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Abstract

This thesis presents work related to e�cient numerical solution schemes and

implementations of large-scale, or high-resolution, topology optimization. The

purpose of pursuing e�cient methods is to increase the resolution of computed

structures, which in turn enable new potential applications. The thesis has then

been split into two, each part focusing on di�erent types of computing hardware.

The �rst part treats the implementation of topology optimization on high-

performance compute clusters. We therefore deal with distributed memory

computing, primarily on distributed unstructured meshes. We begin by de-

scribing the multigrid preconditioner, which is a key component in solving the

elasticity equations on the desired scale. Afterwards, a new �lter for ensuring

manufacturability by milling or casting is presented, speci�cally designed with

distributed unstructured meshes in mind. Finally, a short case study of a direct

drive wind turbine is performed.

The second part treats the implementation of structural optimization on

a single desktop machine. We study GPU acceleration, and how far we can

push the performance of a single high-end machine by limiting the problem to

structured grids while in a shared memory setting. We then move on to shape

optimization of shell structures, which emphasizes how high-resolution is not

necessarily required to provide meaningful structural optimization results.

Finally, we summarize the results of this work with a critical re�ection on the

value of high-resolution topology optimization compared to the cost of required

hardware and e�ort of implementation.
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Resumé

Denne a�andling præsenterer arbejde udført indenfor e�ektive numeriske løs-

ningsmetoder og implementeringer af højopløst topologioptimering. Formålet

ved e�ektive metoder er at kunne øge opløsningsgraden af de beregnede struk-

turer, hvilket åbner for nye anvendelser. A�andlingen er todelt, hver del er

fokuseret på hver sin type beregningsmaskinel.

Første del omhandler udførelse af topologioptimering på højtydende bereg-

ningsklynger, såkaldte “supercomputere”. Derfor benyttes programmering for

delte hukommelsespladser, med henblik på ustrukturerede fordelte gitre. Først

beskrives multigitterforkonditioneringsmetoder, som er nødvendige for at løse

elasticitetsligningerne ved den ønskede opløsning. Herefter præsenteres et nyt

�lter, der sikrer at resulterende strukturer kan fremstilles ved fræsning. Dette

�lter er udviklet særligt til ustrukturerede fordelte gitre i høj opløsning. Til slut

vises et kort studie af optimering af et svinghjul anvendt i en direkte drevet

vindmølle.

Anden del omhandler udførsel af strukturoptimering på en enkelt com-

puter. Vi studerer grænserne for hvor høj opløsning, der kan opnås på en enkelt

avanceret computer ved brug af en gra�kbehandlingsenhed samt udnyttelse af

den orden i beregninger, der opstår ved brug af strukturerede gitre. Herefter

undersøges formoptimering af skalstrukturer. I kontrast til den højopløste topolo-

gioptimering understreger dette studie, at høj opløsning ikke altid er nødvendig

for at opnå tilfredstillende resultater i strukturoptimering.

Til slut opsummeres resultaterne med en kritisk overvejelse over værdien af

højopløst topologioptimering sammenlignet med prisen for beregningsmaskinel

og anstrengelsen ved implementering.
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Chapter1

Introduction

The only di�erence between
screwing around and science is
writing it down.

MythBusters
Adam Savage
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1. Introduction

1.1 Motivation and Goals

Topology optimization is a rapidly maturing technology. By specifying a de-

sign domain, objective, and constraints, users are able to generate optimized

structures with little prior knowledge of the design. In essence, this works by

decomposing the initial domain into elements, cells, or voxels and identifying

whether each element should be considered part of the resulting structure.

Due to this representation of the structure, the amount of detail available to

describe the resulting structure is directly tied to the resolution of the physics.

To obtain a desired length-scale it is necessary to ensure that su�ciently many

elements are used. If larger structures are considered for topology optimization,

or if small length-scales are required, many elements may become necessary. It

is not uncommon to have requirements ranging from 4 to 50 million elements,

resulting in long computation times when solving the state equations.

Not only is the desired resolution an important aspect of the usability of

topology optimization as a tool for designers. The di�erences between waiting

a second, a minute, an hour, or a day for the result are di�cult to overstate.

Iteration in the design process is sped up signi�cantly when results and feedback

are provided quickly.

