

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 10, 2024

Common Data Environments to facilitate information management in HVAC
engineering

Seidenschnur, Mikki

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Seidenschnur, M. (2023). Common Data Environments to facilitate information management in HVAC
engineering. Technical University of Denmark. DCAMM Special Report No. S328

https://orbit.dtu.dk/en/publications/a30ecf4e-61ce-4fb0-866f-5c20d97d9d89

Common Data Environments to
facilitate information management
in HVAC engineering
Mikki Seidenschnur

PhD Thesis

DTU Construct
Department of Civil andMechanical Engineering

Principal supervisor: Associate Professor Christian Anker Hviid, Ph.D.
Co-supervisor: Associate Professor Kevin Michael Smith, Ph.D.
Principal company supervisor: Senior Chief Specialist Christoffer Borgwardt-Stampe,
M.Sc.
Company co-supervisor: Senior Chief Specialist Frederik Blum Winther, Ph.D.

DTU Civil & Mechanical Engineering

Department of Civil & Mechanical Engineering

Technical University of Denmark

Nils Koppels Allé

Building 404

2800 Kongens Lyngby, Denmark

Preface
This thesis is submitted to the Department of Civil and Mechanical Engi-
neering at Technical University of Denmark (DTU) in partial fulfillment of
the requirements for the degree of Doctor of Philosophy. The study was
conducted as an industrial Ph.D.1 project between March 2020 and March
2023. The principal supervisor was Associate Professor Christian Anker Hviid,
DTU Construct; the co-supervisor was Associate Professor Kevin Michael
Smith, DTU Construct. The company principal company supervisor was Se-
nior Chief Specialist Christoffer Borgwardt-Stampe, Ramboll; the company
co-supervisor was Senior Chief Specialist Frederik Blum Winther, Ramboll.
The dissertation is paper-based and consists of the present thesis and the
papers created during the Ph.D. thesis (Chapter 6).

Kongens Lyngby, 20th February 2023

Mikki Seidenschnur

1An industrial Ph.D. project in Denmark focuses on research in industry-related topics.
The organization consists of a hosting company (Rambøll), The Ph.D. student, and the
university (DTU)

ii

Acknowledgements
I extend my gratitude to the Ramboll Foundation, Ramboll A/S, and In-
novationsfonden Denmark for providing the funding necessary to carry out
this industrial Philosophiae Doctor (PhD). Specifically, I would like to thank
Ramboll A/S for showing a continuous interest in this research project and
working hard to implement it within the organization.

I thank my principal supervisor at DTU, Associate professor Christian Anker
Hviid, for helping me initiate the application process for the PhD project.
Without your help, I would not have initiated the PhD project to begin with.
I also thank you for meeting with me regularly throughout the project to
discuss research topics and provide feedback on research output. I want to
extend my gratitude to my co-supervisor at DTU, Associate professor Kevin
Michael Smith, for providing me with extensive feedback on the project and
research output. A special thanks to the mental support you provided in the
late stages of writing the thesis. It has been a tremendous effort, and I would
not have been able to carry it out without your support.

A special thanks to my principal supervisor in Ramboll, Senior Chief Special-
ist Christoffer Borgwardt-Stampe, for his continued interest in the project
and for helping me to implement the research findings into the organization
of Ramboll. Your tenacity and competencies have helped me immensely to
generate an impact within the Ramboll organization. I look forward to our
continued collaboration. I thank my co-supervisor, Senior Chief Specialist
Frederik Blum Winther, for the insights provided to the simulation world
and for helping me set the boundaries of the PhD project. Thank you for
letting me draw on your experience as a PhD. It helped me get through some
tricky writing spells. Finally, I would like to extend my gratitude to Country
Market Director Ronni Holm Dam for helping us realize the project and for
helping me in succeeding within the Ramboll organization. Your experience
with software development in the Architecture, Engineering, Construction,
and Operation (AECO) industry has been paramount to scoping the PhD

iv Acknowledgements

project to increase organizational impact.

Thanks to Pieter Pauwels for hosting me during my four months external
research stay at the Eindhoven University of Technology (TUe). I contacted
Pieter because he is a well-known driving force for the digital transformation
of the AECO industry. He provided me with valuable feedback on my research
articles and contributed directly to those articles. Your feedback has been
a massive help in creating quality publications. I also thank my research
colleagues at TUe, Ekaterina Petrova, Alex Donkers, Shahryar Sarabi, Julia
Kaltenegger, and many more, for valuable discussions, over lunch or otherwise,
and in general for making Eindhoven my home for four months.

I want to extend my thanks to my colleagues at Ramboll and DTU, with
whom I have enjoyed many cups of coffee, lunches, and social activities in
general. Though I have split my time between offices (Ramboll and DTU),
my colleagues in both workplaces have worked hard to include me in all the
activities, even during the COVID-19 lockdowns. Without this social interac-
tion, I don’t know how I would have survived for three years!

I especially want to thank my colleagues, friends, and partners in crime, Ali
Kücükavci, and Esben Visby Fjerbæk. Ali, I have shared this three-year PhD
journey with you, and we have produced numerous publications together, and
I owe a large part of this success to you. Had it not been for you, this journey
would have been impossible. Esben, you started as a master’s thesis student
under the guidance of Ali and me. After exceeding our expectations, you
went on to do an industrial PhD in the same area as me. I greatly appreciate
your friendship and look forward to our continued collaboration.

Throughout the research project, I have been the co-supervisor of six master
students’ theses. I thank Esben Visby Fjerbæk, Jon Martin Tangeraas, Fred-
erik Seeberg, Gry Haxholm, Camilla Jakobsen, and Oskar Gram Nielsen for
using the Common Data Environment (CDE) developed in this PhD project
for their projects. This has greatly advanced my research and generated valu-
able contributions.

I want to thank my friends and family for supporting me through the PhD
journey. I hope that I one day can repay the support that you have given
me. A special thanks to my twin brother, Mark Seidenschnur, for his mental
support, but especially for mentoring me in software development. Through
your guidance, and background as a software engineer, I refocused my research
to a much broader perspective of development within the AECO industry.
You taught me the secrets of software development. Without your mentoring,
this project would not have been the same.

Finally, my most profound appreciation goes out to my fiancée, Natasha Maria
Lund Andersen. You have been the most essential part of this journey. I

Acknowledgements v

fear that my constant rambling about this project might have been tedious
at times - but you have always listened enthusiastically and tried to solve
problems with me. At this point, I believe that you deserve a PhD-degree as
well. I dedicate this work to you.

vi

Foreword
When I started my first full-time position as a Mechanical engineer, I quickly
recognized that changes in building design are inevitable. Therefore, like most
of my colleagues, I started to digitalize my calculations in Excel spreadsheets
- so I could dynamically recalculate the Heating, Ventilation, and Cooling
(HVAC) system when there were design changes. But, after I had developed
a multitude of tools based on different projects, I realized that my develop-
ments were not useful for others and could rarely be reapplied to another
project. Last but not least, I also found that I had increased the amount
of manual input that I needed to acquire from different stakeholders in the
design project.

I developed excel spreadsheets, while others developed C# plug-ins for Revit,
Python for Grasshopper, and so on. We were developing tools that only we
could use and where input was provided manually. We simply had no place
for storing all project-related information. This reminds me of a quote by
George Westerman:

”When digital transformation is done right, it’s like a caterpillar
turning into a butterfly, but when done wrong, all you have is a re-
ally fast caterpillar.” — George Westerman, MIT Sloan Initiative
on the Digital Economy

I realized that AECO organizations spend countless hours on tool develop-
ment that is rarely implemented. The tools are too narrowly scoped and
aim to solve the simplest issues without addressing some of the underlying
problems. One of those problems is that interoperability is poor, and of-
ten information is shared manually as documents between stakeholders using
emails.

I wanted to take a step back and reassess the process of creating tools and
sharing information in the AECO industry. Therefore, when I had the oppor-
tunity to research just that, I had to take it.

viii

Summary (English)
Information management in the Architecture, Engineering, Construction, and
Operation (AECO) industry is fragmented, which creates an information gap.
This can be accredited to stakeholders working in a document-centric/file-
based manner. Consequently, stakeholders do not have access to the most
recent information on the building project, and there exist several sources of
truth.

The information gap significantly affects the Heating, Ventilation, and Cooling
(HVAC) discipline. There is no single source of truth, meaning that Heating,
Ventilation, and Cooling (HVAC) engineers have to acquire the information
manually from all the stakeholders. To minimize the burden of information
acquisition, HVAC simulation models are over-simplified and rarely reflect
the physical reality of the HVAC system in the building. Due to the over-
simplification of HVAC simulation models, most HVAC systems are oversized.
Consequently, there is a gap between the predicted and measured performance
of buildings, called the performance gap.

The overall objective of this thesis was to provide the HVAC discipline in the
AECO industry a place to centralize project-related information in a Common
Data Environment (CDE) providing a single source of truth. The purpose
of the CDE is to enable the digital transformation of the AECO industry
through a platform that can be organically extended using a modular system
architecture. Furthermore, the CDE aims to close the information gap for
HVAC engineers and, as a result, reduce the performance gap.

This thesis presents a CDE based on a microservice system architecture. The
CDE can translate proprietary Building Information Modeling (BIM) mod-
els into an object-oriented database that provides a single source of truth
for the project stakeholders. The database of the CDE is based on the Flow
System Classes (FSC) and Thermal Zone Classes (THERM) object models de-
veloped in this thesis. Through the CDE’s microservice architecture, several
microservices were developed, capable of performing whole-building simula-

x Summary (English)

tion, hydraulic simulation, dynamic hydraulic calculation, model validation,
and serializing proprietary BIM models into object models created in this
thesis. Most notably, the CDE contain tools capable of performing whole-
building simulation and detailed HVAC calculations of systems.

The developed microservice-based CDE was used to evaluate the performance
gap in different use cases. The use case of Frederiksberg school showed that
the developed whole-building simulation microservice can simulate the exist-
ing BIM model. The results were used with measurements from the school to
evaluate the performance gap, which illustrated a large discrepancy between
the predicted and measured performance.

The CDE provides the basis for the digital transformation of the AECO in-
dustry by replacing file-based BIM with a model-centric approach. Through
Flow System Classes (FSC), Thermal Zone Classes (THERM), and Flow Sys-
tems Ontology (FSO), it is possible to represent HVAC systems and thermal
zones as a single source of truth in the CDE. The microservice architecture
in the CDE allows for an organically scalable system architecture. This was
illustrated by adding microservices capable of whole-building simulation and
detailed HVAC simulation in EnergyPlus (E+) and Modelica, respectively.
In conclusion, the developed CDE combined with whole-building simulation
and detailed HVAC simulation has the potential to reduce the performance
gap by closing the information gap between stakeholders.

Summary (Danish)
Informationshåndtering i Arkitektur, Ingeniør, Entreprise og Drift (AECO)
industrien er fragmenteret, hvilket skaber et informationsgab. Det skyldes
bl.a. aktører, hvis arbejdsproces er baseret på udveksling af filer. Dette
betyder at aktørerne ikke har adgang til den mest opdaterede information
relateret til byggeprojektet og at der eksisterer adskillige ”sandheder”.

Informationsgabet påvirker specielt HVAC disciplinen. Der er ikke en single
source of truth, hvilket betyder at HVAC ingeniører manuelt må fremskaffe
informationen fra andre aktører. For at minimere byrden om fremskaffelse af
information, er HVAC modeller ofte oversimplificeret og reflekterer sjældent
den fysiske realitet af HVAC systemet i bygningen. Pga. denne oversimpli-
ficering af HVAC simulationsmodellerne, er de fleste HVAC systemer overdi-
mensioneret. Som konsekvens er der en forskel på den simulerede og målte
præstation i bygninger, kaldet præstationsgabet.

Det overordnede formål med denne afhandling er at give AECO industrien
et CDE for at centralisere alt projektrelateret information i en single source
of truth. Formålet med CDE’et er at muliggøre den digitale transformation
af AECO industrien gennem en platform, som kan blive udvidet organisk
vha. en modulær system arkitektur. Ydermere, forsøger CDE’et på at lukke
informationsgabet for HVAC ingeniører, og som konsekvens, reducere præsta-
tionsgabet.

Denne afhandling præsenterer et CDE baseret på en microservice arkitektur.
CDE’et er i stand til at oversætte proprietære BIM modeller til en objek-
torienteret database, som giver en single source of truth for alle projektets
aktører. Databasen for CDE’et er baseret på FSC og THERM objektmod-
ellerne, der er udviklet i denne afhandling. Gennem CDE’ets microservice
arkitektur, blev adskillige microservices udviklet, som er i stand til at udføre
”whole-building” simulering, hydrauliske simuleringer, dynamiske hydrauliske
beregninger, modelvalidering, og serialisere proprietære BIM modeller til ob-
jektmodellerne skabt i denne afhandling. Vigtigst af disse udviklinger er

xii Summary (Danish)

CDE’et, der indeholder værktøjer, der er i stand til at lave ”whole-building”
simuleringer og detaljerede HVAC simuleringer på HVAC systemer.

Det udviklede microservicebaseret CDE blev brugt til at evaluere præstation-
sgabet i nogle forskellige brugssager. Bl.a. viste brugsagen fra Frederiksberg
Skole at det udviklede ”whole-building” simuleringsværktøj kunne simulere
en eksisterende BIM model. Simuleringsresultaterne blev brugt til at sam-
menligne med målte data fra skolen, for at evaluere præstationsgabet.

CDE’et ligger fundamentet for den digitale transformation af AECO indus-
trien, ved at udskifte filbaseret BIM med en modelorienteret metode. Gennem
FSC, THERM og FSO, var det muligt at representere HVAC systemer og ter-
miske zoner som en single source of truth i et CDE. Microservice arkitekturen
i CDE’et gør det muligt at skalere systemarkitekturen organisk. Dette blev
illustreret ved additionen af microservices, der er i stand til at udføre ”whole-
building” simulering og detaljerede HVAC simuleringer, i henholdsvis Ener-
gyPlus (E+) og Modelica. Afslutningsvis, så har det udviklede CDE, i kom-
bination med ”whole-building” simulering og detaljerede HVAC simuleringer
potentialet til at reducere præstationsgabet, ved at lukke informationsgabet
mellem aktører.

List of publications
This dissertation is paper-based and is based on the journal papers listed
below. For the full paper, refer to chapter 6.

I Seidenschnur, M., Kücükavci, A., Fjerbæk, E. V., Smith, K. M., Pauwels,
P., & Hviid, C. A. (2022). A common data environment for HVAC
design and engineering. Automation in Construction, 142, [104500].
doi:10.1016/j.autcon.2022.104500

II Seidenschnur, M., Kücükavci, A., Fjerbæk, E. V., Smith, K. M., &
Hviid, C. A. (2023). A Common Data Environment with an EnergyPlus
microservice for Post-occupancy evaluation of the Energy Performance
Gap. Journal of Building Engineering. Under Review.

III Kukkonen, V., Kücükavci, A., Seidenschnur, M., Rasmussen, M. H.,
Smith, K. M., & Hviid, C. A. (2021). An ontology to support flow
system descriptions from design to operation of buildings. Automation
in Construction, 134, [104067]. doi:10.1016/j.autcon.2021.104067.

IV Fjerbæk, E. V., Seidenschnur, M., Kücükavci, A., Smith, K. M., Hviid,
C. A. Coupling Modelica and a Common Data Environment for simula-
tion of HVAC systems. Journal for Building Performance Simulations.
Under Review.

V Kücükavci, A., Seidenschnur, M., Pauwels, P., Rasmussen, M. H., &
Hviid, C. A. (2023). Efficient management and compliance check of
HVAC information in the building design phase using semantic web
technologies. Journal of Building Engineering. Under Review.

VI Kücükavci, A., Seidenschnur, M., Rhiger, S. J., Negendahl, K., & Hviid,
C. A. (2023). Rightsizing HVAC components using an ontology-driven
Common Data Environment. Journal for Building Engineering. Under
Review

xiv List of publications

Furthermore, this thesis is also based on the following conference papers:

VII Seidenschnur, M., Kücükavci, A., Smith, K. M., & Hviid, C. A. (2022).
A Web-based Common Data Environment for Continuous Commission-
ing of buildings. BuildSim Nordic 2022, book of abstracts

VIII Fjerbæk, E. V., Seidenschnur, M., Kücükavci, A., Smith, K. M., Hviid,
C. A. (2022). From BIM databases to Modelica - Automated simulations
of heating systems. CLIMA 2022 Conference. https://doi.org/10.34641
/clima.2022.365

IX Kücükavci, A., Seidenschnur, M., Kristoffer, N., & Hviid, C. A. (2022).
Taking advantage of semantic web ontologies and shape constraints for
Heating, Cooling, and Ventilation Systems. E3S Web of Conferences
362, 04002 (2022), BuildSim Nordic. https://doi.org/10.1051/e3sconf
/202236204002.

X Pauen, N., Kukkonen, V., Kücükavci, A., Rasmussen, M. H., Seiden-
schnur, M., Schlütter, D., Hviid, C. A., & van Treeck, C. (2022). A
roadmap toward a unified ontology for building service systems in the
AECO industry: TSO and FSO. In P. Pauwels, M. Poveda-Villalón , &
W. Terkaj (Eds.), CEUR Workshop Proceedings (Vol. 3213, pp. 53-64).
CEUR-WS. CEUR Workshop Proceedings.

Acronyms
AECO Architecture, Engineering, Construction, and

Operation. iii, iv, vii, ix–xii, xix, 1–4, 6, 7, 9–
16, 18–20, 24, 26, 28–31, 34, 35, 44, 55, 57–61,
64, 66, 67, 69–71, 233

API Application Programming Interface. 13, 17, 39,
43, 45, 59, 60, 70

BHoM Buildings and Habitats object Model. 24, 25
BIM Building Information Modeling. ix–xii, xix, 6,

9, 11–13, 15, 17, 18, 26, 28–31, 34, 35, 41–46,
49, 50, 54, 56, 58–62, 64–67, 69–71

BOT Building Topology Ontology. 19, 20, 30, 31, 35,
36

BPS Building Performance Simulation. 5, 9–12, 26,
42, 43

CAD Computer-Aided Design. 6
CDE Common Data Environment. iv, ix–xii, 7, 9,

13–18, 24–26, 28–34, 39, 41–52, 55, 56, 58–71,
233

DTU Technical University of Denmark. i, iii, iv, 20

E+ EnergyPlus. x, xii, 13, 26, 49, 51–54, 56, 59,
61–63, 65–69

EPG Energy Performance Gap. 5

FMI Functional Mock-up Interface. 12, 56
FMU Functional Mock-up Unit. 13, 56
FPO Flow Properties Ontology. 37–39, 49, 54, 60, 67

xvi List of acronyms

FSC Flow System Classes. ix–xii, 33, 34, 38–44, 46–
50, 58–60, 62, 63, 66–69, 71, 233

FSO Flow Systems Ontology. x, xii, 21, 33–38, 44,
49, 54, 59, 60, 66, 67, 233

GDP Gross Domestic Product. 2

HTTP Hypertext Transfer Protocol. 16, 46
HVAC Heating, Ventilation, and Cooling. vii, ix–xii,

4–7, 9–13, 15, 17, 18, 20, 25, 26, 28–37, 42, 44–
46, 48–51, 54–56, 58–71, 233

IBPSA International Building Performance Simulation
Association. 12

IDF Input Data File. 51, 52, 61, 69
IESVE Integrated Environmental Solutions Virtual En-

vironment. 26, 61, 66
IFC Industry Foundation Classes. 13, 15, 18–20, 25,

58–60, 71
ifcOWL Industry Foundation Classes Web Ontology

Language. 20

JSON JavaScript Object Notation. 17, 18, 22, 30, 39–
41, 43, 44, 46, 49, 51, 59–61, 63, 71

JSON-LD JavaScript Object Notation for Linked Data.
22, 24, 38, 60

LBD Linked Building Data. 19–21

MEP Mechanical, Electrical, and Plumbing. 25, 70

OOP Object Oriented Programming. 22
OWL Web Ontology Language. 19, 20, 24, 31, 34, 38,

41, 60, 61, 67

PDF Portable Document Format. 3
PhD Philosophiae Doctor. iii–v, xix, 33, 58, 64, 66,

68, 71, 73

RDF Resource Description Framework. 21, 22, 30,
38, 41, 59, 60, 67, 71

REC Real Estate Core. 20
REST Representational State Transfer. 16, 45
RQ Research Question. 58

List of acronyms xvii

SAREF Smart Applications REFerence. 19
SEAS Smart Energy Aware Systems. 19
SPARQL SPARQL Protocol and RDF Query Language.

21, 22, 37, 38, 60
Spawn Spawn-of-EnergyPlus. 12, 13, 26, 56, 63, 68, 71

THERM Thermal Zone Classes. ix–xii, 33, 42–44, 49, 51,
56, 59, 61–63, 66, 68, 69, 71, 225, 233

Turtle Terse RDF Triple Language. 21, 30, 36–38, 60,
67

UML Unified Modeling Language. 38, 42
URI Unique Resource Identifiers. 22, 60

W3C World Wide Web Consortium. 21, 22

XML Extensible Markup Language. 30

xviii

Reader’s guide
This thesis is divided into six chapters.

The thesis introduces the main problem in Chapter 1. Chapter 1 provides
the basis for understanding the issue of fragmented information management
in the Architecture, Engineering, Construction, and Operation (AECO) in-
dustry and why it leads to a performance gap in predicted and measured
performance.

The background chapter 2 provides a comprehensive literature review of ex-
isting information management solutions and tools that allow for advanced
whole-building and hydraulic simulation of BIM models. If the reader is un-
familiar with software engineering, specifically object-oriented programming,
and web-based programming, the author of this thesis highly recommends
reading the background chapter.

The thesis then introduces the research design chapter 3, which is essential
for all readers to understand the research contributions made throughout
this thesis. The research design presents six research questions based on the
introduction and background. It also introduces four research tasks aimed at
answering the research questions. Finally, the research design elaborates on
the methods used to solve the research tasks.

The results chapter 4 provides a summary of all the research contributions
made, in the form of journal papers or conference papers, to the research
tasks posed in the research design.

The discussion and conclusion chapter 5 section provides the answers to the
research questions asked in the research design. Furthermore, it overviews
the specific contributions made to academia and industry. Finally, the future
outlook of this thesis is discussed.

The papers chapter 6 provides the reader with all the research articles that
have contributed to the work in this paper-based PhD thesis.

xx

Contents
Preface i

Acknowledgements iii

Foreword vii

Summary (English) ix

Summary (Danish) xi

List of publications xiii

List of acronyms xv

Reader’s guide xix

Contents xxi

1 Introduction 1
1.1 Productivity in the AECO industry 2
1.2 The information gap . 3
1.3 The performance gap . 5
1.4 Digital transformation . 6
1.5 Vision . 7

2 Background 9
2.1 Building performance simulations 10

2.1.1 Idealized building performance simulation models 10
2.1.2 Hydraulic calculation/simulation 11
2.1.3 Detailed HVAC simulations 12

2.2 Web-based Common Data Environments 14
2.3 System architecture of a CDE 15

xxii Contents

2.3.1 Monolithic architecture 15
2.3.2 Microservice architecture 16

2.4 Data models . 18
2.4.1 Industry Foundation Classes 18
2.4.2 Discipline-specific vocabularies 19

2.5 Summary . 26

3 Research Design 27
3.1 Problem statement . 28
3.2 Research questions . 28
3.3 Research tasks . 29
3.4 Methodology . 30

3.4.1 Research task 1 . 30
3.4.2 Research task 2 . 30
3.4.3 Research task 3 . 31
3.4.4 Research task 4 . 31

4 Results 33
4.1 Research tasks and related articles 34
4.2 Research task 1 . 34

4.2.1 Flow System Ontology 35
4.2.2 Flow System Classes . 38
4.2.3 Key findings . 41

4.3 Research task 2 . 42
4.3.1 Thermal Zone Classes 42
4.3.2 Key findings . 43

4.4 Research task 3 . 44
4.4.1 System architecture . 44
4.4.2 Microservice developments 45
4.4.3 Key findings . 47

4.5 Research task 4 . 48
4.5.1 Modelica in a CDE . 49
4.5.2 EnergyPlus in a CDE 51
4.5.3 Key findings . 55

5 Discussion & Conclusion 57
5.1 Research questions revisited . 58

5.1.1 RQ1: Replacing file-based BIM with a CDE? 58
5.1.2 RQ2: A CDE for seamless data integration? 59
5.1.3 RQ3: A data model for flow systems 60
5.1.4 RQ4: A data model for thermal zones 61
5.1.5 RQ5: A microservice CDE for advanced building simu-

lation . 62
5.1.6 RQ6: Can a CDE reduce the performance gap? 64

Contents xxiii

5.2 Contributions . 66
5.2.1 A system architecture for microservice-based CDE . . . 66
5.2.2 Flow System Ontology 67
5.2.3 Flow System Classes . 67
5.2.4 Thermal Zone Classes 68
5.2.5 Microservices . 68
5.2.6 Future outlook . 69

5.3 Concluding remarks . 71

6 Papers 73
6.1 Paper I - A common data environment for HVAC design and

engineering . 74
6.2 Paper II - A Common Data Environment with an EnergyPlus

microservice for Post-occupancy evaluation of the Energy Per-
formance Gap . 91

6.3 Paper III - An ontology to support flow system descriptions from
design to operation of buildings 105

6.4 Paper IV - Coupling Modelica and a Common Data Environ-
ment for simulation of HVAC systems. 121

6.5 Paper V - Introducing a Semantic Web Ontology and Rule-Set
to Support Capacity- and Size-Related Property Descriptions
and Validation of Heating, Ventilation and Air Conditioning
Components in The Design Phase of Buildings 138

6.6 Paper VI - Efficient management and compliance check of HVAC
information in the building design phase using semantic web
technologies . 161

6.7 Paper VII - A Web-based Common Data Environment for Con-
tinuous Commissioning of buildings 184

6.8 Paper VIII - From BIM databases to Modelica - Automated
simulations of heating systems 191

6.9 Paper IX - Taking advantage of semantic web ontologies and
shape constraints for Heating, Cooling and Ventilation Systems 199

6.10 Paper X - A roadmap toward a unified ontology for building
service systems in the AECO industry: TSO and FSO 207

Appendices 221

Appendix A UML Diagram 223
A.1 THERM UML diagram . 224

Bibliography 227

xxiv

CHAPTER1
Introduction

This Chapter introduces the problem that led to the initiation of
this research.

Section 1.1 introduces the reader to the lack of productivity in-
crease in the AECO industry.

Section 1.2 provides the context for why the AECO industry is
falling behind on productivity due to the information gap.

Section 1.3 formulates the performance gap, the consequence of
the information gap, and how it may be reduced.

Section 1.4 introduces the existing development paradigms in large
organizations or industries and provides the bridge to the vision
of the following Section.

Finally, Section 1.5 collects all the problems described into a vision
of how to bridge the information gap and reduce the performance
gap.

2 Introduction

1.1 Productivity in the AECO industry
The AECO industry is one of the largest sectors in the world, with a total
spending of $10 trillion on materials and services each year. However, the
sector has been trailing in productivity for decades compared to other sectors,
as shown in Figure 1.1.

80

1995 2000 2005 2010 2014

100

120

140

160

180

Real gross value added per hour worked
by persons enganged, 2005 $
Index 100 = 1995

Construction
Total economy
Manufacturing

Figure 1.1. Figure adapted from the report published by McKinsey Global In-
stitute [1] ”Reinventing construction: A route to higher productivity”. The Figure
has been created based on 41 countries that contribute to 96% of the global Gross
Domestic Product (GDP)

Figure 1.1 shows that for two decades, the growth of labor-productivity in the
Architecture, Engineering, Construction, and Operation (AECO) industry
has averaged around 1%, compared to the 2.8% for the world economy, and
3.6% in the manufacturing sector [1]. The report estimates seven ways to
increase productivity within the AECO industry. Four of them focus mainly
on information management:

1. Reshape regulation and raise transparency
By making information about the design process available to all stake-
holders, transparency of the project is raised.

2. Rethink design and engineering processes
By implementing new technologies for information management, the
design and engineering processes can be revolutionized.

3. Improve on-site execution
On-site execution is often hindered by poor information availability. The
same objects might appear differently on different drawings.

1.2 The information gap 3

4. Infuse digital technology, new materials, and advanced au-
tomation
By infusing new digital technology, it is possible to improve information
management and, as a result, improve the automation behind it.

The Architecture, Engineering, Construction, and Operation (AECO) indus-
try has the potential to increase productivity by focusing on improving infor-
mation management through digital transformation.

1.2 The information gap
Multiple stakeholders are involved in designing buildings. These stakeholders
are responsible for providing information about the building’s design, con-
struction, and operation. Often one stakeholder is responsible for delivering
information that another stakeholder needs to carry out a task, as shown in
Figure 1.2. The Figure shows how building stakeholders work in a file-based
and document-centric manner, creating a work environment where each stake-
holder works independently of the other [2].

During the design phase, information is shared manually by each stakeholder
on a need-to-know basis. For instance, the architect can share information
with the energy and indoor climate engineer on request as a document (spread-
sheet), often through an email. The current state of that document then pro-
vides the basis for energy and indoor climate engineer. But once updates are
posed to that document on the architect’s local drive, the energy and indoor
climate engineer is not notified.

After the design phase, construction documentation is usually provided to
the contractor as Portable Document Format (PDF) files. The building’s
construction phase is initiated with the design phase’s conclusion. The con-
struction stage typically results in the contractor re-designing the project
using construction documentation in terms of drawings while consulting the
architect and engineer to ensure that the original functionality is maintained.
The result is that the information available in the design stage is no longer
compatible with the information in the construction phase. After redesigning
the building, the construction is initiated, and the phase is concluded with
commissioning the building. At this point, the architect and engineers are
barely involved. Once the building has been commissioned, the building life
cycle transfers into the operation phase, where the architect, engineer, and
contractor are not involved unless the building users are experiencing signifi-
cant issues, such as non-operational building components.

Figure 1.2 shows that stakeholders work on different platforms and rely on
document-centric documentation of buildings. Tools that have been useful

4 Introduction

ENERGY AND
INDOOR CLIMATE

 ENGINEER

HEATLOSS

VENTILATION

COOLING

ROOM SCHEDULES ARCH DESCRIPTION

ARCHITECT ARCH-BIM

E�IC SIMULATION

MEP-BIMHVAC ENGINEER

U-VALUES

INDOOR CLIMATE
DESCRIPTION

ENERGY
REPORT

HVAC SYSTEMS
DESCRIPTION

VENTILATION HEATING

DUCT SIZE PIPE SIZE

FAN SIZE PUMP SIZE

COOLING

PIPE SIZE

PUMP SIZE

CONSTRUCTION
DOCUMENTATION

Figure 1.2. The Figure shows how designers often work in silos in a document-
centric manner. The final project delivery of the design phase usually results in a
construction documentation package.

in the design phase of the building, providing evidence-based design, are no
longer used in the construction phase - here, changes are made based on
the construction documentation developed in the design process. Changes
made to improve the constructability of the Heating, Ventilation, and Cooling
(HVAC) system do not result in a recalculation and resizing of the HVAC
system. This means the building is not constructed according to the original
design intention, leading to an incompatible HVAC system.

Information management between stakeholders in the AECO industry is frag-
mented and lacks a common strategy/technology, which creates an informa-
tion gap [3]. This is caused by stakeholders working in a document-centric

1.3 The performance gap 5

manner, meaning they cannot access the most recent information that pro-
vides boundary conditions for their specific discipline. This information gap
is caused by inadequate information management and poor tool interoperabil-
ity. The gap in information results in a difference between the predicted and
measured performance of buildings called the performance gap [4].

1.3 The performance gap
With the focus on increasing building performance, it has become clear that
there is a gap in performance from the predicted building performance to the
measured performance. The term Energy Performance Gap (EPG) provided
by [4] is expanded to the performance gap in this thesis since it is more than
just a discrepancy in the energy performance - it can be the performance
of indoor air quality, temperature, noise, etc. Other researchers [5, 6] have
identified several reasons for the performance gap from predicted to measured
performance:

• Predicted performance

– Design assumptions: There are wrongful assumptions about the
design. This could be occupant behavior, system behavior, or
weather predictions, i.e., Often simulation models are simplified to
make one room representative of the entire building. This means
that the other rooms are usually under- or oversized [7].

– Modelling tools: The Building Performance Simulation (BPS) tools
can have wrongful and error-prone models or over-simplified equa-
tions. One example is that buildings are often modeled as idealized
systems, which assumes that the HVAC system is always capable
of providing enough heating, cooling, and air to any given room in
the building [7].

• Measured performance

– Management and controls: Poor operation of the building results
in excessive energy waste and poor indoor climate performance
[8, 9]. Making the building performance transparent for facility
management allows for the intervention of the faulty system.

– Occupant behavior: It is extremely hard to predict occupant be-
havior accurately. Occupants greatly influence the building oper-
ation. Rooms are used differently than designed; occupants open
windows, block air inlets, etc. [10].

For the predicted performance, many design assumptions are based on an
estimate by the HVAC engineer performing the simulation. An example is

6 Introduction

the information about the occupants using the room. The building owner
has information about the building’s usage. Still, since the information is not
readily available, the engineer cannot use it for their simulation, resulting in
the engineer making an (often wrongful) assumption. Moreover, engineers
use over-simplified simulation models to simulate HVAC systems, mainly due
to the lack of information about the system, like HVAC system components
and controls.

For the measured performance, the building systems often operate poorly
without the building owner knowing it. This can be addressed by providing
the predicted performance and comparing it to the measured performance
of the building owner. This will spark the owner to intervene and get the
building operating correctly.

Most of the identified causes for the performance gap can be explained by
the information gap between stakeholders in the building design, construc-
tion, and operation phases. Specifically, the AECO industry can be digitally
transformed, which improves information management and interoperability
between different tools of the AECO stakeholders and potentially reduces the
performance gap.

1.4 Digital transformation
For many years, the AECO industry has focused on improving information in-
teroperability through digitization/digitalization. The industry is in the early
stages of switching from digitalization to digital transformation to improve
information management. According to [11] the differences are as follows:

• Digitization is the process of making an otherwise analog task digi-
tal. An example is making hand drawings of buildings digitally using
Computer-Aided Design (CAD) software. Another example is to make
hand calculations of an HVAC system available in a spreadsheet.

• Digitalization is closely related to digitization but is a more ambiguous
term used differently in this industry. In our definition, digitalization
increases the automation of existing digital technologies. For instance,
in the building industry, companies have automated processes for calcu-
lating simple key indicators from a building by extracting information
from a BIM model. One example is automated quantity take-off from
the BIM model.

• Digital Transformation is considered an effort to transform the way
organizations work in the AECO industry and implement digital tech-
nologies. It will often include several digitalization projects and make

1.5 Vision 7

core cross-sectional changes to how organizations in the AECO industry
work.

The AECO industry has been digitalizing for many years, but productivity
is still trailing behind other sectors. It demonstrates that the AECO indus-
try has hit a barrier to taking the next step towards increased productivity
and closing the performance gap through improved information management.
AECO organizations must start strategizing toward a digital transformation
to close the information gap between the different stakeholders of the AECO
industry.

1.5 Vision
There is a performance gap between predicted and measured building perfor-
mance. Most simulations are carried out based on information provided in a
document-centric manner, meaning there is no single source of truth. This
creates an information gap between stakeholders, causing the performance
gap.

A single source of truth model-centric approach can close the information
gap by improving information management and interoperability by providing
an environment where all the relevant project information resides, called a
Common Data Environment (CDE). The vision of this Ph.D. thesis is to pro-
vide AECO stakeholders with a CDE that can be used for simulations in the
HVAC discipline to reduce the information gap and, as a result, the perfor-
mance gap. A CDE provides a platform for all future automation within the
AECO industry. The CDE has the potential to digitally transform the AECO
industry and enable the use of simulation tools without wrongful assumptions
and oversimplified simulation models.

8

CHAPTER2
Background

This chapter aims to provide a literature review of the state-of-
the-art simulation tools for whole-building and HVAC simulation
in a CDE. The chapter uses the literature review to frame the key
challenges of the thesis. The chapter contains four sections.

Section 2.1 reviews recent efforts within Building Performance
Simulation (BPS) tools and the state-of-the-art interoperability
developments from BIM to BPS.

Section 2.2 reviews existing CDEs used in the AECO industry.

Section 2.3 reviews existing system architectures and their capabil-
ities of providing a Common Data Environment (CDE).

Section 2.4 reviews existing data models and their serialization
methods.

Section 2.5 summarizes the key findings of the literature review
into the context of this thesis and provides the basis to carry out
the research design in the following chapter.

10 Background

2.1 Building performance simulations
Building Performance Simulation (BPS) tools are used to evaluate the ex-
pected performance of a building under various external and internal con-
ditions. BPS tools can predict how a building responds to factors such as
weather and occupancy level. A key component in providing an accurate
BPS model is a detailed building model, including the physical characteris-
tics, like constructions, materials, and HVAC systems. More advanced sim-
ulation engines have been employed in the AECO industry, meaning that
the requirements for information have increased to improve the simulation
performance. Therefore, most simulation engines allow simplified models to
reduce the need for input information and resources spent on simulations,
called idealized models.

2.1.1 Idealized building performance simulation models

Idealized building performance simulations rely on a simplified model that
requires less input information [12, 13] than a more detailed and complex
model. One example is idealized simulation models for heating, cooling, and
ventilation loads. Figure 2.1 illustrates an idealized HVAC system which
supplies heating, air, and cooling to the rooms. The purple lines mark the
idealized model.

Figure 2.1 shows a case where only the thermal zones are included in the
BPS model. Therefore, it requires less input information to simulate the BPS
model. To provide a more realistic estimation of the building performance,
the complex nature of the HVAC systems should be included in the simu-
lation since their interaction is essential to delivering heating, cooling, and
ventilation to the thermal zones.

Idealized simulation models make it easier to provide the input to run BPS
model with limited information. They also decrease the computational cost
of the simulation. One of the main issues with assuming idealized conditions
is that the physical reality is often more complicated than assuming that
there always is enough supply of room heating, ventilation, and cooling from
the HVAC system. The HVAC system is made of a complicated network
of ducts, pipes, fittings, valves, pumps, etc., that control the hydraulic flow
of the system. Each simulation step throughout the year provides different
boundary conditions in the thermal zones [13] for sizing the HVAC system.

With the increasing amount of cloud-based whole-building simulation tools
available today [5, 14–16], the attraction to using idealized models has faded.
This is due to the computational cost being less of an issue. It is, however, still
relevant since cloud services charge the user for the amount of computation

2.1 Building performance simulations 11

Pump

Isolation valveHeat Exchanger

Ventilation fan Ventilation damper Ventilation supply Heating coil

Ventilation extractMotorized valve

Cooling Supply

Cooling Return

Heating Supply

Heating Return

Ventilation Supply

Ventilation Return

M

M

CC

M

HC

HC

Radiator

Space 1

Radiator

Space 2

Radiator

Space 3

Radiator

Space 4

Figure 2.1. Illustration of an idealized BPS model with the ducting and piping
network behind it. Purple marks the idealized system. Everything outside the
purple marking is the HVAC system.

used.

Most of the AECO industry has implemented BIM [17]. Consequently, infor-
mation about the HVAC system is already available to the HVAC engineers.
Therefore, this information should be used to populate whole-building simu-
lation tools with realistic information instead of calculating HVAC systems
under idealized conditions. The use of idealized HVAC system models in
whole-building simulation results from the information gap between stake-
holders caused by poor information management and data interoperability.

2.1.2 Hydraulic calculation/simulation

As a result of idealized HVAC simulation models, hydraulic simulations in the
AECO industry are usually limited to static models with worst-case sizing.
The HVAC engineer assumes a ”worst-case” scenario based on the local regu-
lation in that country. An example is for sizing a heating system in Denmark.
The HVAC engineer calculates the heat loss of the building in the event of
-12°C, which is the design condition suggested in Danish regulation [18]. This
can lead to under- or oversized HVAC systems [19,20].

In under- and oversized HVAC systems, it can be difficult for the building
management system to control the HVAC system in the building. This is

12 Background

because the control components (valves, dampers, pumps, fans, etc.) of the
HVAC system were selected for a peak load in the heating season, meaning
that they have impaired control authority in the majority of the heating
season [21,22]. Another example is if pumps are selected to be 100% utilized
during the peak load of the building, they will rarely be used to their full
capacity. Consequently, this results in a higher than-necessary investment
and inefficient operation, leading to excessive energy use. Without a realistic
hydraulic simulation model, it is impossible to predict the actual performance
of the HVAC system before commissioning.

Major software vendors have developed tools to allow HVAC engineers to
perform simple hydraulic calculations on BIM models in proprietary data,
like MagiCad1 for Revit. These tools provide simple hydraulic calculations of
the HVAC system, but they do not incorporate the input from BPS tools. As
a result, the calculations are performed in a static case rather than utilizing
the dynamic results from the whole-building simulation. Combining whole-
building simulation with hydraulic simulation tools is necessary to reduce the
performance gap from predicted to measured energy performance.

2.1.3 Detailed HVAC simulations

In the AECO industry, there is an increasing demand for what this thesis
defines as detailed HVAC simulation. Detailed HVAC simulation is a sim-
ulation model that emulates the actual building as realistically as possible.
Therefore, a detailed HVAC simulation is part of a whole-building simulation
that includes the entire HVAC system and control sequences to imitate and
test control sequence scenarios.

In response to the increasing demand for detailed HVAC simulation, the use
of Modelica as a BPS tool has gained momentum within academia [23–28].
Modelica is an object-oriented language based on different libraries. In re-
cent years the International Building Performance Simulation Association
(IBPSA) project 1 [29] has been leading the effort to provide comprehensive
libraries for making advanced BPS models. Currently, this involves four li-
braries; Buildings [30], AixLib [31], BuildingSystems [32], and IDEAS [33].
The development of these Modelica-based libraries has made it possible to
model many aspects of HVAC systems, including control sequences.

Spawn-of-EnergyPlus (Spawn) was developed as part of the Buildings library2.
Spawn supports coupled simulations with the use of the Functional Mock-up
Interface (FMI) standard that Modelica is built on. Spawn takes the original

1https://www.magicad.com/
2https://www.energy.gov/eere/buildings/articles/its-alive-after-five-years-
lab-spawn-energyplus-finally-here

https://www.magicad.com/
https://www.energy.gov/eere/buildings/articles/its-alive-after-five-years-lab-spawn-energyplus-finally-here
https://www.energy.gov/eere/buildings/articles/its-alive-after-five-years-lab-spawn-energyplus-finally-here

2.1 Building performance simulations 13

simulation interface of E+ and packages it into a Functional Mock-up Unit
(FMU) so that weather, lighting, envelope, and loads models are packaged to-
gether [34,35]. This enables Spawn to run detailed HVAC simulation models,
a state-of-the-art endeavor.

HVAC system simulations in a Modelica simulation environment require very
detailed information on the HVAC system of a building. This includes ge-
ometry, components, the specific use of thermal zones, etc. Therefore, the
information gap persists. These aspects can be modeled directly in a Modelica
simulation environment but often lead to assumptions and over-simplification
of the system. Therefore, research projects have developed tools for automatic
translation of BIM models into Modelica object models to be simulated in a
Modelica simulation environment [25,36,37].

IFC2Modelica, by Andriamamonjy et al. [25], created a parser to create a
Modelica object model based on the Industry Foundation Classes (IFC) for-
mat, using the IDEAS library. The parser uses model view definitions to
check that the IFC model contains sufficient information to create a Model-
ica model. The parser uses IfcOpenShell3 to generate the Modelica object
model. The use-case in the paper focuses on HVAC systems modeling, even
though some simple thermal zones are included.

BIM2Modelica [36] also uses IfcOpenShell to parse IFC files to Modelica ob-
ject models, using the BuildingSystems library. They focus on creating mul-
tizone models, computational fluid dynamics, and district heating models.
BIM2Modelica does not parse HVAC systems.

Revit2Modelica [37] uses a BIM model from Revit to generate the Modelica
object model based on the Buildings library. This is done through a Revit plu-
gin created with Revit’s C# Application Programming Interface (API). The
tool creates a Modelica object model for whole-building simulation, excluding
HVAC systems.

The creation of tools to generate Modelica object models has contributed
positively to the interoperability for detailed HVAC simulations. They pro-
vide a means to translate files but no means of storing them as a single
source of truth. This means that while it solves the issues related to the
over-simplification of simulation models, it does not bridge the information
gap caused by working in a file-based environment. To provide a better ba-
sis for performing detailed HVAC simulations in the AECO industry, there
needs to be a web-based Common Data Environment (CDE) that gathers all
information into a single source of truth.

3https://ifcopenshell.org/

https://ifcopenshell.org/

14 Background

2.2 Web-based Common Data Environments
A web-based CDE connects all the stakeholders of a building in a common
central repository that is used for the design, construction, and operation of
a building, as shown in Figure 2.2.

ARCH

USER

ENG

FM

CON

CLIENT

Figure 2.2. Figure showing how all project stakeholders have access to the same
project information throughout the building life-cycle.

Since the word CDE has become more prevalent in recent years, there is an
ISO standard called 19650, with a definition in 3.3.15, defining that a CDE
is an: ”agreed source of information (3.3.1) for any given project or asset
(3.2.8), for collecting, managing and disseminating each information container
(3.3.12) through a managed process.” This definition is somewhat ambiguous
in meaning. Therefore, this thesis elaborates further: A CDE provides access
to a web-based central repository of the building model or asset. The CDE
acts as a single source of truth to all project stakeholders. For instance, this
means that information from the architectural model can be used for energy
and indoor climate simulation. Another example is structural calculations
available to the contractor during construction. A CDE eliminates the need
for a file-based exchange of information and, as a result, provides transparency
to the building design project.

Several research projects have created CDEs for various purposes based on
different core languages. For instance, Beetz et al. (2010) [38] created the
BIMServer.org to provide an open-sourced web-based platform to allow all
stakeholders of an AECO project to work on the same central repository.
Although they do not define BIMServer.org as a CDE, the platform’s intention

2.3 System architecture of a CDE 15

aligns with the definition of a CDE. The BIMServer.org project uses IFC files
as a foundation for data storage, which can be problematic; this is discussed
further in Section 2.4.1.

Another effort to provide a commercial CDE was carried out by Autodesk,
called Autodesk Drive4 (earlier called A360). According to Autodesk, it pro-
vides permission control, audit trail, document control and versioning, custom
metadata, integrated with design workflows, design and office file viewing, 2D
and 3D viewing and compare, etc. While Autodesk Drive constitutes a CDE
by many of the definitions in the ISO standard 19650, it is still a proprietary
tool which is one of the most significant issues regarding interoperability -
proprietary tools limit the user to software and file formats developed by the
specific vendor. This limitation makes it hard for the project team using the
CDE to incorporate their functionalities - for instance, if they want to au-
tomate work processes, like automated simulations in an energy and indoor
climate simulation tool.

Several efforts try to provide a CDE, and they all meet the requirements
differently. Most are proprietary tools without access to the underlying data;
some are based on the IFC format. In a comprehensive review by Jaskula et
al. [39], they concluded that not a single one of the reviewed CDEs provides
a single source of truth.

The existing CDEs have the potential to improve information management
in the design, construction, and operation of buildings. However, the existing
CDEs for the AECO industry are limited to the IFC format or based on
proprietary tools, like Autodesk Revit. As a result, this means that transfer
between a CDE and BIM tools is still file-based, meaning there is no single
source of truth. Furthermore, the existing CDEs have not been developed
with a focus on describing HVAC systems. Consequently, they do not provide
sufficient information to describe the complex nature of HVAC systems.

2.3 System architecture of a CDE
To create a web-based CDE and select an appropriate system architecture
for the application, this Section reviews the different types of existing system
architectures that can be used to create a CDE.

2.3.1 Monolithic architecture

A monolithic architecture is a traditional approach to building applications
in the software industry. It is built as one coherent unit containing the entire
application in one code base [40].
4https://drive.autodesk.com/

https://drive.autodesk.com/

16 Background

User Interface

Business Layer

Data Interface

Figure 2.3. Illustration of a monolithic system architecture.

Monoliths are easily created and tested in the early design phase of a code
project. However, at a later stage in the project, they become hard to manage
and deploy in the operation of a large project. The entire stack must be up-
dated and redeployed every time the developer updates the code base. For in-
stance, when there is a minor update to the project, the developer must deploy
a new solution to the entire code base, which can be a resource-demanding
task, depending on the code project. This makes monolithic systems archi-
tecture ill-suited for large software development projects with many different
stakeholders.

Another issue is that monoliths do not scale well in applications with high
computational demand - and it does not adopt new technology well. If one
part of the application receives a lot of traffic, it can be hard to scale just that
part without scaling the entire application. This is because the monolith is
challenging to modularize, meaning that the server demands more resources
rather than distributing the task on several servers. Similarly, if the appli-
cation has been created for a certain size of an organization, it is hard to
down-scale that application during times of low traffic.

Using a monolithic architecture for a CDE in the AECO, especially if it in-
volves simulation environments, is not well suited. Often, there is a need to
perform a large quantity of demanding simulations in parallel. Furthermore,
several stakeholders have different interests in a CDE, meaning that devel-
oping services for the CDE would require strict code base management for
stakeholders not to interfere in each other’s area of expertise.

2.3.2 Microservice architecture

In contrast to a monolithic architecture, a microservice architecture is a more
modern approach based on modular microservices that perform very simple
tasks. Usually, they receive a Hypertext Transfer Protocol (HTTP) request
with a body, perform their operation, and then return a response to the
application making the HTTP request using Representational State Transfer

2.3 System architecture of a CDE 17

(REST)ful APIs. Figure 2.4 shows an example of a microservice architecture.
Microservices connect to the main application, but they can also use each
other to perform operations.

User Interface

Micro
service

Micro
service

Micro
service

Micro
service

Figure 2.4. Illustration of a microservice architecture.

Microservices are units that run independently of each other. This makes
it possible to develop, update, deploy, and scale any microservices without
affecting other microservices [40]. Another advantage to microservices is that
they are built to use technologies like Kubernetes5, making it possible to scale
the application horizontally and create more instances when needed. If, for
instance, an HVAC designer wants to run a parameter variation study of an
energy simulation. This can result in several thousands of simulations. A
monolithic architecture does this by scaling the application vertically, adding
more threads to the current server rather than creating more servers (horizon-
tal scaling). In a microservice architecture, creating a thousand containers
that all simulate each parameter variation is possible - making it a faster
process.

Microservices provide the road to creating a scalable web-based CDE that
increases interoperability between advanced simulation tools, like detailed
HVAC simulations and BIM models. The microservice architecture has the po-
tential to ease the development and deployment of web-based detailed HVAC
simulation engines. As a result of using recent technologies, like Kubernetes,
the services within the CDE are easily scalable.

Microservices within one ecosystem are restricted to receiving an input, usu-
ally in a web-ready format, such as JavaScript Object Notation (JSON). This
5https://kubernetes.io/

https://kubernetes.io/

18 Background

means that microservices are based on a target object model. Therefore, to
create a CDE based on a microservice architecture, data models must be de-
veloped to represent the relevant disciplines, in this case, thermal zones and
HVAC systems.

2.4 Data models
There must be an underlying data model to build a platform based on any
system architecture. This section reviews some of the existing data models
and their serializations.

Data models were at the core of every digital development from the begin-
ning of the digitalization of the AECO industry. It was clear from the be-
ginning that designing a super-schema encompassing all perspectives was a
near-impossible task without constant modification. Douglas T. Ross and
Jorge E. Rodriguez formulated [41]:

The first step in this direction is to recognize once and for all that it
is completely impossible to construct a system that will satisfy the
requirements immediately and without modification. To postulate
the existence of a closed system for Computer-Aided Design, as we
mean, is completely contradictory to the very sense of the concept.

The following subsections present the existing data models used in the AECO
industry, with their benefits and drawbacks.

2.4.1 Industry Foundation Classes

The IFC schema is a standardized digital description of everything included in
the built environment, like buildings and infrastructure. IFC was adopted as
an ISO standard in 2013 (ISO 16739-1:2018) [42]. The main goal of buildingS-
MART is that IFC should provide a standard format that major software
vendors can use to exchange information between BIM modeling tools and
external applications like HVAC or energy simulation programs. The devel-
opment of the IFC schema was initiated in the 1990s and developed in the
EXPRESS schema language. It has since been developed in several directions.

Since the industry is moving towards a more cloud-based approach, i.e., CDEs,
the development of IFC has taken a new direction, trying to retrofit the IFC
schema to more web-ready technologies. One effort by Afsari et al. (2017) [43]
converted the IFC schema into a web-ready technology called JSON. They
provided a translation of the IFC schema into a JSON format [43]. An-

2.4 Data models 19

other development, which is open source, is the IFC.js initiative6, utilizing
the IFC.json format to create a JavaScript library capable of loading, dis-
playing, and editing IFC files in a web browser7. While this makes the IFC
schema available in a web-ready format, improving interoperability, the main
problem is that the IFC schema is a super-schema trying to represent (too)
many domains at the same time. Furthermore, several researchers have found
that IFC files are error-prone when used to populate whole-building simula-
tions [44–47].

IFC provides the stakeholders with a shared vocabulary that tries to improve
interoperability in the AECO industry. However, the cost of the super-schema
is flexibility [48]. Discipline-specific vocabularies should be developed to en-
able a shared vocabulary while obtaining a flexible data model. Furthermore,
such discipline-specific vocabularies should be ready for web-based application
exchanges. Therefore, other efforts have sought to recreate discipline-specific
vocabularies rather than one super-schema [48]. The following sub-section
summarizes the existing developments of discipline-specific vocabularies.

2.4.2 Discipline-specific vocabularies

The developments of existing discipline-specific vocabularies emphasize the
core issue with the IFC super-schema [49–51].

This thesis has identified two efforts to create discipline-specific vocabularies
using Web Ontology Language (OWL) or object model. This thesis distin-
guishes these for readability and to underline the work carried out. Essen-
tially, both OWL ontologies and object models are object models with differ-
ent design methodologies and communities behind them. Furthermore, the
serialization methods vary between the two types of object models.

The use of OWL for the AECO domain is an effort usually carried out within
the world wide web consortium Linked Building Data (LBD) community
group8. The LBD community group develops ontologies that aim to provide
the entire AECO domain discipline-specific vocabularies.

Object models, on the other hand, are not developed by one common entity
but by different stakeholders within the AECO industry or academia.

Web Ontology Language
During recent years there have been numerous developments of discipline-
specific OWL ontologies, such as Building Topology Ontology (BOT), Brick,
Smart Energy Aware Systems (SEAS), Smart Applications REFerence (SAREF),

6https://ifcjs.io/
7https://ifcjs.github.io/info/docs/Introduction
8https://www.w3.org/community/lbd/

https://ifcjs.io/
https://ifcjs.github.io/info/docs/Introduction
https://www.w3.org/community/lbd/

20 Background

Real Estate Core (REC), and more, by the LBD community group. But what
is an ontology? An ontology in computer science is the means to model the
semantic nature of a system in a machine-interpretable way [52, 53]. One
example is the representation of the professional links to the author of this
thesis, as illustrated in Figure 2.5.

Mikki
Seidenschnur

Frederik Blum
Winther

Christo�er
Borgwardt-

Stampe

Kevin Michael
Smith

Christian
Anker
Hviid

hasCompany
Supervisor

hasUniversity
Supervisor

isE
m

plo
ye

dBy

isEmployedBy

Figure 2.5. Simple knowledge graph illustrating the semantic connection between
the author of the thesis and the supervising team. The connections are defined by
subject/predicate/object triples, as seen in Figure 2.6.

Figure 2.5 shows that Mikki has a team of university supervisors (Christian
and Kevin) and a team of company supervisors (Christoffer and Frederik).
Furthermore, it shows that Mikki and his company supervisors are employed
in Ramboll and that the university supervisors are employed at the Technical
University of Denmark DTU. This knowledge graph is relatively simple, flat,
and flexible - making it easy to extend or connect to other knowledge graphs.

Using ontologies to describe the AECO industry is not new. One of the first
ontologies developed in the AECO industry was Industry Foundation Classes
Web Ontology Language (ifcOWL) [54], which is an OWL representation of
the IFC schema. Since it is a direct translation of the IFC schema, it has the
same issues described with IFC - it is a super-schema that lacks flexibility [55],
which is why there should be discipline-specific ontologies [56].

For instance, Mads Rasmussen created the BOT ontology9, to represent only
the core topology of a building, including physical and conceptual objects and
their relationships [57]. The LBD community group has developed several
other ontologies for the AECO industry. An extensive review of ontologies
related to HVAC systems is available in Paper III.
9https://w3c-lbd-cg.github.io/bot/

https://w3c-lbd-cg.github.io/bot/

2.4 Data models 21

The official language for developing ontologies in the World Wide Web Consor-
tium (W3C) and LBD community group is Resource Description Framework
(RDF), which is serialized into Terse RDF Triple Language (Turtle) (.ttl for-
mat), and can be queried using SPARQL Protocol and RDF Query Language
(SPARQL) [58]. Turtle provides a syntax to simplify the definition of triples,
which is made from a subject-predicate-object paradigm, as seen in Figure
2.6.

Predicate

Subject Object

Figure 2.6. Illustration of a triple composition, from [59].

Furthermore, Figure 2.7 illustrates a simple example, from FSO (See Paper
III), of how to provide a semantic description of the connection from a pipe
to a fitting.

FlowPort

hasPort hasFlow

Segment Fitting

hasFlow hasPort hasFlow hasPort

hasFlow

hasPort

Flow Port

suppliesFluidTo

feedsFluidToInferred knowledge

Asserted knowledge

PortFlow

Flow

Port

FSO current class

FSO current object property
FSO extended class

FSO extended object property

Figure 2.7. Illustration of the semantic description of a pipe segment and a fitting,
through FSO, presented in Paper V.

Listing 2.1 provides a simple example of a text-string from a .ttl-formatted
file, representing the model in Figure 2.7.

1 @prefix fpo: <https://w3id.org/fpo#> .
2 @prefix fso: <https://w3id.org/fso#> .
3 @prefix inst: <https://example.com/inst#> .
4

5 inst:Port-2 rdf:type fso:Port ;
6 fso:hasFlow inst:Flow-2 ;
7 fso:suppliesFluidTo inst:Port-3 .
8

22 Background

9 inst:Flow-3 rdf:type fso:Flow .
10

11 inst:Flow-1 rdf:type fso:Flow .
12

13 inst:Pipe-1 rdf:type fso:Pipe ;
14 fso:feedsFluidTo inst:Elbow-1 ;
15 fso:hasPort inst:Port-2 , inst:Port-1 .
16

17 inst:Elbow-1 rdf:type fso:Elbow ;
18 fso:hasPort inst:Port-4 , inst:Port-3 .
19

20 inst:Port-3 rdf:type fso:Port ;
21 fso:hasFlow inst:Flow-3 .
22

23 inst:Flow-4 rdf:type fso:Flow .
24

25 inst:Port-1 rdf:type fso:Port ;
26 fso:hasFlow inst:Flow-1 .
27

28 inst:Flow-2 rdf:type fso:Flow .
29

30 inst:Port-4 rdf:type fso:Port ;
31 fso:hasFlow inst:Flow-4 .

Listing 2.1. Listing illustrating the serialized turtle file that represents the model
illustrated in figure 2.7.

However, the downside to the RDF graph in Listing 2.1 in contrast to JSON
is that the RDF graph is poorly enabled for Object Oriented Programming
(OOP) languages, such as C#. Therefore, the user needs to use a SPARQL
query to access the data in an RDF data store or use RDFlib or other tools.

Since formats like JSON are classically used for web-based applications, W3C
has developed a data format called JavaScript Object Notation for Linked
Data (JSON-LD). JSON-LD is another serialization of data that serializes
the RDF structured files into the JSON format. JSON-LD aims to provide
developers using RDF-structured data with a more commonly used format for
web applications [48]. Several more serialized formats exist, like N-Triples, N-
Quads, Trig, and XML.

Listing 2.2 shows an example of the same model from Figure 2.7 expressed
in Listing 2.1, now in JSON-LD. Listing 2.2 also illustrates that JSON-LD
is not very human-readable. JSON-LD provides a more web-ready version of
an RDF graph, which does make RDF graphs easier to work within a web-
application. It links components through Unique Resource Identifiers (URI)s,
making it a unique component or property which does not exist in several
places.

1 {
2 "@graph" : [{

2.4 Data models 23

3 "@id" : "inst:Elbow -1",
4 "@type" : "fso:Elbow",
5 "hasPort" : ["inst:Port-4", "inst:Port-3"]
6 }, {
7 "@id" : "inst:Flow-1",
8 "@type" : "fso:Flow"
9 }, {

10 "@id" : "inst:Flow-2",
11 "@type" : "fso:Flow"
12 }, {
13 "@id" : "inst:Flow-3",
14 "@type" : "fso:Flow"
15 }, {
16 "@id" : "inst:Flow-4",
17 "@type" : "fso:Flow"
18 }, {
19 "@id" : "inst:Pipe-1",
20 "@type" : "fso:Pipe",
21 "feedsFluidTo" : "inst:Elbow -1",
22 "hasPort" : ["inst:Port-2", "inst:Port-1"]
23 }, {
24 "@id" : "inst:Port-1",
25 "@type" : "fso:Port",
26 "hasFlow" : "inst:Flow -1"
27 }, {
28 "@id" : "inst:Port-2",
29 "@type" : "fso:Port",
30 "hasFlow" : "inst:Flow-2",
31 "suppliesFluidTo" : "inst:Port -3"
32 }, {
33 "@id" : "inst:Port-3",
34 "@type" : "fso:Port",
35 "hasFlow" : "inst:Flow -3"
36 }, {
37 "@id" : "inst:Port-4",
38 "@type" : "fso:Port",
39 "hasFlow" : "inst:Flow -4"
40 }],
41 "@context" : {
42 "hasFlow" : {
43 "@id" : "https://w3id.org/fso#hasFlow",
44 "@type" : "@id"
45 },
46 "suppliesFluidTo" : {
47 "@id" : "https://w3id.org/fso#suppliesFluidTo",
48 "@type" : "@id"
49 },
50 "hasPort" : {
51 "@id" : "https://w3id.org/fso#hasPort",
52 "@type" : "@id"
53 },
54 "feedsFluidTo" : {
55 "@id" : "https://w3id.org/fso#feedsFluidTo",
56 "@type" : "@id"
57 },

24 Background

58 "fso" : "https://w3id.org/fso#",
59 "fpo" : "https://w3id.org/fpo#",
60 "inst" : "https://example.com/inst#"
61 }
62 }

Listing 2.2. The listing shows an example of the system shown in figure 2.7,
serialized in JSON-LD.

One problem for OWL ontologies is that they can be complex and challenging
to understand by developers unfamiliar with the underlying concepts and for-
malisms, like most of the self-made software developers in the AECO industry.
Implementing and using OWL for web applications in large organizations can
be a massive undertaking. Developing and adding new components to exist-
ing ontologies is not flexible, making it harder to utilize for a platform built
on a microservice architecture.

Discipline-specific data models should encourage web-ready flexible data struc-
tures that can easily be understood by the software developers in the AECO
industry and be edited or extended to suit the use of the specific developer.

Object Models
In recent years, the AECO industry has seen a development of object models,
trying to provide a common vocabulary for all stakeholders in the building
project [60]. At the time of writing, there are two open-sourced object models:
The Buildings and Habitats object Model (BHoM) and Speckle.

According to the BHoM10 GitHub, BHoM is:

”The BHoM is a collaborative computational development project
for the built environment. It is a collective effort to share code
and standardize the data that we use to design, everyday – across
all activities and all disciplines.

BHoM provides a basis for transferring data from one application to another.
It means that most transfer of data will happen between the specific appli-
cations, without a CDE to connect them, as shown in Figure 2.8, into a file
serialized based on the BHoM.

BHoM provides a fundamental data structure for all things in the built envi-
ronment related to data. It is not a single source of truth since it is file-based.
One could use the data structure and parsers to create a database based on

10https://bhom.xyz/

https://bhom.xyz/

2.4 Data models 25

Figure 2.8. Illustration of the BHoM from the GitHub wiki page.

the BHoM. However, upon investigating the BHoM GitHub repository11, it is
clear that BHoM lacks some standardization, even though it is fully flexible.

Another issue is that the mission of BHoM is to represent everything in the
built environment, just like the IFC schema. Finally, the object models for
the Mechanical, Electrical, and Plumbing (MEP) models are relatively simple
and need further development. It is currently not possible to use BHoM to
semantically describe the connection between components in an HVAC model.
Therefore, the object model should be developed further.

Another partially open-source development is Speckle. According to Speckle12,
they are an

”.. open-source data platform for architecture, engineering, and
construction. It liberates your data from proprietary file formats
and closed source software and puts it back into your hands.”

Like the BHoM, they have a central object model that provides the basis of the
database. Furthermore, Speckle provides a platform that connects different
tools, like Revit to Speckle, Speckle to Rhino, etc. While the general idea of
Speckle follows the definition of a CDE, one problem is that the object models
for the HVAC discipline are rather sparse. Like BHoM, the Speckle object
model contains HVAC components but does not have a semantic description

11https://github.com/BHoM/BHoM
12https://speckle.systems/about/

https://github.com/BHoM/BHoM
https://speckle.systems/about/

26 Background

of their relationship. This may be because the mission of Speckle is to create
storage for large 3D models.13

Object models are widely used in different industries to develop software
applications. The AECO industry already uses them at the center of propri-
etary and open-source tools like Autodesk Revit, Integrated Environmental
Solutions Virtual Environment (IESVE), E+, Modelica, and several others.
However, the few open object models that describe the disciplines within
AECO domain with no central application are insufficient to describe HVAC
systems in a web-ready format.

2.5 Summary
As a result of poor data interoperability for BIM models in the HVAC domain,
HVAC engineers are using idealized simulation models that do not capture
the complete physics of the HVAC system in the building. This means that
HVAC systems are oversized by the HVAC engineer to ensure that they can
deliver according to the peak demand of the thermal zones. Tools for coupled
HVAC and BPS should be utilized to lower the performance gap by closing
the information gap.

Researchers have developed tools such as IFC2Modelica, BIM2Modelica, and
Revit2Modelica for automated transfer of BIM model information to perform
detailed HVAC simulations in Modelica simulation environment. However,
these tools are academic-only tools that have seen no industry adoption. It
takes a lot of effort to augment BIM models with the necessary information
to perform detailed HVAC simulations. As long as the file-based exchange is
the industry standard, it will be hard and not prosperous to implement tools
like Spawn and Modelica in the everyday workflow. Consequently, there are
limited means to performing whole-building simulations that also contain a
detailed HVAC simulation.

Implementing the existing tools in a CDE based on a microservice architec-
ture has the potential to allow co-simulation of whole-building simulation and
detailed HVAC simulation generated based on a BIM model. To facilitate de-
tailed HVAC simulation in a CDE, data models are needed that can represent
HVAC systems, thermal zones, and their connection.

13https://github.com/specklesystems

https://github.com/specklesystems

CHAPTER3
Research Design

This chapter presents the research design based on the challenges
identified in the introduction (1) and background (2) Chapters.

Section 3.1 formulates the problem statement based on the work
of Chapters 1 and 2.

Section 3.2 presents the research questions.

Section 3.3 poses the research tasks created to answer the research
questions.

Section 3.4 describes the methodology for carrying out the research
tasks.

28 Research Design

3.1 Problem statement
Productivity has barely increased in the AECO industry for the past decade.
This is mainly because the information management in the AECO industry is
fragmented and lacks strategies/technologies to close the information gap be-
tween stakeholders. Consequently, simulation tools have poor interoperability
and rarely use the same information.

The information gap between stakeholders leads to a gap in buildings’ pre-
dicted and measured performance, called the performance gap. Predictions of
the performance of the HVAC systems are carried out using advanced whole-
building simulation tools. However, since there is a lack of information for
the HVAC system, often simulations of the HVAC system are carried out us-
ing idealized HVAC systems or using wrongful assumptions. This leads to a
simulation model that does not represent the complex nature of the HVAC
system and its connection to the thermal zones of the building.

Tools exist to simulate the dynamic HVAC system coupled with the ther-
mal zones through a Modelica simulation environment, using recently devel-
oped object libraries, like Buildings, AixLib BuildingSystems, and IDEAS.
Furthermore, several research projects (IFC2Modelica, BIM2Modelica, Re-
vit2Modelica) have worked on creating tools to generate Modelica object mod-
els semi-automatically using BIM models. While these tools increase interop-
erability, they provide a file-based exchange of information, meaning there is
no single source of truth for the information.

To provide a single source of truth, there should be a Common Data Envi-
ronment (CDE) that contains discipline-specific object models. Such a CDE
should be created using a web-based microservice architecture to allow AECO
organizations to scale the CDE as necessary. The single source of truth CDE
is a tool that will digitally transform the AECO industry, and reduce the
performance gap, as a consequence of eliminating the information gap.

3.2 Research questions
The research questions are based on a vision to provide a single source of
truth using a web-based Common Data Environment (CDE) that centralizes
all project data and drives a modular development environment that lowers
the barrier for the digital transformation of the HVAC discipline, in AECO
industry.

The research questions are:

1. Can a CDE serve as a single source of truth, replacing file-based BIM,

3.3 Research tasks 29

and consequently close the information gap in the building design pro-
cess?

2. Can a CDE enable seamless data integration between proprietary and
open data formats?

3. Is it possible to formulate and implement a discipline-specific data model
to represent (HVAC) flow systems and their properties in a web-based
CDE?

4. Is it possible to formulate and implement a discipline-specific data model
for the representation of thermal zones and their properties in a web-
based CDE?

5. Does a technology-agnostic CDE based on a microservice architecture
facilitate the digital transformation by providing a platform for organic
additions of automated design services in the building design process?

6. Is a microservice CDE for whole-building simulation with detailed HVAC
simulation a tool that can reduce the performance gap in a practical
HVAC design setting?

3.3 Research tasks
This thesis intends to create the infrastructure for a technology-agnostic Com-
mon Data Environment (CDE) easily adoptable by the HVAC discipline in
the AECO industry. Furthermore, it focuses on how the created CDE can
evaluate and reduce the performance gap from predicted to measured energy
performance in the HVAC discipline. To achieve this, the following research
tasks are planned:

1. To create a flexible data model capable of representing flow systems that
facilitate seamless data integration from BIM models into a web-based
CDE;

2. To create a flexible data model capable of representing thermal zones
and their connection to flow systems that facilitate seamless data inte-
gration from BIM models into a web-based CDE;

3. To create a technology-agnostic CDE system architecture capable of
scaling with the AECO industry demands;

4. To develop microservices for whole-building simulation with detailed
HVAC simulation that can be used to evaluate the performance gap
from predicted to measured performance.

30 Research Design

3.4 Methodology
This Section proposes the methodology for carrying out each of the research
tasks listed in Section 3.3.

3.4.1 Research task 1

To create a flexible data model capable of representing flow systems that facil-
itate seamless data integration from BIM models into a web-based CDE.

Flexible data models are vividly and enthusiastically discussed in the AECO
industry. Section 2.4 introduces part of the existing body of data models with
their benefits and drawbacks. Recent academia tends to focus on the serial-
ization of data formats rather than getting the common vocabulary ready to
represent the core concepts of a discipline. Whether data models are serialized
in JSON, Turtle, Extensible Markup Language (XML), or any other available
format, there needs to be an object model behind it. The literature study in
Chapter 2 showed a lack of discipline-specific object models to represent flow
systems.

Research task 1 is formulated to create a vocabulary for describing the en-
ergy and mass flow relationship of systems, their components, and the com-
position of such systems. This thesis does not make any assumptions about
data formats. Therefore, it creates a semantic web ontology based in an RDF
format and an object model for the representation of flow systems in a web-
ready JSON format. This thesis intends to use the vocabularies for advanced
hydraulic simulation to later allow for detailed HVAC simulations, specified
in Section 3.4.4. Use case demonstrations are provided to demonstrate the
functionality of the vocabulary. The use cases intend to showcase that it is
possible to serialize the created object models from a proprietary BIM model
and store them in a web-based object-oriented database. The object model
repository is publicly available on GitHub.

3.4.2 Research task 2

To create a flexible data model capable of representing thermal zones and their
connection to flow systems that facilitate seamless data integration from BIM
models into a web-based CDE.

Based on research task 1 and the literature study in Chapter 2, there is a
need for a flexible object model to represent thermal zones in a building to
perform whole-building simulation. Rasmussen et al. [56] created the BOT
ontology to provide a common core vocabulary for the description of the build-

3.4 Methodology 31

ing in a simplified and extendable way. Therefore, the BOT ontology does
not contain the definitions to describe thermal zones, meaning that only a
simple whole-building simulation can be performed using the BOT ontology.

Research task 2 creates a vocabulary for the description of the thermal zones
of a building. It uses the knowledge obtained from research task 1 and is
constructed as an object model instead of an OWL ontology. The vocabulary
enables whole-building simulation coupled with detailed HVAC simulation us-
ing the CDE developed in research task 3. Furthermore, it allows for whole-
building simulations isolated from the detailed HVAC simulation for more
straightforward use cases. Use case demonstrations are provided to demon-
strate the functionality of the developed vocabulary. The use cases intend to
showcase that it is possible to serialize the created object model from a propri-
etary BIM model and transfer it into a web-based object-oriented database.
The object model is publicly available on GitHub.

3.4.3 Research task 3

To create a technology-agnostic CDE system architecture capable of scaling
with the AECO industry demands.

Chapter 1 illustrates that the digital transformation of the AECO industry
is halted by silo-based developments. Currently, tools are being developed in
the industry without linking them to a greater context. While this seems like
an easy and decentralized solution to develop tools for simple tasks, it also
means that one tool usually only works for one BIM data model. Chapter
2 illustrates that a solution to this problem is the web-based Common Data
Environment (CDE). The CDE is built on a microservice architecture, allow-
ing for a scalable solution.

Research task 3 incorporates the data models and their serialization tools
developed in research tasks 1 and 2 and links them to a CDE. Furthermore,
the CDE contains simple microservices, consuming the data in the CDE, to
prove that several tools can consume the same data and therefore be con-
nected in the CDE. The microservices can: perform a model validation, per-
form a simple airflow calculation, and give basic statistics about the HVAC
model transferred to the CDE from the proprietary BIM format. The object
model repository ispublicly available on GitHub.

3.4.4 Research task 4

To develop microservices for whole-building simulation with detailed HVAC
simulation that can be used to evaluate the performance gap from predicted to
measured performance.

32 Research Design

One of the main problems with the most commonly used whole-building sim-
ulation tools is that they are over-simplified. The HVAC engineer usually
assumes that if they simulate the rooms with the highest heating/cooling/air
demand in the building, they can extrapolate that information to the rest of
the building. This usually generates a case where the actual heating, cooling,
and air demand is poorly estimated, leading to under- or oversized HVAC
systems. Furthermore, whole-building simulation tools contain assumptions
of idealized HVAC systems. Idealized HVAC systems are modeled to consis-
tently deliver the heating, cooling, or ventilation demand to all of the rooms
in the building. There is a need for coupled whole-building simulation and
detailed HVAC simulation to realistically predict the performance of the build-
ing and HVAC system.

To provide whole-building simulation coupled with detailed HVAC simula-
tion, there is a need to develop several microservices. The literature study
in Chapter 2 makes it clear that several open-source tools are available for
whole-building simulation and detailed HVAC simulation of the HVAC sys-
tem. Therefore, this research task aims to develop microservices building on
the CDE created in research task 3. The CDE creates a single source of
truth based on the object models introduced in research tasks 1 and 2 for all
microservices to base their calculation, closing the information gap. Finally,
several use cases are conducted to prove that the microservices can be used
to calculate the performance gap.

CHAPTER4
Results

This Chapter uses the articles produced during this Ph.D. to pro-
vide the research findings related to the research tasks formulated
in the research design Chapter.

Section 4.1 provides an overview of the articles developed during
this PhD thesis and shows which research tasks they were devel-
oped for.

Section 4.2 introduces Flow Systems Ontology (FSO) and Flow
System Classes (FSC) object model to represent flow systems.

Section 4.3 summarizes the THERM object model to represent
thermal zones.

Section 4.4 presents the system architecture developed for the CDE
and validates the developed object models from the previous Sec-
tions.

Section 4.5 exemplifies how the system architecture developed in
Section 4.4 can be used to perform automated whole-building sim-
ulations, including detailed HVAC simulations.

34 Results

4.1 Research tasks and related articles
This Chapter summarizes the main results of the research tasks presented
in Chapter 3. The research tasks were performed to answer the research
questions provided in the research design, in Chapter 3. Chapter 6 contains
the appended research papers discussed in the results.

Table 4.1. Table of research tasks, and in which papers they are carried out.

Research tasks Appended papers
1 To create a flexible data model capable of repre-

senting flow systems that facilitate seamless data
integration from BIM models into a web-based
CDE

I, III - V, VII - X

2 To create a flexible data model capable of repre-
senting thermal zones and their connection to flow
systems that facilitate seamless data integration
from BIM models into a web-based CDE

I, II

3 To create a technology-agnostic CDE system archi-
tecture capable of scaling with the AECO industry
demands

I, II, V, VII

4 To develop microservices for whole-building sim-
ulation with detailed HVAC simulation that can
be used to evaluate the performance gap from pre-
dicted to measured performance

I, II, IV, VI, VIII

The following subsections are organized according to research tasks and pro-
vide a summary of each research task and the papers that answer them. For
simplification, only the main contributions of the research papers have been
included in this Chapter. Each research paper contains a detailed description
of the relevance and contribution to research and industry.

4.2 Research task 1
In research task 1, two data models were developed, called:

1. Flow Systems Ontology (FSO) - based on OWL ontologies and

2. Flow System Classes (FSC) - based on object models

The purpose of research task 1 was to create flexible data models to represent
flow systems. Developing an OWL and object model helps to understand the

4.2 Research task 1 35

benefits and drawbacks of each of the principles. Furthermore, this research
task aims to create a flexible discipline-specific common vocabulary represent-
ing a flow system with the BIM model. The following sub-sections present
the developed data models.

4.2.1 Flow System Ontology

Paper III presents FSO which was initially conceptualized by Rasmussen
(2019) [61], as an extension to the BOT ontology. The general idea proposed
by Rasmussen was that a flow system consists of consumers, sources, and
distribution systems. However, the development was conceptual and was not
ready to be used in the AECO industry. The purpose of FSO is to provide a
common vocabulary for describing the energy and mass flow relationships be-
tween systems and their components in a minimal extendable way. FSO is an
open-source development1. FSO contains 14 classes and 23 object properties.

The main idea for FSO is that it makes up the discipline-specific description
needed to describe flow systems. If the BOT ontology is linked with FSO, it
also allows for flow system descriptions in the context of a building. Figure
4.1 provides an example of FSO used with BOT to conceptualize a building
and its systems.

bot:Building fso:System fso:System

bot:Storey

bot:Space

bot:Storey

bot:Space

fso:Component fso:Component fso:Component

Figure 4.1. Illustration of FSO as an extension to bot. Original Figure from
Paper III [59].

Figure 4.1 illustrates that buildings are conceptualized as two parallel tree
hierarchies, which can be described using BOT and FSO. In this example,
fso:Component transfers heat to (fso:transfersHeatTo) the bot:Space on the
left-hand side. Furthermore, the Figure shows one fso:Component that is con-
nected with (fso:connectedWith) another fso:Component. An example of that
could be a duct that supplies fluid to (fso:suppliesFluidTo) an air terminal.

With the established core terminology, it is possible to describe an HVAC
1https://alikucukavci.github.io/FSO/

https://alikucukavci.github.io/FSO/

36 Results

system, as shown in Figure 4.2. Figure 4.2 shows that FSO has the expres-
siveness to describe an entire HVAC system and the connections between all
of the components and sub-systems. It also exemplifies the interface between
FSO and BOT, showing a chilled beam in a room. It shows that <Room-
1> transferHeatTo the <Beam-1-HeatExchanger> and the <ReturnVent-1>.
The Figure shows the connection on a conceptual level. To formalize this, the
system was created in a Turtle file, as shown in Listing 4.1.

CC

CB

<Pipe-1>
�������������

<Pipe-5>
�������������

<Pipe-6>
�������������

<Pipe-7>
�������������

<Pipe-8>
�������������

<Pipe-9>
�������������

<Pipe-10>
�������������

<Pipe-11>
�������������

<Duct-1>
�������������

<Duct-2>
�������������

<Pipe-2>
�������������

<Pipe-3>
�������������

<Pipe-4>
�������������

<Fitting-1>
�������������

<Fitting-2>
�������������

<Fitting-3>
�������������

<Fitting-6>
�������������

<Fitting-8>
�������������

<Fitting-7>
�������������

<Beam-1-HeatExchanger>
��������������

<Beam-1-SupplyVent>
��������������

<ReturnVent-1>
��������������

<Fitting-5>
�������������

<Pump-1>
�������������������
�

<Pump-2>
�������������������
�

<RegulationValve-1>
����������	���������

<RegulationValve-2>
����������	���������

<DP-RegulationValve-1>
����������	���������

<DP-RegulationValve-2>
����������	���������

<Room-1>
���������
�

ROOMHEAT PUMP

<HeatPump-1>
������������	�������������
�

<CoolingCoil-1>
������������	�������������
�

<SupplyFan-1>
�������������������
�

<ReturnFan-1>
�������������������
�

<CoolingBlock-1>
������������	�������������
�

fso:suppliesFluidTo

fso:returnsFluidTo

fso:transferHeatTo

Figure 4.2. Illustration of the FSO terms used to describe an HVAC system, which
contains a heating, ventilation, and cooling system. Original Figure from Paper
III [59].

1 @prefix fpo: <https://w3id.org/fpo#> .
2 @prefix fso: <https://w3id.org/fso#> .
3 @prefix inst: <https://example.com/inst#> .
4

5 inst:CoolingCoil-1 a fso:System ;
6 fso:hasComponent
7 inst:CoolingCoil-1-LiquidSide ,
8 inst:CoolingCoil-1-AirSide .
9

10 inst:CoolingSystem-1 a fso:System ;
11 fso:hasSubSystem inst:Beam-1 , inst:CoolingCoil-1 ;
12 fso:hasComponent
13 inst:HeatPump-1 ,
14 inst:Pump-1 ,
15 inst:Pump-2 ,

4.2 Research task 1 37

16 inst:RegulationValve-1 ,
17 inst:RegulationValve-2 ,
18 inst:DP-RegulationValve-1 ,
19 inst:DP-RegulationValve-2 ,
20 inst:Pipe-1 ,
21 inst:Fitting-8 .
22

23 inst:VentilationSystem-1 a fso:System ;
24 fso:hasSubSystem inst:Beam-1 , inst:CoolingCoil-1 ;
25 fso:hasComponent
26 inst:CoolingCoil-1-LiquidSide ,
27 inst:SupplyFan-1 ,
28 inst:CoolingCoil-1-AirSide ,
29 inst:Duct-1 ,
30 inst:ReturnVent-1 ,
31 inst:Duct-2 ,
32 inst:ReturnFan-1 .

Listing 4.1. Listing illustrating a partial data model that represents the HVAC
system illustrated in Figure 4.2, adapted from Paper III [59].

After the initial development of FSO, it was clear that if it should gain adop-
tion for practical use, there need to be further use cases illustrated. Paper X
provides a use-case for FSO, in which an HVAC system containing a compli-
cated six-way valve is conceptualized. Paper X also shows how FSO aligns
with parallel developments of ontologies to represent flow systems with differ-
ent use cases.

FSO describes the core characteristics of HVAC systems. However, Paper
III posed a limitation of FSO, which is that it does not contain the termi-
nology to describe the properties of components for HVAC systems. FSO is
intentionally kept lightweight to expand the application and does not contain
the information necessary to perform simulations in the HVAC domain.

FSO Extension: Flow Properties Ontology
Paper V illustrates the Flow Properties Ontology (FPO). The purpose of
Flow Properties Ontology (FPO) is to extend FSO so that components in
FSO are augmented with capacity and size-related properties to perform sim-
ulations of HVAC systems. Paper V extends FSO with FPO, sub-dividing
the existing 9 components into 19 medium-level components to explicate the
type of component. For instance, the EnergyConversionDevice is split into
four medium-level components: Boiler, Chiller, HeatExchanger, and Heat-
Pump. Finally, FPO also contains port descriptions from one component to
another, as shown in Figure 4.3.

Paper III, Paper V, and Paper IX exemplifies how FSO and FPO can
be queried using SPARQL queries. Paper III shows that it is possible to
perform simple HVAC calculations on the system described in the Turtle

38 Results

FlowPortSegment

hasProperty

Length WallThickness FlowRate

hasProperty hasProperty

meter 3 milli-
meter

15 Kilogram
Per Second

0.02

hasFlow hasPort hasFlowhasPort

Flow Port

WallThicknessFlowRate

hasProperty hasProperty

Kilogram
Per Second

0.02

unit value

milli-
meter

15

unit valueunit valueunit valueunit value

FPO inferred class
FPO object property
FPO data property

FSO current class
FSO extended class
FSO extended object property

Figure 4.3. Illustration of an fso:Segment and its FPO classes, objects, and data
properties, from Paper V.

syntax. The result returned from a SPARQL query are in the form of a
knowledge graph or a table. Using a SPARQL query, it is then possible to
inspect the resulting graph from the query, as shown in Figure 4.4.

FSO and FPO represents flow systems in OWL and therefore makes it possi-
ble to serialize it in an RDF-based model. These include Terse RDF Triple
Language (Turtle) and JavaScript Object Notation for Linked Data (JSON-
LD). However, as described in Section 2.4, these formats are hard to consume
for web applications and hard to understand for developers not used to the
RDF-based formats. Furthermore, the results returned from a SPARQL vi-
sualizer is usually in the form of a graph, as shown in Figure 4.4, or as a
table.

4.2.2 Flow System Classes

Paper I proposed the Flow System Classes (FSC) object model. The purpose
of FSC was to represent the entire flow system for sub-systems, components,
and their properties. In contrast to the development of FSO, a Unified Mod-
eling Language (UML) class diagram was used to generate the FSC object
model. Figure 4.5 illustrates a simplified overview of the FSC object model.

Figure 4.5 shows that the Component class is the super-class for all other
types of components, which includes FlowTerminal, Fitting, EnergyConver-
sionDevice, FlowController, FlowMovingDevice, and FlowSegment. Those
sub-classes are then divided further to provide the level of detail needed

4.2 Research task 1 39

Figure 4.4. Illustration of an fso:Segment and its FPO classes, objects, and data
properties, from Paper III [59].

to perform flow system calculations/simulations. For instance, the Fitting
component is divided into Bend, Cross, Reduction, Tee, and Cap. The FSC
object model consists of 37 classes and 54 methods. Figure 4.6 shows a simple
use-case of FSC.

In Paper I, the FSC object model was used to serialize a JSON file based
on the proprietary format of Revit, using the Revit C# API. To illustrate
the functionality of the FSC exporter, two example models were serialized to
a JSON file with all their components. To prove that the serialized JSON
files are suitable to provide seamless integration to a CDE, three simple mi-
croservices were created in the CDE. The microservices were developed in a

40 Results

Component

+ Id : string
+ Tag : string
+ ComponentType : string
+ SystemName : string
+ SystemType : string
+ ConnectedWith : List<Connector>
+ ContainedInSpaces : List<string>

Properties

+ Component
Methods

EnergyConversionDevice

FlowMovingDevice

FlowController

FittingFlowTerminal

FlowSegment

Connector

+ ConnectorType : enum
+ Coordinate : Coordinate
+ DesignFlow : double
+ Dimension : List<double>
+ DirectionVector : DirectionVector
+ Shape : string
+ Tag : string

Properties

+ Connector
Methods

HVACSystem

+ SubSystems : Dict<string, SubSystem>
Properties

+ HVACSystem
Methods

SubSystem

+ Type : string
+ Components : List<Component>

Properties

+ SubSystem
Methods

0..3

1..3

0..*

1

0..*

1

Figure 4.5. Illustration of the FSC object model from Paper I [62].

commonly used framework called Flask2. The microservices are all available
on GitHub3.

The developed microservices take the JSON file serialized from the FSC object
model as the input. Once they have received the JSON file, they perform their
intended operation. Upon finishing the operation, they return a result JSON.
Based on Python, the microservices are developed in the Flask framework, a
simple way to perform calculations on a JSON. Python is one of the most
popular programming languages, which makes it widely available to even
entry-level developers. While Paper I provided an example of microservices
written in Python, they can be created using any programming language or
framework that allows for microservices, like .NET Core, Node.js, etc.

