced in P8, this is
overcome by the temporary freezing of a bounded amount of funds provided by a liquidity provider.

Finally, we define round-differential privacy over both input- and correlated-output privacy.

Definition 5.3 (Round-DP). The evaluation of a mechanism that satisfies (εin, δin)-input-DP and
(εout, δout)-correlated-output-DP is (εin, δin)-(εout, δout)-round differentially private.

We refer to P8 for a generalization of round-differential privacy to the multi-round setting, where
clients perform multi-round interactions with the trusted curator (or contract manager).

37

5 L2: Privacy in Cryptoeconomic Systems

5.3.2 Differentially private market mechanisms
In P8, we contribute round-differentially private (Def. 5.3) market mechanism designs, which improve
on traditional dark pools by providing formal privacy guarantees for the full client transcript. Such
privacy notions ensure pre-trade and post-trade privacy, enabling the fair execution of long-running
trade strategies (see §4.3.2), which otherwise cannot be formally guaranteed in traditional dark
pool venues. We restate a summary our market mechanism from P8, where we also contribute
MPC-friendly algorithms for our round-differentially private mechanism designs.

Input phase: Traders privately submit limit orders to the venue operator. Our auction mechanism
requires a market making liquidity provider to compensates for the noise added to trade matching.

Auction phase: A deterministic, optimal order matching is performed; such a matching will leak
the inclusion or exclusion of a single trade request in the outputs and is not differentially private. The
actual “trade”, “no-trade” outcome for each order is determined by sampling a Bernoulli distribution
biased towards the deterministically computed, optimal matching; however, since trades are filled or
not filled based on independently sampling trade outcomes, there is no guarantee that each executed
trade is matched with an equivalent volume in opposing direction; as such a liquidity deficit may
occur. Here, market makers make up for liquidity deficits. To prevent market makers from learning
about the traded volume of a single user (output privacy) from their updated liquidity balances, a
random, yet bounded amount of market maker liquidity is frozen to obtain (ε, δ)-correlated-output
differential privacy.

Output phase: Traders observe whether or not their order was fulfilled and liquidity providers
observe a noisy update to the liquidity balance. The trade output distribution is ε-indistinguishable
with respect to the inclusion or exclusion of a single submitted order. The liquidity balance distribution
is (ε, δ)-indistinguishable with respect to a single trade outcome.

38

Part III

Publications & Manuscripts

39

A Theory of Automated Market Makers in
DeFi

Publication Information
Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. “A theory of Automated
Market Makers in DeFi.” In Coordination Models and Languages: 23rd IFIP WG 6.1 Interna-
tional Conference, COORDINATION 2021, Held as Part of the 16th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2021, Valletta, Malta, June 14–18,
2021, Proceedings 23, pp. 168-187. Springer International Publishing, 2021.

Contribution
• Co-author.

Remarks
Conference version.

40

A theory of Automated Market Makers in DeFi

Massimo Bartoletti1[0000−0003−3796−9774],
James Hsin-yu Chiang2[0000−0002−5126−9494], and

Alberto Lluch-Lafuente2[0000−0001−7405−0818]

1 Università degli Studi di Cagliari, Cagliari, Italy bart@unica.it
2 Technical University of Denmark, DTU Compute, Copenhagen, Denmark

{jchi,albl}@dtu.dk

Abstract. Automated market makers (AMMs) are one of the most
prominent decentralized finance (DeFi) applications. They allow users
to exchange units of different types of crypto-assets, without the need to
find a counter-party. There are several implementations and models for
AMMs, featuring a variety of sophisticated economic mechanisms. We
present a theory of AMMs. The core of our theory is an abstract oper-
ational model of the interactions between users and AMMs, which can
be concretised by instantiating the economic mechanisms. We exploit
our theory to formally prove a set of fundamental properties of AMMs,
characterizing both structural and economic aspects. We do this by ab-
stracting from the actual economic mechanisms used in implementations
and identifying sufficient conditions which ensure the relevant properties.
Notably, we devise a general solution to the arbitrage problem, the main
game-theoretic foundation behind the economic mechanisms of AMMs.

1 Introduction

Decentralized finance (DeFi) is emerging as an alternative to the traditional
finance, boosted by blockchain-based crypto-tokens and smart contracts. One of
the main DeFi applications are Automated Market Makers (AMMs), which allow
users to exchange crypto-tokens of different types without the intermediation of
third parties. As of April 2021, the two AMM platforms leading by user activity,
Uniswap [14] and Curve Finance [5], alone hold $8.1B and $6.2B worth of tokens,
and process $1.5B and $210M worth of transactions daily [4, 12].

AMMs are inherently hard to design, implement and understand, since they
involve sophisticated economic incentive mechanisms. Although they generally
only expose a handful of callable functions, interactions with AMMs are sensitive
to transaction ordering [21,23,27,30]: thus, actors with the power to influence the
order of transactions in the blockchain may be incentivized to do so for profit or
to harm specific users. Thus, there exists a need for foundational work to devise
formal models of AMMs which allow the study of their fundamental properties,
transaction concurrency and the effect of economic incentives.

Current descriptions of AMMs are either economic models [17–19,24], which
focus on the efficacy of incentive design, or the actual implementations. While

41

economic models are useful to understand the macroscopic financial aspects of
AMMs, they do not precisely describe the interactions between AMMs and their
users. Still, understanding these interactions is crucial to determine possible de-
viations from the expected behaviour. Implementations, instead, reflect the exact
behaviour of AMMs, but at a level of detail that hampers high-level understand-
ing and reasoning. Moreover, the rich variety of implementations, proposals and
models for AMMs, each featuring different sophisticated economic mechanisms,
makes it difficult to establish comparisons between AMM designs or to provide
a clear contour for the space of possible “well behaving” designs.

Contributions In this paper we address these challenges by developing a the-
ory of AMMs. The core of our theory is a formal model of AMMs (§2), based
on a thorough inspection of leading AMM implementations like Uniswap [13],
Curve [16], and Balancer [3], as well as existing models from the literature [1,30].
Our model precisely describes the interactions between users and AMMs, and
their main economic features. An original aspect of our model is that it is para-
metric with respect to the key economic mechanism — the swap invariant —
that algorithmically determines exchange rates between tokens. This makes our
model general enough to encompass the mainstream implementations and mod-
els of AMMs. With respect to economic models, our theory considers implemen-
tation details that are crucial to guarantee (efficient) computability in practice.
Our model features an executable semantics, which can support implementations
and analysis tools. As a matter of fact, an open-source Ocaml implementation
of our executable semantics is provided as a companion of this paper.3

Building upon our model, we prove a set of properties characterizing both
structural (§3) and economic (§4) aspects of AMMs. With respect to previous
works, which focus on specific economic mechanisms, all our results are para-
metric with respect to swap invariants. We identify indeed, for each property,
a set of conditions on swap invariants that are sufficient for the property to
hold. Our results include fundamental structural properties such as net worth
preservation (“value cannot be created/destroyed”), liquidity (“assets cannot be
frozen within an AMM”), and transaction concurrency (“two transactions can
be executed in any order”), as well as fundamental economic properties such
as incentive-consistency, which ensures an incentive feedback loop between de-
posits and swaps of tokens. Most notably, we generalize the formulation and the
solution to the so-called arbitrage problem, the main game-theoretic foundation
behind the economic aspects of AMMs. We show that users are incentivized to
perform actions that keep the swap rates aligned with the exchange rates given
by price oracles. Namely, if an AMM offers a better swap rate than the oracles’
exchange rate, rational users will perform swaps to narrow the gap. Further, we
show that, under certain conditions, deposits and swaps incentivize each other.

Overall, our theory encompasses and generalizes the main functional and eco-
nomic aspects of the mainstream AMM implementations, providing solid grounds
for the design of future AMMs.

3 https://github.com/blockchain-unica/defi-workbench

42

2 A formal model of Automated Market Makers

We introduce a formal, operational model of AMMs, focussing on the common
features implemented by the main AMM platforms. We discuss in §6 the differ-
ences between these platforms and our model.

2.1 AMM states

Basics We assume a set of users A, ranged over by A,A′ , . . ., and a set of
token types T, ranged over by τ, τ ′, We denote with T0 ⊆ T a specific
subset of token types that we call initial (they include, e.g., native blockchain
tokens). The rest of the token types in T represent minted tokens, denoted as
pairs (τ, τ ′) of distinct token types, and which represent shares in an AMM. We
use v, v′, r, r′ to range over nonnegative real numbers (R+

0), and we write r : τ
to denote r units of token type τ. We denote with dom f the domain of a partial
map f . We model the wallet of a user A as a term A[σ], where the partial
map σ ∈ T ⇀ R+

0 represents A’s token holdings. We model an AMM as a
pair of the form (r0 : τ0, r1 : τ1), representing the fact that the AMM is holding,
respectively, r0 and r1 units of token types τ0 and τ1.

States We formalise the interaction between users and AMMs as a labelled
transition system (LTS). Its labels T ,T′ , . . . represent blockchain transactions,
while the states Γ, Γ ′, . . . are compositions of wallets and AMMs:

A1[σ1] | · · · | An[σn] | (r1 : τ1, r
′
1 : τ ′1) | · · · | (rk : τk, r

′
k : τ ′k)

where all Ai are distinct, and for all i 6= j: τi 6= τ ′i (i.e., the token types in an
AMM are distinct), and (τi = τj ⇒ τ ′i 6= τ ′j) ∧ (τi = τ ′j ⇒ τ ′i 6= τj) (i.e., distinct
AMMs cannot hold exactly the same token types). Two AMMs can indeed have a
common token type τ, as in (r1 : τ1, r : τ), (r′ : τ, r′2 : τ ′2), thus enabling indirect
trades between token pairs not directly provided by any AMM. A state Γ is
initial when it only contains wallets with initial tokens. We treat states as sets
of terms (wallets/AMMs): hence, Γ and Γ ′ are equivalent when they contain the
same terms; for a term Q, we write Q ∈ Γ when Γ = Q | Γ ′, for some Γ ′.

Example 1. Figure 1 shows an execution trace in our model, that we will explain

in detail later in Example 5. We write Γ
T−→ Γ ′ for a state transition from Γ to

Γ ′, triggered by a transaction T. The first two states are initial, while the others
contain an AMM for a token pair (τ0, τ1). ut

Token supply We define the supply of a token type τ in a state Γ as the sum
of the balances of τ in all the wallets and the AMMs occurring in Γ. Formally:

splyτ(A[σ]) =

{
σ(τ) if τ ∈ domσ

0 otherwise
splyτ(r0 : τ0, r1 : τ1) =

{
ri if τ = τi

0 otherwise

splyτ(Γ | Γ ′) = splyτ(Γ) + splyτ(Γ
′)

43

A[70 : τ0, 80 : τ1] | B[30 : τ0]

A:xfer(B,10:τ1)−−−−−−−−−→ A[70 : τ0, 70 : τ1] | B[30 : τ0, 10 : τ1] (1)

A:dep(70:τ0,70:τ1)−−−−−−−−−−−→ A[70 : (τ0, τ1)] | B[· · ·] | (70 : τ0, 70 : τ1) (2)

B:swapL(30:τ0,20:τ1)−−−−−−−−−−−−−→ A[· · ·] | B[0 : τ0, 31 : τ1] | (100 : τ0, 49 : τ1) (3)

B:swapR(29:τ0,21:τ1)−−−−−−−−−−−−−→ A[· · ·] | B[30 : τ0, 10 : τ1] | (70 : τ0, 70 : τ1) (4)

B:rdm(30:(τ0,τ1))−−−−−−−−−−−→ A[30 : τ0, 30 : τ1, 40 : (τ0, τ1)] | B[· · ·] | (40 : τ0, 40 : τ1) (5)

B:swapL(30:τ0,16:τ1)−−−−−−−−−−−−−→ A[· · ·] | B[0 : τ0, 27 : τ1] | (70 : τ0, 23 : τ1) (6)

A:rdm(30:(τ0,τ1))−−−−−−−−−−−→ A[82 : τ0, 47 : τ1, 10 : (τ0, τ1)] | B[· · ·] | (18 : τ0, 6 : τ1) (7)

Fig. 1: Interactions between two users and an AMM.

Example 2. Consider the first state in Figure 1, Γ1 = A[70 : τ0, 80 : τ1] | B[30 : τ0].
We have that splyτ0(Γ1) = 70 + 30 = 100, while splyτ1(Γ1) = 80. Observe
that the supply of both token types remains constant in Figure 1; we will show
in Lemma 2 that the supply of initial token types is always preserved. ut

Token prices and net worth Assume that initial tokens are priced by a
global oracle P0 ∈ T0 → R+

0 . We then define the price Pτ(Γ) of a token τ ∈ T
(either initial or minted) in a state Γ inductively as follows:

Pτ(Γ) = P0(τ) if τ ∈ T0

P(τ0,τ1)(Γ) =
r0 · Pτ0(Γ) + r1 · Pτ1(Γ)

sply(τ0,τ1)(Γ)
if (r0 : τ0, r1 : τ1) ∈ Γ (8)

The main idea is that initial tokens are priced using directly the global oracle
while minted tokens are priced under the assumption that they can be redeemed.
Their price, hence, is obtained by (recursively) calculating the price of the tokens
that can be obtained by redeeming them (i.e. the proportions of the reserves r0
and r1 given the current supply). This intuition will be further formalized later
in Lemma 6.

Example 3. Let Γ7 = A[82 : τ0, 47 : τ1, 10 : (τ0, τ1)] | · · · be the final state in Fig-
ure 1. We have that sply(τ0,τ1)(Γ7) = 10. Assume that the prices of initial tokens

are P0(τ0) = 5 and P0(τ1) = 9. The price of the minted token (τ0, τ1) is hence:

P(τ0,τ1)(Γ7) =
1

10

(
18 · Pτ0(Γ7) + 6 · Pτ1(Γ7)

)
=

18

10
· 5 +

6

10
· 9 = 14.4 ut

We now define a key concept to understand the incentives for users to par-
ticipate in AMMs, namely the net worth of a user A in a state Γ:

WA(Γ) =

{∑
τ∈domσ σ(τ) · Pτ(Γ) if A[σ] ∈ Γ

0 otherwise
(9)

44

The global net worth W (Γ) of a state Γ is the sum of the net worth in users’
wallets. The token units held in AMMs are not accounted for by W (Γ), because
their value is already recorded by minted tokens held in users’ wallets. Indeed,
the equality sply(τ0,τ1)(Γ) ·P(τ0,τ1)(Γ) = r0 ·Pτ0(Γ) + r1 ·Pτ1(Γ) between the net
value of a minted token and the value of the AMM is a direct consequence of
the definition of price in (8).

As we shall see later, one of the main goals of users is to maximize their net
worth. This can be achieved through different interactions with the AMM (e.g.,
by investing tokens or trading units of differently priced token types).

Example 4. Recall from Figure 1 the state Γ1 = A[70 : τ0, 80 : τ1] | B[30 : τ0],
where τ0 and τ1 are initial tokens. Assume again that the prices are P0(τ0) = 5
and P0(τ1) = 9. The users’ net worth in Γ1 are then:

WA(Γ1) = 70 · P0(τ0) + 80 · P0(τ1) = 1070 WB(Γ1) = 30 · P0(τ0) = 150

In Γ7 = A[82 : τ0, 47 : τ1, 10 : (τ0, τ1)] | B[0 : τ0, 27 : τ1] | (18 : τ0, 6 : τ1) we have:

WA(Γ7) = 82 · Pτ0(Γ7) + 47 · Pτ1(Γ7) + 10 · P(τ0,τ1)(Γ7) = 977

WB(Γ7) = 27 · Pτ1(Γ7) = 243

Note that the net worth of A has decreased w.r.t. the initial state, while the net
worth of B has increased. One may think that B has been more successful than
A, but this depends on the users’ goals. Note, e.g., that A holds 10 units of the
minted token (τ0, τ1), whose price may increase in the future. ut

2.2 AMM semantics

We now formally describe the interactions of the AMM that give rise to state
transitions. State transitions are triggered by the transactions in Table 1. We
formalise below their behaviour, but we give before an overview of our running
example from Figure 1.

Example 5. Figure 1 actually displays a sequence of transitions in the LTS of
our model. To keep the example simple, we have used there the constant product
swap invariant, which requires swap transactions to preserve the product between
the amounts of the two tokens in the AMM; further, we have assumed no fees.
In step (1), A transfers 10 : τ1 from her wallet to B’s. In step (2), A creates
a new AMM, depositing 70 : τ0 and 70 : τ1; in return, she receives 70 units of
the minted token (τ0, τ1). In step (3), B swaps 30 of his units of τ0 for at least
20 units of τ1. The actual amount of units of τ1 received by B is 21: indeed,
(70 + 30) · (70 − 21) = 70 · 70, hence 21 satisfies the constant product swap
invariant. In step (4), B reverses his prior action by swapping 21 of his units of
τ1 for at least 29 units of τ0. Here, the actual amount of units of τ1 received by
B is 30, which also satisfies the constant product swap invariant. In step (5), B
redeems 30 units of the minted token (τ0, τ1), accordingly reducing the funds in
the AMM. Note that the received tokens exhibit the same 1-to-1 ratio as in the

45

A : xfer(B, v : τ) A transfers v : τ to B
A : dep(v0 : τ0, v1 : τ1) A deposits v0 : τ0 and v1 : τ1 to an AMM (r0 : τ0, r1 : τ1),

receiving in return some units of the minted token (τ0, τ1)
A : swapL(v0 : τ0, v1 : τ1) A tranfers v0 : τ0 to an AMM (r0 : τ0, r1 : τ1), receiving in

return at least v1 units of τ1
A : swapR(v0 : τ0, v1 : τ1) A tranfers v1 : τ1 to an AMM (r0 : τ0, r1 : τ1), receiving in

return at least v0 units of τ0
A : rdm(v : τ) A redeems v units of minted token τ = (τ0, τ1) from an AMM

(r0 : τ0, r1 : τ1), receiving in return some units of τ0 and τ1
Table 1: AMM transactions.

initial deposit at step (2). In step (6), B swaps 30 of his units of τ0 for at least
16 units of τ1. Unlike in the previous swap at step (3), now the actual amount
of τ1 received by B is 17. Note that the implied swap rate between received τ1
units and sent τ0 units has deteriorated w.r.t. step (3), even if the pair (τ0, τ1)
had the same 1-to-1 ratio of funds. This is caused by the reduction in funds
resulting from A’s redeem action: thus, the swap rate is sensitive to both the
ratio of funds in the pair as well as their absolute balances, a key property of the
incentive mechanisms, as we shall see later in §4. Finally, in step (7) A performs
another redeem of 30 units of the minted token (τ0, τ1), thereby extracting 52
units of τ0 and 17 units of τ1 from the AMM. Note that the ratio of redeemed
tokens is no longer 1-to-1 as in the previous redeem action (5), as the prior left
swap has changed the ratio between the funds of τ0 and τ1 in the AMM. ut

We now formalise the transition rules. We use the standard notation σ{v/x} to
update a partial map σ at point x: namely, σ{v/x}(x) = v, while σ{v/x}(y) = σ(y)
for y 6= x. Given a partial map σ ∈ T ⇀ R+

0 , a token type τ ∈ T and a partial
operation ◦ ∈ R+

0 × R+
0 ⇀ R+

0 , we define the partial map σ ◦ v : τ as follows:

σ ◦ v : τ =

{
σ{σ(τ) ◦ v/τ} if τ ∈ domσ and σ(τ) ◦ v ∈ R+

0

σ{v/τ} if τ 6∈ domσ

Token transfer A user A can transfer some of her tokens to another user B,
provided that there are enough units of the token in A’s wallet. Formally:

σA(τ) ≥ v
A[σA] | B[σB] | Γ A:xfer(B,v:τ)−−−−−−−−→ A[σA − v : τ] | B[σB + v : τ] | Γ

[Xfer]

A consequence of this rule is that tokens (both initial and minted) are fungible,
i.e. individual units of the same token type are interchangeable. In particular,
amounts of tokens of the same type can be split into smaller parts, and two
amounts of tokens of the same type can be joined.

Deposit Any user can create an AMM for a token pair (τ0, τ1) provided that
such an AMM is not already present in the state. This is achieved by the trans-
action A : dep(v0 : τ0, v1 : τ1), through which A transfers v0 : τ0 and v1 : τ1 to

46

the new AMM. In return for the deposit, A receives a certain positive amount
of units of a new token type (τ0, τ1), which is minted by the AMM. The exact
amount of units received is irrelevant. In our model we choose v0 but any other
choice would be valid. We formalise this behaviour by the rule:

σ(τi) ≥ vi > 0 (i ∈ {0, 1}) τ0 6= τ1 (: τ0, : τ1), (: τ1, : τ0) 6∈ Γ
A[σ] | Γ A:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→
A[σ − v0 : τ0 − v1 : τ1 + v0 : (τ0, τ1)] | (v0 : τ0, v1 : τ1) | Γ

[Dep0]

Once an AMM is created, any user can deposit tokens into it, as long as doing
so preserves the ratio of the token holdings in the AMM. When a user deposits
v0 : τ0 and v1 : τ1 to an existing AMM, it receives in return an amount of minted
tokens of type (τ0, τ1). This amount is the ratio between the deposited amount
v0 and the redeem rate of (τ0, τ1) in the current state Γ, i.e. the ratio between
the amount r0 of τ0 stored in the AMM, and the total supply sply(τ0,τ1)(Γ) of
the minted token in the state.

σ(τi) ≥ vi > 0 (i ∈ {0, 1}) r1v0 = r0v1 v = v0
r0
· sply(τ0,τ1)

(Γ)

Γ = A[σ] | (r0 : τ0, r1 : τ1) | Γ ′ A:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→
A[σ − v0 : τ0 − v1 : τ1 + v : (τ0, τ1)] | (r0 + v0 : τ0, r1 + v1 : τ1) | Γ ′

[Dep]

Note that the premise r1v0 = r0v1 ensures that the ratio between the holdings
of τ0 and τ1 in the AMM is preserved by the dep transaction, i.e.:

r1 + v1
r0 + v0

=
r1
r0

As we shall see in §4, users are incentivized to invest tokens into AMMs by
the fact that trading operations (i.e., swaps) are subject to a fee mechanism that
makes the redeem rate increase over time.

Swap As shown in step (3) and on of Example 5, users can increase their net
worth by swapping tokens. Any user A can swap units of τ0 in her wallet for units
of τ1 in an AMM (r0 : τ0, r1 : τ1) by firing a transaction A : swapL(v0 : τ0, v1 : τ1).
Here, v0 is the amount of τ0 transferred from A’s wallet to the AMM, while v1
is a lower bound on the amount of τ1 that A will receive in return. The actual
amount v is determined by a swap invariant I ∈ R+

0 × R+
0 → R+

0 , that must
hold between the amounts of τ0 and τ1 held in the AMM before and after the
swap. To determine v, the AMM requires a fraction 0 < φ ≤ 1 of v0; the rest is
considered as a fee (the parameter φ is the fee rate). Formally:

σ(τ0) ≥ v0 > 0 I(r0 + φ v0, r1 − v) = I(r0, r1) 0 < v1 ≤ v ≤ r1
A[σ] | (r0 : τ0, r1 : τ1) | Γ A:swapL(v0:τ0,v1:τ1)−−−−−−−−−−−−−→
A[σ − v0 : τ0 + v : τ1] | (r0 + v0 : τ0, r1 − v : τ1) | Γ

[SwapL]

The effect of the fee is that the redeem rate of minted tokens increases;
intuitively, the AMM retains a portion of the swapped amounts, but the overall

47

reserve is still distributed among all minted tokens, thereby ensuring liquidity
(as we shall formally establish liquidity later on in Lemma 4).

Although actual AMM implementations use a variety of different swap in-
variants, with the common aim to incentivize users to perform swaps, all these
invariants share a few common design choices. A crucial one is that there ex-
ists exactly one v which satisfies the equation in the premise of [SwapL]; further,
swapping 0 units of τ0 results in 0 units of τ1. Formally, for all r0, r1 > 0:

∀v ∈ R+
0 : ∃!v′ ∈ R+

0 : I(r0 + v, r1 − v′) = I(r0, r1) (10)

Hereafter, we assume that I always respects this condition. A common swap
invariant, implemented e.g. by Uniswap [13] and Mooniswap [7] (and also used
in Example 5), is the constant product invariant, which requires that the product
of the amounts of τ0 and τ1 in the AMM remains constant, i.e. I(r0, r1) = r0 ·r1.

The rule [SwapR] allows for swaps in the other direction:

σ(τ1) ≥ v1 > 0 I(r0 − v, r1 + φ v1) = I(r0, r1) 0 < v0 ≤ v ≤ r0
A[σ] | (r0 : τ0, r1 : τ1) | Γ A:swapR(v0:τ0,v1:τ1)−−−−−−−−−−−−−→
A[σ + v : τ0 − v1 : τ1] | (r0 − v : τ0, r1 + v1 : τ1) | Γ

[SwapR]

where we assume that I enjoys the “right” version of the condition (10).
It is worth explaining why the swap transactions specify lower bounds for the

amount of return tokens, instead of an exact amount. In practice, when a user
emits a transaction, she cannot predict the exact state in which the transaction
will be actually committed. This makes it unfeasible to guess the exact amount
that will preserve the swap invariant: hence, users can only specify a lower bound
that they are willing to accept.

Redeem Any user can redeem units of a minted token (τ0, τ1), obtaining in
return units of the underlying tokens τ0 and τ1. The redeemable amounts are
determined by the redeem rate: each unit of (τ0, τ1) can be redeemed for equal
fractions of τ0 and τ1 remaining in the AMM:

σ(τ0, τ1) ≥ v > 0 v0 = v r0
sply(τ0,τ1)(Γ)

v1 = v r1
sply(τ0,τ1)(Γ)

Γ = A[σ] | (r0 : τ0, r1 : τ1) | Γ ′ A:rdm(v:(τ0,τ1))−−−−−−−−−−→
A[σ + v0 : τ0 + v1 : τ1 − v : (τ0, τ1)] | (r0 − v0 : τ0, r1 − v1 : τ1) | Γ ′

[Rdm]

Example 6. Figure 2 shows the evolution of the AMM token holdings result-
ing from the trace in Figure 1, presented with Example 5. Recall that we
have assumed a constant product swap invariant x · y = k, and no swap fees
(φ = 1). We refer to a state in Figure 1 by the action number preceding it: the
AMM (70 : τ0, 70 : τ1) in state (2) is shown in Figure 2. Subsequent left (3) and
right (4) swaps result in a traversal along k = 70 · 70 from (70 : τ0, 70 : τ1) to
(100 : τ0, 49 : τ1), and back as the swap invariant must hold for swap actions. The
redeem action (5) reduces the holdings of both tokens by the same factor to reach
(40 : τ0, 40 : τ1). A left swap (6) traverses k′ = 40 · 40 to reach (70 : τ0, 23 : τ1)
in state (6), which is then followed by another redeem (7) action, reducing both
token holdings proportionally to (18 : τ0, 6 : τ1).

48

(40:τ0, 40:τ1)

(18:τ0, 6:τ1)

(70:τ0, 70:τ1)

(100:τ0, 49:τ1)

(70:τ0, 23:τ1)

τ0

τ1
x·y = k'

x·y = k''

x·y = k

Fig. 2: Evolution of balances of AMM (τ0, τ1) along the trace in Figure 1.

3 Structural properties of AMMs

We now establish some structural properties of AMMs, which do not depend on
the design of the economic mechanisms, i.e. on the choice of the swap invariant.
We denote with −→∗ the reflexive and transitive closure of −→. Given a finite
sequence of transactions λ = T1 · · ·Tk, we write Γ

λ−→ Γ ′ when Γ
T1−→ · · · Tk−−→ Γ ′.

We say that a state Γ is reachable if Γ0 −→∗ Γ for some initial Γ0. We denote
with type(T) the type of T (i.e., xfer, dep, . . .), with wal(T) the set of wallets
affected by T (e.g., wal(A : xfer(B, v : τ)) = {A,B}), and with tok(T) the set of
token types affected by T (e.g., tok(A : swapL(v0 : τ0, v1 : τ1)) = {τ0, τ1}).

First, we establish that the AMMs’ LTS is deterministic. Note that, in swap
rules, an unconstrained swap invariant I could admit different solutions to the
equation in the premise: determinism is ensured by condition (10), which we
assume to be true for all swap invariants.

Lemma 1 (Determinism). If Γ
T−→ Γ ′ and Γ

T−→ Γ ′′, then Γ ′ = Γ ′′.

We can lift the statement to sequences of transactions by using a simple
inductive argument. The same applies to other single-step results in this section.

Lemma 2 ensures that the supply of each initial token type τ is preserved
by transitions (of any type). Note that preservation does not hold for minted
tokens, as they can be created (by rule [Dep]) and destroyed (by rule [Rdm]).

Lemma 2. For all τ ∈ T0, if Γ −→ Γ ′ then splyτ(Γ) = splyτ(Γ
′).

Lemma 3 ensures that the global net worth is preserved by transactions,
whereas the user’s net worth is preserved only by redeems/deposits.

Lemma 3 (Preservation of net worth). Let Γ
T−→ Γ ′. Then, W (Γ) =

W (Γ ′). Further, if type(T) ∈ {dep, rdm} or A 6∈ wal(T), then WA(Γ) = WA(Γ ′).

49

Lemma 4 ensures that funds cannot be frozen in an AMM, i.e. that users
can always redeem arbitrary amounts of the tokens deposited in an AMM.

Lemma 4 (Liquidity). Let Γ be a reachable state such that (r0 : τ0, r1 : τ1) ∈
Γ with r0 +r1 > 0. Then: (a) sply(τ0,τ1)(Γ) > 0; (b) for all r′0 ≤ r0, there exists
r′1 ≤ r1 such that Γ −→∗ (r′0 : τ0, r

′
1 : τ1) | · · · ; (c) for all r′1 ≤ r1, there exists

r′0 ≤ r0 such that Γ −→∗ (r′0 : τ0, r
′
1 : τ1) | · · · .

We now study the concurrency of transactions. Two finite sequences of trans-
actions λ0 and λ1 are observationally equivalent, in denoted λ0 ∼ λ1, when, for

all states Γ, if Γ
λ0−→ Γ0 and Γ

λ1−→ Γ1 then Γ0 = Γ1. We say that two distinct
transactions T,T′ are concurrent (denoted, T#T′) if TT′ ∼ T′T. Note that
this does not mean that T and T′ cannot disable each other as demanded by
stricter notions of concurrency. Lemma 5 provides sufficient conditions for two
transactions to be concurrent: intuitively, two non-swap transactions are always
concurrent, while swap transactions are concurrent with xfer transactions, and
with any transactions which do not affect the same token types.

Lemma 5. Two distinct transactions T0, T1 are concurrent if, for i ∈ {0, 1},
type(Ti) ∈ {swapL, swapR} implies tok(Ti)∩ tok(T1−i) = ∅ or type(T1−i) = xfer.

As we shall see later in §4, it is actually desirable, and crucial for the economic
mechanism of AMMs, that swap transactions interfere with other transactions
that trade the same token type.

The theory of Mazurkiewicz’s trace languages [26] allows us to lift Lemma 5
to sequences of transactions. Let R be a symmetric and irreflexive relation on
the set X of all transactions. The Mazurkiewicz equivalence ∼R is the least con-
gruence in the free monoid X∗ such that: ∀T,T′ ∈ X: TRT′ =⇒ TT′ ∼R T′T.
Theorem 1 states that the Mazurkiewicz equivalence constructed on the concur-
rency relation # is an observational equivalence.

Theorem 1 (Concurrent transactions can be reordered). ∼# ⊆ ∼.

A direct consequence of Theorem 1 is that we can transform a finite sequence
of transactions into an observationally equivalent one by repeatedly exchanging
adjacent concurrent transactions — provided that both sequences are executable
in the LTS. For example, sequences of A : rdm() transactions can be freely
reordered, resulting in the same, unique state. This is exploited in the follow-
ing lemma, which supports the inductive definition of the price of minted tokens
in (8): indeed, computing the net worth of a user A under that price definition
corresponds to making A first redeem all her minted tokens, and then summing
the price of the resulting initial tokens.

Lemma 6. For all states Γ and users A, let rdmA(Γ) be the unique state reached
from Γ by performing only A : rdm() actions, such that A’s wallet in rdmA(Γ),
only contains initial tokens. Then:

WA(Γ) =
∑
τ∈domσ σ(τ) · P0(τ) if A[σ] ∈ rdmA(Γ)

50

Example 7. Recall from Example 4 that WA(Γ7) = 977. Assume that A performs
a further transaction to redeem all 10 units of (τ0, τ1) from her wallet. The
resulting state is Γ8 = A[100 : τ0, 53 : τ1] | · · · . We compute A’s net worth in that
state, using the oracle token prices: WA(Γ8) = 100 · P(τ0)(Γ7) + 53 · P(τ1)(Γ7) =
100 · 5 + 53 · 9 = 977, as correctly predicted by Lemma 6. ut

4 Properties of AMM incentives

We now study the incentive mechanisms of AMMs. We start in §4.1 by intro-
ducing a few notions of exchange rate, which are pivotal to understanding these
mechanisms. In §4.2 we devise general conditions on swap invariants, overall
named incentive-consistency, which guarantee that AMMs enjoy relevant eco-
nomic properties. In §4.3 we study solutions to the arbitrage problem, which is
the key to incentivize users to perform swap operations towards an ideal state
where the AMM’s exchange rates align with the exchange rates set by price ora-
cles. Finally, in §4.4 we study the incentives to swap and deposit larger amounts.

4.1 Exchange rates

The exchange rate between two token types is the number of units of one token
needed to buy one unit of the other token at the current price. We define Left
and Right versions of this notion, that reflect the direction of the exchange:

XLΓ(τ0, τ1) = Pτ0(Γ)/Pτ1(Γ) XRΓ(τ0, τ1) = Pτ1(Γ)/Pτ0(Γ) (11)

The swap rate between τ0 and τ1 upon a payment of vi : τi (for i ∈ {0, 1})
is the ratio between v and vi, where v is the received amount of τ1−i resulting
from a swap action on an AMM (r0 : τ0, r1 : τ1). We first introduce an auxiliary
notion, parameterized over the balances r0 and r1, instead of the token types:

XLswap
φ (v0, r0, r1) = v/v0 if I(r0, r1) = I(r0 + φv0, r1 − v)

XRswap
φ (v1, r0, r1) = v/v1 if I(r0, r1) = I(r0 − v, r1 + φv1)

(12)

The swap rate is parameterized over the fee rate φ: the case where φ = 1 repre-
sents an ideal scenario with no fees: in this case, we write just XLswap(v0, r0, r1).
We define the swap rate in a state Γ such that (r0 : τ0, r1 : τ1) ∈ Γ as follows:

XLswap
Γ,φ (v0, τ0, τ1) = XLswap

φ (v0, r0, r1) XRswap
Γ,φ (v1, τ0, τ1) = XRswap

φ (v1, r0, r1)

We also define the redeem rate . The left version is:

XLrdm
Γ (τ0, τ1) = r0/sply(τ0,τ1)(Γ) if (r0 : τ0, r1 : τ1) ∈ Γ (13)

4.2 General properties of swap invariants

We now introduce a set of properties of swap invariants, called cumulatively
incentive-consistency , which overall incentivize users to interact with AMMs
by performing swap and deposit actions.

51

Swap-rate continuity This property requires that, for all r0, r1 > 0:

lim
ε→0

XLswap(ε, r0, r1) = 1/ lim
ε→0

XRswap(ε, r0, r1) ∈ R+ (14)

Figure 3 (left) illustrates this property, displaying the points (x, y) which
satisfy the constant product invariant x · y = k. The left swap rate limit for the
constant product invariant and φ = 1 is limε→0 XL

swap(ε, r0, r1) = r1/r0, while
for the right swap we have limε→0 XR

swap(ε, r0, r1) = r0/r1. Coinciding left swap
limit and right swap limit inverse are illustrated as the slope of the product con-
stant curve at a selected point in Figure 3 (left). The constant product invariant
satisfies (14), i.e. it is swap-rate continuous.

x·y = ky

x

y

x

x·y = k

(r0, r1)

(r0', r1')

(r0, r1)

(r0', r1')

(c·r0, c·r1)

(r0, r1)

(r0'/c, r1'/c)

x·y = k'

y

x

x·y = k

Fig. 3: The constant product invariant I(x, y) = x · y is swap-rate-consistent
(left), demand-sensitive (center), non-depletable, funds-consistent (right) and
swap-rate consistent (right).

Demand-sensitivity A swap invariant is demand-sensitive if the swap rate
strictly decreases with demand. Formally, for all r0, r1, r

′
0, r
′
1 > 0:

I(r0, r1) = I(r′0, r
′
1) ∧ r′0 > r0 =⇒ lim

ε→0
XLswap

φ (ε, r0, r1) > lim
ε→0

XLswap
φ (ε, r′0, r

′
1)

(15)

We implicitly require that (15) and the subsequent properties stated for the
left version of an exchange rate also hold for the right version.

Figure 3 (center) depicts two points (r0, r1), (r′0, r
′
1) on the constant product

curve, which satisfy x · y = k for identical k. For the constant product invariant,
the left swap limit can be expressed as limε→0 XL

swap(ε, r0, r1) = φ · r1/r0. For
the given k and points in Figure 3 (center):

lim
ε→0

XLswap
φ (ε, r0, r1) = φ · k/r20 lim

ε→0
XLswap

φ (ε, r′0, r
′
1) = φ · k/r′0

2

Thus for r′0 > r0, limε→0 XL
swap
φ (ε, r0, r1) > limε→0 XL

swap
φ (ε, r′0, r

′
1): the constant

product invariant is demand-sensitive.

52

Non-depletion This property ensures that the balance of tokens within an
AMM cannot be zeroed via swaps. Formally, I is non-depletable when, for all
r0, r1 > 0 and r′0, r

′
1 ≥ 0:

I(r0, r1) = I(r′0, r
′
1) =⇒ r′0, r

′
1 6= 0 (16)

Note that the constant product invariant trivially satisfies this property.

Funds-consistency Deposits to an AMM ensure higher swap rates for a given
input amount v, whereas redeems will reduce the swap rates for v. This behaviour
is formalized later on in Theorem 4, but is a consequence of the funds-consistency
property of the swap invariant. Formally, we require that for all r0, r1, r

′
0, r
′
1 > 0:

I(r0, r1) 6= I(r′0, r
′
1) ⇐⇒

∃!c ∈ R+ \ {1} : I(c · r′0, c · r′1) = I(r0, r1) ∧ I(r0c ,
r1
c) = I(r′0, r

′
1)

(17)

Figure 3 (right) illustrates funds-consistency for the constant product invariant.
Here, r0 · r1 = k 6= k′ = r′0 · r′1. We observe that there exists a unique c > 0
in (c · r0) · (c · r1) = r′0 · r′1 = k′: namely, c =

√
(r′0 · r′1)/(r0 · r1). Conversely,

(r′0/c) · (r′1/c) = r0 · r1, which holds for the same value of c.

Swap-rate-consistency The design of AMMs aims to ensure that redeems
and deposits do not interfere with the alignment of the swap rate towards the
exchange rate. Since both deposits and redeems preserve the balance ratio of a
token pair, we require swap rate limits for all balances of a given ratio to be
constant. For all r0, r1, c > 0:

lim
ε→0

XLswap
φ (ε, r0, r1) = lim

ε→0
XLswap

φ (ε, c · r0, c · r1) (18)

Figure 3 (right) illustrates equal swap rate limits for given r0, r1 and c · r0, c · r1.
Here, limε→0 XL

swap(ε, r0, r1) = φ · r1/r0 = φ · (c · r1)/(c · r0) for c > 0.
Finally, the following lemma establishes that the constant product swap

invariant (the one used e.g. by Uniswap and Mooniswap) is indeed incentive-
consistent. We conjecture that the same is true for the swap invariants imple-
mented by the other mainstream AMM platforms.

Lemma 7. The constant product swap invariant is incentive-consistent.

4.3 The arbitrage game

We now study the incentive mechanisms of AMMs from a game-theoretic per-
spective. Indeed, AMMs can be seen as multi-player games where users collabo-
rate or compete to achieve possibly conflicting goals. In such games the allowed
moves of users are the interactions with other users and with AMMs, while their
goal is typically to increase their net worth.

The arbitrage problem is an interesting example of an AMM game since
it is directly linked to the incentive of swaps in a way that makes AMMs track
exchange rates. The arbitrage problem has been formalized for specific swap

53

invariants, namely the weighted and constant product swap invariant [17,19]. We
generalize here the arbitrage problem to arbitrary swap invariants. We provide
sufficient conditions for the existence of solutions, and we link the solutions to
the expected relation between AMMs and exchange rates.

We model the arbitrage problem as a single-player, single-round game. The
initial game state is Γ0 = A[σ] | (r1 : τ0, r1 : τ1), where A is the only player. The
moves of A are all the possible transactions fired by A; we also consider doing
nothing as a possible move. The goal of A is to maximize her net worth, i.e.
to maximize WA(Γ) − WA(Γ0), where Γ is the state resulting from executing
the selected move. A solution to the game is a move that satisfies the goal, i.e.
one of the optimal moves. We further assume that A holds no minted tokens
containing (τ0, τ1) as a subterm (i.e., (τ0, τ1) itself, ((τ0, τ1), τ2), etc.). In this
way, any change in A’s net worth only depends on the exchange rate between τ0
and τ1, and on the transfer of value resulting from A’s move.

Before presenting the solution to the game we examine the potential candi-
dates for the solution. First, note that transfers are not valid solutions, as they
can only decrease A’s net worth. A second observation is that doing nothing,
depositing or redeeming do not alter A’s net worth (cf. Lemma 3). Hence, if
one of such moves is a solution, so are the other two. The only moves that may
affect A’s net worth are swaps. For a swap to be a solution to the game, it must,
first of all, result in a positive change of A’s net worth. This happens when the
swap rate is greater than the exchange rate. Theorem 2 presents the solution to
the game. Note that if swapL(v0 : τ0, v1 : τ1) is a solution, then for all v′1 ≤ v1,
also swapL(v0 : τ0, v

′
1 : τ1) is a solution. Without loss of generality, our statement

singles our the solution with the greatest v1 (similarly for the right swap).

Theorem 2. Let I be demand-sensitive and non-depletable, and let the initial
state of the game be Γ0 = A[σ] | (r0 : τ0, r1 : τ1), with r0, r1 > 0. Let σ(τ0), σ(τ1)
be large enough to enable any needed swap. Then, the solution to the game is:

– A : swapL(v0 : τ0, v1 : τ1) if Γ0
A:swapL(v0:τ0,v1:τ1)−−−−−−−−−−−−−→ Γ, and:

(1) lim
ε→0

XLswap
Γ0,φ

(ε, τ0, τ1) > XLΓ0
(τ0, τ1)

(2) lim
ε→0

XLswap
φ (ε, r0 + φ · v0, r1 − v1) = XLΓ(τ0, τ1) where ∃! δ :

I(r0, r1) = I(r0 + φ · v0, r1 − v1) = I(r0 + φ · (v0 + ε), r1 − (v1 + δ))

– A : swapR(v0 : τ0, v1 : τ1) if Γ0
A:swapR(v0:τ0,v1:τ1)−−−−−−−−−−−−−→ Γ, and:

(1) lim
ε→0

XRswap
Γ0,φ

(ε, τ0, τ1) > XRΓ0
(τ0, τ1)

(2) lim
ε→0

XRswap
φ (ε, r0 − v0, r1 + φ · v1) = XRΓ(τ0, τ1) where ∃! δ :

I(r0, r1) = I(r0 − v0, r1 + φ · v1) = I(r0 − (v0 + δ), r1 + φ · (v1 + ε))

– do nothing (or do any deposit or redeem), otherwise.

54

Intuitively, condition (1) requires that the swap rate for infinitesimal amounts is
greater than the exchange rate in the initial state; (2) requires that in the state
Γ reached by performing the move of the solution, the swap rate for infinitesimal
amounts tends to the exchange rate — thus achieving one of the main desiderata
on AMMs. Note that Γ is an equilibrium: no move from there can improve A’s
net worth, i.e. doing nothing is a solution for the arbitrage problem in Γ.

Note that for the swapL/swapR solutions, the swapped amounts are unique:
this is a consequence on the assumption (10). An implicit desideratum on these
solutions is that, given a specific instance of the swap invariant, they are effi-
ciently computable: this is the case, e.g., for the constant product invariant [17].

For φ = 1 we can observe by inspection of (14) that the do-nothing solution
for Theorem 2 only holds for:

lim
ε→0

XLswap
Γ0

(ε, τ0, τ1) = 1/ lim
ε→0

XRswap
Γ0

(ε, τ0, τ1) = XLΓ0(τ0, τ1) (19)

Thus, the solution to the game results in the AMM tracking global exchange
rates precisely: any infinitesimal deviation of the global exchange rate implies a
swap action in the arbitrage game.

The assumption that the players’ wallets are sufficiently large is common
in formulations of the arbitrage problem. We note that any rational agent is
incentivized to perform such a swap: the optimal solution to the arbitrage game
can thus be approximated by multiple users exchanging smaller swap amounts.
Furthermore, the availability of flash-loans [28, 29] can provide up-front funds,
and thus significantly reduce the balance requirements for arbitrage swaps.

Finally, we prove that a AMM deposits and redeems do not affect the solution
type of the arbitrage game. If the arbitrage solution prior to a deposit or redeem
is swapL, swapR or nothing, the arbitrage solution in the subsequent state should
remain of the same type.

Theorem 3. Let I be incentive-consistent. Let (r0 : τ0, r1 : τ1) ∈ Γ with r0, r1 >

0. If Γ
T−→ Γ ′, type(T) ∈ {dep, rdm}, then the arbitrage solutions in Γ and Γ ′

will have the same type or both be nothing.

In other words, the design of AMMs aims to ensure that deposits and redeems
do not interfere with the alignment of the swap rate towards the exchange rate.

Example 8. Consider the arbitrage game with player B and initial state Γ7 =
B[0 : τ0, 27 : τ1] | (18 : τ0, 6 : τ1) | · · · resulting after the last step in Figure 1.
Assuming the constant product invariant and no fees (i.e., φ = 1), we have that:

lim
ε→0

XLswap
Γ7

(ε, τ0, τ1) = r1/r0 = 6/18 < 5/9 = XLΓ7
(τ0, τ1)

lim
ε→0

XRswap
Γ7

(ε, τ0, τ1) = r0/r1 = 18/6 > 9/5 = XRΓ7
(τ0, τ1)

Hence, by Theorem 2 it follows that the optimal move is swapR(v0 : τ0, v1 : τ1),
for suitable v0 and v1. To find these values, we must solve for v0 and v1 the
equations in item (2) of Theorem 2, i.e.:

lim
ε→0

XRswap
φ (ε, r0 − v, r1 + v1) = XRΓ(τ0, τ1) I(r0, r1) = I(r0 − v0, r1 + v1)

55

Solving these equations gives:

v1 =

√
5

9
· r0r1 − r1 ≈ 1.74 v0 =

r0v1
r1 + v1

≈ 4

By performing swapR(v0 : τ0, v1 : τ1) with these values from Γ7, we obtain:

Γ = B[4 : τ0, 25.26 : τ1] | (14 : τ0, 7.74 : τ1) | · · ·

This action maximizes B’s net worth: indeed, we have WB(Γ7) = 243 and
WB(Γ) = 247.6; any other action will result in a lower net worth for B. ut

4.4 Incentivizing deposits and swaps

Theorem 2 ensures that incentive-consistent AMMs incentivize swaps to align to
exchange rates. We now show that, under certain conditions, deposits and swaps
incentivize each other. The intuition is that larger amounts of tokens in an AMM
provide better swap rates, therefore attracting users interested in swaps. These
swaps, in turn, result in increased redeem rates, making the AMM attractive for
further deposits. Note that this behaviour relies on an underlying assumption
of our model, i.e. that exchange rates are stable: oracle prices are fixed. In the
wild, exchange rates can vary over time, possibly making the net worth of users
holding minted AMM tokens decrease: this phenomenon is commonly referred
to as impermanent loss [9].

The following theorem shows that deposits increase swap rates, hence incen-
tivizing swaps, whilst redeems have the opposite effect.

Theorem 4. Let I be incentive-consistent. Let Γ = (r0 : τ0, r1 : τ1) | · · · , with

r0, r1 > 0, and let Γ
A:`−−→ Γ ′. Then, for all v ∈ R+:

XLswap
Γ,φ (v, τ0, τ1) ◦XLswap

Γ ′,φ(v, τ0, τ1)

XRswap
Γ,φ (v, τ0, τ1) ◦XRswap

Γ ′,φ(v, τ0, τ1)
where ◦ =

{
< if ` = dep(: τ0, : τ1)

> if ` = rdm(: (τ0, τ1))

We now show that, under certain conditions, swaps incentivize deposits. In-
tuitively, swaps contribute to higher redeem rates, which increase the net wealth
of the holders of minted AMM tokens:

Theorem 5. Let I be incentive-consistent. Let Γ = (r0 : τ0, r1 : τ1) | · · · and
Γ −→∗ Γ ′, where Γ ′ = (r′0 : τ0, r

′
1 : τ1) | · · · . If r1/r0 = r′1/r

′
0 then:

XLrdm
Γ (τ0, τ1) ≤ XLrdm

Γ ′ (τ0, τ1) XRrdm
Γ (τ0, τ1) ≤ XRrdm

Γ ′ (τ0, τ1)

Recall that a user who deposits into an AMM (r0 : τ0, r1 : τ1) in state Γ
receives in return an amount of minted tokens. A consequence of Theorem 5
is that these minted tokens can be redeemed with a higher redeem rate in any
subsequent state Γ ′ which preserves the funds ratio r1/r0. Note that swaps
are the only actions that may affect the redeem rate along the run Γ −→∗ Γ ′.

56

Therefore, performing swaps that eventually re-align the funds ratio to r1/r0
incentivizes deposits.

The condition of constant funds ratio in Theorem 5 is practically relevant.
For instance, for stable exchange rates, such as in the case of exchanges between
stable coins [6], the arbitrage game ensures stable fund ratios: users are hence
incentivized to provide funds, as the redeem rate is likely to increase over time.

5 Related Work

To the best of our knowledge, our work is the first to study AMMs abstracting
from the swap invariant. All works in literature consider concrete swap invari-
ants; most of them focus on the constant product, popularized by Uniswap [13].
The arbitrage problem for constant-product swap invariants has been formalized
in [17,19], which show that the solution can be efficiently computed, and suggest
that constant product AMMs accurately tend towards exchange rates. Our work
generalizes such results. Furthermore, as we have shown in §4.3 (19), the fee-rate
φ determines how much AMMs deviate from global exchange rates: higher fees,
however, also result in reduced swap amounts in arbitrage actions, negatively
affecting fee accrual. In [24], the optimal fee-rate that maximizes the fee accrual
for the depositing user is analytically derived.

A executable model of Uniswap [13] has been specified in [1] to analyze integer
rounding errors in the Uniswap implementation.

A few alternatives to the constant product invariant have been proposed.
Curve features a peculiar invariant [22] optimized for large swap volumes be-
tween stable coins, where the swap rate can support large amounts with small
sensitivity. To efficiently compute swap invariant, implementations perform nu-
merical approximations [15]. Should these approximations fail to converge, these
implementations still guarantee that the AMM remains liquid. We conjecture
that the invariants in [3, 22] are incentive-consistent. The work [25] proposes
a constant product invariant that is adjusted dynamically based on the oracle
price feed, thus reducing the need for arbitrage transactions, but at the cost of
lower fee accrual. AMMs with virtual balances have been proposed [2] and im-
plemented [7,8]. In these AMMs, the swap rate depends on past actions, besides
the current funds balances in the AMM. This, similarly to [25], aims to minimize
the need for arbitrage transactions to ensure the local AMM swap rate tends
towards the exchange rates.

Some implementations [3] generalise AMM pairs to n-tokens, allowing users
to swap any non-intersecting sets of token types. For example, the constant-
product invariant becomes I(r0, . . . , rn) = rw0

0 · . . . · rwnn where
∑n
i=0 w

i = 1.

6 Conclusions

We have proposed a theory of AMMs, featuring a model of their behaviour and
a formally proven set of fundamental properties, characterizing both structural
and economic aspects. Our theory is parametric w.r.t. platform-specific features

57

(e.g., swap invariants), and it abstracts from implementation-specific features,
and from the features that are orthogonal to the core functionality of AMMs
(e.g., governance).

There are some differences between our model and the existing AMM plat-
forms. Uniswap implements flash-loans as part of the swap actions: namely, the
user can optionally borrow available pair funds [10] whilst returning these within
the same atomic group of actions. Further, Uniswap implements an exchange rate
oracle, allowing smart contracts to interpret (averages of) recent swap rates as
exchange rates [11]. Balancer [3] extends token pairs to token tuples: a user can
swap any two non-coinciding sets of supported tokens, such that the swap invari-
ant is maintained. In all AMM implementations, token balances are represented
as integers: consequently, they are subject to rounding errors [1]. AMM plat-
forms frequently implement a governance logic, which allow “governance token”
holders to coordinate changes to AMM fee-rates or swap invariant parameters.

AMM platforms like Uniswap [13] and Curve [22] have overtaken centralized
cryptocurrency markets in size and usage. On the one hand, a better under-
standing of AMM design in cases where AMMs host the majority of the token’s
global swap volume is critical [18]. It would be interesting to investigate how our
theory can be used to formally explain such behaviours. On the other hand, the
growth of AMMs is making them more attractive for malicious users. Current
research efforts [21, 23, 27, 30] are devoted to understanding vulnerabilities and
attacks, which we plan to investigate formally, exploiting our theory.

This paper, together with our work on formalizing another DeFi archetype
called lending pool [20], is the first step towards a general theory of DeFi. We
believe that a general theory encompassing interactions between different DeFi
archetypes is crucial to be able to reason about their structural, economic and
security aspects, as typical DeFi applications operate within a wider ecosystem,
composed by a set of collaborating or competing agents, which interact through
possibly separate execution environments.

Acknowledgements Massimo Bartoletti is partially supported by Conv. Fon-
dazione di Sardegna & Atenei Sardi project F74I19000900007 ADAM. James
Hsin-yu Chiang is supported by the PhD School of DTU Compute. Alberto
Lluch Lafuente is partially supported by the EU H2020-SU-ICT-03-2018 Project
No. 830929 CyberSec4Europe (cybersec4europe.eu).

References

1. Formal specification of constant product market maker model & imple-
mentation (2018), https://github.com/runtimeverification/verified-smart-
contracts/blob/uniswap/uniswap/x-y-k.pdf

2. Improving frontrunning resistance of x*y=k market makers (2018),
https://ethresear.ch/t/improving-front-running-resistance-of-x-y-
k-market-makers/1281

3. Balancer whitepaper (2019), https://balancer.finance/whitepaper/
4. Curve statistics (2020), https://www.curve.fi/dailystats

58

5. Curve website (2020), https://www.curve.fi
6. Makerdao website (2020), https://https://makerdao.com
7. Mooniswap implementation (2020), https://github.com/1inch-exchange/

mooniswap/blob/02dccfab2ddbb8a409400288cb13441763370350/contracts/
Mooniswap.sol

8. Mooniswap whitepaper (2020), https://mooniswap.exchange/docs/
MooniswapWhitePaper-v1.0.pdf

9. Uniswap Documentation: Understanding Returns (2020), https://uniswap.org/
docs/v2/advanced-topics/understanding-returns/

10. Uniswap flash loan implementation (2020), https://github.com/Uniswap/
uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/
contracts/UniswapV2Pair.sol#L172

11. Uniswap oracle template (2020), https://github.com/Uniswap/uniswap-v2-
periphery/blob/dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/
examples/ExampleOracleSimple.sol

12. Uniswap statistics (2020), https://info.uniswap.org
13. Uniswap token pair implementation (2020), https://github.com/Uniswap/

uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/
contracts/UniswapV2Pair.sol

14. Uniswap website (2020), https://www.uniswap.org
15. Curve computation of invariant constant (2021), https://github.com/

curvefi/curve-contract/blob/a1b5a797790d3f5ef12b0e358892a0ce47c12f85/
contracts/pool-templates/base/SwapTemplateBase.vy#L206

16. Curve token pair implementation (2021), https://github.com/curvefi/curve-
contract/blob/a1b5a797790d3f5ef12b0e358892a0ce47c12f85/contracts/
pool-templates/base/SwapTemplateBase.vy

17. Angeris, G., Chitra, T.: Improved price oracles: Constant function market makers.
In: ACM Conference on Advances in Financial Technologies (AFT). pp. 80–91.
ACM (2020). https://doi.org/10.1145/3419614.3423251, https://arxiv.org/abs/
2003.10001

18. Angeris, G., Evans, A., Chitra, T.: When does the tail wag the dog? curvature and
market making. arXiv preprint arXiv:2012.08040 (2020), https://arxiv.org/abs/
2012.08040

19. Angeris, G., Kao, H.T., Chiang, R., Noyes, C., Chitra, T.: An analysis of Uniswap
markets. Cryptoeconomic Systems Journal (2019), https://ssrn.com/abstract=
3602203

20. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: SoK: Lending pools in decentral-
ized finance. In: Workshop on Trusted Smart Contracts. LNCS, Springer (2021),
(To appear)

21. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: IEEE Symposium on Security and
Privacy. pp. 910–927. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00040

22. Egorov, M.: Stableswap - efficient mechanism for stablecoin (2019), https://www.
curve.fi/stableswap-paper.pdf

23. Eskandari, S., Moosavi, S., Clark, J.: SoK: Transparent Dishonesty: Front-Running
Attacks on Blockchain. In: Financial Cryptography. pp. 170–189. Springer Inter-
national Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-43725-1 13

24. Evans, A., Angeris, G., Chitra, T.: Optimal fees for geometric mean market makers
(2021), https://web.stanford.edu/˜guillean/papers/g3m-optimal-fee.pdf

59

25. Krishnamachari, B., Feng, Q., Grippo, E.: Dynamic curves for decentralized
autonomous cryptocurrency exchanges. arXiv preprint arXiv:2101.02778 (2021),
https://arxiv.org/abs/2101.02778

26. Mazurkiewicz, A.W.: Basic notions of trace theory. In: Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354,
pp. 285–363. Springer (1988). https://doi.org/10.1007/BFb0013025

27. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: How dark
is the forest? (2021), https://arxiv.org/abs/2101.05511

28. Qin, K., Zhou, L., Livshits, B., Gervais: Attacking the DeFi Ecosystem with Flash
Loans for Fun and Profit. In: Financial Cryptography (2021), (to appear) https:
//arxiv.org/abs/2003.03810

29. Wang, D., Wu, S., Lin, Z., Wu, L., Yuan, X., Zhou, Y., Wang, H., Ren, K.: Towards
understanding flash loan and its applications in defi ecosystem. arXiv preprint
arXiv:2010.12252 (2020), https://arxiv.org/abs/2010.12252

30. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-Frequency Trading
on Decentralized On-Chain Exchanges. arXiv preprint arXiv:2009.14021 (2020),
https://arxiv.org/abs/2009.14021

60

A Proofs

Proof of Lemma 1 Straightforward inspection of the rules in §2. ut

Proof of Lemma 2 We proceed by cases on the rule used in the last transition:
it is straightforward to check that, in all the rules, changes applied to initial
tokens cancel out. ut

Proof of Lemma 3 We first prove that the net worth of a user A, i.e. WA(Γ),
is preserved by transactions of type dep and rdm, or by transactions which do
not affect A’s wallet. More precisely, we prove that:

Γ
T−→ Γ ′ ∧ (type(T) ∈ {dep, rdm} ∨ A 6∈ wal(T)) =⇒ WA(Γ) = WA(Γ ′) (20)

We have the following cases:

– [Xfer]. Let C : xfer(B, v : τ) be the fired transaction. By hypothesis, it must
be A 6∈ wal(T) = {B,C}, hence the thesis follows by inspection of the rule.

– [Dep0]. Let B : dep(v0 : τ0, v1 : τ1) be the fired transaction. We have that:

Γ = B[σ] | Γ0

Γ ′ = B[σ − v0 : τ0 − v1 : τ1 + v0 : (τ0, τ1)] | (v0 : τ0, v1 : τ1) | Γ0

If B 6= A, then A’s net worth is unaffected. Otherwise, if B = A, then:

WA(Γ ′) = WA(Γ)− v0Pτ0(Γ)− v1Pτ1(Γ) + v0P(τ0,τ1)(Γ)

= WA(Γ)− v0Pτ0(Γ)− v1Pτ1(Γ) + v0
v0Pτ0(Γ) + v1Pτ1(Γ)

v0
= WA(Γ)

– [Dep]. Let B : dep(v0 : τ0, v1 : τ1) be the fired transaction. We have that:

Γ = B[σ] | (r0 : τ0, r1 : τ1) | Γ0

Γ ′ = B[σ − v0 : τ0 − v1 : τ1 + v : (τ0, τ1)] | (r0 + v0 : τ0, r1 + v1 : τ1) | Γ0

where v = (v0 · s)/r0), with s = sply(τ0,τ1)(Γ). If B 6= A, then A’s net worth
is unaffected. Otherwise, if B = A, then:

WA(Γ ′) = WA(Γ)− v0Pτ0(Γ)− v1Pτ1(Γ) + vP(τ0,τ1)(Γ)

= WA(Γ)− v0Pτ0(Γ)− v1Pτ1(Γ) + v
r0Pτ0(Γ) + r1Pτ1(Γ)

s

= WA(Γ)− v0Pτ0(Γ)− v1Pτ1(Γ) +
v0
r0

(
r0Pτ0(Γ) + r1Pτ1(Γ)

)

= WA(Γ)− v1Pτ1(Γ) +
v0
r0
r1Pτ1(Γ)

= WA(Γ)

where the last equality follows from the premise r1v0 = r0v1 of rule [Dep].

61

– [SwapL]. Let B : swapL(v0 : τ0, v1 : τ1) be the fired transaction. By hypothesis,
it must be A 6∈ wal(T) = {B}. The thesis follows by inspection of the rule.

– [SwapR]. Similar to the previous case.

– [Rdm]. Let B : rdm(v : (τ0, τ1)) be the fired transaction. We have that:

Γ = B[σ] | (r0 : τ0, r1 : τ1) | Γ0

Γ ′ = B[σ + v0 : τ0 + v1 : τ1 − v : (τ0, τ1)] | (r0 − v0 : τ0, r1 − v1 : τ1) | Γ0

where v0 = (vr0)/s and v1 = (vr1)/s, with s = sply(τ0,τ1)(Γ). If B 6= A, then
A’s net worth is unaffected. Otherwise, if B = A, then:

WA(Γ ′) = WA(Γ) + v0Pτ0(Γ) + v1Pτ1(Γ)− vP(τ0,τ1)(Γ)

= WA(Γ) + v0Pτ0(Γ) + v1Pτ1(Γ)− vr0
s

Pτ0(Γ)− vr1
s

Pτ1(Γ)

= WA(Γ) +
vr0
s

Pτ0(Γ) +
vr1
s

Pτ1(Γ)− vr0
s

Pτ0(Γ)− vr1
s

Pτ1(Γ)

= WA(Γ) ut

We now prove that the global net worth is preserved by any transactions. First,
we recall the definition of global net worth. Let:

Γ = A1[σ1] | · · · | An[σn] | (r1 : τ1, r
′
1 : τ ′1) | · · · | (rk : τk, r

′
k : τ ′k)

The global net worth of Γ is defined as:

W (Γ) =
∑
i∈1..nWAi(Γ) (21)

We prove that:

Γ
T−→ Γ ′ =⇒ W (Γ) = W (Γ ′) (22)

We have the following cases:

– [Xfer]. A xfer transaction subtracts an amount of tokens from the wallet of
a user, and adds an equal amount of the same token type to the wallet of
another user. Therefore, it preserves the global net worth.

– [Dep0], [Dep], [Rdm]. These rules affect the number of tokens in AMMs, which
does not contribute to the global net worth, and the balances of users, which
are preserved (20). Therefore, the global net worth is preserved.

– [SwapL]. We have that:

Γ = A[σ] | (r0 : τ0, r1 : τ1) | Γ0

Γ ′ = A[σ − v0 : τ0 + v : τ1] | (r0 + v0 : τ0, r1 − v : τ1) | Γ0

62

Note that splyτ0(Γ ′) = splyτ0(Γ), and splyτ(Γ
′) = splyτ(Γ). By (8), we have

that Pτ0(Γ ′) = Pτ0(Γ) Therefore:

W (Γ ′) = W (Γ0)− v0Pτ0(Γ ′) + vPτ1(Γ ′)

− sply(τ0,τ1)(Γ)P(τ0,τ1)(Γ) + sply(τ0,τ1)(Γ
′)P(τ0,τ1)(Γ

′)

= W (Γ0)− v0Pτ0(Γ) + vPτ1(Γ)

− sply(τ0,τ1)(Γ) ·
(
P(τ0,τ1)(Γ) + P(τ0,τ1)(Γ

′)
)

= W (Γ0)− v0Pτ0(Γ) + vPτ1(Γ)

− r0Pτ0(Γ) + r1Pτ1(Γ) + (r0 + v0)Pτ0(Γ) + (r1 − v)Pτ1(Γ)

= W (Γ)

– [SwapR]. Similar to the previous case. ut

Proof of Lemma 4 For item (a) we proceed by induction on the length of
the computation Γ0 −→∗ Γ, with Γ0 initial. The base case is trivial, since Γ0

contains no AMMs. For the inductive step, we must show that (a) is preserved
by single transitions. Assume that Γ satisfies (a), and that Γ −→ Γ ′. Assume that
Γ ′ contains an AMM (r′0 : τ0, r

′
1 : τ1) with r′0 + r′1 > 0, i.e. r′0 > 0 or r′1 > 0.

There are the following cases cases, depending on the rule used to infer Γ −→ Γ ′:

– [Xfer], [SwapL], [SwapR]. trivial, because these actions do not affect the supply
of minted tokens.

– [Dep0], [Dep]. trivial, because deposits increase the supply of minted tokens.

– [Rdm]. Assume that the state of the AMM in Γ is (r0 : τ0, r1 : τ1). By contra-
diction, suppose that the [Rdm] action burns all the v = sply(τ0,τ1)(Γ) units
of the minted token. The rule premise requires v > 0, and it implies:

r′0 = r0 − v
r0

sply(τ0,τ1)(Γ)
= 0 r′1 = r1 − v

r1
sply(τ0,τ1)(Γ)

= 0

Therefore, we would have r′0 = r′1 = 0 — contradiction.

For item (b), we proceed by induction on the number of AMMs in the state.
The base case is trivial, since the premise of (b) is false. For the inductive step,
let Γ = (r0 : τ0, r1 : τ1) | Γ ′′ be a reachable state such that r0 + r1 > 0. Let
r′0 ≤ r0, and let v = sply(τ0,τ1)(Γ). By item (a) we have that v > 0. By the
induction hypothesis, there exists a sequence of transactions Γ ′′ −→∗ Γ1 where
users can redeem v : (τ0, τ1) from other AMMs. From Γ1, users can perform
another sequence of transactions Γ1 −→∗ Γ2 to transfer these units to the wallet
of a user, say A. Summing up, we have that Γ −→∗ (r0 : τ0, r1 : τ1) | Γ2. Now, let:

ṽ =
(r0 − r′0)

r0
sply(τ0,τ1)(Γ)

63

Since ṽ < v, A can fire A : rdm(ṽ : (τ0, τ1)), obtaining, for some r′1 ≤ r1:

(r0 : τ0, r1 : τ1) | Γ2 −→ Γ ′ =
(
r0 − ṽ

r0
sply(τ0,τ1)(Γ)

: τ0, r
′
1 : τ1

)
| · · ·

= (r′0 : τ0, r
′
1 : τ1) | · · ·

The proof of item (c) is similar. ut

Proof of Lemma 5 Let Γ
T0T1−−−→ Γ01 and Γ

T1T0−−−→ Γ10 with the following
intermediate states:

Γ
T0−→ Γ0

T1−→ Γ01 Γ
T1−→ Γ1

T0−→ Γ10

We have the following exhaustive cases on the type of the two transactions:

1. T0 = A0 : xfer(B0, v0 : τ0).
(a) T1 = A1 : xfer(B1, v1 : τ1). Straightforward from rule [Xfer].
(b) T1 = A1 : dep(v1 : τ1, v

′
1 : τ ′1). We have that:

Γ = A0[σA0
] | B0[σB0

] | Γ ′
Γ0 = A0[σA0

− v0 : τ0] | B0[σB0
+ v0 : τ0] | Γ ′

If A1 6= A0,B0, then the two transactions affect different part of the
state, so the thesis follows trivially. Otherwise, we have two subcases,
depending on whether [Dep0] or [Dep] was used.
If [Dep0] was used, then:

Γ1 = A1[σA1
− v1 : τ1 − v′1 : τ ′1 + v1 : (τ1, τ

′
1)] | (v1 : τ1, v

′
1 : τ ′1) | Γ ′

If A1 = A0, then σA0
= σA1

, and the thesis Γ01 = Γ10 follows by:

Γ01 = A0[σA0 − v0 : τ0 − v1 : τ1 − v′1 : τ ′1 + v1 : (τ1, τ
′
1)] |

B0[σB0 + v0 : τ0] | (v1 : τ1, v
′
1 : τ ′1) | Γ ′

Γ10 = A0[σA0 − v1 : τ1 − v′1 : τ ′1 + v1 : (τ1, τ
′
1)− v0 : τ0] |

B0[σB0 + v0 : τ0] | (v1 : τ1, v
′
1 : τ ′1) | Γ ′

If A1 = B0, then σB0 = σA1 , and the thesis Γ01 = Γ10 follows by:

Γ01 = A0[σA0
− v0 : τ0] |

B0[σB0
+ v0 : τ0 − v1 : τ1 − v′1 : τ ′1 + v1 : (τ1, τ

′
1)] | (v1 : τ1, v

′
1 : τ ′1) | Γ ′

Γ10 = A0[σA0
− v0 : τ0] |

B0[σB0
− v1 : τ1 − v′1 : τ ′1 + v1 : (τ1, τ

′
1) + v0 : τ0] | (v1 : τ1, v

′
1 : τ ′1) | Γ ′

The case where [Dep] was used is similar. In the following cases we omit
the detailed computation of the states as done here, and we appeal the
intuition to argue for the equivalence of the reached states.

64

(c) T1 = A1 : swapL(v1 : τ1, v
′
1 : τ ′1). The equality of Γ01 and Γ10 follows

from the fact that neither the updated users’ balances nor the amounts
which update the AMM depend on the current state. In particular, the
swap invariant only depends on the values r1 and r′1.

(d) T1 = A1 : swapR(v1 : τ1, v
′
1 : τ ′1). Similar to the previous case.

(e) T1 = A1 : rdm(v1 : τ1). The thesis follows from the fact that the only
part of the state which affects the update of the users’ balances and the
AMM is the supply of the minted token, which is not affected by T0.

2. T0 = A0 : dep(v0 : τ0, v
′
0 : τ ′0).

(a) T1 = A1 : xfer(B1, v1 : τ1). Symmetric to case (1b).
(b) T1 = A1 : dep(v1 : τ1, v

′
1 : τ1). If (τ0, τ

′
0) 6= (τ1, τ

′
1), then the thesis is

straightforward. Otherwise, note that the amount of tokens minted by
the AMM only depends on the ratio between the amounts of τ0 and τ ′0
initially held by the AMM, and the values subsequently transferred to
the AMM by T0 and T1.

(c) T1 = A1 : swapL(v1 : τ1, v
′
1 : τ ′1). By hypothesis, {τ1, τ ′1} and {τ0, τ ′0}

are disjoint. The thesis is straightforward, because AMMs operating on
distinct token pairs do not interfere.

(d) T1 = A1 : swapR(v1 : τ1, v
′
1 : τ ′1). Similar to the previous case.

(e) T1 = A1 : rdm(v1 : τ1). If (τ0, τ
′
0) 6= (τ1, τ

′
1), then the thesis is straightfor-

ward. Otherwise, note that the amount of tokens minted by the AMM in
response of T0 only depends on the ratio between the amounts of τ0 and
τ ′0 initially held by the AMM, and the values transferred to the AMM
by T0. Similarly, the tokens paid by the AMM in response of T1 only
depend on the ratio between the amounts of τ0 and τ ′0 initially held by
the AMM, which are constrained to preserve the ratio, and the amount
deposited by T0. Then, the two transactions are concurrent.

3. T0 = A0 : rdm(v0 : τ0).
(a) T1 = A1 : xfer(B1, v1 : τ1). Symmetric to case (1e).
(b) T1 = A1 : dep(v1 : τ1, v

′
1 : τ ′1). Symmetric to case (2e).

(c) T1 = A1 : swapL(v1 : τ1, v
′
1 : τ ′1). By hypothesis, {τ1, τ ′1} and {τ0, τ ′0}

are disjoint. The thesis is straightforward, because AMMs operating on
distinct token pairs do not interfere.

(d) T1 = A1 : swapR(v1 : τ1, v
′
1 : τ ′1). Similar to the previous case.

(e) T1 = A1 : rdm(v1 : τ1). The tokens paid by the AMM in response of
T0 and T1 only depend on the ratio between the amounts of τ0 and τ ′0
initially held by the AMM, which are constrained to preserve the ratio.

4. T0 = A0 : swapL(v0 : τ0, v
′
0 : τ ′0). The only case not covered by the previous

one is when T1 = A1 : swapL(v1 : τ1, v
′
1 : τ ′1). By hypothesis, {τ1, τ ′1} and

{τ0, τ ′0} are disjoint. The thesis is straightforward, because AMMs operating
on distinct token pairs do not interfere.

5. T0 = A0 : swapR(v0 : τ0, v
′
0 : τ ′0). Similar to the previous case. ut

Lemma A.1 λ ∼ λ′ =⇒ ∀λ0, λ1 : λ0λλ1 ∼ λ0λ′λ1.
Proof. Direct from the fact that semantics of transactions is a function (Lemma 1),
and it only depends on the states after the execution of λ and λ′, which are equal
starting from any state Γ, since λ ∼ λ′.

65

Proof of Theorem 1 By definition, ∼# is the least equivalence relation closed
under the following rules (where ε denotes the empty sequence):

ε ∼# ε
[0]

T ∼# T
[1]

T#T′

TT′ ∼# T′T
[2]

λ0 ∼# λ′0 λ1 ∼# λ′1
λ0λ1 ∼# λ′0λ

′
1

[3]

Let λ ∼# λ′. We have to show λ ∼ λ′. We proceed by induction on the rules
above. For rules [0] and [1], the thesis follows by reflexivity, since ∼ is an equiv-
alence relation. For rule [2], the thesis follows immediately by definition of the
concurrency relation #. For rule [3], first note that λ = λ0λ1 and λ′ = λ′0λ

′
1. By

the induction hypothesis it follows that:

λ0 ∼ λ′0 and λ1 ∼ λ′1
Therefore, by two applications of Lemma A.1:

λ = λ0λ1 ∼ λ0λ′1 ∼ λ′0λ′1 = λ′ ut

Proof of Lemma 6 Define the rank ‖τ‖ of a token τ inductively as follows:

‖τ‖ =

{
0 if τ ∈ T0

max{‖τ0‖, ‖τ1‖} if τ = (τ0, τ1)

and accordingly define the rank of A in Γ as:

‖Γ‖A =

{
max {‖τ‖ | τ ∈ domσ} if A[σ] ∈ Γ
0 otherwise

We proceed by induction on n = ‖Γ‖A . In the base case n = 0, A’s wallet in
Γ contains only initial tokens: here, rdmA(Γ) = Γ, so the thesis is immediate.
For the inductive case, let n > 0, and assume that the statement holds for all
n′ < n. Let τ1, . . . , τk be the tokens of rank n in A’s wallet A[σ]. Let:

Γ = Γ0
A:rdm(σ0(τ1):τ1)−−−−−−−−−−→ Γ1

A:rdm(σ1(τ2):τ2)−−−−−−−−−−→ · · · A:rdm(σk−1(τk):τk)−−−−−−−−−−−−→ Γk

where Γi = A[σi] | Γ ′i for all i < k. The rank of each token in A’s wallet in Γk is
strictly less then n. Therefore, by the induction hypothesis:

WA(Γk) =
∑
τ∈domσk

σk(τ) · P0(τ)

By Lemma 3, we have that WA(Γ0) = WA(Γk), from which the thesis follows. ut

Lemma A.2 Let I be swap-rate continuous. Then, for all v0, v1 and 0 < φ ≤ 1:

XLswap(v0, r0, r1) ≥ XLswap
φ (v0, r0, r1)

XRswap(v1, r0, r1) ≥ XRswap
φ (v1, r0, r1)

66

Proof. For φ = 1 the statement holds trivially, since XLswap(ε, r0, r1) is a short-
hand for XLswap

φ=1(ε, r0, r1). So, let φ < 1. By (12), for any v0 we have that:

XLswap
φ (v0, r0, r1) =

vφ
v0

where ∃!vφ : I(r0, r1) = I(r0 + φv0, r1 − vφ) (23)

XLswap(v0, r0, r1) =
v

v0
where ∃!v : I(r0, r1) = I(r0 + v0, r1 − v) (24)

We show that v > vφ, from which the thesis follows. By (24), we have that the
left swap rate for input (1− φ)v0 on the AMM (r0 + φv0 : τ0, r1 − vφ : τ1) is:

XLswap((1− φ)v0, r0 + φv0, r1 − vφ) =
x

(1− φ)v0
(25)

where x is the unique value satisfying:

I(r0 + φv0, r1 − vφ) = I(r0 + φv0 + (1− φ)v0, r1 − vφ − x)

= I(r0 + v0, r1 − (vφ + x))

Since, by (23), I(r0 + φv0, r1 − vφ) = I(r0, r1), then x must satisfy:

I(r0 + v0, r1 − (vφ + x)) = I(r0, r1)

By (24), the unique solution y to the equation I(r0, r1) = I(r0 + v0, r1 − y) is
y = v. Therefore, is must be v = vφ +x, from which we obtain x = v− vφ. Since
I is swap-rate continuous, by (14) it follows that the swap rate (25) must be
positive, and so v − vφ > 0. The proof for the right swap rate is similar. ut

Proof of Theorem 2 Let Γ0 = A[σ] | (r0 : τ0, r1 : τ1). The statement of
the theorem singles out three cases for the solutions of the arbitrage game:

(a) lim
ε→0

XLswap
φ (ε, r0, r1) > XLΓ0(τ0, τ1)

(b) lim
ε→0

XRswap
φ (ε, r0, r1) > XRΓ0

(τ0, τ1)

(c) otherwise

These cases are trivially exhaustive; we now show that they are also mutually
exclusive. Assume that condition (a) holds. By Lemma A.2, we have that:

∀ε > 0 : XLswap(ε, r0, r1) ≥ XLswap
φ (ε, r0, r1)

Therefore, by the limit inequality theorem and by (a):

lim
ε→0

XLswap(ε, r0, r1) ≥ lim
ε→0

XLswap
φ (ε, r0, r1) > XLΓ0(τ0, τ1)

Since I is swap-rate-continuous (14), this implies that:

1/ lim
ε→0

XRswap(ε, r0, r1) > XLΓ0(τ0, τ1)

67

from which by (11) it follows that:

lim
ε→0

XRswap(ε, r0, r1) < XRΓ0
(τ0, τ1)

which contradicts condition (b). A similar argument can be used to show that
if condition (b) is true, then condition (a) is false. Therefore, the two conditions
are mutually exclusive.

Now, assume that case (a) applies. We prove that the solution prescribed
by Theorem 2 for this case is optimal. In order for the net worth of user A to
increase with a left swap, the following must hold:

WA(Γ)−WA(Γ0) = −v0 · P(τ0) + v0 ·XLswap
Γ0,φ

(v0, τ0, τ1) · P(τ1) > 0

XLswap
Γ0,φ

(v0, τ0, τ1) > P(τ0)/P(τ1)
(26)

Given case (a), there must exist a finite v0 which satisfies (26). Demand-
sensitivity (15) ensures that XLswap

Γ0,φ
(v0, τ0, τ1) decreases to zero with increasing

v0. To find optimal v0 which maximizes the user net worth, we consider the
behaviour of XLswap

Γ0,φ
(v0, τ0, τ1) = XLswap(v0, r0, r1) as v0 is increased by ∆ for

(r0 : τ0, r1 : τ1) ∈ Γ0:

XLswap
φ (v0, r0, r1) = v

φ·v0 XLswap
φ (v0 +∆, r0, r1) = v+∆′

φ·(v0+∆)

where ∃!v,∆′ :

1 I(r0 + φ · v0, r1 − v) = 2 I(r0 + φ · (v0 +∆), r1 − v −∆′) = I(r0, r1)

(27)

From 1 and 2 and swap rate definition (12) we can infer:

XLswap
φ (∆, r0 + φ · v0, r1 − v) = ∆′/∆ (28)

For an incremental increase in swap amount v0 by ∆, the net wealth is
only further increased if ∆′/∆ > P(τ0)/P(τ1) (26). Due to demand-sensitivity,
this ratio is ever decreasing at higher values of v0. Thus, for optimal v0 in
XLswap

φ (v0, r0, r1):

limε→0 XL
swap
φ (ε, r0 + φ · v0, r1 − v) = XLΓ(τ0, τ1) (29)

Any infinitesmal increase in v0 no longer increases net wealth. We omit the proof
for case (b) as it follows that of (a).

To prove case (c), we observe that since neither (a) nor (b) hold, there exists
no swap which results in a net positive increase in net wealth. Thus, the strategy
of the user will be to perform no action at all. ut

Proof of Theorem 3 We demonstrate that the same cases in Theorem 2 apply

to both Γ, Γ ′ where Γ
T−→ Γ ′ and type(T) ∈ {dep, rdm}. For a Γ = (r0, τ0, r1, τ1) |

· · ·
– [Dep] maintains the ratio of holdings (τ0, τ1), such that Γ ′ = (c·r0, τ0, c·r1, τ1) |
· · · where c > 1

68

– [Rdm] maintains the ratio of holdings (τ0, τ1), such that Γ ′ = (c′ · r0, τ0, c′ ·
r1, τ1) | · · · where

c′ = 1− v

sply(τ0,τ1)(Γ)
(30)

By SR-consistency (18), for c′′ > 0

lim
ε→0

XLswap
φ (ε, r0, r1) = lim

ε→0
XLswap

φ (ε, c′′ · r0, c′′ · r1) (31)

and since we have shown that the ratio of funds is preserved for either deposit
or redeem step,

lim
ε→0

XLswap
Γ,φ (ε, τ0, τ1) = lim

ε→0
XLswap

Γ ′,φ(ε, τ0, τ1) (32)

And similarly for the right swap rate limit. Thus the arbitrage solution type
will remain the same. ut

Proof of Theorem 4 By inspection of swap rate definition (17) and funds-
consistency (17).

For Γ
T−→ Γ ′ where type(T) ∈ {dep, rdm} and (r0 : τ0, r1 : τ1) ∈ Γ, we

demonstrate that (c · r0 : τ0, c · r1 : τ1) ∈ Γ ′, where c > 0.

– [Dep]. The balance of τ0, τ1 are increased by c > 0 and their ratio preserved.
– [Rdm]. The balance of τ0, τ1 after redeeming v units of (τ0, τ1) in (r0 : τ0, r1 :
τ1) | · · · are

r0 − v·r0
sply(τ0,τ1)(Γ)

, r1 − v·r1
sply(τ0,τ1)(Γ)

= r0 · (1− v
sply(τ0,τ1)(Γ)

), r1 · (1− v
sply(τ0,τ1)(Γ)

)
(33)

and thus the holdings are reduced by a factor 1 > c > 0 and their ratio is
preserved.

Next, consider a left swap performed in Γ = (r0 : τ0, r1 : τ1) | · · ·

XLswap
Γ,φ (v, τ0, τ1) =

r′1−r1
v where ∃!r′1 : I(r0, r1) = I(r0 + φ · v, r′1) (34)

Then, from funds-consistency (17), it follows that the swap invariant equality
above is preserved if we multiply lhs and rhs parameters of I with c > 0

I(c · r0, c · r1) = I(c · (r0 + φ · v), c · r′1) (35)

From this and the swap rate definition (12) we can infer the left swap rate for
input amount c · v performed in Γ ′ = (c · r0 : τ0, c · r1 : τ1) | · · ·

XLswap
Γ ′,φ(c · v, τ0, τ1) =

c·r′1−c·r1
c·v (36)

69

Thus, XLswap
Γ,φ (v, τ0, τ1) = XLswap

Γ ′,φ(c · v, τ0, τ1). Here, we consider a change of the
swap amount in the rhs to v, so both input amounts are equal. Due to demand-

sensitivity (15), for a T = dep (c > 1) in Γ
T−→ Γ ′ this implies

XLswap
Γ,φ (v, τ0, τ1) < XLswap

Γ ′,φ(v, τ0, τ1)

as the input swap amount is reduced from c · v to v and conversely for T = rdm
and (1 > c > 0), where it is increased.

XLswap
Γ,φ (v, τ0, τ1) > XLswap

Γ ′,φ(v, τ0, τ1) ut

Proof of Theorem 5 Let I be incentive-consistent, and let:

Γ = (r0 : τ0, r1 : τ1) | · · · −→∗ (r′0 : τ0, r
′
1 : τ1) | · · · = Γ ′ where

r1
r0

=
r′1
r′0

(37)

We have to prove that:

XLrdm
Γ (τ0, τ1) ≤ XLrdm

Γ ′ (τ0, τ1) XRrdm
Γ (τ0, τ1) ≤ XRrdm

Γ ′ (τ0, τ1) (38)

We begin with some auxiliary definitions. Firstly, we define contours, i.e. sets of
pairs which fulfill a specific incentive-consistent swap invariant constraint:

ck = {(x, y) | I(x, y) = k} (39)

Next, for all R > 0 and for all states Γ = (x : τ0, y : τ1) | · · · we define the
projected left redeem rate in Γ as follows (the right version is similar):

XLrdm
Γ,R(τ0, τ1) = x′

sply(τ0,τ1)(Γ)

s.t. I(x′, R · x′) = I(r0, r1) for (r0 : τ0, r1 : τ1) ∈ Γ
(40)

Note that for a state Γi = (ri,0 : τ0, ri,1 : τ1) | · · · , the left redeem rate in Γi
equals to the projected left redeem rate when choosing R as the funds ratio, i.e.:

XLrdm
Γi,RΓi

(τ0, τ1) = XLrdm
Γi (τ0, τ1) if RΓi = ri,1/ri,0 (41)

Since for Γ →∗ Γ ′ in (37), the funds ratio in Γ, Γ ′ are equal (i.e., Rinit =
r1/r0 = r′1/r

′
0 = Rfinal), the redeem and projected redeem rates in Γ and Γ ′

coincide. So, to prove (38) it is sufficient to show that XLrdm
Γi,Rinit

(τ0, τ1) increases
at each step Γi = (ri,0 : τ0, ri,1 : τ1) | · · · → Γi+1 = (ri+1,0 : τ0, ri+1,1 : τ1) | · · ·
along the trace Γ →∗ Γ ′. We proceed to observe the evolution of the projected
redeem rate for each possible action.

– [Dep0]. This rule is not used in Γ →∗ Γ ′ since (: τ0, : τ1) ∈ Γ.

70

– [Rdm]/[Dep]. The evolution of the projected redeem rate is:

XLrdm
Γi,Rinit

(τ0, τ1) =
x′i

sply(τ0,τ1)(Γi)
1 I(ri,0, ri,1) = I(x′i, Rinit · x′i)

XLrdm
Γi+1,Rinit

(τ0, τ1) =
c·x′i

c·sply(τ0,τ1)(Γi+1)
2 I(c · ri,0, c · ri,1) = I(c · x′i, Rinit · c · x′i)

(42)
From [Dep]/[Rdm], ri+1,0, ri+1,1 = c · ri,0, c · ri,1 where c > 0, resulting in
the lhs of 2 . This can be inferred as follows: in [Dep] the holdings of τ0, τ1
are increased and their ratio preserved. In [Rdm], the holdings of τ0, τ1 after
redeeming v units of (τ0, τ1) in (r0 : τ0, r1 : τ1) | · · · are

r0 − v·r0
sply(τ0,τ1)(Γ)

, r1 − v·r1
sply(τ0,τ1)(Γ)

= r0 · (1− v
sply(τ0,τ1)(Γ)

), r1 · (1− v
sply(τ0,τ1)(Γ)

)
(43)

and thus their ratio is also preserved. The rhs of 2 in (42) is infered from
the funds-consistency property (17). If Rinit is defined in 1 , then 1 =⇒ 2 .
The projected redeem rate must therefore be maintained for a redeem or
deposit, because both numerator and denominator are scaled by the same
factor c.

– [SwapL]/[SwapR]. We interpret a swap action A : swapL(v0 : τ0, v1 : τ1) in Γi as
(1) a traversal from (ri,0, ri,1) to (r′i,0, r

′
i,1) = (ri,0 +φ · v0, ri,1− v) such that

I(ri,0, ri,1) = I(ri,0 + φ · v0, ri,1 − v) (44)

and (2) a subsequent traversal to (ri+1,0, ri+1,1) = (r′i,0 + (1 − φ) · v0, r′i,1)
in Γi+1 = (ri+1,0 : τ0, ri+1,1 : τ1) | · · · . Traversal (1) is within a contour ck,
where as traversal (2) occurs from ck to c′k where k 6= k′: we show this by
contradiction. If ck = c′k, then for traversal (2), the following would hold

I(r′i,0, r
′
i,1) = I(r′i,0 + (1− φ) · v0, r′i,1) (45)

and imply limε→∞XLswap(ε, r′i,0, r
′
i,1) = 0, violating SR-continuity (14), which

requires swap rate limits to be positive.
We now examine the pair (r′i,0−∆, r′i,1+∆′) ∈ ck, which has the same ratio as
RΓi+1

= ri+1,1/ri+1,0 following the swap action, where (ri+1,0, ri+1,1) ∈ ck′ .

RΓi+1
= 1

ri+1,1

ri+1,0
= 2

r′i,1−∆′
r′i,0+∆

= 3
ri+1,1−∆′
r′i,0+∆

s.t. I(r′i,0 −∆) = I(r′i,1 +∆′)
(46)

For 2 and 3 , we can equate r′i,1 and ri+1,1 because the funds of τ1 are
maintained in traversal (b). Comparing numerators and denominators in 1

and 3 , we can infer

ri+1,1 −∆′ < ri+1,1 r′i,0 +∆ < ri+1,0 (47)

Thus, c > 1 in (ri+1,0, ri+1,1) = c ·(r′i,0+∆, r′i,1−∆′), where (ri+1,0, ri+1,1) ∈
c′k and (r′i,0+∆, r′i,1−∆′) ∈ ck. From funds-consistency (17), we can infer that
for two pairs x, y ∈ ck and x′, y′ ∈ c′k where y′/x′ = y/x, then x′, y′ > x, y.

71

Finally, we can compare projected redeem rates in Γi and Γi+1 when per-
forming a left swap step.

XLrdm
Γi,Rinit

(τ0, τ1) =
x′i

splyτ0,τ1 (Γi)
1 I(ri,0, ri,1) = I(x′i, Rinit · x′i)

XLrdm
Γi+1,Rinit

(τ0, τ1) =
x′i+1

splyτ0,τ1 (Γi)
2 I(ri+1,0, ri+1,1) = I(x′i+1, Rinit · x′i+1)

(48)
Since swap actions do not affect the supply of minted tokens, we only need
to relate x′i to x′i+1 to compare projected redeem rates in Γi and Γi+1. In 1

(x′i, Rinit · x′i) ∈ ck and in 2 (x′i+1, Rinit · x′i+1) ∈ c′k, so the former must be
strictly smaller than the latter. Thus

XLrdm
Γi,Rinit

(τ0, τ1) < XLrdm
Γi+1,Rinit

(τ0, τ1) (49)

Therefore, since the projected left redeem rate increases with each step and
coincides with the left redeem rate in Γ and Γ ′ of Theorem 5

XLrdm
Γ (τ0, τ1) ≤ XLrdm

Γ ′ (τ0, τ1) XRrdm
Γ (τ0, τ1) ≤ XRrdm

Γ ′ (τ0, τ1)

The proof for the right redeem rate follows similarly and is omitted. ut

B Constant product swap rate limit

For a left swap A : swapL(v0 : τ0, v1 : τ1) in Γ = (r0 : τ0, r1 : τ1) | · · · , the
following must hold for the constant product funds invariant

(r0 + φ · v0)(r1 − v) = r0 · r1 (50)

Thus for a given v0, the received amount v : τ1 must be

v = φ·r1·v0
r0+φ·v0 (51)

By definition, the right swap rate is simply v/v0, or

XLswap
Γ (v0, τ0, τ1) = φ·r1

r0+φ·v0 (52)

The right swap rate limit is thus

limε→0 XL
swap
Γ (ε, τ0, τ1) = φ·r1

r0
(53)

72

σAτ ≥ v
A[σA] | B[σB] | Γ A:xfer(B,v:τ)−−−−−−−−→ A[σA − v : τ] | B[σB + v : τ] | Γ

[Xfer]

στi ≥ vi > 0 (i ∈ {0, 1}) τ0 6= τ1 (: τ0, : τ1), (: τ1, : τ0) 6∈ Γ
A[σ] | Γ A:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→
A[σ − v0 : τ0 − v1 : τ1 + v0 : (τ0, τ1)] | (v0 : τ0, v1 : τ1) | Γ

[Dep0]

στi ≥ vi > 0 (i ∈ {0, 1}) r1v0 = r0v1 v = v0
r0
· sply(τ0,τ1)

(Γ)

Γ = A[σ] | (r0 : τ0, r1 : τ1) | Γ ′ A:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→
A[σ − v0 : τ0 − v1 : τ1 + v : (τ0, τ1)] | (r0 + v0 : τ0, r1 + v1 : τ1) | Γ ′

[Dep]

στ0 ≥ v0 > 0 I(r0 + φ v0, r1 − v) = I(r0, r1) 0 < v1 ≤ v ≤ r1
A[σ] | (r0 : τ0, r1 : τ1) | Γ A:swapL(v0:τ0,v1:τ1)−−−−−−−−−−−−−→
A[σ − v0 : τ0 + v : τ1] | (r0 + v0 : τ0, r1 − v : τ1) | Γ

[SwapL]

στ1 ≥ v1 > 0 I(r0 − v, r1 + φ v1) = I(r0, r1) 0 < v0 ≤ v ≤ r0
A[σ] | (r0 : τ0, r1 : τ1) | Γ A:swapR(v0:τ0,v1:τ1)−−−−−−−−−−−−−→
A[σ + v : τ0 − v1 : τ1] | (r0 − v : τ0, r1 + v1 : τ1) | Γ

[SwapR]

σ(τ0, τ1) ≥ v > 0 v0 = v r0
sply(τ0,τ1)(Γ)

v1 = v r1
sply(τ0,τ1)(Γ)

Γ = A[σ] | (r0 : τ0, r1 : τ1) | Γ ′ A:rdm(v:(τ0,τ1))−−−−−−−−−−→
A[σ + v0 : τ0 + v1 : τ1 − v : (τ0, τ1)] | (r0 − v0 : τ0, r1 − v1 : τ1) | Γ ′

[Rdm]

Fig. 4: Operational semantics of AMMs.

73

A Theory of Automated Market Makers in
DeFi

Publication Information
Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. “A Theory of Automated
Market Makers in DeFi.” Logical Methods in Computer Science 18, no. 4 (2022): 12.

Contribution
• Co-author.

Remarks
Journal version.

74

A THEORY OF AUTOMATED MARKET MAKERS IN DEFI

MASSIMO BARTOLETTI a, JAMES HSIN-YU CHIANG b, AND ALBERTO LLUCH-LAFUENTE b

a University of Cagliari, Cagliari, Italy
e-mail address: bart@unica.it

b Technical University of Denmark, DTU Compute, Copenhagen, Denmark
e-mail address: jchi@dtu.dk, albl@dtu.dk

Abstract. Automated market makers (AMMs) are one of the most prominent decentral-
ized finance (DeFi) applications. AMMs allow users to trade different types of crypto-tokens,
without the need to find a counter-party. There are several implementations and models
for AMMs, featuring a variety of sophisticated economic mechanisms. We present a theory
of AMMs. The core of our theory is an abstract operational model of the interactions
between users and AMMs, which can be concretised by instantiating the economic mecha-
nisms. We exploit our theory to formally prove a set of fundamental properties of AMMs,
characterizing both structural and economic aspects. We do this by abstracting from the
actual economic mechanisms used in implementations, and identifying sufficient conditions
which ensure the relevant properties. Notably, we devise a general solution to the arbitrage
problem, the main game-theoretic foundation behind the economic mechanisms of AMMs.

1. Introduction

Decentralized finance (DeFi) is a software infrastructure, based on blockchains and smart
contracts, which allows users to create and trade crypto-tokens without the intermediation
of central authorities, unlike traditional finance [WPG+21,QZA+21]. Automated Market
Makers (AMMs) are one of the main DeFi archetypes: roughly, AMMs are decentralized
markets of crypto-tokens, providing users with three core operations: depositing crypto-
tokens to obtain shares in an AMM; the dual operation of redeeming shares in the AMM
for the underlying tokens; and swapping tokens of a given type for tokens of another type.
The amount of tokens received by a user upon a swap is algorithmically determined by the
AMM: roughly, this is the amount of tokens sent from the user to the AMM, times the swap
rate, which is computed by the AMM based on its internal state and the input amount.

Despite the apparent simplicity of these operations, AMMs manifest an emerging
behaviour, where users are incentivized to swap tokens to keep their swap rates aligned with
the exchange rate, i.e. the ratio between the prices of the exchanged tokens given by external
price oracles. Namely, if an AMM offers a better swap rate than the oracles’ exchange rate,
rational users will perform swaps to narrow the gap. Formally, the optimal strategy can be
seen as the solution of a game, called the arbitrage game. Executing the optimal strategy
closes the gap between AMM’s and oracles’ exchange rates, and in this sense AMMs offer
users exhange rates that align towards the external, global exchange rates.

Preprint submitted to
Logical Methods in Computer Science

© M. Bartoletti, J. Chiang, and A. Lluch-Lafuente
CC© Creative Commons

75

As of December 2022, the two AMM platforms leading by user activity, Uniswap and
Curve Finance, alone hold $3B and $4B worth of tokens, and process $1B and $250M
worth of transactions daily [uni22, cur22]. Although this massive adoption could suggest
that AMMs are a consolidated, well-understood technology, in practice their economic
mechanisms are inherently hard to design and implement. For instance, interactions with
AMMs are sensitive to transaction ordering attacks, where actors with the power to influence
the order of transactions in the blockchain can profit from an opportunistic behaviour,
causing detriment to other users. The relevance of attacks to AMMs is witnessed by the
proliferation of scientific literature on the topic [BCL22,ZQT+21,DGK+20,EMC20,QZG21].
Still, attacks to DeFi applications are not purely theoretical: indeed, there is a growing
history of DeFi incidents, which have caused losses exceeding $2.4B [def22] so far. These
issues witness a need for foundational work to devise formal theories of AMMs which allow
the understanding of their structural properties and of their economic incentive mechanisms.

Current descriptions of AMMs are either economic models [AKC+21, AC20, EAC21,
AEC20], which focus on the incentive mechanism alone, or concrete AMM implementations.
While economic models are useful to understand the macroscopic financial aspects of AMMs,
they do not precisely describe the interactions between AMMs and their users. Still, a
precise formalisation of these interactions is fundamental to understand the structural and
economic properties of AMMs, and to determine possible deviations from safe behaviour.
Implementations, instead, reflect the exact behaviour of AMMs, but at a level of detail that
hampers high-level understanding and reasoning. Moreover, the rich variety of implemen-
tations, proposals and models for AMMs, each featuring different economic mechanisms,
makes it difficult to compare AMM designs or to provide a clear contour for the space of
possible “well behaving” designs.

1.1. Contributions. In this paper we exploit techniques from concurrency theory to provide
a formal backbone for AMMs and to study their fundamental properties. More specifically,
our main contributions can be summarised as follows:

(1) We introduce a formal model of AMMs (section 2), which distils the common features of
leading AMM implementations like Uniswap [uni21], Curve [cur21b], and Balancer [bal19].
The core of our model is a transition system that describes the evolution of AMM states
resulting from the interaction between users and AMMs. A peculiar aspect of our model
is that it abstracts from the swap rate function, a key economic mechanism of AMMs,
which is used to determine the exchange rates between tokens.

(2) Building upon our model, in section 3 we define basic economic notions like token prices,
exchange rates, slippage, net worth, and gain. We compute the gain resulting from swap
actions (Lemma 3.2), and we establish a key relation between the gain of swap actions,
the swap rate and the exchange rate: a swap action has a strictly positive gain if and
only if the swap rate is strictly greater than the exchange rate between the swapped
tokens (Lemma 3.3). Both lemmata are instrumental to prove many subsequent results.

(3) In section 4 we establish a set of structural properties of AMMs. In particular, we
establish preservation results for the supply of tokens (Lemma 4.3) and for the global
net worth (Lemma 4.5). We show that assets cannot be frozen within AMMs, i.e. users
can always extract any amount of the token reserves deposited in AMMs (Lemma 4.8).
In Lemma 4.9 we investigate when transactions can be reordered without affecting
the resulting state. In Theorems 4.10 and 4.11 we study compositionality of deposit

76

and redeem transactions: in particular, we establish that two deposit actions on the
same AMM can be merged in a single action (and similarly for two redeems), and
that the effect of deposits and redeem actions can be reverted by suitable transactions.
Remarkably, all the structural properties in section 4 do not depend on the choice of the
swap rate function.

(4) In section 5 we devise sufficient conditions on swap rate functions that induce good
behavioural properties of AMMs. These conditions allow us to extend to swap actions
the additivity and reversibility properties enjoyed by deposit and redeem actions (The-
orems 5.6 and 5.9), as well as to compute the gain of composed and reversed swaps
(Lemmata 5.7 and 5.10). We study the effect of deposits and redeems on the swap rate
and on the internal exchange rate (Lemma 5.13). We then study the properties of three
notable swap rate functions: the constant sum, the constant product, and the constant
mean.

(5) In section 6 we investigate the incentive mechanism of AMMs. We start by considering
the arbitrage problem, which requires to find the action which maximizes the gain of a
user. Performing such optimal action has the side effect of aligning the internal exchange
rate of the AMM to the external exchange rate given by token price oracles. This gives
one of the landmark economic properties of AMMs: assuming rational users, AMMs can
be seen as price oracles themselves [AC20]. Notably, while solutions to the arbitrage
problem are already known for specific swap rate functions, in Theorem 6.3 we generalize
the result to any swap rate function respecting the conditions given in section 5. We then
show that depositing tokens into AMMs incentivizes subsequent swaps (Theorem 6.6),
while redeeming tokens disincentivizes them (Theorem 6.9). Finally, in Theorems 6.8
and 6.10 we relate the solution of the arbitrage problem in the states before and after a
deposit or redeem action, and we compare their gains.

(6) In section 7 we discuss Maximal Extractable Value (MEV), a class of attacks where
miners exploit their power of dropping and reordering user transactions (and inserting
their own) to increase their gain to the detriment of users. These attacks are one of the
most carefully studied AMM phenomena, occuring widely in practice and frequently
making up the bulk of interactions with AMMs [QZG21]. The fact that our AMM model
can accurately express these attacks supports the coherence of our modelling choices
with respect to behaviour exhibited by actual AMM implementations.

(7) In section 8 we discuss some extensions to our basic AMM model to make it closer to
the implementation of Uniswap [uni21], and their impact on the results in the paper.

(8) As a byproduct, we provide an open-source Ocaml implementation of our executable
semantics as a companion of this paper.1

(9) We provide full proofs of all our statements in the Appendices.

1.2. Related Work. The work [AKC+21] proposed one of the first analyses of the incentive
mechanism of Uniswap. This analysis was then generalised in [AC20] to constant function
AMMs (CFMMs), where, for a pair of token types, the reserves r0, r1 before a swap and the
reserves r′0, r

′
1 after the swap must preserve the invariant f(r0, r1) = f(r′0, r

′
1), for a given

trading function f . Constant product AMMs, like Uniswap, are an instance of CFMMs,
where f(x, y) = xy. Both works study the arbitrage problem, for constant product AMMs
and CFMMs, respectively. The two works show that the solution can be efficiently computed,

1https://github.com/blockchain-unica/defi-workbench

77

and suggest that constant product AMMs accurately report exchange rates. Our work
and [AC20] share a common goal, i.e. a theory of AMMs generalizing that of constant
product AMMs. However, the two approaches are quite different. The work [AC20] considers
a class of AMMs, i.e. CFMMs with a convex trading set, and studies the properties enjoyed
by AMMs under these assumptions. Instead, in this paper we devise a minimal set of
properties of the swap rate function which induce good behavioural properties of AMMs.
Notably, we find conditions on the swap rate function which ensure that a given swap
action maximizes the gain of the player (Theorem 6.3). Another difference is that the
AMM model in [AC20] describes the evolution of a single AMM, abstracting away the other
components of the state (i.e. the users and the other AMMs); instead, we model AMMs
as reactive systems, borrowing techniques from concurrency theory. While the approach
followed by [AC20] is still adequate to study problems that concern AMMs in isolation
(e.g., arbitrage), viewing AMMs as reactive systems allows us to study what happens when
many agents (users and AMMs) can interact. E.g., we are able to reason about Maximal
Extractable Value (section 7).

The work [DKP21] generalises the arbitrage problem to the setting where a swap between
two token types τ0 and τn can be obtained through a sequence of n intermediate swaps
between τi and τi+1, for 0 ≤ i < n. In practice, this represents the situation where users can
interact with different AMM platforms, each one providing its own set of token pairs. To
model this scenario, [DKP21] introduces exchange networks, i.e. multi-graphs where nodes
are tokens, and edges are AMMs which allow users to swap the two endpoint tokens. To
encompass different AMM platforms, each edge has its own price function, which determines
how many output tokens are paid for a given amount of input tokens. The authors show that,
under some conditions on the price functions (i.e., monotonicity, continuity, boundedness
and concavity), the arbitrage problem always admits a non-trivial solution. In the special
case of constant product AMMs, a closed formula for the solution is provided. Besides
arbitrage, [DKP21] also considers the optimal routing problem, i.e. finding a strategy to
maximize the amount of tokens τ1 received for at most a given amount of tokens τ0. Under
the same assumptions on the price function used for the arbitrage problem, the optimal
routing problem admits a solution. There are several differences between our approach and
that of [DKP21], besides the fact that we assume the same swap rate function for all AMMs,
and a graph instead of a multi-graph (i.e., we admit at most one AMM for each token pair).
A technical difference is that we assume that the amount y of output tokens received for
an amount x of input tokens is given by y = SX (x, r0, r1) · x, whereas [DKP21] defines this
amount as y = fr0,r1(x). This results in different structural properties for SX (x, r0, r1) and
f(x) in order to achieve the desired behavioural properties of AMMs. Having the AMM
reserves r0, r1 as parameters of our swap rate functions SX has a benefit, in that we can
express conditions which relate states before and after a transaction: this is what happens,
e.g., in the additivity, reversibility and homogeneity properties (Definitions 5.5, 5.8 and 5.11).
As a consequence of this choice, compared to [DKP21] our theory encompasses also deposit
and redeem actions, providing results that clarify how these actions interfere with swaps
(e.g., Theorems 6.6, 6.9, 6.8, and 6.10).

A few alternatives to constant product AMMs have been studied. Balancer [bal19]
generalizes the constant product function used by Uniswap to a constant (weighted geometric)
mean f(r1, · · · , rn) =

∏n
i=1 r

wi
i , where the weight wi reflects the relevance of a token τi in a

tuple of tokens (τ1, · · · , τn). This still fits within the CFMM setting of [AC20], thus inheriting
its results about solvability of the arbitrage problem [EAC21]. Curve [Ego19] features a hybrid

78

of a constant sum and constant product function, optimized for large swap volumes between
stable coins, where the swap rate can support large amounts with small sensitivity. To
efficiently compute swap rates, implementations perform numerical approximations [cur21a].
Should these approximations fail to converge, these implementations still guarantee that
the AMM remains liquid. The work [KFG21] proposes a constant product invariant that is
adjusted dynamically based on the oracle price feed, thus reducing the need for arbitrage
transactions, but at the cost of lower fee accrual. AMMs with virtual balances have been
proposed [vir18] and implemented [moo20b,moo20a]. In these AMMs, the swap rate depends
on past actions, besides the current funds balances in the AMM. This, similarly to [KFG21],
aims to minimize the need for arbitrage transactions to ensure the local AMM swap rate
tends towards the exchange rates. Establishing whether these sophisticated swap rate
functions enjoy the properties in section 5 is an interesting open problem.