2https://flask.palletsprojects.com/en/2.2.x/
3https://github.com/orgs/Virtual-Commissioning/repositories?type=all

https://flask.palletsprojects.com/en/2.2.x/
https://github.com/orgs/Virtual-Commissioning/repositories?type=all

4.2 Research task 1 41

H
C

Class: Tee
Id: ef3bb012-6ce4-4943-b29b
Tag: 1742043
ComponentType: Tee
SystemName: Heating Supply
SystemType: Heating
ConnectedWith: [..., C2, C3]

Class: FlowSegment
Id: d04071f9-3537-4000-afde
Tag: 1742044
ComponentType: FlowSegment
SystemName: Heating Supply
SystemType: Heating
ConnectedWith: [C4, C5]

Class: Pump
Id: 3f00ece7-59a7-4c35-bf8d
Tag: 1742045
ComponentType: Pump
SystemName: Heating Supply
SystemType: Heating
ConnectedWith: [C6, C7]

Class: FlowSegment
Id: be80cb69-e088-4452-b87d
Tag: 1742046
ComponentType: FlowSegment
SystemName: Heating Supply
SystemType: Heating
ConnectedWith: [C8, C9]

Class: Bend
Id: a64a2374-dc4d-4bfb-8d93
Tag: 1742047
ComponentType: Bend
SystemName: Heating Supply
SystemType: Heating
ConnectedWith: [C10, C11]

Class: FlowSegment
Id: a4e3d8ae-e320-421d-a6a6
Tag: 1742048
ComponentType: FlowSegment
SystemName: Heating Supply
SystemType: Heating
ConnectedWith: [C12, C13]

Class: FlowSegment
Id: a4e3d8ae-e320-421d-a6a6
Tag: 1742050
ComponentType: FlowSegment
SystemName: Heating Return
SystemType: Heating
ConnectedWith: [C16, C17]Class: Bend

Id: 457337d8-8d-8f-4ff5-8fe8
Tag: 1742051
ComponentType: Bend
SystemName: Heating Return
SystemType: Heating
ConnectedWith: [C18, C19]

Class: FlowSegment
Id: 216379fc-0682-4080-b40f
Tag: 1742052
ComponentType: FlowSegment
SystemName: Heating Return
SystemType: Heating
ConnectedWith: [C20, C21]

Class: FlowSegment
Id: 224239fc-0682-4180-ad49
Tag: 1742054
ComponentType: FlowSegment
SystemName: Heating Return, Heating Supply
SystemType: Heating
ConnectedWith: [C20, C21]

Class: Tee
Id: 4d9a93a5-5b64-4917-9b5a
Tag: 1742053
ComponentType: Tee
SystemName: Heating Return
SystemType: Heating
ConnectedWith: [C22, C23]

Class: HeatingCoil
Id: db36d33c-e951-4bda-8a0e
Tag: 1742049
ComponentType: HeatingCoil
SystemName: Heating Supply, Heating Return
SystemType: Heating
ConnectedWith: [C14, C15]

Connector (C2)
Tag: 1742044
Dimension: DN15
Shape: round
Coordinates: [3,2,0]
DirectionVector: [1,0,0]

Connector (C4)
Tag: 1742043
Dimension: DN15
Shape: round
Coordinates: [3,2,0]
DirectionVector: [-1,0,0]

Figure 4.6. Illustration of the FSC object model from Paper I [62] used to
describe a mixing loop for heating.

4.2.3 Key findings

Research task 1 aims to create a flexible data model capable of representing
flow systems and facilitating seamless data integration from BIM models into
a web-based CDE. Two data models were created to answer research task 1:
one in a Web Ontology Language (OWL) and one as an object model. The
development of both data models and their use cases showed that to enable
seamless data integration from BIM to a CDE, it is more suitable to use
an object model for this thesis. By using the object model, it is possible to
serialize a JSON directly from the BIM tool and feed it into an object-oriented
database, such as mongoDB, in a CDE. Furthermore, the data stored in the
object-oriented database can be consumed directly by microservices created
in Flask and return a response. However, OWL ontologies offer a level of
standardization for schema development that does not exist in a regular object
model. An object model provides flexibility and a more technology-agnostic
approach but lacks standardization. The object model can be adapted to be
serialized in an RDF-based format.

42 Results

4.3 Research task 2

4.3.1 Thermal Zone Classes
Iteration 1 - THERM
Section 4.2 shows that object models have the potential to provide seamless
integration from BIM to CDE to microservices. The first iteration of the
THERM object model was introduced in Paper I, as shown in Figure 4.7.

Space

+ Id : string
+ Tag : string
+ ThermalZone: ThermalZone
+ SpaceGeometry : SpaceGeometry

Properties

+ Space
Methods

SpaceGeometry

+ SpaceBottomElevation : double
+ SpaceHeight : double
+ Footprint : List<Edge>

Properties

+ SpaceGeometry
Methods

ThermalZone

+ Heating : Heating
+ Ventilation : Ventilation
+ Cooling: Cooling
+ HeatGain : HeatGain
+ Schedules : Schedules

Properties

+ IndoorClimateZone
Methods

1

0..*

Spaces

+ SpacesInModel : List<Space>
Properties

+ HVACSystem
Methods

1

1

1

1

Figure 4.7. UML-diagram of the first iteration of THERM, from Paper I [62].

The first iteration of THERM conceptualizes the connection of spaces and
flow systems. The space contains an Id and a Tag to relate it to the FSC
object model. Furthermore, it contains a ThermalZone and SpaceGeometry.
The ThermalZone contains all information needed for to perform thermal
simulations. The SpaceGeometry contains the information that allows for the
3D description of the room.

The first iteration of THERM enables the connection of the HVAC system
and the thermal zones, but it is too simple to describe the needed information
for a BPS. Paper I also describes a way to connect flow systems with rooms
semantically. In FSC, a property called ContainedInSpaces is added to the
Component super-class, as shown in Figure 4.5. This allows for the semantic
connection of HVAC systems and thermal zones.

Additionally, Paper I introduces a microservice capable of calculating the
dimensioning airflow of a ventilation system using the airflow demand of the

4.3 Research task 2 43

thermal zones. This is possible because all components that are terminal
units are mapped to be contained within the space that exists in the BIM
model and because the spaces contain an airflow demand property.

Iteration 2 - THERM
Paper II introduces the next iteration of THERM. The purpose of the sec-
ond iteration of THERM is to enable BPS in a web-based CDE. Like FSC,
THERM describes the building as a hierarchy, as shown in Figure A.1. The
THERM hierarchy contains a Site which contains a Building, which contains
Zones, which contains Surfaces, InternalGains, HVACSystems, Infiltration,
and ZoneShadings. Furthermore, THERM also describes the geometry of the
given thermal zone.

To be able to use the THERM object model in a CDE, a THERM exporter is
created in the Revit C# API. The THERM exporter allows for the thermal
zones of a BIM model to be serialized in a JSON file. Figure 4.8 illustrates a
use case serialized from Revit with the THERM exporter.

Figure 4.8. Illustration of the Frederiksberg School Revit serialized as a THERM
JSON file, from Paper II.

4.3.2 Key findings

Research task 2 aims to create a flexible data model capable of representing
thermal zones and their connection to flow systems, facilitating seamless data
integration from BIM models into a web-based CDE. With the creation of
THERM, it is possible to transfer data from a BIM model into a CDE, and
from there, use microservices to perform simulations. Furthermore, with the
connection of FSC and THERM, it is now possible to describe a flow system’s

44 Results

connection with a given thermal zone. This creates the outset for performing
whole-building simulation with detailed HVAC simulation, which is described
in Section 4.5.

4.4 Research task 3
Research task 3 aims to create the system architecture for a scalable and
technology-agnostic CDE for the AECO industry. Furthermore, it aims to
solve the interoperability issues in the AECO industry by providing a single
source of truth in a technology-agnostic platform, using common data formats,
such as FSO, FSC, and THERM described in Sections 4.2 and 4.3.

4.4.1 System architecture

The following provides a list of requirements of a CDE, which is addressed in
the system architecture. A CDE should:

1. Provide a single source of truth data storage using discipline-specific
data models and thereby enable seamless data integration

2. Provide model validation tools to ensure data integrity

3. Provide an application that is scalable as it increases or decreases in
size and complexity

4. Enable easy development and deployment of technology-agnostic mi-
croservices (Python, JavaScript, C#, etc.)

5. Enable the development of tools that connect existing simulation tools

Paper I describes the first iteration of the system architecture for a CDE,
capable of living up to the above requirements.

Figure 4.9 shows the first iteration of the system architecture. First, the
HVAC database is generated using the BIM HVAC model. This is done using
FSC object model and the FSC object model exporter, both presented in
Paper I. The BIM HVAC model is serialized as a JSON file, which is loaded
into the HVAC database. After the first step, the data is contained within
the CDE and can be used by any microservice that receives the FSC object
model serialized as a JSON file. The second step is to develop tools to use
the data in the CDE. Therefore, three microservices are developed as part of
Paper I.

4.4 Research task 3 45

BIM HVAC
MODEL

PARSER

HVAC
DATABASE

3D ����� ������ M������������

C���� H��������
S�����

S��S�����
S����� S�����

C��������

R����� S�����

C��������
C��������

S��S�����

R���-����� ��������
���������

R�
��

��
�

�
��

��
�

HVAC S���������
A��������

A������ ������
C���������

CC

HC

M

RESPONSE

JSON
{...}

JSON
{...}

JSON
{...}

Figure 4.9. Illustration of the system architecture in Paper I [62]

4.4.2 Microservice developments

Figure 4.9 shows the microservices developed for the CDE in Paper I. The
microservices include tools that provide statistics of the HVAC system, model
validation of the HVAC system, and a tool for calculating the airflow demand
of the ventilation system. The microservices are developed to prove that it is
simple to develop and deploy microservices for the CDE. All the microservices
for the CDE are developed in Flask, a tool allowing easy development and
deployment of Application Programming Interface (API)s using Representa-
tional State Transfer (REST).

To illustrate the functionality of the microservice developments, an example
model was developed, as shown in Figure 4.10. The example model contains
three subsystems: One for heating, ventilation, and cooling. It also contains
four thermal zones, which have a given airflow. The example model contains
all types of subsystems that can be represented in an HVAC system.

For simplicity, the following paragraphs only provide examples of the HVAC
statistics and airflow calculation microservices. The model validation mi-
croservice is used to validate the HVAC system in Paper I but is not de-
scribed further in this Section.

HVAC statistics
Large HVAC system BIM models are often complex to manage, and it is hard
to provide an overview of the different components in the HVAC system. The
HVAC statistics microservices aim to provide the CDE with an overview of
the different types of components that have been transferred from the HVAC
BIM model. It also provides an overview of the BIM model’s length of ducts

46 Results

M

CC

M

HC

Radiator

Space 1
Air�ow = 35 l/s

Radiator

Space 2
Air�ow = 60 l/s

Radiator

Space 3
Air�ow = 231 l/s

Radiator

Space 4
Air�ow = 421 l/s

Figure 4.10. Illustration of the example model used to check the microservices.
Illustration from Paper I [62].

and pipes, which can be used for quantity take-off.

The statistics microservice receives the FSC object model from the CDE as
an HTTP post request, performs the calculation, and returns the result to
the CDE. Table 4.2 shows the result from the initial BIM model and the FSC
object model in the CDE. It shows that for most components, the amount
counted is the same in Revit as in the CDE. It also illustrates that the Hea-
tExchanger was counted four times in the CDE compared to two times in
the Revit model. This is caused by the nature of FSC - it is counted twice
more because heat exchangers are the interface between two sub-systems.
Consequently, they are each serialized twice and provide a connection of sub-
systems.

Airflow calculation
The ConnectedWith attribute of the FSC object model allows for traversing
the HVAC system, as shown in Figure 4.11.

The recursive algorithm traverses a ventilation system described using the
FSC object model, serialized in JSON. Since the algorithm is recursive, it
can traverse the HVAC system components down to the Fan that supplies
the air or to another desired stop condition. The algorithm was written to
provide evidence that the data models developed in research tasks 1 and 2
can represent the semantic nature of any HVAC system.

4.4 Research task 3 47

Table 4.2. The Table illustrates the components reported in Revit and the com-
ponents reported in the CDE. Table from Paper I [62].

Components Amount Revit Amount CDE
AirTerminal 8 8
MotorizedDamper 8 8
Bend 30 30
Reduction 40 40
Tee 14 14
BalancingValve 8 8
MotorizedValve 2 2
HeatExchanger 2 4
Fan 2 2
Pump 4 4
ShuntValve 2 2
PressureSensor 2 2
TemperatureSensor 2 2
Radiator 4 4
FlowSegment 96 96
Total components 223 225

Class: AirTerminal
Id: f82ab327-cfec-49e3-bd95
Tag: 1742042
ComponentType: AirTerminal
SystemName: Ventilation, supply
SystemType: Ventilation
ConnectedWith: [C1]

Class: FlowSegment
Id: ef3bb012-6ce4-4943-b29b
Tag: 1742043
ComponentType: FlowSegment
SystemName: Ventilation, supply
SystemType: Ventilation
ConnectedWith: [C2, C3]

Class: Damper
Id: ea3bb012-1we4-4423-b25b
Tag: 1742044
ComponentType: Damper
SystemName: Ventilation, supply
SystemType: Ventilation
ConnectedWith: [C4, C5]

Class: Fan
Id: ea3ew012-1ce4-2323-a39b
Tag: 1742056
ComponentType: Fan
SystemName: Ventilation, supply
SystemType: Ventilation
ConnectedWith: [C6, C7]

Connector (C1)
Tag: 1742043
Dimension: [200,200]
Shape: square
Coordinates: [2,2,0]
DirectionVector: [1,0,0]
ConnectorType: suppliesFluidFrom

Connector (C2)
Tag: 1742042
Dimension: [200,200]
Shape: square
Coordinates: [2,2,0]
DirectionVector: [-1,0,0]
ConnectorType: suppliesFluidTo

Connector (C3)
Tag: 1742044
Dimension: [200,200]
Shape: square
Coordinates: [2,2,2]
DirectionVector: [0,0,1]
ConnectorType: suppliesFluidFrom

Connector (C4)
Tag: 1742043
Dimension: [200,200]
Shape: square
Coordinates: [2,2,0]
DirectionVector: [-1,0,0]
ConnectorType: suppliesFluidTo

Connector (C30)
Tag: 1742056
Dimension: [200,200]
Shape: square
Coordinates: [20,20,2]
DirectionVector: [1,1,0]
ConnectorType: suppliesFluidFrom

Figure 4.11. Illustration of an algorithm capable of traversing a ventilation system
described using the FSC object model. From Paper I [62].

4.4.3 Key findings

The system architecture of the CDE proposed in Paper I provides a single
source of truth using the FSC schema developed in Paper I. The CDE is
created using a microservice architecture that allows for microservices devel-
opment.

Several simple microservices are developed in Paper I to show the ease of
development and deployment. Consequently, the CDE is easily scalable as
more services are developed. This enables the development of technology-

48 Results

agnostic microservices that containerize existing simulation tools.

4.5 Research task 4
The first iteration of the CDE system architecture, presented in Paper I,
allows microservices to perform simple operations on the FSC object model.
This research task aims to enable whole-building simulation with detailed
HVAC simulation. Therefore, the system architecture was extended with
additional microservices, as shown in Figure 4.12.

BIM MP M����
HVAC BIM
D�������

HVAC V��������� M������������

W
�� A����������

HVAC S��������� �������������

E�����P��� ���������� ��� ������������ �������������

HVAC M����
FSC E�������

S������

T������ �����
M����

R���������
����

T������ �����
THERM E�������

S������

T������ ����
D�������

CC

HC

M

G��������� ��
IDF F���

M1

IDF

M������� HVAC
����

S���� ��
E�����P���

P���������
V��������

M3

E�����P���
�� E���

M2

P���� I

P���� II F����� ����

P���� IV ��� VIII

Figure 4.12. Illustration of the system architecture in Paper II, original Figure
updated to show which papers feature the specific developments.

Paper I introduces the first iteration of the system architecture, shown in
research task 3. The contributions of this research task aim to provide mi-
croservices in the CDE to enable whole-building simulation with detailed
HVAC simulation to evaluate the performance gap from predicted to mea-
sured performance.

Paper IV and Paper VIII provided a parser that uses the FSC object
model to generate a Modelica object model and is introduced in subsection
4.5.1. Consequently, Paper IV and Paper VIII contributes to improving

4.5 Research task 4 49

interoperability from BIM to detailed HVAC simulation and, therefore, allow
isolated detailed HVAC simulation.

Paper II presents a system architecture capable of transferring the data from
the proprietary BIM model in a CDE to perform whole-building simulations.
The paper introduces several microservices capable of performing a whole-
building simulation using E+, using the THERM object model introduced
in research task 2. The microservices are described in detail in sub-section
4.5.2. Furthermore, the developed microservices are used to evaluate the
performance gap of an existing school building.

Finally, Paper VI illustrates how an external application can use the mi-
croservices developed in Paper II. The application uses the developed on-
tologies FSO and FPO to perform a sizing of the HVAC system based on the
results of a whole-building simulation, described in sub-section 4.5.2.

4.5.1 Modelica in a CDE

Paper VIII [63] conceptualize the first iteration of the FSC to Modelica
parser. Paper IV introduces the second iteration of an automated toolchain
that can perform a detailed HVAC simulation, using Modelica, in the CDE
developed in Paper I and Paper II. Furthermore, the FSC to Modelica
parser is created to simulate the HVAC system in a Modelica simulation
environment. Using this parser, the FSC object model, which is serialized as
a JSON, is translated into a .mo file, the input file used to simulate in the
Modelica simulation environment Dymola. Figure 4.13 shows the mapping
between the FSC and Modelica object models.

Component
Tag: 1250835
ComponentType: Pump
SystemName: Radiator supply
SystemType: heating
PumpCurve = {...}
ConnectedWith: [C3, C4]

Component
Tag: 1458738
ComponentType: FlowSegment
SystemName: Radiator supply
SystemType: heating
ConnectedWith: [C5, C6]

Connector (C2)
Tag: 1250835
Dimension: [0.022]
Shape: Round
DesignFlow: 0.12
Coordinates: [3,2,0]
Type: suppliesFluidTo

Connector (C3)
Tag: 1458644
Dimension: [0.022]
Shape: Round
DesignFlow: 0.12
Coordinates: [3,2,0]
Type: suppliedFluidFrom

Component
Tag: 1458644
ComponentType: FlowSegment
SystemName: Radiator supply
SystemType: heating
ConnectedWith: [C1, C2]

Component
FixedResistances.HydraulicDiameter
 seg1458738(
 redeclare package Medium =
 MediumHeating,
 m_flow_nominal=0.12,
 dh=0.022,
 length=0.45)

Component
ToolchainLib.PumpConstantPressure
 pump1250835(
 Medium = MediumHeating,
 pumpCurve = {...},
 ...)

Connector
connect
(seg1458644.port_b,
pump1250835.port_a)

Connector
connect
(pump1250835.port_b,
seg1458738.port_a)

Component
FixedResistances.HydraulicDiameter
 seg1458644(
 redeclare package Medium =
 MediumHeating,
 m_flow_nominal=0.12,
 dh=0.022,
 length=1.34)

Figure 4.13. Illustration of three different components translated from FSC to
Modelica, from Paper IV [64].

Detailed HVAC simulations in Modelica
To illustrate that the microservice developed to perform simulations in Mod-

50 Results

elica works as intended, an example model was created, shown in Figure 4.14.
The example model is modeled in 3D, using Autodesk Revit, and contains
heating, ventilation, and cooling systems. The BIM model has all the compo-
nents shown in Figure 4.14.

Simulating and comparing the effects of two different control strategies in
a typical design situation in an HVAC system is challenging in a routine
design situation. Few tools are capable of simulating the effects of different
control strategies. Paper IV simulated two different weather compensation
curves for the example model shown in Figure 4.14, during faulty and ideal4
operation.

M

CC

M

HC

Space 1
25 m2

Space 2
25 m2

Space 3
25 m2

Space 4
25 m2

Pa

M

CO2

M

CO2

M

CO2

M

CO2

Co
ld

 so
ur

ce
He

at
 so

ur
ce

5 oC

70 oC

oC

Radiator Radiator Radiator Radiator Radiator Radiator Radiator Radiator

Balancing valve Ven�la�on extractMotorized valve

Pump Ven�la�on fan Motorized damper Ven�la�on supply Hea�ng coil

M

M

HC

Cooling coilCC

Figure 4.14. Schematic of 3D example model from Revit used to simulate HVAC
system with different control strategies using Modelica, from Paper IV [64].

After simulating the example model in Dymola, the results showed the model
in Figure 4.14 under faulty and ideal operation, as seen in Figure 4.15. In
summary, the simulations showed that using a low-temperature heating curve
reduces errors when operating a faulty heating system for the specific use case.

The simulation shown in Figure 4.15 represents a simple use case of the de-
veloped FSC to Modelica toolchain. It shows that the toolchain can be used
to perform an isolated detailed HVAC simulation of a BIM HVAC model de-
scribed in the FSC object model in a CDE. It contributes to HVAC engineers
4Ideal operation means that it operates as it is intended to. Not to be mistaken with
idealized

4.5 Research task 4 51

21.5

22.0

22.5

23.0

23.5

24.0

R
oo

m
 te

m
pe

ra
tu

re
 [°

C
]

High heating curve
Ideal operation Faulty operation

Low heating curve
Ideal operation Faulty operation

Jan-26
Jan-27

Jan-28
Jan-29

Jan-30
Jan-31

Feb-01
Feb-02

20

30

40

50

60

R
et

ur
n

te
m

pe
ra

tu
re

 [°
C

]

Jan-26
Jan-27

Jan-28
Jan-29

Jan-30
Jan-31

Feb-01
Feb-02

Figure 4.15. The left plots show the simulated temperature using a high-
temperature heating curve for weather compensation in the room and heating
system return. The right plots show the simulated temperature using a low-
temperature heating curve for weather compensation in the room and heating sys-
tem return. From Paper IV [64].

being able to use Modelica as a simulation tool for virtual prototyping of the
HVAC system, which includes advanced system controls. It enables HVAC
engineers to make decisions based on evidence rather than over-simplified
HVAC calculations.

4.5.2 EnergyPlus in a CDE

Paper II introduced microservices for whole-building simulation in Energy-
Plus (E+), as shown in the blue dotted box of Figure 4.12. The microservices
consisted of three interdependent microservices called M1, M2, and M3. The
microservices utilize the THERM object model developed earlier in Paper II
(see Section 4.3.1) to perform a whole building simulation in E+.

Microservice M1 generates the native Input Data File (IDF), the input file to
simulate in E+. The Input Data File (IDF) is generated using the THERM
object model, which is stored as a JSON file in the CDE.

Microservice M2 is a container for the eppy5 Python package used to perform
E+ simulations. Microservice M2 takes an IDF as input and, after running
the E+ simulation, returns the E+ result files.
5https://eppy.readthedocs.io/

https://eppy.readthedocs.io/

52 Results

Microservice M3 creates a parameter variation study based on an existing
IDF and the desired variation of the user. Figure 4.16 shows the process
of running a variation study. For further technical details on the developed
microservices, refer to GitHub6, or the detailed description in Paper II.

R�� E�����P���
S���������

I���� IDF ����
��� E�����P���

I���� JSON ���
��������� �����

G������� ��� ����� ���
IDF ����� ��� ����������

R�� ��������� �����
�� ����������?

YES

NO

ID
F

��
��

CSV �������

R����� ���
����������

������� ���
�����������

M�����������
��������� IDF

D������� ���
�������� IDF

Figure 4.16. Process of running E+ simulations in the CDE, as shown in Figure
4.12. From Paper II.

Evaluating the performance gap
To evaluate the performance gap, Paper II includes a simulation using the
three microservices and measurements from Frederiksberg school. Figure 4.17
shows the IDF generated from the Revit model in Figure 4.8.

Shading element

Northern building

Roof element

External wall

Fenestration

Figure 4.17. E+ IDF of Frederiksberg School northern building, visualized in
OpenStudio. From Paper II.

To evaluate the performance gap, Frederiksberg school’s measured heating
energy use was compared to predicted heating energy use using the M1, M2,

6https://github.com/Virtual-Commissioning

https://github.com/Virtual-Commissioning

4.5 Research task 4 53

and M3 microservices. Figure 4.18 shows the predicted and measured heating
energy use for the north building, in orange and blue, respectively.

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25 Measured heating energy use
Predicted heating energy use

Month of the year

H
ea

tin
g

en
er

gy
 u

se
 (

M
W

h)

Figure 4.18. Chart showing Frederiksberg school’s predicted heating energy use
(orange) compared to the measured heating energy use (blue). From Paper II.

Figure 4.18 shows an apparent monthly discrepancy from predicted to mea-
sured heating energy use, even though the E+ simulation model was simulated
using the weather data from a weather station near Frederiksberg school. Pa-
per II theorized that dynamic heating setpoints for the school might cause
the discrepancy. Such a dynamic heating setpoint could include a nighttime
setback and varying heating setpoints throughout the day. Therefore, mi-
croservice M3 was used to perform a parameter variation study, where the
nighttime setback setpoint is 17°C and the daytime setpoint ranges, for the
five simulations, between 20°C - 22°C with a step of 0.5°C. Figure 4.19 shows
the results of the parameter variation study.

Unsurprisingly, the parameter variation study showed that the overall heating
energy use decreases when the setpoint is lowered and a nighttime setback
is introduced. Though it cannot explain the performance gap, it made it
possible to evaluate the performance gap, providing a valuable tool that could
potentially reduce the performance gap.

Comparing the predicted and measured performance of Frederiksberg School

54 Results

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25 Setpoint low=17°C high=20°C
Setpoint low=17°C high=20.5°C
Setpoint low=17°C high=21°C
Setpoint low=17°C high=21.5°C
Setpoint low=17°C high=22°C
No nighttime lowering
Measured heating energy use

Month of the year

H
ea

tin
g

en
er

gy
 u

se
 (

M
W

h)

Figure 4.19. Chart showing the predicted heating energy use compared to Fred-
eriksberg school’s measured heating energy use. From Paper II.

made it clear that the heating setpoint was needed. Specifically, it was neces-
sary since the measurements were carried out during the COVID-19 pandemic.
As a result, the government enforced periodical lockdowns on public institu-
tions, including the educational system. Therefore, there is a significant risk
that facility management of public institutions has changed the setpoints of
HVAC systems, specifically the heating system, since the lockdowns were
usually in the winter months.

Whole building simulation with dynamic hydraulic calculation
Paper VI shows an example where the E+ microservices M1, M2, and M3,
FSO and its extension FPO were used to perform a whole-building simulation
of an existing BIM model with thermal zones. The ventilation system was
then sized dynamically based on the dynamic demands of the thermal zones.

Figure 4.20 shows the results of using a full BIM model to perform a whole-
building simulation with a hydraulic calculation engine. One of the key find-

4.5 Research task 4 55

Design method
Dynamic HVAC

Type of duct
-11%

Round
Rectangular

Simpli�ed

Vo
lu

m
e

[5
0m

3]

0

50

100

150

Figure 4.20. Chart showing the difference in using a simplified whole-building to
perform a HVAC system sizing, or a full whole-building simulation to perform a
dynamic HVAC system sizing. From Paper VI.

ings was that it was possible to save 11% on material usage by using this
more accurate model rather than an oversimplified one. Furthermore, the
full whole-building simulation model allowed for a total energy saving of 23%
since it was possible to downsize the entire air-handling unit, compared to
the simplified case.

4.5.3 Key findings

Modelica microservice
The development of the Modelica toolchain in Paper VIII and Paper IV
makes simulations in a Modelica simulation environment available to the
HVAC designer in the AECO industry. Using the CDE eases the burden
of the HVAC design in creating simulations in a Modelica simulation environ-
ment by automatically generating the .mo files that go into Modelica. Making
Modelica available for the HVAC designer makes it easier to perform detailed
HVAC simulations with realistic controls.

The microservice developed to perform Modelica simulations in Paper IV,
and Paper VIII proves that it is possible to perform detailed HVAC simu-
lations using the information in a CDE. This tool is developed as a proof-of-
concept, and the use case is simple to ensure that it can be simulated in a

56 Results

Modelica simulation environment. To ensure that the microservice works for
more advanced cases and to provide rigorous testing, future case studies on
HVAC systems should be carried out using the Modelica toolchain.

EnergyPlus microservices
This research task shows that using a CDE as a basis for performing whole-
building simulations in E+ automates parts of the simulation process for
HVAC designers. It facilitates using the existing data in the single source
of truth CDE instead of creating new data only expressed in the simulation
model. The M1, M2, and M3 microservices enable whole-building simula-
tion in a web-based CDE, using the THERM object model generated from a
proprietary BIM model.

However, the whole-building simulation does not include the full HVAC sys-
tem but an idealized version. With the introduction of a hydraulic simulation
engine, it would be possible to simulate the entire building with the realis-
tic HVAC system. Nevertheless, the developments of Paper II contribute
to generating automated whole-building simulations using a CDE. It enables
the HVAC engineer to generate extensive whole-building simulations that use
information already available in the BIM model rather than geometrically
simplified models. It contributes to increasing the interoperability of whole-
building simulation and closing the information gap.

Paper VI shows that it is possible to use the microservices developed for
whole-building simulation in E+ to perform a dynamic sizing of the HVAC
system rather than basing the sizes on the peak demand of the thermal zones.
This tool could be helpful in the existing design process and will help will
sizing the ventilation systems according to their actual demand.

This research task introduces a process for comparing an existing building’s
predicted performance with the measured performance. By comparing pre-
dicted and measured performance, it is possible to start investigating scenarios
on why the performance gap exists, which has the potential to help HVAC
engineer to reduce the performance gap.

A Spawn microservice
The future development of the CDE presented in 4.4 and 4.5 involves connect-
ing the state-of-the-art tool called Spawn-of-EnergyPlus (Spawn). Spawn7 is
developed as an Functional Mock-up Unit (FMU) in the Functional Mock-up
Interface (FMI), which is based on the Modelica language. This enables a
whole-building co-simulation with the HVAC controls from the Buildings8 li-
brary. Providing a connection for Spawn is part of this thesis’s future outlook
for the CDE. See the future outlook Section 5.2.6 for more information.

7https://lbl-srg.github.io/soep/
8https://simulationresearch.lbl.gov/modelica/

https://lbl-srg.github.io/soep/
https://simulationresearch.lbl.gov/modelica/

CHAPTER5
Discussion &
Conclusion

This Chapter discusses and summarizes the research findings.

Section 5.1 revisits the research questions posed in the research
design and are answered in the related sub-sections.

Section 5.2 evaluates the contribution made to academia and the
AECO industry. It also provides a future outlook.

Finally, Section 5.3 concludes on the findings in this thesis.

58 Discussion & Conclusion

5.1 Research questions revisited
This Section revisits the research questions (RQs) posed in Chapter 3 and
answers them based on the research tasks carried out in Chapter 4. After
revisiting each of the RQs, the following Section concludes on the contribu-
tions made to academia and industry in this PhD thesis and provides a future
outlook. Finally, the Section provides the concluding remarks for the thesis.

5.1.1 RQ1: Replacing file-based BIM with a CDE?

Can a CDE serve as a single source of truth, replacing file-based BIM, and
consequently close the information gap in the building design process?

Research tasks 3 and 4 are working proofs-of-concept for a CDE that pro-
vides a single source of truth through an object-oriented database. The
database was updated with information extracted from the proprietary BIM
software Autodesk Revit through the data models created in sections 4.2 and
4.3. Therefore, the answer to research question 1 is yes; a CDE can serve as a
single source of truth, replace file-based BIM, and consequently eliminate the
information gap. However, it should be clear that industry adoption takes
much more effort than simply introducing a new CDE. Full implementation
of the CDE involves many hours of development but also a substantial effort
in educating the workforce to use it. One well-known issue in AECO industry
is that new tools are notoriously hard to implement, especially if it needs to
be widely adopted.

The background Chapter introduced two CDEs. They have both seen limited
industry adoption. The reasons for the low industry adoption are discussed
in Section 2.2. The CDE developed in this thesis is different since it is open-
source but based on discipline-specific object models rather than complex
IFC files or proprietary file formats. Using discipline-specific object models
to represent each discipline’s single source of truth makes it easier to work
with them as developers since they are directed at the specific discipline of
each stakeholder. For instance, the FSC object model stored in the CDE
provides only the single source of truth for the HVAC system and does not
involve properties related to other disciplines such as architecture, structures,
etc. This makes the CDE introduced in this thesis easier to implement into
an existing organization since limited information is needed to populate the
database.

Research tasks 3 and 4 show that introducing a CDE based on a microservice
architecture makes it possible to scale the CDE with the needed functionali-
ties as new demands arise for the capabilities in simulation/calculation tools.
For instance, research task 3 introduces very simple microservices capable of

5.1 Research questions revisited 59

performing calculations and checks on the FSC object model. This represents
the initial proof-of-concept within a company. Research task 4 introduced
several microservices, one of which can perform a whole-building simulation
using the E+ simulation engine. This type of scalable development is hard
to do with other CDEs today, like the BIMServer.org project - since the file
structure is based on IFC, every aspect of the project needs to be well-defined
to have a model that lives up to the model integrity. Moreover, most propri-
etary tools serialize IFC files poorly from their internal object model, meaning
they cannot represent a single source of truth.

One problem with using a single source of truth CDE is that it requires a
higher level of detail when modeling in a BIM modeling tool, such as Au-
todesk Revit. The data extracted from Revit in FSO, FSC, and THERM
represents the ’current state’ of the BIM model. If the current state of the
BIM model is not very detailed, that will be transferred to the database in
the CDE. Since data exists in several places, this problem persists as long as
AECO stakeholders model in proprietary tools like Revit. However, the CDE
centralizes information in one place. Thus, it eliminates the information gap
between AECO stakeholders. Simulations are based on data in the CDE, and
the results are stored in the CDE. As a result, the HVAC engineer no longer
has to worry about tracking the specified amount of people in the room man-
ually from the architectural BIM model or the room schedule provided by
the architect from 5 weeks ago. In the CDE, through data model validation
tools and advanced model tracking, this information exists in only one place,
making it the single source of truth for all project stakeholders.

5.1.2 RQ2: A CDE for seamless data integration?

Can a Common Data Environment (CDE) enable seamless data integration
between proprietary and open data formats?

The CDE created in research tasks 3 and 4 facilitates a seamless data in-
tegration between the proprietary BIM tool Revit and the open data formats
developed in research tasks 1 and 2. To achieve seamless data integration, ex-
porters were created in the Autodesk Revit Application Programming Inter-
face (API) to serialize a JSON based on the object models created in research
tasks 1 and 2. Through research tasks 3 and 4, more than 7 microservices
were developed, all based on the different serializations from RDF or JSON.
This establishes that it is possible to extract data from a proprietary BIM
tool into an open data format and use other tools to use the open data in the
CDE.

One problem with working with a proprietary BIM tool like Autodesk Revit
is that stakeholders model in that tool, but the single source of truth exists

60 Discussion & Conclusion

in the web-based CDE. This means that there is a chance that information
gets lost in translation from one object model to another. This problem
will likely persist until the AECO industry starts modeling directly in the
CDE. While some parts of the industry consider this state-of-the-art, it will
likely present significant challenges and might eventually mean that discipline-
specific object models converge towards a super-schema, like IFC. Therefore,
in this thesis, proprietary BIM tools like Autodesk Revit are considered a
microservice used to create and edit geometrically rich BIM models.

5.1.3 RQ3: A data model for flow systems

Is it possible to formulate and implement a discipline-specific data model to
represent (HVAC) flow systems and their properties in a web-based CDE?

In research task 1, an OWL called Flow Systems Ontology (FSO) was created
with an extension called Flow Properties Ontology (FPO). The papers Paper
III, Paper V, and Paper X tested the feasibility of FSO to confirm that it
was indeed capable of representing even complex flow systems. It was tested
using SPARQL Protocol and RDF Query Language (SPARQL) queries on an
example model created manually in a Terse RDF Triple Language (Turtle)
file. Furthermore, it was tested on an example model generated using the
Autodesk Revit API and the FSO exporter, which is provided in Paper V.
The exporter serializes the HVAC BIM model into the Resource Description
Framework (RDF)-based FSO in a Turtle format, which consisted of more
than 6137 HVAC components.

After creating FSO to represent flow systems, it was apparent that RDF
graphs are challenging to use in a web application, even with the existing
serialization engine in JSON-LD. It is based on the RDF language, but its
structure is flat and generally not the most human-readable, as it uses URIs
to describe relationships in the same file. This makes it hard to use for
developers used to the flexibility in the unstructured JSON files.

Therefore, an object model called Flow System Classes (FSC) was created in
research task 1. The FSC object model represents flow systems more hierar-
chical, rather than in a flat RDF-based manner. By doing this, it is possible
to serialize directly to JSON from the Autodesk Revit BIM model, using the
C# API. Paper I shows that FSC can be used to represent several complex
HVAC systems. This is proven through the use of a complex Autodesk Revit
HVAC BIM model that consisted of 225 different HVAC components. To
test the integrity of the HVAC model exported from Revit to FSC, several
microservices were created in research task 3, capable of testing the connec-
tivity of the HVAC system, the HVAC system statistics, and an airflow sizing
tool.

5.1 Research questions revisited 61

Chapter 2 describes that one of the most obvious drawbacks of OWL is that
they are complex to serialize in a web-ready format and can be hard to work
with for inexperienced developers. However, OWL ontologies efficiently de-
scribe HVAC systems. The subject-predicate-object nature of OWL is intu-
itive when describing the semantic nature of flow systems. Furthermore, it
provides a data model based on a stable and standardized schema.

A drawback of object models is that they can become massive nested files
that are inefficient. Furthermore, JSON is an unstructured format, meaning
that serializing object models in JSON is prone to formatting errors. This
also makes object models flexible compared to OWL ontologies.

Research tasks 1 and 2 present two methods to represent HVAC systems: an
OWL and an object model. Both can represent complex HVAC systems with
benefits and drawbacks. This thesis does not aim to provide a ”final” answer
on whether OWL ontologies or simple object models are best. Both have
benefits and drawbacks and can be used in a CDE. It should be stressed that
object models can be the basis of creating an ontology, so in the end, it comes
down to which choice of serialization is desired for the specific developer. As
long as the object models developed for the HVAC discipline and the AECO
industry can represent the properties of the given domain, it does not matter
which serialization is used.

5.1.4 RQ4: A data model for thermal zones

Is it possible to formulate and implement a discipline-specific data model for
the representation of thermal zones and their properties in a web-based CDE?

Research task 2 creates a discipline-specific data model to represent ther-
mal zones and their properties, called Thermal Zone Classes (THERM). To
exemplify that THERM can represent thermal zones and their properties, the
use-case was created in Paper II. In this paper, THERM was serialized as a
JSON file from an Autodesk Revit BIM model. The file contained a total of
84 zones. After transferring the file into the THERM structured JSON, an
Input Data File (IDF) for EnergyPlus (E+) was generated and successfully
simulated.

The THERM object model was created to perform whole-building simulations
in a CDE using E+. Thus, the derived structure of the THERM object model
is based on the information needed to perform E+ simulations. Most whole-
building simulation tools base their simulation engines on different boundary
conditions. Therefore, it might be that the THERM object model in its
current state is incapable of providing all the information to run a whole-
building simulation in other simulation tools, like IESVE, IDA ICE, etc.

62 Discussion & Conclusion

The THERM object model provides a simple geometric model. It merely
contains the geometric information needed to represent the thermal zones
for a whole-building simulation. If the thermal zone modeled in the BIM
tool is complex, like a slanted ceiling or walls, THERM displays a simplified
version of that. Furthermore, the architectural models on which thermal zones
are usually based are created by architects. This can cause issues since the
architect is not checking to see if the walls are facing the right direction, if the
wall, ceiling, or floor layers have the right u-value, and so on. This problem
can be solved by providing algorithms to check the model integrity of the
BIM model and prompt the user in the frontend with any errors that could
hinder or cause incorrect simulation.

It can be concluded that it is possible to create a discipline-specific data model
to represent thermal zones and their properties.

5.1.5 RQ5: A microservice CDE for advanced building
simulation

Does a technology-agnostic CDE based on a microservice architecture facili-
tate the digital transformation by providing a platform for organic additions
of automated design services in the building design process?

HVAC engineers today often design HVAC systems based on rule-of-thumb
or through idealized models for hydraulic simulation. There are several rea-
sons for this, but one contributing factor is that acquiring the information to
perform whole-building simulation and detailed HVAC simulation is manual
and laborious.

Research tasks 3 and 4 show that by centralizing all the project data into
a single source of truth CDE based on discipline-specific data models, it is
possible to build microservices around that data to perform previously manual
operations automatically. Furthermore, research task 4 extends the work
of CDE created in research task 3 and presented microservices capable of
performing whole-building simulations in E+ and detailed HVAC simulation
in a Modelica simulation environment based on the THERM and FSC object
models created in research tasks 1 and 2.

Research task 4 (Paper II and Paper IV) shows that it is possible to create
an automatic toolchain that transfers information from a proprietary BIM for-
mat into a whole-building or detailed HVAC simulation environment, through
a CDE. This process was previously limited to parsers translating directly
from proprietary BIM tools like Autodesk Revit into the simulation engine.
This creates a ”black box” in the middle of the toolchain - the user that ex-
ports the data cannot check what data is being transferred to the simulation

5.1 Research questions revisited 63

engine and therefore has poor control of the assumptions that the simulation
model is based on.

By introducing a CDE as the data mediator, the user can inspect data before
translation into the whole-building simulation or detailed HVAC simulation
tool. It also provides the user with a place to store the results of a given
simulation iteration in the CDE. This provides a way of tracking different
simulation iterations of the building’s predicted performance.

One of the main issues with using a whole-building simulation tool such as E+
is that it automatically assumes idealized HVAC systems, leading to oversim-
plification of the simulation model, another reason for the performance gap,
listed in Section 1.3. There are ways of simulating a simplified (not idealized)
version of the HVAC system in the E+ simulation engine. They are, however,
still very simplified and may lead to errors by oversimplification.

Paper IV introduces a microservice for detailed HVAC simulation in an
Modelica simulation environment, using the FSC object model. Specifically,
a parser was created to serialize the JSON based on the FSC object model to
generate .mo files for simulation in a Modelica simulation environment. To
exemplify that the microservice parses from the FSC object model into the
Modelica object model, a simple 3D model was created in Autodesk Revit.
The parsing was successful; the simulation was run, and a result was returned
from the microservice to the CDE.

Modelica is a language that provides the capability of state-of-the-art hy-
draulic simulations. In contrast to most whole-building simulation tools,
Modelica can simulate realistic rather than idealized HVAC systems. Pa-
per IV provided limitations to the developed microservice. Specifically, one
of the significant challenges to simulating HVAC systems correctly is that
FSC does not contain a detailed description for HVAC controls. To overcome
this challenge, FSC was extended to have simple support for PI controllers for
valves, dampers, fans, pumps, etc. This addition permits running a use-case
simulation. However, HVAC controls are rarely as simple as those described
in Paper IV. Hence, future work should include a data model that supports
a detailed control specification.

FSC and THERM, introduced in research tasks 1 and 2, provide the stepping
stone to overcome the final barrier to performing a full simulation that in-
cludes a whole-building simulation with detailed HVAC simulation. During
this thesis, Spawn-of-EnergyPlus (Spawn) was released as part of the Model-
ica buildings library1. The object models for thermal zones (THERM) and
HVAC systems (FSC) can be used for simulation in Spawn.

1https://www.energy.gov/eere/buildings/articles/its-alive-after-five-years-
lab-spawn-energyplus-finally-here

https://www.energy.gov/eere/buildings/articles/its-alive-after-five-years-lab-spawn-energyplus-finally-here
https://www.energy.gov/eere/buildings/articles/its-alive-after-five-years-lab-spawn-energyplus-finally-here

64 Discussion & Conclusion

With the possibility to run a whole-building simulation and detailed HVAC
simulation based on the BIM model in the CDE, the requirements for a high
level of detail model increase. This challenge has been raised several times by
the PhD candidate’s host company. This means that designers must model
HVAC systems more correctly. Since the introduction of clash detection for
BIM models, the level of detail has been discussed vividly in the AECO
industry. From an HVAC perspective, usually, designers are not interested
in modeling every detail of HVAC system, like valves, dampers, terminals,
etc. This presents a challenge in moving to detailed HVAC simulation. Since
the details do not exist in the BIM model, they cannot be transferred to the
CDE. However, providing a method for automatic detailed HVAC simulation
incentivizes designers to model more accurately in the BIM model. Detailed
HVAC simulation allows designers to simulate the building as close to reality
as possible.

Tools for whole-building simulation and detailed HVAC simulation have ex-
isted for decades. Several research projects (IFC2Modelica, BIM2Modelica,
Revit2Modelica) have created tools that can increase interoperability by us-
ing information available in the existing BIM model to perform whole-building
simulation or detailed HVAC simulation. These projects all work file-based,
meaning there is no single source of truth for that information. This thesis in-
troduces a CDE as the tool to increase automation by closing the information
gap and increasing transparency for all project stakeholders. Using a CDE
based on a microservice architecture, this thesis shows that it is possible to
add microservices along the way of the project development.

It will take an effort to transcend digitalization and move into the digital
transformation of the AECO industry. The CDE introduced in this thesis
provides a vessel to digitally transform the AECO industry, one microser-
vice at a time. It increases automation by providing a platform where all
automation efforts reside, based on single source of truth discipline-specific
data models. In conclusion, the CDE facilitates the digital transformation
and, in this thesis, increases the level of automation for whole-building simu-
lation and detailed HVAC simulation.

5.1.6 RQ6: Can a CDE reduce the performance gap?

Is a microservice CDE for whole-building simulation with detailed HVAC sim-
ulation a tool that can reduce the performance gap in a practical HVAC design
setting?

A CDE used with detailed HVAC simulation can potentially reduce the per-
formance gap from predicted to measured performance. Papers II and IV
shows that the CDE can perform whole-building simulations and detailed

5.1 Research questions revisited 65

HVAC simulation of existing buildings.

Specifically, Paper II shows that it is possible to compare the performance
of an existing building with the predicted performance of that building, using
an E+ model generated based on the data available in the web-based CDE.
Paper II provides a proof-of-concept for a method to reduce the performance
gap. Still, it should be clear that the whole-building simulation tool in the
CDE does not automatically reduce the performance gap.

The CDE provides the means to perform a post-occupancy evaluation after
building construction. In this post-occupancy evaluation, the HVAC engineer
can compare the prediction of a simulation model based on the as-built BIM
model with the measured data from the actual building. One of the primary
sources of error when evaluating the performance gap is the sensors of the
building. Ensuring that a sensor is calibrated correctly can be extremely
hard. Secondly, building sensors and meters collect a lot of data. This can
make comparing simulation results with measured results difficult, primarily
if the measured results are poorly structured or if the boundary conditions
of the actual building are not known. Paper II shows an example of this -
several hours were spent going through excel spreadsheets to gather relevant
information to perform a whole-building simulation of the building.

To solve the problem of fragmented information, the designers of the building
should provide a strategy for using data from sensors and meters in the build-
ing. For instance, Paper II shows that use-case schools did not log room
heating and airflow operating setpoints. Consequently, replicating the bound-
ary conditions for the control algorithms in the E+ whole-building simulation
was next to impossible. When room temperatures dropped in the rooms dur-
ing the period of the measured data, no setpoints were logged. Furthermore,
most building data in existing buildings are unavailable to the building owner.
They are logged in proprietary building management systems and can only be
extracted with the help of the building management system vendor, usually
at a monetary cost.

One main contributing factor to the performance gap when performing whole-
building simulations is that the modeling tools are over-simplified and con-
tain wrongful assumptions about the design due to the information gap be-
tween stakeholders. After introducing a whole-building simulation and de-
tailed HVAC simulation tools into the CDE, the simulations are performed
using the boundary conditions used in the BIM model. This contrasts with
the current design process, where a few representative rooms are often mod-
eled, sized, and extrapolated onto the rest of the building. The same goes for
HVAC system, where the heat load of a few rooms in a peak condition is used
to size the ducts in a static calculation.

66 Discussion & Conclusion

Therefore, it can be concluded that the whole-building simulation and detailed
HVAC simulation tools introduced in Paper II and Paper IV on the CDE
have the potential to help HVAC designers in reducing the performance gap
in a practical setting.

5.2 Contributions
This Section summarizes the main contributions made to academia and in-
dustry throughout this PhD thesis. The main contributions consist of the
proposed system architecture for a CDE, the Flow System Classes (FSC), the
Thermal Zone Classes (THERM), the Flow Systems Ontology (FSO), and the
microservices capable of performing whole-building simulation and detailed
HVAC simulation. This Section discusses these contributions and their im-
plication for academia and industry. Finally, it provides a future outlook on
the contributions.

5.2.1 A system architecture for microservice-based CDE

The main contribution of this thesis is the CDE system architecture that
was proposed in Paper I and Paper II. The system architecture based on
microservices enables developers to create microservices independent of each
other, which use the object models (FSO, FSC, THERM) within the single
source of truth CDE. This allows for developing a network of microservices
that all provide different functionalities. In Paper I, this was used to create
simple standalone microservices to perform rule-checks on the HVAC system.
In Paper II and Paper IV, this amounted to containerized microservices
for whole-building simulation through E+ and for detailed HVAC simulation
through a Modelica simulation environment. Furthermore, Paper II showed
that by using the CDE together with measurements of the heating energy use
from a school, it is possible to predict the heating energy use of the school and
compare it with the measured heating energy use. Thus, the CDE enables
HVAC designers to perform whole-building simulation and detailed HVAC
simulation of buildings and compare them to the actual building performance
- an essential step in evaluating and, eventually, reducing the performance gap
between predicted and measured building performance.

Most companies in the AECO industry focus on developing tools created as
add-ins with proprietary BIM tools, such as Autodesk Revit. This approach
may seem simple and profitable, but it has several issues. One of them is
that it produces a lot of tools that work based on different object models.
Some tools work directly with the object model in Revit; others export an
object model in the correct format for a specific third-party tool, like IESVE.
Consequently, work processes become file-based, as shown in Figure 1.2. In

5.2 Contributions 67

the ever-evolving design, construction, and operation phases of a building,
these files represent different truths, making them incompatible and incompa-
rable. By introducing a CDE where a database represents the single source
of truth for a discipline-specific object model, it is now possible to derive all
data needed from the common data formats within the CDE.

All developments related to the microservice architecture based CDE is pub-
licly available on GitHub2.

5.2.2 Flow System Ontology

Paper III introduces the Flow Systems Ontology (FSO), which is a discipline-
specific Web Ontology Language (OWL) to represent flow systems’ energy and
mass transfer.

Since the purpose of FSO was to create a lightweight ontology that can be
extended into different domains, there was a need for an extension to describe
the FSO components’ capacity and size-related properties. Paper V intro-
duces Flow Properties Ontology (FPO), an extension to FSO, to describe
components’ capacity and size-related properties. Paper V illustrates, that
by extending FSO with FPO, it is possible to perform advanced flow calcu-
lations on HVAC systems in a CDE. Furthermore, Paper VI shows that
the ontology can be coupled with whole-building simulations in E+ to per-
form dynamic HVAC calculations that use the results from the whole-building
simulation to size the HVAC system.

To allow the AECO industry and academia to apply FSO and FPO, a tool
capable of parsing an Autodesk Revit BIM model into FSO and FPO and
serializing it into an RDF-based Turtle file was created. The tool is publicly
available, in Paper V through GitHub3, as an open-source development open
to outside contributions. FSO is being used continuously by the authors of
Paper III.

5.2.3 Flow System Classes

Following the original development of FSO, from Paper III, there was a need
for an object model that represents flow systems and their components. There-
fore, FSC was created in Paper I, which represents entire HVAC systems
containing heating, cooling, and ventilation system and their components.
Furthermore, FSC was extended in Paper IV to include simple control spec-
ifications to be able to translate the FSC object model into a Modelica object
model.

2https://github.com/Virtual-Commissioning
3https://github.com/Semantic-HVAC-Tool/Parser

https://github.com/Virtual-Commissioning
https://github.com/Semantic-HVAC-Tool/Parser

68 Discussion & Conclusion

FSC is the discipline-specific data model used in the CDE for the represen-
tation of HVAC systems. FSC makes out the data model on which most
microservices related to flow systems are based. Therefore, it is an integral
part of the CDE. The FSC object model is publicly available on GitHub4,
open to outside contributions.

The FSC object model will be continuously used by the host company of the
PhD candidate in the development of the CDE. Furthermore, parallel research
projects currently use the FSC object model to create detailed HVAC simula-
tions with high-detail control specifications in Modelica. These developments
will be published after the submission of this thesis.

5.2.4 Thermal Zone Classes

Paper IV exposed the need for an object model to represent thermal zones
for whole-building simulations. Therefore, we developed the Thermal Zone
Classes (THERM), which is a hierarchical description of the thermal zones
in the building and their related properties, such as thermal loads, geometry,
HVAC conditions, etc.

THERM makes out the data model for thermal zones on which all microser-
vices related to whole-building simulations are based. Therefore, it is an
integral part of the CDE. The THERM object model is publicly available on
GitHub5, open to outside contributions.

The host company has started the development of a database to store all
room property information in a CDE to perform whole-building simulations.
It uses the THERM object model to allow architects and engineers to access
room information through a web application frontend. Furthermore, THERM
provides the stepping stone for combining whole-building simulation in E+
with detailed HVAC simulation in a Modelica simulation environment. There-
fore, recently started research projects are using the THERM and FSC object
models to run simulations in Modelica using Spawn-of-EnergyPlus (Spawn),
see Section 5.2.6.

5.2.5 Microservices

The CDE is based on a microservice architecture, which uses the data models
developed (FSC, and THERM) to validate, calculate, and simulate the build-
ing performance. During this thesis, several microservices were developed to
extend the capabilities of the CDE. The developed microservices include tools
to validate the HVAC model, calculate the airflow in a ventilation system in

4https://github.com/Virtual-Commissioning/VC-HVACExporter-Service
5https://github.com/Virtual-Commissioning/VC-Analytical_zones_exporter-Service

https://github.com/Virtual-Commissioning/VC-HVACExporter-Service
https://github.com/Virtual-Commissioning/VC-Analytical_zones_exporter-Service

5.2 Contributions 69

Paper I, perform whole-building simulation, and detailed HVAC simulation.
The following paragraphs describe the contribution of each microservice.

A microservice to perform whole-building simulations in E+ was developed
as part of Paper II6. It uses the THERM object model to automatically
generate IDF files to be simulated in E+. This microservice provides an
easy-to-deploy solution to perform whole-building simulations in E+.

Furthermore, a microservice to perform detailed HVAC simulation of HVAC
systems in a Modelica simulation environment7 was created. It uses the FSC
object model to automatically generate .mo files that can be simulated in a
Modelica simulation environment. This microservice provides a state-of-the-
art toolchain for the automatic simulation of HVAC systems modeled initially
in BIM to be simulated in Modelica.

All of the microservices developed for the CDE illustrate that a microservice
architecture allows for an easily scalable CDE. Furthermore, the microservices
are all available to outside developers, meaning they do not have to be accessed
through a CDE. Therefore, they can be used through plugins in proprietary
tools, such as Autodesk Revit, while the AECO industry matures to the idea
of CDEs replacing file-based BIM.

5.2.6 Future outlook

Common Data Environments in the industry
Implementing a microservice-based CDE into the daily work process of the
AECO industry will be an extensive task for years to come. Most of the
industry agrees that CDEs form the future collaboration on BIM models. To
implement CDEs in AECO industry, there needs to be a change in how the in-
dustry develops applications. Specifically, it means that AECO organizations
must transcend digitalization into digital transformation.

The host company of the author of this thesis has started the development
of a CDE using the system architecture proposed in this thesis to use for
its design, construction, and operation projects. Some benefits that the host
company recognizes in the CDE are:

1. The BIM model information is available to all stakeholders of the project

2. When collecting data from buildings, information is stored in the same
place. Consequently, sensor and meter data can be used later in big
data analysis

6https://github.com/Virtual-Commissioning/VC_EnergyPlus-Simulation_Service
7https://github.com/Virtual-Commissioning/VC-Modelica-Service

https://github.com/Virtual-Commissioning/VC_EnergyPlus-Simulation_Service
https://github.com/Virtual-Commissioning/VC-Modelica-Service

70 Discussion & Conclusion

3. Tools that the company develops for analysis and simulations are gath-
ered in one platform, as opposed to being dispersed across excel spread-
sheets, python scripts, etc.

These benefits drive the development of the CDE within the host company
and provide an incentive to replace file-based BIM with the CDE.

The literature review in the background Chapter made it clear that CDEs
have been developed before based on different data models, open or propri-
etary. Currently, there are commercial products for the centralization of BIM
models in CDEs. Still, the AECO industry has seen little adoption of these
commercial products. This is caused by the lack of external tools, such as
simulation engines, that can be implemented into the CDE. If commercial
simulation tools enable access to their simulation engines through an API
rather than through their desktop application, using a CDE would be easier
to justify. Currently, when stakeholders put their BIM models into a CDE,
none use the existing information to populate simulation models for detailed
HVAC simulation, whole-building simulation, structural analysis, etc.

One challenge the industry faces with the implementation of CDEs is the
transparency that data availability provides. It sets a high standard for
building modeling and trust between the stakeholders. For instance, it re-
quires the HVAC engineer to model the entire HVAC system. Otherwise, the
single source of truth does not reflect reality. It also requires that all project
data is kept up-to-date throughout the entire building life-cycle - which rarely
happens in today’s design process in AECO industry. Therefore, future work
should include a framework for implementing microservice-based CDEs into
the design process of buildings in the AECO industry.

The ontologies and object models developed in this thesis provide a vocabulary
for describing some parts of the HVAC discipline in the AECO industry. It
is, however, clear that they should be developed further to be used for other
disciplines related to the HVAC discipline, like the MEP discipline, which
includes water systems, electrical systems, gas, etc.

Paper II used historical data extracted using an online building manage-
ment system. The data were manually compared to the predicted results of
a whole-building simulation. To enable HVAC engineers to access building
data through the CDE, building management system vendors should focus on
developing an API. By creating API access to this data, the building owner
can request that HVAC engineers perform regular follow-ups on the building
performance, reducing the performance gap with the tools developed in this
thesis.

The CDE has the potential to be used for all disciplines of the AECO indus-

5.3 Concluding remarks 71

try, including structures and architecture. Specifically, research projects have
been started during the PhD to include object models to represent structures
and architecture so that the CDE can perform a life-cycle assessment of the
entire building.

Whole-building and Detailed HVAC Simulations
This thesis has developed the basis for other researchers to apply the FSC and
THERM object models to perform whole-building simulations with a realistic
HVAC system. In future work, the CDE and object models created in the
course of this PhD should be used to enable industry practitioners to simulate
buildings as a near-perfect white-box model in open-source tools, such as
Spawn-of-EnergyPlus (Spawn). This means that the modeling precision of
the HVAC engineers must be substantially increased. With the inclusion of
such advanced simulation models, there is an incentive to increase the level
of detail in the BIM models.

5.3 Concluding remarks
The CDE developed in this PhD thesis provides a framework for a new way
of developing applications for the AECO industry. It catalyzes digital trans-
formation in the AECO industry by closing the information gap, replacing
the file-based approach with a model-centric approach.

The CDE can provide a single source of truth for the project data, meaning
that all data is stored within a database in the CDE. Even so, it does not
provide a complete solution that the industry can use from day one. Many
developments are in progress, so different people work in different directions.
Consequently, it results in using different technologies for tools trying to solve
the same problem. Therefore, the created CDE is technology-agnostic, mean-
ing it does not depend on one technology. This is shown through the use
of data models that are RDF-based and JSON-based in the CDE. Further-
more, the CDE also contains numerous programming languages, as seen in
the microservices based on C#, Flask, and FastAPI. Furthermore, the proof-
of-concept parser can translate a 3D Revit model into the data models created
in this thesis. This can also be done for 3D models in IFC, for instance, using
IfcOpenShell8.

8https://ifcopenshell.org/

https://ifcopenshell.org/

72

CHAPTER6
Papers

This Chapter includes the papers written during the course of this
PhD project.

74 Papers

6.1 Paper I - A common data environment for
HVAC design and engineering

Automation in Construction 142 (2022) 104500

Available online 7 August 2022
0926-5805/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A common data environment for HVAC design and engineering

Mikki Seidenschnur a,c,*, Ali Kücükavci a, Esben Visby Fjerbæk a, Kevin Michael Smith a,
Pieter Pauwels b, Christian Anker Hviid a

a Department of Civil and Mechanical Engineering, Technical University of Denmark, Copenhagen, Denmark
b Department of Civil Engineering, Technical University of Eindhoven, Eindhoven, Netherlands
c Ramboll, Copenhagen, Denmark

A R T I C L E I N F O

Keywords:
Building information modeling
HVAC
Object models
Common data environment
BIM level 3

A B S T R A C T

The Architecture, Engineering, and Construction (AEC) industry is transitioning toward using cloud-based
Common Data Environments (CDEs) with interlinked BIM models. A CDE that engages all stakeholders of the
building's design, construction, and operation phases represents the outset of BIM maturity level 3. This article
introduces a CDE called Virtual Commissioning (VC), capable of commissioning an HVAC system before the
physical commissioning of the HVAC system. The FSC diagram is introduced, to represent an HVAC BIM model
within the VC CDE, and the Revit to FSC exporter, to serialize an HVAC object model from Revit to the FSC
diagram. Three microservices were developed to exemplify the ease of developing independently scalable so-
lutions for the VC CDE. Furthermore, the article proves that Modelica simulations can be run, using the
microservice architecture of the CDE. To test the robustness of the system architecture for the CDE, two example
models were introduced, one simple and one with a high level of complexity. Transferring the example models
from Revit to the VC CDE was successful. Finally, in the roadmap for future development, it is proposed that
future work should focus on using the CDE for advanced hydraulic simulations, using Modelica and Spawn-of-
EnergyPlus.

1. Introduction

Building information modeling (BIM) is the practice of generating
and managing well-defined building data [1]. BIM data is typically
geometric, spatial, geographic, physical, or quantitative, and it aims to
provide a shared repository for stakeholders [2]. BIM can revolutionize
the construction sector by streamlining integrated design processes,
accurate construction scheduling, and comprehensive error screening
[3]. It further can help mitigate climate change and resource depletion
by simplifying and enhancing resource- and energy-efficient integrated
design processes for new construction [4–6] or renovation [7]. How-
ever, most current workflows are manual or semiautomatic [8], often
utilizing conventional spreadsheets [9], and most occur too late to
impact the design [9] significantly. Most of these workflows do not
utilize the full capabilities that BIM can offer if utilized to its full extent.

Succar et al. introduced the BIM maturity levels to describe the BIM-
based collaboration between stakeholders [10]. BIM-based collabora-
tion is defined from maturity Level 0 with almost no collaboration to

Level 3 with full integration, in which all stakeholders collaborate using
a shared model in a cloud-based common data environment (CDE) [10].
CDEs are applications that connect several services. Several CDEs have
been developed for the AEC industry [11–13]. With a CDE, it is possible
to create bi-directional links between a database model and simulation
services. A CDE enables teams always to have the most updated model to
run new simulations or make design decisions. Previously developed
CDEs for advanced hydraulic simulations use either the format of gbXML
(Green Building XML) or IFC (Industry Foundation Classes). Trans-
forming BIM data to BEM tools using gbXML and IFC formats can
introduce extreme errors [14], and the process occurs only once due to
the need for manual data entry [15]. More importantly, this BIM to BEM
process relies on a file-based exchange mostly, which is more common to
BIM Level 2. Therefore, to enable a real-time connection with live
building data, building models, and simulation data, an approach needs
to be taken that is not file-based, but rather web-based including data-
bases and microservices. That may lead to a simulation-enabled CDE.

* Corresponding author at: Department of Civil and Mechanical Engineering, Technical University of Denmark, Copenhagen, Denmark.
E-mail addresses: msei@ramboll.dk (M. Seidenschnur), alikuc@byg.dtu.dk (A. Kücükavci), evifj@byg.dtu.dk (E.V. Fjerbæk), kevs@byg.dtu.dk (K.M. Smith), p.

pauwels@tue.nl (P. Pauwels), cah@byg.dtu.dk (C.A. Hviid).

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2022.104500
Received 25 March 2022; Received in revised form 16 June 2022; Accepted 24 July 2022

Automation in Construction 142 (2022) 104500

2

1.1. BEM simulation through a micro-service architecture

Tools for simulation of advanced hydraulic simulations have existed
for many years, like HVACSIM+ [16], IDA ICE [17], the Modelica
Buildings Library [18], and many more. Running advanced hydraulic
simulations can be extremely useful to test, whether a building performs
adequately compared to the original design. However, most AEC com-
panies today only perform simple calculations based on rule-of-thumb.
This means that most systems are designed based on a static calcula-
tion that only applies the peak load for the system. This means that the
system can be regulated for the peak load, but cannot regulate the flow
for the remainder of the time, due to lacking valve/damper authority.
The hydraulic systems are rarely simulated at all in the design phase of a
building. This is mainly due to the labour intensive manual work of
setting up the boundary conditions needed to run an advanced hydraulic
simulation. Efforts should be made to be able to automatically convert
from BIM to BEM. The suitability of tools for automatic integration of
BIM and BEM varies considerably. Modelica is an equation-based object-
oriented modeling language that provides a flexible means for con-
structing BEM while excelling at HVAC systems and controls [19,20].
Creating Modelica simulations today is a time consuming endeavor, due
to the complexity of providing the boundary conditions for a complete
solution. However, if the BIM model is used to automatically transfer the
boundary conditions, this can eliminate a large part of the manual task,
as shown by Fjerbæk et al. [21] There are substantial efforts to automate
the translation from BIM to Modelica-based BEM [2,22,23]. Kim et al.
[22] introduced a library with the name of ModelicaBIM. The idea of the
library is to be able to perform Modelica simulations, based on a BIM
model. Jeong et al. [23] introduced a tool that could export a building
modeled in Revit to perform thermal simulations in Modelica. The
article from Andriamamonjy et al. [2] directly translated the geometry,
systems, and controls which was encapsulated in an IFC4 file and
simulated in a Building Energy Performance Simulation (BEPS) model.
There are also efforts to use less well-defined IFC files through enrich-
ment and identification [24] and grey-box modeling [25] to generate
Modelica-based BEM.

Even with the recent extension of the HVAC domain (Add2TC1) in
the current IFC data model (IFC4), it does not provide the necessary
structure and attributes to use third-party simulation tools for HVAC
design [26] and therefore requires improvements. Many IFC classes do
not map well to the (more detailed) classes needed in a BEM tool (e.g.
MechanicalEquipment vs. Air Handling Unit). Therefore, a better object
model is needed that includes these specialised HVAC classes and
properties. This object model ideally serves as a common data format to
enable a CDE to run advanced hydraulic simulations. Furthermore, this
object model needs to be web-ready to enable a BIM Level 3 CDE
approach (e.g. JSON, RDF), that includes a microservice architecture
with horizontal scalability.

Hence, this paper investigates the creation and use of such a common
web-ready object model, plus its incorporation in a service-oriented
CDE. This paper proposes to create a web application named Virtual
Commissioning as a CDE. Virtual Commissioning is envisioned by the
authors of this article to generate a virtual environment or CDE, that is
capable of commissioning the building services, before, and during
operation of the building. We do recognize that traditional commis-
sioning is a quality-focused process that delivers the entire building to
the owner, according to the owner's objectives and criteria. In future
work, we plan to make the VC platform operational for the full
commissioning of the building. In this article, the VC CDE revolves solely
on the commissioning of the building services, and their performance.
The CDE connects a Revit model with an Application Programming
Interface (API) endpoint to a MongoDB database. The database is
structured based on the data structure of the FSC object model that is
introduced in this paper. The FSC object model is generated from a Revit
model using a Extract-Transform-Load (ETL) approach. Finally, the VC
platform introduces a microservice architecture that makes it possible to

create microservices that can run independently based on the FSC object
model in the database. Three microservices are introduced and utilized
on two use cases. After testing the VC platform with the creation of
microservices, we will test the performance of the FSC exporter tool on a
model obtained from a real-world project.

1.2. Aim

The aim of this article is to:

1. Centralize BIM project data so all stakeholders have access to a single
source of truth (SSOT) in a web-based CDE based.

2. Create a data structure or object model that can represent a flow
system

3. Allow for easy scalability of the CDE using a microservice
architecture.

1.3. Outline

Section 2 describes the current state-of-the-art CDEs that raise the
BIM maturity to level 3. Section 3 describes in detail the system archi-
tecture of the proposed VC platform and the FSC object model (see
Fig. 1). Section 4 introduces example models 1 and 2, which we will use
to evaluate the performance in Section 5. Section 6 presents the
achievements of this paper, together with the limitations. Furthermore,
it offers a roadmap for future development. Finally, Section 7 concludes
on the contribution of this paper.

2. Background

This section describes the efforts within the development of CDEs for
buildings and HVAC systems. This includes the efforts sought to repre-
sent HVAC systems with object models. It also describes the state-of-the-
art for simulation environments for full building simulation. Finally, the
section introduces the state-of-the-art within software development
using microservice system architecture.

2.1. Simulation and computation

Andriamamonjy et al. introduced an automated workflow, called
IFC2Modelica, for the direct transfer of geometry, system, and control
representations encapsulated in an IFC4 file [2]. One issue with this
approach is that commercial BIM tools, like Revit, do not serialize all the
needed information sufficiently well to carry out the complete data
transfer introduced in the IFC2Modelica workflow. After transferring
the IFC file from Revit or a similar proprietary BIM tool, the user must
manually input the required information to run the simulation in the
Modelica environment. Similarly, Jeong et al. created Revit2Modelica to
transfer an architectural BIM model into Modelica for an advanced
building energy simulation. The Revit2Modelica approach takes a pro-
prietary file format (.rvt) and translates it into the Modelica file format.
However, it does not transfer HVAC systems. IFC2Modelica and
Revit2Modelica provide a novel approach for simulation of HVAC sys-
tems and building energy modeling but based on file-based BIM models.
This means that they do not live up to the BIM maturity level 3. A
common data environment should be presented to raise the BIM matu-
rity from level 2 to level 3.

2.2. Object models for representation of HVAC models

Efforts have sought to enable a level 3 BIM maturity with automated,
flexible data transformation using open standards (e.g., IFC) and se-
mantic web technologies to improve interoperability, data linking, and
logical inference [27]. Afsari et al. implemented the IFC schema in a
JSON (JavaScript Object Notation) format to facilitate web-based data
exchange [28]. Do-Yeop Lee developed a novel framework using BIM

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

3

and linked data technologies to share defect data and enhance produc-
tivity during construction [29].

Many efforts have specifically concerned building operation, as it is
continuous and benefits from a ‘live’ BIM database. Quinn et al.
demonstrated a linked data approach integrating IoT data and BIM [30].
Meanwhile, Tang et al. developed and tested a prototype exchanging
building automation system (BAS) data using BACnet and an IFC data
model [31]. Similarly, Kim et al. proposed a semantic web-based facil-
ities management approach [32], while Bong et al. developed a BIM-
enabled data architecture for fault detection and diagnostics [33].
Furthermore, Mohamed et al. devised an ontology to formalize as-is BIM
knowledge for semantic web technologies to improve maintenance [34].
Finally, Balaji et al. created Brick [35] to represent sensors and sub-
systems, and the relationship between them. However, while the Brick
schema is great at representing data points within the building and
HVAC system, it does not represent passive components such as pipes
and ducts. Therefore, it is not fit to represent an entire flow system and
the aspects thereof. Such developments should help exchange BIM data
openly and enable web service applications.

2.3. Common data environments

The development of BIMServer.org was an early effort in raising the
BIM maturity level from 2 to 3 [?]. The primary purpose of the
BIMServer.org project was to provide an IFC database that has features
like model checking, versioning, project structures, merging, etc. While
BIMserver.org is an open access open-sourced platform, it is based solely
on the IFC schema, introducing serious errors and missing data
depending on the tool it is generated by [14]. A proprietary file format
approach was carried out by the software vendor Autodesk, with the
introduction of the cloud platform A360 and the integration of Forge,
which implements an API. For the project team, Forge provides an easy
way to share and version Revit models in the cloud; it is still based on the
proprietary file format from Autodesk Revit. This introduces a limitation
in integrating a link with external applications A360 does not support
[36]. Cheng et al. made an online CDE that was based on the gbXML
schema [12]. Furthermore, they included an energy modeling approach
using the open-sourced tool EnergyPlus. While providing an open plat-
form that eliminates the need for file-based sharing of BIM models, the
platform only supports gbXML. The efforts mentioned in this subsection
could be specified as CDEs, but none of them introduced a CDE capable
of storing an HVAC model with the capability of HVAC simulation. The
IBPSA project 1 introduced a CDE based upon IFC, CityGML, and

Modelica [13]. The project seeks to create an open-source tool that al-
lows next-generation computing for the design and operation phases of
buildings and district energy and control systems. The IBPSA project 1
integrates the object-oriented modeling language Modelica into their
CDE for HVAC simulations. They use IFC as the file format. While the IFC
model represents an open data format, it is also known that most pro-
prietary tools, like Revit, have severe errors in parsing from their native
format to IFC [14]. The IPBSA project 1 utilizes a classic monolithic
architecture, which makes it difficult to scale the application to a cloud
computing setup [37].

2.4. Microservice architecture

With the software engineering domain moving toward cloud
computing, microservices are becoming more mainstream [37]. Micro-
services are deployed, tested, and run independently, making it easy to
scale an application, especially in a cloud computing setup [38]. This
allows several developers to develop/maintain services while the CDE
stays in operation.

2.5. Summary

In summary, CDEs have been introduced in earlier works, like
BIMServer.org and Autodesk Forge. However, they are not capable of
representing an HVAC object model. Furthermore, the IBPSA project 1 is
a CDE that allows for next-generation computing in Modelica, based on
the IFC model of an HVAC system. Though the IFC format is considered
open, the parsing from proprietary BIM tools like Revit is error-prone,
meaning there is a need to introduce an open format to represent flow
systems. Furthermore, none of the CDEs above present a way to incor-
porate a microservice architecture, allowing for horizontal scaling of the
web application. While developments of CDEs have concerned building
operation, fewer have enabled BEM and dynamic simulations using web-
based BIM. Kukkonen et al. devised a semantic web ontology for flow
systems in buildings, which aimed to support web-based design and
operation [39]. That ontology inspired the development of an FSC object
model capable of handling entire flow systems and the component
properties for hydraulic simulation. The data format of a flow system is
not openly available from tools like Autodesk Revit, so our imple-
mentation of the FSC diagram yields a toolchain for enabling web-based
services requiring flow specifications from a shared online BIM data-
base. This builds on the developments integrating BIM and BEMs, but it
uses a database to increase the BIM maturity level from 2 to 3.

Fig. 1. Proposed System Architecture allows the automated transfer of data from BIM to a database and then follows an automated transfer to a given microservice.

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

4

3. System architecture

Based on Section 2, we propose the creation of a VC platform that
serves as a CDE connected to a BIM tool that includes HVAC systems.
This section considers three core developments for the VC platform: (1)
The FSC object model for flow systems, (2) the implementation of the
database, and (3) microservices for containerized and decentralized
calculation. The source code for the FSC object model and the database
is not shared specifically within this report. However, the class hierarchy
is shared in Fig. B.1. The source code for microservices is open-source
and has been shared in Section 3.3.

In detail, this section describes the system architecture of the VC
platform. The system architecture shows a conceptual model that de-
fines the structure and behavior of the platform. The platform allows for
the decentralization of applications with the use of microservices. Fig. 1
shows that the system architecture revolves around a web application
with a MongoDB database. The platform provides a link between the
BIM model in Revit and the database. The BIM model is transferred using
the Revit API by mapping and serializing an FSC object model and
sending it to the database in the VC platform. Once the data has been
transferred to the database, microservices can be utilized for decen-
tralized calculation. The 3D model viewer is depicted in Fig. 3 to show
its placement relative to the system architecture. The 3D model viewer
will not be discussed further in this article. Section 3.1 introduces the
FSC object model used to describe the flow system and its components.
Furthermore, a UML class diagram for relating spaces to HVAC com-
ponents is presented. Section 3.2 showcases the database setup used for
the VC platform. Finally, Section 3.3 shows how a microservice archi-
tecture is utilized, enabling several microservices to use the database
FSC object model for decentralized calculation.

3.1. The FSC object model

This Section introduces the FSC object model. We used a Unified
Modeling Language (UML) class diagram to create the FSC object model.
FSC describes the composition of the flow system, with the relationship
between the flow system and its components. Moreover, it appends the
attributes needed to describe the physics of components in a flow sys-
tem. For instance, a component is defined by its properties and the
relation to any connected components and systems. FSC contains three
main features that enable the description of the flow system:

1. The HVAC system is divided into subsystems, creating a system
topology.

2. Each component of the system is defined with its physical properties.
3. The connectivity of all components are defined in sufficient detail.

Fig. 2 shows a simple UML class diagram, that describes the HVAC-
System, SubSystem, Component, and Connector classes. In total, the FSC
diagram contains 37 classes and 54 methods. This article will only
describe the core classes in the class diagram and not all of the classes
and methods in detail. To see a complete UML class diagram, see Section
Appendix B. The FSC UML class diagram has been created using the
Modelica Buildings library [40] as inspiration, since the purpose of
future work is to be able to simulate in Modelica.

3.1.1. Topology of a flow system
Fig. 3 shows an example of a flow system. The HVACSystem can

contain the distribution systems for Heating, Cooling, and Ventilation.
Fig. 4 shows that within each of those categories, there are always two
different SubSystems: a Supply system (solid lines), and a Return system

Fig. 2. UML class diagram showing the connection between the four main components of the system. The HVACSystem contains the different SubSystems that is of
type SubSystem. In a SubSystem, there is a list of Components.

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

5

(dashed lines). An end consumer, like a radiator, becomes the interface
between the supply and return system. This is reflected by including the
same instance of the Radiator in both the supply and return system, with
the same Id and Tag. This principle is applied to components that make
up the beginning and/or end of a circuit, such as Ener-
gyConversionDevices, and FlowTerminals.

3.1.2. Component properties
In addition to the systems and subsystems, FSC introduces a super-

class (Component) that encompasses the properties that exist in all
types of components within a system. Fig. 2 shows the properties and

methods contained within the Component class. All FSC subclasses
contain the following properties: (1) the Id uniquely identifies the
component; (2) the tag identifies the component; (3) the classification of
the component type; (4) the system name; (5) the system type; (6) a list
of connectors (see Section 3.1.3); (7) the spaces that contain the
component. Fig. 5 shows a list of all the subclasses of the Component
class, which inherit properties from Component. To see the attributes of
each component, see Appendix B.

• EnergyConversionDevice is a device that converts energy from one
fluid to another; it includes heating coils, heat exchangers, and
radiators.

• Fitting typically describes the connection from one Component to
another or several other Component. It includes tees, bends, crosses,
reductions and caps.

• FlowController describes a component that controls the flow in a
flow system. It includes valves and dampers.

• FlowMovingDevice is a component that moves a fluid, which in-
cludes pumps and ventilators.

• FlowSegment is a segment that connects any non-FlowSegment
component, which includes pipes and ducts.

• FlowTerminal is the terminal unit of any system, which includes
ventilation air terminals.

3.1.3. Component connectivity
A logical description of a flow system must include a module to

describe the connectivity of components since the purpose of flow sys-
tems is to transfer a fluid from one part of the system to another. Fig. 6
shows that the Components contain a logical description of their re-
lations to each other. Pump-1 is supplied with fluid from Pipe-1, and it
supplies fluid to Pipe-2. The description of the connection between one
Component and another Component is done with the Connector class. In
this example, it means that there will be two Connectors for Pump-1.
One connector describes its relationship with Pipe-1

Fig. 3. The overall system topology. An HVAC system can contain a heating,
cooling, and ventilation system.

Fig. 4. Every HVAC system contains a supply and return system. As it is
illustrated in the figure, the components that bind the supply and return system
are both on the supply and return system.

Fig. 5. The tree structure showing all the subclasses to the Component
super-class.

Fig. 6. Example of a topology describing a flow system that consists of a pump
connected by a pipe in each connector.

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

6

(SuppliesFluidFrom), and the second Connector describes the relation-
ship with Pipe-2 (SuppliesFluidTo). For consistency and efficiency,
every Component describes the relationship to all connected Compo-
nents, even though the next Component contains a symmetrical
connection to the previous Component. “SuppliesFluidTo” describes the
forward direction of the flow, “SuppliesFluidFrom” describes from
where the flow is coming.

3.1.4. Spaces related to the flow system
In addition to the system representation explained above, we created

a class diagram for the properties of spaces to act as boundary conditions
for the flow system (see Fig. 7). Such boundary conditions allow for
calculating the airflow demand of a ventilation system and sizing the
heating system. The ContainedInSpaces property in the Component class
is used to describe the relation between spaces and components. The
ContainedInSpaces property describes which spaces a component is
contained within.

3.1.5. Serialization to JSON data exchange format
Section 3.1 introduced the FSC object model, making it possible to

define a flow system and its components, including the spaces of a
building. A data exchange mechanism is needed to exchange the FSC
object model between platforms. While there are several options to
implement such a data exchange (e.g. RDF graphs, XML, CSV, dedicated
formats), we chose to focus on a serialization to the JavaScript Object
Notation (JSON) format, as nearly all microservices and web service

developments use this format. Listing 1 shows a JSON sample for an
example model introduced later in this article.

Listing 1: A JSON object example taken from Fig. 6. The listing shows
a three component system. Only the most basic attributes from the base
class of Component have been included for all the components. The “…”
notation indicates that more components are present but not shown.

Listing 2 The “Spaces” attribute is explained in Section 3.1.4. For
simplicity, only the most basic attributes from the base class of Space
have been included. The “…” notation indicates that more attributes are
present but not shown in this example.

3.2. Database implementation

A mongoDB database stores the FSC object model. mongoDB is an
object-oriented database (OOD). The objects created with the FSC object
model are stored directly into the database. Representing the data in an
OOD is so close to the programming objects that the code is simple to
implement. In our implementation, the mongoDB database is instanti-
ated with the use of the serialized FSC object model, as seen in Listing 1.

3.3. Microservice implementations

With the object model and database infrastructure in place, the last
element in the system architecture comprises of microservices that
operate with the data, as shown in Fig. 1. The microservices developed
for this article were all created as Python-Flask API endpoints. In our

Fig. 7. A part of the UML class diagram for modeling Spaces. For simplicity, the full UML diagram is not shown.

Fig. 8. Illustration of microservice setup. A JSON-file is posted with an HVAC system in the FSC format. Once handled in the microservice, a response JSON
is returned.

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

7

case, we implemented three microservices of use in the HVAC engi-
neering domain:

1. Rule-based checking of system integrity
2. Airflow calculation of ventilation system
3. Calculation of HVAC statistics

Overall, these microservices rely on the infrastructure shown in
Fig. 8. The figure illustrates how the microservices work using the first
micro-service as an example (rule-based checking). The web application
backend makes a POST request to the Flask microservice. The body of
the request contains a JSON file that represents the entire flow system in
a JSON format, as illustrated in Listing 1. The microservice then checks
if all components are in compliance with the requirements described in
Table A.1.1. Once it has checked the components, it returns a JSON to
the backend, storing it in the mongoDB database.

3.3.1. Microservice for rule-based checking of system integrity
HVAC systems can be complex depending on the size. When handing

over a BIM project of the HVAC system, it can be hard to uphold the level
of detail, as promised in the Information, Communication, and Tech-
nology (ICT) contract of any building design phase. Therefore, it is
highly beneficial to have a way to check that the system's integrity holds
up. This microservice aims to provide a rule-based checking algorithm
with a rule-set to check the FSC object model. The rule-set is shown in
Table A.1.1. The source code is made available on GitHub.1

The functionality of this microservice was already briefly explained
in Fig. 8, as a combination of HTTP POST requests, JSON file exchange,
microservice computations, and storing of results. The microservice
returns a JSON file to the database that describes whether each
component lives up to the rules. The result of each component is
returned as a Boolean value. The return values are then stored in the
database.

3.3.2. Microservice for airflow calculation of ventilation system
With the creation of the object model in the central database, it is

possible to traverse through the given HVAC system from one point to
another. We created a microservice for airflow calculation of the
ventilation system2 to exemplify that the system can be traversed. The

algorithm within the microservice starts by resetting all flows on the
ventilation system. After resetting the flows, the algorithm takes the
airflow demand available in each space and applies them to the air
terminals contained in that space. The property ContainedInSpaces is
used to find the connection between each AirTerminal and space. Fig. 9
shows an example of the next step to the algorithm. The algorithm takes
the airflow of the terminal and then applies it to the next component's
connector.

3.3.3. Microservice to calculate HVAC statistics
The primary purpose of the HVAC statistics microservice is to make

the VC platform capable of displaying statistics on the HVAC system,
including the number of components in the system. Furthermore, it
summarizes the total meters of duct/pipe in the model. In summary, the
HVAC statistics microservice allows for validation of the FSC object
model or even makes it possible to calculate the material usage. Python-
Flask was used to create the HVAC statistics calculator with an endpoint
that the VC platform can utilize.3 Listing 3 shows an example response
from the microservice.

Listing 3: The listing shows an example of a response JSON from the
microservice presented in Fig. 8. Each component in the system is
counted, and the length of all FlowSegments are summarized into the
given cross-sectional dimension.

4. Example models

This Section introduces two example models for showcasing the VC
platform and the FSC Object Model in particular.

4.1. Example model 1

4.1.1. The schematic / principle model
Fig. 10 shows the first example model created by the authors of this

article. The model contains a heating, cooling, and ventilation system,
all connected. The heating system starts with a heat exchanger that
converts the heat from the primary heating system (not depicted) to the
secondary system, then branches out to a mixing loop for a heating coil
(HeatingCoil) in the ventilation system and the radiators of each room.
Each radiator is adjustable with a balancing valve (BalancingValve). The
motorized valve (MotorizedValve) controls the mixing loop of the
heating system.

Fig. 9. The Figure shows how to traverse the ventilation system with a recursive function. The recursive function has a stop condition: the ComponentType ==

“Fan”. The red arrows show the path from the air terminal to the fan. In the supply system, the ConnectorType “supplesFluidFrom” is used as a keyword to find the
next component that will lead to the supplying fan. When done for the return system, the ConnectorType “suppliesFluidTo” is used as a keyword to find the next
return component that will lead to the returning fan. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

1 https://github.com/Virtual-Commissioning/VC-HVAC_rule_

checking-Service
2 https://github.com/Virtual-Commissioning/VC-

Ventilation_dimensioning-service

3 https://github.com/Virtual-Commissioning/VC-HVAC_

statistics-Service

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

8

The cooling system is on the secondary side of the heat exchanger
(HeatExchanger). The cooling liquid supplies the mixing loop provided
by a pump. A mixing loop with another pump may seem excessive in this
case, but was included as an example. The shunt is controlled with a
motorized valve (MotorizedValve) and a pump (Pump).

The ventilation system contains a ventilation fan that takes the air
from the air intake through a heat exchanger (HeatExchanger) and then
a heating coil (HeatingCoil) and cooling coil (CoolingCoil) respectively.
The air is supplied to space 1, 2, 3, and 4 with the use of air terminals
(AirTerminal) controlled by a regulation damper. After supplying the air
to the room, the air is extracted through the air terminal (AirTerminal).
The air is then exhausted with the ventilation fan (Fan) after it has gone
through the heat exchanger, exchanging any excess heat to the supply
air.4

The example contains spaces, to exemplify the connection between
the systems and spaces as seen in Section 3.3.2. All of the spaces are
heated by ventilation and radiators, and are cooled by ventilation.

4.1.2. Instantiating the object model
This subsection visualizes the instantiated FSC object model for the

Revit model shown in Fig. 11. The serialized JSON which represents the
FSC object model is provided for the reader.5 Fig. 10 shows a call-out
with a red-dotted line. Fig. 12 visualizes part of the instantiation of
the object model within the previously mentioned call-out of a system
and then serializes it into JSON. Fig. 12 also shows how each component
is instantiated with a relationship to the attached connector. For

instance, the Tee (Tag: 1742043) is instantiated with Connector C2 and
C3. This means that Connector C2 and C3 are instantiated within the
ConnectedWith attribute of the Tee component. Connector C2, dis-
played in a blue box of Fig. 12, connects component 1742043 with
component 1742044. Furthermore, the Connector class contains the
physical properties of the connection port that interfaces with the
adjacent component. Such physical properties include the dimension,
shape, coordinates, and direction vector of the connector. The direction
vector of the port will always orient away from the component. Finally,
the ConnectorType displays whether another component supplies the
connector or if it supplies another component. For instance, C2 suppli-
esFluidTo component 1742044, and C4 suppliesFluidFrom component
1742043.

Fig. 10. Example model 1 mechanical schematic. The Figure contains three subsystems: heating, ventilation, and cooling. Furthermore, it includes four spaces that
have an airflow. The radiators and the heating coil of the ventilation system provides heating to the room. Similarly, the cooling coil provides cooling by air to
the room.

Fig. 11. The example model is shown in Fig. 10, modeled in Revit. The model
contains the exact components and rooms shown in Fig. 10, except from the
heat exchangers from the primary to the secondary system. The 3D model was
modeled in Revit.

4 https://github.com/Virtual-Commissioning/VC-HVAC_rule_

checking-Service/blob/main/app/ressources/example_model_

1.json
5
https://github.com/Virtual-Commissioning/VC-HVAC_rule_

checking-Service/blob/main/app/ressources/example_model_

1.json

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

9

Fig. 12. The figure shows a schematic a small flow system. The red callout from Fig. 10 makes up the example seen in this figure. For simplicity, only the connectors
(in the blue boxes) C2 and C4 are shown. Orange boxes make out a component, and blue boxes show the connectors related to a given component. The figure does not
contain all properties for all components. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Example model 2. Revit example model obtained from TU Eindhoven. The model shows a ventilation system with subsystems such as supply, extract,
exhaust, and intake air.

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

10

4.2. Example model 2

4.2.1. The schematic/principle model
Fig. 13 illustrates the second example model. The Eindhoven Uni-

versity of Technology provided a real-case example model. The model
contains a complex ventilation system with extract, supply, exhaust, and
intake systems. Furthermore, it has heating coils attached to the supply-
side of the ventilation system. The heating system is simplified and
contains only the heating coil and the connected pipes. In general, this
example aims to show the performance of the VC platform on an
“imperfect” model.

The air handling unit (AHU) provides air to the ventilation system.
The AHU was modeled as a box with four connectors in this example.
This differs from the example shown in Section 4.1 by not specifying the
components inside the AHU. A typical AHU consists of fans for supplying
and extracting air, heating and cooling coils, silencers, and filters, i.e. it
illustrates a “real world problem” in which not all modeling standards
are the same - some designers would model all the components within
the AHU while some designers (depending on company standards, and
the design phase) would model the AHU as a box. The supply and extract
system was modeled with variable air volume (VAV) dampers. This
means that the ventilation system can vary the airflow in specific rooms.
This example model does not contain any spaces, as these are contained
in the architectural BIM model.

4.2.2. Instantiating the object model
We used the FSC exporter to generate the FSC object model, based on

the Revit model, seen in Fig. 13. Next, the FSC object model was seri-
alized into JSON and imported to the VC platform.

5. Results

This Section first displays the robustness of the format by visually
explicating an example of the format. Following, it shows the platform's
scalability with the use cases of a rule-based checker of the FSC object
model, a BIM to airflow calculator, and an HVAC statistics tool.

5.1. Example model 1

5.1.1. Rule checking
The rule-based checking algorithm was used to see whether example

model 1 (Section 4.1) lives up to the rule-set presented in the rule-based
checking algorithm (Section 3.3.1). Table 1 shows that 219 out of 225
components lived up to the rules presented in Table A.1.1. The six
components that did not live up to the rule-based check were the “open
ended” components placed at the beginning and end of each system,
including two from the ventilation system, two from the heating system,
and two from the cooling system, which was expected.

5.1.2. HVAC statistics
Table 2 shows the result of running the HVAC statistics microservice

from Section 3.3.3 on example model 1. The only component type
counted differently by the microservice is the heat exchanger. Since the
heat exchanger should always be connected with two systems - in this
case the ventilation and the cooling system, and the ventilation and
heating system, this is accepted. Even though every heat exchanger is
represented twice in the format, it is also annotated with the same tag.
Therefore, it is still possible to distinguish whether it appears twice.

Table 3 shows that the length of the components was counted to a
precision better than 0.01%. The precision is arguably caused by
rounding off values in the microservice or Revit, which is normal and
acceptable when dealing with geometry in different systems. Since the
discrepancy is so small, it is considered insignificant.

5.1.3. Airflow calculation
Fig. 14 shows the airflow calculation microservice from Section 3.3.2

applied to example model 1, to visualize the functionality and result of
the tool. If Space-1 has an airflow demand of 35 l/s, the airflow demand
is applied to the air terminals that are contained in Space-1. Then it is
added to the existing airflow on the ventilation duct up to the ventilation
fan. The script was tested by applying it to the example model described
in Fig. 4.1.1. By using the microservice to analyze the ventilation system,
it was found that the total airflow needed to run the system was 747 l/s

Table 1
The table shows the result of running the rule-based checking algorithm on
example model 1. The table shows that the FSC object model contains 225
components.

Components checked True False

225 219 6

Table 2
This table illustrates the total amount of components reported in Revit and after
the transfer to the VC platform.

Components Amount Revit Amount VC

AirTerminal 8 8
MotorizedDamper 8 8
Bend 30 30
Reduction 40 40
Tee 14 14
BalancingValve 8 8
MotorizedValve 2 2
HeatExchanger 2 4
Fan 2 2
Pump 4 4
ShuntValve 2 2
PressureSensor 2 2
TemperatureSensor 2 2
Radiator 4 4
FlowSegment 96 96
Total components 223 225

Table 3
The table illustrates the length of the FlowSegments transferred from Revit to the
VC platform, before and after the transfer. Each duct or pipe type is reported
with its deviation from the Revit model to the VC platform. All measurements
are in millimeters.

Duct Size Length Revit Length VC Dev %

Round ducts
Ø80 14,490 14,490 0
Ø125 15,430 15,430 0
Ø200 20,260 20,260 0

Pipes
Ø15 24,259 24,280 <0.01
Ø18 7572 7570 <0.01
Ø22 39,613 39,620 <0.01

Fig. 14. The ventilation system is traversed and airflows are summed along the
supply and return paths.

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

11

for the supply and return ventilation fan. The airflow calculation is one
of the first steps in choosing a fan that can meet the airflow demand of
the system.

5.2. Example model 2

This Section shows a use case test of the HVAC exporter on the
example model introduced in Section 4.2. A BIM model has been ob-
tained from the industry to test the performance of the Revit to the VC
platform with the use of the FSC exporter. The transfer will be quantified
with the HVAC statistics tool (Section 3.3.3) and the HVAC rule checker
tool (3.3.1). The purpose is to test the created FSC object model exporter
tool with a BIM model that has not been built by the authors of this
report. Once the BIM model has been transferred from Revit into the VC
platform, the microservices for rule-based checking (Section 3.3.1) and
HVAC statistics (Section 3.3.3) will be used to quantify how well the FSC
object model based on the BIM model has been transferred into the VC
platform.

5.2.1. Rule checking
Table 4 shows the result of the rule-based checking algorithm run on

the transfer of the use case from Fig. 13. The table shows that 158
components out of 493 lived up to the rule-check proposed in
Table A.1.1. That means that the majority of elements did not pass this
check. This will be documented further below in this article, yet the
main reason is that the system in the particular building is not as com-
plete and correct as expected by the rules developed in this microservice.

5.2.2. HVAC statistics
Table 5 shows the number of components reported in Revit and the

number of components reported after the transfer from Revit to the VC
platform with the use of the FSC exporter. The total amount of compo-
nents for Revit and the VC platform was 487 and 493, respectively. This
is explained in the way that FSC divides the flow system. The full system
contains both a ventilation and heating system in the model (The
heating system only consists of a few pipes connected to the heat ex-
changers). In the example model, the ventilation and heating systems
are connected by heat exchangers. Fig. 3 shows an example of this, near
the heat exchangers. This behavior intends to provide an internal
connection for each of the systems.

Table 6 shows the length of the FlowSegments reported in Revit and
the length of the FlowSegments reported after the transfer from Revit to
the VC platform with the use of the FSC exporter. In Table 6 it is reported
that not every duct or pipe has the same length after it has been

transferred to the VC platform. This behavior is caused by an incorrect
Revit model, that does not contain “correct connectivity”. This problem
is caused by the microservice not being able to handle specific cases, like
it is seen in Fig. 15 where several AirTerminals are placed on the duct.
This behavior has not been accounted for in the microservice. It also
explains why the Ø630 ducts are not counted a single time in the HVAC
statistics microservice. Listing 4 shows the JSON structure in the FSC
format behind the object shown in Fig. 15. The Figure shows that five air
terminals have been placed directly on the ventilation duct, which is
usually not expected. This means that the FlowSegment has a total of 7
connectors.

Listing 4 The listing shows the component mapped from Fig. 15. Not
all the connectors are shown, to improve readability of the JSON.

Table 5
This table illustrates the total amount of components reported in Revit and after
the transfer of the FSC object model to the VC platform.

Components Amount Revit Amount VC

AirTerminal 33 33
Cap 14 14
Bend 69 69
Reduction 125 125
Tee 13 13
BalancingDamper 29 29
HeatExchanger 6 12
FlowSegment 198 198
Total components 487 493

Table 4
The table shows the result of running the rule-based checking algorithm on
Fig. 13. The table shows that the FSC object model for example model 2 contains
493 components.

Components checked True False

493 158 335

Table 6
This table illustrates the length of the FlowSegments transferred from Revit to
the VC platform, before and after. Each duct or pipe type are reported with their
deviation from the Revit model to the VC platform. All measurements are in
millimeters.

Duct Size Length Revit Length VC Dev %

Round ducts
Ø160 2862 340 88
Ø250 7250 540 93
Ø315 24,644 21,680 12
Ø355 3624 3624 0
Ø400 31,443 21,120 33
Ø450 12,653 6430 49
Ø500 33,286 24,980 25
Ø600 8152 8152 0
Ø630 21,916 0 100

Square ducts
1200 × 600 5600 0 100
200 × 200 3402 3402 0
2100 × 900 4535 3390 25
2178 × 1538 500 500 0
350 × 350 83 0 100
400 × 400 33 0 100
600 × 600 5214 340 93
700 × 350 1868 0 100
700 × 400 2118 0 100
700 × 600 5238 620 88
800 × 400 18,142 0 100
850 × 600 3714 2840 24

Pipes
Ø32 2016 2016 0

Fig. 15. The ventilation duct in this figure has seven connectors. It has the
beginning and the end of the flow segment, but it also has five connectors from
the 5 air terminals that have been placed directly on the ventilation duct.

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

12

6. Discussion and future work

The VC platform is a common data environment used for HVAC
projects during the building's design, construction, and operation pha-
ses. This paper describes the process required to develop a CDE and
proposes a roadmap for further research and development. The re-
quirements for the VC CDE were that it should expose the proprietary
format of a Revit HVAC system in a commonly available platform. Using
Python-Flask microservices, we illustrated how the VC platform allows
for continuous integration and continuous deployment of functionalities
on the platform. The VC platform can scale in any direction with the
integration of microservices. Furthermore, it allows for the extension of
the FSC object model since the system architecture is based on a
microservice architecture. For instance, if the exporter from Revit to the
FSC object isn't working, that can be tested and patched independently
of touching the code for any other microservices.

6.1. Achievements

We created a CDE with a microservice architecture and showed that
the CDE is easily scalable by implementing simple microservices such as
the airflow calculator (see Section 3.3.2). A rule-based checker was also
implemented to check if the data transfer was successful from Revit to
the FSC object model in the VC platform. Furthermore, a microservice
was implemented to provide statistics of the data transfer carried out. It
offers the user insights into the flow system, such as the length of
different ventilation ducts or pipes. The FSC diagram and the FSC
exporter allow for the serialization of the FSC object model. A mongoDB
OOD stores the FSC object model. The FSC object model creates a con-
nected network of ducts and pipes, making it possible to represent the
nature of a flow system. The FSC exporter allows the user to create an
FSC object model serialized in JSON to work within the VC platform - or
even in external platforms. We used the FSC exporter on an externally
developed Revit model and were able to transfer the full FSC object
model to the web application to run microservices on it. We proved that
the FSC object model is able to link the demand of a space with the
airflow system. This can be used to create dimensioning tools for
ventilation systems or heating- and cooling systems. In order to enable
future use of the VC platform, the authors of this article will continu-
ously maintain and update the platform with new features.

6.2. Limitations of the study

We created BIM model with LOD350 to evaluate the VC platform and
the FSC object model, called example model 1. Therefore, the model
used to evaluate the VC and FSC was “created to succeed”. For instance,
all components must have precisely the right amount of connectors.
There is a risk of designing the VC platform for “the perfect scenario”
where all data is available in the BIM model. It is often a challenge in the
AEC industry that BIM models do not contain all the data necessary for a
complete model, like component connectivity, component naming,
system naming, etc. To handle problems like this, the AEC industry in
Denmark has introduced ICT agreements on building projects. It is a
contract that obligates the company to deliver building documentation
of a certain standard. However, while LOD descriptions are relatively
detailed, consulting engineering companies in the HVAC branch still
struggle to provide models that live up to the LOD350 standard. We built
the VC platform to handle the delivery issues in the HVAC branch by
integrating a microservice architecture. For instance, if the HVAC sys-
tem in the database has an error, it can be fixed later in the VC platform
using the microservices. One of the microservices is the rule-based
checking algorithm shown in Section 3.3.1. The rule-based checker
will let the user know that some information is missing. For instance,
such missing information could be that some components are connected
incorrectly. Then, it is possible to specify the actual connectivity directly
in the VC platform.

The VC platform was tested on a model developed externally to
emulate the situation of an imperfect BIM model, as seen in Section 4.2.
In Section 5.2 the HVAC Statistics microservice in Section 3.3.3 and the
rule-based checking algorithm in Section 3.3.1 was run on example
model 2. The results showed that all components were transferred suc-
cessfully to the VC platform, see Table 5. However, the performance test
with the rule-based checking algorithm showed that 158 of 493 com-
ponents lived up to the rules established in Table A.1.1. The results of
this performance test were caused by, for instance, the modeling prac-
tice shown in Fig. 15. The figure highlights that the FSC exporter does
not always map the components correctly. This behavior is expected for
any Revit model that has not been modeled with the intent to transfer it
to the database. The user can use the rule-based checking microservice
to find which components do not live up to this algorithm. The 3D-
viewer of the VC platform visualizes the results and alerts the user
which components do not follow the rule-set. Thereby, the user can
solve the issues manually.

The test case presented in Section 4 showed the application of the
FSC object model together with the VC platform. As part of the plat-
form's deployment, more extensive testing should be carried out on
Revit models to ensure the robustness of the FSC exporter and platform.

There are issues that the VC platform cannot solve. For example, the
FSC exporter is highly dependent on the template used within the Revit
model. If a flow segment like a pipe is modeled as the “Mechanical
Equipment” category instead of a “Pipe” category in Revit, then the pipe
will be mapped into the wrong category or not mapped at all. Such a
fault will cause an exception within the FSC exporter, meaning that an
error will cause the exporter to abort the operation and, therefore, fail to
export the FSC object model from Revit to the database.

The FSC exporter was designed to link the Revit model and the
database. The FSC exporter demonstrates that it is possible to extract
information from a BIM tool like Revit to work within a database. For the
purpose of this article, Revit families from the Rambøll library was
utilized and modified to be able to represent all the information needed
to export it into the FSC object model. The work presented in this article
does not exclude exporters from other file formats to be made. Such
integration could include the open file format IFC. The VC platform is
not dependent on the file coming from Revit or any other proprietary
format, as long as it follows the FSC diagram.

It will require detailed HVAC models for advanced hydraulic simu-
lations in Modelica. This presents a problem for the AEC industry with
the current status of BIM modeling. The AEC industry needs to model
buildings more realistically and contain information in the BIM model in
an early design phase to provide a correct design based on actual per-
formance rather than rule-of-thumb. However, we believe that with the
younger generation coming into the AEC industry, the market is ripe for
the digital transformation it will take. Performing these simulations in
the early design phase will be more time spent on design than fixing
issues during the physical commissioning or operation phase. In the
company supporting this article, the method will be employed to do just
that - to save time in the long run.

6.3. Roadmap for future development

The VC platform and the FSC object model have been carried out as
part of a development to create a CDE for full building simulation using
BIM models. This paper introduces the FSC object model, and exem-
plifies how to use microservices for calculation or even simulations. The
VC platform is envisioned as a three-stage development project. The
stages are illustrated in Fig. 16. Stage 1 is the work presented in this
paper and is the initial development of the VC platform and the FSC
object model with the simple calculation microservices. The micro-
services seek to prove that adding microservices to the VC platform is
possible. The authors of this article recognizes that the microservices are
very simple, and constitute services that already exist within BIM pro-
grams like Revit. The microservices were added to exemplify that tools

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

13

developed within Revit can easily be replicated to a cloud-based CDE
based on a non-proprietary format, as opposed to the proprietary format
of Revit. The early development of the VC platform and the FSC object
model provides a stepping stone for developing a complete CDE for
continuous integration of simulation tools through microservices. Stage
2 includes the development of a space class object model to represent a
BIM energy model. A simple space class object model was presented in
Section 3.1.4. Fig. 16 shows that the “HVAC BIM database” and the
“Energy model database” share a relational bond. Thereby, it will be
possible to link these two data formats together. Finally, stage 2 in-
troduces the possibility of running whole building simulations through
Modelica and EnergyPlus with the use of Spawn Of EnergyPlus in
Modelica [41]. Running simulations on indoor climate and HVAC sys-
tems simultaneously might help perform more accurate predictive en-
ergy models. The work on stage 2 has already begun, and the authors of
this article have proved that the link from CDE to Modelica-based
Dymola, is possible [21]. Fjerbæk et al. [21] simulated a small heating
system in Modelica and was capable of showing the return temperature
for each heating loop. The toolchain created by Fjerbæk et al. [21] made
it possible to easily initiate Modelica simulations of a heating system - a
process that under normal circumstances would be very time
consuming, due to the manual labour of creating a Modelica simulation
model. Stage 3 will include sensor data and connect it to the BIM model
with a relational bond. It will be possible to take data from the operating
building and do continuous fault detection on it with sensor data. That

way, the digital twin in the VC platform can inform the Building Man-
agement System (BMS) of the actual building to make certain adjust-
ments. An example of an adjustment could be to run with the objective
of minimizing energy costs (as opposed to minimal energy usage).

7. Conclusions

The three aims of this paper were to:

1. Centralize BIM project data so all stakeholders have access to a single
source of truth (SSOT) in a CDE based in a web application

2. Create a data structure that can represent a flow system
3. Allow for easy scalability of the web application utilizing the prin-

ciple of microservice architecture.

This article introduces a CDE called the VC platform. The article
exemplifies a paradigm shift from a proprietary file-based BIM model to
a web-based database BIM model. The VC platform allows for the
development of applications in a fully modularized way through
microservices. Microservices make it possible to deploy custom appli-
cations that run specific tasks independently. We developed the VC
platform to enable advanced simulations of HVAC systems that relate to
the actual spaces of the building. Future work has been planned to
integrate Modelica and Spawn of EnergyPlus as microservices on the VC
platform. An externally provided Revit model was used to test the

Fig. 16. The Figure shows a roadmap for the future development of the VC platform. The areas marked with red represent the work developed for and presented by
this article. The area marked in green represents the next step in developing the VC platform. Finally, the blue area represents the final step, a module that includes
sensor data in the VC platform. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

M. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

14

performance of the VC platform. The performance test proved that the
FSC exporter from Revit to the VC platform worked as intended – it
transferred all components to the database in the VC platform. After
transferring Revit with the FSC exporter to the VC platform, the per-
formance test revealed that not all components were compliant with the
rule-based checking algorithm. However, this is not problematic, as the
rule-based checking algorithm intends to highlight errors like this so the
user can solve them in the VC Platform frontend.

Declaration of Competing Interest

The authors recognize that there is a potential for conflicts of interest
via industry affiliations. Mikki Seidenschnur is working on a doctoral
dissertation in Technical University of Denmark, while also working in
Ramboll. Ali Kücükavci is working on a doctoral dissertation in

Technical University of Denmark, while also working in COWI. Esben
Visby Fjerbæk is working as a research assistant at Technical University
of Denmark Kevin Michael Smith is working as a researcher at Technical
University of Denmark Pieter Pauwels is working as a professor at
Technical University of Eindhoven Christian Anker Hviid is working as a
associate professor at Technical University of Denmark.

Acknowledgments

Funding: This work was funded by the Ramboll Foundation and the
Innovation Fund Denmark (grant 9065-00266A). The use case test
model in Section 4.2 was provided by TU Eindhoven. We would like to
acknowledge the work of the reviewers of this manuscript for improving
the quality of the manuscript with thorough and constructive comments
on content and writing.

Appendix A

Table A.1
This table illustrates the rules that exist with all the subtypes of components in the class object model.

Subclass of Component Rules

FlowSegment Contains two connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

HeatExchanger Contains 4 connectors
Contains two connectors: “suppliesFluidFrom” and two connectors: “suppliesFluidTo”
Is contained within two different subsystems

Radiator Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

Bend Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”
Has an angle greater than 0

Cross Contains 4 connectors
Contains at least one connector of “suppliesFluidFrom” and at least one connector of “suppliesFluidTo”

Reduction Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

Tee Contains 3 connectors
Contains at least one connector: “suppliesFluidFrom” and at least one connector: “suppliesFluidTo”

BalancingDamper Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

MotorizedDamper Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

FireDamper Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

BalancingValve Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

CheckValve Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

DifferentialPressureValve Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

MotorizedValve Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

SafetyValve Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

ShuntValve Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

Fan Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

Pump Contains 2 connectors
Contains one connector: “suppliesFluidFrom” and one connector: “suppliesFluidTo”

AirTerminal Contains 1 connector
Contains connector of “suppliesFluidFrom” if supply system
Contains connector of “suppliesFluidTo” if return system

Appendix B. UML class diagram FSC

M. Seidenschnur et al.

AutomationinConstruction142(2022)104500

15
Fig. B.1. Illustration of the full FSC UML diagram. It includes all elements that inherit from component. It extends the diagram displayed in Fig. 2. The methods displayed in the UML are used to create the FSC
object model.

M
. Seidenschnur et al.

Automation in Construction 142 (2022) 104500

16

References

[1] K.M. Kensek, Handbook of green building design and construction, Build. Informa.
Model. (2014) 1–285, https://doi.org/10.4324/9781315797076.

[2] A. Andriamamonjy, D. Saelens, R. Klein, An automated IFC-based workflow for
building energy performance simulation with Modelica, Automation in
Construction 91 (September 2017), 2018, pp. 166–181, https://doi.org/10.1016/j.
autcon.2018.03.019.

[3] B. Hardin, D. McCool, BIM and Construction Management: Proven Tools, Methods,
and Workflows, 2nd edition, Sybex/Wiley, 2015.

[4] F.H. Abanda, L. Byers, An investigation of the impact of building orientation on
energy consumption in a domestic building using emerging BIM (Building
Information Modelling), Energy 97 (2016) 517–527, https://doi.org/10.1016/j.
energy.2015.12.135.

[5] T.O. Olawumi, D.W. Chan, Identifying and prioritizing the benefits of integrating
BIM and sustainability practices in construction projects: a Delphi survey of
international experts, Sustain. Cities Soc. 40 (February) (2018) 16–27, https://doi.
org/10.1016/j.scs.2018.03.033.

[6] J.P. Carvalho, L. Bragança, R. Mateus, Optimising building sustainability
assessment using BIM, Autom. Constr. 102 (2018) (2019) 170–182, https://doi.
org/10.1016/j.autcon.2019.02.021. URL 10.1016/j.autcon.2019.02.021.

[7] R.E. Edwards, E. Lou, A. Bataw, S.N. Kamaruzzaman, C. Johnson, Sustainability-led
design: feasibility of incorporating whole-life cycle energy assessment into BIM for
refurbishment projects, J. Build. Eng. 24 (February) (2019), 100697, https://doi.
org/10.1016/j.jobe.2019.01.027. URL 10.1016/j.jobe.2019.01.027.

[8] K. Safari, H. AzariJafari, Challenges and opportunities for integrating BIM and LCA:
methodological choices and framework development, Sustain. Cities Soc. 67
(2020) (2021), 102728, https://doi.org/10.1016/j.scs.2021.102728.

[9] T.P. Obrecht, M. Röck, E. Hoxha, A. Passer, BIM and LCA integration: a systematic
literature review, Sustainability (Switzerland) 12 (14) (2020) 1–19, https://doi.
org/10.3390/su12145534.

[10] B. Succar, W. Sher, A. Williams, Measuring BIM performance: five metrics,
Architect. Eng. Des. Manag. 8 (2) (2012) 120–142, https://doi.org/10.1080/
17452007.2012.659506.

[11] J. Beetz, N. Gu, BIMserver.org - an open source IFC model server, in: Proceedings of
the CIB W78 2010, 2009, pp. 1–9. URL, https://www.academia.edu/1905765/
BIMSERVER_ORG_AN_OPEN_SOURCE_IFC_MODEL_SERVER.

[12] J.C. Cheng, M. Das, A bim-based web service framework for green building energy
simulation and code checking, J. Inform. Technol. Construct. 19 (June) (2014)
150–168. URL, http://www.itcon.org/2014/8.

[13] M. Wetter, C.V. Treeck, L. Helsen, A. Maccarini, D. Saelens, D. Robinson,
G. Schweiger, IBPSA project 1: BIM / GIS and Modelica framework for building and
community energy system design and operation – ongoing developments, lessons
learned and challenges, in: IOP Conf. Ser.: Earth Environ. Sci., 2019, https://doi.
org/10.1088/1755-1315/323/1/012114.

[14] G.B. Porsani, K.D.V. de Lersundi, A.S.O. Gutiérrez, C.F. Bandera, Interoperability
between building information modelling (Bim) and building energy model (bem),
Appl. Sci. 11 (5) (2021) 1–20, https://doi.org/10.3390/app11052167.

[15] K.U. Ahn, Y.J. Kim, C.S. Park, I. Kim, K. Lee, BIM interface for full vs. semi-
automated building energy simulation, Energy Build. 68 (PART B) (2014)
671–678, https://doi.org/10.1016/j.enbuild.2013.08.063. URL 10.1016/j.
enbuild.2013.08.063.

[16] C. Park, HVACSIM+ User’s Guide Update, 2008, https://doi.org/10.6028/NIST.
IR.7514. URL, http://www.fire.nist.gov/bfrlpubs/build08/PDF/b08030.pdf.

[17] Equa, IDA Indoor Climate and Energy, URL, https://www.equa.se/en/ida-ice.
[18] L. B. N. Laboratory, Modelica Buildings Library, URL, https://simulationresearch.

lbl.gov/modelica/, 2022.
[19] M. Wetter, Modelica-based modelling and simulation to support research and

development in building energy and control systems, J. Build. Perform. Simul. 2
(2) (2009) 143–161, https://doi.org/10.1080/19401490902818259.

[20] W. Zuo, M. Wetter, W. Tian, D. Li, M. Jin, Q. Chen, Coupling indoor airflow, HVAC,
control and building envelope heat transfer in the Modelica Buildings library,
J. Build. Perform. Simul. 9 (4) (2016) 366–381, https://doi.org/10.1080/
19401493.2015.1062557.

[21] E.V. Fjerbæk, M. Seidenschnur, A. Kücükavci, K.M. Smith, C.A. Hviid, From BIM
databases to Modelica - automated simulations of heating systems, in: REHVA 14th
HVAC World Congress, 2022, pp. 1–7, https://doi.org/10.34641/clima.2022.365.

[22] J.B. Kim, W. Jeong, M.J. Clayton, J.S. Haberl, W. Yan, Developing a physical BIM
library for building thermal energy simulation, Autom. Constr. 50 (C) (2015)
16–28, https://doi.org/10.1016/j.autcon.2014.10.011.

[23] W.S. Jeong, J.B. Kim, M.J. Clayton, J.S. Haberl, W. Yan, A framework to integrate
object-oriented physical modelling with building information modelling for

building thermal simulation, J. Build. Perform. Simul. 9 (1) (2016) 50–69, https://
doi.org/10.1080/19401493.2014.993709.

[24] D. Jansen, E. Fichter, V. Richter, A. Barz, J. Brunkhorst, M. Dahncke, P. Jahangiri,
C. Warnecke, P. Mehrfeld, M. Dirk, C.V. Treeck, L. Bruno, R. Otto, M. Technik,
C. Kg, BIM2SIM -Development of semi-automated methods for the generation of
simulation models using Building Information Modeling BIM2SIM – Development
of semi-automated methods for the generation of simulation models using Building
Information Modeling (September), 2021, pp. 2–4.

[25] A. Andriamamonjy, R. Klein, D. Saelens, Automated grey box model
implementation using BIM and Modelica, Energy Build. 188-189 (2019) 209–225,
https://doi.org/10.1016/j.enbuild.2019.01.046. URL doi:10.1016/j.
enbuild.2019.01.046.

[26] S. Hauer, A. Bres, R. Parti, M. Monsberger, An approach for the extension of
openBIM MEP models with metadata focusing on different use cases, Build. Simul.
Conf. Proc. 1 (2019) 182–189, https://doi.org/10.26868/25222708.2019.210932.

[27] P. Pauwels, S. Zhang, Y.C. Lee, Semantic web technologies in AEC industry: a
literature overview, Autom. Constr. 73 (2017) 145–165, https://doi.org/10.1016/
j.autcon.2016.10.003. URL 10.1016/j.autcon.2016.10.003.

[28] K. Afsari, C.M. Eastman, D. Castro-Lacouture, JavaScript object notation (JSON)
data serialization for IFC schema in web-based BIM data exchange, Autom. Constr.
77 (2017) 24–51, https://doi.org/10.1016/j.autcon.2017.01.011. URL 10.1016/j.
autcon.2017.01.011.

[29] D.Y. Lee, H.L. Chi, J. Wang, X. Wang, C.S. Park, A linked data system framework
for sharing construction defect information using ontologies and BIM
environments, Autom. Constr. 68 (2016) 102–113, https://doi.org/10.1016/j.
autcon.2016.05.003.

[30] C. Quinn, A.Z. Shabestari, T. Misic, S. Gilani, M. Litoiu, J.J. McArthur, Building
automation system - BIM integration using a linked data structure, Autom. Constr.
118 (May) (2020), 103257, https://doi.org/10.1016/j.autcon.2020.103257.

[31] S. Tang, D.R. Shelden, C.M. Eastman, P. Pishdad-Bozorgi, X. Gao, BIM assisted
building automation system information exchange using BACnet and IFC, Autom.
Constr. 110 (2019) (2020), 103049, https://doi.org/10.1016/j.
autcon.2019.103049. URL 10.1016/j.autcon.2019.103049.

[32] K. Kim, H. Kim, W. Kim, C. Kim, J. Kim, J. Yu, Integration of ifc objects and facility
management work information using Semantic Web, Autom. Constr. 87 (2017)
(2018) 173–187, https://doi.org/10.1016/j.autcon.2017.12.019.

[33] B. Dong, Z. O’Neill, Z. Li, A BIM-enabled information infrastructure for building
energy fault detection and diagnostics, Autom. Constr. 44 (2014) 197–211,
https://doi.org/10.1016/j.autcon.2014.04.007.

[34] A. Gouda Mohamed, M.R. Abdallah, M. Marzouk, BIM and semantic web-based
maintenance information for existing buildings, Autom. Constr. 116 (March)
(2020) 103209, https://doi.org/10.1016/j.autcon.2020.103209.

[35] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong, A. Johansen, J. Koh,
J. Ploennigs, Y. Agarwal, M. Berges, D. Culler, R. Gupta, M.B. Kjærgaard,
M. Srivastava, K. Whitehouse, Brick: Towards a unified metadata schema for
buildings, in: BuildSys ‘16: Proceedings of the 3rd ACM International Conference
on Systems for Energy-Efficient Built Environments, 2016, pp. 41–50, https://doi.
org/10.1145/2993422.2993577.

[36] C. Preidel, A. Borrmann, C. Oberender, M. Tretheway, Seamless integration of
common data environment access into BIM authoring applications: the BIM
integration framework, eWork and eBusiness in architecture, Eng. Construct.
(2016) 119–128. https://doi-org.proxy.findit.cvt.dk/10.1201/9781315386904.

[37] L.D. Lauretis, From monolithic architecture to microservices architecture, IEEE Int.
Symp. Software Reliability Eng. Workshops (ISSREW) (2019) 93–96, https://doi.
org/10.1109/ISSREW.2019.00050.

[38] J. Thönes, Microservices, IEEE Softw. 32 (1) (2015), https://doi.org/10.1109/
MS.2015.11.

[39] V. Kukkonen, A. Kücükavci, M. Seidenschnur, M.H. Rasmussen, K.M. Smith, C.
A. Hviid, An ontology to support flow system descriptions from design to operation
of buildings, Autom. Construct. 134 (2020) (2022), 104067, https://doi.org/
10.1016/j.autcon.2021.104067.

[40] M. Wetter, W. Zuo, T.S. Nouidui, X. Pang, Modelica Buildings library, J. Build.
Perform. Simul. 7 (4) (2014) 253–270, https://doi.org/10.1080/
19401493.2013.765506.

[41] M. Wetter, T.S. Nouidui, D. Lorenzetti, E.A. Lee, A. Roth, Prototyping the next
generation energyplus simulation engine, in: 14th International Conference of
IBPSA - Building Simulation 2015, BS 2015, Conference Proceedings, no. April
2016, 2015, pp. 403–410. URL, https://www.semanticscholar.org/paper/
PROTOTYPING-THE-NEXT-GENERATION-ENERGYPLUS-ENGINE-Wetter-
Nouidui/8faf811f9752b54dd56ab6e60ebf204ff7c74cfc.

M. Seidenschnur et al.

6.2 Paper II - A Common Data Environment with an EnergyPlus microservice for Post-occupancy
evaluation of the Energy Performance Gap 91

6.2 Paper II - A Common Data Environment with
an EnergyPlus microservice for
Post-occupancy evaluation of the Energy
Performance Gap

A Common Data Environment with an EnergyPlus microservice for
Post-occupancy evaluation of the Energy Performance Gap
Mikki Seidenschnura,b,∗, Ali Kücükavcia,c, Esben Visby Fjerbæka, Kevin Michael Smitha and
Christian Anker Hviida

aDepartment of Civil Engineering, Technical University of Denmark, Brovej 118, 2800 Kgs. Lyngby, Denmark
bRambøll, Copenhagen, Denmark
cCOWI, Kgs. Lyngby, Denmark

A R T I C L E I N F O
Keywords:
Common Data Environments
Energy Performance Gap
Detailed Simulation Models

A B S T R A C T
One of the significant challenges of the building sector is the absence of post-occupancy evaluation
by the HVAC designers, leading to an energy performance gap between predicted performance and
measured performance. This article introduces a common data environment for running detailed
simulation models on cloud-based Building Information Modeling (BIM) models to bridge this
gap. This article provides a system architecture for a common data environment capable of running
Energy Plus simulations using three microservices. Finally, the article offers an application of the
developed tools in a real-life use case using meter data provided by Frederiksberg School. The use case
exemplified that the common data environment can successfully perform a post-occupancy evaluation
of an existing building with a BIM model. Finally, the article presents a future works section describing
the roadmap for future development and extensions for the common data environment.

1. Introduction1
Researchers and experts in the Architecture, Engineer-2

ing, Construction, and Operation (AECO) industry have3
reported a difference in the predicted (simulated) energy4
performance of buildings and measured energy performance5
during the operation of buildings, called the Energy Perfor-6
mance Gap (EPG) [1–6]. De Wilde [1] suggest that the main7
reason for the EPG, is that the designers cannot make realis-8
tic assumptions about the occupant behaviour of the building9
in their simulation models. De Wilde [1] suggests that Post-10
Occupancy Evaluation (POE) has the potential to minimize11
the EPG from predicted to measured energy performance12
by including actual occupant behaviour in the simulation13
models. Menezes et al. [6] suggests that one way to reduce14
the EPG is to implement detailed simulation models into the15
design process and follow it through to the operational phase.16
The detailed simulation model contains information like17
the building’s occupancy behaviour and control algorithms.18
Though this means that the model during the design phase19
can still have wrongful assumptions about the occupant20
behaviour of the building, it can later be updated to the actual21
occupant behaviour in the building. This provides a digital22
twin to monitor and simulate scenarios, introducing a way23
to perform fault detection and diagnostics. Jradi et al. [7]24
showed that with the use of EnergyPlus detailed simulation25
models, they could better predict the energy consumption26
for the heating, ventilation and lighting in the building after27
providing more accurate boundary conditions for occupancy28
and actual weather conditions. With sensor data from the29

∗Corresponding author
msei@ramboll.dk (M. Seidenschnur)

ORCID(s): 0000-0002-3881-9586 (M. Seidenschnur);
0000-0001-9883-4633 (A. Kücükavci); 0000-0001-7694-8373 (E.V. Fjerbæk);
0000-0001-8148-9263 (K.M. Smith); 0000-0002-8340-7222 (C.A. Hviid)

existing building, detailed simulation models can more ac-30
curately predict the energy performance of the building to31
reduce the EPG.32

The complexity of Building Energy Performance Sim-33
ulation (BEPS) models are ever rising, and researchers are34
performing more and more advanced simulations of build-35
ings [8, 9]. Wetter et al. [10] introduced IBPSA project 1,36
an advanced hydraulic simulation engine using the Mod-37
elica language. The IBPSA project 1 can be used to run38
detailed simulation models if the researcher/practitioner has39
the knowledge to use the libraries developed in the project.40
However, it does not provide an easy way for an industry41
practitioner to run detailed simulation models in an ever-42
changing design process. Other efforts have tried to handle43
this by creating an automatic transfer from a file-based44
Industry Foundation Classes (IFC) to a modelica simulation45
environment [9]. While providing a novel approach for au-46
tomated data transfer, they are using a file-based approach47
that lacks data interoperability. De Wilde [1] states that one48
concern is that researchers in an academic setting carry out49
detailed simulation models that do not align with simulation50
models created by practitioners in the industry. In industry,51
it can be hard to see the monetary value of performing52
detailed simulation models as they are time-consuming and53
thus cost more money than simple simulations. Furthermore,54
as Menezes et al. [6] states, there is no follow-up from the55
industry experts, after the design phase, mainly caused by56
the cost of involving the designer in the post-occupancy57
period.58

To make follow-up easier for the designer and client,59
Seidenschnur et al. [11] introduced a Common Data Envi-60
ronment (CDE) that is capable of transferring data from a61
BIM model to a centralized database, with the use of the62
Flow System Classes (FSC) object model. They suggested63
that future development of the CDE should include a detailed64

M Seidenschnur et al.: Preprint submitted to Elsevier Page 1 of 13

A web-based approach for Post-Occupancy Evaluation

simulation model module that can compare the predicted1
energy performance with the actual energy performance of2
the building.3

There is a need for a CDE that can be used by the4
HVAC designer, from design to operation of the building,5
to monitor the building performance and compare it to the6
predicted performance. The CDE should include a detailed7
simulation model that represents the physics of the building,8
i.e., a white-box model. After and during the commissioning9
of the building, the detailed simulation model will be used10
to reevaluate the performance of the building, based on the11
actual use of the building. Furthermore, the CDE should12
provide a monitoring system for the building once it has been13
constructed.14

1.1. Aim15
This article aims to provide a tool to aid the Heating,16

Ventilation, and Cooling (HVAC) engineer to perform POE17
of an existing building. The tool also allows the HVAC18
engineer to perform a detailed simulation model of the actual19
BIM model from the detailed design phase to the operational20
phase. Finally, we apply the created tools to a real-life use-21
case with gathered meter data to showcase that the tool can22
be used to perform a POE of buildings. All of this is novel23
because:24

• we provide a reliable and fully modularized CDE,25
based on Microservice Architecture (MSA), allowing26
for Continuous Integration and Continuous Deploy-27
ment of the developed microservices28

• we provide the basis for an application that HVAC29
practitioners can use to perform POE, rather than30
being an academic-only tool31

• we apply the provided tool to a real-life use case called32
Frederiksberg school33

1.2. Paper outline34
Section 2 lists the current state-of-the-art for POE and35

the use of CDEs in providing a platform for the automatic36
simulation of detailed simulation models. Section 3 provides37
a detailed description of the software developments offered38
in this article and an application of said developments in a39
real-life use case. Section 4 emulates a case where the HVAC40
practitioner is carrying out a POE of Frederiksberg School,41
intending to find the total EPG from predicted to measured42
energy performance. Section 5 provides a roadmap for future43
development of the CDE presented in this paper. Section 644
concludes on the contribution of this paper, and provides a45
roadmap for future development of the CDE46

2. Background47
2.1. Post-occupancy evaluation48

AECO practitioners use POE to obtain feedback on the49
performance of a building, including energy and indoor50
climate performance [12]. POE uses three categories to51
improve the performance of the building [13]:52

1. As a design tool: To improve building procurement,53
using data obtained to feed-forward in the next design54
of buildings. Menezes et al. [6] states that there is a55
lack of feedback since there rarely is any feedback56
to the HVAC designer once the building has been57
constructed and occupied. This means that the design58
team rarely benefits from the lessons learned in the59
building.60

2. As a management tool: To measure the building per-61
formance in real-time to make changes in the op-62
eration. This is currently being performed to some63
extent in most buildings as a part of the Building64
Management System (BMS) installed in the building.65

3. As a benchmarking tool: To have a benchmark to66
measure progress in sustainable goals such as energy67
consumption of the building. Finally, (3) using POE68
as a benchmarking tool to identify when components69
in the building need upgrading or replacing to im-70
prove performance. In this field, several advanced71
automatic fault detection and diagnostics systems have72
been proposed in the literature in the last decade [14–73
16]. Most of them include using Machine Learn-74
ing (ML) to provide a black-box or grey-box model.75
Finally, some literature suggests a white-box model76
approach to accurately reflect the physical model [17–77
19]. Shi and O’Brien [19] reviewed the literature on78
automated fault detection and diagnostics and rec-79
ommended some future challenges and possibilities.80
They proposed to use detailed simulation models as81
a basis to pre-simulate faults in the building system82
and use them for training an automated fault detection83
and diagnostics model grey-box model. Furthermore,84
they suggested that automatic fault detection and di-85
agnostics programs should be centralized. Otherwise,86
it is hard to manage all the different types of faults87
that may occur in a system. Finally, they suggested88
that there should be sufficient digital infrastructure to89
handle a large amount of data and correlate it to the90
BIM model.91

2.2. Detailed simulation models of buildings92
EnergyPlus was introduced in the early 2000s as an effort93

to provide a new generation energy simulation program [20,94
21]. Since then, several researchers have used EnergyPlus95
to perform whole building simulations in an effort to more96
accurately predict the energy performance of buildings [22–97
25]. However, the EnergyPlus engine was not designed to98
study the performance of HVAC systems, which can be99
better simulated with different programs [26] like Modelica.100
In recent years, the AECO industry has seen an increase in101
detailed simulation models using the Modelica language as102
an environment for simulation of HVAC systems [9, 10, 27,103
28]. Modelica offers modularity of simulation engines and is104
open-source1. Jradi et al. [7] showed that accurate, detailed105
simulation models have the potential to lower the energy106

1https://modelica.org/modelicalanguage.html

M Seidenschnur et al.: Preprint submitted to Elsevier Page 2 of 13

A web-based approach for Post-Occupancy Evaluation

performance gap. However, as De Wilde [1] argued, the1
detailed simulation models are often used by the academic2
environment but not by practitioners in the AECO industry.3
This is caused by simulation engines like Modelica being4
complicated to work with, and it is a laborious task to5
transfer data manually from a BIM model into the Modelica6
environment [9].7

2.3. Automatic generation of simulation models8
A multitude of efforts have been carried out to trans-9

fer BIM data directly into simulation models [10, 27, 29–10
34]. For instance, Andriamamonjy et al. [27] created an11
automatic IFC-based workflow called IFC2Modelica that12
can transfer the data from an IFC-model to a Modelica13
environment. Furthermore, Wetter et al. [10] introduced a14
BIM/Geographic Information System (GIS) and Modelica15
framework for building and design, and operation. The main16
focus of the above efforts is to utilize the existing data17
formats of IFC or green building Extensible Markup Lan-18
guage (gbXML) to extract information relevant to perform19
automated or semi-automated BEPS. One problem with the20
IFC and gbXML format is that they often do not contain21
the necessary information to be able to perform a detailed22
simulation model of the energy and indoor climate in the23
context of the full HVAC system [35]. However, no one24
intended to store all relevant information for construction25
processes in IFC files, and no single super schema can26
support such a task [36, 37]. The AECO industry should27
move from file-based sharing towards a more network-based28
integration [38] including a database residing within a CDE29
to provide full interoperability from BIM to the simulation30
model.31

2.4. Common data environments for design,32
commissioning, and operation33

A CDE has the potential to ease the burden of per-34
forming manual file-based data exchange to simulation tools35
like EnergyPlus (E+). Jradi et al. [7] introduced an online36
building energy performance monitoring and evaluation tool37
to reduce the EPG, called Online building energy perfor-38
mance Monitoring and Evaluation (ObepME). They intro-39
duced ObepME as a monitoring and evaluation system that40
enables continuous commissioning into the building’s life41
cycle. Furthermore, they developed an EnergyPlus model42
to take information from the BMS. Jradi et al. [7] used the43
implemented system to identify deviations in the expected44
energy performance of the building and to perform fault45
detection and diagnostics. Furthermore, ObepME can pre-46
vent over-consumption by notifying the operations specialist47
that some parts of the system measure a higher energy48
consumption than the dynamic energy simulation model49
predicted. However, ObepME does not provide a simula-50
tion based on a BIM model, making it a laborious task to51
implement in a construction process. Seidenschnur et al.52
[11] introduced a CDE based on a MSA principle to allow53
for easy scalability of the application in a cloud-based web54
application environment. Furthermore, they introduced an55

object model called FSC, which provides the necessary data56
structure to represent a HVAC system in a BIM model. One57
microservice suggested by Seidenschnur et al. [11] was a58
tool that automatically generates a Modelica-based model59
and simulates it. Such a tool was developed by Fjerbæk et al.60
[39].61

2.5. Summary62
Research in POE suggests that a lot of recent efforts try to63

use black-box, grey-box, or white-box models to accurately64
predict faults and correct them. They all have potential to65
accurately predict faults of a HVAC system. However, as66
suggested by [1], most of these detailed simulation models67
are not utilized by practitioners in the AECO industry due68
to the time consumption of manually generated advanced69
detailed simulation models. Several efforts have tried to70
tackle the automatic generation of such models [10, 27, 29–71
34], but they all use the file-based data-exchange to generate72
said models. Seidenschnur et al. [11] introduced a CDE to73
move the BIM maturity level from 2 to 3. Furthermore, the74
contribution was a common way to export data from a pro-75
prietary BIM format into an open object-oriented database,76
like mongoDB. The CDE allows for a MSA and therefore77
prepares the application for a cloud-based infrastructure78
which was suggested by Shi and O’Brien [19]. This article79
continues the work of the CDE suggested by Seidenschnur80
et al. [11] and developed further by Fjerbæk et al. [39].81
We will use the work developed by Seidenschnur et al.82
[11] to extend the CDE with a module for comparison of83
sensor data with the simulation results generated in the E+84
microservice.85

3. Methodology86
This article propose an extension of the CDE system87

architecture created by [11], by adding microservices that88
includes a simulation engine in E+, an optimization algo-89
rithm to stage and dispatch different E+ files. Furthermore,90
to support the extended system architecture, we developed91
a data structure containing the thermal zones’ necessary92
properties to perform simulations in E+, called the Thermal93
Zone Classes hierarchy. Following the detailed description94
of the extended system architecture, this section provides a95
use case description of Frederiksberg school to validate that96
the tools correctly transfer the BIM model into the database.97
Furthermore, the use case subsection will detail the use case98
selected for validating the toolchain.99

3.1. System architecture100
Seidenschnur et al. [11] created a CDE capable of taking101

a BIM HVAC model and centralizing it into a database. They102
showed that it was possible to incorporate a microservice103
architecture to create many services based on the user’s104
specific needs. Figure 1 shows the revised system architec-105
ture. Seidenschnur et al. [11] also created a class hierarchy106
called FSC. FSC formulates a data structure to represent107
HVAC systems in a CDE. Furthermore, they introduced a108
preliminary data structure for spaces. However, this data109

M Seidenschnur et al.: Preprint submitted to Elsevier Page 3 of 13

A web-based approach for Post-Occupancy Evaluation

BIM MP M����
HVAC BIM
D�������

HVAC V��������� M������������

W
�� A����������

HVAC S��������� �������������

E�����P��� ���������� ��� ������������ �������������

HVAC M����
FSC E�������

S������

T������ �����
M����

R���������
����

T������ �����
THERM E�������

S������

T������ ����
D�������

CC

HC

M

G��������� ��
IDF F���

M1

IDF

M������� HVAC
����

S���� ��
E�����P���

P���������
V��������

M3

E�����P���
�� E���

M2

S����������� �� ��. 2022

T�� ���� �� ���� ������� F����� ����

F������ �� ��. 2023

Figure 1: Original figure adapted from Seidenschnur et al. [11], marked with red. Blue marks the work developed in this article.
Green marks the work developed by [39]. Orange marks the future work

structure was insufficient to represent thermal zones for1
energy and indoor climate simulation in E+. Therefore,2
section 3.1.1 introduces the Thermal Zone Classes hierarchy,3
for the representation of thermal zones, with the boundary4
conditions of rooms.5

This section suggests two core developments to extend6
the system architecture CDE developed by Seidenschnur7
et al. [11]. The first core development is creating a data8
structure capable of representing thermal zones in a build-9
ing for simulation in energy and indoor climate simulation10
tools. Section 3.1.1 introduces the development of Ther-11
mal Zone Classes. The second core development involves12
three microservices: Microservice M1 generates an Input13
Data File (IDF) on which microservice M2 can perform an14
E+ simulation. Furthermore, microservice M3 receives an15
input that determines which parameter variation to run in16
microservice M2. It then uses microservice M2 to run tens,17
hundreds, or even thousands of simulations, for instance, to18
perform a parameter variation study for sensitivity analysis.19
The development of the isolated microservices is presented20
accordingly in sections 3.1.3, 3.1.4, and 3.1.5. The microser-21
vices were developed in a framework called Flask, which is22
referred to as a micro-framework. Flask provides an easy-to-23
extend microservice template for future applications2.24

2https://pythonbasics.org/what-is-flask-python/

3.1.1. Thermal Zone Classes hierarchy25
Figure 10 shows the proposed data structure for Ther-26

mal Zone Classes to perform indoor climate and thermal27
simulations. Figure 10 shows that there are six main pieces28
of information needed to perform an indoor climate simu-29
lation in E+: Simulation parameters represents the settings30
required to run a simulation. Output parameters includes31
what information should be output and in which format.32
Schedules defines varying loads, for instance, people load,33
lighting, activity level, ventilation, heating, varying setpoints34
in the building automation system, etc., over time. Materials35
represents the composition of materials in the construction.36
For instance, a window generally comprises several layers37
of material - two to three layers of varying glass and 1-238
air gaps. Construction represents the different types of wall39
layers - a wall consists of materials defined and ordered by40
its layers. Finally, the Site represents the actual building.41
The site is the container for the information generated in42
the previous five categories. The Thermal Zone Classes43
represent a tree structure used to describe the hierarchy of44
the building. A site contains a building, and site shading.45
The building contains zones and building shading. The zones46
contain surfaces, internal gains, HVAC systems, infiltration,47
and zone shading. The appendix includes a detailed Unified48
Modeling Language (UML) class diagram of all the classes49
created for the Thermal Zone Classes hierarchy.50

M Seidenschnur et al.: Preprint submitted to Elsevier Page 4 of 13

A web-based approach for Post-Occupancy Evaluation

3.1.2. Thermal Zone Classes hierarchy exporter1
Often, commercial BIM software like Revit, contains2

proprietary data. Therefore, we have used Revit’s C# Ap-3
plication Programming Interface (API) to map the Thermal4
Zone Classes hierarchy and then create an open Javascript5
Object Notation (JSON) file. To create an exporter for the6
Thermal Zone Classes from Revit to the CDE, the Revit7
API was used. The script used to export the Thermal Zone8
Classes hierarchy is found on GitHub3.9

THERM H�������� ��������
���� R���� �� THERM ����

W��-����������� ��������
�������� ���� ����

F�� ������ �� CDE TH
ER

M
 JS

O
N

 ��
 ��

��
��

 ��
D�

��
��

��

W��-����������� ���������
��� ���� ����

N�� ��������

A�������

Figure 2: Process to get information from a Revit model of
thermal zones into the CDE

Figure 2 shows a three-step concept allowing an ex-10
porter that maintains data integrity within the CDE. First,11
the Thermal Zone Classes exporter maps the data from12
the Revit model into the Thermal Zone Classes hierarchy13
described in section 3.1.1. The exporter uses Revit’s C# API14
to loop through all analytical zones in the Revit model and15
maps them into the Thermal Zone Classes hierarchy. After16
mapping all thermal zones, surfaces, constructions, etc., in17
the Revit model and structuring them into the Thermal Zone18
Classes hierarchy, the tool serializes the data into a JSON-19
based model and sent to the CDE database. A rule set in20
the CDE web application then validates the integrity of the21
model file. If the model file is not compliant with the rule set,22
the CDE asks the user to fix the faults manually in the Revit23
model or the CDE. Finally, once the model is compliant, the24
CDE stores the it in the database.25

3.1.3. Microservice M1 - Generation of IDF26
The M1 microservice receives the JSON created by the27

Thermal Zone Classes hierarchy exporter, which is stored in28
the database and generates an IDF file from it. It uses the29
EnergyPlus Python (eppy)4 python package to structure the30
IDF file based on the rooms. Four functional parts divide the31
microservice:32

• Identify missing parameters33

• Populate missing parameters with default values34

• Generate IDF-based E+ model with eppy35

• Return IDF as result36

First, the M1 microservice receives a Hypertext Transfer37
Protocol (http) POST request from the CDE, with a body38

3https://github.com/Virtual-Commissioning/VC-Analytical_zones_
exporter-Service.git

4https://pypi.org/project/eppy/

containing the Thermal Zone Classes JSON file. Then, the39
service identifies (1) if any parameters are missing to per-40
form an eppy simulation. Such missing parameters could be41
schedules, simulation input parameters, etc. For this article,42
we generated a JSON file containing all of the default values43
needed if the Thermal Zone Classes JSON had missing44
information to generate a working IDF. Once the service45
has identified the missing parameters, it populates (2) them46
with default values. Then, it uses eppy to generate (3) an47
IDF. Then the microservice responds to the POST request48
by returning (4) the generated IDF.49

3.1.4. Microservice M2 - E+ simulation50
The M2 microservice uses the mentioned Python pack-51

age called eppy and containerizes in a microservice. The52
M2 microservice takes; an IDF and an EnergyPlus Weather53
(EPW) file corresponding to the site in the body of the http54
POST request. The microservice then simulates the IDF and55
returns the result files of the E+ simulation. The microser-56
vice returns a JSON containing all the requested output files57
from E+. In this article, the "<filename>_hourly.json" and58
"<filename>_Table.csv" was returned. Several output files59
are available; please refer to the Output File list from the E+60
documentation5. Furthermore, the M2 microservices also61
receives which version of E+ applies, via an Input Data62
Dictionary (IDD) file. The M2 microservice is found on63
Github6.64

3.1.5. Microservice M3 - Parameter variation65
algorithm66

The M3 microservice allows for users to generate new67
IDFs, based on the user demand. The M3 microservice68
generates a sensitivity analysis through a parameter variation69
of the detailed simulation model. Microservice M3 takes in70
a JSON file. Listing 1 shows the structure of the JSON. The71
"source_file" value determines the path of the IDF to per-72
form a parameter variation on which the microservice should73
perform a parameter variation study. The "type_of_object"74
determines the object type. In this case, the object type is75
the material - but it might also be schedule, constructions,76
or any other object within the IDF. Figure 10 shows the77
objects within the IDF. The "name_of_object" is the ID of78
the objects to make the parameter optimization. The ID can79
be a list of several objects or a string containing the word80
"all." The "parameter_to_optimise" is the specific parameter81
within each object, like in this example, the thickness of the82
material, of which the algorithm should create a parameter83
variation. Finally, the "list_of_inputs" is the actual variations84
with which the user wants to run the simulation. Figure 385
shows that when the JSON is received by the http request86
to the microservice, it stages the IDF(s) and simulates them87
one-by-one in the M2 microservice presented in the previous88
paragraph. It then receives a result file from the EnergyPlus89

5https://bigladdersoftware.com/epx/docs/8-3/
output-details-and-examples/output-file-list.html

6https://github.com/Virtual-Commissioning/VC_
EnergyPlus-Simulation_Service

M Seidenschnur et al.: Preprint submitted to Elsevier Page 5 of 13

A web-based approach for Post-Occupancy Evaluation

microservice, which it stores on the server, to be extracted1
by the user.2

31 {4
2 "source_file": "app/ressources/example.idf",5
3 "type_of_object": "Material",6
4 "name_of_object": ["BR01"],7
5 "parameter_to_optimise": "Thickness",8
6 "list_of_inputs": [0.25, 0.30, 0.40]9
7 }1011

Listing 1: The listing shows the body of the HTTP request
made to start the optimization algorithm

R�� E�����P���
S���������

I���� IDF ����
��� E�����P���

I���� JSON ���
��������� �����

G������� ��� ����� ���
IDF ����� ��� ����������

R�� ��������� �����
�� ����������?

YES

NO

ID
F

��
��

CSV �������

R����� ���
����������

������� ���
�����������

M�����������
��������� IDF

D������� ���
�������� IDF

Figure 3: Process to run EnergyPlus simulation in microservice
architecture presented in figure 1

3.2. Use case setup12
The use case includes a real-life use case from Sorø,13

called Frederiksberg School. The sensor data collected from14
the school allows for a comparison of the actual energy15
performance of the school with the dynamically predicted16
performance of the school. Provided that the school does17
not perform according to the predicted performance, we will18
try to use the E+ microservices, described in section 3.119
to investigate the energy performance of the system and20
compare it to the actual performance of the building21

3.2.1. Frederiksberg School22
The case study includes a school in Sorø, Denmark,23

called "Frederiksberg Skole". Figure 6 shows that the school24
has three floors: a basement, a ground floor, and a first floor.25

After a few years of operation, the facility management26
of the school has found out that the overall energy consump-27
tion of the school is much higher than anticipated. Further-28
more, it shows that two wings divide the school, the northern29
wing and the southern wing. A Variable Air Volume (VAV)-30
and water-based heating system serves the north and south31
wings separately. Facility management has installed several32
meters to individually monitor the energy performance of all33
the major systems. Therefore, this article uses the northern34
building as a case study to allow for simulation of only35
the north wing in E+. The northern building consists of a36
total of 84 zones, with 16 classrooms, 6 group rooms, ten37
offices, 23 toilets, two large common areas, 27 smaller rooms38

for technical storage, hallways, etc. The north wing zones39
amount to a total conditioned area of 3664 m240

3.2.2. From BIM to E+41
This subsection presents the export of the Frederiksberg42

school BIM model. The subsection shows snippets from the43
JSON file exported with the use of the Thermal Zone Classes44
exporter. Figure 4 shows the Frederiksberg School BIM45
model, exported using the Thermal Zone Classes exporter46
tool presented in section 3.1.2. The turquoise zones marked47
in the figure represents the 84 zones exported from the BIM48
model. The shaded gray elements provides shading on the49
facade of the north wing, but also represents the south wing50
of the building.51

Figure 4: Screenshot of the analytical model exported from
Revit.

Figure 4 also shows that only the rooms from the north52
wing are modeled in Revit and exported. The south wing53
provides shading for the north wing, and all walls neigh-54
boring the southern building are adiabatic. Figure 5 shows55
the three steps necessary to transfer the BIM model to the56
Thermal Zone Classes JSON and then into the IDF used57
for E+. The process involves the developed Thermal Zone58
Classes hierarchy, its exporter, and the M1 microservice.59

R���� M���� E+ IDF �����

T���� JSON ��
���������

TH
ER

M
 JS

O
N

 ��

��
��

��
 ��

D�
��

��
��

Figure 5: Illustration of the transfer from Revit to Thermal
Zone Classes JSON and to an E+ IDF

The transfer of the BIM model into the Thermal Zone60
Classes JSON was successful, using the Thermal Zone61
Classes hierarchy exporter. The Thermal Zone Classes hi-62
erarchy exporter modeled 241 materials, 210 constructions,63
and 84 zones. Listing 2 shows an example of a material64
exported to the Thermal Zone Classes JSON.65

M Seidenschnur et al.: Preprint submitted to Elsevier Page 6 of 13

A web-based approach for Post-Occupancy Evaluation

Basement
 Ground floor
 1. floor

The South building
 The North building

Figure 6: The plan drawings of "Frederiksberg Skole" in Sorø, Denmark. Blue marks the south wing, and red marks the northern
wing.

11 {2
2 "7577371 _0.01":{3
3 "ReadableName":" StoTherm facadepuds",4
4 "Name":" 7577371 _0.01",5
5 "Roughness":null ,6
6 "Thickness":0.01,7
7 "Conductivity":1.046,8
8 "Density":2300.0,9
9 "Specific_Heat":657.0,10

10 "Thermal_Absorptance":null ,11
11 "Solar_Absorptance":null ,12
12 "Visible_Absorptance":null13
13 }1415

Listing 2: The listing shows an example of a material
expressed in the Thermal Zone Classes JSON

As listing 2 shows, not all values could be extracted from16
the Revit model into the Thermal Zone Classes JSON. The17
CDE will automatically provide default values for the rough-18
ness, thermal absorptance, solar absorptance, and visible19
absorptance. Listing 3 shows an example of a construction20
modeled in the Thermal Zone Classes JSON.21

221 {23
2 "7529784":{24
3 "Name":"7529784" ,25
4 "Layers":[26
5 {27
6 "Layer1":" 5237675 _0.005"28
7 },29
8 {30
9 "Layer2":" 134479 _0.25"31

10 },32
11 {33
12 "Layer3":" 5237675 _0.005"34
13 },35
14 {36
15 "Layer4":" 4503105 _0.22"37
16 }38
17]39
18 }4041

Listing 3: The listing shows an example of a construction
expressed in the Thermal Zone Classes JSON

Listing 3 shows a construction labeled 7529784.42
7529784 contains 4 layers in total. The layers are43

5237675_0.005, 134479_0.25, 5237675_0.005, and44
4503105_0.22. Those layers are roofing, insulation, roofing,45
and a concrete slab. Finally, listing 4 shows an example of a46
zone mapped in the Thermal Zone Classes class hierarchy.47

481 {49
2 "Name":"7602777" ,50
3 "X_Origin":0.0,51
4 "Y_Origin":0.0,52
5 "Z_Origin":0.0,53
6 "Type":" NoSpaceType",54
7 "Ceiling_Height":2.438,55
8 "Floor_Area":13.011,56
9 "Volume":31.720818,57

10 "Zone_Inside_Convection_Algorithm":"",58
11 "Zone_Outside_Convection_Algorithm":"",59
12 "Part_of_Total_Floor_Area":true ,60
13 "Surfaces": [...],61
14 "InternalGains": [...] ,62
15 "HVAC": [...] ,63
16 "Infiltration": [...],64
17 "ZoneShadings": [...]65
18 }6667

Listing 4: The listing shows an example of a zone expressed
in the Thermal Zone Classes JSON. The "..." notes that more
information is available, but not shown for simplicity

Listing 4 shows the main information contained within68
the zone model of the Thermal Zone Classes JSON. The69
most important properties of the zone model are the Sur-70
faces, InternalGains, HVAC, Infiltration, and ZoneShadings.71
Listing 5 illustrates an example of what builds the geometry72
of the zone, but also the construction of the walls.73

741 {75
2 "7602778":{76
3 "Name":"7602778" ,77
4 "Surface_Type":"Wall",78
5 "Construction_Name":"7490160" ,79
6 "Zone_Name":"7602777" ,80
7 "Outside_Boundary_Condition":" Outdoors",81
8 "Outside_Boundary_Condition_Object":"",82
9 "Sun_Exposure":true ,83

10 "Wind_Exposure":true ,84
11 "View_Factor_to_Ground":"",85
12 "VertexCoordinates":[86
13 {87

M Seidenschnur et al.: Preprint submitted to Elsevier Page 7 of 13

A web-based approach for Post-Occupancy Evaluation

14 "X":-146.3753,1
15 "Y":-1600.5608,2
16 "Z":50.743
17 },4
18 {...} ,5
19 {...} ,6
20 {...}7
21]8
22 }910

Listing 5: The listing shows an example of a surface
expressed in the Thermal Zone Classes JSON

Listing 5 shows that every surface contains information11
on: Name, Surface Type, Construction Name, Zone Name,12
etc. Most importantly, it contains information that relates the13
geometry of the surfaces to the zone. Listing 5 illustrates the14
vertex coordinates of the specific surface 7602778. After the15
Thermal Zone Classes hierarchy exporter has exported the16
Revit model, the M1 microservice was employed to generate17
an IDF based on the Thermal Zone Classes JSON. To see18
the full JSON generated by the M1 microservice, refer to19
GitHub720

3.2.3. Inputs for E+ simulation21
After the Thermal Zone Classes hierarchy exporter cre-22

ated the JSON in section 3.2.2, we used the M1 microservice23
to generate an IDF. The IDF generated by the M2 microser-24
vice is provided on GitHub8 and shown in figure 7.25

Shading element

Northern building

Roof element

External wall

Fenestration

Figure 7: The generated E+ model visualized in Open Studio

The simulation input data is provided in the form of26
the original IDF used to run the E+ simulation. To ensure27
similar inputs, the data provided by the sensors from Fred-28
eriksberg School, was used to generate setpoint schedules,29
lighting schedules, internal heat gain schedules, etc. Further-30
more, Danmarks Meteorlogiske Institut at the Flakkebjerg,31
Denmark weather station provided the weather data from32
Sorø. The weather data is available in the GitHub repository33
for microservice M2 in the resources folder. The weather34
file represents the weather recorded from January 1, 2020,35
to December 31, 2020.36

7https://github.com/Virtual-Commissioning/
VC-EnergyPlus-Opt-Service/tree/main/app/ressources

8https://github.com/Virtual-Commissioning/
VC-EnergyPlus-Opt-Service/tree/main/app/ressources

3.2.4. BMS and sensor data37
In terms of a data dump of all loggers set-up for the38

HVAC system, the sensor data was provided by Frederiks-39
berg School. The data was collected in the period from July40
1, 2020, to June 30, 2021. Due to the time period, the data41
contains one heating season for validation of the heating42
system. The data has the heating energy consumed by all43
sub-systems. Such heating consumption includes heating for44
the ventilation heating coils for the north- and south wings,45
the mixing loop for the north and south radiator systems,46
and the heating coil for the hot water production. The data47
dump also contains the CO2-level, temperature, damper48
opening, and thermostatic valve opening for 30 rooms. The49
room sensors have been randomly selected from the entire50
building, containing rooms from both the south- and north51
wings. The room sensor data is not be used further in this52
article.53

4. Results54
This section means to go through the process of per-55

forming a simple POE of Frederiksberg school with the use56
of the CDE developed in this article, with the coherent E+57
microservices introduced in Section 3.1. The purpose is to58
show that the CDE is capable of creating a connection from59
BIM to E+ simulation and then later make the data com-60
parable to measured data. First, we compare the predicted61
energy performance, based on a simulation model derived62
from the existing BIM model, to the measured meter data63
of Frederiksberg school. After illustrating the EPG of this64
building, we use the microservices created in Section 3.165
to perform a simple sensitivity analysis to try and identify66
if specific parameters have a higher effect on the EPG than67
others. Finally, we will not provide a detailed POE of the68
sensor and meter data from Frederiksberg school, since it is69
beyond the scope. The purpose is to show provide a proof-70
of-concept tool that can later be used to perform POE of the71
EPG.72

4.1. Predicted vs. Measured energy performance73
The M1 and M2 microservices were used on Frederiks-74

berg School, as shown in section 3.2. Figure 8 shows the75
predicted heating energy use, calculated with the M2 mi-76
croservice, compared to the actual measured heating energy77
use of Frederiksberg school. The figure shows that the pre-78
dicted heating energy use is lower than the measured heating79
energy use of the actual building. In total, the predicted80
energy consumption was 5.16 MWh less than the actual81
measured energy consumption of Frederiksberg School.82

Figure 8 also shows that the predicted heating energy use83
varies only slightly in the year’s first two months. However,84
as soon as March comes around, the measured heating85
energy use differs significantly from the predicted heating86
energy use. For instance, the heating energy use for March is87
10 MWh higher than predicted by the E+ simulation model.88
For most of the summer, there was no heating energy use89
on for heating, except for the measured heating consumed90
in June of 1.7 MWh. There is no measured heating energy91

M Seidenschnur et al.: Preprint submitted to Elsevier Page 8 of 13

A web-based approach for Post-Occupancy Evaluation

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25 Measured heating energy use
Predicted heating energy use

Month of the year

H
ea

tin
g

en
er

gy
 u

se
 (

M
W

h)

Figure 8: Bar chart showing the predicted heating energy use vs. measured heating energy use of Frederiksberg School

use for the building until November. Figure 8 shows that1
the predicted heating energy use was much higher than the2
simulation model for October, November, and December.3

4.2. Evaluating the EPG through microservices4
Figure 8 shows an EPG of 5.16 MWh, amounting to a5

gap of 5%. Though the yearly aggregated sum represents a6
small EPG, figure 8 shows a significant variation monthly.7
The variation means several parameters can have an un-8
derlying wrong assumption throughout the simulations. For9
instance, the setpoints obtained from the measurements of10
Frederiksberg school are likely dynamic - facility manage-11
ment might have changed them along the way. The system,12
however, did not log the setpoints for the zones. Not having13
the logged setpoints is highly problematic when analyzing14
how the HVAC system works. A manual inspection of15
the BMS of the school shows a current setpoint (reading:16
09/02/2022) for the zones varying between 21-22°C. In the17
nighttime, the heating setpoint is lowered to 17°C to save18
heating energy. We do not have a specific schedule for low-19
ering the heating setpoint. Therefore, we can assume some20
variation in the heating setpoints. Consequently, we used21

microservice M3 to understand how the heating setpoint for22
the zone changes the predicted heating energy use.23

Figure 9 shows that the heating system lowers the heating24
setpoint for the zones in the building, and there is a potential25
to save energy. However, the simulation does not explain26
the large discrepancy from prediction to measurements in27
March to May or November to December. In this case,28
facility management needs to log the heating setpoints for29
the building need to provide a more accurate simulation.30
Since the period is during a partial coronavirus lockdown,31
facility management likely changed the heating setpoints32
dynamically during the measurement period, making it hard33
for the researchers to predict the heating setpoints. Further-34
more, another reason for the sudden increase in heating for35
February through May might be caused by the return of36
the school students after the coronavirus lockdown. One37
of the official strategies from the government of Denmark38
was to make sure that public institutions, like schools, had39
a high supply of fresh air. This meant that most schools40
opened the windows fully in every classroom, when stu-41
dents were present. This could contribute to the excessive42
heating demand seen from February (where the students43

M Seidenschnur et al.: Preprint submitted to Elsevier Page 9 of 13

A web-based approach for Post-Occupancy Evaluation

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25 Setpoint low=17°C high=20°C
Setpoint low=17°C high=20.5°C
Setpoint low=17°C high=21°C
Setpoint low=17°C high=21.5°C
Setpoint low=17°C high=22°C
No nighttime lowering
Measured heating energy use

Month of the year

H
ea

tin
g

en
er

gy
 u

se
 (

M
W

h)

Figure 9: Illustration showing the energy consumption of where the heating setpoint varies

returned to school) until May, where the heating season1
ended. Finally, the lower than predicted heating energy use in2
October through December is believed to have been caused3
by coronavirus lockdown - meaning that the school likely4
lowered the heating setpoint for the rooms, while few or no5
students were coming to class in the period, due to schools6
providing online/hybrid classes.7

5. Discussion8
5.1. Contribution9

The main contribution of this article, is that through10
setting up a CDE that controls the data flow from predicted11
to measured energy performance, HVAC engineers can effi-12
ciently perform a form of POE or continuous commissioning13
of any given building. A simple use case is that the meter14
data will be readily available for facility management. While15
this sounds like a simple contribution, often, the problem16
is that the building owners do not know that the building17
is not performing according to the original intent. The un-18
known performance usually means that after several years19
of poor performance, and a large amount of wasted energy,20
someone notices it due to expensive energy bills. By simply21
making this data available from the initial commissioning22

of the building, poor performance can be flagged from the23
beginning and lower energy consumption significantly. The24
CDE presented in this paper shows how a modularized25
system architecture provides a workflow to develop and26
deploy microservices in support of other microservices. The27
Thermal Zone Classes hierarchy and the Thermal Zone28
Classes hierarchy exporter made in .NET Framework, using29
the Revit API has been made publicly available and open-30
source for other contributions 9. Furthermore, the microser-31
vices to perform an E+ simulation and parameter variation32
has been made available. We suggest that the microservices33
presented in this paper is used in a CDE, but they can be used34
autonomously.35

5.2. Future work36
Figure 1 shows the planned future work of the CDE37

developed in this paper and by Seidenschnur et al. [11] and38
Fjerbæk et al. [39]. It builds on the work created in Spawn-39
Of-EnergyPlus (SOEP) project, where Functional Mock-up40
Unit (FMU)s are used to co-simulate an HVAC system to-41
gether with whole-building simulation. The current stage of42
the CDE does not support HVAC system generation within43

9https://github.com/Virtual-Commissioning/VC-Analytical_zones_
exporter-Service

M Seidenschnur et al.: Preprint submitted to Elsevier Page 10 of 13

A web-based approach for Post-Occupancy Evaluation

E+, which means that the E+ simulation model is currently1
created with idealized HVAC systems. For future work, the2
HVAC system generated with the use of the FSC hierarchy3
from Seidenschnur et al. [11] could be used to create the4
HVAC systems in E+, as presented in the documentation of5
E+10. While the Thermal Zone Classes hierarchy presents6
a relatively generic data structure for representing thermal7
zone data for whole-building simulation, it is also a data8
structure mapped based on the parameters needed to perform9
simulations in E+. For future purposes, the Thermal Zone10
Classes hierarchy can easily be extended for other simulation11
engines, such as ESP-r. This article presented a simple pa-12
rameter variation algorithm in the M3 microservice. It exem-13
plified that such microservices are feasible. However, future14
work should implement a generic optimization algorithm,15
like GenOpt [40]. Furthermore, for the deployment of the16
system architecture requires a refactoring of the code base.17
This code presents the proof-of-concept of a CDE but is not18
robust and tested enough to be directly deployed. This article19
revised the system architecture suggested by Seidenschnur20
et al. [11]. Energy simulations are generally computationally21
costly to run (i.e., processing time). This CDE indicates a22
solution to such a problem. Since the system architecture is23
represented in a microservice architecture, it is possible to24
scale the application horizontally when running an extensive25
optimization. For future work, this tool should be deployed26
in a cloud environment to allow for faster simulation times27
on large optimization projects. A data management strategy28
should be in place for every construction project, from the29
beginning to enable optimized use of the CDE. Generally,30
one issue with collecting data from buildings without a data31
management strategy is that there is either not enough data,32
not the right data points, or even so much data that there is no33
chance of finding the stakeholder with the information to link34
all the data. Furthermore, we suggest developing a standard35
data structure to address the gap between the digital model36
and the physical model’s sensors if we hope these should be37
generically linked together. We manually found the room IDs38
in the project material for this project and connected them39
with the room IDs in the BIM model.40

6. Conclusion41
The aim of the article was to provide a tool to aid the42

HVAC engineer in performing POE of existing buildings.43
We have provided a CDE where a BIM model can be con-44
verted from a Revit format into the Thermal Zone Classes45
hierarchy and later serialized into a JSON that can be stored46
in a database. By storing the information in a CDE, we have47
enabled access between all of the project stakeholders. The48
aim was also to enable the HVAC engineer to perform a49
detailed simulation model of an existing building, already50
modeled in a BIM format. By providing the Thermal Zone51
Classes hierarchy, Thermal Zone Classes hierarchy exporter,52
microservice M1, microservice M2, and microservice M3,53
we have enabled the HVAC engineer to transfer a BIM54

10https://eppy.readthedocs.io/en/latest/HVAC_Tutorial.html

model into an E+ simulation. Furthermore, microservice55
M3 provides the basis to perform a parameter variation,56
illustrating that an advanced generic algorithm could be57
employed to perform higher-level optimizations of the E+58
models for future work. Finally, we applied the tools created59
in this article to a real-life use case with measured data60
to showcase that the system architecture developed in this61
article holds the potential to provide a POE tool for HVAC62
engineers.63

7. Acknowledgements64
This work was carried out while the main author was65

employed in Ramboll Denmark. The work is funded by66
the Ramboll Foundation and the Innovation Fund Denmark67
(grant 9065-00266A). A proof-of-concept was developed68
as a part of Jon Martin Tangeraas and Frederik Seeberg’s69
Master thesis project in 2022. We would like to acknowledge70
the Frederiksberg school and the municipality of Sorø, for71
providing the data-set for Frederiksberg school.72

A. Thermal Zone Classes hierarchy UML73
class diagram74

References75
[1] P. De Wilde, The gap between predicted and measured energy per-76

formance of buildings : A framework for investigation, Automation77
in Construction 41 (2014) 40–49.78

[2] P. X. Zou, X. Xu, J. Sanjayan, J. Wang, Review of 10 years research79
on building energy performance gap: Life-cycle and stakeholder80
perspectives, Energy and Buildings 178 (2018) 165–181.81

[3] R. Galvin, Making the ’rebound effect’ more useful for performance82
evaluation of thermal retrofits of existing homes: Defining the ’energy83
savings deficit’ and the ’energy performance gap’, Energy and84
Buildings 69 (2014) 515–524.85

[4] D. Calì, T. Osterhage, R. Streblow, D. Müller, Energy performance86
gap in refurbished German dwellings: Lesson learned from a field test,87
Energy and Buildings 127 (2016) 1146–1158.88

[5] J. Liang, Y. Qiu, M. Hu, Mind the energy performance gap: Evidence89
from green commercial buildings, Resources, Conservation and90
Recycling 141 (2019) 364–377.91

[6] A. Menezes, Carolina, A. Cripps, D. Bouchlaghem, R. Buswell,92
Predicted vs . actual energy performance of non-domestic buildings :93
Using post-occupancy evaluation data to reduce the performance gap,94
Applied Energy 97 (2012) 355–364.95

[7] M. Jradi, K. Arendt, F. C. Sangogboye, C. G. Mattera, E. Markoska,96
M. B. Kjærgaard, C. T. Veje, B. N. Jørgensen, ObepME: An online97
building energy performance monitoring and evaluation tool to reduce98
energy performance gaps, Energy and Buildings 166 (2018) 196–209.99

[8] M. Wetter, Modelica-based modelling and simulation to support100
research and development in building energy and control systems,101
Journal of Building Performance Simulation 2 (2009) 143–161.102

[9] A. Andriamamonjy, D. Saelens, R. Klein, An automated IFC-based103
workflow for building energy performance simulation with Modelica,104
Automation in Construction 91 (2018) 166–181.105

[10] M. Wetter, C. v. Treeck, L. Helsen, A. Maccarini, D. Saelens,106
D. Robinson, G. Schweiger, IBPSA Project 1: BIM / GIS and107
Modelica framework for building and community energy system108
design and operation – ongoing developments, lessons learned and109
challenges, in: IOP Conf. Ser.: Earth Environ. Sci., 2019. doi:10.1088/110
1755-1315/323/1/012114.111

M Seidenschnur et al.: Preprint submitted to Elsevier Page 11 of 13

A web-based approach for Post-Occupancy Evaluation

Simulation
parameters

Version
Surface

convection
algorithm inside

Surface
convection

algorithm outside

Time step Run period Contaminant
balance

Shadow
calculation

Ground
temperatures

Output
parameters

Output variable
dictionary

Output variable

Simulation control

Output JSON

Schedules

Lighting schedule People Schedule Activity level
schedule

Work eff iciency
schedule

Equipment
schedule

Inf iltration
schedule

Heating setpoint
schedule

Cooling setpoint
schedule

Clothing
insulation level

schedule

Air velocity
schedule

Transmittance
schedule

Backgorund CO2
conc. schedule

Site

Buildings

Materials

Surface materials Door materials Window materials Air gap materials

Constructions

surface
constructions

Opening
constructions

Zones

Surfaces

Subsurfaces

Doors Openings Windows

Internal gains

People Lights Equipment

HVAC

Ideal air loads
system Thermostat

Inf iltration

Building shading

Site shading

Heat balance
algorithm

Zone air heat
balance algorithm

Frame and divider

Global geometry
rules

Zone shading

Figure 10: Proposed data structure for the representation of thermal zones prepared for energy, indoor climate, and thermal
simulations in EnergyPlus.

M Seidenschnur et al.: Preprint submitted to Elsevier Page 12 of 13

A web-based approach for Post-Occupancy Evaluation

[11] M. Seidenschnur, A. Kücükavci, E. Visby, K. Michael, P. Pauwels,1
C. Anker, A common data environment for HVAC design and2
engineering, Automation in Construction 142 (2022) 104500.3

[12] P. Li, T. M. Froese, G. Brager, Post-occupancy evaluation: State-4
of-the-art analysis and state-of-the-practice review, Building and5
Environment 133 (2018) 187–202.6

[13] I. Cooper, Post-occupancy evaluation - Where are you?, Building7
Research and Information 29 (2001) 158–163.8

[14] C. H. Lo, P. T. Chan, Y. K. Wong, A. B. Rad, K. L. Cheung, Fuzzy-9
genetic algorithm for automatic fault detection in HVAC systems,10
volume 7, 2007. doi:10.1016/j.asoc.2006.06.003.11

[15] M. Dey, S. P. Rana, S. Dudley, Smart building creation in large12
scale HVAC environments through automated fault detection and13
diagnosis, Future Generation Computer Systems 108 (2020) 950–14
966.15

[16] G. Zimmermann, Y. Lu, G. Lo, Automatic HVAC fault detection and16
diagnosis system generation based on heat flow models, HVAC and17
R Research 18 (2012) 112–125.18

[17] D. Picard, M. Sourbron, F. Jorissen, J. Cigler, Z. Váňa, Compari-19
son of Model Predictive Control Performance Using Grey-Box and20
White-Box Controller Models of a Multi-zone Office Building, 4th21
International High Performance Buildings Conference (2016) 4.22

[18] Filip Jorissen, Damien Picard, Kristoff Six, Lieve Helsen, Detailed23
White-Box Non-Linear Model Predictive Control for Scalable Build-24
ing HVAC Control, in: Proceedings of 14th Modelica Conference25
2021, Linköping, Sweden, September 20-24, 2021, volume 181, 2021,26
pp. 315–323. doi:10.3384/ecp21181315.27

[19] Z. Shi, W. O’Brien, Development and implementation of automated28
fault detection and diagnostics for building systems: A review, Au-29
tomation in Construction 104 (2019) 215–229.30

[20] D. B. Crawley, L. K. Lawrie, F. C. Winkelmann, W. F. Buhl, Y. J.31
Huang, C. O. Pedersen, R. K. Strand, R. J. Liesen, D. E. Fisher, M. J.32
Witte, J. Glazer, EnergyPlus : creating a new-generation building33
energy simulation program 33 (2001).34

[21] B. Drury, O. Curtis, K. Linda, C. Frederick, EnergyPlus : Energy35
simulation program, ASHRAE Journal 42 (2000) 49–56.36

[22] G. Peter, A. Paul, B. Drury, Simulation of energy management37
systems in energyplus (2014) 2014.38

[23] K. W. C. Dahanayake, C. L. Chow, Studying the potential of39
energy saving through vertical greenery systems: Using EnergyPlus40
simulation program, Energy and Buildings 138 (2017) 47–59.41

[24] Y. P. Zhou, J. Y. Wu, R. Z. Wang, S. Shiochi, Y. M. Li, Simulation and42
experimental validation of the variable-refrigerant-volume (VRV) air-43
conditioning system in EnergyPlus, Energy and Buildings 40 (2008)44
1041–1047.45

[25] M. Basarkar, X. Pang, L. Wang, P. Haves, T. Hong, Modeling46
and simulation of HVAC faults in EnergyPlus, Proceedings of47
Building Simulation 2011: 12th Conference of International Building48
Performance Simulation Association (2011) 2897–2903.49

[26] T. N. Stephane, M. Wetter, W. Zuo, Functional Mock-up Unit for Co-50
Simulation Import in EnergyPlus, Journal of Building Performance51
Simulation 7 (2014) 192–202.52

[27] A. Andriamamonjy, R. Klein, D. Saelens, Automated grey box model53
implementation using BIM and Modelica, Energy and Buildings 188-54
189 (2019) 209–225.55

[28] D. Jansen, E. Fichter, V. Richter, A. Barz, J. Brunkhorst, M. Dahncke,56
P. Jahangiri, C. Warnecke, P. Mehrfeld, M. Dirk, C. V. Treeck,57
L. Bruno, R. Otto, M. Technik, C. Kg, BIM2SIM -Development58
of semi-automated methods for the generation of simulation models59
using Building Information Modeling BIM2SIM – Development of60
semi-automated methods for the generation of simulation models61
using Building Information Modeling (2021) 2–4.62

[29] S. Pinheiro, R. Wimmer, J. O’Donnell, S. Muhic, V. Bazjanac,63
T. Maile, J. Frisch, C. van Treeck, MVD based information exchange64
between BIM and building energy performance simulation, Automa-65
tion in Construction 90 (2018) 91–103.66

[30] E. Kamel, A. M. Memari, Review of BIM’s application in energy67
simulation: Tools, issues, and solutions, Automation in Construction68

97 (2019) 164–180.69
[31] F. Jalaei, A. Jrade, An Automated BIM Model to Conceptually70

Design, Analyze, Simulate, and Assess Sustainable Building Projects,71
Journal of Construction Engineering 2014 (2014).72

[32] B. Welle, J. Haymaker, Z. Rogers, ThermalOpt: A methodology for73
automated BIM-based multidisciplinary thermal simulation for use in74
optimization environments, Building Simulation 4 (2011) 293–313.75

[33] K. U. Ahn, Y. J. Kim, C. S. Park, I. Kim, K. Lee, BIM interface76
for full vs. semi-automated building energy simulation, Energy and77
Buildings 68 (2014) 671–678.78

[34] I. Kim, J. Kim, J. Seo, Development of an IFC-based IDF converter for79
supporting energy performance assessment in the early design phase,80
Journal of Asian Architecture and Building Engineering 11 (2012)81
313–320.82

[35] G. B. Porsani, K. D. V. de Lersundi, A. S. O. Gutiérrez, C. F. Bandera,83
Interoperability between building information modelling (Bim) and84
building energy model (bem), Applied Sciences (Switzerland) 1185
(2021) 1–20.86

[36] A. Redmond, A. Hore, M. Alshawi, R. West, Exploring how infor-87
mation exchanges can be enhanced through Cloud BIM, Automation88
in Construction 24 (2012) 175–183.89

[37] O. Donnell, R. See, C. Rose, T. Maile, V. Bazjanac, P. Haves, SIM-90
MODEL: A DOMAIN DATA MODEL FOR WHOLE BUILDING91
ENERGY SIMULATION, in: SimBuild 2011 IBPSA Conference,92
2012. URL: https://escholarship.org/uc/item/70c7j74t.93

[38] B. Succar, W. Sher, A. Williams, Measuring BIM performance: Five94
metrics, Architectural Engineering and Design Management 8 (2012)95
120–142.96

[39] E. V. Fjerbæk, M. Seidenschnur, A. Kücükavci, K. M. Smith, C. A.97
Hviid, Coupling Modelica simulations and a Common Data Environ-98
ment for BIM (2023).99

[40] M. Wetter, GenOpt - A Generic Optimization Program, Seventh100
International IBPSA Conference (2001) 601–608.101

M Seidenschnur et al.: Preprint submitted to Elsevier Page 13 of 13

6.3 Paper III - An ontology to support flow system descriptions from design to operation of
buildings 105

6.3 Paper III - An ontology to support flow system
descriptions from design to operation of
buildings

Automation in Construction 134 (2022) 104067

Available online 9 December 2021
0926-5805/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

An ontology to support flow system descriptions from design to operation
of buildings

Ville Kukkonen a,b,*, Ali Kücükavci c, Mikki Seidenschnur c,d, Mads Holten Rasmussen e,
Kevin Michael Smith c, Christian Anker Hviid c

a Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
b Granlund, Helsinki, Finland
c Department of Civil Engineering, Technical University of Denmark, Copenhagen, Denmark
d Ramboll, Copenhagen, Denmark
e NIRAS, Allerød, Denmark

A R T I C L E I N F O

Keywords:
Building information modeling
HVAC
Semantic web
Ontology
Linked data

A B S T R A C T

The interoperability of information from design to operations is an acknowledged challenge in the fields of ar-
chitecture, engineering and construction (AEC). As a potential solution to the interoperability issues, there has
been increasing interest in how linked data and semantic web technologies can be used to establish an extendable
data model. Semantic web ontologies have been developed for the AEC domain, but an ontology for describing
the energy and mass flow between systems and components is missing. This study proposes the Flow Systems
Ontology (FSO) for describing the composition of flow systems, and their mass and energy flows. Two example
models are expressed using FSO vocabulary. SPARQL Protocol and RDF Query Language (SPARQL) queries are
performed to further demonstrate and validate the ontology. The main contribution consists of developing FSO as
an ontology complementary to the existing ontologies. Finally, the paper introduces a roadmap for future de-
velopments building on FSO.