AMMs are well-known to suffer from transaction-ordering attacks, through which an
adversary with the power of influencing the order of transactions (e.g., a miner) can extract
value from user transactions. For instance, if the transaction pool contains a swap transaction
sent by user A, then a miner M can extract value from A’s swap through a transaction
“sandwich” constructed as follows. First, M front-runs A’s swap with its own swap, crafted
so that A’s swap decreases A’s net worth as much as possible. Then, M closes the sandwich
by appending another swap transaction which maximizes M’s gain, and finalises the whole
sandwich on the blockchain. In this way, A will always have a negative gain, which is
counterbalanced by a positive gain of M. This and other kinds of attacks have fostered the
research on adversarial and defensive strategies, and on empirical analyses of the impact of
attacks [BCL22,CAE22,ZQT+21,QZG21,DGK+20,EMC20]. For instance, the work [BCL22]
devises an optimal strategy through which an adversary can extract the maximal value
from users’ transactions (not only swaps, but also deposits and redeems), in the setting
of Uniswap-like AMMs. The swap-rate-agnostic approach pursued by this paper could be
exploited to generalise the attack of [BCL22] to AMMs beyond Uniswap.

A high-level survey on various AMM protocols is in [XVPC22].

Comparison with previous work. A preliminary version of this work was presented at
COORDINATION 2021 [BCL21b]. The current version substantially extends it, streamlining
the theory and providing additional results. A crucial difference between the two papers is
that, while in [BCL21b] the semantics of swap actions was parameterized by an invariant
between the old and the new token reserves, here we make the semantics parametric w.r.t.
the swap rate function SX . This leads to a substantial simplification of the conditions that
are put to obtain nice behavioural properties of swaps, and consequently of the corresponding
proofs. Among the new results w.r.t. [BCL21b], we mention in particular the additivity and
reversibility properties (Theorems 4.10, 4.11, 5.6, and 5.9), and the results that relate the
gain of swaps before and after deposit/redeem actions (Theorems 6.6, 6.9, 6.8, and 6.10).
Besides these extensions, the current paper includes a discussion of the constant sum and of
the constant mean swap rate functions, a new section on MEV attacks (see section 7), and
it provides detailed proofs for all its statements.

79

2. A formal model of Automated Market Makers

We introduce a formal, operational model of AMMs, which focusses on the common operations
implemented by AMM platforms. In order to simplify the resulting theory, our model
abstracts from a few features that are often found in AMM implementations, like e.g. fees,
price updates, and guarded transactions. We discuss in §8 how to extend our model to make
it closer to the Uniswap protocol [uni21].

We introduce here some general notation. We denote by fx the application of a function
f to a value x (we use parentheses, e.g. f(x), to resolve ambiguities). We denote with dom f
the domain of f . We use the standard notation f{v/x} to update a partial map f at point x:
namely, f{v/x}(x) = v, while f{v/x}(y) = fy for y 6= x.

2.1. AMM basics.

Tokens. We assume a set T0 of atomic token types, which represent native cryptocur-
rencies and application-specific tokens. For instance, T0 may include ETH, the native
cryptocurrency of Ethereum, and WBTC, i.e. Bitcoins wrapped with the ERC20 interface
for Ethereum tokens. A minted token type is an unordered pair of distinct atomic token
types: if τ0 and τ1 are atomic token types and τ0 6= τ1, then the minted token type {τ0, τ1}
represents shares in an AMM holding reserves of τ0 and τ1. We denote by T1 the set of
minted token types. In our model, tokens are fungible, i.e. individual units of the same
type are interchangeable. This means that amounts of tokens of the same type can be split
into smaller parts, and two amounts of tokens of the same type can be joined. We use
v, v′, r, r′, x, x′ to range over nonnegative real numbers (R≥0). We write T for the universe
of all token types, i.e. T = T0 ∪ T1, and we use τ, τ ′, . . . to range over T. We write r : τ to
denote r units of a token of type τ, either atomic or minted.

Wallets and AMMs. We assume a set of users A, ranged over by A,A′ , . . . We model
the wallet of a user A as a term A[σ], where the finite partial map σ ∈ T ⇀ R≥0 represents
A’s token balance. We model an AMM holding reserves of r0 : τ0 and r1 : τ1 (with τ0 6= τ1)
as an unordered pair {r0 : τ0, r1 : τ1}. Since the order of the token reserves in an AMM is
immaterial, the terms {r0 : τ0, r1 : τ1} and {r1 : τ1, r0 : τ0} denote exactly the same AMM.

States. We model the interaction between users and AMMs as a labelled transition system
(LTS). Its labels represent blockchain transactions, while the states Γ,Γ′,∆, . . . are finite
non-empty compositions of wallets and AMMs. Formally, states are terms of the form:

A1[σ1] | · · · | An[σn] | {r1 : τ1, r
′
1 : τ ′1} | · · · | {rk : τk, r

′
k : τ ′k}

and subject to the following conditions. For all i 6= j:

(1) Ai 6= Aj (each user has a single wallet);
(2) {τi, τ ′i} 6= {τj , τ ′j} (distinct AMMs cannot hold exactly the same token types).

Note that these conditions allow AMMs to have a common token type τ, e.g. as in
{r1 : τ1, r : τ}, {r′ : τ, r2 : τ2}, thus enabling indirect trades between token pairs not directly
provided by any AMM. A state is initial when it has no AMMs, and its wallets hold only
atomic tokens. We stipulate that the ordering of terms in a state is immaterial. Hence, we

80

consider two states Γ and Γ′ to be equivalent when they contain the same terms (regardless
of their order). For a term Q and a state Γ, we write Q ∈ Γ when Γ = Q | Γ′, for some Γ′.

Transactions. State transitions are triggered by transactions T ,T′ , . . ., which can have
the following forms (where τ0 and τ1 are atomic tokens):

• A : dep(v0 : τ0, v1 :τ1). A deposits v0 : τ0 and v1 : τ1 to an AMM {r0 : τ0, r1 : τ1}, receiving
in return some freshly-minted units of the token {τ0, τ1};
• A : swap(v, τ0, τ1). A tranfers v : τ0 to an AMM {r0 : τ0, r1 : τ1}, receiving in return some

units of τ1, which are removed from the AMM;
• A : rdm(v : {τ0, τ1}). A redeems v units of the minted token {τ0, τ1}: this means that

some units of τ0 and τ1 are transferred from the AMM {r0 : τ0, r1 : τ1} to A’s wallet, and
that v units of {τ0, τ1} are burned.

We denote with type(T) the type of T (i.e., dep, swap, or rdm), with wal(T) the user
whose wallet is affected by T, and with tok(T) the set of token types affected by T. For
example, if T = A : swap(v, τ0, τ1), then type(T) = swap, wal(T) = A, and tok(T) = {τ0, τ1}.

Token supply. We use SΓτ to denote the supply of a token type τ in a state Γ, defined
as the sum of the reserves of τ in all the wallets and the AMMs in Γ. Formally, we define
SΓτ by induction on the structure of states as follows:

SA[σ]τ =

{
στ if τ ∈ domσ

0 otherwise
S{r0:τ0,r1:τ1}τ =

{
ri if τ = τi

0 otherwise
SΓ|Γ′τ = SΓτ + SΓ′τ

For example, let Γ = A[1 : τ0, 2 : {τ0, τ1}] | {3 : τ0, 4 : τ1} | {5 : τ0, 6 : τ2}. We have that
SΓτ0 = 9, SΓτ1 = 4, SΓτ2 = 6, while SΓτ = 0 for τ 6∈ {τ0, τ1, τ2}. Note that SΓτ is always
defined, since it is defined when Γ is an atomic term (wallet or AMM), and states Γ are
finite compositions of atomic terms.

2.2. AMM semantics. We now formalise the transition rules between states. We write

Γ
T−→ Γ′ for a state transition from Γ to Γ′, triggered by a transaction T. When Γ

T−→ Γ′

for some Γ′, we say that T is enabled in Γ. We denote with −→∗ the reflexive and transitive

closure of −→. Given a finite sequence of transactions λ = T1 · · ·Tk, we write Γ
λ−→ Γ′ when

Γ
T1−→ · · · Tk−→ Γ′, and in this case we say that λ is enabled in Γ. We say that a state Γ is

reachable if Γ0 −→∗ Γ for some initial Γ0. Hereafter, all the states mentioned in our results
are implicitly assumed to be reachable. Given a partial map σ ∈ T ⇀ R≥0, a token type
τ ∈ T and a partial operation ◦ ∈ R≥0 × R≥0 ⇀ R≥0 with ◦ ∈ {+,−}, we define the partial
map σ ◦ v : τ as follows:

σ ◦ v : τ =

{
σ{(στ) ◦ v/τ} if τ ∈ domσ and (στ) ◦ v ∈ R≥0

σ{v/τ} if τ 6∈ domσ and ◦ = +

These partial operations allow to increase/decrease the amount of tokens in a balance. For
instance, if σ = 5 : τ0, then σ + 1 : τ0 = 6 : τ0, and σ + 1 : τ1 = 5 : τ0, 1 : τ1.

81

Deposit. Any user can create an AMM for two tokens τ0 and τ1, if such an AMM is not
already present in the state. This is achieved by the transaction A : dep(v0 : τ0, v1 :τ1),
through which A transfers v0 : τ0 and v1 : τ1 to the new AMM. In return for the deposit, A
receives a certain positive amount of units of a new token type {τ0, τ1}, which is minted by
the AMM.2 We formalise this behaviour by the rule:

στi ≥ vi > 0 (i ∈ {0, 1}) SΓ{τ0, τ1} = 0

A[σ] | Γ A:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→
A[σ − v0 : τ0 − v1 : τ1 + v0 : {τ0, τ1}] | {v0 : τ0, v1 : τ1} | Γ

[Dep0]

Note that the premise SΓ{τ0, τ1} = 0 implies that τ0, τ1 are distinct atomic tokens, since
otherwise {τ0, τ1} would not be a minted token. If Γ is reachable, then this premise also
implies that Γ does not contain an AMM for the token pair τ0, τ1.

Once an AMM is created, any user can deposit tokens into it — as long as doing so
preserves the ratio of the token reserves in the AMM. When a user deposits v0 : τ0 and
v1 : τ1 to an existing AMM, it receives in return an amount of minted tokens of type {τ0, τ1}.
This amount is the ratio between the deposited amount v0 and the redeem rate of {τ0, τ1}
in the current state Γ, which is defined as follows for i ∈ {0, 1}:

RX i
Γ(τ0, τ1) =

ri
SΓ{τ0, τ1}

if {r0 : τ0, r1 : τ1} ∈ Γ (2.1)

The effect of a deposit transaction on the state is then formalised by the following rule:

στi ≥ vi > 0 (i ∈ {0, 1}) vi = v · RX i
Γ(τ0, τ1)

Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆
A:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→

A[σ − v0 : τ0 − v1 : τ1 + v : {τ0, τ1}] | {r0 + v0 : τ0, r1 + v1 : τ1} | ∆

[Dep]

We anticipate that the premises of the [Dep] rule ensure that deposits preserve some key
quantities across state transitions, namely:

• the ratio between the reserves of τ0 and τ1 in the AMM (see Lemma 4.4(a)). This ratio is
always defined, since the reserves of a token in an AMM cannot be zeroed (see Lemma 4.2);
• the net worth of the user performing the action (see Lemma 4.5). In particular, the value

of the minted tokens {τ0, τ1} received by the user upon a deposit is equal to the value of
the tokens τ0, τ1 transferred to the AMM;
• the internal exchange rate of the AMM (see Lemma 5.12). This preservation property

holds for a relevant class of swap rate functions, called homogeneous (see Definition 5.11).

Redeem. Any user can redeem units of a minted token {τ0, τ1}, obtaining in return units
of the underlying atomic tokens τ0 and τ1. Their actual amounts are determined by the
redeem rate: the idea is that each unit of the minted token {τ0, τ1} can be redeemed for
equal fractions of τ0 and τ1 remaining in the AMM:

σ{τ0, τ1} ≥ v > 0 v < SΓ{τ0, τ1} vi = v · RX i
Γ(τ0, τ1) (i ∈ {0, 1})

Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆
A:rdm(v:{τ0,τ1})−−−−−−−−−−→

A[σ + v0 : τ0 + v1 : τ1 − v : {τ0, τ1}] | {r0 − v0 : τ0, r1 − v1 : τ1} | ∆

[Rdm]

2The actual amount of received units is irrelevant. Here we choose v0, but any other choice would be valid.

82

Note that the premise v < SΓ{τ0, τ1} ensures that the reserves are not depleted, i.e. vi < ri.
Similarly to the [Dep] rule, the premises of [Rdm] ensure that:

• the net worth of the user performing the action is preserved (i.e., the net worth of burnt
minted tokens is equal to that of the tokens received by A);
• the internal exchange rate of the AMM is unaffected by the transition, if the swap rate

function is homogeneous.

Swap. Any user A can swap v units of τ0 in her wallet for some units of τ1 in an AMM
{r0 : τ0, r1 : τ1} through the transaction A : swap(v, τ0, τ1). Symmetrically, A can swap v of
her units of τ1 for units of τ0 in the AMM through a transaction A : swap(v, τ1, τ0). The
swap rate SX (x, r0, r1) determines the amount of output tokens τ1 that a user receives
upon an amount of x input tokens τ0 in an AMM {r0 : τ0, r1 : τ1}.

στ0 ≥ x y = x · SX (x, r0, r1) < r1

A[σ] | {r0 : τ0, r1 : τ1} | Γ
A:swap(x,τ0,τ1)−−−−−−−−−→

A[σ − x : τ0 + y : τ1] | {r0 + x : τ0, r1 − y : τ1} | Γ

[Swap]

The swap rate function is a parameter of our model: we will discuss in §5 some desiderata
for this function, and the behavioural properties they induce on the AMM semantics. As an
instance, we consider below the constant product swap rate [rva18], which is used in
mainstream AMM implementations, like e.g. in Uniswap v2 [uni21], Mooniswap [moo20a]
and SushiSwap [sus21]. We will use this swap rate function in all the examples in this paper.

Definition 2.1 (Constant product swap rate). The constant product swap rate function is:

SX (x, r0, r1) =
r1

r0 + x

The constant product swap rate ensures that, if an AMM {r0 : τ0, r1 : τ1} evolves into
{r0 + x : τ0, r1 − y : τ1} upon a swap, then the product between the reserves is preserved:

(r0 + x)(r1 − y) = (r0 + x)
(
r1 − x ·

r1

r0 + x

)
= r0r1

Overall, the behaviour of the transition rules discussed above highlights some landmark
properties of AMMs, namely:

• since neither deposits nor redeems affect the net worth of the users performing them, the
only way for users to increase their net worth is to perform swaps. Since, as we will see in
Lemma 4.5, the global net worth is constant, this means that increasing ones’ net worth
results in a decrease of someone else’s net worth;
• the internal exchange rate of an AMM is affected only by swap actions (provided that

the swap rate function is homogeneous). This is a natural behaviour, because swaps
reflect the value of tokens perceived by users. We will show later in §5 that the constant
sum/product/mean swap rate functions are homogeneous.

Example 2.2. Figure 1 shows a computation in our model. We discuss below the effect of
the fired transactions, showing in Figure 2 the evolution of the token reserves in the AMM:

(1) A : dep(70 : τ0, 70 :τ1). Starting from an initial state, A creates a new AMM, depositing
70 : τ0 and 70 : τ1. In return, A receives 70 units of the minted token {τ0, τ1}.

83

A[70 : τ0, 70 : τ1] | B[30 : τ0, 10 : τ1]

A:dep(70:τ0,70:τ1)−−−−−−−−−−−→ A[70 : {τ0, τ1}] | B[30 : τ0, 10 : τ1] | {70 : τ0, 70 : τ1}
B:swap(30,τ0,τ1)−−−−−−−−−−→ A[70 : {τ0, τ1}] | B[0 : τ0, 31 : τ1] | {100 : τ0, 49 : τ1}
B:swap(21,τ1,τ0)−−−−−−−−−−→ A[70 : {τ0, τ1}] | B[30 : τ0, 10 : τ1] | {70 : τ0, 70 : τ1}

A:rdm(30:{τ0,τ1})−−−−−−−−−−−→ A[30 : τ0, 30 : τ1, 40 : {τ0, τ1}] | B[30 : τ0, 10 : τ1] | {40 : τ0, 40 : τ1}
B:swap(30,τ0,τ1)−−−−−−−−−−→ A[30 : τ0, 30 : τ1, 40 : {τ0, τ1}] | B[0 : τ0, 27 : τ1] | {70 : τ0, 23 : τ1}

A:rdm(30:{τ0,τ1})−−−−−−−−−−−→ A[82 : τ0, 47 : τ1, 10 : {τ0, τ1}] | B[0 : τ0, 27 : τ1] | {18 : τ0, 6 : τ1}

Figure 1: Interactions between two users and an AMM.

(2) B : swap(30, τ0, τ1). B swaps 30 units of τ0 for an amount y of units of τ1 determined
by the swap rate. Since we are assuming the constant product swap rate, we obtain
y = 30 · 70/70+30 = 21. This swap rate function ensures that swaps preserve the product
between the token reserves in the AMM: in Figure 2, we show indeed that the swap results
in a traversal along the curve k = 70 · 70 from {70 : τ0, 70 : τ1} to {100 : τ0, 49 : τ1}.

(3) B : swap(21, τ1, τ0). B reverses the effect of his previous action by swapping 21 units of
τ1 for y = 21 · 100/49+21 = 30 of τ0. Figure 2 shows that the swap results in a traversal
from {100 : τ0, 49 : τ1} to {70 : τ0, 70 : τ1} along the curve k = 70 · 70.

(4) B : rdm(30 : {τ0, τ1}). B redeems 30 units of the minted token {τ0, τ1}, accordingly
reducing the token reserves in the AMM to {40 : τ0, 40 : τ1}. Note that the received
tokens exhibit the same 1-to-1 ratio as after the initial deposit.

(5) B : swap(30, τ0, τ1). B swaps 30 units of τ0, receiving y = 30 · 40/40+30 ≈ 17 units of τ1.
Note that the swap rate, i.e. 40/40+30 ≈ 0.57, has decreased w.r.t. the first swap, i.e.
70/70+30 = 0.7, even though the AMM has the same 1-to-1 reserves ratio. This is caused
by the reduction in reserves occurred after A’s redeem action: thus, the swap rate is
sensitive not only to the ratio of reserves in the AMM, but also on their actual values.

(6) A : rdm(30 : {τ0, τ1}). A redeems 30 units of the minted token {τ0, τ1}, thereby extracting
52 units of τ0 and 17 units of τ1 from the AMM. Note that the ratio of redeemed tokens
is no longer 1-to-1 as in the previous redeem action, as the prior swap has changed the
ratio between the funds of τ0 and τ1 in the AMM.

Finally, observe that the supply of both τ0 and τ1 remains constant. We will show in
Lemma 4.3 that the supply of atomic token types is always preserved. �

3. Prices, exchange rates and net worth

In this section we introduce some economic notions which are pivotal for understanding the
economic mechanisms of AMMs.

Token prices and exchange rates. We assume an external oracle that prices atomic
tokens. Formally, we model this oracle as a function P : T0 → R>0, assuming that the prices
given by the oracle are constant along executions (see subsection 8.2 for a discussion about
dynamic price updates). While the prices of atomic tokens are constant, that of minted

84

(40:τ0, 40:τ1)

(18:τ0, 6:τ1)

(70:τ0, 70:τ1)

(100:τ0, 49:τ1)

(70:τ0, 23:τ1)

τ0

τ1
x·y = k'

x·y = k''

x·y = k

Figure 2: Evolution of reserves of AMM (τ0, τ1) along the trace in Figure 1.

tokens may vary at run-time as a function of the state. More precisely, the price PΓ{τ0, τ1}
of a minted token {τ0, τ1} depends both on the supply of the minted token in the users’
wallets and on the reserves of τ0 and τ1 in the AMM:

PΓ{τ0, τ1} =
r0 · Pτ0 + r1 · Pτ1

SΓ{τ0, τ1}
if {r0 : τ0, r1 : τ1} ∈ Γ (3.1)

For uniformity, we define PΓτ = Pτ when τ ∈ T0. Lemma 4.2 will ensure that r0, r1 > 0
and SΓ{τ0, τ1} > 0 in every reachable state Γ containing an AMM for the token pair τ0, τ1.
Therefore, the price of the token {τ0, τ1} is always defined and positive in reachable states.

The idea underlying Equation (3.1) is that the price of one unit of minted token must
be equal to the value of the atomic tokens that can be obtained by redeeming the minted
token. Indeed, by rule [Rdm] and Equation (2.1) we have that:

PΓ{τ0, τ1} =
r0

SΓ{τ0, τ1}
Pτ0 +

r1

SΓ{τ0, τ1}
Pτ1 = RX 0

Γ(τ0, τ1) · Pτ0 + RX 1
Γ(τ0, τ1) · Pτ1

which substantiates our desideratum. This intuition will be formalized later in Lemma 4.6.
The exchange rate X(τ0, τ1) between atomic token types τ0 and τ1 is the number of

units of τ1 that one can buy with 1 unit of τ0 at the price given by the external oracle:

X(τ0, τ1) =
Pτ0

Pτ1
(3.2)

Hence, assuming an exchange at the prices of the external oracle, a user paying x units
of τ0 would receive x ·X(τ0, τ1) units of τ1.

Note that the exchange rate between two token types only depends on external oracles,
neglecting the state of AMMs. However, AMMs themselves can act as (decentralised) price
oracles [AC20], since they induce an exchange rate based on the effect of swaps in the current
state. More precisely, the internal exchange rate XΓ(τ0, τ1) between two atomic token
types τ0 and τ1 in a state Γ is the limit of the swap rate function as x approaches 0: 3

XΓ(τ0, τ1) = lim
x→0

SX (x, r0, r1) if {r0 : τ0, r1 : τ1} (3.3)

3This notion is also dubbed as marginal price [AC20] or spot exchange rate [XVPC22] in literature.

85

The intuition is similar to that in Equation (3.2): a user swapping x units of τ0 for τ1

through the AMM (for x very small) would expect to receive x ·XΓ(τ0, τ1) units of τ1. We
will see later in section 6 that rational users will perform actions that align the internal
exchange rate to the one given by external oracles.

Slippage measures the discrepancy between the internal exchange rate and the actual
ratio between the amounts of output and input tokens obtained upon the swap [XVPC22]:

∆XΓ(x, τ0, τ1) =
XΓ(τ0, τ1)

SX (x, r0, r1)
− 1 if {r0 : τ0, r1 : τ1} (3.4)

Ideally, slippage should disadvantage large trades, i.e. trying to obtain a larger amount
of tokens with a swap should make them more expensive, increasing the slippage. We will
compute in sections 5.6-5.8 the internal exchange rate and the slippage of some common
AMMs.

Example 3.1. Let Γ = A[82 : τ0, 47 : τ1, 10 : {τ0, τ1}] | {18 : τ0, 6 : τ1} | B[· · ·] be the final
state of the computation in Figure 1. We have that SΓ{τ0, τ1} = 10, since only A’s wallet
contains units of the minted token. Assume that the prices of atomic tokens are Pτ0 = 5
and Pτ1 = 9. The price of the minted token {τ0, τ1} is then:

PΓ{τ0, τ1} =
18 · Pτ0 + 6 · Pτ1

10
=

18 · 5 + 6 · 9
10

= 14.4

The exchange rate between the two tokens is:

X(τ0, τ1) =
Pτ0

Pτ1
=

5

9
= 0.55

which means that to buy 1 unit of τ0, one needs 0.55 units of τ1. Note instead that the
internal exchange rate is:

XΓ(τ0, τ1) = lim
x→0

SX (x, 18, 6) =
6

18
≈ 0.33

We will see in Example 6.5 that the discrepancy between internal and oracle exchange rate
can by exploited by users to increase their gain. The slippage of a swap(x, τ0, τ1) is:

∆XΓ(x, τ0, τ1) =
XΓ(τ0, τ1)

SX (x, 18, 6)
− 1 =

x

18

from which we can see that the slippage grows with the input amount x. �

Net worth and gain. The net worth of a user A is a measure of A’s wealth in tokens
(both atomic and minted). Formally, we define the net worth of A in a state Γ as:

WA(Γ) =

{∑
τ∈domσ στ · PΓτ if A[σ] ∈ Γ

0 otherwise
(3.5)

Note that WA(Γ) ∈ R≥0, since balances σ are finite maps, and PΓτ is always defined.
The global net worth W (Γ) in a state Γ is the sum of the net worth in users’ wallets.

Note that the token reserves in AMMs are not accounted for by W (Γ), because their value
is already recorded by minted tokens held in users’ wallets. Indeed, the equality:

SΓ{τ0, τ1} · PΓ{τ0, τ1} = r0 · Pτ0 + r1 · Pτ1

86

between the net worth of a minted token and the value of the AMM is a direct consequence
of the definition of price in Equation (3.1).

We denote by GA(Γ, λ) the gain of user A upon performing a sequence of transactions
λ enabled in state Γ (if λ is not enabled in Γ, we stipulate that the gain is zero):

GA(Γ, λ) = WA(Γ′)−WA(Γ) if Γ
λ−→ Γ′ (3.6)

To maximize their gain, users can perform different interactions with the AMM, e.g., by
investing tokens or trading units of differently priced token types.

The following lemma quantifies the gain of users upon firing a swap transaction. Note
that this quantification does not depend on any of the properties of the swap rate function
introduced later on in section 5: actually, it holds for any swap rate function.

Lemma 3.2 (Swap gain). Let Γ = {r0 : τ0, r1 : τ1} | ∆, and let T = A : swap(x, τ0, τ1) be
enabled in Γ. Then:

GA(Γ,T) = x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
·
(

1− σA{τ0, τ1}
SΓ{τ0, τ1}

)
if A[σA] ∈ Γ

GB(Γ,T) = −x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
· σB{τ0, τ1}

SΓ{τ0, τ1}
if B[σB] ∈ Γ, B 6= A

A direct consequence of Lemma 3.2 is that if A performs a swap between τ0 and τ1 and
she holds all the units of the minted token {τ0, τ1}, then her gain will be zero. Further, A
maximizes her gain when she has no minted tokens of type {τ0, τ1}. The lemma also implies
that if the user performing the swap has a positive gain, then all the users who hold units of
{τ0, τ1} will have a negative gain.

The following lemma states that a swap transaction on an AMM {r0 : τ0, r1 : τ1} has a
strictly positive gain if and only if the swap rate is strictly greater than the oracle exchange
rate between τ0 and τ1. This holds for any swap rate function, under the condition that the
user who performs the swap has no minted tokens of type {τ0, τ1}.

Lemma 3.3 (Swap rate vs. exchange rate). Let Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆ be such that
σ{τ0, τ1} = 0, and let T = A : swap(x, τ0, τ1) be enabled in Γ. Then:

GA(Γ,T) ◦ 0 ⇐⇒ SX (x, r0, r1) ◦X(τ0, τ1) for ◦ ∈ {<,=, >}

Example 3.4. Let Γ0 = A[70 : τ0, 70 : τ1] | B[30 : τ0, 10 : τ1] be the initial state of the
computation in Figure 1. Let Pτ0 = 5 and Pτ1 = 9. The users’ net worth in Γ0 and in the
final state Γ = A[82 : τ0, 47 : τ1, 10 : {τ0, τ1}] | B[0 : τ0, 27 : τ1] | {18 : τ0, 6 : τ1} is as follows:

WA(Γ0) = 70 · Pτ0 + 70 · Pτ1 = 980 WB(Γ0) = 30 · Pτ0 + 10 · Pτ1 = 240

WA(Γ) = 82 · Pτ0 + 47 · Pτ1 + 10 · PΓ{τ0, τ1} = 977 WB(Γ) = 27 · Pτ1 = 243

Note that A’s net worth of has decreased w.r.t. the initial state, while that of B has increased:
indeed, the gain of A upon the sequence of transactions λ is GA(Γ, λ) = 977− 980 = −3,
while that of B is GB(Γ, λ) = 243−240 = 3. One may think that B has been more successful
than A, but this depends on the users’ goals. Note, e.g., that A holds 10 units of the minted
token {τ0, τ1}, whose price may increase in the future. �

87

4. Structural properties of AMMs

We now establish some structural properties of AMMs, which do not depend on the design
of the economic mechanisms, i.e. on the choice of the swap rate function. These structural
properties are the basis for AMM interactions that occur in the wild, and that cumulatively
give rise to complex emerging behaviours like arbitrage and MEV. Hence, establishing these
structural properties is a preliminary sanity check for our AMM model. We will provide
further support for the coherence between our model and actual AMMs by showing that
the above-mentioned complex behaviours are expressible in our model (see section 6 and
section 7).

First, we establish that the AMMs’ transition system is deterministic. This follows from
the fact that, given a state Γ and a transaction T, there is at most one applicable rule.
Note that determinism is a crucial property for blockchains, since it ensures that all the
nodes in the blockchain network are able to reconstruct a common state from a sequence of
transactions. Therefore, it makes sense that determinism holds also for our AMM model.

Lemma 4.1 (Determinism). If Γ
T−→ Γ′ and Γ

T−→ Γ′′, then Γ′ = Γ′′.

We can lift the statement to sequences of transactions by using a simple inductive
argument. The same applies to other single-step results in this section.

Lemma 4.2 ensures that the reserves in an AMM cannot be zeroed, and that the same
holds for the units of any minted token. Summing up, this ensures that the price of any
minted token is always defined and positive.

Lemma 4.2 (Non depletion). For all states Γ, if {r0 : τ0, r1 : τ1} ∈ Γ then:

(a) ri > 0, for i ∈ {0, 1};
(b) SΓ{τ0, τ1} > 0.

4.1. Preservation properties. Lemma 4.3 ensures that transactions preserve the supply
of atomic tokens. Minted tokens, instead, are preserved only by swap transactions, since
deposit and redeem transactions, respectively, create and destroy minted tokens. This fact
will be instrumental to prove the preservation of the net worth (see Lemma 4.5).

Lemma 4.3 (Preservation of token supply). Let Γ
T−→ Γ′. Then:

(a) for all τ ∈ T0, SΓτ = SΓ′τ
(b) if type(T) = swap, then for all τ ∈ T1, SΓτ = SΓ′τ

Lemma 4.4 states that deposit and redeem transactions preserve the reserves ratio in
AMMs, the redeem rate, and the price of minted tokens. These preservation properties will
be exploited later on to determine the solution to the arbitrage game after deposits and
redeems (see Theorems 6.8 and 6.10).

Lemma 4.4 (Preservation upon deposits/redeems). Let Γ
T−→ Γ′, with {r0 : τ0, r1 : τ1} ∈ Γ.

If type(T) ∈ {dep, rdm}, then:

(a) if {r′0 : τ0, r
′
1 : τ1} ∈ Γ′, then r1/r0 = r′1/r′0

(b) RX i
Γ(τ0, τ1) = RX i

Γ′(τ0, τ1), for i ∈ {0, 1}
(c) PΓ{τ0, τ1} = PΓ′{τ0, τ1}

88

Lemma 4.5 ensures that transactions (of any type) preserve the global net worth, whereas
the net worth of individual users is preserved only by redeem and deposit transactions. A
direct consequence of this preservation result is that users can increase their net worth only
by performing swaps: Indeed, we will find in Theorem 6.3 that the solution of the arbitrage
game only contains swap transactions. Furthermore, if a user has a positive gain, then some
other user must have a loss.

Lemma 4.5 (Preservation of net worth). Let Γ
T−→ Γ′. Then:

(a) if type(T) 6= swap then, for all A: WA(Γ) = WA(Γ′)
(b) W (Γ) = W (Γ′)

The following lemma, which is a direct consequence of Lemma 4.5(a), supports the
definition of the price of minted tokens in Equation (3.1): indeed, computing the net worth
of a user A under that price definition corresponds to making A first redeem all her minted
tokens, and then summing the price of the resulting atomic tokens.

Lemma 4.6. Let Γ
λ−→ Γ′, where λ contains only rdm actions of A. If A[σ] ∈ Γ′ and

domσ ∩ T1 = ∅, then:

WA(Γ) =
∑

τ∈domσ

στ · Pτ

Example 4.7. Let Γ = A[82 : τ0, 47 : τ1, 10 : {τ0, τ1}] | {27 : τ0, 9 : τ1} | B[5 : {τ0, τ1}], and
let Pτ0 = 5 and Pτ1 = 9. We have that PΓ{τ0, τ1} = 14.4, and WA(Γ) = 977. Assume
that A performs a transaction from Γ to redeem all 10 units of {τ0, τ1} in her wallet. The
resulting state is Γ′ = A[100 : τ0, 53 : τ1] | {9 : τ0, 3 : τ1} | · · · . We compute A’s net worth in
Γ′ using the oracle token prices:

WA(Γ′) = 100 · Pτ0 + 53 · Pτ1 = 100 · 5 + 53 · 9 = 977

which is coherent with the net worth predicted by Lemma 4.6. �

4.2. Liquidity. Lemma 4.8 ensures that funds cannot be frozen in an AMM, i.e. that users
can always redeem arbitrary amounts of the tokens deposited in an AMM, as long as the
reserves are not zeroed. Note that, since {r0 : τ0, r1 : τ1} = {r1 : τ1, r0 : τ0}, the statement
also holds when swapping r0 with r1.

Lemma 4.8 (Liquidity). Let Γ be such that {r0 : τ0, r1 : τ1} ∈ Γ. Then, for all r′0 < r0, there

exist r′1 < r1, Γ′ and λ only containing rdm transactions such that Γ
λ−→ {r′0 : τ0, r

′
1 : τ1} | Γ′.

4.3. Reordering of transactions. In general, given two transactions T0 and T1 and a state
Γ, executing T0T1 or T1T0 from Γ yields different states. However, under some conditions it
is possible to invert the order of the two transactions, preserving the resulting state. This is
always the case, e.g., of two transactions which operate on disjoint sets of tokens. Lemma 4.9
establishes sufficient conditions for preserving the state upon reordering. Besides the case
cited before, this is always possible if both transactions are deposits, or if they are bot
redeems (case (a) of the statement). Note that, in these cases, the assumption that T0T1

is enabled in Γ implies that also T1T0 is such. This is no longer true when one of the two
transactions is a deposit and the other one is a redeem. For instance, if T1 redeems the
minted tokens obtained upon a deposit T0, then T1 may not be enabled in Γ because there

89

are not enough minted tokens in the user’s wallet. Therefore, case (b) of the statement uses
the additional hypothesis that also T1T0 is enabled in Γ.

Lemma 4.9 (Reordering of transactions). Let Γ
T0T1−−−→ Γ01. Then:

(a) if tok(T0) ∩ tok(T1) = ∅ or type(T0) = type(T1) ∈ {dep, rdm}, then Γ
T1T0−−−→ Γ01;

(b) otherwise, if type(T0), type(T1) 6= swap and Γ
T1T0−−−→ Γ10, then Γ01 = Γ10.

As we shall see in section 6, it is actually desirable, and crucial for the economic
mechanism of AMMs, that swaps interfere with other transactions that trade the same token
type.

4.4. Additivity of deposit and redeem actions. Deposit and redeem actions satisfy an
additivity property: if a user performs two successive deposits (resp. redeems) on an AMM,
then the same result can be obtained through a single deposit (resp. redeem). Instead, swap
actions are not additive, in general: we will study sufficient conditions for the additivity of
swap actions in section 5 (see Theorem 5.6).

Theorem 4.10 (Additivity). Let Γ
T0−→ Γ0

T1−→ Γ1. Then:

(1) if T0 = A : dep(v0 : τ0, v1 :τ1) and T1 = A : dep(v′0 : τ0, v
′
1 :τ1), then:

Γ
A:dep(v0+v′0:τ0,v′1+v′1:τ1)−−−−−−−−−−−−−−−−→ Γ1

(2) if T0 = A : rdm(v : τ) and T1 = A : rdm(v′ : τ), then:

Γ
A:rdm(v+v′:τ)−−−−−−−−−→ Γ1

4.5. Reversibility of deposit and redeem actions. The following theorem establishes
that deposit and redeem transactions are reversible: more precisely, the effect of a deposit
action can be reverted by a redeem action, and vice versa, the effect of a redeem action
can be reverted by a deposit action. The only exception is a deposit action that creates an
AMM, through the rule [Dep0]. Swap actions are not reversible, in general: we will study
sufficient conditions for their reversibility in section 5 (see Theorem 5.9).

Theorem 4.11 (Reversibility). Let Γ
T−→ Γ′, where type(T) ∈ {dep, rdm} and for all τ ∈ T1,

if SΓτ = 0 then SΓ′τ = 0. Then there exists T−1 such that Γ′
T−1

−−→ Γ.

In general, the study of reversible computation models, which dates back to [Ben73],
is an active area of research, which has led to a wide range of applications in software
systems [MSG+20]. In particular, the reversibility of AMM actions has useful consequences
on their behaviour. For instance, it guarantees that, starting from a “stable” state where
no arbitrage is possible, after any transaction it is possible to return to the stable state.
More in general, if the swap rate function satisfies the conditions of section 5 that ensure
the additivity and reversibility also for swap actions, then for any sequence of transactions:

Γ0
T1−→ Γ1

T2−→ · · ·Γn

90

it is possible to fire another transaction and return to the state Γ0. Indeed, by additivity we
obtain that the effect of the sequence T1 · · ·Tn can be emulated by a single transaction T,
and then reversibility ensures that T can be reversed, i.e.:

Γ0
T−→ Γn

T−1

−−→ Γ0

5. The swap rate function

In the previous section we have established some key structural properties of deposit and
redeem actions, e.g. their additivity and reversibility. In general, these properties do not
hold for swap actions: it is easy to find swap rate functions SX ∈ R3

≥0 → R≥0 that make
these properties false. Throughout this section we introduce some general properties of swap
rate functions, and we discuss the properties they induce on the behaviour of AMMs. In
sections 5.6-5.8 we then discuss the properties enjoyed by the swap rate functions used in
some concrete AMM implementations. Coherently with these implementations, we assume
that a swap rate function is defined and non-negative for all x > 0, and that the internal
exchange rate (i.e., the limit of SX for x leading to 0, see (3.3)) is always defined.

5.1. Output-boundedness. Output boundedness guarantees that an AMM has always
enough output tokens τ1 to send to the user who performs a swap(x, τ0, τ1).

Definition 5.1 (Output-boundedness). A swap rate function SX is output-bounded when,
for all x, r0, r1 such that x ≥ 0 and r0, r1 > 0:

x · SX (x, r0, r1) < r1

The following lemma establishes sufficient conditions for a swap action to be enabled.

Lemma 5.2. Let T = A : swap(x, τ0, τ1), and let A[σ] ∈ Γ. If SΓ{τ0, τ1} > 0, σ(τ0) ≥ x
and SX is output-bounded, then T is enabled in Γ.

5.2. Monotonicity. Consider a transaction A : swap(x, τ0, τ1) on an AMM {r0 : τ0, r1 : τ1}.
Without making any assumptions on the swap rate function, there is no relation between
the effect of this transaction and that of a swap where the parameters have been varied.
Monotonicity, instead, ensures that there exists a meaninful relation: the swap rate increases
if we decrease the input amount x or the reserves of τ0, and if we increase the reserves of
τ1. The intuition is that lower reserves of τ0 in the AMM make the x : τ0 paid by A more
“valuable” for the AMM, hence the AMM will output more units of τ1 for the same input
amount. Increasing the reserves of τ1 in the AMM (keeping those of τ0 unaltered) produces
the same effect. Monotonicity on x also ensures that the internal exchange rate of the AMM
is defined, for each token pair.

Definition 5.3 (Monotonicity). A swap rate function SX is monotonic when:

x′ ≤ x, r′0 ≤ r0, r1 ≤ r′1 =⇒ SX (x, r0, r1) ≤ SX (x′, r′0, r
′
1)

Further, SX is strictly monotonic when, for i ∈ {0, 1, 2} and Ci ∈ {<,≤}:
x′ C0 x, r

′
0 C1 r0, r1 C2 r

′
1 =⇒ SX (x, r0, r1) C3 SX (x′, r′0, r

′
1)

91

where:

C3 =

{
≤ if Ci =≤ for i ∈ {0, 1, 2}
< otherwise

Note that strict monotonicity trivially implies monotonicity. The following lemma relates
monotonicity of the swap rate function with the gain of swap transactions, concretising the
intuition given before from the point of view of A’s gain.

Lemma 5.4. Let Γ = {r0 : τ0, r1 : τ1} | ∆ and Γ′ = {r′0 : τ0, r
′
1 : τ1} | ∆, with r′0 ≤ r0 and

r1 ≤ r′1, and let T = A : swap(x, τ0, τ1) be enabled in Γ and in Γ′. If SX is monotonic, then
GA(Γ,T) ≤ GA(Γ′,T).

5.3. Additivity. To extend the additivity property of Theorem 4.10 to swap actions, we
must require that the swap rate function is additive.

Definition 5.5 (Additivity). A swap rate function SX is additive when:

α = SX (x, r0, r1), β = SX (y, r0 + x, r1 − αx) =⇒ SX (x+ y, r0, r1) =
αx+ βy

x+ y

The idea here is that a user fires a swap transaction (say, T0) with input amount x in a
state Γ, and then in the state reached after firing T0, she fires another swap transaction
(say, T1) with input amount y on the same AMM. The definition of additivity requires that
the swap rate of a swap transaction with input amount x+ y in Γ is in a given relation with
the swap rates computed for T0 and T1 and with the input amounts x and y. Theorem 5.6
states that if this relation holds, then a single swap with input amount x+ y in Γ produces
exactly the same effect of performing first T0 and then T1. Then, Lemma 5.7 allows us to
compute the gain of this transaction as the sum of the gains of T0 and T1.

Theorem 5.6 (Additivity of swap). Let Γ
T0−→ Γ0

T1−→ Γ1, with Ti = A : swap(xi, τ0, τ1) for
i ∈ {0, 1}. If SX is additive, then:

Γ
A:swap(x0+x1,τ0,τ1)−−−−−−−−−−−−−→ Γ1

Lemma 5.7 (Additivity of swap gain). Let T(x) = A : swap(x, τ0, τ1), and let Γ
T(x0)−−−→ Γ′.

If SX is output-bounded and additive, then:

GA(Γ,T(x0 + x1)) = GA(Γ,T(x0)) + GA(Γ′,T(x1))

5.4. Reversibility. The reversibility property in Theorem 4.11 states that the effect of
deposit and redeem transactions can be reverted. We now devise a property of swap rate
functions that give the same guarantee for swap transactions.

Definition 5.8 (Reversibility). A swap rate function SX is reversible when:

α = SX (x, r0, r1) =⇒ SX (αx, r1 − αx, r0 + x) =
1

α

92

Consider now a state Γ = {r0 : τ0, r1 : τ1} | ∆, and let α = limx→0 SX (x, r0, r1) be the
internal exchange between τ0 and τ1 in Γ. If the swap rate function is reversible, then:

lim
x→0

SX (x, r1, r0) = lim
x→0

SX (αx, r1 − αx, r0 + x) = lim
x→0

1

α
=

1

α

from which we obtain:

XΓ(τ1, τ0) =
1

XΓ(τ0, τ1)
(5.1)

The intuition of Definition 5.8 is that, to reverse the effect of a swap transaction T that
pays x : τ0 to receive y : τ1, one must fire a swap transaction T−1 that pays y : τ1 to receive
x : τ0. Of course, this results in the same AMM state that we had before performing T.
Writing α for the swap rate SX (x, r0, r1), the [Swap] rule fixes y = αx. Hence, assuming that
in the initial state the AMM has reserves r0 : τ0 and r1 : τ1, after performing T its reserves
will be r0 + x : τ0 and r1 − αx : τ1. In this state, requiring that the swap rate for an input
of y : τ1 is 1

α (as done by Definition 5.8) implies that the AMM outputs x : τ0, reverting the
reserves of the AMM to the initial values.

The following theorem formalises the intuition above, establishing that, when the swap
rate function is reversible, swap transactions are reversible. Together with Theorem 4.11, all
the AMM actions are reversible under this hypothesis.

Theorem 5.9 (Reversibility of swap). Let T = A : swap(x, τ0, τ1), and let Γ
T−→ Γ′. If SX

is reversible, then there exists T−1 such that Γ′
T−1

−−→ Γ.

Lemma 5.10 allows us to compute the gain of the reverse transaction T−1 in the state
reached after performing T as a function of the gain of T. As expected by preservation of
the global net worth, the gain of T−1 is the opposite of that of T.

Lemma 5.10. Let T = A : swap(x, τ0, τ1), and let Γ
T−→ Γ′. If SX is reversible, then

GA(Γ,T) = −GA(Γ′,T−1).

5.5. Homogeneity. A swap rate function is homogeneous when the swap rate is not affected
by a linear scaling of the three parameters. Homogeneity is useful to relate the swap rate
before and after deposit or redeem transactions, since their effect is a linear scaling of the
AMM reserves. Lemma 5.12 establishes one the the landmark properties of AMMs we have
anticipated in section 2: when the swap rate function is homogeneous, deposits and redeems
do not affect the internal swap rate.

Definition 5.11 (Homogeneity). A swap rate function SX is homogeneous when, for a > 0:

SX (ax, ar0, ar1) = SX (x, r0, r1)

Lemma 5.12 (Preservation of internal exchange rate upon deposits/redeems). Let Γ
T−→ Γ′,

where tok(T) = {τ0, τ1} and type(T) ∈ {dep, rdm}. If SX is homogeneous, then:

XΓ(τ0, τ1) = XΓ′(τ0, τ1)

The following lemma shows that deposits increase swap rates, whilst redeems have the
opposite effect. Dually, deposits decrease the slippage, while redeems increase it. In section 6
we will exploit this fact to show that deposits incentivize swaps, while redeems disincentivize
them (see Theorems 6.6 and 6.9).

93

Lemma 5.13. Let Γ
T−→ Γ′, where {r0 : τ0, r1 : τ1} ∈ Γ, {r′0 : τ0, r

′
1 : τ1} ∈ Γ′ and tok(T) =

{τ0, τ1}. If SX is homogeneous and strictly monotonic, then for all x > 0:

(a) type(T) = dep =⇒ SX (x, r0, r1) < SX (x, r′0, r
′
1) and ∆XΓ(x, τ0, τ1) > ∆XΓ′(x, τ0, τ1)

(b) type(T) = rdm =⇒ SX (x, r0, r1) > SX (x, r′0, r
′
1) and ∆XΓ(x, τ0, τ1) < ∆XΓ′(x, τ0, τ1)

It is easy to find swap rate functions that violate the properties discussed before:
for instance SX (x, r0, r1) = 1/x violates output-boundedness, additivity, reversibility and
homogeneity. In the rest of the section we discuss some notable swap rate functions, used in
actual AMM implementations, showing that they satisfy most of our properties.

5.6. Constant sum swap rate. The constant sum function mandates the sum of the token
reserves in an AMM to remain constant, i.e. r0 + r1 = k, where the constant k is fixed upon
the first deposit in the AMM.

Theorem 5.14 (Constant sum swap rate). The constant sum swap rate function:

SX (x, r0, r1) = 1

is monotonic, reversible, additive, and homogeneous. Furthermore, its internal swap rate
and its slippage are given by:

XΓ(τ0, τ1) = 1 ∆XΓ(x, τ0, τ1) = 0

Note that the constant sum function is not output-bounded, since the output amount
may exceed the reserves of the output token. A positive aspect of constant sum AMMs is
that they do not suffer from slippage. With constant sum AMMs, the internal exchange rate
is always 1, and so there is zero slippage (see Equations (3.3) and (3.4)). A negative aspect
is that constant sum AMMs do not allow the token reserves to grow unboundedly: indeed,
the bound is fixed with the first deposit. This makes constant sum AMMs unsuitable for
scenarios where one wants the liquidity of the AMM to increase over time, and to incentivise
users to deposit through minted tokens. When the oracle and internal exchange rates are not
aligned (i.e., when the prices of the two tokens are different), then rational users will drain
the reserves of the most expensive token type held by the AMM. Despite these drawbacks,
the constant sum swap rate is suitable situations where the two token types in the AMM are
supposed to be equally prices, like for stablecoins. This is the case e.g. for mStable [mSt20].

5.7. Constant product swap rate. The constant product swap rate function (introduced
before in Definition 2.1) enjoys all the properties discussed previously in this section.4

Theorem 5.15 (Constant product). The constant product swap rate function is output-
bounded, strictly monotonic, reversible, additive, and homogeneous. Furthermore, its internal
swap rate and its slippage are given by:

XΓ(τ0, τ1) =
r1

r0
∆XΓ(x, τ0, τ1) =

x

r0

Compared to the constant sum swap rate, a point in favour of the constant product is
output-boundedness, which allows users to add unbounded liquidity to the AMM. A point
against is slippage, which grows linearly with the amount of the input token. Therefore,
when the internal exchange rate is aligned with the oracle’s, users are disincentivised from

4The existence of other classes of swap rate functions enjoying all the six properties is an open question.

94

performing large swaps. The most prominent AMM platform adopting the constant product
is Uniswap v2 [uni21]. Curve [cur20] uses a hybrid swap rate function, which approximates
a constant sum for an interval of input values x, and behaves as a constant product outside
the interval. In this way, it achieves a small slippage within the interval, at the same time
allowing unbounded liquidity thanks to output-boundedness.

5.8. Constant mean swap rate. The constant mean swap rate function generalises the
constant product by associating weights w0, w1 ∈ R>0 to the token types held by the AMM,
so to preserve the following equality:

rw0
0 rw1

1 = (r0 + x)w0(r1 + y)w1 where y = x · SX (x, r0, r1)

The following theorem shows that the constant mean function enjoys most of the
properties of the constant product, except reversibility.

Theorem 5.16 (Constant mean swap rate). The constant mean swap rate function:

SX (x, r0, r1) =
r1

x

(
1−

(r0

r0 + x

)w0
w1

)

is output-bounded, monotonic, additive, and homogeneous. Furthermore, its internal swap
rate and its slippage are given by:

XΓ(τ0, τ1) =
r1w0

r0w1
∆XΓ(x, τ0, τ1) =

xw0

r0w1

(
1−

(
r0

r0+x

)w0
w1

) − 1

The most prominent AMM plaform using the constant mean swap rate is Balancer [bal19].
Users fix the weights w0, w1 of token types when an AMM is created; once fixed, these
weights cannot be changed. The constant product swap rate can be seen as the special case
of the constant mean where the two weights are equal.

6. The economic mechanism of AMMs

AMMs can be seen as games where users compete to increase their net worth. We now study
the incentive mechanisms of AMMs from a game-theoretic perspective.

6.1. Arbitrage. The arbitrage game is a single-player, single-round game, where the
player can perform a single move on a given AMM pair τ0, τ1 in order to maximize her
gain. The initial game states have the form Γ0 = A[σ] | {r0 : τ0, r1 : τ1} | ∆, where A is the
player; the moves of A are all the possible transactions that can be fired by A (we also
consider doing nothing as a possible move). More formally, a move is a sequence λ such
that either λ = ε (the empty sequence), or λ = T with wal(T) = A. The goal of A is to
maximize her gain GA(Γ0, λ) on the AMM pair τ0, τ1. A solution to the game is a move λ
that satisfies such goal. We study the arbitrage game under the assumption that A holds
no minted tokens {τ0, τ1}. In this way, by Lemma 3.2, A’s gain only depends on the input
amount of A’s swap, on the reserves of τ0 and τ1 in the AMM, and on their prices. In
practice, AMM users are logically partitioned in two groups, e.g. liquidity providers (who
perform deposits and redeems) and traders (who perform swaps), so basically here we are
considering the arbitrage game from the traders’ point of view. We further assume that A’s
balance is enough to allow A to perform the optimal swap. This is a common assumption
in formulations of the arbitrage game: in practice, this can be achieved by borrowing the

95

needed amount of the input token from a lending pool via a flash-loan [QZLG21,WWL+20].
Theorem 6.3 shows that a rational agent is incentivized to perform a swap to realign the
internal and the oracle’s exchange rate. The optimal solution to the arbitrage game can be
approximated by multiple users who swap smaller amounts than the optimal one.

Before devising a solution to the arbitrage game, we examine the potential candidates
for the solution. Observe that doing nothing (i.e., λ = ε) has clearly zero gain, as well as
depositing or redeeming, as established by Lemma 4.5. Hence, if one of such moves is a
solution, so are the other two: without loss of generality, we assume that A’s move will be
λ = ε when there is no strategy which allows A to increase her gain.

We first show in Lemma 6.2 that, if a swap with input τ0 and output τ1 has a positive
gain, then a swap with input τ1 and output τ0 will have a negative gain, whatever input
amount is chosen. This holds whenever the swap rate function is monotonic and reversible.
Lemma 6.1 is instrumental to prove Lemma 6.2, as it finds the needed relation between the
swap rate function and the exchange rate. Passing from this relation to the gain of the swap
transaction is obtained by means of Lemma 3.3.

Lemma 6.1. If SX is strictly monotonic and reversible, then for all x > 0:

SX (x, r0, r1) ≥ X(τ0, τ1) =⇒ ∀y > 0. SX (y, r1, r0) < X(τ1, τ0)

Lemma 6.2 (Unique direction for swap gain). Let Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆ be such
that σ{τ0, τ1} = 0, and let Td(x) = A : swap(x, τd, τ1−d), for x > 0 and d ∈ {0, 1}. If SX is
output-bounded, strictly monotonic and reversible, then for all y > 0 such that στ1−d ≥ y:

GA(Γ,Td(x)) > 0 =⇒ GA(Γ,T1−d(y)) < 0

Theorem 6.3 devises a general solution to the arbitrage game, determining the swap
transaction that maximizes A’s gain. This is the transaction A : swap(x0, τ0, τ1) such that,
in the state Γ′ reached after performing it from the initial state, the internal exchange rate
between τ0 and τ1 is aligned to the oracle’s exchange rate. By Lemma 3.3, no move from
Γ′ can increase A’s gain, i.e. the solution for the arbitrage game in Γ′ is to do nothing.
Lemma 6.2 guarantees that swaps in the other direction are not solutions, since they decrease
A’s gain. Note that if the internal exchange rate is already aligned to the oracle’s, or if A
has not enough balance to perform the optimal swap, then the solution to the arbitrage
problem is to do nothing.

Theorem 6.3 (Arbitrage). Let Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆ be such that σ{τ0, τ1} = 0.
For all x > 0, let T(x) = A : swap(x, τ0, τ1). Let x0 be such that:

XΓ′(τ0, τ1) = X(τ0, τ1) where Γ
T(x0)−−−→ Γ′ (6.1)

If SX is output-bounded, strictly monotonic, additive and reversible, then:

∀x 6= x0 : GA(Γ,T(x0)) > GA(Γ,T(x))

Furthermore, if an x0 satisfying Equation (6.1) exists, it is unique.

An implicit desideratum on these solutions is that, given a specific instance of the swap
rate function, they are efficiently computable: this is the case, e.g., for the constant product,
for which Lemma 6.4 finds a closed formula for the arbitrage solution.

Lemma 6.4 (Arbitrage and constant product). Let Γ = A[σ] | {r0 : τ0, r1 : τ1}, and let:

x0 =

√
Pτ1

Pτ0
r0r1 − r0 (6.2)

96

If SX is the constant product swap rate and x0 > 0, then A : swap(x0, τ0, τ1) is the solution
to the arbitrage game in Γ.

Example 6.5. Consider an initial state Γ = A[σ] | {18 : τ0, 6 : τ1} | ∆. Assuming the
constant product swap rate, and Pτ0 = 3, Pτ1 = 4, we have that:

XΓ(τ0, τ1) = 6/18 < 3/4 = X(τ0, τ1)

XΓ(τ1, τ0) = 18/6 > 4/3 = X(τ1, τ0)

By Theorem 6.3 it follows that the solution to the arbitrage game is T(x) = A : swap(x, τ1, τ0),
for suitable x. By Lemma 6.4, we find that the optimal input value is:

x1 =

√
3

4
· 18 · 6− 6 = 3

and the corresponding output value is x1 · SX (x1, 6, 18) = 6. We then obtain:

Γ
T(x1)−−−→ Γ′ = A[σ − 3 : τ1 + 6 : τ0] | {12 : τ0, 9 : τ1}

This action maximizes A’s gain GA(Γ,T(x1)) = WA(Γ′)−WA(Γ) = 6Pτ0 − 3Pτ1 = 6. Any
other action would result in a lower gain for A. Note that the internal exchange rate in Γ′ is
aligned to the oracle’s: XΓ′(τ0, τ1) = 9/12 = 3/4 = X(τ0, τ1). �

6.2. Swaps after deposits. We show in Theorem 6.6 that deposits incentivise swaps.
Namely, if a user B performs a deposit on an AMM for the token pair τ0, τ1, and then a
different user A performs a swap in the resulting state, then A’s gain is increased w.r.t. the
gain that she would have obtained by performing the same transaction before B’s deposit.
The intuition is that larger amounts of tokens in an AMM provide decrease the slippage,
therefore attracting users interested in swaps.

Theorem 6.6 (Swap after deposit). Let Tswap and Tdep be two transactions such that
wal(Tswap) = A 6= wal(Tdep) and, for ` ∈ {swap, dep}, type(T`) = ` and tok(T`) = {τ0, τ1}.
Let Γ be such that both Tswap and TdepTswap are enabled in Γ. If the swap rate function is
homogeneous and strictly monotonic, then:

GA(Γ,TdepTswap) > GA(Γ,Tswap)

Example 6.7. Let Γ = A[5 : τ0] | {5 : τ0, 10 : τ1} | ∆, let Tdep = B : dep(40 : τ0, 80 :τ1), and
let Tswap = A : swap(5, τ0, τ1). Assuming the constant product swap rate, we have that:

Γ
Tswap−−−→ Γs = A[5 : τ1] | {10 : τ0, 5 : τ1} | ∆

Γ
Tdep−−→ Γd = A[5 : τ0] | {45 : τ0, 90 : τ1} | ∆′

Tswap−−−→ Γds = A[9 : τ1] | {50 : τ0, 81 : τ1} | ∆′

Now, assuming Pτ0 = 1 and Pτ1 = 1, we have the following gains for A:

GA(Γ,TdepTswap) = 4 > 0 = GA(Γ,Tswap)

as correctly predicted by Theorem 6.6. Note that in the state Γ before the deposit, A has
zero gain from her swap, while the same transaction has a positive gain after the deposit. �

Theorem 6.8 finds the solution of the arbitrage game after a deposit of another user.
More precisely, let λ be the solution in Γ, and let λ′ be the solution in the state Γ′ reached
after a deposit. If λ is empty, then also λ′ is such. If λ is a swap with input τ0 and output
τ1, then also λ′ is such (but for the input amount).

97

Theorem 6.8 (Arbitrage after deposit). Let Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆, and let:

Γ
B:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→ Γd where Γd = A[σ′] | {r′0 : τ0, r

′
1 : τ1} | ∆′ and B 6= A

Let λ and λd be the solutions of the arbitrage game in Γ and in Γd, respectively. If SX is
output-bounded, strictly monotonic, additive, reversible, and homogeneous, then:

(1) if λ = A : swap(x, τ0, τ1), then

λd = A : swap(ax, τ0, τ1) GA(Γd, λd) = aGA(Γ, λ) where a =
r1 + v1

r1

(2) if λ = ε, then λd = ε.

6.3. Swaps after redeems. We now study swaps and arbitrage after redeems. Conversely
to what we have shown before in Theorem 6.6, we find that redeems disincentivise swaps
(Theorem 6.9). Similarly to Theorem 6.8, if the solution to the arbitrage game in a state
Γ is a swap, then after a redeem in Γ the solution is still a swap which only differs in the
input amount (Theorem 6.10).

Theorem 6.9 (Swap after redeem). Let Tswap and Trdm be two transactions such that
wal(Tswap) = A 6= wal(Trdm) and, for ` ∈ {swap, rdm}, type(T`) = ` and tok(T`) = {τ0, τ1}.
Let Γ be such that both Tswap and TrdmTswap are enabled in Γ. If the swap rate function is
homogeneous and strictly monotonic, then:

GA(Γ,TrdmTswap) < GA(Γ,Tswap)

Theorem 6.10 (Arbitrage after redeem). Let Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆, and let:

Γ
B:rdm(v:{τ0,τ1})−−−−−−−−−−→ Γd where Γd = A[σ′] | {r′0 : τ0, r

′
1 : τ1} | ∆′ and B 6= A

Let λ and λd be the solutions of the arbitrage game in Γ and in Γd, respectively. If SX is
output-bounded, strictly monotonic, additive, reversible, and homogeneous, then:

(1) if λ = A : swap(x, τ0, τ1), then

λd = A : swap(ax, τ0, τ1) GA(Γd, λd) = aGA(Γ, λ) where a = 1− v

SΓ{τ0, τ1}
(2) if λ = ε, then λd = ε.

7. Maximal extractable value

Maximal Extractable Value (MEV) refers to a class of attacks to smart contracts where
miners/validators exploit their power to reorder, drop or insert transactions in a block to
“extract” value from the mempool (i.e., the set of transactions sent to the blockchain network,
but not appearing yet in a block). Empirical research has shown that AMMs are routinely
targeted by MEV attacks [DGK+20,QZG21,ZQC+21,ZQT+21], and indeed recent versions of
the Ethereum protocol implementation include a MEV extraction mechanism [mev22]. This
has negative effects on AMM users, as well as on transaction fees and network congestion.

We show that our AMM model makes it possible to faithfully express MEV attacks.
Consider a constant product AMM for two token types τ0, τ1 with the same price, e.g.
Pτ0 = Pτ1 = 1, and consider a state:

Γ = M[· · ·] | A[50 : τ0] | {10 : τ0, 10 : τ1} | · · ·

98

where we use A to impersonate a honest user, and M for a miner, acting as an adversary.
By Lemma 3.3 we know that the AMM is in equilibrium in Γ, because, for each x > 0:

SX (x, 10, 10) =
10

10 + x
< 1 = X(τ0, τ1)

Therefore, neither a miner nor any other user can increase their net worth in Γ.
Assume now that A sends the transaction TA = A : swap(50, τ0, τ1) to the blockchain

network. Before being included in a block, TA is added to the mempool, from where miners
gather transactions to construct blocks. Any miner owning enough token units can increase
their gain by firing A’s transaction within a sandwich of M’s swaps. For instance, assume
that M’s wallet is M[40 : τ0, 1 : τ1]. Then M can construct a block:

λ = M : swap(40, τ0, τ1) TA M : swap(9, τ1, τ0)

We have that Γ
λ−→ Γ′, where:

Γ
M:swap(40,τ0,τ1)−−−−−−−−−−→ M[0 : τ0, 9 : τ1] | A[50 : τ0] | {50 : τ0, 2 : τ1} | · · ·
A:swap(50,τ0,τ1)−−−−−−−−−−→ M[0 : τ0, 9 : τ1] | A[0 : τ0, 1 : τ1] | {100 : τ0, 1 : τ1} | · · ·
M:swap(9,τ1,τ0)−−−−−−−−−−→ M[90 : τ0, 0 : τ1] | A[0 : τ0, 1 : τ1] | {10 : τ0, 10 : τ1} | · · · = Γ′

This results in a positive gain for M, since:

GM(Γ, λ) = WM(Γ′)−WM(Γ) = 90 · Pτ0 − (40 · Pτ0 + 1 · Pτ1) = 49

GA(Γ, λ) = WA(Γ′)−WA(Γ) = 1 · Pτ1 − 50 · Pτ0 = −49

Summing up, M has managed to extract value from A’s transaction in the mempool,
improving her gain to the detriment of A’s net worth.

The mechanism of guarded transactions, which allows users to specify a lower bound to
the amount of tokens outputted upon a swap (see section 8), is a partial countermeasure
against MEV attacks. For instance, in the scenario above A could have sent a guarded
transaction T′A = A : swap(50 : τ0, 8.3 : τ1), which would have ensured A to receive at
least 8.3 : τ1 upon the swap. This would have neutralised the sandwich attack described
before, since after the first M’s transaction, T′A is no longer valid. Even though guarded
transactions mitigate the issue of not knowing the state where one’s transaction will be fired,
they are not a complete defence against MEV attacks. Indeed, in [BCL22] it is shown that
adversaries can craft sandwiches that extract value from any non-empty mempool of swap
and dep (guarded) transactions. Further analyses the effect of MEV on constant-function
AMMs are developed in [KDC22]. Several approaches to prevent MEV attacks are discussed
in [HW22,ByCD+21].

8. Variants of the basic model

Our AMM model abstracts from implementation-specific features, and from the features
that are orthogonal to the core functionality of AMMs (e.g., governance). We discuss below
some extensions and variants of our model to make it closer to actual implementations, and
their impact on our theory.

99

8.1. Fees. In actual AMM implementations, the swap rate — and consequently, the seman-
tics of [Swap] actions — also depends on a trading fee 1− φ. For instance, incorporating this
fee in the constant product swap rate function is usually done as follows:

SX φ(x, r0, r1) =
φ r1

r0 + φx
where φ ∈ [0, 1]

In this case, when the trading fee is zero (i.e., φ = 1), the swap rate preserves the product
between AMM reserves; a higher fee, instead, results in reduced amounts of output tokens
received from swap actions. Intuitively, the AMM retains a portion of the swapped amounts,
but the overall reserves are still distributed among all minted tokens, thereby increasing the
redeem rate of minted tokens. The structural properties in section 4 are not affected by
swap fees.

8.2. Price updates. An underlying assumption of our model is that the price of atomic
tokens is constant, and consequently that exchange rates are stable. In the wild, prices and
exchange rates can vary over time, possibly making the net worth of users holding minted
tokens decrease — a phenomenon commonly referred to as impermanent loss [imp20].

Introducing price updates in our AMM model is straightforward: it suffices to extend
states Γ with price oracles, parameterize with Γ the exchange rate X, and extend the
AMM semantics with a rule to non-deterministically update token prices. Most of the
structural properties in section 4 would not be affected by this extension: the exceptions
are determinism (Lemma 4.1) and net worth preservation (Lemma 4.5(b), while part (a)
would still be true for deposits and redeems). Technically, also the properties about swaps
and incentives in section 5 and section 6 are preserved, although this happens because most
of these properties assume sequences of deposits, redeems and swaps. If we allow these
actions to be interleaved with price updates, some properties no longer hold: notably, the
optimality of the solution λ to the arbitrage problem (Theorem 6.3) is lost if λ is front-run
by a price update that alters the exchange rates, since this affects the condition provided by
Theorem 6.3.

In practice, the assumption of constant exchange rates assumed by Theorem 6.3 may
hold in the case of exchanges between stable coins [mak20]. Here, arbitrage ensures the
alignment between swap rates and exchange rates, so users are hence incentivized to provide
liquidity to AMMs, as the redeem rate is likely to increase over time.

8.3. Guarded transactions. The semantics of AMMs in section 2 defines how the state
evolves upon transactions. In practice, when a user emits a transaction, she cannot predict
the exact state in which it will be actually committed. This may lead to unexpected or
unwanted behaviours. For instance, the gain of a swap transaction sent by A may be
reduced if the transaction is front-run by a redeem transaction sent by B, as established by
Theorem 6.9. The problem here is that redeems decrease the swap rate (by Lemma 5.13),
and consequently the amount of output tokens received by A. As a partial countermeasure
to this issue, Uniswap allows users to specify a lower bound ymin to the amount of received
tokens. In our model, we could formalise this behaviour by amending the [Swap] rule as

100

follows:
στ0 ≥ x > 0 y = x · SX (x, r0, r1) ymin ≤ y < r1

A[σ] | {r0 : τ0, r1 : τ1} | Γ
A:swap(x:τ0,ymin:τ1)−−−−−−−−−−−−−→

A[σ − x : τ0 + y : τ1] | {r0 + x : τ0, r1 − y : τ1} | Γ

[Swap]

Similar countermeasures apply to [Rdm] and [Dep] rules. For redeems, the user can enforce
lower bounds vmin

0 , vmin
1 on the amount of received tokens τ0, τ1 as follows:

σ{τ0, τ1} ≥ v > 0 v < SΓ{τ0, τ1} vi = v · RX i
Γ(τ0, τ1) vmin

i ≤ vi
Γ = A[σ] | {r0 : τ0, r1 : τ1} | Γ′

A:rdm(v:{τ0,τ1},vmin
0 :τ0,vmin

1 :τ1)−−−−−−−−−−−−−−−−−−−−→
A[σ + v0 : τ0 + v1 : τ1 − v : {τ0, τ1}] | {r0 − v0 : τ0, r1 − v1 : τ1} | Γ′

[Rdm]

Amending the [Dep] rule is more complex, since here we must define ranges for the deposited
amounts v0, v1, and we must preserve the ratio between the AMM reserves. A possible way
to achieve this behaviour is the following rule:

στi ≥ vi > 0 v = vi
RX i

Γ (τ0,τ1)
(v0, v1) =

{
(vmax

0 , vmax
0 · r1r0) if vmin

1 ≤ vmax
0 · r1r0 ≤ v

max
1

(vmax
1 · r0r1 , v

max
1) if vmin

0 ≤ vmax
1 · r0r1 ≤ v

max
0

Γ = A[σ] | {r0 : τ0, r1 : τ1} | Γ′
A:dep(vmin

0 ,vmax
0 :τ0,vmin

1 ,vmax
1 :τ1)−−−−−−−−−−−−−−−−−−−−→

A[σ − v0 : τ0 − v1 : τ1 + v : {τ0, τ1}] | {r0 + v0 : τ0, r1 + v1 : τ1} | Γ′

[Dep]

These amendments, which are coherent with Uniswap implementation [uni21], preserve
all the properties, both structural and economic, established in the previous sections, modulo
a restatement of the properties which have transactions in their hypotheses. For instance, in
Theorem 6.8, the scaling factor a will be computed on the actual deposited value, rather
than on the parameter of the transaction. Note that, although the new rules can disable
some transactions which were enabled with the rules in section 2, this does not affect the
transactions reordering result (Lemma 4.9).

8.4. Other variants. There are further differences between our model and the existing
AMM platforms, that could be accounted for in extensions of our model. Uniswap implements
flash-loans as part of the swap actions: namely, the user can optionally borrow available
pair funds [uni20a] whilst returning these within the same atomic group of actions. Further,
Uniswap implements an exchange rate oracle, allowing smart contracts to interpret (averages
of) recent swap rates as exchange rates [uni20b]. Balancer [bal19] extends token pairs to
token tuples : a user can swap any two non-coinciding sets of supported tokens, such that the
swap rate is maintained. In all AMM implementations, token balances are represented as
integers: consequently, they are subject to rounding errors [rva18]. AMM platforms frequently
implement a governance logic, which allow “governance token” holders to coordinate changes
to AMM fee-rates or swap rate parameters.

9. Conclusions

We have proposed a theory of AMMs, which encompasses and generalizes the main functional
and economic aspects of the mainstream AMM implementations, providing solid grounds
for the design of future AMMs.

101

The core of our theory is a formal model of AMMs (section 2), based on a thorough
inspection of leading AMM implementations like Uniswap [uni21], Curve [cur21b], and
Balancer [bal19]. An original aspect of our model is that it is parametric with respect to
the key economic mechanism — the swap rate function — that algorithmically determines
exchange rates between tokens. Our model features an executable semantics, which can
support future implementations and analysis tools; an open-source implementation of our
semantics is available as a companion of this paper.

Building upon our model, we prove a set of properties characterizing both structural
(section 4) and economic (section 3, section 6) aspects of AMMs. Structural properties
include, e.g., that value cannot be created or destroyed (Lemma 4.5), that tokens cannot be
frozen within an AMM (Lemma 4.8) and that some sequences of transactions can be reordered
without affecting their semantics (Lemma 4.9). Concerning the economic properties, we
address the arbitrage problem, the main game-theoretic foundation behind the economic
incentives of AMMs. Theorem 6.3 provides sufficient conditions for the existence of solutions,
and links the solutions to the expected relation between internal exchange rate and oracle’s
exchange rate. We show that deposits incentivize swaps, while redeems have the opposite
effect. With respect to previous works, which focus on specific economic mechanisms, all
our results are parametric with respect to the swap rate function. We identify indeed, for
each property, a set of conditions on swap rate functions that are sufficient for the property
to hold (section 5).

AMM platforms like Uniswap [uni21] and Curve [Ego19] have overtaken centralized
cryptocurrency markets in size and usage. On the one hand, a better understanding of
AMM design in cases where AMMs host the majority of the token’s global swap volume is
critical [AEC20]. On the other hand, the growth of AMMs is making them more attractive
for malicious users, even if it is difficult to exactly quantify the effect of attacks.

This paper, together with our work on formalizing another DeFi archetype called
lending pool [BCL21a], is the first step towards a general theory of DeFi [BCL21c]. We
believe that a general theory encompassing interactions between different DeFi archetypes is
crucial to be able to reason about their structural, economic and security aspects, as typical
DeFi applications operate within a wider ecosystem, composed by a set of collaborating or
competing agents, which interact through possibly separate execution environments.

Acknowledgements. Massimo Bartoletti is partially supported by Conv. Fondazione
di Sardegna & Atenei Sardi project F75F21001220007 ASTRID. James Hsin-yu Chiang
is supported by the PhD School of DTU Compute. Alberto Lluch Lafuente is partially
supported by the EU H2020-SU-ICT-03-2018 Project No. 830929 CyberSec4Europe (cyber-
sec4europe.eu). We thank the anonymous reviewers of COORDINATION 2021 and LMCS,
and Elvis Sikora for their insightful comments on preliminary versions of this paper.

References

[AC20] Guillermo Angeris and Tarun Chitra. Improved price oracles: Constant function market makers.
In ACM Conference on Advances in Financial Technologies (AFT), pages 80–91. ACM, 2020.
https://arxiv.org/abs/2003.10001. doi:10.1145/3419614.3423251.

[AEC20] Guillermo Angeris, Alex Evans, and Tarun Chitra. When does the tail wag the dog? Curvature
and market making. arXiv preprint arXiv:2012.08040, 2020. URL: https://arxiv.org/abs/
2012.08040.

102

[AKC+21] Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, and Tarun Chitra. An analysis
of Uniswap markets. Cryptoeconomic Systems, 1(1), 2021. doi:10.21428/58320208.c9738e64.

[bal19] Balancer whitepaper, 2019. https://balancer.finance/whitepaper/.
[BCL21a] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. SoK: Lending pools

in decentralized finance. In Financial Cryptography Workshops, volume 12676 of LNCS, pages
553–578. Springer, 2021. doi:10.1007/978-3-662-63958-0_40.

[BCL21b] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. A Theory of Automated
Market Makers in DeFi. In Coordination Models and Languages, volume 12717 of LNCS, pages
168–187. Springer, 2021. doi:10.1007/978-3-030-78142-2_11.

[BCL21c] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. Towards a theory of
decentralized finance. In Financial Cryptography Workshops, volume 12676 of LNCS, pages
227–232. Springer, 2021. doi:10.1007/978-3-662-63958-0_20.

[BCL22] Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. Maximizing extractable
value from Automated Market Makers. In Financial Cryptography, volume 13411 of LNCS, pages
3–19. Springer, 2022. doi:10.1007/978-3-031-18283-9_1.

[Ben73] C. H. Bennett. Logical reversibility of computation. IBM J. Res. Dev., 17:525–532, November
1973.

[ByCD+21] Carsten Baum, James Hsin yu Chiang, Bernardo David, Tore Kasper Frederiksen, and Lorenzo
Gentile. SoK: Mitigation of front-running in decentralized finance. Cryptology ePrint Archive,
Report 2021/1628, 2021. https://ia.cr/2021/1628.

[CAE22] Tarun Chitra, Guillermo Angeris, and Alex Evans. Differential privacy in constant function
market makers. 13411:149–178, 2022. doi:10.1007/978-3-031-18283-9_8.

[cur20] Curve website, 2020. URL: https://www.curve.fi.
[cur21a] Curve computation of invariant constant, 2021. https://github.com/curvefi/curve-contract/

blob/a1b5a797790d3f5ef12b0e358892a0ce47c12f85/contracts/pool-templates/base/

SwapTemplateBase.vy#L206.
[cur21b] Curve token pair implementation, 2021. https://github.com/curvefi/curve-contract/

blob/a1b5a797790d3f5ef12b0e358892a0ce47c12f85/contracts/pool-templates/base/

SwapTemplateBase.vy.
[cur22] Curve statistics, 2022. https://www.curve.fi/dailystats.
[def22] Documented timeline of exchange hacks, 2022. https://cryptosec.info/exchange-hacks/.
[DGK+20] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and A. Juels. Flash

boys 2.0: Frontrunning in decentralized exchanges, miner extractable value, and consensus
instability. In IEEE Symposium on Security and Privacy, pages 910–927. IEEE, 2020. doi:

10.1109/SP40000.2020.00040.
[DKP21] Vincent Danos, Hamza El Khalloufi, and Julien Prat. Global order routing on exchange networks.

In Financial Cryptography Workshops, volume 12676 of LNCS, pages 207–226. Springer, 2021.
doi:10.1007/978-3-662-63958-0_19.

[EAC21] Alex Evans, Guillermo Angeris, and Tarun Chitra. Optimal fees for geometric mean market
makers. In Financial Cryptography Workshops, volume 12676 of LNCS, pages 65–79. Springer,
2021. doi:10.1007/978-3-662-63958-0_6.

[Ego19] Michael Egorov. Stableswap - efficient mechanism for stablecoin, 2019. https://curve.fi/

files/stableswap-paper.pdf.
[EMC20] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. SoK: Transparent Dishonesty:

Front-Running Attacks on Blockchain. In Financial Cryptography, pages 170–189, Cham, 2020.
Springer International Publishing. doi:10.1007/978-3-030-43725-1_13.

[HW22] Lioba Heimbach and Roger Wattenhofer. SoK: Preventing transaction reordering manipulations
in decentralized finance. CoRR, abs/2203.11520, 2022. arXiv:2203.11520, doi:10.48550/arXiv.
2203.11520.

[imp20] Uniswap Documentation: Understanding Returns, 2020. https://uniswap.org/docs/v2/

advanced-topics/understanding-returns/.
[KDC22] Kshitij Kulkarni, Theo Diamandis, and Tarun Chitra. Towards a Theory of Maximal Extractable

Value I: Constant Function Market Makers. CoRR, abs/2207.11835, 2022. arXiv:2207.11835,
doi:10.48550/arXiv.2207.11835.

103

[KFG21] Bhaskar Krishnamachari, Qi Feng, and Eugenio Grippo. Dynamic curves for decentralized
autonomous cryptocurrency exchanges. In International Symposium on Foundations and Appli-
cations of Blockchain (FAB), volume 92 of OASIcs, pages 5:1–5:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/OASIcs.FAB.2021.5.

[mak20] Makerdao website, 2020. https://https://makerdao.com.
[mev22] MEV-geth, 2022. https://github.com/flashbots/mev-geth.
[moo20a] Mooniswap implementation, 2020. https://github.com/1inch-exchange/mooniswap/blob/

02dccfab2ddbb8a409400288cb13441763370350/contracts/Mooniswap.sol.
[moo20b] Mooniswap whitepaper, 2020. https://mooniswap.exchange/docs/MooniswapWhitePaper-v1.

0.pdf.
[MSG+20] Claudio Antares Mezzina, Rudolf Schlatte, Robert Glück, Tue Haulund, James Hoey, Mar-

tin Holm Cservenka, Ivan Lanese, Torben Æ. Mogensen, Harun Siljak, Ulrik Pagh Schultz, and
Irek Ulidowski. Software and reversible systems: A survey of recent activities. In Reversible
Computation: Extending Horizons of Computing - Selected Results of the COST Action IC1405,
volume 12070 of LNCS, pages 41–59. Springer, 2020. doi:10.1007/978-3-030-47361-7_2.

[mSt20] mStable — introducing constant sum bonding curves for tokenised assets, 2020. https://medium.
com/mstable/introducing-constant-sum-bonding-curves-for-tokenised-assets-6e18879cdc5b.

[QZA+21] Kaihua Qin, Liyi Zhou, Yaroslav Afonin, Ludovico Lazzaretti, and Arthur Gervais. CeFi vs.
DeFi - comparing centralized to decentralized finance. CoRR, abs/2106.08157, 2021. URL:
https://arxiv.org/abs/2106.08157, arXiv:2106.08157.

[QZG21] Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying blockchain extractable value: How
dark is the forest? 2021. URL: https://arxiv.org/abs/2101.05511, arXiv:2101.05511.

[QZLG21] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. Attacking the DeFi ecosystem
with flash loans for fun and profit. In Financial Cryptography, volume 12674 of LNCS, pages
3–32. Springer, 2021. doi:10.1007/978-3-662-64322-8_1.

[rva18] Formal specification of constant product market maker model & implementation, 2018.
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/

uniswap/x-y-k.pdf.
[sus21] SushiSwap token pair implementation, 2021. https://github.com/sushiswap/sushiswap/blob/

94ea7712daaa13155dfab9786aacf69e24390147/contracts/uniswapv2/UniswapV2Pair.sol.
[uni20a] Uniswap flash loan implementation, 2020. https://github.com/Uniswap/uniswap-v2-core/

blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol#L172.
[uni20b] Uniswap oracle template, 2020. https://github.com/Uniswap/uniswap-v2-periphery/blob/

dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/examples/ExampleOracleSimple.

sol.
[uni21] Uniswap token pair implementation, 2021. https://github.com/Uniswap/uniswap-v2-core/

blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol.
[uni22] Uniswap statistics, 2022. https://info.uniswap.org.
[vir18] Improving frontrunning resistance of x*y=k market makers, 2018. https://ethresear.ch/t/

improving-front-running-resistance-of-x-y-k-market-makers/1281.
[WPG+21] Sam M. Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and

William J. Knottenbelt. Sok: Decentralized finance (defi), 2021. arXiv:2101.08778.
[WWL+20] Dabao Wang, Siwei Wu, Ziling Lin, Lei Wu, Xingliang Yuan, Yajin Zhou, Haoyu Wang, and Kui

Ren. Towards understanding flash loan and its applications in DeFi ecosystem. arXiv preprint
arXiv:2010.12252, 2020. https://arxiv.org/abs/2010.12252.

[XVPC22] Jiahua Xu, Nazariy Vavryk, Krzysztof Paruch, and Simon Cousaert. Sok: Decentralized exchanges
(DEX) with automated market maker (AMM) protocols. ACM Comput. Surv., nov 2022. doi:
10.1145/3570639.

[ZQC+21] Liyi Zhou, Kaihua Qin, Antoine Cully, Benjamin Livshits, and Arthur Gervais. On the just-in-
time discovery of profit-generating transactions in DeFi protocols. In IEEE Symp. on Security
and Privacy, pages 919–936. IEEE, 2021. doi:10.1109/SP40001.2021.00113.

[ZQT+21] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais. High-Frequency
Trading on Decentralized On-Chain Exchanges. In IEEE Symp. on Security and Privacy, pages
428–445. IEEE, 2021. doi:10.1109/SP40001.2021.00027.

104

Appendix A. Proofs for Section 3

Proof of Lemma 3.2. Let Γ and T be as in the hypotheses, let Γ
T−→ Γ′, and let

y = x · SX (x, r0, r1). By definition of gain (Equation 3.6), we have that:

GA(Γ,T) = WA(Γ′)−WA(Γ)

By definition of net worth (Equation 3.5), we have that:

WA(Γ) = σA(τ0) · Pτ0 + σA(τ1) · Pτ1

+ σA{τ0, τ1} ·
r0 · Pτ0 + r1 · Pτ1

SΓ{τ0, τ1}
+
∑

τ 6∈{τ0,τ1,{τ0,τ1}} σA(τ) · PΓτ

WA(Γ′) = (σA(τ0)− x) · Pτ0 + (σA(τ1) + y) · Pτ1

+ σA{τ0, τ1} ·
(r0 + x) · Pτ0 + (r1 − y) · Pτ1

SΓ′{τ0, τ1}
+
∑

τ 6∈{τ0,τ1,{τ0,τ1}} σA(τ) · PΓ′τ

Since SΓ{τ0, τ1} = SΓ′{τ0, τ1} and PΓτ = PΓ′τ for all τ 6= {τ0, τ1}:

WA(Γ′)−WA(Γ) = y · Pτ1 − x · Pτ0 + σA{τ0, τ1}
x · Pτ0 − y · Pτ1

SΓ{τ0, τ1}

=
(
y · Pτ1 − x · Pτ0

)(
1− σA{τ0, τ1}

SΓ{τ0, τ1}
)

= x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)(
1− σA{τ0, τ1}

SΓ{τ0, τ1}
)

Using similar calculations, for B 6= A, we obtain:

GB(Γ,T) = σB{τ0, τ1}
x · Pτ0 − y · Pτ1

SΓ{τ0, τ1}

Proof of Lemma 3.3. Let y = x · SX (x, r0, r1). Since σ{τ0, τ1} = 0, by Lemma 3.2 we
have that:

GA(Γ,T) ◦ 0 ⇐⇒ y Pτ1 − x Pτ0 ◦ 0

⇐⇒ y

x
◦ Pτ0

Pτ1

⇐⇒ SX (x, r0, r1) ◦X(τ0, τ1)

Appendix B. Proofs for Section 4

Proof of Lemma 4.1. Straightforward inspection of the rules [Dep0], [Dep], [Rdm], [Swap]

in section 2.

105

Proof of Lemma 4.2. For item (a), we proceed by induction on the length of a computation
Γ0 −→∗ Γ, where Γ0 is initial. The base case (computation of zero steps) is trivial, since
initial states does not contain AMMs. For the inductive case, note that rule [Dep0] requires
that the initial reserves of an AMM are strictly greater than zero. The rules that decrease
the token reserves in AMMs, i.e. [Rdm] and [Swap], have premises that ensure that the reserves
cannot be zeroed.

For item (b), we proceed by induction on the length of a computation Γ0 −→∗ Γ, where
Γ0 is initial. The base case is trivial, since initial states do not contain AMMs. For the
inductive case, we assume that Γ satisfies the property, and we prove that it is preserved
by a transition Γ −→ Γ′. Assume that Γ′ contains an AMM {r′0 : τ0, r

′
1 : τ1}. By item ((a)),

r′0 > 0 and r′1 > 0. There are the following cases, depending on the rule used to infer Γ −→ Γ′:

• [Dep0], [Dep]. Trivial, because deposits can only increase the supply of minted tokens.
• [Swap]. Trivial, because swap actions do not affect the supply of minted tokens.
• [Rdm]. Assume that {r0 : τ0, r1 : τ1} ∈ Γ. By contradiction, suppose that the [Rdm] action

burns all the supply of the minted token, i.e. it burns v = SΓ{τ0, τ1} units. The rule
premise requires v > 0, and it implies:

r′0 = r0 − v
r0

SΓ{τ0, τ1}
= 0 r′1 = r1 − v

r1

SΓ{τ0, τ1}
= 0

Therefore, we would have r′0 = r′1 = 0 — contradiction.

Proof of Lemma 4.3. By cases on the rule used in the transition Γ
T−→ Γ′. It is straight-

forward to check that, in all the rules, the changes applied to atomic tokens cancel out.
Further, the [Swap] rule does not affect the supply of minted tokens.

Proof of Lemma 4.4. Let Γ
T−→ Γ′, where {r0 : τ0, r1 : τ1} ∈ Γ and {r′0 : τ0, r

′
1 : τ ′1} ∈ Γ′.

If T = A : dep(v0 : τ0, v1 :τ1), then by the [Dep] rule it must be r′i = ri + vi for i ∈ {0, 1}.
Furthermore, by the premises of [Dep], we obtain:

r1v0 = r1v · RX 0
Γ(τ0, τ1) = v · r0r1

SΓ{τ0, τ1}
= r0v · RX 1

Γ(τ0, τ1) = r0v1

Therefore:

r1 + v1

r0 + v0
=

(r0v1
v0

) + v1

r0 + v0
=

r0v1 + v0v1

(r0 + v0)v0
=

(r0 + v0)v1

(r0 + v0)v0
=

v1

v0
=

r1

r0
(B.1)

If T = A : rdm(v : {τ0, τ1}), then by rule [Rdm] it must be, for i ∈ {0, 1}:

r′i = ri − vi = ri − vRX i
Γ(τ0, τ1) = ri − v

ri
SΓ{τ0, τ1}

Therefore, since SΓ{τ0, τ1} = SΓ′{τ0, τ1}+ v:

r1 − v1

r0 − v0
=

r1 − v r1
SΓ{τ0,τ1}

r0 − v r0
SΓ{τ0,τ1}

=
r1(SΓ′{τ0, τ1}+ v)− vr1

r0(SΓ′{τ0, τ1}+ v)− vr0
=

r1

r0
(B.2)

Summing up, (B.1) and (B.2) give item (a).

106

For item (b), if T = A : dep(v0 : τ0, v1 :τ1), then by the [Dep] rule it must be r′i = ri + vi for
i ∈ {0, 1}, and SΓ′{τ0, τ1} = SΓ{τ0, τ1}+ vi

ri
SΓ{τ0, τ1}. Therefore:

RX i
Γ′(τ0, τ1) =

ri + vi
SΓ′{τ0, τ1}

=
ri + vi

SΓ{τ0, τ1}(1 + vi
ri

)
=

(ri + vi)ri
SΓ{τ0, τ1}(ri + vi)

= RX i
Γ(τ0, τ1)

Otherwise, if T = A : rdm(v : {τ0, τ1}), then by rule [Rdm] it must be, for i ∈ {0, 1}:
r′i = ri − vi = ri − vRX i

Γ(τ0, τ1) = ri − v
ri

SΓ{τ0, τ1}
Therefore:

RX i
Γ′(τ0, τ1) =

ri − vi
SΓ{τ0, τ1} − v

=
ri − v ri

SΓ{τ0,τ1}
SΓ{τ0, τ1} − v

=
riSΓ{τ0, τ1} − vri

(SΓ{τ0, τ1} − v)SΓ{τ0, τ1}
=

ri
SΓ{τ0, τ1}

= RX i
Γ(τ0, τ1)

For item (c), if T = A : dep(v0 : τ0, v1 :τ1), we have that:

PΓ′{τ0, τ1} =
r′0 · Pτ0 + r′1 · Pτ1

SΓ′{τ0, τ1}
by Equation (3.1)

=
(1 + v0

r0
) · r0 · Pτ0 + (1 + v1

r1
) · r1 · Pτ1

SΓ{τ0, τ1}+ vi
ri

SΓ{τ0, τ1}

=
(1 + vi

ri
) · r0 · Pτ0 + (1 + vi

ri
) · r1 · Pτ1(

1 + vi
ri

)
· SΓ{τ0, τ1}

since v0
r0

= v1
r1

= PΓ{τ0, τ1} by Equation (3.1)

The proof for the case T = A : rdm(v : {τ0, τ1}) is similar.

Proof of Lemma 4.5. Let Γ
T−→ Γ′. We first prove item (a). Depending on the rule used

to fire the transition, we have the following cases:

• [Dep0]. Let T = B : dep(v0 : τ0, v1 :τ1). We have that:

Γ = B[σ] | Γ0

Γ′ = B[σ − v0 : τ0 − v1 : τ1 + v0 : {τ0, τ1}] | {v0 : τ0, v1 : τ1} | Γ0

If B 6= A, then A’s net worth is unaffected. Otherwise, if B = A, then:

WA(Γ′) = WA(Γ)− v0Pτ0 − v1Pτ1 + v0PΓ{τ0, τ1}

= WA(Γ)− v0Pτ0 − v1Pτ1 + v0
v0Pτ0 + v1Pτ1

v0
by Equation (3.1)

= WA(Γ)

• [Dep]. Let T = B : dep(v0 : τ0, v1 :τ1). We have that:

Γ = B[σ] | {r0 : τ0, r1 : τ1} | Γ0

Γ′ = B[σ − v0 : τ0 − v1 : τ1 + v : {τ0, τ1}] | {r0 + v0 : τ0, r1 + v1 : τ1} | Γ0

where:

v =
v0 · SΓ{τ0, τ1}

r0

107

If B 6= A, then A’s net worth is unaffected (note that the value of minted tokens in A’s
wallet is preserved by deposits, by Lemma 4.4(c)). Otherwise, if B = A, then:

WA(Γ′) = WA(Γ)− v0Pτ0 − v1Pτ1 + vPΓ{τ0, τ1}

= WA(Γ)− v0Pτ0 − v1Pτ1 + v
r0Pτ0 + r1Pτ1

SΓ{τ0, τ1}
by Equation (3.1)

= WA(Γ)− v0Pτ0 − v1Pτ1 +
v0

r0

(
r0Pτ0 + r1Pτ1

)

= WA(Γ)− v1Pτ1 +
v0

r0
r1Pτ1

= WA(Γ) since r1v0 = r0v1

• [Swap]. This case cannot happen, since we are assuming type(T) 6= swap.
• [Rdm]. Let T = B : rdm(v : {τ0, τ1}). We have that:

Γ = B[σ] | {r0 : τ0, r1 : τ1} | Γ0

Γ′ = B[σ + v0 : τ0 + v1 : τ1 − v : {τ0, τ1}] | {r0 − v0 : τ0, r1 − v1 : τ1} | Γ0

where:

v0 =
v · r0

s
v1 =

v · r1

s
s = SΓ{τ0, τ1}

If B 6= A, then A’s net worth is unaffected (note that the value of minted tokens in A’s
wallet is preserved by redeems, by Lemma 4.4(c)). Otherwise, if B = A, then:

WA(Γ′) = WA(Γ) + v0Pτ0 + v1Pτ1 − vPΓ{τ0, τ1}
= WA(Γ) + v0Pτ0 + v1Pτ1 −

v · r0

s
Pτ0 −

v · r1

s
Pτ1

= WA(Γ) +
v · r0

s
Pτ0 +

v · r1

s
Pτ1 −

v · r0

s
Pτ0 −

v · r1

s
Pτ1

= WA(Γ)

We now prove item (b), i.e. that the global net worth is preserved by any transactions. First,
we recall from section 3 the definition of global net worth. Let:

Γ = A1[σ1] | · · · | An[σn] | {r1 : τ1, r
′
1 : τ ′1} | · · · | {rk : τk, r

′
k : τ ′k}

Then, the global net worth of Γ is:

W (Γ) =
n∑

i=1

WAi
(Γ)

We have the following cases:

• [Dep0], [Dep], [Rdm]. These rules affect the token reserves in AMMs, which do not contribute
to the global net worth, and the balances of users, which we know to be preserved.
Therefore, the global net worth is preserved.
• [Swap]. Let A : swap(v, τ0, τ1) be the fired transaction. We have that:

Γ = A[σ] | {r0 : τ0, r1 : τ1} | Γ0

Γ′ = A[σ − v : τ0 + v′ : τ1] | {r0 + v : τ0, r1 − v′ : τ1} | Γ0

The global net worth in Γ′ can be computed in terms of the global net worth in Γ, by
removing the value of the v : τ0 paid by A to the AMM, adding the value of the v1 : τ1

108

obtained by A through the swap, and then adding the difference between the value of the
minted tokens in Γ′ and in Γ, i.e.:

SΓ′{τ0, τ1}PΓ′{τ0, τ1} − SΓ{τ0, τ1}PΓ{τ0, τ1}

By Lemma 4.3, we have that SΓ′{τ0, τ1} = SΓ{τ0, τ1}. Therefore:

W (Γ′) = W (Γ)− vPτ0 + v′Pτ1 + SΓ{τ0, τ1}
(
PΓ′{τ0, τ1} − PΓ{τ0, τ1}

)

= W (Γ)− vPτ0 + v′Pτ1

+ SΓ{τ0, τ1} ·
(r0Pτ0 + r1Pτ1 + vPτ0 − v′Pτ1

SΓ{τ0, τ1}
− r0Pτ0 + r1Pτ1

SΓ{τ0, τ1}
)

= W (Γ)

Proof of Lemma 4.6. Direct consequence of Lemma 4.5(a) and of the hypothesis that A
does not hold minted tokens in Γ′.

Proof of Lemma 4.8. Let Γ0 = {r0 : τ0, r1 : τ1} | ∆0 be a reachable state. We define below
a procedure to construct a sequence of transitions:

Γ0 T1−→ · · · Tn−−→ Γn where Γn = {ri0 : τ0, r
i
1 : τ1} | ∆n

By Lemma 4.2, we have that ri0 > 0, ri1 > 0, and SΓi{τ0, τ1} > 0 for all i. At step i:

(1) Let x = ri0 − r′0 be the amount of τ0 that users must redeem from the AMM, and let:

v =
x

ri0
SΓi{τ0, τ1}

(2) if there exists some A[σ] ∈ Γi such that σ({τ0, τ1}) ≥ v, then A can fire A : rdm(v : {τ0, τ1}),
obtaining, for some r′1 ≤ r1:

{ri0 : τ0, r
i
1 : τ1} | ∆i −→ Γ′ =

{
ri0 − v

ri0
SΓi{τ0, τ1}

, r′1 : τ1

}
| · · ·

= {r′0 : τ0, r
′
1 : τ1} | · · ·

(3) otherwise, pick an A[σ] ∈ Γi such that σ({τ0, τ1}) = v′ ≥ 0, fire A : rdm(v′ : {τ0, τ1}).
Note that the procedure always terminates: since SΓi{τ0, τ1} > 0 for all i, either step (2)

or (3) can be performed; further, the number of performed transactions is bounded by the
number of users, which is finite.

109

Proof of Lemma 4.9. Assume that Γ
T0−→ Γ0

T1−→ Γ01. We have the following exhaustive
cases on the type of the transactions T0 and T1:

(1) T0 = A0 : dep(v0 : τ0, v
′
0 :τ ′0).

(a) T1 = A1 : dep(v1 : τ1, v
′
1 :τ1). Both transactions are dep, so we are in case (a) of

the statement. If {τ0, τ
′
0} 6= {τ1, τ

′
1}, then the thesis is straightforward, since T0,T1

operate on different AMMs. Otherwise, let:

a0 = 1 + v0
r0

m0 = v0
r0

SΓ{τ0, τ1} a01 = 1 + v1
a0r0

m01 = v1
a0r0

SΓ0{τ0, τ1}

a1 = 1 + v1
r0

m1 = v1
r0

SΓ{τ0, τ1} a10 = 1 + v0
a1r0

m10 = v0
a1r0

SΓ1{τ0, τ1}
We have that:

A[σ] | {r0 : τ0, r1 : τ1} | ∆
T0−→ A[σ − v0 : τ0 − v′0 : τ1 +m0 : {τ0, τ1}] | {a0r0 : τ0, a0r1 : τ1} | ∆
T1−→ A[σ − (v0 + v1) : τ0 − (v′0 + v′1) : τ1 + (m0 +m01) : {τ0, τ1}] |
{a01a0r0 : τ0, a01a0r1 : τ1} | ∆

Inverting the two transactions, we obtain:

A[σ] | {r0 : τ0, r1 : τ1} | ∆
T1−→ A[σ − v1 : τ0 − v′1 : τ1 +m1 : {τ0, τ1}] | {a1r0 : τ0, a1r1 : τ1} | ∆
T0−→ A[σ1 − (v0 + v1) : τ0 − (v′0 + v′1) : τ1 + (m1 +m10) : {τ0, τ1}] |
{a10a1r0 : τ0, a10a1r1 : τ1} | ∆

We have that a01a0 = a10a1, since:

a10a1 =
(
1 + v0

a1r0

)
a1 =

a1r0 + v0

r0
=

(
1 + v1

r0

)
r0 + v0

r0
=
r0 + v0 + v1

r0

a01a0 =
(
1 + v1

a0r0

)
a0 =

a0r0 + v1

r0
=

(
1 + v0

r0

)
r0 + v1

r0
=
r0 + v0 + v1

r0

Furthermore, we have that m0 +m01 = m1 +m10, since:

m10 +m1 =
v0v1 + a1r0v1 + r0v0

a1r2
0

SΓ{τ0, τ1}

=
v0v1 + v1(r0 + v1) + r0v0

(r0 + v1)r0
SΓ{τ0, τ1}

=
(v0 + v1)(r0 + v1)

(r0 + v1)r0
SΓ{τ0, τ1} =

v0 + v1

r0
SΓ{τ0, τ1}

m01 +m0 =
v0v1 + a0r0v0 + r0v1

a0r2
0

SΓ{τ0, τ1}

=
v0v1 + v0(r0 + v0) + r0v1

(r0 + v0)r0
SΓ{τ0, τ1}

=
(v0 + v1)(r0 + v0)

(r0 + v0)r0
SΓ{τ0, τ1} =

v0 + v1

r0
SΓ{τ0, τ1}

Summing up, we have shown that Γ01 = Γ10.

110

(b) T1 = A1 : swap(v1, τ1, τ
′
1). Then, we are in case (a) of the statement, with tok(T0)

disjoint from tok(T1). The thesis is straightforward by analysis of the rules.
(c) T1 = A1 : rdm(v1 : {τ1, τ

′
1}). There are two subcases. If we are in case (a), then

T0,T1 operate on different AMMs, and so the thesis is straightforward. Otherwise,
if we are in case (b) of the statement, by hypothesis we know that T1T0 is enabled
in Γ, leading to a state Γ10. If {τ0, τ

′
0} 6= {τ1, τ

′
1}, then the thesis is straightforward.

Otherwise, the proof is done by computing the states Γ01 and Γ10 and showing they
are equal, similarly to what we have done in case (1a).

(2) T0 = A0 : rdm(v0 : {τ0, τ
′
0}).

(a) T1 = A1 : dep(v1 : τ1, v
′
1 :τ ′1). Symmetric to case (1c).

(b) T1 = A1 : swap(v1, τ1, τ
′
1). Then, we are in case (a) of the statement, where {τ1, τ

′
1}

and {τ0, τ
′
0} are disjoint. Then, the thesis is straightforward.

(c) T1 = A1 : rdm(v1 : {τ1, τ
′
1}). Then, we are in case (a) of the statement. If tok(T0)

is disjoint from tok(T1), then the thesis is straightforward. Otherwise, note that
the tokens paid by the AMM in response of T0 and T1 only depend on the ratio
between the amounts of τ0 and τ ′0 initially held by the AMM, which are constrained
to preserve the ratio.

(3) T0 = A0 : swap(v0, τ0, τ
′
0). The only case not covered by the previous items is when

T1 = A1 : swap(v1, τ1, τ
′
1). Then, we are in case (a) of the statement, where {τ1, τ

′
1} and

{τ0, τ
′
0} are disjoint. The thesis is straightforward.

Proof of Theorem 4.10. For item 1, there are two cases, depending on whether T0 is
fired through rule [Dep0] or [Dep]. If T0 is fired through rule [Dep], let Γ = {r0 : τ0, r1 : τ1} | ∆.
We have that:

Γ0 = {r0 + v0 : τ0, r1 + v1 : τ1} | ∆0 r1v0 = r0v1 (B.3)

Γ1 = {(r0 + v0) + v′0 : τ0, (r1 + v1) + v′1 : τ1} | ∆1 (r1 + v1)v′0 = (r0 + v0)v′1 (B.4)

We must just check that the premises for firing A : dep(v0 + v′0 : τ0, v
′
1 + v′1 :τ1) are satisfied:

r1(v0 + v′0) = r1v0 + r1v
′
0

= r0v1 + r1v
′
0 by (B.3)

= r0v1 + r1

(r0 + v0

r1 + v1

)
v′1 by (B.4)

= r0v1 + r1
r0

r1
v′1 by (B.1)

= r0(v1 + v′1)

The case where T0 is fired through rule [Dep0] is similar:

Γ0 = {v0 : τ0, v1 : τ1} | ∆0

Γ1 = {v0 + v′0 : τ0, v1 + v′1 : τ1} | ∆1 v1v
′
0 = v0v

′
1

The premises of [Dep0] when firing A : dep(v0 + v′0 : τ0, v
′
1 + v′1 :τ1) are trivially satisfied,

hence the thesis follows.

111

For item 2, let Γ = {r0 : τ0, r1 : τ1} | ∆ let τ = {τ0, τ1}, and let s = SΓτ. By rule [Rdm],
we have that:

Γ0 = {r0 − v0 : τ0, r1 − v1 : τ1} | ∆0 vi = v · ri
s

(B.5)

Γ1 = {(r0 − v0)− v′0 : τ0, (r1 − v1)− v′1 : τ1} | ∆1 v′i = v′ · ri − vi
s− v (B.6)

Therefore, for i ∈ {0, 1}, we have that:

ri − vi − v′i = ri − v ·
ri
s
− v′ · ri − v ·

ri
s

s− v by (B.5), (B.6)

= ri − v ·
ri(s− v)

s(s− v)
− v′ · sri − v · ri

s(s− v)

= ri −
vri(s− v) + v′(sri − vri)

s(s− v)

= ri −
vri(s− v) + v′ri(s− v)

s(s− v)

= ri − (v + v′) · ri
s

from which the thesis follows.

Proof of Theorem 4.11. By cases on the rule used to deduce Γ
T−→ Γ′. The premise that

SΓτ = 0 implies SΓ′τ = 0 excludes the case [Dep0], so we have two cases:

• [Dep]. We have that A : dep(v0 : τ0, v1 :τ1), Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆, and:

Γ′ = A[σ − v0 : τ0 − v1 : τ1 + v : {τ0, τ1}] | {r0 + v0 : τ0, r1 + v1 : τ1} | ∆
= A[σ′] | {r′0 : τ0, r

′
1 : τ1} | ∆

where v = vi
ri
· s, with s = SΓ{τ0, τ1}. Let T−1 = A : rdm(v : {τ0, τ1}). We have that:

Γ′
T−1

−−→ A[σ′ + v′0 : τ0 + v′1 : τ1 − v : {τ0, τ1}] | {r′0 − v′0 : τ0, r
′
1 − v′1 : τ1} | ∆ = Γ′′

where, for i ∈ {0, 1} and s′ = SΓ{τ0, τ1} = s+ v:

v′i = v · r
′
i

s′
= v · ri + vi

s+ v
=
(vi
ri
· s
)
· ri + vi

s+
(
vi
ri
· s
) =

vis(ri + vi)

ris+ vis
= vi

Since vi = v′i for i ∈ {0, 1}, we conclude that Γ′′ = Γ.
• [Rdm]. We have that T = A : rdm(v : {τ0, τ1}), Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆, and:

Γ′ = A[σ + v0 : τ0 + v1 : τ1 − v : {τ0, τ1}] | {r0 − v0 : τ0, r1 − v1 : τ1} | ∆
= A[σ′] | {r′0 : τ0, r

′
1 : τ1} | ∆

where vi = v · ris , for i ∈ {0, 1} and s = SΓ{τ0, τ1}. Let T−1 = A : dep(v0 : τ0, v1 :τ1). We
have that:

Γ′
T−1

−−→ A[σ′ − v0 : τ0 − v1 : τ1 + v′ : {τ0, τ1}] | {r′0 + v0 : τ0, r
′
1 + v1 : τ1} | ∆ = Γ′′

112

where v′ = vi
r′i
· s′, with s′ = SΓ′{τ0, τ1} = s− v. We have that:

v′ =
vi
r′i
· s′ = v · ris

ri − v · ris
· (s− v) =

v · ri
sri − vri

· (s− v) =
v

s− v · (s− v) = v

Since v′ = v, we conclude that Γ′′ = Γ.

Appendix C. Proofs for Section 5

Proof of Lemma 5.2. The condition SΓ{τ0, τ1} > 0 ensures that Γ contains an AMM for
the pair τ0, τ1. The premise σ(τ0) ≥ x ensures that A has enough units of the input token
τ0. Output-boundedness implies the premise x · SX (x, r0, r1) < r1 of [Swap].

Proof of Lemma 5.4. Straightforward by Definition 5.3 and Lemma 3.2.

Proof of Theorem 5.6. Let Γ = {r0 : τ0, r1 : τ1} | ∆. We have that:

Γ0 = {r0 + x0 : τ0, r1 − y0 : τ1} | ∆0 y0 = x0 · SX (x0, r0, r1)

Γ1 = {r0 + x0 + x1 : τ0, r1 − y0 − y1 : τ1} | ∆1 y1 = x1 · SX (x1, r0 + x0, r1 − y0)

Since SX is additive, we have that:

SX (x0 + x1, r0, r1) =
y0 + y1

x0 + x1

Therefore, rule [Swap] gives the thesis:

Γ
A:swap(x0+x1,τ0,τ1)−−−−−−−−−−−−−→ {r0 + x0 + x1 : τ0, r1 − (y0 + y1) : τ1} | ∆1

Proof of Lemma 5.7. Since SX is output-bounded, then by Lemma 5.2, T(x0) and
T(x0 + x1) are enabled in Γ, and T(x1) is enabled in Γ′. Let:

α = SX (x0, r0, r1) β = SX (x1, r0 + x0, r1 − αx0)

By additivity of SX (Definition 5.5), we have that:

γ = SX (x0 + x1, r0, r1) =
αx0 + βx1

x0 + x1
(C.1)

Therefore:

GA(Γ,T(x0 + x1))−GA(Γ,T(x0))

= γ(x0 + x1)Pτ1 − (x0 + x1)Pτ0 − αx0Pτ1 + x0Pτ0 (Lemma 3.2)

=
(
(γ(x0 + x1)− αx0

)
Pτ1 − x1Pτ0

=
(
αx0 + βx1 − αx0)

)
Pτ1 − x1Pτ0 (Equation C.1)

= βx1Pτ1 − x1Pτ0

= GA(Γ′,T(x1)) (Lemma 3.2)

113

Proof of Theorem 5.9. Let Γ = {r0 : τ0, r1 : τ1} | ∆, and let y = x · SX (x, r0, r1). By the
[Swap] rule, there exists ∆′ such that:

Γ′ = {r0 + x : τ0, r1 − y : τ1} | ∆′

Let T−1 = A : swap(y, τ1, τ0), and let x′ = y · SX (y, r1 − y, r0 + x). For some ∆′′, we have:

Γ′
T−1

−−→ {r0 + x− x′ : τ0, r1 − y + y : τ1} | ∆′′

By reversibility of the swap rate, we have that:

y

x
= SX (x, r0, r1) =⇒ SX (y, r1 − y, r0 + x) =

x

y

from which we obtain that:

x′ = y · SX (y, r1 − y, r0 + x) = y · x
y

= x

from which we obtain the thesis.