1. Introduction

The stakeholders in the architecture, engineering and construction
(AEC) industry collaborate on complex, multidisciplinary projects that
span years and produce large quantities of information besides the
finished physical product. Since the introduction of Building Informa-
tion Modeling (BIM), the level of information in the models has
increased to support even more complex use cases and additional dis-
ciplines. While BIM authoring tools widely support the Industry Foun-
dation Classes (IFC) data model, which enables vendor-independent
information exchange, it has its challenges in terms of adaptability and
extensibility [1]. Further, the information storage and exchange are
generally based on static documents, which poses challenges such as
propagating changes in dynamically derived information [2].

In addition to the information produced during design and con-
struction, the increasing amount of data collection in building operation
and maintenance (O&M) has put pressure on improving data

interoperability between AEC stakeholders. Advancements in
computing and sensing technology as well as practical access to real-
time data of buildings have made data analytics increasingly appli-
cable in the O&M of buildings [3,4]. Recently, BIM models have been
used to inform the configuration and deployment of building manage-
ment services such as automated fault detection and diagnostics [5–7].
Although building automation system (BAS) metadata has been suc-
cessfully represented in IFC, there are still concerns as to whether IFC is
a suitable data model for representing information such as BAS control
and communication [8]. Additionally, as many existing buildings have
been designed and built without BIM, the deployment of building ser-
vices requires other, more lightweight formats for representing infor-
mation acquired from targeted buildings [9]. The lack of data
interoperability in BIM has contributed to a performance gap between
the constructed building and the BIM model [10].

The World Wide Web Consortium (W3C) with their academic and
industrial partners have published a set of standards that support the

* Corresponding author at: Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland.
E-mail addresses: ville.kukkonen@aalto.fi (V. Kukkonen), alikuc@byg.dtu.dk (A. Kücükavci), msei@ramboll.dk (M. Seidenschnur), mhra@niras.dk

(M.H. Rasmussen), kevs@byg.dtu.dk (K.M. Smith), cah@byg.dtu.dk (C.A. Hviid).

Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

https://doi.org/10.1016/j.autcon.2021.104067
Received 18 November 2020; Received in revised form 5 November 2021; Accepted 23 November 2021

Automation in Construction 134 (2022) 104067

2

implementations of semantic web technologies, with a vision of “web of
data” beyond the “web of documents”.1 The technologies include
Resource Description Framework (RDF) [11], SPARQL Protocol and RDF
Query Language (SPARQL) [12], and Web Ontology Language (OWL)
[13]. RDF is used for describing graphs of data as sets of triples con-
sisting of a subject, a predicate, and an object, as illustrated in Fig. 1.
SPARQL defines a language for formulating queries against graphs
expressed in RDF. Finally, OWL enables the definition of ontologies,
which codify vocabularies and support reasoning over RDF data by
defining the semantics of those vocabularies.

The AEC industry has seen an increasing interest in semantic web
technologies [1]. The technologies have been proposed as a foundation
for solving some of the interoperability issues, and for moving from
document-based collaboration towards network-based collaboration [1,
2]. Semantic web technologies, in particular ontology development and
their applications, have also been actively studied in the field of in-
dustrial manufacturing. Applications range from integrating legacy data
sources in the design and operation of manufacturing processes [14], to
supporting smart Product-Service Systems integrating information from
design, manufacturing, and operation of the delivered products [15].
Product-Service Systems are concerned with integrating service offer-
ings with delivered products in order to guarantee operation. While
similar information integration requirements and opportunities for new
value creation exist in the AEC industry, one challenge is that the in-
formation models are rarely focused on the operation phase. Embracing
linked data and ontologies is one approach to enable information models
that can support both design and operation [15].

Within the AEC industry, the W3C Linked Building Data (LBD)
Community Group2 has communicated the benefits of semantic web
technologies and linked data by delivering use cases and best practices
to the AEC industry since it was established in 2014. Efforts to improve
interoperability using the semantic web technologies include the
development of ontologies to describe common semantic vocabularies.
To this end, the community group has published ontologies for the AEC
industry. Other groups and researchers have also proposed ontologies
for various subdomains in different levels of abstraction [7,16–19].

While ontologies for describing certain aspects of the AEC domain
have been developed and published, a common standardized ontology
to describe the energy and mass flow between the components is
missing. Such an ontology is needed to support the linked data de-
scriptions of Heating, Ventilation and Air Conditioning (HVAC) systems.
This paper will describe a proposed ontology named Flow Systems
Ontology (FSO) to represent the composition of flow systems and their
energy and mass flow relationships. The proposed ontology is comple-
mentary to the ontologies already proposed by the community. FSO
enables lightweight, machine-understandable common descriptions of
the HVAC components’ relationships. The vision is to provide a common
foundation for describing flow systems in linked data. This would enable
extensions that focus on more specific information perspectives for ap-
plications such as hydraulic simulation suites, building energy perfor-
mance simulation (BEPS), building analytics, and diagnostics.

In this paper, two research questions are considered: do the currently
existing ontologies support descriptions of energy and mass flow con-
nections between systems and components such as seen in the building

systems domain; and if not, could such an ontology be created to support
industry use cases in design and operation of buildings? The work has
been initiated by industrial partners to address identified gaps in in-
formation exchange.

The prominent ontologies related to buildings and their systems are
briefly described in Section 2. Following that, the proposed Flow Sys-
tems Ontology is described in detail in Section 3, including alignments to
some of the existing ontologies. In Section 4, example models of a
heating system and an active chilled beam system will be expressed
using FSO vocabulary to demonstrate that FSO can describe a given flow
system. Additionally, examples of queries enabled by FSO will be
demonstrated as a means of validating the ontology and to simulate use
cases from both design and operation. In Section 5, the results are dis-
cussed and the research is placed in the context of a roadmap of trans-
forming existing information sources to linked data and using that
linked data to support information interoperability. Finally, conclusions
are presented in Section 6.

2. Background

This section describes a selection of the different ontologies devel-
oped for buildings and their systems.

An early effort in bridging the gap between BIM and semantic web
technologies is the ifcOWL ontology, which maps the IFC schema to
OWL [20]. While ifcOWL is expressed in OWL, it is a very direct trans-
lation from the EXPRESS schema of IFC, and is thus not optimized for
linked data and semantic web applications [21]. Specifically, it covers
multiple domains and uses intermediate aggregation objects which are
unidiomatic in RDF.

Building Topology Ontology (BOT) was developed by the W3C
Linked Building Data Community Group as a lightweight ontology for
describing the connections of zones and elements in a building [21].
BOT constitutes a core vocabulary for supporting multiple subdomains
within the AEC industries. It is designed to be extendable to more spe-
cific domains as needed. In short, BOT consists of a class taxonomy for
zones (building sites, buildings, storeys, and spaces), building elements,
which may have different spatial relationships to spaces, and interfaces
that qualify connections between zones or between zones and elements.

Brick [22] ontology describes building data points, and it originated
as a translation of the Haystack tagging framework to semantic web
technologies. While some flow relationships between components are
present in Brick, it focuses on classifying the different data points.
Because the ontology revolves around data points, the scope of the
terminology excludes passive components, such as pipes and ducts. The
ontology is not intended to describe entire flow systems, including the
distribution systems of ducts and pipes. As such, while it is a potential
part of a comprehensive description of an operational building, exten-
sions or other ontologies are required for describing the remaining
aspects.

The Smart Energy Aware Systems (SEAS) ontology developed in the
EUREKA ITEA 12004 SEAS project [23] consists of multiple modules. At
the core are several more abstract ontologies, of which the most relevant
in this context is the ontology describing systems and their connections.
Specifically, the systems and connections module of SEAS contains
classes and relationships to describe virtually isolated systems and their
composition and connections. However, the requirement that each
system may be a subsystem of at most one supersystem, enforced by
making seas:subSystemOf functional, is incompatible with over-
lapping systems common in HVAC systems. For instance, a heating coil
in an air handling unit can be considered a part of both the heating
system and the ventilation system, which cannot be expressed with the
SEAS systems module.

The latest version 3.1.1 of the Smart Applications REFerence
(SAREF) [24] with its extensions for building devices (SAREF4BLDG)
version 1.1.2 [25] and system typology patterns (SAREF4SYST) version
1.1.2 [26] published by the European Telecommunications Standards

Predicate

Subject Object

Fig. 1. An illustration of the RDF data model of subject, predicate, and object.

1 https://www.w3.org/standards/semanticweb
2 https://www.w3.org/community/lbd

V. Kukkonen et al.

Automation in Construction 134 (2022) 104067

3

Institute (ETSI) integrates lessons learned from SEAS. As mentioned
previously in this section, the SEAS systems are required to have at most
one supersystem. This requirement is not present in SAREF4SYST,
making it more suitable for describing overlapping systems. However,
SAREF4SYST is an upper-level ontology defining systems and their
connections, and is not specific enough to describe flow systems. SAR-
EF4BLDG, on the other hand, takes building devices from IFC and de-
scribes their taxonomy in OWL [25]. SAREF4BLDG constitutes a subset
of the domains described in ifcOWL. The translation incorporates the
existing device taxonomy from IFC while avoiding the issues of ifcOWL
discussed previously in this section. However, SAREF4BLDG does not
consider passive components such as pipes and ducts, nor the compo-
nent connections.

Real Estate Core (REC) is a modular ontology developed to support
data integration for smart buildings [27]. It is developed by a con-
sortium that includes major real estate companies. The purpose of REC is
to semantically describe a building in the operation phase from the
perspective of the building owner.

In summary, previous work includes several ontologies for
describing the devices, spaces, and data points in a building. While a
fictive Flow Systems Ontology was mentioned in [21], and an ontology
module with the same name was submitted as a pull request to SEAS,3

the work presented here represents a new development from the same
ideas. The FSO ontology proposed in this paper is complementary to the
outlined ontologies and is not intended to supersede any of them but
rather augment some of them. Additionally, SAREF4SYST describes
systems and their connections, providing a useful foundation or
“upper-level” ontology for describing flow relationships in building
systems. While FSO is not a direct extension to SAREF, alignments to
SAREF4SYST and SAREF4BLDG are proposed. Conceptually, FSO could
be considered a middle-level ontology between SAREF and more
domain-specific ontologies, such as REC.

3. Flow Systems ontology

Flow Systems Ontology is an ontology for describing the energy and
mass flow relationships between systems and their components, and the
composition of such systems. FSO consists of 14 classes and 23 object
properties and has a Description Logic expressivity of ALRI. Instances of
fso:System are virtual collections of components, which can be
assigned properties such as design requirements, while instances of
fso:Component are the tangible objects and devices that are involved
in the flow of energy or mass. While this study and the examples focus on
building systems, FSO is not intended to be strictly limited to those.
While not investigated, it seems feasible that the same abstractions
should be applicable in, for example, industrial process systems.

One way to conceptualize a building and its systems is to consider
them as two parallel hierarchies with some links between them: one for
the spaces, and one for the systems and components. Combining FSO
and BOT gives the vocabulary necessary for such a conceptualization, as
illustrated in Fig. 2.

The rest of this section provides an overview of the ontology and
introduces some of its capabilities. The latest version of the ontology is
documented online.4 First, in Section 3.1, competency questions are
enumerated to help describe the scope of the ontology. Next, the
ontology terms are described in two subsections: Section 3.2 introduces
system composition and component classification, and Section 3.3 in-
troduces the relationships between systems and components. After that,
some examples of the reasoning enabled by the ontology are shown in
Section 3.4. Finally, proposed alignments to other ontologies are
described in Section 3.5.

3.1. Competency questions

The competency questions (CQ) for FSO are listed below. Their
purpose is to illustrate and define the scope of the ontology by defining
questions a model should be able to answer when using FSO.

1 What components does a flow system contain?
2 What subsystems does a flow system contain?
3 Given a flow system, which components are sources or consumers of

mass or energy?
4 What components are in the same fluid loop as a given component?
5 What components are up/downstream of a component, and in what

order?
6 Given a system with components in a fluid loop, which components

are on the supply side and which are on the return side?
7 What kind of component is a given component?

The competency questions will be referred to when discussing the
specifics of the ontology. This will be done using a shorthand, such as
(CQ1) referring to the first competency question.

3.2. System composition and component classification

Fig. 3 shows an overview of the primary terminology of the ontology:
fso:System and fso:Component and their relations. Instances of
fso:System are virtual collections of components, which may have
properties assigned to them. Examples of potential system properties
include design specifications, such as supply and return water temper-
ature for a heating system. Systems may have subsystems via fso:
hasSubSystem (CQ2), and a system may be a subsystem of more than
one supersystem via the inverse property fso:isSubSystemOf. This
means that systems may overlap, sharing common subsystems. Sub-
properties of the fso:hasSubSystem can be used to describe a more
specific composition hierarchy (CQ6):

• fso:hasSupplySystem links a system to its logical “supply” sub-
system. For example, a ventilation system could denote all compo-
nents between the outside and a ventilated zone as a part of its supply
system.

• fso:hasReturnSystem links a system to its logical “return” sub-
system. For example, a ventilation system could denote all compo-
nents between the ventilated zone and the outside as a part of its
return system.

Additionally, fso:System has more specific subclasses that can be
used to denote them being the logical supply and return systems:

• fso:DistributionSystem is the class of systems that are used to
distribute mass and/or energy, linking other systems.

• fso:SupplySystem, a subclass of fso:DistributionSystem,
is the class of systems that are used to supply mass and/or energy to
downstream consumers.

• fso:ReturnSystem, a subclass of fso:DistributionSystem,
is the class of systems that are used to return mass and/or energy
from downstream consumers.

fso:Component and its subclasses are the tangible objects that
participate in the flow of mass or energy. A system may have compo-
nents via the fso:hasComponent property (CQ1), which has the in-
verse property fso:isComponentOf. The subclasses of fso:

Component are based on the IFC taxonomy of IfcDistribution-
FlowElement,5 and represent high-level component types applicable

3 https://github.com/thesmartenergy/seas/pull/21
4 https://w3id.org/fso

5 https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2/HTML/li
nk/ifcdistributionflowelement.htm

V. Kukkonen et al.

Automation in Construction 134 (2022) 104067

4

to different contexts. The component classes are defined as follows
(CQ7):

• fso:EnergyConversionDevice is defined as a “device that is
used to convert energy from one form to another, or move it from one
system to another”. Examples include devices such as motors and
heat exchangers.

• fso:Fitting is defined as a “component used to connect segments
to other segments, or to other components”, with examples such as
pipe junctions.

• fso:FlowController is defined as a “device that has the potential
to control the flow in a network”. Examples include valves and
dampers.

• fso:FlowMovingDevice is defined as a “device used to induce
movement in a network”, such as pumps and fans.

• fso:Segment is defined as a “component used to enable the pas-
sage of mass or energy”. That is, pipes, ducts, and cables.

• fso:StorageDevice is defined as a “device used to store mass or
energy”, such as a battery or a tank for holding water.

• fso:Terminal is defined as “a device through which a system in-
teracts with the environment”. Examples include air terminals,
heating or cooling terminals, and water taps.

• fso:TreatmentDevice is defined as “a device that removes
something unwanted from the matter flowing through it”, with ex-
amples such as air filters.

These abstract classifications of components together with the flow re-
lationships enable a variety of use cases, which will be demonstrated in
Section 4. If gaps in the classifications are identified by future use cases,
the component classes can be revised to account for those.

Components can be asserted to be sources or consumers of systems,
denoting the relative directions of energy or mass flows (CQ3). Such
relationships can be useful for use cases that involve heating or cooling
demand calculations. This is achieved with the following properties:

• fso:hasSourceComponent links a system to a component that
acts as the source of energy or matter into that system. For example, a
heating system may contain a heat exchanger that is connected to a
district heating loop as an energy source.

• fso:hasConsumerComponent links a system to a component that
acts as a consumer of energy or matter from that system. For
example, a heating system would have radiators that consume en-
ergy by transferring heat to the indoor air of a room.

It is worth noting that a component being a source or a consumer is not
an intrinsic property of the component, but rather a relation to a system.
For example, a heating coil in a ventilation system will be a source of
heat for the ventilation system, but a consumer of heat for the heating
system. Similarly, a fan in the ventilation system could be considered a
consumer of the electrical network, while not having an assigned source
or consumer role in the context of the ventilation system.

3.3. Flow relationships

Besides system composition, FSO introduces a vocabulary to describe
the flow of energy and matter between the systems and components. A
generic fso:connectedWith property connects components or sys-
tems, and the subproperties can be used to denote more specific re-
lationships in terms of energy and mass flows. An overview of the
property hierarchy under fso:connectedWith is shown in Fig. 4. The
first two layers, or all properties ending in With, are symmetrical, while
their subproperties ending in To or From are not.

In particular, the fso:exchangesFluidWith subproperty of fso:
connectedWith has two layers of specificity. The property fso:
feedsFluidTo and its inverse fso:hasFluidFedBy denote the flow
order of fluid in a system. fso:suppliesFluidTo and fso:
returnsFluidTo denote the logical supply and return of fluid from a
component or system to another (CQ5 & CQ6), and are subproperties of
fso:feedsFluidTo. These properties can be used to break down a
fluid loop of components and systems feeding to another to two sides: a
supply and a return side. Note, however, that a fso:supplies-
FluidTo property path from system A to B to C does not necessarily
mean that it is the same fluid flowing through A and C. For systems like
water to water heat exchangers, it might be intuitive to denote that the
system is being supplied from one side while it itself supplies another

bot:Building fso:System fso:System

bot:Storey

bot:Space

bot:Storey

bot:Space

fso:Component fso:Component fso:Component

Fig. 2. Buildings can be conceptualized as two parallel tree hierarchies and described using BOT for spaces and FSO for systems. The building can be decomposed
into storeys and spaces, while the systems can be decomposed into subsystems and components. Additionally, there exist horizontal relationships between the el-
ements. An example of a horizontal relationship between an fso:Component and a bot:Space could be the space containing a radiator (bot:con-
tainsElement), and the radiator transferring heat to the space (fso:transfersHeatTo). Two instances of fso:Component would be connected with a
subproperty of fso:connectedWith, such as a duct supplying an air terminal (fso:suppliesFluidTo).

System

Component

hasSubSystem

hasComponent

connectedWith

connectedWith

Fig. 3. Illustration of the top-level classes and properties in FSO.

V. Kukkonen et al.

Automation in Construction 134 (2022) 104067

5

side, even though in reality the fluid is in two separate loops and hence
completely separated. However, in order to be able to follow individual
fluid loops (CQ4), such systems should be represented as multiple
components. Continuing with the water to water heat exchanger
example, a heat exchanger has a primary and a secondary side. FSO
includes reasoning mechanisms that help inferring the implicit knowl-
edge in these situations. This will be further elaborated in Section 3.4.

Using only fso:feedsFluidTo in SPARQL property path expres-
sions with the zero-or-more or one-or-more syntax has the problem that
it goes through the whole loop, as illustrated in Fig. 5. For example, in a
system with a heat exchanger feeding fluid to two radiators that feed
fluid back to the heat exchanger, going either forward or backward
through fso:feedsFluidTo will connect the radiators. FSO in-
troduces the more specific properties fso:suppliesFluidTo and
fso:returnsFluidTo to break up the loops and accommodate this
problem.

The heat transfer connections have a hierarchy as well. fso:
exchangesHeatWith is a subproperty of fso:connectedWith, and
in turn has two directional subproperties that are inverses of each other:
fso:transfersHeatTo and fso:transfersHeatFrom. While the

property fso:exchangesHeatWith is symmetric, the subproperties
are not.

Finally, the ontology defines a third kind of connectivity, fso:
exchangesElectricChargeWith. While its subproperties have not
been detailed at this stage, the property has been included as it is
recognized to be similar to, but different from, the two previously
defined connections. Like the other direct subproperties of fso:con-
nectedWith, it too is defined as a symmetric property.

3.4. Reasoning examples

In addition to explicit assertions, semantic web technologies enable
deductive reasoning to produce new assertions. This section shows some
examples of the reasoning that FSO enables.

Besides components having connections to other components,
system-level connections can be inferred from the system composition
and component connections. The flow relationship properties discussed
in Section 3.3 utilize property chain axioms to imply the existence of
system-level connections. If there exists a component that is connected
to another component with e.g. fso:suppliesFluidTo, and those

fso:connectedWith

fso:exchangesElectric
ChargeWith

fso:exchangesFluid
With

fso:feedsFluid
To

fso:hasFluid
FedBy

fso:hasFluid
SuppliedBy

fso:supplies
FluidTo

fso:returns
FluidTo

fso:transfers
HeatFrom

fso:transfers
HeatTo

fso:hasFluid
ReturnedBy

fso:exchangesHeat
With

Dashed boxes are
symmetric properties

Fig. 4. Illustration of the properties describing fluid and energy flow relationships.

fso:feedsFluidTo

fso:feedsFluidTo

fso:feedsFluidTo fso
:fe

ed
sF

lu
id

To

fso
:fe

ed
sF

lu
id

To

fso:feedsFluidTo

Fig. 5. Illustration of fso:feedsFluidTo path connecting two branches of a fluid loop.

V. Kukkonen et al.

Automation in Construction 134 (2022) 104067

6

components are part of different systems, then those two systems are
also connected by fso:suppliesFluidTo, as shown in Fig. 6. This
means that if a pipe in a heating system supplies fluid to a heating coil
that is also a part of an air handling unit, then the heating system can be
inferred to have a fso:suppliesFluidTo connection to the air
handling unit. Note, that because a component can be a component of
many systems, overlapping systems are inferred to have these relation-
ships. Additionally, these property chain axioms make the properties
reflexive for the systems, i.e. the system on both ends of the property
chain can be the same, leading to a self-referential object property to be
inferred.

As was mentioned in Section 3.3, systems such as water to water heat
exchangers can be modeled as two components to allow tracking of
specific fluid circuits. Modeling the heat exchanger as a single compo-
nent and connecting it with fluid supply upstream and downstream
would result in the model appearing as if all components upstream of the
heat exchanger also supply fluid to the components downstream of the
heat exchanger. If the heat exchanger is instead modeled as a system
with two components, a primary side and a secondary side with an fso:
transfersHeatTo relationship, this confusion can be avoided. An
example of this is illustrated in Fig. 7. The connection between the sides
is shown as fso:exchangesHeatWith, as it is the symmetrical
superproperty of fso:transfersHeatTo, and will be asserted in both
directions by the reasoner.

With the model as shown in Fig. 7, the reasoning combined with
SPARQL property path queries enable tracking the fluid and heat flows.

Finding the components that are in the same fluid circuit as, for
example, the component supplying the primary side of the heat
exchanger, is achieved by following the path fso:supplies-
FluidTo*/fso:returnsFluidTo*. The * in a path expression de-
notes zero or more matches, and the / denotes a sequence path. If a
different view of the network is desired, including those on the other
side of such thermal connections, the property fso:exchange-
sHeatWith could be included in the path.

Additionally, with the model as shown in Fig. 7, the reasoner will
infer a system-level connection between the heat exchanger system and
the systems around it, as discussed earlier in this section. This means
that the heat exchanger system can be inferred to e.g. supply fluid to a
heating system. Similarly, if the primary side is a component of a district
heating system, it is inferred to transfer heat to the heating system.

3.5. Alignments

SAREF4SYST introduces an ontology pattern for modeling systems
and their connections. The alignment of FSO to SAREF4SYST is done by
asserting the relevant FSO classes and properties as subclasses and
subproperties of their more general counterparts in SAREF4SYST, as
shown in Table 1. In particular, both fso:System and fso:Compo-
nent are aligned as subclasses of s4syst:System.

FSO component taxonomy is largely based on the same IFC taxon-
omy as SAREF4BLDG, so the alignments are straightforward. However,
SAREF4BLDG only considers devices and not passive elements, such as
segments and fittings. Additionally, SAREF4BLDG devices are specific to
buildings, while FSO does not place such requirements. As such, the
classes from SAREF4BLDG are subclassed from FSO, as shown in Table 2.

asserted
inferred
component
system

fso:suppliesFluidTo

fso:suppliesFluidTo

fso:hasCom
ponent

fso:hasCom
ponent

Fig. 6. Illustration of system connections inferred from component
connections.

fso:exchangesHeatWith

fso
:su

pplie
sF

luidTo

fso:returnsFluidTo

fso:returnsFluidTo

fso
:su

pplie
sF

luidTo

fso:hasCom
ponentfso

:has
Com

ponen
t

component
system

g

Primary side Secondary side

Fig. 7. Example of a heat exchanger modeled as two separate components exchanging heat with each other.

Table 1
Alignments between FSO and SAREF4SYST.

Class / property Subclass/subproperty of

fso:System s4syst:System

fso:Component s4syst:System

fso:connectedWith s4syst:connectedTo

fso:hasSubSystem s4syst:hasSubSystem

fso:isSubSystemOf s4syst:subSystemOf

fso:hasComponent s4syst:hasSubSystem

fso:isComponentOf s4syst:subSystemOf

V. Kukkonen et al.

Automation in Construction 134 (2022) 104067

7

4. Example models and use case demonstrations

In this section, example models and use cases are presented to
demonstrate the use of FSO. The Turtle and SPARQL files of the exam-
ples are openly available in Zenodo [28]. The namespaces for prefixes
used throughout the paper are shown in Table 3.

As FSO itself only defines a core vocabulary for describing flow
systems in terms of abstract component classes and their relationships,

the use cases depend on the use of other ontologies. This demonstrates
that while FSO itself does not define all the vocabulary for the use cases,
semantic models of the flow systems form structural skeletons that can
be augmented with further information.

First, Section 4.1 introduces an example model of an active chilled
beam system for one room in order to demonstrate overlapping systems.
Section 4.2 describes an example model of a radiator heating system for
several rooms that is used later in the use case demonstrations in Sec-
tions 4.3 and 4.4. Section 4.3 presents use cases related to the design of
flow systems, followed by use cases from the operation of such systems
in Section 4.4.

4.1. Active chilled beam system

This section introduces an active chilled beam system example
model. Active chilled beam systems combine heating and cooling with
ventilation. In this example model, the interface between cooling and
ventilation in an active chilled beam has been illustrated to demonstrate
the expressiveness of FSO. In addition to FSO, BOT is used with the
prefix bot:.

Fig. 8 illustrates the system in a schematic annotated with FSO ter-
minology. An active chilled beam has a heat exchanger and an air
supply, and is modeled as an fso:System consisting of two instances of
fso:Terminal. The heat exchanger is a terminal connected to the
cooling system, and the air supply is a terminal connected to the
ventilation system. The heat exchanger transfers heat from the room,
and the air supply supplies fluid, i.e. air, to the room. The cooling coil in
the ventilation supply is modeled as two components with a heat
transfer connection: the cooling coil itself is supplied with fluid by the
cooling system piping, and the cooling coil “air side” is supplied with
fluid by the ventilation system.

Table 2
Alignments between FSO and SAREF4BLDG.

Class Subclass of

s4bldg:DistributionFlowDevice fso:Component

s4bldg:EnergyConversionDevice fso:EnergyConversionDevice

s4bldg:FlowController fso:FlowController

s4bldg:FlowMovingDevice fso:FlowMovingDevice

s4bldg:FlowStorageDevice fso:StorageDevice

s4bldg:FlowTerminal fso:Terminal

s4bldg:FlowTreatmentDevice fso:TreatmentDevice

Table 3
Namespaces for prefixes used in the paper.

Prefix Namespace

fso https://w3id.org/fso#

bot https://w3id.org/bot#

s4bldg https://saref.etsi.org/saref4bldg#

s4syst https://saref.etsi.org/saref4syst#

rdfs http://www.w3.org/2000/01/rdf-schema#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

ex https://example.com/ex#

inst https://example.com/inst#

CC

CB

<Pipe-1>

<Pipe-5>

<Pipe-6>

<Pipe-7>

<Pipe-8>

<Pipe-9> <Pipe-10>

<Pipe-11>

<Duct-1>

<Duct-2>

<Pipe-2>

<Pipe-3>

<Pipe-4>

<Fitting-1>

<Fitting-2>

<Fitting-3>

<Fitting-6>

<Fitting-8><Fitting-7>

<Beam-1-HeatExchanger>

<Beam-1-SupplyVent>

<ReturnVent-1>

<Fitting-5>

<Pump-1>

<Pump-2>

<RegulationValve-1>

<RegulationValve-2>

<DP-RegulationValve-1> <DP-RegulationValve-2>

<Room-1>

ROOMHEAT PUMP

<HeatPump-1>

<CoolingCoil-1>

<SupplyFan-1>

<ReturnFan-1>

<CoolingBlock-1>

fso:suppliesFluidTo

fso:returnsFluidTo

fso:transferHeatTo

Fig. 8. Illustration of the active chilled beam system example model as a schematic with FSO terms.

V. Kukkonen et al.

Automation in Construction 134 (2022) 104067

8

ROOM2ROOM1

ROOM4

ROOM2ROOM1

ROOM4

<Pipe-1>
<Pipe-2>

<Pipe-3>

<Fitting-1>

<Fitting-2>

<Fitting-3>

<Fitting-13>

<Fitting-12>

<Fitting-11>

<Fitting-10>

<Fitting-4>

<Terminal-4>
<Room-3>

<Pump-1>
<HeatExchanger-1>

fso:suppliesFluidTo

fso:returnsFluidTo

<Pipe-4>

<Pipe-5>

<Pipe-6>
<Pipe-24>

<Pipe-23>

<Pipe-22>

<RegulationValve-7>

<RegulationValve-6>

<RegulationValve-1>

<Pipe-21>

<Pipe-20>

<Pipe-19>

<Pipe-18><Pipe-17>

ROOM3

fso:transfersHeatTo

Fig. 9. Illustration of the heating system example model as a schematic with FSO annotations. While only a subset of the schematic is annotated here, a similar
approach has been followed for the rest of the model to express the whole schematic in RDF. The complete model is used in the use case demonstrations.

V. Kukkonen et al.

Automation in Construction 134 (2022) 104067

9

The system composition is not illustrated in Fig. 8, but is shown in
Listing 1. Four instances of fso:System are modeled: one for the
ventilation system, one for the cooling system, one for the cooling coil
consisting of the liquid and air sides, and one for the active chilled beam
consisting of two terminals.

Listing 1. System composition of the example active chilled beam model
expressed in Turtle syntax.
4.2. Heating system

This section describes an example model of a heating system used in
the use case demonstrations in Sections 4.3 and 4.4. An illustration of
the model is shown in Fig. 9.

The example model depicts a simple heating system in a two-storey
residential building. There is a heat exchanger (fso:Ener-
gyConversionDevice) supplying heat to six radiators (fso:Ter-
minal) in four rooms (bot:Space). Rooms 1 and 4 have two radiators
each, while rooms 2 and 3 have one radiator each. The fluid is circulated
by a pump (fso:FlowMovingDevice) through various pipe segments
(fso:Segment) connected with various fittings (fso:Fitting) such
as tees and elbows. For balancing, the system has multiple manual
balancing valves (fso:FlowController).

The fluid flow is described by connecting the components with fso:
suppliesFluidTo on the supply side, i.e. before the radiators, and
fso:returnsFluidTo on the return side, i.e. after the radiators.
Additionally, the rooms are modeled to contain the radiators with bot:
containsElement, while simultaneously the radiators are modeled to
transfer heat to the rooms with fso:transfersHeatTo.

The composition of the system is not shown in Fig. 9. This is
implemented as shown in Listing 2. There is a top-level system inst:
HeatingSystem-A with the supply system inst:A-S and return
system inst:A-R. The subsystems have the concrete components. The
radiators and the heat exchanger are components of both the supply and
the return systems.

Listing 2. Composition of the heating system example model expressed in
Turtle syntax.
4.3. Design phase

In the design of flow systems in buildings, there are many subsystems
to keep track of for the individual engineer. As mentioned in Section 1,
there is a lack of data interoperability. This means that the logic of
separate flow systems (ventilation, cooling, heating, etc.) is often
interpreted differently by specific disciplines (ventilation designer,
cooling designer, heating designer), though they are correlated with
each other. Such different interpretations create calculation in-
consistencies between different model elements. In the following use
cases, examples are carried out, to display the potential use for me-
chanical designers.

4.3.1. Querying for systems and subsystems
HVAC systems are complex in nature. In large projects, BIM models

of HVAC systems consist of possibly hundreds of subsystems. This means
that it can be a laborious task to validate that the integrity and the logic
between subsystems have been maintained in the modeling process.

Based on the heating system introduced in Section 4.2 a query can be
formulated to return any fso:System and their supersystems, along
with a string representation of the classes. This is shown in Listing 3.

Listing 3. Querying for systems and subsystems.

As seen in Table 4, inst:HeatingSystem-A has two subsystems
inst:A-S and inst:A-R. This means that for the heating system,
there exist two subsystems of the heating system, which is the supply

Table 4
Result of running query in Listing 3 on the heating system example model.

?system ?superSystem ?types

inst:A-S inst:

HeatingSystem-A

System SupplySystem

DistributionSystem

inst:A-R inst:

HeatingSystem-A

System DistributionSystem

ReturnSystem

inst:

HeatingSystem-

A

System

V. Kukkonen et al.

Automation in Construction 134 (2022) 104067

10

and return system. The result in Table 4 may not seem useful for this use
case, since there are only two subsystems. However, large projects could
consist of hundreds of subsystems, which means that it could prove
useful to generate an overview to ensure modeling integrity.

4.3.2. Querying for components that serve a room
With large BIM models displayed in 3D, it can be hard to generate a

visual overview of the integrity of a mechanical system. In some cases,
the designer will only want to see specific flow components and their
connections. Whilst visualizations are usually available in existing
model viewers, the user does not have full control of which methods are
used to display the connection of specific components.

Listing 4 matches all components that serve a specific room and
belong to a specific system.

Listing 4. Querying for components of a specific system supplying a spe-
cific room.

Running the query of Listing 4 returned 27 of the 76 components in
the heating system example model shown in Fig. 9. 5 of the components
are displayed in Table 5. This use case demonstrates a way to query
components by their relationships to systems and indirect connections to
zones. This could be used to, for example, support customizable filtering
options in a model viewer.

4.3.3. Calculating the mass flow rate of a system
Part of the mechanical designer’s responsibility is to size the flow

systems. As mentioned in Section 4.3, the methods used to make the
calculations often vary with different designers, meaning that there are
calculation inconsistencies between different designers. Therefore, the
query in Listing 5 demonstrates a way to calculate the flow rate directly
in SPARQL. The mass flow rate formula is written as:

ṁ = Φ
/
(cp × ΔT) (1)

where ṁ is the mass flow rate [kg/s]; Φ is the heating/cooling demand
[W]; cp is the specific heat capacity [J/(kg K)]; ΔT is the temperature
difference [K].

The query in Listing 5 returns the supply side mass flow rate demand,
converted to kg/h, for each HVAC component based on the downstream
heating demand.

Listing 5. Calculating the mass flow rate of a system.

Listing 5 has a nested SELECT clause. The inner SELECT subquery is
evaluated first, to divide the heating demand of each room equally to the
terminals located inside the room. In Table 6, the result is shown for 5
out of 27 components.

By running the query in Listing 5, the mass flow rate for each supply-
side component was calculated. This could be used to size the heating
system piping and components. Whilst this calculation can be done by
hand, the use case demonstrates the potential for running calculations in
SPARQL queries. If advanced algorithms were needed to run a flow
simulation, this approach could be extended to supply input to an
external application, as discussed later in Section 5.

4.4. Operations phase

In building operation and maintenance, being able to detect – or
possibly even predict – faults and other issues relies on monitoring the
various variables describing the state of the systems. These variables, if

Table 5
Result of running query in Listing 4 on the heating system example model.

?components

inst:HeatExchanger-1

inst:Pipe-1

inst:Pump-1

inst:Fitting-3

inst:Pipe-6

…

Table 6
Result of running query in Listing 5 on the heating system example model.

?element ?downstreamHeatDemand ?massflow

inst:HeatExchanger-1 5900 254.07
inst:Pipe-1 5900 254.07
inst:Pump-1 5900 254.07
inst:Fitting-3 3800 163.64
inst:Pipe-6 800 34.45
…

V. Kukkonen et al.

Automation in Construction 134 (2022) 104067

11

at all observable, may be either directly observable and have actual
readings available, or they may be indirectly observable and estimated
from the available observations with so-called virtual sensors. One
obstacle for setting up continuous monitoring of system variables in
buildings is the cost of setup, which is in part caused by varying naming
schemes of data points [4]. Using a flow model to describe the re-
lationships of components and connecting the available data points to
the components could support various monitoring applications. The
following examples show simplified queries supporting use cases from
building operations and maintenance.

4.4.1. Querying for flow control components in the same loop
Listing 6 shows an example of a query for retrieving all the flow-

altering components in the same loop as a chosen radiator. This could
be useful for diagnosing anomalous room temperatures, assuming the
components have some control values available. It also showcases a
useful pattern that can find all the components in the same loop as a
given target using the concepts of fluid supply and return with SPARQL
property paths.

Listing 6. Querying for flow affecting components in the same loop as a
given target.

The result of running the query on the heating system are shown in
Table 7. The result shows that there is one pump and three valves in the
same loop as the given radiator. Each of these devices could have more
information attached to them, such as operating manuals or data labels.
This kind of query could be particularly useful if a component, such as a
radiator, in the loop is not working as expected. This could be caused by
another faulty component in the same loop, such as a stuck or fluctu-
ating valve.

4.4.2. Querying the upstream components
When diagnosing faults in flow components, it is often useful to

know which components are found upstream of the component with
anomalous behavior. For example, if a room is consistently too cold, it
would seem obvious to take a look at the radiator in the room. While a
single radiator may be faulty, the fault could also lie upstream of the
radiator, possibly causing symptoms in other radiators as well.

An example of how the FSO object properties can be used to query for
components upstream of a given component is shown in Listing 7. This
information could be useful for an automatic diagnosis tool, or a manual
diagnosis user interface.

Listing 7. Querying components upstream of a specific radiator, with a dis-
tance for ordering.

The result of the query in Listing 7 is shown in Table 8. In an
application, if the upstream components had, for example, pressure or
temperature observations attached to them, those could be visualized
and analyzed to discover potential problems.

4.4.3. Calculating the average room temperature error by valve
During the life cycle of a heating system, it is usually necessary to

balance the pressure of the liquid circulating in the radiators to ensure
occupant comfort and to optimize the heating system’s energy con-
sumption. To monitor that the system is working as intended, it can be
useful to track the average temperature error of spaces served by a
specific balancing valve.

After augmenting the heating system example model with naive
representations of room temperature sensor readings and setpoints,
querying the average temperature error of rooms grouped by flow
controllers in the same loop could be done as shown in Listing 8. While
an actual application likely would not store the values as queried in
Listing 8, the query could, for example, be modified to retrieve identi-
fiers used as keys for the sensors and setpoints in another storage system
more suited for time series data. Additionally, while the example cal-
culates the average in SPARQL, it could be simply retrieving the data
point identifiers for an analysis tool to perform more advanced analysis.

Listing 8. Average room temperature error grouped by valve device.

A similar approach could be used to discover the average tempera-
ture error for each heat source in a more complex system with multiple
heat sources.

Table 7
Result of running the query in Listing 6 on the heating system example model.

?ctrlComp ?kind

inst:Pump-1 fso:FlowMovingDevice

inst:RegulationValve-1 fso:FlowController

inst:RegulationValve-7 fso:FlowController

inst:RegulationValve-6 fso:FlowController

V. Kukkonen et al.

Automation in Construction 134 (2022) 104067

12

The result of running the query in Listing 8 on the heating system is
shown in Table 9. With the example values, some of the valves have an
average error of 0 degrees while one has an error of up to 2.0 degrees.
This could indicate an imbalance in the heating system.

4.4.4. Projecting to a simplified logical topology
It is often useful to consider the logical topology of the components in

a flow system, disregarding the actual flow segments and fittings that
make up the physical flow connections. This kind of simplified model
could also be the best thing available when modeling a building with no
BIM model.

One way to project a detailed model to a more simple one is the
CONSTRUCT query form which constructs a new graph. These con-
structed graphs could be used similarly as materialized views in rela-
tional databases, where the data is projected into a certain format for
specialized queries, simplifying and improving the efficiency of those
queries. For example, dropping the segments and fittings could be useful
for fault detection, where the focus is on the active components. An
example query that constructs a graph of the fluid supply and return
connections between components without flow segments and fittings is
shown in Listing 9.

Listing 9. CONSTRUCT query for a simplified graph.

The result of running the query in Listing 9 is shown in Fig. 10 as a
visual graph, manually organized for ease of reading. The result shows
that the fluid flows from a central heat exchanger through a pump to all
the radiators. Additionally, it can be seen that each radiator has a valve
on the return side and that the radiators are grouped into sets of three
with second valves. Again, further information could be linked to the
components, supporting use cases such as fault diagnosis.

5. Discussion and future work

The example models and the example queries described in Section 4
illustrate simplified use cases. They are an attempt at capturing the es-
sentials of more complex, real-world use cases without going into detail.
The models and queries show that fluid circuits, such as used in heating,
can be isolated and analyzed using the component relationships. They
also allude to the potential in expressing and tracking the composition of
systems, which is useful as the number of systems increases. For actual
extended use cases, more specific information about the model would be
required, and thus the vocabulary for describing that information would
be required as well. Examples of further information include product
details, such as pipe materials and dimensions, as well as functional
requirements for spaces, such as ventilation rates. For expressing this
information, other ontologies alongside FSO would need to be used or
possibly created.

Some of the existing ontologies for the AEC industry that FSO com-
plements were discussed in Section 2, and include the likes of BOT [21]
and SAREF [24]. In addition to these, other ontologies relevant to the
BIM and linked building data context include Ontology for Property
Management (OPM) [2] for managing properties and Ontology for
Managing Geometry (OMG) [31] for managing geometry descriptions. It
is worth noting that while BIM tools generally view elements, such as

Table 9
Result of running the query in Listing 8 on the heating system
example model augmented with room temperatures and
setpoints.

?ctrlCmp ?avg

inst:RegulationValve-7 2.0
inst:RegulationValve-3 1.5
inst:RegulationValve-4 1.5
inst:RegulationValve-2 1.25
inst:RegulationValve-1 1.125
inst:RegulationValve-5 1.0
inst:RegulationValve-6 1.0
inst:RegulationValve-8 0.0
inst:RegulationValve-9 0.0

Table 8
Results of running query in Listing 7 on the heating system
example model.

?upstreamComp ?distance

inst:Pipe-6 1
inst:Fitting-4 2
inst:Pipe-5 3
inst:Fitting-3 4
inst:Pipe-4 5
inst:Fitting-2 6
inst:Pipe-3 7
inst:Fitting-1 8
inst:Pipe-2 9
inst:Pump-1 10
inst:Pipe-1 11
inst:HeatExchanger-1 12

V. Kukkonen et al.

Automation in Construction 134 (2022) 104067

13

flow components, as 3D objects with particular attributes, in the linked
data approach the geometry of an object is an attribute among others.

Other common representations for information similar to covered by
FSO and used in the HVAC and industrial process domains include
Process Flow Diagrams (PFDs). While PFDs are a primarily graphical
representation, FSO is a computer-interpretable vocabulary for repre-
senting some of the information that would be required to generate a
PFD. Additionally, while there is significant overlap between the infor-
mation contents, FSO needs to be combined with other ontologies to
represent all the information representable in PFDs. Similarly, a PFD will
generally not include all information representable by FSO.

5.1. Limitations of the study

One limitation of the research presented is the lack of use of a formal
ontology development methodology, which is something that has been
called for in relation to previous ontology developments [9]. Although
no formal, structured method is used, some of the ontology engineering
best practices have been implicitly followed. Firstly, the existing on-
tologies have been researched and their reuse has been considered,
resulting in some alignments already mentioned in Section 3.5. Sec-
ondly, there are efforts at validating the ontology, although the extent of
validation is still limited, and more structured validation should be
carried out in future work. Finally, competency questions are used to
explicate the scope of the proposed ontology.

Another limitation is that while expert knowledge has been used in
developing the scope and terms of the ontology, the number of

participants is limited mainly to the authors. Besides the component
classes based on IFC, the authors’ own experience from different fields
has been the primary source of definitions for the ontology and is
something that needs to be opened to further refinement by additional
domain experts.

Additionally, while the ontology is theorized to support descriptions
outside the HVAC domain, these were not investigated. This means that
there are likely unknown limitations when applying to other flow system
domains.

Further, while FSO is intended to support various applications,
including simulations and monitoring, this paper does not use real data
from a particular tool. Once real data is included from a tool such as an
HVAC simulation, then the paper needs to go into specific details of that
application domain, ruling out other domains. Demonstrating the use of
FSO in integrating real-world applications would require further –
potentially application-specific – ontology and software tooling devel-
opment. The need to develop new tooling and combine FSO with other
ontologies for practical use cases is discussed in Section 5.2 and illus-
trated in Fig. 11. The proposed ontology only contains the terminology
for describing the topology of a flow system in terms of (sub-)system
composition, component classifications, and flow connections. It, by
design, does not contain the terminology for describing the properties of
components or the instrumentation of HVAC processes. As such, FSO
alone is not sufficient for describing the inputs or outputs of simulation
tools, nor the instrumentation of building automation systems. The use
case descriptions presented in Section 4 use imaginary complementary
ontologies and data to showcase the potential for integrations on a

Fig. 10. Example of a simplified logical topology of component connectivity resulting from the CONSTRUCT query in Listing 9. The view was constructed by running
the query in GraphDB and manually arranging the nodes for legibility.

V. Kukkonen et al.

Automation in Construction 134 (2022) 104067

14

conceptual level.
Finally, as briefly mentioned above, it is worth highlighting that the

validation has been mostly done using two example models with
manually written triples, described in Section 4. To more extensively
evaluate the expressiveness, computational characteristics, and poten-
tial shortcomings of the ontology, larger models from actual design
processes should be used. This would require the development of a tool
that is capable of converting a format such as IFC into FSO annotated
linked data.

5.2. Roadmap for further development

The development of FSO is envisioned as a part of a three-stage
process, pointing to future applications of FSO and further research in
supporting information interoperability for flow systems. The stages are
illustrated in Fig. 11 and described in more detail next.

Stage 1 is the development of an abstract ontology for describing flow
systems, as done in this article. The concrete use of FSO in future ap-
plications would be to annotate information either directly, or via more
domain-specific ontologies extending FSO, thus enabling reasoning and
queries as illustrated in this study. The current version of FSO provides a
stepping stone on the way to utilizing semantic web technologies in the
context of flow systems such as in HVAC systems, which supports
improving data interoperability [1]. The abstract definitions leave room
for extending into concrete use cases, allowing alignment via a common
upper terminology. The development of the ontology is the first stage in
the process as it includes implicit considerations for the use cases
downstream and the information available in various sources common
in the industry. However, future developments in either direction will
inform the refinement of the ontology itself.

Stage 2 consists of the development of tools to convert IFC into linked
data representations annotated with FSO. Tools for converting IFC to
RDF with IFCOWL exist [29], as well as tools built on top of it for

converting to the ontologies developed by the W3C LBD Community
Group [30]. This stage is important for enabling the utilization of BIM
models created with current modeling practices. While linked data
representations of the information are unlikely to replace IFC files in the
industry, tools for consistently and transparently breaking the infor-
mation out of the IFC document context have value for downstream use
of the information. Therefore, the primary avenue of research should be
integrating IFC into the pipeline of information flow to future applica-
tions that use FSO.

Stage 3 involves the development of more specific ontologies
extending FSO, and tools such as parsers bridging the gap from linked
data representations to existing and new industry applications. Some of
the potential applications that either require or could benefit from the
knowledge of flow system relationships include: indoor climate simu-
lations; numerical flow analysis; automated fault detection and diag-
nosis; and sizing of Mechanical, Electrical and Plumbing (MEP) systems.
The development of these use cases can be used to further inform the
development of FSO, creating a feedback loop for future iterations. In
particular, the authors are working to apply FSO as a part of a new
hydraulic simulation process, and to provide a data model for fault
detection in HVAC systems.

6. Conclusions

Linked data and semantic web technologies have been gaining in-
terest within the architecture, engineering and construction (AEC) in-
dustry, which has brought about the development of multiple ontologies
within the domain. This study summarized the prominent ontologies in
the AEC field and showed that there is no ontology for the description of
the mass and energy flow relationships of systems. To fulfill this gap, this
research introduced a new ontology for describing the flow systems in
terms of their composition and mass and energy flow relationships. To
this extent, the study enumerated the competency questions driving the

Fig. 11. Illustration of the envisioned workflow for supporting information interoperability, and the planned 3 stages of research focus: 1 (grey), 2 (blue), 3 (red).
From left to right, the information sources are transformed into linked data and integrated using FSO and other ontologies, including both existing ontologies and
potential future extensions to those. The linked data can then be converted into formats expected by existing tools, and new tools can be developed utilizing the
linked data directly. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

V. Kukkonen et al.

Automation in Construction 134 (2022) 104067

15

development of the ontology, and related the term definitions to their
relevant competency questions. The proposed ontology was demon-
strated and validated using example models of a heating system and an
active chilled beam system. Further, queries in SPARQL Protocol and
RDF Query Language (SPARQL) were formulated and evaluated against
the heating system, simulating various use cases. The ontology devel-
opment was justified in the context of the bigger picture of information
interoperability, discussing the plans for future extensions and infor-
mation source integrations.

Declaration of Competing Interest

The authors recognize that there is a potential for conflicts of interest
via industry affiliations. Ville Kukkonen is working on a doctoral
dissertation in Aalto University while also working in Granlund. Ali
Kücükavci is working on a doctoral dissertation in Technical University
of Denmark, and was sponsored by Tyréns A/S during the reported
study. Mikki Seidenschnur is working on a doctoral dissertation in
Technical University of Denmark, while also working in Ramboll A/S.
Mads Holten Rasmussen works in NIRAS A/S.

Acknowledgements

This work was supported by Tyréns A/S; EU-Interreg ÖKS “Data-
driven Energy Management in Public Buildings”; Granlund; the K.V.
Lindholm foundation; the Ramboll Foundation; and Innovation Fund
Denmark.

References

[1] P. Pauwels, S. Zhang, Y.C. Lee, Semantic web technologies in AEC industry: a
literature overview, Autom. constr. 73 (2017) 145–165, https://doi.org/10.1016/j.
autcon.2016.10.003.

[2] M.H. Rasmussen, M. Lefrançois, P. Pauwels, C.A. Hviid, J. Karlshøj, Managing
interrelated project information in AEC knowledge graphs, Autom. constr. 108
(2019) 102956, https://doi.org/10.1016/j.autcon.2019.102956.

[3] W. Kim, S. Katipamula, A review of fault detection and diagnostics methods for
building systems, Sci. Tech. Built Environ. 24 (1) (2018) 3–21, https://doi.org/
10.1080/23744731.2017.1318008.

[4] H.B. Gunay, W. Shen, G. Newsham, Data analytics to improve building
performance: a critical review, Autom. constr. 97 (2019) 96–109, https://doi.org/
10.1016/j.autcon.2018.10.020.

[5] B. Dong, Z. O’Neill, Z. Li, A BIM-enabled information infrastructure for building
energy fault detection and diagnostics, Autom. constr. 44 (2014) 197–211, https://
doi.org/10.1016/j.autcon.2014.04.007.

[6] A. Golabchi, M. Akula, V.R. Kamat, Leveraging BIM for automated fault detection
in operational buildings, in: F. Hassani, O. Moselhi, C. Haas (Eds.), Proceedings of
the 30th International Symposium on Automation and Robotics in Construction
and Mining (ISARC 2013): Building the Future in Automation and Robotics,
International Association for Automation and Robotics in Construction (IAARC),
Montreal,Canada, 2013, pp. 187–197, https://doi.org/10.22260/ISARC2013/
0020.

[7] K. Kim, H. Kim, W. Kim, C. Kim, J. Kim, J. Yu, Integration of IFC objects and facility
management work information using semantic web, Autom. constr. 87 (2018)
173–187, https://doi.org/10.1016/j.autcon.2017.12.019.

[8] S. Tang, D.R. Shelden, C.M. Eastman, P. Pishdad-Bozorgi, X. Gao, BIM assisted
building automation system information exchange using BACnet and IFC, Autom.
constr. 110 (2020) 103049, https://doi.org/10.1016/j.autcon.2019.103049.

[9] G.F. Schneider, G.D. Kontes, H. Qiu, F.J. Silva, M. Bucur, J. Malanik, Z. Schindler,
P. Andriopolous, P. de Agustin-Camacho, A. Romero-Amorrortu, G. Grün, Design of
knowledge-based systems for automated deployment of building management
services, Autom. constr. 119 (2020) 103402, https://doi.org/10.1016/j.
autcon.2020.103402.

[10] S. Attia, J.L.M. Hensen, L. Beltrán, A.D. Herde, Selection criteria for building
performance simulation tools: contrasting architects’ and engineers’ needs,

J. Building Perf. Simulation 5 (3) (2012) 155–169, https://doi.org/10.1080/
19401493.2010.549573.

[11] G. Schreiber, Y. Raimond, RDF 1.1 Primer, W3C Working Group Note, W3C, 2014.
Available at https://www.w3.org/TR/rdf11-primer (Accessed: 2020-11-11).

[12] SPARQL 1.1 Overview, W3C Recommendation, W3C, 2013. Available at
https://www.w3.org/TR/sparql11-overview/ (Accessed: 2020-11-11).

[13] P. Hitzler, M. Kr”otzsch, B. Parsia, P.F. Patel-Schneider, S. Rudolph, OWL 2
Web Ontology Language Primer (Second Edition), W3C Recommendation, W3,
2012. Available at https://www.w3.org/TR/owl2-primer/ (Accessed: 2020-11-
11).

[14] G.E. Modoni, M. Doukas, W. Terkaj, M. Sacco, D. Mourtzis, Enhancing factory data
integration through the development of an ontology: from the reference models
reuse to the semantic conversion of the legacy models, Int. J. Comput. Integr.
manuf. 30 (10) (2017) 1043–1059, https://doi.org/10.1080/
0951192X.2016.1268720.

[15] E. Maleki, F. Belkadi, N. Boli, B.J. van der Zwaag, K. Alexopoulos, S. Koukas,
M. Marin-Perianu, A. Bernard, D. Mourtzis, Ontology-based framework enabling
smart product-service systems: application of sensing systems for machine health
monitoring, IEEE Inter. Things J. 5 (6) (2018) 4496–4505, https://doi.org/
10.1109/JIOT.2018.2831279.

[16] T.E. El-Diraby, H. Osman, A domain ontology for construction concepts in urban
infrastructure products, Autom. constr. 20 (8) (2011) 1120–1132, 10.1016/j.
autcon.2011.04.014.

[17] S. Zhang, F. Boukamp, J. Teizer, Ontology-based semantic modeling of
construction safety knowledge: towards automated safety planning for job hazard
analysis (JHA), Autom. constr. 52 (2015) 29–41, https://doi.org/10.1016/j.
autcon.2015.02.005.

[18] M. Niknam, S. Karshenas, A shared ontology approach to semantic representation
of BIM data, Autom. constr. 80 (2017) 22–36, https://doi.org/10.1016/j.
autcon.2017.03.013.

[19] C. Wu, P. Wu, J. Wang, R. Jiang, M. Chen, X. Wang, Ontological knowledge base
for concrete bridge rehabilitation project management, Autom. constr. 121 (2021)
103428, https://doi.org/10.1016/j.autcon.2020.103428.

[20] P. Pauwels, W. Terkaj, EXPRESS to OWL for construction industry: towards a
recommendable and usable IFCOWL ontology, Autom. constr. 63 (2016) 100–133,
https://doi.org/10.1016/j.autcon.2015.12.003.

[21] M.H. Rasmussen, M. Lefrançois, G.F. Schneider, P. Pauwels, BOT:the building
topology ontology of the W3C linked building data group, Semantic Web Preprint
(Preprint) (2020) 1–19, https://doi.org/10.3233/SW-200385.

[22] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong, A. Johansen, J. Koh,
J. Ploennigs, Y. Agarwal, M. Bergés, D. Culler, R.K. Gupta, M.B. Kjærgaard,
M. Srivastava, K. Whitehouse, Brick: metadata schema for portable smart building
applications, Appl. Energy 226 (2018) 1273–1292, https://doi.org/10.1016/j.
apenergy.2018.02.091.

[23] M. Lefrançois, J. Kalaoja, T. Ghariani, A. Zimmermann, Smart Energy Aware
Systems, 2016. Available at https://hal.archives-ouvertes.fr/hal-02016334
(Accessed: 2020-11-11).

[24] ETSI, TS 103 264 V3.1.1 SmartM2M; Smart Applications; Reference Ontology and
oneM2M Mapping, Technical Specification, ETSI, 2020. Available at https://www.
etsi.org/deliver/etsi_ts/103200_103299/103264/03.01.01_60/ts_103264v030101
p.pdf (Accessed: 2020-06-03).

[25] ETSI, TS 103 410-3 V1.1.2 SmartM2M; Extension to SAREF; Part 3: Building
Domain, Technical Speccation, ETSI, 2020. Available at https://www.etsi.
org/deliver/etsi_ts/103400_103499/10341003/01.01.02_60/ts_10341003v01010
2p.pdf (Accessed: 2020-06-03).

[26] ETSI, TS 103 548 V1.1.1 SmartM2M; SAREF consolidation with new reference
ontology patterns, based on the experience from the SEAS project, Technical
Specication, ETSI, 2019. Available at https://www.etsi.org/deliver/etsi_ts/103500
_103599/103548/01.01.01_60/ts_103548v010101p.pdf (Accessed: 2020-06-03).

[27] K. Hammar, E.O. Wallin, P. Karlberg, D. Hälleberg, The RealEstateCore Ontology,
in: C. Ghidini, O. Hartig, M. Maleshkova, V. Svátek, I. Cruz, A. Hogan, J. Song,
M. Lefrançois, F. Gandon (Eds.), The Semantic Web – ISWC 2019, Lecture Notes in
Computer Science, Springer International Publishing, Auckland New Zealand,
2019, pp. 130–145, https://doi.org/10.1007/978-3-030-30796-7_9.

[28] V. Kukkonen, A. Kücükavci, M. Seidenschnur, M.H. Rasmussen, K.M. Smith, C.
A. Hviid, Example Models and Queries for Flow Systems Ontology, 2021, https://
doi.org/10.5281/zenodo.4492645.

[29] J. Oraskari, Jyrkioraskari, IFCtoRDF-Desktop: The IFCtoRDF Desktop Application
2.8, Zenodo, 2020, https://doi.org/10.5281/ZENODO.4005935.

[30] J. Oraskari, K. McGlinn, P. Pauwels, F. Priyatna, A. Wagner, J. Lehtonen,
Jyrkioraskari, IFCtoLBD: IFCtoLBD 2.11, Zenodo, 2020, https://doi.org/10.5281/
ZENODO.4075365.

[31] A. Wagner, M. Bonduel, P. Pauwels, R. Uwe. Relating geometry descriptions to its
derivatives on the web, University College Dublin, Chania, Crete, 2019,
pp. 304–313. https://doi.org/10.35490/ec3.2019.146.

V. Kukkonen et al.

6.4 Paper IV - Coupling Modelica and a Common Data Environment for simulation of HVAC
systems. 121

6.4 Paper IV - Coupling Modelica and a
Common Data Environment for simulation of
HVAC systems.

Coupling BIM and detailed Modelica simulations of
HVAC systems in a Common Data Environment
Esben Visby Fjerbæk1,2, Mikki Seidenschnur1,2, Ali Kücükavci1,3, Kevin Michael Smith1,
and Christian Anker Hviid1

1Department of Civil & Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
2Rambøll, Copenhagen, Denmark
3COWI, Kgs. Lyngby, Denmark

ABSTRACT

In current building design practices, the operation and performance of HVAC systems are rarely validated in detail. This is mainly
caused by the manual burden of generating detailed HVAC simulation models. To lower the barrier for detailed HVAC simulations,
this paper presents an automated toolchain that generates and simulates models in Modelica language using building information
structured in web-based Common Data Environments. This approach differs from previous approaches by its focus on HVAC systems
and integration with a Common Data Environment over file-based BIM, which increases interoperability and allows users to run
simulation studies in the cloud, without depending on the computation power of their local PCs. The tool successfully generated
and simulated a model of the HVAC systems in a small building and thus demonstrated a fully interoperable data exchange between
a CDE and a simulation environment while showcasing the potential of analysing HVAC systems with Modelica.

1

2

3

4

5

6

7

8

Keywords: HVAC, BIM, Simulation, Modelica, Digital Twin9

1 INTRODUCTION1

High-performing and low-energy buildings is an ever-2

growing domain in the architecture, engineering, and3

construction industry. Accurate estimation of energy con-4

sumption is vital in the design of low-energy buildings5

and for documentation of regulation compliance. With6

the increase of computation power over the past 30 years,7

tools for estimating building energy performance have8

evolved from simple, quasi-steady-state models to de-9

tailed dynamic simulations with calculation of multiple10

heat losses and gains. Choices for building energy per-11

formance simulation (BEPS) tools are vast, and within12

whole building simulations, more than 70 free and com-13

mercial tools are listed in the IBPSA-USA Directory of14

Building Energy Software Tools [1].15

Despite the multitude of sophisticated BEPS tools, a16

significant discrepancy between the estimated and mea-17

sured energy consumption, known as the energy per-18

formance gap, exists [2–4]. Menezes et al. [2] showed19

magnitudes of more than 2.5 times the expected energy20

consumption compared to the simulated energy perfor-21

mance. Several researchers have analyzed the causes22

of the energy performance gap and found that the root23

causes are a) the inability to predict occupant behavior24

[5–8] and b) inefficient/faulty operation of heating, venti-25

lation, and air conditioning (HVAC) systems [4, 9–11].26

Occupant behavior significantly affects energy con-27

sumption through different actions: heat gains, vent-28

ing, set-point changes, shading and occupancy sched-29

ules. Recent developments in occupant behavior model-30

ing have shown considerable improvements in this topic,31

and proper implementation of occupant behavior models 32

in BEPS tools should close the occupant-related energy 33

performance gap [8]. 34

Inefficient and faulty HVAC components and unex- 35

pected system operation cause a discrepancy since this 36

changes the assumptions of ideal operation, usually made 37

in BEPS software [12]. Additionally, these problems may 38

lead to poor occupant comfort [9, 13] and high return 39

temperatures in heating systems [14]. 40

The contribution of faulty operation to the energy per- 41

formance gap is difficult to quantify, especially in existing 42

buildings. However, analyses of commissioning projects 43

indicate the impact. In an analysis of more than 500 44

commissioning projects, Mills [11] found that correction 45

of faulty HVAC components and inefficient operation 46

led to a median savings potential of 13%. Examples of 47

savings potentials include adjusting operation schedules, 48

optimizing control sequences, replacing or fixing faulty 49

components, etc. Thus, correction of HVAC faults can 50

help lower the energy performance gap significantly. 51

Based on the literature mentioned above, the faults 52

leading to inefficient and unexpected operation of HVAC 53

systems can be categorized in the following groups: 54

1. Design errors such as unbalanced systems and 55

wrong component sizes 56

2. Un-implemented design intents such as opera- 57

tion schedules, setpoints and balancing valves 58

3. Construction errors, including last-minute design 59

changes 60

4. Component degradation such as clogged filters, 61

stuck-open valves and calcium build-up 62

(1) should be addressed during design, where design-1

ers must put more effort into properly designing HVAC2

systems and controls. Often, the design of HVAC com-3

ponents is based on worst-case conditions and safety4

margins which may leads to oversized components that5

perform inefficiently under part load conditions [15–18].6

Moreover, traditional simulation programs often use sim-7

plified and idealized models for terminal units, such as8

radiators, and their controls [12]. Without detailed simu-9

lations of HVAC systems modeling flows, temperatures,10

controls and valve openings, it is impossible to quantify11

the system’s response to varying loads, especially when12

components are often oversized.13

(2) is caused by interoperability problems between14

and within the phases of construction [4]. Designers15

must improve documentation of design intents and the16

construction team should respect design intents whenever17

possible. If the design changes, the consequences should18

be assessed in greater detail, and the changes should be19

documented. Documentation of design intents should20

be incorporated into the building information modeling21

(BIM) domain. Today, BIM documentation of HVAC22

systems and their geometry is available and widely used,23

but other information, such as physical properties, is24

rarely present in BIM models.25

(3) and (4) should be handled during commissioning26

and operation. Here, automated fault detection and di-27

agnosis (FDD) has been proposed by many to identify28

which components are behaving unexpectedly [19]. This29

can be done in many ways, and Kim and Katipamula [19]30

carried out a thorough study of different methodologies.31

Where some methods rely on black- and grey-box models32

developed on data, quantitative model-based approaches33

rely solely on detailed, physical models of the system.34

These detailed simulations for components or subsystems35

are compared with measurements to identify the compo-36

nents whose behavior differs from the expected. While37

model-based approaches are computationally intensive38

and require significant modeling efforts, they are superior39

to black- and grey-box models at modeling both ideal40

and faulty operation [19].41

To reduce the energy performance gap throughout the42

building’s lifetime, it is clear that both designers and43

operators must utilize detailed HVAC simulations that are44

able to model HVAC components in detail under correct45

and faulty operation. During design, the simulations46

provide crucial insights into the system’s response to47

dynamic loads. In the operation phase, they provide48

a benchmark for expected system performance and a49

starting point for model-based FDD.50

Traditionally, wide-spread BEPS tools such as Ener-51

gyPlus, IDA-ICE, IES-VE, BSim, and many others only52

have limited support for detailed HVAC modeling. Some53

of these tools have models for terminal units and/or pro-54

duction plants, but usually the models are limited to55

predefined models of HVAC systems. Moreover, such56

tools often use idealized control sequences, to improve57

numerical efficiency, instead of using actual feedback con- 58

trols [12]. This makes traditional tools unsuited for the 59

above-mentioned use-cases, and especially as tools for the 60

analysis of novel and innovative HVAC solutions. 61

To combat the unflexible and idealized nature of tra- 62

ditional BEPS tools, the use of Modelica for BEPS has 63

gained momentum in recent years. The Modelica lan- 64

guage is object-oriented, which means it is extensible 65

through addition or combination of new or existing mod- 66

els, allowing modeling of all thinkable system configura- 67

tions. To build Modelica models, pre-built component 68

models, grouped in third-party libraries, are used to con- 69

struct comprehensive, full-system models. In the Mod- 70

elica Association’s library index1 around 150 free and 71

commercial libraries are listed, covering engineering disci- 72

plines such as aviation, automotive, biochemistry, energy, 73

and electronics. 74

In recent years, the IBPSA project 1 [20] has driven 75

the development of Modelica libraries for buildings. The 76

project resulted in the Modelica IBPSA library, which pro- 77

vides base classes used in four libraries; AixLib [21], Build- 78

ingSystems [22], IDEAS [23] and Buildings [24]. These 79

libraries include similar models for simulation of ther- 80

mal zones, HVAC systems, outdoor conditions, etc. The 81

Modelica Buildings Library has recently implemented 82

Spawn of EnergyPlus [25], which implements EnergyPlus 83

models in Modelica through the Functional Mock-up 84

Interface [26]. This allows simulation of the envelope 85

heat balance, load profiles and solar gains in EnergyPlus, 86

while all systems are simulated in Modelica. With Spawn 87

of Energyplus, the issues related to HVAC modeling in 88

traditional BEPS tools are removed, while preserving 89

EnergyPlus’s efficient thermal simulation capabilities. 90

No matter which BEPS tool is used, the modeling pro- 91

cess for HVAC systems is laborious and time-consuming. 92

In many cases, the manual processes lead to errors, often 93

caused by misjudgments or imprecisions from the model- 94

ers [27, 28]. The building design process is iterative, and 95

any design change requires simulation models to be up- 96

dated. The extra time and uncertain outcome make these 97

procedures costly in commercial applications, meaning 98

that design teams will rarely prioritize detailed HVAC 99

simulations. 100

To make the BEPS modeling process more efficient, 101

many efforts are made to align BIM and BEPS, both 102

in research and commercial settings [29, 30]. Simulation 103

and BIM professionals drive this development by either 104

integrating simulation engines in BIM tools or supporting 105

BIM import in simulation tools [30, 31]. Hosseini et al. 106
[30] did an extensive review of BIM-integrated BEPS and 107

found a large number of tools in both research and the 108

industry. However, none of the identified tools explicitly 109

implemented HVAC systems in the automatic model gen- 110

eration, which correlates with the lack of HVAC support 111

in traditional BEPS tools. 112

With the rise of Modelica for BEPS, several tools for 113

1Available at https://modelica.org/libraries.html

Manuscript submitted to Journal of Building Performance Simulations 2/16

Table 1. Comparison of three tools for BIM-generated
Modelica models.

Name IFC2Modelica BIM2Modelica Revit2Modelica

Language Python Python C#
Data source IFC4 IFC2x3 Revit
HVAC systems Yes No No
Open-source No Yes No
Modelica library IDEAS Building Systems Buildings
Reference [31] [32] [33]

BIM-based model generation have also emerged. Gen-1

eration of Modelica models from BIM data is limited,2

with only three tools, all developed in research, identified.3

Table 1 shows a comparison of the three tools, described4

in the following paragraphs.5

IFC2Modelica, developed at KU Leuven and described6

by Andriamamonjy et al. [31], parses information from7

models defined with the Industry Foundation Classes8

(IFC) format to Modelica models based on the IDEAS9

library. The tool uses model view definitions to check10

that the IFC file contains the needed information in the11

BIM model. Python processes the IFC file through the12

IfcOpenShell module. The paper describes an example of13

a ventilation system, and the tool is used for automatic14

FDD of an air handling unit [34]. While rooms and15

thermal zones are also considered in the paper, the focus16

is on HVAC system modeling.17

Similarly to IFC2Modelica, the open-source18

BIM2Modelica [22], developed at UdK Berlin, is a19

tool using IfcOpenShell to translate IFC files to Modelica20

models. In addition to multizone models, the tool21

supports generation of computational fluid dynamics and22

district heating models. The Modelica models are based23

on the BuildingSystems library. The paper describes a24

case study for a multi-zone model, but does not cover25

HVAC systems.26

Whereas IFC2Modelica and BIM2Modelica use IFC as27

input file types, Revit2Modelica [33] uses models from the28

BIM tool Revit to create BEPS models. Through a plugin29

for Revit, which accesses Revit’s API, the tool parses30

BIM data to the Buildings library. The main intent of31

the tool is to provide thermal BEPS, and thus HVAC32

systems have not been considered in the presented cases.33

Of the three existing applications for generating Mod-34

elica models from BIM, only IFC2Modelica explicitly35

supports the generation of HVAC models.36

All of the BIM to BEPS tools mentioned above, both for37

traditional and Modelica models, are based on file-based38

BIM, where, e.g., IFC files are imported into the tool.39

Several critics argue that the use of file-based BIM models40

where data only flows one-way limits interoperability and41

argue for a shift from file-based to web-based BIM [35, 36].42

The web-based approach prevents local version control43

and information loss every time a BIM model is updated.44

A web-based BIM setting demands interoperable, open45

data formats, that allow full integration between different46

tools and platforms. This corresponds to maturity level47

3 on the Bew-Richards BIM maturity model described 48

in [37]. In BIM maturity level 3 two-way information 49

exchange is handled through standardized, open data 50

formats for integration with various tools. 51

Seidenschnur et al. [38] introduced a common data 52

environment (CDE) to contain HVAC BIM models in 53

a centralized database, thereby moving HVAC BIM to 54

BIM level 3. The CDE system architecture is structured 55

around the Flow System Classes (FSC) object model, 56

which is used to represent the topology and performance 57

properties of the components and systems. Seidenschnur 58

et al. mentions that the CDE might be developed further 59

by adding a microservice architecture to the platform. 60

The microservice architecture allows for future compu- 61

tational tasks to be implemented as microservices and 62

executed when needed from the main application. 63

1.1 Aim 64

This article presents an automated toolchain that per- 65

forms detailed simulations of HVAC systems using Mod- 66

elica and technical building service system information 67

stored in a CDE. This tool lowers the barrier for detailed 68

analysis of the dynamics in HVAC systems during design 69

and operation and thereby facilitates a better inclusion 70

of HVAC components and their non-idealized behavior 71

in building performance simulations. 72

The aims of this article are to: 73

1. describe the underlying methodology and approach 74

of the toolchain 75

2. showcase the versatility and interoperability of the 76

tool in combination with a common data environ- 77

ment. 78

3. show the potentials of Modelica for HVAC analyses 79

through a demonstration case. 80

4. propose future work for scalability and usability of 81

the toolchain and similar applications. 82

1.2 Outline 83

Section 2 describes the translation from FSC to Modelica, 84

including a description of the FSC object model and 85

the microservice architecture in section 2.1. Section 3.1 86

presents a case study, where the toolchain is used to 87

analyze the consequences of changing the heating curve 88

in a fictional building. In section 4 we discuss the usability 89

of the application, and how it can be scaled to actual 90

workflows and present a roadmap for future work. 91

2 TOOLCHAIN PRESENTATION 92

In this paper, the CDE designed by Seidenschnur et al. 93

[38] is used to create an application that uses the data 94

structure presented in section 2.1 for automated genera- 95

tion of HVAC simulation models in Modelica language. 96

This section describes the application and its integration 97

with the CDE. The system architecture of the CDE pro- 98

posed by Seidenschnur et al. [38] will not be discussed in 99

this article. 100

Manuscript submitted to Journal of Building Performance Simulations 3/16

The toolchain is developed as a microservice, which1

means that it is a stand-alone service, that communicates2

with the CDE through an API, which allows the CDE3

to request simulation results through the HTTP request-4

response protocol. When the toolchain receives an HTTP5

request with the FSC object model, the application trans-6

lates the model into Modelica language, simulates the7

model with Dymola, and returns an HTTP response with8

the results in a JSON format. Figure 1 shows the main9

parts of the process.10

En
dp

oi
nt

Translate Modelica Store .mo file

Simulate .mo file

Save results to .mat

Read resultsSerialize to JSON

Step 1
Step 2

Step 3

Request

Response

Figure 1. The application’s main processes.

Section 2.1 describes the FSC object model, used in11

the CDE. Section 2.2 presents modeling requirements12

and section 2.3 explains the translation between FSC and13

Modelica.14

2.1 FSC object model15

The CDE uses the FSC object model, developed by Sei-16

denschnur et al. [38], as a description language for HVAC17

systems in web-based environments. The FSC object18

model is a standardized way to describe HVAC com-19

ponents, their properties and connections. The object20

model is defined with a class hierarchy, consisting of 2721

classes to represent a wide range of HVAC components22

on a generic and detailed level. Such components include;23

FlowMovingDevice, FlowSegment, EnergyConversion-24

Device, Fitting, FlowTerminal, FlowController. All25

components share attributes from the generic top-level26

class Component. The shared attributes are listed and27

explained in table 2.28

The ConnectedWith attribute holds a list of29

Connectors, that define the component’s connections30

to other components. A connector holds information31

about its dimension, shape, flow, and position. A con-32

nector can be interpreted as the end of a component,33

and thereby contain importantgeometrical information.34

E.g., the length of a pipe segment can be calculated using35

the distance between its two connectors. All attributes36

related to the Connector class are listed in table 3.37

Figure 2 shows a ventilation duct, represented in FSC.38

As seen, the geometrical information, such as the di-39

mension, is only represented by the connectors in the40

ConnectedWith attribute. This allows transition pieces,41

tees, etc., to have different shapes and dimensions in each42

connector.43

For the toolchain, we extended the FSC object model44

with a simple description of control logics. The extension45

Table 2. Attributes for the Component class.

Attributes Description

Id Unique identifier across all plat-
forms

Tag Revit component tag, used as pri-
mary identifier

ComponentType Type of the component - equal to
the class name

SystemName Name of the component’s system
- free text

SystemType Type of the component’s system;
heating, ventilation or cooling

ConnectedWith List of connectors (see table 3)
that describe connections to other
components

ContainedInSpaces List of spaces, that contain the
component - usually one space

Table 3. Attributes for the Connector class.

Attributes Description

Tag Tag of the connected component
Dimension List with either diameter or

height/width
Shape The shape of the connector/end
DesignFlow The design flow rate through the con-

nector
Coordinate List with X, Y and Z coordinate for

the connection point
ConnectorType Describes the direction and type of

flow

C��������:
T��: 15621
C��������T���: F���S������
S�����N���: V��� S�� A�����
S�����T���: V����������

C��������W���[0]:
T��: 17651
D��������: [0.02]
D�����F���: 7.5
C���������: [13,18,0]
T���: S�������F����T�

C��������W���[1]:
T��: 18563
D��������: [0.02]
D�����F���: 7.5
C���������: [16,22,0]
T���: S�������F����F���

Figure 2. Example of a duct represented by FSC.

Manuscript submitted to Journal of Building Performance Simulations 4/16

includes a new attribute, Control, for components that1

are controlled externally, such as MotorizedValves or2

Fans. The attribute refers to a new Controller that3

specifies (1) the controller type, (2) the sensor’s Tag,4

(3) the process variable (temperature or CO2) and (4)5

the setpoint (in °C for temperature or PPM for CO2).6

Controllers that control the temperature or CO2 levels7

in rooms simply refer to the room tag instead of a sensor,8

since room sensors are not supported in FSC.9

We added two sensor classes, TemperatureSensor and10

PressureSensor, to the FSC object model to support11

measurements within duct and pipe systems. This ex-12

tension of FSC allows the representation of simple con-13

trol relations, but more complicated cases with varying14

setpoints or cascade control, require a more extensive,15

stand-alone format.16

2.2 Modeling requirements17

This section presents general requirements for successful18

HVAC simulations with the toolchain. Specific require-19

ments for component information such as performance20

data are specified in the component templates (see section21

2.3) and are partly covered in section 3.2.22

The following general requirements apply to HVAC23

components:24

1. All component connections must be correctly speci-25

fied in the FSC model.26

2. In components that interact with spaces, e.g.,27

through heat or air transfer, the connected space28

must be specified with the contained in spaces29

attribute.30

3. All components must be modeled explicitly unless31

the implicit objects are specified in the component32

templates (see section 2.3 and 3.2.1).33

4. Chillers and boilers are not covered in FSC, and34

thus unconnected pipe ends represent a production35

unit. The same applies to duct ends connected to36

the outside.37

5. Component dimensions must be specified in the com-38

ponent’s connectors.39

6. Where applicable, performance properties for nomi-40

nal conditions must be specified. The nominal con-41

ditions are not required to be identical to the design42

conditions. The needed properties depend on the43

specified mapping template, such as the one in sec-44

tion 3.2.45

7. Components, such as control valves, that are regu-46

lated by a controller, must include information on47

the control logic, as described in 2.1.48

2.3 Parsing the FSC object model to Modelica49

The key functionality of the toolchain is translating the50

FSC object model into Modelica language. This section51

describes the translation process and with the default52

mapping scheme, presented in section 3.2, and the source53

code on GitHub2, the reader should understand the steps 54

needed to expand or modify the translation for other use 55

cases. 56

To explain the translation process, it is important to 57

understand the structure of both FSC and Modelica mod- 58

els. Figure 3 represents a system with three components 59

in both FSC (figure 3a) and Modelica (figure 3b) to 60

showcase similarities and differences. A significant dif- 61

ference between FSC and Modelica is that FSC defines 62

each connection twice, whereas Modelica needs only one 63

definition. This introduces redundant definitions in FSC, 64

but since connections are defined inside each component 65

they must be represented in both connected components. 66

In Modelica, connections are established independently, 67

in the equation part of the model definition (see listing 68

1). In contrast to FSC, Modelica works with so-called 69

ports for connections, adding additional information on 70

the connectivity. In most flow system cases, a component 71

has an input port and an output port, typically named 72

port a and port b, respectively. In addition, there may 73

be ports for heat transfer, control input, etc. 74

Listing 1 shows a simplified Modelica model for the 75

three-component system in figure 3b. The three com- 76

ponents are instantiated with a component string for 77

each component in the top part of the model. After the 78

equation statement, each connection is instantiated with 79

a connection string. Thus, components and connections 80

are instantiated separately and in separate parts of the 81

file. 82

1 model ExamplePumpModel

2 ToolchainLib.PumpConstantPressure

3 pump1250835(

4 Medium = MediumHeating,

5 pumpCurve = {...},

6 ...);

7 FixedResistances.HydraulicDiameter

8 seg1458644(

9 Medium = MediumHeating,

10 m_flow_nominal=0.12,

11 dh=0.022,

12 length=1.34);

13 FixedResistances.HydraulicDiameter

14 seg1458738(

15 Medium = MediumHeating,

16 m_flow_nominal=0.12,

17 dh=0.022,

18 length=0.45);

19 equation

20 connect(seg1458644.port_b,pump1250835.port_a);

21 connect(pump1250835.port_b,seg1458738.port_a);

22 end ExamplePumpModel;

83
Listing 1. Simplified Modelica model of the system
presented in figure 3b. 84

2https://github.com/Virtual-Commissioning/

VC-Modelica-Service

Manuscript submitted to Journal of Building Performance Simulations 5/16

Component
Tag: 1250835
ComponentType: Pump
SystemName: Radiator supply
SystemType: heating
PumpCurve = {...}
ConnectedWith: [C3, C4]

Component
Tag: 1458738
ComponentType: FlowSegment
SystemName: Radiator supply
SystemType: heating
ConnectedWith: [C5, C6]

Connector (C2)
Tag: 1250835
Dimension: [0.022]
Shape: Round
DesignFlow: 0.12
Coordinates: [3,2,0]
Type: suppliesFluidTo

Connector (C3)
Tag: 1458644
Dimension: [0.022]
Shape: Round
DesignFlow: 0.12
Coordinates: [3,2,0]
Type: suppliedFluidFrom

Component
Tag: 1458644
ComponentType: FlowSegment
SystemName: Radiator supply
SystemType: heating
ConnectedWith: [C1, C2]

(a) FSC representation.

Component
FixedResistances.HydraulicDiameter
 seg1458738(
 redeclare package Medium =
 MediumHeating,
 m_flow_nominal=0.12,
 dh=0.022,
 length=0.45)

Component
ToolchainLib.PumpConstantPressure
 pump1250835(
 Medium = MediumHeating,
 pumpCurve = {...},
 ...)

Connector
connect
(seg1458644.port_b,
pump1250835.port_a)

Connector
connect
(pump1250835.port_b,
seg1458738.port_a)

Component
FixedResistances.HydraulicDiameter
 seg1458644(
 redeclare package Medium =
 MediumHeating,
 m_flow_nominal=0.12,
 dh=0.022,
 length=1.34)

(b) Modelica representation.

Figure 3. Representation of three components with FSC and Modelica.

All components in FSC are mapped to a Modelica1

component template to handle all necessary information.2

This template contains a set of attributes and functions3

to create (1) the component string, which is the Modelica4

representation of the single component and (2) the con-5

nection string which is the Modelica representation of a6

connection. To build the component string, the template7

needs component attributes, such as the pressure curves8

for pumps or Kv values for valves. Most component at-9

tributes are either given directly in the FSC component10

representation or derived from other attributes, which11

makes it simple to build the component string. The12

connection string requires no information on component13

attributes, and the only component-related information14

is the names of the components and connection ports.15

This information is defined in the component templates16

that return the Modelica name and the port name to the17

application that serializes them into connection strings.18

The main attributes and functions in all templates are19

shown in table 4.20

As stated above, the initial step in the translation21

process is to map each component in the FSC model to22

a component template and generates a component string.23

If the component has an external controller, a controller24

is also instantiated, based on a controller template.25

After all components are mapped to component tem-26

plates, the Modelica connection strings are created. To27

avoid duplicate connections, the application considers28

only input connections for each component. For each29

input, a connection string is added to the model. In the30

process, the application accesses information on Model-31

ica and port names in both the main component and32

the input component. Since FSC provides no informa-33

tion about which port a component is connected to, the34

get output port and get input port functions are used35

to implicitly find the name of the connected ports. If36

the component is connected to a space, the application37

invokes the connect to space function in the compo-38

nent template. Similarly, any controller connections are39

instantiated.40

Lastly, the program combines the component strings41

Table 4. Main attributes and functions in component
templates.

Function/attribute Description

FSC object The original FSC object
get component string Function that instantiates the

component in Modelica lan-
guage

get input port Returns the name of the com-
ponent’s input port. Needs
information on the connected
component

get output port Returns the name of the com-
ponent’s output port. Needs
information on the connected
component

connect to space Function that instantiates a
connection between the compo-
nent and the containing room.
By default, the function estab-
lishes no connection

Manuscript submitted to Journal of Building Performance Simulations 6/16

and connection strings in a Modelica file and returns it1

to the application.2

2.3.1 Translation of spaces3

In the FSC object model, the main objective of defin-4

ing spaces is to establish boundary conditions for flow5

calculations and system sizing [38]. Consequently, the6

format does not provide sufficient information for energy7

simulations. However, spaces are translated equivalently8

to components, and space templates are defined similarly9

as component templates. In the default template set,10

presented in 3.2, spaces are mapped to a generic model11

of a thermal zone of fixed size.12

Since the FSC object model specifies no space adja-13

cency, this is not supported in the application.14

2.3.2 Example: Heating coil template15

This section describes the attributes and functions in the16

template for a heating coil and shows how it is used in17

the process described in the previous section. Listing 218

shows the serialized FSC model of the heating coil.19

1 {

2 "Tag": "1321808",

3 "ComponentType": "HeatingCoil",

4 "SystemType": "heating",

5 "NomPower": 5220.0,

6 "NomSupplyTemperaturePrimary": -15.0,

7 "NomReturnTemperaturePrimary": 28.4,

8 "NomSupplyTemperatureSecondary": 60.0,

9 "NomReturnTemperatureSecondary": 40.0,

10 "NomFlowPrimary": 100.0,

11 "NomFlowSecondary": 0.06,

12 "NomDpPrimary": 6.5,

13 "NomDpSecondary": 1620.0,

14 "ConnectedWith": [

15 {

16 "Tag": "1458980",

17 "DesignFlow": 0.06,

18 "ConnectorType": "suppliesFluidTo"

19 },

20 {

21 "Tag": "1458698",

22 "DesignFlow": 0.06,

23 "ConnectorType": "suppliesFluidFrom"

24 },

25 {

26 "Tag": "1519849",

27 "DesignFlow": 168.0,

28 "ConnectorType": "suppliesFluidTo"

29 },

30 {

31 "Tag": "1324249",

32 "DesignFlow": 168.0,

33 "ConnectorType": "suppliesFluidFrom"

34 }

35]

36 }

20
Listing 2. Serialized FSC model of a heating coil.21

The get component string function instantiates 22

the model in Modelica language, based on the at- 23

tributes in the FSC model. Listing 3 shows 24

the python function that specifies the corresponding 25

Modelica model (Buildings.Fluid.HeatExchangers.- 26

DryCoilEffectivenessNTU) and writes nominal perfor- 27

mance data. 28

1 def get_component_string():

2 component_string += f'''

3 Buildings.Fluid.HeatExchangers.

DryCoilEffectivenessNTU

{modelica_name}(

↪→

↪→

4 redeclare package Medium1 = MediumVentilation,

5 redeclare package Medium2 = {medium.name},

6 m1_flow_nominal = {NomFlowPrimary *10**(-3)},

7 m2_flow_nominal = {NomFlowSecondary *10**(-3)},

8 dp1_nominal = {NomDpPrimary},

9 dp2_nominal = {NomDpSecondary},

10 Q_flow_nominal = {NomPower},

11 T_a1_nominal =

{NomSupplyTemperaturePrimary+273.15},↪→

12 T_a2_nominal =

{NomSupplyTemperatureSecondary+273.15});↪→

13 '''

14 return component_string

29
Listing 3. create component string function for the
heating coil template. 30

The get input port and get output port functions 31

return the name of a component’s port when connecting 32

to another component. For most components with only 33

two ports, this is trivial; the input port is port a and 34

the output port is port b. However, the heating coil has 35

four fluid ports; two on the primary side and two on the 36

secondary side. Consequently, the get input port and 37

get output port functions must be able to return the 38

correct port, based on the connected component. 39

The Modelica heating coil model has four ports: 40

port a1 and port b1 are input and output on the pri- 41

mary side, and port a2 and port b2 are input and output 42

on the secondary side. Thus, if the connected compo- 43

nent is in the ventilation system, the functions returns 44

port a1 and port b1, otherwise port a2 and port b2. 45

This approach assumes that at least one of the streams 46

is a ventilation stream. 47

The connect to room returns no room connection 48

string since heat transfer between the heat exchanger 49

and the surroundings are not considered. 50

Translating the component itself is straightforward, 51

through the create component string function in list- 52

ing 3. The component’s Modelica name is a short ver- 53

sion of the component type, followed by the tag. For 54

this component it is heatCoil1321808. The medium 55

depends on the system type. For the heating system, it is 56

MediumHeating, which is defined at the top of the model 57

file. Thus, the translation process returns the component 58

Manuscript submitted to Journal of Building Performance Simulations 7/16

string in listing 4.1

1 Buildings.Fluid.HeatExchangers.DryCoilEffectivenessNTU

heatCoil1324249(↪→

2 redeclare package Medium1 = MediumVentilation,

3 redeclare package Medium2 = MediumCooling,

4 m1_flow_nominal=0.12,

5 m2_flow_nominal=0.06,

6 dp1_nominal=6.5,

7 dp2_nominal=1620,

8 Q_flow_nominal=5220,

9 T_a1_nominal=258.15,

10 T_a2_nominal=333.15);

2
Listing 4. Modelica representation of the heating coil in
listing 2.3

When translating the connections, the algorithm must4

find the connected components and determine their sys-5

tem type. Here, components 1519849 and 1324249 are6

in the ventilation system, whereas 1458980 and 14586987

are in the heating system. Listing 5 shows the resulting8

connections.9

1 connect(heatCoil1324249.port_b1, heatCoil1321808.port_a1)

2 connect(seg1458698.port_b, heatCoil1321808.port_a2)

3 connect(heatCoil1321808.port_b2, seg1458980.port_a)

4 connect(heatCoil1321808.port_b1, red1519849.port_a)

Listing 5. Modelica connections for the heating coil in
listing 2.10

3 DEMONSTRATION CASE11

To show the potential of the application we tested it on12

a purpose-built, fictional building model. In the exam-13

ple, the toolchain simulates the building’s response to14

two different heating curves during ideal and faulty user15

operation. Section 3.1 describes the building and HVAC16

system. Section 3.2 describes the model generation pro-17

cedure, the custom-built library and the default mapping18

template. Section 3.3 explains the background for such19

an analysis and the investigated scenarios and section 3.420

shows the simulation results.21

3.1 Use case model22

The use case is a building with four identical rooms of 2523

m2, as shown in figure 4 and 5. Each room has 3.2 m2
24

south-facing windows and is occupied from 7:30 to 16:30.25

To model varying loads, the occupancy in each room26

ranges between 1 and 6 people within a 7-day period.27

A VAV-controlled ventilation system controls the CO228

levels in the rooms with a setpoint of 1000 ppm. The min-29

imum supply air temperature is 20 °C, and the maximum30

is 24 °C. The cooling system limits the ventilation supply31

temperature but does not control the room temperature.32

For simplicity, the air handling unit has been reduced33

Figure 4. 3D representation of the example building.

to supply/return fans and heating/cooling coils (see fig- 34

ure 5). Motorized control valves control the hydronic 35

flow through the coils to maintain the desired ventilation 36

supply temperature. 37

The heating system consists of 8 radiators for space 38

heating and a heating coil to heat the supply ventilation 39

air. The heating system is connected to a generic heat 40

source, where a weather compensation curve defines the 41

supply temperature. 42

The cooling system, which feeds the cooling coil in 43

the ventilation system, is connected to a source with a 44

constant temperature of 5 °C. The pumps in the heating 45

and cooling systems provide a constant head. 46

3.2 Model generation 47

We modeled the use case in Autodesk Revit and added all 48

necessary attributes to the project’s component families. 49

Through the FSC converter (see [38]), we parsed the Revit 50

model to the database. All information came directly 51

from the Revit model, but performance data can also be 52

added after parsing to the database if needed. 53

To generate the simulation model, we developed a set 54

of component templates, shown in table 5, along with a 55

custom Modelica library, described in section 3.2.1. The 56

template set and Modelica library make up the default 57

translation capabilities, distributed with the application. 58

Since the use case was designed to include a large variety 59

of components, the template set is sufficient for many 60

applications. However, extending the default set with 61

other components is simple and requires few programming 62

skills. 63

Several assumptions were made in the default template 64

set. These assumptions, listed below, are built into the 65

component templates or the custom Modelica library. 66

• Occupancy schedules were defined directly in the cus- 67

tom Modelica room model. The schedule defines the 68

load profile in percentage of the maximum number 69

of occupants. 70

• To avoid fan operation during unoccupied hours, 71

the Modelica controller template for fans includes a 72

predefined operation schedule from 7:30 to 16:30. 73

• FSC does not support the definition of setpoints 74

and weather compensation curves in the heating and 75

cooling plants. Thus, plant setpoints and weather 76

Manuscript submitted to Journal of Building Performance Simulations 8/16

M

CC

M

HC

Space 1
25 m2

Space 2
25 m2

Space 3
25 m2

Space 4
25 m2

Pa

M

CO2

M

CO2

M

CO2

M

CO2

Co
ld

 so
ur

ce
He

at
 so

ur
ce

5 oC

70 oC

oC

Radiator Radiator Radiator Radiator Radiator Radiator Radiator Radiator

Balancing valve Ven�la�on extractMotorized valve

Pump Ven�la�on fan Motorized damper Ven�la�on supply Hea�ng coil

M

M

HC

Cooling coilCC

Figure 5. Schematic representation of the HVAC system in the use case. HC: Heating coil. CC: Cooling coil.

compensation curves were defined in the component1

templates.2

• P- and I constants for controllers were hardcoded in3

the templates. E.g., for fans, k = 0.01 and ti = 1000.4

• Radiator setpoints were specified in the templates,5

and in the use case, they were manually changed for6

each scenario.7

Table 5 shows the mapping between FSC component8

types and Modelica model templates with corresponding9

port names, as defined in the default template set.10

As seen in table 5 fittings, such as bends and reductions,11

are modeled as pressure drops with a fixed resistance12

factor, even though dedicated Modelica models exist.13

With this approach, the resistance factors are calculated14

in the model template instead of at each time step in a15

complicated Modelica model. This reduces the simulation16

time but consequently reduces the precision.17

All spaces are mapped to a standard room of 25 m2,18

defined by the RoomDetailedProfile. This means that all19

spaces, no matter their size or shape, are mapped to the20

same room model in Modelica.21

3.2.1 Custom Modelica library22

For this use case, we built a Modelica library3 with cus-23

tom models to support components that do not translate24

to a single model. Alternatively, the corresponding model25

3Distributed on GitHub with the toolchain.

templates could instantiate and connect multiple Model- 26

ica models, but with the library approach, it is simpler to 27

combine Modelica models through a graphical user inter- 28

face. The models, described in table 6, are all extensions 29

of existing models in Buildings and Modelica Standard 30

Library. The corresponding FSC component types can 31

be seen in table 5, which shows the link between FSC 32

types and Modelica models. 33

3.3 Scenarios 34

Decreasing the supply temperature in local and central- 35

ized heating systems is a key component in decarbonizing 36

space heating of buildings [39]. Low-temperature district 37

heating increases the efficiency of large-scale heat pumps, 38

allows recycling of low-temperature heat sources and re- 39

duces heat losses in the distribution network. However, 40

in existing systems, low-temperature district heating is 41

vulnerable to inefficient operation, since the low supply 42

temperature leaves a small margin for the heat output 43

[40, 41]. Thus, low-temperature district heating requires 44

tools for investigating heating curves, pump pressures, sys- 45

tem temperatures, and operational faults. The toolchain 46

has all the necessary functionalities for such analyses. 47

This case study illustrates how the toolchain can com- 48

pare two different weather compensation curves, shown in 49

figure 6, and their responses to faulty operation. Under 50

faulty operation, the setpoint for one radiator in each 51

room is increased by 1.5 °C. On a standard, numeric- 52

Manuscript submitted to Journal of Building Performance Simulations 9/16

Table 5. Mapping between FSC and Modelica classes.

FSC component type Modelica model Input ports Output ports Other ports

FlowSegment FixedResistances.HydraulicDiameter* port a port b
Pump PumpConstantSpeed** port a port b
Radiator Radiator** port a port b heaPor
HeatingCoil HeatExchangers.DryCoilEffectivenessNTU* port a1

port a2
port b1
port b2

Bend FixedResistances.PressureDrop*,*** port a port b
Tee FixedResistances.Junction* port 1 port 2 port 3
BalancingValve Actuators.Valves.TwoWayLinear* port a port b
MotorizedValve Actuators.Valves.TwoWayEqualPercentage* port a port b y
Reduction FixedResistances.PressureDrop*,*** port a port b
AirTerminal FixedResistances.PressureDrop* port a port b
MotorizedDamper Actuators.Dampers.Exponential* port a port b y
BalancingDamper Actuators.Dampers.Exponential* port a port b
Fan Movers.SpeedControlled y* port a port b y
PressureSensor PressureSensor** port a port b port external

statPres
TemperatureSensor Sensors.TemperatureTwoPort* port a port b
Space RoomDetailedProfile** airPorIn airPorOut heaPorAir

heaPorRad
Cooling plant**** GenericPlant** port a port b
Heating plant**** GenericPlantWC** port a port b

*From Buildings.Fluid library **From custom library ***Pressure loss factor calculated from geometry ****Mapped
implicitly - not represented in FSC

Table 6. Description of the custom library.

Model Description

PumpConstPressure A pump operating with a con-
stant pressure setting

Radiator A radiator and a thermostatic ra-
diator valve

GenericPlant A generic plant with a constant
supply temperature (used for
both heating and cooling)

GenericPlantWC A generic plant with a supply
temperature regulated by the ex-
ternal temperature

RoomDetailedProfile A space energy model with a de-
tailed occupancy profile

PressureSensor Pressure sensor for measuring the
static pressure in ducts

PIDControl A PID controller with a constant
setpoint

PIDControl IO A PID controller with a constant
setpoint and an on/off schedule

scale thermostatic radiator valve, this corresponds to an 1

increase of approximately 0.5 [42]. This is a commonly 2

encountered issue, which results in high return tempera- 3

tures because the high-setpoint radiator operates above 4

its design output. The faulty scenario can also be in- 5

terpreted as a scenario where two adjacent rooms have 6

different setpoints and one room heats the other, which 7

is also a commonly seen issue. In such a case, the effect 8

is similar but smaller. 9

Figure 6 presents the investigated weather compensa- 10

tion curves and table 7 summarizes the four scenarios. 11

Scenario highi and lowi assume ideal operation of the 12

radiators, and scenario highf and lowf introduce faulty 13

operation. In scenario lowi and lowf , the lower supply 14

temperature is compensated with an increased pump 15

pressure to ensure sufficient radiator output. 16

To investigate the effect of the heating curves under 17

maximum heating loads, we disabled internal heat gains 18

from occupants. Since the ventilation system is controlled 19

for the CO2-level, this means that the ventilation system 20

did not operate in the simulations, and therefore the 21

heating and cooling coils were out of operation for the 22

entire period. 23

The simulation was carried out for seven days in the 24

end of January, where the coldest period of the weather 25

data occurs. 26

Manuscript submitted to Journal of Building Performance Simulations 10/16

Table 7. Weather compensation curve scenarios.

highi highf lowi lowf

Heating curve* High High Low Low
Pump pressure [kPa] 11.5 11.5 30.0 30.0
Rad. 1 setpoint 22.0 22.0 22.0 22.0
Rad. 2 setpoint 22.0 23.5 22.0 23.5

*Refer to figure 6

30 20 10 0 10
Tout [°C]

0

20

40

60

80

T s
up

 [°
C

]

High Low

Figure 6. The investigated weather compensation
curves.

3.4 Simulation results1

Figure 7 and 8 show the results for all scenarios, and table2

8 shows summarized results. From figure 7, it is seen3

that both scenarios are able to maintain the desired room4

temperature throughout the simulation period. Hence,5

the low heating curve is sufficient when the pump pressure6

is increased accordingly.7

Under ideal operation (scenario highi and lowi), the8

low heating curve results in a 5 °C increase in the return9

temperature, which suggests that the low heating curve10

may have downsides under ideal operation, even though11

it is sufficient for maintaining the room temperature.12

However, under faulty operation (scenario highf and13

lowf), the low heating curve results in a 5 °C decrease14

in return temperature. This happens because radiator15

1 has a higher share of the total heat output, as seen in16

figure 8 and table 8. Figure 8 shows the outputs of the17

radiators and their valve openings under faulty operation.18

Here, it’s visible how the low heating curve balances the19

output of the two radiators.20

The low heating curve provides a balanced solution that21

is more robust to faulty operation. In the ideal scenario it22

may not be optimal, but in cases with high user autonomy,23

it may be beneficial for robustness. Additionally it shows24

that low-temperature district heating in existing systems25

is not only possible but also has benefits. The low heating26

curve requires additional pump pressure, which has a cost27

of approximately 1.5 kWh in the simulation period. This28

may be neglected in a cost-perspective, since reduced29

return temperatures can provide monetary savings in30

many district heating networks.31

Table 8. Key figures for the four scenarios.

highi highf lowi lowf

Pump power [kWh] 0.37 0.41 1.67 1.85
Avg. supply temp.* [°C] 72.4 72.4 57.3 57.3
Avg. return temp.* [°C] 37.4 54.2 42.5 49.1
Accumulated flow [m3] 10.9 20.9 27.6 45.9
Heat consumption [kWh] 436 441 432 440
Rad. 2 share [%] 50 88 50 66

*Weighted according to heat consumption

4 DISCUSSION 32

The toolchain combines BIM maturity level 3, the state- 33

of-the-art and open-source modeling capabilities of Mod- 34

elica, and the simulation engine of Dymola, to create 35

a fully interoperable framework for detailed simulations 36

of HVAC systems. This lowers the barrier for detailed 37

modeling and simulation of HVAC systems while creat- 38

ing a strong bond between BEPS and BIM to ensure 39

that design progressions are represented in the BEPS 40

results. As shown in section 3, where the tool was tested 41

on an example building, it can successfully translate an 42

FSC representation of an HVAC system to a Modelica 43

model and simulate it through Dymola. Through minor 44

adjustments to the Modelica model, we compared two 45

heating curves under ideal and faulty operation to see 46

the potential for lowering the heating curve and the im- 47

pact on faulty operation. These specific results could be 48

obtained without the toolchain through manual model 49

generation, but in larger projects, the modeling task may 50

be too time-demanding. 51

The tool translated the test case through the default 52

template set that covers 16 component types (see table 53

5) commonly found in HVAC systems. The mapping 54

can be changed or extended to support other Modelica 55

libraries or new component types by modifying or adding 56

templates in the program code. 57

Compared to previous approaches to combining BIM 58

and Modelica, described in section 1, the presented 59

toolchain distinguishes itself since it (1) is part of a web- 60

based microservice architecture, (2) focuses primarily on 61

HVAC systems and (3) showcases the powers of Modelica 62

for analysis of HVAC systems. In the previous approaches, 63

only IFC2Modelica supports HVAC systems, while all of 64

the approaches work in a file-based manner and thus do 65

not support BIM level 3. 66

The tool can support all phases of a building design, 67

but the presented showcase and the default mapping tem- 68

plate suit the detailed design phase. The tool is built for 69

the CDE presented by Seidenschnur et al. [38], who aim 70

to add a virtual step to the traditional commissioning 71

process, before the physical commissioning, called virtual 72

commissioning. The toolchain provides crucial capabili- 73

ties in this regard, but before it is fully usable for virtual 74

commissioning, relevant use cases and test scenarios must 75

Manuscript submitted to Journal of Building Performance Simulations 11/16

21.5

22.0

22.5

23.0

23.5

24.0

R
oo

m
 te

m
pe

ra
tu

re
 [°

C
]

High heating curve
Ideal operation Faulty operation

Low heating curve
Ideal operation Faulty operation

Jan-26
Jan-27

Jan-28
Jan-29

Jan-30
Jan-31

Feb-01
Feb-02

20

30

40

50

60

R
et

ur
n

te
m

pe
ra

tu
re

 [°
C

]

Jan-26
Jan-27

Jan-28
Jan-29

Jan-30
Jan-31

Feb-01
Feb-02

Figure 7. Simulated room and system return temperature.

0

200

400

600

800

O
ut

pu
t [

W
]

High heating curve
Rad. 1 Rad. 2

Low heating curve
Rad. 1 Rad. 2

Jan-26
Jan-27

Jan-28
Jan-29

Jan-30
Jan-31

Feb-01
Feb-02

0.0

0.2

0.4

0.6

0.8

1.0

O
pe

ni
ng

 [-
]

Jan-26
Jan-27

Jan-28
Jan-29

Jan-30
Jan-31

Feb-01
Feb-02

Figure 8. Simulated radiator output and valve opening under faulty operation.

Manuscript submitted to Journal of Building Performance Simulations 12/16

be identified. Even though the tool was developed for the1

CDE, it is a stand-alone application that is deployed on2

a separate server. Therefore, the toolchain can be reused3

in other platforms using the FSC object model.4

The advantages of the microservice architecture are5

manifold and while the advantages to interoperability and6

data management are presented thoroughly in [38], the7

server-based approach has obvious benefits when running8

detailed simulations. With large models, the computing9

requirements for simulations can become significant, and10

by hosting the application on a stand-alone server, the11

burden is shifted from the user’s local PC to a more12

powerful server.13

4.1 Limitations and future work14

The lack of HVAC controls in FSC is a significant barrier15

to the general scalability of the application. Without16

information on the controls, the simulation models are17

incomplete since they are a vital part of detailed HVAC18

simulations. This barrier applies to the entire BIM do-19

main since no traditional BIM formats and tools support20

control relations and sequences.21

To overcome the barrier of controls, we extended FSC22

with support for simple PI controllers for valves, dampers,23

fans, and pumps, along with in-stream sensors for tem-24

perature and pressure. In this implementation, relevant25

components are connected to a controller with a fixed26

setpoint and a connection to a sensor, as described in27

section 2.1. However, HVAC controls are often more28

complicated than simple PI controllers, connected to one29

actuator and one sensor, with a fixed setpoint. Control30

sequences are built of multiple, time-varying setpoints,31

state changes, cascade controls, etc. In such cases, the32

presented extension of FSC does not suffice. Therefore,33

future applications should include a schema supporting34

detailed definitions of controls. Such a schema could35

be adapted from the Brick schema [43], which supports36

description of points, commands, etc. With such a devel-37

opment, naturally, a new mapping between that schema38

and Modelica should be carried out.39

As mentioned in section 2.3.1 and 3.2, all spaces are40

mapped to a generic model of a thermal zone with a fixed41

size, geometry and user profile. Since this application42

focuses on HVAC systems, spaces were not considered43

in detail. As long as FSC and the CDE do not support44

the needed information for thermal zones, this will be45

the case. An object model supporting thermal zones is46

under development in the work presented by Seidenschnur47

et al. [44], where the thermal zones are translated into an48

EnergyPlus model. Future work should aim to implement49

this object model or other, similar models and translate50

those to Modelica or use the EnergyPlus files directly with51

Spawn of EnergyPlus, which is a part of the Buildings52

library [25].53

All pipe and duct segments, bends, and fittings are54

mapped from FSC to Modelica and modelled individually55

as fixed resistances, although the results for each segment56

are without interest. This means that the solver must57

calculate each segment individually in each time step, 58

which adds unnecessary calculation steps and can lead 59

to non-linear equations that complicate the solution and 60

increase computation time significantly. From a user 61

point of view, this makes the Modelica models immense, 62

if viewed through a graphical interface. Mathematically, 63

these fixed resistances can be summarized into a single 64

component, or better, added to other components without 65

any loss of precision. This requires a restructuring of 66

the application code but should be considered in future 67

work to reduce the complexity of the generated Modelica 68

models. 69

When using the toolchain for simulations, the require- 70

ments for the information level and completeness in the 71

BIM models are increased significantly. E.g., Kv val- 72

ues for valves and fan characteristics must be available, 73

and all components must be connected correctly. In some 74

cases, this shifts the modeling burden from the simulation 75

to the BIM process. However, as more tools utilize the 76

information in BIM models, one can expect an increased 77

motivation for creating and maintaining this information. 78

The information needed for simulations can also bene- 79

fit many other processes in the building lifecycle. E.g., 80

maintenance can more easily identify product specifica- 81

tions when replacing products and see previous settings 82

on balancing valves. In a fully interoperable framework, 83

the toolchain could be reversed to populate BIM models 84

with information from the simulation models. Thus, this 85

tool, along with many others, may provide an incentive 86

to improve the overall quality of BIM. 87

5 CONCLUSION 88

This article presented an automated toolchain, which is 89

a server-based application that interfaces the common 90

data environment (CDE) presented in [38]. The toolchain 91

uses fully interoperable formats and connections to gen- 92

erate and simulate models for HVAC systems, derived 93

from BIM models in the CDE. The simulation models are 94

written in the Modelica language and simulated with the 95

Dymola simulation environment. The tool was success- 96

fully tested on a purpose-built BIM model of a building, 97

where an analysis of the weather compensation curve’s 98

impact on the systems’ robustness showed the powers of 99

detailed HVAC analyses in Modelica. 100

The work showed that BIM-generated Modelica mod- 101

els is successful if the BIM model is defined correctly. 102
However, it also highlights a large gap in BIM, regarding 103

support for control sequences. Neither FSC or traditional 104

BIM schemas, support description of controls, except for 105

high-level properties, such as room temperature setpoints. 106
Support for control sequences would not only benefit 107

the domain of automated model generation but also the 108

design process in general. 109

ACKNOWLEDGEMENTS 110

This work was supported by the Innovation Fund Den- 111

mark under grant number 2040-00027B and 8090-00046B; 112

Manuscript submitted to Journal of Building Performance Simulations 13/16

the Ramboll Foundation under grant number 2022-068;1

and Elforsk under grant number 352-042.2

REFERENCES3

[1] US DOE. Building Energy Software4

Tools Directory, 2013. URL https://www.5

buildingenergysoftwaretools.com/.6
[2] Anna Carolina Menezes, Andrew Cripps, Dino7

Bouchlaghem, and Richard Buswell. Predicted vs.8

actual energy performance of non-domestic buildings:9

Using post-occupancy evaluation data to reduce the10

performance gap. Applied Energy, 97:355–364, 2012.11

doi: 10.1016/j.apenergy.2011.11.075.12
[3] Pieter De Wilde. The gap between predicted and13

measured energy performance of buildings: A frame-14

work for investigation. Automation in Construction,15

41:40–49, 2014. doi: 10.1016/j.autcon.2014.02.009.16
[4] Guy R. Newsham, Sandra Mancini, and Benjamin J.17

Birt. Do LEED-certified buildings save energy? Yes,18

but... Energy and Buildings, 41(8):897–905, 2009.19

doi: 10.1016/j.enbuild.2009.03.014.20
[5] C. Carpino, E. Loukou, P. Heiselberg, and N. Arcuri.21

Energy performance gap of a nearly Zero Energy22

Building (nZEB) in Denmark: the influence of oc-23

cupancy modelling. Building Research and Informa-24

tion, 48(8):899–921, 2020. doi: 10.1080/09613218.25

2019.1707639.26
[6] Jesper Kragh, Jørgen Rose, Henrik N. Knudsen, and27

Ole Michael Jensen. Possible explanations for the28

gap between calculated and measured energy con-29

sumption of new houses. Energy Procedia, 132:69–74,30

2017. doi: 10.1016/j.egypro.2017.09.638.31
[7] Emeka E. Osaji, Subashini Suresh, and Ezekiel32

Chinyio. The impacts of contributory factors in33

the gap between predicted and actual office build-34

ing energy use. In Smart Innovation, Systems and35

Technologies, volume 22, pages 757–778. Springer36

Berlin Heidelberg, 2013. ISBN 9783642366444. doi:37

10.1007/978-3-642-36645-1 68.38
[8] Salvatore Carlucci, Marilena De Simone, Steven K.39

Firth, Mikkel B. Kjærgaard, Romana Markovic,40

Mohammad Saiedur Rahaman, Masab Khalid41

Annaqeeb, Silvia Biandrate, Anooshmita Das,42

Jakub Wladyslaw Dziedzic, Gianmarco Fajilla, Mat-43

teo Favero, Martina Ferrando, Jakob Hahn, Mengjie44

Han, Yuzhen Peng, Flora Salim, Arno Schlüter,45

and Christoph van Treeck. Modeling occupant be-46

havior in buildings. Building and Environment,47

174(December 2019):106768, 2020. doi: 10.1016/48

j.buildenv.2020.106768.49
[9] Rongpeng Zhang and Tianzhen Hong. Modeling of50

HVAC operational faults in building performance51

simulation. Applied Energy, 202:178–188, sep 2017.52

doi: 10.1016/j.apenergy.2017.05.153.53
[10] Fu Xiao and Shengwei Wang. Progress and method-54

ologies of lifecycle commissioning of HVAC systems55

to enhance building sustainability. Renewable and56

Sustainable Energy Reviews, 13(5):1144–1149, jun 57

2009. doi: 10.1016/j.rser.2008.03.006. 58
[11] Evan Mills. Building commissioning: A golden 59

opportunity for reducing energy costs and green- 60

house gas emissions in the United States. Energy 61

Efficiency, 4(2):145–173, may 2011. doi: 10.1007/ 62

s12053-011-9116-8. 63
[12] Michael Wetter, Marco Bonvini, and Thierry S. 64

Nouidui. Equation-based languages - A new 65

paradigm for building energy modeling, simulation 66

and optimization. Energy and Buildings, 117:290– 67

300, apr 2016. doi: 10.1016/j.enbuild.2015.10.017. 68
[13] Cheong Peng Au-Yong, Azlan Shah Ali, and Faizah 69

Ahmad. Improving occupants’ satisfaction with ef- 70

fective maintenance management of HVAC system 71

in office buildings. Automation in Construction, 43: 72

31–37, 2014. doi: 10.1016/j.autcon.2014.03.013. 73
[14] Dorte Skaarup Østergaard, Kevin Michael Smith, 74

Michele Tunzi, and Svend Svendsen. Low- 75

temperature operation of heating systems to enable 76

4th generation district heating: A review. Energy, 77

248:123529, jun 2022. doi: 10.1016/j.energy.2022. 78

123529. 79
[15] Daniel H. Nall. Rightsizing HVAC equipment. 80

ASHRAE Journal, 57(1):48–51, 2015. 81
[16] Paul Mathew, Steve Greenberg, David Frenze, 82

Michael Morehead, Dale Sartor, and William Starr. 83

Using measured equipment load profiles to ”right- 84

size” HVAC systems and reduce energy use in labo- 85

ratory buildings. HPAC Engineering, 6-29-05:1–14, 86

2005. 87
[17] Ery Djunaedy, Kevin van den Wymelenberg, Brad 88

Acker, and Harshana Thimmana. Oversizing of 89

HVAC system: Signatures and penalties. En- 90

ergy and Buildings, 43(2-3):468–475, feb 2011. doi: 91

10.1016/j.enbuild.2010.10.011. 92
[18] Steve Doty. Part–load HVAC Efficiency. Energy 93

Engineering, 107(3):6–28, mar 2010. doi: 10.1080/ 94

01998591009709874. 95
[19] Woohyun Kim and Srinivas Katipamula. A review of 96

fault detection and diagnostics methods for building 97

systems. Science and Technology for the Built Envi- 98

ronment, 24(1):3–21, 2018. doi: 10.1080/23744731. 99

2017.1318008. 100
[20] IBPSA. IBPSA Project 1, 2016. URL https:// 101

ibpsa.github.io/project1/index.html. 102
[21] D Müller, M Lauster, A Constantin, M Fuchs, and 103

P Remmen. Aixlib - an Open-Source Modelica Li- 104

brary Within the IEA-EBC Annex 60 Framework. In 105

Proceedings of the CESBP Central European Sympo- 106

sium on Building Physics and BauSIM 2016, pages 107

3–9, 2016. 108
[22] Christoph Nytsch-Geusen, Jörg Huber, Manuel Lju- 109

bijankic, and Jörg Rädler. Modelica BuildingSystems 110

- eine Modellbibliothek zur Simulation komplexer en- 111

ergietechnischer Gebäudesysteme. Bauphysik, 35(1): 112

21–29, 2013. doi: 10.1002/bapi.201310045. 113

Manuscript submitted to Journal of Building Performance Simulations 14/16

[23] F. Jorissen, G. Reynders, R. Baetens, D. Picard,1

D. Saelens, and L. Helsen. Implementation and2

verification of the IDEAS building energy simulation3

library. Journal of Building Performance Simulation,4

11(6):669–688, nov 2018. doi: 10.1080/19401493.5

2018.1428361.6
[24] Michael Wetter, Wangda Zuo, Thierry S. Nouidui,7

and Xiufeng Pang. Modelica Buildings library. Jour-8

nal of Building Performance Simulation, 7(4):253–9

270, jul 2014. doi: 10.1080/19401493.2013.765506.10
[25] Lawrence Berkeley National Laboratory - Simulation11

Research Group. Spawn of EnergyPlus, 2021. URL12

https://lbl-srg.github.io/soep/.13
[26] Torsten Blockwitz, Martin Otter, Johan Akesson,14

Martin Arnold, Christoph Clauss, Hilding Elmqvist,15

Markus Friedrich, Andreas Junghanns, Jakob Mauss,16

Dietmar Neumerkel, Hans Olsson, and Antoine Viel.17

Functional Mockup Interface 2.0: The Standard for18

Tool independent Exchange of Simulation Models.19

Proceedings of the 9th International MODELICA20

Conference, September 3-5, 2012, Munich, Germany,21

76:173–184, 2012. doi: 10.3384/ecp12076173.22
[27] Gilles Guyon. Role of the model user in results23

obtained from simulation software program. Inter-24

national Building Simulation Conference, pages 377–25

384, 1997.26
[28] Salah Imam, David A. Coley, and Ian Walker.27

The building performance gap: Are modellers lit-28

erate? Building Services Engineering Research29

and Technology, 38(3):351–375, 2017. doi: 10.1177/30

0143624416684641.31
[29] Yujie Lu, Zhilei Wu, Ruidong Chang, and Yongkui32

Li. Building Information Modeling (BIM) for green33

buildings: A critical review and future directions.34

Automation in Construction, 83(February):134–148,35

2017. doi: 10.1016/j.autcon.2017.08.024.36
[30] Seyed Mohsen Hosseini, Reza Shirmohammadi, Al-37

ibakhsh Kasaeian, and Fathollah Pourfayaz. Dy-38

namic thermal simulation based on building infor-39

mation modeling: A review. International Journal40

of Energy Research, 45(10):14221–14244, 2021. doi:41

10.1002/er.6740.42
[31] Ando Andriamamonjy, Dirk Saelens, and Ralf Klein.43

An automated IFC-based workflow for building en-44

ergy performance simulation with Modelica. Au-45

tomation in Construction, 91(March):166–181, 2018.46

doi: 10.1016/j.autcon.2018.03.019.47
[32] Christoph Nytsch-Geusen, Alexander Inderfurth,48

Werne Kaul, Katharina Mucha, Jörg Rädler, Matthis49

Thorade, and Carles Ribas Tugores. Template based50

code generation of Modelica building energy simu-51

lation models. In Proceedings of the 12th Interna-52

tional Modelica Conference, Prague, Czech Repub-53

lic, May 15-17, 2017, volume 132, pages 199–207.54

Linköping University Electronic Press, jul 2017. doi:55

10.3384/ecp17132199.56
[33] Jong Bum Kim, Woonseong Jeong, Mark J. Clayton,57

Jeff S. Haberl, and Wei Yan. Developing a physical 58

BIM library for building thermal energy simulation. 59

Automation in Construction, 50(C):16–28, 2015. doi: 60

10.1016/j.autcon.2014.10.011. 61
[34] Ando Andriamamonjy, Dirk Saelens, and Ralf Klein. 62

An auto-deployed model-based fault detection and 63

diagnosis approach for Air Handling Units using 64

BIM and Modelica. Automation in Construction, 96 65

(August):508–526, dec 2018. doi: 10.1016/j.autcon. 66

2018.09.016. 67
[35] Walter Terkaj, Georg Ferdinand Schneider, and 68

Pieter Pauwels. Reusing domain ontologies in linked 69

building data: The case of building automation and 70

control. CEUR Workshop Proceedings, 2050, 2017. 71
[36] Mads Holten Rasmussen, Maxime Lefrançois, 72

Georg Ferdinand Schneider, and Pieter Pauwels. 73

BOT: The building topology ontology of the W3C 74

linked building data group. Semantic Web, 12(1): 75

143–161, nov 2020. doi: 10.3233/SW-200385. 76
[37] M Bew and M Richards. BIM Maturity Model. In 77

Construct IT Autumn 2008 Members’ Meeting, 2008. 78
[38] Mikki Seidenschnur, Ali Kücükavci, Esben Visby 79

Fjerbæk, Kevin Michael Smith, Pieter Pauwels, and 80

Christian Anker Hviid. A common data environment 81

for HVAC design and engineering. Automation in 82

Construction, 142(March):104500, oct 2022. doi: 10. 83

1016/j.autcon.2022.104500. 84
[39] Helge Averfalk, Theofanis Benakopoulos, Isabelle 85

Best, Frank Dammel, Christian Engel, Roman Geyer, 86

Oddgeir Gudmundsson, Kristina Lygnerud, Natasa 87

Nord, Johannes Oltmanns, Karl Ponweiser, Diet- 88

rich Schmidt, Harald Schrammel, Dorte Skaarup 89

Østergaard, Svend Svendsen, Michele Tunzi, and 90

Sven Werner. Low-Temperature District Heating 91

Implementation Guidebook. Final Report. Techni- 92

cal report, IEA DHC, 2021. URL http://publica. 93

fraunhofer.de/dokumente/N-640204.html. 94
[40] Benakopoulos, Salenbien, Vanhoudt, and Svendsen. 95

Improved Control of Radiator Heating Systems with 96

Thermostatic Radiator Valves without Pre-Setting 97

Function. Energies, 12(17):3215, aug 2019. doi: 98

10.3390/en12173215. 99
[41] Theofanis Benakopoulos, Michele Tunzi, Robbe 100

Salenbien, and Svend Svendsen. Strategy for low- 101

temperature operation of radiator systems using data 102

from existing digital heat cost allocators. Energy, 231: 103

120928, sep 2021. doi: 10.1016/j.energy.2021.120928. 104
[42] Danfoss. Data Sheet - Thermostatic Sensors Type 105

RA 2000, 2014. 106
[43] Bharathan Balaji, Arka Bhattacharya, Gabriel 107

Fierro, Jingkun Gao, Joshua Gluck, Dezhi Hong, 108

Aslak Johansen, Jason Koh, Joern Ploennigs, Yu- 109

vraj Agarwal, Mario Bergés, David Culler, Rajesh K. 110
Gupta, Mikkel Baun Kjærgaard, Mani Srivastava, 111

and Kamin Whitehouse. Brick: Metadata schema 112

for portable smart building applications. Applied 113

Energy, 226(September 2017):1273–1292, 2018. doi: 114

Manuscript submitted to Journal of Building Performance Simulations 15/16

10.1016/j.apenergy.2018.02.091.1
[44] Mikki Seidenschnur, Ali Kücükavci, Esben Visby2

Fjerbæk, Kevin Michael Smith, and Christian Anker3

Hviid. A Common Data Environment with an Ener-4

gyPlus microservice for Post-occupancy evaluation5

of the Energy Performance Gap. 2023. [Manuscript6

submitted for publication].7

Manuscript submitted to Journal of Building Performance Simulations 16/16

138 Papers

6.5 Paper V - Introducing a Semantic Web
Ontology and Rule-Set to Support Capacity-
and Size-Related Property Descriptions and
Validation of Heating, Ventilation and Air
Conditioning Components in The Design
Phase of Buildings

Introducing a Semantic Web Ontology and Rule-Set to Support Capacity- and
Size-Related Property Descriptions and Validation of Heating, Ventilation and Air

Conditioning Components in The Design Phase of Buildings

Ali Kücükavcia,∗, Mikki Seidenschnura,b, Pieter Pauwelsd, Mads Holten Rasmussenc, Christian Anker Hviida

aDepartment of Civil Engineering, Technical University of Denmark, Copenhagen, Denmark
bRamboll, Copenhagen, Denmark

cNiras, Allerød, Denmark
dDepartment of the Built Environment, Eindhoven University of Technology, Eindhoven, Netherlands

Abstract

Several OWL ontologies have been developed for the AEC domain, yet they often overlook the domain of building
systems, e.g. HVAC components. The Flow Systems Ontology was recently proposed to address this need, but it does not
include HVAC components’ size and capacity-related properties. Despite their strengths in representing domain-specific
knowledge, ontologies cannot solve poor data quality in BIM models. A five-fold contribution is made in this research
paper to define and improve the data quality of HVAC knowledge: (1) extending Flow Systems Ontology, (2) proposing
the Flow Properties Ontology, (3) proposing the HVAC rule model, (4) introducing a method for compliance checking on
HVAC models (5) and designing HVAC component capacity using semantic web technologies. The demonstration case
shows that we can represent the data model in a distributed way, validate it using 36 SHACL shapes and use SPARQL
to determine the pressure and flow rate of fans and pumps.

Keywords: Building Information Modelling, Heating, Ventilation and Air Conditioning (HVAC), SHACL, Semantic
Web technologies, Linked Data, Compliance checking, SPARQL

1. Introduction

1.1. A Document-centric AEC Industry

Architecture, Engineering and Construction (AEC) pro-
jects have become more technically complex and involve
many stakeholders that must exchange information to com-5

plete a project successfully [1]. Since the Building In-
formation Modeling (BIM) methodology was introduced
in the early to mid-2000s [2], the AEC industry has ex-
perienced improvements in coordination and communica-
tion between project stakeholders and digital tools. The10

BIM methodology aims to achieve a more collaborative
workflow and addresses the need for a Digital Informa-
tion Hub [3]. It provides a method for managing struc-
tured, accessible, and reliable building data to represent
the physical and functional characteristics of a 3D build-15

ing model. Current BIM applications have improved the
workflows across the building life cycle and typically in-
clude 3D modelling. For that reason, its use is focused
on phases of the building life cycle where 3D modelling
is a requirement [4]. Today, BIM methodology is mainly20

∗Corresponding author
Email addresses: alikuc@byg.dtu.dk (Ali Kücükavci),

msei@ramboll.dk (Mikki Seidenschnur), p.pauwels@tue.nl (Pieter
Pauwels), mhra@niras.dk (Mads Holten Rasmussen),
cah@byg.dtu.dk (Christian Anker Hviid)

based on a document-centric approach in the AEC indus-
try, leading to poor data management across the building
life cycle, disciplines, and digital tools [5]. Data is often
outdated and not in sync with the real building model, for
which no live access is available.25

The Industry Foundation Classes (IFC) is currently the
standard format of building information and has been ap-
plied to exchange the needed information among stake-
holders, mainly in a file-based or document-centric ap-
proach. Extending the IFC schema with new domain-30

specific knowledge becomes difficult due to its monolithic
structure and complexity [6]. In addition, the schema does
not describe cross-domain information such as occupancy
data, meteorological data, data from building automation
and control systems (BACS), etc., nor information that35

links the different domain information to each other [4].

1.2. Linked Data & Semantic Web

The World Wide Web Consortium (W3C), with its par-
ticipants consisting of academic and industrial partners,
has developed open data standards for software develop-40

ers to support the shift from a “Web of Documents” to
a “Web of Data” [7]. They have developed the Seman-
tic Web Technologies consisting of Resource Description
Framework (RDF), RDF Schema (RDFS), Web Ontol-
ogy Language (OWL), SPARQL Protocol and RDF Query45

Preprint submitted to Automation in Construction December 20, 2022

Language (SPARQL), and Shapes Constraint Language
(SHACL). It is a framework that enables sharing, access-
ing, conforming, and linking data over the web in a machine-
interpretable format [8, 9].

Contrary to the IFC schema, which has well-known50

limitations such as limited-expression range, difficulty par-
titioning information, and describing the same informa-
tion in multiple ways, the W3C suggests more modular,
polylithic, and simple data formats, also called ontologies,
that can be interlinked and easily extended over time [6,55

10, 11]. Figure 1 shows the concept of interconnected on-
tologies, and it can be seen that the domain-specific on-
tologies can be separated as smaller graphs and linked with
other ontologies. An ontology does not need to cover an
entire domain, such as HVAC systems. It can also cover60

minor subdomains for HVAC, such as representing differ-
ent component types and their properties alone or the con-
nectivity of HVAC components and their relations to sys-
tems and subsystems. Developing smaller ontologies that
target one building domain will yield a practical and flex-65

ible way of modelling knowledge when combined [4, 12].

Figure 1: Interlinked domain-specific ontologies.

1.3. Interlinking Domain-specific Knowledge

In this context, the W3C LBD Community Group (W3C
LBD CG) has defined and shared a set of ontologies like
Building Topology Ontology (BOT) [13], Flow Systems70

Ontology (FSO) [14], TUBES System Ontology (TUBES) [15],
Property Set Definition Ontology (PROPS) [16], and Prod-
uct Ontology (PRODUCT) [17] etc. for the AEC indus-
try. While FSO describes the energy and mass flow re-
lationships between systems and their components and75

their compositions [14, 18], it lacks system components’
capacity- and size-related properties. A key research ques-
tion here is whether such properties need to be added di-
rectly to the FSO ontology, or can be kept separate, e.g. in
its own module or ontology. In our research, we intend to80

investigate whether the best approach is to create an on-
tology, called the Flow Properties Ontology (FPO), that
includes only those properties and aligns it with other ex-
isting ontologies in the Linked Building Data (LBD) con-
text, in particular with the FSO ontology that focuses on85

HVAC domain.

1.4. Conforming Domain-Specific Knowledge

Despite their strengths in representing domain-specific
knowledge, ontologies cannot solve the problem that many
BIM models are poorly modelled and lack building ele-90

ments or metadata. Currently, poor data quality in build-
ing models contributes to faulty design decisions and down-
falls in the information stream. Due to the increasing level
of information, it is challenging to create sufficient BIM
models [10, 19–21]. Architects and owners can spend hun-95

dreds of hours manually assessing conformity [22]. Due to
the time-consuming process and the need for high-perfor-
ming BIM models, many research publications have ad-
dressed conformance checking. The most prominent pub-
lications on conformance checking of BIM models cover100

various frameworks, tools, rule languages, rule models, and
rule engines [23–33]. As their data models rely on IFC or
their rule models lack semantic expressivity, they all have
limitations and cause poor query performance [34, 35]. So-
man et al. [36], Stolk and McGlinn [9], and Oraskari et105

al. [37] describe a promising approach to surpass the lim-
itations of IFC and improve conformance checking. They
use a semantic web approach with a data model written in
OWL and a rule model written in SHACL to verify con-
straint violations. Soman et al. [36] applied the method to110

the construction field, while Stolk and McGlinn [9] applied
the method to geospatial field, and Oraskari et al. [37] to
the energy simulation field. However, these publications
do not describe how to validate an HVAC model with
SHACL, nor do they apply the framework to a real-world115

large building project. In addition, we intend to develop a
rule model written in SHACL for validating HVAC-related
constraints.

1.5. Contribution

Considering the above, several innovations are needed.120

In fact, our research includes five contributions. Firstly,
our research aims to extend FSO to support an alignment
with the proposed FPO ontology. Secondly, we propose
the FPO ontology itself to represent HVAC components’
capacity and size-related properties. Thirdly, we propose a125

set of rules to validate HVAC-related constraints. Fourthly,
our work produces a demonstration environment for a real-
world building project, showcasing how to conform a HVAC
model using semantic web technologies. Lastly, the demon-
stration environment will showcase how FPO and the HVAC130

rule model can support the description and validation of
hydraulics in HVAC components and the capacity of HVAC
components.

2

1.6. Outline

Table 1 shows the namespaces and prefixes used in this135

article. The remainder of this article is structured as fol-
lows. Section 2 describes previous work on knowledge rep-
resentation and rule checking related to buildings and sys-
tems. The presented work is limited to OWL-based data
models and SHACL-based rule models. The development140

of FPO and extension of FSO are explained in Section 3.
Section 4 outlines our framework and rules for validating
HVAC-related constraints. We utilize a real-world build-
ing model in Section 5 to illustrate how FPO can rep-
resent capacity- and size-related properties and be used145

to design an HVAC device. Additionally, the real-world
building model will be validated against our rule model in
Section 5 where a process of four steps and a web applica-
tion is introduced and applied to generate validation and
capacity design results and display the results within a web150

interface. The validation results pinpoint the components
or properties in the data model that are violating our rule
model, while the capacity results show the flow rate and
pressure of each flow-moving device that is represented in
the data model.The validation and capacity design results155

are discussed in Section 6, and conclusions are presented
in Section 7.

Table 1: Used prefixes and namespaces.

Prefix Namespaces

fpo https://w3id.org/fpo#
fso https://w3id.org/fso#
fsosh https://w3id.org/fsosh#
bot https://w3id.org/bot#
s4bldg https://saref.etsi.org/saref4bldg#
s4syst https://saref.etsi.org/saref4syst#
brick https://brickschema.org/schema/1.1/Brick#
seas https://w3id.org/seas#
rdfs http://www.w3.org/2000/01/rdf-schema#
rdf http://www.w3.org/1999/02/22-rdf-syntax-

ns#
ex https://example.com/ex#
inst https://example.com/inst#
owl https://www.w3.org/2002/07/owl#

2. Backround

2.1. Scope of the HVAC domain

The HVAC engineer is responsible for designing a build-160

ing’s HVAC system. The purpose of an HVAC system
is to provide building occupants with acceptable thermal
comfort and indoor air quality. HVAC engineers must
go through a series of steps to design an HVAC system,
such as defining the distribution strategy for HVAC, defin-165

ing the control strategy, calculating HVAC demand by
zones, and determining the capacity and size of HVAC
systems and their components. To determine whether an

HVAC system is designed sufficiently, its cooling, ventila-
tion and heating effects are compared with the building’s170

cooling, ventilation, and heating demands. The HVAC
system is considered sufficient when the capacity exceeds
the building’s demand. The HVAC engineer must design
each HVAC component’s capacity individually since an
HVAC system’s capacity equals the sum of its components.175

The HVAC component’s size is then determined based on
its capacity. The HVAC engineer can choose a product
from a manufacturer once the capacity and size have been
defined. By the time all HVAC components have been
designed, the HVAC engineer has completed the HVAC180

design process.
Since our research project seeks to represent and vali-

date an HVAC system’s and HVAC component’s capacity
and size-related properties in a semantic web context, Sec-
tion 2.2 provides an overview of what research has been185

achieved in this field and what is missing.

2.2. System representation in a Semantic Web context

A number of ontologies have been proposed to handle
data within the AEC industry since the early 2000s. The
first significant contribution towards moving BIM data190

into the Semantic Web is the ifcOWL ontology. IfcOWL is
an OWL representation of the IFC schema [38, 39], and it
is available at the buildingSMART website1 as just another
serialisation of the IFC schema, next to eXtensible Markup
Language Schema Definition (XSD) and EXPRESS [40].195

It is recognized that IFC is not the easiest method to model
a building or infrastructure due to the complex relation-
ships between building elements (mostly n-ary relation-
ships) and the fact that it is an extremely extensive schema
that is difficult to extend. Hence, this has hampered its di-200

rect use among AEC stakeholders [8, 41]. Moreover, it cov-
ers a wide range of domains, making it monolithic, rigid,
and hard to extend [42]. The direct translation from the
IFC schema to an OWL ontology does not change these
inherent features of IFC, and so also the OWL ontology205

has the same limitations (complexity, limited extensibility,
size). To resolve the issues, the W3C LBD CG developed a
more modular and lightweight principle named LBD. This
LBD approach takes a small, simple, and extensible build-
ing ontology at its core, known as the Building Topology210

Ontology (BOT) [13]. A BOT graph can be expanded with
more specific details by interlinking with other ontologies
like FSO, DOT, Brick, SAREF, etc.

BOT describes the relationship between building zones
and elements [43]. A zone can be a building, a floor, a215

space, or a group of spaces. The building can be connected
to the floor level by asserting that an entity of bot:Building
is related to an entity of bot:Storey with bot:hasStorey.
The same method can be applied between the storey and
the space. Zones are related in BOT in a similar way220

1https://technical.buildingsmart.org/standards/ifc/

ifc-schema-specifications

3

to the Babushka concept. In Babushka, smaller dolls are
nested in larger dolls, whereas in BOT smaller zones are
nested in larger zones. BOT can be used to describe the
connections between zones in a building, but it cannot
describe building systems.225

SEAS describes the relationships between physical sys-
tems [44]. There are three main modules in the ontology,
namely, The System Ontology, The Features Of Interest
Ontology, and The Evaluation Ontology. The Features Of
Interest Ontology allows to describe features of interest230

and their properties. A car, as an example, can be con-
sidered a feature of interest with a property called speed.
Properties are either evaluated directly or through a qual-
ified evaluation in the Evaluation Ontology. In a direct
evaluation, a value is assigned to the property. A qual-235

ified evaluation needs to outline three categories: type,
the context of validity, and provenance data. The Sys-
tem Ontology describes the systems and the relationships
between them. There are three levels of connectivity: be-
tween systems, connections, or connection points. The240

SEAS ontology focuses primarily on electrical systems but
can also be used to represent higher-level building services
systems [44]. Yet, it does not describe any building ser-
vice components or their relationships to building service
systems.245

Building service components are included in the Brick
ontology [45] and the Smart Applications REFerence (SAREF)
ontology [46] at different conceptual levels and scopes. The
Brick ontology describes data points and their relation-
ships to physical, logical, and virtual assets in buildings.250

It consists of a core ontology to describe fundamental con-
cepts and their relationships and a domain-specific tax-
onomy. The ontology focuses on data points and their
relations to location, equipment, and resource [45]. Relat-
ing a data point to a location expresses in which area of255

the building the data point is located. It can be located
in a room, on a floor, in a duct, etc. Relating a data point
to a specific equipment expresses how the data point con-
trols the system or component. For example, take a room
temperature sensor positioned in a room. The room tem-260

perature sensor regulates how much air an air handling
unit (AHU) must supply to the room. Lastly, the resource
is the medium being measured and regulated by the data
point and equipment. For example, the medium of an
AHU is the air that is being supplied to a room.265

The SAREF Smart Appliances Reference ontology is a
reference ontology for smart appliances (devices) [46]. It
aims to bring meaningful interactions between Internet of
Things (IoT) devices in various domains. There are cur-
rently 13 extensions to the core ontology. SAREF4SYST270

is based on the concepts of seas:SystemOntology to de-
scribe higher-level building service systems. SAREF4BLDG
is based on the IFC taxonomy and describes building ser-
vice devices. Even if it is similar to IFC and BOT, these
structures are not fully the same [47]. Together, SAREF4-275

SYST and SAREF4BLDG can represent building systems
and their connectivity with IoT devices. Like Brick, the

SAREF ontology represents medium-level building system
devices such as a fan or pump. Furthermore, SAREF4BLDG
represents capacity-related building service devices to some280

extent. Those parameters are based on the IFC taxonomy.
However, both Brick and SAREF ontologies are primarily
focused on the operational phase of the building life cycle.
As a result, they do not represent any passive building
service devices such as pipes, ducts, tees, elbows, etc., nor285

their properties.
An OWL ontology that is similar to the SAREF4BLDG

ontology, but does not include any building topology to
avoid semantically overlapping ontologies, is the Mechan-
ical, Electrical and Plumbing (MEP) ontology2. This on-290

tology is structured as a very simple hierarchical taxonomy
for devices and is directly created based on the Distribu-
tionElement subtree in the IFC schema. It needs to be
combined with the BOT ontology to be of use and works
well to classify distribution elements such as air terminals,295

etc.
FSO focuses on the design and operational phase of the

building life cycle [14]. It describes the mass flow and en-
ergy relationships between systems and components and
the composition of such systems [14]. FSO gives the abil-300

ity to connect both passive and active components to sys-
tems and subsystems. For example, a heating system can
include a supply and return system as subsystems. A seg-
ment or fitting can be related to a supply or return system.
A component can also be connected to a supply and return305

system, such as a heat exchanger. A segment can supply
or return fluid to another component based on what sys-
tem it belongs to. Unlike Brick and SAREF ontologies,
FSO only represents higher-level components such as flow-
moving device or flow-controlling devices (also included in310

the MEP ontology). The taxonomy of building service de-
vices for all four ontologies is based on the IFC taxonomy.
However, FSO does not represent both active and passive
components’ size- and capacity-related properties. With-
out that representation, HVAC engineers cannot design an315

HVAC system nor an HVAC component during the design
phase using FSO.

FPO and an extended version of FSO are introduced in
Section 3 to fill this research gap and describe the size- and
capacity-related properties of both active and passive com-320

ponents within the design phase. Ontologies are mainly
used to represent domain-specific knowledge. To check
whether a BIM model lack building elements or metadata,
we need a rule language. Section 2.3 describes the process
of compliance checking, which rule languages exists and325

what research have achieved in this area in a Semantic
Web context.

2.3. Compliance checking in a Semantic Web context

Compliance checking, code-checking, rule-based check-
ing, and constraint checking are all terms that describe330

2https://pi.pauwel.be/voc/distributionelement

4

a passive process that notifies whether a rule has been
violated [48]. The process does not modify the building
but validates the building design against different types
of requirements such as client requirements, functional re-
quirements, aesthetic requirements, building performance335

requirements, building code and regulations, complete dis-
cipline assessment and complete BIM data [22, 49]. Cur-
rently, companies primarily apply compliance checking to
assess the quality and perform collision control on BIM
models by utilizing the commercial tool Solibri Model Chec-340

ker (SMC). Solibri Model Checker uses predefined rules for
geometrical clashes, property completeness, and relation-
ships between building elements. Using SMC does not
allow the use of predefined rules in other applications or
the creation of customized or complex rules [22]. In order345

to perform compliance checking on BIM models without
being restricted to specific types of constraints or appli-
cations in general, Eastman et al. [50] provide a four-step
manual approach.

1. Rule interpretation: Human-readable rules are con-350

verted into a machine-interpretable format that con-
tains the information needed to be checked in the
correct format, also known as the rule model.

2. Building model preparation: Building information
is converted into a machine-readable format, also355

known as the data model.

3. Rule execution: The data model is validated against
the rule model.

4. Rule check reporting: A validation report describing
whether the data model has passed or violated any360

constraints.

By following these steps, custom rules can be written
without being limited to a particular application. How-
ever, the process is passive and only informs the user or
system whether any constraints have been met or violated.365

For actively correcting the violation in the data model,
Solihin et al. [49] introduce a fifth step:

5. Automatic correction: If any constraints are vio-
lated, the user or system is not only notified, but new
data is created to correct the violation. Users can be370

notified to implement the new data as an option or
the new data can be implemented automatically. As
some violations can be solved by multiple solutions,
the system should be able to notify the user of all
the possible solutions, allowing them to choose the375

appropriate one.

Moreover, Solihin et al. [49] suggest categorizing the
defined rules based on their complexity into four cate-
gories:

Class 1: entities and attributes are queried and checked380

against a single value.

Class 2: additional values are calculated (e.g. distance)
and checked.

Class 3: additional geometry is created, in order to cal-
culate spatial relationships.385

Class 4: problem solutions are calculated, and new data
is created.

Defining each rule in the rule interpretation phase re-
quires a rule language. In the following subsection, we de-
scribe several prominent rule languages developed by the390

W3C.

2.3.1. Rule languages

In 2004, the W3C introduced the Semantic Web Rule
Language (SWRL) as a member submission3. SWRL is a
combination of the OWL Description Language (DL) and395

OWL Lite sublanguages of OWL with the Unary/Binary
Datalog RuleML sublanguages of the Rule Markup Lan-
guage. OWL knowledge bases are integrated with Horn-
like rules in the rule language. The rules are expressed in
terms of OWL concepts, such as classes, properties and400

individuals. Because OWL ontologies are limited in their
ability to express complex logical reasoning, SWRL allows
users to create custom rules and apply them to OWL on-
tologies [51, 52].

Similar to SWRL, the Rule Interchange Format (RIF)405

introduced in 2005 by W3C allows rules to be expressed in
XML syntax. In order to enhance interoperability between
rule languages, RIF was designed to be the standard ex-
change format for rules on the Semantic Web. As of today,
RIF consists of 12 parts, including RIF-core, which is the410

core of all RIF dialects [52, 53] .
Notation3 (N3), is an assertion and logic language that

supports expressing RDF-based rules. It was introduced
in 2011 by W3C as a team submission to extend RDF by
adding formulae, variables, logical implication, and func-415

tional predicates, as well as to provide an alternative syn-
tax to the XML syntax that SWRL and RIF use. By
using shortcuts and syntactic sugar, it is able to simplify
statements in the form of triples [54].

The SPARQL Inferencing Notation (SPIN) was intro-420

duced by W3C in 2011 as a member submission and has be-
come a de facto industry standard for describing SPARQL
rules and constraints. The key feature of SPIN, compared
to SWRL, RIF, and N3, is the ability to specify constraints
using SPARQL queries. In this way, property values can425

be calculated based on other properties, or a set of rules
can be isolated for execution under certain conditions. It
is also possible to use SPIN to check the validity of con-
straints based on the assumption of a closed world [55].

SHACL is the successor to SPIN and was published430

as a W3C Recommendation in 2017 [56, 57]. A higher

3https://www.w3.org/2021/Process-20211102/

5

status has been granted to SHACL by W3C in compar-
ison to SWRL, RIF, N3 and SPIN. As a result, SHACL
has become the web standard today for validating RDF
graphs. SHACL is heavily inspired by SPIN, but it offers435

far more flexibility in defining target constraints. SPIN is
limited to classes, while SHACL can be applied to classes
or sets of nodes by various target mechanisms, including
customized targets. Furthermore, SHACL advanced fea-
tures allow validation of more complex constraint types,440

such as sub-graph pattern validation, conditional valida-
tion, etc.. SHACL contains two major components:

Data graph: A data model containing domain-specific
knowledge.

Shape graph: A rule model, consisting of user-defined445

constraints. User-defined shapes can be node shapes
or property shapes. Node shapes specify constraints
on target nodes, while property shapes specify con-
straints on target properties and their values.

By separating the data model and rule model, SHACL450

follows the Business Rule Management Systems (BRMS)
principle of decomposing knowledge into logic and data,
enabling them to be independently manipulated [36]. In
addition, SHACL outputs an RDF graph with validation
results, which describes whether a data model passed or455

failed a given rule-set.
The following section highlights the research gap based

on an overview of recent research on applying SHACL to
perform conformance checking within the AEC industry.

2.3.2. The research gap in case studies460

Stolk and McGlinn [9] demonstrated how ifcOWL can
be validated using SHACL. The authors showed how ifc:lengt-
hValue IfcQuantityLength can be restricted to only have
values of type ifc:IfcLengthMeasure and how cardinality
constraints can be used to restrict IfcDoorPanel proper-465

ties.
Hagedorn and König [56] developed an approach for

compliance checking linked building models. The proposed
method implements the four steps mentioned by Eastman
using semantic web technologies. Using the IFC2RDF con-470

verter, the authors converted an IFC schema into ifcOWL.
Their rule model involved a set of rules to validate the
path between an identifier of a link and the original iden-
tifier. In order to validate their data model against the
rule model and receive a validation report, they used the475

W3C SHACL Test Suite.
To define and check complex and dynamic scheduling

constraints in construction, Soman et al. [36] developed
a linked-data based constraint-checking approach utiliz-
ing semantic web technologies. The approach was im-480

plemented through a web application that validated con-
struction scheduling violations using different types of con-
straints. The pySHACL library was used to define and
validate SHACL shapes and the RDFlib library was used

to design and store a RDF graph. They used IfcOWL485

and LinkOnt to capture the model information of a real-
building model.

Oraskari et al. [58] defined rules within the energy sim-
ulation field for validating windows of specific sizes, check-
sums of properties, and alignments of BOT classes and490

properties. They validated two data models against each
other in order to align BOT classes and properties with
ifcOWL. The IFC schema of a conceptual building model
was converted to ifcOWL and BOT using the IFCtoLBD
and IFC2BOT converters. The rule modelling, validation495

and reporting was performed using the TopBraid SHACL
Application Programming Interface (API).

None of the mentioned authors developed a SHACL-
based rule model nor performed a conformance check again-
st an OWL-based HVAC model. Soman et al. [36] is the500

only author that uses a real building model, but a model
of low complexity and size. For that reason, a constraint-
checking approach to define and validate HVAC-related
constraints on a large real-building model using seman-
tic web technologies is introduced in Section 4 to fill this505

research gap.

3. Flow Properties Ontology

FPO is developed as an extension to FSO [14] to rep-
resent FSO component’s capacity and size-related proper-
ties. The development of FPO is closely related to FSO,510

but the authors in [14] sought to keep FSO as lightweight
as possible, to describe a myriad of different flow sys-
tems. As a result, we developed FPO as an extension
to FSO. It contains 50 classes, 50 object properties and 6
data properties and has a Description Logic expressivity515

of ALRF(D) [59]. A practical guide [60] was used to de-
sign and structure the classes, object properties and data
properties in FPO. Classes, for instance, should always be-
gin with capital letters, also known as upper camel case,
and should not contain spaces. In contrast, object proper-520

ties and data properties should always be written in lower
camel case and with verb senses.

It is necessary to know the HVAC component type to
describe its properties. A property of one HVAC compo-
nent may differ from another, and the data type or unit525

of one property may vary from another property. A pump
has different properties than a fan, and the flow rate can
be expressed in liters per second or cubic meters per hour
which is different from a ventilation fan. An elbow can
differ in properties from a tee by having an angle even530

if both are fittings. Moreover, while a tee has three flow
ports and elbow has two flow ports. Conceptually, Fig-
ure 2 illustrates how a component can have a property,
and the property a value. As there are two steps between
the component (Type / Object) and the value, this prop-535

erty modelling approach is a Level 2 (L2) property mod-
elling approach, as defined by Bonduel and Pauwels [61].
Other property modelling approaches are L1 (direct object

6

and data properties), and L2 (more metadata for tracking
property states over time).540

Component

hasProperty

Property Value

hasValue

Figure 2: Relationship between components, properties, and prop-
erty values.

It is possible to represent buildings, spaces, and their
relationships with systems and components using FSO and
BOT. Adding FPO, the representation can identify whe-
ther a particular system or component is able to heat, cool,
or ventilate a specific building or space.545

The following subsections provide a more detailed de-
scription of FPO. To determine the scope of the ontology,
Section 3.1 lists a set of competency questions. In Sec-
tion 3.2.2, FSO is extended with medium-level components
to represent component interfaces and their connections550

with other components. Section 3.3 reviews FPO classes
and their properties. Finally, reasoning examples will be
enabled in Section 3.4, followed by alignments to FSO,
SAREF4BLDG, MEP, and Brick in Section 3.5. Both the
extension of FSO, the development of FPO and the align-555

ments are made available on GitHub4.

3.1. Competency questions

Competency questions are listed in Table 2 to deter-
mine FPO’s scope and purpose formally. The scope of the
ontology is verified in Section 5 with SPARQL queries.560

Table 2: Competency questions

Reference Competency question

CQ1 What is the heating, cooling or ventilation
capacity of a system?

CQ2 What is the heating, cooling or ventilation
capacity of an HVAC component?

CQ3 What is the size of a given HVAC compo-
nent?

3.2. Flow System Ontology Extended

3.2.1. Connection between components

FSO represents the energy and mass flow relationships
between systems and their components and their composi-
tion. However, the current version of FSO does not express565

the opening or passage that directs the flow of energy or
mass. The existing version of FSO expresses a segment.
This simplistic representation is insufficient to determine
an HVAC component’s size or capacity during the building

4https://github.com/Semantic-Web-Tool/

Orchestrator-Service/tree/main/public/Ontologies

design phase. An actual component contains a fluid, which570

is in motion. This is known as flow. Ports are added for the
fluid to flow in and out of each component. The existing
FSO taxonomy is therefore extended with fso:Port and
fso:Flow. As a result, a hierarchical relationship can be
described among systems, components, ports, and flows.575

The concept of relating a fso:Port and a fso:Flow for
multiple components is shown in Figure 3. An fso:Segment

can be linked to an fso:Port with fso:hasPort, and an
fso:Port can be linked to a flow with fso:hasFlow. With
fso:hasPort and fso:hasFlow available, an fso:Fitting580

can be related to its ports and flow. The direct relationship
between the ports of both components is expressed using
fso:suppliesFluidTo. In some cases, it is sufficient to
just represent the ports and not to explicitly indicate the
flow. In that case, the fso:Flow instances can simply be585

left out.

FlowPort

hasPort hasFlow

Segment Fitting

hasFlow hasPort hasFlow hasPort

hasFlow

hasPort

Flow Port

suppliesFluidTo

PortFlow

Flow

Port

FSO current class

FSO current object property
FSO extended class

FSO extended object property

Figure 3: A segment partitioned with ports and flow connects to an
fitting through its ports

In addition, the opening can also be expressed as a
fso:ConnectionPoint instead of a fso:Port. A single
connection point can be used to represent connections be-
tween components instead of multiple ports. The fso:Con-590

nectionPoint is an interface between two components
that transports fluid. Figure 4 illustrates how multiple
components can be related using fso:ConnectPoint. The
fso:Segment relates to a fso:ConnectionPoint with fso:-

ConnectsTo, while the fso:Fitting relates to a fso:Con-595

nectionPoint with fso:ConnectsFrom. A connection poi-
nt’s relationship to a component also determines the in-
tended direction of the flow, which is crucial information
when performing hydraulic calculations. The fluid is trans-
ported from the fso:Segment to the fso:Fitting in Fig-600

ure 4. Both fso:Port and fso:ConnectionPoint are sub-
classes of bot:Interface.

A relationship can be described among systems, and
components as shown in Figure 5. The components share
the same fso:ConnectionPoint. Flows and Ports are not605

available in this example, but could be modelled as well,
after the example in Figure 3.

The proposed extension to FSO makes it capable of
representing components and interfaces in multiple ways,
which adds some flexibility. The definition of the men-610

tioned classes and relationships in this section is defined

7

Segment FittingConnectionPoint

connectsFrom connectsTo

connectsFrom

ConnectionPoint

FSO extended class

ConnectionPoint

connectsTo

FSO current class

FSO extended object property

Figure 4: A segment connects to a fitting through connection points.

ConnectionPoint

connectsTo connectsFrom

System

Component

connectedWith

hasComponent

hasSubSystem

connectedWith

Extended taxonomy

Current taxonomy

Figure 5: Current and extended taxonomy of FSO with connection
points.

as follows:

• fso:Port is defined as “An opening or passage that
directs flow of a mass or energy”.

• fso:Flow is defined as a “A fluid flowing into or out615

of a port to another port”.

• fso:ConnectionPoint is defined as “A point of in-
teraction between components”.

• fso:hasPort is defined as “The relation from a com-
ponent to a port.”620

• fso:hasFlow is defined as “The relation from a port
to a flow.”

• fso:connectsTo is defined as “The relation from a
connection point to a component.”

• fso:connectsFrom is defined as “The relation from625

a connection point to a component.”

3.2.2. Extended component abstraction level

Currently, FSO represents eight high-level component
types. For several reasons, we must subdivide the eight
high-level component types into 19 medium-level compo-630

nents. For instance, the hydraulic sizing of a pump or a fan
are different. The sizing of a pump includes the pressure
drop from both supply system components and return sys-
tem components, but sizing of a fan only includes pressure

drop of either supply or return side. We have to define the635

types explicitly when performing hydraulic calculations.
Often components lack the required properties to per-

form a hydraulic calculation. For example, if an elbow
does not have a specified angle, we will not be able to dif-
ferentiate between an elbow or transition since they both640

are represented as a fso:Fitting and have two ports. To
accommodate the difference in properties, the eight high-
level FSO components have been nested into 19 medium-
level components as shown in Figure 6.

Component

EnergyConversionDevice

Fitting

Boiler
Chiller
HeatExchanger
HeatPump

Cap
Elbow
Reducer
Tee

FlowController
Damper
Valve

FSO current classes
FSO extended classes

FlowMovingDevice
Fan
Pump

Segment
Duct
Pipe

StorageDevice
Terminal

AirTerminal
ChilledBeam
SpaceHeater

TreatmentDevice
DuctSilencer
Filter

Figure 6: A class hierarchy of current and extended FSO compo-
nents.

3.3. Property relationships645

FPO provides 6 data properties: value, unit, abbre-
viation, design condition and curve. They can be used
to relate an entity literal to an entity class. Combined,
the 50 classes, 50 object properties and 6 data properties
represent the size and capacity of the FSO components.650

Figure 7 demonstrates how properties are added to com-
ponents, ports, or flows. An fso:Segment can be related
to the property fpo:Length with fpo:hasProperty. With
fpo:hasValue and fpo:hasUnit, fpo:Length can be con-
nected to the value ′15′ and the unit meter. In this exam-655

ple, fso:Segment and fpo:Length are both classes, while
fpo:hasProperty is an object property and fpo:hasUnit

and fpo:hasValue are data properties. This method is
applied to both fso:Port and fso:Flow. With this ap-
proach, we entirely follow the L2 property modelling ap-660

8

proach that is documented by Bonduel and Pauwels [61]
and in principle follows a one-to-many pattern.

FlowPortSegment

hasProperty

Length WallThickness FlowRate

hasProperty hasProperty

meter 3 milli-
meter

15 Kilogram
Per Second

0.02

hasFlow hasPort hasFlowhasPort

Flow Port

WallThicknessFlowRate

hasProperty hasProperty

Kilogram
Per Second

0.02

unit value

milli-
meter

15

unit valueunit valueunit valueunit value

FPO inferred class
FPO object property
FPO data property

FSO current class
FSO extended class
FSO extended object property

Figure 7: Describing the relationship between an fso:Segment and
and its properties with FPO classes, object and data properties.

3.4. Reasoning

Semantic Web technologies enable deductive reason-
ing as well as explicit assertions. A few examples of how665

FPO and the extended FSO allow for reasoning are pre-
sented in this section. Every object property in FPO is
assigned a domain and a range. For example, the at-
tribute fpo:hasLength has the domain fso:Component

and range fpo:Length. This means that, whenever we670

have a subject of type fso:Component and a predicate
of type fpo:hasLength, then the object must be of type
fpo:Length. This also means that a reasoning engine will
automatically infer the class fpo:Length when the object
property fpo:hasLength is provided in the input instance675

data. This can similarly be done for all the other proper-
ties shown in Figure 7.

An fso:Segment is shown in Figure 3 supplying fluid to
an fso:Fitting with the property fso:suppliesFluidTo.
However, with the extended FSO, it is possible to infer680

that if a segment port supplies fluid to another port of
a fitting, then the segment must also feed fluid to the
fitting (transitive object property). Figure 8 illustrates
the inferred knowledge. This can similarly be done for an
fso:connectionPoint (example shown in Figure 4). If a685

connection point is connected to a segment and connected
from a fitting, it can be inferred that the segment feeds
fluid to the fitting.

3.5. Alignments

Figure 9 shows the relation between BOT, FSO and690

FPO. The figure also illustrates how this network of ontolo-
gies can be used to show the relationship between a heat-
ing system, its components, properties, and the building
it serves. It simplifies the relationship between the HVAC
components and their properties for illustration purposes.695

The taxonomy of components in FPO, FSO, MEP,
SAREF4BLDG, and Brick is based mainly on the IFC
taxonomy and can therefore be aligned. Of course, they

FlowPort

hasPort hasFlow

Segment Fitting

hasFlow hasPort hasFlow hasPort

hasFlow

hasPort

Flow Port

suppliesFluidTo

feedsFluidToInferred knowledge

Asserted knowledge

PortFlow

Flow

Port

FSO current class

FSO current object property
FSO extended class

FSO extended object property

Figure 8: Deducing that the segment feeds fluid to the fitting as a
port of the segment supplies fluid to a port of the fitting.

can never be fully aligned because of their difference in se-
mantic meaning and definitions. Mappings between these700

and other ontologies always remain limited, faulty, and
very much open to interpretation and use; by the very na-
ture of mapping ontologies [62]. The mentioned ontologies
do not represent all the same components, nor are they
conceptually equivalent. Both SAREF4BLDG and Brick705

represent some component properties but are not intended
to describe the capacity or size of each component as FPO
does. Even the definition for Zone, which is available in
SAREF4BLDG and BOT, for example, has very different
meanings in both ontologies and should not be translated710

or mapped to one another [13, 46].
Classes, object properties, and data properties are nev-

ertheless compared between the ontologies in this section.
It is nevertheless recommended to not rely fully on these
ontology mappings and instead rely much more on instance715

linking, as recommended by Schneider [63], Rasmussen [43]
and Terkaj [64]. An instance can hereby be annotated as a
Brick class, BOT class, and FPO class using the advantage
of multi-typing in RDF graphs [14, 65, 66].

For the ontology mapping in the below section, we fol-720

low standard approaches and aim to organize FPO classes
as either sub-classes or equivalents to classes in another on-
tology. This notion also applies to object and data prop-
erties. It can either be a sub-property or equivalent to
another ontology. This is the case when aligning FPO and725

SAREF4BLDG as shown in Table 3. We are able to align
14 object properties between FPO and SAREF4BLDG.
For example, fpo:hasKv is a sub-property of s4bldg:flow-
Coefficient, while fpo:hasVolume is an equivalent prop-
erty to s4bldg:volume. Moreover, fpo:hasDesignAir-730

flowRate is equivalent to s4bldg:airFlowRateMin, as their
definitions are equivalent.

Just like SAREF4BLDG, Brick components can be equa-
lly aligned with FPO components. We can align 2 of
the 50 FPO object properties with Brick. For example,735

fpo:hasVolume is equivalent to brick:volume as shown
in Appendix A. Care needs to be taken, as it is very easy
to introduce false assumptions in the data using these map-
pings.

9

Building A

Room 2

Room 1

fso:HeatExchanger

rdf:type

fso:Pipe

fso:suppliesFluidTo

rdf:type

rdf:type

fso:Pump

fso
:suppliesFluidTo

fso:SpaceHeater

fso:Elbow

fso:suppliesFluidTo

rdf:type
fso

:su
pp

lie
sF

lu
id

To rdf:type

rdf:type

fso:Valve

fso
:re

turnsFluidTo

fpo:Pipe
rdf:type

fso:returnsFluidTo

fso:returnsFluidTo

2000

fpo:hasDesignHeatingPower

m10 fpo:hasHead

fpo:hasLength

fpo: hasOuterDiameter

2 m

0.3

fp
o:

ha
sF

lo
w

Ra
te

0.02 kg/s

1. Floor

2. Floor

bot:Storey

rdf:type
rdf:type

bot:Building

rdf:type bot:Space

rdf:type

fso:SupplySystem

fso:Fitting

fso:EnergyConversionDevice

 Supply system 1

rdf:type

Heating system 1

fso:System

rdf:type

rdfs:subClassOf

rdfs:subClassOf

Watt

cm

 Return system 1

fso:ReturnSystem

rdf:type

fso:hasComponent

fso:hasCom
ponent

fso
:hasSubSystem

bot:ContainsElement

bot:containsElement

bot:hasStorey

bot:hasSpace

fso:hasSubSystem

Figure 9: Combining multiple ontologies to represent building, spaces, systems, HVAC components, their properties and their relationships

Table 3: Alignments between FPO and s4bldg.

owl:Class
owl:ObjectProperty

rdfs:subClassOf
rdfs:subPropertyOf
owl:equivalentClass

fpo:hasDesignAirflowRate s4bldg:airFlowRateMin
fpo:hasCrossSectionalArea s4bldg:faceArea
fpo:hasKv s4bldg:flowCoefficient
fpo:hasHeight s4bldg:height
fpo:hasOuterDiameter s4bldg:inletConnectionSize
fpo:hasDesignVolume s4bldg:waterStorageCapacity
fpo:hasPressure s4bldg:openPressureDrop
fpo:hasOuterDiameter s4bldg:outletConnectionSize
fpo:hasDesignHeatingPower s4bldg:outputCapacity
fpo:hasOuterDiameter s4bldg:outerDiameter
fpo:hasRoughness s4bldg:roughness
fpo:hasThermalConductivity s4bldg:thermalConductivity
fpo:hasVolume s4bldg:volume
fpo:hasLength s4bldg:length

4. HVAC rule model740

The HVAC rule model was developed to check the com-
position of HVAC components, their systems, and their ca-
pacity and size-related properties. The HVAC rule model
consists of 36 shapes and 122 constraints and is made avail-
able on GitHub5. A shape of constraints can, for example,745

determine whether a pipe is a part of a system, has two
flow ports and is connected to other components. It can
also check whether the port of a pipe has the capacity-
related property flow rate or the pipe has the size-related
property diameter. In a validation process, the HVAC rule750

model will ensure that the necessary BIM information is
available to calculate the size and capacity of HVAC sys-
tems and their components. The calculation is also known
as the hydraulic calculation.

A rule can differ in complexity and range from 1-4, as755

defined by Solihin et al. [49]. In this section, we showcase
a SHACL-based rule for each complexity level.

4.1. Verifying pipes explicitly

In hydraulic calculations, it is essential to know the lo-
cation of each pipe segment in relation to upstream and760

downstream components, as well as roughness and length.

5https://github.com/Semantic-HVAC-Tool/Rule-Service/

tree/main/Public/Shapes/fsosh.ttl

10

The shape fsosh:Pipe applies 7 constraints to an fso:Pipe

and has a complexity level of 1 and are described as fol-
lows:

Constraint 1: An fso:Pipe must have exactly two flow765

ports.

Constraint 2: A pipe must feed fluid to exactly one com-
ponent.

Constraint 3: A pipe must be fed with fluid by exactly
one component.770

Constraint 4: A pipe must be connected to exactly one
system.

Constraint 5: Exactly one property of material type must
be present in a pipe.

Constraint 6: Exactly one property of length must be775

present for a pipe.

Constraint 7: Exactly one property of roughness type
must be present for a pipe.

In Listing 1, only the first constraint is expressed in
SHACL. The remaining 6 SHACL constraints are made780

available on GitHub6. In the first constraint, the cardinal-
ity constraints sh:minCount and sh:maxCount are applied
to check that the fso:Pipe has two ports. A minimum
and maximum cardinality of 2 will satisfy this constraint.
In addition, we use the value type constraint sh:dataType785

with the value xsd:anyURI to ensure the triple includes an
URI. If the cardinality constraint or value type constraint
is not satisfied, the message “A pipe must have exactly
two flow ports” will be thrown.

Listing 1: A SHACL shape to constrain the number of fso:Ports with
fso:hasPort for each fso:Pipe.790

1 fsosh:Pipe

2 a sh:NodeShape;

3 sh:nodeKind sh:IRI ;

4 sh:targetClass fso:Pipe ;

5 sh:property[

6 sh:path fso:hasPort ;

7 sh:dataType xsd:anyURI;

8 sh:minCount 2;

9 sh:maxCount 2;

10 sh:message "A pipe must have exactly two flow

ports"↪→

11]; #... the shape continues

4.2. Verifying the demand versus capacity by derived in-
formation

HVAC systems and their components must be designed
to provide sufficient heating, cooling, and/or ventilation to795

6https://github.com/Semantic-HVAC-Tool/Rule-Service/

tree/main/Public/Shapes/fsosh.ttl

buildings. For example, an HVAC terminal is designed cor-
rectly if its capacity to heat, cool, and ventilate a space ex-
ceeds the space’s demand. With the following constraint,
we demonstrate how the capacity of a supply air termi-
nal can be compared with the supply airflow demand of a800

space:

Constraint 1: The supply air terminal capacity should
be higher than the space’s required supply airflow
demand.

The rule is expressed in a single SHACL shape, as805

shown in Listing 2 and the constraint belongs to the shape
fsosh:AirTerminalCapacityCheck. A SPARQL-based con-
straint is used to implicitly find the comparison between
capacity and demand since it is not explicitly defined. Be-
cause this rule requires derived information, it reaches810

complexity level 2. A nested SPARQL select query is
shown in Listing 2. There can be more than one sup-
ply air terminal in a space. To sum the capacity of all
air terminals grouped by space, we apply an inner select
query. In the outer select query, we find the supply air-815

flow demand for each space and filter them according to
the constraint. This rule will be violated when the supply
air terminal capacity exceeds the supply airflow demand
of the space.

Listing 2: The listing shows a SHACL shape to constrain the capacity
of an supply air terminal versus the supply airflow demand of an
space.820

1 fsosh:AirTerminalCapacityCheck

2 a sh:NodeShape;

3 sh:nodeKind sh:IRI ;

4 sh:targetClass bot:Space ;

5 sh:sparql [

6 a sh:SPARQLConstrain ;

7 sh:message "The supply air terminal capacity shall

not be lower the required supply air flow demand of

the space" ;

↪→

↪→

8 sh:prefixes (fpo: fso: ex: inst: bot:);

9 sh:select """PREFIX bot:<https://w3id.org/bot#>

10 PREFIX ex: <https://example.com/ex#> PREFIX fso:

<http://w3id.org/fso#> PREFIX fpo:

<http://w3id.org/fpo#>

↪→

↪→

11 SELECT ?this {

12 ?this ex:designSupplyAirflowDemand ?flowDemand .

13 ?flowDemand fpo:hasValue ?flowDemandValue .

14 BIND (ROUND(?flowDemandValue) AS ?demand) .

15 {

16 SELECT ?this (ROUND(SUM(?flowCapValue)) AS

?capacity) WHERE {↪→

17 ?this a bot:Space .

18 ?airTerminal a fso:AirTerminal .

19 ?airTerminal fpo:hasAirTerminalType

?airTerminalType .↪→

20 ?airTerminalType fpo:hasValue "inlet" .

21 ?airTerminal fso:feedsFluidTo ?this .

22 ?airTerminal fso:hasPort ?port .

23 ?port fpo:hasFlowDirection ?flowDirection .

24 ?flowDirection fpo:hasValue "Out" .

25 ?port fpo:hasFlowRate ?flowCapacity .

26 ?flowCapacity fpo:hasValue ?flowCapValue .

27 } GROUP BY ?this

28 }

11

29 BIND (((?capacity/?demand)-1)*10 as ?oversizing) .

30 FILTER (?demand > ?capacity || ?oversizing > 10)

31 } """ ;] .

4.3. A rule of thumb to verify pressure drop in pipes

The pressure drop in pipes affects the economy of build-
ing projects, the material’s lifetime and the energy con-
sumption of HVAC systems. A high pressure loss will re-825

sult in a lower cost price, a shorter lifetime, and higher
energy consumption. As a result, most HVAC engineers
apply a guideline to their design, e.g. a maximum pipe
pressure loss of 100 Pa/m. This guideline or rule cannot
be conveyed through explicit information. Calculations830

and derived information are also required. The complex-
ity level of the shape fsosh:PipePressureDrop reaches 3
because an engine is used to calculate the pressure drop
and velocity of each distribution component. The engine
is discussed in detail in Section 5.1. The only constraint835

in this rule is targeting an fso:Pipe and is described as
follows:

Constraint 1: The pressure drop of a fso:Pipe shall not
exceed 100 Pa/m.

Listing 3 shows the rule expression in SHACL. The840

pressure drop in pipes is not explicitly defined in Pa/m in
FSO or FPO. We can, however, implicitly find the infor-
mation using a SPARQL constraint. Our SPARQL-based
constraint contains a SPARQL select query. The select
query returns all instances of fso:Pipe that exceeds 100845

Pa/m in pressure drop. By dividing the length of the pipe
by the pressure drop at the outlet port, we can determine
the pressure drop in Pa/m for each fso:Pipe instance.

Listing 3: A SHACL shape to constrain the maximum pressure drop
of each fso:Pipe.

1 fsosh:PipePressureDrop

2 a sh:NodeShape;

3 sh:nodeKind sh:IRI ;

4 sh:targetClass fpo:Pipe ;

5 sh:sparql [

6 a sh:sh:SPARQLConstraint ;

7 sh:message "The pressure drop of a fso:Pipe shall

not exceed 100 Pa/m";↪→

8 sh:prefixes (fpo: fso: inst:) ;

9 sh:select """PREFIX fso: <http://w3id.org/fso#>

10 PREFIX fpo: <http://w3id.org/fpo#>

11 PREFIX inst: <https://example.com/inst#>

12 SELECT ?this ?value

13 WHERE {

14 ?this a fso:Pipe .

15 ?this fpo:hasLength ?length .

16 ?length fpo:hasValue ?lengthvalue .

17 ?this fso:hasPort ?port .

18 ?port fpo:hasFlowDirection ?flowDirection .

19 ?flowDirection fpo:hasValue "Out" .

20 ?port fpo:hasPressureDrop ?pressureDrop .

21 ?pressureDrop fpo:hasValue ?pressureDropValue .

22 bind ((?pressureDropValue / ?lengthvalue) AS

?value) .↪→

23 FILTER (?value > 100)} """ ;] .

850

4.4. Redesigning the size of pipes automatically

During the HVAC design process, HVAC components
are often oversized or undersized due to limited time. Rath-
er than just creating a rule that notifies whether HVAC
components are right-sized passively, we will generate new855

data actively and add it to the model. By increasing the
diameter of the pipe, we can decrease the pressure drop.
That is precisely what Listing 4 is doing. Listing 4 is
an inference rule expressed in SHACL. Using a SPARQL
construct query, the pipe diameter is increased based on860

the material type and standard manufacturer size. The di-
mensions are limited to the material type PEX7 and range
from 0.012 to 0.050 meters. For every fso:Pipe that vi-
olates the previous rule, fsosh:PipePressureDrop, the
active rule generates a new diameter. For instance, a pipe865

diameter of 0.012 meters will automatically be increased
to 0.015 meters and added to the data model. Since this
rule can generate new information, it reaches a complexity
level of 4.

Listing 4: A SHACL shape to increase the size of a fso:Pipe auto-
matically870

1 fsosh:PipePexSizing

2 a sh:NodeShape ;

3 sh:targetClass fso:Pipe ;

4 sh:rule [

5 a sh:SPARQLRule ;

6 sh:prefixes (fpo: fso: ex:);

7 sh:construct """

8 CONSTRUCT {?diameter fpo:hasValue ?newSize.}

9 WHERE {

10 ?this a fso:Pipe .

11 ?this fpo:hasMaterialType ?type .

12 ?type fpo:hasValue "PEX 6 bar varme" .

13 ?this fso:hasPort ?port .

14 ?port fpo:hasOuterDiameter ?diameter .

15 ?diameter fpo:hasValue ?diameterValue .

16 BIND (

17 IF(?diameterValue = 0.012, 0.015,

18 IF(?diameterValue = 0.015, 0.018,

19 IF(?diameterValue = 0.018, 0.020,

20 IF(?diameterValue = 0.020, 0.022,

21 IF(?diameterValue = 0.022, 0.028,

22 IF(?diameterValue = 0.028, 0.032,

23 IF(?diameterValue = 0.032, 0.040,

24 IF(?diameterValue = 0.040, 0.050,

25 ?diameterValue))))))))

26 AS ?newSize)} """ ;

27 condition: fsosh: PipePressureDrop

28] .