Proof of Lemma 5.10. Straightforward from the definition of gain and from Theorem 5.9.

Proof of Lemma 5.12. Let {r0 : τ0, r1 : τ1} ∈ Γ, {r′0 : τ0, r
′
1 : τ1} ∈ Γ′, and let a = r′0/r0.

We have that:

XΓ(τ0, τ1) = lim
x→0

SX (x, r0, r1) by Equation (3.3)

= lim
x→0

SX (ax, ar0, ar1) since SX is homogeneous

= lim
x→0

SX (ax, r′0, r
′
1) by Lemma 4.4(a)

= XΓ′(τ0, τ1) by Equation (3.3)

Proof of Lemma 5.13. For item (a), let T = A : dep(v0 : τ0, v1 :τ1). By rule [Dep],
r′i = ri + vi for i ∈ {0, 1}, with r0v1 = r1v0. By Lemma 4.4(a), r0+v0/r1+v1 = r0/r1. Then:

r0 + v0 =
r1 + v1

r1
r0 = a r0 r1 + v1 =

r1 + v1

r1
r1 = a r1 where a = r1+v1

r1

Therefore:

SX (x, r′0, r
′
1) = SX (x, ar0, ar1)

= SX (xa , r0, r1) (homogeneity)

> SX (x, r0, r1) (strict monotonicity, a > 1 =⇒ x
a < x)

The thesis ∆XΓ(x, τ0, τ1) > ∆XΓ′(x, τ0, τ1) follows from this inequality and Lemma 5.12.
For item (b), let T = A : rdm(v : {τ0, τ1}). By rule [Rdm], for i ∈ {0, 1}:

r′i = ri − vi = ri − v
ri

SΓ{τ0, τ1}
= a ri where a = 1− v

SΓ{τ0,τ1}

114

Therefore:

SX (x, r′0, r
′
1) = SX (x, ar0, ar1)

= SX (xa , r0, r1) (homogeneity)

< SX (x, r0, r1) (strict monotonicity, a < 1 =⇒ x
a < x)

The thesis ∆XΓ(x, τ0, τ1) < ∆XΓ′(x, τ0, τ1) follows from this inequality and Lemma 5.12.

Proof of Theorem 5.15. For output-boundedness, let x > 0 and r0, r1 > 0. We have that:

SX (x, r0, r1) =
r1

r0 + x
<
r1

x

For monotonicity, Let x′ ≤ x, r′0 ≤ r0 and r1 ≤ r′1. We have that:

SX (x′, r′0, r
′
1) =

r′1
r′0 + x′

≥ r1

r0 + x
= SX (x, r0, r1)

The proof for strict monotonicity is similar.
For additivity, by Definition 2.1 we have that:

α = SX (x, r0, r1) =
r1

r0 + x

β = SX (y, r0 + x, r1 − αx) =
r1 − αx
r0 + x+ y

=
r0r1

(r0 + x)(r0 + x+ y)

Therefore:

αx+ βy

x+ y
=

1

x+ y

(r1x

r0 + x
+

r0r1y

(r0 + x)(r0 + x+ y)

)

=
1

x+ y

r0r1x+ r1x
2 + r1xy + r0r1y

(r0 + x)(r0 + x+ y)

=
r1(r0 + x)(x+ y)

(x+ y)(r0 + x)(r0 + x+ y)

=
r1

r0 + x+ y

= SX (x+ y, r0, r1)

For reversibility, let α = SX (x, r0, r1). By Definition 2.1, we have that:

SX (αx, r1 − αx, r0 + x) =
r0 + x

(r1 − αx) + αx
=

r0 + x

r1
=
(r1

r0 + x

)−1
=

1

α

For homogeneity, we have that:

SX (ax, ar0, ar1) =
ar1

ar0 + ax
=

r1

r0 + x
= SX (x, r0, r1)

The computations of the internal exchange rate and of the slippage are straightforward.

115

Proof of Theorem 5.16. Output-boundedness, monotonicity and homogeneity are straight-
forward. For additivity, by Definition 5.16 we have that:

α = SX (x, r0, r1) =
r1

x

(
1−

(r0

r0 + x

)w0
w1

)

β = SX (y, r0 + x, r1 − αx) =
r1 − αx

y

(
1−

(r0 + x

r0 + x+ y

)w0
w1

)

Therefore:

αx+ βy

x+ y
=

1

x+ y

(
αx+ (r1 − αx)

(
1−

(r0 + x

r0 + x+ y

)w0
w1

))

=
1

x+ y

(
r1 − r1

(r0 + x

r0 + x+ y

)w0
w1 + r1

(
1−

(r0

r0 + x

)w0
w1

)(r0 + x

r0 + x+ y

)w0
w1

)

=
1

x+ y

(
r1 − r1

(r0

r0 + x

)w0
w1

(r0 + x

r0 + x+ y

)w0
w1

)

=
r1

x+ y

(
1−

(r0

r0 + x+ y

)w0
w1

)

= SX (x+ y, r0, r1)

Appendix D. Proofs for Section 6

Proof of Lemma 6.1. Assume that SX (x, r0, r1) ≥ X(τ0, τ1). Let α(z) = SX (z, r1, r0).
We have that:

SX (y, r1, r0) < lim
z→0

SX (z, r1, r0) (strict monotonicity)

= lim
z→0

1

SX (α(z) · z, r0 − α(z) · z, r1 + z)
(reversibility)

<
1

SX (x, r0, r1)
(strict monotonicity)

≤ 1

X(τ0, τ1)
(hypothesis)

= X(τ1, τ0) (def. of X)

where in the second application of strict monotonicity, we have exploited the (asymptotic)
inequalities α(z) · z < x (where limz→0 α(z) · z = 0 follows from the existence of the internal
exchange rate), r0 − α(z) · z < r0, and r1 + z > r1.

Proof of Lemma 6.2. Let y > 0. Assume that GA(Γ,Td(x)) > 0. Then, Td(x) is enabled
in Γ, and so by Lemma 3.3, we have that SX (x, rd, r1−d) > X(τd, τ1−d). Then, by Lemma 6.1
it follows that SX (y, r1−d, rd) < X(τ1−d, τd). Since στ1−d ≥ y and SX is output-bounded,
then Lemma 5.2 implies that T1−d(y) is enabled in Γ. By using again Lemma 3.3, concluding
that GA(Γ,T1−d(y)) < 0.

116

Proof of Theorem 6.3. Let x0 and Γ′ be as in the hypotheses, i.e.:

Γ
T(x0)−−−→ Γ′ = A[σ′] | {r0 + x0 : τ0, r1 − αx0 : τ1} | ∆ where

α = SX (x0, r0, r1)
XΓ′(τ0, τ1) = X(τ0, τ1)

We have two cases, depending on whether x > x0 or x < x0.

• If x > x0, let x1 > 0 be such that x = x0 + x1. Since SX is output-bounded and additive,
then by Lemma 5.7:

GA(Γ,T(x)) = GA(Γ,T(x0)) + GA(Γ′,T(x1)) (D.1)

We have that:

SX (x1, r0 + x0, r1 − αx0) < lim
z→0

SX (z, r0 + x0, r1 − αx0) (strict monotonicity)

= XΓ′(τ0, τ1) def. XΓ′

= X(τ0, τ1) (hypothesis)

Then, by Lemma 3.3 we obtain GA(Γ′,T(x1)) < 0. By Equation (D.1), we conclude that
GA(Γ,T(x)) < GA(Γ,T(x0)).
• If x < x0, let x1 > 0 be such that x0 = x + x1. Since SX is output-bounded, then by

Lemma 5.2, T(x0) and T(x) are enabled in Γ, and T(x1) is enabled in the state Γ1 reached
after performing T(x1), i.e.:

Γ
T(x)−−−→ Γ1

T(x1)−−−→ Γ′

Since SX is output-bounded and additive, then by Lemma 5.7:

GA(Γ,T(x0)) = GA(Γ,T(x)) + GA(Γ1,T(x1))

Since SX is reversible, then by Theorem 5.9, T(x1) has an inverse, which has the form
T−1(x1) = A : swap(y1, τ1, τ0) for some y1 > 0. Then, by Lemma 5.10, GA(Γ1,T(x1)) =
−GA(Γ′,T−1(y1)), therefore:

GA(Γ,T(x0)) = GA(Γ,T(x))−GA(Γ′,T−1(y1)) (D.2)

We have that:

SX (y1, r1 − αx0, r0 + x0) < lim
z→0

SX (z, r1 − αx0, r0 + x0) (strict monotonicity)

= XΓ′(τ1, τ0) def. XΓ′

=
1

XΓ′(τ0, τ1)
(Equation (5.1))

=
1

X(τ0, τ1)
(hypothesis)

= X(τ1, τ0) (def. X)

Then, by Lemma 3.3 we obtain GA(Γ′,T−1(y1)) < 0. By Equation (D.2), we conclude
that GA(Γ,T(x)) < GA(Γ,T(x0)).

For uniqueness, by contradiction assume that there exists x1 6= x0 satisfying Equa-
tion (6.1). Then, it should be GA(Γ,T(x1)) > GA(Γ,T(x0)) — contradiction.

117

Proof of Lemma 6.4. Let Γ
T−→ Γ′ = A[σ′] | {r0 + x0 : τ0, r1 − x0 · SX (x0, r0, r1) : τ1}. We

have that:

XΓ′(τ0, τ1) =
r1 − x0 · SX (x0, r0, r1)

r0 + x0
by Theorem 5.15

=
r1 − x0 · r1

r0+x0

r0 + x0
by Definition 2.1

=
r0r1

(r0 + x0)2

=
r0r1

Pτ1
Pτ0

r0r1

by Equation (6.2)

= X(τ0, τ1) by Equation (3.2)

The thesis follows from Theorem 6.3.

Proof of Theorem 6.6. Let:

Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆
Tdep−−→ Γ′ = A[σ′] | {r′0 : τ0, r

′
1 : τ1} | ∆′

The hypothesis wal(Tswap) = A 6= wal(Trdm) means that the user who performs the deposit
is not A, hence the deposit does not affect the number of minted tokens in A’s wallet. Then:

GA(Γ,TdepTswap)

= GA(Γ′,Tswap)

= x ·
(
SX (x, r′0, r

′
1)Pτ1 − Pτ0

)
·
(

1− σ′{τ0, τ1}
SΓ′{τ0, τ1}

)
(Lemma 3.2)

> x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
·
(

1− σ′{τ0, τ1}
SΓ′{τ0, τ1}

)
(Lemma 5.13(a))

= x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
·
(

1− σ{τ0, τ1}
SΓ′{τ0, τ1}

)
(σ′{τ0, τ1} = σ{τ0, τ1})

> x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
·
(

1− σ{τ0, τ1}
SΓ{τ0, τ1}

)
(SΓ′{τ0, τ1} > SΓ{τ0, τ1})

= GA(Γ,Tswap)

Proof of Theorem 6.8. Let Γ and Γd be as in the statement. By rule [Dep], r′i = ri + vi
for i ∈ {0, 1}. By Lemma 4.4(a), we have that r0+v0/r1+v1 = r0/r1. Then:

r′0 = r0 + v0 =
r1 + v1

r1
r0 = a r0 r′1 = r1 + v1 =

r1 + v1

r1
r1 = a r1 where a =

r1 + v1

r1

For item (1), assume that λ = A : swap(x, τ0, τ1) is a solution to the arbitrage game in Γ.
By Theorem 6.3, it must be:

XΓs(τ0, τ1) = X(τ0, τ1) where Γ
λ−→ Γs (D.3)

118

Let x′ = ax, let T′ = A : swap(x′, τ0, τ1), and let Γd
T′−→ Γds. We have that:

XΓds
(τ0, τ1)

= lim
z→0

SX (z, r′0 + x′, r′1 − x′ · SX (x′, r′0, r
′
1))

= lim
z→0

SX (z, ar0 + ax, ar1 − ax · SX (ax, ar0, ar1))

= lim
z→0

SX (z, ar0 + ax, ar1 − ax · SX (x, r0, r1)) (homogeneity)

= lim
z→0

SX (z, r0 + x, r1 − x · SX (x, r0, r1)) (homogeneity)

= XΓs(τ0, τ1) (def. XΓs)

= X(τ0, τ1) (Equation (D.3))

Therefore, Theorem 6.3 implies that T′ is a solution to the arbitrage game in Γd. We compute
the gain of T′ in Γd as follows:

GA(Γd,T
′) = x′ ·

(
SX (x′, r′0, r

′
1)Pτ1 − Pτ0

)

= ax ·
(
SX (ax, ar0, ar1)Pτ1 − Pτ0

)

= ax ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
(homogeneity)

= aGA(Γ,T)

For item (2), assume that ε is a solution to the arbitrage game in Γ. By contradiction,
assume that λd = A : swap(x′, τ0, τ1) is a solution in Γd. By Theorem 6.3, it must be:

XΓds
(τ0, τ1) = X(τ0, τ1) (D.4)

The chain of equations above shows that XΓds
(τ0, τ1) = XΓs(τ0, τ1). By Equation (D.4), this

implies that XΓds
(τ0, τ1) = X(τ0, τ1). Hence, by Theorem 6.3, ε cannot be a solution to the

arbitrage game in Γ — contradiction.

Proof of Theorem 6.9. Let:

Γ = A[σ] | {r0 : τ0, r1 : τ1} | ∆ Trdm−−−→ Γ′ = A[σ′] | {r′0 : τ0, r
′
1 : τ1} | ∆′

The hypothesis wal(Tswap) = A 6= wal(Trdm) means that the user who performs the redeem
is not A, hence the redeem does not affect the number of minted tokens in A’s wallet. Then:

GA(Γ,TrdmTswap)

= GA(Γ′,Tswap)

= x ·
(
SX (x, r′0, r

′
1)Pτ1 − Pτ0

)
·
(

1− σ′{τ0, τ1}
SΓ′{τ0, τ1}

)
(Lemma 3.2)

< x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
·
(

1− σ′{τ0, τ1}
SΓ′{τ0, τ1}

)
(Lemma 5.13(b))

= x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
·
(

1− σ{τ0, τ1}
SΓ′{τ0, τ1}

)
(σ′{τ0, τ1} = σ{τ0, τ1})

< x ·
(
SX (x, r0, r1)Pτ1 − Pτ0

)
·
(

1− σ{τ0, τ1}
SΓ{τ0, τ1}

)
(SΓ′{τ0, τ1} < SΓ{τ0, τ1})

= GA(Γ,Tswap)

119

Proof of Theorem 6.10. Let Γ and Γd be as in the statement. By rule [Rdm], it must be,
for i ∈ {0, 1}:
r′i = ri− vi = ri− vRX i

Γ(τ0, τ1) = ri− v
ri

SΓ{τ0, τ1}
= ari where a = 1− v

SΓ{τ0, τ1}
The rest of the proof follows exactly that of Theorem 6.8.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

120

SoK: Lending Pools in Decentralized Finance

Publication Information
Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. “SoK: Lending Pools
in Decentralized Finance.” Financial Cryptography and Data Security. FC 2021 International
Workshops: CoDecFin, DeFi, VOTING, and WTSC, Virtual Event, March 5, 2021, Revised
Selected Papers 25. Springer Berlin Heidelberg, 2021.

Contribution
• Co-author.

121

SoK: Lending Pools in Decentralized Finance

Massimo Bartoletti1, James Hsin-yu Chiang2, Alberto Lluch Lafuente2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Technical University of Denmark, DTU Compute, Copenhagen, Denmark

Abstract. Lending pools are decentralized applications which allow mu-
tually untrusted users to lend and borrow crypto-assets. These applica-
tions feature complex, highly parametric incentive mechanisms to equi-
librate the loan market. This complexity makes the behaviour of lending
pools difficult to understand and to predict: indeed, ineffective incentives
and attacks could potentially lead to emergent unwanted behaviours.
Reasoning about lending pools is made even harder by the lack of ex-
ecutable models of their behaviour: to precisely understand how users
interact with lending pools, eventually one has to inspect their implemen-
tations, where the incentive mechanisms are intertwined with low-level
implementation details. Further, the variety of existing implementations
makes it difficult to distill the common aspects of lending pools. We sys-
tematize the existing knowledge about lending pools, leveraging a new
formal model of interactions with users, which reflects the archetypal
features of mainstream implementations. This enables us to prove some
general properties of lending pools, such as the correct handling of funds,
and to precisely describe vulnerabilities and attacks. We also discuss the
role of lending pools in the broader context of decentralized finance.

1 Introduction

The emergence of permissionless, public blockchains has given birth to an entire
ecosystem of crypto-tokens representing digital assets. Facilitated and acceler-
ated by smart contracts and standardized token interfaces [1], these so-called
decentralized finance (DeFi) applications promise an open alternative to the tra-
ditional financial system. One of the main DeFi applications are lending pools,
which incentivize users to lend some of their crypto-assets to borrowers. Unlike
in traditional finance, all the parameters of a loan, like its interests, maturity
periods or token prices, are determined by a smart contract, which also includes
mechanisms to incentivize honest behaviour (e.g., loans are eventually repaid),
economic growth and stability. Existing lending pool platforms are already han-
dling large volumes of crypto-assets: as of writing, the two main platforms cur-
rently hold $1.7B [17] and $1.4B [5] worth of tokens in their smart contracts.

Lending pools are inherently hard to design. Besides the typical difficulty
of implementing secure smart contracts [2–4, 35], lending pools feature complex
economic incentive mechanisms, which make it difficult to understand when a
lending pool actually achieves the economic goals it was designed for. As a
matter of fact, a recent failure of the oracle price feed used by the Compound

122

lending pool platform led to $100M of collateral being (incorrectly) liquidated
[19]. Indeed, most current literature in DeFi is devoted to study the economic
impact of these incentive mechanisms [39,40,46–48,50].

The problem is made even more complex by the absence of abstract oper-
ational descriptions of the behaviour of lending pools. Current descriptions are
either high-level economic models [46, 47, 50], or the actual implementations.
While, on the one hand, economic models are useful to understand the macro-
scopic financial aspects of lending pools, on the other hand they do not precisely
describe the interactions between a lending pool and its users. Still, understand-
ing these interactions is crucial to determine if a lending pool is vulnerable to
attacks where some users deviate from the expected behaviour. Implementations,
instead, reflect the exact actual behaviour, but at a level of detail that makes
high-level understanding and reasoning unfeasible.

Contributions This paper presents a systematic analysis of the behaviour of
lending pools, of their properties, vulnerabilities, and of the related literature.
Based on a thorough inspection of the implementations of the two main lending
pool platforms, Compound [16] and Aave [8], we synthesise a formal, operational
model of the interactions between users and lending pools, encompassing their
incentive mechanisms. More specifically, our contributions are:

1. a formal model of lending pools, which precisely describes their interactions
as transitions of a state machine. Our model captures all the typical trans-
actions of lending pools, and all the main economic features, like collateral-
ization, exchange rates, token price, and interest accrual (Section 3);

2. the formalization and proof of fundamental behavioural properties of lending
pools, which were informally stated in literature, and are expected to be
satisfied by any implementation (Section 4);

3. the formalization of relevant properties of the incentive mechanisms of lend-
ing pools, and a discussion of their vulnerabilities and attacks (Section 5);

4. a thorough discussion on the interplay between lending pools and other DeFi
archetypes, like stable coins and automatic market makers (Section 6).

Overall, our contributions help address the aforementioned challenges in the
design of lending pools. Firstly, our formal model provides a precise understand-
ing of the behaviour of lending pools, abstracting from low-level implementation
details. Our model is faithful to mainstream lending pool implementations like
Compound [16] and Aave [8]; still, for the sake of clarity, we have introduced
high-level abstractions over low-level details: we discuss the differences between
our model and the actual lending pool platforms in Section 7. Secondly, our for-
malisation of the properties of the incentive mechanisms of lending pools makes
it easier to understand and analyse their vulnerabilities and attacks. In this
regard, our model is directly amenable for its interpretation as an executable
specification, thus paving the way for automated analysis techniques, which may
include mechanised proofs of contract properties and agent-based simulations of
lending pools and other DeFi contracts.

123

2 Background

Lending pools (in short, LPs) are financial applications which create a market of
loans of crypto-assets, providing incentive mechanisms to equilibrate the market.
We now overview the main features of LPs; a glossary of LP terms is in Table 1.

Users can lend assets to a LP by transferring tokens from their accounts to
the LP. In return, they receive a claim, represented as tokens minted by the LP,
which can later be redeemed for an equal or increased amount of tokens, of the
same token type of the original deposit. Lending is incentivized by interest or fees:
the depositor speculates that the claim will be redeemable for a value greater
than that of the original deposit. Users can redeem claims by transferring minted
tokens to the LP, which pays back the original tokens (with accrued interest) to
the redeemer, simultaneously burning the minted tokens. However, redeeming
claims is not always possible, as the LP could not have a sufficient balance of
the original tokens, as these may have been lent to other users.

User initiate a loan by borrowing tokens deposited to a LP. To incentivise
users to eventually repay the loan, borrowing requires to provide a collateral.
Collaterals can be either tokens deposited to the LP when the loan is initiated,
and locked for the whole loan duration, or they can be tokens held by the bor-
rower but seizable by the LP when a user fails to repay a loan. An unpaid loan of
A can be liquidated by B, who pays (part of) A’s loan in return for a discounted
amount of A’s collateral. For this to be possible, the value of the collateral must
be greater than that of the loan. To incentivize deposits, loans accrue interest,
which increase a user’s loan amount by the interest rate.

Token A digital representation of some asset, transferable between users.

Token type A set of tokens. Tokens of a given type are interchangeable (or fungible),
whereas tokens of different token types are not.

Native token The default token type of a blockchain (e.g., ETH for Ethereum).

Token price The price of a token type τ is the amount of units of a given native crypto-
currency (or fiat currency) needed to buy one unit of τ.

Exchange rate Given two token types τ and τ ′, the ratio τ/τ ′ at which a user can ex-
change units of token type τ ′ for units of τ in a blockchain interaction.

Lender A user who transfers units of a token type in return for a claim on a full
repayment in the future, which may include additional fees or interest.

Claim A right to token units in the future. Claims are represented as tokens,
which are minted and destroyed as claims are created and redeemed.

Minting Creation of tokens performed by the LP upon deposits.

Borrower A user who wishes to obtain a loan of token type τ. The borrower is
required to hold collateral of another token τ ′ to secure the loan.

Collateral A user balance of tokens which can be seized if the user does not ade-
quately repay a loan.

Collateralization The ratio of deposited collateral value over the borrower’s total loan value.

Liquidation When the collateralization of user A falls below a minimum threshold it
is undercollateralized: here, a user B can repay a fraction of A’s loan, in
return for a discounted amount of A’s collateral seized by B.

Interest rate The rate of loan growth when accruing interest.

Table 1: Glossary of financial terms used in Lending Pools.

124

3 Lending pools

In this section we introduce a formal, operational model of lending pools. We do
this incrementally, starting from a basic model of blockchains, on top of which
we will specify the behaviour lending pools.

3.1 A basic model of blockchains

We assume a set of users A, ranged over by A,A′ , . . ., and a set of token types
T, ranged over by τ, τ ′, We denote with Tf ⊆ T the subset of tokens types
that can be freely transferred between users, only assuming a sufficient balance
of the sender (Tf includes e.g. the native blockchain tokens).

We render blockchain states as partial maps σ ∈ A ⇀ (T ⇀ Q+), where σA
represents A’s token balance (a partial map from token types to nonnegative
rational numbers). Hereafter, we abbreviate σA as σA . We use the standard
notation f{v/x} to update a partial map f at point x: namely, f{v/x}(x) = v,
while f{v/x}(y) = f(y) for y 6= x.

Given a partial map f ∈ T ⇀ Q+, a token type τ ∈ T and a partial binary
operation ◦ ∈ Q+ × Q+ ⇀ Q+, we define the partial map f ◦ v : τ as follows:

f ◦ v : τ =

{
f{f(τ) ◦ v/τ} if τ ∈ dom f and f(τ) ◦ v is defined

f{v/τ} if τ 6∈ dom f
(1)

We adopt the notation v : τ to denote v units of token τ throughout the paper.
We model the interaction between users and the blockchain as a state tran-

sition system, with labels ` which represent transactions. Our basic model has
only one kind of transaction, TrfA(B, v : τ), which represents the transfer of v : τ
from A to B. Its effect on the state is specified by the following rule:

1 σA(τ) ≥ v 2 τ ∈ Tf 3 σ′A = σA − v : τ 4 σ′B = σB + v : τ

σ
TrfA (B,v:τ)−−−−−−−→ σ{σ′

A/A}{σ′
B/B}

[Trf]

We decorate rule preconditions with circled numbers, e.g. 1 , to simplify their
reference in the text. Rule [Trf] states that the transfer is permitted whenever
the sender has a sufficient balance 1 , and the transferred token type is free 2 .

3.2 Lending pool states

We now extend our basic blockchain model with lending pools, focussing on
the common features implemented by the main platforms. We make our model
parametric w.r.t. platform-specific features, like e.g. interest rate models, and
we abstract from some advanced features, like e.g. governance (see Section 7 for
a discussion on the differences between our model and the existing platforms).

We model states Γ as terms of the form σ | π | p, where σ is the token
balance of users, π is the lending pool state, and p ∈ Tf → Q+ models an oracle
who prices the free tokens. Lending pool states π are triples (πf , πl, πm), where:

125

DepA(v : τ) A deposits v units of a free token τ, receiving minted tokens
BorA(v : τ) A borrows v units of free token τ
Int All loans accrue interest
RepA(v : τ) A repays v units on A’s loan in τ
RdmA(v : τ) A redeems v units of minted τ, receives deposited tokens
LiqA(B, v : τ, v′ : τ ′) A repays v units of B’s loan in τ, seizing v′ : τ ′ from B
MtrfA(B, v : τ) A transfers v units of minted τ to B
TrfA(B, v : τ) A transfers v units of free τ to B

Table 2: Lending pool actions.

Actions
σA σB πf πl B πm p

τ0 τ1 τ ′
0 τ ′

1 τ0 τ1 τ ′
1 τ0 τ1 τ0 τ0 τ1 τ0 τ1

0. Initial State 100 – – – – 50 – – – – – – 1 1
1. DepA (50 : τ0) 50 – 50 – – 50 – 50 – – τ ′

0:50 – 1 1

2. DepB (50 : τ1) 50 – 50 – – 0 50 50 50 – τ ′
0:50 τ ′

1:50 1 1

3. BorB (30 : τ0) 50 – 50 – 30 0 50 20 50 30 τ ′
0:50 τ ′

1:50 1 1
4. Int 50 – 50 – 30 0 50 20 50 34 τ ′

0:50 τ ′
1:50 1 1

5. RepB (5 : τ0) 50 – 50 – 25 0 50 25 50 29 τ ′
0:50 τ ′

1:50 1 1

6. Px 50 – 50 – 25 0 50 25 50 29 τ ′
0:50 τ ′

1:50 1.3 1
7. LiqA (B, 13 : τ0, 19 : τ ′

1) 37 – 50 19 25 0 31 38 50 16 τ ′
0:50 τ ′

1:50 1.3 1

8. RdmA (10 : τ ′
0) 48 – 40 19 25 0 31 27 50 16 τ ′

0:40 τ ′
1:50 1.3 1

Table 3: Interactions between two users and a lending pool.

– πf ∈ Tf ⇀ Q+ records the balance of free token types deposited in the LP;
– πl ∈ A ⇀ (Tf ⇀ Q+) records the amount and type of tokens lent to users;
– πm ∈ Tf ⇀ ((T \ Tf)× Q+) records the amount of tokens minted by the LP

upon deposits. Namely, πm(τ) = (τ ′, n) means that n units of a token type
τ ′, minted by the LP to represent claims of deposited tokens of type τ, are
currently held by users. We require that different free tokens are associated
to different minted tokens:

πm(τ1) = (τ ′, n1) ∧ πm(τ2) = (τ ′, n2) =⇒ τ1 = τ2 (2)

We denote with Tπ the set of tokens minted by a LP in state π. For a minted
token τ ′ ∈ Tπ , we denote with uπ(τ ′) the underlying free token. Formally:

Tπ = {fst(πm(τ)) | τ ∈ Tf} uπ(τ ′) = τ if fst(πm(τ)) = τ ′ (3)

Note that (2) ensures that uπ(τ ′1) 6= uπ(τ ′2) when τ ′1 6= τ ′2. We say that a state
σ | π | p is initial if πf , πl, πm have empty domain, and domσA ⊆ Tf for all A.

3.3 An overview of lending pools behaviour

Lending pools support several actions, summarized in Table 2. Before formalizing
their behaviour, we give some intuition through an example involving two users
A and B (see Table 3). A and B start by depositing 50 units of free tokens τ0
and τ1, for which they receive equal amounts of freshly minted tokens τ ′0 and τ ′1.

126

Next, B borrows 30 : τ0. Here, the 50 minted tokens of type τ ′1 in B’s balance
serve as collateral for the loan. The collateralization of B is the ratio between
the value of B’s balance of τ ′1 and the value of B’s loan of τ0 (the value of
a token balance is the product between the number of units of the token and
its price). Assuming a minimum collateralization threshold of Cmin = 1.5 and
equal token prices for τ0 and τ1, B could borrow up to 33 units of τ1, given the
collateral of 50 : τ ′1. Nonetheless, B decides to leave some margin to manage
future price volatility and the accrual of interest, which can both negatively
affect collateralization. In action 4, interest accrues on the loan made by B.
Here, the interest rate is 12%, so B’s loan amount grows from 30 to 34 units of
τ1. In action 5, B repays 5 units of τ0 to reduce the risk of becoming liquidated,
which can occur when B’s collateralization falls below the threshold Cmin = 1.5.

Despite this effort, the price is updated in action 6, such that p(τ0) increases
by 30% relative to p(τ1), thereby decreasing the relative value of B’s collateral to
B’s loan. As a result, the collateralization of B drops below the threshold Cmin . In
action 7, A liquidates 13 : τ0 of B’s loan, restoring B’s collateralization to Cmin ,
and simultaneously seizing 19 : τ ′1 from B’s balance. The exchange of 13 : τ0
for 19 : τ ′1 implies a liquidation discount, which ensures that the liquidation is
profitable for the user performing it.

In action 8, A then redeems 10 : τ ′0, receiving 11 : τ0 in exchange. Here, each
unit of τ ′0 is now exchanged for more than 1 unit of τ0, due to accrued interest.

3.4 Lending pool transitions

We now present the full set of rules which formalize the behaviour of lending
pools. To illustrate them, we provide an extended running example (Tables 4–9).

Deposit A user A can deposit v units of a token τ by performing the transaction
DepA(v : τ), provided that the balance is sufficient 1 . In return, A receives v′

units of a token τ ′ minted by the LP. Upon the first deposit of τ, the LP creates a
fresh (non-free) token type τ ′ 2 ; freshness ensures that condition (2) is preserved
by the new state. For further deposits of τ, the LP mints new units of τ ′. In both
cases, the amount of minted units of τ ′ are recorded in the πm component of the
state 5 . Note that premises 2 and 5 require that τ must be a free token type.
The amount v′ 3 is the ratio between the deposited amount v and the exchange
rate ERπ(τ) between τ and τ ′, defined in (4).

1 σA(τ) ≥ v 2 τ ′ :=

{
fresh 6∈ Tf if τ 6∈ domπm

πm(τ) otherwise
3 v′ := v/ERπ (τ)

4 π′f := πf + v : τ 5 π′m :=

{
πm{(τ ′,v′)/τ} if τ 6∈ domπm

πm{(τ ′,v′′+v′)/τ} if πm(τ) = (τ ′, v′′)

σ | π | p
DepA (v:τ)
−−−−−−→ σ{σA − v:τ + v′:τ ′/A} | (π′f , πl, π′m) | p

[Dep]

The main idea of the exchange rate is that, while initially there is a 1/1
correspondence between minted and deposited tokens, when interest is accrued
this relation changes to the benefit of lenders. For a free token τ, the exchange

127

Table 4: Running example: deposit actions

Actions
σA σB σC πf πm

τ0 τ1 τ ′
0 τ1 τ0 τ2 τ ′

0 τ ′
2 τ2 τ ′

2 τ0 τ1 τ2 τ0 τ1 τ2
0. Initial state 100 300 - - 50 50 - - 100 - - - - - - -
1. DepA (100 : τ0) 0 300 100 - 50 50 - - 100 - 100 - - τ ′

0:100 - -

2. DepA (150 : τ1) 0 150 100 150 50 50 - - 100 - 100 150 - τ ′
0:100 τ ′

1:150 -

3. DepB (50 : τ0) 0 150 100 150 0 50 50 - 100 - 150 150 - τ ′
0:150 τ ′

1:150 -

4. DepB (50 : τ2) 0 150 100 150 0 0 50 50 100 - 150 150 50 τ ′
0:150 τ ′

1:150 τ ′
2:50

5. DepC (100 : τ2) 0 150 100 150 0 0 50 50 0 100 150 150 150 τ ′
0:150 τ ′

1:150 τ ′
2:50

rate ERπ(τ) represents the share of deposited units of τ over the units of the
associated minted tokens. If any loans remain pending, not all minted tokens
can be redeemed, as only a fraction of the deposited free tokens remain in the
LP balance. Formally:

ERπ(τ) =
πf (τ) +

∑
A(πl A) τ

snd(πm(τ))
if πf (τ) > 0 ERπ(τ) = 1 if πf (τ) = 0 (4)

where we assume that the items A for which πl A or (πl A)τ are undefined do not
contribute to the summation (we will adopt this convention through the paper).

Table 4 exemplifies users depositing funds to the LP. In transaction 1, A de-
posits 100 units of τ0. Since this is the first deposit of τ, the LP mints exactly 100
units of a fresh token type, say τ ′0, and transfers these units to A. In transaction
2, A deposits 150 units of τ1; similarly to the previous case, A receives 150 units
of a fresh token type τ ′1. In transaction 3, B deposits 50 units of τ0. Since τ0
was already deposited, the LP mints 50 units of the existing token type τ ′0, and
transfers them to B. Finally, in transactions 4 and 5 B and C deposit units of
τ2; after that, the balances of tokens τ0, τ1, τ2 in the LP total 150 units.

Borrow Any user can borrow units of a free token type τ from the LP, provided
that the LP has a sufficient balance of τ 1 , and that the user has enough
minted tokens to use as collateral 4 . More specifically, we require that the
collateralization of the user is above a constant threshold Cmin > 1.

1 πf (τ) ≥ v > 0 2 fA =

{
πlA + v : τ if A ∈ domπl

{v/τ} otherwise

3 π′ := (πf − v : τ, πl{fA/A}, πm) 4 Cσ|π′|p(A) ≥ Cmin

σ | π | p BorA (v:τ)−−−−−−→ σ{σA+v:τ/A} | π′ | p
[Bor]

To define the collateralization of users, we introduce a few auxiliary notions. The
value V l(A) of A’s loans is the sum (over all free token types τ) of the value of
τ-tokens lent to A (the value is the product between token amount and price).
For instance, if A has borrowed only 10 tokens of type τ, and the price of 1 : τ
is 2 : τn, then the value of A’s loan is 20 : τn. Formally:

V lΓ(A) =
∑
τ∈Tf

(πl A)τ · p(τ) if Γ = σ | π | p (5)

128

Table 5: Running example: borrow actions

Actions
σB σC

πl πf p CΓB C
τ0 τ1 τ2 τ ′

0 τ ′
1 τ0 τ1 τ2 τ

′
2 τ1 τ0 τ1 τ0 τ1 τ2 τ0 τ1 τ2 B C

5. DepC (100 : τ2) 0 - 0 50 50 - - 0 100 - - - 150 150 150 1 1 1 - -

6. BorB (50 : τ1) 0 50 0 50 50 - - 0 100 50 - - 150 100 150 1 1 1 2.0 -
7. BorC (30 : τ0) 0 50 0 50 50 30 - 0 100 50 30 - 120 100 150 1 1 1 2.0 3.3
8. BorC (30 : τ1) 0 50 0 50 50 30 30 0 100 50 30 30 120 70 150 1 1 1 2.0 1.7

The value V m(A) of minted tokens held by A is the summation (over all
minted token types τ) of the value of A’s balance of minted tokens. To determine
the value of a minted token τ ′, its price is equated to that of the underlying free
token τ, as minted tokens do not exist in the domain of p:

V mΓ (A) =
∑
τ∈T\Tf

σA(τ) · ERπ(uπ(τ)) · p(uπ(τ)) if Γ = σ | π | p (6)

The collateralization of a user is the ratio of the value of minted to lent tokens:

CΓ(A) = V mΓ (A) / V lΓ(A) (7)

We exemplify Bor transactions in Table 5. Users B and C borrow amounts
of τ0 and τ1 at steps 6–8, keeping their collateralization above Cmin , which is
assumed to be 1.5. C’s collateralization decreases from 3.3 to 1.7 upon step 8:
this is due to the increase in V l(C), whilst V m(C) remains constant at 100.

As we have seen, user collateralization depends on the amount of minted
tokens he possesses, the amount of tokens, and the price of all tokens involved.
Therefore, collateralization is potentially sensitive to all actions that can affect
those values. This includes both interest accrual and changes in token prices
(which are unpredictable). Borrowers must therefore maintain a safety margin
in order to protect against potential liquidation.

Interest Accrual Interest accrual models the periodic application of interest
to loan amounts and can be executed in any state. The action applies a token-
specific interest Iπ(τ) to each loan, updating the πl mapping for all users.

π′l(A) := f ′A if A ∈ domπl, where f ′A(τ) := (Iπ(τ) + 1) · (πl A)τ if τ ∈ dom (πlA)

σ | π | p Int−→ σ | (πf , π′l, πm) | p
[Int]

Existing lending pool platforms deploy different algorithmic interest rate
models [47]. We leave our model parametric w.r.t. interest rates, and only require
that the interest rate is positive, a property that all models in [47] satisfy:

Iπ(τ) > 0 (8)

We extend our running example with three interest updates in Table 6, re-
sulting in the increase of all loan amounts. Each subsequent execution of Int
decreases the collateralization of users B and C, since the V l of both borrowers
increases as interest is applied (7).

129

Table 6: Running example: interest accrual

Actions
πl Iπ p CΓB C

τ1 τ0 τ1 τ0 τ1 τ2 τ0 τ1 τ2 B C
8. BorC (30 : τ1) 50 30 30 2.0% 5.3% 0% 1 1 1 2.00 1.67
9. Int 53 31 32 2.1% 5.5% 0% 1 1 1 1.89 1.59
10. Int 56 32 34 2.1% 5.6% 0% 1 1 1 1.79 1.52
11. Int 59 33 36 2.2% 5.8% 0% 1 1 1 1.69 1.45

Table 7: Running example: repay actions

Actions
σA σB σC πf

πl CΓB C
τ0 τ1 τ ′

0 τ ′
1 τ0 τ1 τ ′

2 τ ′
0 τ ′

2 τ0 τ1 τ2 τ ′
2 τ ′

0 τ ′
1 τ ′

2 τ1 τ0 τ1 B C
11. Int 0 150 100 150 0 50 0 50 50 30 30 0 100 120 70 150 59 33 36 1.7 1.5
12. RepC (15 : τ0) 0 150 100 150 0 50 0 50 50 15 30 0 100 135 70 150 59 18 36 1.7 1.9

Repay A user with a loan can repay part of it by executing a Rep transaction:

1 σA(τ) ≥ v > 0 2 (πl A) τ ≥ v 3 π′l = πl{πlA−v:τ/A}

σ | π | p
RepA (v:τ)
−−−−−−→ σ{σA−v:τ/A} | (πf + v : τ, π′l, πm) | p

[Rep]

This increases the collateralization of the repaying user, as V l is reduced (7).
Users must always maintain a sufficient collateralization, to cope with adverse
effects of interest accruals and price updates.

In Table 7, C is suffering from low collateralization after the last interest
accrual in transaction 11. Here, CΓ(C) is equal to Cmin = 1.5. The subsequent
repayment of 15 units of τ0 increases C’s collateralization back to 1.9.

Redeem A user without any loans can redeem minted tokens τ 1 for the
underlying tokens if enough units of uπ(τ) remain in the LP 2 . A user with a
non-zero loan amount of any token can only redeem minted tokens such that the
resulting collateralization is not below Cmin 3 . This constraint does not apply
to users without loans, as minted tokens are not used as collateral.

1 σA(τ) ≥ v > 0 v′ := v · ERπ(uπ(τ)) 2 πf (uπ(τ)) ≥ v′

3 (∃τ ′.(πlA)τ ′ > 0)⇒ Cσ′|π′|p(A) ≥ Cmin σ′A := σA − v : τ + v′ : uπ(τ)

π′f := πf − v′ : uπ(τ) π′m := πm{(τ,v′′−v)/uπ (τ)} where (τ, v′′) := πm(uπ(τ))

σ | π | p RdmA (v:τ)−−−−−−→ σ{σ′
A/A} | (π′f , πl, π′m) | p

[Rdm]

We exemplify Rdm transactions in Table 8. From Table 7, B has a non-
zero loan amount, hence he can only redeem 11 : τ ′2 before his collateralization
decreases to Cmin = 1.5, at which B cannot further redeem. Since A has no
loans, she can redeem as many tokens τ ′0 as the LP balance permits. For A’s
redeeming of 50 : τ ′0 for 51 : τ0 the exchange rate is > 1, because of the accrued
interest during the prior execution of Int. By contrast, the exchange rate for B is
1, as no loan exists on τ ′2, and thus no interest was accrued. The tokens τ ′2 and
τ ′0 returned to the LP by B and A are burnt and subtracted from πm.

130

Table 8: Running example: redeem actions

Actions
σA σB πf πm CΓ

τ0 τ1 τ ′
0 τ ′

1 τ0 τ1 τ2 τ ′
0 τ ′

2 τ0 τ1 τ2 τ0 τ1 τ2 B C
12. RepC (15 : τ0) 0 150 100 150 0 50 0 50 50 135 70 150 τ ′

0:150 τ ′
1:150 τ ′

2:150 1.7 1.9

13. RdmB (11 : τ ′
2) 0 150 100 150 0 50 11 50 39 135 70 139 τ ′

0:150 τ ′
1:150 τ ′

2:139 1.5 1.9
14. RdmA (50 : τ ′

0) 51 150 50 150 0 50 11 50 39 84 70 139 τ ′
0:100 τ ′

1:150 τ ′
2:139 1.5 1.9

Liquidation When the collateralization of a user B is below the threshold Cmin

6 , another user A can liquidate part of B’s loan 8 , in return for a discounted
amount of minted tokens seized from B 10 . A can execute Liq if it has enough
balance to repay a fraction of the lent token 1 , and if B has a sufficient balance
of seizable, minted tokens 4 . The maximum seizable amount is bounded by 4

or the resulting collateralization of B 7 , which cannot exceed Cmin . After this
threshold, B’s collateralization is restored, and B is no longer liquidatable.

1 σA(τ) ≥ v 2 (πl B) τ ≥ v 3 τ ′ ∈ Tπ
4 σB(τ ′) ≥ v′ 5 v′ = v · p(τ)

p(uπ (τ ′)) · rliq
6 Cσ|π|p(B) < Cmin 7 Cσ′|π′|p(B) ≤ Cmin

8 π′l := πl B − v : τ 9 σ′A := σA − v : τ + v′ : τ ′ 10 σ′B := σB − v′ : τ ′

σ | π | p
LiqA (B,v:τ,v′:τ ′)
−−−−−−−−−−→ σ{σ′

A/A}{σ′
B/B} | (πf , π′l, πm) | p

[Liq]

For the execution of Liq, where v : τ and v′ : τ ′ are repaid and seized amounts
respectively, the constraint on v and v′ is given in 5 , where:

Cmin > rliq > 1 (9)

The constraint rliq > 1 implies a discount applied to the seized amount received
by the liquidator, as more value is received than repaid:

For the liquidations in Table 9, we set rliq = 1.1. After the price update
in action 15, both B and C are undercollateralized. C is liquidated by A in
transaction 16, which restores CΓ(C) to 1.5. By contrast, CΓ(B) is 0.9 after the
price update. Subsequent liquidations by A seize units of both τ ′0 and τ ′2 until B’s
balance of minted tokens is empty. However, B still has a loan amount of 11 : τ1,
which is unrecoverable. Both B and potential liquidators have no incentive to
repay or liquidate given the lack of collateral.

Table 9: Running example: liquidation actions

Actions
σA σB σC πf

πl p CΓB C
τ0 τ1 τ ′

0 τ ′
1 τ ′

2 τ0 τ1 τ2 τ ′
0 τ ′

2 τ0 τ1 τ2 τ ′
2 τ0 τ1 τ2 τ1 τ0 τ1 τ0, τ1 τ2 B C

15. Px 51 150 50 150 - 0 50 11 50 39 15 30 0 100 84 70 139 59 18 36 1 1.7 0.9 1.3
16. LiqA (C, 27 : τ1, 50 : τ ′

2) 51 123 50 150 50 0 50 11 50 39 15 30 0 50 84 97 139 59 18 9 1 1.7 0.9 1.5

17. LiqA (B, 27 : τ1, 50 : τ ′
0) 51 96 100 150 50 0 50 11 0 39 15 30 0 50 84 124 139 32 18 9 1 1.7 0.7 1.5

18. LiqA (B, 21 : τ1, 39 : τ ′
2) 51 75 100 150 89 0 50 11 0 0 15 30 0 50 84 145 139 11 18 9 1 1.7 0 1.5

131

Transfer of minted tokens Minted tokens can be transferred between users.
Unlike free tokens transfers (rule [Trf] at page 4), this requires that the sender
retains a collateralization level above Cmin .

σA(τ) ≥ v τ ∈ Tπ σ′ = σ{σA−v:τ/A}{σB+v:τ/B} Cσ′|π|p(A) ≥ Cmin

σ | π | p MtrfA (B,v:τ)−−−−−−−−→ σ′ | π | p
[Mtrf]

Price updates Finally, the price oracle can be updated non-deterministically:

σ | π | p Px−→ σ | π | p′ [Px]

4 Fundamental properties of lending pools

We now establish some fundamental properties of lending pools. These properties
hold for all reachable states, i.e. states Γ such that Γ0 −→∗ Γ for some initial Γ0.

The first property states that the component πm of the state correctly records
the balance of all minted tokens held by users. This is formalized by Lemma 1.

Lemma 1. Let σ | π | p be a reachable state. For all τ ∈ Tπ :

∑
A σA(τ) = snd(πm(uπ(τ))) (10)

Another crucial property is that the exchange rate of a minted token must either
strictly increase, when users are borrowing the underlying token, or remain stable
otherwise. This guarantees a depositor that her deposit will grow.

Lemma 2. Let σ | π | p be a reachable state, let σ | π | p `−→ σ′ | π′ | p′, and let
τ ∈ Tπ . Then: (a) if ` = Int and ∃A : (πl A) τ > 0, then ERπ(τ) < ERπ′(τ);
(b) otherwise, ERπ(τ) = ERπ′(τ).

As a direct consequence of Lemma 2 we have that, in any computation, the
exchange rate of any token type is increasing.

We also establish a preservation property of the supply of any free token τ,
i.e. the sum of all user balances and lending balance of τ:

splyΓ(τ) = πf (τ) +
∑

A σA(τ) if Γ = σ | π | p (11)

Lemma 3 establishes that the supply of any free token is constant.

Lemma 3. Let Γ0 −→∗ Γ, for Γ0 initial. For all τ ∈ Tf : splyΓ0
(τ) = splyΓ(τ).

While the supply of an LP remains constant, users act to increase their own
share. We define the net worth WΓ (A) as the value of the amount of tokens in
A’s wallet or lent by A, minus the value of A’s loans. Formally, if Γ = σ | π | p:

WΓ (A) =
∑
τ∈Tf

(
σA(τ) + σA(fst(πm(τ)) · ERπ(τ)− (πl A τ)

)
· p(τ)

132

The net worth of a user can be increased in short or long sequences of transitions.
In general, there is no winning strategy (in the game-theoretic sense) for a single
user that wants to increase her net worth, unless she can control price updates:
actually, with just one price update the net worth of any user can be reduced
to 0. However, under certain conditions, winning strategies can be found. We
consider first a simple 1-player game where a user can choose her next action to
improve her net worth in the next state. Here, liquidation is the only action by
an honest user A that increases her net worth in just one transition.

Lemma 4. Let Γ be a reachable state and Γ
`−→ Γ ′ with ` = A(· · ·). Then:

(a) WΓ (A) > WΓ ′(A) if ` = LiqA(· · ·); (b) WΓ (A) = WΓ ′(A) otherwise.

Since this is the winning strategy for all users, but liquidations may be limited
by loan or collateral amounts, an adversary who has the power to drop or re-
order transactions can potentially monopolize liquidations for itself. We refer to
Section 6 for additional discussion of such attacks.

We now consider a slightly extended game, where A guesses that the next

(adversarial) action is going to be `, resulting in Γ0
`−→ Γ1 but can still perform

an action `′ before `, resulting in Γ0
`′−→ Γ ′0

`−→ Γ ′1. The goal of A is to choose `′

such that WΓ ′
1
(A) > WΓ1

(A). We show that if ` = Int, i.e. A is expecting interest
accrual to happen next, her choice is limited to deposits, repays and liquidations.

Lemma 5. Let Γ0 be a reachable state, and let Γ0
`−→ Γ1 and Γ0

`′−→ Γ ′0
`−→ Γ ′1 be

such that ` = Int and `′ = A(· · ·). Then: (a) WΓ ′
1
(A) ≥ WΓ1

(A) if `′ is one of
LiqA(· · ·) or DepA(· · ·) or RepA(· · ·); (b) WΓ ′

1
(A) ≤WΓ1(A) otherwise.

Overall, Lemmas 4 and 5 determine the set of actions to consider (together
with their parameter) to maximize improvements in short-term net worth.

5 Lending pool safety, vulnerabilities and attacks

We discuss further properties of lending pools, focusing on potential risks which
could lead to unsecured loans or exploitations by malicious actors. In particular,
we focus on user collateralization and the availability of free token funds in lend-
ing pools (utilization). In the case where these can be targeted by an attacker,
the motivation is to limit the lending pool functionality (denial-of-service) or
cause the victim to incur losses, which in some cases may imply a gain for the
attacker. We restrict our attention to attacker models where the attacker has
the ability to perform some of the actions of the LP model, or even update the
price oracle. More powerful attackers that can drop or reorder transactions are
discussed in Section 6.

5.1 Collateralization bounds and risks

The lending pool design assumes that loans are secured by collateral: liquidations
thereof are incentivised in order to recover loans should the borrowing users fail

133

to repay. However, collateral liquidation is exposed to risks. Firstly, the incentive
to liquidate is only effective, if the liquidator values the seized collateral higher
than the value of the repaid loan amount, implying a profit. Secondly, large
fluctuations in token price may reduce the relative value of the collateral such
that the loan becomes partially unrecoverable. Furthermore, an attacker with
the ability to update token prices can force users to become undercollateralized
and then seize the collateral of victims without repaying any loans.

LP-minted token risk The lending pool must determine the appropriate lev-
els of collateralization based on token prices given by the price oracle. However,
the value of LP-minted tokens is indeterminable since they are not featured in
dom (p). The definition of collateralization in eq. (7) values units of LP-minted
tokens at the same price as their underlying counterpart, as do lending pool
implementations [10, 21]. However, since LP-minted tokens represent claims on
free tokens, which are only redeemable if sufficient funds remain in the lending
pool (2 in [RDM]), it is possible that users value minted tokens at a lower price
than their underlying counterparts when LP-minted tokens cannot be redeemed
during times of low lending pool funds (utilization). Lending pool designs do not
account for this and thus run the risk of incorrectly pricing LP-minted tokens
and collateral.

Safe collateralization Assuming a correct valuation of LP-minted tokens, un-
dercollateralized loans should be swiftly liquidated, given the incentivization pro-
vided by the liquidation discount. Furthermore, the user collateral value should
be high enough, such that the user’s loan amount is sufficiently repaid by liquida-
tions to recover the user collateralization back to Cmin . Therefore, we introduce
two notions of safe collateralization.

Inspired by [48], we say that a LP state is ε-collateralization safe when the
ratio of the loan value of undercollateralized accounts to the total loan value of
the lending pool is below the threshold ε:

∑
CΓ (A)<Cmin

V lΓ(A)
∑

A V
l
Γ(A)

≤ ε (12)

If the liquidation incentive is effective, a value below ε should not persist, as users
are quick to execute liquidations. The efficiency of lending pool liquidations has
been studied in [50]. We note that sufficiently large volumes of seized collateral
which are immediately sold on external markets may delay further liquidations,
as investigated in [46], due to the external market’s finite capacity to absorb
such a sell-off.

However, ε-collateralization safety does not account for undercollateralized
loans which are non-recoverable, as previously illustrated in the example of Ta-
ble 9. The set of non-recoverable, undercollateralized accounts are those with
a collateralization below rliq. The non-recoverable loan value of an account is
given by V nrl

Γ . It represents the remaining loan value of a user A should it be

134

fully liquidated, such that no further collateral can be seized.

V nrl
Γ (A) =

{
V lΓ(A)− VmΓ (A)

rliq
iff CΓ(A) < rliq

0 otherwise
(13)

Equation (13) illustrates that for the case where an account collateralization is
below rliq, the discounted value of the collateral can no longer equal or exceed
the remaining loan value, a consequence of (7) and (9). We say that a LP state
is strongly ε-collateralization safe when the fraction of the total loan value of a
lending pool which is not recoverable is below ε:

∑
A V

nrl
Γ (A)∑

A V
l
Γ(A)

≤ ε (14)

The condition (14) is actually stronger than (12), i.e. if a state is strongly
ε-collateralization safe, then it is also ε-collateralization safe. Given equal denom-
inators of (12) and (14), this is a consequence of comparing numerators: here, it
can be observed that the numerator of (12) is greater than that of (14), as V lΓ(A)

is necessarily greater than V nrl
Γ (A) by definition and the set {A | CΓ(A) < Cmin}

is a superset of {A | CΓ(A) < rliq} (13).
Strong price volatility is a risk to ε-collateralization safety, as a sharp drop

in price can immediately reduce a previously sufficiently collateralized user to
become undercollateralized below the threshold of Cmin : such an immediate
drop leaves the user with no opportunity to maintain its collateralization with
repayments.

Attacks on safe collateralization Malicious agents which can perform price
updates can therefore influence the evolution of the LP to lead it to a state that
is not ε-collateralization safe or strongly ε-collateralization safe.

For example, a malicious agent controlling the price oracle could act as fol-
lows. First, she would perform price updates to push any account collateraliza-
tion below Cmin , such that it becomes undercollateralized. The attacker can then
perform liquidations on these accounts and benefit from the discount resulting
from both the price update and rliq. The attacker has maximized her profits by
updating p such that V lΓ(B) in (7) is zero, where B is an account under attack.
In this case, LiqA(B, v : τ, v′ : τ ′) can be performed with v = 0, and repeated
liquidations can be executed to seize the full balance of B’s LP-tokens.

As a matter of fact, a recent failure of the oracle price feed utilized by the
Compound lending pool implementation lead to $100M of collateral being (in-
correctly) liquidated [19]: though it is unclear whether this was an intentional
exploit, it illustrates the feasibility of such a price oracle attack.

5.2 Utilization bounds and risks

The notion of utilization plays a fundamental role in the incentive model of
lending pools as explained in [47]. As a matter of fact, it is often used as a key

135

parameter of interest rate models in implementations [11,22] and literature [47].
The utilization of a token type in a lending pool is the fraction of previously
deposited funds currently lent to borrowing users. Formally:

Uπ(τ) =

∑
A(πl A) τ

πf (τ) +
∑

A(πl A) τ
(15)

Over- and under-utilization The value of Uπ(τ) ranges between 0 and 1.
We say that τ is under-utilized if its utilization is 0 and over-utilized when it
is 1. We say that an LP state is under(over)-utilized if there is at least one
under(over)-utilized token.

Under-utilization occurs when some units of τ have been deposited, but not
lent to any user. This implies that action Int does not increase the loan value of
any account, so that the exchange rate of τ in (4) remains constant, thereby not
resulting in any gain for lenders.

On the other hand, over-utilization occurs when some users have borrowed τ,
but the lending pool has no deposited funds of τ. In this case users can neither
borrow or redeem.

Under- and over-utilization are not desirable and should be avoided. An op-
timal utilization rate eq. (15) of a free token type τ strikes a balance between the
competing objectives of interest maximization and the ability for users to borrow
or redeem tokens of type τ ′ = fst(πm(τ)). In particular, the lending pool interest
rate models described in [47] intend to incentivize actions of both borrowers and
lenders to discover a utilization equilibrium between under- and over-utilization.
Informally, this is achieved with interest rate models which rise and fall with
utilization: increasing utilization and interest rates incentivize deposits and re-
payment of loans. Decreasing utilization and interest rates incentivize redeems
and additional loan borrowing.

We proceed to discuss under- and overutilization attacks: here, we note that
the former is weaker than the latter, as funds can still be safely recovered in a
case of underutilization.

Under-utilization attacks Under-utilization can be achieved by a group of
malicious users interested in reducing interest accrual for depositors or discourag-
ing borrowing of a token τ. Here, the attacker can temporarily reduce utilization
by repaying large amounts of loans, though the effectiveness of this approach
will depend on the amounts of τ repaid by the attacker, as a lowered utilization
can also reduce the interest rate (in certain models [47]), thereby incentivizing
additional borrowing. An attacker which can update the price oracle can lower
the collateralization of borrowers arbitrarily, thereby incentivizing repayments
and liquidations to target lower utilization of specific tokens.

Over-utilization attacks Over-utilization could be achieved by a group of
malicious users interested in preventing redeems or borrows of τ. The malicious
users can do this by redeeming all units of τ while avoiding loans to be repaid
or liquidated. We illustrate an over-utilization attack in Table 10. Here, users A
and C initially hold the entire supply of τ0 in their balances. A colludes with B

136

Actions
σA σA σC πf πl B πm Uπ

τ0 τ ′
0 τ0 τ1 τ ′

1 τ0 τ ′
0 τ0 τ1 τ0 τ0 τ1 τ0 τ1

0. Initial State 100 – – 100 – 50 – – – – – – – –
1. DepA (100 : τ0) 0 100 – 100 – 50 100 – – τ ′

0:100 – 0 –

2. DepB (100 : τ1) 0 100 – 0 100 50 100 100 – τ ′
0:100 τ ′

1:100 0 0

3. BorB (50 : τ0) 0 100 50 0 100 50 50 100 50 τ ′
0:100 τ ′

1:100 0.5 0
4. DepC (50 : τ0) 0 100 50 0 100 0 50 100 100 50 τ ′

0:150 τ ′
1:100 0.3 0

5. RdmA (100 : τ ′
0) 100 0 50 0 100 0 50 0 100 50 τ ′

0:50 τ ′
1:100 1.0 0

Table 10: Over-utilization attack.

to steal C’s balance of τ0: in actions 0-2, both A and B deposit units of 100 : τ0
and 100 : τ1 respectively. B utilizes her balance of 100 : τ ′1 as collateral to borrow
50 : τ0 from the lending pool in action 3. At this point, A and B are acting as
lender and borrower of τ0, for which the utilization is 0.5. C, having observed an
opportunity to earn interest on τ0 decides to deposit 50 : τ0 in action 4. However,
user A still has a balance of redeemable 100 : τ ′0, which she redeems in action 5.
Now, users A and B have removed all units of τ0 from the lending pool, pushing
the utilization of τ0 to 1 and preventing C from redeeming her funds. Of course,
user B cannot redeem his balance of τ ′1 since her loan has not been repaid, but
this can be considered the cost of the attack.

6 DeFi archetypes: lending pools and beyond

We now discuss the interplay between lending pools and other DeFi applications,
like algorithmic stable coins, automatic market makers, margin trading and flash
loans, which are all predominantly deployed on the Ethereum blockchain [38].

Lending pools The emergent behaviour of lending pools in times of high price
volatility is examined in [46] by simulation of a lending pool liquidation model.
Here, a large price drop can cause many accounts to become undercollateralized:
assuming liquidators sell off collateral at an external market for units of the
repaid token type, the authors suggest that limited market demand for collateral
tokens may prevent liquidations from being executed, thereby posing a risk to
ε-collateralization safety as we have defined in eqs. (12) and (14).

Lending pool behaviour at the user level is modelled in [48], which sim-
ulates agents interacting with the Compound implementation to examine the
evolution of liquidatable and undercollateralized debt, notions similar to (strong)
ε-collateralization safety (12) (14). [39,40] examine the competition for user de-
posits between staking in proof-of-stake systems and lending pools: in the case
where lending pools are believed to be more profitable, users may shift deposits
away from the staking contract of the underlying consensus protocol towards
lending pools, thereby endangering the security of the system.

Lending pool interest rate behaviour is examined in [47], where empirical
behaviour of interest rate models in Compound [22], Aave [11] and dYdX [25]
are analyzed. In particular, the authors observe a statistically significant coupling
in interest rates between deployed lending pools, suggesting that the dynamic

137

interest models are effective in discovering a global interest rate equilibrium for
a given token. Our formal model is parameterized by the interest rate, that must
always be positive (8): since this property holds for all interest rate functions
in [47], our model can be instantiated with them.

Algorithmic stable coins MakerDAO [27] is the leading algorithmic stable
coin and is credited with being one of the earliest DeFi projects. It incorporates
several features found in lending pools, such as deposits, minting, and collater-
alization. Users are incentivized to interact with the smart contract to mint or
redeem DAI tokens. This, in turn, adjusts the supply of DAI such that a stable
value against the reference price (e.g USD) is maintained. Synthetic tokens are
similar to algorithmic stable coins but may track an asset price such as gold or
other real-world assets. Reference asset prices are determined by price oracles.

The authors of [49] introduce a taxonomy for various price stabilization mech-
anisms, providing insight into the functionality of such contracts. [46] uncovers
a vulnerability in the governance design of MakerDAO, allowing an attacker to
utilize flash loans to steal funds from the contract. The empirical performance
of MakerDAO’s oracles is studied in [45], which also proposes alternate price
feed aggregation models to improve oracle accuracy. Finally, [42] investigates
the optimal bidding strategy for collateral liquidators in MakerDAO, which is
executed by through user auctions.

Stable coins which track prices of real-world currencies (e.g. USD) exhibit a
price stability useful for lending pools: users with stable collateral or loan values
have a lower likelihood of suddently becoming undercollateralized.

Automatic market makers Leading automatic market makers Uniswap [31]
and Curve Finance [23] hold $1.6B [30] and $1.5B [23] worth of tokens and feature
an estimated $320M [30] and $36M [23] worth of token exchange transactions
every day. An automatic market maker (AMM) is organized in token pairs (τ, τ ′),
which users can interact with to exchange units of τ for τ ′ or vice-versa. AMM’s
do not match opposing actions of buyers and sellers: users simply exchange
tokens with a AMM pair, where the exchange rate is determined algorithmically
as a function of the AMM pair balance. Hence, the dynamic exchange rate of an
AMM token pair is affected with each user interaction.

The work in [33] investigates alternative, algorithmic exchange rate models
and defines the user arbitrage problem, where a profit-seeking agent must deter-
mine the optimal set of AMM pairs (with differing exchange rates) to interact
with: given such arbitrage opportunities will be exploited by rational users, it
is expected that exchange rates across AMM’s remain consistent. AMM price
models can fail: The constant product exchange rate model implemented by
Uniswap [31] and Curve [24] is simple, but can theoretically reach a state where
the the exchange rate is arbitrarily high. [54] proposes bounded exchange rate
models to address this.

[32] suggests that AMM’s track global average token prices effectively. As
such, AMM’s can inform price oracles: such oracles, however, only update price
information with each new block [29] computed from time-weighted price av-
erages of AMM pairs over the past block interval. This increases the cost of

138

manipulating prices of the oracle, as the manipulated price must be sustained
over a period of time. We note that lending pool implementations do not rely
on oracles which derive prices from AMM states.

AMM’s suffer from front-running, where an attacking user observes the vic-
tim’s announced, yet unconfirmed token exchange transaction, and sequences its
own transaction prior to that of the victim. A front-running attack on an AMM
user takes advantage of the change in exchange rate resulting from the victim’s
token exchange, who ends up paying a higher price, as illustrated in [55]. Front-
running of smart contracts is investigated more generally in [44]: mitigations
such as commit-and-reveal schemes are proposed, which come with an increased
cost for user-contract interactions. In the context of AMM’s, [41] introduces the
notion of gas auctions, where adversarial users compete to front-run a given
AMM exchange transaction by outbidding each others transaction fee.

We note that similar attacks can be modeled with an attacker that can drop
or reorder transactions in our lending pool model. Such an attacker can trivially
defer attempts of a borrower to repay a loan: subsequent interest accrual will
eventually cause the user to become undercollateralized, so that the attacker can
liquidate the victim. Such an attacker can also monopolize all liquidations for
herself, preventing other users from executing such an action: [41] suggests that
miners may be incentivized to perform such attacks due to gain resulting from
liquidation discounts.

Margin trading An important use case of lending pools are leveraged long
or short positions initiated by users, also referred to as margin trading. In a
leveraged long position of τ against τ ′, the user speculates that the price of the
former will increase against the price of the latter: a user borrows τ ′ at a lending
pool against collateral deposited in τ, and then exchanges the borrowed units of
τ ′ back to τ at a token exchange or an AMM. The user will now earn an amplified
profit if the price of τ appreciates relative to τ ′, since both the borrowed balance
and redeemable collateral in τ appreciates in value whilst only the loan repayable
with τ ′ decreases in value. A leveraged short position simply reverses the token
types. Margin trading contracts such as bZx Fulcrum [13] combine lending and
AMM functionalities to offer margin trades through a single smart contract.
However, since such margin trading contracts perform large token exchanges
at external AMM’s, attackers can use such actions to manipulate AMM prices,
as shown in [51]. Furthermore, the scope of such attacks is magnified when
performed with flash loans.

Flash loans Any smart contract holding balances of tokens can expose flash
loan functionality to users: here, a user can borrow and return a loan within a
single atomic transaction group. Informally, we describe an atomic transaction
group as an a sequence of actions from a single user, which must execute to com-
pletion or not execute at all. Atomic transaction groups can be implemented in
Ethereum by user-defined smart contracts [7], but can also be supported explic-
itly, such as in Algorand [36]. As such, flash loans are guaranteed to be repaid or
not executed at all. The work in [53] introduces an initial framework to identify
flash loan transactions on the Ethereum blockchain for an analysis of their in-

139

tended use-cases, which include arbitrage transactions, account liquidations (in
lending pools or stable coins) and attacks on smart contracts. We note that our
model can be easily extended to encompass flash loan semantics.

Flash loans have been utilized in recent attacks in DeFi contracts [51] [14] [26]
[28] [12]. The flashloan attack on bZx Fulcrum described in [51] involves sending
the borrowed tokens to a margin trading contract, which, in turn, initiates a
large token exchange at an external AMM: here, the large amount of exchanged
tokens causes a significant shift in dynamic AMM exchange rate, which rep-
resents an arbitrage opportunity exploited by the attacker in several execution
steps involving other contracts. Flash loans provide attackers with access to very
large token values to initiate attacks.

7 Conclusions

We have provided a systematization of knowledge on lending pools and their role
in DeFi, by leveraging a new model which enables formal definitions of lending
pool properties, vulnerabilities, and attacks. This work represents a first step
towards the rigorous analysis of DeFi contracts, improving existing literature
with a precise executable semantics of interactions beween users and LPs.

Differences between our model and LP implementations We have syn-
thesised our model from informal descriptions in the literature and actual imple-
mentation and documentation of lending pools Compound [22] and Aave [11]. To
distill a usable, succinct model we have abstracted away some implementation
details, that could be incorporated in the model at the cost of a more complex
presentation. We discuss here some of the main abstractions we made.

The original implementations of Compound and Aave gave administrators
control over the economic parameters of the LP, i.e. Cmin , rliq, and the interest
rate function. This made administrators of such early versions privileged users,
who could in principle prevent honest depositors, borrowers and liquidators from
withdrawing funds. A Compound administrator, for example, can replace ap-
plication logic which computes collateralization and authorizes supported to-
kens [15]. Later versions of these platforms have introduced governance tokens
(respectively, COMP and AAVE), which are allocated to initial investors or to LP
users, who earn units of such tokens upon each interaction. Governance tokens
allow holders to propose, vote for, and apply changes in economic parameters,
including interest rate functions. By contrast, our model assumes that economic
parameters are fixed, and omits governance tokens.

In implementations, adding a new token type to the LP must be authorized
by the governance mechanisms. By contrast, in our model any user can add a
new token type to the LP by just performing the first deposit of tokens of that
type. Implementations also allow administrators or governance to assign weights
to each token type. This is intended to adjust collateralization and liquidation
thresholds Cmin and rliq for the predicted price volatility of token types present
in a user’s loan and collateral. Further, implementations require users to pay
fees upon actions. These fees are accumulated in a reserve controlled by the

140

governance mechanisms of the LP, and intended to act as a buffer in case of
unforeseen events. Our model does not feature token-specific weights and fees.

User liquidations in implementations are limited to repay a maximum frac-
tion of the loan amount [6,18]. However, this implementation constraint can be
bypassed by a user employing multiple accounts, so we omit it in our model.

Lending pool platforms implement the update of interest accrual in a lazy
fashion: since smart contracts cannot trigger transactions, periodic interest ac-
crual would rely on a trusted user to reliably perform such actions, introducing
a source of corruption. Therefore, interest accrual is performed whenever a user
performs an action which requires up-to-date loan amounts. Here, the interest
rate in implementations is not recomputed for each time period. Instead, a single
interest rate is applied to the period since the last interest accrual [9,20] in order
to reduce the cost of execution, leading to inaccuracies in loan interest.

Comparison with other LP models There are few models of lending pools
in the literature. The liquidation model of [46] is meant to simulate interac-
tions between lending pool liquidations and token exchange markets in times of
high price volatility. Unlike in our presented model, [46] performs liquidations
in aggregate, and it omits individual user actions. The interest rate functions
of [47] formalize various interest rate strategies used by LP implementations,
and can be seen as complementary to our work. Indeed, even if we did not
incorporate such functions directly in our model (for brevity), they could be
easily included as instances of Iπ(τ) in rule [Int]. The work [50] introduces a LP
state model, which is instantiated with historical user transactions observable in
the Compound implementation deployed on Ethereum. The model abstraction
facilitates the observation of state effects of each interaction, and investigates
the (historical) latency of user liquidations following the undercollateralization
of borrowing accounts. Aforementioned work prioritizes high-level analysis over
model fidelity: indeed, the lending pool properties and attacks we present are a
direct consequence of the precision in our lending pool semantics.

Future work Our model already allows us to formally establish properties of
LPs (Section 4), and to precisely describe potential attacks to LPs as sequences
of user actions (Section 5). This paves the way for future automatic analyses
of LPs, which could exploit e.g., model checking or automated theorem prov-
ing tools. Following the same approach we used in Section 3, we could devise
formal models of other DeFi archetypes, like e.g. stable coins, automatic mar-
ket makers, and flash loans. In this perspective, it would be possible to extend
the scope of analysis techniques to attacks that exploit the interplay between
different archetypes, which so far have been found manually by adversaries, as
documented in [51]. A complementary line of research is the design of domain-
specific languages for DeFi contracts, in the spirit of the works [34,37,43,52] on
languages for financial derivatives. By leveraging primitives specifically tailored
to DeFi, these languages could simplify the task of analysing DeFi contracts:
actually, this task is overwhelmingly complex for current LP implementations,
which amount to thousands of lines of Solidity code.

141

References

1. ERC-20 token standard (2015), https://github.com/ethereum/EIPs/blob/
master/EIPS/eip-20.md

2. Understanding the DAO attack (June 2016), http://www.coindesk.com/
understanding-dao-hack-journalists/

3. Parity Wallet security alert (July 2017), https://paritytech.io/blog/security-
alert.html

4. A Postmortem on the Parity Multi-Sig library self-destruct (November 2017),
https://goo.gl/Kw3gXi

5. Aave markets website (2020), https://app.aave.com/markets
6. Aave maximum liquidation amount (2020), https://github.com/aave/aave-

protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/
lendingpool/LendingPoolLiquidationManager.sol#L181

7. Aave v1 flashloan receiver interface (2020), https://github.com/aave/aave-
protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/
flashloan/interfaces/IFlashLoanReceiver.sol#L11

8. Aave v1 implementation (2020), https://github.com/aave/aave-protocol/
tree/efaeed363da70c64b5272bd4b8f468063ca5c361

9. Aave v1 simplified interest (2020), https://github.com/aave/aave-
protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/
libraries/CoreLibrary.sol#L423

10. Aave valuation of atokens (2020), https://github.com/aave/aave-
protocol/blob/efaeed363da70c64b5272bd4b8f468063ca5c361/contracts/
lendingpool/LendingPoolDataProvider.sol#L114

11. Aave website (2020), https://www.aave.com
12. Akropolis Defi attack (2020), https://cryptonews.com/news/defi-akropolis-

drops-20-following-a-usd-2m-heavy-hack-8299.htm
13. bzx fulcrum website (2020), https://fulcrum.trade
14. Coindesk: Value DeFi attack (2020), https://www.coindesk.com/value-defi-

suffers-6m-flash-loan-attack
15. Compound comptroller setter (2020), https://github.com/compound-finance/

compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/
contracts/CToken.sol#L1152

16. Compound implementation (2020), https://github.com/compound-finance/
compound-protocol/tree/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6

17. Compound markets website (2020), https://compound.finance/markets
18. Compound maximum liquidation amount (2020), https:

//github.com/compound-finance/compound-protocol/blob/
a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/contracts/ComptrollerG5.
sol#L510

19. Compound oracle attack (2020), https://news.bitcoin.com/100-million-
liquidated-on-defi-protocol-compound-following-oracle-exploit

20. Compound simplified interest (2020), https://github.com/compound-finance/
compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/
contracts/CToken.sol#L423

21. Compound valuation of ctokens (2020), https://github.com/compound-finance/
compound-protocol/blob/a5591d5f9a7f6f7ad3601ec89b126a8c2af159f6/
contracts/ComptrollerG5.sol#L753

22. Compound website (2020), https://www.compound.finance

142

23. Curve statistics (2020), https://www.curve.fi/dailystats
24. Curve website (2020), https://www.curve.fi
25. dydx website (2020), https://dydx.exchange
26. Harvest Finance flashloan attack post-mortem (2020), https://medium.

com/harvest-finance/harvest-flashloan-economic-attack-post-mortem-
3cf900d65217

27. Makerdao website (2020), https://https://makerdao.com
28. Origin Dollar attack (2020), https://cryptonews.com/news/4th-major-defi-

hack-in-a-month-origin-dollar-loses-usd-7m-8331.htm
29. Uniswap oracle template (2020), https://github.com/Uniswap/uniswap-v2-

periphery/blob/dda62473e2da448bc9cb8f4514dadda4aeede5f4/contracts/
examples/ExampleOracleSimple.sol

30. Uniswap statistics (2020), https://info.uniswap.org
31. Uniswap website (2020), https://www.uniswap.org
32. Angeris, G., Chitra, T.: Improved price oracles: Constant function market makers.

arXiv preprint arXiv:2003.10001 (2020), https://arxiv.org/pdf/2003.10001
33. Angeris, G., Kao, H.T., Chiang, R., Noyes, C., Chitra, T.: An analysis of uniswap

markets. Cryptoeconomic Systems Journal (2019), https://ssrn.com/abstract=
3602203

34. Arusoaie, A.: Certifying Findel derivatives for blockchain. CoRR abs/2005.13602
(2020), https://arxiv.org/abs/2005.13602

35. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts (SoK). In: Principles of Security and Trust (POST). LNCS, vol. 10204, pp.
164–186. Springer (2017). https://doi.org/10.1007/978-3-662-54455-6 8

36. Bartoletti, M., Bracciali, A., Lepore, C., Scalas, A., Zunino, R.: A formal model of
Algorand smart contracts. In: Financial Cryptography (2021), (to appear) https:
//arxiv.org/abs/2009.12140

37. Biryukov, A., Khovratovich, D., Tikhomirov, S.: Findel: Secure derivative contracts
for Ethereum. In: Financial Cryptography Workshops. LNCS, vol. 10323, pp. 453–
467. Springer (2017). https://doi.org/10.1007/978-3-319-70278-0 28

38. Buterin, V.: Ethereum: a next generation smart contract and decentralized appli-
cation platform. https://github.com/ethereum/wiki/wiki/White-Paper (2013)

39. Chitra, T.: Competitive equilibria between staking and on-chain lending. arXiv
preprint arXiv:2001.00919 (2019), https://arxiv.org/pdf/2001.00919

40. Chitra, T., Evans, A.: Why stake when you can borrow? Available at SSRN 3629988
(2020), https://arxiv.org/pdf/2006.11156

41. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: IEEE Symposium on Security and
Privacy. pp. 910–927. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00040

42. Darlin, M., Papadis, N., Tassiulas, L.: Optimal Bidding Strategy for Maker Auc-
tions. arXiv preprint arXiv:2009.07086 (2020), https://arxiv.org/pdf/2009.
07086

43. Egelund-Müller, B., Elsman, M., Henglein, F., Ross, O.: Automated execution of
financial contracts on blockchains. Business & Information Systems Engineering
59(6), 457–467 (2017). https://doi.org/10.1007/s12599-017-0507-z

44. Eskandari, S., Moosavi, S., Clark, J.: SoK: Transparent Dishonesty: Front-Running
Attacks on Blockchain. In: Financial Cryptography. pp. 170–189. Springer Inter-
national Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-43725-1 13

143

45. Gu, W.C., Raghuvanshi, A., Boneh, D.: Empirical measurements on pricing oracles
and decentralized governance for stablecoins. Available at SSRN 3611231 (2020),
http://dx.doi.org/10.2139/ssrn.3611231

46. Gudgeon, L., Pérez, D., Harz, D., Livshits, B., Gervais, A.: The decentralized
financial crisis. In: Crypto Valley Conference on Blockchain Technology (CVCBT).
pp. 1–15. IEEE (2020). https://doi.org/10.1109/CVCBT50464.2020.00005

47. Gudgeon, L., Werner, S., Perez, D., Knottenbelt, W.J.: Defi protocols for
loanable funds: Interest rates, liquidity and market efficiency. In: ACM
Conference on Advances in Financial Technologies. pp. 92–112 (2020).
https://doi.org/10.1145/3419614.3423254

48. Kao, H.T., Chitra, T., Chiang, R., Morrow, J.: An Analysis of the Market
Risk to Participants in the Compound Protocol https://scfab.github.io/2020/
FAB2020_p5.pdf

49. Moin, A., Sekniqi, K., Sirer, E.G.: Sok: A classification framework for stablecoin
designs. In: Financial Cryptography and Data Security. LNCS, vol. 12059, pp.
174–197. Springer (2020). https://doi.org/10.1007/978-3-030-51280-4 11

50. Perez, D., Werner, S.M., Xu, J., Livshits, B.: Liquidations: Defi on a knife-edge. In:
Financial Cryptography (2021), (to appear) https://arxiv.org/abs/2009.13235

51. Qin, K., Zhou, L., Livshits, B., Gervais: Attacking the DeFi Ecosystem with Flash
Loans for Fun and Profit. In: Financial Cryptography (2021), (to appear) https:
//arxiv.org/pdf/2003.03810

52. Seijas, P.L., Thompson, S.J.: Marlowe: Financial contracts on
blockchain. In: ISoLA. LNCS, vol. 11247, pp. 356–375. Springer (2018).
https://doi.org/10.1007/978-3-030-03427-6 27

53. Wang, D., Wu, S., Lin, Z., Wu, L., Yuan, X., Zhou, Y., Wang, H., Ren, K.: Towards
understanding flash loan and its applications in defi ecosystem. arXiv preprint
arXiv:2010.12252 (2020), https://arxiv.org/pdf/2010.12252

54. Wang, Y.: Automated market makers for decentralized finance (defi). arXiv
preprint arXiv:2009.01676 (2020), https://arxiv.org/pdf/2009.01676

55. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-Frequency Trading
on Decentralized On-Chain Exchanges. arXiv preprint arXiv:2009.14021 (2020),
https://arxiv.org/pdf/2009.14021

144

A Supplementary material

Proof of Lemma 1

The proof is by induction on the length of the trace from an initial state to
the state σ | π | p. The base case is when σ | π | p is an initial configuration.
Then, (10) trivially holds since Tπ is empty. Now assume as induction hypothesis
that (10) holds for a reachable configuration Γ. We can show that the equation

also holds for all configurations Γ ′ such that Γ
`−→ Γ ′ by considering all possible

cases for `. First note, that there are a number of cases where the state com-
ponents involved in (10) are not affected at all. These are: TrfA(B, v : τ), Px,
Int, BorA(v : τ), and RepA(v : τ). If ` is DepA(v : τ) or RdmA(v : τ) we note that
the transition will increase and decrease both sides of (10) equally. Last, if ` is
LiqA(B, v : τ, v′ : τ ′) or MtrfA(B, v : τ) the sum in the lhs of (10) is kept constant
(minted tokens are just transferred from one user to another one) and the rhs is
not affected. ut

Proof of Lemma 2

We show that for a single transition σ | π | p `−→ σ′ | π′ | p′ the following holds:

(a) ERπ(τ) < ERπ′(τ), if ` = Int and ∃A : (πl A) τ > 0
(b) ERπ(τ) = ERπ′(τ), otherwise.

Part (a) is easy to see, since the execution of Int strictly increases the existing
loans on τ which are used in the numerator of the first case in (4), without
affecting the denominator.

For part (b) there are a number of cases where the state components involved
in ER are not affected at all. These are: Int (if 6 ∃A : (πl A) τ > 0), TrfA(B, v : τ),
Px, and MtrfA(B, v : τ). If ` is BorA(v : τ), RepA(v : τ), or LiqA(B, v : τ0, τ1) we
note that the transition will increase and decrease the summands in the numera-
tor of the first case in (4) equally. Last, If ` is DepA(v : τ) or RdmA(v : τ) we note
that the transition will increase and decrease the numerator and denominator of
the first case in (4) in quantities proportional to ERπ . ut

Proof of Lemma 3

The proof is by induction on the length of the trace σ | π | p −→∗ σ′ | π′ | p′. The
base case is when σ | π | p = σ′ | π′ | p′. Then the lemma trivially holds since
splyσ,π(τ) = splyσ′,π′(τ). Now, assume as induction hypothesis that the lemma
holds for all executions of length n. We show that it also holds for executions

of length n + 1. In particular we show that for a single transition σ | π | p
`−→

σ′ | π′ | p′ token supplies remain constant by considering all possible cases for
`, where state components of Equation (11) are affected. These are: DepA(v : τ),
BorA(v : τ), RdmA(v : τ) and LiqA(B, v : τ, v′ : τ ′). If ` is DepA(v : τ), BorA(v : τ)
or LiqA(B, v : τ, v′ : τ ′), changes applied to σA(τ) and πf (τ) in Equation (11)
cancel out. If ` is RdmA(v : τ), the same is true for user balance and lending
pool balance of token uπ(τ). ut

145

Proof of Lemma 4

By inspecting the formalization of the transitions it is easy to see which actions
can increase or decrease in just one transition the net worth of a user on a specific
token or in total, and to which extent. Indeed is is easy to see that the only
actions that can modify the total net worth of a user A are Int, TrfA(B, v : τ),
MtrfA(B, v : τ), Px and LiqA(B, v : τ, v′ : τ ′). Only the latter uses an action of
the form A(. . .). The rest of the actions of the form A(. . .) are DepA(v : τ),
BorA(v : τ), RepA(v : τ), and RdmA(v : τ). Inspecting their effect on wallets and
loans we can notice that they simply exchange tokens in a way that keeps the
net worth constant: DepA(v : τ) and RdmA(v : τ) simply swap amounts of free
tokens and corresponding minted tokens proportionally to the exchange rate,
while BorA(v : τ) and RepA(v : τ) simply move exact amounts of free tokens
between wallets and loans. ut

Proof of Lemma 5

The main idea is that interest accrual affects net worth by increasing the share
of deposited tokens (on which there is at least one non-empty loan) and in-
creasing loan amounts. The only actions that increase a user’s deposits are
DepA(v : τ) and LiqA(B, v : τ, v′ : τ ′), while the only action that decreases loans
is RepA(v : τ). ut

146

Formal Analysis of Lending Pools in
Decentralized Finance

Publication Information
Massimo Bartoletti, James Chiang, Tommi Junttila, Alberto Lluch-Lafuente, Massimiliano Mirelli,
and Andrea Vandin. “Formal Analysis of Lending Pools in Decentralized Finance.” In Leveraging
Applications of Formal Methods, Verification and Validation. Adaptation and Learning: 11th
International Symposium, ISoLA 2022, Rhodes, Greece, October 22–30, 2022, Proceedings, Part
III, pp. 335-355. Cham: Springer Nature Switzerland, 2022.

Contribution
• Co-author.

147

Formal Analysis of Lending Pools in
Decentralized Finance

Massimo Bartoletti1[0000−0003−3796−9774], James Chiang2[0000−0002−5126−9494],
Tommi Junttila3,

Alberto Lluch Lafuente2?[0000−0001−7405−0818], Massimiliano
Mirelli2[0000−0001−9441−173X], and Andrea Vandin4,2[0000−0002−2606−7241]

1 Università degli Studi di Cagliari, Cagliari, Italy
bart@unica.it

2 Technical University of Denmark, DTU Compute, Copenhagen, Denmark
{jchi,albl}@dtu.dk

massimilianomirelli.mm@gmail.com
3 Aalto University, Espoo, Finland

tommi.junttila@aalto.fi
4 Sant’Anna School of Advanced Studies, Pisa, Italy

andrea.vandin@santannapisa.it

Abstract. Decentralised Finance (DeFi) applications constitute an en-
tire financial ecosystem deployed on blockchains. Such applications are
based on complex protocols and incentive mechanisms whose financial
safety is hard to determine. Besides, their adoption is rapidly growing,
hence imperilling an increasingly higher amount of assets. Therefore,
accurate formalisation and verification of DeFi applications is essential
to assess their safety. We have developed a tool for the formal analysis
of one of the most widespread DeFi applications: Lending Pools (LP).
This was achieved by leveraging an existing formal model for LPs, the
Maude verification environment and the MultiVeStA statistical analyser.
The tool supports several analyses including reachability analysis, LTL
model checking and statistical model checking. In this paper we show
how the tool can be used to analyse several parameters of LPs that are
fundamental to assess and predict their behaviour. In particular, we use
statistical analysis to search for threshold and reward parameters that
minimize the risk of unrecoverable loans.

1 Introduction

Financial trading has recently shifted to virtual markets, platforms entirely reg-
ulated and controlled by novel protocols. Decentralised Finance (DeFi) [34] ap-
plications are deployed on blockchains like Ethereum [34,12], which offer dis-
tributed infrastructures to execute smart contracts [18] without intermediaries.
DeFi has recently been employed by a growing community of users. As of April
2022, the growth of the capital locked by DeFi applications has increased almost

? Corresponding author.

148

10 times in the last two years: from approximately $9.78bn, on 1 April 2020,
to over $83.51bn, on 1 April 2022 [29]. Even assuming the security guarantees
ensured by the underlying blockchain, DeFi smart contracts have several vulner-
abilities latent in their design [30,36]. Given the considerable amount of funds
daily exchanged on DeFi platforms [1,16], even minor design flaws could deter-
mine massive and intolerable losses [21]. Notwithstanding the increasing interest
of several research groups in this area [9,5,2,32,4,19], the complexity of DeFi
protocols yields new interesting research problems. Formal verification of these
systems is crucial, in order to ensure their correctness and security.

The verification tool proposed in this paper simulates and analyses Lending
Pools (LPs), one of the most popular DeFi applications, whose two main features
are lending and borrowing assets, to support various financial practices, includ-
ing margin trading. Our verification tool is based on the formal model of LPs
proposed in [6]. Such model encompasses the behaviour of the most widespread
LPs, namely Aave [10] and Compound [24].

We craft an operational specification of the LP model of [6] in Maude [15],
a specification language which is particularly suitable for highly concurrent sys-
tems such as LPs. Additionally, Maude provides a very extensive environment
for both simulating and verifying the properties of the specified models. Given
the complexity of the modelled systems, the analyses techniques offered by the
Maude environment are not sufficient. Specifically, since the system may evolve
by following an infinite number of execution paths, the traditional model check-
ing methods result in being either ineffective or unviable. Therefore, the Maude-
based LP simulator has been extended to support statistical analyses. This has
been achieved by integrating the simulator with the MultiVeStA statistical anal-
yser proposed in [31] and recently redesigned to focus on analyses of interest for
of economical agent-based models [33]. The tool offers analysis techniques from
the family of statistical model checking [3]. These statistical analyses, despite
producing less accurate results, allow to observe the quantitative behaviour of
large instances of the model, offering statistically-reliable results. In the case of
lending pools, this approach allows to estimate parameters of the model so to
increase its safety. Specifically, an essential safety property of the model is that
the value of non-repayable loans is low.

This paper is based on the work done in [25] and proposes a Maude-based
LP simulator (Section 3) capable of conducting several analyses of lending pools
including LTL model checking and statistical analysis. The tool is open source
and available at [26]. Additionally, the study showcases the usage of the tool by
answering a still non-investigated research question, aiming at an enhancement
of the analysed platforms’ safety. In particular, the statistical analysis presented
in Section 4 shows that a choice of the parameters used to instantiate the LP
model reduces the amount of non-repayable loans.

149

2 Lending Pools and Price Models

Lending Pools. Lending Pools [35] are a class of DeFi applications which
allow users to lend and borrow cryptoassets. At the time of writing, LPs are
the most used DeFi applications, with the majority of them being deployed on
Ethereum [29]. Deposited funds are pooled and lent on-demand to borrowers,
only if they possess enough collateral (i.e. only if their account is overcollater-
ized). As blockchains typically do not provide strong identities, but pseudonyms
[12], users’ actions are difficult to be regulated under a jurisdiction, which makes
collateralization the main protection mechanism against adversarial behaviours
[27]: an agent can only borrow a quantity of tokens worth less than the amount
of collateral they deposited. This mechanism and others (e.g. interest rates) is
in place in order to incentivize borrowers to repay their loans.

We now recall details of the lending pools model in [6]. The basic components
of the model are agents and cryptoassets. LP agents are the rational entities
taking part in the protocol. Contrarily, LP cryptoassets are token types, each
representing a different virtual currency. The model distinguishes two classes
of token types: free tokens and minted tokens, denoted respectively by the sets
Tf = {τi}i∈[1..k] and Tm = {τ ′i}i∈[1..k], where k is the number of cryptocurrencies
available on the pool. The difference between these classes of token types is that
free tokens have a value established by external markets, whereas minted tokens
are assets coined by the protocol, hence holding value only in a specific LP
environment. In other words, minted tokens are loyalty credits held by the agents
actively joining the protocol. In fact, minted tokens are granted by the protocol
to the agents in return for free tokens, hence each minted token τ ′ corresponds
to a free token τ , also called its underlying token. We denote by T the set of all
token types, i.e. T = Tf ∪ Tm.

Given agents and assets, the LP model yields as a transition system where
each state Γ is of the form Γ = σ | π | p:

1. The wallets function σ : A → (T → R+
0) stores each agent’s balance of

tokens. For instance, the wallet of an agent A is expressed by the partial
function σA, and the balance of its τ -typed tokens by σA(τ).

2. The pool component π is a triple (πf , πl, πm). It is composed by three partial
functions: πf : Tf → R+

0 storing the amount of free tokens deposited in the
pool, πl : A → (Tf → R+

0) memorising the loans each agent owes to the pool
and πm : Tf → (Tm × R+

0) keeping track of the minted tokens (also called
the collateral or credits) purchased from the pool.

3. The price function p : dom(πf) → R+
0 stores the price of each free token

available in the pool.

Given a partial map f , we denote by f{v/x} the point-wise update of f at
the point x to the value v. In order to add and remove tokens in the functions
defined above, a partial binary operation ◦ : R+

0 × R+
0 → R+

0 , such as addition,
is extended to them. Given a partial map f : T → R+

0 , a token type τ ∈ T and

150

a value v ∈ R+
0 , the partial map f ◦ v : τ is defined as

f ◦ v : τ =

{
f{f(τ) ◦ v/τ} if τ ∈ dom(f) and f(τ) ◦ v is defined

f{v/τ} if τ /∈ dom(f)

In order to describe the model evolution, some additional definitions shall be
given. The following LP components may rely on the whole state Γ , or some of
its components. This dependency is indicated by the means of subscripts. For
instance, writing FX means that F depends on the X component of the state.

The functions V lΓ and V mΓ define, respectively, value of tokens lent to a given
agent, and the value of minted tokens owned by a given agent:

V lΓ (A) =
∑

τ∈Tf
(πl(A))(τ) · p(τ) V mΓ (A) =

∑

τ ′∈Tm
σA(τ ′) · ERπ(τ ′, τ) · p(τ)

where ERπ(τ ′, τ) is the exchange rate of minted tokens (see Section 3.1 of [6]).
The collateralization of an agent A is defined as CΓ (A) = VmΓ (A)/V lΓ (A). This

is an essential indicator of agents’ lending safety: in fact, a collateralization below
a given threshold (Cmin) entails an agent to be liquidated and hence to incur in
a financial loss, as detailed later.

The behaviour of agents interacting with a lending pool is formalized as a set
of rewriting rules, which define transitions between states. Such transitions are

written as Γ
rA(z

n)−−−−→ Γ ′, where Γ is the starting state, Γ ′ is the target state, and
rA(zn) is the action (fired by A) which triggers the state transition. Actions have
the form rA(zn), where r is the action name, and zn is an n-tuple of parameters.

The main actions of lending pools are informally summarised in Table 1. Since
the focus in this paper is on liquidations as one of the key incentive mechanisms,
we will provide the details for such action only. Figure 1 provides a formal
description of the rule. The essential preconditions to understand the rule are

4 , 8 , 9 , 10 and 11 .

1 τ ′ ∈ Tm 2 σA(τ̂) ≥ v 3 πl(B)(τ̂) ·Maxliq ≥ v
4 v′ = v · p(τ̂)

p(τ)
· rliq 5 σB (τ ′) ≥ v′ 6 π′

f = πf + v : τ̂

7 π′
l = πl{πl (B)− v : τ̂ /B} 8 σ′

A = σA − v : τ̂ + v′ : τ ′ 9 σ′
B = σB − v′ : τ ′

10 Cσ|π|p(B) < Cmin 11 Cσ′|π′|p(B) ≤ Cmin

σ | π | p LiqA(B,v:τ̂ ,τ ′)−−−−−−−−−→ σ{σ′
A/A}{σ′

B/B} | (π′
f , π

′
l, πm) | p

Fig. 1: The rule for liquidation.

3 The amount of repayable loan is limited by a percentage factor Maxliq, as
done in Aave [11] and Compound [28].

151

DepA(v : τ) A deposits v free-tokens of type τ from its wallet to the pool. Subse-
quently, the pool coins v′ units of τ ′, with v′ computed so to incen-
tivize deposits only if the LP is lacking free tokens.

RdmA(v : τ ′) A redeems v units of the minted token τ ′, as long as A’s collateraliza-
tion is greater than a threshold (Cmin) and LP holds enough tokens
of type τ ′.

BorA(v : τ) A borrows v units of a free token τ , assuming it has enough collateral.
RepA(v : τ) A repays v units of its loan in the free token τ to the LP.
LiqA(B , v : τ̂ , τ ′) A (liquidator) liquidates a variable amount of B ’s (borrower’s)

minted tokens τ ′, by paying v units of free tokens τ̂ . Notably, τ̂ ∈ Tf
is in general different from τ , the underlying token of τ ′ ∈ Tm. This
action can be executed only if the B ’s collateralization is below Cmin,
meaning B is undercollaterized.

Int The LP contract accrues interest on the existing loans. This disin-
centivizes borrowers from postponing their loans repayment.

Price Token prices are updated according to a given price evolution model.

Table 1: Summary of some of the lending pools actions from [6].

4 computes the reward for the liquidating agent. This is based on the liquidated
amount v and the reward factor rliq. The idea is that A, by repaying part
of B ’s loan, is reducing the likelihood of the protocol to become illiquid.
This behaviour is incentivized by the platform by setting the aforementioned
reward to a value strictly higher than 1. A common value for rliq is 1.1.

8 , 9 update the involved agents’ wallets, A repays v units of B ’s loan in τ̂ and is
compensated with v′ units of τ ′

10 ensures that the rule is executable only if B ’s collateralization is less than
Cmin, which is often set to 1.5. This rule is the reason why agents’ collater-
alization should be at least Cmin, so to avert the risk of being liquidated and
incurring in the loss of the liquidation reward rliq.

11 prevents A from seizing a higher collateral amount than the one required for
B to be considered safe (i.e. CΓ (B) ≥ Cmin).

Figure 2 illustrates the transition system for a simple running example, where
three liquidate actions are executed. The figure shows six possible traces all orig-
inating from Γ0 and having Γ3,1 as final state. Each state in the figure is defined
by a row in Table 2. Additionally, transitions, namely Liq actions performed by
D , are indicated by different colours depending on the liquidated borrower in
both the transition system and the table. Notably, assuming Cmin = 1.5 and
rliq = 1.1, all borrowers in Γ0, A,B and C , are undercollaterized. Specifically, A
is marginally undercollaterized since CΓ0

(A) = 1.25 > 1.1 = rliq, while B and C
are strongly undercollaterized, being both CΓ0

(B) and CΓ0
(C) below 1.1. This

allows D to seize the entire B and C ′s collateral, as evident from Γ3,1 in Table 2.
Contrarily A’s collateralization is restored to Cmin.

152

Fig. 2: Example transition system.

As an example, consider transition Γ0
LiqD (B,91:τ1,τ

′
0)−−−−−−−−−−−→ Γ1,2. Agent D repays

91 units of τ1, seizing 91 · rliq ≈ 100 units of τ ′0 from agent B . This also affects
π, in a way that the funds in τ1 are incremented by 91 units, as illustrated
by πf (τ1), while B ’s loan is decremented by 91 units, as shown by πl(B)(τ1).
Contrarily, πm is not modified by the transaction, as the 100 units of minted
tokens τ ′0 are simply transferred from B ’s wallet to D ’s one.

Fig. 3: GBM components.

Stock Market Price Modelling
We use the geometric Brownian mo-
tion (GBM) to define a predictive
model for price evolution based on
past stock market trends. A GBM
is a continuous-time stochastic pro-

cess Pt = P0·exp
[(
µ− σ2

2

)
t+ σWt

]
.

The two constants µ and σ are re-
spectively called drift and volatility,
whereas Wt is a random variable fol-
lowing a Weiner process, i.e. a process
Wt = ε

√
dt satisfying the following

properties: (i) ε ∼ N(0, 1) and (ii) for
any given pair (t0, t

′
0), Wt0 and Wt′0

are independent. In other words, a Wt

is the component yielding the stochas-
tic behaviour of a GBM. The geometric Brownian motion as a whole can be

viewed as the harmonic result of its two components [20]: (i) the drift
(
µ− σ2

2

)
t

and (ii) the volatility σWt. The effects of the two components on the resulting

153

Γ πf
πl σA σB σC σD CΓA B C

τ1 τ1 τ1 τ1 τ1 τ ′0 τ1 τ ′0 τ1 τ ′0 τ1 τ ′0 τ ′1 A B C

Γ i0 195 80 100 125 80 100 100 100 125 100 500 0 500 1.25 1 0.8

Γ1,1 245 30 100 125 80 45 100 100 125 100 450 55 500 1.5 1 0.8

Γ1,2 286 80 9 125 80 100 100 0 125 100 410 100 500 1.25 0 0.8

Γ1,3 286 80 100 34 80 100 100 100 125 0 410 100 500 1.25 1 0

Γ2,1 336 30 9 125 80 45 100 0 125 100 359 155 500 1.5 0 0.8

Γ2,2 336 30 100 34 80 45 100 100 125 0 359 155 500 1.5 1 0

Γ2,3 377 80 9 34 80 100 100 0 125 0 318 200 500 1.25 0 0

Γ3,1 427 30 9 34 80 45 100 0 125 0 268 255 500 1.5 0 0

Table 2: States of the transition system in Figure 2. For simplicity, the price
function p is assumed to be constant such that p(τ0) = p(τ1) = 1 in every state.
The values of the LP parameters are Cmin = 1.5, rliq = 1.1 and Maxliq = 1.

process is shown in Figure 3. The drift component defines the trend of the re-
sulting process, whereas the volatility component is a measure of the randomly
sampled shocks. Intuitively, this signifies that negative values for µ yield to a
downward prediction trend, whereas positive ones to a growth. Oppositely, the
higher the σ is, the more significantly the prices predictions change. Ususall, µ
and σ are estimated based on the daily log returns of the targeted stock mar-
ket [17,20]. Given the closing prices of two consecutive trading days C1 and C2,
the log return w.r.t. the second trading day is defined as ln(C2)− ln(C1).

3 An LP Simulator for Liquidating Agents

We now lay the foundations for tackling a significant research problem for LPs:
finding optimal Cmin and rliq parameters. This is achieved by instantiating the
LP simulator to conduct statistical analyses of the model. The simulator com-
prises: the Maude specification of LPs [26]; a strategy for automating the be-
haviour of rational liquidators (Section 3.1); and a price evolution model for the
three most widely employed cryptocurrencies (Section 3.2).

3.1 A Fully-automated Liquidating Strategy

This section introduces a liquidating strategy causing the LP protocol to possibly
reach unsafe states, where loans are not guaranteed to be repaid. We first give an
intuitive understanding of aggressive liquidating behaviours, and then describe
the proposed liquidating strategy.

The impact of liquidations on collateralization Liquidate actions involve
two agents: a liquidator, i.e. as an agent with enough tokens to fire liquidate
actions, and a borrower with a collateralization below the threshold Cmin.

154

Liquidators have a fundamental role in the financial safety of LPs, as they
supply free tokens whenever the pool is lacking them. On the other hand, ex-
cessively zealous liquidators could be harmful to the system, since they could
disincentivize undercollaterized borrowers to repay their loans. This is exem-
plified in Figure 4, where all the liquidating scenarios are outlined. The figure
illustrates the agents’ collateralization, detailing the outcomes of liquidate ac-
tions in every possible (non-trivial) state. The scenarios are also captured by the
running example in Figure 2.

Fig. 4: Liquidation scenarios

Firstly, the three dashed lines in the figure
correspond to the liquidation parameters spe-
cific to the instantiated pool. Their labels rep-
resent the respective line slopes. The line la-
belled 1 depicts the scenarios where the collat-
eral value equals the loan value. Consequently,
it can be intended as the loan repayment in-
centivizing threshold, i.e. the collateralization
value below which borrowing agents should be
considered to be disincentivized in repaying
their loans as their outstanding loan debt ex-
ceeds their collateral in value. These residual
loans are also called non-recoverable.

Additionally, the three points indicate the
initial collateralization of three liquidated bor-
rowers. Each liquidation action is illustrated
by a solid line drawn from CΓ (I) to CΓ ′(I) for I ∈ {A,B ,C}. Liquidations
entail a decrease in the liquidated user’s collateralization by a linear factor pro-
portional to rliq and ultimately determined by the liquidator. Note that the
liquidation actions described in the figure follow the semantics of the liquidate
action, as the resulting loan value must be greater than zero and the final col-
lateralization must be at most Cmin.

It is worth observing that the liquidations in the figure can be achieved by
applying only one action if and only if two conditions hold. Firstly, the liquida-
tor invests enough liquidity to seize the entire seizable collateral. Secondly, the
liquidated borrower does not diversify the type of the loan. If either the first
condition or the second does not hold, then the liquidations illustrated in the
figure can be achieved uniquely by performing several liquidate actions on the
borrower. This is frequently the case in the major LP implementations (Com-
pound and Aave). In fact, these prevent the whole seizable collateral amount to
be atomically liquidated, by setting Maxliq which is variable in Compound [28]
and constant (equals to 0.5) in Aave [11]. Our model includes the parameter
Maxliq as a constant following Aave, but it could be extended to a variable one.

The proposed liquidating strategy As shown in Figure 4, the collateraliza-
tion of A is re-established, whereas liquidations cause B and C to lose their entire
collateral, disincentivizing them from repaying the loans. In light of this fact, a

155

relevant research question is whether there exists an optimal pair (Cmin, rliq)
such that the number of non-recoverable loans is minimal.

It is worth to observe that, ideally, the closer rliq is to 1, the more the col-
lateralization of a loan can drop and still be recoverable by liquidation. Thus
a rliq marginally greater than 1 is optimal in our model, since it would lead
to the strongest recovery of user collateralization during liquidation. However,
actual platforms deviate from such ideally optimal rliq as the costs incurred by
liquidators to execute actions have to be compensated by a suitable discount
rliq on the purchase of minted tokens from the liquidated borrowers. In order to
investigate the effects of choices rliq and Cmin, we propose a strategy attempting
to reproduce a rational behaviour for liquidators. The employed strategy sim-
ulates a rational behaviour where liquidators repay the entire borrowers’ loan.
The rationality of the behaviour we are going to study is based on the following
key observations:

1. Fast liquidations have the advantage of restoring liquidity whenever the bor-
rowers have collateralization slightly above rliq (see agent A in Figure 4).

2. On the other hand, fast liquidations may generate non-recoverable loans
whenever the borrowers have collateralization slightly below rliq (as for
agents B and C in Figure 4).

3. Price fluctuations can change the scenario between (1) and (2). For example,
it could raise the collateralization of borrowers to rliq allowing the liquidators
to effectively restore the agents’ collateralization to Cmin, so that it would
be convenient to delay liquidations.

The strategy used to implement the liquidator behaviour selects the liquidate
input parameters, so to maximise the value of seized collateral. Specifically, given
a liquidator L, the strategy computes the remaining four parameters of Liq: the
borrower’s agent identifier (Br), the amount of loan to be repaid (vr), the type
of the asset to be repaid (τ̂r) and the one of the asset to be seized (τ ′r). Because
of space constraints, we refer to [25] for a detailed account of the strategy.

3.2 Price Modelling

This section describes the price model employed to predict cryptocurrencies
prices, based on historical data. We start with an overview of the price model
to motivate its adoption. Afterwards, we present the three model instantiation
scenarios used in the subsequent statistical analysis.

Predicting cryptocurrency prices The cryptoassets prices are derived from a
statistical model representative of the past price behaviour based on the GBM.
A GBM is instantiated by two parameters drift and volatility which can be
estimated from the currency historical data. This makes the GBM the ideal
stochastic process for modelling stock prices based on their past evolution [17].

Aiming at stress-testing the LP protocol and inspired by [19], we have de-
signed three different scenarios, each comprising a pair of price trends. In prac-
tice, each scenario simulates the evolution of prices of a given collateral and loan

156

assets, in a way that respectively when the former declines, the latter increases.
In fact, assuming that each borrower B0 owes a loan in only one asset type τl
and similarly holds collateral of only one asset type τm, such a model for prices
necessarily causes some borrowers to become undercollaterized, as shown in (1).

CΓ (B0) =
V mΓ (B0)

V lΓ (B0)

p(τm)→0 p(τl)→V−−−−−−−−−−−−→ 0,with V � 0 (1)

More precisely, prices modelling is achieved by opportunely gathering the
data used to estimate the parameters (drift and volatility) for generating a
growing, decreasing or relatively constant GBM process. In the literature, daily
closing prices of stock markets are used since their samples generally tend to
be normal, which allows to employ the GBM generic formula. Ultimately, since
prices’ predictions pairs should variate in a way that they simultaneously display
an opposite behaviour, it is necessary to correlate them, as shown in [20].

Prices model instantiation Given a collateral asset τm and a loan asset τl,
the three prices evolution pairs are shown in Table 3.

Scenario τm τl p(τm) p(τl)

ETH-WBTC ETH WBTC Declining Increasing

ETH-USDC ETH USDC Declining Constant

USDC-WBTC USDC WBTC Constant Increasing

Table 3: The three implemented prices evolution scenarios

The choice of the cryptocurrencies in the table is motivated by their closing
price historical evolution in three different trimesters (shown in the Appendix,
Figure 9). By using those samples, it is possible to simulate the desired trends
indicated in the columns named p(τm) and p(τl). This is achieved by estimating
the expected price returns (µ) and the price volatility (σ), which are utilised
as the drift and volatility instantiating the resulting GBM. The two parameters
are estimated according to [20]. The drift µ is simply obtained by computing
the mean over the closing prices. Contrarily, σ is calculated as σ = s√

T
, where

T = 91
365 , s indicates the standard deviation of the log returns and

√
T is the

annualisation constant.

The selected sampling time span (91 days, i.e. a trimester) is motivated by
the fact that cryptoassets are subject to sudden fluctuations and, even though
short samples might not be representative of the entire population, this is a
consolidated practice [20]. Besides, the resulting price predictions span over the
same time frames, as each price model instantiation produces 91 prices predic-
tions, as illustrated in Section 3.2. Notably, the selected cryptocurrencies (ETH,
USDC and WBTC) were among the four-most-utilised assets on the Compound
market [16] at the moment of writing. Lastly, the selected closing price samples
are suitable, since the derived log returns distributions tend to be normal.

157

Currency µ σ P0 (usd)
ETH -0.012 0.12 3269.08

USDC -7.84E-5 0.005 0.99
WBTC 0.012 0.094 57260.0

Fig. 5: GBM parameters

Figure 5 shows an estimation of
the GBM parameters (obtained from
the close prices in the Appendix,
Figure 9), by the previously dis-
cussed methodology. The parameters
are then utilised to instantiate the six
GBM processes (each for price evolution), simulating the scenarios in Table 3.
Finally, the asset initial price P0 is a constant set to the actual price in USD of
each asset on May 5th, 2021.

Expected price predictions We have used the MultiVeStA statistical ana-
lyzer to examine the prices predictions generated by the GBM in each of the
scenarios explained in Section 3.2. The details are provided in the appendix (
Figure 10), and show the normalised trend of the price scenarios, discussed in
Section 3.2. The figures in the appendix show that the expected behaviour, ex-
pressed in Table 3 is obtained in all the considered scenarios. Additionally, in
Figures 10a and 10c prices predictions are strongly correlated as it is expected.
In fact, the GBMs pairs were instantiated as negatively correlated processes ac-
cordingly to [20], Section 14.5. Contrarily, Figure 10b shows less correlated prices
predictions. This is probably due to the fact that the computation was bounded
to execute maximum 5, 010 simulations. In fact, from experimental evidence, the
approximation seem to converge at a very slow speed.

4 Statistical Analysis of Liquidation Scenarios

We have experimented with the LP model simulator described in Section 3 in
order to answer the question: given a specific scenario, what is the impact of the
pair of LP parameters Cmin and rliq?

We have considered scenarios generated by four factors. First, the liquidator
logic defined in Section 3.1, determines immediate and quick liquidations, caus-
ing a significant financial loss to the liquidated party. Secondly, the agent to be
liquidated is selected so to maximise the value of seized collateral, which is the
most beneficial and rational option for liquidators. Thirdly, liquidators are as-
sumed to hold an unbounded amount of resources, which allows them to repeat
liquidations as long as there exists an undercollaterized agent. Finally, cryp-
toasset prices evolve following a trend aimed at causing borrowers to suddenly
become undercollaterized.

Fig. 6: Distribution of collateralization
in initial configurations.

We recall that the effect of the pair
Cmin and rliq we are looking for is one
that minimises the number of under-
collaterized borrowers. We have ex-
plored the space of choices for the pair
by executing MultiVeStA experiments
for all Cmin ranging, with step 0.1,
from 1.2 to 1.5 and rliq ranging from

158

1.1 to Cmin − 0.1. These ranges were
selected based on the values typically
assigned to these parameters in the
actual implementations: Cmin = 1.5
and rliq = 1.1 [6].

On these premises, we first illus-
trate the LP model initial configura-
tions used for the subsequent exper-
imentation. Next, we present the re-
sults of the performed experiments.

Initial configurations The initial configurations were designed to test the re-
sistance of different borrowers’ collateralization to becoming unrecoverable, when
subject to repeated liquidations. Since the intention is to observe the model be-
haviour under three price models (Section 3.2), three different initial configura-
tions are produced, each having a different price for collateral and loan assets.
All the configurations share the same amount and types of agents. Specifically,
a generic initial configuration comprises ten borrowers having collateralization
ranging from 1.0 to 2.0, with step 0.1. This is depicted in Figure 6, where bi
represents the generic borrower Bi ’s collateralization (CΓ i(Bi)), for Γ i initial
configuration. Additionally, an arbitrary number of liquidators (three) are added
to each configuration.

Experimental results The results discussed here were obtained by performing
MultiVeStA experiments of the LP simulator. Specifically, the inputs to the tool
are: the LP simulator discussed in Section 3, a MultiQuaTEx property to express
the desired measure to be estimated (the expected collateralization value at each
liquidation round for each borrower), and a pair of statistical parameters defining
the confidence interval (CI) of interest: the maximum confidence interval width δ
and the confidence level α = 0.05 which provides 95% statistical confidence that
the estimated value is in the confidence interval. For each property, MultiVeStA
will generate enough simulation to meet the required CI.

Figure 7 shows the per-borrower collateralization for varying liquidation
rounds and choices of Cmin and rliq in the eth-wbtc prices scenario, with a fixed
rliq = 1.1. In this scenario, one can see that undercollaterized agents have a very
different behaviour than overcollaterized ones. Specifically, the undercollaterized
agents undergo very serious liquidations, which often lead them to unrecover-
ability, as their collateralization converges to a constant below Cmin. Contrarily,
overcollaterized agents do not incur in severe financial losses.

Additionally, our experiments (presented in detail in the Appendix, Fig-
ures 11a to 11c) show that the Cmin and rliq having the least negative effects on
undercollaterized balances is Cmin = 1.5, rliq = 1.1. This is also quantitatively
confirmed by the numbers in Figure 8. Intuitively, this is a consequence of the
fact that when Cmin = 1.5 and rliq = 1.1 the collateralization of each agent b1
to b5 is higher on average than for any other Cmin and rliq pairs. As a result, the

159

Fig. 7: Per-borrower collateralization (b1 to b10) in the ETH-WBTC prices sce-
nario, for varying liquidation rounds and CMin-Rliq choices.

number of unrecoverable loans, the ones held by agents whose collateralization
is below 1, is minimised.

Price scenario (CMin-Rliq)

(1.5-1.1) (1.4-1.1) (1.3-1.1)
ETH-WBTC 0.7115 0.6518 0.6137
ETH-USDC 0.7106 0.6583 0.6231
USDC-WBTC 0.8381 0.7739 0.7299

Fig. 8: Minimum average CΓ (B1)

Finally, our experiments (pre-
sented in detail in the Appendix,
Figures 12a to 12c) show that
overcollaterized borrowers could
still incur in liquidations, in case
the prices abruptly change as in
the prices scenario ETH-WBTC.
Differently, in the other scenarios,
employing the stable coin USDC, overcollaterized agents are, on average, rarely
liquidated.

5 Related Works

Verification of DeFi applications is a fairly recent research area where several
techniques have been applied. We focus our discussion on works devoted to
formal modelling and reasoning of DeFi applications, which typically follow two
parallel directions: verification of the model properties [9,5,2,32], and statistical
analysis of the model variables [4,14,22,13,19].

The work in [9] is one of the first addressing formal verification of smart con-
tract properties. Their study combines a game-theoretic approach with proba-
bilistic model checking, ultimately validating their results with the model checker
PRISM [23]. Another example of research in this direction is Tolmach et al. [32]

160

which developed the first multi-pools model and verified invariant properties
initially formulated by [8]. Finally, [2] proposed a very relevant study on smart
contracts, by modelling not only the contracts and the agents’ behaviour but
also the underlying blockchain using the BIP framework [7] and statistical model
checking (as we do). The work in [2] employs statistical methods too. However,
in their case, statistics is useful to estimate unknown variables of the analysed
model, hence deriving desirable properties. The quantitative variables estimation
is also achieved by performing Monte-Carlo simulations, with a more closely look
at the behaviours displayed by agents [14]. In fact, most of this research in this
line [22,13,4] bases its results on Agent-Based Simulations, which is employed
to stress test the actual smart contracts implementations being executed on
a “custom-built Ethereum virtual machine that is written in C++” [22]. This
research direction, although suggesting promising results, is not ultimately sup-
ported by strong statistical guarantees, since the number of Monte Carlo simu-
lations performed to run their analyses is arbitrarily chosen and not backed by a
formal justification [22,19]. Nonetheless, a work relevant to ours is the analysis
conducted in [22] on the Compound protocol scalability in face of high stock mar-
ket prices volatility. Similarly to our work, their analysis models the prices by the
use of the GBM. However, their data collection and analysis methodologies are
very different. In fact, they do not sample entire historical periods as illustrated
in Section 3.2 for estimating prices volatility. Contrarily, they simply evaluate
the minimum and maximum volatility values ever observed and instantiate the
GBM for different prices volatilities so to simulate several market environments.
Finally, the prices model in Section 3.2 has been mostly inspired by [19]. Sim-
ilarly to [22], they stress-test an LP model, not a specific implementation, by
using the same price model explained in Section 3.2. Nonetheless, a remarkable
difference is that they instantiate the predictions of the collateral and loan assets
pairs with three different correlation parameters. We assume instead predictions
of prices pairs to be strongly negatively correlated (ρ = −1), in order to simulate
the worst-case scenario. Additionally, we reproduced [19]’s environment by using
historical data of three different real cryptoassets on the market.

6 Conclusions

We have presented a tool for the analysis of lending pools, an archetypal DeFi
application. Overall the tool consists of (i) an accurate LP simulator based on
the model of [6] which can support both the study of vulnerabilities and attacks
of LPs; (ii) a model checker capable of doing simple reachability analysis and
verifying whether LTL properties hold of specific configurations; and (iii) a tool
for statistical analysis backed by the statistical model checker MultiVeStA. In
this paper, we have focused on (iii) and we have shown how to use it to optimize
the LP parameters under specific scenarios. Details on (i) and (ii) as well as fur-
ther examples, including reproduction of price oracle attacks using reachability
analysis and LTL model checking are available in [25].

161

Future research supported by the developed tool could include the formal-
ization of further attacks and properties of the model. Specifically, one could
study resistance to illiquidity, as suggested by [22], or the behaviour of multi-
pools configurations, each offering different market opportunities to agents, as
proposed by [35] and partially developed in [32].

Acknowledgements Massimo Bartoletti is partially supported by Conv. Fon-
dazione di Sardegna & Atenei Sardi project F75F21001220007 ASTRID. James
Hsin-yu Chiang is supported by the PhD School of DTU Compute. Alberto Lluch
Lafuente is partially supported by the EU H2020-SU-ICT-03-2018 Project No.
830929 CyberSec4Europe (cybersec4europe.eu). Andrea Vandin is partially sup-
ported by the DFF project REDUCTO 9040-00224B.

References

1. Aave, S.: Aave markets - webpage. https://aave.com/ (2021)
2. Abdellatif, T., Brousmiche, K.L.: Formal verification of smart contracts based on

users and blockchain behaviors models. In: 2018 9th IFIP International Conference
on New Technologies, Mobility and Security (NTMS). pp. 1–5. IEEE (2018)

3. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Transactions
on Modeling and Computer Simulation (TOMACS) 28(1), 1–39 (2018)

4. Angeris, G., Kao, H.T., Chiang, R., Noyes, C., Chitra, T.: An
analysis of Uniswap markets. Cryptoeconomic Systems (1) (2021).
https://doi.org/10.21428/58320208.c9738e64

5. Bai, X., Cheng, Z., Duan, Z., Hu, K.: Formal modeling and verification of smart
contracts. In: Proceedings of the 2018 7th International Conference on Software
and Computer Applications. pp. 322–326 (2018)

6. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: SoK: Lending pools in decentral-
ized finance. In: Financial Cryptography Workshops. LNCS, vol. 12676, pp. 553–
578. Springer (2021). https://doi.org/10.1007/978-3-662-63958-0 40, the Lending
Pools model used in this paper is taken from a preliminary version of the paper,
published as arXiv preprint 2012.13230.

7. Basu, A., Bensalem, B., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based system design using the BIP framework. IEEE soft-
ware 28(3), 41–48 (2011)

8. Bernardi, T., Dor, N., Fedotov, A., Grossman, S., Immerman, N., Jackson, D.,
Nutz, A., Oppenheim, L., Pistiner, O., Rinetzky, N., et al.: Wip: Finding bugs
automatically in smart contracts with parameterized invariants. https://groups.
csail.mit.edu/sdg/pubs/2020/sbc2020.pdf (2020)

9. Bigi, G., Bracciali, A., Meacci, G., Tuosto, E.: Validation of decentralised smart
contracts through game theory and formal methods. In: Programming Languages
with Applications to Biology and Security, pp. 142–161. Springer (2015)

10. Boado, E.: Aave whitepaper. https://github.com/aave/protocol-v2/blob/

master/aave-v2-whitepaper.pdf (2020), accessed on 26.02.2021 - commit
aeded1520c667e59a564cf69f33a6e489b2fe489

11. Boado, E., Aave, S.: Aave protocol maximum liquidate
threshold. https://github.com/aave/aave-protocol/blob/

1ff8418eb5c73ce233ac44bfb7541d07828b273f/contracts/lendingpool/

LendingPoolLiquidationManager.sol#L181 (2021)

162

12. Buterin, V.: Ethereum whitepaper. https://ethereum.org/en/whitepaper/

(2013), accessed on 24.02.2021
13. Chitra, T., Evans, A.: Why stake when you can borrow? CoRR abs/2006.11156

(2020), https://arxiv.org/abs/2006.11156
14. Chitra, T., Quaintance, M., Haber, S., Martino, W.: Agent-based simulations of

blockchain protocols illustrated via Kadena’s chainweb. In: 2019 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW). pp. 386–395. IEEE
(2019)

15. Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Martı-Oliet, N., Meseguer,
J., Rubio, R., Talcott, C.: Maude manual (version 3.0). Tech. rep., Technical report,
SRI International Computer Science Laboratory (2020)

16. Compound Labs, I.: Compound markets - webpage. https://compound.finance/
markets (2021)

17. Dmouj, A.: Stock price modelling: Theory and practice. Masters Degree Thesis,
Vrije Universiteit (2006)

18. Entriken, W.: Introduction to smart contracts. https://ethereum.org/en/

developers/docs/smart-contracts/ (2020), accessed on 27.02.2021
19. Gudgeon, L., Perez, D., Harz, D., Livshits, B., Gervais, A.: The decentralized finan-

cial crisis. In: 2020 Crypto Valley Conference on Blockchain Technology (CVCBT).
pp. 1–15. IEEE (2020)

20. Hull, J.C.: Options futures and other derivatives. Pearson Education India (2003)
21. Jeffrey, G.: Compound price oracle attack. https://news.bitcoin.com/

100-million-liquidated-on-defi-protocol-compound-following-oracle-exploit/

(2020)
22. Kao, H.T., Chitra, T., Chiang, R., Morrow, J.: An analysis of the market risk

to participants in the Compound protocol. In: Third International Symposium on
Foundations and Applications of Blockchains (2020)

23. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proc. 23rd Interna-
tional Conference on Computer Aided Verification (CAV’11). LNCS, vol. 6806, pp.
585–591. Springer (2011)

24. Leshner, R., Hayes, G.: Compound: The money market protocol. https://

compound.finance/documents/Compound.Whitepaper.v04.pdf (2019)
25. Mirelli, M.: A formal verification tool for Lending Pools. Master’s the-

sis, Aalto University. School of Science (2021), http://urn.fi/URN:NBN:fi:

aalto-202108298504
26. Mirelli, M.: A Maude simulator for Lending Pools. https://github.

com/MMirelli/maude-lp (2021), accessed on 22.06.2022 - commit
2dae39b035938f5f9791040c53121fb473b4b7dd

27. Perez, D., Werner, S.M., Xu, J., Livshits, B.: Liquidations: DeFi on a knife-edge.
In: Financial Cryptography and Data Security. LNCS, vol. 12675, pp. 457–476.
Springer (2021). https://doi.org/10.1007/978-3-662-64331-0 24

28. Peterins, E., Flatow, J., Hayes, G., Wolff, M., Greenberg, A.: Compound pro-
tocol maximum liquidate threshold. https://github.com/compound-finance/

compound-protocol/blob/4e99ea3a64ab4f1bdf9c07c7a1bf325db09ab809/

scenario/src/Event/ComptrollerEvent.ts#L170 (2021)
29. Pulse: Defi pulse - webpage. https://defipulse.com (2021), accessed on

07.06.2021
30. Qin, K., Zhou, L., Livshits, B., Gervais, A.: Attacking the DeFi ecosystem with

flash loans for fun and profit. In: Financial Cryptography. LNCS, vol. 12674, pp.
3–32. Springer (2021). https://doi.org/10.1007/978-3-662-64322-8 1

163

31. Sebastio, S., Vandin, A.: Multivesta: Statistical model checking for discrete event
simulators. Tech. rep., IMT Institute for Advanced Studies Lucca (2013)

32. Tolmach, P., Li, Y., Lin, S.W., Liu, Y.: Formal analysis of composable defi proto-
cols. arXiv preprint arXiv:2103.00540 (2021)

33. Vandin, A., Giachini, D., Lamperti, F., Chiaromonte, F.: Automated and dis-
tributed statistical analysis of economic agent-based models. arXiv preprint
arXiv:2102.05405 (2021)

34. Wackerow, P., Rhechler: Decentralized finance (defi) - webpage. https://

ethereum.org/en/defi/ (2021), accessed on 02.06.2021
35. Werner, S.M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knottenbelt,

W.J.: SoK: Decentralized Finance (DeFi). CoRR abs/2101.08778 (2021), https:
//arxiv.org/abs/2101.08778

36. Zhou, L., Qin, K., Cully, A., Livshits, B., Gervais, A.: On the just-
in-time discovery of profit-generating transactions in DeFi protocols. In:
IEEE Symposium on Security and Privacy. pp. 919–936. IEEE (2021).
https://doi.org/10.1109/SP40001.2021.00113

A Figures

164

(a) 13/01/2018-14/04/2018

(b) 01/01/2020-01/04/2020

(c) 24/11/2020-23/02/2021

Fig. 9: Trimester closing prices, collected from CoinGecko APIs

165

(a)

(b)

(c)

Fig. 10: Prices predictions produced, for each scenario in Table 3, by GBMs
instantiated with the parameters in Figure 5.

166

(a) Scenario: eth-wbtc.

(b) Scenario: eth-usdc.

(c) Scenario: usdc-wbtc.

Fig. 11: Per-borrower collateralization (b1 to b5) in the three prices scenarios,
for varying CMin-rliq choices.

167

(a) Scenario: eth-wbtc.

(b) Scenario: eth-usdc.

(c) Scenario: usdc-wbtc.

Fig. 12: Per-borrower collateralization (b3 to b7) in the three prices scenarios,
for varying CMin-rliq choices.

168

Maximizing Extractable Value from
Automated Market Makers

Publication Information
Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. "Maximizing extractable
value from automated market makers." In Financial Cryptography and Data Security: 26th
International Conference, FC 2022, Grenada, May 2–6, 2022, Revised Selected Papers, pp. 3-19.
Cham: Springer International Publishing, 2022.

Contribution
• Co-author.

169

Maximizing Extractable Value from
Automated Market Makers

Massimo Bartoletti1, James Hsin-yu Chiang2, Alberto Lluch Lafuente2

1 Università degli Studi di Cagliari, Cagliari, Italy
2 Technical University of Denmark, DTU Compute, Copenhagen, Denmark

Abstract. Automated Market Makers (AMMs) are decentralized ap-
plications that allow users to exchange crypto-tokens without the need
for a matching exchange order. AMMs are one of the most successful
DeFi use cases: indeed, major AMM platforms process a daily volume
of transactions worth USD billions. Despite their popularity, AMMs are
well-known to suffer from transaction-ordering issues: adversaries can
influence the ordering of user transactions, and possibly front-run them
with their own, to extract value from AMMs, to the detriment of users.
We devise an effective procedure to construct a strategy through which
an adversary can maximize the value extracted from user transactions.

Keywords: miner extractable value, front-running, decentralized finance

1 Introduction

Decentralized finance (DeFi) is emerging as an alternative to traditional finance,
boosted by blockchains, crypto-tokens and smart contracts [17]. Automated Mar-
ket Makers (AMMs) — one of the main DeFi applications — allow users to ex-
change crypto-tokens without the need to find another party wanting to partic-
ipate in the exchange. Major AMM platforms like e.g. Uniswap, Curve Finance,
and SushiSwap, hold dozens of billions of USD and process hundreds of millions
worth of transactions daily [8,1,5].

AMMs are sensitive to transaction-ordering attacks, where adversaries who
can influence the ordering of transactions in the blockchain exploit this power
to extract value from user transactions [13,15,16,20]. We illustrate this kind of
attacks through a minimal example. Assume a Uniswap-like AMM holding 100
units of a crypto-token τ0 and 100 units of another token τ1, and assume that
both tokens have the same price in the reference currency (say, USD 1,000). Now,
suppose that user A wants to swap 20 units of τ0 in her wallet for at least 15
units of τ1. This requires to append to the blockchain a transaction of the form
A : swap0(20 : τ0, 15 : τ1), where the prefix A indicates the wallet involved in the
transaction, swap is the called AMM function, and the superscript 0 indicates the
swap direction, i.e. deposit 20 : τ0 to receive back at least 15 : τ1 (a superscript
1 would indicate the opposite direction). In a constant-product AMM platform

170

like Uniswap, the actual amount of τ1 transferred to A must be such that the
product between the AMM reserves remains constant before and after a swap.

Now, suppose that an adversary M (possibly a miner) observes A’s transac-
tion in the txpool, and appends to the blockchain the following sandwich:

M : swap0(5.9 : τ0, 5.5 : τ1) A : swap0(20 : τ0, 15 : τ1) M : swap1(25.9 : τ0, 20.6 : τ1)

where the last transaction is in the opposite direction, i.e. M sends 20.6 : τ1 to
receive at least 25.9 : τ0. As a result, A only yields the minimum amount of
15 : τ1 in return for 20 : τ0. This implies that USD 5,000 have been gained by M
and lost by A. This has been called Miner Extractable Value (MEV) [13].

Recent works study this and other kinds of attacks to AMMs [13,16,19,20]:
however, all these approaches are preeminently empirical, as they focus on the
definition of heuristics to extract value from AMMs, and on their evaluation
in the wild. To the best of our knowledge, a general solution to obtain optimal
MEV is still missing, even in the special case of constant-product AMMs.

To exemplify a case where prior approaches fail to extract optimal MEV,
consider the following set of user transactions, containing a swap of τ0 for τ1, a
deposit of units of τ0 and τ1, and a redeem of units of minted (liquidity) tokens:

{ A : swap0(40 : τ0, 35 : τ1), A : dep(30 : τ0, 40 : τ1), A : rdm(10 : (τ0, τ1)) }

Here, both the swap and the dep transactions would be rejected. For instance,
the constant-product invariant dictates that 40 : τ0 sent by the user swap in the
initial AMM state (100 : τ0, 100 : τ1) will return exactly 28.6 : τ1; since the swap
transaction requires 35 : τ1, it would be discarded. The known heuristics here fail
to extract any value. Even considering only the swap, the sandwich would not be
profitable for M, since it requires the same direction for M’s and A’s swap (offer
τ0 to obtain τ1), making A’s swap not enabled. Further, the known heuristics
only operate on swap actions, neglecting user deposits and redeems. This paper
proposes a layered construction to extract the maximum value from all user
transactions, through a multi-layer sandwich that we call Dagwood sandwich. In
our example, M’s strategy would be to fire the following three-layer sandwich:

M : swap1(11 : τ0, 13 : τ1) A : swap0(40 : τ0, 35 : τ1)

M : swap1(42 : τ0, 38 : τ1) A : dep(30 : τ0, 40 : τ1)

M : swap0(18 : τ0, 21 : τ1)

The first transaction is a swap in the opposite direction (i.e., pay τ1 to get τ0)
w.r.t. the subsequent user swap, unlike in the classical sandwich heuristic. M’s
second swap enables A’s deposit; the final swap is an arbitrage move [9]. The
user redeem is dropped, since it would negatively contribute to M’s profit. By
firing the transaction sequence above, M can extract approx. USD 5,700 from
A, improving over swap-only attacks, that would only extract USD 5,000.

Contributions To the best of our knowledge, this work is the first to formalise
the MEV game for AMMs (Section 3), and the first to effectively construct

171

optimal solutions which attack all types of transactions supported by constant-
product AMMs (Section 4). We discuss in Section 6 the applicability of our
technique in the wild. The proofs of our statements are in Appendix A.

2 Automated Market Makers

We assume a set T0 of atomic token types (ranged over by τ, τ ′, . . .), repre-
senting native cryptocurrencies and application-specific tokens. We denote by
T1 = T0×T0 the set of minted token types, representing shares in AMMs. In
our model, tokens are fungible, i.e. individual units of the same type are inter-
changeable. In particular, amounts of tokens of the same type can be split into
smaller parts, and two amounts of tokens of the same type can be joined. We
use v, v′, r, r′ to range over nonnegative real numbers (R+

0), and we write r : τ
to denote r units of token type τ ∈ T = T0 ∪ T1.

We model the wallet of a user A as a term A[σ], where the partial map
σ ∈ T ⇀ R+

0 represents A’s token holdings, and write A[] if the wallet balance
is clear from context. We denote with dom (σ) the domain of σ. An AMM is a
pair of the form (r0 : τ0, r1 : τ1), representing the fact that the AMM is holding
r0 units of τ0 and r1 units of τ1. We denote by resτ0,τ1(Γ) the reserves of τ0 and
τ1 in Γ, i.e. resτ0,τ1(Γ) = (r0, r1) if (r0 : τ0, r1 : τ1) is in Γ.

A state is a composition of wallets and AMMs, represented as a term:

A1[σ1] | · · · | An[σn] | (r1 : τ1, r
′
1 : τ ′1) | · · · | (rk : τk, r

′
k : τ ′k)

where: (i) all Ai are distinct, (ii) the token types in an AMM are distinct, and
(iii) distinct AMMs cannot hold exactly the same token types. Note that two
AMMs can have a common token type τ, as in (r1 : τ1, r : τ) | (r′ : τ, r2 : τ2),
thus enabling indirect trades between token pairs not directly provided by any
AMM. We use Γ, Γ ′, . . . to range over states. For a base term Q (either wallet
or AMM), we write Q ∈ Γ when Γ = Q | Γ ′, for some Γ ′, where we assume that
two states are equivalent when they contain the same base terms.

We define the supply of a token type τ in a state Γ as the sum of the balances
of τ in all the wallets and the AMMs occurring in Γ. Formally:

splyτ(A[σ]) =

{
σ(τ) if τ ∈ dom (σ)

0 otherwise
splyτ(r0 : τ0, r1 : τ1) =

{
ri if τ = τi

0 otherwise

and the supply of τ in Γ | Γ ′ is the summation splyτ(Γ) + splyτ(Γ
′).

We model the interaction between users and AMMs as a transition system
between states. A transition Γ T−−→ Γ ′ represents the evolution of the state Γ
into Γ ′ upon the execution of the transaction T. The possible transactions are:

– A : dep(v0 : τ0, v1 : τ1), which allows A to deposit v0 : τ0 and v1 : τ1 to an
AMM, receiving in return units of the minted token (τ0, τ1).

– A : swapd(v0 : τ0, v1 : τ1) with d ∈ {0, 1}, which allows A to swap tokens,
i.e. transfer vd : τd to an AMM, and receive in return at least v1−d : τ1−d.

172

– A : rdm(v : τ), which allows to A redeem v units of minted token τ = (τ0, τ1)
from an AMM, receiving in return units of the atomic tokens τ0 and τ1.

We now formalise the one-step relation T−−→ through rewriting rules, inspired
by [9]. We use the standard notation σ{v/x} to update a partial map σ at point
x: namely, σ{v/x}(x) = v, while σ{v/x}(y) = σ(y) for y 6= x. For a partial map
σ ∈ T ⇀ R+

0 , a token type τ ∈ T and a partial operation ◦ ∈ R+
0 × R+

0 ⇀ R+
0 ,

we define the partial map σ ◦ v : τ (updating τ’s balance in σ by v) as follows:

σ ◦ v : τ =

{
σ{σ(τ) ◦ v/τ} if τ ∈ domσ and σ(τ) ◦ v ∈ R+

0

σ{v/τ} if τ 6∈ domσ

Deposit Any user can create an AMM for a token pair (τ0, τ1), provided that
such an AMM is not already present in the state. This is achieved by the trans-
action A : dep(v0 : τ0, v1 : τ1), through which A transfers v0 : τ0 and v1 : τ1 to
the new AMM. In return, A receives an amount of units of a new token type
(τ0, τ1), which is minted by the AMM. We formalise this behaviour by the rule:

σ(τi) ≥ vi > 0 (i ∈ {0, 1}) τ0 6= τ1 τ0, τ1 ∈ T0 (: τ0, : τ1), (: τ1, : τ0) 6∈ Γ
A[σ] | Γ A:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→ A[σ − v0 : τ0 − v1 : τ1 + v0 : (τ0, τ1)] | (v0 : τ0, v1 : τ1) | Γ

[Dep0]

Once an AMM is created, any user can deposit tokens into it, as long as
doing so preserves the ratio of the token holdings in the AMM. When a user
deposits v0 : τ0 and v1 : τ1 to an existing AMM, it receives in return an amount
of minted tokens of type (τ0, τ1). This amount is the ratio between the deposited
amount v0 and the redeem rate of (τ0, τ1) in the current state Γ. This redeem
rate is the ratio between the amount r0 of τ0 stored in the AMM, and the total
supply sply(τ0,τ1)(Γ) of the minted token in the state.

σ(τi) ≥ vi > 0 (i ∈ {0, 1}) r1v0 = r0v1 v = v0
r0
· sply(τ0,τ1)

(Γ)

Γ = A[σ] | (r0 : τ0, r1 : τ1) | Γ ′ A:dep(v0:τ0,v1:τ1)−−−−−−−−−−−→
A[σ − v0 : τ0 − v1 : τ1 + v : (τ0, τ1)] | (r0 + v0 : τ0, r1 + v1 : τ1) | Γ ′

[Dep]

The premise r1v0 = r0v1 ensures that the ratio between the reserves of τ0 and
τ1 in the AMM is preserved, i.e. r1+v1/r0+v0 = r1/r0.

Swap Any user A can swap units of τ0 in her wallet for units of τ1 in an AMM
(r0 : τ0, r1 : τ1), or vice versa swap units of τ1 in the wallet for units of τ0 in
the AMM. This is achieved by the transaction A : swapd(v0 : τ0, v1 : τ1), where
d ∈ {0, 1} is the swap direction. If d = 0 (“left” swap), then v0 is the amount
of τ0 transferred from A’s wallet to the AMM, while v1 is a lower bound on the
amount of τ1 that A will receive in return. Conversely, if d = 1 (“right” swap),
then v1 is the amount of τ1 transferred from A’s wallet, and v0 is a lower bound
on the received amount of τ0. The actual amount v of received units of τ1−d must
satisfy the constant-product invariant [18], as in Uniswap [7], SushiSwap [6]
and other common AMMs implementations:

r0 · r1 = (rd + vd) · (r1−d − v)

173

Formally, for d ∈ {0, 1} we define:

σ(τd) ≥ vd > 0 v =
r1−d·vd
rd+vd

0 < v1−d ≤ v

A[σ] | (r0 : τ0, r1 : τ1) | Γ A:swapd(v0:τ0,v1:τ1)−−−−−−−−−−−−−→
A[σ − vd : τd + v : τ1−d] | (r0 : τ0, r1 : τ1) + vd : τd − v : τ1−d | Γ

[Swap]

where we define the update of the units of τ in an AMM, for ◦ ∈ {+,−}, as:

(r0 : τ0, r1 : τ1) ◦ v : τ =

{
(r0 ◦ v : τ0, r1 : τ1) if τ = τ0 and r0 ◦ v ∈ R+

0

(r0 : τ0, r1 ◦ v : τ1) if τ = τ1 and r1 ◦ v ∈ R+
0

Redeem Users can redeem units of a minted token (τ0, τ1) for units of the
underlying atomic tokens τ0 and τ1. Each unit of (τ0, τ1) can be redeemed for
equal fractions of τ0 and τ1 remaining in the AMM:

σ(τ0, τ1) ≥ v > 0 v0 = v r0
sply(τ0,τ1)(Γ)

v1 = v r1
sply(τ0,τ1)(Γ)

Γ = A[σ] | (r0 : τ0, r1 : τ1) | Γ ′ A:rdm(v:(τ0,τ1))−−−−−−−−−−→
A[σ + v0 : τ0 + v1 : τ1 − v : (τ0, τ1)] | (r0 − v0 : τ0, r1 − v1 : τ1) | Γ ′

[Rdm]

A key property of the transition system is determinism, i.e. if Γ T−−→ Γ ′ and
Γ T−−→ Γ ′′, then the states Γ ′ and Γ ′′ are equivalent. We denote with type(T)
the type of T (i.e., dep, swap, rdm), and with usr(T) the user issuing T. For
a sequence of transactions λ = T1 · · ·Tn, we write Γ λ−−→ Γ ′ whenever there
exist intermediate states Γ1, . . . Γn−1 such that Γ T1−−−→ Γ1

T2−−−→ · · · Tn−1−−−−→
Γn−1 Tn−−−→ Γ ′. When this happens, we say that λ is enabled in Γ, or just Γ λ−−→.
A state Γ is reachable if there exist some Γ0 only containing wallets with atomic
tokens and some λ such that Γ0

λ−−→ Γ.

3 The MEV game

The model in the previous section defines how the state of AMMs and wallets
evolves upon a sequence of transactions, but it does not specify how this sequence
is formed. We specify this as a single-player, single-round game where the only
player is an adversary M who attempts to maximize its MEV. Accordingly, we
call this the MEV game . The initial state of the game is given by a reachable
state Γ (not including M’s wallet) and by a finite multiset X of user transactions,
representing the pool of pending transactions (also called txpool). The moves
of M are pairs (σ, λ), where σ is M’s initial balance, and λ is a sequence formed
by (part of) the transactions in X, and by any number of M’s transactions. We
require that the sequence λ in a move is enabled in Γ. The MEV game assumes
the following (see Section 6 for a discussion thereof):

1. Users balances in Γ are sufficiently high to not interfere with the validity of
any specific ordering of actions in X.

2. The balance σ of M does not include minted tokens.

174

3. The length of the sequence λ is unbounded.
4. Prices of atomic tokens are fixed throughout the game execution.

Besides the above, some further assumptions are implied by our AMM model:

5. AMMs only hold atomic tokens (this is a consequence of [Dep0]).
6. Swap actions do not require fees (this is a consequence of [Swap]).
7. There are no transaction fees.
8. Interval constraints on received token amounts are modelled in swaps only.

A solution to the game is a move that maximizes M’s gain, i.e. the change in M’s
net worth after performing the sequence λ from Γ. Intuitively, the net worth of a
user is the overall value of tokens in her wallet. To define it, we need to associate
a price to each token. We assume that the prices of atomic tokens are given
by an oracle P ∈ T0 → R+

0 : naturally, the MEV game solution will need to be
recomputed should the price of atomic tokens be updated. The price PΓ(τ0, τ1)
of a minted token (τ0, τ1) in a state Γ is defined as follows:

PΓ(τ0, τ1) =
r0 · P(τ0) + r1 · P(τ1)

sply(τ0,τ1)(Γ)
if resτ0,τ1(Γ) = (r0, r1) (1)

Minted tokens are priced such that the net worth of a user is preserved
when she deposits or redeems minted tokens in her wallet. We assume that the
reserves in an AMM are never reduced to zero in an execution, in order to
preserve equality of minted token prices between two states with equal reserves,
thereby facilitating proofs and analysis. While our semantics of AMMs allows
reserves to be emptied, we note that this does not occur in practice, as it would
halt the operation of the respective AMM pair. We define the net worth of a
user A in a state Γ such that A[σ] ∈ Γ as follows:

WA(Γ) =
∑
τ∈dom (σ) σ(τ) · PΓ(τ) (2)

and we denote by GA(Γ, λ) the gain of user A upon performing a sequence of
transactions λ enabled in state Γ (if λ is not enabled, the gain is zero):

GA(Γ, λ) = WA(Γ ′)−WA(Γ) if Γ
λ−→ Γ ′ (3)

A rational player is a player which, for all initial states (Γ,X) of the game,
always chooses a move (σ, λ) that maximizes the function GM(M[x] | Γ, y) on
variables x and y. We define the miner extractable value in (Γ,X) as the gain
obtained by a rational player by applying such a solution (σ, λ), i.e.:

MEV (Γ,X) = GM(M[σ] | Γ, λ)

Lemma 1 states that firing transactions preserves the global net worth, i.e.
the gains of some users are balanced by equal overall losses of other users.

Lemma 1.
∑

A GA(Γ,T) = 0.

175

By using a simple inductive argument, we can extend Lemma 1 to sequences
of transactions: if Γ λ−−→ Γ ′, then the summation of the gains GA(Γ, λ) over
all users (including M) is 0. Hence, the MEV game is zero-sum. The following
lemma ensures that deposit and redeem actions do not directly affect the net
worth of the user who performs them.

Lemma 2. If type(T) ∈ {dep, rdm}, then Gusr(T)(Γ,T) = 0.

Finally, we note that prices of a minted token in two states are equal if the
reserve ratio in the two states are as well.

Lemma 3. Let Γ λ−−→ Γ ′, and let resτ0,τ1(Γ) = (r0, r1), resτ0,τ1(Γ ′) = (r′0, r
′
1).

Then, PΓ(τ0, τ1) = PΓ ′(τ0, τ1) if and only if r0/r1 = r′0/r
′
1.

4 Solving the MEV game

By Lemma 1, a move which minimizes the gain of all users but M must maximize
M’s gain, and therefore is a solution to the MEV game. More formally, we have:

Corollary 1. GM(Γ, λ) is maximized iff GA(Γ, λ) is minimized for all A 6= M.

The net worth WA of a user A can be decomposed in two parts: W 0
A , which

accounts for the atomic tokens, and W 1
A , which accounts for the minted tokens:

W 0
A(Γ) =

∑
τ∈T0

σA(τ) · P(τ) W 1
A(Γ) =

∑
τ∈T1

σA(τ) · PΓ(τ) (4)

This provides M with two levers to reduce the users’ gain: token balances,
and the price of minted tokens. To use the first lever, M needs to exploit user
actions in the txpool X of the MEV game. For the second lever, since the prices of
atomic tokens (τ ∈ T0) are fixed, M can only influence the price of minted tokens
(τ ∈ T1). This can be achieved by performing actions on the respective AMMs.

In the rest of the section we devise an optimal strategy to exploit these two
levers. Intuitively, our strategy constructs a multi-layer Dagwood Sandwich3,
containing an inner layer for each exploitable user action in X, which M front-
runs by a swap transaction to enable it (if necessary), and a final layer of
swaps by M to minimize the prices of all minted tokens.

The construction of the final layer of the Dagwood sandwich is shown in §4.1,
while the construction of the inner layers is presented in §4.2.

4.1 Price minimization

Lemma 4 below states that, in any state, M can minimize the price of a minted
token by using a single swap, at most. In particular, this minimization can always
be performed in the final layer of the Dagwood sandwich.

3 We name it after Dagwood Bumstead, a comic strip character who is often illustrated
while producing enormous multi-layer sandwiches.

176

Lemma 4. There exists a function Pmin such that if M[σ] | Γ →∗ M[σ′] | Γ ′
then: (i) PΓ ′(τ0, τ1) ≥ Pmin

Γ (τ0, τ1); (ii) there exist σ′′ and λ consisting at most of
a swap by M such that M[σ′′] | Γ ′ λ−−→ M[] | Γ ′′ and PΓ ′′(τ0, τ1) = Pmin

Γ (τ0, τ1).

In order to construct the swap transaction which minimizes the price of a
minted token (τ0, τ1) in Γ, we need some auxiliary definitions. For each swap
direction d ∈ {0, 1}, we define the canonical swap values as:

wdd(τ0, τ1, Γ) =
√

P(τ1−d)
P(τd)

· r0 · r1 − rd wd1−d(τ0, τ1, Γ) =
r1−d · wdd(τ0, τ1, Γ)

rd + wdd(τ0, τ1, Γ)

Intuitively, wdd is the amount of tokens deposited in a swap of direction d:
it is defined such that, after the swap, the AMM reaches an equilibrium, where
the ratio of the AMM reserves is equal to the (inverse) ratio of the token prices.
Instead, wd1−d is the amount of tokens received after the swap, i.e. it is the unique
value for which the swap invariant is satisfied.

If both w0
0(τ0, τ1, Γ) ≤ 0 and w1

1(τ0, τ1, Γ) ≤ 0, then the price of the minted
token (τ0, τ1) is already minimized. Otherwise, if wdd(τ0, τ1, Γ) > 0 for some d
(and there may exist at most one d for which this holds), then we define the
price minimization transaction Xd(τ0, τ1, Γ) as:

M : swapd(wd0(τ0, τ1, Γ) : τ0, w
d
1(τ0, τ1, Γ) : τ1) (5)

Theorem 1 constructs the final layer of the Dagwood sandwich. We show that
this layer is the solution of the MEV game on an empty txpool. This is because
if M cannot leverage user transactions, the solution is just to minimize the price
of all minted tokens. The solution is obtained by sequencing price minimization
transactions on all AMMs. Since the price of a minted token is a function of the
reserves of the corresponding AMM, this can be done in any order.

Theorem 1. Let Γ = ‖ i∈I(ri,0 : τi,0, ri,1 : τi,1) | Γw, where Γw only contains
wallets. For all j ∈ I and d ∈ {0, 1}, let vdj = wdd(τj,0, τj,1, Γ), and let:

σj =

{
vdj : τj,d if vdj > 0

0 if v0j , v
1
j ≤ 0

λj =

{
Xd(τj,0, τj,1, Γ) if vdj > 0

ε if v0j , v
1
j ≤ 0

Then, (σ1 · · ·σn, λ1 · · ·λn) is a solution to the game (Γ,X) for an empty X.

4.2 Constructing the inner layers

Consider a solution (σ, λ) to the game (A[σA] | Γ,X), and let:

M[σ] | A[σA] | Γ λ−−→ M[σ′] | A[σ′A] | Γ ′

By decomposing the net worth as in (4), we find that A’s gain for λ is:

GA(M[σ] | A[σA] | Γ, λ) = W 0
A(Γ ′)−W 0

A(Γ) +W 1
A(Γ ′)−W 1

A(Γ)

=
∑

τ∈T0

(
σ′A(τ)− σA(τ)

)
· P(τ) +

∑

τ∈T1

(
σ′A(τ) · PΓ ′(τ)− σA(τ) · PΓ(τ)

)

177

Since λ is a solution, by Lemma 4 we can replace PΓ ′(τ) with Pmin
Γ (τ):

=
∑

τ∈T0

(
σ′A(τ)− σA(τ)

)
· P(τ) +

∑

τ∈T1

(
σ′A(τ) · Pmin

Γ (τ)− σA(τ) · PΓ(τ)
)

(6)

Note that all token prices in (6) are already defined in state Γ. Thus, A’s gain
can be minimized by considering only the effect on the token balance σ′A , which
we can rewrite as σA +∆0 +∆1 + · · · where ∆i is the effect on user A’s balance
induced by the i’th transaction in λ: this transaction is necessarily one initially
authorized by A. We will show that ∆i is fixed for any user transaction when
executed in an inner solution layer: the position of an inner layer in solution λ
does not affect its optimality.

The following theorem states that solutions to the MEV game can be con-
structed incrementally, by layering the local solutions for each individual trans-
action in the txpool. Intuitively, we choose a transaction T from X, we solve the
game for (Γ, [T]), we compute the state Γ ′ obtained by executing this solution,
and we inductively solve the game in the (Γ ′,X′), where X′ is X minus T.

Theorem 2. With respect to the MEV game in (Γ,X):

1. If X is empty, the solution is the final layer constructed for (Γ, []) in §4.1.

2. Otherwise, if X = [T] + X′ , let (σ, λ) be the inner layer constructed for
(Γ, [T]), let M[σ] | Γ λ−−→ M[] | Γ ′, and let (σ′, λ′) be the solution for (Γ ′,X′).
Then, the solution to (Γ,X) is (σ + σ′, λλ′).

We now describe how to define the inner layers of the Dagwood sandwich, i.e.
the base case of the inductive construction given by Theorem 2. Each inner layer
includes a user transaction from the txpool, possibly front-run by M such that
executing the layer leads the user’s net worth to a local minimum. We define
below the construction of these inner layers for each transaction type.

Swap inner layer Swap actions only affect the balance of atomic tokens. To
minimize the gain of A after a swap, M must make A receive exactly the minimum
amount of requested tokens. The effect of the swap on A’s atomic net worth is:

W 0
A(Γ ′)−W 0

A(Γ) = −vd · P(τd) + v1−d · P(τ1−d) if Γ
A:swapd(v0:τ0,v1:τ1)−−−−−−−−−−−−−→ Γ ′

If the change in A’s atomic net worth is negative, A’s transaction is included
in the layer. Although this transaction minimizes A’s atomic net worth, it si-
multaneously affects the price of the minted token (τ0, τ1). This is not an issue,
since the final layer of the Dagwood sandwich minimizes the prices of all minted
tokens. Thus, the change of minted token prices due to the swap inner layer
will not affect the user gain in the full Dagwood sandwich, as evident from (6).
Note that the amount of tokens exchanged in a swap is chosen by the user, so the
actual position of the layer in the Dagwood sandwich is immaterial (Theorem 2).

178

We now define the transaction used by M to front-run A’s swap, ensuring that
A receives the least amount of tokens from the swap. For Γ = (r0 : τ0, r1 : τ1) | · · ·
and T = A : swapdA (v0 : τ0, v1 : τ1), let the swap front-run reserves be:

SFrdA
(τ0, τ1, Γ,T) =

∣∣∣
√
v20 · v21 + 4 · v0 · v1 · r0 · r1

∣∣∣− v0 · v1
2 · v1−dA

SFr1−dA
(τ0, τ1, Γ,T) =

r0 · r1
SFrdA

(τ0, τ1, Γ,T)

These values define the reserves of (τ0, τ1) in the state Γ ′ reached from M[σ] | Γ
with M’s transaction. Intuitively, if the swap front-run reserves do not coincide
with the reserves r0, r1 in Γ, then M’s transaction is needed to enable A’s swap.
We define the swap front-run direction dM as:

dM =

{
dA if SFrdA

(τ0, τ1, Γ,T) > rdA

1− dA if SFr1−dA
(τ0, τ1, Γ,T) > r1−dA

We define the swap front-run values (i.e., the parameters of M’s swap) as:

SFwdM
(τ0, τ1, Γ,T) =

{
SFrdA

(τ0, τ1, Γ,T)− rdA
if dM = dA

rdA
− SFrdA

(τ0, τ1, Γ,T) if dM = 1− dA

SFw1−dM
(τ0, τ1, Γ,T) =

{
r1−dM

− SFr1−dM
(τ0, τ1, Γ,T) if dM = dA

SFr1−dM
(τ0, τ1, Γ,T)− r1−dM

if dM = 1− dM

(7)

We combine these values to craft the swap front-run transaction :

SFX(τ0, τ1, Γ,T) = M : swapdM (SFw0(τ0, τ1, Γ,T) : τ0,SFw1(τ0, τ1, Γ,T) : τ1)

The inner layer is included in the Dagwood sandwich if it reduces A’s net
worth, i.e. if −vd · P(τd) + v1−d · P(τ1−d) < 0. The swap front-run transaction
is omitted if the reserves in Γ coincide with the swap front-run reserves. The
balance of M in the (local) game solution is SFwdM

(τ0, τ1, Γ,T) : τdM
. Note

that, the amount of tokens exchanged by the swapping user in (6) is fixed by
(−vd ,+v1−d), and the effect of a swap inner layer does not depend on its position
along the Dagwood sandwich (Theorem 2).

Example 1. We recast our first example in §1 as a MEV game, assuming a txpool
X = {A : swap0(40 : τ0, 35 : τ1)}. The initial state is Γ = (100 : τ0, 100 : τ1) | Γw,
where Γw is made of user wallets, among which A[40 : τ0], and P(τ0) = P(τ1) =
1, 000. We construct the Dagwood sandwich. Since A’s swap yields a reduction
in A’s atomic net worth, 35 · P(τ1)− 40 · P(τ0) = −5, 000, then A’s transaction
is included in the inner layer. To check if A’s swap must be front-run by M, we
first compute the swap front-run reserves:

SFr0(τ0, τ1,T, Γ) =

√
402 · 352 + 4 · 40 · 35 · 1002 − 40 · 35

2 · 35
≈ 88.8

SFr1(τ0, τ1,T, Γ) =
1002

89
≈ 112.7

179

Since these values differ from the reserves in the initial game state, M must front-
run A’s transaction. The direction dM of M’s swap is 1, as SFr1(τ0, τ1, Γ,T) > r1.
The swap front-run values (7) are given by:

SFw0(τ0, τ1, Γ,T) = 100− 88.8 ≈ 11.2 SFw1(τ0, τ1, Γ,T) = 112.7− 100 ≈ 12.7

Therefore, the swap inner layer is made of two transactions:

M : swap1(11.2 : τ0, 12.7 : τ1) A : swap0(40 : τ0, 35 : τ1)

and M’s balance of the (local) game solution is 12.7 : τ1. To construct the final
layer, we consider the state Γ ′′ = (128.8 : τ0, 77.7 : τ1) | · · · , shown in Figure 1.
In Γ ′′, the canonical swap values are given by:

w1
0(τ0, τ1, Γ

′′) =
128.8 · 22.3

77.7 + 22.3
≈ 28.7

w1
1(τ0, τ1, Γ

′′) =
√

1
1 · 128.8 · 77.7− 77.7 ≈ 22.3

Since w1
1(τ0, τ1, Γ

′′) > 1, the direction d of the price minimization swap is 1.
Therefore, the final layer is made of a single swap on the pair (τ0, τ1):

M : swap1(28.7 : τ0, 22.3 : τ1))

where M’s required balance is 22.3 : τ1. Summing up, the Dagwood sandwich is
constructed by appending the final layer to the inner layer, and M’s required
balance is σ = 12.7 : τ1 + 22.3 : τ1 = 35 : τ1. The MEV obtained by M through
the Dagwood sandwich is (11.2−12.7) ·1, 000+(28.7−22.3) ·1, 000 ≈ 5, 000. ut

Deposit inner layer By Lemma 2, deposits preserve the user’s net worth.
Thus, executing T = A : dep(v0 : τ0, v1 : τ1) in Γ does not bring any gain to A:

GA(Γ,T) = −v0 · P(τ0)− v1 · P(τ1) + v · PΓ(τ0, τ1) = 0 (8)

where v is the amount of minted tokens (τ0, τ1) given to A upon the deposit.
By Lemma 4, PΓ(τ0, τ1) ≥ Pmin

Γ (τ0, τ1). By using this inequality in (8), we have:

− v0 · P(τ0)− v1 · P(τ1) + v · Pmin
Γ (τ0, τ1) ≤ 0

⇐⇒ v · Pmin
Γ (τ0, τ1) ≤ v0 · P(τ0) + v1 · P(τ1)

M[35 : τ1] | Γ = (100 : τ0, 100 : τ1) | · · ·
SFX (τ0,τ1,Γ,T)−−−−−−−−−−→ M[11.2 : τ0, 22.3 : τ1] | Γ ′ = (88.8 : τ0, 112.7 : τ1) | · · ·

T=A:swap0(40:τ0,35:τ1)−−−−−−−−−−−−−−−→ M[11.2 : τ0, 22.3 : τ1] | Γ ′′ = (128.8 : τ0, 77.7 : τ1) | · · ·
X (τ0,τ1,Γ

′′)−−−−−−−−→ M[40 : τ0, 0 : τ1] | Γ ′′′ = (100 : τ0, 100 : τ1) | · · ·

Fig. 1. A Dagwood sandwich exploiting a single user swap.

180

By (6) it follows that including T in a game solution λ reduces A’s net
worth, since the decrease of A’s net worth in atomic tokens is not always offset
by the increase of net worth in minted tokens. Additionally, the minted token
price PΓ(τ0, τ1) in (8) when the user deposit occurs is determined by deposit
parameters v0, v1 alone: let Γ →∗ Γ ′ be such that the given user deposit T is
enabled in both Γ and Γ ′. By [Dep], this implies v0/v1 = r0/r1 = r′0/r

′
1 where

(r0, r1) = resτ0,τ1(Γ) and (r′0, r
′
1) = resτ0,τ1(Γ ′). Then, by Lemma 3, PΓ(τ0, τ1) =

PΓ ′(τ0, τ1), as the reserve ratios in Γ and Γ ′ are equal. Thus, the amount of
minted tokens v received by the depositing user in (6) is fixed by (v0, v1), and
the effect of a deposit inner layer does not depend on its position along the
Dagwood sandwich (Theorem 2).

Similarly to the construction of the swap inner layer, M may need to front-run
transaction T = A : dep(v0 : τ0, v1 : τ1) to enable it. For Γ = (r0 : τ0, r1 : τ1) | · · · ,
we define the deposit front-run reserves as:

DFr0(τ0, τ1, Γ,T) =
∣∣∣
√
v0/v1 · r0 · r1

∣∣∣ DFr1(τ0, τ1, Γ,T) =
∣∣∣
√
v1/v0 · r0 · r1

∣∣∣

which satisfy DFr0(τ0, τ1, Γ,T) · v1 = DFr1(τ0, τ1, Γ,T) · v0, as required by [Dep].
Given a swap direction dM , we define the deposit front-run values as:

DFwdM
(τ0, τ1, Γ,T) = DFrdM

(τ0, τ1, Γ,T)− rdM

DFw1−dM
(τ0, τ1, Γ,T) = r1−dM

− DFr1−dM
(τ0, τ1, Γ,T)

If DFwdM
(τ0, τ1, Γ,T) > 0 and DFw1−dM

(τ0, τ1, Γ,T) > 0 holds for a swap direc-
tion dM , then we define the deposit front-run transaction as:

DFX(τ0, τ1, Γ,T) = M : swapdM (DFw0(τ0, τ1, Γ,T) : τ0,DFw1(τ0, τ1, Γ,T) : τ1)

If the reserve ratio in the initial state does not coincide with the ratio of deposited
funds, i.e. v0/v1 6= r0/r1, then the deposit inner layer is DFX(τ0, τ1, Γ,T) T, and
the balance required by M is DFwdM

(τ0, τ1, Γ,T) : τdM
. Otherwise, the deposit

inner layer is made just by T, and the required balance is zero.

Redeem inner layer By Lemma 2, redeem actions preserve the user’s net
worth, i.e. A’s gain is zero when firing T = A : rdm(v : (τ0, τ1)) in Γ:

GA(Γ,T) = −v · PΓ(τ0, τ1) + v0 · P(τ0) + v1 · P(τ1) = 0

Unlike for the deposit inner layer, redeem transactions increase the users’
gain when executed in the game solution. This is apparent when substituting in
the above equation PΓ(τ0, τ1) = Pmin

Γ (τ0, τ1) (as per Lemma 4) to express the
user gain contribution (6) of the redeem action.

−v · Pmin
Γ (τ0, τ1) + v0 · P(τ0) + v1 · P(τ1) ≥ 0

Therefore, user redeem actions always reduce M’s gain, and so they are not
included in the solution. Therefore, the redeem inner layer is always empty.

181

M[18 : τ0, 50.5 : τ1] | Γ = (100 : τ0, 100 : τ1) | · · ·
SFX (τ0,τ1,Γ,T)−−−−−−−−−−→ M[29.3 : τ0, 37.8 : τ1] | Γ ′ = (88.8 : τ0, 112.7 : τ1) | · · ·

T=A:swap0(40:τ0,35:τ1)−−−−−−−−−−−−−−−→ M[29.3 : τ0, 37.8 : τ1] | Γ ′′ = (128.8 : τ0, 77.7 : τ1) | · · ·
DFX (τ0,τ1,Γ

′′,T′)−−−−−−−−−−−→ M[71.4 : τ0, 0 : τ1] | Γ ′′′ = (86.6 : τ0, 115.5 : τ1) | · · ·
T′=A:dep(30:τ0,40:τ1)−−−−−−−−−−−−−−→ M[71.4 : τ0, 0 : τ1] | Γ ′′′′ = (116.6 : τ0, 155.5 : τ1) | · · ·

X (τ0,τ1,Γ
′′′′)−−−−−−−−−→ M[53.4 : τ0, 20.8 : τ1] | (134.6 : τ0, 134.6 : τ1) | · · ·

Fig. 2. A Dagwood sandwich exploiting a user swap, deposit and redeem (dropped).

Example 2. We now recast the full example in Section 1 as a MEV game, con-
sidering all three user transactions in the txpool:

X = { A : swap0(40 : τ0, 35 : τ1) , A : dep(30 : τ1, 40 : τ1) , A : rdm(10 : (τ0, τ1)) }

The game solution is shown in Figure 2: note that we can reuse the swap inner
layer from Example 1, since the initial state and user swap action are identical.
Thus, we continue by constructing the deposit inner layer for user deposit T′ in
state Γ ′′ = (128.8 : τ0, 77.7 : τ1). Here, the deposit front-run reserves are:

DFr0(τ0, τ1, Γ
′′,T′) =

∣∣∣
√

30/40 · 128.8 · 77.7
∣∣∣ = 86.6

DFr1(τ0, τ1, Γ
′′,T′) =

∣∣∣
√

40/30 · 128.8 · 77.7
∣∣∣ = 115.5

Since the ratio of the deposit front-run reserves does not coincide with the reserve
ratio in Γ ′′ (86.6/115.5 6= 128.8/77.7), the deposit front-run by M is necessary to
enable the user deposit action. By choosing a swap direction dM = 1, we obtain
the positive deposit front-run values, which confirm the choice of the direction:

DFw0(τ0, τ1, Γ
′′,T′) = 128.8−86.6 ≈ 42.2 DFw1(τ0, τ1, Γ

′′,T′) = 115.5−77.7 ≈ 37.8

Therefore, M’s deposit front-run transaction is:

DFX(τ0, τ1, Γ
′′,T′) = M : swap1(42.2 : τ0, 37.8 : τ1)

which requires a balance σ(τ1) ≥ 37.8. The deposit inner layer is obtained by
prepending this transaction to A’s deposit. The redeem inner layer is empty, as
shown before. By (5), the final layer to minimize the price of minted tokens is:

M : swap1(18.0 : τ0, 20.8 : τ1)

Summing up, the full Dagwood sandwich (see also Figure 2) is:

SFX(τ0, τ1, Γ,T) T DFX(τ0, τ1, Γ
′′,T′) T′ X(τ0, τ1, Γ

′′′′)

182

which requires an initial balance σ = {18.0 : τ0, 12.7 + 37.8 : τ1} by M. By
inspection of the Dagwood sandwich execution in Figure 2, it can be seen that
the miner has obtained a gain of approximately 5,700. ut

5 Related work

Daian et al. [13] study the effect of transaction reordering obtained through pri-
ority gas auctions. These are games between users who compete to include a
bundle of transactions in the next block, bidding on transaction fees to incen-
tivize miners to include their own bundle. Notably, [13] finds empirical evidence
of the fact that the gain derived from transaction reorderings in decentralized
exchanges (DEX) exceeds the gain given by block rewards and transaction fees
in Ethereum. The same work also proposes a game model of priority gas auc-
tions, showing a Nash equilibrium for players to take turns bidding, compatibly
with behavior observed in the wild on Ethereum. Our mining game differs from
that in [13], since we assume a greedy adversary wanting to maximize its gain
at the expense of all the other users, exploiting arbitrages on AMMs.

Zhou et al. [20] provide a theoretical framework to study the front-running
on AMMs. Two sandwich heuristics are studied: the front-run & back-run swap
sandwich, and the novel front-run redeem & back-run swap and deposit. The
swap semantics used in [20] is simplified, compared to ours, since no minimum
amount of received tokens is enforced by the AMM, users only perform swaps
and hold no minted tokens (depositing and swapping agents are decoupled).
Further, extractable value from arbitrage is considered separately. In comparison,
we emphasize that we propose a solution to attack all main user action types
offered by leading AMMs, thereby extracting value from user submitted swaps
and deposits. Our model also accurately model minted tokens: their value is
dynamically affected by miner and user swaps during the execution of the attack.
Thus, our game solution extracts the maximum value in a more concrete setting,
considering the victim transactions of both aforementioned attacks in [20], and
leaving no arbitrage opportunities unexploited.

More general ordering and injection of transactions by a rational agent is
generally referred to as front-running. Eskandari et al. [15] provide a taxonomy
for various front-running attacks in blockchain applications and networks. This
taxonomy is expanded in [16] with liquidations, sandwich attacks and arbitrage
actions between DEX.

Some works investigate the problem of detecting front-running attacks on
public blockchains. For example, in [16], Qin et al. introduce front-running de-
tection heuristics which are deployed to empirically study the presence of such
attacks on public DeFi applications. On the other hand, various fair ordering
schemes have been proposed to mitigate front-running or exploitation of miner-
extractable value. However, simple commit-and-reveal schemes still leak infor-
mation such as account balances. Breidenbach et al. [11] propose “submarine
commitments”, which rely on k-anonymity to prevent any leaks from user com-
mitments. Baum et al. [10] introduce a order-book based DEX which delegates

183

the matching of orders to an out-sourced, off-chain multi-party computation
committee. Private user orders are not revealed to other participants, such that
no front-running can occur in each privately-computed order matching round.
Ciampi et al. [12] introduce a market maker protocol in which the strictly sequen-
tial trade history between an off-chain market maker and traders are verifiable as
a hash-chain. Any subsequent reordering by the AMM is publicly provable: col-
lateral from the market maker incentivizes honest, fair-ordering behaviour. Such
work aims to provide alternative, front-running resistant designs with AMM-like
functionality. In contrast, our work is intended to formalize the behaviour of
current, mainstream AMMs in the presence of a rational adversary.

The DeFi community is developing tools to enable agents to extract value
from smart contracts: e.g., flashbots [2] is a project aiming to develop Ethereum
implementations which support transaction bundles: Rather than front-running
individual transactions by adjusting their fees, an agent can communicate a
sequence or bundle of transactions to the miner, asking its inclusion in the next
block. Our game solutions could be implemented to solve for such bundles.

6 Conclusions

We have addressed the problem of adversaries extracting value from AMMs inter-
actions to the detriment of users. We have constructed an optimal strategy that
adversaries can use to extract value from AMMs, focussing on the widespread
class of constant-product AMMs. Our results apply to any adversary with the
power to reorder, drop or insert transactions: besides miners, this includes roll-
up aggregators, like e.g. Optimism and StarkWare [3,4]. Notably, our work shows
that it is possible to extract value from all types of AMM transactions, while
previous works focus on extracting value from token swaps, only.

In practice, value is also extracted from AMMs by colluding mining and
non-mining agents: for the Ethereum blockchain, agents can send transaction
bundles [2] to mining pools for block inclusion, in return for a fee. Our tech-
nique naturally applies to this setting, where the actions of the miner are simply
replaced by actions by the agent submitting the transaction bundle.

We now discuss the simplifying assumptions (1-8) listed in Section 3. (1)
User balances do not limit the order in which transactions in the txpool can be
executed. In practice, in some cases it would be possible to perform a sequence of
actions by exploiting the funds received from previous actions. We leave ordering
constraints imposed by limited wallet balances for future work. (2) The adversary
holds no minted tokens prior to executing the game solution. Yet, the adversary
can exploit an (unbounded) initial balance of atomic tokens to acquire minted
tokens as part of the game solution by performing deposits. The optimality of
the Dagwood sandwich illustrates that this is not necessary. (3) The size of the
Dagwood sandwich is unbounded. In practice, a typical block of transactions will
include other transactions besides those directed to AMMs, and so the adversary
can find enough space for its sandwiches by dropping non-AMM transactions.
During times of block-congestion, a constraint on the length of the Dagwood

184

sandwich will apply: we conjecture that solving such an optimization is NP-
hard, and regard this as an relevant question for future work. (4) Prices of atomic
tokens are fixed for the duration of the game: the Dagwood sandwich will need to
be recomputed should prices change. (5) AMMs only hold atomic tokens. This is
common in practice, but we note that extending the mining game to account for
arbitrary nesting of minted tokens by AMM pairs is an interesting direction of
future research. (6) No AMM swap fees and (7) no transaction fees are modelled:
the adversary’s gain resulting from the Dagwood sandwich is an upper bound
to profitability as fees tend to zero. Yet, fees affect this gain, so they should be
taken into account to construct an optimal strategy. Furthermore, transaction
fees may make it convenient for a miner to include user redeem transactions in
the sandwich, while these are never exploited by our strategy. (8) Besides fees,
we abstract from the intervals that users can express to constrain the amount
of tokens received upon deposits and redeems (we only model these constraints
for swaps). This is left for future work.

In this paper we have considered AMMs which implement the constant-
product swap invariant, like e.g. Uniswap and SushiSwap. A relevant research
question is how to solve the MEV game under different swap invariants, e.g. those
used by Curve Finance and SushiSwap. Uniform frameworks which address this
problem have been proposed in [14,9] where swap invariants are abstracted as
functions subject to a given set of constraints.

Acknowledgements Massimo Bartoletti is partially supported by Conv. Fon-
dazione di Sardegna & Atenei Sardi project F75F21001220007 ASTRID. James
Hsin-yu Chiang is supported by the PhD School of DTU Compute.

References

1. Curve statistics (2020), https://www.curve.fi/dailystats
2. Flashbots (2021), https://github.com/flashbots/pm
3. Optimism website (2021), https://optimism.io/
4. Starkware website (2021), https://starkware.co/
5. SushiSwap statistics (2021), https://analytics.sushi.com/
6. SushiSwap token pair implementation (2021), https://github.com/sushiswap/

sushiswap/blob/94ea7712daaa13155dfab9786aacf69e24390147/contracts/

uniswapv2/UniswapV2Pair.sol
7. Uniswap token pair implementation (2021), https://github.com/Uniswap/

uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/

contracts/UniswapV2Pair.sol
8. Uniswap V2 statistics (2021), https://v2.info.uniswap.org/
9. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: A theory of Automated Market

Makers in DeFi. In: Coordination Models and Languages (COORDINATION).
LNCS, vol. 12717, pp. 168–187. Springer (2021). https://doi.org/10.1007/978-3-
030-78142-2 11

10. Baum, C., David, B., Frederiksen, T.K.: P2DEX: privacy-preserving de-
centralized cryptocurrency exchange. In: Applied Cryptography and Net-
work Security (ACNS). LNCS, vol. 12726, pp. 163–194. Springer (2021).
https://doi.org/10.1007/978-3-030-78372-3 7

185

11. Breidenbach, L., Daian, P., Tramèr, F., Juels, A.: Enter the Hydra: Towards prin-
cipled bug bounties and exploit-resistant smart contracts. In: USENIX Security
Symposium. pp. 1335–1352. USENIX Association (2019)

12. Ciampi, M., Ishaq, M., Magdon-Ismail, M., Ostrovsky, R., Zikas, V.: FairMM: A
fast and frontrunning-resistant crypto market-maker. Cryptology ePrint Archive,
Report 2021/609 (2021), https://eprint.iacr.org/2021/609

13. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: IEEE Symp. on Security and Privacy.
pp. 910–927. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00040

14. Engel, D., Herlihy, M.: Composing Networks of Automated Market Mak-
ers. In: Advances in Financial Technologies (AFT). p. 15–28. ACM (2021).
https://doi.org/10.1145/3479722.3480987

15. Eskandari, S., Moosavi, S., Clark, J.: SoK: Transparent Dishonesty: Front-Running
Attacks on Blockchain. In: Financial Cryptography. pp. 170–189. Springer (2020).
https://doi.org/10.1007/978-3-030-43725-1 13

16. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: How dark
is the forest? (2021), https://arxiv.org/abs/2101.05511

17. Werner, S.M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knottenbelt,
W.J.: SoK: Decentralized finance (DeFi). CoRR abs/2101.08778 (2021)

18. Zhang, Y., Chen, X., Park, D.: Formal specification of constant prod-
uct market maker model & implementation (2018), https://github.com/

runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/

x-y-k.pdf

19. Zhou, L., Qin, K., Cully, A., Livshits, B., Gervais, A.: On the just-in-time discovery
of profit-generating transactions in DeFi protocols. In: IEEE Symp. on Security and
Privacy. pp. 919–936. IEEE (2021). https://doi.org/10.1109/SP40001.2021.00113

20. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-Frequency Trading on
Decentralized On-Chain Exchanges. In: IEEE Symp. on Security and Privacy. pp.
428–445. IEEE (2021). https://doi.org/10.1109/SP40001.2021.00027

186

A Proofs

Lemma 1.
∑

A GA(Γ,T) = 0.

Proof. Follows from Lemma 3 (preservation of net worth) in [9].

Lemma 2. If type(T) ∈ {dep, rdm}, then Gusr(T)(Γ,T) = 0.

Proof. Follows from Lemma 3 (preservation of net worth) in [9].

Lemma 3. Let Γ λ−−→ Γ ′, and let resτ0,τ1(Γ) = (r0, r1), resτ0,τ1(Γ ′) = (r′0, r
′
1).

Then, PΓ(τ0, τ1) = PΓ ′(τ0, τ1) if and only if r0/r1 = r′0/r
′
1.

Proof. Let the projected minted token price of (τ0, τ1) at reserve ratio R > 0 in
state Γ be defined as:

PR
Γ (τ0, τ1) =

r′0
splyΓ(τ0, τ1)

· P(τ0) +
r′1

splyΓ(τ0, τ1)
· P(τ1)

where for the projected reserves (r′0, r
′
1), both r′0 · r′1 = r0 · r1 and R = r′0/r

′
1

hold. Thus, the projected minted token price can be rewritten entirely in terms
of token reserves and supply in Γ and projected ratio R:

PR
Γ (τ0, τ1) =

√
r0 · r1 ·R

splyΓ(τ0, τ1)
· P(τ0) +

√
r0 · r1/R

splyΓ(τ0, τ1)
· P(τ1) (9)

We note that from (9) and (1) it follows that

PR
Γ (τ0, τ1) = PΓ(τ0, τ1) if

resτ0,τ1(Γ) = (r0, r1)
R = r0/r1

(10)

Alternatively, the projected minted token price in a given state Γ can be inter-
preted as the minted token price in Γ ′ of execution M[σ] | Γ →T M[] | Γ ′ where
T is a miner swap action and the reserve ratio r′0/r

′
1 = R holds in Γ ′ but not

in Γ. By definition then, there exists σ and swap T for any reachable state Γ
and R > 0, such that M[σ] | Γ →T M[] | Γ ′ and PR

Γ (τ0, τ1) = PΓ ′(τ0, τ1) if
R 6= r0/r1.

We prove Lemma 3 by showing that for any R, the projected minted token
price of a pair remains constant for any execution. Thus, if in two states Γ, Γ ′

along an execution the AMM pair reserve ratios both equal R = r0/r1 = r′0/r
′
1,

prices must also be equal, thereby proving the lemma.

PR
Γ (τ0, τ1) = PR

Γ ′(τ0, τ1) = PΓ(τ0, τ1) = PΓ ′(τ0, τ1) (11)

We prove that the projected minted token price remains constant for any execu-
tion by induction.

187

Base case: empty For an empty step, the projected minted token price re-
mains constant (trivially).

Induction step: deposit/redeem For a deposit or redeem execution Γn →T Γn+1

the following must hold for c > 0 by definition of [Dep] and [Rdm]

(c · rn0 , c · rn1) = (rn+1
0 , rn+1

1) c · splyΓn(τ0, τ1) = splyΓn+1
(τ0, τ1)

Thus, we can write the projected minted token price in Γn+1 in terms of reserves
and token supply in Γn, such that the equality is apparent.

PR
Γn+1

(τ0, τ1) =

√
c2 · rn0 · rn1 ·R

c · splyΓn(τ0, τ1)
· P(τ0) +

√
c2 · rn0 · rn1 /R

c · splyΓn(τ0, τ1)
· P(τ1)

=

√
rn0 · rn1 ·R

splyΓn(τ0, τ1)
· P(τ0) +

√
rn0 · rn1 /R

splyΓn(τ0, τ1)
· P(τ1) = PR

Γn(τ0, τ1)

Induction step: swap For a swap execution Γn →T Γn+1 both the supply of
minted tokens and the reserve product is maintained by definition of Swap

rn0 · rn1 = rn+1
0 · rn+1

1 splyΓn(τ0, τ1) = splyΓn+1
(τ0, τ1)

Again, we can express the projected minted token price in Γn+1 in terms of
reserves and token supply in Γn to illustrate the equality.

PR
Γn+1

(τ0, τ1) =

√
rn0 · rn1 ·R

splyΓn(τ0, τ1)
· P(τ0) +

√
rn0 · rn1 /R

splyΓn(τ0, τ1)
· P(τ1) = PR

Γn(τ0, τ1)

Thus, we have shown that the projected minted token price remains constant
for all executions. Therefore, (11) holds, proving the lemma. ut
Lemma 4. There exists a function Pmin such that if M[σ] | Γ →∗ M[σ′] | Γ ′
then: (i) PΓ ′(τ0, τ1) ≥ Pmin

Γ (τ0, τ1); (ii) there exist σ′′ and λ consisting at most of
a swap by M such that M[σ′′] | Γ ′ λ−−→ M[] | Γ ′′ and PΓ ′′(τ0, τ1) = Pmin

Γ (τ0, τ1).

Proof. lma:price-minimum The proof reuses the definition of the projected minted
token price (9) defined in the proof of Lemma 3: there, we showed that the pro-
jected minted token price for any given reserve ratio R > 0 remains constant for
all executions. Thus, by definition (9), the projected minted token price in Γ for
all R > 0 is the minted token price range which can be achieved by executing a
swap in any reachable state Γ.

To find Pmin
Γ (τ0, τ1), we first determine the R for which PR

Γ (τ0, τ1) is mini-
mized in any reachable state Γ.

∂

∂R
PR
Γ (τ0, τ1) =

√
rn0 · rn1

2 · splyΓn(τ0, τ1) ·
√
R
·P(τ0)−

√
rn0 · rn1

2 · splyΓn(τ0, τ1) ·
√
R ·R

·P(τ1)

Setting the expression above as equal to zero and then solving for R = Rmin we
obtain

Rmin =
r0
r1

=
P(τ1)

P(τ0)

188

Further, we have determined the projected minted token price minimum since
the second derivative is positive

∂2

∂R2
PR
Γ (τ0, τ1) = −

√
rn0 · rn1

4 · splyΓn(τ0, τ1) ·
√
R ·R

+
3 ·
√
rn0 · rn1

4 · splyΓn(τ0, τ1) ·
√
R ·R2

= −
√
rn0 · rn1

4 · splyΓn(τ0, τ1) ·
√

P(τ1)
P(τ0)

· P(τ1)
P(τ0)2

+
3 ·
√
rn0 · rn1

4 · splyΓn(τ0, τ1) ·
√

P(τ1)
P(τ0)

· P(τ1)
P(τ0)2

=
2 ·
√
rn0 · rn1

4 · splyΓn(τ0, τ1) ·
√

P(τ1)
P(τ0)

· P(τ1)
P(τ0)2

> 0

Thus, the function Pmin
Γ (τ0, τ1) is given as

Pmin
Γ (τ0, τ1) = P

P(τ1)/P(τ0)
Γ (τ0, τ1)

By definition of the project minted token price, a swap exists such that the
projected price for reserve ratio R is achieved in the resulting state if the reserve
ratio in Γ is not equal to R. Otherwise the reserve ratio must equal R, and
thus the empty step achieves the projected price trivially. We have shown that
PR
Γ (τ0, τ1) ≥ Pmin

Γ (τ0, τ1) for any R > 0, thereby proving the lemma. ut

Theorem 1. Let Γ = ‖ i∈I(ri,0 : τi,0, ri,1 : τi,1) | Γw, where Γw only contains
wallets. For all j ∈ I and d ∈ {0, 1}, let vdj = wdd(τj,0, τj,1, Γ), and let:

σj =

{
vdj : τj,d if vdj > 0

0 if v0j , v
1
j ≤ 0

λj =

{
Xd(τj,0, τj,1, Γ) if vdj > 0

ε if v0j , v
1
j ≤ 0

Then, (σ1 · · ·σn, λ1 · · ·λn) is a solution to the game (Γ,X) for an empty X.

Proof. Theorem 1 states that the solution to (Γ, []) can be greedily constructed
from canonical swaps for each AMM pair in Γ, thereby minimizing the prices
of all minted tokens and net worth of users whilst maximizing the gain for the
miner.

We prove the lemma by showing that the price minimization swap (5) for a
pair (τ0, τ1) minimizes the respective minted token price. Since all AMM actions
affect single pair reserves only, the miner can minimize the minted token price
in any order, thereby proving the lemma.

To prove that the price minimization swap minimizes the minted token price
of a pair, we show that it updates the pair reserve ratio to r0/r1 = P(τ1)/P(τ0),
which, as shown in the proof of Lemma 4, minimizes the price for all executions.

Case: d = 0 We assume the canonical swap direction to be d = 0. By definition
of the canonical swap values at page 8, we have:

w0
0(τ0, τ1, Γ) =

√
P(τ1)
P(τ0)

· r0 · r1 − r0

189

w0
1(τ0, τ1, Γ) =

r1 · w0
0(τ0, τ1, Γ)

r0 + w0
0(τ0, τ1, Γ)

=
r1 ·

√
P(τ1)
P(τ0)

· r0 · r1 − r0 · r1
√

P(τ1)
P(τ0)

· r0 · r1
Further, the reserve product invariant must hold before and after the price min-
imization swap in direction d = 0. We show that this holds:

(r0+w0
0(τ0, τ1, Γ))·(r1−w0

1(τ0, τ1, Γ)) =
√

P(τ1)
P(τ0)

· r0 · r1 ·
r0 · r1√

P(τ1)
P(τ0)

· r0 · r1
= r0 ·r1

Finally, we can show that the resulting reserve ratio following the price mini-
mization swap is indeed P(τ1)/P(τ0), thereby minimizing the minted token price
(see proof of Lemma 4).

r0 + w0
0(τ0, τ1, Γ)

r1 − w0
1(τ0, τ1, Γ)

=

√
P(τ1)
P(τ0)

· r0 · r1
r0·r1√

P(τ1)
P(τ0)

·r0·r1

=

P(τ1)
P(τ0)

· r0 · r1
r0 · r1

=
P(τ1)

P(τ0)

Case: d = 1 Follows similarly and is omitted for brevity. ut

Theorem 2. With respect to the MEV game in (Γ,X):

1. If X is empty, the solution is the final layer constructed for (Γ, []) in §4.1.
2. Otherwise, if X = [T] + X′ , let (σ, λ) be the inner layer constructed for

(Γ, [T]), let M[σ] | Γ λ−−→ M[] | Γ ′, and let (σ′, λ′) be the solution for (Γ ′,X′).
Then, the solution to (Γ,X) is (σ + σ′, λλ′).

Proof. We restate the user gain (6) from the execution of a game solution fol-
lowing Lemma 4.

GA(M[σ] | A[σA] | Γ, λ)

=
∑
τ∈T0

σ′A(τ) · P(τ)− σA(τ) · P(τ) +
∑
τ∈T1

σ′A(τ) · Pmin
Γ (τ)− σA(τ) · PΓ(τ)

Here, the prices are either of atomic (PΓ(τ)), or minted tokens (PΓ(τ) and
Pmin
Γ (τ)), all determined in the initial state Γ. Thus, the exploitation of indi-

vidual user actions by the miner is decided on the action’s effect the user token
balance only.

We prove Theorem 2 by showing that the ”inner layer” for each user action
type are optimal when constructed in any order from the submitted user actions
in X.

Swap-inner-layer Firsty, we show that the swap front-run by the miner will al-
ways minimize the amount of tokens received by the user. Let T = A : swap0(v0 :
τ0, v1 : τ1) where dA = 0 and

M[] | Γ SFX (τ0,τ0,Γ,T)−−−−−−−−−−→ M[] | Γ ′ T−→ M[] | Γ ′′

190

If the execution of user swap T results in the minimal received output amount
v1 for A, then for resτ0,τ1(Γ) = (r0, r1), resτ0,τ1(Γ ′) = (r′0, r

′
1) and resτ0,τ1(Γ ′′) =

(r′0 + v0, r
′
1 − v1) the reserve product invariant must hold by definition of [Swap].

(r′0 + v0) · (r′1 − v1) = r′0 · r′1 = r0 · r1
Solving for r′0, we can rewrite as:

(r′0 + v0) · (r0·r1r′0
− v1) = r0 · r1

r0 · r1 − v0 · r′0 + v0·r0·r1
r′0

− v0 · v1 = r0 · r1
v1 · r′02 + v0 · v1 · r′0 − v0 · r0 · r1 = 0

The determinant to the quadratic equation is

D = v20 · v21 + 4 · v0 · v1 · r0 · r1
Thus we can solve for positive reserves r′0, r

′
1 in state Γ ′ expressed in terms of

the swap parameters (v0, v1) and reserves r0, r1 in initial state Γ, which coincide
with definitions of the swap front-run reserves for dA = 0 (the case dA = 1 is
omitted for brevity).

r′0 =
−v0 · v1 +

√
v20 · v21 + 4 · v0 · v1 · r0 · r1

2 · v1
r′1 =

r0 · r1
r′0

If (r0, r1) = (r′0, r
′
1), then clearly no swap front-run is required. Otherwise, the

direction of the swap front-run depends on the value of r′0, r
′
1. For r′0 > r0 and

r′1 < r0, the swap-front run direction dM = 0 is implied. For r′0 > r0 and r′1 < r0,
dM = 1. The swap front-run values (7) follow from the difference between initial
and swap front-run reserves.

Since the swap front-run always enables the user swap such that the the
minimum output amount is returned, this implies that the effect on the user
token balance when executing the solution (6) is solely determined by user swap
parameters (v0, v1): it is not affected by its position in the full solution, enabling
the greedy construction of the swap-inner-layer in Theorem 2.

The optimality of the swap-inner-layer can be easily shown: For our assumed
user swap direction dA = 0, if −v0 · P(τ0) + v1 · P(τ1) < 0 holds, then the
contribution to the user gain (6) must be negative, and furthermore, since by
definition of [Swap], v1 is the minimum amount the user can receive, the swap-
inner-layer must be optimal.

If −v0 · P(τ0) + v1 · P(τ1) ≥ 0, then the swap-inner-layer will be (0, ε), since
there the user swap can never reduce the user gain in any game solution. We
omit the case dA = 1 for brevity.

Deposit-inner-layer The optimality of the deposit-inner-layer follows from
Section 4.2.

Redeem-inner-layer The optimality of the redeem-inner-layer (0, ε) follows
from Section 4.2. ut

191

SoK: Mitigation of Front-running in
Decentralized Finance

Publication Information
Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen, and Lorenzo
Gentile. “SoK: Mitigation of Front-running in Decentralized Finance.” To appear in Financial
Cryptography and Data Security. FC 2022 International Workshops: AMHIS, CoDecFin, DeFi,
VOTING, and WTSC, Grenada, May 6, 2022.

Contribution
• Co-author.

Remarks
Accepted and presented at conference workshop. Proceedings by publisher are work-in-progress.

192

SoK: Mitigation of Front-running
in Decentralized Finance

Carsten Baum1, James Hsin-yu Chiang2?, Bernardo David3??,
Tore Kasper Frederiksen4? ? ?, Lorenzo Gentile3†,

1 Aarhus University, Denmark
cbaum@cs.au.dk

2 Technical University of Denmark, Denmark
jchi@dtu.dk

3 IT University of Copenhagen, Denmark
bernardo@bmdavid.com, lorg@itu.dk

4 Alexandria Institute, Denmark
tore.frederiksen@alexandra.dk

Abstract. Front-running is the malicious, and often illegal, act of both
manipulating the order of pending trades and injecting additional trades
to make a profit at the cost of other users. In decentralized finance
(DeFi), front-running strategies exploit both public knowledge of user
trades from transactions pending on the network and the miner’s abil-
ity to determine the final transaction order. Given the financial loss and
increased transaction load resulting from adversarial front-running in de-
centralized finance, novel cryptographic protocols have been proposed to
mitigate such attacks in the permission-less blockchain setting. We sys-
tematize and discuss the state-of-the-art of front-running mitigation in
decentralized finance, and illustrate remaining attacks and open chal-
lenges.

1 Introduction

labelsec:introduction

Specific instances of front-running in decentralized finance (DeFi) were first
quantified by Daian et al. [18] and systematized by Eskandari et al. [23]. Besides
imposing a financial penalty on honest users, front-running can also degrade
the performance of blockchain networks, as recently observed on the Avalanche

? This work was supported by the PhD School of DTU Compute.
?? This work was supported by the Concordium Foundation and by the Independent

Research Fund Denmark (IRFD) grants number 9040-00399B (TrA2C), 9131-00075B
(PUMA) and 0165-00079B.

? ? ? This work was supported by “Sikker brug af følsomme data”, Performance Contract
2020 and “Digital sikkerhed, tillid og dataetik”, Performance Contract 2021-2024,
Ministry of Higher Education and Science, Denmark”.

† This work was supported by the Concordium Foundation.

193

Carsten Baum et al.

blockchain [3]. In order to evaluate the efficacy of front-running mitigation tech-
niques, we first formulate the set of adversarial powers which permit front-
running strategies to be exploited: concretely, if users submit their intended
interaction to a pool of pending transactions, the front-running adversary has
the ability to:

1. Append pending transactions to the blockchain.
2. Infer user intentions from pending transactions and blockchain state.

In this work, we describe common front-running attacks (§2) and assess three
front-running mitigation categories (§3) for their isolated and combined effi-
cacy in neutralizing front-running (Figure 1). We introduce a speculative sand-
wich attack on input batching techniques (§3.2), which can be mitigated with
private user balances and secret input stores (§3.3).

Adversarial power §3 Mitigation

1. Transaction sequencing
§3.1 Fair ordering

§3.2 Batching of blinded inputs
Commit & reveal

2. Inference of user intent
Input aggregation

§3.3 Private user balances & secret input store

Fig. 1. Overview of mitigation techniques

Fair ordering (§3.1), implemented at the consensus protocol layer, ensures
that the local receipt-order of gossiped transactions seen by a node is consistent
with the final transaction ordering in the blockchain. We observe that fair or-
dering effectively mitigates the miner’s ability to freely sequence transactions,
but introduces a front-running adversary which rushes the network.

User balance & input store

Public Private, secret

Batching of

blinded inputs

Commit & reveal Speculative

Sandwich Attacks

Taint of user balances

Input aggregation -

Fig. 2. Efficacy: batching of blinded inputs.

Batching of blinded inputs (§3.2) replaces the sequential model of DeFi
interaction with a round-based one, where user inputs are blinded in each round
to ensure input independence, thereby thwarting front-running strategies that
rely on prior knowledge of other users’ intentions. However, if user balances
are public, the input may still be partially inferred when the valid user’s in-
put space is constrained by its balance: here, we contribute a novel, speculative
front-running attack that exploits the direction of an automated market maker
(AMM) swap, leaked from the victim’s public balance. Furthermore, we highlight
differences between commit & reveal and input aggregation approaches to batch-
ing of blinded inputs (Figure 2). In commit & reveal schemes, user inputs are

194

SoK: Mitigation of Front-running in Decentralized Finance

revealed individually : Although front-running in the specific round is no longer
possible, they necessarily leak information about the subsequent balance-update
for each participating user, even if the user balances are private. If the taint of
private balances is sufficiently strong, this can allow the front-running adversary
to infer the users future inputs (e.g. the intended AMM swap direction).

Private user balances (§3.3) are thus necessary to prevent the leakage of
the valid user input space from balances and application state. Although DeFi
state must generally remain public to retain its utility [2], we show that it is
necessary to shield certain fragments thereof which explicitly reveal future user
intent. Secret input stores (§3.3) protect inputs that are evaluated by the
application after a time delay [46] or, in the case of order books, whenever a
match with other user inputs [24,7] can be found.

2 Front-running attacks

AMM sandwich: We briefly summarize the functionality of constant product
AMM’s, namely, a liquidity pool holding token balances, r0 and r1, of two differ-
ent token types, τ0 and τ1 respectively, s.t. r0 · r1 is always constant when swaps
are being carried out between τ0 and τ1. A user swaps units of τ0 for units of
τ1 by authorizing a left swap action SL(v : τ0, w : τ1). Here, the user is sending
v : τ0 to the AMM in return for at least w : τ1 (swap limit). For this left swap to
be valid, the product of the reserves must be maintained. Thus, the following re-
lation between initial and updated reserves must hold: r0 ·r1 = (r0+v) ·(r1−w′),
where w′ ≥ w and w′ represents the units of τ1 that the user actually gets. We
refer w as the swap limit. A right swap of SR(v : τ0, w : τ1) follows similarly: the
user sends w : τ1 for at least v : τ0 in return such that r0 · r1 = (r0−v′) · (r1 +w)
and v′ ≥ v where v′ represents the units of τ0 received. Constant product AMM’s
exhibit slippage: subsequent swaps in the same direction exhibit decreasing ex-
change rates.

User swaps can be “sandwiched”, exploiting slippage for the gain of the
attacker. Consider a left swap A : SL(vA : τ0,wA : τ1) submitted by user A. A
front-run swap by attacker M in the same direction reduces the exchange rate
for the subsequent victim swap: a final back-run swap by M in the opposing
direction then profits from an improved exchange rate.

M : SL(vfM : τ0,w
f
M : τ1) A : SL(vA : τ0,wA : τ1) M : SR(vbM : τ0,w

b
M : τ1)

Optimal front-run (vfM,w
f
M) and back-run (vbM,w

b
M) parameters are a function of

the victim’s swap, inferred from the pending victim transaction gossiped across
the network [5].

We illustrate a step-wise execution of a sandwich in Figure 3 and introduce
notation for user and AMM state proposed in [4] for this purpose. The wallet of
A is modelled as the term A[vi : τ0, ..., vn : τn], where v0, ..., vn are the respective
balances of token types τ0, ..., τn. The state of an AMM holding token types τ0
and τ1 is given by its reserve balances (r0 : τ0, r1 : τ1). Thus, we express the
system state as a composition of wallets and reserve balances.

A[v : τ] | (r0 : τ0, r1 : τ1)

195

Carsten Baum et al.

Let the initial AMM balance be (100 : τ0, 100 : τ1). User A wishes to perform
the swap A : SL(15 : τ0, 10 : τ1). For simplicity, we assume unit values of τ0
and τ1 to be equal: given the ratio of AMM reserves is 1, there is no arbitrage
opportunity to be exploited [4]. If A’s order is executed immediately, A receives
13 : τ1 for the 15 : τ0 it sends to the AMM. Instead, however, if the user
swap is sandwiched by attacker M (Figure 3), A only obtains the minimum
amount 10 : τ1, implying a reduction of 3 : τ1. Note that the reserve product

A[15 : τ0] | M[15 : τ0, 10 : τ1] | (100 : τ0, 100 : τ1)

M:SL(15:τ0,13:τ1)−−−−−−−−−−−→ A[15 : τ0] | M[23 : τ1] | (115 : τ0, 87 : τ1)

A:SL(15:τ0,10:τ1)−−−−−−−−−−−→ A[10 : τ1] | M[23 : τ1] | (130 : τ0, 77 : τ1)

M:SR(30:τ0,23:τ1)−−−−−−−−−−−→ A[10 : τ1] | M[30 : τ0] | (100 : τ0, 100 : τ1)

Fig. 3. Sandwich attack

is maintained at each execution step and that the sandwich execution preserves
the initial reserve ratio: the attack leaves no arbitrage opportunity unexploited.
The attacker M’s profit of 5 units of τ0 (or τ1) is optimal [5]: A receives the
minimum amount possible, namely its swap limit.

Scheduled AMM sandwich: For certain AMM variants, the knowledge of
the user’s intent to perform a swap can be directly inferred from the blockchain
state. Paradigm [46] propose scheduled AMM swaps, or more generally, scheduled
inputs. Let A : SL(15 : τ0, 10 : τ1, r) be a swap that is not executed immediately,
but scheduled for evaluation together with the first user-AMM interaction fol-
lowing blockchain round r, thus requiring no further interaction from A. Since
scheduled orders are stored in the AMM smart contract and evaluated at the
beginning of a known round, the sandwich attack strategy can be exploited, al-
beit over two block rounds [46]: the front-run is sequenced at the end of round
r and the back-run as the first newly submitted swap of round r + 1.

Generalized front-run attacks: In decentralized finance, actions exist which
are profitable for the authorizing user, but which can also be performed by any
other agent with a sufficient balance. In the permissionless blockchain setting,
generalized front-runners, a term coined by Daian [38], are automated agents that
identify profitable, pending transactions, which can be authorized by any user,
and simply replicate these with their own account, thereby depriving the original
transaction submitter of it’s profit. Since the security of DeFi applications rely
on rational agents to solve for profitable arbitrage [48,45,21] and liquidation [41]
strategies, the presence of generalized front-running threatens to restrict such
opportunities to agents colluding with miners.

196

SoK: Mitigation of Front-running in Decentralized Finance

3 Mitigation categories

3.1 Fair ordering

A recent line of research [34,30,31] has formalized an intuitive notion of γ-receipt-
order-fairness: given two distinct transactions tx and tx′ broadcast by users,
receipt-order-fairness of a consensus protocol ensures that tx will be finalized
prior to tx′ if a γ fraction of network nodes receives tx prior to tx′. However,
Kelkar et al. [30] show that even if all nodes agree on the relative order in
which any pair of transactions were first observed at the gossip stage, a global
transaction ordering of all transactions consistent with the local view of pair-wise
orderings is not always possible (Condorcet Paradox). Instead, a weaker notion
of γ-batch-order-fairness is realized in [31], where tx will be sequenced prior to
or in the same block as tx′ if a γ node fraction receives tx first.

Front-running despite fair ordering: Although order fairness removes the
miner or round leader’s privilege to sequence transactions, it assumes that users
have secure channels to servers participating in consensus: in practice, however,
public blockchains rely on gossip networks to propagate pending transactions.
Here, the rushing network adversary can control the receipt-order of transactions
for each consensus node, thereby rendering the notion of γ-batch-order-fairness
meaningless. In practice, such a network adversary model may be excessively
strong: whereas in the standard setting the miner or round leader incurs no
additional cost for front-running victims, a non-trivial communication cost is
now imposed on the rushing adversary. Still, since order-fairness clearly can-
not eliminate front-running attacks in the (realistic) gossip-network setting, the
motivation for stronger front-running mitigation properties remains.

3.2 Batching of blinded inputs

Batching of blinded inputs is a technique to ensure 1) the independence between
user inputs and 2) the prevention of any adversarial sequencing of inputs. Inter-
actions occur in rounds: in each, inputs are committed during the input-phase,
followed by an output phase where the application state is updated after evalu-
ating user inputs with valid parameters. The collection of inputs can occur in a
smart contract or by a committee executing a cryptographic protocol which au-
thorizes the distribution of funds from a smart contract in the output phase. The
update of the application state following each round can result from the evalu-
ation of valid inputs in randomized order or an application-specific aggregation
thereof: for example, a subset of submitted AMM swaps can be aggregated into
a single resulting swap. In batching of blinded inputs, we distinguish between
commit & reveal and input aggregation (fig. 4). Both schemes commit in-
puts in the input-phase of each round, thereby ensuring input independence.
However, while input aggregation keeps the users’ input private indefinitely,
commit & reveal schemes leak individual user inputs when commitments are

197

Carsten Baum et al.

Input

independence

Input

privacy

Open

challenges

Commit & reveal

Hash commitments* - - Output bias

Timed commitments* • - Delay parameters

Threshold encryption** • - Honest majority

Secure multi-party

computation**

• - Honest majority

Input aggregation
• • Abort penalty

Homomorphic encryption** • • Efficiency

Fig. 4. Batching of blinded inputs sent to a smart contract* or committee**

opened, thereby offering no input privacy by definition. Input privacy is nec-
essary to prevent front-running in subsequent interaction rounds: past inputs
leak information about updates to private balances (§3.3), which in turn can be
exploited by front-runners, as balances constrain the valid user input space.

Past user inputs
reveal−−−→ Private user balances

reveal−−−→ Future user inputs

In contrast, input aggregation only outputs the application state update: for
aggregated AMM swaps, only reserve updates are revealed, and updates to user
balances remain private, if private balances are supported. Naturally, input ag-
gregation can only offer input privacy up to the input batch size.

Commit & reveal: Although hash commitments collected by a smart contract
may appear to be an obvious approach to implement the commit & reveal func-
tionality, they suffer from output bias, as the adversary can selectively refrain
from opening its commitment.

Time-lock puzzles [42] or timed commitments [11] generated by users and
sent to a smart contract promise to eliminate output bias, since the adversary’s
commitment can be force-opened after a delay, guaranteeing the inclusion of its
input in the output-phase. However, in the worst case, each user time-locked
input must be solved separately by a constant number of squaring operations
in a randomly sampled group, potentially rendering the approach impractical
for larger batches of time-locked inputs [32]. Burdges and De Feo [14] propose
a novel delay encryption notion and construction, which promises encryption
of many inputs to a randomly sampled session key. Thus, all delay-encrypted
inputs of a given batch can be decrypted after a single extraction process. Delay
encryption [14] is constructed from isogeny-based cryptography, a recent and
less-well studied class cryptographic assumptions. Finally, it remains an open
challenge to match delay cryptography parameters to real-world delays which
depend on assumed gate speeds used in practice.

Threshold encryption [22] can realize a commit & reveal scheme with the
assumption of an honest majority committee holding trapdoor information of
the encrypted inputs [44]. In each round, a key pair is produced by the execution
of a distributed key generation (DKG) protocol and the public is opened, with
which users encrypt their inputs in the given round. A subsequent opening of
the corresponding secret key by the threshold committee enables the decryption

198

SoK: Mitigation of Front-running in Decentralized Finance

of all inputs of the given round. However, should an encrypted user input fail to
be finalized in the block-chain in a given round due to network congestion, the
user’s intent will be made public after the secret key is revealed for the given
round without the user action being executed. Given this leakage, the front-
running adversary may now anticipate the re-submission of the same user input
in the next round.

Secure multi-party computation [47,27] (MPC) has been proposed [36,1] to
realize a commit & reveal functionality with guaranteed input reveal in an anony-
mous fashion, also formalized as anonymous committed broadcast (ACB) in [1].
The anonymization of inputs is achieved by random shuffling of user inputs in
an efficient manner. Here, honest majority MPC protocols [8,19] are favoured, as
the output is guaranteed as long as the honest majority assumption holds true.
To implement a DeFi application with MPC, an MPC-controlled smart contract
is required, to which users send their funds prior to each round.

MPC
servers

Smart
contract

Users

3a. Authorization

2. Private Intent 1. Funds in

3b. Funds out

In the output phase of each MPC round, funds in the smart contract are redis-
tributed to users according to the output(s) of the MPC execution. In practice,
users can safely delegate the MPC execution to a group of servers [1].

Input aggregation: Naturally, MPC can realize any aggregation function over
private user inputs, and in some instances in an efficient manner. Given the
emphasis on the privacy of inputs, dishonest majority MPC protocols [15,10,20]
are favoured, which ensure that private inputs can never be obtained by the
adversary as long as a single participant remains honest. Informal proposals to
implement AMM instances in a dishonest majority MPC have been proposed
by Li et al. [35]. Although dishonest majority MPC can be aborted by a single
dishonest party, a recent line of research [33,6,7] has realized an efficient set
of protocols that identify and financially punish the aborting adversary. This
achieves a weaker notion of fairness as the rational adversary is incentivized to
never abort. Still, the penalty must exceed the financial option value of aborting
in order to be effective: given that inputs are private, it remains an open research
question on how to size financial penalties for identifiable abort in MPC.

Penumbra [40] proposes the use of homomorpic encryption to realize the se-
cure aggregation of homomorphically encrypted AMM swap orders. The aggre-
gated swap is then decrypted to reveal the updated AMM reserves. User balances
are implemented with private coins (see §3.3), thus the privacy of the inputs are
only dependent on the batch size. We note the non-trivial complexity of aggre-
gating a batch of encrypted AMM swaps with swap limit constraints: efficient
secure multi-party computation with fully homomorphic encryption schemes re-
mains an open research problem [26]. In [40], consensus validators are proposed
to perform the secure computation, consolidating MPC and consensus layers.

199

Carsten Baum et al.

Speculative sandwich w/public user balances: We illustrate that batch-
ing of blinded inputs alone is not sufficient to prevent front-running attacks.
Instead, speculative AMM sandwich attacks are possible in blinded input batch-
ing schemes as long as the direction of the victim swap is known by the adversary.
This can be inferred from public user balances, as detailed in the subsequent ex-
ample. Such speculative sandwich attacks on batched inputs also assume that
the adversary in the permissionless setting can “isolate” a single victim’s input
in a given round, such that only front-run and victim transactions remain: we
argue that each batching round has participant limits due to gas constraints or
number of clients that MPC servers can support. Thus, the adversary can oc-
cupy any arbitrary number of user slots per round and provide invalid inputs5

on slots not dedicated to the front-running swap.

Round r Round r+1

M : SL(vfM : τ0,w
f
M : τ1) A : SL(vA : τ0,wA : τ1) M : SR(vbM : τ0,w

b
M : τ1)

Fig. 5. Speculative sandwich

In this speculative attack, we assume that private AMM swaps in each
blinded input batch are evaluated in a random order, as proposed in [35,1].
The front-running M can only speculate on achieving the correct order to ex-
ecute the sandwich. Since balances are public, M can observe that A’s balance
of τ1 is zero: thus, A’s submitted swap to the AMM (τ0, τ1) must be in the left
direction. M submits the front-run swap in the same direction as the victim in
the initial round r.

In the optimistic case shown in Figure 5, M’s front-run swap is evaluated prior
to the victim swap (in round r), thus enabling M to position the profitable back-
run swap in round r + 1, where all other users are prevented from submitting
inputs. M’s front-run parameters can be chosen such that the front-run swap
simply does not execute should the front-run not be ordered prior to the victim
swap in round r, thereby aborting the attack. We refer to Appendix A for the
proof that this speculative sandwich is rational for the attacker.

An execution of a speculative sandwich is shown in Figures 6 and 7: here,
adversary M observes victim A’s interaction with an AMM which batches blinded
inputs. A has a public balance of 20 : τ0 only, allowing M to infer that A can only
perform a left swap from τ0 to τ1 with an input amount of at most 20 : τ0. The
attack strategy is executed over two subsequent rounds beginning in the initial
state shown in Figure 6, where we assume unit values of τ0 and τ1 are equal.

In the first round r, M submits the front-run swap in the same direction as
the victim’s, with arbitrarily chosen input amount 7 : τ0. The minimum output
amount or swap limit of the front-run is then is chosen to be 6.5 : τ1 such that
(100 + 7) · (100 − 6.5) = 1002 holds: thus, if the front-run were executed in the

5 e.g. AMM swap parameters which cannot be executed in the current AMM state.

200

SoK: Mitigation of Front-running in Decentralized Finance

A[20 : τ0] | M[7 : τ0, 15 : τ1] | (100 : τ0, 100 : τ1)

Round r
M:SL(7:τ0,6.5:τ1)−−−−−−−−−−−→ A[20 : τ0] | M[21.5 : τ1] | (107 : τ0, 93.5 : τ1)
A:SL(15:τ0,10:τ1)−−−−−−−−−−−→ A[5 : τ0, 11.5 : τ1] | M[21.5 : τ1] | (122 : τ0, 82 : τ1)

Round r + 1
M:SR(22:τ0,18:τ1)−−−−−−−−−−−→ A[5 : τ0, 11.5 : τ1] | M[22 : τ0, 3.5 : τ1] | (100 : τ0, 100 : τ1)

Fig. 6. Successful speculative sandwich

initial state, M would receive exactly its swap limit. Since all other user orders
(other than the victim swap of A) are suppressed, there is a probability of 0.5
that the front-run is randomly evaluated before the victim’s swap, as shown in
Figure 6. The back-run swap of M in the opposing direction then follows in the
subsequent round with probability 1, since M suppresses all user actions other
than its own back-run. Assuming equal unit value of both token types, the attack
profit for M is 3.5.

Should the front-run ordering fail (Figure 7), then M’s front-run parame-
ters are chosen such that the front-run swap will not execute, resulting in an
abort of the speculative sandwich attack. This is due to the chosen front-run
parameters: following the execution step of A’s swap in Figure 7, the constant
product invariant can only hold if M receives 5 : τ1 for the 7 : τ0 it sends:
(115 + 7)× (87− 5) = 1002. However, this contradicts M swap limit of 6.5 : τ1,
such that the front-run cannot execute in the state following A’s swap. M can
still perform a back-run in round r+ 1, thereby restoring the initial reserve ratio
and extracting an arbitrage profit of 2, which is less than in the successful spec-
ulative sandwich execution in Figure 6. Still, the speculative sandwich attack is
always profitable, as shown in Appendix A.

A[20 : τ0] | M[7 : τ0, 15 : τ1] | (100 : τ0, 100 : τ1)

Round r
A:SL(15:τ0,10:τ1)−−−−−−−−−−−→ A[5 : τ0, 13 : τ1] | M[7 : τ0, 15 : τ1] | (115 : τ0, 87 : τ1)
M:((((

(
SL(7:τ0,6.5:τ1)−−−−−−−−−−−→ A[5 : τ0, 13 : τ1] | M[7 : τ0, 15 : τ1] | (115 : τ0, 87 : τ1)

Round r + 1
M:SR(15:τ0,13:τ1)−−−−−−−−−−−→ A[5 : τ0, 13 : τ1] | M[22 : τ0, 2 : τ1] | (100 : τ0, 100 : τ1)

Fig. 7. Aborted speculative sandwich

Importantly, if victim A’s swap direction were unknown, M would have to
guess the direction of the front-running swap. An incorrect guess can result in a
loss for M as shown in Appendix B. Thus, we argue that private user balances are
necessary for batching of blinded inputs to be effective. Furthermore, for sched-
uled AMM orders introduced in [46], private user balances remain insufficient if

201

Carsten Baum et al.

scheduled orders are stored in public smart contracts: we sketch a speculative
sandwich attack on publicly scheduled swaps in Appendix C. Finally, we note
that hash-based commit & reveal schemes permit speculative sandwich attacks
even when user balances are private, as the adversary can selectively reveal the
appropriate sandwich strategy which matches on the swap first revealed by the
victim (Appendix D).

3.3 Private & secret state

As argued in §3.2, both the aggregation of blinded inputs and use of private bal-
ances and secret input stores is necessary to mitigate front-running in the current
and future rounds. Whilst it may be possible to maintain the entire DeFi ap-
plication state secretly in an MPC instance in order to prevent front-running,
this will naturally reduce its utility to users in the permissionless setting. No-
tably, Angeris et al. [2,16] argue that both marginal price and validity of a given
AMM swap order must be queryable for an AMM interaction to be meaningful.
Therefore, we restrict our study of secret state in DeFi applications to user in-
put stores [46,24], which maintain submitted inputs until they are evaluated or
executed at a later point in time.

Private user balances: Private block-chain currencies and tokens have been
realized with zero-knowledge proof systems: confidential transactions [37] shield
output amounts with efficient zero-knowledge range proofs [13], thereby ensur-
ing that newly created output values do not exceed those spent by the same
transaction. Confidential transactions only shield output amounts: a transaction
graph connecting outputs can still be inferred from public transactions on the
block-chain, permitting coin taint to propagate downstream.

Z-cash [43] style decentralized anonymous payment (DAP) schemes break
such public links between outputs, as well-formed relations between new and
spent outputs are not revealed but publicly verifiable with SNARK [28,25,39,9,29]
zero-knowledge proofs. DAP schemes have also been proposed for DeFi func-
tionality in Manta [17], but here front-running is not mitigated, since the AMM
reserve state is public and swap inputs are not batched. Even though swap pa-
rameters are blinded in Manta, each individual swap execution results in a public
update of AMM reserves. Thus, the affect of each swap on the current AMM
reserves is known, leaking exchanged amounts and permitting sandwich attack
strategies.

Importantly, when implementing input batching (Figure 4) with secure com-
putation and block-chains supporting private user balances, zero-knowledge proofs
must be generated inside the MPC instance in order to update private user
balances. Doing so efficiently in MPC or even fully homomorphic encryption
remains on open research question.

Finally, Submarine commitments [12] propose that users can rely on k-
anonymity alone to privately commit funds during the input-phase without the
use of private balances. Here, users commit value to an k-anonymized address

202

SoK: Mitigation of Front-running in Decentralized Finance

which can only be withdrawn by a specific smart contract after the address is
revealed together with the input by the user.

Secret input stores: We note that shielded scheduled AMM swaps [46] or long-
running order lists [24] cannot be maintained by encryption alone: encryption
of a scheduled swap by a user implies its decryption at a later stage, requiring
repeated user interaction, and thus defeating the purpose of scheduled inputs.
Alternatively, a decryption by an honest majority committee implies that the
round or block-height of the input schedule is known. Instead, we suggest a
long-running MPC instance to realize secret input stores in decentralized fi-
nance. Here, stored inputs are secret shared across MPC servers: in each round,
both newly submitted inputs and secretly stored inputs are secretly evaluated to-
gether to update the application state, neither being visible to the front-running
adversary.