7https://www.bobvila.com/articles/pex-pipe

12

5. Demonstration Environment

This section aims to demonstrate how capacity and
size-related properties within the HVAC domain can be
represented and validated for a a real-world BIM model.875

The use case process is illustrated in Figure 10.
The first step of the process is to create a data graph

and shape graph. As the shape graph is already produced
in Section 4, it does not require further processing and
can be used as-is8. In contrast, converting a BIM model880

will create the data graph. This step is identical to the
building model preparation phase of Eastman et al. [50].
The data graph contains BOT, FSO, and FPO vocabular-
ies so that it matches with the rules in our shape graph
and can proceed to the rule execution phase of Eastman885

et al. [50]. Using these three vocabularies, we can describe
the building, its services, its interactions, and properties.
For example, we can express how the HVAC system or
an HVAC component relates to the building or a specific
room.890

In the second step, a rule execution process will be per-
formed to check the shape graph against the data graph.
The data graph will be manually corrected if any con-
straints are violated during rule execution. Depending on
the violation type, manual correction can be achieved at895

three levels; BIM model, parser or data graph. In cases
where we do not want to modify the BIM model, we can
use SPARQL on the data graph or add the information
through the parser.

When the rule execution conforms, we can proceed to900

step 3. This step involves hydraulic calculations for ducts,
pipes, and fittings to determine each distribution compo-
nent’s pressure drop and fluid velocity. A second confor-
mance check will be conducted to check the shape graph
against the data graph and the hydraulic results. When-905

ever a constraint is violated, an HVAC rule at level 4 in
complexity from the shape graph will be used to correct
the violation.

When the rule execution conforms, we will have all the
information necessary to size the flow-moving device. Step910

4 will therefore involve calculating the capacity of each
flow-moving device, represented in the data graph. After
the flow-moving devices’ capacities has been calculated,
the result is given, and the process ends.

5.1. A Semantic HVAC tool915

We developed the Semantic HVAC tool to perform
the process shown in Figure 10. The web tool has a
microservice-oriented system architecture and contains four
layers, which is illustrated in Figure 11. The source code
of the Semantic HVAC Tool and the material used to per-920

form the process shown in Figure 10 is made available on
GitHub9. The following sections first describe the data

8https://github.com/Semantic-HVAC-Tool/Rule-Service/

tree/main/Public/Shapes/fsosh.ttl
9https://github.com/Semantic-HVAC-Tool

flow in detail and then demonstrate the Semantic HVAC
tool in a use case.

5.1.1. Presentation layer925

The presentation layer handles the user interface logic
and displays data on the page. The Graphical User Inter-
face (GUI) relies on React components to improve page
rendering [67]. Using the GUI, users can perform confor-
mance checking, perform hydraulic calculations, calculate930

the capacity of flow-moving devices, and view the results.
The user has to initiate the conformance checking and cal-
culations in the right order as shown in Figure 10. It is
therefore necessary for the user to initiate the conformance
check first. The user must correct all violations manually935

if any exist. If any violation exists, the GUI will not allow
the user to perform the hydraulic calculation. Using this
method, we ensure that the data model contains all the in-
formation we need to calculate the hydraulics. The same
applies to the capacity calculation of flow-moving devices.940

If any violations occur after the second conformance check,
the GUI will not allow the user to initiate the flow-moving
device calculation.

The GUI displays the conformance check results in two
different tables. Based on the type of HVAC component,945

the HVAC system, and size and capacity properties, the
first table shows the number of violations. The first table
is interactive. By clicking on a specific HVAC component
type in the first table, the GUI will display the second ta-
ble. The second table lists the violations for that specific950

HVAC component in more detail, including the instance
ID, constraint type, and violation description. Addition-
ally, the GUI shows the results of the flow-moving device
calculation in a table. The table displays the type, ID,
flow rate, and pressure of each flow-moving device.955

5.1.2. Communication layer

The orchestrator handles the communication between
the service components in the Semantic HVAC Tool via
HTTP requests.

There are two ways to communicate between services:960

decentralized and centralized. Decentralized communica-
tion allows microservice components to communicate di-
rectly with each other. In central communication, mi-
croservices will communicate through an orchestrator ser-
vice. As illustrated in Figure 11, we have implemented965

a central orchestrator to handle the communication be-
tween the presentation layer, the business layer, and the
database layer. The orchestrator is developed as an Ex-
pressJS server [68] in NodeJS [69]. When the user initiates
the conformance checking, the following communication970

will happen:

1. the client requests conformance checking results from
the orchestrator.

2. the orchestrator requests conformance checking re-
sults from the rule service.975

13

BIM MODEL

RULE
EXECUTION

DATA GRAPHPARSER

SHAPE GRAPH

VIOLATESCORRECT
MANUALLY

HYDRAULIC
CALCULATION

RULE
EXECUTION

VIOLATESCORRECT
MANUALLY

CORRECT
AUTOMATICALLY

CONFORMS

FLOWMOVINGDEVICE
CALCULATION

CONFORMS

CORRECT
MANUALLY

STEP 1 STEP 2 STEP 3 STEP 4

Figure 10: The process of performing conformance checking and design calculations for an HVAC model.

DATA GRAPH

PARSER

PRESENTATION LAYER

COMMUNICATION LAYER

ORCHESTRATOR

RULE
SERVICE

CAPACITY
SERVICE

BIM MODEL

BUSINESS LAYER

THE SEMANTIC HVAC TOOL

DATABASE LAYER

SHAPE GRAPH

REST REST REST REST

REST

CLIENT

Figure 11: The system architecture of the Semantic HVAC Tool.

3. the rule service sends a rule model expressed in turtle
format to the orchestrator.

4. the orchestrator sends the rule model to the data-
base.

5. as the database already stores the data graph, it per-980

forms the rule execution and sends the conformance
checking results expressed in JSON-LD to the or-
chestrator.

6. the orchestrator sends the conformance checking re-
sults to the client.985

7. the client displays the conformance checking results
in two tables.

Similar to the conformance checking, the orchestra-
tor handles communication between the different services
when performing hydraulic- and flow-moving device calcu-990

lations.

5.1.3. Business layer

The business logic is spread over multiple microser-
vices in the web application. We have divided our logic
into two microservices: the capacity service and the rule995

service, as shown in Figure 11. Rule logic is handled by
the rule service, while the capacity service handles HVAC
design logic. The rule service consists of two functions.
When requested, the first function provides a shape graph
in turtle format, while the second function performs an1000

automatic conformance check and produces a validation
report in JSON-LD format.

The capacity service has one function. When requested,
it performs a hydraulic calculation and delivers the pres-
sure drop result for each distribution component, which is1005

of type fso:Pipe, fso:Duct, fso:Elbow, fso:Transition
and fso:Tee. The output of the function is expressed in

14

JSON-LD format. Both microservices are developed sep-
arately in FastAPI. To perform hydraulic calculations, we
use the fluids library [70].1010

5.1.4. Database layer

The database layer consists of a Jena Fuseki server [71]
that stores RDF data. The microservices in the busi-
ness layer share the same database to access information
from different domains easily. Jena Fuseki has SPARQL,1015

SHACL, and Update endpoints. The SPARQL endpoint
retrieves data, while the Update endpoint inserts, deletes,
or updates data.

For example, when the user initiates the flow-moving
device calculation, the client requests a list of flow-moving1020

devices from the orchestrator. The orchestrator then re-
quests three SPARQL queries10. The first SPARQL query
is illustrated in Appendix B and is able to sum the pres-
sure drops of the critical branch to determine the necessary
pressure of each fso:Pump represented in the data graph.1025

The second SPARQL query performs the same calculation
for every fso:Fan, while the third query calculates the
total flow rate of each flow-moving device. Once the or-
chestrator hits the SPARQL endpoint in the Jena Fuseki
Server with the SPARQL queries, it retrieves the results1030

and sends them to the client to be displayed in the flow-
moving device table.

5.1.5. Parsing the BIM model

The parser11 and the BIM model12 are not part of the
Semantic HVAC Tool. The parser is developed as a .NET1035

Framework (C-Sharp) plugin in Revit [72], using the Revit
API, while the BIM model is developed as a BIM model
in Revit. The parser has two functions; the first function
serializes Revit BIM objects into a data graph expressed in
turtle syntax and, while the second sends the data graph to1040

the orchestrator via an HTTP request. The orchestrator
then redirects the data graph to the database for storage.

5.2. Results

To showcase the tool in use, we used a BIM model of a
real-world building located in Sorø, Denmark. The build-1045

ing is a primary school constructed in 2017 and named
Frederiksberg Skole. Frederiksberg Skole has a gross floor
area of 6970 m2 and is divided into a northern building
and southern building. Each building has three floor lev-
els, as shown in Figure 12. The original BIM model has1050

been modified by Seeberg and Tangeraas [73] to include
only the northern building and its heating and ventila-
tion system. It has 86 rooms, each heated with radia-
tors and ventilated with supply and extract air terminals.
Both systems are located in the basement of the northern1055

10https://github.com/Semantic-HVAC-Tool/

Orchestrator-Service/tree/main/public/Queries
11https://github.com/Semantic-HVAC-Tool/Parser
12https://github.com/Semantic-HVAC-Tool/Other/blob/main/

BIM-Model.rvt

building. The results of parsing Frederiksberg Skole as a
data model, performing two conformance checks, calculat-
ing the hydraulics and designing flow-moving devices with
the Semantic HVAC tool are presented in this section.

5.2.1. Parsing the data model1060

The process of serializing Frederiksberg Skole from Re-
vit to the Semantic HVAC Tool took 17.1 seconds to com-
plete. Moreover it took the Semantic HVAC Tool 8.3
seconds to store the data model of 369054 triples in the
database. The triples are also made available on GitHub13.1065

Since FSO represent HVAC components, we can extract
the sum of components by type. Table 4 shows that the
data model consists of 6137 HVAC components, 36 HVAC
systems and 65851 HVAC size- and capacity-related prop-
erties. In total, the data model consists of 84887 instances.1070

Table 4: The table shows the amount of HVAC components, systems
and size- and capacity-related properties in the data model

Type Amount

fso:EnergyConversionDevice 1
fso:Segment 2766
fso:Fitting 2912
fso:FlowMovingDevice 3
fso:FlowController 85
fso:Terminal 370
fso:System 36
fso:Port 12827
fso:Flow 36
fpo:Property 65851
total 84887

5.2.2. Conformance checking Frederiksberg Skole

The process of validating the data model against the
rule model took 3.1 seconds to complete. Table 5 shows the
results of the first conformance check. For example, Ta-
ble 5 shows that instances of type fso:System in the data1075

model have violated the constraints 32 times. The HVAC
rule model is also violated by instances of type fso:Duct,
fso:SpaceHeater, fso:Port, and fpo:Property. The to-
tal amount of violations is 372. Since the data graph con-
tains 84887 instances this means that approximately 0.5%1080

of the components are violating the HVAC rule model. We
can also observe, that the majority of violations are caused
by instances of type fso:Port, which accounts for approx.
73% of the total violating instances.

We can access Table 6 in the client by clicking on1085

fso:System in the first conformance checking table. Ta-
ble 6 lists the violation details for fso:System. The GUI
displays all 32 violations, but Table 6 is limited to the first
two violations, indicating that instance inst:5eb8aa6a...

13https://github.com/Semantic-HVAC-Tool/Other/blob/main/

Data-Model.ttl

15

Basement

Ground �oor

1. �oor

The South building
The North building

Figure 12: The illustration shows the floor plans of Frederiksberg
Skole in Sorø, Denmark. The south building is marked with red,
while the north building is marked with blue [73]

Table 5: Results of the first conformance check, showing the number
of violations, based on HVAC component type, HVAC system and
size- and capacity-related properties

Type Amount

fso:HeatExchanger 0
fso:Pipe 2
fso:Duct 2
fso:Elbow 0
fso:Transition 0
fso:Tee 0
fso:Fan 0
fso:Pump 0
fso:AirTerminal 0
fso:SpaceHeater 3
fso:Damper 0
fso:Valve 0
fso:System 32
fso:Port 251
fso:Flow 0
fpo:Property 82
Total 372

violates the SHACL constraint type sh:MinCountConstrain-1090

Component and throws the message “A return system must
contain at least one component”.

Table 6: Results of the first conformance check, showing the first two
results of fso:System violations in details

ID Constraint type Description

inst:5eb8aa6a-
0ed0-4fea-b226-
dd7fa9ae035e-
0019ec8a

sh:MinCountCon-
straintCompo-
nent

A return sys-
tem must have
at least one
component

inst:98e9914f-
25c6-4c43-a0fb-
912eba89c13d-
0019dbff

sh:MinCountCon-
straintCompo-
nent

A supply sys-
tem must have
at least one
component

All 32 violations were corrected in the data graph by
performing the SPARQL update query shown in Appendix
C directly in the Jena Fuseki Server. The query deletes all1095

fso:SupplySystem and fso:ReturnSystem instances that
lack the predicate fso:hasComponent.

The remaining violations were corrected manually in
the BIM model, parser, and data graph, which results in
an empty validation table. A blank validation table at this1100

stage indicates that the data graph conforms, and we have
completed step 2 of the process illustrated in Figure 10.

5.2.3. Hydraulic calculation and second conformance check

Performing the hydraulic calculation on Frederiksberg
Skole took 5.4 seconds. The violation results of the second1105

conformance check are shown in Table 7. It can be seen
that instances of fso:Pipe are violating the HVAC rule

16

model 14 times, and the total number of violations in step
3 of the process illustrated in Figure 10 is 14.

Table 7: Results of performing the second conformance check, show-
ing the amount of violations, when the hydraulic results are added
to the data graph

Type Amount

fso:HeatExchanger 0
fso:Pipe 14
fso:Duct 0
fso:Elbow 0
fso:Transition 0
fso:Tee 0
fso:Fan 0
fso:Pump 0
fso:AirTerminal 0
fso:SpaceHeater 0
fso:Damper 0
fso:Valve 0
fso:System 0
fso:Port 0
fso:Flow 0
fpo:Property 0
Total 14

Clicking on fso:Pipe in the first conformance checking1110

table in the client will display Table 8. The table displays
the violation details within the category of fso:Pipe. While
the GUI of the Semantic HVAC Tool displays the violation
details of all 14 violations, Table 8 is limited to the first
two violations. The first result indicates that the instance1115

inst:745522df... is violating the SHACL constraint
type sh:SPARQLConstraintComponent. The message it
throws indicates that the pressure drop of the fpo:Pipe

instance is exceeding 100 Pa/m.

Table 8: Results of the second conformance check, displaying the first
two results of fso:Pipe violations in detail after running the hydraulic
calculation

ID Constraint
type

Description

inst:745522df-
9a78-4732-
8b22-
f56765e86201-
002bec43

sh:SPARQL-
Constraint-
Component

The pressure
drop of a pipe
should not
exceed 100
Pa/m

inst:745522df-
9a78-4732-
8b22-
f56765e86201-
002bec25

sh:SPARQL-
Constraint-
Component

The pressure
drop of a pipe
should not
exceed 100
Pa/m

In the GUI the user can implement the correction of1120

all 14 violations automatically. If the corrections are im-
plemented, the violations will be removed from Table 7,
and the total number of violations will be decreased to 0.

The violations at this stage were corrected automatically
in this way, which resulted in an empty validation table.1125

A blank validation table at this stage indicates that the
data graph conforms, and we have completed step 3 of the
process illustrated in Figure 10.

5.2.4. Flow-moving device capacity calculation and second
validation1130

Since we have performed the rule execution and hy-
draulic calculation, we are now ready to calculate the ca-
pacity of each flow-moving device represented in the data
graph. The results of the flow-moving device calculation
are shown in Table 9. It took 87 seconds to calculate the1135

total amount of flow rate and pressure for each flow-moving
device using three SPARQL queries and to display the re-
sults in the flow-moving device table. Two fans and one
pump are shown in Table 9 as flow-moving devices. Ta-
ble 9 provides the component ID, flow rate, and pressure1140

for each fso:Fan and fso:Pump. For example, it shows
that the instance inst:0fc738e3... of type fso:Pump

has a total flow rate of 0.84 L/s and a total pressure of
16867 pascal. The fan pressure includes the ductwork, air
terminal, and AHU pressure drop. Using this informa-1145

tion, correctly sized fans and pumps can be selected from
manufacturers product catalogues.

Table 9: Flow-moving device results showing the type of each flow-
moving device, its component ID, flow rate and pressure.

Type Component ID Flow
rate
[L/s]

Pressure
[Pa]

fso:Fan inst:36aec977-8efa-403c-
b1e6-3b29521aac43-
002f6bf5

7943 724

fso:Fan inst:f4ad7dcb-2875-4fe5-
be51-f41510b75979-
002f583e

8124 822

fso:Pump inst:0fc738e3-3eb1-4344-
b913-b3883e4083b0-
0033212a

0.84 16867

6. Discussion

This section describes the achievements, limitations,
and future work.1150

6.1. Achievements

This paper shows how an ontology can be extended,
constructed and aligned from scratch to represent the ca-
pacity and size-related properties of HVAC systems and
their components. We also demonstrated how separate1155

and lightweight ontologies such as BOT, FSO and FPO
can be interconnected to represent the building, its services
and their relationships in a modular way. Moreover, we

17

developed a set of constraints to increase the data quality
of BIM models within the HVAC domain. We developed1160

the Semantic HVAC tool and applied it to a real-world
building to demonstrate the feasibility of expressing and
conforming an HVAC model. We have created a reliable
data model to perform hydraulic calculations and design-
ing the capacity of flow-moving devices. Considering the1165

time spent on conformance checking, (re-)sizing and qual-
ity control in the industry, this study implements techni-
cal solutions and demonstrates a path towards better data
quality in BIM models, time savings due to computeriza-
tion and increased transparency.1170

6.2. Limitations

6.2.1. Logical complexity

Schwabe et al. [33], Oraskari et al. [58], and Hagedorn
and König [56] applied a reasoner to perform an automatic
rule check. In the same way, we used a SHACL inference1175

rule to automatically increase the diameter of a pipe when
the pressure in the pipe exceeded 100 Pa/m. Although
the SHACL component could generate the new data, it
could not delete the old data. SHACL inferencing rules
can only infer new knowledge. We implemented a sepa-1180

rate SPARQL query in the Semantic HVAC Tool to delete
the existing data after the SHACL inferencing rule was
performed. In any web tool, spreading logic this way will
increase its logical complexity.

6.2.2. Query efficiency1185

The rule execution is performing well since it took only
3.1 seconds to validate The HVAC rule model consisting of
36 shapes and 122 constraints against Frederiksberg Skole
with 369054 triples. In contrast, it took 87 seconds to cal-
culate the total pressure and flow rate of each flow-moving1190

device, represented in the data graph using three SPARQL
queries. Two of the SPARQL queries have a Filter Not
Exists statement, which is responsible for the slow query
performance. Using the Filter Not Exists statement, we
iterate through all HVAC components in the graph and re-1195

turn only those with ports that belong to the same HVAC
system. Iterating through all HVAC components and their
ports slows down the query efficiency. This could be im-
proved by replacing the Filter Not Exists statement.

6.2.3. Abstraction level of HVAC components1200

FSO is limited to eight high-level HVAC components
and 19 medium-level HVAC components. In practice, it is
possible to subdivide FSO further. For example, a pump
can be subdivided into centrifugal pumps, positive dis-
placement pumps, etc. There are also several levels of1205

centrifugal pumps. To retain FSO as a lightweight ontol-
ogy we did not nest further.

6.2.4. Geometry-based constraints

The data graph and shape graph we developed in our
research do not represent HVAC component geometry and1210

its geometry-related properties nor validate geometry-based
constraints, such as separation distances between HVAC
components and components from other domains or ser-
vice distances, such as structural components. The de-
livery of BIM models with incorrect separation and ser-1215

vice distances between HVAC components from the de-
sign phase to the construction phase is a common problem
affecting a building project’s economy and schedule and
should therefore be a focal point in further development.

6.3. Future work1220

The proposal for future work in this paper can be di-
vided into three steps.

A literature review of geometry-related ontologies should
be conducted first. If a sufficient geometry-related ontol-
ogy doesn’t exist, an existing one should be extended, or1225

a new one should be developed to describe the geometry
and the relation between geometries.

Secondly, to represent separation and service distances
for HVAC components, the geometry-related ontology shou-
ld be interconnected with BOT, FSO, and FPO.1230

Lastly, a set of geometry-based constraints should be
added to the HVAC rule model and validated against the
data graph.

7. Conclusions

This paper presents a demonstration environment to1235

represent and validate the composition of HVAC compo-
nents, their systems, and their capacity and size-related
properties using semantic web technologies. This paper
aimed to:

1. Extend FSO to support an alignment with the pro-1240

posed FPO ontology.

2. Propose the FPO ontology to represent HVAC com-
ponents’ capacity and size-related properties.

3. Propose a rule model for the HVAC domain.

4. Produce a demonstration environment to show the1245

conformance of an HVAC model.

5. Use the demonstration environment to show how
FPO and the HVAC rule model can support the de-
scription and validation of hydraulics in HVAC com-
ponents and the capacity of HVAC components.1250

We extended FSO with three classes and four prop-
erties related to the connectivity between ports and flu-
ids. This made it possible to describe the relationship
between HVAC components, their flow ports and the fluid
being transported in three ways and aligned with FPO. We1255

also extended FSO to represent 19-medium level compo-
nent types. We developed FPO to represent the size- and
capacity-related properties of HVAC components. FPO

18

has a Description Logic expressivity of ALRF(D) and con-
tains 50 classes, 50 object properties and 6 data properties.1260

Moreover, we developed an HVAC rule model that re-
stricts the composition of HVAC components, their sys-
tems, and their size- and capacity-related properties. The
rule model consists of 36 shapes and 122 constraints.

A four-step process and the Semantic HVAC Tool were1265

developed to demonstrate how a real-world building model
can be represented, validated, and used to compute hy-
draulic calculations and design the capacity of a flow-moving
device. Frederiksberg Skole consists of 369054 triples and
was used as the real-world building model. We managed to1270

perform conformance checking twice. The first rule execu-
tion resulted in 372 constraint violations, and the second
resulted in 14 constraint violations. These rule violations
were fixed both manually and automatically. Finally, using
the conformed model, we performed hydraulic calculations1275

and used the results to design the capacity of two fans and
a pump, which were represented in the real-world building
model.

8. Acknowledgements

This work was supported by EU-Interreg ÖKS “Data-1280

driven Energy Management in Public Buildings”; the In-
novation Fund Denmark (grant 9065-00266A); the Ram-
boll Foundation; and COWI A/S. We thank Sorø mu-
nicipality for providing the BIM model for Frederiksberg
Skole.1285

References

[1] M. Niknam, S. Karshenas, A shared ontology approach to se-
mantic representation of BIM data, Automation in Construc-
tion (2017). doi:10.1016/j.autcon.2017.03.013.

[2] R. Sacks, C. Eastman, G. Lee, P. Teicholz, BIM Handbook: A1290

Guide to Building Information Modeling for Owners, Designers,
Engineers, Contractors, and Facility Managers, 2018.

[3] J. M. Werbrouck, M. Senthilvel, J. Beetz, Querying Heteroge-
neous Linked Building Data with Context-expanded GraphQL
Queries, Tech. rep.1295

URL https://www.w3.org/TR/sparql11-query/

[4] A.-H. Hamdan, M. Bonduel, R. J. Scherer, An ontological model
for the representation of damage to constructions, Tech. rep.
URL http://www.w3.org/1999/02/22-rdf-syntax-ns#

[5] I. Esnaola-Gonzalez, F. J. Diez, Integrating Building and IoT1300

data in Demand Response solutions, Tech. rep.
URL http://project-respond.eu

[6] M. H. Rasmussen, M. Lefrançois, P. Pauwels, C. A. Hviid,
J. Karlshøj, Managing interrelated project information in AEC
Knowledge Graphs, Automation in Construction (2019). doi:1305

10.1016/j.autcon.2019.102956.
[7] A. Hogan, The Web of Data, 2020. doi:10.1007/

978-3-030-51580-5.
[8] J. Flore, T. Djuedja, Integration of environmental data in BIM

tool & Linked Building Data, Tech. rep.1310

URL http://www.enit.fr

[9] S. Stolk, K. McGlinn, Validation of ifcowl datasets using shacl,
Vol. 2636, 2020.

[10] P. Pauwels, D. V. Deursen, R. Verstraeten, J. D. Roo, R. D.
Meyer, R. V. D. Walle, J. V. Campenhout, A semantic rule1315

checking environment for building performance checking, Au-
tomation in Construction 20 (2011). doi:10.1016/j.autcon.

2010.11.017.

[11] J. Lee, Y. Jeong, User-centric knowledge representations based
on ontology for AEC design collaboration, Computer-Aided De-1320

sign 44 (2012) 735–748. doi:10.1016/j.cad.2012.03.011.
URL www.elsevier.com/locate/cad

[12] J. F. Tchouanguem Djuedja, F. H. Abanda, B. Kamsu-Foguem,
P. Pauwels, C. Magniont, M. H. Karray, An integrated Linked
Building Data system: AEC industry case, Advances in Engi-1325

neering Software 152 (feb 2021). doi:10.1016/j.advengsoft.

2020.102930.
[13] M. H. Rasmussen, M. Lefrançois, G. F. Schneider, P. Pauwels,

Bot: The building topology ontology of the w3c linked building
data group, Semantic Web 12 (1) (2020) 143–161. doi:10.3233/1330

SW-200385.
[14] V. Kukkonen, A. Kücükavci, M. Seidenschnur, M. H. Ras-

mussen, K. M. Smith, C. A. Hviid, An ontology to support flow
system descriptions from design to operation of buildings, Au-
tomation in Construction 134 (December 2021) (2022) 104067.1335

doi:10.1016/j.autcon.2021.104067.
URL https://doi.org/10.1016/j.autcon.2021.104067

[15] N. Pauen, D. Schlütter, J. Siwiecki, J. Frisch, C. van Treeck,
Integrated representation of building service systems: topology
extraction and tubes ontology, Bauphysik 42 (6) (2020) 299–1340

305. doi:10.1002/bapi.202000027.
[16] M. Bonduel, Towards a props ontology (2018),

URL: https://github. com/w3c-lbdcg/lbd/blob/gh-
pages/presentations/props/presentation LBDcall 20180312.

[17] A. Wagner, W. Sprenger, C. Maurer, T. E. Kuhn, U. Rüppel,1345

Building product ontology: Core ontology for linked building
product data, Automation in Construction 133 (2022) 103927.
doi:10.1016/j.autcon.2021.103927.

[18] N. Pauen, D. Schlütter, J. Siwiecki, J. Frisch, C. van Treeck,
Integrated representation of building service systems: topology1350

extraction and TUBES ontology, Bauphysik 42 (6) (2020) 299–
305. doi:10.1002/bapi.202000027.

[19] E. van den Bersselaar, J. Heinen, M. Chaudron, P. Pauwels, Au-
tomatic validation of technical requirements for a bim model us-
ing semantic web technologies, 2022, 1st 4TU/14USA research1355

day on Digitalization in the Built Environment ; Conference
date: 01-04-2022.

[20] A. S. Ismail, K. N. Ali, N. A. Iahad, A review on bim-based
automated code compliance checking system, in: 2017 Interna-
tional Conference on Research and Innovation in Information1360

Systems (ICRIIS), 2017, pp. 1–6. doi:10.1109/ICRIIS.2017.

8002486.
[21] R. Ren, J. Zhang, Model information checking to support in-

teroperable bim usage in structural analysis, ASCE Interna-
tional Conference on Computing in Civil Engineering 2019doi:1365

10.1061/9780784482421.046.
URL https://par.nsf.gov/biblio/10104661

[22] A. T. Kovacs, A. Micsik, Bim quality control based on
requirement linked data, International Journal of Architec-
tural Computing 19 (3) (2021) 431–448. doi:10.1177/1370

14780771211012175.
[23] W. Solihin, N. Shaikh, X. Rong, L. K. Poh, Beyond inter-

operatibility of building model: a case for code compliance,
Carnegie Mellon University (CMU), 2004.
URL https://www.researchgate.net/publication/1375

280598933BEYOND

[24] E. Hjelseth, N. Nisbet, Capturing normative constraints by use
of the semantic mark-up rase methodology, Proceedings of CIB
(2011).

[25] T. H. Beach, T. Kasim, H. Li, N. Nisbet, Y. Rezgui, Towards1380

automated compliance checking in the construction industry,
Vol. 8055 LNCS, 2013. doi:10.1007/978-3-642-40285-2_32.

[26] J. K. Lee, C. M. Eastman, Y. C. Lee, Implementation of a bim
domain-specific language for the building environment rule and
analysis, Journal of Intelligent and Robotic Systems: Theory1385

and Applications 79 (2015). doi:10.1007/s10846-014-0117-7.
[27] J. Dimyadi, W. Solihin, W. Solihin, C. Eastman, A knowledge

representation approach in bim rule requirement analysis us-
ing the conceptual graph, Journal of Information Technology in

19

Construction 21 (2016).1390

[28] J. Dimyadi, P. Pauwels, R. Amor, Modelling and accessing regu-
latory knowledge for computer-assisted compliance audit, Jour-
nal of Information Technology in Construction 21 (2016).

[29] J. Dimyadi, C. Clifton, M. Spearpoint, R. Amor, Computerizing
regulatory knowledge for building engineering design, Journal of1395

Computing in Civil Engineering 30 (2016). doi:10.1061/(asce)
cp.1943-5487.0000572.

[30] T. Chipman, T. Liebich, M. Weise, mvdxml specification 1.1,
specification of a standardized format to define and exchange
model view definitions with exchange requirements and vali-1400

dation rules. by model support group (msg) of buildingsmart,
BuildingSMART 1 (2016).

[31] S. Park, Y. C. Lee, J. K. Lee, Definition of a domain-specific
language for korean building act sentences as an explicit com-
putable form, Vol. 21, 2016.1405

[32] G. Governatori, M. Hashmi, H. P. Lam, S. Villata, M. Palmi-
rani, Semantic business process regulatory compliance check-
ing using legalruleml, Vol. 10024 LNAI, 2016. doi:10.1007/

978-3-319-49004-5_48.
[33] K. Schwabe, J. Teizer, M. König, Applying rule-based model-1410

checking to construction site layout planning tasks, Automation
in Construction 97 (2019). doi:10.1016/j.autcon.2018.10.

012.
[34] G. Lee, J. Jeong, J. Won, C. Cho, S. joon You, S. Ham,

H. Kang, Query performance of the ifc model server using an1415

object-relational database approach and a traditional relational
database approach, Journal of Computing in Civil Engineering
28 (2014). doi:10.1061/(asce)cp.1943-5487.0000256.

[35] W. Solihin, J. Dimyadi, Y.-C. Lee, C. Eastman, R. Amor, The
critical role of accessible data for bim-based automated rule1420

checking systems, 2017. doi:10.24928/jc3-2017/0161.
[36] R. K. Soman, M. Molina-Solana, J. K. Whyte, Linked-data

based constraint-checking (ldcc) to support look-ahead plan-
ning in construction, Automation in Construction 120 (2020)
103369. doi:10.1016/j.autcon.2020.103369.1425

[37] J. Oraskari, M. Senthilvel, J. Beetz, M. Senthilvel, J. Beetz,
SHACL is for LBD what mvdXML is for IFC, Proceedings of
the 38th International Conference of CIB W78 (October) (2021)
693–702.
URL https://www.cibw78-ldac-2021.lu/1430

[38] J. Beetz, J. Van Leeuwen, B. De Vries, IfcOWL: A case of
transforming EXPRESS schemas into ontologies, Artificial In-
telligence for Engineering Design, Analysis and Manufacturing:
AIEDAM 23 (1) (2009). doi:10.1017/S0890060409000122.

[39] W. Terkaj, A. Šojić, Ontology-based representation of IFC EX-1435

PRESS rules: An enhancement of the ifcOWL ontology, Au-
tomation in Construction 57 (2015). doi:10.1016/j.autcon.

2015.04.010.
[40] D. A. Koonce, R. P. Judd, A visual modelling language

for express schema, International Journal of Computer Inte-1440

grated Manufacturing 14 (5) (2001) 457–472. doi:10.1080/

09511920010022495.
[41] K. Afsari, C. M. Eastman, D. Castro-Lacouture, Javascript ob-

ject notation (json) data serialization for ifc schema in web-
based bim data exchange, Automation in Construction 771445

(2017) 24–51. doi:https://doi.org/10.1016/j.autcon.2017.

01.011.
URL https://www.sciencedirect.com/science/article/pii/

S0926580517300316

[42] P. Pauwels, S. Zhang, Y.-C. Lee, Semantic web technologies1450

in aec industry: A literature overview, Automation in Con-
struction 73 (2017) 145–165. doi:https://doi.org/10.1016/

j.autcon.2016.10.003.
URL https://www.sciencedirect.com/science/article/pii/

S09265805163029281455

[43] M. H. Rasmussen, P. Pauwels, C. A. Hviid, J. Karlshøj, Propos-
ing a Central AEC Ontology That Allows for Domain Specific
Extensions, 2017. doi:10.24928/jc3-2017/0153.

[44] M. Lefrançois, J. Kalaoja, T. Ghariani, A. Zimmermann,
T. Seas, D2 . 2 SEAS Knowledge Model, Tech. Rep. Decem-1460

ber (2014).
[45] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck,

D. Hong, A. Johansen, J. Koh, J. Ploennigs, Y. Agarwal,
M. Bergés, D. Culler, R. K. Gupta, M. B. Kjærgaard, M. Sri-
vastava, K. Whitehouse, Brick: Metadata schema for portable1465

smart building applications, Applied Energy 226 (September
2017) (2018) 1273–1292. doi:10.1016/j.apenergy.2018.02.

091.
URL https://doi.org/10.1016/j.apenergy.2018.02.091

[46] L. Daniele, F. den Hartog, J. Roes, Created in Close Interaction1470

with the Industry: The Smart Appliances REFerence (SAREF)
Ontology, in: Lecture Notes in Business Information Processing,
Vol. 225, 2015. doi:10.1007/978-3-319-21545-7_9.

[47] P. Pauwels, A. Costin, M. H. Rasmussen, Knowledge graphs
and linked data for the built environment, Structural Integrity1475

20 (2022) 157–183. doi:10.1007/978-3-030-82430-3_7.
[48] J. P. Martins, A. Monteiro, Lica: A bim based automated code-

checking application for water distribution systems, Automa-
tion in Construction 29 (2013). doi:10.1016/j.autcon.2012.

08.008.1480

[49] W. Solihin, C. Eastman, Classification of rules for automated
bim rule checking development, Automation in Construction 53
(2015). doi:10.1016/j.autcon.2015.03.003.

[50] C. Eastman, J. min Lee, Y. suk Jeong, J. kook Lee, Automatic
rule-based checking of building designs (2009). doi:10.1016/j.1485

autcon.2009.07.002.
[51] W3C, Swrl: A semantic web rule language combining owl and

ruleml (5 2004).
URL https://www.w3.org/Submission/SWRL/

[52] S. Mehla, S. Jain, Rule languages for the semantic web, Vol.1490

755, 2019. doi:10.1007/978-981-13-1951-8_73.
[53] W3C, Rif overview (second edition) (2 2013).

URL https://www.w3.org/TR/rif-overview/

[54] W3C, Notation3 (n3): A readable rdf syntax (3 2011).
URL https://www.w3.org/TeamSubmission/n3/1495

[55] W3C, Spin - overview and motivation (2 2011).
URL https://www.w3.org/Submission/spin-overview/

[56] P. Hagedorn, M. König, Rule-based semantic validation for
standardized linked building models (2021). doi:10.1007/

978-3-030-51295-8_53.1500

[57] W3C, Shapes constraint language (shacl) (7 2017).
URL https://www.w3.org/TR/shacl/

[58] J. Oraskari, J. Beetz, M. Senthilvel, Shacl is for lbd what
mvdxml is for ifc (10 2021).
URL https://github.com/w3c-lbd-cg/opm1505

[59] Description Logic Expressivity.
URL http://protegeproject.github.io/protege/views/

ontology-metrics/

[60] M. Debellis, A practical guide to building owl ontologies using
protégé 5.5 and plugins (04 2021).1510

[61] P. Pauwels, Buildings and Semantics : Data Models and Web
Technologies for the Built Environment, Buildings and Seman-
tics, Taylor Francis Group, 2022. doi:10.1201/9781003204381.

[62] J. Euzenat, P. Shvaiko, Ontology matching, 2nd Edition, 2013.
[63] G. F. Schneider, Towards aligning domain ontologies with the1515

building topology ontology, Proceedings of the 5th Linked
Data in Architecture and Construction Workshop (LDAC 2017)
(2017).

[64] W. Terkaj, G. F. Schneider, P. Pauwels, Reusing domain ontolo-
gies in linked building data: The case of building automation1520

and control, Vol. 2050, 2017.
[65] D. Mavrokapnidis, K. Katsigarakis, P. Pauwels, E. Petrova,

I. Korolija, D. Rovas, A linked-data paradigm for the integra-
tion of static and dynamic building data in digital twins, 2021.
doi:10.1145/3486611.3491125.1525

[66] L. Bindra, K. Eng, O. Ardakanian, E. Stroulia, Flexible, decen-
tralised access control for smart buildings with smart contracts,
Cyber-Physical Systems (2021). doi:10.1080/23335777.2021.

1922502.
[67] React, a JavaScript library for building user interfaces.1530

URL https://github.com/reactjs/reactjs.org

20

[68] Fast, unopinionated, minimalist web framework for node.
URL https://github.com/expressjs/express

[69] Node.js is an open-source, cross-platform, JavaScript runtime
environment.1535

URL https://github.com/nodejs/node

[70] FastAPI is a modern, fast (high-performance), web framework
for building APIs with Python 3.6+ based on standard Python
type hints.
URL https://github.com/tiangolo/fastapi1540

[71] Apache Jena Fuseki is a SPARQL server.
URL https://github.com/apache/jena/blob/main/

jena-fuseki2/apache-jena-fuseki/fuseki-server

[72] Revit: BIM software for designers, builders, and doers.
URL https://www.autodesk.eu/products/revit1545

[73] F. Seeberg, J. Tangeraas, Integration of Thermal Building Sim-
ulation Tools and Cloud-Based Building Information Models
(2022).

Appendix A. Mapping between Flow Properties
Ontology (FPO) and1550

Brick

Table A.10: Alignments between FPO and Brick.

owl:Class
owl:ObjectProperty

rdfs:subClassOf
rdfs:subPropertyOf
owl:equivalentClass

fpo:hasDesignCoolingPower brick:coolingCapacity
fpo:hasVolume brick:volume

Appendix B. Querying fso:Pump pressure

1 SELECT ?pump (MAX(?sumOfSupplyPressureDrop +

?sumOfReturnPressureDrop +

?terminalPressureDropValue) AS ?pressure)

↪→

↪→

2 WHERE {

3 {

4 SELECT ?pump ?terminal (SUM(?supplyValue) AS

?sumOfSupplyPressureDrop)↪→

5 WHERE {

6 ?pump a fso:Pump .

7 VALUES ?terminalType {fso:HeatExchanger

fso:SpaceHeater}↪→

8 ?terminal a ?terminalType .

9 ?supplySystem fso:hasComponent ?pump .

10 ?supplyComponent fso:feedsFluidTo+ ?terminal .

11 ?supplySystem fso:hasComponent ?supplyComponent .

12 ?supplySystem a fso:SupplySystem .

13 ?supplyComponent fso:hasPort ?supplyPort .

14 ?supplyPort fpo:hasFlowDirection ?flowDirection .

15 ?flowDirection fpo:hasValue "Out" .

16 ?supplyPort fpo:hasPressureDrop ?pressureDrop .

17 ?pressureDrop fpo:hasValue ?supplyValue .

18 FILTER NOT EXISTS {

19 ?supplyPort fso:suppliesFluidTo ?connectedPort .

20 ?connectedComponent fso:hasPort ?connectedPort .

21 ?connectedComponent fso:feedsFluidTo+ ?terminal .

22 ?connectedComponent a fso:Tee .

23 }} GROUP BY ?pump ?terminal

24 }

25 {

26 SELECT ?pump ?terminal ?terminalPressureDropValue

?sumOfReturnPressureDrop↪→

27 WHERE {

28 ?terminal fso:hasPort ?port .

29 ?port fso:returnsFluidTo ?anotherPort .

30 ?port fpo:hasPressureDrop ?pressureDrop .

31 ?pressureDrop fpo:hasValue

?terminalPressureDropValue .↪→

32 {

33 SELECT ?pump ?terminal (SUM(?returnValue) AS

?sumOfReturnPressureDrop)↪→

34 WHERE {{

35 ?pump a fso:Pump .

36 VALUES ?terminalType {fso:HeatExchanger

fso:SpaceHeater}↪→

37 ?terminal a ?terminalType .

38 ?supplySystem fso:hasComponent ?pump .

39 ?terminal fso:feedsFluidTo+ ?returnComponent

.↪→

40 ?returnSystem fso:hasComponent

?returnComponent .↪→

41 ?returnSystem a fso:ReturnSystem .

42 ?returnComponent fso:hasPort ?returnPort .

43 ?returnPort fpo:hasFlowDirection

?flowDirection .↪→

44 ?flowDirection fpo:hasValue "Out" .

45 ?returnPort fpo:hasPressureDrop ?pressureDrop

.↪→

46 ?pressureDrop fpo:hasValue ?returnValue .

47 }} GROUP BY ?pump ?terminal

48 }}}} GROUP BY ?pump

Listing 5: A SPARQL query to calculate the pressure of each
fso:Pump

21

Appendix C. Deleting systems, which doesn’t have
any components

1 DELETE {

2 ?system a ?systemType .

3 ?system ?systemPred ?systemObj .

4 ?system fso:hasFlow ?flow .

5 ?flow ?flowPred ?flowObj .

6 ?flow fpo:hasTemperature ?temperature .

7 ?temperature ?tempPred ?tempObj

8 }

9 WHERE {

10 VALUES ?systemType {fso:ReturnSystem fso:SupplySystem}

?system a ?systemType .↪→

11 ?system ?systemPred ?systemObj .

12 ?system fso:hasFlow ?flow .

13 ?flow ?flowPred ?flowObj .

14 ?flow fpo:hasTemperature ?temperature .

15 ?temperature ?tempPred ?tempObj

16 FILTER NOT EXISTS {?system fso:hasComponent ?component}

.↪→

17 }

Listing 6: A SPARQL update query to remove all fpo:SupplySystem
and fpo:ReturnSystem, which is missing the predicate
fso:hasComponent from the data model

22

6.6 Paper VI - Efficient management and compliance check of HVAC information in the building
design phase using semantic web technologies 161

6.6 Paper VI - Efficient management and
compliance check of HVAC information in
the building design phase using semantic
web technologies

Efficient management and compliance check of HVAC information in the building
design phase using semantic web technologies

Ali Kücükavcia,∗, Mikki Seidenschnura,b, Pieter Pauwelsd, Mads Holten Rasmussenc, Christian Anker Hviida

aDepartment of Civil Engineering, Technical University of Denmark, Copenhagen, Denmark
bRamboll, Copenhagen, Denmark

cNiras, Allerød, Denmark
dDepartment of the Built Environment, Eindhoven University of Technology, Eindhoven, Netherlands

Abstract

Several OWL ontologies have been developed for the AEC industry to manage domain-specific information, yet they often
overlook the domain of building services and HVAC components. The Flow Systems Ontology was recently proposed
to address this need, but it does not include HVAC components’ size and capacity-related properties. Also, despite
their strengths in representing domain-specific knowledge, ontologies cannot efficiently identify poor data quality in
BIM models. A four-fold contribution is made in this research paper to define and improve the data quality of HVAC
information by: (1) extending the existing Flow Systems Ontology, (2) proposing the new Flow Properties Ontology,
(3) proposing an HVAC rule set for compliance checking. Moreover, we use semantic web technologies to demonstrate
the benefits of efficient HVAC data management when sizing components. The demonstration case shows that we can
represent the data model in a distributed way, validate it using 36 SHACL shapes and use SPARQL to determine the
pressure and flow rate of fans and pumps.

Keywords: Building Information Modelling, Heating, Ventilation and Air Conditioning (HVAC), SHACL, Semantic
Web technologies, Linked Data, Compliance checking, SPARQL

1. Introduction

1.1. A Document-centric AEC Industry

Architecture, Engineering and Construction (AEC) pro-
jects have become more technically complex and involve
many stakeholders that must exchange information to com-5

plete a project successfully [1]. Since the Building In-
formation Modeling (BIM) methodology was introduced
in the early to mid-2000s [2], the AEC industry has ex-
perienced improvements in coordination and communica-
tion between project stakeholders and digital tools. The10

BIM methodology aims to achieve a more collaborative
workflow and addresses the need for a Digital Informa-
tion Hub [3]. It provides a method for managing struc-
tured, accessible, and reliable building data to represent
the physical and functional characteristics of a 3D build-15

ing model. Current BIM applications have improved the
workflows across the building life cycle and typically in-
clude 3D modelling. For that reason, its use is focused
on phases of the building life cycle where 3D modelling
is a requirement [4]. Today, BIM methodology is mainly20

∗Corresponding author
Email addresses: alikuc@byg.dtu.dk (Ali Kücükavci),

msei@ramboll.dk (Mikki Seidenschnur), p.pauwels@tue.nl (Pieter
Pauwels), mhra@niras.dk (Mads Holten Rasmussen),
cah@byg.dtu.dk (Christian Anker Hviid)

based on a document-centric approach in the AEC indus-
try, leading to poor data management across the building
life cycle, disciplines, and digital tools [5]. Data is often
outdated and not in sync with the real building model, for
which no live access is available.25

The Industry Foundation Classes (IFC) is currently the
standard format of building information and has been ap-
plied to exchange the needed information among stake-
holders, mainly in a file-based or document-centric ap-
proach. Extending the IFC schema with new domain-30

specific knowledge becomes difficult due to its monolithic
structure and complexity [6]. In addition, the schema does
not describe cross-domain information such as occupancy
data, meteorological data, data from building automation
and control systems (BACS), etc., nor information that35

links the different domain information to each other [4].

1.2. Linked Data & Semantic Web

The World Wide Web Consortium (W3C), with its par-
ticipants consisting of academic and industrial partners,
has developed open data standards for software develop-40

ers to support the shift from a “Web of Documents” to
a “Web of Data” [7]. They have developed the Seman-
tic Web Technologies consisting of Resource Description
Framework (RDF), RDF Schema (RDFS), Web Ontol-
ogy Language (OWL), SPARQL Protocol and RDF Query45

Language (SPARQL), and Shapes Constraint Language

Preprint submitted to Automation in Construction February 17, 2023

(SHACL). It is a framework that enables sharing, access-
ing, conforming, and linking data over the web in a machine-
interpretable format [8, 9].

Contrary to the IFC schema, which has well-known50

limitations such as limited-expression range, difficulty par-
titioning information, and describing the same informa-
tion in multiple ways, the W3C suggests more modular,
polylithic, and simple data formats, also called ontologies,
that can be interlinked and easily extended over time [6,55

10, 11]. Figure 1 shows the concept of interconnected on-
tologies, and it can be seen that the domain-specific on-
tologies can be separated as smaller graphs and linked with
other ontologies. An ontology does not need to cover an
entire domain, such as HVAC systems. It can also cover60

minor subdomains for HVAC, such as representing differ-
ent component types and their properties alone or the con-
nectivity of HVAC components and their relations to sys-
tems and subsystems. Developing smaller ontologies that
target one building domain will yield a practical and flex-65

ible way of modelling knowledge when combined [4, 12].

Figure 1: Interlinked domain-specific ontologies.

1.3. Interlinking Domain-specific Knowledge

In this context, the W3C LBD Community Group (W3C
LBD CG) has defined and shared a set of ontologies like
Building Topology Ontology (BOT) [13], Flow Systems70

Ontology (FSO) [14], TUBES System Ontology (TUBES) [15],
Property Set Definition Ontology (PROPS) [16], and Prod-
uct Ontology (PRODUCT) [17] etc. for the AEC indus-
try. While FSO describes the energy and mass flow re-
lationships between systems and their components and75

their compositions [14, 18], it lacks system components’
capacity- and size-related properties. A key research ques-
tion here is whether such properties need to be added di-
rectly to the FSO ontology, or can be kept separate, e.g. in
its own module or ontology. In our research, we intend to80

investigate whether the best approach is to create an on-
tology, called the Flow Properties Ontology (FPO), that
includes only those properties and aligns it with other ex-
isting ontologies in the Linked Building Data (LBD) con-
text, in particular with the FSO ontology that focuses on85

HVAC domain.

1.4. Conforming Domain-Specific Knowledge

Despite their strengths in representing domain-specific
knowledge, ontologies cannot solve the problem that many
BIM models are poorly modelled and lack building ele-90

ments or metadata. Currently, poor data quality in build-
ing models contributes to faulty design decisions and down-
falls in the information stream. Due to the increasing level
of information, it is challenging to create sufficient BIM
models [10, 19–21]. Architects and owners can spend hun-95

dreds of hours manually assessing conformity [22]. Due to
the time-consuming process and the need for high-perfor-
ming BIM models, many research publications have ad-
dressed conformance checking. The most prominent pub-
lications on conformance checking of BIM models cover100

various frameworks, tools, rule languages, rule models, and
rule engines [23–33]. As their data models rely on IFC or
their rule models lack semantic expressivity, they all have
limitations and cause poor query performance [34, 35]. So-
man et al. [36], Stolk and McGlinn [9], and Oraskari et105

al. [37] describe a promising approach to surpass the lim-
itations of IFC and improve conformance checking. They
use a semantic web approach with a data model written in
OWL and a rule model written in SHACL to verify con-
straint violations. Soman et al. [36] applied the method to110

the construction field, while Stolk and McGlinn [9] applied
the method to geospatial field, and Oraskari et al. [37] to
the energy simulation field. However, these publications
do not describe how to validate an HVAC model with
SHACL, nor do they apply the framework to a real-world115

large building project. In addition, we intend to develop a
rule model written in SHACL for validating HVAC-related
constraints.

1.5. Contribution

Considering the above, several innovations are needed.120

In fact, our research includes five contributions. Firstly,
our research aims to extend FSO to support an alignment
with the proposed FPO ontology. Secondly, we propose
the FPO ontology itself to represent HVAC components’
capacity and size-related properties. Thirdly, we propose a125

set of rules to validate HVAC-related constraints. Fourthly,
our work produces a demonstration environment for a real-
world building project, showcasing how to conform a HVAC
model using semantic web technologies. Lastly, the demon-
stration environment will showcase how FPO and the HVAC130

rule model can support the description and validation of
hydraulics in HVAC components and the capacity of HVAC
components.

2

1.6. Outline

Table 1 shows the namespaces and prefixes used in this135

article. The remainder of this article is structured as fol-
lows. Section 2 describes previous work on knowledge rep-
resentation and rule checking related to buildings and sys-
tems. The presented work is limited to OWL-based data
models and SHACL-based rule models. The development140

of FPO and extension of FSO are explained in Section 3.
Section 4 outlines our framework and rules for validating
HVAC-related constraints. We utilize a real-world build-
ing model in Section 5 to illustrate how FPO can rep-
resent capacity- and size-related properties and be used145

to design an HVAC device. Additionally, the real-world
building model will be validated against our rule model in
Section 5 where a process of four steps and a web applica-
tion is introduced and applied to generate validation and
capacity design results and display the results within a web150

interface. The validation results pinpoint the components
or properties in the data model that are violating our rule
model, while the capacity results show the flow rate and
pressure of each flow-moving device that is represented in
the data model.The validation and capacity design results155

are discussed in Section 6, and conclusions are presented
in Section 7.

Table 1: Used prefixes and namespaces.

Prefix Namespaces

fpo https://w3id.org/fpo#
fso https://w3id.org/fso#
fsosh https://w3id.org/fsosh#
bot https://w3id.org/bot#
s4bldg https://saref.etsi.org/saref4bldg#
s4syst https://saref.etsi.org/saref4syst#
brick https://brickschema.org/schema/1.1/Brick#
seas https://w3id.org/seas#
rdfs http://www.w3.org/2000/01/rdf-schema#
rdf http://www.w3.org/1999/02/22-rdf-syntax-

ns#
ex https://example.com/ex#
inst https://example.com/inst#
owl https://www.w3.org/2002/07/owl#

2. Backround

2.1. Scope of the HVAC domain

The HVAC engineer is responsible for designing a build-160

ing’s HVAC system. The purpose of an HVAC system
is to provide building occupants with acceptable thermal
comfort and indoor air quality. HVAC engineers must
go through a series of steps to design an HVAC system,
such as defining the distribution strategy for HVAC, defin-165

ing the control strategy, calculating HVAC demand by
zones, and determining the capacity and size of HVAC
systems and their components. To determine whether an

HVAC system is designed sufficiently, its cooling, ventila-
tion and heating effects are compared with the building’s170

cooling, ventilation, and heating demands. The HVAC
system is considered sufficient when the capacity exceeds
the building’s demand. The HVAC engineer must design
each HVAC component’s capacity individually since an
HVAC system’s capacity equals the sum of its components.175

The HVAC component’s size is then determined based on
its capacity. The HVAC engineer can choose a product
from a manufacturer once the capacity and size have been
defined. By the time all HVAC components have been
designed, the HVAC engineer has completed the HVAC180

design process.
Since our research project seeks to represent and vali-

date an HVAC system’s and HVAC component’s capacity
and size-related properties in a semantic web context, Sec-
tion 2.2 provides an overview of what research has been185

achieved in this field and what is missing.

2.2. System representation in a Semantic Web context

A number of ontologies have been proposed to handle
data within the AEC industry since the early 2000s. The
first significant contribution towards moving BIM data190

into the Semantic Web is the ifcOWL ontology. IfcOWL is
an OWL representation of the IFC schema [38, 39], and it
is available at the buildingSMART website1 as just another
serialisation of the IFC schema, next to eXtensible Markup
Language Schema Definition (XSD) and EXPRESS [40].195

It is recognized that IFC is not the easiest method to model
a building or infrastructure due to the complex relation-
ships between building elements (mostly n-ary relation-
ships) and the fact that it is an extremely extensive schema
that is difficult to extend. Hence, this has hampered its di-200

rect use among AEC stakeholders [8, 41]. Moreover, it cov-
ers a wide range of domains, making it monolithic, rigid,
and hard to extend [42]. The direct translation from the
IFC schema to an OWL ontology does not change these
inherent features of IFC, and so also the OWL ontology205

has the same limitations (complexity, limited extensibility,
size). To resolve the issues, the W3C LBD CG developed a
more modular and lightweight principle named LBD. This
LBD approach takes a small, simple, and extensible build-
ing ontology at its core, known as the Building Topology210

Ontology (BOT) [13]. A BOT graph can be expanded with
more specific details by interlinking with other ontologies
like FSO, DOT, Brick, SAREF, etc.

BOT describes the relationship between building zones
and elements [43]. A zone can be a building, a floor, a215

space, or a group of spaces. The building can be connected
to the floor level by asserting that an entity of bot:Building
is related to an entity of bot:Storey with bot:hasStorey.
The same method can be applied between the storey and
the space. Zones are related in BOT in a similar way220

1https://technical.buildingsmart.org/standards/ifc/

ifc-schema-specifications

3

to the Babushka concept. In Babushka, smaller dolls are
nested in larger dolls, whereas in BOT smaller zones are
nested in larger zones. BOT can be used to describe the
connections between zones in a building, but it cannot
describe building systems.225

SEAS describes the relationships between physical sys-
tems [44]. There are three main modules in the ontology,
namely, The System Ontology, The Features Of Interest
Ontology, and The Evaluation Ontology. The Features Of
Interest Ontology allows to describe features of interest230

and their properties. A car, as an example, can be con-
sidered a feature of interest with a property called speed.
Properties are either evaluated directly or through a qual-
ified evaluation in the Evaluation Ontology. In a direct
evaluation, a value is assigned to the property. A qual-235

ified evaluation needs to outline three categories: type,
the context of validity, and provenance data. The Sys-
tem Ontology describes the systems and the relationships
between them. There are three levels of connectivity: be-
tween systems, connections, or connection points. The240

SEAS ontology focuses primarily on electrical systems but
can also be used to represent higher-level building services
systems [44]. Yet, it does not describe any building ser-
vice components or their relationships to building service
systems.245

Building service components are included in the Brick
ontology [45] and the Smart Applications REFerence (SAREF)
ontology [46] at different conceptual levels and scopes. The
Brick ontology describes data points and their relation-
ships to physical, logical, and virtual assets in buildings.250

It consists of a core ontology to describe fundamental con-
cepts and their relationships and a domain-specific tax-
onomy. The ontology focuses on data points and their
relations to location, equipment, and resource [45]. Relat-
ing a data point to a location expresses in which area of255

the building the data point is located. It can be located
in a room, on a floor, in a duct, etc. Relating a data point
to a specific equipment expresses how the data point con-
trols the system or component. For example, take a room
temperature sensor positioned in a room. The room tem-260

perature sensor regulates how much air an air handling
unit (AHU) must supply to the room. Lastly, the resource
is the medium being measured and regulated by the data
point and equipment. For example, the medium of an
AHU is the air that is being supplied to a room.265

The SAREF Smart Appliances Reference ontology is a
reference ontology for smart appliances (devices) [46]. It
aims to bring meaningful interactions between Internet of
Things (IoT) devices in various domains. There are cur-
rently 13 extensions to the core ontology. SAREF4SYST270

is based on the concepts of seas:SystemOntology to de-
scribe higher-level building service systems. SAREF4BLDG
is based on the IFC taxonomy and describes building ser-
vice devices. Even if it is similar to IFC and BOT, these
structures are not fully the same [47]. Together, SAREF4-275

SYST and SAREF4BLDG can represent building systems
and their connectivity with IoT devices. Like Brick, the

SAREF ontology represents medium-level building system
devices such as a fan or pump. Furthermore, SAREF4BLDG
represents capacity-related building service devices to some280

extent. Those parameters are based on the IFC taxonomy.
However, both Brick and SAREF ontologies are primarily
focused on the operational phase of the building life cycle.
As a result, they do not represent any passive building
service devices such as pipes, ducts, tees, elbows, etc., nor285

their properties.
An OWL ontology that is similar to the SAREF4BLDG

ontology, but does not include any building topology to
avoid semantically overlapping ontologies, is the Mechan-
ical, Electrical and Plumbing (MEP) ontology2. This on-290

tology is structured as a very simple hierarchical taxonomy
for devices and is directly created based on the Distribu-
tionElement subtree in the IFC schema. It needs to be
combined with the BOT ontology to be of use and works
well to classify distribution elements such as air terminals,295

etc.
FSO focuses on the design and operational phase of the

building life cycle [14]. It describes the mass flow and en-
ergy relationships between systems and components and
the composition of such systems [14]. FSO gives the abil-300

ity to connect both passive and active components to sys-
tems and subsystems. For example, a heating system can
include a supply and return system as subsystems. A seg-
ment or fitting can be related to a supply or return system.
A component can also be connected to a supply and return305

system, such as a heat exchanger. A segment can supply
or return fluid to another component based on what sys-
tem it belongs to. Unlike Brick and SAREF ontologies,
FSO only represents higher-level components such as flow-
moving device or flow-controlling devices (also included in310

the MEP ontology). The taxonomy of building service de-
vices for all four ontologies is based on the IFC taxonomy.
However, FSO does not represent both active and passive
components’ size- and capacity-related properties. With-
out that representation, HVAC engineers cannot design an315

HVAC system nor an HVAC component during the design
phase using FSO.

FPO and an extended version of FSO are introduced in
Section 3 to fill this research gap and describe the size- and
capacity-related properties of both active and passive com-320

ponents within the design phase. Ontologies are mainly
used to represent domain-specific knowledge. To check
whether a BIM model lack building elements or metadata,
we need a rule language. Section 2.3 describes the process
of compliance checking, which rule languages exists and325

what research have achieved in this area in a Semantic
Web context.

2.3. Compliance checking in a Semantic Web context

Compliance checking, code-checking, rule-based check-
ing, and constraint checking are all terms that describe330

2https://pi.pauwel.be/voc/distributionelement

4

a passive process that notifies whether a rule has been
violated [48]. The process does not modify the building
but validates the building design against different types
of requirements such as client requirements, functional re-
quirements, aesthetic requirements, building performance335

requirements, building code and regulations, complete dis-
cipline assessment and complete BIM data [22, 49]. Cur-
rently, companies primarily apply compliance checking to
assess the quality and perform collision control on BIM
models by utilizing the commercial tool Solibri Model Chec-340

ker (SMC). Solibri Model Checker uses predefined rules for
geometrical clashes, property completeness, and relation-
ships between building elements. Using SMC does not
allow the use of predefined rules in other applications or
the creation of customized or complex rules [22]. In order345

to perform compliance checking on BIM models without
being restricted to specific types of constraints or appli-
cations in general, Eastman et al. [50] provide a four-step
manual approach.

1. Rule interpretation: Human-readable rules are con-350

verted into a machine-interpretable format that con-
tains the information needed to be checked in the
correct format, also known as the rule model.

2. Building model preparation: Building information
is converted into a machine-readable format, also355

known as the data model.

3. Rule execution: The data model is validated against
the rule model.

4. Rule check reporting: A validation report describing
whether the data model has passed or violated any360

constraints.

By following these steps, custom rules can be written
without being limited to a particular application. How-
ever, the process is passive and only informs the user or
system whether any constraints have been met or violated.365

For actively correcting the violation in the data model,
Solihin et al. [49] introduce a fifth step:

5. Automatic correction: If any constraints are vio-
lated, the user or system is not only notified, but new
data is created to correct the violation. Users can be370

notified to implement the new data as an option or
the new data can be implemented automatically. As
some violations can be solved by multiple solutions,
the system should be able to notify the user of all
the possible solutions, allowing them to choose the375

appropriate one.

Moreover, Solihin et al. [49] suggest categorizing the
defined rules based on their complexity into four cate-
gories:

Class 1: entities and attributes are queried and checked380

against a single value.

Class 2: additional values are calculated (e.g. distance)
and checked.

Class 3: additional geometry is created, in order to cal-
culate spatial relationships.385

Class 4: problem solutions are calculated, and new data
is created.

Defining each rule in the rule interpretation phase re-
quires a rule language. In the following subsection, we de-
scribe several prominent rule languages developed by the390

W3C.

2.3.1. Rule languages

In 2004, the W3C introduced the Semantic Web Rule
Language (SWRL) as a member submission3. SWRL is a
combination of the OWL Description Language (DL) and395

OWL Lite sublanguages of OWL with the Unary/Binary
Datalog RuleML sublanguages of the Rule Markup Lan-
guage. OWL knowledge bases are integrated with Horn-
like rules in the rule language. The rules are expressed in
terms of OWL concepts, such as classes, properties and400

individuals. Because OWL ontologies are limited in their
ability to express complex logical reasoning, SWRL allows
users to create custom rules and apply them to OWL on-
tologies [51, 52].

Similar to SWRL, the Rule Interchange Format (RIF)405

introduced in 2005 by W3C allows rules to be expressed in
XML syntax. In order to enhance interoperability between
rule languages, RIF was designed to be the standard ex-
change format for rules on the Semantic Web. As of today,
RIF consists of 12 parts, including RIF-core, which is the410

core of all RIF dialects [52, 53] .
Notation3 (N3), is an assertion and logic language that

supports expressing RDF-based rules. It was introduced
in 2011 by W3C as a team submission to extend RDF by
adding formulae, variables, logical implication, and func-415

tional predicates, as well as to provide an alternative syn-
tax to the XML syntax that SWRL and RIF use. By
using shortcuts and syntactic sugar, it is able to simplify
statements in the form of triples [54].

The SPARQL Inferencing Notation (SPIN) was intro-420

duced by W3C in 2011 as a member submission and has be-
come a de facto industry standard for describing SPARQL
rules and constraints. The key feature of SPIN, compared
to SWRL, RIF, and N3, is the ability to specify constraints
using SPARQL queries. In this way, property values can425

be calculated based on other properties, or a set of rules
can be isolated for execution under certain conditions. It
is also possible to use SPIN to check the validity of con-
straints based on the assumption of a closed world [55].

SHACL is the successor to SPIN and was published430

as a W3C Recommendation in 2017 [56, 57]. A higher

3https://www.w3.org/2021/Process-20211102/

5

status has been granted to SHACL by W3C in compar-
ison to SWRL, RIF, N3 and SPIN. As a result, SHACL
has become the web standard today for validating RDF
graphs. SHACL is heavily inspired by SPIN, but it offers435

far more flexibility in defining target constraints. SPIN is
limited to classes, while SHACL can be applied to classes
or sets of nodes by various target mechanisms, including
customized targets. Furthermore, SHACL advanced fea-
tures allow validation of more complex constraint types,440

such as sub-graph pattern validation, conditional valida-
tion, etc.. SHACL contains two major components:

Data graph: A data model containing domain-specific
knowledge.

Shape graph: A rule model, consisting of user-defined445

constraints. User-defined shapes can be node shapes
or property shapes. Node shapes specify constraints
on target nodes, while property shapes specify con-
straints on target properties and their values.

By separating the data model and rule model, SHACL450

follows the Business Rule Management Systems (BRMS)
principle of decomposing knowledge into logic and data,
enabling them to be independently manipulated [36]. In
addition, SHACL outputs an RDF graph with validation
results, which describes whether a data model passed or455

failed a given rule-set.
The following section highlights the research gap based

on an overview of recent research on applying SHACL to
perform conformance checking within the AEC industry.

2.3.2. The research gap in case studies460

Stolk and McGlinn [9] demonstrated how ifcOWL can
be validated using SHACL. The authors showed how ifc:lengt-
hValue IfcQuantityLength can be restricted to only have
values of type ifc:IfcLengthMeasure and how cardinality
constraints can be used to restrict IfcDoorPanel proper-465

ties.
Hagedorn and König [56] developed an approach for

compliance checking linked building models. The proposed
method implements the four steps mentioned by Eastman
using semantic web technologies. Using the IFC2RDF con-470

verter, the authors converted an IFC schema into ifcOWL.
Their rule model involved a set of rules to validate the
path between an identifier of a link and the original iden-
tifier. In order to validate their data model against the
rule model and receive a validation report, they used the475

W3C SHACL Test Suite.
To define and check complex and dynamic scheduling

constraints in construction, Soman et al. [36] developed
a linked-data based constraint-checking approach utiliz-
ing semantic web technologies. The approach was im-480

plemented through a web application that validated con-
struction scheduling violations using different types of con-
straints. The pySHACL library was used to define and
validate SHACL shapes and the RDFlib library was used

to design and store a RDF graph. They used IfcOWL485

and LinkOnt to capture the model information of a real-
building model.

Oraskari et al. [58] defined rules within the energy sim-
ulation field for validating windows of specific sizes, check-
sums of properties, and alignments of BOT classes and490

properties. They validated two data models against each
other in order to align BOT classes and properties with
ifcOWL. The IFC schema of a conceptual building model
was converted to ifcOWL and BOT using the IFCtoLBD
and IFC2BOT converters. The rule modelling, validation495

and reporting was performed using the TopBraid SHACL
Application Programming Interface (API).

None of the mentioned authors developed a SHACL-
based rule model nor performed a conformance check again-
st an OWL-based HVAC model. Soman et al. [36] is the500

only author that uses a real building model, but a model
of low complexity and size. For that reason, a constraint-
checking approach to define and validate HVAC-related
constraints on a large real-building model using seman-
tic web technologies is introduced in Section 4 to fill this505

research gap.

3. Flow Properties Ontology

FPO is developed as an extension to FSO [14] to rep-
resent FSO component’s capacity and size-related proper-
ties. The development of FPO is closely related to FSO,510

but the authors in [14] sought to keep FSO as lightweight
as possible, to describe a myriad of different flow sys-
tems. As a result, we developed FPO as an extension
to FSO. It contains 50 classes, 50 object properties and 6
data properties and has a Description Logic expressivity515

of ALRF(D) [59]. A practical guide [60] was used to de-
sign and structure the classes, object properties and data
properties in FPO. Classes, for instance, should always be-
gin with capital letters, also known as upper camel case,
and should not contain spaces. In contrast, object proper-520

ties and data properties should always be written in lower
camel case and with verb senses.

It is necessary to know the HVAC component type to
describe its properties. A property of one HVAC compo-
nent may differ from another, and the data type or unit525

of one property may vary from another property. A pump
has different properties than a fan, and the flow rate can
be expressed in liters per second or cubic meters per hour
which is different from a ventilation fan. An elbow can
differ in properties from a tee by having an angle even530

if both are fittings. Moreover, while a tee has three flow
ports and elbow has two flow ports. Conceptually, Fig-
ure 2 illustrates how a component can have a property,
and the property a value. As there are two steps between
the component (Type / Object) and the value, this prop-535

erty modelling approach is a Level 2 (L2) property mod-
elling approach, as defined by Bonduel and Pauwels [61].
Other property modelling approaches are L1 (direct object

6

and data properties), and L2 (more metadata for tracking
property states over time).540

Component

hasProperty

Property Value

hasValue

Figure 2: Relationship between components, properties, and prop-
erty values.

It is possible to represent buildings, spaces, and their
relationships with systems and components using FSO and
BOT. Adding FPO, the representation can identify whe-
ther a particular system or component is able to heat, cool,
or ventilate a specific building or space.545

The following subsections provide a more detailed de-
scription of FPO. To determine the scope of the ontology,
Section 3.1 lists a set of competency questions. In Sec-
tion 3.2.2, FSO is extended with medium-level components
to represent component interfaces and their connections550

with other components. Section 3.3 reviews FPO classes
and their properties. Finally, reasoning examples will be
enabled in Section 3.4, followed by alignments to FSO,
SAREF4BLDG, MEP, and Brick in Section 3.5. Both the
extension of FSO, the development of FPO and the align-555

ments are made available on GitHub4.

3.1. Competency questions

Competency questions are listed in Table 2 to deter-
mine FPO’s scope and purpose formally. The scope of the
ontology is verified in Section 5 with SPARQL queries.560

Table 2: Competency questions

Reference Competency question

CQ1 What is the heating, cooling or ventilation
capacity of a system?

CQ2 What is the heating, cooling or ventilation
capacity of an HVAC component?

CQ3 What is the size of a given HVAC compo-
nent?

3.2. Flow System Ontology Extended

3.2.1. Connection between components

FSO represents the energy and mass flow relationships
between systems and their components and their composi-
tion. However, the current version of FSO does not express565

the opening or passage that directs the flow of energy or
mass. The existing version of FSO expresses a segment.
This simplistic representation is insufficient to determine
an HVAC component’s size or capacity during the building

4https://github.com/Semantic-Web-Tool/

Orchestrator-Service/tree/main/public/Ontologies

design phase. An actual component contains a fluid, which570

is in motion. This is known as flow. Ports are added for the
fluid to flow in and out of each component. The existing
FSO taxonomy is therefore extended with fso:Port and
fso:Flow. As a result, a hierarchical relationship can be
described among systems, components, ports, and flows.575

The concept of relating a fso:Port and a fso:Flow for
multiple components is shown in Figure 3. An fso:Segment

can be linked to an fso:Port with fso:hasPort, and an
fso:Port can be linked to a flow with fso:hasFlow. With
fso:hasPort and fso:hasFlow available, an fso:Fitting580

can be related to its ports and flow. The direct relationship
between the ports of both components is expressed using
fso:suppliesFluidTo. In some cases, it is sufficient to
just represent the ports and not to explicitly indicate the
flow. In that case, the fso:Flow instances can simply be585

left out.

FlowPort

hasPort hasFlow

Segment Fitting

hasFlow hasPort hasFlow hasPort

hasFlow

hasPort

Flow Port

suppliesFluidTo

PortFlow

Flow

Port

FSO current class

FSO current object property
FSO extended class

FSO extended object property

Figure 3: A segment partitioned with ports and flow connects to an
fitting through its ports

In addition, the opening can also be expressed as a
fso:ConnectionPoint instead of a fso:Port. A single
connection point can be used to represent connections be-
tween components instead of multiple ports. The fso:Con-590

nectionPoint is an interface between two components
that transports fluid. Figure 4 illustrates how multiple
components can be related using fso:ConnectPoint. The
fso:Segment relates to a fso:ConnectionPoint with fso:-

ConnectsTo, while the fso:Fitting relates to a fso:Con-595

nectionPoint with fso:ConnectsFrom. A connection poi-
nt’s relationship to a component also determines the in-
tended direction of the flow, which is crucial information
when performing hydraulic calculations. The fluid is trans-
ported from the fso:Segment to the fso:Fitting in Fig-600

ure 4. Both fso:Port and fso:ConnectionPoint are sub-
classes of bot:Interface.

A relationship can be described among systems, and
components as shown in Figure 5. The components share
the same fso:ConnectionPoint. Flows and Ports are not605

available in this example, but could be modelled as well,
after the example in Figure 3.

The proposed extension to FSO makes it capable of
representing components and interfaces in multiple ways,
which adds some flexibility. The definition of the men-610

tioned classes and relationships in this section is defined

7

Segment FittingConnectionPoint

connectsFrom connectsTo

connectsFrom

ConnectionPoint

FSO extended class

ConnectionPoint

connectsTo

FSO current class

FSO extended object property

Figure 4: A segment connects to a fitting through connection points.

ConnectionPoint

connectsTo connectsFrom

System

Component

connectedWith

hasComponent

hasSubSystem

connectedWith

Extended taxonomy

Current taxonomy

Figure 5: Current and extended taxonomy of FSO with connection
points.

as follows:

• fso:Port is defined as “An opening or passage that
directs flow of a mass or energy”.

• fso:Flow is defined as a “A fluid flowing into or out615

of a port to another port”.

• fso:ConnectionPoint is defined as “A point of in-
teraction between components”.

• fso:hasPort is defined as “The relation from a com-
ponent to a port.”620

• fso:hasFlow is defined as “The relation from a port
to a flow.”

• fso:connectsTo is defined as “The relation from a
connection point to a component.”

• fso:connectsFrom is defined as “The relation from625

a connection point to a component.”

3.2.2. Extended component abstraction level

Currently, FSO represents eight high-level component
types. For several reasons, we must subdivide the eight
high-level component types into 19 medium-level compo-630

nents. For instance, the hydraulic sizing of a pump or a fan
are different. The sizing of a pump includes the pressure
drop from both supply system components and return sys-
tem components, but sizing of a fan only includes pressure

drop of either supply or return side. We have to define the635

types explicitly when performing hydraulic calculations.
Often components lack the required properties to per-

form a hydraulic calculation. For example, if an elbow
does not have a specified angle, we will not be able to dif-
ferentiate between an elbow or transition since they both640

are represented as a fso:Fitting and have two ports. To
accommodate the difference in properties, the eight high-
level FSO components have been nested into 19 medium-
level components as shown in Figure 6.

Component

EnergyConversionDevice

Fitting

Boiler
Chiller
HeatExchanger
HeatPump

Cap
Elbow
Reducer
Tee

FlowController
Damper
Valve

FSO current classes
FSO extended classes

FlowMovingDevice
Fan
Pump

Segment
Duct
Pipe

StorageDevice
Terminal

AirTerminal
ChilledBeam
SpaceHeater

TreatmentDevice
DuctSilencer
Filter

Figure 6: A class hierarchy of current and extended FSO compo-
nents.

3.3. Property relationships645

FPO provides 6 data properties: value, unit, abbre-
viation, design condition and curve. They can be used
to relate an entity literal to an entity class. Combined,
the 50 classes, 50 object properties and 6 data properties
represent the size and capacity of the FSO components.650

Figure 7 demonstrates how properties are added to com-
ponents, ports, or flows. An fso:Segment can be related
to the property fpo:Length with fpo:hasProperty. With
fpo:hasValue and fpo:hasUnit, fpo:Length can be con-
nected to the value ′15′ and the unit meter. In this exam-655

ple, fso:Segment and fpo:Length are both classes, while
fpo:hasProperty is an object property and fpo:hasUnit

and fpo:hasValue are data properties. This method is
applied to both fso:Port and fso:Flow. With this ap-
proach, we entirely follow the L2 property modelling ap-660

8

proach that is documented by Bonduel and Pauwels [61]
and in principle follows a one-to-many pattern.

FlowPortSegment

hasProperty

Length WallThickness FlowRate

hasProperty hasProperty

meter 3 milli-
meter

15 Kilogram
Per Second

0.02

hasFlow hasPort hasFlowhasPort

Flow Port

WallThicknessFlowRate

hasProperty hasProperty

Kilogram
Per Second

0.02

unit value

milli-
meter

15

unit valueunit valueunit valueunit value

FPO inferred class
FPO object property
FPO data property

FSO current class
FSO extended class
FSO extended object property

Figure 7: Describing the relationship between an fso:Segment and
and its properties with FPO classes, object and data properties.

3.4. Reasoning

Semantic Web technologies enable deductive reason-
ing as well as explicit assertions. A few examples of how665

FPO and the extended FSO allow for reasoning are pre-
sented in this section. Every object property in FPO is
assigned a domain and a range. For example, the at-
tribute fpo:hasLength has the domain fso:Component

and range fpo:Length. This means that, whenever we670

have a subject of type fso:Component and a predicate
of type fpo:hasLength, then the object must be of type
fpo:Length. This also means that a reasoning engine will
automatically infer the class fpo:Length when the object
property fpo:hasLength is provided in the input instance675

data. This can similarly be done for all the other proper-
ties shown in Figure 7.

An fso:Segment is shown in Figure 3 supplying fluid to
an fso:Fitting with the property fso:suppliesFluidTo.
However, with the extended FSO, it is possible to infer680

that if a segment port supplies fluid to another port of
a fitting, then the segment must also feed fluid to the
fitting (transitive object property). Figure 8 illustrates
the inferred knowledge. This can similarly be done for an
fso:connectionPoint (example shown in Figure 4). If a685

connection point is connected to a segment and connected
from a fitting, it can be inferred that the segment feeds
fluid to the fitting.

3.5. Alignments

Figure 9 shows the relation between BOT, FSO and690

FPO. The figure also illustrates how this network of ontolo-
gies can be used to show the relationship between a heat-
ing system, its components, properties, and the building
it serves. It simplifies the relationship between the HVAC
components and their properties for illustration purposes.695

The taxonomy of components in FPO, FSO, MEP,
SAREF4BLDG, and Brick is based mainly on the IFC
taxonomy and can therefore be aligned. Of course, they

FlowPort

hasPort hasFlow

Segment Fitting

hasFlow hasPort hasFlow hasPort

hasFlow

hasPort

Flow Port

suppliesFluidTo

feedsFluidToInferred knowledge

Asserted knowledge

PortFlow

Flow

Port

FSO current class

FSO current object property
FSO extended class

FSO extended object property

Figure 8: Deducing that the segment feeds fluid to the fitting as a
port of the segment supplies fluid to a port of the fitting.

can never be fully aligned because of their difference in se-
mantic meaning and definitions. Mappings between these700

and other ontologies always remain limited, faulty, and
very much open to interpretation and use; by the very na-
ture of mapping ontologies [62]. The mentioned ontologies
do not represent all the same components, nor are they
conceptually equivalent. Both SAREF4BLDG and Brick705

represent some component properties but are not intended
to describe the capacity or size of each component as FPO
does. Even the definition for Zone, which is available in
SAREF4BLDG and BOT, for example, has very different
meanings in both ontologies and should not be translated710

or mapped to one another [13, 46].
Classes, object properties, and data properties are nev-

ertheless compared between the ontologies in this section.
It is nevertheless recommended to not rely fully on these
ontology mappings and instead rely much more on instance715

linking, as recommended by Schneider [63], Rasmussen [43]
and Terkaj [64]. An instance can hereby be annotated as a
Brick class, BOT class, and FPO class using the advantage
of multi-typing in RDF graphs [14, 65, 66].

For the ontology mapping in the below section, we fol-720

low standard approaches and aim to organize FPO classes
as either sub-classes or equivalents to classes in another on-
tology. This notion also applies to object and data prop-
erties. It can either be a sub-property or equivalent to
another ontology. This is the case when aligning FPO and725

SAREF4BLDG as shown in Table 3. We are able to align
14 object properties between FPO and SAREF4BLDG.
For example, fpo:hasKv is a sub-property of s4bldg:flow-
Coefficient, while fpo:hasVolume is an equivalent prop-
erty to s4bldg:volume. Moreover, fpo:hasDesignAir-730

flowRate is equivalent to s4bldg:airFlowRateMin, as their
definitions are equivalent.

Just like SAREF4BLDG, Brick components can be equa-
lly aligned with FPO components. We can align 2 of
the 50 FPO object properties with Brick. For example,735

fpo:hasVolume is equivalent to brick:volume as shown
in Appendix A. Care needs to be taken, as it is very easy
to introduce false assumptions in the data using these map-
pings.

9

Building A

Room 2

Room 1

fso:HeatExchanger

rdf:type

fso:Pipe

fso:suppliesFluidTo

rdf:type

rdf:type

fso:Pump

fso
:suppliesFluidTo

fso:SpaceHeater

fso:Elbow

fso:suppliesFluidTo

rdf:type
fso

:su
pp

lie
sF

lu
id

To rdf:type

rdf:type

fso:Valve

fso
:re

turnsFluidTo

fpo:Pipe
rdf:type

fso:returnsFluidTo

fso:returnsFluidTo

2000

fpo:hasDesignHeatingPower

m10 fpo:hasHead

fpo:hasLength

fpo: hasOuterDiameter

2 m

0.3

fp
o:

ha
sF

lo
w

Ra
te

0.02 kg/s

1. Floor

2. Floor

bot:Storey

rdf:type
rdf:type

bot:Building

rdf:type bot:Space

rdf:type

fso:SupplySystem

fso:Fitting

fso:EnergyConversionDevice

 Supply system 1

rdf:type

Heating system 1

fso:System

rdf:type

rdfs:subClassOf

rdfs:subClassOf

Watt

cm

 Return system 1

fso:ReturnSystem

rdf:type

fso:hasComponent

fso:hasCom
ponent

fso
:hasSubSystem

bot:ContainsElement

bot:containsElement

bot:hasStorey

bot:hasSpace

fso:hasSubSystem

Figure 9: Combining multiple ontologies to represent building, spaces, systems, HVAC components, their properties and their relationships

Table 3: Alignments between FPO and s4bldg.

owl:Class
owl:ObjectProperty

rdfs:subClassOf
rdfs:subPropertyOf
owl:equivalentClass

fpo:hasDesignAirflowRate s4bldg:airFlowRateMin
fpo:hasCrossSectionalArea s4bldg:faceArea
fpo:hasKv s4bldg:flowCoefficient
fpo:hasHeight s4bldg:height
fpo:hasOuterDiameter s4bldg:inletConnectionSize
fpo:hasDesignVolume s4bldg:waterStorageCapacity
fpo:hasPressure s4bldg:openPressureDrop
fpo:hasOuterDiameter s4bldg:outletConnectionSize
fpo:hasDesignHeatingPower s4bldg:outputCapacity
fpo:hasOuterDiameter s4bldg:outerDiameter
fpo:hasRoughness s4bldg:roughness
fpo:hasThermalConductivity s4bldg:thermalConductivity
fpo:hasVolume s4bldg:volume
fpo:hasLength s4bldg:length

4. HVAC rule model740

The HVAC rule model was developed to check the com-
position of HVAC components, their systems, and their ca-
pacity and size-related properties. The HVAC rule model
consists of 36 shapes and 122 constraints and is made avail-
able on GitHub5. A shape of constraints can, for example,745

determine whether a pipe is a part of a system, has two
flow ports and is connected to other components. It can
also check whether the port of a pipe has the capacity-
related property flow rate or the pipe has the size-related
property diameter. In a validation process, the HVAC rule750

model will ensure that the necessary BIM information is
available to calculate the size and capacity of HVAC sys-
tems and their components. The calculation is also known
as the hydraulic calculation.

A rule can differ in complexity and range from 1-4, as755

defined by Solihin et al. [49]. In this section, we showcase
a SHACL-based rule for each complexity level.

4.1. Verifying pipes explicitly

In hydraulic calculations, it is essential to know the lo-
cation of each pipe segment in relation to upstream and760

downstream components, as well as roughness and length.

5https://github.com/Semantic-HVAC-Tool/Rule-Service/

tree/main/Public/Shapes/fsosh.ttl

10

The shape fsosh:Pipe applies 7 constraints to an fso:Pipe

and has a complexity level of 1 and are described as fol-
lows:

Constraint 1: An fso:Pipe must have exactly two flow765

ports.

Constraint 2: A pipe must feed fluid to exactly one com-
ponent.

Constraint 3: A pipe must be fed with fluid by exactly
one component.770

Constraint 4: A pipe must be connected to exactly one
system.

Constraint 5: Exactly one property of material type must
be present in a pipe.

Constraint 6: Exactly one property of length must be775

present for a pipe.

Constraint 7: Exactly one property of roughness type
must be present for a pipe.

In Listing 1, only the first constraint is expressed in
SHACL. The remaining 6 SHACL constraints are made780

available on GitHub6. In the first constraint, the cardinal-
ity constraints sh:minCount and sh:maxCount are applied
to check that the fso:Pipe has two ports. A minimum
and maximum cardinality of 2 will satisfy this constraint.
In addition, we use the value type constraint sh:dataType785

with the value xsd:anyURI to ensure the triple includes an
URI. If the cardinality constraint or value type constraint
is not satisfied, the message “A pipe must have exactly
two flow ports” will be thrown.

Listing 1: A SHACL shape to constrain the number of fso:Ports with
fso:hasPort for each fso:Pipe.790

1 fsosh:Pipe

2 a sh:NodeShape;

3 sh:nodeKind sh:IRI ;

4 sh:targetClass fso:Pipe ;

5 sh:property[

6 sh:path fso:hasPort ;

7 sh:dataType xsd:anyURI;

8 sh:minCount 2;

9 sh:maxCount 2;

10 sh:message "A pipe must have exactly two flow

ports"↪→

11]; #... the shape continues

4.2. Verifying the demand versus capacity by derived in-
formation

HVAC systems and their components must be designed
to provide sufficient heating, cooling, and/or ventilation to795

6https://github.com/Semantic-HVAC-Tool/Rule-Service/

tree/main/Public/Shapes/fsosh.ttl

buildings. For example, an HVAC terminal is designed cor-
rectly if its capacity to heat, cool, and ventilate a space ex-
ceeds the space’s demand. With the following constraint,
we demonstrate how the capacity of a supply air termi-
nal can be compared with the supply airflow demand of a800

space:

Constraint 1: The supply air terminal capacity should
be higher than the space’s required supply airflow
demand.

The rule is expressed in a single SHACL shape, as805

shown in Listing 2 and the constraint belongs to the shape
fsosh:AirTerminalCapacityCheck. A SPARQL-based con-
straint is used to implicitly find the comparison between
capacity and demand since it is not explicitly defined. Be-
cause this rule requires derived information, it reaches810

complexity level 2. A nested SPARQL select query is
shown in Listing 2. There can be more than one sup-
ply air terminal in a space. To sum the capacity of all
air terminals grouped by space, we apply an inner select
query. In the outer select query, we find the supply air-815

flow demand for each space and filter them according to
the constraint. This rule will be violated when the supply
air terminal capacity exceeds the supply airflow demand
of the space.

Listing 2: The listing shows a SHACL shape to constrain the capacity
of an supply air terminal versus the supply airflow demand of an
space.820

1 fsosh:AirTerminalCapacityCheck

2 a sh:NodeShape;

3 sh:nodeKind sh:IRI ;

4 sh:targetClass bot:Space ;

5 sh:sparql [

6 a sh:SPARQLConstrain ;

7 sh:message "The supply air terminal capacity shall

not be lower the required supply air flow demand of

the space" ;

↪→

↪→

8 sh:prefixes (fpo: fso: ex: inst: bot:);

9 sh:select """PREFIX bot:<https://w3id.org/bot#>

10 PREFIX ex: <https://example.com/ex#> PREFIX fso:

<http://w3id.org/fso#> PREFIX fpo:

<http://w3id.org/fpo#>

↪→

↪→

11 SELECT ?this {

12 ?this ex:designSupplyAirflowDemand ?flowDemand .

13 ?flowDemand fpo:hasValue ?flowDemandValue .