203

Carsten Baum et al.

References

1. Abraham, I., Pinkas, B., Yanai, A.: Blinder–Scalable, Robust Anonymous
Committed Broadcast. In: Proceedings of the 2020 ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 1233–1252 (2020).
https://doi.org/10.1145/3372297.3417261

2. Angeris, G., Evans, A., Chitra, T.: A Note on Privacy in Constant Function Market
Makers. arXiv preprint arXiv:2103.01193 (2021), https://arxiv.org/abs/2103.
01193

3. Avalanche: Apricot Phase Four: Snowman++ and Reduced C-
Chain Transaction Fees. https://medium.com/avalancheavax/

apricot-phase-four-snowman-and-reduced-c-chain-transaction-fees-1e1f67b42ecf

(2021)
4. Bartoletti, M., Chiang, J.H.y., Lluch-Lafuente, A.: A theory of Automated

Market Makers in DeFi. In: International Conference on Coordination Lan-
guages and Models. pp. 168–187. Springer (2021), https://doi.org/10.1007/

978-3-030-78142-2_11
5. Bartoletti, M., Chiang, J.H.y., Lluch-Lafuente, A.: Maximizing Extractable Value

from Automated Market Makers. arXiv preprint arXiv:2106.01870 (2021), to ap-
pear in FC’22. https://arxiv.org/pdf/2106.01870

6. Baum, C., David, B., Dowsley, R.: Insured MPC: Efficient secure computation
with financial penalties. In: International Conference on Financial Cryptography
and Data Security. pp. 404–420. Springer (2020). https://doi.org/10.1007/978-3-
030-51280-4 22

7. Baum, C., David, B., Frederiksen, T.K.: P2DEX: privacy-preserving decentralized
cryptocurrency exchange. In: International Conference on Applied Cryptography
and Network Security. pp. 163–194. Springer (2021). https://doi.org/10.1007/978-
3-030-78372-3 7

8. Beerliova-Trubiniova, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Theory of Cryptography Conference. pp. 305–328. Springer (2006).
https://doi.org/10.1007/11681878 16

9. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: Ver-
ifying program executions succinctly and in zero knowledge. In: Annual cryptology
conference. pp. 90–108. Springer (2013). https://doi.org/10.1007/978-3-642-40084-
1 6

10. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg, Germany, Tallinn, Estonia (May 15–
19, 2011). https://doi.org/10.1007/978-3-642-20465-4 11

11. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 20–24, 2000). https://doi.org/10.1007/3-540-44598-6 15

12. Breidenbach, L., Daian, P., Tramèr, F., Juels, A.: Enter the Hydra: To-
wards Principled Bug Bounties and Exploit-Resistant Smart Contracts. In: 27th
USENIX Security Symposium (USENIX Security 18). pp. 1335–1352. USENIX
Association, Baltimore, MD (Aug 2018), https://www.usenix.org/conference/
usenixsecurity18/presentation/breindenbach

13. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: Short proofs for confidential transactions and more. In: 2018
IEEE Symposium on Security and Privacy (SP). pp. 315–334. IEEE (2018).
https://doi.org/10.1109/SP.2018.00020

204

SoK: Mitigation of Front-running in Decentralized Finance

14. Burdges, J., Feo, L.D.: Delay encryption. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 302–326. Springer
(2021), https://doi.org/10.1007/978-3-030-77870-5_11

15. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally compos-
able two-party and multi-party secure computation. In: 34th ACM STOC.
pp. 494–503. ACM Press, Montréal, Québec, Canada (May 19–21, 2002).
https://doi.org/10.1145/509907.509980

16. Chitra, T., Angeris, G., Evans, A.: Differential Privacy in Constant Function Mar-
ket Makers. Cryptology ePrint Archive (2021), https://eprint.iacr.org/2021/
1101

17. Chu, S., Xia, Y., Zhang, Z.: Manta: a Plug and Play Private DeFi Stack (2021),
https://eprint.iacr.org/2021/743

18. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash Boys 2.0: Frontrunning in Decentralized Exchanges, Miner Ex-
tractable Value, and Consensus Instability. In: IEEE Symposium on Security and
Privacy. pp. 910–927. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00040

19. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2007).
https://doi.org/10.1007/978-3-540-74143-5 32

20. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 19–23, 2012). https://doi.org/10.1007/978-3-642-
32009-5 38

21. Danos, V., Khalloufi, H.E., Prat, J.: Global Order Routing on Exchange Networks.
In: International Conference on Financial Cryptography and Data Security. pp.
207–226. Springer (2021). https://doi.org/10.1007/978-3-662-63958-0 19

22. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO’89. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 20–24, 1990). https://doi.org/10.1007/0-387-34805-0 28

23. Eskandari, S., Moosavi, S., Clark, J.: SoK: Transparent Dishonesty: Front-Running
Attacks on Blockchain. In: Financial Cryptography. pp. 170–189. Springer Inter-
national Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-43725-1 13

24. da Gama, M.B., Cartlidge, J., Polychroniadou, A., Smart, N.P., Alaoui, Y.T.:
Kicking-the-Bucket: Fast Privacy-Preserving Trading Using Buckets. Cryptology
ePrint Archive, Report 2021/1549 (2021), to appear in FC’22, https://ia.cr/

2021/1549
25. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and

succinct NIZKs without PCPs. In: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques. pp. 626–645. Springer (2013).
https://doi.org/10.1007/978-3-642-38348-9 37

26. Gentry, C.: Fully Homomorphic Encryption Using Ideal Lattices. In: Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Comput-
ing. p. 169–178. STOC ’09, Association for Computing Machinery, New York,
NY, USA (2009). https://doi.org/10.1145/1536414.1536440, https://doi.org/

10.1145/1536414.1536440
27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A

completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th
ACM STOC. pp. 218–229. ACM Press, New York City, NY, USA (May 25–27,
1987). https://doi.org/10.1145/28395.28420

205

Carsten Baum et al.

28. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg,
Germany, Singapore (Dec 5–9, 2010). https://doi.org/10.1007/978-3-642-17373-8 -
19

29. Groth, J.: On the size of pairing-based non-interactive arguments. In: Annual in-
ternational conference on the theory and applications of cryptographic techniques.
pp. 305–326. Springer (2016). https://doi.org/10.1007/978-3-662-49896-5 11

30. Kelkar, M., Deb, S., Kannan, S.: Order-Fair Consensus in the Permissionless Set-
ting. IACR Cryptol. ePrint Arch. 2021, 139 (2021), https://eprint.iacr.org/
2021/139

31. Kelkar, M., Deb, S., Long, S., Juels, A., Kannan, S.: Themis: Fast, Strong
Order-Fairness in Byzantine Consensus. Cryptology ePrint Archive (2021), https:
//eprint.iacr.org/2021/1465

32. Khalil, R., Gervais, A., Felley, G.: Tex-a securely scalable trustless exchange. Cryp-
tology ePrint Archive (2019), https://eprint.iacr.org/2019/265

33. Kiayias, A., Zhou, H.S., Zikas, V.: Fair and robust multi-party computation us-
ing a global transaction ledger. In: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques. pp. 705–734. Springer (2016).
https://doi.org/10.1007/978-3-662-49896-5 25

34. Kursawe, K.: Wendy, the good little fairness widget: Achieving order fairness for
blockchains. In: Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies. pp. 25–36 (2020). https://doi.org/10.1145/3419614.3423263

35. Li, Y.: HoneyBadgerSwap: Making MPC as a Sidechain. https://medium.

com/initc3org/honeybadgerswap-making-mpc-as-a-sidechain-364bebdb10a5

(2021)

36. Lu, D., Yurek, T., Kulshreshtha, S., Govind, R., Kate, A., Miller, A.: Hon-
eybadgermpc and asynchromix: Practical asynchronous mpc and its applica-
tion to anonymous communication. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. pp. 887–903 (2019).
https://doi.org/10.1145/3319535.3354238

37. Maxwell, G.: Confidential transactions. https://people.xiph.org/greg/

confidential_values.txt, (2016)

38. Paradigm: Ethereum is a Dark Forest. https://www.paradigm.xyz/2020/08/

ethereum-is-a-dark-forest/ (2020)

39. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE (2013). https://doi.org/10.1109/SP.2013.47

40. Penumbra: ZSwap documentation. https://protocol.penumbra.zone/main/

zswap.html (2021)

41. Perez, D., Werner, S.M., Xu, J., Livshits, B.: Liquidations: DeFi on a Knife-edge.
In: International Conference on Financial Cryptography and Data Security. pp.
457–476. Springer (2021). https://doi.org/10.1007/978-3-662-64331-0 24

42. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-locked Puzzles and Time-release
Crypto. https://people.csail.mit.edu/rivest/pubs/RSW96.pdf (1996)

43. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E.,
Virza, M.: Zerocash: Decentralized anonymous payments from bitcoin. In:
2014 IEEE Symposium on Security and Privacy. pp. 459–474. IEEE (2014).
https://doi.org/10.1109/SP.2014.36

44. Shutter: Shutter Network. https://shutter.network/ (2022)

206

SoK: Mitigation of Front-running in Decentralized Finance

45. Wang, Y., Chen, Y., Deng, S., Wattenhofer, R.: Cyclic Arbitrage in Decentralized
Exchange Markets. Available at SSRN 3834535 (2021), https://dx.doi.org/10.
2139/ssrn.3834535

46. White, D., Robinson, D., Adams, H.: Time-weighted Average Market Maker
(TWAMM) (2021), https://www.paradigm.xyz/2021/07/twamm/

47. Yao, A.C.C.: Theory and applications of trapdoor functions (extended abstract).
In: 23rd FOCS. pp. 80–91. IEEE Computer Society Press, Chicago, Illinois (Nov 3–
5, 1982). https://doi.org/10.1109/SFCS.1982.45

48. Zhou, L., Qin, K., Cully, A., Livshits, B., Gervais, A.: On the just-in-time discovery
of profit-generating transactions in defi protocols. arXiv preprint arXiv:2103.02228
(2021), https://arxiv.org/abs/2103.02228

207

Carsten Baum et al.

A Formalization: speculative sandwich

We formalize the example attack trace introduced in Figure 5 and prove that
the attack strategy is either profitable or cost-neutral for the attacker. Again,
we assume unit value of τ0, τ1 to be equal, and the initial AMM reserve state to
be (r : τ0, r : τ1): in this state, there is no arbitrage opportunity to be exploited,
simplifying our analysis. We omit both AMM and transaction fees.

The victim A swap direction is left, inferred by M from A’s public balance of
vinitA : τ0 (A holds no units of τ1). The attack strategy is as follows:

1. Round r: Front-run victim with M : SL(vfM : τ0,w
f
M : τ1) such that

(r + vfM) · (r − wf
M) = r2 (1)

2. Round r + 1: Back-run victim in opposing direction to reestablish initial
AMM reserve ratio, or if attacker balance is insufficient, back-run with largest
amount available to attacker M.

We must show that this strategy is always profitable (when the victim swap
direction can be inferred by the attacker). We note that there are several variables
beyond the attackers control. The ordering of both front-run and victim swap
in round r is random. Thus the desired ”front-run” ordering of the victim swap
in round r may not succeed (the sandwich is unsuccessful if the victim swap
precedes attacker front-run swap). Furthermore, the victim swap parameters can
be arbitrarily chosen, so that the victim swap may not be enabled or execute in
a given sequence. Thus, we must exhaustively demonstrate the profitability of
the attacker strategy for all possible cases:

1) Successful sandwich & enabled victim swap
2) Successful sandwich & disabled victim swap
3) Unsuccessful sandwich & enabled victim swap
4) Unsuccessful sandwich & disabled victim swap

Case 1: (Successful sandwich & enabled victim swap): We illustrate the symbolic
execution of the attack trace below in terms of initial balances, chosen swap
parameters and exchanged amounts.

0 A[vinitA : τ0] | M[vinitM : τ0,w
init
M : τ1] | (r : τ0, r : τ1)

Round r
M:SL(vfM:τ0,w

f
M:τ1)−−−−−−−−−−−→ 1 A[vinitA : τ0] | M[vinitM − vfM : τ0,w

init
M + wf

M : τ1] | (r + vfM : τ0, r − wf
M : τ1)

A:SL(vA:τ0,wA:τ1)−−−−−−−−−−−→ 2 A[vinitA − vA : τ0,w
′
A : τ1] | M[vinitM − vfM : τ0,w

init
M + wf

M : τ1] |
(r + vfM + vA : τ0, r − wf

M − w′
A : τ1)

Round r + 1
M:SR(vbM:τ0,w

b
M:τ1)−−−−−−−−−−−−→ 3 A[vinitA − vA : τ0,w

′
A : τ1] | M[vinitM − vfM + vbM

′
: τ0,w

init
M + wf

M − wb
M : τ1] |

(r + vfM + vA − vbM
′

: τ0, r − wf
M − w′

A + wb
M : τ1)

208

SoK: Mitigation of Front-running in Decentralized Finance

We show that the attack is profitable. For τ0 and τ1 of equal unit value, the net
change in value exchanged by M must be positive. Thus, we must prove

profitM = −vfM + wf
M − wb

M + vbM
′
> 0 (2)

Note that the amounts exchanged in the front-run are equal to the front-run
parameters (vfM,w

f
M), as they are chosen such that (1) holds. We consider the

sub-case (a) in which the attacker M has sufficient balance to perform the
back-run swap such that the AMM reserves are restored to the original state
and the sub-case (b) in which the attacker initially has no balance of τ1 to
perform the back-run: winit

M = 0. Here, the funds of τ1 required to execute the
back-run are received entirely in the front-run execution.

For sub-case (a), we rewrite (2) in terms of independently chosen param-
eters vfM, vA (the attacker only knows the victim swap direction) and initial
reserve amounts r. The reserves of the AMM are restored to the initial state
in final state 3 : summing all step changes to the reserves across the sandwich
execution yields

r + vfM + vA − vbM
′

= r r − wf
M − w′A + wb

M = r

vfM + vA − vbM
′

= 0 − wf
M − w′A + wb

M = 0

or

vbM
′

= vfM + vA wb
M = wf

M + w′A

Inserting RHS of equations above into our proof obligation (2) yields

profitM = −��vfM +��v
f
M + vA +��w

f
M −��w

f
M − w′A >

? 0

vA − w′A >
? 0 (3)

To evaluate whether this inequality holds, we must solve for w′A in terms of
vA and vfM chosen independently by the victim and adversary respectively. We
exploit the constant reserve product invariant which holds for across the entire
execution.

(r + vfM) · (r − wf
M) = r2 (front-run swap)

(r + vfM + vA) · (r − wf
M − w′A) = r2 (victim swap)

We can derive r − wf
M = r2

r+vfM
from the first equation, and substitute the RHS

for r − wf
M in the second equation to obtain

(r + vfM + vA) · (r2

r + vfM
− w′A) = r2

209

Carsten Baum et al.

Solving for w′A ...

w′A =
r2

r + vfM
− r2

r + vfM + vA

=
r2(r + vfM + vA)− r2(r + vfM)

(r + vfM)(r + vfM + vA)

=
r2

r2 + (2vfM + vA)r + (vfM)2 + vAvfM
· vA

and substituting the RHS for w′A in the proof obligation in (3) finally yields

profitM = (1− r2

r2 + (2vfM + vA)r + (vfM)2 + vAvfM
) · vA > 0 (4)

The fraction expression above is less than 1 for any choice of positive vfM and vA
as the numerator is smaller than the denominator. The attacker profit is thus
positive and increases with vM, justifying the front-run swap by M.

Next, we consider the sub-case (b), where the attacker initially has no
balance of τ1, and restate the profit of attacker for the reader’s convenience.

profitM = −vfM + wf
M − wb

M + vbM
′
>? 0

We assume initial attacker balance in winit
M : τ1 to be 0 : τ1, so that all the

amount of τ1 available for the back-run in state 2 is received in the front-run:
thus, substituting wb

M = wf
M into the equation above yields

profitM = −vfM + vbM
′
>? 0 (5)

To prove this inequality, we solve for vbM
′

in terms of vfM and vA chosen indepen-
dently by the victim and adversary respectively and initial reserves amounts r.
We exploit the constant reserve product invariant which holds throughout the
execution.

(r + vfM) · (r − wf
M) = r2 (Front-run)

(r + vfM + vA) · (r − wf
M − w′A) = r2 (Victim swap)

(r + vfM + vA − vbM
′
) · (r − wf

M − w′A + wb
M) = r2 (Back-run)

Since wf
M = wb

M is assumed in sub-case (b), the 3rd equation (back-run) yields

vbM
′

= r + vfM + vA −
r2

r − w′A
(6)

From the 2nd equation (victim swap), we solve for w′A in terms of independent
parameters vfM, vA and r

w′A = r − wf
M −

r2

r + vfM + vA

210

SoK: Mitigation of Front-running in Decentralized Finance

From the 1st equation (front-run) wf
M =

r·vfM
r+vfM

, so we can rewrite the above as

w′A = r − r · vfM
r + vfM

− r2

r + vfM + vA
=

r2

r + vfM
− r2

r + vfM + vA
=

r2 · vA
(r + vfM)(r + vfM + vA)

r − w′A =
r(r + vfM)(r + vfM + vA)− r2 · vA

(r + vfM)(r + vfM + vA)

Substituting the RHS above for r−w′A in the denominator expression of (6) and

then substituting the RHS of (6) for vbM
′

in (5) yields

profitM = −��vfM + r +��v
f
M + vA −

r2(r + vfM)(r + vfM + vA)

r(r + vfM)(r + vfM + vA)− r2 · vA

= vA −
r3vA

r(r + vfM)(r + vfM + vA)− r2 · vA

= (1− r2vA
(r + vfM)(r + vfM + vA)− r · vA

) · vA

= (1− r2

r2 + 2vfMr + (vfM)2 + vAvfM
) · vA (7)

The attacker profit is positive but strictly less than the gain (4) obtained in
sub-case (a).

Case 2 (Successful sandwich & disabled victim swap): Should the victim swap
not execute in round r, then M can simply revert the state of the AMM with a
back-run in the round r+ 1 with the same parameter values as in the front-run.

0 A[vinitA : τ0] | M[vinitA : τ0,w
init
A : τ1] | (r : τ0, r : τ1)

Round r
M:SL(vfM:τ0,w

f
M:τ1)−−−−−−−−−−−→ 1 A[vinitA : τ0] | M[vinitM − vfM : τ0,w

init
M + wf

M : τ1] | (r + vfM : τ0, r − wf
M : τ1)

A:((((
((

SL(vA:τ0,wA:τ1)−−−−−−−−−−−→ 2 A[vinitA : τ0] | M[vinitM − vfM : τ0,w
init
M + wf

M : τ1] | (r + vfM : τ0, r − wf
M : τ1)

Round r + 1
M:SR(vfM:τ0,w

f
M:τ1)−−−−−−−−−−−−→ 3 A[vinitA : τ0] | M[vinitM : τ0,w

init
M : τ1] | (r : τ0, r : τ1)

The attack execution is trivially cost-neutral for M.

Case 3 (Failed sandwich & enabled victim swap): We must show that the at-
tacker front-run must be disabled assuming the attacker parameters are chosen
as described in the attack strategy. Further, we can demonstrate that the back-
run by the attacker is profitable.

211

Carsten Baum et al.

0 A[vinitA : τ0] | M[vinitM : τ0,w
init
M : τ1] | (r : τ0, r : τ1)

Round r
A:SL(vA:τ0,wA:τ1)−−−−−−−−−−−→ 1 A[vinitA − vA : τ0,w

′
A : τ1] | M[vinitM : τ0,w

init
M : τ1] | (r + vA : τ0, r − w′

A : τ1)

M:((((
((

SL(vfM:τ0,w
f
M:τ1)−−−−−−−−−−−→ 2 A[vinitA − vA : τ0,w

′
A : τ1] | M[vinitM : τ0,w

init
M : τ1] | (r + vA : τ0, r − w′

A : τ1)

Round r + 1
M:SR(vbM:τ0,w

b
M:τ1)−−−−−−−−−−−−→ 3 A[vinitA − vA : τ0,w

′
A : τ1] | M[vinitM + vbM

′
: τ0,w

init
M − wb

M : τ1] | (r : τ0, r : τ1)

As described in step (1) of attack strategy, M’s front-run parameters are chosen
such that

(r + vfM) · (r − wf
M) = r2

wf
M =

r · vfM
r + vfM

(8)

Thus, the front-run swap is only enabled if the received amount is equal or
greater to wf

M shown above. Note, that this doesn’t hold if the front-run is
executed in state 1 of case (3) following the enabled victim swap. We prove this
by contradiction: assume that the front-run executes following the victim swap,
then the constant reserve product invariant must hold.

(r + vA) · (r − w′A) = r2 (Victim swap)

(r + vA + vfM) · (r − w′A − wf
M

′
) = r2 (Front-run)

We solve for (r − w′A) in the first equation and insert into the second equation
to obtain

(r + vA + vfM) · (r2

r + vA
− wf

M

′
) = r2

Further, we solve for wf
M

′
in terms of r, vA and vfM

r2

r + vA
− wf

M

′
=

r2

(r + vA + vfM)

wf
M

′
=

r2

r + vA
− r2

r + vA + vfM
=

r2 · vfM
(r + vA) · (r + vA + vfM)

=
r

r + vA
· r · vfM

(r + vA + vfM)

Comparing with wf
M in (8), we can infer the following inequality

wf
M

′
< wf

M

which cannot hold in a valid execution by definition of swaps: a user cannot
receive less than the chosen swap limit. Thus, the front-run cannot be enabled
in state 1 of case (3).

Next, we prove the profitability of the back-run. Assuming a sufficient balance
of the attacker to revert the effect of the victim swap, the swap parameters of

212

SoK: Mitigation of Front-running in Decentralized Finance

the back-run can be chosen to reverse the affects of victim swap on the AMM
reserves, which M observes following the output-phase of round r: namely, vbM =
vA and wb

M = wA
′. We insert these into the reserve product invariant from the

victim swap

(r + vA) · (r − wA
′) = r2 (Victim swap)

to obtain

(r + vbM) · (r − wb
M) = r2

wb
M =

r

r + vbM
· vbM

wb
M < vbM

For equal unit value of both token types, this is clearly profitable, as M receives
more value (vbM) as it sends (wb

M). If attacker has no balance of τ1 it simply omits
the back-run and the attack is aborted, resulting in a cost-neutral execution for
the attacker.

Case 4 (Failed sandwich & disabled victim swap): As in case (2) - should the
victim swap not execute in round r, then M can simply revert the state of the
AMM with a back-run in the round r + 1

0 A[vinitA : τ0] | M[vinitA : τ0,w
init
A : τ1] | (r : τ0, r : τ1)

Round r
A:((((

((
SL(vA:τ0,wA:τ1)−−−−−−−−−−−→ 1 A[vinitA : τ0] | M[vinitM : τ0,w

init
M : τ1] | (r : τ0, r : τ1)

M:SL(vfM:τ0,w
f
M:τ1)−−−−−−−−−−−→ 2 A[vinitA : τ0] | M[vinitM − vfM : τ0,w

init
M + wf

M : τ1] | (r + vfM : τ0, r − wf
M : τ1)

Round r + 1
M:SR(vfM:τ0,w

f
M:τ1)−−−−−−−−−−−−→ 3 A[vinitA : τ0] | M[vinitM : τ0,w

init
M : τ1] | (r : τ0, r : τ1)

The attack execution is trivially cost-neutral for M.

B Speculative sandwich with private user balances

Importantly, when performing the speculative AMM swap attack as shown in A,
the direction of the victim swap must be known. If user balances are private, M
will have to guess the direction of the front-running swap. However, this is not
a profitable strategy: an incorrect guess can result in a loss for M as shown in
the trivial example execution below.

213

Carsten Baum et al.

A[10 : τ0, 10 : τ1] | M[7 : τ0, 15 : τ1] | (100 : τ0, 100 : τ1)

Round r
M:SL(7:τ0,6.5:τ1)−−−−−−−−−−−→ A[10 : τ0, 10 : τ1] | M[21.5 : τ1] | (107 : τ0, 93.5 : τ1)

A:SR(17:τ0,6.5:τ1)−−−−−−−−−−−→ A[7 : τ0, 3.5 : τ1] | M[21.5 : τ1] | (100 : τ0, 100 : τ1)

Again, assuming equal unit value of τ0 and τ1, M realizes a loss of 7+15−21.5 =
0.5. No back-run swap is possible that extracts any arbitrage value given that
the reserve ratio is already consistent with the assumption that unit values of
τ0 and τ1 are equal [4]. Thus, speculative sandwich attacks are only rational if
the victim swap direction can be inferred, motivating the need for private user
balances.

C Example: speculative sandwich of scheduled swap

We illustrate an example of a sandwich of a scheduled swap. Such an attack
can be exploited despite the batching of blinded user inputs §3.2, as long as
input schedules remain public. Let A : SL(20 : τ0, 15 : τ1, r) be a swap action
that is scheduled to execute as soon as possible following block-chain round
r, thus requiring no further interaction from the user. Further, let the set of
scheduled swap orders be captured in a publicly observable state fragment, i.e.
Γ = [A : SL(15 : τ0, 10 : τ1, r)]. In practice, such a scheduled swap order will be
evaluated prior to the first swap order in round r + 1, so that it is not possible
for the adversary to place a front-run swap before it in round r + 1.

However, the sandwich attack can still be executed by an adversary which
prevents honest users from submitting swap. The adversary simply submits the
front-run to round r, and the back-run to round r + 1, whilst suppressing all
other user inputs.

A[15 : τ0] | M[15 : τ0, 10 : τ1] | (100 : τ0, 100 : τ1) | Γ
Round r

M:SL(15:τ0,13:τ1)−−−−−−−−−−−→ A[15 : τ0] | M[23 : τ1] | (115 : τ0, 87 : τ1) | Γ
Round r + 1

A:SL(15:τ0,10:τ1,r)−−−−−−−−−−−→ A[10 : τ1] | M[23 : τ1] | (130 : τ0, 77 : τ1) |
Γ \ [A : SL(15 : τ0, 10 : τ1), r]

M:SR(30:τ0,23:τ1)−−−−−−−−−−−→ A[10 : τ1] | M[30 : τ0] | (100 : τ0, 100 : τ1) |
Γ \ [A : SL(15 : τ0, 10 : τ1, r)]

We emphasize that scheduled swap orders do not require the submitting user
A to participate in the round it is scheduled: it is evaluated automatically by

214

SoK: Mitigation of Front-running in Decentralized Finance

the application. Furthermore, since the victim’s swap parameters are public, the
front-run and back-run parameters can be chosen to optimize M’s profit.

D Speculative sandwich in hash-based commit & reveal
schemes

As shown in Appendix A, the speculative sandwich attack is rational as long as
the direction of the victim swap is known. Hash-based commit & reveal schemes
suffer from selective output by the adversary (fig. 4), permitting a speculative
attack to succeed even if the swap direction cannot be inferred from public user
balances. Here the attacker simply commits two front-run swaps of opposing
directions in the same round as the victim swap, whilst suppressing other user
inputs. In the output-phase, the adversary learns the direction of the victim swap
before having to open its own commitments and selectively opens the front-run
of the same direction as the victim swap, whilst refraining from opening the
other front-run swap. The back-run is then executed as in Appendix A.

215

FairPoS: Input Fairness in Proof-of-Stake with
Adaptive Security

Contribution
• Co-author.

Remarks
Under submission.

216

FairPoS: Input Fairness in Proof-of-Stake
with Adaptive Security

James Hsin-yu Chiang1, Bernardo David2, Ittay Eyal3, Tiantian Gong4

1 Technical University of Denmark, Denmark
jchi@dtu.dk

2 IT University of Copenhagen, Denmark
bernardo@bmdavid.com

3 Technion, IC3, Haifa, Israel
ittay@technion.ac.il

4 Purdue University, West Lafayette, USA
tg@purdue.edu

Abstract. We present “FairPoS”, the first blockchain protocol that
achieves input fairness with adaptive security. Here, we introduce a novel
notion of “input fairness”: the adversary cannot learn the plain-text of
any finalized client input before it is included in a block in the chain’s
common-prefix. Should input fairness hold, input ordering attacks which
depend on the knowledge of plain-text of client inputs are thwarted. In
FairPoS, input fairness with adaptive security is achieved by means of
the delay encryption scheme of DeFeo et al. [9], a recent cryptographic
primitive related to time-lock puzzles, allowing all client inputs in a given
round to be encrypted under the same key, which can only be extracted
after enough time has elapsed. In contrast, alternative proposals that
prevent input order attacks by encrypting user inputs are not adaptively
secure as they rely on small static committees to perform distributed
key generation and threshold decryption for efficiency’s sake. Such small
committees are easily corrupted by an adaptive adversary with a corrup-
tion budget applicable over a large set of participants in a permissionless
blockchain system. The key extraction task in delay encryption can, in
principle, be performed by any party and is secure upon adaptive cor-
ruption, as no secret key material is learned. However, the key extraction
requires highly specialized hardware in practice. Thus, FairPoS requires
resource-rich, staking parties to insert extracted keys to blocks which en-
ables light-clients to decrypt past inputs. Note that naive application of
key extraction can result in chain stalls lasting the entire key extraction
period. In FairPoS, this is addressed by a novel longest-extendable-chain
rule. We formally prove that FairPoS achieves input fairness and the
original security of Ouroborous Praos against an adaptive adversary.

1 Introduction

Blockchain protocols permit the elected leader of each round to produce a block
containing an ordered list of transactions chosen by its leader. This ordering
privilege is exploited in front-running [12], where adversarial inputs can be in-
terleaved with honest inputs to extract financial value from the honest victim in

217

James Chiang et al.

applications such as automatic market makers [4]. Such behaviour financially pe-
nalizes the honest user, but also generates excess demand for block-space since
front-running attacks [4] always require additional inputs from the adversary,
thereby inflicting block congestion, as acutely observed on Avalanche [2].

We introduce FairPoS which achieves a novel notion of input fairness whilst
retaining the asymptotic security of Ouroborous Praos [13]. Informally, input
fairness ensures that the plain-text content of any finalized input (in the common-
prefix) could not have been observed by the adversary prior to its finalization.
FairPoS achieves this by encrypting inputs with a delay encryption scheme by
DeFeo et al. [9], which is similar to time-lock puzzles [28], but allows all client
inputs of a given round to be encrypted under the same key, thereby requiring
only a single key extraction for each block. The extraction procedure to recover
the decryption key is parameterized to run in at least time d, and can be be
performed by any party with access to specialized hardware to perform extrac-
tions in d time. This preserves adaptive-security, as no relevant key material is
learned upon corruption of an honest party.

Still, it is not practical for light-clients or non-staking parties to perform key
extraction. Firstly, we expect only resource-rich participants to have access to
the specialized hardware [1] necessary to perform extractions in exactly d time.
Secondly, any party joining the protocol would need to perform key extractions
for all blocks beginning from genesis, which becomes increasingly impractical at
higher chain lengths. In FairPoS, staking parties must insert the extracted keys
from past inputs into blocks within a fixed schedule, thus ensuring decryption
keys are made publicly available in lock-step with chain growth. We note that
adversarial delay of blocks propagation can impede chain growth if honest parties
cannot finish key extractions on time due to delayed arrival. In FairPoS, such
attacks are addressed with a novel longest-extractable-chain rule, which asserts
a notion of timeliness on the arrival of blocks, ensuring that honest leaders can
complete the key extraction on schedule.

Comparison to related work. Recent proposals achieve a similar notion with
distributed key generation and threshold encryption committees [5,26,27], where
a small subset of protocol participants jointly generate a public key, to which
user inputs are encrypted in each round. Inputs are subsequently decrypted by
the same committee when the inputs are finalized. This approach is not secure
against an adaptive adversary, unlike the underlying permissionless blockchains.

Protocols such as Bitcoin [16] and Ouroborous Praos [13] achieve security
against an adversary that can adaptively corrupt parties in a large participant
set as the protocol execution progresses; performing any additional interactive
cryptographic protocol over such a large set of intermittently available parties is
not practical, so instead, committees assigned to the protocol task can be elected
from the larger global set of parties executing the blockchain protocol [18]. For
the interactive task of performing distributed key generation and threshold de-
cryption, however, the adaptive adversary can easily identify the active commit-
tee parties once the first protocol message is sent. Upon corruption it will learn

218

FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security

secret key material, which cannot be erased by parties as it must be maintained
as interactive protocol state5.

Another line of research [23,22,21,10] proposes a notion of fair input ordering.
A block leader will order inputs based on their order of arrival. However, fair
ordering is only meaningful in a setting with a secure connection between client
and round leaders: in a peer-to-peer gossip network setting common in massively
distributed permissionless blockchain protocols, the receipt-order of messages is
adversarially controlled, rendering the notion of fair ordering highly impractical.
A secure connection with the next block leader implies public knowledge of its
identity, contradicting adaptive security again.

Overview. In Section 2, we introduce Delay Encryption and an abstract model
of an Ouroborous Praos execution (δ-PoS). In Section 3, we then define our pro-
posed notion of Input Fairness and extend the PoS model with delay encryption
and a novel “longest-extendable-chain” selection rule to obtain a formal model of
FairPoS. In Section 4, we prove that FairPoS achieves input fairness whilst main-
taining the asymptotic security of Ouroborous Praos (PoS) against an adaptive
adversary. Proofs of stated theorems and lemmas are provided in Appendix D.

2 Preliminaries

2.1 Delay Encryption

The delay encryption (DE) scheme by De Feo et al. [9] consists of the following
four algorithms: A global DE.Setup parameterized with a security parameter
λ ∈ {0, 1}∗ and delay parameter d generates public encryption (DE.pk) and
extraction (DE.ek) keys. In each round, a public session id ∈ {0, 1}∗ is sampled,
and DE.Encaps can be used to generate a pair (c, k) of a ciphertext c and a key
k corresponding to id and the encryption key DE.pk. The DE.Extract algorithm
runs in at least d time, and returns a session key idk, with which the DE.Decaps
algorithm can compute a key k from ciphertext c for all (c, k) generated with
the same session id and public paramaters from a given setup.

1. DE.Setup(λ, d)→ (DE.ek,DE.pk)
2. DE.Encaps(DE.pk, id)→ (c, k)
3. DE.Extract(DE.ek, id)→ idk
4. DE.Decaps(DE.pk, id, idk, c)→ k

Delay encryption is an isogeny-based delay protocol, and similar to [14] is built
from isogeny walks in graphs of pairing friendly supersingular elliptic curves.
In implementations [14], such isogeny evaluations occupy memory space in the
terabytes. Parties performing Extract are expected to deploy specialized FPGA
hardware [1] in order to achieved the parameterized extraction time.

5 We note a line of work which achieves adaptive security in large scale cryptographic
protocols via anonymous committees [7,19,11,17,15]. However, the efficiency of such
approaches remains impractical. We consider this as an orthogonal line of research.

219

James Chiang et al.

2.2 Longest-chain PoS model and security

We present a model of longest-chain proof-of-stake protocols, formalized by the
Ouroborous line of work [25,13,3] and subsequent improvements [8,24]. We adopt
modelling approach in [25,13,3,24], where the PoS protocol is modelled by two
orthogonal components: the first describes the leader election process and the
second part models the views of blockchain trees which result from a protocol
execution induced by a given leader schedule.

Idealized leader elections. Time in PoS is divided into units named slots,
each capturing the duration of a single protocol round. In a given round, a
party with relative stake α ∈ (0, 1] becomes a slot leader for a given slot with
probability

ϕ(α) = 1− (1− f)α

where parameter active slot coefficient f is the probability that a leader holding
all stake will be elected leader in given slot: importantly, ϕ(α) is maintained
even if share α is split amongst multiple, virtual parties (eq. 2 in [13]). Let a
characteristic string w be defined as a sequence of leader election results, where
an election result at slot t is defined as follows.

wt =

0 a single honest leader

1 multiple honest leaders / adversarial leader

⊥ no leader

In PoS [13], leader election is modelled by sampling characteristic strings from
an idealized, dominant distribution Df

α that is strictly more adversarial than the
true setting where the adaptive adversary corrupts up to (1 − α) of the stake
during the protocol execution (Theorem 8 in [13]). Thus, any security that holds
in PoS executions induced by characteristic strings sampled from Df

α must also
hold in the true protocol execution against an adaptive adversary dynamically
corrupting up to 1− α stake.

Definition 1 (Dominant distribution Df
α (Definition 11 in [13])). For an

adaptive adversary corrupting up to 1−α stake fraction and active slot coefficient
f ∈ [0, 1), the dominant distribution Df

α is defined by the following probabilities:

p⊥ = 1− f p0 = ϕ(α) · (1− f) p1 = 1− p⊥ − p1 (1)

Definition 2 (Blocks, chains, trees and branches). A block B = (sl, st, d, ldr)
generated at slot sl contains state st ∈ {0, 1}∗, data d ∈ {0, 1}∗ and party ldr
that generated B and was the leader of slot sl. A chain is a sequence of blocks
B0, ..., Bn associated with a strictly increasing sequence of slots, where B0 is the
genesis block, and the state of Bi is H(Bi−1), H(·) denoting a collision-resistant
hash function. We write C.tip to denote the block at the tip of chain C and Cj to
denote a block B ∈ C such that B.sl = j. If such a block does not exist, Cj = ⊥.
Let C⌈k denote the chain obtained from C by removing the last k blocks. Multiple
chains form a tree if their blocks share state. A branch B in a tree T is a chain

220

FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security

which ends with a leaf block. We write C ⪯ B to indicate C is a prefix of B. When
quantifying over all chains in a tree, ∀C ∈ T , we quantify over all prefixes of all
tree branches. Let len(C) denote the number of blocks in chain C.

δ-PoS execution model

The evolution of a PoS execution state Γt =
(
{T (i),m(i)}i∈H, T A)

in a single

protocol round Γt
wt+1−−−→ Γt+1 induced by environment Z, adversary A and char-

acteristic string w occurs as follows.

For local tree views {T (i)}i∈H and T A:

T0. T (i)
0 consists of the genesis block.

T1. If wt+1 = 0, a single honest party runs Extend on the longest chain C in
T (i), upon which the extended chain is added to T (i) and T A.

T2. At any time during the round, adversary A may:
a) Run Extend on a chain in T A for slot t+ 1 if wt+1 = 1, upon which the

updated chain is added to T A.
b) Update any honest tree view T (i) with a chain from T A or an honest

message queue {m(i)}i∈H (see M2).

For honest message queues {m(i)}i∈H:

M1. For a chain C′ extended by honest party i during the round (T2), the entry
(C′,H) is added to local message queue m(i).

M2. At any time during the round, adversary A may deliver a chain from an entry
(C,P) ∈m(i) to a subset of honest users I ⊆ H:
a) The entry (C,P) in m(i) is updated to (C,P ′), where P ′ = P\I.
b) Each (C,P) ∈ m(i) must be delivered to all honest parties H by slot
C.sl+ δ, and is removed from m(i) when delivery is completed.

Extend. To extend C, the party i generates B = (t + 1, H(C.tip), d, i) containing
an ordering of inputs d = {ini}i∈[m] provided by Z for slot t.

Fig. 1. δ-PoS model induced by environment Z and characteristic string w.

A model of δ-PoS exections. As in [16,25,13,3], we model the execution
of PoS initiated upon the activation of an environment Z, which spawns both
honest parties H and an adversary A. Upon each activation by the environment,
each party executes the protocol according to Figure 1, which precisely mod-
els the adversarial powers to influence the round-wise evolution of block tree
structures in the local view parties as the full PoS protocol in [13], but omits
details such as block proofs, signatures or individual leader election procedures
such as evaluation of verifiable random functions. A given characteristic string w
induces executions of our δ-PoS model that generate local tree structures iden-
tical to those resulting from a full PoS [13] protocol execution that induces a
leader election sequence consistent with w and activates the same parties and
adversarial actions.

221

James Chiang et al.

Let the protocol execution state Γt in slot t, consist of honest party states,
including the local block tree view T (i) and the outbound message queue m(i)

for each honest party i ∈ H. Further, let Γt include the blockchain tree view T A
of the adversary.

Γt =
(
{T (i),m(i)}i∈H, T A

)
(2)

The outbound message queue m(i) = {(C,P), ...} in Γt is the set of broadcast,
yet undelivered chains previously sent by honest party i. For each entry (C,P) ∈
m(i), C was initially broadcast and added to the local message queue at slot
C.sl ≤ t. Each entry in m(i) consists of a chain C and honest party subset
P ⊂ H, which has yet to receive the message. A is required to deliver all honestly
broadcast chains with a delay of no more than δ slots. The model executes round-
wise beginning from initial state Γ0, where the tree views of all parties consist
only of the genesis block.

In each round from slot t to t+1, the leader is implied by by wt+1 ∈ {0, 1,⊥}.
For a uniquely honest slot, the environment Z is permitted to activate any honest
party to extend the longest chain in its local view, where the inputs for insertion
in the block are provided by Z. We interpret wslot = 1 as a strictly adversarial
slot, since the adversary could affect the structure of local trees views in the same
way as multiple honest leaders: namely, by producing multiple blocks associated
with the same slot.

PoS Security. The seminal work on formalizing the Bitcoin backbone pro-
tocol [16] proved liveness and persistence of longest-chain proof-of-work (PoW)
protocols in terms of common-prefix, chain growth and chain quality properties,
which are also achieved for PoS in Ouroboros Praos [13]. We restate these below
and formally prove them for FairPoS in Section 4.

Definition 3 (Common prefix, k-CP; with parameter k ∈ N). The chains
C1, C2 possessed by two honest parties at the onset of the slots t1 < t2 are such

that C⌈k1 ⪯ C2 , where C⌈k1 denotes the chain C⌈k1 obtained by removing the last k
blocks from C1, and ⪯ denotes the prefix relation.

Definition 4 (Chain growth, (τ, s)-CG; with parameter τ ∈ (0, 1] and
s ∈ N). Consider the chains C1, C2 possessed by two honest parties at the
onset of two slots t1, t2 with t2 at least s slots ahead of t1. Then it holds that
len(C2)− len(C1) ≥ τ · s. We call τ the speed coefficient.

Definition 5 (Chain quality, (µ, k)-CQ; with parameters µ ∈ (0, 1] and
k ∈ N). Consider any portion of length at least k of the chain possessed by
an honest party at the onset of a round; the ratio of blocks originating from the
adversary is at most 1− µ. We call µ the chain quality coefficient.

3 The FairPoS protocol

We introduce the FairPoS model in parts. In Section 3.1, we formally define
a novel notion of input fairness, for clients sending transactions to a FairPoS

222

FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security

execution. In order for an encrypted input to reach the k-common-prefix, the
duration implied by the delay parameter d must be sufficiently long.

In Section 3.2, we introduce the formal model of FairPoS, which extends δ-PoS
with key extraction and a novel longest-extractable-chain selection rule. Here, en-
crypted inputs are generated as in Section 3.1 and given by the environment Z
to parties executing the protocol. We first describe a naive application of key
extraction, demonstrating adversarial chain stalls up to d− 1 slots, thereby mo-
tivating the design of the longest-extendable-chain selection rule in the FairPoS
model, which mitigates such adversarial impedance and ensures honest chain
growth independent of chosen delay encryption parameter d.

A security analysis of FairPoS follows in Section 4, where the precise rela-
tionship between input fairness, chain growth, common-prefix and chain quality
properties is formalized.

3.1 Input fairness & input encryption

Definition 6 (Input fairness, IF). Consider the chain C possessed by an hon-
est party at the onset of a round, where k-CP holds true. Input fairness holds
if for all blocks B ∈ C⌈k: 1. the adversary cannot decrypt an encrypted input
in B before B is in the common-prefix; 2. encrypted inputs in B are eventually
decrypted by all honest parties.

Input fairness is conditioned on k-common-prefix property in FairPoS. Intuitively,
the extraction delay d in FairPoSmust be parameterized, such that the encrypted
input can reach the common-prefix before d time passes. For simplicity, we de-
note d as time in slots. Note that input fairness permits an encrypted input to
not become finalized and decrypted by the adversary: we argue this outcome is
acceptable as the client transaction is not executed and thus cannot be exploited
in any input ordering attacks. This is consistent with [5,26,27].

We sketch the input encryption procedure for FairPoS shown in Figure 2,
where the environment Z provides the plain-text input for a party to encrypt
and sign. For a block B, inputs are encrypted to a session id which is set to the
chain tip that B is extending, such that id = C.tip and C.tip = B.st. To ensure
that a slot leader cannot insert an encrypted input to a later block, potentially
deferring its insertion until the key extraction is completed, we ensure that the
input is bound to a child block of C.tip with a signature.

In the adaptive corruption setting, we deploy an efficient key evolving signa-
ture scheme (KES) [6,20] as used in [13]. Such schemes evolve secret key material
forward with each signature, thereby erasing any information that could be used
to generate verifying signatures of past rounds (See Definition 10). An adaptive
adversary could always corrupt a user who has just broadcast a newly delay
encrypted and signed input; with static key material only, the adversary would
learn the signature key and generate verifying signatures of the delay encrypted
input to insert it into a block, potentially after decrypting the encrypted input.

For public verification of such signatures, we assume the presence of logical
accounts for all parties, each associated with a public signature verification key
inferred from the chain tip.

223

James Chiang et al.

FairPoS input encryption procedure

Let KES = (Gen,Sign,Verify,Update) and SKE = (Gen, Enc,Dec) denote a key evolv-
ing signature scheme and a symmetric-key encryption scheme. Let the genesis block
of a chain contain a delay encryption parameter DE.pk and a chain tip imply ac-
count keys {KES.vki}i∈[n].

Gen: Upon (Gen), set (sk, vk)← Gen(1k, T), return vk.

Sign: Upon (Sign, C, in)
1. Let id = C.tip. Assert vk ∈ accts(C.tip). Set pk← DE.pk(C0)
2. Compute (c, k)← DE.Encaps(pk, id).
3. Encrypt input with key k: m← SKE.Enck(in).
4. Generate σ ← KES.Signsk(c |m | id).
5. Set sk← Update(KES.sk), thereby erasing signing previous key.
6. Return (c,m, σ).

Fig. 2. Input encryption in FairPoS

3.2 The (d, δ,∆)-FairPoS protocol

A key contribution of FairPoS is to achieve security that is independent of the cho-
sen delay encryption parameter d. Towards this, we reintroduce ∆-monotonicity
from [13], which states that an honest chain tip can always be extended by the
first honest leader following ∆ slots, a key property required to realize security
in longest-chain proof-of-stake.

Definition 7 (∆-Monotonicity, from [13]). Let T =
⋃

i∈H T (i) be an honest
tree rooted in genesis resulting from an execution of protocol π in a δ-synchronous
network: it consists of all chains broadcast by honest parties. Further, let depth(i)
denote the length of the chain extended by the uniquely honest leader of slot i.
T exhibits the ∆-monotonicity property if

For all uniquely honest slots (i, j) s.t. j ≥ i+∆ : depth(j) > depth(i)

In PoS executed in a δ-synchronous setting , δ-monotonicity is trivially achieved:
any honest block tip must arrive in the view of other honest party after δ slots,
and is thus considered as a chain candidate for extension by any honest leader
applying the longest chain selection rule.

Towards achieving ∆-monotonicity when extending PoS with key extraction
with delay d, such that d can independently be parameterized from ∆, we first il-
lustrate a naive key extraction application where this is not achieved to motivate
the final FairPoS design.

Here, we must introduce a formal notion of receipt delay, which, informally,
quantifies how far a local key extraction process is “behind schedule” due to
adversarial delays.

Definition 8 (Receipt delay). Let r(i)(B) : B → Z0 be the delay in slots
between B.sl and the local arrival of block B from the view of the party (i). If B
is an empty-block (⊥), we define the receipt delay to be ⊥.

224

FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security

When the extraction window is defined as a slot interval preceding genesis, where
slot indices are “negative”, let the receipt delay is defined as⊥. We allow a receipt
delay of ⊥ to be interpreted as a receipt delay of 0.

Naive key extraction causing honest chain stall. Let an extraction sched-
ule be defined as D = d+ δ, where d is the delay encryption parameter in slots,
and δ be the maximum network delay δ. We initially assume a leader election
sequence with no empty slots.

For an honest leader of slot t extending chain C (according to the longest-
chain rule), let Ct−D denotes the block in C with a key extraction due in the
honest block of slot t extending C. In order to ensure that current and future
slot leaders can extend a chain C, the following must hold.

1. The honest slot leader must receive Ct−D on time (latest at slot t−D + δ).
2. The honest slot leader must ensure that blocks in C, which are extracted by

future honest leaders, must also arrive on time, e.g. (Ct−D+1, ..., Ct−1).

w =

Local view of honest party (a) Local view of honest party (b)

w =

w =

0 1 1 0

0 1 1

0

C1 C2 C3 C4

C1 C2

C1

1

Max. receipt delay:
1 slot

Leader: (a)

w =

w =

w =

0 1 1 0

0 1 1

0

C1 C2

C1

1

Receipt delay: 1 slot2 slots

w = 0 1 1 0 0
C1 C2 C3 C4 C5

2 slots Leader: (b)

x

Ext. Schedule (D) = d + δ = 2+1

Fig. 3. Example: Naive application of key extraction

Let the maximum network delay of a single slot be δ = 1 in Figure 3. Consider
honest party (a)’s view shown in the figure below, who is the leader of slot 4.
Party (a) asserts that:

1. It can extract C1 by slot C4 given extraction schedule D = 2 + 1 = 3.
2. Blocks C2 and C3 were received in party (a)’s view with a receipt delay of no

more than δ = 1 slot.

Recall, condition (2) is intended to ensure that future honest leaders will be able
to perform extractions of C2, C3 on time. However, the adversarial blocks C2,3
are only forwarded to party (a) with the maximally permitted delay δ = 1, who
then rebroadcasts (see M1 in Figure 1) to other honest parties:

A C2,3−−→ P(a)
C2,3−−→ {Pi}i∈H (3)

This inflicts an additional receipt delay on C2,3 in the view of other honest
parties, such as party (b), the leader of slot 5. In the view of party (b),

1. It cannot extract C2 by slot 5 as the extraction of C2 is only 1/3 complete.
2. Blocks C3 and C4 were received in party (b)’s view with a receipt delay that

exceeds 1 slot.

225

James Chiang et al.

Thus, we have a honest chain stall: any honest party other than party (a) cannot
extend honest chain tip C4 until slot 6, inflicting a chain stall of d− 1.

Key extraction and longest-extendable-chains. We provide an informal
overview to key extraction in FairPoS. Consider the view of honest party (a)
shown in Figure 4, who is the leader of slot t. Let the protocol be executed in a
1-synchronous setting. Honest party (a), considering the extension of the chain
C, asserts the following:

1. It has completed the extraction of blocks in the extraction window with an
extraction schedule D = 12 slots.

2. All blocks in the chain with pending extractions must have been received in
party (a)’s view with maximum receipt delays shown in Figure 4.

Local view of honest party (a)

Local view of honest party (b)

Leader of slot t: (a)

3. Δ-WindowExt-Win.

w =

Max. receipt delay:
2. Δ-Window 1. Δ-Window 0. Δ-Window

1 1 1 1 1 1 1 1 1 1 1 1 0

Leader of
slot t+Δ: (b)

Ext-Window

w =

Max. receipt delay:
3. Δ-Window 2. Δ-Window

234345456
1. Δ-Window

123 012

2343454 123 012

0. Δ-Window

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

Ext. Schedule (D) = d + 4δ = 8 + 4

Fig. 4. Key extraction in (d, δ,∆)-FairPoS

Maximally permitted receipt delays are specific to each ∆-window, which divides
the D slots of the extraction schedule. For the n’th ∆-window, the maximum
permitted receipt delay is n ·δ = n ·1 for the first slot to the right of the window.
Each subsequent slot in the n’th window is permitted an additional receipt delay
of 1 slot. Observe that ∆-monotonicity holds for ∆=3: consider party (b), which
is the leader of slot t+∆ = t+3. Even if the adversary can induce an additional
receipt delay of δ = 1 in the view of party (b) as shown in Figure 4, party (b)
will be able to assert conditions (1) and (2) above. This is because each block in
the n’th ∆-window of party (a) is now in the n+ 1’th ∆-window of party (b)’s
view and is permitted an additional delay of δ = 1.

Extraction window. We define an extraction window as the the slots for
which associated blocks have key extractions that are due in the current slot.
This accounts for the possibility of a gap between the chain tip and the current
slot, where no extracted keys could have been inserted.

Let the FairPoS protocol be parameterized with extraction schedule D. We
define gap2tip(t, C) as the number of empty slots between slot t and C.tip.sl.

gap2tip(t, C) = t− tip(C).sl for t > tip(C).sl

226

FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security

Then, the extraction window of current slot t and chain C with extraction sched-
ule D can be defined as the range of slots, which are at least D slots in the past
and are associated with blocks in C without key extractions already inserted in
C due to the absence of blocks.

extWinD(t, C) = (t−D − gap2tip(t, C) : t−D] (4)

Extendable chains. Let (d, δ,∆)-FairPoS be parameterized by delay encryp-
tion parameter d > 0, maximum network delay δ ≥ 0 and desired monotonicity
parameter ∆ > δ (Definition 7), such that d divides ∆ − δ. If this holds, then
we can define n, the number of ∆-windows which divide extraction schedule D.

D = n∆ where n = d/(∆− δ) s.t. n ∈ Z (5)

The delay extraction schedule D can be expanded to D = n∆ = d+ nδ, as the
right equality is implied by n = d/(∆− δ) from Equation 5.

We define the m’th “∆-window” of current slot t as the following interval,
consistent with Figure 4.

∆WinD(t,m) = (t− (m+ 1)∆ : t−m∆] for m ∈ [0 :
D

∆
) (6)

We formalize chain extendability. A chain C is extendable by leader of slot t
with local receipt delay view r(i) if the conditions 1 and 2 in Equation 7 hold.

ext(t, C, r(i)) =
{
1 1 ∧ 2

0 otherwise

1 ∀m ∈ [0 : D
∆) : ∀j ∈ ∆WinD(t,m) : r(i)(Cj) ≤ mδ + (t−m∆− j)

2 ∀j ∈ extWinD(t, C) : r(i)(Cj) ≤ D
∆δ + (t−D − j)

(7)

Observe that extendability holds for the respective chain in the view of parties (a)
and (b) in Figure 4 .

Theorem 1. (∆-Monotonicity of FairPoS) Every protocol execution of (d, δ,∆)-
FairPoS results in an honest tree T that exhibits the ∆-monotonicity property.

Longest-extendable-chain selection. In FairPoS, an honest slot leader choses
to extend the longest extendable chain in its local tree view T (i).

maxExtChain(t, T (i), r(i)) = argmax
C∈T (i):ext(t,C,r(i))

len(C) (8)

The formal model of (d, δ,∆)-FairPoS is stated in Figure 5, which extends the
δ-PoS in Figure 1 with the longest-extendable-chain selection rule, key extrac-
tions and the insertion of delay encrypted inputs, generated by the procedure
in Figure 2. The protocol execution state of (d, δ,∆)-FairPoS is extended with
local receipt delays:

Γt =
(
{T (i),m(i),r(i)}i∈H, T A

)
(9)

227

James Chiang et al.

(d, δ,∆)-FairPoS execution model

The evolution of a (d, δ,∆)-FairPoS execution state Γt =
(
{T (i),m(i),r(i)}i∈H, T A)

in a single execution round induced by environment Z, adversary A and character-
istic string w adheres to T1-T3 and M1-M2 of PoS execution model (Figure 1)
with the following differences:

T2’ differs from T2 of PoS in the following:
- Longest-extendable-chain selection replaces longest-chain-selection.
- Extend’ procedure replaces Extend for honest parties and A.
The receipt delays {r(i)}i ∈ H in Γt evolve as follows:

R1: For each chain C delivered to honest party i by A at slot t+1: for each newly
seen block Cj ∈ C, party i records r(i)(Cj)← t+ 1− Cj .sl.

Each honest party and the adversary must perform:

E1: In each round, exactly a single Extract step on each block in its local view for
which key extraction is pending.

Extend’: Party i generates B = (t,H(C.tip), dext|dins, Pi), where:
- dext = (idk, idk′, ...) are extractions of blocks in C associated with extWinD(t, C).
- dins = {(cj ,mj , σj)}j∈[n] is an ordering of encrypted inputs from Z for slot t.
When party i receives dins, it asserts for id = C.tip and each entry in dins:
- ∃vkj ∈ accts(C.tip) : 1← KES.Verifyvkj ((cj |mj |id), σj).

Then, the party adds C′ = C|B to its local view.

Fig. 5. FairPoS execution

Views in initial state Γ0 contain a genesis block which includes public parameters
DE.pk,DE.ek. Importantly, we require the adversary A and each honest party
to perform exactly one extraction step for each pending key extraction in each
round of the execution. Thus, no party or adversary gains a time advantage in
extracting session keys from blocks (See E1 in Figure 5).

4 FairPoS security

4.1 Common-prefix in FairPoS

Demonstrating k-common-prefix in FairPoS is accomplished by formally relating
the tree views generated in an execution of (d, δ,∆)-FairPoS with those that
could have resulted from δ-PoS.

Let the honest tree of protocol execution state Γt =
(
{T (i),m(i),r(i)}i∈H, T A

)

be given be the union of honest tree views at slot t:

T H(Γt) =
⋃

i∈H
T (i) (10)

In the analysis of PoS [13,24], the branching structure of the honest tree informs
us about events where a local chain was abandoned for a longer, alternative

228

FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security

branch according to the longest chain selection rule. Informally, the common-
prefix property is violated if the k-common-prefix shared between prior and
newly adopted chains if their shared prefix is “too short”. We begin our analysis
with the (viable) branches which could have been adopted by honest parties in
the first place.

Viable branches in PoS. A viable branch B in a tree T must exceed all
honest chains-tips generated more than δ slots prior to B.tip.slot in length: this
property arises from the honest application of the longest chain rule. The honest
leader of B.tip.slot must have received any honest chain-tips generated δ slots
prior and considered them as alternative candidates for extension. Therefore, the
resulting, viable branch B must exceed these in length. For branch B ∈ T , we
formalize this set of alternative chain candidates as

altChnsδ(B, T) = { C ⊆ T | C.tip.ldr ∈ H ∧ B.tip.sl > C.tip.sl+ δ } (11)

For a PoS protocol execution state Γt =
(
{T (i),m(i)}i∈H, T A

)
, the set of well-

formed, viable branches is formalized as the set of branches with lengths exceed-
ing their honest, alternative chains.

viableBranchesPoSδ (Γt) = {∀B ∈ T H(Γt) | len(B) > argmax
C ∈ altChnsδ(B,T H(Γt))

len(C) }

(12)

Viable chains in FairPoS. The notion of viable branches must be strength-
ened for FairPoS since the longest-extendable-chain rule introduces additional
constraints for the adoption of a chain in the local honest tree view. Let the
extendable prefix of a branch B in the view of honest parties at slot t be defined
as the “longest extendable prefix” of a branch.

extPrefix(t,B, {r(i)}i∈H) = argmax
C⪯B : ∃i∈H : ext(t,C,r(i))

len(C) (13)

For a (d, δ,∆)-FairPoS state, let the set of viable chains be defined as the extend-
able prefixes (Equation 13) of branches in the honest tree with lengths which
exceed those of its alternative chains (Equation 11) generated ∆ slots prior:
by the ∆-monotonicity property (Theorem 1), these chains must have been ex-
tendable by the leader that generated the respective prefix and considered as
candidates for extension.

viableChainsFairPoS∆ (Γt) = { C ⊆ T H(Γt) | ∃B ∈ T H(Γt) : C = extPrefix(t,B, {r(i)}i∈H)

∧ len(C) > argmax
C′ ∈ altChns∆(C,T H(Γt))

len(C′) }

(14)

We restate the divergence notion from [13,24] which formally describes the mag-
nitude of branching caused by the switching between viable chains.

Definition 9 (Divergence). For two chains C1 and C2, define their divergence
to be the quantity

div(C1, C2) = min(len(C1), len(C2))− len(C1 ∩ C2)

229

James Chiang et al.

where C1 ∩ C2 denotes the common prefix of C1 and C2. We extend this notion
of divergence to the protocol execution state Γ resulting from the execution of
protocol π induced by characteristic w in the δ-synchronous setting: here, the
maximum divergence over any two viable chains is quantified.

divπδ (Γ) = maxC1,C2∈viableBranchesπδ (Γ)div(C1, C2)

Finally, we define the divergence of a characteristic string w to be the maximum
divergence observable over all states which could have resulting from protocol
executions induced by w. More formally, let execπδ (Γ0, w) denote all possible ex-
ecutions of π beginning with state Γ0 which could have been induced by w in
δ-synchronous network. Then the divergence of a characteristic string w is de-
fined as:

divπδ (w) = maxΓ∈reachableπδ (Γ0,w)div
π
δ (Γ)

where reachableπδ (Γ0, w) = {Γ | ∃λ ∈ execπδ (Γ0, w) : Γ0
λ−→ Γ}

(15)

For PoS, the probability that that the divergence exceeds k-blocks over an
execution of R, is given by the following theorem from [13].

Theorem 2. (PoS Divergence, Theorem 4 in [13]) Let active slot coefficient
f ∈ (0, 1] and α be such that α(1 − f)∆ = (1 + ϵ)/2 for some ϵ > 0. Fur-
ther, let w be a string drawn from {0, 1,⊥}R according to Df

α. Then we have
Prw←$Df

α
[divPoS∆ (w) ≥ k] ≤ exp(ln(R)−Ω(k −∆)).

Towards demonstrating k-common prefix in FairPoS, we first present a cen-
tral theorem, which states that for all executions of (d, δ,∆)-FairPoS in the δ-
synchronous setting, there exists an execution of PoS in the ∆-synchronous set-
ting, such that viable chains of the d, δ,∆-FairPoS honest tree are equivalent (≡)
to the viable branches of the PoS honest tree: here, we define the equivalence of
chains such that only their structural properties are considered, formally stated
in Definition 11.

Theorem 3. (Equivalent trees) For any (d, δ,∆)-FairPoS execution λ in-
duced by a charactistic string w ∈ {0, 1,⊥}∗, Γ0 →λ Γ , there exists a ∆-PoS
execution λ′ induced by same w, Γ ′0 →λ′

Γ ′, such that the viable chains in Γ
are equivalent to the viable branches in Γ ′.

∀w ∈ {0, 1,⊥}∗ : ∀λ ∈ execFairPoSδ (Γ0, w), Γ0
λ−→ Γ : ∃λ′ ∈ execPoS∆ (Γ ′

0, w), Γ0
λ′
−→ Γ ′ :

viableChainsFairPoSδ (Γ) ≡ viableBranchesPoS∆ (Γ ′)

Since divergence is defined over viable chains and viable branches, we can
infer Corollary 1 from Theorem 3.

Corollary 1. ∀w ∈ {0, 1,⊥}∗ : divFairPoSδ (w) ≤ divPoS∆ (w)

This allows us to infer k-common-prefix from bounding the probability of the
event divPoS∆ (w) > k for w ←$ Df

α in PoS [13].

230

FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security

Theorem 4. (k-Common prefix in FairPoS) Let A be an an adaptive ad-
versary against the protocol (d, δ,∆)-FairPoS that corrupts up to (1 − α) stake,
where α be such that α(1− f)∆ = (1 + ϵ)/2 for active slot coefficient f ∈ (0, 1]
and some ϵ > 0. The probability that A makes the protocol violate the k-common-
prefix property in a δ-synchronous environment throughout a period of R slots is
no more than exp(lnR+∆−Ω(k)).

4.2 Chain growth, chain quality and input fairness

Both chain growth and chain quality of FairPoS can be derived from∆-monotonicity
of FairPoS (Theorem 1) and probabilities bounding security failure from PoS [13].

Theorem 5. ((τ, s)-Chain growth in (d, δ,∆)-FairPoS) Let A be an an
adaptive adversary against the protocol (d, δ,∆)-FairPoS that corrupts up to
(1−α) stake, where α be such that α(1−f)∆ = (1+ϵ)/2 for active slot coefficient
f ∈ (0, 1] and some ϵ > 0. Then the probability thatAmakes the protocol violate
the chain growth property with parameters s ≥ 4∆ and τ = cα/4 throughout
a period of R slots, is no more than exp(−cαs/(20∆) + lnR∆+O(1)), where c
denotes the constant c := c(f,∆) = f(1− f)∆.

Theorem 6. ((µ, k)-Chain quality in (d, δ,∆)-FairPoS) Let A be an an
adaptive adversary against the protocol (d, δ,∆)-FairPoS that corrupts up to
(1 − α) stake, where α be such that α(1 − f)∆ = (1 + ϵ)/2 for active slot
coefficient f ∈ (0, 1] and some ϵ > 0. Then the probability that A makes FairPoS
violate the chain quality property with parameters k and µ = 1/k throughout a
period of R slots, is no more than exp(lnR−Ω(k)).

Input fairness is obtained from chain growth, common prefix and chain qual-
ity. Informally, given time d and chain growth rate τ , we can determine common-
prefix and chain quality parameters such that a decrypted input must have suf-
ficient time (d slots) to reach finalization or lie in an abandoned chain.

Lemma 1. (Input fairness from CG, CP and CQ in (d, δ,∆)-FairPoS) If
for an execution of (d, δ,∆)-FairPoS, (τ, d)-chain growth, (dτ(τ−δ/(∆−δ))−1)-
common prefix, and (1/(D+1), D+1)-chain quality hold, whereD = d∆/(∆−δ),
then input fairness is implied.

Theorem 7. (Input fairness in (d, δ,∆)-FairPoS) Let A be an an adaptive
adversary against the protocol (d, δ,∆)-FairPoS that corrupts up to (1−α) stake,
where α be such that α(1− f)∆ = (1 + ϵ)/2 for active slot coefficient f ∈ (0, 1]
and some ϵ > 0. Then, the probability that A makes the FairPoS violate the
input fairness property falls exponentially with d.

We refer to Appendix C for a discussion of (d, δ,∆)-FairPoS security for
specific parameterizations of d, δ,∆.

231

James Chiang et al.

5 Conclusion

We contribute FairPoS, the first longest-chain, proof-of-stake protocol achieving
input fairness against an adaptive adversary. When adopting the leader election
procedure from Ouroborous Praos [13] or one that induces leader sequences (i.e.
characteristic strings) consistent with the dominant distribution (Definition 1),
FairPoS achieves input fairness in addition to the common-prefix, chain-growth
and chain-quality properties of PoS [13]. We note that Kiayas et al. [24] pro-
vide tighter bounds for k-common prefix in PoS. Applying this updated analysis
framework to security of FairPoS is planned as future work.

6 Acknowledgements

We thank Stefan Dziembowski and Sebastian Faust for exploratory discussions
on mitigating front-running at the consensus protocol level. We thank Luca De
Feo for his insights on isogeny-based cryptography6 and his views on deploying
Delay Encryption in practice.

6 At the crypt@b-it 2022 summer school on cryptography.

232

FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security

References

1. Alliance, V.: VDF Alliance Official Wiki. https://supranational.atlassian.

net/wiki/spaces/VA/overview (2022)

2. Avalanche: Apricot Phase Four: Snowman++ and Reduced C-
Chain Transaction Fees. https://medium.com/avalancheavax/

apricot-phase-four-snowman-and-reduced-c-chain-transaction-fees-1e1f67b42ecf

(2021)

3. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
pp. 913–930 (2018), https://doi.org/10.1007/978-3-319-78375-8_3

4. Bartoletti, M., Chiang, J.H.y., Lluch-Lafuente, A.: Maximizing extractable value
from automated market makers. arXiv preprint arXiv:2106.01870 (2021), https:
//arxiv.org/pdf/2106.01870

5. Bebel, J., Ojha, D.: Ferveo: Threshold Decryption for Mempool Privacy in BFT
networks. Cryptology ePrint Archive (2022), https://eprint.iacr.org/2022/898

6. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In:
CRYPTO’99 (Aug 1999)

7. Benhamouda, F., Gentry, C., Gorbunov, S., Halevi, S., Krawczyk, H., Lin, C.,
Rabin, T., Reyzin, L.: Can a public blockchain keep a secret? In: TCC 2020, Part I
(Nov 2020)

8. Blum, E., Kiayias, A., Moore, C., Quader, S., Russell, A.: Linear consistency
for proof-of-stake blockchains. arXiv preprint arXiv:1911.10187 (2019), https:

//arxiv.org/abs/1911.10187

9. Burdges, J., Feo, L.D.: Delay encryption. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 302–326. Springer
(2021), https://doi.org/10.1007/978-3-030-77870-5_11

10. Cachin, C., Mićić, J., Steinhauer, N.: Quick Order Fairness. arXiv preprint
arXiv:2112.06615 (2021), https://arxiv.org/abs/2112.06615

11. Cascudo, I., David, B., Garms, L., Konring, A.: YOLO YOSO: Fast and simple
encryption and secret sharing in the YOSO model. Cryptology ePrint Archive,
Report 2022/242 (2022), https://eprint.iacr.org/2022/242

12. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: IEEE Symposium on Security and
Privacy. pp. 910–927. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00040,
https://doi.org/10.1109/SP40000.2020.00040

13. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. pp. 66–98.
Springer (2018), https://doi.org/10.1007/978-3-319-78375-8_3

14. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from su-
persingular isogenies and pairings. In: International Conference on the Theory and
Application of Cryptology and Information Security. pp. 248–277. Springer (2019),
https://doi.org/10.1007/978-3-030-34578-5_10

15. Erwig, A., Faust, S., Riahi, S.: Large-scale non-interactive threshold cryptosystems
through anonymity. Cryptology ePrint Archive, Report 2021/1290 (2021), https:
//eprint.iacr.org/2021/1290

233

James Chiang et al.

16. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and
applications. In: Annual international conference on the theory and applications
of cryptographic techniques. pp. 281–310. Springer (2015), https://doi.org/10.
1007/978-3-662-46803-6_10

17. Gentry, C., Halevi, S., Krawczyk, H., Magri, B., Nielsen, J.B., Rabin, T., Yakoubov,
S.: YOSO: You only speak once - secure MPC with stateless ephemeral roles. In:
CRYPTO 2021, Part II (Aug 2021)

18. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: Proceedings of the 26th symposium
on operating systems principles. pp. 51–68 (2017), https://doi.org/10.1145/

3132747.3132757

19. Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing and
retrieving secrets on a blockchain. In: Public-Key Cryptography - PKC 2022
- 25th IACR International Conference on Practice and Theory of Public-Key
Cryptography, Virtual Event, March 8-11, 2022, Proceedings, Part I (2022).
https://doi.org/10.1007/978-3-030-97121-2 10

20. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verifying.
In: CRYPTO 2001 (Aug 2001)

21. Kelkar, M., Deb, S., Kannan, S.: Order-fair consensus in the permissionless setting.
In: Proceedings of the 9th ACM on ASIA Public-Key Cryptography Workshop. pp.
3–14 (2022), https://doi.org/10.1145/3494105.3526239

22. Kelkar, M., Deb, S., Long, S., Juels, A., Kannan, S.: Themis: Fast, Strong Order-
Fairness in Byzantine Consensus (2021), https://eprint.iacr.org/2021/1465

23. Kelkar, M., Zhang, F., Goldfeder, S., Juels, A.: Order-fairness for byzantine con-
sensus. In: Annual International Cryptology Conference. pp. 451–480. Springer
(2020), https://doi.org/10.1007/978-3-030-56877-1_16

24. Kiayias, A., Quader, S., Russell, A.: Consistency of proof-of-stake blockchains with
concurrent honest slot leaders. In: 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS). pp. 776–786. IEEE (2020), https://
doi.org/10.1109/ICDCS47774.2020.00065

25. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Annual international cryptology conference.
pp. 357–388. Springer (2017), https://doi.org/10.1007/978-3-319-63688-7_12

26. Malkhi, D., Szalachowski, P.: Maximal Extractable Value (MEV) Protection on a
DAG. arXiv e-prints pp. arXiv–2208 (2022), https://arxiv.org/abs/2208.00940

27. Momeni, P.: Fairblock: Preventing blockchain front-running with minimal over-
heads. Master’s thesis, University of Waterloo (2022), https://eprint.iacr.org/
2022/1066

28. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-
release crypto (1996), http://bitsavers.trailing-edge.com/pdf/mit/lcs/tr/
MIT-LCS-TR-684.pdf

234

FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security

A Key evolving signature schemes

We present the formal definitions of key evolving signature scheme of [6,20]

Definition 10. A key evolving signature scheme KES = (Gen,Sign,Verify,Update)
is a tuple of algorithms such that:

1. Gen(1k, T) is a probabilistic key generation algorithm that takes as input a
security parameter 1k and the total number of periods T , outputting a key
pair (KES.sk1,KES.vk), where KES.vk is the verification key and KES.sk1 is
the initial signing key (we assume that the period j to which a signing key
KES.skj corresponds is encoded in the signing key itself).

2. SignKES.skj (m) is a probabilistic signing algorithm that takes as input a secret
key KES.skj for the time period j ≤ T and a message m, outputting a sig-
nature σj on m for time period j (we assume that the period j for which a
signature σj was generated is encoded in the signature itself).

3. VerifyKES.vk(m,σj) is a deterministic verification algorithm that takes as input
a public key KES.vk, a message m and a signature σj, outputting 1 if σj is a
valid signature on message m for time period j and 0 otherwise.

4. Update(KES.skj) is a probabilistic secret key update algorithm that takes as
input a secret key KES.skj for the current time period j and outputs a new
secret key KES.skj+1 for time period j+1. We define KES.skT+1 as the empty
string and set it as the output of Update(KES.skT).

Correctness: for every key pair (KES.sk1,KES.vk)← Gen(1k, T), every message
m and every time period j ≤ T , VerifyKES.vk(m,SignKES.skj (m)) = 1.

B Chain equivalence

Definition 11 (Equivalence ≡). Two chains C0 and C1 are equivalent, C0 ≡
C1, if C′0 = C′1, where C′ is obtained from C with the following procedure:
- Let C = (B0, ..., BR) and set B′0 ← (0, ϵ, ϵ, 0), C′ ← B′0,
- For k ∈ [1, R]:
- B′k ← (Bk.sl, H(B′k−1), ϵ, Bk.ldr)
- C′ ← C′|B′k

We lift this definition of equivalence to chain sets (or trees), where each chain in
one set has exactly one equivalent chain in the other.

C Protocol parameterizations

We illustrate parameterizations of (d, δ,∆)-FairPoS in Table 1 for discussion. Ob-
serve that (d, δ,∆)-FairPoS can be parameterized with any d, δ and ∆ such that
Equation 5 holds. Delay parameter d can always be parameterized sufficiently
long for any k-common prefix, since the probability that k-common prefix is

235

James Chiang et al.

violated falls exponentially with decreasing parameter ∆, which is chosen inde-
pendently of d.

Note that a smaller ∆ will increase security, as the ∆-monotonicity property
will ensure faster honest chain growth. The extractions schedule D is a function
of d, δ and ∆ (Equation 5). Then, let the difference between the extraction
schedule and delay parameter “D−d ” be interpreted as the “time gap” between
the moment session keys are extracted by parties and the slot when these will
appear on chain. A shorter “D− d ” interval implies that light-clients which are
not performing key extractions will observe the chain-state sooner, as decryption
keys are posted to the chain within a shorter time period.

d δ ∆ n D D − d

30 6 8 15 120 90

60 6 8 30 240 180

60 6 21 4 84 24

90 6 21 6 126 36

Table 1. Parameterizations of (d, δ,∆)-FairPoS

We observe following trade-offs in Table 1: for a smaller ∆, which increases
the security of FairPoS, we obtain a larger D− d, implying a larger lag in chain-
state observability for non-extracting parties. This is intuitive, as a shorter ∆
parameter implies that honest parties must “converge” sooner on extendable
chains. This is achieved by permitting additional “slack” or “D − d ” in the
extraction schedule. We argue that this is necessary trade-off which can be ac-
ceptable in practice, as parties which need to decrypt inputs as soon as possible
are likely to perform key extractions (e.g. DeFi market arbitrageurs). Even at
larger “D − d ” intervals, key extraction remains critical for practicality: newly
joining parties will immediately obtain keys to decrypt the entire input history
beginning from genesis from the blockchain itself.

D Proofs

Theorem 1. (∆-Monotonicity of FairPoS) Every protocol execution of (d, δ,∆)-
FairPoS results in an honest tree T that exhibits the ∆-monotonicity property.

Proof (Theorem 1). ∆-monotonicity holds if every chain-tip that is honestly
generated at slot i iconsidered a candidate for extension by the first honest leader
at or following slot i+∆. In other words, the proof obligation is to demonstrate
honest chain extendability (Equation 7) holds for every honest chain-tip, ∆ slots
following its generation. We prove this by induction:

Base case (Genesis). The genesis block at slot 0 is trivially extendable at
any slot sl ≥ ∆. Recall that we permit negative chain indices, e.g. C−j for

236

FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security

j ∈ Z, which denote “empty blocks”, for which the local receipt delay r(i)(C−j)
is always ⊥, and by the definition of receipt delay (Definition 8) is interpreted as
0. Thus, when extending genesis, every “empty block” in the extraction window
and the “m”th ∆-window will not violate the receipt delay bounds imposed by
the extendable-chain criteria in Equation 7.

Inductive case (Slot i). A chain C honestly extended at slot i must fulfill the
receipt delay constraints in Equation 7 in the view of the slot leader. This honest
leader will have rebroadcast every block in C upon arrival: thus, in the worst case,
all other honest parties will have received blocks in C with an additional receipt
delay of δ slots compared to the leader of slot i. The following must hold for C
in the view of any honest leader of slot j ≥ i+∆:

- For m ∈ [0 : n): each block of C in the “m”-th ∆-window (Equation 6) in
the view of leader of slot i is now in the “m+ 1”-th ∆-window in the view of
the honest leader of slot j, it is permitted an additional worst-case additional
delay of δ by the extendable chain definition (Equation 7).

- Blocks in the “n−1”th window of C in the view of leader i are in the extraction
window of leader of slot j, and are also permitted an additional worst-case
delay of δ (Equation 7).

⊓⊔

Theorem 3. (Equivalent trees) For any (d, δ,∆)-FairPoS execution λ in-
duced by a charactistic string w ∈ {0, 1,⊥}∗, Γ0 →λ Γ , there exists a ∆-PoS
execution λ′ induced by same w, Γ ′0 →λ′

Γ ′, such that the viable chains in Γ
are equivalent to the viable branches in Γ ′.

∀w ∈ {0, 1,⊥}∗ : ∀λ ∈ execFairPoSδ (Γ0, w), Γ0
λ−→ Γ : ∃λ′ ∈ execPoS∆ (Γ ′

0, w), Γ0
λ′
−→ Γ ′ :

viableChainsFairPoSδ (Γ) ≡ viableBranchesPoS∆ (Γ ′)

Proof (Theorem 3). Let execπδ (Γ,wt) denote all possible single round executions
of π in a δ-synchronous setting induced by wt ∈ {0, 1,⊥} at slot t, beginning
with protocol state Γ . Further, we define the honest extendable tree of FairPoS
state Γt as the union of the extendable prefixes (Equation 13) of all tree branches
in the view of honest parties.

T Hext(Γt) =
⋃

C∈T H : ∃B∈T H : C=extPrefix(t,B,{r(i)}i∈H)

C

For a FairPoS state Γt and PoS state Γ ′t where T Hext(Γt) ≡ T H(Γ ′t) we observe
that viable branches of Γt and viable chains of Γ ′t converge by definition.

viableChainsFairPoSδ (Γt) ≡ viableBranchesPoS∆ (Γ ′t)

We prove the theorem round-wise, by induction.

237

James Chiang et al.

Base step (0→ 1). For the first round executed on the genesis block (slot 0)
and given a characterstic string w we must prove:

∀ r ∈ execFairPoSδ (Γ0, w1) , Γ0
r−→ Γ1 : ∃ r′ ∈ execPoS∆ (Γ ′0, w1) , Γ

′
0

r′−→ Γ ′1
T Hext(Γ1) ≡ T H(Γ ′1)

(16)

We describe the translation from r to r′. If w1 is honest, then the elected honest
parties will generate a block extending genesis in the rounds of both protocols
(genesis is immediately extendable, as no key extractions are due in the block
associated at slot 1). If w1 is dishonest, then whatever the blocks the adversary
generates in r is performed by the adversary in r′: resulting extendable honest
tree in Γ1 and honest tree in Γ ′1 must be equivalent.

Induction step (t→ t+ 1). We must prove

∀ r ∈ execFairPoSδ (Γt, wt+1) , Γt
r−→ Γt+1 : ∃ r′ ∈ execPoS∆ (Γ ′t , wt+1) , Γ

′
t

r′−→ Γ ′t+1

T Hext(Γt+1) ≡ T H(Γ ′t+1)
(17)

By induction hypothesis it holds that this holds that T Hext(Γt) ≡ T H(Γ ′t). For
any honest or adversarial action in round r, we illustrate the respective action
in round r′, before arguing the equivalence of extendable honest trees in Γt+1

and honest trees in Γ ′t+1.
Honest actions in FairPoS round r are also performed in PoS round r′:

H1 If wt+1 is a uniquely honest slot, the longest (extendable) chains will be
equivalent in the honest party’s view, and the honest leader(s) will extend the
equivalent chains of both protocol executions in rounds r and r′ respectively.
(By induction hypothesis, the the honest extendable tree in Γt is equivalent
to the honest tree in Γ ′t). A newly extended chain from honest party i is
added to the message queue m(i) and T A in both r and r′.

Adversarial actions include dishonest block generation (T2 in Figure 1) and the
delivery of messages (M2 in Figure 1). The translation of adversarial actions
from r round to the r′ is described.

A1 If the adversary adds dishonest blocks to T A at any adversarial slot t′ ≤ t+1
in the round r, this action is performed in r′ round.

A2 If the adversary delivers a C with adversarial chain tip from T A to T (i) in r:
a. If C is extendable by party i in state Γt+1 following r, A delivers equivalent
C′ from T A ′ to T (i)′ in the r′ round: C, C′ must both exist in the adversarial
tree views in states Γt, Γ

′
t due to A1.

b. Else if C remains unextendable in state Γt+1 by party i, equivalent C′ is
not added to the equivalent honest tree T (i)′ in r′.

A3 If the adversary delivers a chain C from message queue m(i) to an honest
tree view T (i) in r:
a. If C is extendable by party i in state Γt+1 following r, A delivers equivalent
C′ to T (i)′ in the r′ round.

238

FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security

b Else if C is not extendable by party i in state Γt+1, its equivalent C′ is not
added to the honest tree in round r′: since ∆ > δ, it is always possible for
A defer an honest chain delivery for a longer delay in PoS (∆-synchrony)
than in the ∆PoS (δ-synchrony) execution.

A4 If any C ∈ T (i) in an honest tree view becomes extendable in slot t + 1
following round r in the view of party i.
a. If C and equivalent C′ feature an honest chain tip it must be present

in an honest message queue m(j)′ of the PoS execution (H1) and will be
delivered to party i in round r′. An honest chain tip in a FairPoS execution
can remain unextendable for up to ∆ slots (Theorem 1), which is exactly
the maximum message delay permitted for messages in m(j)′ in the PoS
∆-synchronous setting.

b. If C and equivalent C′ feature an adversarial chain tip, C′ cannot be in
an honest tree view nor an honest message queue in the PoS execution
prior to slot t + 1: A2 requires an adversarial chain tip in FairPoS to be
extendable before it is introduced to an honest tree in PoS. Instead, any
C′ with adversarial tip must be in T A, T A ′ of both executions (A1) at
the beginning of the round, and C′ can therefore still be delivered to T (i)′

from T A ′ by the adversary in round r′.

The extendable honest tree in Γt+1 and honest tree in Γ ′t+1 must be equivalent
since for an addition of a newly extendable chain (A2(a), A3(a), A4) to the
honest tree in FairPoS round r, the equivalent chain in PoS is added to the
honest tree in round r′. ⊓⊔
Theorem 4. (k-Common prefix in FairPoS) Let A be an an adaptive ad-
versary against the protocol (d, δ,∆)-FairPoS that corrupts up to (1 − α) stake,
where α be such that α(1− f)∆ = (1 + ϵ)/2 for active slot coefficient f ∈ (0, 1]
and some ϵ > 0. The probability that A makes the protocol violate the k-common-
prefix property in a δ-synchronous environment throughout a period of R slots is
no more than exp(lnR+∆−Ω(k)).

Proof. (Theorem 4) Let w be drawn from dominant distribution Df
α (Equa-

tion 1), with honest stake α and parameter f satisfying α(1− f)∆ = (1 + ϵ)/2
for some ϵ > 0. From Corollary 1 and Theorem 2 we infer the following:

Pr
w←Df

α

[divFairPoSδ (w) ≥ k] ≤ Pr
w←Df

α

[divPoS∆ (w) ≥ k] ≤ exp(lnR+∆−Ω(k)) (18)

From Corollary 1, divFairPoSδ (w) ≥ k =⇒ divPoS∆ (w) ≥ k, implying the left
equality in Equation 18. The right inequality is inferred from Theorem 2.

Theorem 5. ((τ, s)-Chain growth in (d, δ,∆)-FairPoS) Let A be an an
adaptive adversary against the protocol (d, δ,∆)-FairPoS that corrupts up to
(1−α) stake, where α be such that α(1−f)∆ = (1+ϵ)/2 for active slot coefficient
f ∈ (0, 1] and some ϵ > 0. Then the probability thatAmakes the protocol violate
the chain growth property with parameters s ≥ 4∆ and τ = cα/4 throughout
a period of R slots, is no more than exp(−cαs/(20∆) + lnR∆+O(1)), where c
denotes the constant c := c(f,∆) = f(1− f)∆.

239

James Chiang et al.

Proof (Theorem 5). The proof of chain-growth in FairPoS closely follows that of
Ouroborous Praos, as both analyses assume the dominant distribution (Defini-
tion 1) to model leader elections during protocol executions. Thus, we reproduce
the main proof argument of Theorem 6 in [13] for the convenience of the reader,
and refer to [13] for the derivation of the exact probability bounds, which are
directly inferred from the dominant distribution.

Recall that the definition of chain growth requires that if the longest chain
possessed by an honest party at the onset of some slot sl1 is C1, and the longest
chain possessed by a (potentially different) honest party at the onset of slot
sl2 ≥ sl1 + s is C2, then len(C2)− len(C1) ≥ τs.

Let a uniquely honest slot (0) be ∆-right-isolated if it is followed with ∆
consequent slots which are empty (⊥). Let C be a chain with a tip that is
generated in a ∆-right-isolated uniquely honest slot. Then the next slot leader
will necessarily consider C candidate for extension since

- Chain C must be have arrived in the view of all honest parties after δ slots in
a δ-synchronous setting, where δ < ∆ (Equation 5).

- Chain C must be extractable after ∆ slots (Theorem 1).

Thus, in the view of all honest parties, chain C must be a candidate for extension
according to the longest-extractable-chain rule (Equation 8) in FairPoS.

Now, let ŝl1, ..., ŝlh be the increasing sequence of all ∆-right-isolated uniquely
honest slots among the slots in T := {sl1 +∆, sl1 +∆+ 1, ..., sl2 −∆}. Observe

that since ŝl1 ≥ sl1 +∆, the leader of ŝl1 will append a block to a chain that is
at least as long as C1, since C1 will be known to him and will be considered in
the longest-extractable-chain selection rule. Therefore, the chain that the leader
of ŝl1 diffuses will be at least 1 block longer than C1. Analogously, the leader of
every ŝli will diffuse a chain that is at least 1 block longer than the chain diffused
by the leader of ŝli−1 since ŝli−1 is ∆-right-isolated. Finally, the chain diffused
by the leader of ŝlh will be known to all parties at slot sl2 and hence len(C2) will
be at least as long as this chain. It follows that len(C2)− len(C1) ≥ h.

It remains to bound the number h of ∆-right-isolated uniquely honest slots
among the slots with indices in T . To make our notation more flexible, let HT (x)
denote the number of∆-right-isolated uniquely honest slots among the slots from
T in x ∈ {0, 1,⊥}R. From Theorem 6 in [13] we have for c = f(1−∆)∆:

Pr
x←Df

α

[HT (x) < cαs/4] = ∆ · e− cα(s−3∆)
20∆

Applying the union bound over R slots, we conclude that the probability that
there is a chain growth violation with parameters s and τ = cα/4 is no more
than

R∆ exp(−cα(s− 3∆)/(20∆)) = exp(−cα(s− 3∆)/(20∆) + lnR∆)

⊓⊔

240

FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security

Theorem 6. ((µ, k)-Chain quality in (d, δ,∆)-FairPoS) Let A be an an
adaptive adversary against the protocol (d, δ,∆)-FairPoS that corrupts up to
(1 − α) stake, where α be such that α(1 − f)∆ = (1 + ϵ)/2 for active slot
coefficient f ∈ (0, 1] and some ϵ > 0. Then the probability that A makes FairPoS
violate the chain quality property with parameters k and µ = 1/k throughout a
period of R slots, is no more than exp(lnR−Ω(k)).

Proof (Theorem 6). The proof of chain-growth in FairPoS closely follows that
of Ouroborous Praos, as both analyses assume the dominant distribution (Def-
inition 1) to model leader elections during protocol executions. Thus, for the
convenience of the reader, we restate and adapt Lemma 4 in [13] and its main
proof argument, from which Theorem 6 follows.

Lemma 2. (Adapted from Lemma 4 in [13]) Let k,∆ ∈ N and ϵ ∈ (0, 1). Let
A be an adaptive adversary against the protocol (d, δ,∆)-FairPoS corrupting up
to (1− α) stake for some α > 0 satisfying α(1− f)∆ = (1 + ϵ)/2. Let B1, ..., Bk

be a sequence of consecutive blocks in a chain C possessed by an honest party.
Then at least one block Bi was created in a ∆-right-isolated uniquely honest slot,
except with probability exp(−Ω(k)).

For convenience, let us call a slot good if it is∆-right-isolated uniquely honest,
and bad if it is neither empty nor good. Moreover, we call a block good (resp.
bad) if it comes from a good (resp. bad) slot.

Towards contradiction, assume that all blocks B1, ..., Bk are bad. Let G1

denote the latest good block preceding B1 in C, and G2 the earliest good block
appearing after Bk in C (or the last block of C, if there is no good one). Note
that all blocks between G1 and G2 are bad.

Let ŝl1 (resp. ŝl2) denote the good slot in which G1 (resp. G2) was created (if

G2 is not good, let ŝl2 be the current slot). Denote by T the continuous sequence

of slots between ŝl1 and ŝl2, excluding ŝl1 and including ŝl2. As we argued in the
proof of Theorem 5, in each good slot in T the (unique) leader creates a block
that has depth increased by at least 1 compared to the block from the previous
good slot. Therefore, we have depth(G2) ≥ depth(G1)+g, where g is the number
of good slots in T . However, in chain C we have depth(G2) ≤ depth(G1) + b,
where b is the number of bad slots in the same sequence T . These two conditions
can only be satisfied at the same time if g ≤ b, we will now show that this is
very unlikely.

We can bound Prx←$Df
α
[g(x) ≤ b(x)] as follows: we know that α(1 − f)∆ =

(1+ϵ)/2 and this implies that good slots are sampled with higher probability than
bad slots. Therefore, Prx←$Df

α
[g(x) ≤ b(x)] falls exponentially with k. Lemma 2

directly implies Theorem 6. ⊓⊔

Lemma 1. (Input fairness from CG, CP and CQ in (d, δ,∆)-FairPoS) If
for an execution of (d, δ,∆)-FairPoS, (τ, d)-chain growth, (dτ(τ−δ/(∆−δ))−1)-
common prefix, and (1/(D+1), D+1)-chain quality hold, whereD = d∆/(∆−δ),
then input fairness is implied.

241

James Chiang et al.

Proof (Lemma 1). The proof requires us to infer input fairness from chain
growth and common-prefix parameters as stated in the Lemma 1.

More informally, we frame the proof obligation as follows. At the onset of a
given slot t, we are given a time budget of ∼ d slots, and must show that chain-
growth will result in the sufficient growth in the length of the chain possessed
by any honest party, such that for any encrypted input inserted at a block in
slot t, it will reach the k-common-prefix within the given time budget, unless it
becomes part of an abandoned branch.

Let C be the chain extended by an honest party at honest slot t. For simplicity,
let us first assume that all slots are uniquely honest. An adversary begins the
extraction of id = C.tip at the onset of its generation. Then, there remains d− 1
slots between the encryption of the input at slot t and its decryption, since the
input at t is encrypted with the parent block as session id. A chain growth rate
of τ implies that the longest chain possessed by any honest party after d − 1
time must increase by k = τ(d− 1). Thus, in this naive scenario, input fairness
would be implied by (τ, d)-CG and (τ(d− 1))-CP.

In the case that slots are not all uniquely honest, the adversary must be
permitted a head-start in extracting the session key idk from any block: let us
denote this the time advantage, which comes from two properties of the chain
possessed by the honest user at the onset of slot t:

1. Leading empty slots between C.tip.sl and current slot t. These empty slots
represent a head-start the adversary has in decrypting inputs inserted in a
child block of h(C.tip) generated at slot t.

2. Leading adversarial block span in C including C.tip, allowing it to generate
blocks immediately after the extraction period d instead of waiting the full
extraction schedule D = d + nδ, as an honest party would. In the worst
case, such a adversarial block span always leads up to C.tip, which is also
adversarially generated, permitting the adversary an additional head-start
in decrypting inputs.

For the (1) leading empty slots, the (τ, d)-CG property gives us the maximum
number of slots in d, in which no blocks were generated for C, namely d(1 −
τ). For the (2) leading adversarial block span, we quantify the time advantage
gained from the leading adversarial block span as follows: for everyD consecutive
adversarial blocks, the adversary gains an additional nδ time advantage, since
it does not have to wait the entire extraction schedule D = d + nδ, where
n = D/∆ = d/(∆ − δ). Note that we are granted (1/(D + 1), D + 1)-chain
quality in Lemma 1, where D = n∆ = d∆/(n− δ) as in Equation 5. We assume
the worst case, namely, that all D slots leading up to t are indeed adversarial,
and thus permit the adversary the maximum possible extraction time-advantage
of nδ slots.

Thus the total time advantage in producing the adversarial block C.tip ob-
tained from (1) and (2) is given by tadv = d(1−τ)+nδ = d(1−τ+δ/(∆−δ)). Thus
we require a contracted common prefix parameter k = τ(d−tadv)−1, in order for
the honest input at slot t to either reach the common prefix before the adversary

242

FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security

(with time advantage) can complete the key extraction of id = h(C.tip), or not
join the common prefix at all. Rewriting gives us k = dτ(τ − δ/(∆− δ))− 1 ⊓⊔

Theorem 7. (Input fairness in (d, δ,∆)-FairPoS) Let A be an an adaptive
adversary against the protocol (d, δ,∆)-FairPoS that corrupts up to (1−α) stake,
where α be such that α(1− f)∆ = (1 + ϵ)/2 for active slot coefficient f ∈ (0, 1]
and some ϵ > 0. Then, the probability that A makes the FairPoS violate the
input fairness property falls exponentially with d.

Proof (Theorem 7). With Lemma 1 we obtain input fairness from (τ, d)-CG and
(dτ(τ − δ/(∆− δ))− 1)-CP. Further, for an execution of (d, δ,∆)-FairPoS for R
slots,

- (τ, d)-CG with parameters d ≥ 4∆ and τ = cα/4 is violated with probability
no more than exp(−dαc/(20∆)+ lnR∆+O(1)), where c denotes the constant
c := c(f,∆) = f(1− f)∆ (Theorem 5).

- k-CP with parameter k = dτ(τ − δ/(∆ − δ)) − 1 is violated with probability
no more than exp(lnR+∆−Ω(k)) (Theorem 4).

- (1/(D + 1), D + 1)-CQ with parameter D = d∆/(∆ − δ) is violated with
probability no more than exp(lnR+Ω(D)) (Theorem 6).

Probabilities above decline exponentially with increasing d. ⊓⊔

243

Eagle: Efficient Privacy Preserving Smart
Contracts

Publication Information
Carsten Baum, James Hsin-yu Chiang, Bernardo David and Tore Kasper Frederiksen. “Eagle:
Efficient Privacy Preserving Smart Contracts.” To appear in Financial Cryptography and Data
Security: 27th International Conference, FC 2023, Bol, May 1–5, 2023.

Contribution
• Co-author.

Remarks
Accepted and presented at conference. Proceedings by publisher are work-in-progress.

244

Eagle: Efficient Privacy Preserving
Smart Contracts

Carsten Baum1, James Hsin-yu Chiang1, Bernardo David2,
Tore Kasper Frederiksen3,

1 Technical University of Denmark, Denmark
cabau@dtu.dk ? , jchi@dtu.dk

2 IT University of Copenhagen, Denmark
bernardo@bmdavid.com ??

3 jot2re@gmail.com ? ? ?

Abstract. The proliferation of Decentralised Finance (DeFi) and De-
centralised Autonomous Organisations (DAO), which in current form
are exposed to front-running of token transactions and proposal voting,
demonstrate the need to shield user inputs and internal state from the
parties executing smart contracts. In this work we present “Eagle”, an
efficient UC-secure protocol which efficiently realises a notion of privacy
preserving smart contracts where both the amounts of tokens and the
auxiliary data given as input to a contract are kept private from all par-
ties but the one providing the input. Prior proposals realizing privacy pre-
serving smart contracts on public, permissionless blockchains generally
offer a limited contract functionality or require a trusted third party to
manage private inputs and state. We achieve our results through a com-
bination of secure multi-party computation (MPC) and zero-knowledge
proofs on Pedersen commitments. Although other approaches leverage
MPC in this setting, these incur impractical computational overheads
by requiring the computation of cryptographic primitives within MPC.
Our solution achieves security without the need of any cryptographic
primitives to be computed inside the MPC instance and only require a
constant amount of exponentiations per client input.

1 Introduction

Ethereum introduced the first implementation of Turing-complete smart con-
tracts for blockchains, widely adopted for financial and contracting applications

? Part of the work was carried out while the author was visiting Copenhagen University
and supported by Partisia. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author and do not necessarily reflect
the views of Partisia.

?? The project was supported by the Concordium Foundation, by the Independent
Research Fund Denmark (IRFD) grants number 9040-00399B (TrA2C), 9131-00075B
(PUMA) and 0165-00079B, and by Copenhagen Fintech.

? ? ? The work was carried out while at the Alexandra Institute, supported by Copenhagen
Fintech as part of as part of the “National Position of Strength programme for Finans
& Fintech” funded by the Danish Ministry of Higher Education and Science.

245

Carsten Baum et al.

since its introduction in 2015. Smart contracts offer auditability and correctness
guarantees, and as a consequence expose both their state and any submitted in-
puts to all participants of the blockchain network. This lack of privacy not only
leaks user data but also gives rise to concrete attacks. For example, current De-
centralised Finance (DeFi) and Decentralised Autonomous Organisations (DAO)
are vulnerable to front-running [27] in token transactions and proposal voting.
This motivates the need to shield user inputs and internal contract state from
the very parties who execute smart contracts in a decentralized environment.

Challenges. Hawk [44] introduced the first notion of general-purpose privacy
preserving smart contracts, which required users to privately submit both input
strings and confidential balances to a trusted contract manager. Upon evaluation
of the contract over private inputs, the contract manager settles the confidential
outputs to a confidential ledger, proving in zero knowledge that these outputs
have been obtained according to the contract’s instructions. Importantly, in order
to accommodate real-world applications such as DeFi or DAO’s, we must extend
the Hawk notion of confidential contracts as follows:

1. Distribute the role of the trusted third party in an efficient manner, avoiding
a single point of failure without significantly sacrificing performance.

2. Only require clients to be online during a short input phase; as in the standard
client-blockchain interaction model, clients only broadcast signed inputs.

3. Allow privacy preserving smart contracts to be long-running applications over
indefinite rounds, as is the case in standard, public smart contracts.

Our Contributions. In this work we present “Eagle”, a Universally Com-
posable [20] protocol for achieving efficient privacy preserving smart contracts,
which handles all the three challenges explained above: (1) is achieved by evaluat-
ing the contract’s instructions via an outsourced secure multi-party computation
(MPC) protocol [37], where clients provide private inputs and servers execute
the bulk of the protocol to compute a function on these inputs without learning
them. We use a MPC protocol, known as insured MPC, which allows a pub-
lic verifier to identify servers aborting at the output phase, so that cheating
servers can be identified and financially punished, incentivizing fairness (i.e. if a
server gets the output, all servers/clients also get it) [7]. That is, by combining
outsourced and insured MPC we get a protocol where client computation and
interaction is independent of the circuit computed in MPC and where reliability
is incentivized and security is obtained as long as only a single MPC is honest.
(2) is accomplished with a novel input protocol which pre-processes data nec-
essary for the servers to generate private outputs (e.g. token amounts) that are
posted directly to the public ledger but can only be read by specific clients. (2)
facilitates (3), realized by a reactive version of our MPC protocol, which main-
tains a secret off-chain state over multiple rounds. Here, we contribute a model
of long-running, privacy preserving contracts, which at the onset of each round
accepts new inputs from any subset of clients. At the end of each round, clients
get public outputs and servers keep a secret internal state, allowing evaluation
to take place in a continuous, multi-round fashion, even if clients are offline (2).

246

Eagle: Efficient Privacy Preserving Smart Contracts

Applications. Several general applications for privacy preserving smart con-
tracts have already been proposed. Auctions: can be realized securely on-chain
with privacy preserving smart contracts, as auctions implemented without pri-
vacy are vulnerable to front-running (miners can trivially observe individual bids
posted to the ledger). Identity management: Decentralized Identity (DID)
management considers the setting where user-attributes are posted to a ledger,
in a certified, yet hidden manner. DID implemented with privacy preserving
smart contracts enables proofs and computations on private identity attributes,
facilitating their integration with blockchain applications. KYC Mixing: We
can construct a privacy preserving smart contract to realize a mixer that enforces
Anti Money Laundering (AML) policies. For example, such a mixer could use
DID to integrate Know Your Customer (KYC) information to either limit user
permissions or the quantity of mixed tokens allowed per month. Side-chains:
The MPC servers alone could be considered a privacy preserving side-chain.
Multiple sets of MPC servers could work together with a single smart contract
to realize a privacy preserving sharding scheme on any layer 1 chain with Turing
complete smart contracts. AMMs and DeFi via Cross-chain contracts: Us-
ing ideas of P2DEX [9], we show that the MPC servers can interact with smart
contracts on many different ledgers. Hence, privacy preserving smart contracts
can work across multiple ledgers and different native tokens. This realizes cross-
chain, front-running resistant automated market makers (AMMs) with strong
privacy guarantees. We discuss these applications in more detail in Appendix F.

Fig. 1: Outline of our protocol for confi-
dential contracts. The wrapping and in-
teraction of functionalities are shown.

Our Techniques. We sketch our
protocol in Fig. 1. This only con-
siders execution of a single instance
of a privacy preserving smart con-
tract for simplicity. We discuss the
multi-round setting in Sec. E where
computations are executed contin-
uesly with different sets of clients.
We assume a set of clients C and
MPC servers P, both interacting with
a ledger functionality FLedger. The
ledger hosts two deployed smart con-
tract instances: XCLedger maintains a
confidential ledger and is extended
with XLock, which locks and redis-
tributes confidential balances, out-
put and jointly signed, by the MPC
servers. Concretely our protocol runs the following phases:

Init Before any execution, the servers setup the system by sampling a threshold
signature key pair and provide sufficient collateral for the insured MPC execu-
tion, and setup smart contact XLock, administered by the distributed signature
key. We note that in the multi-round setting this only needs to be executed once

247

Carsten Baum et al.

for the specific set of MPC servers, and is thus independent of the clients and
the amount of computations that will get carried out later.

Enroll When a privacy preserving smart contract is to be executed, each
client who wish to participate transfers confidential tokens to XCLedger which
they wish to use as input to the confidential smart contract CContract. The
client then gives any auxiliary input, along with the opening information to the
commitment containing their confidential balance v, to the insured MPC func-
tionality FIdent from Fig. 6, extended with a secure client input interface (See
Appendix B.1). Each client constructs an appropriate amount of “mask” com-
mitments; one for each round of confidential contract computation, for which
they wish their input to be used. A masking commitment is simply a commit-
ment to a random value.

Verify input The servers validate the input received from the clients using
outsourced MPC, and ensure that XLock has also received the appropriate con-
fidential tokens. The servers and the clients also execute a proof to ensure that
the opening information supplied by clients are indeed valid for the confidential
token commitments. They do this following a standard Σ-protocol where each
client commits to a random commitment a and servers select a random chal-
lenge γ and ask the client to open com(c) = com(a) ⊕ (γ � com(v)). Similarly
the servers use MPC to securely open [c] = [a] + γ · [v] and check consistency4.

Evaluate After the checks are completed the servers evaluate the circuit ex-
pressing the private smart contract CContract, using insured MPC. For the
clients who are supposed to get output from this round of computation, shares of
messages and randomness for a new commitment for each client are computed,
and blinded with the “masking” values the clients provided during Enroll. If
this goes well, the servers distributedly sign a message saying that they have
reached this stage and post it to XLock.

Open For clients that receive output after this round of computation the
servers open the masked output. They publish these values and sign them, as
part of the transcript of the current round execution, and post this to XLock.
Note that XLock can generate the output coins in commitment form, due to the
homomorphism of the commitments and since it obtained the mask commit-
ments from the clients in Enroll. XLock can then transfer the new confidential
tokens back to the client’s address. We show an extension to our protocol (Sec-
tion E) that ensures no token minting can occur even if all servers are corrupted.

Withdraw Based on the masks they constructed, the clients who are sup-
posed to receive outputs can compute the coin commitment openings from their
masked outputs signed and posted to XLock by servers during Open.

Abort In case a server stops responding or acts maliciously, an honest server
can request the entering of an abort phase. Any server can do this, either by

4 In our full protocol we optimize this by batching client input checks.

248

Eagle: Efficient Privacy Preserving Smart Contracts

submitting a proof that the malicious server sent wrong information or by re-
questing missing information from the accused servers. At this point the accused
malicious server has a constant amount of time left to prove to the smart con-
tract that they did not abort, by submitting the message that the accusing server
claims they didn’t get. If they don’t, they will have their collateral revoked and
it will be shared among the honest servers and clients, and the contract state will
roll back one round, i.e. to the contract state preceding Evaluate. Concretely
XLock will refund the clients their input funds, plus a compensation obtained
from the cheating servers’ collateral.

Related Works. A long line of work realizes notions of privacy preserv-
ing smart contracts that sacrifice privacy [44,61,38,48,41,62,60,24] or flexibil-
ity [15,16]. Zexe [15] extends the ZCash model of confidential transactions to
enable Bitcoin Script-like stateless privacy preserving smart contracts support-
ing only very simple logic. Zether [16] implements confidential transactions on
top of Ethereum, allowing for very simple privacy preserving applications (e.g.
auctions). Zkay [61] allows for computing on encrypted private inputs by means
of keeping data encryption on the blockchain, and using NIZKs to validate that
any updates done to the encrypted is carried out correctly. Follow-up work,
Zeestar [60] uses additively homomorphic encryption to allow for limited private
computation on data from multiple owners, without them having to share their
private data with each other. Secret Network [62] and Ekiden [24] implement
general purpose contracts but rely on notoriously vulnerable trusted execution
environments (e.g. Intel SGX [51]) for privacy and correctness. Arbitrum [38]
relies on a full quorum of parties (the servers in our setting) being honest to
achieve privacy for general purpose contracts. Finally, Kachina [41] subsumes
these approaches with a framework based on state oracles [48] that yields pri-
vacy preserving smart contracts, where either flexibility is limited (i.e. contract
state is only updated by one client’s private input at a time) or privacy is com-
promised (i.e. a trusted third party must learn clients’ private inputs in order
to update the state). The ideal functionality of Kachina is designed to permit
input concurrency, allowing honest inputs to be finalized on a global ledger in
a different order as their generation; the Kachina protocol requires private in-
puts to be accompanied with NIZKs proving a valid update of the private state
fragment. Here, the NIZKs are not bound to a specific, public contract state
and thus remain valid even if the public contract state observed by the user was
updated by another user input in the meantime.

Combining MPC with blockchain based cryptocurrencies and smart contracts
has been investigated in a long line of works [1,2,12,46,45,47,43,25,13,11,31,7,9,8]
aiming at achieving fairness in the dishonest majority setting via financial pun-
ishments. The core idea of these works is having all parties, who execute the
MPC protocol, provide a collateral deposit, which is taken from them in case
they are caught cheating. Thus incentivizing honest behavior. However, this ap-
proach publicly reveals the amount of collateral deposited by each party, which
falls short of achieving our notion of privacy preserving smart contracts, where
both auxiliary data and the amount of tokens given as input to the contract

249

Carsten Baum et al.

must remain private. Notice that revealing the deposit amount is an issue in ap-
plications where this amount is directly related to the client’s private input, e.g.
in sealed-bid auctions, where the collateral deposit must be equal to at least the
client’s private bid. An auction protocol using collateral deposits with private
amounts was proposed in [32] but it cannot be generalized to other tasks.

Hawk [44, App. G] does suggest to use MPC to achieve a decentralized con-
fidential smart contracts on both token amount and auxiliary input. However,
Hawk works in the ZCash model and thus their MPC solution would require the
computation of SNARKs to realize the ZCash transactions, within the MPC cir-
cuit. Although it has been shown [53,39] that integrating NIZKs with MPC can
be done without degrading performance too much, there is still a performance
hit. Since the construction of a single ZCash transaction SNARK still takes a
non-negligible amount of time plain, this would naturally be inefficient to realize
in MPC, as MPC is orders of magnitude slower than regular computation. Fur-
thermore, they need all users to take part in the MPC computation. zkHawk [4]
improves upon this, by forgoing the need of doing SNARKs in MPC, but still
require all users taking part in a confidential smart contract to facilitate an
MPC computation which must compute Schnorr style ZKPs on Pedersen com-
mitments to the bit-decomposition of the amount of coins each of them hold.
While V-zkHawk [5] forgoes the need of proofs of the bit-decomposed commit-
ments, they replace it with the computation of commitments in a larger fields
and a signature, in MPC instead. While more efficient, this approach would still
require MPC over a large domain and contributes non-negligible overhead.

In Appendix A we further discuss related works.

2 Preliminaries

Let y←$F (x) denote running the randomized algorithm F with input x and im-
plicit randomness, and obtaining output y. Similarly, y ← F (x) is used for a de-
terministic algorithm. For a set X , let x←$X denote x chosen uniformly at ran-
dom from X . s denotes the computational and κ the statistical security parame-
ter. Let [x] denote secret x maintained in an MPC instance:

Table 1: Notation.

P The set of servers.
C The set of clients.
n Number of servers n = |P|.
m Number of clients; m = |C|.
l Number of bits representing balances.
z Number of input/output per client.
κ Computational security parameter.
s Statistical security parameter.

F An ideal functionality.
Π A protocol.
L A ledger map indexed by vk.
X A smart contract program.

g A smart contract in circuit form.
vk A public key for signature verification.
x A client input.
y A client output.
v̄ A token balance.
v̄max The maximum permitted balance.
v̄max A vector of the maximum permitted balance.

we lift the [·] notation to any object that
can be encoded over secrets securely in-
put to an MPC scheme, e.g. [g], where
g is an arithmetic circuit over field F. We
use a group G where the discrete log prob-
lem is hard, and which is a source group of
pairing scheme. For simplicity we assume
|G| = |F| = p. Unless noted otherwise we
use log to denote the logarithm to base
2, rounded up. We use v̄max to denote the
maximum amount of tokens we want to
represent and say l = log(v̄max). For sim-
plicity, we assume |C| · v̄max < |G|, where
C is the set of participating clients. We

250

Eagle: Efficient Privacy Preserving Smart Contracts

denote set {1, 2, . . . , n} by [n] and vectors
by bold faced Latin letters, e.g. v,w.

2.1 Security Model and Building Blocks

We analyse our results in the the (Global) Universal Composability or (G)UC
framework [21,23]. We consider static malicious adversaries. Our protocols work
in a synchronous communication setting, which is modelled by assuming par-
ties have access to a global clock ideal functionality FClock as seen in multiple
works [3,40,43]. The core component of our protocols is publicly verifiable MPC
with cheater identification in the output phase, which is modelled as an ideal
functionality FIdent, which can be realized as described by Baum et al. [7,9]. This
functionality produces a proof that either a certain output was obtained after the
MPC or that a certain party has misbehaved in the output phase, while cheat-
ing before the output phase causes an abort without cheater identification. We
further extend this functionality to handle reactive computation [30,29] and an
outsourced computation with inputs provided by clients and computation done
by servers [37,28]. Moreover, we use Pedersen Commitments [54], digital signa-
tures represented by an ideal functionality FSig as in [22], threshold signatures
represented by an ideal functionality FTSig as defined by Baum et al. [9] and non-
interactive zero knowledge proofs represented by FNIZK as defined by Groth [36].
Further discussion on our security model and building blocks is presented in
Appendix B.

2.2 Ledgers & Smart Contracts

We model a ledger functionality FLedger in Appendix C.1 featuring a smart con-
tract virtual machine which is adapted from an authenticated, public bulletin
board functionality, an approach adopted from the work of Baum et al. [7,9].
For this work, we emphasize accurate modelling of confidential balances, which
are implemented on a public ledger, and omit the full consensus details in our
UC model, similar to previous works [43,3].

Token universe. FLedger supports a token universe consisting of t token types:
T = (τ1, ..., τt). A ledger in FLedger maintains a map from signature verification
key to balances of each token type: L : {0, 1}∗ → Zt. We write v̄ = (v1, ..., vt)
for a balance over all supported token types. In addition to balances associated
to signature verification keys, FLedger also maintains token balances for each
deployed smart contract instance. The ledger functionality enforces the preser-
vation of token supplies over T.

Overview of smart contracts. In this work, we present smart contracts as
human-readable programs and assume the presence of a compiler which trans-
lates program X to a valid circuit T and initial state γinit. The following smart
contract programs are deployed in the protocol which realizes the proposed con-
fidential contract functionality FCContract.

251

Carsten Baum et al.

- XCLedger (Figure 11) describes a smart contract which implements a confiden-
tial token wrapper for each token in T supported on the base ledger FLedger.

- XLock (Figure 14) is an extension to XCLedger. It permits the locking and redis-
tribution of confidential balances authorized by verifying threshold signatures
generated by the servers (via global functionality FTSig).

- XCollateral (Figure 15) accepts collateral deposits from servers, which upon being
identified as cheating parties lose their collateral to clients.

2.3 Confidential ledgers from FLedger

We briefly describe a confidential ledger functionality FCLedger, presented in full
detail in Appendix C.2, that can be implemented from a hybrid FLedger function-
ality, enabling both confidential balances and the confidential transfer of default
tokens types T exposed by the underlying public ledger FLedger. This modeling
choice maximizes the generality of our construction, as it can be implemented
on any standard ledger and a basic smart contract machine.

Confidential ledger. Confidential coins in FCLedger are identifiable by a unique
public id, and a confidential balance v̄ over T, as in [55]. Each confidential token
is publicly associated with an account verification key vk, owned by a party
that generated it with GenAcct. A confidential transfer consumes two input
coins (id1, id2) with confidential balances (v̄1, v̄2) and mints fresh output coins
(id′1, id

′
2) with confidential balances (v̄′1, v̄

′
2), such that (v̄1 + v̄2 = v̄′1 + v̄′2). Here,

coin id′1 is now held by the owner of the receiving account, who also learns the
confidential amount v̄′1.

Functionality FCLedger exposes Mint and Redeem interfaces: a mint activa-
tion locks a public amount of tokens T and generates a fresh confidential token
of the same balance. Conversely, a redeem activation will release the balance of
a confidential coin back to the public ledger.

Realizing a confidential ledger. A confidential token is realized in proto-
col ΠCLedger described in full detail in Appendix D.1 with Pedersen Commit-
ments [54]. Let g, g1, ..., gt, h denote generators of group G of safe prime order
p, such that si in gi = gsi and w in h = gw are given by FSetup (parameterized
with g ∈ G) that publicly outputs g1, ..., gt, h. The commitment to a balance
v̄ = (v1, ..., vt) over tokens T with blinding r is com(v̄, r) = gv̄hr = gv11 ...gvtt h

r.
Pedersen commitments are additively homomorphic: com(v̄1, r1)◦com(v̄2, r2) =
com(v̄1 + v̄2, r1 + r2). Thus, during a confidential transfer, the sum equality be-
tween consumed input and freshly constructed output coin commitments holds
if total token balances are preserved and r′1 and r′2 are correlated such that
r1 + r2 = r′1 + r′2.

com(v̄1, r1) ◦ com(v̄1, r1) = com(v̄′1, r
′
1) ◦ com(v̄′2, r

′
2) (1)

However, since the equality above holds for any v̄1 + v̄2 ≡ v̄′1 + v̄′2 mod p
and correlated r′1, r

′
2, an additional p units of each token in T can be minted:

252

Eagle: Efficient Privacy Preserving Smart Contracts

v̄1 + v̄2 + p ≡ v̄′1 + v̄′2 mod p. Thus, each confidential token is associated with
NIZK π which proves R(c; v̄, r) = {c = com(v̄, r) ∧ v̄ ≤ v̄max = 2l − 1}, such
that such wrap-around never occurs undetected.

We note that ΠCLedger in itself affords a fully decentralized layer 2 confiden-
tial token transfer solution, since it is independent of the MPC servers. Thus
allowing client’s to send a receive confidential tokens in a peer-to-peer manner.
This is needed to prevent leakage of exchange orders after-the-fact by analysing
client’s non-confidential tokens given as input and withdrawn as output from a
privacy preserving smart contract execution. By allowing the privacy preserving
smart contract executions to integrate in a greater payment ecosystem reason-
ably ensures that it is possible to hide token inputs and outputs from a privacy
preserving smart contract execution by using them for confidential payment,
similar to other confidential token systems.

We present a protocol ΠCLedger which GUC-realizes FCLedger in Appendix D.1,
where we also prove the following statement:

Theorem 1. Protocol ΠCLedger GUC-realizes functionality FCLedger in the FClock,
FLedger, FNIZK, FSetup, FSig-hybrid model against any PPT-adversary corrupting
any minority of committee Q.

3 Confidential contracts

We present our formal model of confidential contracts. We assume m clients
{C1, . . . , Cm} and servers {P1, . . . , Pn} that interact with FCContract, which ex-
tends FCLedger. For simplicity of presentation, we first present a single-round
confidential contract functionality in Figure 2, and subsequently illustrate how
it is easily extended to a multi-round contract functionality where clients can
selectively choose to participate in specific rounds.

The choice of modelling FCContract as an extension of FCLedger arises from
the relation between underlying protocols: confidential coins in ΠCLedger that are
committed to a confidential contract evaluation must be locked and subsequently
replaced by a new set of output coins reflecting a new distribution of balances,
determined by ΠCContract. However, this requires verification operations over the
homomorphic commitment representation of coins in ΠCLedger, which are not
exposed by FCLedger.

We provide a brief sketch of the interface exposed by FCLedger. Upon initial-
ization with an arithmetic circuit g encoding only the contract logic, users can
enroll, specifying input string x and a confidential coin to input, identified by its
id. Upon a completed Enroll, the functionality is prompted by servers to evaluate
circuit g on both client input strings, interpreted as numerical values, and input
balances, with checks to ensure g does not mint tokens. FCLedger permits clients
to withdraw anytime to retrieve the private output string and output balance.
FCContract permits the simulator to abort and indicate cheating servers, which
are then penalized by the functionality.

Model of confidential contracts. Unlike public smart contracts deployed to
FLedger, an instance of FIdent permits the computation of any arithmetic circuit

253

Carsten Baum et al.

Functionality FCContract, extends FCLedger

FCContract interacts with clients C = {C1, ..., Cm} and servers P = {P1, ..., Pn}.
The functionality exposes interfaces and and accesses the state of FCLedger. It is pa-
rameterized with max. circuit depth dT , and collateral balance v̄coll.

Init: On (Init, sid, g) from Pi ∈ P forward messages to S. If S continues.
1. Run GenAcct and Init procedures on FCLedger.
2. Assert that g is a circuit and that depth(g) ≤ dT , store g.
3. Assert vk ∈ K[Pi] and L[vk] ≥ v̄coll.
4. Set L[vk]← L[vk]− v̄coll.

- If all servers have successfully called Init, set state to enroll, tick FClock.

Enroll: Upon input (Enroll, sid, x, id, vk) from client Cj ∈ C,
1. Assert vk ∈ K[Cj] and 〈id, v̄〉 ∈ L[vk].
2. Forward (Enroll, sid, id, vk) to S, if S aborts, run Abort. Otherwise, continue.
3. Assert state is in enroll and ∃〈id, v̄〉 ∈ LConf[vk]: then remove 〈id, v̄〉.
4. Store input (xj , v̄j).

- If all clients have successfully called Enroll, tick FClock.

Execute: Upon input (Execute, sid) from Pi ∈ P,
1. If Execute received from all P and FClock ticked since state update to enroll,

forward (Execute, sid) to S and wait for Ok or Abort. If Ok, continue.
a. Evaluate circuit g over current user inputs {(xj , v̄j)}j∈[m] and client state.
c. Store client states {(yj , w̄j)}j∈[m] read from output gates of g.

- Assert
∑
j∈[m] v̄j =

∑
j∈[m] w̄j . Tick FClock.

2. Forward (Evaluate, sid) to S and wait for Ok or Abort.
- If Ok returned, set state to evaluated and tick FClock.

3. Send (Output, sid, {yj , w̄j}j∈[m]) to S and wait for Ok or Abort.
- If S aborts, it provides cheating server set J , run Abort with J .

4. For j ∈ [m], get a unique id′j from S, and set LConf[vkj]← LConf[vkj]∪ {〈id′j , w̄j〉}.
5. Set state to enroll and tick FClock.

Withdraw: Upon (Withdraw, sid) from Cj ∈ C, obtain newly stored outputs since
last Withdraw by Cj ∈ C . Return ((yj,1, 〈id′j,1, w̄j,1〉), ..., (yj,l, 〈id′j,l, w̄j,l〉)).

Abort: Tick FClock,
a. If state is enroll, return server and client funds: update L, LConf.
b. Else if state in evaluated, obtain cheating servers J from S:

- If J 6= ∅, reimburse clients C and honest servers P\J , then
distribute J ’s collateral amongst C: update L, LConf accordingly.

- Else if J = ∅, obtain {(yj , v̄j)}j∈[m] from last evaluation of circuit g.
- For Cj ∈ C′, sample idj ←$F and set LConf[vkj]← LConf[vkj] ∪ {〈idj , v̄j〉}.
- Return collateral for all P: update L accordingly.

c. Terminate.

Fig. 2: Functionality for Confidential Contracts

on both private and public inputs. We model a confidential contract as an arith-
metic circuit over a field Fp consistent with the domain that FIdent is realized
with. A well-formed confidential contract permits the writing of both numerical
and financial inputs from each client to its input gates. Further, we enforce a

254

Eagle: Efficient Privacy Preserving Smart Contracts

maximum circuit depth dT prior to the circuit evaluation to bound the rounds
of interaction in the MPC instance.

(
([y1], [w̄1]), ..., ([ym], [w̄m])

)
← evalg

(
([x1], [v̄1])...., ([xm], [v̄m]))

Upon confidential evaluation of a contract circuit g with well-formed depth and
gates, the following assertion must be performed at each run-time over confiden-
tial inputs and outputs of evaluated g: namely, that token supplies have been
preserved. ∑

i∈[m]

[v̄i] =?
∑

i∈[m]

[w̄i] (2)

One-round client-server interaction. Upon providing inputs to a confiden-
tial contract execution, clients can go off-line and retrieve confidential outputs
with Withdraw at any later point in time.

Collateral. Our need for collateral follows the same logic as in Insured MPC [7].
The collateral contract incentivizes the servers to continue to participate in the
privacy preserving smart contract computation, and behave honestly as they
would otherwise suffer a financial loss. While the underlying maliciously secure
MPC system will ensure that a server acting maliciously will cause an abort ex-
cept with negligible probability, such an abort the adversary might have learned
the output of the computation. This can in some situations have high value.
Thus we require each server to give as collateral, strictly more than the max-
imum value they could gain from learning the output of a privacy preserving
computation.

3.1 Realizing the confidential contract functionality

Overview of Protocol. Having provided a high-level overview of the protocol
phase in Section 1, we now proceed to detail the individual protocol phases for
the single-round privacy preserving smart contract execution and refer to Ap-
pendix D.2 for the full protocol description and UC-security proof, and to Sec. E
for an outline of the multi-round protocol.

Setup of contracts. Servers deploy instances of XLock[XCLedger], XCollateral on
FLedger. Since wrapper XLock extends XCLedger, both are deployed and initialized as
a single contract instance on FLedger with shared contract id (cnLock) and shared
state such as the confidential ledger (LConf). Here, the function of XLock is to lock
the confidential coins of clients input to the confidential contract evaluation, and
to replace these with a new confidential distribution according to result of the
contract evaluation. Further, XLock is initialized with a threshold signature ver-
ification key vkTSig, jointly generated by all servers via FTSig: whenever servers
agree on a new status of the contract evaluation in FIdent, this agreement can
be settled in XLock with a threshold signature jointly generated via global func-
tionality FTSig. XCollateral is parameterized by cnLock and is activated each time

255

Carsten Baum et al.

FClock progresses: it obtains collateral from all participating servers. It observes
any recorded cheating servers J stored in the state of contract instance cnLock

and enforces penalties accordingly.

Client enrollment. Clients interact with XLock to enroll a confidential coin it
controls to the contract evaluation, and send both the coin commitment opening
and numerical input x to an instance of FIdent. Enrolled coins are removed from
the confidential ledger LConf maintained by X CLedger and moved to a dedicated
ledger LLock for funds committed to a pending MPC computation in FIdent.

Clients must also commit to a output mask during enrollment, which enables
the subsequent redistribution of confidential coins without client interaction in
the output phase of the contract evaluation. Here each client with confidential
coin input c and numerical input x performs the following:
- Samples ŷ←$F as a numerical output mask and sends to FIdent.
- Samples ŵ←$F|T|, ŝ←$F, and computes mask commitment ĉ← com(ŵ, ŝ).
- Sends mask commitment ĉ to XLock on FLedger.
- Sends mask commitment openings (ŵ, ŝ) of ĉ to FIdent.
Here clients can also give any auxiliary input, x, needed for the privacy preserving
smart contract computation.

Client

XLock FIdent

Server

c (v̄′, r̄′)

c
?
= com(v̄′,r̄′)

(v̄′(i),r̄′(i))c

Input verification. Upon enrollment of clients,
servers must verify that the confidential coin c
and mask commitment ĉ sent to XLock are con-
sistent with their respective openings (v̄, r̄) and
(v̂, r̂) sent to FIdent during enrollment. For sim-
plicity of presentation, we illustrate the batched
input verification of input confidential coins and
their openings assuming a token universe size of
|T| = 1, such that c = gv̄hr̄. Input verification for output masks ĉ and their
openings submitted to FIdent follow similarly.

Each server obtains both confidential coin c from XLock and additive shares
of submitted openings thereof from FIdent, namely (v̄′ (i), r̄′ (i)). We write v̄′ (i) =
(v̄+ε)(i) and similarly for r̄′ (i), where the ε denotes the error or discrepancy that
the adversary can introduce to v̄. We employ a standard technique of evaluating
a random linear combination over client inputs to verify consistency.

1. Servers jointly sample γ, α, β←$F and open γ.

2. Each server locally computes the following on the inputs from m clients.

- v̄
′(i)
lin = α(i) + γ v̄

′(i)
1 + ... + γm v̄

′(i)
m and r

′(i)
lin = β(i) + γ r

′(i)
1 + ... + γm r

′(i)
m

- Subsequently, it sends v̄
′(i)
lin and v̄

′(i)
lin to all other servers.

3. Each server locally reconstructs v̄′lin =
∏
i∈[n] v̄

′(i)
lin and r′lin =

∏
i∈[n] r

′(i)
lin

4. Servers locally verify:
∏
i∈[n] g

α(i)

hβ
(i) ∏

j∈[m] c
γj

j
?
= gv̄

′
linhr

′
lin

Note that v̄
′ (i)
lin and r

′ (i)
lin are shares held by servers and do not reveal the values

of user inputs. We write v̄′lin = α+γ (v̄1 +εv̄1)+ ... +γm (v̄m+εv̄m) and similarly

256

Eagle: Efficient Privacy Preserving Smart Contracts

for r′lin to expose ε’s introduced by the adversary. If ε values are committed to
by the adversary before α, β, γ are sampled, we can interpret v̄′lin − v̄lin = 0 and
r′lin−rlin = 0 as m - degree polynomials with coefficients chosen by the adversary
that are later evaluated at some random coordinate γ: since verification step
(4) implies exactly these assertions, the probability for an undetected non-zero
error is therefore m/|G|, where m is the number of polynomial roots, by the
Schwartz-Zippel Lemma.

Execute. Servers call the Evaluate interface on FIdent to evaluate circuit g
with input gates set to client inputs.

([x1], [ŷ1], [v̄1], [r1], [ŵ1], [ŝ1]), ..., ([xm], [ŷm], [v̄m], [rm], [ŵm], [ŝm])

Upon secure evaluation, outputs in form of numerical values and balances are
written to the output gates of g:

(
([y1], [w̄1]), ..., ([ym], [w̄m])

)
. Before masking

these for opening, the servers then perform a confidential consistency check to
ensure the preservation of tokens as shown in Equation (2).

Masked output values are obtained by applying the masking values input
by users, [y′j] = [yj] + [ŷj] and similarly for balances, [w̄′j] = [w̄j] + [ŵj]
and generating a joint signature σvkTSig

(evaled) via FTSig, that is sent to XLock

on FLedger. Upon verification, the XLock contract updates the state of protocol
execution, reflecting completion of the Execute phase.

Open. Servers run Optimistic Reveal in FIdent to open masked numerical
outputs and balances

(
(y′1, w̄

′
1), ..., (y′m, w̄

′
m)
)
. Should all servers agree on the

successful completion of the contract evaluation, they jointly sign all masked
outputs and send these to XLock (on FLedger), which then computes the unmasked
confidential coins for clients with the newly computed distribution as follows.
Given the masked output balance w̄′ from FIdent and the coin mask ĉ sampled
by a client in Enroll, contract XLock computes

(a) The masked confidential coin: cout ′ ← gw̄′
h0

(b) The unmasked confidential coin: cout ← cout ′ · ĉ−1

We rewrite (b) as cout = gw̄′−ŵh−ŝ = com(w̄,−ŝ) to expose the unmasking of
the output coin without any knowledge of the final balance. XLock subsequently
stores unmasked output coin cout in the confidential ledger in XCLedger, thereby
settling the output balance distribution read from output gates of contract circuit
g. Should XLock successfully verify the signed outputs, XCollateral will infer from
the state of XLock the completion of a successful round and return the deposited
collateral to the servers.

Withdraw. Upon a successful Open, the output of the confidential contract
evaluation has completed. Each client can obtain their masked output (y′, w̄′)
from XLock and newly minted cout from XCLedger anytime following a successful ex-
ecution of a contract evaluation. Let ŷ and (ŵ, ŝ) be the output masks generated
by the client in Enroll. The withdrawing client obtains

(a) The numerical output: y ← y′ − ŷ

257

Carsten Baum et al.

(b) The opening of the output coin: (w̄, s)← (w̄′ − ŵ,−ŝ)
Thus, their the tokens are still confidential and that clients can transfer or redeem
these using ΠCLedger in Fig. 10.

Abort. If the protocol aborts prior to the completion of the Execute phase,
client funds are simply returned by XLock and collateral deposited to XCollateral

is returned. If servers have agreed upon the completion of Execute, honest
servers can interact with FIdent to either (a) obtain shares that are verifiable and
enable reconstruction of the output or (b) identify cheating servers (Figure 7).
Thus, XLock as a registered public verifier, can identify cheating servers by either
verifying shares with FIdent, or obtaining the identities of servers J that refuse
to participate in revealing their shares and allowing their verification. Cheating
servers lose their collateral held by XCollateral which is redistributed to clients.

We present the full protocol ΠCContract which GUC-realizes FCContract in Ap-
pendix D.2 and prove the following statement.

Theorem 2. ΠCContract[ΠCLedger] realizes FCContract[FCLedger] in the FClock, FIdent,
FLedger, FNIZK, FSetup, FSig, FTSig-hybrid model against any PPT-adversary cor-
rupting at most n− 1 of the n servers P statically and any minority of Q.

4 Efficiency

We note that since previous works focus on using zero knowledge proofs and
a trusted contract manager, we refrain from directly comparing our efficiency
to their works. The closest previous works to ours is the Hawk family [44,4,5].
Unfortunately neither of the works provide an efficiency analysis, making it
hard to provide a meaningful comparison. However, we note they all require
computation of cryptographic primitives (commitments and ZKPs) in MPC.
Thus requiring strictly more MPC computation, along with a larger (and hence)
slower field of computation, as this field is needed to facilitate computational
security of the cryptographic primitives they compute in MPC. In the following
analysis, we assume Bulletproofs for range proofs and standard Fiat-Shamir
Schnorr proofs of knowledge of exponents using elliptic curves. Although neither
of these are UC-secure since knowledge extraction requires rewinding, there is
evidence [34] that these techniques can be made non-malleable in the algebraic
group model. Hence, for the purpose of efficiency we believe it is reasonable to
forgo the formal UC security in this section. We use BLS threshold signatures
and for simplicity we assume the size of the group used for BLS and commitments
is the same, although it will in practice be slightly larger for BLS.

We outline the amount of heavy computations needed for our core protocol
in Table 2, except what is needed by the underlying MPC computation com-
puting the contract circuit g, reflecting the privacy preserving smart contract
CContract. Concretely we count the amount of group exponentiations when as-
suming that the Pedersen commitments are realized using elliptic curves, along
with pairings assuming BLS [14] has been used for realizing distributed sig-
natures. The table only contains the complexity of executing one instance of

258

Eagle: Efficient Privacy Preserving Smart Contracts

Init Execution Abort

User exp 2 2 0

Server exp 2 + 2(n− 1) 6|C|+ 2 0

pair 0 n− 1 0

mult 0 z|C| 0

SC comp. exp 0 2|C|z |C|
pair 0 2 0

SC call space #G elem. 3 |C|z O(n|C|z)
Comm. #G elem. O(n) O(n2 · z · |C|) O(n2 · z · |C|)

Table 2: Complexity of our protocol when executing one CContract, excluding the
computation of contract circuit g in MPC. We assume |C|z > s for statistical security
parameter s, where z is the amount of input/output for each client in the set of clients
C, including the hidden token amount. n = |P| is the amount of servers and mult
denotes the number of multiplications in MPC.

CContract, but we note that execution of multiple contracts is slightly sublin-
ear in the complexity of a single execution. The Abort column illustrates the
additional overhead associated with a cheating party.

Mint ConfTransfer Redeem

User 4 O(log(v̄max) · log(log(v̄max))) 3

SC comp. 3 O(log(v̄max)) 3

SC space 3 2 log(v̄max) + 10 4

Table 3: Complexity of CLedger in group exponentiation and amount of group elements
stored, when v̄max is the maximum amount of allowed tokens (Recall |C| · v̄max < |G|).

When it comes to our confidential token layer, we outline the complexity in
Table 3. We note that the constant in the complexity of Confidential Transfer
reflects two range proofs over log(|G|/2), under the assumption that BulletProofs
are used [17]. Although if the domain of the token amounts is further limited
from G to v̄max < |G|/|C| then they can be reduced to range proofs of [0; v̄max−1]
and thus complexity O(v̄max · log(v̄max)).

In both tables the amount of smart contract space is only what needs to be
submitted. The persistent space use needed is only 3+3|C| group elements, if we
assume that the storage used when posting to XLock in evaluate and open gets
overwritten the next time the servers call these methods.

The round complexity for all steps of both the confidential token layer pro-
tocols and our core protocol is constant, assuming g has constant multiplicative
depth. Otherwise, the computation of g dominates the round complexity.

259

Carsten Baum et al.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party
computations via bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) FC 2014 Workshops. LNCS, vol. 8438, pp. 105–121. Springer, Heidelberg
(Mar 2014). https://doi.org/10.1007/978-3-662-44774-1_8

2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Pri-
vacy. pp. 443–458. IEEE Computer Society Press (May 2014). https://doi.org/
10.1109/SP.2014.35

3. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
A composable treatment. In: Annual international cryptology conference. pp. 324–
356. Springer (2017), https://doi.org/10.1007/978-3-319-63688-7_11

4. Banerjee, A., Clear, M., Tewari, H.: zkhawk: Practical private smart contracts from
mpc-based hawk. In: 2021 3rd Conference on Blockchain Research & Applications
for Innovative Networks and Services (BRAINS). pp. 245–248. IEEE (2021), https:
//doi.org/10.1109/BRAINS52497.2021.9569822

5. Banerjee, A., Tewari, H.: Multiverse of HawkNess: A Universally-Composable
MPC-based Hawk Variant. Cryptology ePrint Archive (2022), https://eprint.
iacr.org/2022/421

6. Baum, C., Chiang, J., David, B., Frederiksen, T., Gentile, L.: Sok: Mitigation of
front-running in decentralized finance. The 2nd Workshop on Decentralized Fi-
nance (DeFi’22) (01 2022)

7. Baum, C., David, B., Dowsley, R.: Insured MPC: Efficient secure computation
with financial penalties. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 404–420. Springer, Heidelberg (Feb 2020). https://doi.org/10.1007/
978-3-030-51280-4_22

8. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: CRAFT: Compos-
able randomness and almost fairness from time. Cryptology ePrint Archive, Report
2020/784 (2020), https://eprint.iacr.org/2020/784

9. Baum, C., David, B., Frederiksen, T.K.: P2DEX: Privacy-preserving decentralized
cryptocurrency exchange. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 21, Part I.
LNCS, vol. 12726, pp. 163–194. Springer, Heidelberg (Jun 2021). https://doi.
org/10.1007/978-3-030-78372-3_7

10. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE Computer Society Press
(May 2014). https://doi.org/10.1109/SP.2014.36

11. Benhamouda, F., Halevi, S., Halevi, T.: Supporting private data on hyperledger
fabric with secure multiparty computation. IBM Journal of Research and Devel-
opment 63(2/3), 3–1 (2019), https://doi.org/10.1147/JRD.2019.2913621

12. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617,
pp. 421–439. Springer, Heidelberg (Aug 2014). https://doi.org/10.1007/

978-3-662-44381-1_24

13. Bentov, I., Kumaresan, R., Miller, A.: Instantaneous decentralized poker.
In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol.
10625, pp. 410–440. Springer, Heidelberg (Dec 2017). https://doi.org/10.1007/
978-3-319-70697-9_15

260

Eagle: Efficient Privacy Preserving Smart Contracts

14. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing.
Journal of Cryptology 17(4), 297–319 (Sep 2004). https://doi.org/10.1007/

s00145-004-0314-9

15. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: ZEXE: Enabling
decentralized private computation. In: 2020 IEEE Symposium on Security and
Privacy. pp. 947–964. IEEE Computer Society Press (May 2020). https://doi.
org/10.1109/SP40000.2020.00050

16. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a
smart contract world. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol.
12059, pp. 423–443. Springer, Heidelberg (Feb 2020). https://doi.org/10.1007/
978-3-030-51280-4_23

17. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy. pp. 315–334. IEEE Computer Society Press (May 2018).
https://doi.org/10.1109/SP.2018.00020

18. Camenisch, J., Lehmann, A., Lysyanskaya, A., Neven, G.: Memento: How to recon-
struct your secrets from a single password in a hostile environment. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 256–275. Springer,
Heidelberg (Aug 2014). https://doi.org/10.1007/978-3-662-44381-1_15

19. Campanelli, M., Hall-Andersen, M.: Veksel: Simple, efficient, anonymous payments
with large anonymity sets from well-studied assumptions. In: Suga, Y., Sakurai,
K., Ding, X., Sako, K. (eds.) ASIACCS 22. pp. 652–666. ACM Press (May / Jun
2022). https://doi.org/10.1145/3488932.3517424

20. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959888

21. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science. pp. 136–145. IEEE (2001), https://doi.org/10.1109/SFCS.2001.959888

22. Canetti, R.: Universally composable signature, certification, and authentication.
In: 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30
June 2004, Pacific Grove, CA, USA. p. 219. IEEE Computer Society (2004). https:
//doi.org/10.1109/CSFW.2004.24, http://doi.ieeecomputersociety.org/10.

1109/CSFW.2004.24

23. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with
global setup. In: Theory of Cryptography Conference. pp. 61–85. Springer (2007),
https://doi.org/10.1007/978-3-540-70936-7_4

24. Cheng, R., Zhang, F., Kos, J., He, W., Hynes, N., Johnson, N., Juels, A., Miller,
A., Song, D.: Ekiden: A platform for confidentiality-preserving, trustworthy, and
performant smart contracts. In: 2019 IEEE European Symposium on Security and
Privacy (EuroS&P) (2019). https://doi.org/10.1109/EuroSP.2019.00023

25. Choudhuri, A.R., Green, M., Jain, A., Kaptchuk, G., Miers, I.: Fairness in an unfair
world: Fair multiparty computation from public bulletin boards. In: Thuraising-
ham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 719–728.
ACM Press (Oct / Nov 2017). https://doi.org/10.1145/3133956.3134092

26. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: Hartmanis, J. (ed.) Proceedings of the 18th Annual
ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley, Cali-
fornia, USA. pp. 364–369. ACM (1986). https://doi.org/10.1145/12130.12168,
https://doi.org/10.1145/12130.12168

261

Carsten Baum et al.

27. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach,
L., Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner
extractable value, and consensus instability. In: 2020 IEEE Symposium on Se-
curity and Privacy. pp. 910–927. IEEE Computer Society Press (May 2020).
https://doi.org/10.1109/SP40000.2020.00040

28. Damg̊ard, I., Damg̊ard, K., Nielsen, K., Nordholt, P.S., Toft, T.: Confidential
benchmarking based on multiparty computation. In: Grossklags, J., Preneel, B.
(eds.) FC 2016. LNCS, vol. 9603, pp. 169–187. Springer, Heidelberg (Feb 2016)

29. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority–or: breaking the SPDZ limits. In: Eu-
ropean Symposium on Research in Computer Security. pp. 1–18. Springer (2013),
https://doi.org/10.1007/978-3-642-40203-6_1

30. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (Aug 2012).
https://doi.org/10.1007/978-3-642-32009-5_38

31. David, B., Dowsley, R., Larangeira, M.: Kaleidoscope: An efficient poker protocol
with payment distribution and penalty enforcement. In: Meiklejohn, S., Sako, K.
(eds.) FC 2018. LNCS, vol. 10957, pp. 500–519. Springer, Heidelberg (Feb / Mar
2018). https://doi.org/10.1007/978-3-662-58387-6_27

32. David, B., Gentile, L., Pourpouneh, M.: FAST: Fair auctions via secret trans-
actions. In: Ateniese, G., Venturi, D. (eds.) ACNS 22. LNCS, vol. 13269,
pp. 727–747. Springer, Heidelberg (Jun 2022). https://doi.org/10.1007/

978-3-031-09234-3_36

33. da Gama, M.B., Cartlidge, J., Polychroniadou, A., Smart, N.P., Alaoui, Y.T.:
Kicking-the-bucket: Fast privacy-preserving trading using buckets. Cryptology
ePrint Archive (2021), to appear at FC’22. https://eprint.iacr.org/2021/1549

34. Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-shamir
bulletproofs are non-malleable (in the algebraic group model). In: Dunkelman,
O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp.
397–426. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.1007/

978-3-031-07085-3_14

35. Groth, J., Kohlweiss, M.: One-out-of-many proofs: Or how to leak a secret and
spend a coin. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology - EU-
ROCRYPT 2015. Springer Berlin Heidelberg, Berlin, Heidelberg (2015), https:
//doi.org/10.1007/978-3-662-46803-6_9

36. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. Journal of the ACM (JACM) 59(3), 1–35 (2012), https://doi.org/
10.1145/2220357.2220358

37. Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing of secure
computation. In: Ahn, G., Oprea, A., Safavi-Naini, R. (eds.) Proceedings of the
6th edition of the ACM Workshop on Cloud Computing Security, CCSW ’14,
Scottsdale, Arizona, USA, November 7, 2014. pp. 81–92. ACM (2014). https:

//doi.org/10.1145/2664168.2664170

38. Kalodner, H.A., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum:
Scalable, private smart contracts. In: Enck, W., Felt, A.P. (eds.) USENIX Security
2018. pp. 1353–1370. USENIX Association (Aug 2018)

39. Kanjalkar, S., Zhang, Y., Gandlur, S., Miller, A.: Publicly auditable mpc-
as-a-service with succinct verification and universal setup. In: IEEE Euro-
pean Symposium on Security and Privacy Workshops, EuroS&P 2021, Vienna,

262

Eagle: Efficient Privacy Preserving Smart Contracts

Austria, September 6-10, 2021. pp. 386–411. IEEE (2021). https://doi.org/

10.1109/EuroSPW54576.2021.00048, https://doi.org/10.1109/EuroSPW54576.

2021.00048
40. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous

computation. In: Theory of Cryptography Conference. pp. 477–498. Springer
(2013), https://doi.org/10.1007/978-3-642-36594-2_27

41. Kerber, T., Kiayias, A., Kohlweiss, M.: KACHINA - foundations of private
smart contracts. In: Küsters, R., Naumann, D. (eds.) CSF 2021 Computer Se-
curity Foundations Symposium. pp. 1–16. IEEE Computer Society Press (2021).
https://doi.org/10.1109/CSF51468.2021.00002

42. Khovratovich, D., Law, J.: Sovrin: digital identities in the blockchain era. Tech.
rep., Sovrin Foundation, accessed: 2022-10-13

43. Kiayias, A., Zhou, H.S., Zikas, V.: Fair and robust multi-party computation using a
global transaction ledger. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016,
Part II. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (May 2016). https:
//doi.org/10.1007/978-3-662-49896-5_25

44. Kosba, A.E., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy. pp. 839–858. IEEE Computer Society Press
(May 2016). https://doi.org/10.1109/SP.2016.55

45. Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 2016. pp. 418–429. ACM Press (Oct 2016). https://doi.org/10.1145/

2976749.2978424
46. Kumaresan, R., Moran, T., Bentov, I.: How to use bitcoin to play decentral-

ized poker. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. pp. 195–206 (2015), https://doi.org/10.1145/

2810103.2813712
47. Kumaresan, R., Vaikuntanathan, V., Vasudevan, P.N.: Improvements to secure

computation with penalties. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., My-
ers, A.C., Halevi, S. (eds.) ACM CCS 2016. pp. 406–417. ACM Press (Oct 2016).
https://doi.org/10.1145/2976749.2978421

48. Lee, J., Nikitin, K., Setty, S.T.V.: Replicated state machines without replicated
execution. In: 2020 IEEE Symposium on Security and Privacy. pp. 119–134. IEEE
Computer Society Press (May 2020). https://doi.org/10.1109/SP40000.2020.
00068

49. Maram, D., Malvai, H., Zhang, F., Jean-Louis, N., Frolov, A., Kell, T., Lobban, T.,
Moy, C., Juels, A., Miller, A.: CanDID: Can-do decentralized identity with legacy
compatibility, sybil-resistance, and accountability. In: 2021 IEEE Symposium on
Security and Privacy. pp. 1348–1366. IEEE Computer Society Press (May 2021).
https://doi.org/10.1109/SP40001.2021.00038

50. Maxwell, G.: Confidential transactions. https://people.xiph.org/~greg/

confidential_values.txt (2016)
51. Nilsson, A., Bideh, P.N., Brorsson, J.: A survey of published attacks on intel SGX.

CoRR abs/2006.13598 (2020), https://arxiv.org/abs/2006.13598
52. Noether, S.: Ring Signature Confidential Transactions for Monero. Cryptology

ePrint Archive, Paper 2015/1098 (2015), https://eprint.iacr.org/2015/1098,
https://eprint.iacr.org/2015/1098

53. Ozdemir, A., Boneh, D.: Experimenting with collaborative zk-SNARKs: Zero-
knowledge proofs for distributed secrets. Cryptology ePrint Archive, Report
2021/1530 (2021), https://eprint.iacr.org/2021/1530

263

Carsten Baum et al.

54. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Annual international cryptology conference. pp. 129–140. Springer
(1991). https://doi.org/10.1007/3-540-46766-1_9

55. Poelstra, A., Back, A., Friedenbach, M., Maxwell, G., Wuille, P.: Confidential as-
sets. In: International Conference on Financial Cryptography and Data Security.
pp. 43–63. Springer (2018), https://doi.org/10.1007/3-540-36178-2_26

56. Reistad, T.I., Toft, T.: Linear, constant-rounds bit-decomposition. In: Lee, D.H.,
Hong, S. (eds.) Information, Security and Cryptology - ICISC 2009, 12th In-
ternational Conference, Seoul, Korea, December 2-4, 2009, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 5984, pp. 245–257. Springer (2009).
https://doi.org/10.1007/978-3-642-14423-3_17, https://doi.org/10.1007/

978-3-642-14423-3_17

57. van Saberhagen, N.: CryptoNote v 2.0. https://web.archive.org/web/

20201028121818/https://cryptonote.org/whitepaper.pdf (2013)
58. Sergio Demian Lerner: P2ptradex: P2p trading between cryptocurrencies. https:

//bitcointalk.org/index.php?topic=91843.0 (2012), accessed: 2022-10-13
59. Solomon, R., Almashaqbeh, G.: smartFHE: Privacy-preserving smart contracts

from fully homomorphic encryption. Cryptology ePrint Archive, Report 2021/133
(2021), https://eprint.iacr.org/2021/133

60. Steffen, S., Bichsel, B., Baumgartner, R., Vechev, M.: ZeeStar: Private Smart Con-
tracts by Homomorphic Encryption and Zero-knowledge Proofs. In: 2022 IEEE
Symposium on Security and Privacy (SP). pp. 1543–1543. IEEE Computer Society
(2022), https://files.sri.inf.ethz.ch/website/papers/sp22-zeestar.pdf

61. Steffen, S., Bichsel, B., Gersbach, M., Melchior, N., Tsankov, P., Vechev, M.T.:
zkay: Specifying and enforcing data privacy in smart contracts. In: Cavallaro, L.,
Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 1759–1776. ACM Press
(Nov 2019). https://doi.org/10.1145/3319535.3363222

62. Team, T.S.N.: Secret network: A privacy-preserving secret contract & decentralized
application platform. https://scrt.network/graypaper (2022)

63. Xiong, A.L., Chen, B., Zhang, Z., Bünz, B., Fisch, B., Krell, F., Camacho, P.:
VERI-ZEXE: Decentralized private computation with universal setup. Cryptology
ePrint Archive, Report 2022/802 (2022), https://eprint.iacr.org/2022/802

A Extended related work

Privacy preserving transactions. The notion of confidential tokens was first
proposed by Maxwell in [50], and subsequently formalized in [55]. Here, balances
are concealed in additively homomorophic Pedersen commitments [54]. A valid
transfer consumes and produces new commitments and is accompanied by a non-
interactive range-proof [17] that each newly coin balance is below a threshold
preventing the minting of tokens. Thus, if input and output commitments sum
up, the ledger can verify that the coin supply was preserved. ZCash [10] breaks
any relation between spent and newly minted tokens with general zkSNARK’s
proving both balance ranges and that confidential input coins have not previ-
ously been spent. Subsequent works [19] have improved on the complexity of
NIZK’s required. Zether [16] proposes a scheme which can be implemented on
any public ledger with EVM-like smart contract machine, encrypting user bal-
ances with additive Elgamal encryption: importantly, for smaller balance ranges,

264

Eagle: Efficient Privacy Preserving Smart Contracts

this scheme permits the receiver to obtain the opening of privately received coins
by brute-forcing an discrete-logarithm. Thus, unlike in other schemes, a sender
does not need forward the private coin opening to the receiver. A weaker notion
of privacy is achieved by Monero [57,52], which offers k-anonymity for senders.

Privacy preserving smart contracts. Hawk [44] introduces a general notion
of smart contract evaluation over private individual inputs resulting in private
individual outputs. The contract is evaluated over private numerical and private
financial values, and is settled on a confidential ledger. Correctness and privacy
is archived through the use of non-interactive zero-knowledge proofs. Thus, each
party learns nothing about the inputs or outputs of other parties, other than
what is implied by its own numerical and financial output. Although the notion
of privacy here is limited to ledger and inter-party privacy, as a trusted third
party is still required to carry out the private computation. This is quite dif-
ferent from what we normally consider private in the cryptographic community.
Hence continuous research has been carried out, trying to remove this trusted
third party, although it seems to require expensive, general non-interactive-zero-
knowledge (NIZK) proofs to be computed inside the MPC function evaluation to
permit private settlement on a confidential ledger. A recent line of work has by
Banerjee et al. [4,5] contributes concrete efficiency improvements in realizing the
private smart contract notion of Hawk by distributing the trusted party using
MPC and by reducing the complexity of NIZK’s which are computed inside the
MPC. Recently, Kanjalkar et al. [39] present an optimized ZK protocol to be
proven inside MPC.

Zexe [15] extends the ZCash model of private transactions with a private,
state-less contract model. Bitcoin Script-like contracts are hidden, as are con-
tract inputs, enabling limited contracting functionality with privacy. Further-
more, Zexe requires the execution of a trusted setup phase for each application.
However, this need was removed in the follow-up VeriZexe [63].

A notion of smart contracts with data privacy is proposed in zkay [61]. Here,
private data is encrypted on the blockchain, and NIZKs are used to prove that
any modifications are done correctly. Follow-up work, Zeestar [60] uses additively
homomorphic encryption to allow for limited private computation on data from
multiple owners, without them having to share their private data with each
other. SmartFHE [59] on the other hand uses FHE and NIZKPs construct a
blockchain with support for privacy preserving transactions and general privacy
preserving smart contracts. Their idea is to have each user setup an FHE scheme
associated with their account. Every time they use the tokens in their account,
they use the FHE scheme to perform the needed computation on their tokens and
any auxiliary input and prove in zero-knowledge this was done correctly, before
posting everything to the blockchain, for verification by a miner. Unfortunately
this is rather inefficient, as simply validating a private transactions takes a miner
more than 9 seconds. Furthermore, to compute fully private smart contracts with
inputs from multiple parties they are required to expand their encrypted input
to be encrypted under all public keys of the clients giving input to the smart
contract. Thus requiring online interaction between all the clients with relevant

265

Carsten Baum et al.

data to the computation. Furthermore, in general this line of work does not
explicitly provide privacy between contract participants, as a party which holds
the encryption key can trivially observe the contract evaluation in the clear.

Fair MPC with public ledgers. We describe two closely related lines of
work that integrate MPC protocols with a ledger functionality to achieve (1)
fair MPC protocols, which identify and penalize cheating parties and (2) private
smart contracts executed inside a MPC instance which finalize the confidential
outcome on the ledger.

The first works to utilize the Bitcoin ledger to achieve fairness in lottery
games was introduced in [1,2], where cheating parties can abort upon learning
the output first but incur a financial penalty without requiring a trusted party
to arbitrate. This notion of output fairness was generalized to any secure func-
tion evaluation by Bentov et al. [12] and to the reactive setting [46]. Subsequent
works improve the efficiency of output fairness [45,47,13,11,31], culminating in
Insured MPC [7], which formulates a UC-secure MPC functionality with identi-
fiable aborts. Another line of work [43,25] focuses on stronger notions of fairness,
identifying aborting parties’ prior to the output phase.

P2DEX. At ANCS 2021 Baum et al. [9] introduced P2DEX, which extends In-
sured MPC [7] by allowing for cross-chain communication and privacy preserving
smart contract computation. Although their privacy preservation only involves
auxiliary input, and not the token amounts. Their idea is to first have user send
the tokens to a burner address, generated in a distributed manner by a set of
servers. These servers then run an Insured MPC protocol which computes a pri-
vate smart contract based on auxiliary input privately given by the users. Based
on the result, appropriate amount of tokens can be transferred from the burner
addresses to the users by having the servers threshold sign these transactions.
The authors use this to make a system for decentralized cross-chain exchange,
preventing both miner and operator front-running.

B Extended preliminaries

A model of smart contracts. FLedger parses authenticated messages which
can authorize the deployment and activation of smart contracts, each modelled
with a state transition function encoded as an arithmetic circuit T of maximum
depth dT , thereby enforcing a notion of bounded termination. Each contract
maintains a public state fragment γ ∈ {0, 1}∗ that is updated by circuit T upon
the evaluation of each authenticated CallContract message. Each contract
also maintains a balance w̄ of T. We sketch the evaluation of a smart contract
call with parameters cn, fn, x, v̄ authorized by signature verification key vk:

- Contract identifier cn selects the contract instance for evaluation.

- Function selector fn is an input that identifies the contract interface being
evaluated, facilitating the logical separation of contract descriptions.

266

Eagle: Efficient Privacy Preserving Smart Contracts

- Input string x ∈ {0, 1}∗ denotes parameters input to circuit T : it is logically
evaluated by the contract interface selected by fn.

- Token balance v̄ is provided to the contract call and is subtracted from the
ledger entry associated with verification key vk.

The circuit T associated with contract instance cn is then evaluated on input
(ν | γ | w̄ | cn, fn, x, v̄, vk), where ν denotes FClock round at the time of the call,
and γ denotes the contract state stored by FLedger. Upon completed evaluation
of T , FLedger reads the encoding of a state transition L|γ|w̄ →ts L′|γ′|w̄′ from
the output gates of evaluated T , thereby updating ledger, contract state and
contract balance. Here, FLedger asserts token supplies over T are preserved and
that non-calling account balances cannot decrease from applying update ts.

We note the presence of call-back gates permitted in contract circuits de-
ployed to FLedger, related to a UC-modelling technicality described in more detail
in Appendix C.1. Concretely, these gates permit the UC functionality FLedger to
forward verification calls to hybrid functionalities FIdent and FRNIZK via an honest
majority committee Q. Thus, in the hybrid FIdent, FRNIZK-setting, the simulator
maintains the ability to equivocate and efficiently extract inputs from dishonest
parties.

Pedersen commitments. Let g, h denote random generators of G such
that nobody knows the discrete logarithm of h base g, i.e., a value w such
that gw = h. The Pedersen commitment scheme [54] to an s ∈ Zp is ob-
tained by sampling t←$Zp and computing com(s, t) = gsht. Hence, the com-
mitment com(s, t) is a value uniformly distributed in G and opening the com-
mitment requires to reveal the values of s and t. The Pedersen commitments
are additively homomorphic, i.e., starting from the commitment to s1 ∈ Zp
and s2 ∈ Zp, it is possible to compute a commitment to s1 + s2 ∈ Zp, i.e.,
com(s1, t1) ◦ com(s2, t2) = com(s+ 1 + s2, t1 + t2).

(Global) Universal Composability. In this work, the (Global) Universal
Composability or (G)UC framework [21,23] is used to analyze security. Due to
space constraints, we refer interested readers to the aforementioned works for
more details. We generally use F to denote an ideal functionality and Π for a
protocol. We implicitly assume private and authenticated channel between each
pair of parties.

Several functionalities in this work allow public verifiability. Following Badertscher
et al. [3] we dynamically allow the construction of a set of verifiers V through
register and de-register commands. The adversary, S will always be allowed to
obtain the list of registered verifiers. Concretely we implicitly assume all func-
tionalities with public verifiability include the following interfaces (which are
omitted in the concrete boxes for simplicity):

Register: Upon receiving (Register, sid) from some verifier Vi, set V ← V∪Vi
and return (Registered, sid,Vi) to Vi.
Deregister: Upon receiving (Deregister,sid) from some verifier Vi, set V = V\Vi
and return (Deregistered, sid,Vi) to Vi.

267

Carsten Baum et al.

Is Registered: Upon receiving (Is-Registered, sid) from Vi, return
(Is-Registered, sid, b) to Vi, where b = 1 if Vi ∈ V and b = 0 otherwise.

Get Registered: Upon receiving (Get-Registered, sid) from the ideal ad-
versary S, the functionality returns (Get-Registered, sid,V) to S. The above
instructions can also be used by other functionalities to register as a verifier of
a publicly verifiable functionality.

Global clock. As some parts of our work are inherently synchronous, we model
rounds using a global clock functionality FClock as in [3,40,43]. In Fig. 3 we show
the global UC clock functionality, FClock, we need, taken verbatim from the work
of Baum et al. [9]. We note that in the real execution all parties will send messages
to, and receive them, from FClock. Whereas in the simulated case only the ideal
functionality, other global functionalities as well as the corrupted parties will
do so. Throughout this work, we will write “update FClock” as a short-hand for
“send (Update, sid) to FClock”.

Functionality FClock

FClock is parameterized by a variable ν, sets P,F of parties and functionalities re-
spectively. It keeps a Boolean variable dJ for each J ∈ P ∪F , a counter ν as well as
an additional variable u. All dJ , ν and u are initialized as 0.

Clock update: Upon receiving a message (Update) from J ∈ P ∪ F :
1. Set dJ = 1.
2. If dF = 1 for all F ∈ F and dP = 1 for all honest P ∈ P, then set u← 1 if it is 0.

Clock read: Upon receiving a message (Read) from any entity:
1. If u = 1 then first send (Tick, sid) to S. Next set ν ← ν + 1, reset dJ to 0 for all

J ∈ P ∪ F and reset u to 0.
2. Answer the entity with (Read, ν).

Fig. 3: Global UC functionality FClock for the clock.

Signatures. We will implicitly assume access to a global digital signature
ideal functionality FSig as defined in [22] (where it is also shown any EUF-
CMA signature scheme realizes it), which is used for signing transactions to a
ledger. We also use a global UC secure threshold signature scheme which offers
identifiable abort. We denote this functionality FTSig and define it in Fig. 4
(which is taken verbatim from the work of Baum et al. [9]). The functionality
allows a set of n parties to collaboratively sign a message m, and allows the
adversary to corrupt up to n− 1 parties without being able to forge signatures.
That is, we assume the full-threshold setting. Thus its behaviour matches that of
FSig, although it additionally allows S to choose the string of shares that later get
combined into a signature. Although under the constraint that S has to choose
both the signature shares and the actual signature, σ, together. Although this
allows S to always make a valid signature, it is never allowed to make an invalid
signature in an honest execution of Share Generation. Based on the signature

268

Eagle: Efficient Privacy Preserving Smart Contracts

shares, the parties can learn σ from Share Combination, although if parties
have been cheating in Shares Generation they will be exposed during Share
Combination. We observe that the choice of shares binds S to a certain set of
dishonest parties. Note that by assuming both FSig and FTSig to be global UC
functionalities, it allows other UC functionalities, both local and global, to verify
signatures on them. This becomes essential to allow interaction with our, global,
ledger functionalities.

Functionality FTSig

FTSig is parameterized with an ideal adversary S, a set of signers P and functionalities
F , a verifiers V (which automatically contains P and F) and a set of corrupted signers
I ⊂ P. FTSig has two internal lists Sh and Sig.

Key Generation: Upon receiving a message (keygen) from each Pi ∈ P or
a functionality Fj ∈ F hand (keygen) to the adversary S. Upon receiv-
ing (verificationkey)vk from S, if (·, vk) was not recorded yet then output
(verificationkey)vk to each Pi ∈ P (or to Fj), and record the pair (P, vk).
If vk was recorded before then output (Abort) to S and stop.

Share Generation: Upon receiving a message (sign)m, vk from all honest par-
ties or a functionality Fj ∈ F send (sign)m to S. Upon receiving
(signature)m, ρ, σ, J, f from S, verify that

– no entry (m, ρ, J ′, vk′) with J ′ 6= J is recorded in Sh, and
– no entry (m,σ, vk, 0) is recorded in Sig if J = ∅.

If either is, then output an error message to S and halt. Else, let f ′ = 1 if J = ∅
and f ′ = f otherwise, record the entry (m, ρ, J, vk) in Sh, (m,σ, vk, f ′) in Sig

and return (shares)m, ρ.
Share Combination: Upon receiving a message (combine)m, ρ, vk from any party

in P or functionality Fj ∈ F , find (m, ρ, J, vk) in Sh and (m,σ, vk, b) in Sig. If
J 6= ∅ then return (Failure)J . If J = ∅ return (combined)m,σ, vk. If no entry
could be found in Sh and Sig then return (Not−Generated).

Signature Verification: Upon receiving a message (verify)m,σ, vk′ from some
entity in V, hand (verify)m,σ, vk′ to S. Upon receiving (verified)m,φ from S
do:

1. If vk′ = vk and (m,σ, vk, 1) ∈ Sig, then set f = 1.
2. Else, if vk′ = vk and (m,σ′, vk, 1) 6∈ Sig for any σ′, then set f = 0 and record

the entry (m,σ, vk, 0) in Sig.
3. Else, if there is an entry (m,σ, vk′, f ′) ∈ Sig recorded, then let f = f ′.
4. Else, let f = φ and record the entry (m,σ, vk′, φ) in Sig.

Return (verified)m, f .

Fig. 4: Global UC functionality FTSig for Threshold Signatures.

Non-interactive zero-knowledge. We us non-interactive zero-knowledge
arguments of knowledge, allowing any party to construct a proof that can later
be validated by any verifier. We model this in the same way as done by Groth et

269

Carsten Baum et al.

al. [36] and formally define the functionality FNIZK for this in Fig. 5 in Sec. B.
The functionality FNIZK allows any party to prove in zero knowledge that they
know a witness w for a public statement x such that (x,w) ∈ R for a NP relation
R.

Functionality FRNIZK

FNIZK interacts with parties P = {P1, ..., Pn} and simulator S and is parameterized
with relation R.

Proof: On input (Prove, sid, x, w) from party P , ignore if (x,w) 6∈ R. Send
(Prove, x) to S and wait for answer (Proof, π). Upon receiving the answer store
(x, π) and send (Proof, sid, π) to P .

Verification: On input (Verify, sid, x, π) from V, check whether (x, π) is stored. If
not send (verify, x, π) to S and wait for an answer (Witness, w). Upon receiving
the answer, check whether (x,w) ∈ R and in that case, store (x, π). If (x, π) has been
stored, return (Verification, sid, 1) to V, else return (Verification, sid, 0).

Fig. 5: UC functionality FNIZK for Non-interactive Zero-Knowledge

MPC. Secure Multi-Party Computation (MPC) allows a set of mutually dis-
trusting P = {P1, . . . , Pn} to compute any efficiently commutable function
f(x1, . . . , xn) = (y1, . . . , yn) where each party Pi supplied private input xi and
received private output yi. MPC guarantees that the only thing known to party
Pi after the computation is xi and yi. Multiple security and computational mod-
els exist for this, but in this paper we will assume the arithmetic black box model,
where computation is a directed acyclic graph of arithmetic operations over a
finite field F, where |F| = p ≥ 2s. We assume the UC-security against a static,
active/malicious adversary, who can corrupt up to n − 1 parties and who may
cause an abort at any point in the computation. We assume an MPC scheme,
which is reactive, meaning that it is possible to compute f(·) ,and depending on
the output, compute some other function f ′(·) on the same input as f(·). This
model can for example be realized by the SPDZ protocol [30]. For simplicity we
will assume the bracket-notation, where the function to be computed is specified
by arithmetic operations on hidden variables. Concretely we assume [·] expresses
a value hidden in MPC and on which arithmetic computations can be carried
out. I.e. [x] · [y] + [z], expresses the computation x · y + z of values x, y, z ∈ F.

Outsourced MPC. Typically MPC in the setting we need require a non-
constant amount of rounds of communication between all pairs of parties (de-
pended on the function to compute). If we have many parties supplying input this
can become prohibitively expensive. For this reason we introduce another model
of MPC known as outsourced MPC. Jakobsen et al. [37] shows how to use infor-
mation theoretic operation in conjunction with any MPC scheme as described
above, to allow a large set of clients C = {C1, . . . , Cm} to supply private input
to an MPC computation, executed by a small set of servers P = {P1, . . . , Pn},

270

Eagle: Efficient Privacy Preserving Smart Contracts

and receive private output. Crucially the clients only need to execute a few
lightweight operations, bounded by their amount of inputs and outputs, and
only need to communicate with the servers in a constant amount of rounds.

Insured MPC. It has been shown [26] that it is impossible to achieve fair-
ness in MPC when more than n/2 of the parties are corrupted. By fairness we
mean that if one party learns their output of the computation, so does the rest
of the parties. This is a problem since the party learning the output may be
malicious and thus maybe abort the protocol based on what they learned. Baum
et al. [7] show how to incentivize the completion of an MPC protocol, in a pub-
lic verifiable manner, through financial incentives enforced on a public ledger.
Specifically they showed this is possible to do, based on any MPC scheme fitting
the model discussed above. We combine this incentivized notion of MPC with
the outsourced notion of MPC in the functionality FIdent. Concretely this spec-
ifies an out-sourced MPC functionality where clients C = {C1, . . . , Cm} supply
private input that is computed on in MPC by the servers P = {P1, . . . , Pn} and
where the output of the computation is verifiably shared between the servers in
such a manner that the shares can verified by an external verifier V after the
completion of the protocol to identify any potential malicious behaviour. We
refer to appendix B.1 for a detailed description of FIdent and its interaction with
servers and clients.

B.1 Publicly Verifiable MPC Functionality FIdent

We adopt FIdent from [7,9] but include the following extensions to its interface.
Firstly, when realizing FIdent with a reactive MPC scheme such as [30,29], we
can amend FIdent with a reactive interface as in FOnline from [29], exposing arith-
metic operations over secret values, each identified with a unique vid , which are
selectively input or output to the parties.

In addition to a reactive interface, we permit clients to securely input values
to FIdent. This is realized with the secure client input protocol from [37], which
permits MPC servers to verify the linear MAC of the client input inside a reactive
MPC instance. We wrap this secure client input protocol inside FIdent (as in the
security proof of [37]) to obtain an input interface which can be called by clients.

Theorem 3. Functionality FIdent (in Figure 6) can be realized by a reactive
secure computation scheme permitting linear operations for free and the secure
client input protocol from [37].

Proof. (Proof sketch) The original, non-interactive FIdent functionality from [7]
can be extended with a reactive interface when realized with a reactive MPC
scheme [30,29] with minor adaptations of the UC-proof in [7]. The secure client
input protocol of [37] is information-theoretically secure, and can be instantiated
with any MPC scheme with free linear operations, including [30,29], thereby
realizing reactive and client input interfaces of FIdent in Figure 6.

271

Carsten Baum et al.

Functionality FIdent

For each session, FIdent interacts with servers P = {P1, . . . ,Pn}, clients C =
{C1, . . . , Cm} and also provides an interface to register external verifiers V. S provides
a set IP ⊂ [n] of corrupt parties and IC ⊆ [m] of corrupt clients. FIdent only interacts
with P, C,V and Sa of the respective session sid.

Init: Upon first (Init, sid) by all parties in P set rev, ver, ref← ∅.
Input: Upon first (Input, sid, x) by Cj , forward (Input, sid, Cj) to S. If S continues,
FIdent samples vid , stores (vid , x) and returns (Input, sid, Cj , vid) to all P.

Evaluate: Upon first (Eval, sid, g, vid 1, ..., vid p) by all parties P, if (vid 1, ..., vid p)
have been stored internally:
1. Compute xp+1, ..., xp+q ← g(x1, ..., xp), sample vid p+1, ..., vid p+q.
2. Store (vid p+1, xp+1), ..., (vid p+q, xp+q), return (vid p+1, ..., vid p+q) to all parties.

Get Shares: Upon first (GetShare, sid, vid) by Pi ∈ P and if (vid , x) is stored:

1. For Pi ∈ IP , let S provide s
(i)
vid ∈ F. For Pi ∈ IP , let s

(i)
vid

$← F s.t. x =
∑
i∈[n] s

(i)
vid .

2. Return (Share, sid, vid , s
(i)
vid) to Pi.

Open with identifiable abort: All interfaces below are specific to a (vid , ·).
Share: Upon first (Share, sid, vid) by Pi ∈ P and if (vid , x) is stored, sample
shares as in Get Shares if not previously done and and store locally.

Optimistic Reveal: Upon (Optimist-Open, sid, vid) by each honest Pi and if
Share for (vid , x) was run, then send (Output, sid, vid , x) to S. If S continues,
send (Output, sid, vid , x) to each honest Pi, otherwise send (Output, sid, vid ,⊥).

Reveal: Upon (Reveal, sid, vid) by Pi, if i 6∈ rev[vid] send (vid , i, s
(i)
vid) to S.

1. If S continues, set rev[vid]← rev[vid] ∪ {i}, send (Reveal, sid, i, s
(i)
vid) to all P.

2. Else if S sends (Reveal-Not-Ok, sid, vid , i, J) with J ⊆ IP , J 6= ∅,
send (Reveal-Fail, sid, vid , i) to all P and set ref[vid]← ref[vid] ∪ J .

Test Reveal: Upon (Test-Reveal, sid, vid) from a party in P ∪ V
1. If ref[vid] 6= ∅, return (Reveal-Fail, sid, vid , ref[vid])
2. Otherwise return (Reveal-Fail, sid, vid , [n] \ rev[vid]).

Allow Verify: Upon (Start-Verify, sid, vid , i) from party Pi ∈ P set ver[vid]←
ver[vid] ∪ {i}. If ver[vid] = [n] then deactivate all interfaces for vid except Test
Reveal and Verify.

Verify: Upon (Verify, sid, vid , z(1), . . . , z(n)) by Vi ∈ V with z(j) ∈ F:
1. If ver[vid] 6= [n] then return (Verify-Fail, sid, vid , [n] \ ver[vid]).
2. Else if ver[vid] = [n] and rev[vid] 6= [n], send to Vi what Test Reveal sends.

3. Else set ws← {j ∈ [n] | z(j) 6= s
(j)
vid } and return (Open-Fail, sid, vid , ws).

a Throughout Init, Input, Evaluate and (Get) Share, S can at any point abort,
upon which FIdent:rct sends (Abort,⊥) to all parties and terminates.

Fig. 6: UC functionality FIdent for reactive MPC with Publicly Verifiable Output.

Identifiable aborts during the output phase. We provide an overview of
the execution of a generic protocol π in the FIdent-hybrid setting, where π can
either obtain the output of an MPC secure evaluation on private client inputs
performed by an FIdent instance, or identify cheating parties.

272

Eagle: Efficient Privacy Preserving Smart Contracts

Completed
Optimistic1. 2a.

2b.

3a.

3b.

3a.

3b.

4a.

4b.

Reveal
Allow
Verifyy

evaluation
All servers
obtain y

Only adversary
obtains y

All servers obtain

Verifier identifies
parties refusing
Reveal.

Verifier identifies
parties refusing
Allow Verify.

Verifier can
verify shares.shares of y.

okokReveal

Reveal

Fig. 7: Output phase of FIdent with verifiable output.

Following the secure evaluation on the client inputs, honest parties of π per-
form the following. Upon sending Optimistic Reveal to Fident, honest parties
will either (2a) obtain the output y = (y1, ..., ym), where yi denotes the out-
put for client Ci ∈ C, or (2b) only the adversary obtains y. In either state
(2a)/(2b), the honest parties of π can always reach a state of FIdent via Reveal
and Allow Verify, in which either (4a) shares s(i) for each server Pi ∈ P are
received by all parties, that are verifiable by by V and from which y =

∑
i∈[n] s

(i)

can be reconstructed, or (3b)/(4b) the verifier V can identify cheating servers.
The interfaces of FIdent exposed to the public verifier V are central to the

arbitration of an abort in protocol π. Here, a smart contract playing the role
of public verifier V can identify the set of cheating servers therefore enforce a
financial penalty agreed upon prior to the adversary learning y.

C Ledger Functionalities

C.1 Public ledger functionality

In Figure 8 we describe the ideal functionality FLedger. It reflects a general public
ledger, with the support for transfers of tokens through signatures, along with
Turing complete smart contracts, modeled as arithmetic circuits over F. It re-
quires access to the global UC functionalities of FClock, for a notion of rounds,
and F(T)Sig for signature validation.

Beyond its authenticated bulletin board functionality, on which it is based,
FLedger parses all the newly received, signed messages and updates its public
state accordingly on the first activation of each FClock round. In addition to
authenticated messages, we define its public state to include a public ledger over
a default token universe, maintaining balances associated with each signature
verification key observed in the authenticated message list. Furthermore, FLedger

will maintain public state of smart contracts instances, each deployed with a
transition function encoded as arithmetic circuits.

Interaction with UC functionalities. We permit smart contracts deployed
to FLedger to pass messages to external UC functionalities. This is required in or-
der for a smart contract instance to evaluate the verification of proofs generated
by a FRNIZK instance or shares output by FIdent. Interaction in the GUC model
is permitted for global functionality FLedger and other global UC functionalities,

273

Carsten Baum et al.

Functionality FLedger

FLedger interacts with global functionalities FClock, FSig, FTSig. It is parameterized by
a token universe T = {τ0, ..., τt} and maintains public ledger state L : {0, 1}∗ → Z|T|,
public contract states Γ : Z → {0, 1}∗ and a contract counter ctr ∈ Z. FLedger has
an initially empty list M of messages posted to the authenticated bulletin board.
Further, it interacts with committee parties Q = {Q1, ..., Qq}.
Upon each activation FLedger first sends a message (Read, sid) to FClock. If ν has
changed since the last call to FClock, then it parses all messages in M′ ←M\Mread

in listed order as follows:

Init: Upon parsing ((Init, sid,Linit), vk) ∈ M′, set L ← Linit, deactivate the parsing
of Init messages and activate parsing of Transfer,Deploy,Call messages.

Transfer: Upon parsing ((Transfer, sid, v̄, vkrcv), vk) ∈ M′, assert L[vk] ≥ v̄. Set
L[vkrcv]← L[vkrcv] + v̄ and L[vk]← L[vk]− v̄.

Deploy Contract: Upon parsing ((Deploy, sid, γ, T), vk) ∈M′, parse initial state
γ ∈ {0, 1}∗ and T as an arithmetic circuit over F of maximum depth dT . Update
Γ ← Γ ∪ {(cn = ctr, (γ, 0̄, T))} and contract id counter ctr← ctr + 1.

Call Contract: Upon parsing ((Call, sid, (cn, fn, x, v̄)), vk) ∈M′, assert L[vk] ≥ v̄.
Read FClock round ν, obtain contract state, balances and circuit (γ, w̄, T) ← Γ [cn]
and evaluate circuit T on inputs (ν | γ | w̄ | cn, fn, x, v̄ | vk), which outputs an encoding
of a state transition ts, L | γ | w̄→ts L′ | γ′ | w̄′, updating ledger, contract state and
balance.
1. T is permitted “callback” gates which specify:

a. Fragments of state L | Γ to read during evaluation of T .
b. External functionality F and message m to send:

- Forward (ExtCall, sid,F,m) to all Q who output this forwarded message.
- Upon (CallBack, sid, ret) from each Q, write replies to call-back gate;

the majority response from Q is read by the circuit upon continuation.
2. On completed evaluation of T , assert:

a. Preservation of tokens: w̄ +
∑

vk∈dom(L) L[vk] = w̄′ +
∑

vk∈dom(L) L′[vk]

b. No outflow from non-calling accts: ∀vk′ ∈ dom(L), vk′ 6= vk : L′[vk′] ≥ L[vk′].
3. Set L ← L′ and Γ [cn]← (γ′, w̄′, T).

After parsing M′, it sets Mread ←M and sends (Update, sid) to FClock.

Post: Upon receiving (Post, sid,m, vk, σ) from some entity contact the instance of
FSig or FTSig belonging to vk. If σ verifies for m and vk then send (Post, sid,m, vk, σ)
to S and append (m, vk) to the list M.

Read: Upon receiving (Read, sid) from some entity, return M.

Fig. 8: Functionality FLedger for Public Ledger and Smart Contracts.

such as FClock. However, lifting the model of FIdent or FRNIZK to global functional-
ities greatly complicates the definition of any functionality realized in the FIdent,
FRNIZK-hybrid setting, as the simulator can no longer equivocate outputs from
FIdent without simulating its internal state as a hybrid functionality, and extrac-
tion of a global FRNIZK would imply a realization by less efficient constructions.

274

Eagle: Efficient Privacy Preserving Smart Contracts

Although we do not model consensus details with FLedger, we argue that such
a protocol must ultimately realized in the presence of an honest majority com-
mittee. Thus, we adopt this assumption with an honest-majority committee of
dummy parties Q = {Q1, ..., Qq} interacting with FLedger, that forward verifi-
cation calls between FLedger and the environment Z. Concretely, we permit the
deployed contract circuits to feature call-back gates, which indicate an external
functionality and message (F,m) that is forwarded to Q by FLedger.

- Upon receiving (ExtCall, sid,F,m) from FLedger, an honest party in Q then
returns this message to Z and waits for a response.

- Upon input (CallBack, sid,F, ret) from Z to the same party Q ∈ Q, it
forwards this message to FLedger, which writes the majority response to the
call-back gate.

The utility of forwarding (F,m) to the environment via dummy parties Q be-
comes immediate in the F, FLedger-hybrid setting: here, the parties in the roles
of Q, upon receiving (ExtCall, sid,F,m) from FLedger will call hybrid func-
tionality F with message m, and return the response to FLedger. If Q maintains
an honest majority, we obtain correctness of the verification replies returned to
FLedger. We emphasize that this is a necessary modelling artifact arising from the
constraints of the GUC-framework: in actual realizations we argue the parties in
Q are the same parties which jointly realize the underlying ledger functionality
as mining or staking parties.

C.2 Confidential ledger functionality

In Fig. 9 we describe the confidential token ledger functionality, FCLedger we
require in our main construction. FCLedger. It assume access to the FLedger func-
tionality in Fig. 8.

D Protocols

We detail the various protocol realizations of our scheme and their supporting
smart contract programs.

D.1 Protocol realizing FCLedger

In Fig. 10 we show how to realize our confidential token functionality FCLedger

from Fig. 9 on any Turing complete ledger, with the help of the smart contract
XCLedger of Fig. 11.

Theorem 1. Protocol ΠCLedger GUC-realizes functionality FCLedger in the FClock,
FLedger, FNIZK, FSetup, FSig-hybrid model against any PPT-adversary corrupting
any minority of committee Q.

275

Carsten Baum et al.

Functionality FCLedger

FCLedger interacts with parties C = {C1, ..., Cp}. It is parameterized with token uni-
verse T and max. balance v̄max ∈ Z|T| and maintains public ledgers L and LConf, where
LConf maps account keys to confidential coins with hidden balances. The functionality
is registered at global FClock.

Public ledger states are updated at the beginning of each clock round. On each
activation, FCLedger reads FClock and if ν is increased since the last activation, sets
L ← L′, LConf ← L′Conf. Initially, only GenAcct and Init interfaces are activated.

GenAcct: Upon (GenAcct, sid) from C, forward (GenAcct, sid, C) to S. Upon
obtaining fresh vk from S, set K[C]← K[C] ∪ {vk}. Return (AcctKey, sid, vk).

Init: Upon receiving (InitLedger, sid,LInit, vk) from any Ci ∈ C, forward to S. Set
L′ ← LInit and deactivate Init and activate all other interfaces.

Transfer: Upon (Transfer, v̄, vkrcv, vk) from C,
- Assert vk ∈ K[C] and forward message (Transfer, v̄, vkrcv, vk) to S.
- If L′[vk] ≥ v̄, set L′[vkrcv]← L′[vkrcv] + v̄ and L′[vk]← L′[vk]− v̄.

Mint: Upon (Mint, sid, v̄, vk) from C,
1. Assert L′[vk] ≥ v̄ and forward (Mint, sid, v̄, vk) to S and wait for id from S.
2. Set L′Conf[vk]← L′Conf[vk]∪{〈id, v̄〉} & L′[vk]← L′[vk]−v̄, return (Minted, sid, id).

Confidential Transfer: Upon (ConfTfr, sid, vkrcv, id1, id2, v̄
′
1, v̄
′
2) from C,

1. Assert ∃vk ∈ K[C] : 〈idi, v̄i〉 ∈ L′Conf[vk] for i ∈ {1, 2}.
2. Assert v̄1 + v̄2 = v̄′1 + v̄′2 and v̄i ≤ v̄max for i ∈ {1, 2}.
3. Forward (ConfTfr, sid, vkrcv, id1, id2) to S, and wait for (id′1, id

′
2).

4. For i ∈ {1, 2}:
- Set L′Conf[vk]← L′Conf[vk] \ {〈id1, v̄1〉, 〈id2, v̄2〉} ∪ {〈id′2, v̄′2〉}
- Set L′Conf[vkrcv]← L′Conf[vkrcv] ∪ {〈id′1, v̄′1〉}.

5. If vkrcv ∈ K[C′] s.t. C′ ∈ I, send (〈id′1, v̄′1〉) to S. Return (Change, sid, id′2).

Confidential Receive: Upon (ConfRcv, sid) from C,
- Return (Received, sid, (vk1, 〈id1, v̄1〉), ..., (vkl, 〈idl, v̄l〉)), containing coins sent to
C since the last call, where vki ∈ K[C] for i ∈ [l]

Redeem: Upon (ConfRdm, sid, id) from C,
1. Assert ∃vk ∈ K[C] : 〈id, v̄〉 ∈ L′Conf[vk].
2. Remove 〈id, v̄〉 from L′Conf[vk] and set L′[vk]← L′[vk] + v̄.
3. Send (ConfRdm, sid, 〈id, v̄〉, vk) to S.

GetLedger: Upon (GetLedger, sid), compute sanitized L′′Conf such that coin bal-
ances are removed from LConf. Return L, L′′Conf.

Fig. 9: Functionality FCLedger for Confidential Ledgers.

Proof (Proof of Theorem 1). We construct a simulator S that interacts with A,
hybrid functionalities FLedger, FNIZK and global functionalities FClock, FSig such
that FCLedger ◦ S ≈ ΠCLedger ◦ A for any PPT environment Z.

Concretely, to create an interaction indistinguishable from a protocol tran-
script in the composed setting, we construct a simulator S that generates valid
messages for global FLedger from simulated honest client activations and extracts

276

Eagle: Efficient Privacy Preserving Smart Contracts

inputs from dishonest messages and forwards these to ideal functionality FCLedger.
This ensures consistency of A’s view of FLedger with the state of FCLedger during
the simulated protocol execution.

On an honest GenAcct input, S generates a fresh signature verification
key for the honest client from FSig, which it stores. For any subsequent honest
input to FCLedger which is forwarded to S, the simulator can generate and post
verifying messages global functionality FLedger.

For honest InitLedger, Transfer inputs, generating verifying messages to
post on FLedger is trivial for S, as it generates and stores signature verification
keys for honest clients. On observing dishonest InitLedger, Transfer mes-
sages on FLedger and asserting that they are accepted by XCLedger, the simulator
can extract all dishonest inputs to forward to FCLedger, as these messages are
posted to FLedger in cleartext.

On an honest Mint input, S must generate and send a verifying Call mes-
sage to FLedger with the minted amount v̄ which activates the deployed XCLedger

contract instance to mint a fresh confidential token. Since S simulates protocol
messages from honest clients, it can generate a valid commitment for XCLedger

itself and store its opening (v̄, r). With the commitment opening, it obtains
a verifying NIZK via FRNIZK proving R(v̄, c; r) = {c = gv̄hr}. For a dishonest
mint message observed on FLedger by S, the simulator trivially extracts inputs
for FCLedger: both minted amount and minting account key in the Call mes-
sage sent to activate minting in the XCLedger contract instance are observable in
cleartext on FLedger.

On an honest ConfTransfer input, S generates valid coin commitments
and rangeproofs for a call activating ConfTrfr on the XCLedger contract in-
stance deployed to FLedger. For an honest sender and honest recipient, S needs
to generate output coin commitments that are consistent with the chosen input
coins for the simulated protocol. Here, S always possesses the openings of the
input coin commitments:

- Coins previously received from an honest sender were generated by S with ar-
bitrary openings previously generated by S: since S does not learn the trans-
fer amount for confidential transfer between honest users, it generates output
coins commitments with arbitrary balances, such that the product equality of
input and output commitments holds: gv̄1hr1gv̄2hr2 = gv̄′

1hr
′
1gv̄′

2hr
′
2 . How-

ever, since simulated setup functionality FSetup samples s←$Fp and outputs
h = gs, coins generated by S can later be equivocated to any value.

- Coins previously received from a dishonest sender feature openings sent di-
rectly to the receiving honest client simulated by S in the simulated protocol.

Thus, for an honest confidential transfer sending coins to another honest party, S
generates output coin commitments with arbitrary chosen coin balances, stores
their openings and obtains verifying rangeproofs via FRNIZK. For an honest sender
and dishonest recipient, S learns the transferred amount from FCLedger, and
can generate output coin commitments with correct balances and post these
to FLedger (with equivocation of the input coin commitments if necessary). Then,

277

Carsten Baum et al.

it forwards the coin openings as a simulated protocol message to the dishonest
recipient.

Finally for a dishonest sender and dishonest recipient S can extract open-
ings for all coins generated by the dishonest sender since they all have associ-
ated NIZK’s obtained by sending valid coin openings to the simulated FRNIZK

instance. Thus, the simulator can forward the transferred amounts to FCLedger.
For a dishonest sender and honest recipient, the simulated honest recipient ob-
tains transferred coin commitment opening as a protocol message, allowing S to
forward this input to FCLedger.

On an honest ConfReceive, the simulator must have previously provided
inputs to FCLedger for confidential transfers initiated by dishonest parties, as
previously described. On a dishonest confidential receive, S will have previously
sent the openings of the honestly sent coins to the dishonest recipient as a
protocol message, in addition to having generated valid coins and rangeproofs
observable on FLedger.

On an honest ConfRedeem, if the redeemed coin was originally sent by a
dishonest user, S must have also received its opening as a protocol message ,
as it simulates the role of the honest user in the protocol execution. Otherwise,
the redeemed coin must have been sent by an honest user, and can thus be
equivocated by S. Thus, with the equivocated coin opening, S can produce a
verifying NIZK for the honest redeem action in the simulated protocol view. On
a dishonest redeem, S observes the redeemed value publicly on FLedger, and can
thus forward this input to FCLedger.

As long as the majority of parties in Q are honest, verification responses from
FRNIZK are interpreted correctly by the call-back gate on XCLedger. Thus, the public
state of LConf on XCLedger observed in the simulated protocol view is consistent
with the confidential ledger maintained by FCLedger.

Finally, we note that the updates to ledger states induced by client activations
are applied at the beginning of each FClock round in both global FLedger and ideal
functionality FCLedger. ut

D.2 Protocol realizing FCContract

ΠCContract[ΠCLedger]

FNIZK FSetup
FLedger

(Global)

FSig

(Global)
FIdent

FTSig

(Global)

FClock

(Global)

In Fig. 12 and 13 we show how to realize our privacy preserving smart con-
tract functionality FCContract from Fig. 2 on any Turing complete ledger, with
the help of a smart contract with code of XLock of Fig. 14 to manage confiden-
tial tokens and XCollateral of Fig. 15 to manage underlying collateral. Note that
ΠCContract extends ΠCLedger, and similarly that contract XLock extends XCLedger.

278

Eagle: Efficient Privacy Preserving Smart Contracts

Theorem 2. ΠCContract[ΠCLedger] realizes FCContract[FCLedger] in the FClock, FIdent,
FLedger, FNIZK, FSetup, FSig, FTSig-hybrid model against any PPT-adversary cor-
rupting at most n− 1 of the n servers P statically and any minority of Q.

Proof. (Theorem 2) We construct a simulator S that interacts with A, hybrid
functionalities FIdent, FNIZK, and global functionalities FClock, FLedger, FSig, FTSig

such that FCLedger ◦ S ≈ ΠCLedger ◦ A for any PPT environment Z.

Upon an honest Init, the simulator S simulates the roles of the honest parties
in the simulated protocol execution, and jointly generates a threshold signature
verification key with the dishonest parties via FTSig. It simulates GenAcct and
InitLedger as in FCLedger. As S generates the signature verification key for each
honest server, it can call FSig and generate verifying messages for the simulated
honest server to post on global FLedger, observable by A. Since ΠCContract extends
ΠCLedger, S signs messages that initialize contracts XLock[XCLedger] and XCollateral,
and can authorize collateral deposits to the contract instance XCollateral on FLedger.

Upon an honest Enroll, the simulator is forwarded the input client coin
identifier and account verification key. S simulates the honest party by generating
output masks for which it samples the random openings. Then it determines valid
openings for the honest input coin:

- If the honest input coin was previously transferred by a dishonest party, sim-
ulator S can extract its opening from the NIZK range-proof generated via
simulated hybrid FRNIZK.

- If the honest input coin was previously transferred by an honest party, S must
have generated the openings itself (See simulator of FCLedger).

In either case, the simulator sends valid openings of both honest input coins and
mask commitments to hybrid FIdent.

Subsequently, the simulator can simulate a consistent protocol execution of
Verify input which only aborts if A provides inputs to simulated hybrid FIdent

that are inconsistent with the input coin and mask commitments sent to XLock

on simulated FLedgerVM. It simulates the batched sigma protocol to check input
consistency in the simulated execution of Verify input in ΠCContract. Inconsis-
tency of inputs must arise from cheating by A and results in an abort. As shown
in Section 3.1, the probability that the simulated protocol aborts due to incon-
sistent inputs whilst the ideal functionality continues is negligible in the group
order of the Pedersen commitment scheme.

Upon an honest Evaluate and its successful completion, the simulator will
jointly sign eval via FTSig with the dishonest parties.

Upon an honest Open, the simulator first observes what FCContract outputs,
and then will modify the state of the simulated FIdent instance, such that the
adversary in the simulated protocol observes the masked outputs consistent with
what FCContract outputs.

Upon an honest Withdraw, the simulator does nothing. At each FClock

round during the simulated protocol execution, if the adversary aborts, S will
forward an abort to FCContract. If a dishonest party cheats during the Open phase

279

Carsten Baum et al.

of the simulated protocol execution it will be identified by the simulated FIdent

instance, and its identity is forwarded to FCContract by S.
S simulates the honest parties of committee Q in the simulated protocol exe-

cution. As long as the majority of parties in Q are honest, verification responses
from FIdent are interpreted correctly by the call-back gate on XLock, permitting
the cheating parties in the simulated protocol execution to be correctly identified
during an abort. ut

E Confidential contract extensions

Multi-round confidential contracts. We now demonstrate how our default
model of confidential contracts, shown in previous sections, can be extended to a
multi-round model, where clients can provide fresh inputs and obtain continuous
outputs in a long-running confidential blockchain application.

This is facilitated by our model of confidential contracts, which does not
require server-client interaction beyond the Open phase, along with the reactive
interface of our MPC functionality (Appendix B.1), which permits the selective
opening of secrets and indefinite number of circuit evaluations on stored secret
values. This allows the set of MPC servers to keep an internal secret shared
state, off-chain. Furthermore, since we use outsourced MPC [37] and rely on a
reactive MPC scheme, any multi-round computation can simply be considered a
single reactive computation, with interleaved input and output. In fact, clients at
most hold a state dependent on their own input and expected outputs through
out execution of MPC. Thus whatever confidential state is needed, the MPC
servers will simply store this secretly, and collectively, throughout the multiple
computations of the private smart contracts with different clients giving input
and receiving output.

Consider one confidential contract execution and let, without loss of gen-
erality, the confidential state of a client be a tuple consisting of a numerical
value and balance: [sj] = ([yi], [w̄i]). Further, let the confidential contract
state be defined over all confidential client states st = ([s1], ..., [sm]), which is
stored from the previous contract evaluation round or given as the initial confi-
dential contract state. We define a confidential contract state transition that
consumes a fresh set of confidential contract inputs stin = ([sin

1], ..., [sin
m]) =

(([xin
1], [v̄in

1]), ..., ([xin
m], [v̄in

m])), such that the the current contract circuit g is
evaluated over both st and stin to obtain a new confidential state st′ and an
encoding of the updated circuit g′ to be evaluated in the next round.

(
[g′], [s′1], ..., [s′m]

)
← evalg

(
[sin

1], ..., [sin
m], [s1],, [sm]

)

Upon successful completion of a round evaluation, circuit g′ will be securely
opened, stored and evaluated by the servers in the following round. Each client
can retrieve its new state by executing Withdraw.

However, the set of clients wishing to give input to a confidential contract
evaluation might not always be the same. Thus we now argue a simple extension

280

Eagle: Efficient Privacy Preserving Smart Contracts

to our FCContract model to permit clients can selectively participate in the Enroll
phase of a round, or to skip a given round by ticking the FClock after calling a
Skip Round interface.

We propose an output budget for each client corresponding to the number of
unused, pre-processed output masks: in each round, a client will receive a masked
output which can be retrieved from the contract XLock on FLedger, regardless
whether it provides a new input and participates in Enroll: masked outputs for
a specific client are generated in each round until its pre-processed output masks
have been consumed. The evaluation of the confidential contract in each round
is still evaluated over all clients and their secret state st = ([s1], ..., [sm]), even
if only a subset have provided fresh inputs for a round. A client Skip implies
evaluating the contract circuit over default input values.

Each participation in an Enroll phase of a round permits a client to re-
store its depleted output budget, by generating masks in commitment form and
inputting their openings to the MPC instance, which are subsequently verified
for consistency in the Verify Input protocol phase. Each output mask can be
associated with a fee paid to the servers executing the MPC: once all output bud-
gets (and associated output masks) are consumed, the multi-round confidential
contract can terminate safely.

We observe, that this approach also implies that the expensive Init phase
only needs to be carried out once, assuming the set of MPC servers don’t change
and no server actively cheats (i.e. causes the execution of the abort phase to an
extend where a malicious server is identified at the smart contract level). Thus,
servers only need to setup threshold keys, smart contracts and collateral once,
but naturally need to reevaluate this setup in case a server is confirmed to cheat
and penalized.

Mitigation of token minting. Under full server corruption, it is possible
for the adversary to mint confidential balances beyond the supply of underlying
tokens wrapped by FCLedger. This is because in our default protocol ΠCContract

shown in Figure 12, any output coin distribution accompanied by a verifying
threshold signature (via FTSig) will be accepted by XLock; no coin sum-checks or
range-proofs enforce the preservation of confidential token supplies (See Equa-
tion 1). This is not publicly detectable, even if XLock implemented a product
consistency check over input and output coins with correlated commitment ran-
domness,

∏
j∈[m] cj =

∏
j∈[m] c

out
j , as hidden balances can exceed v̄max = 2l − 1,

and p additional units of each token type can be minted.

There are several ways in which this can be mitigated. If we accept client
interaction during the output phase, then the client can simply retrieve their
output commitments as part of the protocol and subsequently generate range-
proofs and a zero-sum proof over input and output coins and post this to the
smart contract XLock. The smart contract can then validate these proofs and
thus ensure that no tokens have been minted or destroyed as part of the pri-
vate smart contract execution. Unfortunately, this also allows a single malicious
client to abort the execution and goes against our goal of minimizing client in-
teraction. Instead we suggest an approach based on bit-decomposition of token

281

Carsten Baum et al.

amounts, along with the masks. Based on the decomposition, the zero-sum prop-
erty of input and output coin commitments (Equation 1) is ensured by a proof to
XLock, constructed by the servers without the need for computing cryptographic
primitives inside the MPC circuit.

More concretely, in the following we show an extension of ΠCContract that
prevents the minting of tokens under full server corruption, at the cost of a
constant-factor increase in communication complexity. This is based on the bit
decomposition approach as in Banerjee et al. [4], but greatly improves on the pro-
tocol efficiency by not requiring any NIZK’s and commitments to be generated
inside the MPC circuit.

Let l be the number of bits such that each coin balance does not exceed
v̄max ≤ 2l − 1. In the Enroll phase, clients each generate bit a commitment
pair (c0 = com(b0, s0), c1 = com(b1, s1)) for each bit position k ∈ [l], such that
bi = 0 ∧ bi−1 = 1 for random i←$ {0, 1}. Let π denote the bit permutation
sampled by the client for the bit position k ∈ [l], such that:

π(k) =

{
0 bk,0 = 0 ∧ bk,1 = 1

1 bk,0 = 1 ∧ bk,1 = 0

This permutation on the individual bits is later used to mask the bit-decomposed
output. Commitment pairs are posted to FLedger, together with an efficient sigma
proof that commitments are to bit values [35], incurring an additional commu-
nication complexity logarithmic in the size of the commitment group order.

During the Enroll phase, users input the opening to these bit commitment
pair in the permuted order:

([v̄], [r̄], {([b0,k], [s0,k], [b1,k], [s1,k])}k∈[l])

where cin = (v̄, r̄) is the opening to the confidential input coin, and each tuple
(b0,k, s0,k, b1,k, s1,k) is the opening to the k’th bit commitment pair with per-
muted bit ordering. We adopt a well-formedness check on bits input to FIdent

from [33]: servers assert for each k ∈ [l] bit position, that one of [bk,0], [bk,1]
holds the value 1 and the other holds the value 0. Concretely, for bit pair
([b0], [b1]), servers jointly sample and open α, β, γ, ←$F, and compute:

[t] = α · ([b0] · [b0]− [b0]) + β · ([b1] · [b1]− [b1]) + γ · ([b0] · [b1])

[t′] = ([b0] + [b1])

Upon securely opening t and t′, servers assert that t = 0 ∧ t′ = 1. Consistency
between all commitments and their openings input to FIdent are verified during
Verify input phase by the servers.

Importantly, the financial output of a client is output in bit-decomposed form,
where individual bits are permuted in the ordering as chosen by the clients.

(b′1, ..., b
′
l)

282

Eagle: Efficient Privacy Preserving Smart Contracts

Let (b1, ..., bl) denote the true bit-decomposition of a clients output balance.
Then b′k = bk if π(k) = 0 and is bit permuted otherwise, where π denotes the
permutation chosen by the client in the enroll phase.

For contract XLock to generate the client output coin from bit commitments
submitted during Enroll, it computes.

cout =
∏

k∈[l]

c2
k

k,i where i = b′k ∈ {0, 1}

Here, note that b′k is interpreted as selector for bit commitment pair (ck,0, ck,1) for
bit position k. As both b′k = i and the bit message of ck,i are permuted by π(k),
the hidden balance of cout is unmasked. Given the generation of output coins
from l bit balance representations, confidential output balances are bounded by
2l − 1 = v̄max.

It remains to prove consistency between input and output commitments to
XLock to ensure no token minting occurred. For this, servers compute the commit-
ment randomness for each client output coin and the difference in commitment
randomness between the input and output coins.

[sout] =
∑

k∈[l]

2k · [sk,i] where i = b′k ∈ {0, 1} [r̄diff] =
∑

j∈[m]

[r̄in,j]− [sout,j]

Servers locally compute hr̄
(i)
diff over the local share value of [r̄diff] and send it to

all other servers. Each server then reconstructs hr̄diff and verifies that sum of
confidential input and output balances must be equal and that no tokens are
minted (balance over-flow is mitigated by bounding output balances by 2l − 1).

∏

j∈[m]

cin,j = hr̄diff ·
∏

j∈[m]

cout,j

We outline the overhead of this approach to prevent malicious minting when

Table 4: Complexity of the per user overhead by using the stand-alone token minting
mitigation approach.

Exponentiation MPC mult.

User 6 · l 0

Server 8 · l + 1 42.5 · l + 15

Comm. #Gelem. O(n · l) O(n2 · l)

all servers are corrupted in Tab. 4, when assuming that Schnorr proofs are added
for each commitment to allow extraction (though not in UC) and when using
the work of Reistad and Toft [56] to do the needed bit decomposition in MPC.

283

Carsten Baum et al.

F Applications

In this section we briefly outline some interesting application which privacy
preserving smart contracts can help facilitate, along with our scheme can be
used to provide privacy preserving side-chains and how it can be extended to
allow for privacy preserving cross-chain smart contracts.

F.1 Privacy preserving applications

Several general applications for privacy preserving smart contracts have already
been suggested in previous works. We briefly outline some of these here.

Auctions Auctions of digital goods, or digital deeds linked to physical goods,
can be constructed simpler and more efficiently than with non-privacy preserving
smart contracts. Our solution could be used to implement first and second price
auctions securely and privately. Concretely confidential tokens reflecting the
maximum bid each user should be transferred to a privacy preserving smart
contract along with the good for sale. The smart contract then compares the
bids and transfers ownership of the good and handles the payment and refunding,
according to code of the smart contract being executed in MPC.

Identity management Decentralized Identity (DID) management is the idea
that, by using blockchains, users remain in charge over how their private at-
tributes (certified by an appropriate authority) are used online. Multiple schemes
for this has been suggested such as Sovrin [42] or CanDID [49]. However, these
schemes generally only consider leveraging the blockchain for storing user’s at-
tribute information. However, using privacy preserving smart contracts would
allow integration of user-certified attributes in both the web 2 and web 3 space.
Concretely the users could give their hidden certified attributes as input the
privacy preserving smart contract, which can validate them privately and use
the content of these attributes to affect its business logic. For example the at-
tributes can be used to decide the price of an NFT or to validate whether a user
is privilege enough to execute certain commands of the contract.
Mixer Our structure can naturally be extended to allow for a mixing func-
tionality. While several other technologies exist for this, we observe that doing
this in MPC allows several advantages that can prevent the mixing to be used
for money laundering. Concretely we could imagine that KYC (Know Your Cus-
tomer) information linked to the users’ blockchain address must be given and
privately validated against deny-lists, to prevent criminals using this service.
Even if deny-lists are not in use, linking to an actual identity could also be lever-
aged to allow a given user to only get privacy on the first x amount of tokens
they mix, and after that, information on the token amount will become public.

F.2 Anonymous side-chain

Our solution could also be used to construct privacy preserving side-chains.
When no server is trying to cheat, there is technically no need for the MPC

284

Eagle: Efficient Privacy Preserving Smart Contracts

servers to post anything related to the specific clients and their input to the
blockchain, after the evaluation phase. Thus the MPC servers can alone realize
a privacy preserving side-chain where they in MPC hold the opening information
to the commitments of hidden tokens. Thus users can request transfers to other
users in this side-chain, if the servers just use the MPC scheme to keep track
of how many tokens each user has. At certain intervals, each user can then just
decide to get paid back whatever they hold in the side-chain, by the execution
of the open and withdraw phases. This can be used to enhance the anonymity of
hidden transfers, since now only the MPC servers know the transaction graph,
and yet they do not know the transaction amounts. An interesting observation
with this case is also that the side-chain will be faster and cheaper to use than
the underlying layer 1 blockchain, since it will only be managed by the MPC
servers.

F.3 Cross-chain Exchange

In section we will discuss how to use the ideas of P2DEX [9] to make our scheme
capable of doing confidential computation and transactions across multiple layer
1 blockchains.

Decentralized exchanges. When it comes to decentralized exchange, multiple
approaches exist but generally fall into one of the following families:

P2P Two parties, each with tokens on a chain the other decide, agree on doing
an exchange with a certain exchange rate. This is for example the approach used
in hash-proofs [58]. This unfortunately requires multiple rounds of on-chain
interaction, fees, not to mention the issue of having parties find each other.
Exchange chain A chain contains wrapped tokens pegged to their native
counterparts through holding smart contracts on all the native chains. This
allows to reduce the cross-chain exchange problem to an on-chain problem, as-
suming the problem of inter-chain communication has been solved. With an
exchange chain in place there are multiple ways of facilitating exchanges, since
now the problem is reduced same-chain exchange: Order book: In the order
book approach all orders (e.g. limit orders) are written to the chain and then
matched and carried out by a smart contract. Unfortunately this inherently
front-running by miners. AMM: An AMM is basically a liquidity holding smart
contract, allowing exchange between two different tokens. The smart contract
then facilitates exchange between tokens of type A and B, with an exchange
rate that ensure that the product of the amount of tokens in the contract, re-
mains constant. Unfortunately AMMs are highly susceptible to front-running by
miners, since orders and exchange rates will be known to miners before they get
carried out.

While these approaches solve some issues related to decentralized exchange none
of these are unfortunately a silver bullet for users who desire both ease of use,
decentralization and front-running resistance [6].

285

Carsten Baum et al.

P2DEX. P2DEX [9] is a different system for achieving cross chain exchange,
although it can be considered a special case of the order book approach. It uses
a set of outsourced MPC servers [28,37] who threshold control burner addresses,
where the clients transfer the tokens they wish to exchange, to compute order
matching based on private input of clients. The servers then use the threshold
keys for these addresses to send money out of these burner addresses to the
intended recipients.

Adding cross-chain functionality. Like our work, P2DEX also use a set of
MPC servers to compute on client’s private input. But unlike P2DEX we don’t
use burner addresses, but instead a holding smart contract Lock, administered
by a single distributed signing key. But we note that the P2DEX approach will
also work with the smart contract based approach. Thus by simply having Lock
smart contracts instantiated on multiple blockchains, with different administra-
tion keys, these can form the same purpose as the burner addresses in P2DEX.
Concretely this can be realized by simply having each client provide a confi-
dential token commitment on each chain they expect to receive some tokens.
Note that such a commitment can be of 0 tokens. The MPC servers will then
validate all the confidential tokens given to Lock on each of the different chains,
through the verify input phase. Then one, unified privacy preserving smart con-
tract ConfContract will be executed, which will yield new commitments for each
of the relevant clients on each chain. The clients can then use withdraw in Lock on
each of the different chains to finish the computation and get their confidential
tokens on the relevant chains.

This approach could of course also be combined with the mixer idea above,
allowing for cross-chain mixers with selective levels of privacy depending on the
amounts mixed by a given user.

Doing cross-chain exchange on hidden tokens also has the advantage of allow-
ing parties, with very large amounts of tokens, to carry out an exchange in a slow
and continues manner, thus preventing sudden exchange fluctuations. In fact, our
system could enforce an upper bound on the amount of tokens to exchange in
one round, and automatically split up large orders so they get completed over
multiple rounds, instead of just one.

Security. The overall security of this approach follows from P2DEX, although
we will also argue that intuitively there is nothing non-trivial to simulation if we
adjust our ideal functionalities and protocol to follow this approach. Basically
where there is formal cryptography to be proven is in the integration between
the different ideal functionalities, in particular when ensuring consistency be-
tween the input to outsourced MPC and the commitments transferred to the
holding contract. However, using our scheme across multiple chains make no dif-
ference in this. The only modelling difference is simply that the ideal blockchain
functionalities can no be considered to “wrap” different instances of the same
functionality (thus reflecting multiple chains). Such a wrap inherently does not
affect secure insofar that it does not contain any logical loopholes.

286

Eagle: Efficient Privacy Preserving Smart Contracts

F.4 Future work

While we construct and prove UC-secure a scheme for decentralized privacy
preserving smart contracts, we believe there are multiple paths for future work
to explore. An immediate interesting path is to implement and benchmark the
system for some of the applications we have discussed. For example, a better
formalization of the cross-chain approach, along with an investigation of MPC
friendly algorithms for fair matching of exchange orders could allow the realiza-
tion of a highly secure and private decentralized exchange. For such applications
it also becomes important to investigate, the logic of how to use the collateral to
punish malicious parties in case they cheat. In particular such that no rational
party will end up with a skewed or perverse incentives. In relation to this, it
would be interesting to investigate how to integrate Pedersen commitments with
MPC in an efficient way, without requiring the MPC computation domain to be
the same as the Pedersen message space. This could have a great affect on the
efficiency if the MPC computation domain is significantly smaller than 256 bit.
Currently we require the sharing the opening information of commitments to
happen in a P2P manner, off-chain, when transferring hidden tokens. It would
be interesting to investigate how to implement hidden tokens in a way that does
not require client-to-client communication when doing transfers, while working
with the rest our protocol. In relation to this, other ways the overall usability
of our system could also be improved is constructing a protocol leveraging other
existing results to allow stateless clients. For example through some notion of
password authenticated distributed secret sharing [18]. In continuation of this,
investigating how to prevent the use of user-supplied masks for each round of
execution private smart contract computation, would also give a great impact
on the usability of our solution.

287

Carsten Baum et al.

Protocol ΠCLedger

ΠCLedger is run by clients C and committee Q. The protocol runs in the presence of
FLedger, FRNIZK, FSig instances. Initially, only accept inputs GenAcct and InitLedger.

GenAcct: Upon (GenAcct, sid), obtain fresh vk from FSig. Set key store to K ←
K ∪ {vk}, and return (NewAcct, sid, vk).

InitLedger: Upon (InitLedger, sid,LInit, vk), client C parses LInit as a map from a
set of signature keys to token balances G 7→ (T 7→ Z) and asserts vk ∈ K.
1. C initializes FLedger with Q and signs m = (Init, sid,LInit) via FSig with key vk.

Send (Post, sid,m, vk, σvk(m)) to FLedger.
2. C compiles XCLedger to initial contract state and circuit (γ, T). Sign m =

(Deploy, sid, γ, T, vk) via FSig with vk, and send (Post, sid,m, vk, σvk(m)) to
FLedger. Ignore further InitLedger inputs and accept all other inputs.

Transfer: Upon (Transfer, v̄, vkrcv, vk), obtain L from GetLedger procedure. As-
sert vk ∈ K and L[vk] ≥ v̄. Sign m = (Transfer, sid, v̄, vkrcv) via FSig with key vk
and send (Post, sid,m, vk, σvk(m)) to FLedger.

Mint: On (Mint, sid, v̄, vk), client C,
1. Assert vk ∈ K, obtain state L, Γ from FLedger and assert L[vk] ≥ v.
2. Sample r←$F, compute c ← com(v̄, r) and obtain string π from FRNIZK where
R(c, v̄; r) = {c = com(v̄, r)}.

3. Sign (Call, sid, (cn, f(Mint), (c, π), v̄)) via FSig with vk and post to FLedger.
4. Set wallet W[vk]←W[vk] ∪ {〈id = c, (v̄, r)〉} and return (Minted, sid, id).

ConfTransfer: On (ConfTrfr, sid, Crcv, vkrcv, {idi, v̄′i}i∈{1,2}), client C:
1. Assert ∃vksrc ∈ dom(W) : (idi, (v̄i, ri)) ∈ W[vksrc], v̄1 + v̄2 = v̄′1 + v̄′2, v̄′i ≤ v̄max.
2. For i ∈ {1, 2}, sample r′i ←$F such that

∑
i∈{1,2} r

′
i =

∑
i∈{1,2} ri and compute

c′i = com(v̄′i, r
′
i) and πi via FRNIZK that proves R(c′i; v̄

′
i, r
′
i) = {v̄′i ≤ v̄max}

3. Sign and post (Call, sid, (cn, f(ConfTransfer), x, 0t), vksrc) to FLedger, where
x = ({ci, c′i, πi}i∈{1,2}, vkrcv).

4. Send (ConfTrfr, sid, v̄′1, r
′
1, vksrc) to Crcv, which stores it.

5. Set W[vksrc]←W[vksrc] ∪ (id′2 = c′2, (v̄
′
2, r
′
2)) and return (Change, sid, id′2).

ConfReceive: On (ConfReceive, sid) client C:
1. For vk ∈ dom(W), retrieve {(v̄i, ri, vki)}i∈[l] received from clients since the last

ConfReceive input and LConf from FLedger.
2. For (v̄, r, vk) ∈ {(v̄, r, vki)}i∈[l], compute c = com(v̄, r) and assert c ∈ LConf[vk].

- If satisfied, add (id = c, (v̄, r)) to W[vk].
3. Returns (Received, (vk1, 〈id1, v̄1〉), ..., (vkl, 〈id′l, v̄′l〉)) for l′ received transfers.

Redeem: On (ConfRdm, sid, id) client C,
1. If ∃(vk, v̄, r) : (id, (v̄, r)) ∈ W[vk], where id = com(v̄, r).
2. Compute π via FRNIZK which proves R(c, v̄; r) = {c = com(v̄, r)}.
3. Sign and post (Call, sid, (cn, f(Redeem), (v̄, c, π), 0̄), vk) to FLedger.

GetLedger: Upon (GetLedger, sid), client C obtains (L, Γ) and contract id
cn from FLedger, reads (γ,w, T) ← Γ [cn], and parses γ as (LConf, m̄). C outputs
(Ledger, sid,L,LConf).

ExtCall: Upon (ExtCall, sid,F,m) received from FLedger, party Q ∈ Q forwards
m to hybrid instance F and waits. Upon response ret from F, party Q forwards
(CallBack, sid, ret) to FLedger.

Fig. 10: Protocol ΠCLedger UC-securely realizing FCLedger

288

Eagle: Efficient Privacy Preserving Smart Contracts

Program XCLedger

On input (ν | γ | w̄ | cn, fn, x, v̄ | vk), parses function selector fn and execute function
routine with input string x ∈ {0, 1}∗, parsed according to function descriptions below.
Further, parse contract state γ as LConf, where LConf : Gvrk → {Gcom, ...}. XCLedger is
parameterized with committee Q.

Mint: parse x as (c, π) where c ∈ G and π ∈ {0, 1}∗.
1. Send call to Q with msg for FRNIZK to verify that π proves R(v̄, c; r) = {c = gv̄hr}.
2. Set LConf[vk]← LConf[vk] ∪ {c}, w̄← w̄ + v̄ and L[vk]← L[vk]− v̄.
3. Output updated (L, γ′ = LConf, w̄).

ConfTransfer: parse x as (c1, c2, c
′
1, c
′
2, π1, π2, vkrcv) where ci, c

′
i ∈ G, πi ∈ {0, 1}∗

for i ∈ {1, 2} and vkrcv ∈ G.
1. Assert {c1, c2} ∈ LConf[vk] and that c1 · c2 = c′1 · c′2 holds.
2. Send call to Q with msg for FRNIZK to verify ∀i ∈ {1, 2}: πi proves R(c′i; v̄

′
i, r
′
i) =

{v̄′i ≤ v̄max ∧ c′i = gv̄′
ihr

′
i}.