14 BIND (ROUND(?flowDemandValue) AS ?demand) .

15 {

16 SELECT ?this (ROUND(SUM(?flowCapValue)) AS

?capacity) WHERE {↪→

17 ?this a bot:Space .

18 ?airTerminal a fso:AirTerminal .

19 ?airTerminal fpo:hasAirTerminalType

?airTerminalType .↪→

20 ?airTerminalType fpo:hasValue "inlet" .

21 ?airTerminal fso:feedsFluidTo ?this .

22 ?airTerminal fso:hasPort ?port .

23 ?port fpo:hasFlowDirection ?flowDirection .

24 ?flowDirection fpo:hasValue "Out" .

25 ?port fpo:hasFlowRate ?flowCapacity .

26 ?flowCapacity fpo:hasValue ?flowCapValue .

27 } GROUP BY ?this

28 }

11

29 BIND (((?capacity/?demand)-1)*10 as ?oversizing) .

30 FILTER (?demand > ?capacity || ?oversizing > 10)

31 } """ ;] .

4.3. A rule of thumb to verify pressure drop in pipes

The pressure drop in pipes affects the economy of build-
ing projects, the material’s lifetime and the energy con-
sumption of HVAC systems. A high pressure loss will re-825

sult in a lower cost price, a shorter lifetime, and higher
energy consumption. As a result, most HVAC engineers
apply a guideline to their design, e.g. a maximum pipe
pressure loss of 100 Pa/m. This guideline or rule cannot
be conveyed through explicit information. Calculations830

and derived information are also required. The complex-
ity level of the shape fsosh:PipePressureDrop reaches 3
because an engine is used to calculate the pressure drop
and velocity of each distribution component. The engine
is discussed in detail in Section 5.1. The only constraint835

in this rule is targeting an fso:Pipe and is described as
follows:

Constraint 1: The pressure drop of a fso:Pipe shall not
exceed 100 Pa/m.

Listing 3 shows the rule expression in SHACL. The840

pressure drop in pipes is not explicitly defined in Pa/m in
FSO or FPO. We can, however, implicitly find the infor-
mation using a SPARQL constraint. Our SPARQL-based
constraint contains a SPARQL select query. The select
query returns all instances of fso:Pipe that exceeds 100845

Pa/m in pressure drop. By dividing the length of the pipe
by the pressure drop at the outlet port, we can determine
the pressure drop in Pa/m for each fso:Pipe instance.

Listing 3: A SHACL shape to constrain the maximum pressure drop
of each fso:Pipe.

1 fsosh:PipePressureDrop

2 a sh:NodeShape;

3 sh:nodeKind sh:IRI ;

4 sh:targetClass fpo:Pipe ;

5 sh:sparql [

6 a sh:sh:SPARQLConstraint ;

7 sh:message "The pressure drop of a fso:Pipe shall

not exceed 100 Pa/m";↪→

8 sh:prefixes (fpo: fso: inst:) ;

9 sh:select """PREFIX fso: <http://w3id.org/fso#>

10 PREFIX fpo: <http://w3id.org/fpo#>

11 PREFIX inst: <https://example.com/inst#>

12 SELECT ?this ?value

13 WHERE {

14 ?this a fso:Pipe .

15 ?this fpo:hasLength ?length .

16 ?length fpo:hasValue ?lengthvalue .

17 ?this fso:hasPort ?port .

18 ?port fpo:hasFlowDirection ?flowDirection .

19 ?flowDirection fpo:hasValue "Out" .

20 ?port fpo:hasPressureDrop ?pressureDrop .

21 ?pressureDrop fpo:hasValue ?pressureDropValue .

22 bind ((?pressureDropValue / ?lengthvalue) AS

?value) .↪→

23 FILTER (?value > 100)} """ ;] .

850

4.4. Redesigning the size of pipes automatically

During the HVAC design process, HVAC components
are often oversized or undersized due to limited time. Rath-
er than just creating a rule that notifies whether HVAC
components are right-sized passively, we will generate new855

data actively and add it to the model. By increasing the
diameter of the pipe, we can decrease the pressure drop.
That is precisely what Listing 4 is doing. Listing 4 is
an inference rule expressed in SHACL. Using a SPARQL
construct query, the pipe diameter is increased based on860

the material type and standard manufacturer size. The di-
mensions are limited to the material type PEX7 and range
from 0.012 to 0.050 meters. For every fso:Pipe that vi-
olates the previous rule, fsosh:PipePressureDrop, the
active rule generates a new diameter. For instance, a pipe865

diameter of 0.012 meters will automatically be increased
to 0.015 meters and added to the data model. Since this
rule can generate new information, it reaches a complexity
level of 4.

Listing 4: A SHACL shape to increase the size of a fso:Pipe auto-
matically870

1 fsosh:PipePexSizing

2 a sh:NodeShape ;

3 sh:targetClass fso:Pipe ;

4 sh:rule [

5 a sh:SPARQLRule ;

6 sh:prefixes (fpo: fso: ex:);

7 sh:construct """

8 CONSTRUCT {?diameter fpo:hasValue ?newSize.}

9 WHERE {

10 ?this a fso:Pipe .

11 ?this fpo:hasMaterialType ?type .

12 ?type fpo:hasValue "PEX 6 bar varme" .

13 ?this fso:hasPort ?port .

14 ?port fpo:hasOuterDiameter ?diameter .

15 ?diameter fpo:hasValue ?diameterValue .

16 BIND (

17 IF(?diameterValue = 0.012, 0.015,

18 IF(?diameterValue = 0.015, 0.018,

19 IF(?diameterValue = 0.018, 0.020,

20 IF(?diameterValue = 0.020, 0.022,

21 IF(?diameterValue = 0.022, 0.028,

22 IF(?diameterValue = 0.028, 0.032,

23 IF(?diameterValue = 0.032, 0.040,

24 IF(?diameterValue = 0.040, 0.050,

25 ?diameterValue))))))))

26 AS ?newSize)} """ ;

27 condition: fsosh: PipePressureDrop

28] .

7https://www.bobvila.com/articles/pex-pipe

12

5. Demonstration Environment

This section aims to demonstrate how capacity and
size-related properties within the HVAC domain can be
represented and validated for a real-world BIM model.875

The use case process is illustrated in Figure 10.
The first step of the process is to create a data graph

and shape graph. As the shape graph is already produced
in Section 4, it does not require further processing and
can be used as-is8. In contrast, converting a BIM model880

will create the data graph. This step is identical to the
building model preparation phase of Eastman et al. [50].
The data graph contains BOT, FSO, and FPO vocabular-
ies so that it matches with the rules in our shape graph
and can proceed to the rule execution phase of Eastman885

et al. [50]. Using these three vocabularies, we can describe
the building, its services, its interactions, and properties.
For example, we can express how the HVAC system or
an HVAC component relates to the building or a specific
room.890

In the second step, a rule execution process will be per-
formed to check the shape graph against the data graph.
The data graph will be manually corrected if any con-
straints are violated during rule execution. Depending on
the violation type, manual correction can be achieved at895

three levels; BIM model, parser or data graph. In cases
where we do not want to modify the BIM model, we can
use SPARQL on the data graph or add the information
through the parser.

When the rule execution conforms, we can proceed to900

step 3. This step involves hydraulic calculations for ducts,
pipes, and fittings to determine each distribution compo-
nent’s pressure drop and fluid velocity. A second confor-
mance check will be conducted to check the shape graph
against the data graph and the hydraulic results. When-905

ever a constraint is violated, an HVAC rule at level 4 in
complexity from the shape graph will be used to correct
the violation.

When the rule execution conforms, we will have all the
information necessary to size the flow-moving device. Step910

4 will therefore involve calculating the capacity of each
flow-moving device, represented in the data graph. After
the flow-moving devices’ capacities has been calculated,
the result is given, and the process ends.

5.1. A Semantic HVAC tool915

We developed the Semantic HVAC tool to perform
the process shown in Figure 10. The web tool has a
microservice-oriented system architecture and contains four
layers, which is illustrated in Figure 11. The source code
of the Semantic HVAC Tool and the material used to per-920

form the process shown in Figure 10 is made available on
GitHub9. The following sections first describe the data

8https://github.com/Semantic-HVAC-Tool/Rule-Service/

tree/main/Public/Shapes/fsosh.ttl
9https://github.com/Semantic-HVAC-Tool

flow in detail and then demonstrate the Semantic HVAC
tool in a use case.

5.1.1. Presentation layer925

The presentation layer handles the user interface logic
and displays data on the page. The Graphical User Inter-
face (GUI) relies on React components to improve page
rendering [67]. Using the GUI, users can perform confor-
mance checking, perform hydraulic calculations, calculate930

the capacity of flow-moving devices, and view the results.
The user has to initiate the conformance checking and cal-
culations in the right order as shown in Figure 10. It is
therefore necessary for the user to initiate the conformance
check first. The user must correct all violations manually935

if any exist. If any violation exists, the GUI will not allow
the user to perform the hydraulic calculation. Using this
method, we ensure that the data model contains all the in-
formation we need to calculate the hydraulics. The same
applies to the capacity calculation of flow-moving devices.940

If any violations occur after the second conformance check,
the GUI will not allow the user to initiate the flow-moving
device calculation.

The GUI displays the conformance check results in two
different tables. Based on the type of HVAC component,945

the HVAC system, and size and capacity properties, the
first table shows the number of violations. The first table
is interactive. By clicking on a specific HVAC component
type in the first table, the GUI will display the second ta-
ble. The second table lists the violations for that specific950

HVAC component in more detail, including the instance
ID, constraint type, and violation description. Addition-
ally, the GUI shows the results of the flow-moving device
calculation in a table. The table displays the type, ID,
flow rate, and pressure of each flow-moving device.955

5.1.2. Communication layer

The orchestrator handles the communication between
the service components in the Semantic HVAC Tool via
HTTP requests.

There are two ways to communicate between services:960

decentralized and centralized. Decentralized communica-
tion allows microservice components to communicate di-
rectly with each other. In central communication, mi-
croservices will communicate through an orchestrator ser-
vice. As illustrated in Figure 11, we have implemented965

a central orchestrator to handle the communication be-
tween the presentation layer, the business layer, and the
database layer. The orchestrator is developed as an Ex-
pressJS server [68] in NodeJS [69]. When the user initiates
the conformance checking, the following communication970

will happen:

1. the client requests conformance checking results from
the orchestrator.

2. the orchestrator requests conformance checking re-
sults from the rule service.975

13

BIM MODEL

RULE
EXECUTION

DATA GRAPHPARSER

SHAPE GRAPH

VIOLATESCORRECT
MANUALLY

HYDRAULIC
CALCULATION

RULE
EXECUTION

VIOLATESCORRECT
MANUALLY

CORRECT
AUTOMATICALLY

CONFORMS

FLOWMOVINGDEVICE
CALCULATION

CONFORMS

CORRECT
MANUALLY

STEP 1 STEP 2 STEP 3 STEP 4

Figure 10: The process of performing conformance checking and design calculations for an HVAC model.

DATA GRAPH

PARSER

PRESENTATION LAYER

COMMUNICATION LAYER

ORCHESTRATOR

RULE
SERVICE

CAPACITY
SERVICE

BIM MODEL

BUSINESS LAYER

THE SEMANTIC HVAC TOOL

DATABASE LAYER

SHAPE GRAPH

REST REST REST REST

REST

CLIENT

Figure 11: The system architecture of the Semantic HVAC Tool.

3. the rule service sends a rule model expressed in turtle
format to the orchestrator.

4. the orchestrator sends the rule model to the data-
base.

5. as the database already stores the data graph, it per-980

forms the rule execution and sends the conformance
checking results expressed in JSON-LD to the or-
chestrator.

6. the orchestrator sends the conformance checking re-
sults to the client.985

7. the client displays the conformance checking results
in two tables.

Similar to the conformance checking, the orchestra-
tor handles communication between the different services
when performing hydraulic- and flow-moving device calcu-990

lations.

5.1.3. Business layer

The business logic is spread over multiple microser-
vices in the web application. We have divided our logic
into two microservices: the capacity service and the rule995

service, as shown in Figure 11. Rule logic is handled by
the rule service, while the capacity service handles HVAC
design logic. The rule service consists of two functions.
When requested, the first function provides a shape graph
in turtle format, while the second function performs an1000

automatic conformance check and produces a validation
report in JSON-LD format.

The capacity service has one function. When requested,
it performs a hydraulic calculation and delivers the pres-
sure drop result for each distribution component, which is1005

of type fso:Pipe, fso:Duct, fso:Elbow, fso:Transition
and fso:Tee. The output of the function is expressed in

14

JSON-LD format. Both microservices are developed sep-
arately in FastAPI. To perform hydraulic calculations, we
use the fluids library [70].1010

5.1.4. Database layer

The database layer consists of a Jena Fuseki server [71]
that stores RDF data. The microservices in the busi-
ness layer share the same database to access information
from different domains easily. Jena Fuseki has SPARQL,1015

SHACL, and Update endpoints. The SPARQL endpoint
retrieves data, while the Update endpoint inserts, deletes,
or updates data.

For example, when the user initiates the flow-moving
device calculation, the client requests a list of flow-moving1020

devices from the orchestrator. The orchestrator then re-
quests three SPARQL queries10. The first SPARQL query
is illustrated in Appendix B and is able to sum the pres-
sure drops of the critical branch to determine the necessary
pressure of each fso:Pump represented in the data graph.1025

The second SPARQL query performs the same calculation
for every fso:Fan, while the third query calculates the
total flow rate of each flow-moving device. Once the or-
chestrator hits the SPARQL endpoint in the Jena Fuseki
Server with the SPARQL queries, it retrieves the results1030

and sends them to the client to be displayed in the flow-
moving device table.

5.1.5. Parsing the BIM model

The parser11 and the BIM model12 are not part of the
Semantic HVAC Tool. The parser is developed as a .NET1035

Framework (C-Sharp) plugin in Revit [72], using the Revit
API, while the BIM model is developed as a BIM model
in Revit. The parser has two functions; the first function
serializes Revit BIM objects into a data graph expressed in
turtle syntax and, while the second sends the data graph to1040

the orchestrator via an HTTP request. The orchestrator
then redirects the data graph to the database for storage.

5.2. Results

To showcase the tool in use, we used a BIM model of a
real-world building located in Sorø, Denmark. The build-1045

ing is a primary school constructed in 2017 and named
Frederiksberg Skole. Frederiksberg Skole has a gross floor
area of 6970 m2 and is divided into a northern building
and southern building. Each building has three floor lev-
els, as shown in Figure 12. The original BIM model has1050

been modified by Seeberg and Tangeraas [73] to include
only the northern building and its heating and ventila-
tion system. It has 86 rooms, each heated with radia-
tors and ventilated with supply and extract air terminals.
Both systems are located in the basement of the northern1055

10https://github.com/Semantic-HVAC-Tool/

Orchestrator-Service/tree/main/public/Queries
11https://github.com/Semantic-HVAC-Tool/Parser
12https://github.com/Semantic-HVAC-Tool/Other/blob/main/

BIM-Model.rvt

building. The results of parsing Frederiksberg Skole as a
data model, performing two conformance checks, calculat-
ing the hydraulics and designing flow-moving devices with
the Semantic HVAC tool are presented in this section.

5.2.1. Parsing the data model1060

The process of serializing Frederiksberg Skole from Re-
vit to the Semantic HVAC Tool took 17.1 seconds to com-
plete. Moreover it took the Semantic HVAC Tool 8.3
seconds to store the data model of 369054 triples in the
database. The triples are also made available on GitHub13.1065

Since FSO represent HVAC components, we can extract
the sum of components by type. Table 4 shows that the
data model consists of 6137 HVAC components, 36 HVAC
systems and 65851 HVAC size- and capacity-related prop-
erties. In total, the data model consists of 84887 instances.1070

Table 4: The table shows the amount of HVAC components, systems
and size- and capacity-related properties in the data model

Type Amount

fso:EnergyConversionDevice 1
fso:Segment 2766
fso:Fitting 2912
fso:FlowMovingDevice 3
fso:FlowController 85
fso:Terminal 370
fso:System 36
fso:Port 12827
fso:Flow 36
fpo:Property 65851
total 84887

5.2.2. Conformance checking Frederiksberg Skole

The process of validating the data model against the
rule model took 3.1 seconds to complete. Table 5 shows the
results of the first conformance check. For example, Ta-
ble 5 shows that instances of type fso:System in the data1075

model have violated the constraints 32 times. The HVAC
rule model is also violated by instances of type fso:Duct,
fso:SpaceHeater, fso:Port, and fpo:Property. The to-
tal amount of violations is 372. Since the data graph con-
tains 84887 instances this means that approximately 0.5%1080

of the components are violating the HVAC rule model. We
can also observe, that the majority of violations are caused
by instances of type fso:Port, which accounts for approx.
73% of the total violating instances.

We can access Table 6 in the client by clicking on1085

fso:System in the first conformance checking table. Ta-
ble 6 lists the violation details for fso:System. The GUI
displays all 32 violations, but Table 6 is limited to the first
two violations, indicating that instance inst:5eb8aa6a...

13https://github.com/Semantic-HVAC-Tool/Other/blob/main/

Data-Model.ttl

15

Basement

Ground �oor

1. �oor

The South building
The North building

Figure 12: The illustration shows the floor plans of Frederiksberg
Skole in Sorø, Denmark. The south building is marked with red,
while the north building is marked with blue [73]

Table 5: Results of the first conformance check, showing the number
of violations, based on HVAC component type, HVAC system and
size- and capacity-related properties

Type Amount

fso:HeatExchanger 0
fso:Pipe 2
fso:Duct 2
fso:Elbow 0
fso:Transition 0
fso:Tee 0
fso:Fan 0
fso:Pump 0
fso:AirTerminal 0
fso:SpaceHeater 3
fso:Damper 0
fso:Valve 0
fso:System 32
fso:Port 251
fso:Flow 0
fpo:Property 82
Total 372

violates the SHACL constraint type sh:MinCountConstrain-1090

Component and throws the message “A return system must
contain at least one component”.

Table 6: Results of the first conformance check, showing the first two
results of fso:System violations in details

ID Constraint type Description

inst:5eb8aa6a-
0ed0-4fea-b226-
dd7fa9ae035e-
0019ec8a

sh:MinCountCon-
straintCompo-
nent

A return sys-
tem must have
at least one
component

inst:98e9914f-
25c6-4c43-a0fb-
912eba89c13d-
0019dbff

sh:MinCountCon-
straintCompo-
nent

A supply sys-
tem must have
at least one
component

All 32 violations were corrected in the data graph by
performing the SPARQL update query shown in Appendix
C directly in the Jena Fuseki Server. The query deletes all1095

fso:SupplySystem and fso:ReturnSystem instances that
lack the predicate fso:hasComponent.

The remaining violations were corrected manually in
the BIM model, parser, and data graph, which results in
an empty validation table. A blank validation table at this1100

stage indicates that the data graph conforms, and we have
completed step 2 of the process illustrated in Figure 10.

5.2.3. Hydraulic calculation and second conformance check

Performing the hydraulic calculation on Frederiksberg
Skole took 5.4 seconds. The violation results of the second1105

conformance check are shown in Table 7. It can be seen
that instances of fso:Pipe are violating the HVAC rule

16

model 14 times, and the total number of violations in step
3 of the process illustrated in Figure 10 is 14.

Table 7: Results of performing the second conformance check, show-
ing the amount of violations, when the hydraulic results are added
to the data graph

Type Amount

fso:HeatExchanger 0
fso:Pipe 14
fso:Duct 0
fso:Elbow 0
fso:Transition 0
fso:Tee 0
fso:Fan 0
fso:Pump 0
fso:AirTerminal 0
fso:SpaceHeater 0
fso:Damper 0
fso:Valve 0
fso:System 0
fso:Port 0
fso:Flow 0
fpo:Property 0
Total 14

Clicking on fso:Pipe in the first conformance checking1110

table in the client will display Table 8. The table displays
the violation details within the category of fso:Pipe. While
the GUI of the Semantic HVAC Tool displays the violation
details of all 14 violations, Table 8 is limited to the first
two violations. The first result indicates that the instance1115

inst:745522df... is violating the SHACL constraint
type sh:SPARQLConstraintComponent. The message it
throws indicates that the pressure drop of the fpo:Pipe

instance is exceeding 100 Pa/m.

Table 8: Results of the second conformance check, displaying the first
two results of fso:Pipe violations in detail after running the hydraulic
calculation

ID Constraint
type

Description

inst:745522df-
9a78-4732-
8b22-
f56765e86201-
002bec43

sh:SPARQL-
Constraint-
Component

The pressure
drop of a pipe
should not
exceed 100
Pa/m

inst:745522df-
9a78-4732-
8b22-
f56765e86201-
002bec25

sh:SPARQL-
Constraint-
Component

The pressure
drop of a pipe
should not
exceed 100
Pa/m

In the GUI the user can implement the correction of1120

all 14 violations automatically. If the corrections are im-
plemented, the violations will be removed from Table 7,
and the total number of violations will be decreased to 0.

The violations at this stage were corrected automatically
in this way, which resulted in an empty validation table.1125

A blank validation table at this stage indicates that the
data graph conforms, and we have completed step 3 of the
process illustrated in Figure 10.

5.2.4. Flow-moving device capacity calculation and second
validation1130

Since we have performed the rule execution and hy-
draulic calculation, we are now ready to calculate the ca-
pacity of each flow-moving device represented in the data
graph. The results of the flow-moving device calculation
are shown in Table 9. It took 87 seconds to calculate the1135

total amount of flow rate and pressure for each flow-moving
device using three SPARQL queries and to display the re-
sults in the flow-moving device table. Two fans and one
pump are shown in Table 9 as flow-moving devices. Ta-
ble 9 provides the component ID, flow rate, and pressure1140

for each fso:Fan and fso:Pump. For example, it shows
that the instance inst:0fc738e3... of type fso:Pump

has a total flow rate of 0.84 L/s and a total pressure of
16867 pascal. The fan pressure includes the ductwork, air
terminal, and AHU pressure drop. Using this informa-1145

tion, correctly sized fans and pumps can be selected from
manufacturers product catalogues.

Table 9: Flow-moving device results showing the type of each flow-
moving device, its component ID, flow rate and pressure.

Type Component ID Flow
rate
[L/s]

Pressure
[Pa]

fso:Fan inst:36aec977-8efa-403c-
b1e6-3b29521aac43-
002f6bf5

7943 724

fso:Fan inst:f4ad7dcb-2875-4fe5-
be51-f41510b75979-
002f583e

8124 822

fso:Pump inst:0fc738e3-3eb1-4344-
b913-b3883e4083b0-
0033212a

0.84 16867

6. Discussion

This section describes the achievements, limitations,
and future work.1150

6.1. Achievements

This paper shows how an ontology can be extended,
constructed and aligned from scratch to represent the ca-
pacity and size-related properties of HVAC systems and
their components. We also demonstrated how separate1155

and lightweight ontologies such as BOT, FSO and FPO
can be interconnected to represent the building, its services
and their relationships in a modular way. Moreover, we

17

developed a set of constraints to increase the data quality
of BIM models within the HVAC domain. We developed1160

the Semantic HVAC tool and applied it to a real-world
building to demonstrate the feasibility of expressing and
conforming an HVAC model. We have created a reliable
data model to perform hydraulic calculations and design-
ing the capacity of flow-moving devices. Considering the1165

time spent on conformance checking, (re-)sizing and qual-
ity control in the industry, this study implements techni-
cal solutions and demonstrates a path towards better data
quality in BIM models, time savings due to computeriza-
tion and increased transparency.1170

6.2. Limitations

6.2.1. Logical complexity

Schwabe et al. [33], Oraskari et al. [58], and Hagedorn
and König [56] applied a reasoner to perform an automatic
rule check. In the same way, we used a SHACL inference1175

rule to automatically increase the diameter of a pipe when
the pressure in the pipe exceeded 100 Pa/m. Although
the SHACL component could generate the new data, it
could not delete the old data. SHACL inferencing rules
can only infer new knowledge. We implemented a sepa-1180

rate SPARQL query in the Semantic HVAC Tool to delete
the existing data after the SHACL inferencing rule was
performed. In any web tool, spreading logic this way will
increase its logical complexity.

6.2.2. Query efficiency1185

The rule execution is performing well since it took only
3.1 seconds to validate The HVAC rule model consisting of
36 shapes and 122 constraints against Frederiksberg Skole
with 369054 triples. In contrast, it took 87 seconds to cal-
culate the total pressure and flow rate of each flow-moving1190

device, represented in the data graph using three SPARQL
queries. Two of the SPARQL queries have a Filter Not
Exists statement, which is responsible for the slow query
performance. Using the Filter Not Exists statement, we
iterate through all HVAC components in the graph and re-1195

turn only those with ports that belong to the same HVAC
system. Iterating through all HVAC components and their
ports slows down the query efficiency. This could be im-
proved by replacing the Filter Not Exists statement.

6.2.3. Abstraction level of HVAC components1200

FSO is limited to eight high-level HVAC components
and 19 medium-level HVAC components. In practice, it is
possible to subdivide FSO further. For example, a pump
can be subdivided into centrifugal pumps, positive dis-
placement pumps, etc. There are also several levels of1205

centrifugal pumps. To retain FSO as a lightweight ontol-
ogy we did not nest further.

6.2.4. Geometry-based constraints

The data graph and shape graph we developed in our
research do not represent HVAC component geometry and1210

its geometry-related properties nor validate geometry-based
constraints, such as separation distances between HVAC
components and components from other domains or ser-
vice distances, such as structural components. The de-
livery of BIM models with incorrect separation and ser-1215

vice distances between HVAC components from the de-
sign phase to the construction phase is a common problem
affecting a building project’s economy and schedule and
should therefore be a focal point in further development.

6.3. Future work1220

The proposal for future work in this paper can be di-
vided into three steps.

A literature review of geometry-related ontologies should
be conducted first. If a sufficient geometry-related ontol-
ogy doesn’t exist, an existing one should be extended, or1225

a new one should be developed to describe the geometry
and the relation between geometries.

Secondly, to represent separation and service distances
for HVAC components, the geometry-related ontology shou-
ld be interconnected with BOT, FSO, and FPO.1230

Lastly, a set of geometry-based constraints should be
added to the HVAC rule model and validated against the
data graph.

7. Conclusions

This paper presents a demonstration environment to1235

represent and validate the composition of HVAC compo-
nents, their systems, and their capacity and size-related
properties using semantic web technologies. This paper
aimed to:

1. Extend FSO to support an alignment with the pro-1240

posed FPO ontology.

2. Propose the FPO ontology to represent HVAC com-
ponents’ capacity and size-related properties.

3. Propose a rule model for the HVAC domain.

4. Produce a demonstration environment to show the1245

conformance of an HVAC model.

5. Use the demonstration environment to show how
FPO and the HVAC rule model can support the de-
scription and validation of hydraulics in HVAC com-
ponents and the capacity of HVAC components.1250

We extended FSO with three classes and four prop-
erties related to the connectivity between ports and flu-
ids. This made it possible to describe the relationship
between HVAC components, their flow ports and the fluid
being transported in three ways and aligned with FPO. We1255

also extended FSO to represent 19-medium level compo-
nent types. We developed FPO to represent the size- and
capacity-related properties of HVAC components. FPO

18

has a Description Logic expressivity of ALRF(D) and con-
tains 50 classes, 50 object properties and 6 data properties.1260

Moreover, we developed an HVAC rule model that re-
stricts the composition of HVAC components, their sys-
tems, and their size- and capacity-related properties. The
rule model consists of 36 shapes and 122 constraints.

A four-step process and the Semantic HVAC Tool were1265

developed to demonstrate how a real-world building model
can be represented, validated, and used to compute hy-
draulic calculations and design the capacity of a flow-moving
device. Frederiksberg Skole consists of 369054 triples and
was used as the real-world building model. We managed to1270

perform conformance checking twice. The first rule execu-
tion resulted in 372 constraint violations, and the second
resulted in 14 constraint violations. These rule violations
were fixed both manually and automatically. Finally, using
the conformed model, we performed hydraulic calculations1275

and used the results to design the capacity of two fans and
a pump, which were represented in the real-world building
model.

8. Acknowledgements

This work was supported by EU-Interreg ÖKS “Data-1280

driven Energy Management in Public Buildings”; the In-
novation Fund Denmark (grant 9065-00266A); the Ram-
boll Foundation; and COWI A/S. We thank Sorø mu-
nicipality for providing the BIM model for Frederiksberg
Skole.1285

References

[1] M. Niknam, S. Karshenas, A shared ontology approach to se-
mantic representation of BIM data, Automation in Construc-
tion (2017). doi:10.1016/j.autcon.2017.03.013.

[2] R. Sacks, C. Eastman, G. Lee, P. Teicholz, BIM Handbook: A1290

Guide to Building Information Modeling for Owners, Designers,
Engineers, Contractors, and Facility Managers, 2018.

[3] J. M. Werbrouck, M. Senthilvel, J. Beetz, Querying Heteroge-
neous Linked Building Data with Context-expanded GraphQL
Queries, Tech. rep.1295

URL https://www.w3.org/TR/sparql11-query/

[4] A.-H. Hamdan, M. Bonduel, R. J. Scherer, An ontological model
for the representation of damage to constructions, Tech. rep.
URL http://www.w3.org/1999/02/22-rdf-syntax-ns#

[5] I. Esnaola-Gonzalez, F. J. Diez, Integrating Building and IoT1300

data in Demand Response solutions, Tech. rep.
URL http://project-respond.eu

[6] M. H. Rasmussen, M. Lefrançois, P. Pauwels, C. A. Hviid,
J. Karlshøj, Managing interrelated project information in AEC
Knowledge Graphs, Automation in Construction (2019). doi:1305

10.1016/j.autcon.2019.102956.
[7] A. Hogan, The Web of Data, 2020. doi:10.1007/

978-3-030-51580-5.
[8] J. Flore, T. Djuedja, Integration of environmental data in BIM

tool & Linked Building Data, Tech. rep.1310

URL http://www.enit.fr

[9] S. Stolk, K. McGlinn, Validation of ifcowl datasets using shacl,
Vol. 2636, 2020.

[10] P. Pauwels, D. V. Deursen, R. Verstraeten, J. D. Roo, R. D.
Meyer, R. V. D. Walle, J. V. Campenhout, A semantic rule1315

checking environment for building performance checking, Au-
tomation in Construction 20 (2011). doi:10.1016/j.autcon.

2010.11.017.

[11] J. Lee, Y. Jeong, User-centric knowledge representations based
on ontology for AEC design collaboration, Computer-Aided De-1320

sign 44 (2012) 735–748. doi:10.1016/j.cad.2012.03.011.
URL www.elsevier.com/locate/cad

[12] J. F. Tchouanguem Djuedja, F. H. Abanda, B. Kamsu-Foguem,
P. Pauwels, C. Magniont, M. H. Karray, An integrated Linked
Building Data system: AEC industry case, Advances in Engi-1325

neering Software 152 (feb 2021). doi:10.1016/j.advengsoft.

2020.102930.
[13] M. H. Rasmussen, M. Lefrançois, G. F. Schneider, P. Pauwels,

Bot: The building topology ontology of the w3c linked building
data group, Semantic Web 12 (1) (2020) 143–161. doi:10.3233/1330

SW-200385.
[14] V. Kukkonen, A. Kücükavci, M. Seidenschnur, M. H. Ras-

mussen, K. M. Smith, C. A. Hviid, An ontology to support flow
system descriptions from design to operation of buildings, Au-
tomation in Construction 134 (December 2021) (2022) 104067.1335

doi:10.1016/j.autcon.2021.104067.
URL https://doi.org/10.1016/j.autcon.2021.104067

[15] N. Pauen, D. Schlütter, J. Siwiecki, J. Frisch, C. van Treeck,
Integrated representation of building service systems: topology
extraction and tubes ontology, Bauphysik 42 (6) (2020) 299–1340

305. doi:10.1002/bapi.202000027.
[16] M. Bonduel, Towards a props ontology (2018),

URL: https://github. com/w3c-lbdcg/lbd/blob/gh-
pages/presentations/props/presentation LBDcall 20180312.

[17] A. Wagner, W. Sprenger, C. Maurer, T. E. Kuhn, U. Rüppel,1345

Building product ontology: Core ontology for linked building
product data, Automation in Construction 133 (2022) 103927.
doi:10.1016/j.autcon.2021.103927.

[18] N. Pauen, D. Schlütter, J. Siwiecki, J. Frisch, C. van Treeck,
Integrated representation of building service systems: topology1350

extraction and TUBES ontology, Bauphysik 42 (6) (2020) 299–
305. doi:10.1002/bapi.202000027.

[19] E. van den Bersselaar, J. Heinen, M. Chaudron, P. Pauwels, Au-
tomatic validation of technical requirements for a bim model us-
ing semantic web technologies, 2022, 1st 4TU/14USA research1355

day on Digitalization in the Built Environment ; Conference
date: 01-04-2022.

[20] A. S. Ismail, K. N. Ali, N. A. Iahad, A review on bim-based
automated code compliance checking system, in: 2017 Interna-
tional Conference on Research and Innovation in Information1360

Systems (ICRIIS), 2017, pp. 1–6. doi:10.1109/ICRIIS.2017.

8002486.
[21] R. Ren, J. Zhang, Model information checking to support in-

teroperable bim usage in structural analysis, ASCE Interna-
tional Conference on Computing in Civil Engineering 2019doi:1365

10.1061/9780784482421.046.
URL https://par.nsf.gov/biblio/10104661

[22] A. T. Kovacs, A. Micsik, Bim quality control based on
requirement linked data, International Journal of Architec-
tural Computing 19 (3) (2021) 431–448. doi:10.1177/1370

14780771211012175.
[23] W. Solihin, N. Shaikh, X. Rong, L. K. Poh, Beyond inter-

operatibility of building model: a case for code compliance,
Carnegie Mellon University (CMU), 2004.
URL https://www.researchgate.net/publication/1375

280598933BEYOND

[24] E. Hjelseth, N. Nisbet, Capturing normative constraints by use
of the semantic mark-up rase methodology, Proceedings of CIB
(2011).

[25] T. H. Beach, T. Kasim, H. Li, N. Nisbet, Y. Rezgui, Towards1380

automated compliance checking in the construction industry,
Vol. 8055 LNCS, 2013. doi:10.1007/978-3-642-40285-2_32.

[26] J. K. Lee, C. M. Eastman, Y. C. Lee, Implementation of a bim
domain-specific language for the building environment rule and
analysis, Journal of Intelligent and Robotic Systems: Theory1385

and Applications 79 (2015). doi:10.1007/s10846-014-0117-7.
[27] J. Dimyadi, W. Solihin, W. Solihin, C. Eastman, A knowledge

representation approach in bim rule requirement analysis us-
ing the conceptual graph, Journal of Information Technology in

19

Construction 21 (2016).1390

[28] J. Dimyadi, P. Pauwels, R. Amor, Modelling and accessing regu-
latory knowledge for computer-assisted compliance audit, Jour-
nal of Information Technology in Construction 21 (2016).

[29] J. Dimyadi, C. Clifton, M. Spearpoint, R. Amor, Computerizing
regulatory knowledge for building engineering design, Journal of1395

Computing in Civil Engineering 30 (2016). doi:10.1061/(asce)
cp.1943-5487.0000572.

[30] T. Chipman, T. Liebich, M. Weise, mvdxml specification 1.1,
specification of a standardized format to define and exchange
model view definitions with exchange requirements and vali-1400

dation rules. by model support group (msg) of buildingsmart,
BuildingSMART 1 (2016).

[31] S. Park, Y. C. Lee, J. K. Lee, Definition of a domain-specific
language for korean building act sentences as an explicit com-
putable form, Vol. 21, 2016.1405

[32] G. Governatori, M. Hashmi, H. P. Lam, S. Villata, M. Palmi-
rani, Semantic business process regulatory compliance check-
ing using legalruleml, Vol. 10024 LNAI, 2016. doi:10.1007/

978-3-319-49004-5_48.
[33] K. Schwabe, J. Teizer, M. König, Applying rule-based model-1410

checking to construction site layout planning tasks, Automation
in Construction 97 (2019). doi:10.1016/j.autcon.2018.10.

012.
[34] G. Lee, J. Jeong, J. Won, C. Cho, S. joon You, S. Ham,

H. Kang, Query performance of the ifc model server using an1415

object-relational database approach and a traditional relational
database approach, Journal of Computing in Civil Engineering
28 (2014). doi:10.1061/(asce)cp.1943-5487.0000256.

[35] W. Solihin, J. Dimyadi, Y.-C. Lee, C. Eastman, R. Amor, The
critical role of accessible data for bim-based automated rule1420

checking systems, 2017. doi:10.24928/jc3-2017/0161.
[36] R. K. Soman, M. Molina-Solana, J. K. Whyte, Linked-data

based constraint-checking (ldcc) to support look-ahead plan-
ning in construction, Automation in Construction 120 (2020)
103369. doi:10.1016/j.autcon.2020.103369.1425

[37] J. Oraskari, M. Senthilvel, J. Beetz, M. Senthilvel, J. Beetz,
SHACL is for LBD what mvdXML is for IFC, Proceedings of
the 38th International Conference of CIB W78 (October) (2021)
693–702.
URL https://www.cibw78-ldac-2021.lu/1430

[38] J. Beetz, J. Van Leeuwen, B. De Vries, IfcOWL: A case of
transforming EXPRESS schemas into ontologies, Artificial In-
telligence for Engineering Design, Analysis and Manufacturing:
AIEDAM 23 (1) (2009). doi:10.1017/S0890060409000122.

[39] W. Terkaj, A. Šojić, Ontology-based representation of IFC EX-1435

PRESS rules: An enhancement of the ifcOWL ontology, Au-
tomation in Construction 57 (2015). doi:10.1016/j.autcon.

2015.04.010.
[40] D. A. Koonce, R. P. Judd, A visual modelling language

for express schema, International Journal of Computer Inte-1440

grated Manufacturing 14 (5) (2001) 457–472. doi:10.1080/

09511920010022495.
[41] K. Afsari, C. M. Eastman, D. Castro-Lacouture, Javascript ob-

ject notation (json) data serialization for ifc schema in web-
based bim data exchange, Automation in Construction 771445

(2017) 24–51. doi:https://doi.org/10.1016/j.autcon.2017.

01.011.
URL https://www.sciencedirect.com/science/article/pii/

S0926580517300316

[42] P. Pauwels, S. Zhang, Y.-C. Lee, Semantic web technologies1450

in aec industry: A literature overview, Automation in Con-
struction 73 (2017) 145–165. doi:https://doi.org/10.1016/

j.autcon.2016.10.003.
URL https://www.sciencedirect.com/science/article/pii/

S09265805163029281455

[43] M. H. Rasmussen, P. Pauwels, C. A. Hviid, J. Karlshøj, Propos-
ing a Central AEC Ontology That Allows for Domain Specific
Extensions, 2017. doi:10.24928/jc3-2017/0153.

[44] M. Lefrançois, J. Kalaoja, T. Ghariani, A. Zimmermann,
T. Seas, D2 . 2 SEAS Knowledge Model, Tech. Rep. Decem-1460

ber (2014).
[45] B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck,

D. Hong, A. Johansen, J. Koh, J. Ploennigs, Y. Agarwal,
M. Bergés, D. Culler, R. K. Gupta, M. B. Kjærgaard, M. Sri-
vastava, K. Whitehouse, Brick: Metadata schema for portable1465

smart building applications, Applied Energy 226 (September
2017) (2018) 1273–1292. doi:10.1016/j.apenergy.2018.02.

091.
URL https://doi.org/10.1016/j.apenergy.2018.02.091

[46] L. Daniele, F. den Hartog, J. Roes, Created in Close Interaction1470

with the Industry: The Smart Appliances REFerence (SAREF)
Ontology, in: Lecture Notes in Business Information Processing,
Vol. 225, 2015. doi:10.1007/978-3-319-21545-7_9.

[47] P. Pauwels, A. Costin, M. H. Rasmussen, Knowledge graphs
and linked data for the built environment, Structural Integrity1475

20 (2022) 157–183. doi:10.1007/978-3-030-82430-3_7.
[48] J. P. Martins, A. Monteiro, Lica: A bim based automated code-

checking application for water distribution systems, Automa-
tion in Construction 29 (2013). doi:10.1016/j.autcon.2012.

08.008.1480

[49] W. Solihin, C. Eastman, Classification of rules for automated
bim rule checking development, Automation in Construction 53
(2015). doi:10.1016/j.autcon.2015.03.003.

[50] C. Eastman, J. min Lee, Y. suk Jeong, J. kook Lee, Automatic
rule-based checking of building designs (2009). doi:10.1016/j.1485

autcon.2009.07.002.
[51] W3C, Swrl: A semantic web rule language combining owl and

ruleml (5 2004).
URL https://www.w3.org/Submission/SWRL/

[52] S. Mehla, S. Jain, Rule languages for the semantic web, Vol.1490

755, 2019. doi:10.1007/978-981-13-1951-8_73.
[53] W3C, Rif overview (second edition) (2 2013).

URL https://www.w3.org/TR/rif-overview/

[54] W3C, Notation3 (n3): A readable rdf syntax (3 2011).
URL https://www.w3.org/TeamSubmission/n3/1495

[55] W3C, Spin - overview and motivation (2 2011).
URL https://www.w3.org/Submission/spin-overview/

[56] P. Hagedorn, M. König, Rule-based semantic validation for
standardized linked building models (2021). doi:10.1007/

978-3-030-51295-8_53.1500

[57] W3C, Shapes constraint language (shacl) (7 2017).
URL https://www.w3.org/TR/shacl/

[58] J. Oraskari, J. Beetz, M. Senthilvel, Shacl is for lbd what
mvdxml is for ifc (10 2021).
URL https://github.com/w3c-lbd-cg/opm1505

[59] Description Logic Expressivity.
URL http://protegeproject.github.io/protege/views/

ontology-metrics/

[60] M. Debellis, A practical guide to building owl ontologies using
protégé 5.5 and plugins (04 2021).1510

[61] P. Pauwels, Buildings and Semantics : Data Models and Web
Technologies for the Built Environment, Buildings and Seman-
tics, Taylor Francis Group, 2022. doi:10.1201/9781003204381.

[62] J. Euzenat, P. Shvaiko, Ontology matching, 2nd Edition, 2013.
[63] G. F. Schneider, Towards aligning domain ontologies with the1515

building topology ontology, Proceedings of the 5th Linked
Data in Architecture and Construction Workshop (LDAC 2017)
(2017).

[64] W. Terkaj, G. F. Schneider, P. Pauwels, Reusing domain ontolo-
gies in linked building data: The case of building automation1520

and control, Vol. 2050, 2017.
[65] D. Mavrokapnidis, K. Katsigarakis, P. Pauwels, E. Petrova,

I. Korolija, D. Rovas, A linked-data paradigm for the integra-
tion of static and dynamic building data in digital twins, 2021.
doi:10.1145/3486611.3491125.1525

[66] L. Bindra, K. Eng, O. Ardakanian, E. Stroulia, Flexible, decen-
tralised access control for smart buildings with smart contracts,
Cyber-Physical Systems (2021). doi:10.1080/23335777.2021.

1922502.
[67] React, a JavaScript library for building user interfaces.1530

URL https://github.com/reactjs/reactjs.org

20

[68] Fast, unopinionated, minimalist web framework for node.
URL https://github.com/expressjs/express

[69] Node.js is an open-source, cross-platform, JavaScript runtime
environment.1535

URL https://github.com/nodejs/node

[70] FastAPI is a modern, fast (high-performance), web framework
for building APIs with Python 3.6+ based on standard Python
type hints.
URL https://github.com/tiangolo/fastapi1540

[71] Apache Jena Fuseki is a SPARQL server.
URL https://github.com/apache/jena/blob/main/

jena-fuseki2/apache-jena-fuseki/fuseki-server

[72] Revit: BIM software for designers, builders, and doers.
URL https://www.autodesk.eu/products/revit1545

[73] F. Seeberg, J. Tangeraas, Integration of Thermal Building Sim-
ulation Tools and Cloud-Based Building Information Models
(2022).

Appendix A. Mapping between Flow Properties
Ontology (FPO) and1550

Brick

Table A.10: Alignments between FPO and Brick.

owl:Class
owl:ObjectProperty

rdfs:subClassOf
rdfs:subPropertyOf
owl:equivalentClass

fpo:hasDesignCoolingPower brick:coolingCapacity
fpo:hasVolume brick:volume

Appendix B. Querying fso:Pump pressure

1 SELECT ?pump (MAX(?sumOfSupplyPressureDrop +

?sumOfReturnPressureDrop +

?terminalPressureDropValue) AS ?pressure)

↪→

↪→

2 WHERE {

3 {

4 SELECT ?pump ?terminal (SUM(?supplyValue) AS

?sumOfSupplyPressureDrop)↪→

5 WHERE {

6 ?pump a fso:Pump .

7 VALUES ?terminalType {fso:HeatExchanger

fso:SpaceHeater}↪→

8 ?terminal a ?terminalType .

9 ?supplySystem fso:hasComponent ?pump .

10 ?supplyComponent fso:feedsFluidTo+ ?terminal .

11 ?supplySystem fso:hasComponent ?supplyComponent .

12 ?supplySystem a fso:SupplySystem .

13 ?supplyComponent fso:hasPort ?supplyPort .

14 ?supplyPort fpo:hasFlowDirection ?flowDirection .

15 ?flowDirection fpo:hasValue "Out" .

16 ?supplyPort fpo:hasPressureDrop ?pressureDrop .

17 ?pressureDrop fpo:hasValue ?supplyValue .

18 FILTER NOT EXISTS {

19 ?supplyPort fso:suppliesFluidTo ?connectedPort .

20 ?connectedComponent fso:hasPort ?connectedPort .

21 ?connectedComponent fso:feedsFluidTo+ ?terminal .

22 ?connectedComponent a fso:Tee .

23 }} GROUP BY ?pump ?terminal

24 }

25 {

26 SELECT ?pump ?terminal ?terminalPressureDropValue

?sumOfReturnPressureDrop↪→

27 WHERE {

28 ?terminal fso:hasPort ?port .

29 ?port fso:returnsFluidTo ?anotherPort .

30 ?port fpo:hasPressureDrop ?pressureDrop .

31 ?pressureDrop fpo:hasValue

?terminalPressureDropValue .↪→

32 {

33 SELECT ?pump ?terminal (SUM(?returnValue) AS

?sumOfReturnPressureDrop)↪→

34 WHERE {{

35 ?pump a fso:Pump .

36 VALUES ?terminalType {fso:HeatExchanger

fso:SpaceHeater}↪→

37 ?terminal a ?terminalType .

38 ?supplySystem fso:hasComponent ?pump .

39 ?terminal fso:feedsFluidTo+ ?returnComponent

.↪→

40 ?returnSystem fso:hasComponent

?returnComponent .↪→

41 ?returnSystem a fso:ReturnSystem .

42 ?returnComponent fso:hasPort ?returnPort .

43 ?returnPort fpo:hasFlowDirection

?flowDirection .↪→

44 ?flowDirection fpo:hasValue "Out" .

45 ?returnPort fpo:hasPressureDrop ?pressureDrop

.↪→

46 ?pressureDrop fpo:hasValue ?returnValue .

47 }} GROUP BY ?pump ?terminal

48 }}}} GROUP BY ?pump

Listing 5: A SPARQL query to calculate the pressure of each
fso:Pump

21

Appendix C. Deleting systems, which doesn’t have
any components

1 DELETE {

2 ?system a ?systemType .

3 ?system ?systemPred ?systemObj .

4 ?system fso:hasFlow ?flow .

5 ?flow ?flowPred ?flowObj .

6 ?flow fpo:hasTemperature ?temperature .

7 ?temperature ?tempPred ?tempObj

8 }

9 WHERE {

10 VALUES ?systemType {fso:ReturnSystem fso:SupplySystem}

?system a ?systemType .↪→

11 ?system ?systemPred ?systemObj .

12 ?system fso:hasFlow ?flow .

13 ?flow ?flowPred ?flowObj .

14 ?flow fpo:hasTemperature ?temperature .

15 ?temperature ?tempPred ?tempObj

16 FILTER NOT EXISTS {?system fso:hasComponent ?component}

.↪→

17 }

Listing 6: A SPARQL update query to remove all fpo:SupplySystem
and fpo:ReturnSystem, which is missing the predicate
fso:hasComponent from the data model

22

184 Papers

6.7 Paper VII - A Web-based Common Data
Environment for Continuous Commissioning
of buildings

A Web-based Common Data Environment for
Continuous Commissioning of buildings

Mikki Seidenschnur1,2, Ali Kücükavci2, Kevin Michael Smith2, Christian Anker Hviid2

1Ramboll, Copenhagen, Denmark
2Technical University of Denmark, Kongens Lyngby, Denmark

Abstract

With ever increasing demands for high performance build-
ings in the Architecture, Engineering, Construction, and
Operation (AECO) industry, a transition towards Com-
mon Data Environments (CDEs) is happening. Such
CDEs has been created initially to raise the Building Infor-
mation Modeling (BIM) maturity to level 3. CDEs have
been discussed to be the next step of full digitalization
of the AECO industry. It is believed, that by creating
a CDE as a Single Source of Truth (SSOT) for the BIM
model, the AECO industry can minimize the Energy Per-
formance Gap (EPG) from predicted energy performance
to measured energy performance. However, most existing
CDEs do not involve the Heating, Ventilation, and Cool-
ing (HVAC) model and are not capable of performing ad-
vanced hydraulic simulations based on the BIM model.
In this article, we discuss the technological changes that
need to be made for CDEs to be widely employed within
the HVAC industry. We propose a system architecture
based on literature, making it possible to perform continu-
ous commissioning of buildings on a digital platform after
the building has been built. By introducing a CDE, BIM
models will be stored in a centralized database so that all
project stakeholders have access to an SSOT.

Introduction

There is a gap in the predicted energy consumption of
buildings to the measured energy consumption, and this
is called the EPG by De Wilde (2014). Several reasons
have been stated for this gap, one of them being that there
is a lack of continuous commissioning (Jradi et al., 2018).
It should be the original designer of the HVAC system that
should perform it. Therefore, we suggest a framework for
a CDE to enable continuous commissioning and therefore
minimize the EPG from predicted to measured energy per-
formance. Previous work describes parts of the CDE by
the authors of this report. A CDE is defined as a web-
based collaboration space for all the stakeholders of a con-
struction project (Preidel et al., 2016; Kirby, 2022; BIM
Wiki, 2021). The main idea is that all project stakeholders
should be able to access the project from anywhere, us-
ing a computer, phone, etc. CDEs have been implemented
into parts of the AECO industry, but mainly for the design
and construction, on large-scale commercial projects. A
CDE provides an SSOT of the entire project so that all
stakeholders and designing, constructing, and operating

the building on the same data foundation. However, few
efforts have been made to create a CDE for commission-
ing of building services. One effort was carried out by
Jradi et al. (2018), but while presenting a novel idea on
how to utilize a CDE for operation, they did not present
a system architecture for others to build upon the idea.
This article aims to present the foundation of a CDE and
which developments is needed to achieve a CDE for the
continuous commissioning of building services. The sys-
tem architecture has been developed in relation to several
unpublished (in review) papers by the authors of this re-
port (Seidenschnur et al., 2023; Fjerbæk et al., 2023; Sei-
denschnur et al., 2023) and published articles (Kukkonen
et al., 2022; Fjerbæk et al., 2022).
Objectives

The objectives of this article is to:

1. To identify what a CDE is
2. To present a system architecture that allows for a CDE

capable of making continuous commissioning
3. To identify the IT technological developments needed

for CDEs to be used for most building projects

Results & Discussion

Figure 6 shows the system architecture of the CDE. The
central BIM-database acts as a SSOT. The database is con-
nected with a backend routing module to the microser-
vices that allows for detailed HVAC simulation, energy
and indoor climate simulation, and performance monitor-
ing of the building.
BIM Model requirements

The first part of transferring the data from the Revit model
is to ensure that the Level of Detail (LOD) of the Re-
vit model is sufficient to have coherent information about
the building and its systems. This subsection lists the re-
quirements for what an HVAC model should include to
be transferred as a model to a web-based database. Ac-
cording to United-BIM (2021) there are 6 levels of de-
tail. (1) LOD100 is a purely conceptual model; it contains
the spaces in the model with the actual area requirements.
(2) LOD200 is the approximate geometry, that is repre-
sented with generic models with approximate specifica-
tions, quantities, size, shape, location, and orientation. (3)
LOD300 is usually used as construction documentation. It
contains accurate sizes, quantity, location, and orientation.
(4) LOD350 is different because it, on top of LOD300,

also supports: interfaces and connections with other build-
ing components. (5) LOD400 is a model that is ready to
be driven directly into fabrication - it can be handed di-
rectly to manufacturers that can supply components based
on it. (6) LOD500 is an as-built model. Everything is the
same, from the MEP model to the actual building. This
means that to be capable of containing the needed infor-
mation to use the CDE, the BIM model should have an
LOD with LOD350 or higher, as the connectivity of the
components is necessary. Figure 1 shows an example of
an HVAC system modeled to standard LOD350. The fig-
ure shows that both the heating, ventilation, and cooling
system is modeled with all the components that will be in
the system. Furthermore, they are modeled within spaces
of a building to provide the connection from system to
space.

Figure 1: Example of an HVAC system modeled to
LOD350, with all components modeled in Revit (un-
published work: Seidenschnur et al. (2023))

However, with current modeling standards in companies,
such a transformation is not simple to make. While
most companies agree to Information and Communica-
tions Technologies (ICT) contracts, stating the LOD for
certain phases of the construction process, most of them
do not follow the contract meticulously, meaning that of-
ten connectivity issues occur. Systems are not classified
correctly (supply and return system poorly defined in the
model), the flow direction of the system is wrong, etc. Fig-
ure 2 shows the level of detail needed for modeling if the
desire for the 3D model is to be able to make hydraulic
simulations in a Modelica environment.
The model shown in 2 does not constitute the current mod-
eling standards for most companies until very late in the
design phase. Therefore, to perform hydraulic simula-
tions in Modelica, companies need to invest time in the
3D model to represent the actual flow system.
Class hierarchy for HVAC systems and spaces

Figure 6 shows both a BIM energy model and a
BIM HVAC model. Those constitutes two related ob-
ject models. To parse the two BIM models, the Revit
C# Application Programming Interface (API) was used
to serialize a JavaScript Object Notation (JSON) object
model to represent the energy model and HVAC model.
The JSON object model was initialized using a class
hierarchy for HVAC and spaces (energy model), as

Pump

MotorizedValve
RegulationValve

Figure 2: Mixing loop from heating system to venti-
lation system heating coil, from 3D model shown in 1

seen in Figures 3 and 4. Figure 3 that the container
HVACSystem contains a dictionary over the SubSystems.
A SubSystem contains a string that describes its type and
a list of Components in that SubSystem. A Component

acts as a super-class for all possible components in an
HVAC system. It contains an Id, Tag, ComponentType,
SystemName, SystemType, a list of all components that
the component is connected with, and which spaces the
component is located in. Below is an example of the C#
code that generates the Component class. It has been sim-
plified for readability

public class Component

{

string Id {get;set;}

string Tag {get;set;}

string ComponentType {get;set;}

string SystemName {get;set;}

string SystemType {get;set;}

List<Connectors.Connector>

ConnectedWith {get;set;} =

new List<Connectors.Connector>();

List<string>

ContainedInSpaces {get;set;} =

new List<string>();

Component(string id,

string tag,

string systemName,

string systemType)

{

Id = id;

Tag = tag;

SystemName = systemName;

SystemType = systemType;

}

<Methods not shown for simplicity>

}

The Component is a super-class to FlowSegment,
FlowTerminal, FlowController, Fitting,

EnergyConversionDevice, and FlowMovingDevice.
Below is an example of how the FlowTerminal in-
herits the properties and methods from the super-class,
Component.

public class FlowTerminal : Component

{

FlowTerminal(string id,

string tag,

string systemName,

string systemType)

: base(id,

tag,

systemName,

systemType)

{

}

}

The same principle applies to all the components
that inherit their properties and methods, as shown in
Figure 3. However, some classes add extra informa-
tion to the specific class, such as a pump. The pump
contains information that none of the other compo-
nents contain, such as a power curve and pressure curve.

Component

+ Id : string
+ Tag : string
+ ComponentType : string
+ SystemName : string
+ SystemType : string
+ ConnectedWith : List<Connector>
+ ContainedInSpaces : List<string>

Properties

+ Component
Methods

EnergyConversionDevice

FlowMovingDevice

FlowController

FittingFlowTerminal

FlowSegment

Connector

+ ConnectorType : enum
+ Coordinate : Coordinate
+ DesignFlow : double
+ Dimension : List<double>
+ DirectionVector : DirectionVector
+ Shape : string
+ Tag : string

Properties

+ Connector
Methods

HVACSystem

+ SubSystems : Dict<string, SubSystem>
Properties

+ HVACSystem
Methods

SubSystem

+ Type : string
+ Components : List<Component>

Properties

+ SubSystem
Methods

0..3

1..3

0..*

1

0..*

1

Figure 3: Base classes for a class hierarchy to de-
scribe an HVAC system (unpublished work: Seiden-
schnur et al. (2023))

Figure 4 shows that the container Spaces contains a
list (SpacesInModel) of all spaces in the model. The
class Space represents the simple features needed to
define a space. It contains an Id, Tag, ThermalZone,
and SpaceGeometry. The Id and Tag identify the
space with a unique id within Revit. The Thermal-
Zone specifies the properties needed to augment the

thermal zone with properties related to indoor climate.
The SpaceGeometry describes the geometry of the spaces.

Space

+ Id : string
+ Tag : string
+ ThermalZone: ThermalZone
+ SpaceGeometry : SpaceGeometry

Properties

+ Space
Methods

SpaceGeometry

+ SpaceBottomElevation : double
+ SpaceHeight : double
+ Footprint : List<Edge>

Properties

+ SpaceGeometry
Methods

ThermalZone

+ Heating : Heating
+ Ventilation : Ventilation
+ Cooling: Cooling
+ HeatGain : HeatGain
+ Schedules : Schedules

Properties

+ IndoorClimateZone
Methods

1

0..*

Spaces

+ SpacesInModel : List<Space>
Properties

+ HVACSystem
Methods

1

1

1

1

Figure 4: Base classes for a class hierarchy to de-
scribe an energy model (unpublished work: Seiden-
schnur et al. (2023))

Object model generation

In order to generate the FSC object model and serialize it
to JSON, a C# script was written, using the Revit API. The
C# script was created with an object-oriented approach.
First, the Revit API is used to loop through all of the
components within the model. While the components are
looped, they are mapped down to the correct component,
for instance, a pump. After each component of the HVAC
model has been looped through and mapped to a FSC
component based on the FSC hierarchy, the HVACSystem
is mapped from a list containing all subsystems and com-
ponents and serialized into a JSON object. The UI of Re-
vit now creates a prompt window, asking under which pro-
jectId, UserId, and Uniform Resource Locator (URL) ad-
dress the JSON should be sent to. It then sends a response
to the endpoint with the above URL to post the data within
the MongoDB database.
Database infrastructure

The database used for this CDE is called MongoDB. Mon-
goDB is a database following the paradigm of Not only
Structured Query Language (NoSQL). NoSQL databases
store data non-tabular compared to Structured Query Lan-
guage (SQL) (relational) databases. The advantage of a
NoSQL database is that the schema is more flexible than
for an SQL database. Furthermore, a NoSQL database
is capable of more easily scaling horizontally rather than
vertically. A vertical scale-up means adding extra pro-
cessing power to the single server but will eventually be
limited by the processing power of that server. Horizontal
scaling, however, brings in more nodes to distribute the
workload of the server - a task that is difficult to perform
with relational databases. Finally, MongoDB is compati-
ble with JSON objects, which essentially means that it can
take in the JSON that is generated by the C# script from
the previous section.

User Interface

Figure 7 shows an example of a user page in CDE.
The spaces have been imported from Revit to the central
database in the CDE. The top of the figure shows the dif-
ferent types of rooms that the user has generated in the
CDE. The bottom shows the rooms that were actually im-
ported from Revit to the database. Each room contains
the room number, the name of the room, the function of
the room, which level it is located on, what volume the
room encloses, the floor area, the type of ventilation, the
flow supply, the flow return, and what type of room it is,
compared to the mechanical template types, shown in the
top of the figure. This makes it possible for the user to
select a mechanical template for each room. The engine
will automatically calculate the flow supply and return for
the given room.
Microservices

With a connection from Revit through an object model
to the centralized web-based database in the CDE, the fi-
nal step is to implement microservices to utilize the object
model in the database. Figure 6 shows that the microser-
vices is connected through a routing module within the
application. The microservices are created as endpoints in
the web framework Flask, which is based on Python, mak-
ing it easy to develop new microservices. The microser-
vice architecture allows for technologies like Kubernetes
to be used for managing containerized workloads and ser-
vices, making it easy to scale the application to the desired
level (horizontal rather than vertical).
The article from Fjerbæk et al. (2022) showed how to
transfer an HVAC model from a BIM database into the
Modelica-based Dymola environment. In the article, they
successfully simulated a small heating system in Mod-
elica and obtained results for the return temperatures of
each loop. The setup of this toolchain allowed for easy-
to-initiate Modelica simulations of a heating system. This
process would, under normal circumstances, be very time-
consuming since it is a manual process and the simula-
tions have high complexity. Figure 5 shows the microser-
vice. The microservice receives a post request to perform
a Modelica simulation. Step 1 - The FSC object model
is translated into a Modelica file (.mo) and stored. Step
2 - The Modelica file (.mo) is simulated, and the results
are stored as a Matlab file. Step 3 - the results are read
and serialized to a JSON file and then parsed back to the
database. Then the results are stored within the original
FSC object model for future use.

Conclusion

CDEs will revolutionize the way that the AECO indus-
try works with buildings through the design, construction,
and operation phases. If it can be applied to perform con-
tinuous commissioning, it has the potential to minimize
the EPG from predicted to the measured energy perfor-
mance of buildings. However, for CDEs to be applica-
ble, the AECO industry must increase the level of BIM
maturity from level 2 to level 3. This means that model-

En
dp

oi
nt

Translate Modelica Store .mo file

Simulate .mo file

Save results to .mat

Read resultsSerialize to JSON

Step 1
Step 2

Step 3

Request

Response

Figure 5: The figure shows the system architecture of
the Modelica microservice. (unpublished work: Fjer-
bæk et al. (2023))

ing standards need to improve in the industry. The CDE
centralizes the BIM model into a database with the ap-
plications around it instead of keeping external applica-
tions in separated silos. In this article, we have shown
examples of the technological advances needed to create
a CDE based on microservice architecture for continuous
commissioning. In previous work by the authors of this ar-
ticle, a microservice for Modelica was created and used to
generate automated detailed simulations of building ser-
vices together with indoor climate parameters. The next
step in the CDE shown in this article is to deploy it within
a company structure and use it to ultimately reduce the
EPG from predicted to the measured energy performance
of buildings. For future work, efforts should be made to
prove how a CDE for continuous commissioning can re-
duce the EPG. Finally, the system architecture created for
this article has only been tested in a local testbed, which
means that future work will focus on the deployment of
the application. Finally, this application has been devel-
oped by the authors of this article, who have professional
careers as HVAC engineers, meaning that most of the con-
cepts have been developed without any user testing. Fu-
ture work will involve users in further developing features
in the project, improving user-friendliness, etc.

Acknowledgment

Funding: This work was funded by the Ramboll Founda-
tion and the Innovation Fund Denmark.

References
BIM Wiki (2021). Common data environment CDE.

De Wilde, P. (2014). The gap between predicted and mea-
sured energy performance of buildings : A framework
for investigation. Automation in Construction 41, 40–
49.

Fjerbæk, E. V., M. Seidenschnur, A. Kücükavci,
K. Michael, and C. Anker (2022). From BIM databases
to Modelica - Automated simulations of heating sys-
tems . In REHVA 14th HVAC World Congress.

Fjerbæk, E. V., M. Seidenschnur, A. Kücükavci, K. M.
Smith, and C. A. Hviid (2023). FSC2Modelica: Cou-
pling Modelica simulations and a Common Data Envi-
ronment for BIM.

PARSER

BIM
DATABASE

M������������

F�������

R���� ������ C����� D��� E����������

BIM HVAC
MODEL

C���� H��������
S�����

S��S�����
S����� S�����

C��������

R����
R����� S�����

R��� 1
R��� 2

R�
��

��
�

�
��

��
�

S����-O�-
E�����P���

S����� ����
��������

CC

HC

M

AND MORE...

M�������
S����������

RESPONSE

JSON
{...}

JSON
{...}

BIM ENERGY
MODEL

R��� ���������3D V������������ 2D ���� ������

Space-1 Space-2 Space-1

Figure 6: System architecture for the CDE. Data is transferred from the Revit models (left in figure) to the
database within the CDE. A frontend is generated (top of figure) to provide insights into the performance of
the building. The CDE can now route the information to microservices (right in figure). Among the suggested
microservices are Spawn-Of-EnergyPlus with Modelica, a building sensor monitoring module, and potentially
many more.

Figure 7: Mock-up of UI for the CDE

Jradi, M., K. Arendt, F. C. Sangogboye, C. G. Mattera,
E. Markoska, M. B. Kjærgaard, C. T. Veje, and B. N.
Jørgensen (2018). ObepME: An online building energy
performance monitoring and evaluation tool to reduce
energy performance gaps. Energy and Buildings 166,
196–209.

Kirby, M. (2022). What Is a Common Data Environment
and How Is It Used In Construction?

Kukkonen, V., A. Kücükavci, M. Seidenschnur, M. H.
Rasmussen, K. M. Smith, and C. A. Hviid (2022). An
ontology to support flow system descriptions from de-
sign to operation of buildings. Automation in Construc-
tion 134(November 2020), 104067.

Preidel, C., A. Borrmann, C. Oberender, and M. Trethe-
way (2016). Seamless integration of common data en-
vironment access into BIM authoring applications: The
BIM integration framework. eWork and eBusiness in
Architecture, Engineering and Construction, 119 – 128.

Seidenschnur, M., A. Kücükavci, E. V. Fjerbæk, K. M.
Smith, P. Pauwels, and C. A. Hviid (2023). A Common
Data Environment for HVAC Design and Engineering.

Seidenschnur, M., A. Kücükavci, F. Seeberg, J. M.
Tangeraas, E. V. Fjerbæk, P. Pauwels, K. M. Smith, and
C. A. Hviid (2023). A web-based approach to close the
Energy Performance Gap, using Spawn of EnergyPlus
& Modelica in a Common Data Environment.

United-BIM (2021). A Practical Approach to Level of
Detail (LOD).

6.8 Paper VIII - From BIM databases to Modelica - Automated simulations of heating systems 191

6.8 Paper VIII - From BIM databases to Modelica -
Automated simulations of heating systems

From BIM databases to Modelica - Automated simulations
of heating systems

Esben	Visby Fjerbæka, Mikki Seidenschnura,b, Ali Kücükavcia,c, Kevin	Michael Smitha, Christian	Anker Hviida

a Department of Civil Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark, evifj@byg.dtu.dk,
kevs@byg.dtu.dk, cah@byg.dtu.dk.

b Rambøll, Copenhagen, Denmark, msei@ramboll.dk

c Cowi, Kgs. Lyngby, Denmark, alkc@cowi.dk

Abstract.	Detailed simulations of HVAC systems play a crucial role in creating 1:1 digital twins of
buildings and their systems. In particular, detailed models of hydronic systems are essential for
fault detection of building services and control optimization. However, modeling HVAC systems
is labour intensive due to the components and connections that one must create based on
drawings or models. Creating the HVAC simulation models from BIM data eases the modeling
burden, simplifying the creation of digital twins. Straight-forward HVAC simulations can aid the
design process. Instead of prescriptive design based on the worst-case conditions, simulations
enable performance-based design with partial-loads and dynamic behaviour. This paper presents
a preliminary tool using BIM data to create and simulate models of heating systems. The tool uses
a central BIM data platform with a dedicated data format – defining components and their
relations in a database. Python scripts apply model templates to create heating system models in
the Modelica language. The tool simulates the models in Dymola, while Python scripts read and
parse the results to the database for visualization and analysis. The tool efficiently simulated a
small heating system and obtained results for the return temperatures of several loops.

Keywords.	BIM, Modelica, HVAC, simulations
DOI: https://doi.org/10.34641/clima.2022.365

1. Introduction

There is a large discrepancy between the estimated
energy consumptions of buildings and the one
measured, often leading to underestimated energy
consumption [1, 2]. The issue, known as the
performance gap, has many causes. One significant
cause is the precision of building energy
performance simulations (BEPS) used to estimate
energy consumption. BEPS tools rarely consider
HVAC systems in detail [3] or simply assume ideal
performance of components and controls [4]. This
means that commonly occurring phenomena such as
oscillation or system imbalance, that create
disturbances, are not identified by the BEPS models.

Modeling HVAC systems in detail ensures that all
non-ideal performance is considered in the BEPS
simulations, which increases simulation precision. In
the design phase, this can help to evolve the design
process from a steady-state practice, where the
design of HVAC systems is based on a worst-case full-
capacity situation, to a dynamic design paradigm,
where requirements for part-load conditions and
dynamic behavior define the design. Additionally, it
will be possible to check that the detail of the design

is sufficient for actual operation under all conditions.
Today, this is ensured through guidelines provided
by component manufacturers and empirical
knowledge of practitioners.

The combination of traditional BEPS models and
detailed models of all HVAC systems can act as a
digital twin if connected to live weather data. During
operation, the digital twin estimates the
expected/optimal operation of the building systems
alongside the actual building. The expected
operation can be used for fault detection and to test
different control strategies continuously throughout
the building's lifetime.

Modeling HVAC systems can, however, be a laborious
task since the systems include many different
elements that must be created manually. Often, the
simulation models derive from diagrams of the
systems, that the simulation engineer manually
interprets and translates to the simulation model
format. This error-prone process results in two
separate models where changes to one does not
affect the other.

Generating the HVAC simulation models from BIM

Copyright ©2022 by the authors. This conference paper is published under a CC-BY-4.0 license. 1 of 7

data eases the burden of modeling. Integrating BIM
and BEPS ensures that the BIM and simulation
models share similar information. Both the BIM and
BEPS industry work towards linking BIM and BEPS
models. Tools such as IESVE [5] and IDA ICE [6] have
functionalities to import geometry and construction
parameters, whereas the BIM tool Revit contains
some BEPS functionalities. Several tools for using
BIM as a basis for models in the open-source
Modelica language [7] exist [8–10], but all of these,
including the traditional BEPS tools, have a primary
focus on the envelope and thermal zone model.
IFC2Modelica [10] includes an example for
ventilation systems.

Common for all BIM to BEPS methodologies is the
fact that they depend on file-based BIM information.
Several critics argue that the use of file-based BIM
models limits interoperability [11, 12]. A solution is
to transfer from file-based to web-based
collaboration, where information is exchanged
through open data formats and stored in centralized
databases [11, 12]. This corresponds to the BIM level
3 in the Bew-Richards BIM maturity model described
in [13]. In the BIM maturity model, the information
exchange on levels 0, 1, and 2 has different degrees
of standardized data structures. In level 3, the
information exchange is handled through
standardized, open data formats for integration with
various tools.

2. Cloud BIM platform

The toolchain, presented in the following sections, is
implemented in a cloud platform that stores BIM
models in a database to allow cross-platform access
to the models. The platform is built with a micro-
service structure, which means that several micro‐
services	 for design and evaluation of HVAC systems
can utilize the data. Amongst these is the Modelica
micro-service, which creates models in Modelica
language and simulates them with Dymola. As seen
in Fig. 1, the data flows back and forth between the

micro-service and the database so that results are
read and analyzed in the platform for analysis and
visualization in the graphical user interface (GUI).

In the database, components and their relations are
defined with the Flow Systems Ontology (FSO) [14,
15]. This ontology uses class hierarchies to define the
type of component its relation to other components.
E.g., a pipe supplying water to a radiator would have
the class Segment and have the property
ConnectedWith equal to the radiator's unique tag.
Selected classes relevant to this project are listed in
table Tab. 1, whereas the full list of classes and
connections can be found online in [15].

Tab.	1	‐	Selected component classes	

FSO	class	 Examples	

Radiator Radiators for heating

Segment Pipe or duct segments

FlowController Valves and dampers

FlowMovingDevice Pumps and fans

HeatExchanger Heating coils and heat
recovery units

3. Toolchain

The toolchain automatically generates and simulates
Modelica models of heating systems from BIM data.
In fig. Fig. 2 the main processes of the toolchain are
shown along with the flow of data. On the left side,
the tool is connected through an API (see Fig. 3), that
establishes an integration between the micro-service
and the database. As seen in Fig. 3 the JSON format is
used to parse data between the database and tool. As
seen in Fig. 2 this is maintained throughout the tool,
except for the last two steps, where the simulation
environment needs a Modelica file and writes the
results to a .mat file.

Fig.	 1	 ‐	 Several micro-services in addition to the Modelica
service interface the BIM database platform.	

2 of 7

Fig.	2	‐	System architecture.	

All functions are written with Python, since it is a
straight-forward tool which is well suited for
translation between data formats and since it is used
in the BIM platform. Python does not carry out the
simulations itself, but simply interfaces the
simulation environment Dymola.

When the toolchain is activated, in the BIM platform,
the platform sends a Post request, including BIM data
for the desired system(s) to the service's API as seen
in Fig. 3 where all data exchange between the
database, the API and the toolchain is seen.

In the following sections, each step in the tool is
described.

Fig.	 3	 ‐	 Interaction between the database and the
toolchain through an API.	

3.1. System extraction and data
enrichment

When activating the tool, BIM data for the heating
system is sent from the database, through the API to
the tool. As a precaution and for future scenarios
with several systems the tool extracts all
components in the heating system from the data. To
support the following mapping process, minor
changes are made to the data by adding certain
parameters based on the component classes. E.g., the
length of pipe segments is calculated from the
component’s start and end coordinates. The
enriched/manipulated data is then sent to the
mapping process for model generation.

3.2. Mapping

In the mapping step, the Modelica models are
generated. This is where the original data format and
classes are translated to Modelica language and
classes. This step is be divided into two separate
processes; in the first, the program loops through all
components and maps them to a corresponding
Modelica class and instantiates it in the model code.
In the second, all connections between the
components are translated to Modelica connectors.
To handle the lack of information on control, this is
also where default control connections are
established.

In the mapping process, seven FSO classes are
mapped to 10 different Modelica classes. Some FSO
classes have been mapped to multiple Modelica
classes, depending on the value of certain attributes.
The full mapping and the translated attributes are
seen in Tab. 2. The parameters are all required in the
BIM data; if not, the program will fail.

All Modelica classes, except the bend model,
originate from the Buildings library [16] which
includes models for most components in HVAC
systems in addition to detailed models of thermal
zones. To simplify the mapping process, a purpose-
built library with models that combine component
models from Buildings was created. The combined
models simplify the mapping process, since several
Modelica models would otherwise have to be
instantiated for each database component. Examples
are the radiator model, which combines a radiator
model and a thermostat, acting as a proportional
controller and the MotorValve class, which combines
a motorized valve with a PI controller and a setpoint.

Tab.	2	‐	Mapping between classes in the database and
their corresponding Modelica classes.	

Component	 Modelica	

Segment model:	Pipea
parameters:	nominal flow,
insulation thickness, insulation
lambda, diameter, length

FlowMoving-
Deviced

model: PumpConstantSpeedb
parameters: speed, performance
curve

FlowMoving-
Deviced

model:	PumpConstantPressureb
parameters: head, performance
curve

Radiator model: Radiatorb
parameters: nominal heat flux,
nominal supply temp, nominal
return temp, nominal room temp,
nominal pressure loss

HeatExchanger model:	DryCoilCounterFlowa
parameters: nominal air flow,
nominal water flow, dp nominal
air, dp nominal water, UA nominal

Bend model:	CurvedBendc
parameters: angle, diameter,
bend radius

Tee model:	Junctiona

FlowControl-
lerd

model:	Valves.TwoWayLineara
parameters: nominal flow, Kv-
value

FlowControl-
lerd

model: CheckValvea
parameters: nominal flow, Kvs-
value

FlowControl-
lerd

model:	MotorValveb
parameters:	nominal flow, Kvs-
value

a In Buildings.Fluid library

3 of 7

b In purpose-built library
c In Mocelica.Fluid library
d Mapping depends on component attributes

In the connection process, the connections between
components are translated from the database format
to Modelica language. In the database, the connection
between components are described in connectors, in
the ConnectedWith attribute, as seen in Fig. 4 that
shows an example of two connected pipes. All
components have at least 2 connectors. Each
connector defines the expected direction of flow (in
or out) and the connected component's tag, among
other properties not relevant to this project.

Fig.	4	‐	Example of connector definition.	

The toolchain loops through all components and for
every ingoing connector, a corresponding Modelica
connector will be established. Only ingoing
connections are considered to avoid duplicate
connectors. In Modelica, components are connected
through ports. The name of the ports vary, depending
on the component class, and hence, they are stored in
the components during data enrichment.

Since the BIM data does not support definition of
control logics, default controls are assumed for the
components that need control. E.g., all components
mapped to the MotorValve class (see Tab. 2) are
assumed to be controlling flow in a heating coil. Thus,
these all take the measured ventilation supply
temperature as an input for the processed variable
for the PI controller.

For each component, a component model template is
instantiated and added to a text string, containing the
model information. After looping through all
components, both for class mapping and connection
establishment, the text string contains the entire
model. The model is saved in a temporary model file
for simulation.

3.3. Simulation and results reading

When simulating Modelica models, the models must
first be compiled to a machine-readable executable
and after that simulated. In the toolchain, this is done
through BuildingsPy [17], which interfaces the
commercial Modelica simulation environment
Dymola. BuildingsPy takes the file path to the
simulation file and simulation parameters, such as
duration and solver, as parameters and parses these
to Dymola. After simulation, the results are read
through BuildingsPy, and the results are parsed to a
JSON format and returned to the database. Since the
simulations return many results for each component,
the wanted results for each component class are
defined in a specific file, and only these results are

sent back to the database.

Fig.	5	‐	Simulation procedure.

4. Testing

To ensure that the tool is usable, it was tested on a
small heating system model. The test did not focus on
assessing the system's performance but merely to
check whether the tool works, and the obtained
results make sense and are of interest.

4.1. Test case description

The test case system, depicted in Fig. 6, consists of a
heating coil and a radiator, each in separate loops.
The main pump supplies flow to both loops, and a
secondary pump is connected to the heating coil. To
simulate the dynamic behavior, both the heating coil
and the radiator are connected to a generic room
with the parameters given in Tab. 3. For simplicity,
only heat loss through the walls and window was
considered.

Fig.	 6	 ‐	 Heating system with one radiator and one
heating coil used for testing the tool.	

The radiator is controlled by a thermostatic radiator
valve (TRV), connected to the room temperature. The
TRV is not depicted in figure Fig. 6, since it is
considered a part of the radiator. To control the
heating output of the heating coil, a PI controller
adjusts the control valve position to change the
heating supply temperature. This is based on the
ventilation supply temperature to the room, which
has a constant setpoint. For simplicity, both pumps
are operated with constant speed, although under
normal circumstances, such pumps would either be
controlled for constant or proportional pressure. The
heat source is not considered, and it is assumed that

4 of 7

it supplies water at a fixed temperature of 70 °C.

Tab.	3	‐	Room parameters	

Parameter	 Value	 	

Floor area 30 m2

Wall area 60 m2

Window area (south) 4 m2

Total envelope area 66 m2

Wall U-value 0.27 W/(m2 K)

Window U-value 1.31	 W/(m2 K)

Window g-value 0.73 [-]

4.2. Simulation setup

The simulation was done for the first five days of
weather data for Chicago, USA. In this period, the
temperature ranges between -15 °C and 0 °C. Hence,
it is possible to see the dynamic effects in varying
external temperatures, including maximum capacity
conditions.

To initialize the solution, in addition to the Modelica
initialization, one preceding day was simulated
before the first day of the year.

4.3. Simulation results

By simulating the system through the toolchain, the
overall temperature curves in Fig. 7 were achieved.
Fig. 7 shows the temperature of the room and the
ventilation supply air, compared to the external
temperature. It is seen that the room temperature is
stable, but that there is an offset from the setpoint.
This offset is caused by the TRV, which in Modelica is

modeled as a proportional controller, which will
normally introduce an offset. Hence, this behavior is
expected. The supply temperature is stable with no
offset since it is controlled by a PI-controller.

In Fig. 8, the return temperature for both loops and
the full system is seen. The return temperatures are
stable around 30 °C, with a slight tendency to
increase with lower external temperatures, as
expected.

5. Discussion and gained experiences

The development process highlighted several points
of attention during the mapping process. Most
importantly, all needed data for the considered
components must be available. If the parameters in
Tab. 2 are not available for all components, the
simulations will fail. This puts high demands on the
level of information in BIM, but with tools for system
dimensioning and component databases, the amount
of information is not unrealistic. The possibility to
perform detailed simulations of, e.g., return
temperatures may even motivate designers to
populate BIM models with more information on
hydronic components.

In the presented work, controls were handled by
applying a set of assumptions suitable for the specific
test case. To work expand the work to larger systems,
unambiguous control relations must be established
in the database. This can be handled in two ways.
Either the existing data format is extended with

Fig.	7	‐	Results for the outdoor (text), room (troom) and ventilation supply (tvent) temperature, including setpoints
(SP).	

5 of 7

component parameters for controls, such as process
variables, setpoints, etc., or a new data format for
controls must be used. Work towards digitizing
control information is in growth with several
projects under development [11, 18]. Utilizing these
existing frameworks to represent control logic in a
database seems like a viable solution, but for simpler
systems, the simple approach of added attributes
may prove sufficient.

The connection between end units and rooms is a
vital piece of information to correctly simulate the
systems. Creating a link between end units and
rooms may be a simple process in the BIM domain,
but it requires additional mapping modules to
include the rooms in the simulations.

6. Conclusion and future work

In this paper, it was proved that it is possible to
create a tool for the simulation of heating systems
based on BIM models. The simulations provided
detailed and vital information on the performance of
the individual components in the testing case. This
showed the value of such simulations that are usually
too time-consuming to be made. While the presented
results may be trivial for a system as small as the test
case, the same analysis for larger system will uncover
results that are difficult for normal practitioners to
quantify.

Several important attention points for a larger
implementation were identified, the biggest being
the lack of representation of controls in BIM models.
These points resulted in several assumptions built
into the tool, especially regarding control strategies.
These assumptions mean that the tool is less flexible
to different system configurations. By extending the
data format to include the needed information on
controls, the tool can easily be modified to simulate
larger systems with both heating, ventilation, and
cooling systems. When this work is done, the full

models can be used in fault detection, detailed
analysis of the dynamic effects of coupling the
systems, etc.

7. Acknowledgement

This work was funded by the national IFD grant J.nr.
8090-00046B for the project “HEAT 4.0 - Digitally
supported Smart District Heating”, Elforsk grant
352-042, IFD grant J.nr. 9065-00266A for the project
“Virtual Commissioning in Building Services” and
“Databaseret energistyring i offentlige bygninger”,
EU Interreg-ÖKS 2020-2022.

8. References

[1] de Wilde P. The gap between predicted and
measured energy performance of buildings:
A framework for investigation. Automation
in Construction. 2014;41:40–9.

[2] Menezes AC, Cripps A, Bouchlaghem D,
Buswell R. Predicted vs. actual energy
performance of non-domestic buildings:
Using post-occupancy evaluation data to
reduce the performance gap. Applied Energy
[Internet]. 2012;97:355–64. Available from:
http://dx.doi.org/10.1016/j.apenergy.2011.
11.075

[3] Virta M. Initial Commissioning. In: HVAC
Commissioning Guidebook [Internet].
REHVA; 2021. p. 13–42. Available from:
https://app.knovel.com/hotlink/khtml/id:k
t011ZBWH4/hvac-commissioning-
process/initial-commissioning

[4] Wetter M. Modelica-based modelling and
simulation to support research and
development in building energy and control
systems. Journal of Building Performance
Simulation [Internet]. 2009 Jun 19;2(2):143–

Fig.	8	–	Return temperatures for heating coil loop (HC), radiator loop and for the entire system.

6 of 7

61. Available from:
https://www.tandfonline.com/doi/full/10.1
080/19401490902818259

[5] Integrated Environmental Solutions | IES.
Iesve 2021 [Internet]. Available from:
https://www.iesve.com/ve2021

[6] EQUA Simulation Technology Group. IDA
Indoor Climate and Energy [Internet]. 2014.
Available from: http://www.equa-
solutions.co.uk/de/software/idaice

[7] Mattsson SE, Elmqvist H. Modelica - An
International Effort to Design the Next
Generation Modeling Language. IFAC
Proceedings Volumes [Internet]. 1997
Apr;30(4):151–5. Available from:
https://linkinghub.elsevier.com/retrieve/pi
i/S1474667017436287

[8] Kim JB, Jeong W, Clayton MJ, Haberl JS, Yan
W. Developing a physical BIM library for
building thermal energy simulation.
Automation in Construction. 2015;50(C):16–
28.

[9] Nytsch-Geusen C, Inderfurth A, Kaul W,
Mucha K, Rädler J, Thorade M, et al. Template
based code generation of Modelica building
energy simulation models. In: Proceedings of
the 12th International Modelica Conference,
Prague, Czech Republic, May 15-17, 2017.
Linköping University Electronic Press; 2017.
p. 199–207.

[10] Andriamamonjy A, Saelens D, Klein R. An
automated IFC-based workflow for building
energy performance simulation with
Modelica. Automation in Construction.
2018;91(March):166–81.

[11] Terkaj W, Schneider GF, Pauwels P. Reusing
domain ontologies in linked building data:
The case of building automation and control.
CEUR Workshop Proceedings. 2017;2050.

[12] Janowicz K, Rasmussen MH, Lefrançois M,
Schneider GF, Pauwels P. BOT: The building
topology ontology of the W3C linked building
data group. Janowicz K, editor. Semantic Web
[Internet]. 2020 Nov 19;12(1):143–61.
Available from:
https://www.medra.org/servlet/aliasResol
ver?alias=iospress&doi=10.3233/SW-
200385

[13] Bew M, Richards M. BIM Maturity Model.
Paper presented at the Construct IT Autumn
2008 Members’ Meeting. 2008;

[14] Kukkonen V, Kücükavci A, Seidenschnur M,
Rasmussen MH, Smith KM, Hviid CA.
Proposing a Semantic Web Ontology to

Support Flow System Descriptions from
Design to Operation of Buildings.
Automation in Construction. 2021;134.

[15] Flow Systems Ontology Web Page [Internet].
2021. Available from:
https://alikucukavci.github.io/FSO/

[16] Wetter M, Zuo W, Nouidui TS, Pang X.
Modelica Buildings library. Journal of
Building Performance Simulation [Internet].
2014 Jul 4;7(4):253–70. Available from:
http://www.tandfonline.com/doi/abs/10.1
080/19401493.2013.765506

[17] Lawrence Berkeley National Laboratory -
Simulation Research Group. BuildingsPy
[Internet]. 2021 [cited 2021 May 4].
Available from:
https://simulationresearch.lbl.gov/modelic
a/buildingspy/

[18] Wetter M, Ehrlich P, Gautier A, Grahovac M,
Haves P, Hu J, et al. OpenBuildingControl:
Digitizing the control delivery from building
energy modeling to specification,
implementation and formal verification.
Energy [Internet]. 2022 Jan 1 [cited 2021 Sep
14];238:121501. Available from:
https://doi.org/10.1016/j.energy.2021.121
501

Data Statement

The datasets generated during and/or analysed
during the current study are not publicly available
because of ongoing development but are/will be
available upon request.

7 of 7

6.9 Paper IX - Taking advantage of semantic web ontologies and shape constraints for Heating,
Cooling and Ventilation Systems 199

6.9 Paper IX - Taking advantage of semantic
web ontologies and shape constraints for
Heating, Cooling and Ventilation Systems

Taking advantage of semantic web ontologies and shape constraints for Heating, Cooling and Ventilation Systems

Ali Kücükavci1, Mikki Seidenschnur1,2, Kristoffer Negendahl1, Christian Anker Hviid1

1Department of Civil and Mechanical Engineering, Technical University of Denmark, Denmark
2Ramboll, Copenhagen, Denmark

Abstract

In recent years semantic web ontologies have improved
data interoperability within architecture, engineering,
construction, and operation of buildings. One of the per-
sisting issues inhibiting quality assurance is a lack of ro-
bust model validation of BIM models used for HVAC flow
system simulation and analysis. This article provides a
novel approach for automating the BIM validation pro-
cess using SHACL shapes and FSO/FPO ontologies. Us-
ing this approach will ensure that the BIM model contains
the required HVAC information for simulating hydraulic
systems. The paper presents multiple shapes developed to
identify and validate typical HVAC design details in build-
ings.