3. Set LConf[vk]← LConf[vk]\{c1, c2} ∪ {c′2} and LConf[vkrcv]← LConf[vkrcv] ∪ {c′1}.
4. Output updated (L, γ′ = LConf, w̄).

Redeem: parse x as (v̄, c, π), c ∈ G and π ∈ {0, 1}∗.
1. Assert c ∈ LConf[vk] and w̄ ≥ v̄.
2. Send call to Q with msg for FRNIZK to verify π proves R(v̄, c; r) = {c = gv̄hr}.
3. Set LConf[vk]← LConf[vk]\{c}, w̄← w̄ − v̄.
4. Output updated (L, γ′ = LConf, w̄).

Fig. 11: The smart contract code XCLedger for confidential tokens.

289

Carsten Baum et al.

I/II: Protocol ΠCContract, extends ΠCLedger

All clients and servers are registered with FClock.

Init: On (Init, sid, g) server P ∈ P,
1. Runs GenAcct in ΠCLedger to generate signature verification key vk, sends to P.
2. Runs InitLedger in ΠCLedger to initialize FLedger; here, P ∈ P obtains fresh vk.
3. Jointly samples key vkTSig via FTSig with P.
4. Deploys XLock[XCLedger] and XCollateral to FLedger.

a. Obtains contract instance id’s cnLock = cnCLedger and cnColl from FLedger.
b. Signs and sends (Call, sid, (cnLock, f(Init), (vkTSig), 0|T|), vk) to FLedger.
c. Sends (Call, sid, (cnColl, f(Deposit), (vkTSig), v̄Coll), vk) to FLedger.

5. Initializes FIdent, asserts circuit depth of depth(g) ≤ dT and stores it.
6. Updates FClock.

Enroll: Upon input (Enroll, sid, x, id, vk), client C ∈ C:
1. Asserts ∃(id, (v̄, r̄)) ∈ W[vk] and cnLock, cnColl are in enroll/coll.
2. Generate output masks:

a. Samples and stores ŷ, ŵ = (ŵ1, ..., ŵ|T|), r̂←$F.
b. Computes and stores ĉ← com(ŵ, ŝ).

3. Sends client input and output masks (x, (v̄, r̄), (ŵ, ŝ)) to FIdent.
4. Sends (Call, sid, (cnLock, f(Enroll), (c = com(v̄, r̄), ĉ), 0̄), vk) to FLedger.
5. Removes (id, (v̄, r̄)) from W[vk] and updates FClock.

Verify input: Upon input (Execute, sid), if FClock has progressed since last activa-
tion and cnLock, cnColl are in enrolled and coll respectively, server Pi ∈ P performs:
1. Pi obtains client input coins and masks {(c1, ĉ1), ..., (cm, ĉm)} from FLedger.
2. For verification of client inputs {(v̄j , r̄j , cj,)}j∈[m], Pi performs:

a. Servers interact with FIdent and call following interfaces:
- Evaluate: [ā], [b̄], [γ]← rand()a

- Open γ ← [γ].

- Get Shares: ā(i) = (ā
(i)
1 , ..., ā

(i)

|T|), b̄
(i), {v̄(i)

j = (v̄
(i)
j,1, ..., v̄

(i)

j,|T|), r̄
(i)
j }j∈[m]

a. Local computation of the following and sends resulting shares to all P:
- c̄

(i)
a,b ← com(ā(i), b̄(i)), v̄

(i)′
t ← ā

(i)
t +

∑
j∈[m] v̄

(i)
j,t (γ

(i))j for t ∈ [|T|]
- r̄(i)′ ← b̄(i) +

∑
j∈[m] r̄

(i)
j (γ(i))j

b. Each Pi reconstructs (v̄′ = v̄′1, ..., v̄
′
|T|, r̄

′), from shares and

- Asserts:
∏
i∈[n] c̄

(i)
a,b ·

∏
j∈[m](cj,in)γ

j

= gv̄′
hr̄

′

3. Servers repeats for the batch verification of client masks {(ŵj , ŝj , ĉj)}j∈[m].
4. Server Pi updates FClock.

a e.g. XOR circuit evaluated on random inputs.

Fig. 12: Part 1 - Protocol ΠCContract UC-securely realizing FCContract.

290

Eagle: Efficient Privacy Preserving Smart Contracts

II/II: Protocol ΠCContract, extends ΠCLedger

Evaluate: After verify input and if FClock has progressed, cnLock is in enrolled, each
server Pi ∈ P performs:
1. It interacts with following interfaces of FIdent.

a. Runs Evaluate on circuit g with secret client inputs {(xj , v̄j)}j∈[m].
b. Runs Evaluate to apply masks over output gate values of circuit g:

- For each j ∈ [m]: ([y′j], [w̄′j])← ([yj], [w̄j]) + ([ŷj], [ŵj])
c. Runs Share for obtain shares of {([y′j], [w̄′j])}j∈[m] from FIdent.

2. Jointly signs σvkTSig (eval) with P via FTSig: if FTSig aborts, runs abort.
3. Sends (Call, sid, (cnLock, f(Lock), (σvkTSig (eval)), 0̄), vk) to FLedger, updates FClock.

Open: Upon running evaluate and FClock has progressed, each server Pi ∈ P:
1. Runs Optimistic Reveal in FIdent for masked outputs mout = {(y′j , w̄′j)}j∈[m].
2. Jointly signs sig = σvkTSig (mout) via FTSig: if abort is returned, run abort.
3. Sends (Call, sid, (cnLock, f(Settle), (mout, sig), 0̄), vk) to FLedger, updates FClock.

Withdraw: Upon (Withdraw, sid), each client Cj ∈ C performs:
1. Retrieves all masked outputs {(y′j,1, w̄′j,1), ..., (y′j,l, w̄

′
j,l)} added to cnLock on FLedger

since last withdraw activation.
2. For each retrieved masked output, reads corresponding mask values (ŷj , ŵj , ŝj)

stored locally and computes yj = y′j − ŷj , w̄j ← (w̄′j − ŵj).
- Samples id′j and set W[vkj]←W[vkj] ∪ {(id′j , (w̄j ,−ŝj))}.

3. Returns (yj,1, 〈id′j,1, w̄j,1〉), ..., (yj,l, 〈id′j,l, w̄j,l〉).

Abort: Upon receiving (Abort, sid), each Pi ∈ P ticks FClock:
1. If cnLock is in state enroll or enrolled,

signs and sends (Call, sid, (cnLock, f(Abort), {0, 0̄}j∈[m]), 0̄), vk) to FLedger.
2. Else if cnLock is in state lock, run Reveal and Allow Verify with FIdent.

- If FIdent returns cheating servers J
signs and sends (Call, sid, (cnLock, f(Abort), {0, 0̄}j∈[m]), 0̄), vk) to FLedger.

- Else server Pi obtains {y(i)
j , w̄

(i)
j }j∈[m] from Reveal, signs and

sends (Call, sid, (cnLock, f(Abort), {y(i)
j , w̄

(i)
j }j∈[m]), 0̄), vk) to FLedger

3. Updates FClock and terminates.

Fig. 13: Part 2 - Protocol ΠCContract UC-securely realizing FCContract.

291

Carsten Baum et al.

Program XLock, extends XCLedger

On input (ν | γ | w̄ | cn, fn, x, v̄, vk), XLock parses γ as (LConf,LLock,M,J , st), where
LLock is a ledger of locked coins, M is a map of account verification keys to coin
commitment masks, J is set of cheating servers and st ∈ {enroll, enrolled, lock}
captures the phase the confidential coin lock is currently in.

Init lock: parse x as vkTSig, set state to enroll.

Enroll: parse x as (c, ĉ) ∈ Gcom ×Gcom.
1. Assert state is enroll and c ∈ LConf[vk]. Set LLock[vk]← LLock[vk]∪{c}, LConf[vk]←
LConf[vk]\ {c} and M[vk]← ĉ.

2. If round ν has progressed since last state transition to enroll,
set st to enrolled. Return updated (L, γ′ = (LConf,LLock,M, J , st), w̄).

Evaluated: parse x as σvkTSig (eval) ∈ {0, 1}∗.
1. Assert state st is enrolled, verify σvkTSig (eval) via FTSig.
2. If no abort is returned and two FClock rounds (observed via ν) have progressed

since last state transition to enrolled: set st to lock.
3. Return updated (L, γ′ = (LConf,LLock,M, J , st), w̄).

Settle: parse x as σvkLock ({yj , v̄j}j∈[m]).
1. Assert state is lock, verify σvkLock ({yj , v̄j}j∈[m]) via FTSig.
2. If no abort is returned and FClock round has progressed, run payout({v̄j}j∈[m]).

Abort: parse x as {y(i)
j , v̄

(i)
j }j∈[m].

1. If state is enroll or enrolled, run reimburse.
2. Else if state is lock,

- Send (Test-Reveal, sid) and (Verify, sid, {y(i)
j , v̄

(i)
j }j∈[m]) to FIdent.

- If no abort is returned and FClock round has progressed, reconstruct {v̄j}j∈[m]

when all shares received from P and run payout({v̄j}j∈[m]).
- Else if abort is returned from FIdent or shares are missing, record cheating servers
J and run reimburse(J).

payout({v̄j}j∈[m]): for each Cj ’s output v̄j ∈ {v̄j}j∈[m],
1. LConf[vkj] ← LConf[vkj] ∪ {cj · ĉ−1

j }, where cj = gv̄jh0, ĉj = M[vkj]. LLock ← ∅,
M← ∅. Return updated (L, γ′ = (LConf,LLock,M, J , enroll), w̄).

reimburse(J): for vk ∈ dom(LLock),
1. Set LConf[vk]← LConf[vk] ∪ LLock[vk].
2. Set LLock ← ∅,M← ∅. Return updated (L, γ′ = (LConf,LLock,M, J , enroll), w̄).

Fig. 14: The smart contract code XLock for extended confidential token function-
ality.

292

Eagle: Efficient Privacy Preserving Smart Contracts

Program XCollateral

Parameterized by signature verification keys {vk1, ..., vkn} associated with servers
P = {P1, ..., Pn}, contract identifier cnLock and collateral threshold v̄coll.

Deposit collateral:
1. Assert local state is deposit, cnLock state is enroll, and v̄in ≥ v̄coll.
2. If collateral received by accounts associated with vk for i ∈ [n], set state to coll.

Round activation: If FClock round has progressed since update to coll.
1. If cnLock is in deposit, return collateral and set state to deposit.
2. Else if cnLock is in abort with cheating J ⊆ P, distribute J ’s collateral to C′.

Return collateral of honest servers. Set state to deposit.

Fig. 15: The smart contract code XCollateral.

293

Fuzzy Order Matching: Differentially Private
Market Mechanisms with MPC

Contribution
• Co-author.

Remarks
Preliminary results from this work have been presented at the 3rd Workshop on Decentralized
Finance at Financial Cryptography and Data Security 2023. The manuscript in this thesis contains
the main results; implementation and performance benchmarks in MPC are work-in-progress.

294

Fuzzy Order Matching: Differentially Private
Market Mechanisms with MPC
James Hsin-yu Chiang #

Technical University of Denmark, Denmark

Bernardo David #

IT University of Copenhagen, Denmark

Mariana Gama #

imec-COSIC, KU Leuven, Belgium

Christian Janos Lebeda #

IT University of Copenhagen, Denmark
Basic Algorithms Research Copenhagen, Denmark

Abstract
We present the first differentially private market mechanisms that formally mitigate information
leakage from all trading activity of a user, and instantiate it with an MPC engine, with the goal of
mitigating front-running and protecting the privacy of long-running strategies in both traditional
dark pools and decentralized finance.

Towards this goal, we first extend the notion of differential privacy to the setting of n clients
and a trusted curator; in each round, clients provide private inputs during the input phase, upon
which the trusted curator evaluates a function over submitted inputs. Then, the trusted curator
outputs private outputs to each client. We propose round-differential privacy to protect the honest
client transcript from leaking to the output of corrupted clients; here, protecting client inputs as not
sufficient, as round-differential privacy must also protect against correlations between honest and
adversarial outputs; in fact, this leakage between outputs is common in economic functionalities
which allocate resources across participants. To the best of our knowledge, this setting was not
previously considered by the differential privacy community and may be of independent interest.

We show that traditional market mechanisms in the dark-pool setting do not satisfy round-
differential privacy and thus cannot formally guarantee pre- and post-trade privacy; a matched
order by a corrupted client always reveals the presence of an opposing order, potentially that of the
honest client. In response, we propose novel, round-differentially private market mechanisms which
guarantee both pre- and post-trade privacy for the trader by satisfying round-differential privacy in
the trusted curator model. To achieve round-differential privacy, fuzzy order matching is performed;
this ensures privacy for the honest party, but also requires a privacy-preserving liquidity provider
mechanism to compensate for the potential liquidity mismatch, as orders are no longer guaranteed to
execute pairwise. We propose application-specific secure multi-party computation (MPC) protocols
to realize our proposed market mechanisms and implement these in the Scale-Mamba Framework
using Shamir Secret Sharing based MPC. We demonstrate practical trading throughput with minimal
overhead induced by differential privacy sub-routines.

Keywords and phrases Differential Privacy, Secure Multi-party Computation, Dark Pools, Decent-
ralized Finance

1 Introduction

The term front-running originates from the notion of “getting in front” of pending trades.
A party anticipating a large buy order may purchase the same asset first, as the pending
large buy order will likely drive up the price of the asset; the front-running party can then
sell the asset at a higher price following the execution of the large buy order. Front-running
occurs whenever submitted trade orders that have yet to be executed are observable by the
front-running adversary. In traditional finance, the presence of pending orders may be public

295

or inferred from market order books. In decentralized finance, pending transactions are
publicly gossiped across a peer-to-peer network. In both settings, front-running is prevalent.

In traditional finance, Dark Pool venues [23] promise the private execution of trades.
Here, clients submit private orders to the venue operator, who then computes the execution
of trades without leaking pending orders submitted by clients; pre-trade privacy ensures
that pending orders remain private, whilst post-trade privacy protects the privacy of
the trade execution. Yet, we observe that post-trade privacy guarantees are impossible in
classical order-matching algorithms; a trade execution always implies a counter-party, thus
revealing the presence of another trade in the opposing direction (Lemmas 4 and 6). In
venues with low trade volume, such inferences may lead to practical attacks.

This motivates our investigation of market mechanisms with formal, differential privacy
guarantees for the entire transcript of interactions between trader and dark pool venue. We
propose the following main contributions.

(1) Round-differential privacy. We formalize a novel notion of round-differential privacy
(Def. 7) applicable to the trusted curator model (Sec. 3); here, a set of clients interact with
a trusted curator over private and secure communication channels. Interaction between n

clients and curator occurs round-wise, where the adversary can corrupt up to n− 1 clients,
and thereby inject inputs and observe outputs received by corrupted clients from the curator;
the trusted curator evaluates a mechanism M(x) over all privately submitted client inputs
(x = (x1, ..., xn)) and returns private outputs to each client (y = (y1, ..., yn)) resulting from
the evaluation of M. This stands in contrast to the classic setting of differential privacy
where an analyst submits a query evaluated on a private database and the query result is not
protected. Thus, our notion of round-differential privacy consists of two related properties.

Input-differential privacy (Def. 3) ensures that the privacy of submitted inputs in each
interaction round with the trusted curator is protected. This implies that the sensitivity of
the corrupted output distribution to any change in the honest input is bounded by chosen
security parameters.

Correlated-output-differential privacy (Def. 7) protects honest outputs from being inferred
by corrupted, correlated outputs; in many economic applications, all outputs are correlated,
as they may represent an allocation of assets or resources; if the total aggregate funds output
is known, an adversary corrupting n− 1 clients can trivially infer the funds privately output
to the single honest client by observing its own outputs.

Round-differential privacy permits trader to execute long-running strategies in a privacy-
preserving manner. A common strategy is the Time-weighted Average Price (TWAP)1 trade,
where a larger trade volume is scheduled as smaller trades over time to minimize price
impact. If the periodic execution of such smaller trades is detected early, the remaining trade
schedule can be anticipated and front-run. Such leakage is prevented with round-differential
privacy; each submitted trade and subsequent trade execution remains (differentially) private.

(2) Fuzzy order matching. We propose round-differentially private market mechanisms in
the trusted curator model which improve on traditional dark pools designs by enabling the
fair execution of long-running trade strategies. Below, we provide a high-level description
applicable to both of our proposed fair market mechanisms DP-volume-match (Sections 4.1
and 5.1) and DP-double-auction (Sections 4.2 and 5.2);

Input phase: Traders privately submit limit orders2 to the venue operator. Our auction

1 https://en.wikipedia.org/wiki/Time-weighted_average_price
2 In the DeFi setting, confidential ledger deposits accompany each trade order as in [4].

296

mechanism requires a market making liquidity provider to compensate for the noise added to
trade matching.

Auction phase: A deterministic, optimal order matching is performed; such a matching
will leak the inclusion or exclusion of a single trade request in the outputs and is not
differentially private. The actual “trade”, “no-trade” outcome for each order is determined
by sampling a Bernoulli distribution biased towards the deterministically computed, optimal
matching; we call this fuzzy order matching. However, since trades are filled or not filled
based on independently sampling trade outcomes, there is no guarantee that each executed
trade is matched with an equivalent volume in opposing direction; therefore, a liquidity
deficit may occur. Here, market makers make up for liquidity deficits. To prevent market
makers from learning about the traded volume of a single user (output privacy) from their
updated liquidity balances, a random, yet bounded amount of market maker liquidity is
frozen to obtain (ε, δ)-correlated-output differential privacy3.

Output phase: Traders observe whether or not their order was fulfilled and market
makers observe a noisy update to the liquidity balance. The trade output distribution is
ε-indistinguishable with respect to the inclusion or exclusion of a single submitted order. The
liquidity balance distribution is (ε, δ)-indistinguishable with respect to a single trade outcome.

(3) Practical fuzzy order matching in MPC. We propose custom MPC protocols for efficient
execution of DP-volume-match (Sec. 5.1) and DP-double-auction (Sec. 5.2), and implement
these in the Scale-Mamba framework [3] with Shamir Secret Sharing based MPC; history has
shown that dark pool venue operators frequently exploit confidential order flow information
[18, 19, 17], thus motivating us to demonstrate practical feasibility of distributing round-
differential private market mechanisms across MPC committees in lieu of a trusted operator.

Finally, we emphasize that our fair market mechanism designs are applicable to both
traditional dark pool venue operators and decentralized finance. Our fair markets can be
instantiated in privacy-preserving smart contract frameworks realized by a MPC committee
and privacy-preserving ledger, most recently demonstrated by Baum et al. in [4] with
minimal complexity overhead; here, trade execution is settled in private on a public ledger.

1.1 Related Work
Differentially private markets. Chitra et al. [10] propose a Uniform Random Execution
algorithm which permutes and splits submitted trades in a randomized manner. We note
that [10] does not offer output or post-trade privacy; all executed trades are seen by the
adversary. Thus, this approach does not contribute to our goal of protecting the privacy of
long-running trader strategies performed over multiple rounds.

Dark pool markets. Recent proposals [6, 7, 11, 12] have convincingly demonstrated that the
role distribution of the dark pool operator can be instantiated in practice with multi-party
computation (MPC) to prevent abuse of private order information. Still, these works also
do not consider the entirety of information flow leaking from all honest trader activity; (1)
adversarial outputs reveal information about privately submitted honest inputs (Lemma 4)
and (2) outputs are correlated, such that an adversary also obtains information about honest
outputs (Lemma 6). In the decentralized finance setting, homomorphic encryption has been

3 We note that the frozen liquidity is returned to the market makers following n auction periods, where n
is sufficiently large to prevent front-running in practice.

297

proposed to aggregate orders obliviously [22]; however, since all inputs are encrypted to the
same public key, any subsequent decryption to reveal the aggregated order will leak privacy
of any single trade, if all but one client has been corrupted.

Differential privacy and MPC. Whilst differentially private mechanisms have been implemen-
ted in MPC, these works do not consider privacy over the full, individual transcript in the
trusted curator model (§3), where clients submit private inputs and receive private outputs.
Instead, the MPC output is a single query result computed over inputs from a private
database. Here, the returned query is not considered private. The main use-case is generating
differentially private machine learning models over private data with MPC [20, 1, 24, 21].

2 Preliminaries

Differential privacy. Differential privacy was introduced in [13] as a technique for quantifying
the privacy guarantees of a mechanism. A central concept is the definition of neighbouring
datasets which are denoted x ∼ x′. Intuitively, this definition is used to capture the
information we want to protect. Typically x and x′ are identical except for the data about
one individual. We formally define neighbouring inputs in our setting of the trusted curator
in Section 3. Differential privacy is a restriction on how much the output distribution of a
mechanism can change between any neighbouring input datasets.

▶ Definition 1 ((ε, δ)-DP). A randomized mechanism M satisfies (ε, δ)-differential privacy
if for all pairs of neighbouring datasets x ∼ x′ and all sets of outputs S we have:

Pr[M(x) ∈ S] ≤ exp(ε) · Pr[M(x′) ∈ S] + δ

Multi-party computation. Multi-party computation is a cryptographic technique that allows
a set of n mistrustful parties to calculate a function of their own private inputs without
revealing them. We consider an MPC protocol based on Shamir secret sharing, where a
secret value s is shared by giving each party i the evaluation f(i) of a polynomial f of degree
t and coefficients in Fp such that f(0) = s. The protocol assumes a honest majority, i.e.,
t < n/2, and it is actively secure with a abort, meaning that a malicious party deviating
from the protocol is caught with overwhelming probability and the honest parties abort
the protocol when this happens. In this work, we use Scale-Mamba [3], a framework that
implements various MPC protocols in the preprocessing model. In this methodology, the
computation has a preprocessing phase where input independent data is generated. This
data is then used in the input dependent online phase, where the desired computation over
private inputs is performed.

3 Differential privacy in the trusted curator model

3.1 The trusted curator
We first define our proposed notions of privacy in the “trusted curator” model, which can
then seamlessly be applied to the setting of secure multi-party computation. The trusted
curator C interacts with parties P1, ..., Pn, which are assumed to have established private,
authenticated communication links with the trusted curator. Interaction proceeds in rounds,
each consisting of the following phases.

1. Input phase All parties send their individual inputs to the trusted curator C, which
obtains the input set x1, ..., xn from parties P1, ..., Pn respectively.

298

2. Evaluation phase Upon receiving all inputs, the trusted curator locally computes a
known algorithm M over inputs received in the input phase: namely, y←M(x) where
x = (x1, ..., xn) and y = (y1, ..., yn). Further, curator C is assumed to have access to to
randomness to evaluate randomized algorithms.

3. Output phase The trusted curator privately sends each output element yi in y to party
Pi, and enters the input phase again.

Client corruption. The adversary A can statically corrupt up to n− 1 clients, upon which it
decides what inputs the corrupted clients submits in each interaction round. The adversary
observes the output for each corrupted client returned from the trusted curator, but cannot
corrupt the curator itself. We denote the adversarial output view from a round evaluating
mechanism M on round inputs x as MA(x).

Public outputs. We permit the trusted curator to also return public outputs; these are
considered part of the adversarial output view MA(x).

Privacy against the network adversary. We assume that the physical presence of a party in
each round is observable by the network adversary. Since obfuscating the active participation
across the network may be challenging, we assume parties to be physically online and to
participate in each round, but permit them to submit dummy inputs, allowing for passive
participation and obfuscating the logical presence of a party in a given round. Without
dummy inputs, the physical presence of a party will always leak the presence of a logical
input contributed by a party to the computation by the trusted curator; in the setting of
privacy-preserving markets, for example, the network adversary would learn that a party is
submitting some trade in a given round.

Further, we assume that parties can anonymously submit inputs to the trusted curator via
techniques such as mixnets [9, 8], thereby hiding their identity from the network adversary.
In practice, parties can delegate the physical interaction with the trusted curator model in
each round to trusted servers, and only need to come online when they wish to forward a
valid, non-dummy input.

3.2 Differential privacy for inputs
In the standard setting of differential privacy, an analyst performs a query on a private
database and the result of the query is released to the analyst; a differentially private query
bounds how much the analyst output distribution changes, upon editing an entry in the
private database.

We adapt the classic notion of differential privacy to the setting of the trusted curator.
Instead of protecting private database entries, we first wish to protect inputs submitted by
honest clients. Thus, the following definition of neighbouring input vectors follows directly
from the standard definition of neighbouring databases under the add/remove relation in the
classic setting.

▶ Definition 2 (neighboring input vectors). Let input vectors x = (x1, ..., xn) and x′ =
(x′

1, ..., x′
n) of equal length be such that the following holds true;

∃i ∈ [n] : xj = x′
j for all j ̸= i

For a randomized algorithm M evaluated on input vector x, let MA(x) = {Yj}j∈A denote
output distributions observed by corrupted clients. Then, the following definition follows
directly from the standard notion [14] of differential privacy where we consider the input

299

vector as the private database on which the query M is performed and the adversary obtains
the output view MA(x) of all corrupted parties.

▶ Definition 3 ((ε, δ)-input-DP). For an evaluation of (ε, δ)-input differentially private
algorithm M in the trusted curator model over neighboring private input vectors x ∼ x′, the
following must hold for any adversarially observable output event SA.

Pr[MA(x) ∈ SA] ≤ exp(ε) · Pr[MA(x′) ∈ SA] + δ

As we will see in Section 3.3, input-differential privacy is necessary, but insufficient
to protect both in- and output of an honest client in the trusted curator round. Whilst
Definition 3 protects the privacy of a user input, it does not not guarantee that the honest
output remains private. This motivates correlated-output differential privacy, introduced
in subsequent section Section 3.3. Again, the standard setting of differential privacy does
not consider the privacy of the query output, as there is only a single query result which is
released publicly or to the adversarial analyst.

▶ Lemma 4. Dark Pools violate (ε, δ)-input differential privacy.

Proof. (Sketch) A dark pool venue operator can be idealized as a trusted curator which
privately receives trade orders from clients. Upon evaluating the market algorithm in private,
it privately outputs trade executions to clients. Assume the corrupted client submitting a
sell order observes that its trade order is executed. Any change in the honest counter-party’s
privately submitted buy order may cancel the matching of this order pair, observable to
adversary with probability 1, thereby violating Definition 3. ◀

Adversarially chosen inputs Note that input differential privacy in Definition 3 naturally
protects against chosen input attacks; informally, such an attack permits the adversary to
change its inputs and observe induced effects on its output distributions to learn something
about honest inputs. However, note that (ε, δ)-input-DP applies equal privacy guarantees
to any input submitted to the trusted curator. Thus, for an appropriately chosen privacy
parameters, a chosen input attack on (ε, δ)-input-DP mechanism will not reveal meaningful
information to the adversary, as its chosen input perturbation will not induce a sufficiently
observable effect on its output distributions.

3.3 Differential privacy for correlated outputs
In contrast to prior work, where a single output is returned from a differentially-private
mechanism, we must protect the privacy of outputs that are returned from trusted curator
model to individual clients over private channels. Even if input-differential privacy protects
honest inputs, the individual outputs returned to clients may still be strongly correlated,
potentially allowing honest outputs to be inferred from corrupted ones.

▶ Definition 5 ((ε, δ)-correlated-output-DP). For an evaluation of (ε, δ)-correlated output
differentially private algorithm M in the trusted curator model over fixed input vector x, the
following must hold for any adversarial output event SA and any honest output event Sh.

Pr[MA(x) ∈ SA |Mh(x) ∈ Sh] ≤ exp(ε) · Pr[MA(x) ∈ SA |Mh(x) ̸∈ Sh] + δ

Definition 5 is interpreted as follows; for any set of inputs and two different honest output
events (Mi(x) ∈ Si vs. Mi(x) ̸∈ Si), the output distribution of the adversary remains
(ε, δ)-similar. In other words, any change in the honest output can only have a bounded
effect on the adversarially observable output.

300

We highlight an immediate consequence of Definition 5 for economic applications; a
correlated-output-DP mechanism cannot distribute funds to all clients where the sum of
output funds is known or public; an adversary corrupting n− 1 clients can trivially infer the
funds privately output to the single honest client by just observing its own outputs. Thus;

▶ Lemma 6. Economic mechanisms evaluated in the trusted curator model which allocate a
fixed supply of “assets” over client outputs violate (ε, δ)-correlated output differential privacy.

Overcoming this is not straight-forwards, as a financial application cannot be allowed to
arbitrarily mint or create funds out of thin air. We overcome these constraints by performing
fuzzy matching of orders and temporarily freezing funds to achieve correlated-output differ-
ential privacy in DP-volume-match (Section 4.1) and DP-double-auction (Section 4.2).

Applications with correlated outputs. We argue there exist many applications in the trusted
curator setting which require correlated outputs; most related to this work are economic
applications which govern the private allocation of finite resources, which include auctions,
markets, financial derivatives and other economic contracts.

3.4 Single-round & Multi-round privacy
Since (ε, δ)-input-DP and (ε, δ)-correlated-output-DP protect different parts of the honest
round transcript, we must formally consider two separate privacy budgets which are consumed
with each interaction round in the trusted curator model. We define differential privacy for
each interaction round with the trusted curator as follows.

▶ Definition 7 (Round-DP). The evaluation of a mechanism that satisfies (εin, δin)-input-DP
and (εout, δout)-correlated-output-DP is (εin, δin)-(εout, δout)-round differentially private.

Definition 7 implies that the privacy of input and outputs may be parameterized independ-
ently. Indeed, this permits the trade-off between utility and privacy for different parts of the
honest transcript to be decided separately; the input to an evaluation round may require a
higher degree of privacy than the returned output or vice versa.

Multi-round privacy In standard differential privacy protecting a private database, m

instances of (ε, δ)-differentially private queries taken together are (ε1 + ... + εm, δ1 + ... + δm)
differentially private. However, in the trusted curator model, the curator accepts fresh inputs
in each interaction round, allowing us to consider each round input as disjoint, private data.
We define multi-round-differential privacy as the sensitivity of the adversarial output view
over m rounds to a change in a single input of a single round r ∈ [m].

▶ Definition 8 (m-round-DP). Let the adversarial output view over m interaction rounds
between n-clients and the trusted curator be given as MA

1 (x1), ... , MA
m(xm). Then, we define

this m-round transcript as;

MA
mul(x̄) = (MA

1 (x1), ... , MA
m(xm)) where x̄ = (x1, ... , xm)

Multi-round inputs x̄ and x̄′ are neighboring, if there exists unique round j ∈ [m], such
that xj ∈ x̄ and x′

j ∈ x̄′ are neighbouring (Definition 2) and xk = x′
k for all other rounds

k ̸= j. Then, let we denote an m-round output event for the adversarial and honest client as
SA

mul = SA
1 , ...,SA

m and Sh
mul = Sh

1 , ...,Sh
m respectively.

The m-round interaction is (εin, δin)-(εout, δout)-m-round differentially private if for neigh-
bouring x̄ and x̄′, any adversarial m-round event SA

mul and honest m-round event Sh
mul, the

301

following holds;

Pr[MA
mul(x̄) ∈ SA

mul]
≤ exp(εin) · Pr[MA

mul(x̄′) ∈ SA
mul] + δin (a)

Pr[MA
mul(x̄) ∈ SA

mul |Mh
mul(x̄) ∈ Sh

mul]
≤ exp(εout) · Pr[MA

mul(x̄) ∈ SA
mul |Mh

mul(x̄) ̸∈ Sh
mul] + δout (b)

Concretely, m-round-DP bounds the sensitivity of the adversarial output distribution over
m-rounds to both (a) a change in the honest users input in the round j ∈ [m] round and (b)
a change in the honest users output in round j ∈ [m].

The following theorem relates single-round-DP (def. 7) with m-round-DP (def. 8).

▶ Theorem 9 (m-round composition). Let there be m consecutive interaction rounds
with n clients and the trusted curator. In each round, the trusted curator evaluate round-
specific algorithms M1, ..., Mm that are (εin

1 , δin
1)-(εout

1 , δout
1) , ... , (εin

m, δin
m)-(εout

m , δout
m) round

differentially private and evaluated on round-specific input vectors x1, ... , xm, each consisting
of |xj | = n elements. Then, the m-round evaluation is

(max
j∈[m]

εin
j , max

j∈[m]
δin

j)− (max
j∈[m]

εout
j , max

j∈[m]
δout

j)

m-round differentially private.

Proof. (Theorem 9) In an m-round interaction with n clients and the trusted curator
evaluating round-specific algorithms M1, ..., Mm, clients provide fresh set of inputs xj in
each round j ∈ [m]. Definition 8 bounds the sensitivity of the full, adversarial output over
m-rounds to any change in (a) honest input or (b) honest output in a single round j ∈ [m].
However, each evaluation of Mi is independent; in each round, the curator only computes on
freshly submitted inputs only. Thus, any change in adversarial output distribution induced
by (a) or (b) will be only be observable in round j of the adversarial transcript.

Since Mj for round j ∈ [m] is (εin
j , δin

j)-(εout
j , δout

j)-round differentially private, it follows
that each algorithm Mj for any round j ∈ [m] is also

(εin
max, δin

max) - (εout
max, δout

max) = (max
j∈[m]

εin
j , max

j∈[m]
δin

j) - (max
j∈[m]

εout
j , max

j∈[m]
δout

j)

round differentially private. Then, m-round differentially privacy (Definition 8) is satisfied,
since a change to (a) an honest input or (b) output in round j ∈ [m] will induce an (a)
(εin

max, δin
max) or (b) (εout

max, δout
max) bounded effect on adversarial output MA

j in round j only. ◀

4 Fuzzy Order Matching

We propose round-differentially-private, periodic market mechanisms in the trusted curator
model for (1) volume matching of orders, where a batch of buy and sell orders are matched at
a given exchange rate determined at an external reference market, and (2) double auctions,
where buy and sell orders also feature price limits, such that a clearing price must first be
computed for each round before orders can be matched. Following a gentle introduction, each
algorithm is formally proven to satisfy round-differential-privacy introduced in Definition 7.

To realize any meaningful notion of privacy in practice, we distribute the trusted curator
by means of secure multi-party computation (MPC). The overhead added the use of MPC
can, however, result in a prohibitively low order throughput when evaluating a naively built
algorithm. Thus, to obtain market mechanisms with efficiency suitable for real-world use, our
proposed MPC algorithms in Section 5 are designed to avoid expensive MPC operations.

302

4.1 Differentially Private Volume Matching
In volume matching, the exchange rate is pre-determined by an external reference rate. A
trader only chooses to submit a sell, buy or to abstain from the round with a dummy order.

We introduce a (εin, 0)-(εout, δout) round-differentially private volume matching algorithm
named DP-Volume-match, overcoming the privacy limitations of the traditional dark pool
setting, where a matching of buy and sell orders implies leaking an order execution to the
counter-party trade and violating both input- and correlated-output differential privacy
(Lemmas 4 and 6). We overcome this privacy hurdle in classical order matching with two
randomized sub-routines;

[1] Fuzzy order matching. In the first phase of DP-volume-match, orders are matched
in a “fuzzy” manner; following a preliminary, deterministic matching step which maximizes
number of trades, each final trade output (trade/no-trade) is sampled independently from a
distribution parameterized by εin and biased towards the preliminary matching result; we
adapt this technique from the standard randomized response mechanism [14], that is both
(εin, 0)-input and (0, 0)-correlated output differentially private; the latter property arises
naturally from the independent sampling of outputs which occurs in randomized response.
Randomized, fuzzy matching of orders also implies that the final aggregate exchange of
tokens may not sum to zero; in any given round, the total buy volume may not equal the
total sell volume.

[1] Liquidity compensation. We therefore introduce a liquidity provider, which
compensates for the in mismatch between buy and sell volume; to ensure that the (corrupt)
liquidity provider’s output is correlated-output differentially private, a randomized amount
of its liquidity is frozen; the differential privacy guarantees of DP-volume-match hold over m

rounds until the frozen funds are returned to the liquidity provider. We argue that in practice,
it is acceptable to guarantee multi-round privacy for a bounded number of rounds. We detail
the different steps of DP-volume-match next and refer to the full algorithm implemented in
MPC in Figure 3 for details.

1. Fuzzy order matching
a. Deterministic matching
b. Randomized response over matches

2. Liquidity compensation
a. Liquidity compensation for sampled trades
b. Randomized liquidity freezing

DP-Volume-match orders. Let a valid, privately submitted trade order be the tuple (b, s, id),
where b and s represent buy and sell bits respectively, and id is the trader identifier. Thus,
let (b, s) ∈ [(1, 0), (0, 1), (0, 0)] represent a buy, sell and dummy order respectively. We fix
buy and sell unit volumes such that a single sell and buy order always match.

[1a] Deterministic matching (L2 in Figure 3). Let the number of orders sent to the trusted
curator by n clients be x = {(b, s, id1), ..., (b, s, idn)}. Then, the maximum possible number
of matches between buy (b, s) = (1, 0) and sell (b, s) = (0, 1) orders is computed, which is
simply the smaller of the number of buy b and sell s orders. Let the result of the deterministic
matching phase be the bit array match = (match1, ..., matchn), where bit matchi indicates if
the i’th submitted order was matched (1) or not (0). Once the total number of preliminary
matched pairs is computed, they are assigned randomly to the non-dummy orders; dummy
orders are never matched.

303

[1b] Randomized response over matches (L5 in Figure 3). Here, we apply the standard
randomized response mechanism [14] to determine whether a trade or no-trade is returned to
the trader who submitted a valid trade order; for each bit in array match where matchi = 1,
the probability of the final tradei bit equaling 1 or 0 is given by;

Pr[tradei = 1 |matchi = 1] = eε(1 + eε)−1 (1)
Pr[tradei = 0 |matchi = 1] = (1 + eε)−1

Conversely, for each bit matchi = 0 in match and party i did not submit a dummy order, the
probability of the final tradei outcome being sampled as 1 or 0 is given by;

Pr[tradei = 1 |matchi = 0] = (1 + eε)−1 (2)
Pr[tradei = 0 |matchi = 0] = eε(1 + eε)−1

Thus, for parties submitting valid, non-dummy trades, the final trading results in array
trade = [trade1, ..., traden] is obtained from independently sampling from distributions Eq. 1
or 2 according to the match array from the deterministic matching subroutine [1a].

Trader outputs are given by the array y = [(bout
1 , sout

1 , id1), ..., (bout
n , sout

n , idn)], where each
entry ((bout

i , sout
i , idi)) returned to party i indicates whether a buy ((bout

i , sout
i) = (1, 0)), sell

((bout
i , sout

i) = (0, 1)) or no trade ((bout
i , sout

i) = (0, 0)) was executed; y is determined from
input vector x and final trade outcome vector trade = [trade1, ..., traden] from step [2b],

We emphasize that a trade can only be executed if a non-dummy order was submitted
at the beginning of the round, and in the same direction (sell or buy) as intended by the
trader. Dummy orders always return ((bout, sout) = (0, 0)) as output; the fuzzy matching is
only applied to valid, non-dummy orders only, and thus the trading “interface” remains the
same as in traditional volume matching algorithms.

[2a] Liquidity compensation for sampled trades (L6 in Figure 3). Fuzzy matching of orders
via randomized response implies that trades output from step [1b] in DP-volume-match do not
match precisely; for the output vector y = [(bout

1 , sout
1 , id1), ..., (bout

n , sout
n , idn)], the following

can occur;
∑

i∈[n]

sout
i ̸=

∑

i∈[n]

bout
i

Since sells and buys may not cancel out, we introduce the presence of a liquidity provider,
which compensates for this mismatch in traded liquidity. Then, the amount of the numeraire
asset (∆0) and risky asset (∆1) provided (∆j∈{0,1} < 0) or received (∆j∈{0,1} > 0) by the
liquidity provider is given as;

∆0 = −
(∑

i∈[n]

sout
i − bout

i

)
∆1 =

(∑

i∈[n]

sout
i − bout

i

)
(3)

The liquidity providers compensates for this liquidity imbalance resulting from fuzzy
matching; its initial balances (xliq

0 , xliq
1) are updated to (xliq

0 + ∆0, xliq
1 + ∆1); however, note

that any change in the honest user’s trade execution will affect ∆0, ∆1 with probability 1,
observable by the corrupted liquidity provider and violating correlated-output differential
privacy (Definition 5); relaxing the correlation between the final exchange of assets and the
update in funds observed by the liquidity provider can only imply the minting or removal of
funds in the round outputs.

304

We propose a compromise, which is a randomized mechanism to freeze liquidity, protect-
ing the privacy of traders for the m-round duration that the liquidity remains frozen. Our
algorithm DP-volume-match refrains from minting, preserving the integrity of the underlying
asset types.

[2b] Randomized liquidity freezing (L8 in Figure 3). The liquidity provider inputs reserves
(xliq

0 , xliq
1) of numeraire and risky asset pair (τ0, τ1) to a given round, and is returned updated

reserve balances (yliq
0 , yliq

1) = (xliq
0 + ∆0 − ρ0, xliq

1 + ∆1 − ρ1), where (ρ0, ρ1) is the volume of
(τ0, τ1) frozen in the given round. In practice, we assume that frozen amounts are eventually
returned to the liquidity provider after m rounds, where m is chosen to be sufficiently long
to protect a trading strategy executed over multiple rounds.

We describe the distribution from which (ρ0, ρ1) are sampled, given by probability mass
function Pfrz in Equation (4); this distribution is parameterized by a maximum amount of
frozen liquidity ρmax

t ≥ 1 for t ∈ {0, 1} in the round, and correlated-output differential privacy
parameters εout, δout.

∀t ∈ {0, 1} : (4)

Pfrz(ρt) =

(1−
√

1− δ)/2 · exp(εout · ρt) ρt ∈ [0 : ⌈ρmax−1
2 ⌉]

(1−
√

1− δ)/2 · exp(εout · (ρmax
t − ρt)) ρt ∈ [⌈ρmax−1

2 ⌉+ 1 : ρmax]
0 otherwise

The sensitivity of ρ0 + ∆0 and ρ1 + ∆1 to the execution of a single trade is ±1. Distribution
frz allocates probability mass across multiples of unit trade volume; neighbouring freezing
events ρt and ρt ± 1 are allocated probabilities which differ by factor exp(εout). Since we
limit the amount of frozen tokens to the range [0 : ρmax

t], we must accept a non-zero δout

probability of violating (εout)-correlated-output differential privacy (See Lemma 12).
Parameterization of Pfrz. The freeze distribution is paramaterized by (εout, δout) and

ρmax
0 and ρmax, but we note that these parameters cannot be chosen independently. For total

probability mass in Equation (4) must sum to 1, parameters (εout, δout) and ρmax
t must satisfy

the following relation, which follows directly from the aggregate probability mass of Pfrz.
∑

ρt

Pfrz(ρt) =
∑

ρt∈L
(1−

√
1− δ)/2 · exp(ε · ρt) +

∑

ρt∈R
(1−

√
1− δ)/2 · exp(ε · (ρmax − ρt)) = 1

where L =[0 : ⌈ρ
max − 1

2 ⌉] R = [⌈ρ
max − 1

2 ⌉+ 1 : ρmax]

▶ Theorem 10. DP-Volume-matching is (εin, δin)-(εout, δout)-m-round differentially private.

Proof. (Theorem 10) Follows from Lemma 11 and Lemma 12, stated and proven below, for
the m rounds during which frozen liquidity provider reserves are secretly frozen. ◀

▶ Lemma 11. DP-Volume-matching is (ε, δ)-input differentially private.

Proof. (Lemma 11) Let x, x′ be neighboring vectors of trade orders (Definition 2) submitted
to the DP-volume matching algorithm. Note that the number of submitted orders n is always
even, thus unique pairs can be formed for all submitted orders, such that some pairs will be
in opposing directions and matched during the [1a] determinstic matching phase; for such a
pair at index pair (h, j), where h ̸= j, the matching bits output from [1a] for trade orders

305

h, j will be matchh = matchj = 1. Since they are in opposing directions, (bi, si) = (1, 0), and
(bj , sj) = (0, 1).

We observe that any change in an input can, in the worst case, increment, or decrement
the number of matched order pairs in opposing direction output from [1a] of DP-volume
match; in case (a), the honest user changes the direction of its trade order, thus potentially
leaving the previously matched order unmatched. in case (b) the honest user changes its
order to or from a dummy-order. Here, the impact on the counter-party order is the same.
Thus, the sensitivity of the deterministic matching [1a] outcome match = [match1, ..., matchn]
to a change from x to x′ is a flip in both bits of pair matchh and matchj (h ̸= j). We argue
input-differential privacy for transcript of traders and liquidity provider separately.

For the adversarial trader output view, we must argue that the probability of any
trade outcome is at most (ε, δ)-sensitive to the change in the honest traders order; note,
that the adversary corrupting all but the honest trader will observe a change in output
distribution for one of the corrupted parties; let this party index be j. Then, recall, a flip in
the deterministic matching outcome matchj from [1a] implies a change in distribution (eq.
1, 2) from which tradej is sampled in randomized response step [1b] of DP-volume match.
Thus, the following holds for the trade output view of the adversary;

∏

i∈A

Pr[tradei = bi | x]
Pr[tradei = bi | x′] = Pr[tradej = bj | x]

Pr[tradej = bj | x′] = eε · (1 + eε)
(1 + eε) = eε

Here, the first equality holds, since only tradej at a single adversarial index is affected by the
honest input change; all other corrupted outputs observe the same distribution. The second
equality follows directly from eq. 1 & 2.

For the adversarial liquidity provider output view, it suffices to argue that liquidity
mismatch (∆0, ∆1) defined in eq. 3 and determined in step [2a] of DP-volume-match preserves
(ε, δ)-input differential privacy; any post-processing preserves this property, including the
liquidity freezing sub-routine [2b] in DP-volume match.

Consider our pair (matchh, matchj) again, which sees both bits flipped upon a change
in the single change in input (x → x′). Recall that ∆0, ∆1 indicate the liquidity required
to compensate for unmatched orders in trade = [trade1, ..., traden] sampled in step [1b] of
DP-volume match. ∆0 and ∆1 are incremented/decremented when an (un)matched pair
(matchh, matchj) ∈ {(1, 1), (0, 0)} in [1a] obtains a sampled outcome in [1b] such that only
one of the two orders is executed, e.g. (tradeh, tradej) ∈ {(0, 1), (1, 0)}. ∆0 and ∆1 are not
incremented/decremented in the case of (tradeh, tradej) ∈ {(0, 0), (1, 1)}, as no additional
liquidity imbalance is contributed by order pair (h, j). Thus, we are interested in events
where order pair (h, j) do (not) contribute to the liquidity imbalance ∆0, ∆1.

The event probabilities of (tradeh, tradej) sampled in [1b] conditioned on input vector x,
which induces (matchh, matchj) = (1, 1) in step [1a] are given by,

Pr[(tradei, tradej) = (0, 0) | x] = (1 + eε)−1(1 + eε)−1

Pr[(tradei, tradej) = (0, 1) | x] = (1 + eε)−1eε(1 + eε)−1

Pr[(tradei, tradej) = (1, 0) | x] = eε(1 + eε)−1(1 + eε)−1

Pr[(tradei, tradej) = (1, 1) | x] = eε(1 + eε)−1eε(1 + eε)−1

and the probabilities of the same events conditioned on input vector x′, which induces

306

(matchh, matchj) = (0, 0) in step [1a] are given by

Pr[(tradei, tradej) = (0, 0) | x′] = eε(1 + eε)−1eε(1 + eε)−1

Pr[(tradei, tradej) = (0, 1) | x′] = eε(1 + eε)−1(1 + eε)−1

Pr[(tradei, tradej) = (1, 0) | x′] = (1 + eε)−1eε(1 + eε)−1

Pr[(tradei, tradej) = (1, 1) | x′] = (1 + eε)−1(1 + eε)−1

Thus, the event probability where pair (h, j) contributes no liquidity imbalance to ∆0, ∆1 is
not sensitive to an change in input.

Pr[(tradei, tradej) ∈ {(1, 1), (0, 0)} | x]
Pr[(tradei, tradej) ∈ {(1, 1), (0, 0)} | x′] = 1 ≤ exp(ε)

Further, the event probability where pair (h, j) does contribute liquidity imbalance in a
specific direction to ∆0, ∆1 is also not sensitive to a change in input.

Pr[(tradei, tradej) = (1, 0) | x]
Pr[(tradei, tradej) = (1, 0) | x′] = Pr[(tradei, tradej) = (0, 1) | x]

Pr[(tradei, tradej) = (0, 1) | x′] = 1 ≤ exp(ε)

◀

▶ Lemma 12. DP-Volume-matching is ε, δ-correlated-output differentially private.

Proof. (Lemma 12) As per Definition 5, we must demonstrate that adversary output event
probabilities is ε, δ-sensitive to a change in the honest user’s output; the adversarial output
view is composed of corrupted trader outputs and the view of the corrupted liquidity provider.

Note that inputs are fixed in correlated-output differential privacy. Thus, the output
match = [match1, ..., matchn] of deterministic matching in step [1a] remains unaffected; the
distribution of trader outputs also remain unchanged in step [1b]. Correlated-output differ-
ential privacy holds trivially for the adversarial trader output view.

The corrupted liquidity provider provides reserves (xliq
0 , xliq

1) to compensate for
liquidity mismatch (∆0, ∆1 in eq. 3) resulting from randomized response in step [1b]. The
sensitivity of ∆0, ∆1 to a change in the honest users trade output sampled in the randomized
response step [1b] of DP-volume match is |1| for both ∆0 and ∆1, as the trade outcome for
pair (tradeh, tradej) ∈ {(1, 1), (0, 0)} is changed to (tradeh, tradej) ∈ {(1, 0), (0, 1)} or vice
versa.

Consider the output event that the liquidity provider observes, namely that its reserves
are updated to (yliq

0 , yliq
1) =

(
xliq

0 + ∆0 − ρ0 , xliq
1 + ∆1 − ρ1

)
following the liquidity freezing

step [2b] of DP-volume-match. We analyze how the probability of a given event or reserve
update observed by the liquidity provider is affected by the change of the honest output,
which induces (∆0, ∆)→ (∆0± 1, ∆∓ 1) in step [2a]. If the liquidity amount frozen is in step
[2b] is incremented/decremented in the opposing direction, namely (ρ0, ρ1)→ (ρ0∓ 1, ρ1± 1),
the observed reserve update remains unchanged. We express following two events which are
indistinguishable by the adversary;

(a) (yliq
0 , yliq

1) =
(
xliq

0 + ∆0 − ρ0 , xliq
1 + ∆1 − ρ1

)

(b) (yliq
0 , yliq

1) =
(
xliq

0 + (∆0 ± 1)− (ρ0 ∓ 1) , xliq
1 + (∆1 ∓ 1)− (ρ0 ± 1)

)

Then, we relate the probabilities of these two events for liquidity freezing range (0 : ρmax);

∀ρ0, ρ1 ∈ (0 : ρmax) : (5)
Pr[

(
xliq

0 + ∆0 − ρ0 , xliq
1 + ∆1 − ρ1

)
]

Pr[
(
xliq

0 + (∆0 ± 1)− (ρ0 ∓ 1) , xliq
1 + (∆1 ∓ 1)− (ρ0 ± 1)

)
]
≤ exp(ε) (6)

307

The inequality holds, because sampling probabilities for ρt and ρt± 1 differs by eε, as defined
in Pfrz (eq. 4). However, it does not hold for ρt ∈ {0, ρmax

t }; here, the probability of sampling
ρt ± 1 can be 0, violating correlated-output differential privacy. Concretely, observe for
Pfrz in eq. 4, Pr[ρt = 0− 1] = Pr[ρt = max + 1] = 0. We show that the probability of that
ρt ∈ {0, ρmax} for any t ∈ {0, 1} is bounded by δ.

Consider the probability that ρt ∈ {0, ρmax} is sampled is Pfrz(0) + Pfrz(ρmax) (eq. 4).
Then, the probability that neither of the sampled frozen amounts equals {0, ρmax} is given
below;

Pr[ρ0, ρ1 ̸∈ {0, ρmax}] =
(
1− (Pfrz(0) + Pfrz(ρmax))

)2 (7)

=
(
1− (1−

√
1− δ

2 + 1−
√

1− δ

2)
)2

=
(
1− (1−

√
1− δ)

)2

=
(√

1− δ
)2 = 1− δ

◀

4.2 Differentially Private Double Auctions
We propose a (εin, 0)-(εout, δout)-round differentially private double auction algorithm, called
DP-double-auction for the trusted curator setting. Here, we introduce an initial sub-routine
to compute a (εin, 0)-input-differentially private clearing price from trade orders input to
the round. Subsequently, the DP-volume-match (§4.1) is performed on the subset of trade
orders with price limits consistent with the clearing price.

For each round, we assume a discrete price range r = [r1, ..., rl]; here, the discrete price
maximizing the number of order matches is initially selected; to preserve input differential
privacy, a subsequent exponential mechanism is applied to determine the publicly output
clearing price.

DP-double-auction orders. Inputs submitted to DP-double-auction are in form x =
[(w1, dir1, id1), ..., (wn, dirn, idn)], where each valid trade order (wi, diri, idi), contains a bit
wij in array wi = [wi1, ..., wil] that indicates whether user i is willing to buy (diri = 0) or
sell (diri = 1) at price rj ∈ r.

Differentially private clearing price. In spirit of the differentially private mechanisms in-
troduce thus far, DP-double-auction first computes a deterministic clearing price, and then
applies a randomized, differentially private mechanism to determine the final, (εin, δin)-input-
differentially private clearing price. For each discrete price index j ∈ [l], we aggregate trade
orders willing to sell or buy at price rj ∈ r. Let Sj denote all sell orders willing to sell at price
rj ∈ [r] and Bj denote all buy orders willing to buy at price rj ∈ [r]. Then, the number of
matched pairs at price rj is given by uj = min(Bj , Sj), resulting in ux = {u1, ..., uj}. Here,
we interpret (ux : Z≤l → Z≤n/2) as the utility function for sampling the final clearing
price with the exponential mechanism.

Exponential mechanism. The exponential mechanism first introduced by McSherry and
Talwar [16], realizes a probability distribution over a range of events, for which the mechanism
designer can express a utility score function ux applicable to each event; thus, events can
be allocated probability mass proportional to exp

(
ε · ux(r)/(2∆u)

)
, where ∆u denotes the

sensitivity of the utility function to a change to a single round input. In other words, the

308

mechanism designer can influence the probability distribution over events by indicating which
have higher utility.

In DP-double-auction, the senstivity of ux(j) at any discrete price index j ∈ [l] is simply
1; thus ∆u = 1. A change in an honest input from valid to a dummy order affects at most
one match per price, as does a change to the price limit of the order. Therefore,

∆u = max
j∈[l]

max
x,x′
| ux(j)− ux′(j) |≤ 1

Then, the probability distribution over which the clearing price is sampled is given by the
exponential mechanism parameterized by utility function ux determined by submitted trade
orders x. Thus, the probability of each discrete price rj ∈ r is given by;

Pr[j] = exp(ε · ux(j)/2)∑
j∈[|r|] exp(ε · ux(j)/2) (8)

Since the exponential mechanism is (εin
1 , 0)-differentially private over all inputs ([16]), we

consume εin
1 of our input privacy budget when outputting the clearing price computed over x,

leaving another εin
2 for the subsequent DP-volume-match at price r, such that εin = εin

1 + εin
2 .

DP-Volume matching at clearing price. We subsequently apply DP-volume-match from
Section 4.1 at sampled clearing price from the preceding exponential mechanism step,
returning the trade outputs from DP-volume-match privately to each trading client and frozen
liquidity amounts to the liquidity provider.

▶ Theorem 13. DP-double auction is (εin, δin)-(εout, δout)-m-round differentially private.

Proof. (Theorem 13) DP-double auction receives private trade orders and subsequently
releases (1) a public clearing price r ∈ r from an (εin

1)-input-differentially private exponential
mechanism, and (2) private trade outputs to each of the n clients from a (εin

2 , 0)-(εout, δout)-
round-differentially private DP-volume-match mechanism.

To establish round-differential privacy, we must argue correlated-output differential privacy
for (1). This holds trivially, as trader outputs are determined by the DP-volume matching
subroutine, where all trade outcomes are sampled independently from the clearing price.
Thus, DP-double auction is (εin

1 + εin
2 , δin)-(εout, δout)-round differentially private. m-round

differential privacy is implied as long as liquidity frozen in each DP-volume-match execution
remains secretly locked. ◀

5 Fuzzy Order Matching with MPC

To obtain a fair market in practice, we instantiate the trusted curator with a set of MPC
parties who execute the market mechanisms described in Sections 4.1 and 4.2 using an MPC
protocol. In this section, we present a formal description of the proposed market mechanisms,
as well as some textual explanation for the steps of the algorithms where some care is required
to ensure the efficiency of the MPC execution.

5.1 DP-Volume matching with MPC
The formal description of the volume matching algorithm is presented in Figures 2 and 3.
Note that both the order format and the InputCheckVM protocol in Figure 2, as well as the
first 3 steps of the MatchVol protocol in Figure 3 are identical to the ones in the Bucket
Match algorithm from [11].

309

Randomness sampling. The randomness required for both the randomized matching
response and the frozen liquidity is independent of the input orders, and can thus be generated
ahead of time by running the procedure NoiseGen in Figure 3 together with the preprocessing
phase of the MPC algorithm. The sampling, described in Figure 1, is performed using the
inverse transform sampling method, similarly to what is proposed in [15]. To sample a
random value from a distribution given by probability mass function P , we start by taking
the corresponding cumulative distribution function, FX(x) =

∑
xi≤x P (X = xi). We then

sample a secret shared value ⟨z⟩ ∈ (0, 1] uniformly at random, which can be derived from a
randomly generated integer as shown in [15]. The desired distribution can now be obtained
by taking the first x such that FX(x) is greater or equal to ⟨z⟩.

Sample: On input P , the probability distribution of a discrete random variable X that may
take k different values x1, ...xk:

1. Sample ⟨z⟩ ∈ (0, 1] uniformly at random.
2. For all i: Fi ←

∑i

j=1 P (X = xj)
3. For all i: ⟨ci⟩ ← (Fi ≥ ⟨z⟩).
4. For all i: ci ← Open(⟨ci⟩).
5. Return xj for the lowest j such that cj = 1.

Figure 1 Randomness sampling with MPC.

Input format check. Since the orders are secret shared among the MPC parties, a
format verification step is required. I.e., we need to check that every order i is such that
(bi, si) ∈ {(1, 0), (0, 1), (0, 0)}. To do so, we run the InputCheckVM protocol in Figure 2,
where orders without the correct format are rejected.

InputCheckVM: On input x′ = [x′
1, ..., x′

n], where x′
i = (⟨bi⟩, ⟨si⟩, ⟨idi⟩) and bi, si, idi ∈ Fp:

Check validity of inputs bits: (0, 0) ∨ (0, 1) ∨ (1, 0).
1. Sample αi, βi, γi uniformly at random.
2. ⟨ti⟩ ← αi · (⟨bi⟩ · ⟨bi⟩ − ⟨bi⟩) + βi · (⟨si⟩ · ⟨si⟩ − ⟨si⟩) + γi · (⟨bi⟩ · ⟨si⟩)
3. ti ← Open(⟨ti⟩)
4. If ti = 0 then add x′

i to a list x, otherwise reject x′
i.

5. Return x.

Figure 2 Input correctness check for the volume matching (from [11], Figure 3).

Fuzzy order matching. To achieve the desired differential privacy guarantees, we
avoid revealing any of the secret shared values throughout the computation. This is unlike
the Bucket Match mechanism from [11], where the direction with the most total volume
was revealed, and the matching procedure was simplified by opening successful orders as
soon as they were matched. As a result, we obtain a more complex procedure, described in
GetMatches in Figure 3. Here, we calculate the cumulative total volume for each i and for
each direction, thus obtaining ⟨σb

i ⟩ and ⟨σs
i ⟩ (note that we need to perform the calculations

in both directions to hide which direction has more total volume). We then compare ⟨u⟩
(the total matched volume in each direction) with the cumulative volume at each index i,
and accept every order i until ⟨u⟩ is exceeded. A randomized response over the matches is
obtained by using the randomness ⟨πi⟩ sampled during the preprocessing.

Liquidity compensation This phase of the algorithm is identical to the protocol in the
clear as described in Section 4.1, except that we are now operating over secret shared values.

310

NoiseGen: Use Sample from Figure 1 to compute the noise for steps 5 and 9:
- For all i: ⟨πi⟩ ← Sample(Prr) (def. in Eq. 1).
- ⟨ρ0⟩, ⟨ρ1⟩ ← Sample(Pfrz) (def. in Eq. 4)

MatchVol: On input x′, xliq, submitted by (P trd
1 , ...,P trd

n) and P liq, respectively, where x′ =
[x′

1, ..., x′
n], x′

i = (⟨bi⟩, ⟨si⟩, ⟨idi⟩), xliq = (⟨xliq
0 ⟩, ⟨xliq

1 ⟩) and bi, si, idi, xliq
0 , xliq

1 ∈ Fp:
1. Let x← InputCheckVM(x′)

Step [1a] Deterministic matching of buy & sell orders
2. For all i: ⟨B⟩ ← ⟨B⟩+ ⟨bi⟩, and ⟨S⟩ ← ⟨S⟩+ ⟨si⟩
3. Let ⟨c⟩ ← (⟨S⟩ > ⟨B⟩) and ⟨u⟩ ← ⟨c⟩ · ⟨B⟩+ (1− ⟨c⟩) · ⟨S⟩.
4. match← GetMatches(x, ⟨c⟩, ⟨u⟩, ⟨B⟩, ⟨S⟩)

Step [1b] Randomized response over order matches
5. For all i:

- Let ⟨tradei⟩ ← ⟨πi⟩ · ⟨matchi⟩+ (1− ⟨πi⟩) · (1− ⟨matchi⟩)
- Let ⟨bout

i ⟩ ← ⟨si⟩ · ⟨tradei⟩+ ⟨bi⟩ · (1− ⟨tradei⟩)
- Let ⟨sout

i ⟩ ← ⟨bi⟩ · ⟨tradei⟩+ ⟨si⟩ · (1− ⟨tradei⟩)
- Add yi = (⟨bout

i ⟩, ⟨sout
i ⟩, ⟨idi⟩) to the output list y.

Step [2a] Liquidity compensation for sampled trades
6. For all i: ⟨ob⟩ ← ⟨ob⟩+ ⟨bout

i ⟩, and ⟨os⟩ ← ⟨os⟩+ ⟨sout
i ⟩

7. Let ⟨∆0⟩ ← (⟨os⟩ − ⟨ob⟩) and ⟨∆1⟩ ← −⟨∆0⟩
Step [2b] Randomized liquidity freezing

8. yliq = (⟨yliq
0 ⟩, ⟨yliq

1 ⟩)← (⟨yliq
0 ⟩+ ⟨∆0⟩ − ⟨ρ0⟩ , ⟨yliq

1 ⟩+ ⟨∆1⟩ − ⟨ρ1⟩)
9. FreezeLiq(⟨ρ0⟩, ⟨ρ1⟩), return y = [y1, ..., yn], yliq to (P trd

1 , ...,P trd
n) and P liq, respectively.

Subroutines invoked by MatchVolume

GetMatches: On input (x, ⟨c⟩, ⟨u⟩, ⟨B⟩, ⟨S⟩):
1. For all i: ⟨bigi⟩ ← ⟨c⟩ · ⟨si⟩+ (1− ⟨c⟩) · ⟨bi⟩.
2. For all i, let ⟨σb

i ⟩ ←
∑i

h=1⟨bh⟩ and ⟨σs
i ⟩ ←

∑i

h=1⟨sh⟩.
3. For all i, let ⟨σ′

i⟩ ← ⟨c⟩ · ⟨σs
i ⟩+ (1− ⟨c⟩) · ⟨σb

i ⟩
4. For all i, let ⟨match′

i⟩ ← (⟨σ′
i⟩ ≤ ⟨u⟩) · ⟨bigi⟩

5. For all i: ⟨matchi⟩ ← (1− ⟨c⟩) · ⟨si⟩+ ⟨c⟩ · ⟨bi⟩+ ⟨match′
i⟩

6. Return match = [⟨match1⟩, ..., ⟨matchn⟩]
FreezeLiq: On input (⟨ρ0⟩, ⟨ρ1⟩):

1. Update (⟨ρfrz
0 ⟩, ⟨ρfrz

1 ⟩)← (⟨ρfrz
0 ⟩, ⟨ρfrz

1 ⟩) + (⟨ρ0⟩, ⟨ρ1⟩).

Figure 3 ε, δ-DP unit volume matching with MPC

5.2 DP double auction with MPC
The formal description of the double auction algorithm is presented in Figures 4 and 5.

Input format check. The correctness of the inputs is verified by the procedure
InputCheckDA in Figure 4, which checks that ⟨diri⟩ as well as every ⟨wij⟩ are bits and rejects
order i if that is not the case. For the orders in the correct format, this procedure additionally
converts ⟨wij⟩ and ⟨diri⟩ into a sequence of pairs (⟨bij⟩, ⟨sij⟩), where ⟨bij⟩ and ⟨sij⟩ represents
whether order i is a buy, sell or a dummy for price j (i.e., ⟨bij⟩ and ⟨sij⟩ have the same
meaning as in Section 5.1, but are now associated with a specific price rj).

311

InputCheckDA: On input x′ = [x′
1, ..., x′

n], where x′
i = (wi, ⟨diri⟩, ⟨idi⟩), wi = [⟨wi1⟩, ..., ⟨wil⟩]

and wij , diri, idi ∈ Fp:
Check all inputs are bits.

1. For all j: αij ← FRand().
2. βi ← FRand().
3. ⟨ti⟩ ← αi1 · (⟨wi1⟩ · ⟨wi1⟩ − ⟨wi1⟩) + ... + αil · (⟨wil⟩ · ⟨wil⟩ − ⟨wil⟩)
4. ⟨ti⟩ ← ⟨ti⟩+ βi · (⟨diri⟩ · ⟨diri⟩ − ⟨diri⟩)
5. ti ← Open(⟨ti⟩)
6. If ti ̸= 0 then reject x′

i. Otherwise, continue to the next step.
7. For all j, let ⟨bij⟩ = ⟨wij⟩ · (1− ⟨diri⟩) and ⟨sij⟩ = ⟨wij⟩ · ⟨diri⟩.
8. Add xi = (⟨bi1⟩, ⟨si1⟩, ..., ⟨bil⟩, ⟨sil⟩, ⟨idi⟩) to a list x.
9. Return x.

Figure 4 Input correctness check for the double auction.

Exponential mechanism. We obliviously determine how many orders can be matched
at each price point by calculating ⟨uj⟩ for each price rj the same way as ⟨u⟩ was calculated
in the volume matching protocol. The exponential mechanism can now be used to select
the best trading price. The probability Pr[j] associated with price point rj depends on the
corresponding utility value ⟨uj⟩, and since the utility must remain private, the calculated
probabilities Pr[j] will also be secret shared values. While this does not affect the sampling
procedure (the algorithm in Figure 1 remains unchanged if the probability mass function is
private), computing each Pr[j] will require the expensive evaluation of a secure exponentiation.

To avoid exponentiation and efficiently compute the selection probabilities with MPC, we
use the techniques proposed in [5]. Firstly, instead of considering the selection probabilities
as given in Eq. 8, we reduce the complexity by calculating unnormalized probabilities ⟨Wj⟩
(called weights), where ⟨Wj⟩ = exp(ε · ⟨uj⟩/2). The clearing price sampling can later be
performed using these weights by multiplying ⟨z⟩ with

∑l
j=1 exp(ε · ⟨uj⟩/2), as shown in the

SampleWeight procedure in Figure 5. Secondly, there are two possible solutions for computing
the weights according to the value of ε (note that ε is public and fixed beforehand):

(i) For ε = 2·ln(2), we get ⟨Wj⟩ = 2⟨uj⟩. This value can be directly written as (⟨0⟩, ⟨0⟩, ⟨2⟩, ⟨uj⟩)
by using the floating-point notation introduced in [2]. With this notation, a secret
shared floating-point value ⟨f⟩ is represented as a tuple (⟨s⟩, ⟨o⟩, ⟨v⟩, ⟨p⟩) with f =
(1− 2 · s) · (1− o) · v · 2p, where s is the sign bit (set to 1 when f is negative), o is the
zero bit (set to 1 when f is zero), v is the mantissa and p the exponent.

(ii) For ε = 2 · ln(2)/2d, where d ∈ Z, we get ⟨Wj⟩ = 2⟨uj⟩/2d = 2⌊⟨uj⟩/2d⌋ · 2(⟨uj⟩ mod 2d)/2d .
The weight ⟨Wj⟩ can thus be obtained by calculating the exponentiation with base 2
on the integer part of ⟨uj⟩/2d, and multiplying it by a corrective term 2(⟨uj⟩ mod 2d)/2d

which takes one out of 2d possible values depending on uj . The 2d possible terms are
publicly pre-computed and the correct one is obliviously selected using ⟨uj⟩.

There is an additional procedure in [5] for calculating the weights for arbitrary values of
ε. This procedure relies on the decomposability of the considered utility function, meaning
that clients can locally calculate the weights associated with their own inputs and these can
later be combined to obtain a correct global weight using MPC. Since our utility function is
not decomposable, this method is not applicable. An alternative for computing the weights
for arbitrary ε would be to first publicly calculate all the possible weights according to the
amount of submitted orders, and then obliviously select the correct weight for each price
point. This would however imply several secure comparisons and become inefficient for large

312

amounts of submitted orders and available price points. It is therefore preferable to choose ε

according to the formats in (i) or (ii), which already provide considerable flexibility.

FindPrice: On input x′, xliq, submitted by (P trd
1 , ...,P trd

n) and P liq, respectively, where
x′ = [x′

1, ..., x′
n], x′

i = (wi, ⟨diri⟩, ⟨idi⟩), wi = [⟨wi1⟩, ..., ⟨wil⟩], xliq = (⟨xliq
0 ⟩, ⟨xliq

1 ⟩) and
wij , diri, idi, xliq

0 , xliq
1 ∈ Fp, as well as a list of prices r = [r1, ..., rl]:

1. Let x← InputCheckDA(x′)
Determine best price & call volume matching algorithm

2. For all j: ⟨Bj⟩ ← ⟨Bj⟩+ ⟨b1j⟩+ ... + ⟨bnj⟩, and ⟨Sj⟩ ← ⟨Sj⟩+ ⟨s1j⟩+ ... + ⟨snj⟩.
3. For all j, let ⟨cj⟩ ← (⟨Sj⟩ > ⟨Bj⟩) and ⟨uj⟩ ← ⟨cj⟩ · ⟨Bj⟩+ (1− ⟨cj⟩) · ⟨Sj⟩.
4. Calculate weights ⟨W1⟩, ..., ⟨Wl⟩ using Algorithm 3 from [5] on input ⟨u1⟩, ..., ⟨ul⟩.
5. R← SampleWeight(⟨W1⟩, ..., ⟨Wl⟩).
6. Set xmatch

i = [⟨biR⟩, ⟨siR⟩, ⟨idi⟩]
7. Execute MatchVol from Figure 3 from step 4 with inputs xmatch = [xmatch

1 , ..., xmatch
n], xliq, ⟨cR⟩

and ⟨uR⟩.
Subroutine invoked by FindPrice

SampleWeight: On input a list of weights ⟨W1⟩, ..., ⟨Wl⟩ associated with prices r1, ..., rl:
1. For all j: ⟨Fj⟩ ←

∑j

h=1⟨Wh⟩
2. Sample ⟨z′⟩ ∈ (0, 1] uniformly at random and let ⟨z⟩ ← ⟨z′⟩ · ⟨Fl⟩.
3. For all j: ⟨cj⟩ ← (⟨Fj⟩ ≥ ⟨z⟩).
4. For all j: cj ← Open(⟨cj⟩).
5. Return rj for the lowest j such that cj = 1.

Figure 5 ε, δ-DP unit double auction with MPC

After a price is selected, we can run the volume matching algorithm in Figure 3, starting
from step 4 of the MatchVol procedure. Note that since we do not know which orders accept
the selected price, every order submitted to the double auction will also be considered when
subsequently executing the volume matching. Orders that did not accept the select price
will appear as dummies during the matching.

5.3 Experiments
To benchmark the performance of our MPC algorithms, we implemented and executed them
using Scale-Mamba [3] with Shamir secret sharing between 3 parties. All the parties are run
on identical machines with an Intel i-9900 CPU and 128GB of RAM. The ping time between
all the machines is 1.003 ms.

References
1 Abbas Acar, Z Berkay Celik, Hidayet Aksu, A Selcuk Uluagac, and Patrick McDaniel. Achieving

secure and differentially private computations in multiparty settings. In 2017 IEEE Symposium
on Privacy-Aware Computing (PAC), pages 49–59. IEEE, 2017. https://doi.org/10.1109/
PAC.2017.12.

2 Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure computation on
floating point numbers. 20th Annual Network and Distributed System Security Symposium,
NDSS 2013, San Diego, California, USA, 2013.

3 Abdelrahaman Aly, Kelong Cong, Daniele Cozzo, Marcel Keller, Emmanuela Orsini, Dragos
Rotaru, Oliver Scherer, Peter Scholl, Nigel P. Smart, Titouan Tanguy, and Tim Wood. SCALE-
MAMBA v1.12: Documentation, 2021. URL: https://homes.esat.kuleuven.be/~nsmart/
SCALE/Documentation.pdf.

313

4 Carsten Baum, James Hsin-yu Chiang, Bernardo David, and Tore Kasper Frederiksen. Eagle:
Efficient Privacy Preserving Smart Contracts. Cryptology ePrint Archive, 2022. https:
//eprint.iacr.org/2022/1435.

5 Jonas Böhler and Florian Kerschbaum. Secure multi-party computation of differentially
private median. In 29th USENIX Security Symposium (USENIX Security 20), pages 2147–
2164. USENIX Association, August 2020. URL: https://www.usenix.org/conference/
usenixsecurity20/presentation/boehler.

6 John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. MPC joins the dark side. In
Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security,
pages 148–159, 2019. https://doi.org/10.1145/3321705.3329809.

7 John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. Multi-party computation mechanism
for anonymous equity block trading: A secure implementation of turquoise plato uncross.
Intelligent Systems in Accounting, Finance and Management, 28(4):239–267, 2021. https:
//doi.org/10.1002/isaf.1502.

8 David Chaum, Debajyoti Das, Farid Javani, Aniket Kate, Anna Krasnova, Joeri De Ruiter,
and Alan T Sherman. cmix: Mixing with minimal real-time asymmetric cryptographic
operations. In Applied Cryptography and Network Security: 15th International Conference,
ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings 15, pages 557–578. Springer,
2017. https://doi.org/10.1007/978-3-319-61204-1_28.

9 David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981. https://www.doi.org/10.1145/358549.
358563.

10 Tarun Chitra, Guillermo Angeris, and Alex Evans. Differential privacy in constant function
market makers. Cryptology ePrint Archive, 2021. https://eprint.iacr.org/2021/1101.

11 Mariana Botelho da Gama, John Cartlidge, Antigoni Polychroniadou, Nigel P Smart, and
Younes Talibi Alaoui. Kicking-the-bucket: Fast privacy-preserving trading using buckets.
Cryptology ePrint Archive, 2021. To appear at FC’22. https://eprint.iacr.org/2021/1549.

12 Mariana Botelho da Gama, John Cartlidge, Nigel P. Smart, and Younes Talibi Alaoui. All for
one and one for all: Fully decentralised privacy-preserving dark pool trading using multi-party
computation. Cryptology ePrint Archive, Paper 2022/923, 2022. https://eprint.iacr.org/
2022/923. URL: https://eprint.iacr.org/2022/923.

13 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of cryptography conference, pages 265–284.
Springer, 2006. https://doi.org/10.1007/11681878_14.

14 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014. http:
//dx.doi.org/10.1561/0400000042.

15 Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca Pampaloni, and Ivan Pryvalov.
Differentially private data aggregation with optimal utility. ACSAC ’14, page 316–325, New
York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2664243.2664263.

16 Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 94–103. IEEE, 2007.
https://doi.org/10.1109/FOCS.2007.66.

17 United States of America before the Securities and Exchange Commission. In the matter of
itg inc. and alternet securities, inc., exchange act release no. 75672. https://www.sec.gov/
litigation/admin/2015/33-9887.pdf, 12 Aug 2015.

18 United States of America before the Securities and Exchange Commission. In the matter of
pipeline trading systems llc, et al., exchange act release no. 65609. https://www.sec.gov/
litigation/admin/2011/33-9271.pdf, 24 Oct 2011.

19 United States of America before the Securities and Exchange Commission. In the matter
of liquidnet, inc., exchange act release no. 72339. https://www.sec.gov/litigation/admin/
2014/33-9596.pdf, 6 Jun 2014.

314

20 Manas Pathak, Shantanu Rane, and Bhiksha Raj. Multiparty differential privacy via
aggregation of locally trained classifiers. Advances in neural information processing
systems, 23, 2010. https://proceedings.neurips.cc/paper_files/paper/2010/file/
0d0fd7c6e093f7b804fa0150b875b868-Paper.pdf.

21 Sikha Pentyala, Davis Railsback, Ricardo Maia, Rafael Dowsley, David Melanson, Anderson
Nascimento, and Martine De Cock. Training differentially private models with secure multiparty
computation. arXiv preprint arXiv:2202.02625, 2022. https://arxiv.org/abs/2202.02625.

22 Penumbra. ZSwap documentation. https://protocol.penumbra.zone/main/zswap.html,
2023.

23 Monica Petrescu and Michael Wedow. Dark pools in european equity markets: emergence,
competition and implications. ECB Occasional Paper, (193), 2017. https://doi.org/10.
2866/555710.

24 Sameer Wagh, Xi He, Ashwin Machanavajjhala, and Prateek Mittal. Dp-cryptography:
marrying differential privacy and cryptography in emerging applications. Communications of
the ACM, 64(2):84–93, 2021. https://doi.org/10.1145/3418290.

315

SoK: Privacy-Enhancing Technologies in
Finance

Contribution
• Co-author.

Remarks
Under submission. An invited talk on this work was given at the 3rd Workshop on Decentralized
Finance at Financial Cryptography and Data Security 2023.

316

SoK: Privacy-Enhancing Technologies in Finance

Carsten Baum1, James Hsin-yu Chiang1, Bernardo David2,
Tore Kasper Frederiksen3,

1 Technical University of Denmark
cabau@dtu.dk⋆, jachiang@ucla.edu

2 IT University of Copenhagen
bernardo@bmdavid.com

3 No affiliation
jot2re@gmail.com⋆⋆

Abstract. Financial applications have historically required strong se-
curity guarantees. These can be achieved in a digital world via crypto-
graphic tools but have traditionally been employed to provide authen-
ticity and privacy for data exchanged between clients and financial in-
stitutions over insecure networks (e.g. the Internet). However, the re-
cent advent of cryptocurrencies and smart contract platforms, based on
blockchains, allowed financial transactions to be carried out over a pub-
lic ledger, instead of keeping such transactions exclusive to private in-
stitutions. This introduced a new challenge: Allowing any third party to
verify the validity of financial operations by means of public records on a
blockchain, while keeping sensitive data private. Advanced cryptographic
techniques such as Zero Knowledge (ZK) proofs rose to prominence as
a solution to this challenge, allowing for the owner of sensitive infor-
mation (e.g. the identities of users involved in an operation) to provide
unforgeable evidence that a certain operation has been correctly exe-
cuted without revealing said sensitive data. Moreover, once the Fintech
community discovered the power of such advanced techniques, it also
became clear that performing arbitrary computation on private data by
means of secure Multiparty Computation (MPC), and related techniques
like Fully Homomorphic Encryption (FHE), would allow more powerful
financial applications, also in traditional finance, involving sensitive data
from multiple sources.

In this survey, we present an overview of the main Privacy-Enhancing
Technologies (PETs) available in the state of the art of current advanced
cryptographic research and how they can be used to address challenges
in both traditional and decentralized finance. In particular, we consider
the following classes of applications: 1. Identity Management, KYC &
AML; 2. Legal; 3. Digital Asset Custody; and 4. Markets & Settlement.
We examine how ZK proofs, MPC and related PETs have been used
to tackle challenges in each of these applications. Finally, we propose

⋆ Part of the work are supported by Partisia. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author and do not
necessarily reflect the views of Partisia.

⋆⋆ This work was carried while working at Protocol Labs.

317

Carsten Baum et al.

future applications of PETs as Fintech solutions to currently unsolved
issues. While we present a broad overview, we focus mainly on those
applications that require privacy preserving computation on data from
multiple parties.

1 Introduction

Modern Cryptography and Traditional Finance. Due to their sensitive nature,
financial applications require strong security guarantees. Clearly, it is necessary
to ensure authenticity and integrity of any financial operation, i.e. guaranteeing
that the operation has been ordered by an entity authorized to do so and that
this order has not been tampered with. Moreover, it is also necessary to achieve
privacy, i.e. preventing attackers from obtaining sensitive information related
to financial operations (e.g. the identities of entities involved in a transaction
and/or the value of that transaction). In the digital realm, these security guar-
antees can be achieved even in the presence of powerful adversaries who control
communication networks (e.g. the Internet) by means of digital signatures (to
ensure authenticity) and encryption (to ensure privacy).

A Decentralized Conundrum: The meteoric rise of decentralized financial ap-
plications based on cryptocurrencies and smart contracts hosted on blockchain
platforms brought to light a whole new set of challenges. While traditional finan-
cial applications are hosted and executed by financial institutions in a central-
ized manner, the decentralized nature of blockchain-based applications requires
all operations to be verifiable by third parties by means of publicly available
records. If only simple cryptographic primitives are employed, this means that
sensitive data that was once internally handled by financial institutions must
now be exposed on the blockchain in order to perform a financial application.
For example, Bitcoin requires revealing the sender and the receiver of a financial
token that is transferred, so that a transfer transaction is considered valid if and
only if the rightful owner of the token signs it.

Privacy-Enhancing Technologies (PETs) to the Rescue: While sacrificing privacy
to achieve decentralization may be acceptable in some situations, most finan-
cial operations involving companies and private citizens cannot be conducted in
this manner due to a number of reasons (e.g. protecting business interests and
complying to local/international regulations). In order to solve this issue, the
cryptocurrency community turned to Privacy-Enhancing Technologies (PETs)
that allow for achieving the same authenticity and privacy guarantees as in tra-
ditional centralized financial applications while providing the public verifiability
guarantees needed in decentralized blockchain platforms. In particular, many
of the first proposals towards this goal involved using a technology called Zero
Knowledge (ZK) proof systems: a method that allows the owner of sensitive data
to prove a statement about this data without having to reveal it. For example,
in the token transfer transaction example, a ZK proof allows a user to prove

318

SoK: Privacy-Enhancing Technologies in Finance

that an “encrypted” transfer transaction has been signed by the rightful owner
of the token, without revealing neither the owner’s nor the receiver’s identity.

From Decentralized to Traditional Finance: The vast usefulness of advanced
PETs in blockchain applications also sparked an interest in deploying similar
solutions for traditional financial applications. The aforementioned ZK proof
technology has also been used in innovative solutions to the Know Your Client
(KYC) and Anti Money Laundering (AML) problems commonly encountered
in the banking industry. As in the case of privacy preserving cryptocurrency
transactions, in many scenarios an entity wants to prove that they comply with
KYC/AML regulations without revealing their identity nor their sensitive data.
For example, a client can prove to a third party service provider that their
identity has been verified by their bank and that they are authorized to use a
certain service and perform operations up to a certain financial volume, while
keeping their identity, and other attributes (e.g. the list of operations they are
allowed to perform) private.

PETs for the Masses - or - From ZK to MPC: The ZK proof technology lends
itself extremely well to applications that require a single entity to publicly prove
a statement about its private data, e.g. the KYC/AML or cryptocurrency ex-
amples above. However, it is limited by the fact that the entity who generates
a ZK proof must necessarily know all the private information about which the
statement is proven. This is a serious limitation in two cases: 1. applications that
must process sensitive data provided by multiple entities; 2. applications where
certain data (e.g. cryptographic secret keys) are far too valuable to be stored on
a single device, which leaks the data if its security is compromised. Fortunately,
these limitations can be addressed by means of secure Multiparty Computation
(MPC) protocols, which allow a set of entities to jointly execute an arbitrary
program that computes on an encrypted version of their private data and only
reveals the output of this computation.

For example, specific-purpose MPC protocols have long been used for sealed-
bid auctions among entities who do not trust each other, nor a third party
auctioneer. In this case, the parties provide as input “encrypted” versions of their
bids and jointly compute a program that determines the winner of the auction,
without revealing the value of the bids or any other information. In the context
of blockchain-based cryptocurrencies, MPC protocols have also been successfully
deployed for protecting secret signature keys used to authorizing/authenticating
transactions. In this case, many entities locally stores a “share” of the signing
key that does not reveal any information about the key itself unless all shares are
united. When a transaction must be signed, all these entities use MPC to jointly
execute a program that takes as input all the signing key shares, reconstructs
the true key and computes the signature on the given transaction, while only
revealing the resulting signature and nothing else. Since knowledge of the key is
split among many entities, an attacker now has to compromise many, potentially
all, entities instead of a single server.

319

Carsten Baum et al.

1.1 Systematizing Privacy-enhancing Technologies in Finance

The goal of this SoK is to provide an overview of financial applications that can
benefit from PETs. As summarized in Figure 1, we consider 5 main classes of
financial applications, which are each addressed in the specific section indicated
next to the application class name. At a high level, these applications can be
potentially facilitated by the PETs indicated in the PET column of Figure 1,
which are introduced in detail in Section 2. In particular, we focus on financial
applications that require handling private data from multiple entities, as ZK
proof technology for financial applications has been extensively addressed in
previous surveys (e.g. [BKB20,AS22,AZ19,PNP20]). While we aim at providing
a general overview of PETs for financial applications covering broad ranges of
both PETs and applications, we do not intend to provide an exhaustive review of
the PET literature. For each class of applications, we strive to survey the works
that introduced the most relevant insights and groundbreaking results, since it
would be infeasible to cover every single optimization of each PET that would
be relevant for each application.

PET (§2)
(§3) Identity, KYC & AML MPC, ZK

(§4) Legal MPC, ZK

(§5) Digital Asset Custody TSS, MPC

(§6) Markets & Settlement (F)HE, MPC, ZK

(§7) Future applications PSI, DP, MPC

Fig. 1. PET stack for financial applications. TSS = Threshold Secret Sharing, DP
= Differential Privacy, (F)HE=(Fully) Homomorphic Encryption, PSI = Private Set
Intersection, MPC = Multiparty Computation, ZK = Zero Knowledge proofs. See
Section 2 for a discussion of each concept.

The financial applications we cover and the respective relevant PETs are
summarized as follows:

Identity, KYC & AML (Section 3): Identity management is a classical prob-
lem that has the added challenges of Know Your Client (KYC) and Anti Money
Laundering (AML) regulations in the financial sector. PETs can be used in
these applications to provide robust identity management with privacy pre-
serving methods for enforcing KYC & AML regulations in both decentralized
and traditional scenarios.

Legal Procedures (Section 4): Many legal procedures require evidence to be
presented in court. However, in many cases the evidence or even the relevant
law/regulation must be kept private. PETs allow for such legal procedures to
be conducted without sacrificing neither privacy nor auditability (i.e. the abil-
ity of any entity to verify that a legal procedure has been properly executed).
Furthermore, due to the novelty of PETs it is not always clear how they fit

320

SoK: Privacy-Enhancing Technologies in Finance

within existing legal frameworks and how they might help and provide utility
while fulfilling privacy regulations such as GDPR.

Digital Asset Custody (Section 5): Digital assets such as cryptocurrencies
are usually transferred by means of a digital signature, which can only be
generated given a secret key. Since storing this key in a single device poses
a risk of key leakage, PETs can be employed to distribute the signing power
(and thus the power to move the asset) among many entities, in such a way
that the system is only compromised if all entities are compromised.

Markets & Settlements (Section 6): Both the traditional and decentralized
financial markets use complex trading instruments that may be abused by en-
tities who retain privileged information about trades. PETs provide a robust
solution to this issue via distributed “Dark Pools” or privacy preserving DeFi
mechanisms (e.g. Automated Market Makers) that process trades without re-
vealing any sensitive information to the entities envolved.

Future Applications (Section 7): Besides financial applications that have
already been addressed in previous work, we propose that several PETs can
be potentially used to address other interesting challenges in finance. In par-
ticular, recent advances in PETs enable the execution of advanced machine
learning (ML) algorithms on private data, allowing for detecting patterns (e.g.
for fraud) without revealing neither the ML models nor the data.

1.2 Organization

In Section 2, we start with an introduction to relevant advanced PETs and their
security guarantees. Next, in subsequent sections, we survey both traditional
and decentralized finance applications, pinpointing the PETs that have been
shown to solve important challenges in each application. Applications related to
Identity, KYC & AML are discussed in Section 3. Applications related to Legal
Procedures are discussed in Section 4. Applications related to Digital Asset Cus-
tody are discussed in Section 5. Applications related to Markets & Settlements
are discussed in Section 6. Finally, in Section 7, we conclude with remarks on
potential future applications of PETs in finance.

2 Available Privacy-enhancing Technologies

Before we describe applications of Privacy-Enhancing Technologies (PETs) to
finance, we will give a short overview over existing PETs and how mature they
are.

Zero-Knowledge proofs. Zero-Knowledge proofs [GMR85] are cryptographic al-
gorithms which allows a prover to convince a distrusting verifier that a certain
statement is true. While the statement (usually specified in the form of a pro-
gram) is known to the verifier, the proof (e.g. a certain input that makes the
program output 0) is never leaked to the verifier. There exists a large variety of
different ZK proof algorithms, and choosing the optimal proof depends largely on

321

Carsten Baum et al.

the application. Recently, efforts have been underway to standardize ZK proofs4

to make them more accessible to practitioners.

Private Set Intersection. Private Set Intersection (PSI) [FNP04] allows two (or
more) distrusting parties with respective input sets S1 and S2 to securely learn
their intersection, i.e. S1 ∩ S2, without revealing the non-intersecting elements
to the other party. For example, if party 1 has S1 = {a, b, d} and party 2 has
S2 = {b, c, e} then both parties will learn that they have b in common in their
sets. At the same time, party 2 will not learn that party 1 also had a, d in
its input set and vice-versa for c, e. Highly efficient PSI protocols have been
developed recently and some, such as the one developed by Chen et al. [CLR17]
found applications in industry.

Threshold Secret Sharing. Threshold Secret Sharing (TSS) allows a dealer to
distribute [Sha79] a secret x among n different parties, who each receive a share
of the secret. Given a threshold t < n, TSS guarantees that if t or less parties
pool their shares together, then they cannot reconstruct any information about
x. If instead more than t parties cooperate (i.e. pool their shares), then x can
be reconstructed. Multiple versions of secret sharing exist, for example with
security against share-holders who don’t act honestly during the reconstruction
of the secret [CGMA85,RB89]. Moreover, secret-sharing can be generalized so
that not a threshold decides about the possibility of reconstruction, but instead
any pattern can be used by the sender of the shares.

Multiparty Computation. Cryptographic protocols for Multiparty Computation
(MPC) [BGW88,CCD88,GMW86] allow 2 or more mutually distrusting parties
who each have an input xi to evaluate an arbitrary function y = f(x1, . . . , xn)
on their inputs. MPC guarantees that only the function output y and no other
information about the inputs is revealed. One can see PSI as a special case of
MPC where the computed function is the intersection of input sets. MPC can
be made robust against parties who maliciously deviate from the protocol de-
scription, and security usually holds if less than a threshold t of the participants
in the computation collaborate to undermine the security. Therefore, MPC can
be seen as constructing a distributed trusted entity. Recent progress in MPC
research has made practical use of MPC possible5.

Fully-Homomorphic Encryption. Fully-Homomorphic Encryption (FHE) is a
special type of encryption scheme first proposed in [RAD+78] and later realized
in [Gen09]. In FHE, everyone with a so-called public key can encrypt information,
while only the holder of the private key can decrypt it later. In addition, given
encrypted of data as well as the public key, anyone can perform computations
on the encrypted data and evaluate algorithms on secret inputs. For example.
Given encryptions [x], [y], [z] of the values x, y, z, FHE allows to compute an

4 See https://zkproof.org/.
5 https://www.mpcalliance.org/

322

SoK: Privacy-Enhancing Technologies in Finance

encryption [x · y+ z] of x · y+ z or any other efficiently computable algorithm on
these inputs. The clue is that the decryptor who obtains [x ·y+z] will only learn
x · y+ z but not the inputs to the computation. Although concrete FHE schemes
are relatively new, the technology is already somewhat mature6 and powerful
testing implementations7 are available.

Differential Privacy. Differential Privacy [DMNS06] (DP) is a technique to com-
pute add noise to outcomes of algorithms such that leakage about the inputs of
the computation is minimized. The level of the noise is calibrated such that
mathematical guarantees about the privacy of the inputs can be given.

A note on Trusted Execution Environments. Trusted Execution Environments
(TEE) such as Intel’s SGX are special modes of modern processors. A processor
in its trusted execution setting guarantees that programs and their data are
shielded from every other program running on the computer - even the operating
system or any user having full access. A secure TEE allows to build many of the
aforementioned PETs such as ZK proofs, PSI, MPC etc. “cheaply” and without
additional cryptographic tools. In practice, SGX and similar technologies from
other vendors8 are regularly broken and do not offer the protection that they
claim. We therefore do not consider it as a PET in this document.

3 Identity, KYC, AML

A general issue facing the financial world is the validation of customer identities
and attributes. Laws and regulations require financial institutions, both classical
and decentralized, to employ Know Your Customer (KYC) rules, for example to
prevent money laundering and to be able aid in criminal cases - or even to lock
accounts in case of sanctions. Being able to correctly determine a legal owner of
an account can in itself help in preventing money laundering by precluding the
use of fake accounts which could otherwise aid in smurfing, see Sec. 3.2. In the EU
this is for example in place through the Anti-Money Laundering Directives and
in the US through the Money Laundering Control Act of 1986. In the classical
banking setting such validations are carried out through customers going to their
physical bank and bringing required documents to prove their identity, residence
or perhaps even criminal history, of which the bank would keep a copy. However,
with the advent of online-only banks such as Lunar, Revolut and N26, along with
crypto-currency exchanges like Binance and Coinbase, such validations become
tricky, as there are no physical locations to validate identities.

Today KYC is instead carried out online, and in many cases through machine
learning algorithms, where customers upload copies of their data which gets val-
idated. When it comes to security this unfortunately as several disadvantages:
i) it is easy to create a picture of a document or manufacture it, or even modify

6 https://fhe.org/
7 https://www.openfhe.org/
8 See e.g. the exhaustive list on https://sgx.fail/.

323

Carsten Baum et al.

some data of a real document [SSLM21]; and ii) the leakage of legitimate doc-
uments online allows an adversary to steal identities. Simply considering how
often a copy of ones passport is needed (e.g. basically any hotel or accommoda-
tion in any country), it is not hard to see that copies of legitimate documents will
be easy to find on the dark market. Even though requirements can be made to
include selfies or short videos to validate authenticity, this has turned into a race
against Photoshop and deep fakes, which have shown tremendous advancement
in the recent years [TJW22]. While such attacks are also possible in physical
space (i.e. creating fake documents and having them be validated by a human),
it is significantly more cumbersome for an attacker due to human involvement
and more expensive to mount and therefore does not scale like digital-only at-
tacks. Thus it is clear that the digital attack vector on KYC is the weakest link
in account validation.

3.1 Identity management

One possible way of combating attacks when validating digital copies of physi-
cal identity documents is simply to move the documents into the digital realm.
Digital signatures and revocation systems can ensure that digital documents are
legitimate. This is done by combining them with an identification scheme where
a user needs to prove they know a password/key used in the construction of
their digital identity. This can prevent theft through simply copying the digital
document, e.g. when validating it. Often a simple password or key is not deemed
secure enough in financial applications by law [PU15], and a second factor is
required when used for financial transactions of a certain size. Thus the use of
authentication apps is common in electronic ID (eID) solutions, like the Danish
MitID. Such eID solutions validate user-identities by the a trusted issuer dur-
ing setup, allowing other applications to piggy-back on existing validation. This
naturally comes with a risk of compromise or identity sharing through the eID
provider, although it may arguably be harder than with their physical counter-
parts.

Single Sign-On eIDs are typically validated by a centralized and trusted server
that is able to perform relevant logging, and hence poses a risk to user privacy.
Furthermore, such identity management is not exclusive to official or govern-
ment identities, but can involve any kind of self-reported identity, which is the
case for example for a Facebook or Google account. These platforms act as fed-
erated identity management services, allowing the sharing of the user’s identity,
along appropriate attributes of the user, to third-party websites. Thus facili-
tating a single sign-on (SSO) system. In this setting, the server validating the
user’s identity is known as the identity provider (IdP), which would be Face-
book or Google in the above example. The third-party website is known as the
service provider. This could for example be Netflix or Spotify. The idea of an
SSO service goes beyond simply having an IdP facilitating a user authenticat-
ing towards a service provider. In fact an IdP may gather certified attributes
about a user from multiple trusted issuers, and sign off on the user indeed being

324

SoK: Privacy-Enhancing Technologies in Finance

validated to have such attributed. This for example happens when Facebook
validates that a given user has access to a specific email account, or phone num-
ber. While using an SSO makes things much simpler for a user, it also is a big
privacy issue as an IdP now hold a large amount of the user’s personal infor-
mation, along with knowledge of whenever the user users this information and
towards which service provider. Furthermore, it also means that large amount
of trust has to be put in the IdP as they are would be able to impersonate any
of their users towards any service provider. While such a thing is also possi-
ble for any attribute issuer (to a lesser extent) it becomes more of a problem
for an IdP as they must be user-friendly enough that they can be used several
times a day and since their only job is authentication. Hence becoming more
exposed. Beyond this, simply using an SSO service can also lead to traceability
and linkability of the user across the web. Traceability means that a user can
be identified from the data resulting from using their eID. Whereas linkability
means that it is possible for different service providers to find out if they have
the same users. This can be an issue even if the user is authenticated using a
pseudonym, since all it takes is one sharing of personal data, such as credit card
information at a service provider, to de-anonymize the user. However, works
like PASTA [AMMM18] and PESTO [BFH+20] use threshold cryptographic to
enhance the security of IdPs and limit traceability and linkability without re-
ducing the usability. I.e. password based authentication can still be used and
they remain compliant with solutions like OAuth and OpenID Connect. While
they only focus on password-based authentication, they can be generalized to
support multi-factor authentication [Fre21] and thus be used when multi-factor
authentication is required for financial compliance, as e.g. in Europe according
to PSD2 [PU15].

Decentralized Identifiers With the advent of blockchain technologies a lot of
work has sprung up, trying to remove centralization from the management of
eIDs. This is generally known as a Decentralized Identifier (DID) [SLS+22]. The
overall idea is that any kind of attribute provider issues a pseudonym to a user’s
blockchain account, reflecting a specific attribute. The user can then later use the
pseudonym to prove certain certain attributes, or to simply get a reusable link to
their pseudonymous identity at the same identity provider. However, it is clear
to see that this basic construction is unfortunately not enough to ensure privacy,
as again it possible to link the user across the internet (or blockchain) through
their pseudonym. For this reason DID systems are starting to incorporate more
advanced cryptographic constructions allowing users to anonymously prove that
they hold a certain pseudonym towards a service provider (in order to facilitate
authentication). Such a construction is known as a cryptographic credential.

Camenisch and Lysyanskaya [CL01] were the first to show a fully self-managed
solution allowing users to prove their identity has been certified by a trusted
provider, in an anonymous manner. Their credential construction affords valida-
tion of issuance from a trusted authority, while allowing the user to anonymously

325

Carsten Baum et al.

use it and preventing anyone who does not know the user’s key9 to impersonate
it. However their construction did not allow the validation of arbitrary attributes.
Something which is needed in many financial situations. Consider for example
the case for loan or insurance issuance, where the customer’s financial situa-
tion or health status has to be validated. Classically these must be provided
as signed physical documents from the customer’s attribute provider (such as
credit bureaus), but the line of work on credentials, known as attribute based
credentials shows how to achieve this in the digital sphere [CL04,San20] with
cryptographic security and privacy guarantees. It was later shown how to com-
pute arbitrary predicates on the certificated attributes [CG08]. Further develop-
ment of such schemes into commercial products have been done by both IBM
with their Idemix framework [CV02] and by Microsoft through U-Prove [Paq13].
The underlying primitives have even been taken up by standardization frame-
works such as W3C [SLC22]. Still, despite such commercial traction, widespread
adoption is still lacking. Moreover, in the context of DeFi systems, decentralized
versions of anonymous credential schemes [GGM14,CDD17,ACC+20,DGK+21]
have been proposed.

One could imagine that the requirement for self-managed private keys could
be the reason that such approaches lack adoption since the regular news bulletins
of people having lost their cryptocurrency keys, show that self-administered key
management is not for the general public. However, multiple solutions based
on threshold cryptography can be used to securely store keys under a client’s
password [CLLN14,JKKX17]. A more likely explanation might be the need of
existing attribute providers to completely change their work-flow and systems,
without any direct financial, legal or customer requirements.

Deploying Privacy Preserving Identity Management Fortunately, recent research
have shown how PETs can be used to get certified attributed from issuers without
modifying existing infrastructure, when such attributes be retrieved from the
provider through TLS-secured connections. The Town Crier system [ZCC+16]
shows how to construct certified attributes using secure hardware (like Intel SGX
and using a TLS connection with a trusted provider). Concretely, they discussed
how such certified attributes could be relayed to smart-contracts to allow more
advanced decentralized user-attribute validation. Later, DECO [ZMM+20] then
showed how to remove the need for secure hardware and replace it with MPC
while achieving the same goal. However, they extended their construction to
also integrate with zero-knowledge proofs, allowing clients to construct certified
proofs of arbitrary predicates on attributes from any provider, trusted through a
TLS certificate which provides online access to the user’s attributes. This could
for example include a bank providing online banking access, where a user would
then be able to construct a proof that they hold a bank account with e.g. at
least $20.000. If the user’s government provides an online residency portal, then

9 Allowing the user to fully control the use of their credential through a single key can
be conceptually advantageous.

326

SoK: Privacy-Enhancing Technologies in Finance

it could also be used for the users to prove that they legally reside in a given
city in a given country without leaking their exact address.

The CanDID system [MMZ+21] shows how to fully realize a DID system with
legacy support though either Town Crier or DECO. This is achieved through the
usage of an MPC committee that validates legacy identity data and constructs
a zero-knowledge friendly credential. Based on this credential the user can then
prove arbitrary predicates on their attributes towards any provider.

Using attribute based credential allows the construction of fully private iden-
tity and attribute-based systems. However, in some situations full privacy might
be undesirable, we would rather want to privately validate whether transactions
are permissible based on attributes or identity, for example by ensuring that the
identity of the credential holder is not on a deny-list. Kohlweiss et al. [KLN22]
showed that such a system can efficiently be constructed on top of credentials.
The construction allows an auditor to specify any predicate on the attributes
in a credential, where the identity of the credential holder gets leaked if the
predicate is fulfilled. Such conditional privacy leakage could prove tremendously
helpful in fighting money laundering as we discuss next.

3.2 Anti Money Laundering

Money laundering is the process of concealing the origins of money, such as
financial gains from drug trafficking or other serious crimes, by changing its origin
to a benevolent source. This is because criminals must acquire many services and
goods in the regular economy: put simply, most luxury car dealers don’t accept
briefcases full of bills. Money laundering is a huge problem in the financial sector:
the estimated amount of laundered money is at the level of 2-3% of the national
GDP in the US alone, excluding tax evasion [RT04, Chap. 2].

Getting large amount of illegitimate cash into the financial system requires
multiple steps and multiple accounts to avoid raising suspicion. Simply getting
dirty money into the system is known as placement. A concrete and common
approach for this is known as smurfing, where multiple legal people deposit
small amounts of money for a criminal, with the promise of earning a small
amount as a kick-back. After a period of time the smurfs move the money out
of their accounts (minus their fee), by transferring to other accounts controlled
by the criminal. If this process is done with small amounts, and the receiving
party’s account is not flagged, then smurfing is hard to identify10.

Once the money is in the legal financial system, it needs to be mixed with
legitimate transfers, to counter suspicions caused by the initial transfers. This
involves creating reasonable and justifiable transfers among multiple accounts
of multiple entities in a process known as layering. By setting up a layering
scheme through multiple banks, in different legal jurisdictions, using different
legal entities, it becomes almost impossible to trace the flow of money. This
is because the involved banks are (reasonably!) not allowed to communicate

10 This step is sometimes also realized through other means, such as deposits from
cash-driven businesses such as laundromats or food trucks.

327

Carsten Baum et al.

private account and customer information about the sender and recipient of a
money transfer. After the layering, the money is finally moved out of financial
institutions and into legitimate investments such as real estate or legitimate
businesses. This last step is known as integration.

What banks do to counter money laundering. As banks cannot share account
and customer information with each other it is extremely hard for them to trace
dirty money during layering. To address this, banks use multiple approaches
usually subsumed as Anti-Money Laundering (AML) techniques. For example,
banks internally use a suspiciousness score for customers. It is based on a base
score, which is derived from the meta information about the account and its
owner. The score may be derived from e.g. age of the account/holder, amount of
money in the account, expected income and nationality of the owner. Through
transfers, the base score is then updated, e.g. based on the score of the account
a transfer goes to or comes from if both sender and receiver account are held by
the same bank. If they instead are held by different banks, then metadata such
as the amount of money going in/out and the frequency of the transfers is used
in updates.

Finally, banks do have one common tool in measuring the suspiciousness of
transfers, and that is a common, yet secret, grey list. This grey list contains ac-
counts that have been deemed significantly suspicious, but for whom no provable
money laundering has been identified yet. A transfer to or from a grey-listed ac-
count significantly increases the suspiciousness score. At certain time intervals,
the suspiciousness score of an account is checked against a certain threshold and
if the score is too high, then it gets flagged for manual11 inspection.

What can banks do? Due to GPDR and other privacy laws, it is not possible
for banks to directly share meta-information about accounts or its owner with-
out their consent. Furthermore, if a bank finds a flagged account it believes is
engaging in illegal activities then when informing authorities, it must be able to
explain to said authorities how they came to this conclusion. Hence the bank’s
judgements must be auditable by a third party. If the conclusion depends on
data received from other financial institutions, the bank must be able to point
to this data and the third party must trust it as well. While data from banks
from within the same legal framework (the EU, USA, etc.) is usually considered
as valid, data from international banks, in particular those from countries with
a history of corruption, has less trustworthiness.

Implementing sufficient and efficient AML techniques is also difficult due
to the quantities of information involved. AML technologies should ideally be
scalable to include all transactions and accounts. At the same time, even a limited
AML technology which only covers cross-country transfers or an arbitrary subset
of accounts, could still make a substantial dent into the suspected large amount
of money laundering currently going unnoticed.

11 In practice it turns out that about 95% of automatically flagged accounts are false-
positives.

328

SoK: Privacy-Enhancing Technologies in Finance

Cryptography and AML. The conjunction of AML and MPC is new and the
main bodies of work on the topic are by Zand et al. [ZOP20] and Egmond et
al. [vERS21]. Zand et al. show how computation on secret data can be used to
notify an auditor of suspicious behavior. Egmond et al. show, in collaboration
with multiple banks, how to use additively homomorphic encryption to oblivi-
ously update risk scores, and eventually (with consent from collaborating banks)
decrypt the risk scores and flag accounts and customers appropriately.

However, related to this is the area of auditability of confidential transactions.
As for example discussed by Tomescu et al. [TBA+22] where users are given
a limited monthly ”anonymity” budget. This budget is a certain amount of
currency they are able to transfer anonymously per month. However, transfers
surpassing this amount, is subject to deanonymization and clearance by a trusted
auditor.

Finally, we note that a survey of real world concepts using PETs to com-
bat financial crime has been conducted by the Future of Financial Intelligence
Sharing consortium [Max21]. Unfortunately, many of their mentioned solutions
require a trusted party to be involved.

As mentioned above, AML in centralized banking is challenging as the trans-
action graph is hidden due to e.g. privacy regulations. However in the decen-
tralized finance space, such transaction graphs are usually visible. This is why
most popular cryptocurrencies, such as Bitcoin, Ethereum or Cardano, are only
pseudonymous and not anonymous12. Cryptocurrency exchanges such as Coin-
base and Binance allow to turn large amount of cryptocurrency into Fiat curren-
cies. These exchanges are required by law to enforce know-your-customer (KYC)
rules. Through the help of transaction graph analysis firms such as Chainalysis,
it has become hard to launder money using pseudonymous cryptocurrencies.

Researchers have also proposed mechanisms to enforce AML even if transac-
tions are kept private. This includes using an escrow system where anonymity
and privacy can be broken in case suspicious activities occur, such as transfers to
or from an account known to be used by criminals [ST99,NVV18,BG20,DGK+21].
Such escrow mechanisms does not necessarily imply the usage of a trusted third
party, as the data for escrow activities can e.g. be shared using Threshold Se-
cret Sharing. Another approach is to specify a small budget per client which
they can use every month for anonymous payments. After the client has made
more transactions than covered by this budget, any future transactions can be
traced [WKCC19,TBA+22]. Although seemingly a good compromise between
privacy and security, this does still pose a risk to smurfing.

12 We note that there exist privacy-focused blockchains like ZCash, Monero, or Dash
that hide the transaction graph. Moreover, one can build private transactions on
top of non-privacy focused blockchains using e.g. Zether [BAZB20a] that leverages
encryption and ZK proofs. Finally, mixers such as Tornado [PSS19] take transfers
from many users and put them into a holding account, from which they can later be
transferred to the intended recipient.

329

Carsten Baum et al.

4 PETs and the law

Usage of “classical” cryptography such as (public/private key) encryption, MACs,
hash functions and digital signatures have been prevalent for decades and have so
found their reasonable places within the legal framework of nations. For example
legally speaking robust encryption schemes, used with long, high-entropy keys,
provides a reasonable measure to secure sensitive data [Eur16, § 83]. However,
besides affirming the security provided by cryptography, the law can only be
used to deteriorate the security cryptography offer. This can occur through the
usage of back-door mandates, forced usage of insecure parameters or the forced
assistance in by people and companies to break circumvent encryption as is for
example the case in India [MoLA00, Sec. 69]. This is not something new, and
goes back to 90’s, where export restrictions of highly secure encryption schemes
were in place in the US [DL05]. Even more concerning than imposed weaknesses
in underlying cryptography, is the legal issue of forced decryption. While this
has generally been an issue for individuals [CP18], it has also become an issue
for companies. Apple was for example mandated to decrypt a user’s iPhone the
San Bernardino terror attack of 2015 [Gro16]. Compelling a company to decrypt
data should in itself not be regarded as a problem for PETs, as such cases al-
ready occur in non-private computation. However, this does become an issue in
situations where PETs could be used to carry out transactions, which would
otherwise not be possible due to their sensitive nature. In such a case, legal
requests could also become preemptive requirements. Thus meaning that even
if a company itself might not be trusted to not behave maliciously, it could be
compelled to do so by its government. This is concretely a problem when entities
in distrusting countries need to collaborate. One entity might trust another one
to not behave maliciously, perhaps due to the public backlash of getting caught
actively cheating13 However if an entity acts malicious due to a governmental
mandate, then such a backlash will be practically non-existing. Thus such legal
potential could require the use of the strongest possible models of security.

While law could be used to break the security of PETS in certain weaker
models, PETs can also help keeping the law. An example of this can be seen
in the need for different governmental institutions or law enforcement agencies
to share personal data in order to e.g. thwart terrorist plots. The need can be
as simple as checking whether the same individuals are present in two different
databases, and if so share relevant data. However, doing so without the aid
of PETs would require leaking the individuals present in at least one of these
databases. This goes against privacy laws, and in jurisdiction such as the EU,
This would require explicit consent by all people in the database. While lawful
sharing of personal data within law enforcement agencies might be possible in
certain situations, such as sharing the list of publicly convicted criminals, this is
not possible when it comes to other potentially relevant databases, such as people

13 Certain flavours of MPC [AO12] can for example be used to ensure that if someone
tries to cheat, the honest parties will get a publicly audible proof of this, which can
then be release to the appropriate authorities.

330

SoK: Privacy-Enhancing Technologies in Finance

with a record of mental illness or people with gun permits. A study of how to
use MPC in such cases has been thoroughly studied in both a cryptographic and
legal framework by Treiber et al. where different law enforcement agencies aim
to find and share data about common entries in their databases, under approval
by a judge [TMSgD22]. This framework could also prove relevant within law
enforcement and financial institutions to ensure legality, such as law enforcement
requests to the financial institution e.g. in relation to anti-money laundering (see
Sec. 3.2). Thus PETs can be used to ensure the rights of citizens when the law
gets involved. However, the law can also hinder certain computations and model
on certain types of data as we discuss in the following.

GDPR and MPC On May 25th, 2018 the General Data Protection Regulation
(GDPR) [Eur16] came into effect in the EU. The law dictates how data concern-
ing EU citizens, should be protected and handled, along with legal requirements
concerning individuals’ rights; such as requiring appropriate consent for data
storage and computation, and the possibility of withdrawing such consent.

While the GDPR is an 88 page law document consisting of 11 chapters and
a total of 99 articles, its general gist can be described from the a few terms:

Personal Data : Any information that relates to an individual, which can be
directly or indirectly used to identify the individual. For example name,
gender, social security number, religious belief, web cookies, etc. It should
be noted that some pieces of data alone uniquely defined an individual, such
as social security number, whereas as some pieces of data are just indirect
identifiers, such as gender, town, religious belief. A single indirect identifier
does not uniquely identify an individual, but combining several of these may
uniquely identify the individual. The GDPR considers even a single indirect
identifier as personal data.

Data processing : Any process performed on data. For example computing,
storing, transmitting, deleting, etc.

Data subject : The legal person whose data is processed. For example a cus-
tomer or a web page visitor.

Data controller : The entity who decides what actions will happen to personal
data. I.e. the holder of such data. For example the employee at a company
responsible for data storage. In practice a data controller will generally be
consider a legal entity such as a company, who holds personal data. For
example Google, Tesco, Die Bahn, etc.

Data processor : A third party that performs actions data on behalf of a data
controller. For example cloud storage providers such as Amazon or Microsoft,
or researchers computing statics.

Based on these definitions the GDPR requires that data gathering must be as
minimal as needed andmeasures must be taken to ensure that personal data kept
is up to date. Furthermore, any processing must be as minimal as needed, trans-
parent, and done in a way that ensures confidentiality and integrity. Finally the
data controller must be able to demonstrate compliance with the requirements.
The GDPR has further requirements such as disclosure of breaches within 72

331

Carsten Baum et al.

hours and in some cases the need for employee training and the appointment of
a data protection officer. The requirements of a data controller is unsurprisingly
much higher than for a data-processor. For example, a data controller requires
consent from the data subjects for storage, computation and other actions on
their data. These are not required by the data processor, although the data pro-
cessor must still ensure that the data is protected and can still risk huge fines
for failure to do so.

Relating the GDPR to PETs we see that the main question is whether any
legal entity other than the data controller has access to personal data on its
data subjects. This becomes a question of what “access” means. The GDPR
states that if it is not reasonably possible recover the identity of persons based
on the data in their possession, then they are not data controllers [SHD17,
3.2.1]. Furthermore, there is precedence suggesting that a server simply storing
encrypted data, for which it does not hold the key, is generally out of scope of
GDPR requirements [PAR18, Sec. II. D.]. Thus the legal requirements and scope
of different entities participating using PETs on personal data comes down to
the definition of reasonably.

For secure hardware is seems reasonable to assume that outsourcing the
computation on personal data would either not be considered reasonable, or the
provider of the secure hardware would be considered a data controller. E.g. for
an execution on personal data on SGX on a server, either 1) the server and
the initial data controller together would be considered a joint data controller
(if SGX does not reasonably protect the data). Or 2) the initial data controller
and Intel would be considered joint data controllers (as Intel is claiming their
hardware reasonably secure).

In the case of secure computation, the situation becomes more unclear, firstly
since it is undefined if collusion can be considered reasonable, and secondly since
there is no single legal entity that can be held accountable in case of a breach.
Thus there is a chance that the servers executing MPC would all be considered
joint controllers on the set of all personal data which is computed on. This is
called the absolute interpretation of the law. A less conservative view would
imply that they become data processors, and thus need to adhere to general
data safety and operational requirements, but do not need consent from the data
subjects whose data they compute on, assuming they gave their data controller
consent to carry out such a computation [ATV20, 2.2]. This means that MPC
could be used as tool for proving data privacy by design. However, the general
consensus is that if data is secret share or encrypted when computed on, in
a way where a single malicious legal entity is not able to reasonably recover
the personal data, then the data is no longer personal and out of the scope
of GDPR [SHD17, 3.2.1] if the result of the computation does not reasonably
allow deanonymization of the individual’s whose personal data was used [HR22].
Crucially this applies, not just for a single computation but for the conjunction of
all computations done on the data subject’s personal data. This is known as the
relative interpretation. Technically, the interpretation comes down to whether

332

SoK: Privacy-Enhancing Technologies in Finance

personal data is considered anonymous if no-one can reconstruct or if no single
legal entity can reconstruct the data (up to cryptographic hardness).

More concretely, regardless the legal status of the different servers, when it
comes to computing on personal data, the GDPR imposes other requirements
in that 1) data subjects must consent to the specific computation to be carried
out, at the time they give their personal data and 2) and the result of the
computation must not be able to lead back to the data subject’s personal data
or identity. Thus according to the GDPR care must also be taken to only perform
computations on personal data, where the result of the computation cannot lead
to deidentifying the data subjects

One interesting exception to personal data under the GDPR is pseudon-
omyzation. Pseudonomization involves replacing identifiable parts of personal
data with pseudonyms. It should not be confused with anonymization, which
completely removes the coupling of personal data to a data subject. Pseudono-
myzation is considered a reasonable approach to securing raw personal data, but
at the same time is still considered personal data! Hence sharing and computa-
tion on pseudonomized data still make participating entities data processors at
a minimum.

An example application of how to achieve utility from personal data without
breaking privacy was demonstrated by Damg̊ard et al. [DDN+16]. They con-
structed a scheme based on MPC where personal data held by a consultancy
house, was used to compute credit scores (relative to other applicants in the
same category) for load applicants, hence helping banks to give rational interest
requirements and loan offers. Their concrete case was focused on Danish farmers,
as they are not required to publish financial information about their business,
and thus it is a challenge for banks to give reasonable loan requirements as they
don’t know how the specific applications compare to the general market. While
not done explicitly the protocol of Damg̊ard et al. could have allowed banks to
give farmers loan offers without the farmers needing to disclose their financial
situation to the bank beforehand.

Other laws Many countries have privacy laws but few have been studied in the
relation to PETs and to keep the scope of this survey simple we have only covered
GDPR. Furthermore, the scope of GDPR is in a sense the one of the strictest
privacy framework when comparing e.g. with HIPAA and CCPA in the US.

PETs assisting businesses and governments Disregarding personal data, there
are often other situations where companies, or even governmental instances
might want to validate that the other party holds the information they claim
they to do. This could for example be the case of mergers and acquisitions, where
one company claims to hold some algorithms or machine learning model capable
to perform certain actions, but they would of course not want to disclose this
before the acquisition is complete.

A similar problem has also occurred during trials, such as the case of U.S.
v. Michaud and U.S. v. Coplon, where the defendants were charged based on
evidence gathered through the use of proprietary and secret law enforcement

333

Carsten Baum et al.

software. However the defendants defense wanted to inspect the software to en-
sure that it did not have faults and that it did not violate the Fourth Amendment
(unreasonable searches and surveillance). In situations like these, zero-knowledge
proofs could be constructed and used to convincingly validate the necessary con-
straints, without leaking proprietary information [BCGW22]. The same is true
when the proprietary information is not a program, but classified data instead.
If the data has been certified by an authority, then zero-knowledge proofs could
be used to validate such data against a public predicate without leaking any
content. Such zero-knowledge proofs could furthermore be augmented to allow
for public verifiability, meaning that any external party can validate the proof.
By combining this with a blockchain, such proofs could remain publicly accessi-
ble for anyone to validate. The possibility for public verifiability is for example
highly relevant in the case of U.S. secret laws. These are laws whose content,
or even existence, are classified. Such laws for example contain constraints on
how law enforcement are allowed to circumvent security measurements to access
people’s personal data, without warrants. In court cases it is useful for the public
and jury to be able to validate that the constraints in the secret laws have been
obeyed by law enforcement [GP18].

In the finance sector such approaches could also be useful, for example for
banks to prove that their AML software fulfill the minimum legal requirements,
without leaking their proprietary algorithms, see Sec. 3.2. Such proofs could also
be useful to post publicly for public verifiability, allowing (potential) customers
to validate that their bank of choice is following legal requirements. Another
example where this might prove useful, is in the situation of acquisition where
information about the quantity, or demographic, of customers might be highly
relevant to the price purchaser is willing to pay.

5 Digital Asset Custody

As the vast majority of financial transactions are automatically executed over
vast inter-bank and payment networks, the signing and encryption of sensitive
transaction messages require secret cryptographic key material that must be
carefully managed to prevent impersonation, theft and forgery. In traditional
finance, this is implemented at the device instance level with hardware security
modules (HSM). These generate, store and use sensitive key material locally; any
signing or encryption operations are performed strictly on the HSM such that the
key material never leaves the device during usage. Thus, physical access to HSMs
must carefully guarded and its operation must adhere to rigorous standards, such
as those set by the Payment Card Industry (PCI).

HSMs are widely used in payment networks, for example, when the EMV
protocol [BST21] for credit card transactions requires the online verification of
a customer PIN entered at the point-of-sales (POS). In this case, the PIN must
be forwarded in authenticated and encrypted form to the card issuer for verifi-
cation. However, as the POS supplier does not have a direct relationship with
the card issuer, the PIN is forwarded via hops between intermediaries, where

334

SoK: Privacy-Enhancing Technologies in Finance

only neighboring intermediaries have established shared keys for encrypted com-
munication; Such keys for encryption are managed by HSM’s. However, security
which HSM provide also means they are costly to acquire (tens of thousands
of dollars) and to operate, as even the most basic maintenance items such as
firmware upgrades must be conducted on-site and involve multiple, redundant
operators with requiring specific access authorizations. Furthermore, strict PCI
standards on the design and operation of HSM’s make changes to the under-
lying cryptography very difficult, as custom HSM firmware are generally not
permitted.

Threshold signatures computed by MPC committees have emerged as an
alternative to HSMs in the context of digital assets, which have deployed non-
standardized signature schemes such as ECDSA based on non-standard elliptic
curves (e.g. secp256k1 in Bitcoin). Whilst HSMs have traditionally played the
role of secure signing, they are difficult to customize and adapt in an industry
with rapidly evolving cryptography on ever newer blockchain protocols. Fur-
thermore, since HSMs represent a single point of failure, their installation and
physical access control requires expertise, not readily available to fast-moving
cryptocurrency startups and institutions. MPC can be offered as Software-as-a-
Service or cloud solutions. Suppliers of such digital asset custody solutions in-
clude Unbound14 [Coi21] and Fireblocks [Fir21], which have implemented highly
performant threshold signing algorithms [LN18,CGG+20,DJN+22]. In contrast
to HSMs, MPC servers can be run on standard virtual cloud instances, offering
a high level of elasticity for both (1) performance and (2) key security; (1) Sign-
ing of independent transactions to authorize transfer of digital assets is easily
parallelizable and (2) the number of MPC servers can be scaled to increase de-
centralization of the key material. MPC instances can also be easily upgraded
to perform new cryptographic tasks as there is a lesser need for standardization
and hardening of individual MPC devices given a lack of a single point of failure.
Furthermore, using MPC allows for easy and simple portability and back-up of
key material. Another benefit of using this technology is employing the concept
of proactive security for MPC protocols to periodically refresh their internal scret
states in order to recover from momentary security compromises. In particular,
this has been implemented in the context of MPC-based key management for
digital asset custody [CGG+20].

We note several critical differences between traditional finance and decen-
tralized finance, which explain the quicker adoption of MPC by the latter. In
traditional finance, transactions can generally be revoked; if an individual HSM
is compromised and its key material exposed, the log of the attack can be traced
to an individual device. The post-mortem analysis can thus establish a clear
breach event and entry point, providing clear evidence that a transaction was
authorized with stolen keys for its later revocation. In contrast, transactions
in digital ledgers can generally not be reverted; they are final. For this reason,
cryptocurrency exchanges and custodial services will operate “cold” and “hot”
wallets; the former are generally disconnected from the business logic and re-

14 Acquired by Coinbase, Inc.

335

Carsten Baum et al.

quire human authorization to move funds. The latter hold a fraction of the total
assets, but are automatically triggered to produce valid digital signatures when
prompted by the customer-facing application.

We consider the adoption of MPC for the application of digital asset custody
an illustrative one; the improved updateability and tuneability of both perfor-
mance and security in MPC (over classical HSM’s) is a major selling point for
emerging applications, and we anticipate MPC to spread to other key manage-
ment domains in finance over time.

6 Markets & Transaction Settlement

In this section, we provide an overview of privacy-enhancing technologies in
market and settlement applications.

In financial markets, there is a need for auctions and markets with fairness
guarantees, as rational actors are incentivized to collude and front-run hon-
est parties, if the true valuation or trade-intent of the latter is revealed. Here,
we first consider the traditional finance setting (§6.1), where the settlement of
transactions is handled by traditional, asynchronous settlement processes. In
the presence of a public ledger (§6.2), settlements occur synchronously and im-
mediately after a transaction is completed. Such a mechanism also permits the
“netting” of inter-bank payments §6.3) to minimize the liquidity requirements
on participating banks; this must done with PET approaches, since the public
ledger would otherwise expose all individual payment orders, a clear breach of
consumer privacy.

Finally, we highlight approaches to achieve bidder privacy in demand-response
electricity markets (§6.4), which coordinate the remote scheduling of power
consuming devices to match forecast production from sustainable production
sources; the submission of granular device-level information to an auction in the
clear can reveal the activity and presence of customers at home, violating their
privacy.

6.1 Markets in Traditional Finance

The first setting reflects an idealized view of traditional finance, where accounts
and balances are generally maintained by financial institutions and considered
private. Here, the settlement of auctions, or exchange transactions, occur asyn-
chronously; whilst the counterparty risk from defaulting on obligations implied
by pending transactions is real, we consider it an orthogonal challenge addressed
in the public ledger setting (§6.2, §6.3). Clearing prices and executed volumes
are considered public information as this information is forwarded to institutions
executing the settlement. This first setting intends to achieve resilience against
dishonest venue operators and participants attempting to obtain a financial gain
from unwarranted information flow. Communication between parties generally
assumes direct, authenticated channels, implying the knowledge of identities and

336

SoK: Privacy-Enhancing Technologies in Finance

Setting Applications Privacy Benchmarks PET Works

Markets in

Traditional Finance

(§6.1)

Distributed

sealed-bid

auctions

Single-sided Bid privacy MPC
[FR96], [HTK98],

[Cac99], [NPS99]

Double-sided Bid privacy MPC [BDJ+06], [BCD+09]

Public verifiability - HE+ZK [PRST08]

Distributed

Dark Pools

Continuous matching Order privacy MPC [CSTA19]

Periodic matching
Order privacy MPC [CSTA21], [dGCP+22]

Order privacy FHE [BDP20]

with many assets Order privacy MPC+HE [CSTA21]

with many servers Order privacy MPC [dGCP+22]

Public verifiability - HE+ZK [TP07]

Markets on

Public Ledgers

(§6.2)

Decentralized

sealed-bid

auctions

Single-sided Order privacy MPC+ZK
[BHSR19], [DGP22],

[GKS22]

Privacy-preserving

Decentralized

Exchanges

Futures

Periodic matching

Net position

privacy
MPC+ZK [MNN+18]

Periodic matching

Balance privacy

Partial order privacy
MPC+ZK [GVJR22]

Order privacy

(Balance privacy)
MPC+ZK [BDF21], ([BCDF22])

Intent-based

order matching

Balance privacy

Order privacy
ZK [BCG+20], [XCZ+22]

Balance privacy

Order privacy
WKA [NMKW21]

Settlement on

Public Ledgers

(§6.3)

Liquidity preserving

inter-bank netting
-

Payment privacy ZK [CYDC+20]

Payment privacy

& Robustness
MPC+ZK [DCMA22]

Demand-Response

Markets

(§6.4)

Distributed auctions

for demand flexibility

Double-sided

(Single buyer)

Device power

constraint privacy
MPC

[AACM16], [ZGND22]

[GZN22]

Fig. 2. Auctions & Markets: no benchmarks (), preliminary benchmarks (), bench-
marks achieving real-world performance with traditional market parameters ().

a pubic key infrastructure.

Distributed Sealed-bid Auctions. One-off, sealed-bid auctions are frequently
performed in the sale of frequency-spectrum rights, government contracts, real-
estate and other private items, such as art. In open-cry, single-sided auctions,
bids are broadcast publicly until no additional bids are made. However, the
leakage of bids or orders can be exploited by the adversary for financial gain.
In Vickrey auctions, where the winner pays the price submitted by the second-
highest bid, the auction operator collecting the submitted bids is incentivized to
collude with other bidders to increase the second-highest bid price and maximize
auction fees. The auction operator must also be trusted to not reveal anything
about submitted bids, in order for all bidders to submit their true valuation.
The advent of the public, commercial internet coincides with the first proto-
col proposals which permit the execution of one-time, sealed-bid auctions by
distributing the role of the auction operator, thereby removing the need for a
trusted auction venue.

Franklin et al. [FR96] propose a one-sided auction protocol, where the auction
venue is distributed amongst multiple servers; bidders to submit their signed
bids as verifiable secret-shares (VSS) to participating servers during the bidding
phase. Subsequently, bids and signatures are jointly reconstructed by all servers,

337

Carsten Baum et al.

upon which all bid information becomes public. Verifiable secret-sharing ensures
that bidders submit well-formed bids. As long as a single server is honest, the
reconstruction of bids cannot occur before the end of the bidding phase. However,
it is often important to protect the privacy of bids, even if they are not successful;
the valuation may reveal a bidding strategy for another, related auction.

In the work of Harkavy et al. [HTK98], MPC is deployed to maintain the
privacy of all submitted bids; only the winning bid is made public. Naor et
al. [NPS99] propose a variant of MPC with garbled circuits, to reduce the
rounds of communication, thereby improving performance. Cachin [Cac99] builds
a purpose-built, privacy-preserving protocol, which permits the comparison (>)
of prices between two parties with the help of an untrusted third party. An
auction determining the highest bidder is then constructed from this primitive.

The first work to demonstrate the feasibility of privacy-preserving (one-time)
double-sided, sealed-bid auctions was proposed by Bogetoft et al. [BDJ+06].
Later secure auctions were used in practice [BCD+09], to facilitate the auction-
ing of sugar beet delivery contracts in Denmark. Concretely, farmers producing
sugar beets hold contracts which represent an obligation and right to deliver
beets to the the (single) Danish sugar beet processor Danisco. The trading of
such contracts permits the reallocation of contracts to the most efficient produc-
ers, but such an exchange run by Danisco would permit it to learn information
about the economic circumstances of producers, potentially compromising sugar
beet farmers during contract negotiations. The matching and determination of
a price computation from 1229 buy and sell orders was achieved in approxi-
mately half an hour by an MPC committee of 3 servers; a throughput volume
sufficient for a one-time auction, but unacceptable for traditional electronic se-
curity exchanges. It should be noted, however, that cryptographic techniques
have improved drastically since the work first appeared. Such an auction would
run much more efficiently today.

Publicly verifiable auction operators are proposed in the work of Parkes et
al. [PRST08], a weaker alternative to implementing the auction operator with
MPC; instead, the dark pool venue is still operated by single entity, but provides
cryptographic proofs that the auction algorithm is performed correctly by the
venue operator. Whilst this prevents the auction venue from manipulating the
correct evaluation of auction bids, it does not prevent the auction operator from
leaking bid information to malicious participants.

Distributed Dark Pools. Dark pools have gained adoption in traditional fi-
nance as venues where submitted orders are not publicly accessible, thus min-
imizing the potential price impact caused by signalling trade intent to front-
running market participants. As is the case with auction venues, the dark pool
operator must be trusted to not share the order flow information with malicious
participants, a trust assumption that is frequently violated in practice (Table 1
in [CSTA21]), motivating the need for distributing the role of the venue operator.

Whilst the matching of orders in a secret order book is a natural domain
of MPC, we observe that current proposals illustrate specific configurations and

338

SoK: Privacy-Enhancing Technologies in Finance

architectures for distributed dark pools that may or may not match throughput
observed in traditional, centralized dark pool markets. In particular, the choice
of auction clearing algorithm remains a deciding feasibility factor. Whilst secret-
sharing based MPC schemes permit secret computation with n participating
servers, the runtime bottleneck generally lies in the amount of communication
that is required between servers. This is because MPC has a specific model of
defining computations, and certain auction clearing algorithms can be realized
with less communication overhead in MPC than others.

In the case of auction clearing algorithms, which must compute a clearing
price from current bids and sell orders, the sorting thereof by price limit in-
duces many comparisons (>,<,=) between secret-shared values, which in turn
imply sub-protocols generating the majority of communication cost. Alterna-
tively, order matching based on volume only (where prices are determined by
third party price feeds) can greatly accelerate throughput, as the expensive clear-
ing price evaluation is not required. Furthermore, whether orders are processed
continuously or periodically also greatly affects the real-world applicability of
the following distributed dark pool protocols.

Continuous Double Auctions with MPC: A recent line of work by Smart
et al. [CSTA19,CSTA21,dGCP+22,dGCSA22] implements and examines real-
world, double-side auction algorithms. In the initial work [CSTA19], continuous
double auctions (CDA) are implemented in a distributed fashion across servers
running an MPC. Continuous double auctions maintain a limit order book (LOB)
where buy and sell orders are ordered by ascending and descending price respec-
tively; each incoming order is matched against one or more LOB orders if it
crosses the “spread” between best buy (or sell) prices; its remaining volume is
then inserted into the LOB. It is also the most expensive exchange algorithm
since (1) each single order must be matched against m other fulfilled orders and
(2) its remaining trade volume must be inserted into a (potentially large) order
book of N size. Benchmarking such an algorithm requires specifying the expected
state of the order book, given the sensitivity of CDA run-time on (1) the average
number of matched orders m; and (2) the expected order book length N . In the
dark CDA implementation of Cartlidge et al. [CSTA19], run with 3 servers and
Shamir-sharing based MPC, a worst-case throughput of 34− 43 orders per sec-
ond for LOB parameters m = 3 and N ≈ 30 is achieved. This work demonstrates
that distributed CDA with MPC cannot yet match the throughput volumes of
traditional CDA venues15. In contrast, periodic order matching greatly improves
the performance of distributed dark pools.

Periodic Double Auctions with MPC: Periodic auctions in the dark pool set-
ting implemented with MPC promise throughput that match those of traditional
dark pool markets, as shown in these works by Cartlidge et al. [CSTA19,CSTA21].
In periodic auctions, limit orders are submitted during an open auction period

15 In their work, the runtime of MPC pre-processing is neglected, which represents
a non-trivial “hidden” computational cost that can be performed during “offline”
hours or outsourced to dedicated pre-processing workers; pre-processing generally
does not limit the maximum, sustainable throughput of MPC.

339

Carsten Baum et al.

after which a clearing price is computed during the clearing phase, which maxi-
mizes the volume of matched orders (unmatched orders are carried over to the
next round). In contrast to CDA algorithms, where orders are processed indi-
vidually against a potentially large order book, periodic auctions only need to
compute a single clearing price for the entire batch in a given period. In fact,
real-world order execution throughput has been achieved with a realistic number
of asset pairs.

In [CSTA21], the London Stock Exchange Group’s Turquoise Plato Uncross, a
widely-used traditional dark pool supporting thousands of assets, is implemented
with promising results. Based on volume observed on the real-world Turquoise
Plato Uncross venue, it is assumed that order book clearing occurs at most every
5 seconds, where at most 2000 newly input orders must be processed across an
asset universe of 4000 financial instruments. This throughput was successfully
handled by smaller MPC committee sizes of 2 (dishonest majority) and 3 (honest-
majority), but required multiple MPC instances, each handling orders trading
a small subset of all assets (Figure 3). For example, ∼ 280 MPC committee
instances are each randomly assigned 16 assets in each round by a gateway
engine. This gateway periodically reassigns asset subsets to new MPC instances
in order to break potential linkages between orders across time periods. We note
that auction algorithms are not entirely oblivious. Indeed, the direction of orders
are leaked in [CSTA19,CSTA21], whilst volumes and order limits remain private.

P1 P2

P3

P4 P5

P6

P7 P8

P9

P10 P11

P12

Traders

Private orders Secret, randomized asset pair assignment

Gateway MPC

A C

D

B

Fig. 3. In [CSTA21], a gateway MPC (A) distributes inbound received orders across
multiple MPC committees (B,C,D) to improve order clearing throughput. MPC servers
never learn the asset pairs its committee is assigned in each round.

Complementary follow-up work by Da Gama et al. [dGCP+22] and [dGCSA22]
both focus on (single-asset) privacy-preserving volume matching, which enables
further performance gains since the clearing prices are determined by an external
reference price; [dGCP+22] introduces an improved MPC volume matching al-
gorithm which permits dummy orders and hides the trade direction. [dGCSA22]
scales volume matching up to MPC instances consisting of ∼ 100 servers and

340

SoK: Privacy-Enhancing Technologies in Finance

shows the economic costs associated with operating such a single server in a MPC
instance of up to 100 servers to be below ∼ 0.10 USD and ∼ 0.025 USD for com-
putation and network communication respectively in each auction round; the
negligible cost demonstrates the feasibility of market participants contributing
to the distributed operation of dark pool venues.

Periodic Double Auctions with FHE: JP Morgan has demonstrated initial
results in work by Balch et al. [BDP20] to realize dark pool venues where the
venue operator is not distributed, but computes the periodic volume matching
over data encrypted under a jointly controlled public key; here, the secret en-
cryption key material used in the threshold fully homomorphic encryption is held
in secret-shared form by all participants (Figure 4). While the computation can
be done by one party on the ciphertexts (not knowing their plain values), the
participants then later take part in a so-called distributed decryption protocol
which reconstructs the outcomes to the venue operator. Whilst [BDP20] bench-
mark periodic volume matching implemented with threshold FHE, the omission
of the partial decryption sub-protocol complicates the evaluation of its perfor-
mance. Still, FHE offers an alternative approach to secret sharing-based MPC
which promises competitive performance; fewer communication rounds are re-
quired, since computation is performed locally by the dedicated venue operator
over encrypted data, although local computation (over encrypted data) is more
costly.

Encrypted inputs MPC input protocol
MPC

Committee

TraderFHE
Evaluator

E

P1

P2 P3

P4

P5 P6

Fig. 4. In [BDP20], market auctions are implemented with fully homomorphic encryp-
tion (FHE); here, the encryption key is jointly generated by key servers (P1-P3), but
the FHE evaluation is solely performed by the evaluator, who never learns the plaintext
of the inputs or intermediary results. Decryption of the FHE output requires interac-
tion with all key servers. In contrast, private computation with MPC in [CSTA19]
requires interaction amongst MPC servers (P4-P6) for each (multiplicative) operation.

Publicly, verifiable dark pool operator: Similar to verifiable one-sided auctions
[PRST08], a weaker notion of order privacy for dark pools is proposed in the
following work by Thorpe et al. [TP07], where the venue operator only reveals a
homomorphically encrypted order book to traders; the operator itself, however,

341

Carsten Baum et al.

maintains the encryption key and can thus compute over the order book plain-
text. Each update to the public, encrypted order book triggered by a submitted
order is accompanied with a zero-knowledge range proof generated by the oper-
ator; any public party can locally re-compute the claimed update over encrypted
values and verify zero-knowledge range proofs that guarantee that the plaintext
values lies within certain ranges, thereby enabling verification of comparison
statements between encrypted values. This system ensures the correctness of
each order book update without revealing the order details themselves. [TP07]
implements the CDA algorithm in a publicly verifiable manner; as in [PRST08],
this approach does not prevent any misuse of the order information held by the
operator.

6.2 Markets on Public Ledgers

The advent of public ledger protocols [GKL15,KRDO17,GHM+17] resulting
from permissionless participation of servers across the public internet promises
a truly “server-less” system of transaction settlements, no longer dependent on
any single trusted intermediary. The state of the ledger is public and its integrity
is publicly verifiable (by any online party) by local verification of all previously
finalized transactions sequenced in form of a append-only list or blockchain. The
realization of a global transaction history also implies a Turing-complete state
machine; smart contracts represent user-deployed programs run on blockchain
protocols that, in addition to custom ledgers [ERC20, ERC721], can realize de-
centralized auctions or decentralized exchanges (DEX), which forgo the need for
trusted venue operators. In contrast to traditional finance, market applications
in the public ledger setting offer instant settlement; any market application im-
plemented with smart contracts instances permits the simultaneous evaluation
and settlement between participants. Despite scalability challenges arising from
the vast number of participants running the blockchain backbone protocol, the
promise of instant settlement would allow the mitigation of counter-party risk,
a real cost to transactions conducted in traditional finance today.

However, the public verifiability of a public ledger also introduces novel chal-
lenges for financial applications; account balances are public by default and leak
information about submitted bids, trades or margin positions; the latter must
be backed by valid balances. In decentralized finance (DeFi) [WPG+21], front-
running is indeed rampant in decentralized exchanges (DEX) [TCS21], since
pending transactions leak trade intent to the adversary which can precisely or-
der and inject transactions to execute optimal front-running strategies. Thus,
proposals have been made to implement private balances on public ledgers with
publicly verifiable, non-interactive zero-knowledge [SCG+14,BAZB20b]. How-
ever, a privacy-preserving ledger (even with standard smart contract support)
is generally not sufficient for privacy-preserving financial applications such as
exchanges [ByCD+21].

Privacy-preserving ledgers generally complicate the realization of smart con-
tracts, since these must verify and update account balances known only to its
owners according to an agreed-upon transition logic. For decentralized exchanges

342

SoK: Privacy-Enhancing Technologies in Finance

implemented in the privacy-preserving ledger setting, this requires the presence
of a secure multiparty computation instance, to which users can privately in-
put their trade orders and private balances; the MPC then computes an up-
dated DEX state and private balances, which are then updated on the ledger
(Figure 5). Enforcing consistency between the secret, internal MPC state and
private account balances on the ledger requires protocol design advances illus-
trated in the subsequent paragraphs. We emphasize that counter to popular
belief, zero-knowledge is not sufficient to realize universally expressive, privacy-
preserving smart contracts, as the witness (or secret state) for decentralized
privacy-preserving applications are partially held by separate, distrusting par-
ties; instead, function evaluation over private inputs from separate parties and
secret-shared data is the natural domain of secure multiparty computation.

MPC

Clients Clients

MPC inputs

Confidential Deposits

Authorisation

Confidential Payouts

Public Ledger

Smart
Contract

P1

P2 P3

MPC outputs

Fig. 5. We sketch the architecture of privacy-preserving smart contract applications
in MPC with instant settlement on a (confidential) ledger; clients provide input pa-
rameters to the MPC instance, and forward financial deposits to a smart contract in
a confidential manner. The MPC privately returns computation output to clients, but
also authorizes a new financial distribution which is paid out to the clients by the smart
contract functionality.

We note there are privacy-preserving smart contract proposals which shield
private data [SBG+19,SBBV22] held by individual users or private contract
logic [BCG+20], but such techniques are generally limited in their expressiveness.
The work of Bowe et al.[BCG+20] only supports two communicating parties, and
is not widely used to realize privacy-preserving financial applications.

Sealed-bid Auctions (with Instant Settlement). The first work by Bag et
al. [BHSR19] to realize sealed-bid auctions specifically in the setting of public
ledgers focuses on using the blockchain as a communication medium instead of a
settlement layer; as a permissionless protocol, any party can anonymously post
an arbitrary message to the bulletin board, visible to all other parties. For pro-
tocols with low communication rounds, this is a practical solution; in particular,
the simplicity of evaluating single-sided sealed-bid auctions permits task-specific

343

Carsten Baum et al.

secure multiparty protocols which only require public message broadcasts. The
SEAL [BHSR19] protocol proposes the use of a anonymous veto protocol [HZ09]
requiring only two communication two rounds, that is then repeated once by
auction bidders for each bit of their bid price, thereby removing the necessity an
auctioneer role entirely. In its particular, the veto protocol of [HZ09] receives the
private input bi ∈ {0, 1} for party i ∈ [n], for each of the m bits representing the
permissible price range; the parties learn the highest bid, bit by bit. Each execu-
tion of the veto protocol will thus publicly output 1 if one of the users submits a
veto; thus, by repeating the veto protocol for each bit position, all participants
receive the highest bid without revealing the prices of failed bids. [BHSR19]
assumes participants to behave according to the protocol (semi-honesty).

This mechanism was later adopted and hardened by FAST [DGP22] to be
secure against malicious participants not adhering to the protocol. Furthermore,
[DGP22] introduces guaranteed settlement on the public ledger featuring privacy-
preserving deposits. Participants are thus committed to execute the payment for
their bids if these are successful during the auctions. Cheating participants are
penalized by having their deposits slashed and reimbursed to other parties; non-
interactive zero-knowledge proofs from all parties ensure that parties only submit
a veto if it is consistent with their initial bid (in commitment form on the ledger);
still, despite the privacy-preserving aspects of the anonymous veto protocol, pri-
vacy leakage occurs when the highest bidder learns when he overtakes the second
highest bidder. The work of Ganesh et al. [GKS22] adopts a similar construc-
tion which is proven to be game-theoretically secure; it is rational to pursue
the honest protocol despite any strategy chosen by other players. The work of
Chin et al. [CEOS22] does not employ zero-knowledge proofs to shield commmit-
ted funds for a single-sided, sealed-bid auction; deposits are sent to committed,
yet undeployed contracts and are thus indistinguishable from normal Ethereum
transactions, a similar technique used in Breidenbach et al. [BDTJ18] to commit
inputs to smart contracts without revealing them to the front-running adversary.
This approach only guarantees k-anonymity and relies on the presence of other,
unrelated transactions.

Privacy-preserving Decentralized Exchanges. We note a number of recent
proposals for privacy-preserving DEX applications in recent years; intent-based
privacy-preserving DEX applications mirror the functionality of over-the-counter
(OTC) venues (in traditional finance) and only require a public ledger, but do
not scale well and are not widely deployed. Privacy-preserving and front-running
secure DEX protocols generally involve private ledger deposits and perform the
order matching in an MPC instance, as is the case in distributed Dark Pool pro-
posals previously described in Section 6.1, but offer instant settlement following
each DEX round (Figure 5).

Intent-based, privacy-preserving DEX: In the works of [BCG+20] and [NMKW21],
a simpler model of a decentralized exchange is implemented; a bulletin board
functionality provided by a public ledger permits a “maker” to broadcast their
trade intent. An interested counter-party or “taker” then directly opens an au-

344

SoK: Privacy-Enhancing Technologies in Finance

thenticated communication channel with the maker to jointly perform a privacy-
preserving atomic swap on the public ledger [BCG+20]. Intent-based DEX pro-
tocols resemble over-the-counter models in traditional finance. [NMKW21] in-
troduces a “witness key agreement” (WKA) construction which preserves the
privacy of the maker’s offer; the WKA allows a taker to establish a shared se-
cret key with a maker which has posted its order in commitment form to the
ledger. The key agreement protocol succeeds if the committed, private order ful-
fills a relation determined by the taker. This key permits subsequent anonymous
communication with the maker to finalize the transaction.

Privacy-preserving Futures DEX: An interesting example of decentralized ex-
changes is illustrated by Massacci et al. [MNN+18], which realizes a futures
exchanges modelled closely after the Chicago Mercantile Exchange; here, the
future obligation (or contract) to buy or sell a commodity is traded. The net
position of a market participant is the sum of both current liquidity balances
and future obligations; importantly, a party holding a future to “sell” a given
commodity, must always hold sufficient liquidity to acquire the respective com-
modity, as it otherwise would default on its contractual obligation. Thus, a net
position that falls below zero must be liquidated to protect the counter-party of
any futures contract held by the liquidated party. Achieving this in a privacy-
preserving manner without revealing the net position of a party is the goal of
the work of [MNN+18].

If the net position of a participant is revealed, price manipulations could be
conducted with the explicit intention of forcing the liquidation of otherwise valid
positions. Thus, [MNN+18] proposes a similar scheme to [SCG+14], where the
net position of each account is committed in a cryptographic accumulator. The
validity of each update to the account is proven in zero-knowledge, whilst the
trading venue is executed in a MPC instance, similarly to the Dark Pool propos-
als in Section 6.1. [MNN+18] requires parties participate in the protocol for each
account update, even if this means the liquidation of their own account. We note
that the subsequent privacy-preserving smart contract framework instantiated
with MPC and a confidential ledger [BCDF22] achieves the privacy guarantees
of [MNN+18] without permitting users to block application liveness.

Front-running Secure DEX: A general motivation for privacy in decentralized
exchanges is the front-running of DEX applications in Decentralized Finance due
to public transactions and accounts in the default ledger setting; Despite offering
instant settlement of trades and transactions, pending user input authorizations
generally broadcast a users trade intent before their finalization. To this end,
P2DEX [BDF21] proposes the first privacy-preserving decentralized exchange,
which can operate and settle transactions across multiple ledger instances; clients
submit orders to an MPC committee which computes the order matching and
subsequently settles these on the respective public ledgers; since the trade inputs
are private, front-running is mitigated. Follow-up work [BCDF22] generalizes this
model to a setting with confidential accounts; here, all zero-knowledge proofs are
moved outside the MPC computation, as computing such proofs inside the MPC

345

Carsten Baum et al.

remains generally unfeasible for real-world application. The work of Govindara-
jan et al. [GVJR22] realizes a privacy-preserving DEX in a similar manner; here,
however, the actual order matching is computed in the clear of a smart contract
over anonymized trade lists to accelerate the determination of a clearing price.

6.3 Inter-bank Netting on Public Ledgers

Inter-bank payment requests are currently submitted to the real-time gross set-
tlement (RTGS) system managed by the central bank to update the accounts
of sending and receiving financial institutions. In times of low liquidity, a bank
may fail to honor individual payment instructions, as the liquidity requirement
may exceed its balance and credit line granted by the central bank; a gridlock
occurs, when a failed payment settlement prevents further payment instructions
from being processed. Given the large payment volumes processed each day, liq-
uidity saving mechanisms are implemented which settle payment instructions on
a netting basis (Figure 6).

Gridlock

500

500

1000

1500500

500

A

B C

A

B C

Post
Netting

+ 1000

- 500 - 500

500

500

1000

500

Fig. 6. We adopt a netting example from [WXF+18]; processing of individual payment
orders may fail due to a lack of liquidity (left), as balances must remain positive fol-
lowing execution of each individual payment. Netting relaxes this constraint; balances
need only to be positive following execution of all payments orders (right).

Recent work has proposed distributing the role of the RTGS operator with
a public ledger protocol, whilst implementing efficient netting protocols with
smart contracts [WXF+18,NYS+18], therby increasing system resiliency as the
operational liability burden on the central bank operator today is very high.
Whilst the aforementioned works implement inter-bank netting of queued pay-
ments, the nature of public ledgers means that payment instructions are revealed
to parties participating in the underlying blockchain backbone protocol. Instead,
[CYDC+20] proposes payment instructions to be posted to the ledger in com-
mitment form accompanied with non-interactive zero-knowledge proofs attest-
ing their well-formedness. Here, local netting solutions are computed by each

346

SoK: Privacy-Enhancing Technologies in Finance

participating bank and verified by a coordinating smart contract, which verifies
correctness of all submitted, local netting solutions without revealing amounts
and the identity of institutions. Since parties must compute partial netting so-
lutions, the protocol of [CYDC+20] is not robust against cheating participants,
who can stall or abort the netting process by posting invalid partial netting
proposals. In contrast, [DCMA22] computes the netting solution inside an MPC
instance, thereby achieving fault tolerance against dishonest participants. De-
spite initial implementation benchmarks provided by works above, it remains
an open question in what configuration such systems can scale to real-world
payment settlement volume and what netting frequency is required in practice.

6.4 Privacy-Preserving, Demand Response Markets

Privacy in markets is applicable to other domains, such as demand-response auc-
tions; the growth of sustainable energy generation has introduced the necessity
of increased coordination between the production and consumption of electricity.
In contrast to traditional power generation sources, such as gas turbines, which
can be throttled to match current power demand on the grid, sustainable power
sources such as wind or solar cannot. Today, grid operators purchase future
flexible demand from large, industrial scale consumers of energy or even power
generators with flexibility to scale production in either direction to balance the
grid.

There are efforts to aggregate retail consumers of electricity to form sell-
ers of demand-response capacity; for example, home HVAC system of buildings
can easily shift their power consumption forwards or backwards in time whilst
maintaining set temperature. Residential electric vehicle charging stations can
easily defer charging until opportune time periods to stabilize the grid, without
compromising the convenience of the owner. However, serious privacy concerns
arise when submitting device-level power consumption constraints to a demand-
response auction run by the utility, as such information easily reveals the type
of activity occurring in private homes.

Thus, in the work of Zobiri et al. [ZGND22], future demand capacity at the
retail device-level can be sold to buyers; in this work, each auction round for
a time frame within the day-ahead will accept submitted bids that include the
maximum power consumption or power draw (KW), price limit ($/KWh) as well
as characterization of each the demand-flexibility of each individually control-
lable device. For example, a washing machine can only provide demand flexibility
for its starting time; once activated, a washing cycle cannot be interrupted. In
contrast, an electric vehicle charger can charge intermittently at different power
levels, but must completely charge the vehicle by a certain time. Thus, the auc-
tion does not simply involve buy and sell bids by ”volume” and ”price”; rather,
it must take into consideration the forecast, future consumption-demand of the
buyer, and device-level constraints submitted by sellers. When implemented in
MPC, this arguably leads to a more complicated auction algorithm than in tra-
ditional markets; the work [ZGND22] permits private bids to be submitted to

347

Carsten Baum et al.

capture the consumption flexibility as constraints for each device (temporal con-
straints, power consumption cycle constraints), in addition to a electricity price
limit ; power consumption constraints are aggregated over private bids inside the
MPC, such that device-level information is protected from the buyer of demand-
response capacity. The auction clearing mechanism must then match device-level
consumption constraints against predicted power generation schedule published
by the buyer. Thus, demand-response markets imply direct device scheduling in
residential homes by the buyer (or utility operator); privacy of end-users must
therefore be protected by such solutions where any scheduling information is
evaluated inside an MPC instance.

Da Gama et al. [GZN22] propose a peer-2-peer electricity market run a similar
MPC setting, where local producers and consumers of electricity can trade energy
intra-day ; here, the auction design resembles that of the author’s prior work in
dark-pools [dGCP+22], and exhibits sufficient transaction throughput for intra-
day auction applications. [GZN22] builds on prior work [AACM16], but also
considers geographical proximity of buyers and sellers, thereby stabilizing grid
operations as power generation and consumption can be optimized to occur
locally.

7 Future applications

We will now outline which other PET use cases could be of interest in the
financial sector in the foreseeable future. While many of the use cases previously
described in this work may also not yet be production-ready, we want to highlight
areas in this section which we think deserve more attention by researchers and
practitioners. This necessarily is of speculative nature, so the reader may see
this as food for thought.

Voting. Voting is a standard mechanism in deciding on future policies. While
in many cases it is sufficient to make the whole voting process public, this is not
always possible. For example, a voter may fear repercussions or embarrassment
if his or her vote becomes public. Hence, to ensure honest digital voting, crypto-
graphic voting algorithms have to be used. These ensure that election outcomes
can be computed while individual votes cannot be attributed to participants.
While such cryptographic voting can be realized using MPC or FHE, a dedi-
cated line of work started by Chaum [Cha81] presents highly efficient dedicated
voting protocols. Cryptographic voting mechanisms find interesting applications
in the DeFi space, e.g. for privacy-preserving Decentralized Anonymous Organi-
zations (DAOs). In particular, a treasury system for DAOs based on electronic
voting has been proposed in [ZOB19] and a board room voting scheme based
on smart contracts (and this amenable to the DAO scenario) has been proposed
in [MSH17]. We believe that these techniques may also be useful for coordina-
tion among classical banking institutions and other financial operations (e.g.
shareholder meetings).

348

SoK: Privacy-Enhancing Technologies in Finance

Fraud detection. Both insurance and gambling are known as industries where
companies in the sector exchange information on their customers in order to
detect fraud or exploitative customers16. This information sharing may be prob-
lematic for privacy reasons, and it also leaks information about suspected but
ultimately honest customers if done in plain. PETs such as PSI might be an in-
teresting tool to construct a trusted intermediary. This intermediary can obtain
information from participating companies and alerts them if e.g. more than 3 of
them share the same customer. Here, PSI can ensure that only those customers
are revealed that appear often enough.

Better and fair recognition of patterns. In section 3 we have outlined
how AML does benefit from recognition of suspicious patterns. Such patterns,
if one wants to keep up in the digital age, must be learned from a large dataset
and must be updated frequently. Moreover, many companies in an industry
have an interest in pooling their data with other institutions for the purpose
of learning these patterns. At the same time, they may not want to share raw
customer or transaction data. Another, related area is assessing the credit risk of
potential customers. Here, the risk becomes more accurate the more participants
can contribute information or models. At the same time, input providers have
an interest that their inputs to the scoring mechanism remain private (for data
protection or to protect intellectual property).

Both applications fall into the area of privacy-preserving Machine Learn-
ing [LP00,DA+01,MZ17] or confidential benchmarking [DDN+16] which are sub-
fields of MPC. While these areas have received much attention recently17, opti-
mized applications to finance seem to be lacking.

A further important aspect is that (automatically generated) models should
not be biased against certain groups. While fair machine learning itself is a
rapidly developing field, its application to finance [dCCP20] may deserve more
attention.

Privacy preserving mitigation of systemic risk. Audits of financial insti-
tutions guarantee that their balances plus credit cover outstanding obligations.
This reduces counter-party risk and means that the overall system can rely less
on biasable methods such as ratings and reputation. At the same time, an au-
dited company may not want to open its books fully to the public, or it might
not be guaranteed that these books are correct. [MNN+18] have shown how au-
dits can be realized using ZK proofs, although limited to the futures market.
We believe that this concept may be generalized to the wider financial system
to permit privacy-preserving audits.

16 For example the infamous “Griffin Book”.
17 Privacy-preserving Machine Learning opens up interesting use cases, but it does not

come without its own problems. See [DC21] for a good overview.

349

Carsten Baum et al.

References

AACM16. Aysajan Abidin, Abdelrahaman Aly, Sara Cleemput, and Mustafa A
Mustafa. An mpc-based privacy-preserving protocol for a local electricity
trading market. In Cryptology and Network Security: 15th International
Conference, CANS 2016, Milan, Italy, November 14-16, 2016, Proceedings
15, pages 615–625. Springer, 2016.

ACC+20. Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria Dubovitskaya,
Kaoutar Elkhiyaoui, and Björn Tackmann. Privacy-preserving auditable
token payments in a permissioned blockchain system. In AFT ’20: 2nd
ACM Conference on Advances in Financial Technologies, New York, NY,
USA, October 21-23, 2020, pages 255–267. ACM, 2020.

AMMM18. Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay Mukher-
jee. PASTA: PASsword-based threshold authentication. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 2042–2059. ACM Press, October 2018.

AO12. Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert secu-
rity with public verifiability. In Xiaoyun Wang and Kazue Sako, editors,
ASIACRYPT 2012, volume 7658 of LNCS, pages 681–698. Springer, Hei-
delberg, December 2012.

AS22. Ghada Almashaqbeh and Ravital Solomon. Sok: Privacy-preserving com-
puting in the blockchain era. In 2022 IEEE 7th European Symposium on
Security and Privacy (EuroS&P), pages 124–139, 2022.

ATV20. Ignacio Alamillo, Cristina Timon, and Julian Valero. Oblivious identity
management for private user-friendly services: D3.2 security and privacy-
aware olympus framework impact assessment, 2020.

AZ19. Nasser Alsalami and Bingsheng Zhang. Sok: A systematic study of
anonymity in cryptocurrencies. In 2019 IEEE Conference on Dependable
and Secure Computing (DSC), pages 1–9, 2019.

BAZB20a. Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh.
Zether: Towards privacy in a smart contract world. In Joseph Bonneau and
Nadia Heninger, editors, FC 2020, volume 12059 of LNCS, pages 423–443.
Springer, Heidelberg, February 2020.

BAZB20b. Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh.
Zether: Towards privacy in a smart contract world. In International
Conference on Financial Cryptography and Data Security, pages 423–443.
Springer, 2020.

BCD+09. Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas
Toft. Secure multiparty computation goes live. In Roger Dingledine and
Philippe Golle, editors, FC 2009, volume 5628 of LNCS, pages 325–343.
Springer, Heidelberg, February 2009.

BCDF22. Carsten Baum, James Hsin-yu Chiang, Bernardo David, and Tore Kasper
Frederiksen. Eagle: Efficient Privacy Preserving Smart Contracts. Cryp-
tology ePrint Archive (To appear in Financial Cryptography and Data Se-
curity 2023), 2022. https://eprint.iacr.org/2022/1435.

BCG+20. Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush
Mishra, and Howard Wu. Zexe: Enabling decentralized private compu-
tation. In 2020 IEEE Symposium on Security and Privacy (SP), pages
947–964. IEEE, 2020.

350

SoK: Privacy-Enhancing Technologies in Finance

BCGW22. Dor Bitan, Ran Canetti, Shafi Goldwasser, and Rebecca Wexler. Using
zero-knowledge to reconcile law enforcement secrecy and fair trial rights
in criminal cases. In Daniel J. Weitzner, Joan Feigenbaum, and Christo-
pher S. Yoo, editors, Proceedings of the 2022 Symposium on Computer
Science and Law, CSLAW 2022, Washington DC, USA, November 1-2,
2022, pages 9–22. ACM, 2022.

BDF21. Carsten Baum, Bernardo David, and Tore Kasper Frederiksen. P2DEX:
privacy-preserving decentralized cryptocurrency exchange. In Interna-
tional Conference on Applied Cryptography and Network Security, pages
163–194. Springer, 2021.

BDJ+06. Peter Bogetoft, Ivan Damg̊ard, Thomas Jakobsen, Kurt Nielsen, Jakob
Pagter, and Tomas Toft. A practical implementation of secure auctions
based on multiparty integer computation. In Giovanni Di Crescenzo
and Avi Rubin, editors, FC 2006, volume 4107 of LNCS, pages 142–147.
Springer, Heidelberg, February / March 2006.

BDP20. Tucker Balch, Benjamin E Diamond, and Antigoni Polychroniadou. Se-
cretMatch: inventory matching from fully homomorphic encryption. In
Proceedings of the First ACM International Conference on AI in Finance,
pages 1–7, 2020.

BDTJ18. Lorenz Breidenbach, Phil Daian, Florian Tramèr, and Ari Juels. Enter the
hydra: Towards principled bug bounties and {Exploit-Resistant} smart
contracts. In 27th USENIX Security Symposium (USENIX Security 18),
pages 1335–1352, 2018.

BFH+20. Carsten Baum, Tore Kasper Frederiksen, Julia Hesse, Anja Lehmann, and
Avishay Yanai. PESTO: proactively secure distributed single sign-on, or
how to trust a hacked server. In IEEE European Symposium on Security
and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020, pages
587–606. IEEE, 2020.

BG20. Amira Barki and Aline Gouget. Achieving privacy and accountability in
traceable digital currency. Cryptology ePrint Archive, Report 2020/1565,
2020. https://eprint.iacr.org/2020/1565.

BGW88. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (ex-
tended abstract). In 20th ACM STOC, pages 1–10. ACM Press, May
1988.

BHSR19. Samiran Bag, Feng Hao, Siamak F Shahandashti, and Indranil Ghosh Ray.
SEAL: Sealed-bid auction without auctioneers. IEEE Transactions on
Information Forensics and Security, 15:2042–2052, 2019.

BKB20. Joseph Burleson, Michele Korver, and Dan Boneh. Privacy-protecting
regulatory solutions using zero-knowledge proofs: Full paper, 2020.

BST21. David A. Basin, Ralf Sasse, and Jorge Toro-Pozo. The EMV standard:
Break, fix, verify. In 2021 IEEE Symposium on Security and Privacy,
pages 1766–1781. IEEE Computer Society Press, May 2021.

ByCD+21. Carsten Baum, James Hsin yu Chiang, Bernardo David, Tore Kasper Fred-
eriksen, and Lorenzo Gentile. Sok: Mitigation of front-running in decen-
tralized finance. Cryptology ePrint Archive, Paper 2021/1628, 2021. To
appear on the Proceedings of the The 2nd Workshop on Decentralized
Finance (DeFi) in Association with Financial Cryptography 2022.

Cac99. Christian Cachin. Efficient private bidding and auctions with an oblivious
third party. In Proceedings of the 6th ACM Conference on Computer and
Communications Security, pages 120–127, 1999.

351

Carsten Baum et al.

CCD88. David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncondi-
tionally secure protocols (extended abstract). In 20th ACM STOC, pages
11–19. ACM Press, May 1988.

CDD17. Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. Practical UC-
secure delegatable credentials with attributes and their application to
blockchain. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 683–699. ACM Press, Octo-
ber / November 2017.

CEOS22. Kota Chin, Keita Emura, Kazumasa Omote, and Shingo Sato. A Sealed-
bid Auction with Fund Binding: Preventing Maximum Bidding Price Leak-
age. In 2022 IEEE International Conference on Blockchain (Blockchain),
pages 398–405. IEEE, 2022.

CG08. Jan Camenisch and Thomas Groß. Efficient attributes for anonymous
credentials. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors,
ACM CCS 2008, pages 345–356. ACM Press, October 2008.

CGG+20. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis,
and Udi Peled. Uc non-interactive, proactive, threshold ecdsa with iden-
tifiable aborts. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pages 1769–1787, 2020.

CGMA85. Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Ver-
ifiable secret sharing and achieving simultaneity in the presence of faults
(extended abstract). In 26th FOCS, pages 383–395. IEEE Computer So-
ciety Press, October 1985.

Cha81. David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS,
pages 93–118. Springer, Heidelberg, May 2001.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anony-
mous credentials from bilinear maps. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 56–72. Springer, Heidelberg,
August 2004.

CLLN14. Jan Camenisch, Anja Lehmann, Anna Lysyanskaya, and Gregory Neven.
Memento: How to reconstruct your secrets from a single password in a
hostile environment. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 256–275. Springer,
Heidelberg, August 2014.

CLR17. Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from
homomorphic encryption. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1243–1255.
ACM Press, October / November 2017.

Coi21. Coinbase. Coinbase to acquire leading cryptographic security com-
pany, Unbound Security, Nov 2021. https://www.coinbase.com/blog/

coinbase-to-acquire-leading-cryptographic-security-company-unbound-security.
CP18. Aloni Cohen and Sunoo Park. Compelled decryption and the fifth amend-

ment: Exploring the technical boundaries. Harvard Journal of Law and
Technology, 32(1):169–233, 2018.

CSTA19. John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. MPC joins the
dark side. In Proceedings of the 2019 ACM Asia Conference on Computer
and Communications Security, pages 148–159, 2019.

352

SoK: Privacy-Enhancing Technologies in Finance

CSTA21. John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. Multi-party
computation mechanism for anonymous equity block trading: A secure im-
plementation of turquoise plato uncross. Intelligent Systems in Accounting,
Finance and Management, 28(4):239–267, 2021.

CV02. Jan Camenisch and Els Van Herreweghen. Design and implementation of
the idemix anonymous credential system. In Vijayalakshmi Atluri, editor,
ACM CCS 2002, pages 21–30. ACM Press, November 2002.

CYDC+20. Shengjiao Cao, Yuan Yuan, Angelo De Caro, Karthik Nandakumar,
Kaoutar Elkhiyaoui, and Yanyan Hu. Decentralized privacy-preserving
netting protocol on blockchain for payment systems. In Joseph Bonneau
and Nadia Heninger, editors, Financial Cryptography and Data Security,
pages 137–155, Cham, 2020. Springer International Publishing.

DA+01. Wenliang Du, Mikhail J Atallah, et al. Privacy-preserving cooperative
scientific computations. In csfw, volume 1, page 273, 2001.

DC21. Emiliano De Cristofaro. A critical overview of privacy in machine learning.
IEEE Security & Privacy, 19(4):19–27, 2021.

dCCP20. Leo de Castro, Jiahao Chen, and Antigoni Polychroniadou. Cryptocredit:
securely training fair models. In Proceedings of the First ACM Interna-
tional Conference on AI in Finance, pages 1–8, 2020.

DCMA22. Angelo De Caro, Andrew Miller, and Amit Agarwal. Privacy-
Preserving Decentralized Multi-Party Netting, September 29 2022.
US Patent App. 17/216,644, https://patents.google.com/patent/

US20220309492A1/en.
DDN+16. Ivan Damg̊ard, Kasper Damg̊ard, Kurt Nielsen, Peter Sebastian Nordholt,

and Tomas Toft. Confidential benchmarking based on multiparty compu-
tation. In Jens Grossklags and Bart Preneel, editors, FC 2016, volume
9603 of LNCS, pages 169–187. Springer, Heidelberg, February 2016.

dGCP+22. Mariana Botelho da Gama, John Cartlidge, Antigoni Polychroniadou,
Nigel P Smart, and Younes Talibi Alaoui. Kicking-the-bucket: Fast
privacy-preserving trading using buckets. In International Conference on
Financial Cryptography and Data Security, pages 20–37. Springer, 2022.

dGCSA22. Mariana Botelho da Gama, John Cartlidge, Nigel P Smart, and
Younes Talibi Alaoui. All for one and one for all: Fully decentralised
privacy-preserving dark pool trading using multi-party computation.
Cryptology ePrint Archive, 2022. https://eprint.iacr.org/2022/923.

DGK+21. Ivan Damg̊ard, Chaya Ganesh, Hamidreza Khoshakhlagh, Claudio Or-
landi, and Luisa Siniscalchi. Balancing privacy and accountability in
blockchain identity management. In Kenneth G. Paterson, editor, CT-
RSA 2021, volume 12704 of LNCS, pages 552–576. Springer, Heidelberg,
May 2021.

DGP22. Bernardo David, Lorenzo Gentile, and Mohsen Pourpouneh. FAST: fair
auctions via secret transactions. In International Conference on Applied
Cryptography and Network Security, pages 727–747. Springer, 2022.

DJN+22. Ivan Damg̊ard, Thomas P Jakobsen, Jesper Buus Nielsen, Jakob Illeborg
Pagter, and Michael Bæksvang Østergaard. Fast threshold ecdsa with
honest majority. Journal of Computer Security, 30(1):167–196, 2022.

DL05. Whitfield Diffie and Susan Landau. The export of cryptography in the
20th century and the 21st, 2005.

DMNS06. Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cali-
brating noise to sensitivity in private data analysis. In Shai Halevi and Tal

353

Carsten Baum et al.

Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 265–284. Springer,
Heidelberg, March 2006.

Eur16. European Commission. Regulation (EU) 2016/679 of the European Par-
liament and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation) (Text with EEA relevance), 2016.

Fir21. Fireblocks. Fireblocks. Institutional Digital Asset Custody, Settlement &
Issuance, Nov 2021. https://www.fireblocks.com/.

FNP04. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In Christian Cachin and Jan Camenisch,
editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 1–19. Springer,
Heidelberg, May 2004.

FR96. Matthew K Franklin and Michael K Reiter. The design and implemen-
tation of a secure auction service. IEEE Transactions on Software Engi-
neering, 22(5):302–312, 1996.

Fre21. Tore Kasper Frederiksen. A holistic approach to enhanced security and
privacy in digital health passports. In Delphine Reinhardt and Tilo Müller,
editors, ARES 2021: The 16th International Conference on Availabil-
ity, Reliability and Security, Vienna, Austria, August 17-20, 2021, pages
133:1–133:10. ACM, 2021.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM
Press, May / June 2009.

GGM14. Christina Garman, Matthew Green, and Ian Miers. Decentralized anony-
mous credentials. In NDSS 2014. The Internet Society, February 2014.

GHM+17. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nicko-
lai Zeldovich. Algorand: Scaling byzantine agreements for cryptocurren-
cies. In Proceedings of the 26th symposium on operating systems principles,
pages 51–68, 2017.

GKL15. Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Annual international conference
on the theory and applications of cryptographic techniques, pages 281–310.
Springer, 2015.

GKS22. Chaya Ganesh, Bhavana Kanukurthi, and Girisha Shankar. Secure Auc-
tions in the Presence of Rational Adversaries. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
pages 1173–1186, 2022.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In 17th ACM
STOC, pages 291–304. ACM Press, May 1985.

GMW86. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield noth-
ing but their validity and a methodology of cryptographic protocol design
(extended abstract). In 27th FOCS, pages 174–187. IEEE Computer So-
ciety Press, October 1986.

GP18. Shafi Goldwasser and Sunoo Park. Public accountability vs. secret laws:
Can they coexist? Cryptology ePrint Archive, Report 2018/664, 2018.
https://eprint.iacr.org/2018/664.

Gro16. Lev Grossman. Inside apple CEO tim cook’s fight with the FBI. Time,
2016. Accessed on 31/01/2022.

354

SoK: Privacy-Enhancing Technologies in Finance

GVJR22. Kavya Govindarajan, Dhinakaran Vinayagamurthy, Praveen Jayachan-
dran, and Chester Rebeiro. Privacy-preserving decentralized exchange
marketplaces. In 2022 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), pages 1–9. IEEE, 2022.

GZN22. Mariana Gama, Fairouz Zobiri, and Svetla Nikova. Multi-party computa-
tion auction mechanisms for a p2p electricity market with geographical pri-
oritization, 2022. https://www.esat.kuleuven.be/cosic/publications/
article-3526.pdf.

HR22. Lukas Helminger and Christian Rechberger. Multi-party computation in
the GDPR. IACR Cryptol. ePrint Arch., page 491, 2022.

HTK98. Michael Harkavy, J Doug Tygar, and Hiroaki Kikuchi. Electronic auctions
with private bids. In USENIX Workshop on Electronic Commerce, 1998.

HZ09. Feng Hao and Piotr Zieliński. A 2-round anonymous veto protocol. In
International Workshop on Security Protocols, pages 202–211. Springer,
2009.

JKKX17. Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu.
TOPPSS: Cost-minimal password-protected secret sharing based on
threshold OPRF. In Dieter Gollmann, Atsuko Miyaji, and Hiroaki
Kikuchi, editors, ACNS 17, volume 10355 of LNCS, pages 39–58. Springer,
Heidelberg, July 2017.

KLN22. Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen. Privacy-
preserving blueprints. IACR Cryptol. ePrint Arch., page 1536, 2022.

KRDO17. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain pro-
tocol. In Annual international cryptology conference, pages 357–388.
Springer, 2017.

LN18. Yehuda Lindell and Ariel Nof. Fast secure multiparty ecdsa with practical
distributed key generation and applications to cryptocurrency custody.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1837–1854, 2018.

LP00. Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In
Mihir Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 36–54.
Springer, Heidelberg, August 2000.

Max21. Nick Maxwell. Case studies of the use of privacy preserving analysis to
tackle financial crime, Jan 2021. https://www.future-fis.com/uploads/
3/7/9/4/3794525/ffis_innovation_and_discussion_paper_-_case_

studies_of_the_use_of_privacy_preserving_analysis_-_v.1.3.pdf.

MMZ+21. Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexan-
der Frolov, Tyler Kell, Tyrone Lobban, Christine Moy, Ari Juels, and
Andrew Miller. CanDID: Can-do decentralized identity with legacy com-
patibility, sybil-resistance, and accountability. In 2021 IEEE Symposium
on Security and Privacy, pages 1348–1366. IEEE Computer Society Press,
May 2021.

MNN+18. Fabio Massacci, Chan Nam Ngo, Jing Nie, Daniele Venturi, and Julian
Williams. FuturesMEX: secure, distributed futures market exchange. In
2018 IEEE Symposium on Security and Privacy (SP), pages 335–353.
IEEE, 2018.

MoLA00. Justice Ministry of Law and Company Affairs. The information technology
act, 2000, 2000. https://bit.ly/3JuiUwy.

355

Carsten Baum et al.

MSH17. Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. A smart con-
tract for boardroom voting with maximum voter privacy. In Aggelos Ki-
ayias, editor, FC 2017, volume 10322 of LNCS, pages 357–375. Springer,
Heidelberg, April 2017.

MZ17. Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on Secu-
rity and Privacy, pages 19–38. IEEE Computer Society Press, May 2017.

NMKW21. Chan Nam Ngo, Fabio Massacci, Florian Kerschbaum, and Julian
Williams. Practical witness-key-agreement for blockchain-based dark pools
financial trading. In International Conference on Financial Cryptography
and Data Security, pages 579–598. Springer, 2021.

NPS99. Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auc-
tions and mechanism design. In Proceedings of the 1st ACM Conference
on Electronic Commerce, pages 129–139, 1999.

NVV18. Neha Narula, Willy Vasquez, and Madars Virza. zkLedger: Privacy-
Preserving Auditing for Distributed Ledgers. In Sujata Banerjee and Srini-
vasan Seshan, editors, 15th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2018, Renton, WA, USA, April 9-11,
2018, pages 65–80. USENIX Association, 2018.

NYS+18. Ken Naganuma, Masayuki Yoshino, Hisayoshi Sato, Nishio Yamada,
Takayuki Suzuki, and Noboru Kunihiro. Decentralized netting protocol
over consortium blockchain. In 2018 International Symposium on Infor-
mation Theory and Its Applications (ISITA), pages 174–177. IEEE, 2018.

Paq13. Christian Paquin. U-Prove Technology Overview V1.1. Tech report, Mi-
crosoft Corporation, April 2013.

PAR18. ARTICLE 29 DATA PROTECTIONWORKING PARTY. Wp250: Guide-
lines on personal data breach notification under regulation 2016/679, 2018.

PNP20. Juha Partala, Tri Hong Nguyen, and Susanna Pirttikangas. Non-
interactive zero-knowledge for blockchain: A survey. IEEE Access,
8:227945–227961, 2020.

PRST08. David C Parkes, Michael O Rabin, Stuart M Shieber, and Christopher
Thorpe. Practical secrecy-preserving, verifiably correct and trustworthy
auctions. Electronic Commerce Research and Applications, 7(3):294–312,
2008.

PSS19. Alexey Pertsev, Roman Semenov, and Roman Storm. Tor-
nado Cash Privacy Solution, version 1.4, Dec. 2019. https:

//web.archive.org/web/20211026053443/https://tornado.cash/

audits/TornadoCash_whitepaper_v1.4.pdf.
PU15. THE EUROPEAN PARLIAMENT and THE COUNCIL OF THE EURO-

PEAN UNION. Directive (EU) 2015/2366 of the european parliament and
of the council, Nov 2015. https://eur-lex.europa.eu/legal-content/

EN/TXT/PDF/?uri=CELEX:32015L2366&from=EN.
RAD+78. Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data

banks and privacy homomorphisms. Foundations of secure computation,
4(11):169–180, 1978.

RB89. Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority (extended abstract). In 21st ACM STOC,
pages 73–85. ACM Press, May 1989.

RT04. Peter Reuter and Edwin M. Truman. Chasing Dirty Money: The Fight
Against Money Laundering. Peterson Institute for International Eco-
nomics, 2004.

356

SoK: Privacy-Enhancing Technologies in Finance

San20. Olivier Sanders. Efficient redactable signature and application to anony-
mous credentials. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS,
pages 628–656. Springer, Heidelberg, May 2020.

SBBV22. Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, and Martin
Vechev. ZeeStar: Private Smart Contracts by Homomorphic Encryption
and Zero-knowledge Proofs. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 1543–1543. IEEE Computer Society, 2022.

SBG+19. Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar
Tsankov, and Martin Vechev. zkay: Specifying and enforcing data privacy
in smart contracts. In Proceedings of the 2019 ACM SIGSAC conference
on computer and communications security, pages 1759–1776, 2019.

SCG+14. Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE symposium on secu-
rity and privacy, pages 459–474. IEEE, 2014.

Sha79. Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

SHD17. Gerald Spindler, Anna Zsoofia Horvaath, and Lukas Dalby. Scalable obliv-
ious data analytics: D.3.1 general legal aspects, 2017.

SLC22. Manu Sporny, Dave Longley, and David Chadwick. Verifiable credentials
data mode, 2022.

SLS+22. Manu Sporny, Dave Longley, Markus Sabadello, Drummond Reed, Orie
Steele, and Christopher Allen. Decentralized identifiers (DIDs), 2022.

SSLM21. Zhichuang Sun, Ruimin Sun, Long Lu, and Alan Mislove. Mind your
weight(s): A large-scale study on insufficient machine learning model pro-
tection in mobile apps. In Michael Bailey and Rachel Greenstadt, editors,
USENIX Security 2021, pages 1955–1972. USENIX Association, August
2021.

ST99. Tomas Sander and Amnon Ta-Shma. Flow control: A new approach for
anonymity control in electronic cash systems. In Matthew Franklin, editor,
FC’99, volume 1648 of LNCS, pages 46–61. Springer, Heidelberg, February
1999.

TBA+22. Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy
Gueta, Benny Pinkas, and Avishay Yanai. UTT: Decentralized ecash with
accountable privacy. Cryptology ePrint Archive, Report 2022/452, 2022.
https://eprint.iacr.org/2022/452.

TCS21. Christof Ferreira Torres, Ramiro Camino, and Radu State. Frontrunner
jones and the raiders of the dark forest: An empirical study of frontrunning
on the ethereum blockchain. In Michael Bailey and Rachel Greenstadt, ed-
itors, 30th USENIX Security Symposium, USENIX Security 2021, August
11-13, 2021, pages 1343–1359. USENIX Association, 2021.

TJW22. Shahroz Tariq, Sowon Jeon, and Simon S. Woo. Am I a real or fake
celebrity? evaluating face recognition and verification apis under deepfake
impersonation attack. In Frédérique Laforest, Raphaël Troncy, Elena Sim-
perl, Deepak Agarwal, Aristides Gionis, Ivan Herman, and Lionel Médini,
editors, WWW ’22: The ACM Web Conference 2022, Virtual Event, Lyon,
France, April 25 - 29, 2022, pages 512–523. ACM, 2022.

TMSgD22. Amos Treiber, Dirk Müllmann, Thomas Schneider, and Indra Spiecker
genannt Döhmann. Data protection law and multi-party computation:

357

Carsten Baum et al.

Applications to information exchange between law enforcement agencies.
Cryptology ePrint Archive, Report 2022/1242, 2022. https://eprint.

iacr.org/2022/1242.
TP07. Christopher Thorpe and David C Parkes. Cryptographic securities ex-

changes. In International Conference on Financial Cryptography and Data
Security, pages 163–178. Springer, 2007.

vERS21. Marie Beth van Egmond, Thomas Rooijakkers, and Alex Sangers. Privacy-
Preserving Collaborative Money Laundering Detection. ERCIM News,
2021(126), 2021.

WKCC19. Karl Wüst, Kari Kostiainen, Vedran Capkun, and Srdjan Capkun.
PRCash: Fast, private and regulated transactions for digital currencies.
In Ian Goldberg and Tyler Moore, editors, FC 2019, volume 11598 of
LNCS, pages 158–178. Springer, Heidelberg, February 2019.

WPG+21. Sam M Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Do-
minik Harz, and William J Knottenbelt. Sok: Decentralized finance (defi).
arXiv preprint arXiv:2101.08778, 2021. https://arxiv.org/abs/2101.

08778.
WXF+18. Xin Wang, Xiaomin Xu, Lance Feagan, Sheng Huang, Limei Jiao, and Wei

Zhao. Inter-bank payment system on enterprise blockchain platform. In
2018 IEEE 11th international conference on cloud computing (CLOUD),
pages 614–621. IEEE, 2018.

XCZ+22. Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben
Fisch, Fernando Krell, and Philippe Camacho. Veri-zexe: Decentralized
private computation with universal setup. Cryptology ePrint Archive,
2022.

ZCC+16. Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi.
Town crier: An authenticated data feed for smart contracts. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016, pages 270–282. ACM Press, October
2016.

ZGND22. Fairouz Zobiri, Mariana Gama, Svetla Nikova, and Geert Deconinck. A
Privacy-Preserving Three-Step Demand Response Market Using Multi-
Party Computation. In 13th Int. Conf. Innov. Smart Grid Technol.(ISGT
North Am. 2022), Washingt. DC (to Appear), 2022. https://www.esat.

kuleuven.be/cosic/publications/article-3451.pdf.
ZMM+20. Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari

Juels. DECO: Liberating web data using decentralized oracles for TLS.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020, pages 1919–1938. ACM Press, November 2020.

ZOB19. Bingsheng Zhang, Roman Oliynykov, and Hamed Balogun. A treasury
system for cryptocurrencies: Enabling better collaborative intelligence. In
NDSS 2019. The Internet Society, February 2019.

ZOP20. Arman Zand, James Orwell, and Eckhard Pfluegel. A Secure Framework
for Anti-Money-Laundering using Machine Learning and Secret Sharing.
In 2020 International Conference on Cyber Security and Protection of Dig-
ital Services (Cyber Security), pages 1–7, 2020.

358

Part IV

Conclusion

359

6 Future work

In this thesis, we introduce new approaches and techniques towards advancing the state-of-the-art
in security and privacy of cryptoeconomic systems (§2). We highlight three directions of future
work which address pressing, open problems in the field of cryptoeconomics; future progress in these
research directions would extend the results contributed by this thesis.

6.1 Incentive composition in cryptoeconomics
As we highlight in §4.2.3, the incentive in automatic market makers (§4.2.2) to align the marginal
price with the external, fair market price does not securely compose with the incentive to liquidate
undercollateralized loans in lending protocols (§4.2.3); when considered in isolation by rational
parties, the automatic market maker will be aligned with the fair market price, and lending protocol
liquidations only occur when loans become undercollateralized. In composition, where the lending
protocol obtains pricing data from automatic market makers, the rational actor may be incentivized
to manipulate prices on automatic market makers in order to trigger liquidations pre-maturely.

Another example is front-running by the block leader (§4.3.1), where a party ordering inputs at
cryptoeconomic layer 1 is incentivized to do so in an unfair manner by a cryptoeconomic layer 2
application (P4). Another cross-layer example of unintended incentive interference is the competition
for staked tokens between proof-of-stake and lending protocols [Chi21]. Although not addressed
in this thesis, we note a rapidly advancing line of research on cross-chain bridges, which permit
synchronization of state between different instances of permissionless consensus [MBYS21], further
complicating the incentive analysis of composed systems.

Traditional protocol design and analysis assumes honest behaviour as specified by the protocol
designer. In the permissionless setting (§3.3), this is perhaps too strong of an assumption to place on
anonymous parties on the public internet. Instead, honest behaviour should ideally also represent the
winning strategy of a rational party, also referred to as incentive-compatibility. Progress towards a
theory on incentive-compatibility under composition across crytoeconomic layers 1 and 2 (Def. 1.1)
would undoubtably represent an important contribution to cryptoeconomics and computer science.
We note the long-running line of work of rational cryptography [HT04, KN08, FKN10, AAH11,
ACH11, GK12, HP15] which may provide inspiration towards this goal.

6.2 Permissionless, privacy-preserving smart contracts
Permissionless consensus realizes a notion of serverless computing, where participating users remain
anonymous and can come and go; the ephemeral nature of protocol roles represents a challenge for
achieving privacy in smart contracts.

Although we have we have shown an expressive, privacy-preserving contract manager model (§5.2)
and contributed the first practical realization thereof in P7, this comes at the cost of introducing
a secure multi-party server committee that assumes authenticated, private communication links,
and is therefore no longer permissionless (§3.3.1). More restricted notions of privacy-preserving
smart contracts have been proposed (§5.1) which adhere to the permissionless setting, but are not

360

6 Future work

sufficiently expressive to realize most applications in decentralized finance, the most widely used
cryptoeconomic application domain today.

We highlight a promising line of MPC research [GHK+21, BGG+20, CDGK23] inspired by anonymous
role election mechanisms in proof-of-stake (§3.3.5), which promises secure multi-party computation
in the permissionless setting; this setting has been formalized as You-Only-Speak-Once or YOSO
MPC in [GHK+21]. Its practical realization would imply universally expressive privacy-preserving
smart contracts in the contract manager model (§5.2), where the contract manager is distributed by
a permissionless YOSO-MPC protocol instance.

A key challenge of YOSO-MPC is the forwarding of secret-shared material distributed across MPC
servers; in the permissionless setting, each player must be replaceable anytime. This is achieved in
permissionless consensus (§3.3.5) by electing a fresh party for the computation and broadcast of each
protocol message; since secret-shared state must be carried forward to committee members elected in
the future, this requires a notion of encrypting to a future committee, currently not trivially achievable
in a practical manner.

6.3 Universal, differentially private mechanisms for MPC
In our investigation to achieve pre- and post-trade privacy (§4.3.2) in privacy-preserving markets in
decentralized finance, we introduce an extended notion of differential privacy applicable to the trusted
curator setting (§5.3.1), where users not only submit private inputs but also receive individual
(potentially correlated) private outputs in each evaluation round; in contrast to standard differential
privacy over a private database queried by an analyst, the entire (input & output) transcript of the
honest client must be protected from the adversary corrupting clients in this setting. We achieve
this with an extended definitional framework named round-differential privacy (Def. 5.3 and P8),
which also applies when the role of the trusted curator is distributed by a MPC committee. We then
propose round-differentially private market mechanisms for MPC and Eagle (P7). In the process,
we observe that there exist many applications in this MPC setting which require round-differential
privacy to prevent function leakage from the full private (input & output) client transcript. Whilst
standard, differentially private mechanisms have been implemented in MPC, these works do not
consider privacy over the full, individual transcript in the trusted curator model (§5.3.1); here, the
output is generally a query result returned to the adversary, as in the case of privacy-preserving
machine learning with MPC and differential privacy [PRR10, ACA+17, WHMM21, PRM+22].

Thus, we highlight the need for a more general, differential privacy framework for the MPC setting;
whilst we have devised application-specific mechanisms which achieve round-differential privacy in
P8 , we believe general noise mechanisms may exist, which would greatly facilitate the design of
round-differentially private applications in MPC and the trusted curator setting. In the classic setting
of differential privacy, the Laplace mechanism [DR+14], provides a straightforward and effective
tool to transform many statistical database queries into differentially private ones. We think the
investigation of universal noise mechanisms for the MPC setting with private inputs and private
outputs to individual clients would provide a powerful, yet understudied privacy framework.

361

Bibliography

[AAE+22] Guillermo Angeris, Akshay Agrawal, Alex Evans, Tarun Chitra, and Stephen Boyd.
Constant function market makers: Multi-asset trades via convex optimization. In
Handbook on Blockchain, pages 415–444. Springer, 2022. https://doi.org/10.1007/
978-3-031-07535-3_13.

[AAH11] Ittai Abraham, Lorenzo Alvisi, and Joseph Y Halpern. Distributed computing meets
game theory: combining insights from two fields. Acm Sigact News, 42(2):69–76, 2011.
https://doi.org/10.1145/1998037.1998055.

[ACA+17] Abbas Acar, Z Berkay Celik, Hidayet Aksu, A Selcuk Uluagac, and Patrick McDaniel.
Achieving secure and differentially private computations in multiparty settings. In
2017 IEEE Symposium on Privacy-Aware Computing (PAC), pages 49–59. IEEE, 2017.
https://doi.org/10.1109/PAC.2017.12.

[ACG+18] Avi Asayag, Gad Cohen, Ido Grayevsky, Maya Leshkowitz, Ori Rottenstreich, Ronen
Tamari, and David Yakira. A fair consensus protocol for transaction ordering. In 2018
IEEE 26th International Conference on Network Protocols (ICNP), pages 55–65. IEEE,
2018. https://doi.org/10.1109/ICNP.2018.00016.

[ACH11] Gilad Asharov, Ran Canetti, and Carmit Hazay. Towards a game theoretic view of
secure computation. In Advances in Cryptology–EUROCRYPT 2011: 30th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings 30, pages 426–445. Springer, 2011.
https://doi.org/10.1007/978-3-642-20465-4_24.

[AECB22] Guillermo Angeris, Alex Evans, Tarun Chitra, and Stephen Boyd. Optimal routing
for constant function market makers. In Proceedings of the 23rd ACM Conference
on Economics and Computation, pages 115–128, 2022. https://doi.org/10.1145/
3490486.3538336.

[AZS+21] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson.
Uniswap v3 core. Tech. rep., Uniswap, Tech. Rep., 2021. https://berkeley-defi.
github.io/assets/material/Uniswap%20v3%20Core.pdf.

[BA21] Jaya Klara Brekke and Wassim Zuhair Alsindi. Cryptoeconomics. Internet Policy
Review, 10(2), 2021. https://doi.org/10.14763/2021.2.1553.

[BCDF22] Carsten Baum, James Hsin-yu Chiang, Bernardo David, and Tore Kasper Frederiksen.
Eagle: Efficient Privacy Preserving Smart Contracts. Cryptology ePrint Archive, 2022.
https://eprint.iacr.org/2022/1435.

[BCG+20] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. Zexe: Enabling decentralized private computation. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 947–964. IEEE, 2020. https://
doi.org/10.1109/SP40000.2020.00050.

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure com-
putation without authentication. In Advances in Cryptology–CRYPTO 2005: 25th

362

https://doi.org/10.1007/978-3-031-07535-3_13
https://doi.org/10.1007/978-3-031-07535-3_13
https://doi.org/10.1145/1998037.1998055
https://doi.org/10.1109/PAC.2017.12
https://doi.org/10.1109/ICNP.2018.00016
https://doi.org/10.1007/978-3-642-20465-4_24
https://doi.org/10.1145/3490486.3538336
https://doi.org/10.1145/3490486.3538336
https://berkeley-defi.github.io/assets/material/Uniswap%20v3%20Core.pdf
https://berkeley-defi.github.io/assets/material/Uniswap%20v3%20Core.pdf
https://doi.org/10.14763/2021.2.1553
https://eprint.iacr.org/2022/1435
https://doi.org/10.1109/SP40000.2020.00050
https://doi.org/10.1109/SP40000.2020.00050

Bibliography

Annual International Cryptology Conference, Santa Barbara, California, USA, August
14-18, 2005. Proceedings 25, pages 361–377. Springer, 2005. https://doi.org/10.
1007/11535218_22.

[BCT21] Aritra Banerjee, Michael Clear, and Hitesh Tewari. zkhawk: Practical private smart
contracts from mpc-based hawk. In 2021 3rd Conference on Blockchain Research &
Applications for Innovative Networks and Services (BRAINS), pages 245–248. IEEE,
2021. https://doi.org/10.1109/BRAINS52497.2021.9569822.

[BDD+21] Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine
Oechsner. Tardis: a foundation of time-lock puzzles in uc. In Advances in Cryptology–
EUROCRYPT 2021: 40th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, October 17–21, 2021,
Proceedings, Part III, pages 429–459. Springer, 2021. https://doi.org/10.1007/
978-3-030-77883-5_15.

[BDKJ21] Kushal Babel, Philip Daian, Mahimna Kelkar, and Ari Juels. Clockwork finance: Auto-
mated analysis of economic security in smart contracts. arXiv preprint arXiv:2109.04347,
2021. https://arxiv.org/abs/2109.04347.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In
Advances in Cryptology—CRYPTO 2001: 21st Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 19–23, 2001 Proceedings, pages 213–229.
Springer, 2001. https://doi.org/10.1007/3-540-44647-8_13.

[BF21] Jeffrey Burdges and Luca De Feo. Delay encryption. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 302–326. Springer,
2021. https://doi.org/10.1007/978-3-030-77870-5_11.

[BGG+20] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk,
Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public blockchain keep a secret?
In Theory of Cryptography: 18th International Conference, TCC 2020, Durham, NC,
USA, November 16–19, 2020, Proceedings, Part I 18, pages 260–290. Springer, 2020.
https://doi.org/10.1007/978-3-030-64375-1_10.

[BKM18] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft consensus.
arXiv preprint arXiv:1807.04938, 2018. https://arxiv.org/abs/1807.04938.

[BN00] Dan Boneh and Moni Naor. Timed commitments. In Advances in Cryptology—CRYPTO
2000: 20th Annual International Cryptology Conference Santa Barbara, California,
USA, August 20–24, 2000 Proceedings, pages 236–254. Springer, 2000. https://doi.
org/10.1007/3-540-44598-6_15.

[BO83] Michael Ben-Or. Another advantage of free choice (extended abstract) completely
asynchronous agreement protocols. In Proceedings of the second annual ACM symposium
on Principles of distributed computing, pages 27–30, 1983. https://doi.org/10.1145/
800221.806707.

[Bra84] Gabriel Bracha. An asynchronous [(n-1)/3]-resilient consensus protocol. In Proceedings
of the third annual ACM symposium on Principles of distributed computing, pages
154–162, 1984. https://doi.org/10.1145/800222.806743.

[But13] Vitalik Buterin. Ethereum: a next generation smart contract and decentralized applica-
tion platform. https://github.com/ethereum/wiki/wiki/White-Paper, 2013.

[BZ23] Massimo Bartoletti and Roberto Zunino. A theoretical basis for blockchain extractable
value. arXiv preprint arXiv:2302.02154, 2023. https://arxiv.org/abs/2302.02154.

363

https://doi.org/10.1007/11535218_22
https://doi.org/10.1007/11535218_22
https://doi.org/10.1109/BRAINS52497.2021.9569822
https://doi.org/10.1007/978-3-030-77883-5_15
https://doi.org/10.1007/978-3-030-77883-5_15
https://arxiv.org/abs/2109.04347
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-030-77870-5_11
https://doi.org/10.1007/978-3-030-64375-1_10
https://arxiv.org/abs/1807.04938
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/800221.806707
https://doi.org/10.1145/800222.806743
https://github.com/ethereum/wiki/wiki/White-Paper
https://arxiv.org/abs/2302.02154

Bibliography

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer Science,
pages 136–145. IEEE, 2001. https://doi.org/10.1109/SFCS.2001.959888.

[CDGK23] Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring. Yolo yoso:
Fast and simple encryption and secret sharing in the yoso model. In Advances in
Cryptology–ASIACRYPT 2022: 28th International Conference on the Theory and
Application of Cryptology and Information Security, Taipei, Taiwan, December 5–9,
2022, Proceedings, Part I, pages 651–680. Springer, 2023. https://doi.org/10.1007/
978-3-030-84245-1_3.

[Chi21] Tarun Chitra. Competitive Equilibria Between Staking and On-chain Lending. Cryptoe-
conomic Systems, 0(1), apr 5 2021. https://cryptoeconomicsystems.pubpub.org/
pub/chitra-staking-lending-equilibria.

[CL+99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OsDI,
volume 99, pages 173–186, 1999. https://www.usenix.org/legacy/publications/
library/proceedings/osdi99/full_papers/castro/castro.ps.

[CMSZ22] Christian Cachin, Jovana Mićić, Nathalie Steinhauer, and Luca Zanolini. Quick order
fairness. In Financial Cryptography and Data Security: 26th International Conference,
FC 2022, Grenada, May 2–6, 2022, Revised Selected Papers, pages 316–333. Springer,
2022. https://doi.org/10.1007/978-3-031-18283-9_15.

[CSTA19] John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui. Mpc joins the dark side.
In Proceedings of the 2019 ACM Asia Conference on Computer and Communications
Security, pages 148–159, 2019. https://doi.org/10.1145/3321705.3329809.

[DFMPS19] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay func-
tions from supersingular isogenies and pairings. In Advances in Cryptology–ASIACRYPT
2019: 25th International Conference on the Theory and Application of Cryptology and
Information Security, Kobe, Japan, December 8–12, 2019, Proceedings, Part I 25, pages
248–277. Springer, 2019. https://doi.org/10.1007/978-3-030-34578-5_10.

[dGCP+22] Mariana Botelho da Gama, John Cartlidge, Antigoni Polychroniadou, Nigel P Smart,
and Younes Talibi Alaoui. Kicking-the-bucket: Fast privacy-preserving trading using
buckets. In International Conference on Financial Cryptography and Data Security,
pages 20–37. Springer, 2022. https://doi.org/10.1007/978-3-031-18283-9_2.

[dGCSA22] Mariana Botelho da Gama, John Cartlidge, Nigel P Smart, and Younes Talibi Alaoui.
All for one and one for all: Fully decentralised privacy-preserving dark pool trading
using multi-party computation. Cryptology ePrint Archive, 2022. https://eprint.
iacr.org/2022/923.

[DHMW22] Nico Döttling, Lucjan Hanzlik, Bernardo Magri, and Stella Wohnig. Mcfly: Verifiable
encryption to the future made practical. Cryptology ePrint Archive, 2022. https:
//eprint.iacr.org/2022/433.

[DKT+20] Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath,
Xuechao Wang, and Ofer Zeitouni. Everything is a race and nakamoto always wins. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 859–878, 2020. https://doi.org/10.1145/3372297.3417290.

[DKT21] Soubhik Deb, Sreeram Kannan, and David Tse. Posat: proof-of-work availability and
unpredictability, without the work. In Financial Cryptography and Data Security:
25th International Conference, FC 2021, Virtual Event, March 1–5, 2021, Revised

364

https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-030-84245-1_3
https://cryptoeconomicsystems.pubpub.org/pub/chitra-staking-lending-equilibria
https://cryptoeconomicsystems.pubpub.org/pub/chitra-staking-lending-equilibria
https://www.usenix.org/legacy/publications/library/proceedings/osdi99/full_papers/castro/castro.ps
https://www.usenix.org/legacy/publications/library/proceedings/osdi99/full_papers/castro/castro.ps
https://doi.org/10.1007/978-3-031-18283-9_15
https://doi.org/10.1145/3321705.3329809
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-031-18283-9_2
https://eprint.iacr.org/2022/923
https://eprint.iacr.org/2022/923
https://eprint.iacr.org/2022/433
https://eprint.iacr.org/2022/433
https://doi.org/10.1145/3372297.3417290

Bibliography

Selected Papers, Part II 25, pages 104–128. Springer, 2021. https://doi.org/10.
1007/978-3-662-64331-0_6.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988. https:
//doi.org/10.1145/42282.42283.

[DR+14] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.
http://dx.doi.org/10.1561/0400000042.

[DRCA23] Theo Diamandis, Max Resnick, Tarun Chitra, and Guillermo Angeris. An efficient
algorithm for optimal routing through constant function market makers. arXiv preprint
arXiv:2302.04938, 2023. https://arxiv.org/abs/2302.04938.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agree-
ment. SIAM Journal on Computing, 12(4):656–666, 1983. https://doi.org/10.1137/
0212045.

[ES18] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnera-
ble. Communications of the ACM, 61(7):95–102, 2018. https://doi.org/10.1145/
3212998.

[FKN10] Georg Fuchsbauer, Jonathan Katz, and David Naccache. Efficient rational secret sharing
in standard communication networks. In Theory of Cryptography: 7th Theory of Cryptog-
raphy Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings 7,
pages 419–436. Springer, 2010. https://doi.org/10.1007/978-3-642-11799-2_25.

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.
https://doi.org/10.1145/3149.214121.

[GHK+21] Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen,
Tal Rabin, and Sophia Yakoubov. Yoso: You only speak once: Secure mpc with
stateless ephemeral roles. In Advances in Cryptology–CRYPTO 2021: 41st Annual
International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20,
2021, Proceedings, Part II, pages 64–93. Springer, 2021. https://doi.org/10.1007/
978-3-030-84245-1_3.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th
symposium on operating systems principles, pages 51–68, 2017. https://doi.org/10.
1145/3132747.3132757.

[GK12] Adam Groce and Jonathan Katz. Fair computation with rational players. In Ad-
vances in Cryptology–EUROCRYPT 2012: 31st Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-
19, 2012. Proceedings 31, pages 81–98. Springer, 2012. https://doi.org/10.1007/
978-3-642-29011-4_7.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Advances in Cryptology-EUROCRYPT 2015: 34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, pages 281–310. Springer, 2015.
https://doi.org/10.1007/978-3-662-46803-6_10.

[GWPK20a] Lewis Gudgeon, Sam Werner, Daniel Perez, and William J Knottenbelt. Defi protocols
for loanable funds: Interest rates, liquidity and market efficiency. In Proceedings of

365

https://doi.org/10.1007/978-3-662-64331-0_6
https://doi.org/10.1007/978-3-662-64331-0_6
https://doi.org/10.1145/42282.42283
https://doi.org/10.1145/42282.42283
http://dx.doi.org/10.1561/0400000042
https://arxiv.org/abs/2302.04938
https://doi.org/10.1137/0212045
https://doi.org/10.1137/0212045
https://doi.org/10.1145/3212998
https://doi.org/10.1145/3212998
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1145/3149.214121
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1007/978-3-642-29011-4_7
https://doi.org/10.1007/978-3-642-29011-4_7
https://doi.org/10.1007/978-3-662-46803-6_10

Bibliography

the 2nd ACM Conference on Advances in Financial Technologies, pages 92–112, 2020.
https://doi.org/10.1145/3419614.3423254.

[GWPK20b] Lewis Gudgeon, Sam Werner, Daniel Perez, and William J Knottenbelt. Defi protocols
for loanable funds: Interest rates, liquidity and market efficiency. In ACM Conference
on Advances in Financial Technologies, pages 92–112, 2020.

[HP15] Joseph Y Halpern and Rafael Pass. Algorithmic rationality: Game theory with costly
computation. Journal of Economic Theory, 156:246–268, 2015. https://doi.org/10.
1016/j.jet.2014.04.007.

[HSW22] Lioba Heimbach, Eric Schertenleib, and Roger Wattenhofer. Risks and returns of
uniswap v3 liquidity providers. arXiv preprint arXiv:2205.08904, 2022. https://arxiv.
org/abs/2205.08904.

[HT04] Joseph Halpern and Vanessa Teague. Rational secret sharing and multiparty computa-
tion. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing,
pages 623–632, 2004. https://doi.org/10.1145/1007352.1007447.

[KDK22] Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-fair consensus in the
permissionless setting. In Proceedings of the 9th ACM on ASIA Public-Key Cryptography
Workshop, pages 3–14, 2022. https://doi.org/10.1145/3494105.3526239.

[KKK21] Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. Kachina–foundations of
private smart contracts. In 2021 IEEE 34th Computer Security Foundations Symposium
(CSF), pages 1–16. IEEE, 2021. https://doi.org/10.1109/CSF51468.2021.00002.

[KLX20] Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puzzles and
timed commitments. In Theory of Cryptography: 18th International Conference, TCC
2020, Durham, NC, USA, November 16–19, 2020, Proceedings, Part III 18, pages
390–413. Springer, 2020. https://doi.org/10.1007/978-3-030-64381-2_14.

[KMS+16] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou.
Hawk: The blockchain model of cryptography and privacy-preserving smart contracts.
In 2016 IEEE symposium on security and privacy (SP), pages 839–858. IEEE, 2016.
https://doi.org/10.1109/SP.2016.55.

[KN08] Gillat Kol and Moni Naor. Cryptography and game theory: Designing protocols for
exchanging information. In Theory of Cryptography: Fifth Theory of Cryptography
Conference, TCC 2008, New York, USA, March 19-21, 2008. Proceedings 5, pages
320–339. Springer, 2008. https://doi.org/10.1007/978-3-540-78524-8_18.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual international
cryptology conference, pages 357–388. Springer, 2017. https://doi.org/10.1007/
978-3-319-63688-7_12.

[KRS18] Lucianna Kiffer, Rajmohan Rajaraman, and Abhi Shelat. A better method to an-
alyze blockchain consistency. In Proceedings of the 2018 acm sigsac conference on
computer and communications security, pages 729–744, 2018. https://doi.org/10.
1145/3243734.3243814.

[Kur20] Klaus Kursawe. Wendy, the good little fairness widget: Achieving order fairness for
blockchains. In Proceedings of the 2nd ACM Conference on Advances in Financial
Technologies, pages 25–36, 2020. https://doi.org/10.1145/3419614.3423263.

[KZGJ20] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for
byzantine consensus. In Advances in Cryptology–CRYPTO 2020: 40th Annual In-

366

https://doi.org/10.1145/3419614.3423254
https://doi.org/10.1016/j.jet.2014.04.007
https://doi.org/10.1016/j.jet.2014.04.007
https://arxiv.org/abs/2205.08904
https://arxiv.org/abs/2205.08904
https://doi.org/10.1145/1007352.1007447
https://doi.org/10.1145/3494105.3526239
https://doi.org/10.1109/CSF51468.2021.00002
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1007/978-3-540-78524-8_18
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1145/3243734.3243814
https://doi.org/10.1145/3243734.3243814
https://doi.org/10.1145/3419614.3423263

Bibliography

ternational Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, Au-
gust 17–21, 2020, Proceedings, Part III 40, pages 451–480. Springer, 2020. https:
//doi.org/10.1007/978-3-030-56877-1_16.

[MBYS21] Patrick McCorry, Chris Buckland, Bennet Yee, and Dawn Song. Sok: Validating
bridges as a scaling solution for blockchains. Cryptology ePrint Archive, 2021. https:
//eprint.iacr.org/2021/1589.pdf.

[MGZ23] Peyman Momeni, Sergey Gorbunov, and Bohan Zhang. Fairblock: Preventing blockchain
front-running with minimal overheads. In Security and Privacy in Communication
Networks: 18th EAI International Conference, SecureComm 2022, Virtual Event,
October 2022, Proceedings, pages 250–271. Springer, 2023.

[MMR23] Jason Milionis, Ciamac C Moallemi, and Tim Roughgarden. Complexity-approximation
trade-offs in exchange mechanisms: Amms vs. lobs. arXiv preprint arXiv:2302.11652,
2023. https://fc23.ifca.ai/preproceedings/65.pdf.

[MXC+16] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of bft protocols. In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pages 31–42, 2016. https://doi.org/10.1145/2976749.
2978399.

[Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.
org/bitcoin.pdf, 2008.

[Pen23] Penumbra. ZSwap documentation. https://protocol.penumbra.zone/main/zswap.
html, 2023.

[PRM+22] Sikha Pentyala, Davis Railsback, Ricardo Maia, Rafael Dowsley, David Melanson,
Anderson Nascimento, and Martine De Cock. Training differentially private models
with secure multiparty computation. arXiv preprint arXiv:2202.02625, 2022. https:
//arxiv.org/abs/2202.02625.

[PRR10] Manas Pathak, Shantanu Rane, and Bhiksha Raj. Multiparty differential privacy via
aggregation of locally trained classifiers. Advances in neural information processing sys-
tems, 23, 2010. https://proceedings.neurips.cc/paper_files/paper/2010/file/
0d0fd7c6e093f7b804fa0150b875b868-Paper.pdf.

[PS17a] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings of the
ACM symposium on principles of distributed computing, pages 315–324, 2017. https:
//doi.org/10.1145/3087801.3087809.

[PS17b] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part II 23, pages 380–409. Springer, 2017. https://doi.org/10.1007/
978-3-319-70697-9_14.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in
asynchronous networks. In Advances in Cryptology–EUROCRYPT 2017: 36th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30–May 4, 2017, Proceedings, Part II, pages 643–673. Springer,
2017. https://doi.org/10.1007/978-3-319-56614-6_22.

[PWXL21] Daniel Perez, Sam M Werner, Jiahua Xu, and Benjamin Livshits. Liquidations: Defi on
a knife-edge. In Financial Cryptography, 2021. (to appear) https://arxiv.org/abs/
2009.13235.

367

https://doi.org/10.1007/978-3-030-56877-1_16
https://doi.org/10.1007/978-3-030-56877-1_16
https://eprint.iacr.org/2021/1589.pdf
https://eprint.iacr.org/2021/1589.pdf
https://fc23.ifca.ai/preproceedings/65.pdf
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1145/2976749.2978399
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://protocol.penumbra.zone/main/zswap.html
https://protocol.penumbra.zone/main/zswap.html
https://arxiv.org/abs/2202.02625
https://arxiv.org/abs/2202.02625
https://proceedings.neurips.cc/paper_files/paper/2010/file/0d0fd7c6e093f7b804fa0150b875b868-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/0d0fd7c6e093f7b804fa0150b875b868-Paper.pdf
https://doi.org/10.1145/3087801.3087809
https://doi.org/10.1145/3087801.3087809
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.1007/978-3-319-56614-6_22
https://arxiv.org/abs/2009.13235
https://arxiv.org/abs/2009.13235

Bibliography

[Ren19] Ling Ren. Analysis of nakamoto consensus. Cryptology ePrint Archive, 2019. https:
//eprint.iacr.org/2019/943.pdf.

[RSW96] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-locked Puzzles and Time-
release Crypto. https://people.csail.mit.edu/rivest/pubs/RSW96.pdf, 1996.

[SA21] Ravital Solomon and Ghada Almashaqbeh. smartfhe: Privacy-preserving smart contracts
from fully homomorphic encryption. Cryptology ePrint Archive, 2021. https://eprint.
iacr.org/2021/133.

[SBBV22] Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, and Martin Vechev. Zeestar:
Private smart contracts by homomorphic encryption and zero-knowledge proofs. In
2022 IEEE Symposium on Security and Privacy (SP), pages 179–197. IEEE, 2022.
https://doi.org/10.1109/SP46214.2022.9833732.

[SBG+19] Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar Tsankov, and
Martin Vechev. zkay: Specifying and enforcing data privacy in smart contracts. In
Proceedings of the 2019 ACM SIGSAC conference on computer and communications
security, pages 1759–1776, 2019. https://doi.org/10.1145/3319535.3363222.

[SCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from
bitcoin. In 2014 IEEE symposium on security and privacy, pages 459–474. IEEE, 2014.
https://doi.org/10.1109/SP.2014.36.

[Shi20] Elaine Shi. Foundations of distributed consensus and blockchains. Book manuscript,
2020. http://elaineshi.com/docs/blockchain-book.pdf.

[Vos22] Eric Voskuil. Cryptoeconomics, 2022. https://voskuil.org/cryptoeconomics/.

[Wat17] Roger Wattenhofer. Distributed Ledger Technology: The Science of the Blockchain.
CreateSpace Independent Publishing Platform, North Charleston, SC, USA, 2nd edition,
2017.

[WHMM21] Sameer Wagh, Xi He, Ashwin Machanavajjhala, and Prateek Mittal. Dp-cryptography:
marrying differential privacy and cryptography in emerging applications. Communica-
tions of the ACM, 64(2):84–93, 2021. https://doi.org/10.1145/3418290.

[WRA21] Dave White, Dan Robinson, and Hayden Adams. Time-weighted Average Market Maker
(TWAMM). 2021. https://www.paradigm.xyz/2021/07/twamm/.

[XCZ+22] Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben Fisch, Fernando
Krell, and Philippe Camacho. Veri-zexe: Decentralized private computation with
universal setup. Cryptology ePrint Archive, 2022. https://eprint.iacr.org/2022/
802.

[YMR+19] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham.
Hotstuff: Bft consensus with linearity and responsiveness. In Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, pages 347–356, 2019.
https://doi.org/10.1145/3293611.3331591.

368

https://eprint.iacr.org/2019/943.pdf
https://eprint.iacr.org/2019/943.pdf
https://people.csail.mit.edu/rivest/pubs/RSW96.pdf
https://eprint.iacr.org/2021/133
https://eprint.iacr.org/2021/133
https://doi.org/10.1109/SP46214.2022.9833732
https://doi.org/10.1145/3319535.3363222
https://doi.org/10.1109/SP.2014.36
http://elaineshi.com/docs/blockchain-book.pdf
https://voskuil.org/cryptoeconomics/
https://doi.org/10.1145/3418290
https://www.paradigm.xyz/2021/07/twamm/
https://eprint.iacr.org/2022/802
https://eprint.iacr.org/2022/802
https://doi.org/10.1145/3293611.3331591

	Abstract
	Resumé
	Acknowledgements
	Contents
	Introduction
	Cryptoeconomics
	Definition: Cryptoeconomic Layers 1 & 2
	Open research problems

	Thesis Overview
	Research questions & thesis contributions

	Background
	L1: Input Fairness in Consensus
	Authenticated consensus
	Authenticated setting
	State Machine Replication
	Synchronous model.
	Asynchronous model.

	Input fairness in authenticated consensus.
	Permissionless Consensus
	Permissionless setting
	Impossibility of unauthenticated agreement
	Nakamoto Proof-of-Work
	Nakamoto Proof-of-Stake
	Proof-of-Stake + Byzantine Agreement

	Input fairness in the permissionless setting

	L2: Decentralized Finance (DeFi)
	Constraints on L2 applications
	Application archetypes
	TradFi: Limit order books
	DeFi: Automatic market makers
	DeFi: Lending protocols
	Atomic composition & Flash loans

	Notions of fairness in DeFi
	Transaction ordering
	Pre- and Post-trade privacy

	L2: Privacy in Cryptoeconomic Systems
	Update of single private states
	Update of multiple private states
	Differential privacy in smart contracts.
	Definitions: differential privacy in the trusted curator model
	Differentially private market mechanisms

	Publications & Manuscripts
	P1a. A Theory of Automated Market Makers in DeFi
	P1b. A Theory of Automated Market Makers in DeFi (Journal version)
	P2. SoK: lending pools in decentralized finance
	P3. Formal Analysis of Lending Pools in Decentralized Finance
	P4. Maximizing Extractable Value from Automated Market Makers
	P5. SoK: Mitigation of Front-running in Decentralized Finance
	P6. FairPoS: Input Fairness in Proof-of-Stake with Adaptive Security
	P7. Eagle: Efficient Privacy Preserving Smart Contracts
	P8. Fuzzy Order Matching: Differentially Private Market Mechanisms with MPC
	P9. SoK: Privacy-Enhancing Technologies in Finance

	Conclusion
	Future work
	Incentive composition in cryptoeconomics
	Permissionless, privacy-preserving smart contracts
	Universal, differentially private mechanisms for MPC

	Bibliography