Introduction

Knowledge graphs and linked data has proven useful
for the representation of Building Information Model-
ing (BIM) models in the Architecture, Engineering, Con-
struction, and Operation (AECO) industry in the recent
years (Rasmussen et al., 2021; Balaji et al., 2016; Pauwels
and Terkaj, 2015). Graph representations of BIM mod-
els has potential uses in many different aspects of design
and engineering. However, one issue in particular ties to
the interoperability with the two most common formats
for common data exchange, Industry Foundation Classes
(IFC) and green building Extensible Markup Language
(gbXML). These data formats are not designed to carry
over all the data relevant for energy and indoor climate
simulations, or Heating, Ventilation, and Cooling (HVAC)
simulation data (Redmond et al., 2012). A recent attempt
to challenge this issue is Porsani et al. (2021) who shows
the difficulty in transforming BIM models to Building En-
ergy Model (BEM) models, where the aspect of transfor-
mation between proprietary formats such as Revit (.rvt) to
IFC and gbXML inherently generates errors later in the
simulation process.
Kukkonen et al. (2022) proposed a semantic web ontol-
ogy called Flow Systems Ontology (FSO) to describe the
composition of flow systems and their energy and mass
flow. Kukkonen et al. (2022) provided a comprehensive
roadmap for further developments showing that use cases
should be developed to further the development of the
specific ontology of FSO. Furthermore, it was proposed
that an ontology should be developed to include the prop-
erties of flow systems (component sizes, flow, material,
i.e.). Though FSO proposes a common language to de-

scribe flow systems, the data needs to be parsed from
existing BIM tools, which means that model validation
is paramount to insure data integrity. FPO is a seman-
tic web ontology developed to describe the capacity- and
size-related properties of HVAC components (Kücükavci
et al., 2022).
Several efforts have sought to create validation tools for
the IFC schema based on EXPRESS (Ghannad et al.,
2019; Lee et al., 2016, 2021; Bolpagni et al., 2015; Lee
et al., 2015). However, IFC is a large super-schema which
is interpreted differently by BIM software vendors like
Autodesk and Graphisoft, meaning that a building made in
Archicad will not be parsed the same as a building made in
Revit. Efforts proposes the use of Shapes Contraint Lan-
guage (SHACL) shapes when using semantic web ontolo-
gies (Stolk and McGlinn, 2020; Soman et al., 2020; So-
man, 2019; Hamdan and Scherer, 2020). SHACL shapes
allow for validation of BIM models represented in a linked
data format.
In this article we explore the HVAC system validation
process of proprietary BIM models using FSO, FPO and
SHACL to ensure that the required information for per-
forming flow simulations are represented.

Methods

A Revit model of a typical office building was created
and an airflow calculation was carried out for the HVAC
system. The Revit model was transformed from a pro-
prietary file format (.rvt) into a web-based Resource De-
scription Framework (RDF)-triplestore containing a BIM
model. Finally, SHACL shapes were used to validate that
the model contained the necessary information to find the
most critical pressure point in the open- or closed-circuit
HVAC system.
The following sections describe the methods used to;

1. Parse data from a BIM to an RDF-triplestore

2. Validate and enrich the model using SHACL shapes
and SPARQL

3. Use typical HVAC system design queries as use case
examples

The process starts with a Revit model that contains a part
of an HVAC system and the attached spaces. For this arti-
cle, a parser was created, using C# and the Revit Applica-
tion Programming Interface (API). First, the script maps
the components and spaces, then it builds a .ttl (turtle for-
mat) string based on the FSO and FPO ontologies. Once

E3S Web of Conferences 362, 04002 (2022) https://doi.org/10.1051/e3sconf/202236204002
BuildSim Nordic 2022

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
License 4.0 (http://creativecommons.org/licenses/by/4.0/).

the parser has looped through all components and spaces,
the .ttl string is parsed as a .txt file and sent through a
client to the RDF-triplestore. Then, the triplestore stores
the data, and then SHACL shapes are used to validate the
data integrity (is all parameters filled, etc.). If the data
validation fails, it will send an ”actions needed” message
to the original BIM model and tell it which components
need to be fixed to continue. If it succeeds, it will pass to
the final stage, which is the pressure and flow calculation
of the critical branch. Finally, it displays the results in a
table format for the user. The following sections will go
through the process shown in Figure 1.
Parsing HVAC data from a BIM model into a
Graph model

In the use case a HVAC model is linked with an archi-
tectural Revit model. The architectural model describe
an office building with four rooms each heated by a ra-
diator and ventilated by one return air terminal and one
supply air terminal. The HVAC model involves three sys-
tems: heating, cooling, and ventilation seen in Figure 2.
The heating system consists of a pump that feeds eight
radiators and a heat exchanger. A pump supplies a heat
exchanger via the cooling system. The ventilation system
consists of a supply fan and exhaust fan connected by air
ducts to four air terminals. A detailed description of the
systems are illustrated in Figure 2.
The Revit to RDF parser converts the Revit data
to RDF to be read into an RDF-based data model
(triplestore). The RDF parser plugin written in C#
accomplishes this. Revit’s API is used to extract
data from both the HVAC model and the architect
model from the database, as shown in Figure 1.
This data is then converted to RDF format expressed
in turtle syntax and appended to a StringBuilder in C#.

Listing 1: Code-snippet from the parser showing how
a pipe in Revit is converted to RDF using FPO.

1 //Get all pipes

2 FilteredElementCollector pipeCollector = new

FilteredElementCollector(doc);,!

3 ICollection<Element> pipes =

pipeCollector.OfClass(typeof(Pipe)).ToElements();,!

4 List<Pipe> pipeList = new List<Pipe>();

5 foreach (Pipe component in pipeCollector)

6 {

7 Pipe w = component as Pipe;

8 //Type

9 string componentID =

component.UniqueId.ToString();,!

10 sb.Append($"inst:{componentID} a fpo:Pipe ." +

"\n");,!

11 }

Listing 1 shows a small example of the code from the
parser that can be applied to convert Revit data into RDF.
The filteredElementCollector class and some other classes
from Revit’s API are used to retrieve pipes in the model.
We extract each pipe’s guid number and add it to our
StringBuilder object sb.

Validation of model and data integrity

The graph model is validated by parsing the RDF data
into a Fuseki database. The server is a SPARQL server
that stores knowledge graphs in RDF form. In this case
SPARQL is used to enable Create, Read, Update, Delete
(CRUD) operations via an endpoint. Queries are used
to both enrich or simply request data such as head and
flow rates for a specific moving device. Data validation
ensure that the necessary data exists and that it has the
correct data type, content, and relation to other data in
the graph. W3C recommends using SHACL shapes for
validating RDF-based data used to describe and constrain
RDF graphs. Each shape contains a description of the tar-
get it validates. Six SHACL shapes are developed to as-
sure necessary data is present for a query to be performed
subsequently to determine head and flow rate:

1. Each supply component must supply fluid to another
component of the same system

2. Each return component must return fluid to another
component of the same system

3. A component can only supply fluid to one component,
except for a tee fitting and heat exchanger

4. A heat exchanger and tee must supply fluid to two
components

5. Each supply component must have a parameter of
pressure drop. The parameter must have a value and
unit and the value must be above 0.0 and have a
datatype of double.

6. Each supply component must have a parameter of
length. The parameter must have a value and unit and
the value must be above 0.0 and have a datatype of
double.

In order to validate the data within the triplestore, the
database must receive a .ttl file with all six shapes. The
SHACL validation engine on the Fuseki server validates
our shapes against the RDF graph and returns a validation
report. It will then be possible to determine whether our
data complies with the rules (shapes) in the validation re-
port. The BIM model is updated if the data set does not
comply with the rules. If the dataset matches the graph,
we can continue to the next step and query the database.
We used Postman, an HTTP client, to send a .ttl file to the
Fuseki server and receive a validation report.
Querying head and flow rate

A query is a request for data from a database. Data from
the triplestore can be queried using SPARQL. This arti-
cle shows four queries. To find the head and flow rate
of a specific flow moving device, we need to determine
whether the flow moving device is part of an open-circuit
or closed-circuit and what type of flow medium it is trans-
porting as it impacts how we are going to query the head.
In a closed-circuit system, the total head is equal to the
dynamic head. When the system is an open-circuit and
transports air, the total head is equal to the dynamic head.
Lastly, if the system is an open-circuit and transports wa-
ter, the total head is equal to the dynamic head plus the

2

E3S Web of Conferences 362, 04002 (2022) https://doi.org/10.1051/e3sconf/202236204002
BuildSim Nordic 2022

the parser has looped through all components and spaces,
the .ttl string is parsed as a .txt file and sent through a
client to the RDF-triplestore. Then, the triplestore stores
the data, and then SHACL shapes are used to validate the
data integrity (is all parameters filled, etc.). If the data
validation fails, it will send an ”actions needed” message
to the original BIM model and tell it which components
need to be fixed to continue. If it succeeds, it will pass to
the final stage, which is the pressure and flow calculation
of the critical branch. Finally, it displays the results in a
table format for the user. The following sections will go
through the process shown in Figure 1.
Parsing HVAC data from a BIM model into a
Graph model

In the use case a HVAC model is linked with an archi-
tectural Revit model. The architectural model describe
an office building with four rooms each heated by a ra-
diator and ventilated by one return air terminal and one
supply air terminal. The HVAC model involves three sys-
tems: heating, cooling, and ventilation seen in Figure 2.
The heating system consists of a pump that feeds eight
radiators and a heat exchanger. A pump supplies a heat
exchanger via the cooling system. The ventilation system
consists of a supply fan and exhaust fan connected by air
ducts to four air terminals. A detailed description of the
systems are illustrated in Figure 2.
The Revit to RDF parser converts the Revit data
to RDF to be read into an RDF-based data model
(triplestore). The RDF parser plugin written in C#
accomplishes this. Revit’s API is used to extract
data from both the HVAC model and the architect
model from the database, as shown in Figure 1.
This data is then converted to RDF format expressed
in turtle syntax and appended to a StringBuilder in C#.

Listing 1: Code-snippet from the parser showing how
a pipe in Revit is converted to RDF using FPO.

1 //Get all pipes

2 FilteredElementCollector pipeCollector = new

FilteredElementCollector(doc);,!

3 ICollection<Element> pipes =

pipeCollector.OfClass(typeof(Pipe)).ToElements();,!

4 List<Pipe> pipeList = new List<Pipe>();

5 foreach (Pipe component in pipeCollector)

6 {

7 Pipe w = component as Pipe;

8 //Type

9 string componentID =

component.UniqueId.ToString();,!

10 sb.Append($"inst:{componentID} a fpo:Pipe ." +

"\n");,!

11 }

Listing 1 shows a small example of the code from the
parser that can be applied to convert Revit data into RDF.
The filteredElementCollector class and some other classes
from Revit’s API are used to retrieve pipes in the model.
We extract each pipe’s guid number and add it to our
StringBuilder object sb.

Validation of model and data integrity

The graph model is validated by parsing the RDF data
into a Fuseki database. The server is a SPARQL server
that stores knowledge graphs in RDF form. In this case
SPARQL is used to enable Create, Read, Update, Delete
(CRUD) operations via an endpoint. Queries are used
to both enrich or simply request data such as head and
flow rates for a specific moving device. Data validation
ensure that the necessary data exists and that it has the
correct data type, content, and relation to other data in
the graph. W3C recommends using SHACL shapes for
validating RDF-based data used to describe and constrain
RDF graphs. Each shape contains a description of the tar-
get it validates. Six SHACL shapes are developed to as-
sure necessary data is present for a query to be performed
subsequently to determine head and flow rate:

1. Each supply component must supply fluid to another
component of the same system

2. Each return component must return fluid to another
component of the same system

3. A component can only supply fluid to one component,
except for a tee fitting and heat exchanger

4. A heat exchanger and tee must supply fluid to two
components

5. Each supply component must have a parameter of
pressure drop. The parameter must have a value and
unit and the value must be above 0.0 and have a
datatype of double.

6. Each supply component must have a parameter of
length. The parameter must have a value and unit and
the value must be above 0.0 and have a datatype of
double.

In order to validate the data within the triplestore, the
database must receive a .ttl file with all six shapes. The
SHACL validation engine on the Fuseki server validates
our shapes against the RDF graph and returns a validation
report. It will then be possible to determine whether our
data complies with the rules (shapes) in the validation re-
port. The BIM model is updated if the data set does not
comply with the rules. If the dataset matches the graph,
we can continue to the next step and query the database.
We used Postman, an HTTP client, to send a .ttl file to the
Fuseki server and receive a validation report.
Querying head and flow rate

A query is a request for data from a database. Data from
the triplestore can be queried using SPARQL. This arti-
cle shows four queries. To find the head and flow rate
of a specific flow moving device, we need to determine
whether the flow moving device is part of an open-circuit
or closed-circuit and what type of flow medium it is trans-
porting as it impacts how we are going to query the head.
In a closed-circuit system, the total head is equal to the
dynamic head. When the system is an open-circuit and
transports air, the total head is equal to the dynamic head.
Lastly, if the system is an open-circuit and transports wa-
ter, the total head is equal to the dynamic head plus the

Parser .rvt -> .ttl

Revit File (.rvt) FSO&FPO file (.ttl)

Component
Catalogue

Component
Catalogue

Static pressure
Flow calculation

Query result

Dynamic pressure
Static pressure

Flow calculation

Validation of
data integrity

Component
Mapper

.ttl string
builder

FSO & FPO
.ttl file

Entry for
System TypeOK

NOT OKActions
needed

Closed loop

Open loop

Figure 1: Process diagram for the Revit to FSO and FPO parser. The process consists of a BIM model, a
parser, a Fuseki server to store, query and validate RDF models, a set of SHACL shapes and a Simple Protocol
and RDF Query Language (SPARQL) select query to find the resulting head and flow rate of a given pump.

Pump

Isolation valveHeat Exchanger

Ventilation fan Ventilation damper Ventilation supply Heating coil

Ventilation extractMotorized valve

Cooling Supply

Cooling Return

Heating Supply

Heating Return

Ventilation Supply

Ventilation Return

M

M

CC

M

HC

HC

Radiator

Space 1

Radiator

Space 2

Radiator

Space 3

Radiator

Space 4

Figure 2: System diagram showing the heating system, cooling system and ventilation system supplying the 4
rooms (spaces) and their components. This schematic was modeled in Revit for the use case of this article.

3

E3S Web of Conferences 362, 04002 (2022) https://doi.org/10.1051/e3sconf/202236204002
BuildSim Nordic 2022

static head. The first query identifies the type of circuit. A
query will be performed according to the circuit type and
flow medium type to obtain the head and flow rate of the
given flow moving device.

Results

A total of six SHACL shapes and four SPARQL queries
have been developed; however, due to article space lim-
itations, only two SHACL shapes and two queries have
been described in detail. The descriptions and source code
for all SHACL shapes, SPARQL queries and converted
triples, has been made available online 1

To perform a hydraulic calculation to determine the
capacity of a flow moving device in an HVAC system
two parameters are needed; the total head and flow rate.
Based on these, an HVAC designer can select a product.
For closed-circuits’ water-based systems, the head is the
sum of the pressure drop generated by the critical branch.
A SPARQL insert query can be used to perform all neces-
sary calculations automatically. This is also possible when
the original BIM model lacks critical data containing
circuit type information. By using the insert query shown
in Listing 2, each system in the triplestore is enriched with
circuit type ex:ClosedCircuit or ex:OpenCircuit

based on the medium and consumer components
it uses, as well as the supply- and return temperatures.

Listing 2: Sparql update query to determine whether a
system is a open-circuit or closed-circuit, and to add
that information to that system, expressed in Turtle
syntax.

1 INSERT {?system a ?circuit . ?system a ?systemType

.},!

2 WHERE {

3 ?system fso:hasComponent ?component .

4 ?component fso:feedsFluidTo+ ?componentA .

5 ?componentA a ?componentAType .

6 ?system fso:hasFlow ?flow.

7 ?flow fpo:temperature ?temperature .

8 ?temperature fpo:value ?temperatureValue .

9 BIND (IF((?temperatureValue >= 25 &&

?temperatureValue <= 70 && (?componentAType =

fpo:SpaceHeater || ?componentAType =

,!

,!

10 fpo:HeatExchanger)), ex:HeatingSystem, IF (

(?temperatureValue >= 5 &&

?temperatureValue <= 15 &&

(?componentAType =

,!

,!

,!

11 fpo:ChilledBeam || ?componentAType =

fpo:HeatExchanger)), ex:CoolingSystem, IF

((?temperatureValue >= 16 &&

?temperatureValue <=

,!

,!

,!

12 24 && (?componentAType = fpo:AirTerminal ||

?componentAType = fpo:HeatExchanger)),

ex:VentilationSystem, ""))) AS

?systemType)

,!

,!

,!

13 FILTER (isIRI(?systemType))

14 BIND (IF((?temperatureValue >= 25 &&

?temperatureValue <= 70 && (?componentAType =

fpo:SpaceHeater || ?componentAType =

,!

,!

1https://github.com/alikucukavci/

IBPSA-SPARQL-QUERIES-AND-SHACL-SHAPES

15 fpo:HeatExchanger)), ex:ClosedCircuit,

IF((?temperatureValue >= 5 &&

?temperatureValue <= 15 &&

(?componentAType =

,!

,!

,!

16 fpo:ChilledBeam || ?componentAType =

fpo:HeatExchanger)), ex:ClosedCircuit,,!

17 IF ((?temperatureValue >= 16 &&

18 ?temperatureValue <=

19 24 && (?componentAType = fpo:AirTerminal ||

?componentAType = fpo:HeatExchanger)),

ex:OpenCircuit, ""))) AS ?circuit)

,!

,!

20 }

Every HVAC component in the BIM model must be
associated with a parameter fpo:pressureDrop. The
parameter fpo:pressureDrop must also have a value
associated with it, and the unit must be consistent across
all components. Otherwise, the sum will be incorrect.
The SHACL shape shown in Listing 3, validates exactly
fpo:pressureDrop for all HVAC components in our
BIM model. Listing 3 shows how we select our target
using a SPARQL select query. The listing includes
HVAC components on both a closed circuit’s supply and
return sides. Since the pump itself for a closed-circuit
does not have a pressure drop, we omit this by writing
FILTER NOT EXISTS this is a fpo:Pump. The
rules are assigned to the target with the sh: property.
For example, the maximum and minimum of one
fpo:pressureDrop property is required for the target.

Listing 3: Shacl shape of each component must have
a parameter pressure drop, value and unit. Expressed
in Turtle syntax.

1 ex:Shape-1 a sh:NodeShape ;

2 sh:nodeKind sh:IRI ;

3 sh:target [

4 a sh:SPARQLTarget ;

5 sh:prefixes (fpo: fso: ex:) ;

6 sh:select """PREFIX fso: <https://w3id.org/fso#>

PREFIX fpo: <https://w3id.org/fpo#> prefix

ex:<http://example.org/> SELECT ?this WHERE

{?system a ex:ClosedCircuit .?system

fso:hasComponent ?this .filter not exists

{values ?type {fpo:Pump fpo:Fan} ?this a

type} .} """ ;

,!

,!

,!

,!

,!

,!

7] ;

8 sh:property [

9 sh:path fpo:pressureDrop ;

10 sh:minCount 1;

11 sh:maxCount 1;

12];

13 sh:property [

14 sh:path (fpo:pressureDrop fpo:value) ;

15 sh:minCount 1;

16 sh:maxCount 1;

17 sh:minInclusive 0.001;

18 sh:dataType xsd:double ;

19];

20 sh:property [

21 sh:path (fpo:pressureDrop fpo:unit) ;

22 sh:minCount 1;

23 sh:maxCount 1;

24 sh:dataType xsd:string ;

25 sh:hasValue "Pascal"^^xsd:string ;

26].

4

E3S Web of Conferences 362, 04002 (2022) https://doi.org/10.1051/e3sconf/202236204002
BuildSim Nordic 2022

static head. The first query identifies the type of circuit. A
query will be performed according to the circuit type and
flow medium type to obtain the head and flow rate of the
given flow moving device.

Results

A total of six SHACL shapes and four SPARQL queries
have been developed; however, due to article space lim-
itations, only two SHACL shapes and two queries have
been described in detail. The descriptions and source code
for all SHACL shapes, SPARQL queries and converted
triples, has been made available online 1

To perform a hydraulic calculation to determine the
capacity of a flow moving device in an HVAC system
two parameters are needed; the total head and flow rate.
Based on these, an HVAC designer can select a product.
For closed-circuits’ water-based systems, the head is the
sum of the pressure drop generated by the critical branch.
A SPARQL insert query can be used to perform all neces-
sary calculations automatically. This is also possible when
the original BIM model lacks critical data containing
circuit type information. By using the insert query shown
in Listing 2, each system in the triplestore is enriched with
circuit type ex:ClosedCircuit or ex:OpenCircuit

based on the medium and consumer components
it uses, as well as the supply- and return temperatures.

Listing 2: Sparql update query to determine whether a
system is a open-circuit or closed-circuit, and to add
that information to that system, expressed in Turtle
syntax.

1 INSERT {?system a ?circuit . ?system a ?systemType

.},!

2 WHERE {

3 ?system fso:hasComponent ?component .

4 ?component fso:feedsFluidTo+ ?componentA .

5 ?componentA a ?componentAType .

6 ?system fso:hasFlow ?flow.

7 ?flow fpo:temperature ?temperature .

8 ?temperature fpo:value ?temperatureValue .

9 BIND (IF((?temperatureValue >= 25 &&

?temperatureValue <= 70 && (?componentAType =

fpo:SpaceHeater || ?componentAType =

,!

,!

10 fpo:HeatExchanger)), ex:HeatingSystem, IF (

(?temperatureValue >= 5 &&

?temperatureValue <= 15 &&

(?componentAType =

,!

,!

,!

11 fpo:ChilledBeam || ?componentAType =

fpo:HeatExchanger)), ex:CoolingSystem, IF

((?temperatureValue >= 16 &&

?temperatureValue <=

,!

,!

,!

12 24 && (?componentAType = fpo:AirTerminal ||

?componentAType = fpo:HeatExchanger)),

ex:VentilationSystem, ""))) AS

?systemType)

,!

,!

,!

13 FILTER (isIRI(?systemType))

14 BIND (IF((?temperatureValue >= 25 &&

?temperatureValue <= 70 && (?componentAType =

fpo:SpaceHeater || ?componentAType =

,!

,!

1https://github.com/alikucukavci/

IBPSA-SPARQL-QUERIES-AND-SHACL-SHAPES

15 fpo:HeatExchanger)), ex:ClosedCircuit,

IF((?temperatureValue >= 5 &&

?temperatureValue <= 15 &&

(?componentAType =

,!

,!

,!

16 fpo:ChilledBeam || ?componentAType =

fpo:HeatExchanger)), ex:ClosedCircuit,,!

17 IF ((?temperatureValue >= 16 &&

18 ?temperatureValue <=

19 24 && (?componentAType = fpo:AirTerminal ||

?componentAType = fpo:HeatExchanger)),

ex:OpenCircuit, ""))) AS ?circuit)

,!

,!

20 }

Every HVAC component in the BIM model must be
associated with a parameter fpo:pressureDrop. The
parameter fpo:pressureDrop must also have a value
associated with it, and the unit must be consistent across
all components. Otherwise, the sum will be incorrect.
The SHACL shape shown in Listing 3, validates exactly
fpo:pressureDrop for all HVAC components in our
BIM model. Listing 3 shows how we select our target
using a SPARQL select query. The listing includes
HVAC components on both a closed circuit’s supply and
return sides. Since the pump itself for a closed-circuit
does not have a pressure drop, we omit this by writing
FILTER NOT EXISTS this is a fpo:Pump. The
rules are assigned to the target with the sh: property.
For example, the maximum and minimum of one
fpo:pressureDrop property is required for the target.

Listing 3: Shacl shape of each component must have
a parameter pressure drop, value and unit. Expressed
in Turtle syntax.

1 ex:Shape-1 a sh:NodeShape ;

2 sh:nodeKind sh:IRI ;

3 sh:target [

4 a sh:SPARQLTarget ;

5 sh:prefixes (fpo: fso: ex:) ;

6 sh:select """PREFIX fso: <https://w3id.org/fso#>

PREFIX fpo: <https://w3id.org/fpo#> prefix

ex:<http://example.org/> SELECT ?this WHERE

{?system a ex:ClosedCircuit .?system

fso:hasComponent ?this .filter not exists

{values ?type {fpo:Pump fpo:Fan} ?this a

type} .} """ ;

,!

,!

,!

,!

,!

,!

7] ;

8 sh:property [

9 sh:path fpo:pressureDrop ;

10 sh:minCount 1;

11 sh:maxCount 1;

12];

13 sh:property [

14 sh:path (fpo:pressureDrop fpo:value) ;

15 sh:minCount 1;

16 sh:maxCount 1;

17 sh:minInclusive 0.001;

18 sh:dataType xsd:double ;

19];

20 sh:property [

21 sh:path (fpo:pressureDrop fpo:unit) ;

22 sh:minCount 1;

23 sh:maxCount 1;

24 sh:dataType xsd:string ;

25 sh:hasValue "Pascal"^^xsd:string ;

26].

In the first iteration of Listing 3, eight components
violated the rules as they were missing the parameters
fpo:pressureDrop, fpo:value and fpo:unit. We
fixed these components in the HVAC BIM model, and
the process from BIM to validation was repeated. After
the second iteration, the validation report was confor-
mant since all components met the conditions in Listing 3.

To verify the existence of a parameter, the composi-
tion of HVAC systems and components can also be
validated. The tee and heat exchanger, for example,
feed fluid to at least two other components. In Listing
2, the composition of the tees and heat exchangers
for the RDF model is validated, and the validation
report was conformant already in the first iteration.

Listing 4: Shacl shape of a heatexchanger- and tee
component must supply fluid to two components ex-
pressed in Turtle syntax.

1 ex:Shape-2 a sh:NodeShape ;

2 sh:nodeKind sh:IRI ;

3 sh:target [

4 a sh:SPARQLTarget ;

5 sh:prefixes (fpo: fso:) ;

6 sh:select """

7 PREFIX fso: <https://w3id.org/fso#>

8 PREFIX fpo: <https://w3id.org/fpo#>

9 SELECT ?this WHERE {

10 ?system fso:hasComponent ?this .

11 FILTER EXISTS {

12 VALUE ?type {

13 fpo:Tee fpo:HeatExchanger

14 } ?this a ?type .}} """ ;

15] ;

16 sh:property [

17 sh:path fso:feedsFluidTo ;

18 sh:minCount 2;

19].

Using a SPARQL query, listing 4 calculates the head
and flow rate of a given pump. This pump is part of
a close circuit, so we ignore the static head and only
calculate the dynamic head. We must first calculate the
total pressure loss of the critical path before we can
calculate the dynamic head. The parameter pressure drop
is summarized for each path from the given pump to a
terminal to determine the critical path. The next step
is to filter the path with the largest pressure loss. Due
to this being a closed system, the terminals are either
fpo:SpaceHeater or fpo:HeatExchanger. The total
pressure loss for the critical path is converted from Pascal
to meters. Finally, the flow rate is summarized for the
terminals that the given flow moving device supplies
in the same system. For the given flow moving device
inst:98172f87-b31e-4363-a01f-2f3f2d13a48f-00

131613, the SPARQL query returns the id num-
ber of the critical consumer component, a head of
1.71 meters of head and a flow rate of 0.034 L/s.

Listing 5: Sparql SELECT query to retrieve the dy-
namic head and flow rate of a given pump for a heat-
ing system, expressed in Turtle syntax.

1 PREFIX fpo: <https://w3id.org/fpo#>

2 PREFIX fso: <https://w3id.org/fso#>

3 PREFIX inst: <https://example.com/inst#>

4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

5

6 SELECT ?consumer

((?totalPressure/0.00010199773339984) AS

?dynamicHead) ?totalFlow

,!

,!

7 WHERE{

8 {SELECT (SUM(?flowRateValue) AS ?totalFlow)

9 WHERE{

10 ?system fso:hasComponent inst:98172f87-b31e- c
4363-a01f-2f3f2d13a48f-00131613

.

,!

,!

11 VALUES ?type {fpo:SpaceHeater

fpo:HeatExchanger} ?consumer a ?type .,!

12 ?consumer fpo:flowRate ?flowRate .

13 ?flowRate fpo:value ?flowRateValue .

14 }

15 }

16 {

17 SELECT ?consumer (?totalComponentPressureDrop +

?consumerPresserDropValue AS ?totalPressure),!

18 WHERE {

19 {

20 SELECT ?consumer (SUM(?returnPressureValue)

+ (SUM(?totalSupplyPressureDrop)/COUNT(c
?totalSupplyPressureDrop)) AS

?totalComponentPressureDrop)

,!

,!

,!

21 WHERE {

22 {

23 SELECT ?consumer

(SUM(?supplyPressureValue) AS

?totalSupplyPressureDrop)

,!

,!

24 {

25 ?supplySystem fso:hasComponent

inst:98172f87-b31e-4363-a01f- c
2f3f2d13a48f-00131613

.

,!

,!

,!

26 ?supplySystem a fso:SupplySystem .

27 ?supplySystem fso:hasComponent

?supplySystemComponent .,!

28 ?supplySystemComponent

fso:feedsFluidTo+ ?consumer .,!

29 values ?type {fpo:SpaceHeater

fpo:HeatExchanger} ?consumer a

?type .

,!

,!

30 ?supplySystemComponent

fpo:pressureDrop

?supplyPressureDrop .

,!

,!

31 ?supplyPressureDrop fpo:value

?supplyPressureValue .,!

32 }

33 GROUP BY ?consumer

34 }

35 {

36 ?returnSystem fso:hasComponent ?consumer

.,!

37 ?returnSystem a fso:ReturnSystem .

38 ?returnSystem fso:hasComponent

?returnSystemComponent .,!

39 ?consumer fso:feedsFluidTo+

?returnSystemComponent .,!

40 ?returnSystemComponent fpo:pressureDrop

?returnPressureDrop .,!

41 ?returnPressureDrop fpo:value

?returnPressureValue .,!

42 }

5

E3S Web of Conferences 362, 04002 (2022) https://doi.org/10.1051/e3sconf/202236204002
BuildSim Nordic 2022

43 } GROUP BY ?consumer

44 }

45 ?consumer fpo:pressureDrop

?consumerPressureDrop .,!

46 ?consumerPressureDrop fpo:value

?consumerPresserDropValue .,!

47 }

48 ORDER BY DESC((?totalPressure)) LIMIT 1

49 }

50 }

Discussion

This article has provided a novel approach to generate
FSO triples based on a Revit BIM model. Furthermore,
it allows for a systematic and standardized way to per-
form model validation of an HVAC system with the use of
SHACL shapes. Such model validation enables better data
interoperability in the future, and therefore eases the de-
signer’s burden. The SHACL shapes can be used in future
work to ensure that models contain the right BIM informa-
tion to allow for simulation of the hydraulic systems per-
formed in Modelica. The SHACL shapes created in this
article, though advanced, needs to be validated further by
industry and academia. Listing 5 is limited to query the
head and flow rate of one flow moving device at a time
and only for closed-circuits. A more generic query that
can calculate head and flow rate for every flow moving
device on a construction project, regardless of system and
circuit type, will be helpful for the HVAC designer. We
created Listing 5 as a starting point, but for future work,
it should be modified to be more generic. Furthermore,
we created the SHACL shapes specifically for the vali-
dation of HVAC systems, but their use is not limited to
that. There is a potential to use SHACL shapes for vali-
dation of many different sub-disciplines within the AECO
industry. The article provides a proof-of-concept for a val-
idation method readily available within the world of se-
mantic web ontologies. To further verify the validity of
SHACL shapes as a model validation method, further re-
search should be carried out on the topic. Furthermore,
this paper suggested a way to perform dimensioning of
pumps, using an RDF-triplestore. In the roadmap for fu-
ture works, the researchers imagine the work of this pa-
per to pave the way for pump manufacturers to create an
RDF-triplestore with all of their product data available.
Doing this will close the gap from the manufacturer to the
HVAC designers by allowing the HVAC designer to au-
tomatically query for product data from the manufacturer,
based on the static and dynamic pressure calculations car-
ried out in the RDF-triplestore.

Conclusion

It is possible to transform a typical BIM model with lim-
ited HVAC data into an RDF-triplestore using FSO and
FPO. Beside being able to make useful HVAC queries on
original data we demonstrate that HVAC data can be en-
riched via SPARQL insert queries. We demonstrate that
the HVAC data can be validated for consistency and coher-
ence through the use of generic SHACL shapes. Finally,

we conclude that SPARQL select queries can be used to
compute critical pressure and flow rate for a given flow
moving device thus exploiting the inherent advantages of
an open source graph database using FSO, FPO, SHACL,
and SPARQL as key enablers.

Acknowledgements

Funding: This work was funded by; the Ramboll Foun-
dation; the Innovation Fund Denmark; EU-Interreg ÖKS
”Data-driven Energy Management in Public Buildings”.

References

Balaji, B., A. Bhattacharya, G. Fierro, J. Gao, J. Gluck,
D. Hong, A. Johansen, J. Koh, J. Ploennigs, Y. Agar-
wal, M. Berges, D. Culler, R. Gupta, M. B. Kjærgaard,
M. Srivastava, and K. Whitehouse (2016). Brick: To-
wards a Unified Metadata Schema For Buildings. In
BuildSys ’16: Proceedings of the 3rd ACM Interna-

tional Conference on Systems for Energy-Efficient Built

Environments, pp. 41–50.

Bolpagni, M., A. Luigi, C. Ciribini, and S. M. Ventura
(2015). Informative content validation is the key to suc-
cess in a BIM-based project validation is the key.

Ghannad, P., Y.-c. Lee, J. Dimyadi, and W. Solihin
(2019). Automated BIM data validation integrating
open-standard schema with visual programming lan-
guage. Advanced Engineering Informatics 40(January),
14–28.

Hamdan, A. H. and R. J. Scherer (2020). Integration
of BIM-related bridge information in an ontological
knowledgebase. CEUR Workshop Proceedings 2636,
77–90.

Kücükavci, A., M. Seidenschnur, and H. C. A. Pauwels,
Pieter (2022). Proposing a Semantic Web Ontology
to Support Capacity- and Size-Related Property De-
scriptions of Heating, Ventilation and Air Conditioning
Components in The Design Phase of Buildings.

Kukkonen, V., A. Kücükavci, M. Seidenschnur, M. H.
Rasmussen, K. M. Smith, and C. A. Hviid (2022). An
ontology to support flow system descriptions from de-
sign to operation of buildings. Automation in Construc-

tion 134(November 2020), 104067.

Lee, Y.-c., C. M. Eastman, and J.-k. Lee (2015). Valida-
tions for ensuring the interoperability of data exchange
of a building information model. Automation in Con-

struction 58, 176–195.

Lee, Y.-c., C. M. Eastman, and W. Solihin (2021). Rules
and validation processes for interoperable BIM data ex-
change. Journal of Computational Design and Engi-

neering 8(August 2020), 97–114.

Lee, Y.-c., C. M. Eastman, W. Solihin, and R. See (2016).
Modularized rule-based validation of a BIM model per-
taining to model views. Automation in Construction 63,
1–11.

6

E3S Web of Conferences 362, 04002 (2022) https://doi.org/10.1051/e3sconf/202236204002
BuildSim Nordic 2022

43 } GROUP BY ?consumer

44 }

45 ?consumer fpo:pressureDrop

?consumerPressureDrop .,!

46 ?consumerPressureDrop fpo:value

?consumerPresserDropValue .,!

47 }

48 ORDER BY DESC((?totalPressure)) LIMIT 1

49 }

50 }

Discussion

This article has provided a novel approach to generate
FSO triples based on a Revit BIM model. Furthermore,
it allows for a systematic and standardized way to per-
form model validation of an HVAC system with the use of
SHACL shapes. Such model validation enables better data
interoperability in the future, and therefore eases the de-
signer’s burden. The SHACL shapes can be used in future
work to ensure that models contain the right BIM informa-
tion to allow for simulation of the hydraulic systems per-
formed in Modelica. The SHACL shapes created in this
article, though advanced, needs to be validated further by
industry and academia. Listing 5 is limited to query the
head and flow rate of one flow moving device at a time
and only for closed-circuits. A more generic query that
can calculate head and flow rate for every flow moving
device on a construction project, regardless of system and
circuit type, will be helpful for the HVAC designer. We
created Listing 5 as a starting point, but for future work,
it should be modified to be more generic. Furthermore,
we created the SHACL shapes specifically for the vali-
dation of HVAC systems, but their use is not limited to
that. There is a potential to use SHACL shapes for vali-
dation of many different sub-disciplines within the AECO
industry. The article provides a proof-of-concept for a val-
idation method readily available within the world of se-
mantic web ontologies. To further verify the validity of
SHACL shapes as a model validation method, further re-
search should be carried out on the topic. Furthermore,
this paper suggested a way to perform dimensioning of
pumps, using an RDF-triplestore. In the roadmap for fu-
ture works, the researchers imagine the work of this pa-
per to pave the way for pump manufacturers to create an
RDF-triplestore with all of their product data available.
Doing this will close the gap from the manufacturer to the
HVAC designers by allowing the HVAC designer to au-
tomatically query for product data from the manufacturer,
based on the static and dynamic pressure calculations car-
ried out in the RDF-triplestore.

Conclusion

It is possible to transform a typical BIM model with lim-
ited HVAC data into an RDF-triplestore using FSO and
FPO. Beside being able to make useful HVAC queries on
original data we demonstrate that HVAC data can be en-
riched via SPARQL insert queries. We demonstrate that
the HVAC data can be validated for consistency and coher-
ence through the use of generic SHACL shapes. Finally,

we conclude that SPARQL select queries can be used to
compute critical pressure and flow rate for a given flow
moving device thus exploiting the inherent advantages of
an open source graph database using FSO, FPO, SHACL,
and SPARQL as key enablers.

Acknowledgements

Funding: This work was funded by; the Ramboll Foun-
dation; the Innovation Fund Denmark; EU-Interreg ÖKS
”Data-driven Energy Management in Public Buildings”.

References

Balaji, B., A. Bhattacharya, G. Fierro, J. Gao, J. Gluck,
D. Hong, A. Johansen, J. Koh, J. Ploennigs, Y. Agar-
wal, M. Berges, D. Culler, R. Gupta, M. B. Kjærgaard,
M. Srivastava, and K. Whitehouse (2016). Brick: To-
wards a Unified Metadata Schema For Buildings. In
BuildSys ’16: Proceedings of the 3rd ACM Interna-

tional Conference on Systems for Energy-Efficient Built

Environments, pp. 41–50.

Bolpagni, M., A. Luigi, C. Ciribini, and S. M. Ventura
(2015). Informative content validation is the key to suc-
cess in a BIM-based project validation is the key.

Ghannad, P., Y.-c. Lee, J. Dimyadi, and W. Solihin
(2019). Automated BIM data validation integrating
open-standard schema with visual programming lan-
guage. Advanced Engineering Informatics 40(January),
14–28.

Hamdan, A. H. and R. J. Scherer (2020). Integration
of BIM-related bridge information in an ontological
knowledgebase. CEUR Workshop Proceedings 2636,
77–90.

Kücükavci, A., M. Seidenschnur, and H. C. A. Pauwels,
Pieter (2022). Proposing a Semantic Web Ontology
to Support Capacity- and Size-Related Property De-
scriptions of Heating, Ventilation and Air Conditioning
Components in The Design Phase of Buildings.

Kukkonen, V., A. Kücükavci, M. Seidenschnur, M. H.
Rasmussen, K. M. Smith, and C. A. Hviid (2022). An
ontology to support flow system descriptions from de-
sign to operation of buildings. Automation in Construc-

tion 134(November 2020), 104067.

Lee, Y.-c., C. M. Eastman, and J.-k. Lee (2015). Valida-
tions for ensuring the interoperability of data exchange
of a building information model. Automation in Con-

struction 58, 176–195.

Lee, Y.-c., C. M. Eastman, and W. Solihin (2021). Rules
and validation processes for interoperable BIM data ex-
change. Journal of Computational Design and Engi-

neering 8(August 2020), 97–114.

Lee, Y.-c., C. M. Eastman, W. Solihin, and R. See (2016).
Modularized rule-based validation of a BIM model per-
taining to model views. Automation in Construction 63,
1–11.

Pauwels, P. and W. Terkaj (2015). EXPRESS to OWL
for construction industry: Towards a recommendable
and usable ifcOWL ontology. Automation in Construc-

tion 63, 100–133.

Porsani, G. B., K. D. V. de Lersundi, A. S. O. Gutiérrez,
and C. F. Bandera (2021). Interoperability between
building information modelling (Bim) and building
energy model (bem). Applied Sciences (Switzer-

land) 11(5), 1–20.

Rasmussen, M. H., M. Lefrançois, G. F. Schneider, and
P. Pauwels (2021). BOT: The building topology ontol-
ogy of the W3C linked building data group. Semantic

Web 12(1), 143–161.

Redmond, A., A. Hore, M. Alshawi, and R. West (2012).
Exploring how information exchanges can be enhanced
through Cloud BIM. Automation in Construction 24,
175–183.

Soman, R. K. (2019). Modelling construction scheduling
constraints using shapes constraint language (SHACL).
Proceedings of the 2019 European Conference on Com-

puting in Construction 1(2006), 351–358.

Soman, R. K., M. Molina-Solana, and J. K. Whyte (2020).
Linked-Data based Constraint-Checking (LDCC) to
support look-ahead planning in construction. Automa-

tion in Construction 120(August), 103369.

Stolk, S. and K. McGlinn (2020). Validation of IfcOWL
datasets using SHACL. CEUR Workshop Proceed-

ings 2636, 91–104.

7

E3S Web of Conferences 362, 04002 (2022) https://doi.org/10.1051/e3sconf/202236204002
BuildSim Nordic 2022

6.10 Paper X - A roadmap toward a unified ontology for building service systems in the AECO
industry: TSO and FSO 207

6.10 Paper X - A roadmap toward a unified
ontology for building service systems in the
AECO industry: TSO and FSO

A roadmap toward a unified ontology for
building service systems in the AECO industry:

TSO and FSO

Nicolas Pauen1, Ville Kukkonen2,3, Ali Kücükavci4,5, Mads Holten
Rasmussen6, Mikki Seidenschnur4,7, Dominik Schlütter1, Christian Anker

Hviid4, and Christoph van Treeck1

1 RWTH Aachen University, Aachen, Germany
pauen@e3d.rwth-aachen.de

2 Aalto University, Espoo, Finland
3 Granlund, Helsinki, Finland

4 Technical University of Denmark, Copenhagen, Denmark
5 COWI, Lyngby, Denmark
6 Niras, Allerød, Denmark

7 Ramboll, Copenhagen, Denmark

Abstract. Building service systems are complex structures consisting
of different subsystems and components in varying relationships. Seman-
tic Web Technologies (SWT) can be used to represent these systems in
decentralized triplestores using ontologies. To describe interconnected
building service systems and the flow of matter, energy and data be-
tween them over the whole life-cycle in the context of the Architecture,
Engineering, Construction and Operation (AECO) industry, two recent
contributions, TUBES System Ontology (TSO) and Flow System On-
tology (FSO) have to be considered. This study thus supports the effort
towards a future semantic web of building data by validating the given
ontologies based on Competency Questions (CQs) and an application
example, proposing an alignment of TSO v0.3.0 and FSO v0.1.0 and
providing a roadmap to a unified representation of building service sys-
tems in the AECO industry.

Keywords: Linked Data · TSO · FSO · Building Service Systems · BIM.

1 Introduction

Building service systems, such as Heating, Ventilation, and Air Conditioning
(HVAC) systems, form complex networks of components with varying kinds of
relationships. During design, large quantities of information are produced about
these systems, their components, and topological as well as functional relation-
ships, which goes underutilized during operations and maintenance. While cur-
rent data models such as Industry Foundation Classes (IFC) provide a standard
format that most design tools can export, this file-based approach has its limita-
tions. Recent research in data exchange for the Architecture, Engineering, Con-
struction, and Operations (AECO) industry has seen an increasing application

2 N. Pauen et al.

of knowledge graphs and linked data [1]. To that end, two separate ontologies
have been recently developed for describing building service systems and their
flow: the TUBES System Ontology [2, 3] and the Flow Systems Ontology [4].
While the ontologies have similar aims, they have their differences in conceptu-
alizations.

In order to align the two ontologies and pave the road towards a future
unified representation of building service systems from design to operations, this
paper compares the ontologies and describes the similarities and differences.
An alignment between the concepts of the latest versions of the ontologies is
proposed, and a roadmap for future unification is presented.

The paper is structured as follows. First, Section 2 reviews the state of the
art. Following that, in Section 3, the ontologies are briefly introduced and then
compared through a set of competency questions aimed at exercising the hier-
archical, topological, and functional concepts of the ontologies, ending with the
proposed alignments. Section 4 presents the roadmap for a unified representation
of building service systems. Finally, Section 5 concludes the paper with closing
remarks.

2 State of the Art

Several ontologies have been developed to improve interoperability within the
AECO industry. A set of ontologies related to building service systems are de-
scribed in this section.

The ifcOWL ontology is one of the first steps towards connecting BIM and
semantic web technologies. It translates the IFC schema directly into the Web
Ontology Language (OWL). Since the ifcOWL ontology is directly derived from
the IFC schema, the relationships between different building components are
intricate [5]. A complex data structure makes it difficult for AECO stakeholders
and their tools to easily access building information [6]. Furthermore, ifcOWL
includes too many domains, complicating any extension process [7]. To avoid the
complexity and monolithic data structure of ifcOWL, a recent trend suggests a
more modular and domain-specific approach to model building information with
ontologies such as the Building Topology Ontology (BOT) [8, 9].

The Smart Energy Aware System (SEAS) ontology was developed
through the EUREKA ITEA 12004 SEAS PROJECT to extend the Se-
mantic Sensor Network (SSN) Ontology [10]. The ontology consists of
three core modules: seas:FeatureOfInterestOntology, seas:SystemOntology, and
seas:EvaluationOntology. Systems, relationships between systems, and the con-
nection points between them can be expressed using seas:SystemOntology. The
SEAS ontology focuses on electrical engineering and the supply of electrical en-
ergy and describes building service systems on a higher conceptual level. How-
ever, the Brick ontology and The Smart Appliances REFerence (SAREF) ontol-
ogy can be used to represent the relationship of systems and components at a
lower-conceptual level and a broader scope.

Unified representation for building service systems: TSO and FSO 3

The Brick ontology defines the relationships among systems, components,
sensors, and control parameters [11]. Furthermore, it has a schema definition
that categorizes its classes into three types: brick:Equipment, brick:Location,
and brick:Point. For example, we can state that an entity belonging to
brick:Air Handling Unit is a subclass of brick:Equipment. This equipment can
be located in a brick:Room which is a subclass of brick:Location. An air handling
unit can contain a brick:Supply Air Temperature Sensor which is a subclass of
brick:Point.

The SAREF ontology was initially released in 2014, by the SmartM2M ETSI
Technical Committee to describe smart devices in smart homes [12]. Currently,
it consists of thirteen modules: SAREF, SAREF4SYST, and eleven extensions.
SAREF is the core module and describes smart devices. SAREF4SYST has
adopted the concepts of seas:SystemOntology, which defines systems, connec-
tions, and connections points. SAREF4BLDG is one of the eleven extensions
that extend the building domain and describes the IFC taxonomy of building
devices in OWL [13].

As part of the building operation phase, SAREF and BRICK focus on active
components and their relationships to sensor points. Passive components such
as segments and fittings and the flow of matter, energy, and data are not repre-
sented in SAREF and BRICK, which is essential information for the Mechanical,
Electrical, and Plumbing (MEP) and HVAC engineers over the whole life cycle
and especially during the design phase of building service systems. TSO and
FSO are introduced [2, 4] to fill this research gap and to describe the connectiv-
ity between systems and components, including active and passive components
with the focus on the design phase.

3 TSO and FSO

TSO aims to explicitly define the hierarchical, structural, and functional as-
pects of interconnected building service systems in the AECO industry and
their relationships to spatial entities throughout their whole life cycle. The ver-
sion 0.2.0 was published in [3]. At the current time, TSO is available in version
0.3.0. It is documented and available according to best practice via its URI
https://w3id.org/tso and the containing concepts are defined in the namespace
https://w3id.org/tso#, which will be abbreviated as tso: in the following ex-
amples. TSO has 40 classes and 101 object properties. The main classes are
tso:Zone, tso:System and tso:State.

tso:Zone has a strong alignment to bot:Zone and is defined as an
owl:equivalentClass in the given alignment. tso:System is defined as a model
of a whole which is isolated from the world or a supersystem, which consists of
interconnected components or subsystems and has links between attributes such
as inputs, outputs, and states. To represent different states of systems and add a
level of abstraction, tso:State is defined as the internal condition of a planned or
abstract system. This includes specific aspects as on, off, open or closed as well
as general aspects such as outdoor-air-operation, mixed-air-operation or heating-

4 N. Pauen et al.

operation. These main concepts and some of the object properties between them
are shown in Figure 1.

FSO aims to describe the matter and energy flow between systems and
components, and the composition of such systems [4]. To that end, FSO con-
sists of 14 classes and 23 object properties. The ontology is available and
documented at https://w3id.org/fso, and defines concepts in the namespace
https://w3id.org/fso#, later abbreviated as fso:. Central classes include the dis-
joint fso:System and fso:Component, and the rest are subclasses of these two.

An fso:System is defined as a collection of components that can have at-
tributes such as design properties attached to it. Instances of fso:Component, on
the other hand, are the tangible components that participate in the flow of en-
ergy or matter. The subclasses of fso:System include more specific nomenclature
such as fso:DistributionSystem, while subclasses of fso:Component include IFC-
derived abstract component classes such as fso:EnergyConversionDevice and
fso:Segment.

The object properties of FSO enable the hierarchical decomposition of sys-
tems into subsystems and their components, expressing the connectivity and di-
rection of fluids and heat, and designating components as ”sources” and ”sinks”
of systems. FSO components are aligned with SAREF4BDLG. Further, the hier-
archical composition of systems and high-level connectivity of components and
systems is aligned with SAREF4SYST. While FSO is not explicitly restricted to
describing flow systems in buildings, the current use cases are limited to those.

tso:hasState

tso:stateOftso:servesZone

tso:contains

tso:locatedIn

tso:State

fso:System

fso:Component
tso:Systemtso:Zone

<<inverseOf>>

<<inverseOf>>

<<inverseOf>>

tso:servesSystem fso:hasSubSystem fso:connectedWith

fso:connectedWith

fso:isComponentOffso:hasComponent

Fig. 1. Main concepts of TSO and FSO

To compare the given ontologies regarding the representation of building ser-
vice systems in the AECO industry, the simplified application example involving
a six-way valve to simulate a complex real life situation is given. The six-way
valve was chosen as it demonstrates complex connectivity of components. The

Unified representation for building service systems: TSO and FSO 5

valve is shown with context in Figure 2 and the following competency questions
are used:

– CQ1: Which hierarchical concepts does a given component have?
– CQ1: Which supersystems does a component have?
– CQ2: Which topological concepts does a given component have?
– CQ2: What connections to other components does a component have?
– CQ3: Which is the flow of matter, energy or data through a given compo-

nent?
– CQ3: What (matter/energy/data) can a component supply to downstream

components?

The competency questions were chosen to exercise a set of core requirements
as defined by the authors, covering hierarchical, topological, and functional as-
pects of systems. The example consists of two spaces: an office and a conference
room. Both are served by an Active Chilled Beam (ACB) as part of the ventila-
tion, heating and cooling systems. Upstream of the ACBs there are two six-way
valves, two pumps, two heat exchangers and pipes connecting those compo-
nents. An IFC-based visualization of the application example, representations
using TSO and FSO, as well as SPARQL queries to answer the CQs are given
at https://bs-visualizer.web.app

Conference Room O�ce

Pump

6-way valveHeat Exchanger

Active chilled beam

See �gures 3-5

M

M

M

Cooling Supply

Cooling Return

Heating Supply

Cooling Return

Ventilation Supply

Ventilation Return

Fig. 2. Simplified application example

3.1 Hierarchical Concepts

To represent the hierarchical aspects of building service systems and an-
swer CQ1, the four subclasses tso:IntegratedSystem, tso:FunctionalSystem,

6 N. Pauen et al.

tso:TechnicalSystem and tso:Component of tso:System are given in TSO. In the
following the term “system” is used to describe all of them. tso:IntegratedSystem
represents the coupling of different functional systems with independent
inherent functions which are interconnected. tso:FunctionalSystem denotes
a system that is defined by its overall inherent function. Typical exam-
ples would be tso:HeatingSystem, tso:CoolingSystem or tso:VentilationSystem.
tso:TechnicalSystem is defined as a system with a coherent technical solution
with which the inherent function (of the upper functional system) is fulfilled.
Existing subclasses contain tso:DistributionSystem and tso:ConversionSystem.
tso:Component denotes a system, for which the boundary that isolates it from
the environment is defined by the manufacturer in terms of the product. There-
fore, an air handling unit as well as the included rotary wheel heat exchanger
or sensor could be instances of tso:Component. To classify components, TSO is
aligned with ifcOWL and encourages the use of the international standard DIN
EN IEC 81346-2 [14], which is yet to be implemented as an ontology. To link these
systems, which represent different levels of hierarchy, the inverse object proper-
ties tso:hasSubSystem and tso:subSystemOf, as well as their eight subproperties
(e.g. tso:hasComponent), can be used. The domain of this subproperty is defined
to tso:System and the range to tso:Component

Given these concepts, the six-way valve would be an instance of
tso:Component and be assigned to two instances of tso:DistributionSystems by
tso:hasComponent. These systems are aggregated in two distinct instances of
tso:HeatingSystem and tso:CoolingSystem which are both subsystems of the
same instance of tso:IntegratedSystem.

In FSO, system hierarchy is modeled through the object properties
fso:hasSubSystem (inverse fso:isSubSystemOf) linking systems to their sub-
systems, and fso:hasComponent (inverse fso:isComponentOf) linking systems
to individual components. Depending on the use case, a model using FSO
would likely have at least two top-level instances of fso:System: one for heat-
ing and once for cooling. These can be then decomposed to smaller subsys-
tems via fso:hasSubSystem, for example, distribution systems as instances of
fso:DistributionSystem. Finally, the valve could be modeled as an instance of
fso:Component and assigned as a component of both the distribution systems
using fso:hasComponent. The hierarchical concepts of TSO and FSO as well as
the representation of CQ1 are shown in Figure 3.

In summary, TSO defines four levels of system hierarchy
(tso:IntegratedSystem, tso:FunctionalSystem, tso:TechnicalSystem and
tso:Component) as subclasses of an abstract tso:System class and corre-
sponding object properties to describe the composition of building service
systems. While in TSO the components are a subclass of system, FSO differ-
entiates between the disjoint fso:System and fso:Component classes. FSO has
no inherent system hierarchy to differentiate between functional or technical
systems but uses object properties similar to TSO to decompose systems into
subsystems and components.

Unified representation for building service systems: TSO and FSO 7

tso:DistributionSystem

tso:CoolingSystem

tso:Component

tso:HeatingSystem

tso:IntegratedSystem

tso:functional
SystemOf

tso:technical
SystemOf

M

tso:componentOf

fso:System

fso:Component

tso:DistributionSystem

fso:has
SubSystem

M

fso:hasComponent

Fig. 3. Hierarchical concepts and CQ1 in TSO and FSO

3.2 Topological Concepts

To represent the topological aspects of building service systems and answer
CQ2, TSO builds upon the concepts tso:ConnectionPoint and tso:Connection
proposed in [10] and extends these by the subclasses tso:InnerConnection and
tso:OuterConnection to differentiate between the connections inside a system
and between different systems. tso:ConnectionPoint refers to an inlet or out-
let of a system for a connection to other systems or within the same system,
where some kind of matter, energy, or data can be transmitted. Using these
concepts and the object properties which define the relationships between them,
the symmetric object property tso:connects can be qualified to describe that
two systems are connected. These concepts can be implemented to represent the
system topology on every hierarchy level introduced in the last section.

For the example at hand, six instances of tso:OuterConnections need to
be defined to represent the physical connections of the six-way valve. Each of
these instances can be linked via tso:connectsSystemAt to a tso:ConnectionPoint
which is connected via tso:connectsAt to the valve. To represent that not
all of the six tso:ConnectionPoints are interlinked inside the six-way valve,
two tso:InnerConnections can be defined and linked to the corresponding
tso:ConnectionPoints using the described object properties.

Unlike TSO, the current version of FSO does not have concepts for con-
nection points or connections. Instead, the top-level symmetric object property
fso:connectedWith is used to communicate that two components or systems are
connected so that they may exchange matter or energy. A central part of FSO
is the tree of subproperties under fso:connectedWith that enables inferring more
generic relationships from more specific ones. As such, the fso:connectedWith
is not expected to be directly used, but rather inferred from more specific
subproperties conveying further functional and logical relationships, such as
fso:suppliesFluidTo and others, which are discussed in the next subsection with
the functional concepts. A visual representation of the CQ2 for both TSO and
FSO is given in Figure 4.

8 N. Pauen et al.
ts

o:
co

nn
ec

ts

tso:connects

tso:InnerConnection

tso:OuterConnection

tso:Component

tso:ConnectionPoint

tso:ConnectsSystemAt

tso:ConnectsAt

M

fso:Component

fso:connectedWith

M

Fig. 4. Topological concepts and CQ2 in TSO and FSO

In summary, while both ontologies contain a symmetric object property to
describe the connection between two systems, TSO further qualifies this con-
nection using the concepts of tso:ConnectionPoint, tso:InnerConnection and
tso:OuterConnection.

3.3 Functional Concepts

To represent the functional aspects of building service systems and answer CQ3,
TSO relies heavily on the concept of states. A tso:State is defined as the internal
condition of a (planned) system. It can be used to add a level of abstraction
to represent systems where the function, and therefore the flow of matter, en-
ergy or data, can change due to given states. Hence, a system can have multi-
ple potential states assigned via the tso:hasState object property. To represent
“what” is exchanged between different systems or inside a certain system, the
classes tso:Matter, tso:Energy and tso:Data, as well as multiple subclasses, are
defined. These classes can be linked via tso:hasInput and tso:hasOutput to the
states of different systems. Based on these concepts the inverse object properties
tso:supplies and tso:suppliedBy, which link the states directly, can be inferred,
as well as their subproperties to denote what is supplied. To represent the flow
inside a system, the classes tso:Matter, tso:Energy and tso:Data can be con-
nected to the given state by using the tso:hasInnerExchange object property.
To qualify the exchange the considered matter, energy or data can be linked to
a tso:Connection via tso:transmitsThrough or to the tso:ConnectionPoints via
tso:transmitsFrom and tso:transmitsTo.

To answer CQ3 regarding what the six-way valve can supply to the down-
stream components and the active cooling beam, two tso:States need to be de-
fined and assigned to the six-way valve. Each state is linked to an instance of
tso:Liquid via tso:hasInnerExchange to represent the intended transfer of warm
and cold liquid inside the valve through inner connections. As described in the
last section these connections range from the connection points linking the pipes
of the heating and cooling system to the connection point linking the down-
stream pipe. The different liquids can be specified using attributes to represent

Unified representation for building service systems: TSO and FSO 9

their temperature and further aspects. To represent the transfer to the down-
stream pipe the instances of tso:Liquid are linked to the states of the six-way
valve via the tso:hasOutput object property and to the state of the downstream
pipe via the tso:inputOf object property. Therefore, tso:suppliesLiquid which
links those states directly can be inferred. To answer CQ3 you can follow this
property path or, since there is no conversion process between the six-way valve
and the active chilled beam, the two liquids can be linked directly to the beam
via the tso:inputOf object property. Hence, given the state of the six-way valve
or of the upper tso:TechnicalSystem it can be distinguished between the intended
flow of warm or cold liquid which is supplied to the downstream active cooling
beam and thus the supply of the conference room.

Using FSO to answer CQ3 and describe what the six-way valve can sup-
ply to the downstream ACB requires the use of the more specific subproper-
ties of fso:connectedWith, such as fso:suppliesFluidTo. The connectivity in itself
only describes that there is an intended flow of fluid between the components.
One way to deduce further what is supplied downstream of the six-way valve
would be to look at what systems and components supply the valve. That is,
the question could be rephrased as ”what is supplied to the valve”, which would
then be what the valve could supply downstream. Further adding the concept
of source and sink components of systems with fso:hasSourceComponent and
fso:hasSinkComponent, it could be inferred that both the heating and cooling
systems have sources that can supply fluid to the ACB. Additionally, the use of
component classes such as fso:FlowController and fso:EnergyConversionDevice
can be used to indicate and deduce the intended function of connected com-
ponents to an extent. An abbreviated representation of the functional concepts
regarding the 6-way valve from both TSO and FSO is shown in Figure 5.

tso:suppliesLiquid

tso:State

tso:Liquid

see �gure 4

tso:Component

tso:hasState

tso:hasOutput

tso:inputOf

tso:transmitsThrough

tso:hasInnerExchange

M

fso:Component

Heating

Cooling

property path

fso:System

fso:suppliesFluidTo

fso:hasSourceComponent
M

Fig. 5. Functional concepts and CQ3 in FSO and TSO

In summary, the ontologies strongly differ in regards to the representation
of the functional concept. To describe the intended flow, TSO introduces the
concept of states and defines matter, energy, and data as classes, which can be
linked to the states. The object properties, which link the states of the systems

10 N. Pauen et al.

directly, can be inferred. On the other hand, FSO represents the intended transfer
of fluids, heat, or electric charge between different systems via object properties
that link these systems directly. As such, FSO does not consider the fact that the
internal connectivity and function of systems and therefore the flow of matter,
energy, and data can vary depending on aspects such as control values, while
TSO enables expressing this with states.

3.4 Alignment

In order to concretely evaluate and describe the current compatibility of the
two ontologies, an alignment of them is presented to the extent possible. Sev-
eral concepts can be used to set up an alignment for TSO v0.3.0 and FSO
v0.1.0. Distribution Systems, Supply Systems, and Return Systems are de-
scribed as equivalent since they represent a nomenclature for systems on a cer-
tain level of hierarchy in both ontologies. fso:System is defined as a subclass
of the abstract tso:System with fso:isSubSystemOf and fso:isComponentOf as
subproperties of tso:subSystemOf - the inverse properties fso:hasSubSystem and
fso:hasComponent being subproperties of tso:hasSubSystem. A Component in
FSO is equivalent to the one in TSO, but a tso:Component is always an abstract
tso:System in itself, while fso:Component and fso:System are disjoint classes.

A topological connection is categorized with tso:connects and
fso:connectedWith respectively, hence they are defined as equivalent prop-
erties. Further topological concepts cannot be matched, since they do not exist
in both TSO and FSO. The functional concepts are too diverse to propose a
direct alignment between the two ontologies. The alignment is summarized in
table 1.

Table 1. Alignment between FSO v0.1.0 and TSO v0.3.0

FSO TSO

fso:System rdfs:subClassOf tso:System

fso:DistributionSystem owl:equivalentClass tso:DistributionSystem

fso:SupplySystem owl:equivalentClass tso:SupplySystem

fso:ReturnSystem owl:equivalentClass tso:ReturnSystem

fso:Component owl:equivalentClass tso:Component

fso:isSubSystemOf rdfs:subPropertyOf tso:subSystemOf

fso:isComponentOf rdfs:subPropertyOf tso:subSystemOf

fso:hasSubSystem rdfs:subPropertyOf tso:hasSubSystem

fso:hasComponent rdfs:subPropertyOf tso:hasSubSystem

fso:connectedWith rdfs:equivalentProperty tso:connects

Unified representation for building service systems: TSO and FSO 11

4 Roadmap to a unified representation

A unified representation for interconnected building service systems which com-
bines the concepts of TSO and FSO needs the expressiveness to model those
systems throughout their whole life cycle and the simplicity to make them usable
in day-to-day operations. Since the complexity and general structure of build-
ing service systems differ widely regarding the various disciplines and building
types that are served by the systems, a modular ontology structure needs to be
implemented.

The (lightweight) core module(s) need to contain hierarchical, topological,
and functional aspects, which are valid for all disciplines. This includes classes
such as System and State as well as object properties as connected and sup-
plied. The degree to which these aspects should be included is yet to be defined
based on application examples ranging various trades and levels of complexity
and in communication with approaches such as SEAS [10], BRICK [11], and
SAREF [12].

Further hierarchical, topological, and functional aspects which are valid for
all disciplines but should not be included in the core module(s) for the sake of
usability could be defined in a hierarchical, topological and functional ontology
pattern, which enhances the expressiveness of the unified representation. The
hierarchical pattern could include different levels of system hierarchy and the
object properties to link these. Concepts such as connection points and connec-
tions could be contained in the topological pattern and the definition of different
forms of matter, energy, and data as well as properties describing the input and
the output of systems could be included in the functional ontology pattern.

Classifications of systems and concepts which are necessary to describe spe-
cific aspects of disciplines could be defined in separate domain ontologies. These
should not describe concepts out of the scope of building service systems but to
be aligned with existing approaches such as BOT [9] which reached are high level
of shared conceptualization in the context of linked data in the AECO industry.

5 Conclusion

This paper presented a structured comparison of the two recent ontologies aimed
at describing building service systems and their flow of matter, energy, and data:
the TUBES System Ontology (TSO) and the Flow Systems Ontology (FSO). The
ontologies were compared in terms of their overall goal and size and through the
lenses of hierarchical, topological, and functional concepts. It was shown that
while the ontologies have similar goals, their conceptualizations differ substan-
tially. TSO is a considerably larger ontology, enabling more detailed descriptions
of interconnected systems and their functional relationships based on their states.
FSO offers a more limited set of concepts and properties and lacks particularly
in terms of qualifying connections through concepts such as connections and
connection points. Further, FSO does not enable the description of flow states
that may vary, such as in the example of a six-way valve. On the other hand,

12 N. Pauen et al.

the expressivity of TSO comes at the cost of complexity, and a more modular
approach could make it more approachable.

High-level alignments for the ontologies were proposed, which are admit-
tedly rather superficial. This is primarily due to the incompatible functional
concepts of the two ontologies, and is further complicated by the disjointness
of fso:System and fso:Component. Finally, the roadmap towards future unifica-
tion was presented, with ideas for further development and structuring of the
ontologies to support shared conceptualizations.

The structured comparison of the two ontologies highlighting their respective
strengths and weaknesses is useful for future efforts to refine the ontologies or
build new ones. Aligning the ontologies and showing the friction points for the
alignment is useful for future refinements to make the ontologies more compat-
ible. In the end, supports the development of ontologies that better serve use
cases related to building service systems.

References

1. P. Pauwels, A. Costin, M. H. Rasmussen, Knowledge Graphs and Linked Data
for the Built Environment, in: M. Bolpagni, R. Gavina, D. Ribeiro (Eds.), In-
dustry 4.0 for the Built Environment: Methodologies, Technologies and Skills,
Structural Integrity, Springer International Publishing, Cham, 2022, pp. 157–183.
doi:10.1007/978-3-030-82430-37.

2. N. Pauen, D. Schlütter, J. Siwiecki, J. Frisch, C. van Treeck, Integrated representa-
tion of building service systems: Topology extraction and TUBES ontology, Bauphysik
42 (6) (2020) 299–305. doi:10.3217/978-3-85125-786-1-59.

3. N. Pauen, D. Schlütter, J. Frisch, C. van Treeck, TUBES System Ontology: Digitaliza-
tion of building service systems, in: Proceedings of the 9th Linked Data in Architecture
and Construction Workshop, 2021.

4. V. Kukkonen, A. Kücükavci, M. Seidenschnur, M. H. Rasmussen, K. M. Smith,
C. A. Hviid, An ontology to support flow system descriptions from design to oper-
ation of buildings, Automation in Construction 134 (December 2021) (2022) 104067.
doi:10.1016/j.autcon.2021.104067.
URL https://doi.org/10.1016/j.autcon.2021.104067

5. J. Beetz, J. Van Leeuwen, B. De Vries, IfcOWL: A case of transforming EXPRESS
schemas into ontologies, Artificial Intelligence for Engineering Design, Analysis and
Manufacturing: AIEDAM 23 (1) (2009). doi:10.1017/S0890060409000122.

6. J. Flore, T. Djuedja, Integration of environmental data in BIM tool & Linked Build-
ing Data, in: Proceedings of the 7th Linked Data in Architecture and Construction
Workshop, 2019.

7. A.-H. Hamdan, M. Bonduel, R. J. Scherer, An ontological model for the representation
of damage to constructions, in: Proceedings of the 7th Linked Data in Architecture
and Construction Workshop, 2019.

8. M. Niknam, S. Karshenas, A shared ontology approach to semantic rep-
resentation of bim data, Automation in Construction 80 (2017) 22–36.
doi:https://doi.org/10.1016/j.autcon.2017.03.013.
URL https://www.sciencedirect.com/science/article/pii/S0926580517302364

9. M. H. Rasmussen, M. Lefrançois, G. F. Schneider, P. Pauwels, Bot: the building topol-
ogy ontology of the w3c linked building data group, Semantic Web 12 (1) (2021) 143–
161. doi:10.3233/SW-200385.

Unified representation for building service systems: TSO and FSO 13

10. M. Lefrançois, Planned ETSI SAREF extensions based on the W3C & OGC
SOSA/SSN-compatible SEAS ontology patterns, CEUR Workshop Proceedings
2063 (December 2016) (2017).

11. B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong, A. Johansen,
J. Koh, J. Ploennigs, Y. Agarwal, M. Bergés, D. Culler, R. K. Gupta, M. B.
Kjærgaard, M. Srivastava, K. Whitehouse, Brick: Metadata schema for portable
smart building applications, Applied Energy 226 (September 2017) (2018) 1273–1292.
doi:10.1016/j.apenergy.2018.02.091.
URL https://doi.org/10.1016/j.apenergy.2018.02.091

12. L. Daniele, F. den Hartog, J. Roes, Created in Close Interaction with the Industry:
The Smart Appliances REFerence (SAREF) Ontology, in: Lecture Notes in Business
Information Processing, Vol. 225, 2015. doi:10.1007/978-3-319-21545-79.

13. M. Poveda-Villalón, R. Garćıa-Castro, Extending the SAREF ontology for building
devices and topology?, CEUR Workshop Proceedings 2159 (2018) 16–23.

14. IEC: International Electrotechnical Commission, DIN EN IEC 81346-2: Industrial sys-
tems, installations and equipment and industrial products – structuring principles and
reference designations – Part 2: Classification of objects and codes for classes (2020).

View publication stats

Appendices

APPENDIXA
UML Diagram

This appendix provides the UML diagrams developed during this
thesis

224 Appendix UML Diagrams

A.1 THERM UML diagram

Appendix A.1 THERM UML diagram 225

Simulation
parameters

Version
Surface

convection
algorithm inside

Surface
convection

algorithm outside

Time step Run period Contaminant
balance

Shadow
calculation

Ground
temperatures

Output
parameters

Output variable
dictionary

Output variable

Simulation control

Output JSON

Schedules

Lighting schedule People Schedule Activity level
schedule

Work eff iciency
schedule

Equipment
schedule

Inf iltration
schedule

Heating setpoint
schedule

Cooling setpoint
schedule

Clothing
insulation level

schedule

Air velocity
schedule

Transmittance
schedule

Backgorund CO2
conc. schedule

Site

Buildings

Materials

Surface materials Door materials Window materials Air gap materials

Constructions

surface
constructions

Opening
constructions

Zones

Surfaces

Subsurfaces

Doors Openings Windows

Internal gains

People Lights Equipment

HVAC

Ideal air loads
system Thermostat

Inf iltration

Building shading

Site shading

Heat balance
algorithm

Zone air heat
balance algorithm

Frame and divider

Global geometry
rules

Zone shading

Figure A.1. Illustration of the THERM object model, from Paper II

226

Bibliography
[1] F. Barbosa, J. Woetzel, J. Mischke, M. J. Ribeirinho, M. Sridhar, M. Par-

sons, N. Bertram, and S. Brown, “Reinventing Construction: A Route
To Higher Productivity,” Mckinsey Global Insititute, no. February, p. 20,
2017.

[2] H. Nassereddine, M. E. Jazzar, and M. Piskernik, “Transforming the
AEC Industry: A Model-Centric Approach,” in Proceedings of the Cre-
ative Construction e-Conference (2020) 076, pp. 13–18, 2020.

[3] Y. Rezgui and A. Zarli, “Paving the Way to the Vision of Digital Con-
struction: A Strategic Roadmap,” Journal of Construction Engineering
and Management, vol. 132, no. 7, pp. 767–776, 2006.

[4] P. De Wilde, “The gap between predicted and measured energy per-
formance of buildings : A framework for investigation,” Automation in
Construction, vol. 41, pp. 40–49, 2014.

[5] M. Jradi, K. Arendt, F. C. Sangogboye, C. G. Mattera, E. Markoska,
M. B. Kjærgaard, C. T. Veje, and B. N. Jørgensen, “ObepME: An online
building energy performance monitoring and evaluation tool to reduce
energy performance gaps,” Energy and Buildings, vol. 166, pp. 196–209,
2018.

[6] A. Menezes, Carolina, A. Cripps, D. Bouchlaghem, and R. Buswell, “Pre-
dicted vs . actual energy performance of non-domestic buildings : Using
post-occupancy evaluation data to reduce the performance gap,” Applied
Energy, vol. 97, pp. 355–364, 2012.

[7] M. S. De Wit, “Uncertainty analysis in building thermal modelling,” in
SAMO95 Proceedings, pp. 324–330, 1995.

[8] B. Bordass, R. Cohen, M. Standeven, and A. Leaman, “Assessing build-
ing performance in use 3: Energy performance of the Probe buildings,”
Building Research and Information, vol. 29, no. 2, pp. 114–128, 2001.

228 Bibliography

[9] M. Way and B. Bordass, “Making feedback and post-occupancy evalu-
ation routine 2: Soft Landings - Involving design and building teams
in improving performance,” Building Research and Information, vol. 33,
no. 4, pp. 353–360, 2005.

[10] C. Demanuele, T. Tweddell, and M. Davies, “Bridging the gap between
predicted and actual energy performance in schools,” Open Journal of
Energy Efficiency, vol. 5, no. September, pp. 1–6, 2010.

[11] J. Bloomberg, “Digitization, digitalization, and digital transformation:
confuse them at your peril,” Forbes, vol. 29. April, pp. 1–6, 2018.

[12] J. Axley, “Multizone airflow modeling in buildings: History and theory,”
HVAC and R Research, vol. 13, no. 6, pp. 907–928, 2007.

[13] E. M. Ryan and T. F. Sanquist, “Validation of building energy modeling
tools under idealized and realistic conditions,” Energy and Buildings,
vol. 47, pp. 375–382, 2012.

[14] K. Katsigarakis, G. N. Lilis, and D. Rovas, “A cloud IFC-based BIM
platform for building energy performance simulation,” Proceedings of
the 2021 European Conference on Computing in Construction, vol. 2,
pp. 350–357, 2021.

[15] D. L. Macumber, B. L. Ball, and N. L. Long, “A graphical tool for
cloud-based building energy simulation,” in 2014 ASHRAE/IBPSA-USA
Building Simulation Conference, no. January 2014, pp. 87–94, ASHRAE,
2014.

[16] E. Hale, L. Lisell, D. Goldwasser, D. Macumber, J. Dean, I. Metzger,
A. Parker, N. Long, B. Ball, M. Schott, E. Weaver, and L. Brackney,
“Cloud-Based Model Calibration Using OpenStudio,” in eSim, no. March,
pp. 1–14, 2014.

[17] N. Gu and K. London, “Understanding and facilitating BIM adoption in
the AEC industry,” Automation in Construction, vol. 19, no. 8, pp. 988–
999, 2010.

[18] Dansk Standard, DS418 - Beregning af bygningers varmetab. 2020.

[19] E. Djunaedy, K. Van Den Wymelenberg, B. Acker, and H. Thimmana,
“Oversizing of HVAC system: Signatures and penalties,” Energy and
Buildings, vol. 43, no. 2-3, pp. 468–475, 2011.

[20] Y. Sun, L. Gu, C. F. Wu, and G. Augenbroe, “Exploring HVAC system
sizing under uncertainty,” Energy and Buildings, vol. 81, pp. 243–252,
2014.

Bibliography 229

[21] M. M. Ouf, W. O’Brien, and H. B. Gunay, “Improving occupant-related
features in building performance simulation tools,” Building Simulation,
vol. 11, no. 4, pp. 803–817, 2018.

[22] E. Djunaedy, K. Van Den Wymelenberg, B. Acker, and H. Thimmanna,
“Rightsizing: Using simulation tools to solve the problem of oversizing,”
in Proceedings of Building Simulation, pp. 14–16, 2011.

[23] M. Wetter, “Modelica-based modelling and simulation to support re-
search and development in building energy and control systems,” Journal
of Building Performance Simulation, vol. 2, no. 2, pp. 143–161, 2009.

[24] A. Andriamamonjy, D. Saelens, and R. Klein, “An automated IFC-based
workflow for building energy performance simulation with Modelica,” Au-
tomation in Construction, vol. 91, no. February, pp. 166–181, 2018.

[25] A. Andriamamonjy, R. Klein, and D. Saelens, “Automated grey box
model implementation using BIM and Modelica,” Energy and Buildings,
vol. 188-189, pp. 209–225, 2019.

[26] J. Cao, T. Maile, J. O’Donnell, R. Wimmer, and C. van Treeck,
“MODEL TRANSFORMATION FROM SIMMODEL TO MODEL-
ICA FOR BUILDING ENERGY PERFORMANCE SIMULATION,” in
BauSIM2014: 5th German-Austrian Conference of the International
Building Performance Simulation Association, Aachen University, Ger-
many, 22-24 September 2014, 2014.

[27] V. Bazjanac and T. Maile, “GENERATION OF BUILDING GEOME-
TRY FOR ENERGY PERFORMANCE SIMULATION USING MOD-
ELICA,” in Proceedings of the CESBP/BauSIM 2016 conference, Dres-
den, pp. 361–368, 2016.

[28] A. Nicolai and A. Paepcke, “Co-Simulation between detailed building
energy performance simulation and Modelica HVAC component models,”
Proceedings of the 12th International Modelica Conference, Prague, Czech
Republic, May 15-17, 2017, vol. 132, pp. 63–72, 2017.

[29] IBPSA, “IBPSA Project 1.”

[30] M. Wetter, W. Zuo, T. S. Nouidui, and X. Pang, “Modelica Build-
ings library,” Journal of Building Performance Simulation, vol. 7, no. 4,
pp. 253–270, 2014.

[31] D. Müller, M. Lauster, A. Constantin, M. Fuchs, and P. Remmen, “Aixlib
- an Open-Source Modelica Library Within the IEA-EBC Annex 60
Framework,” in Proceedings of the CESBP Central European Symposium
on Building Physics and BauSIM 2016, no. September, pp. 3–9, 2016.

230 Bibliography

[32] C. Nytsch-Geusen, J. Huber, M. Ljubijankic, and J. Rädler, “Modelica
BuildingSystems - eine Modellbibliothek zur Simulation komplexer en-
ergietechnischer Gebäudesysteme,” Bauphysik, vol. 35, no. 1, pp. 21–29,
2013.

[33] F. Jorissen, G. Reynders, R. Baetens, D. Picard, D. Saelens, and
L. Helsen, “Implementation and verification of the ideas building energy
simulation library,” Journal of Building Performance Simulation, vol. 11,
no. 6, pp. 669–688, 2018.

[34] M. Wetter, K. Benne, A. Gautier, T. S. Nouidui, A. Ramle, A. Roth,
H. Tummescheit, S. Mentzer, and C. Winther, “LIFTING THE
GARAGE DOOR ON SPAWN, AN OPEN-SOURCE BEMCONTROLS
ENGINE,” in Building Performance Modeling Conference and SimBuild,
no. July, pp. 518–525, 2020.

[35] Michael Wetter, Kyle Benne, and Baptiste Ravache, “Software Archi-
tecture and Implementation of Modelica Buildings Library Coupling for
Spawn of EnergyPlus,” in Proceedings of 14th Modelica Conference 2021,
Linköping, Sweden, September 20-24, 2021, vol. 181, pp. 325–334, 2021.

[36] C. Nytsch-Geusen, J. Rädler, M. Thorade, and C. Ribas Tugores,
“BIM2Modelica - An open source toolchain for generating and simulat-
ing thermal multi-zone building models by using structured data from
BIM models,” Proceedings of the 13th International Modelica Conference,
Regensburg, Germany, March 4–6, 2019, vol. 157, pp. 33–38, 2019.

[37] W. Yan, M. Clayton, J. Haberl, W. Jeong, J. B. Kim, S. Kota, J. L. B.
Alcocer, and M. Dixit, “INTERFACING BIM WITH BUILDING THER-
MAL AND DAYLIGHTING MODELING,” in 13th Conference of Inter-
national Building Performance Simulation Association, no. Porceedings
of BS2013, pp. 3521–3528, 2013.

[38] J. Beetz and N. Gu, “BIMserver.org - an Open Source IFC Model Server,”
in Proceedings of the CIB W78 2010, pp. 1–9, 2009.

[39] K. Jaskula, D. Kifokeris, D. E. Papadonikolaki, and D. Rovas, “Common
Data Environments in construction: State-of-the-art and challenges for
practical implementation,” SSRN Electronic Journal, pp. 1–32, 2022.

[40] Atlassian, “Microservices vs Monolithic Architecture.”

[41] D. T. Ross and J. E. Rodriguez, “Computer-Aided Design System,” in
AFIPS ’63 (Spring): Proceedings of the May 21-23, 1963, spring joint
computer conference, vol. 33, (Massachusetts), 1969.

[42] buildingSMART, “Industry Foundation Classes (IFC) - An Introduc-
tion,” 2022.

Bibliography 231

[43] K. Afsari, C. M. Eastman, and D. Castro-Lacouture, “JavaScript Object
Notation (JSON) data serialization for IFC schema in web-based BIM
data exchange,” Automation in Construction, vol. 77, pp. 24–51, 2017.

[44] M. Elagiry, N. Charbel, P. Bourreau, E. D. Angelis, and A. Costa, “IFC
To Building Energy Performance Simulation: a Systematic Review of the
Main Adopted Tools and Approaches,” no. September, 2020.

[45] I. V. Ivanova, Comparison Between Semi- Automated Building Energy
Simulation Processes Using BIM- Generated gbXML and IFC Formats
in EnergyPlus. PhD thesis, 2014.

[46] R. J. Hitchcock and J. Wong, “Transforming IFC architectural view
BIMs for energy simulation: 2011,” in Proceedings of Building Simulation
2011: 12th Conference of International Building Performance Simulation
Association, pp. 1089–1095, 2011.

[47] T. Laine and A. Karola, “Benefits of Building Information Models in En-
ergy Analysis,” in Proceedings of Clima 2007 WellBeing Indoors, pp. 1–8,
2007.

[48] P. Pauwels and K. McGlinn, Buildings and Semantics, vol. 1. CRC
Press/Balkema, 2023.

[49] H. Lange, A. Johansen, and M. B. Kjærgaard, “Evaluation of the op-
portunities and limitations of using IFC models as source of building
metadata,” BuildSys 2018 - Proceedings of the 5th Conference on Sys-
tems for Built Environments, pp. 21–24, 2018.

[50] W. Solihin, C. Eastman, and Y. C. Lee, “Toward robust and quantifiable
automated IFC quality validation,” Advanced Engineering Informatics,
vol. 29, no. 3, pp. 739–756, 2015.

[51] J. Werbrouck, P. Pauwels, J. Beetz, and L. v. Berlo, “Towards a de-
centralised common data environment using linked building data and
the solid ecosystem,” in Advances in ICT in Design, Construction and
Management in Architecture, Engineering, Construction and Operations
(AECO) : Proceedings of the 36th CIB W78 2019 Conference., pp. 113–
123, 2019.

[52] N. Guarino, D. Oberle, and S. Staab, “What is an ontology,” in Handbook
on Ontologies, pp. 1–17, Springer, 2004.

[53] T. Gruber, “Collective knowledge systems: Where the Social Web meets
the Semantic Web,” Web Semantics, vol. 6, no. 1, pp. 4–13, 2008.

232 Bibliography

[54] J. Beetz, J. Van Leeuwen, and B. De Vries, “IfcOWL: A case of trans-
forming EXPRESS schemas into ontologies,” Artificial Intelligence for
Engineering Design, Analysis and Manufacturing: AIEDAM, vol. 23,
no. 1, pp. 89–101, 2009.

[55] G. F. Schneider, M. H. Rasmussen, P. Bonsma, J. Oraskari, and
P. Pauwels, “Linked building data for modular building information mod-
elling of a smart home,” eWork and eBusiness in Architecture, Engineer-
ing and Construction - Proceedings of the 12th European Conference on
Product and Process Modelling, ECPPM 2018, no. 2016, pp. 407–414,
2018.

[56] M. H. Rasmussen, M. Lefrançois, G. F. Schneider, and P. Pauwels, “BOT:
The building topology ontology of the W3C linked building data group,”
Semantic Web, vol. 12, no. 1, pp. 143–161, 2020.

[57] M. H. Rasmussen, J. Karlshøj, C. A. Hviid, and P. Pauwels, “Proposing a
central AEC ontology that allows for domain specific extensions,” in LC3
2017: Volume I - Proceedsings of the Joint Conference on Computing in
Construction (JC3), no. July, pp. 237–244, 2017.

[58] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers, “Tur-
tle - Terse RDF Triple Language,” Tech. Rep. February 2014, 2014.

[59] V. Kukkonen, A. Kücükavci, M. Seidenschnur, M. H. Rasmussen, K. M.
Smith, and C. A. Hviid, “An ontology to support flow system descrip-
tions from design to operation of buildings,” Automation in Construction,
vol. 134, no. November 2020, p. 104067, 2022.

[60] M. Ngilinga De Carvalho, “Improving Interoperability in Increasingly
Fragmented AEC Workflows,” Springer, no. September, 2020.

[61] M. H. Rasmussen, Digital Infrastructure and Building Information Mod-
eling in the Design and Planning of Building Services. PhD thesis, Tech-
nical University of Denmark, 2019.

[62] M. Seidenschnur, A. Kücükavci, E. Visby, K. Michael, P. Pauwels, and
C. Anker, “A common data environment for HVAC design and engineer-
ing,” Automation in Construction, vol. 142, no. July, p. 104500, 2022.

[63] E. V. Fjerbæk, M. Seidenschnur, A. Kücükavci, K. M. Smith, and C. A.
Hviid, “From BIM databases to Modelica - Automated simulations of
heating systems,” in REHVA 14th HVAC World Congress, pp. 1–7, 2022.

[64] E. V. Fjerbæk, M. Seidenschnur, A. Kücükavci, K. M. Smith, and C. A.
Hviid, “Coupling Modelica simulations and a Common Data Environ-
ment for BIM,” 2023.

DCAMM
Danish Center for Applied Mathematics
and Mechanics

Koppels Allé, Bld. 404
DK-2800 Kgs. Lyngby
Denmark
Phone (+45) 4525 4250
Fax (+45) 4525 1961

www.dcamm.dk

DCAMM Special Report No. S328

ISSN: 0903-1685

DTU Construct
Section of Thermal Energy
Technical University of Denmark

Koppels Allé, Bld. 403
DK-2800 Kgs. Lyngby
Denmark
Phone: +45 4525 4131
Fax: +45 4525 1961

www.construct.dtu.dk

February 2023

ISBN: 978-87-7475-720-7

	Mikki Seidenschnur (003).pdf
	PhD_Dissertation_Mikki_Seidenschnur.pdf
	PhD_Dissertation_Mikki_Seidenschnur
	PhD_Dissertation_Mikki_Seidenschnur
	PhD_Dissertation_Mikki_Seidenschnur
	PhD_Dissertation_Mikki_Seidenschnur
	PhD_Dissertation_Mikki_Seidenschnur
	PhD_Dissertation_Mikki_Seidenschnur
	Mikki Seidenschnur (003)