There is therefore a need for fast, large-scale topology optimization pro-

grams if the method is to become widely useful. The goal of this Ph.D. project

is to develop e�cient methods for topology optimization, in order to reduce

computational time su�ciently to make topology optimization better suited for

commercial applications. This is a goal which can be approached in a multitude

of ways. This work has taken the form of a series of e�cient implementations,

which leverage a variety of formulations and hardware. By comparing the mer-

its of these implementations, the goal is to gain insight on how to build fast

large-scale topology optimization programs.

1.2 A Reader’s Guide

As this work builds upon many existing concepts, it would be excessive to

introduce all underlying theory thoroughly. It is expected that the reader has fa-

miliarity with linear algebra [1], standard solution techniques for linear systems

[2], �nite element analysis [3], and topology optimization [4, 5].
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1.3. Topology Optimization

In this thesis several approaches to e�cient large-scale topology optimization

are presented. Initially, some background is given to multigrid methods in

chapter 2. These method are central in all following topology optimization

methods. The following two chapters deal with using unstructured meshes in

topology optimization. Chapter 3 proposes a method to ensure designs which

can be manufactured by machining, which trivially generalizes to unstructured

and distributed �nite element meshes. Chapter 4 performs a case study of a large-

scale topology optimization problem performed on a distributed unstructured

mesh. As a contrast to the unstructured distributed topology optimization

problems, chapter 5 studies the performance of structured meshes solved on a

single computer. Several implementations are presented, both with and without

the use of GPU acceleration. Chapter 6 studies shape optimization of shell

structures through a formulation reminiscent of topology optimization. Here

great improvements in performance are attained when additional assumptions

about the resulting structure are adopted to the problem formulation. Finally,

some concluding remarks are given in chapter 7.

1.3 Topology Optimization

Although it is assumed that the reader is familiar with standard concepts within

density based topology optimization, it is useful to brie�y formulate the problem

at hand. The well-studied linear elastic minimum compliance problem is pre-

sented here, as this problem is studied in all papers included in this dissertation.

The optimization problem is stated as;

minimize
x

C = u¦Ku (1.1a)

subject to

state equation Ku = f (1.1b)

�lter x̃ = Fx (1.1c)

volume
∑

i

vix̃i f V ∗
∑

i

vi (1.1d)

bounds 0 f xi f 1 ∀i (1.1e)
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1. Introduction

Here x denotes the vector of design variables which has a value for every

element in the mesh, each variable is bounded, eq. (1.1e), here a value of 1
indicates solid material and 0 indicates void. The volume constraint, eq. (1.1d),

is de�ned using the element volumes vi and a volume fraction 0 < V ∗ < 1,
which indicates the fraction of the domain which can be solid material. The

used �lter operator F in eq. (1.1c) can be either of the convolution [6, 7] or PDE

based type [8]. The sti�ness matrixK is the operator associated with solving

the elasticity equations discretized with FEM, it is implicitly dependent on the

�ltered densities x̃, which couples the design and objective function through

eqs. (1.1b) and (1.1c).

This problem can be solved in two ways. In the so-called “simultaneous

analysis and design” (SAND) approach the displacement vector u is included

as design variables, and all eq. (1.1) is treated as an optimization problem with

equality and inequality constraints. The alternate approach, which is used

throughout this work, is the so-called “nested analysis and design” (NAND).

Here, the displacement vector u is considered as the result of a function of x,

de�ned through eq. (1.1c) �rst, and then by solving the linear system of eq. (1.1b).

As both steps are di�erentiable the chain rule can be used to obtain the gradients
∂C
∂x

.

The SAND approach is, in a mathematical sense, elegant. It is also well-

equipped to solve hard topology optimization problems, where small changes

in x can lead to large changes in the objective, e.g. Bluhm et al. [9]. However,

considering the approaches from an e�ciency standpoint, the NAND approach

is most attractive. Here, decades of research on e�ciently solving the linear

algebra systems arising from discretized PDEs, such as eq. (1.1b), can be used.

By decomposing the problem into smaller nested problems, each step is solved

e�ciently with a specialized method, resulting in an e�cient solution of the full

problem.

1.4 Performance and E�ciency

Few people set out to create slow software. However, available software tends to

vary widely in speed of computation. Many factors a�ect the speed of computa-

tion, or performance, of an implementation. Both internal factors of the software

itself and external factors such as the used hardware a�ect the resulting speed.

Program e�ciency is tied to both to the e�ciency of the chosen algorithms,

4



1.4. Performance and E�ciency

and how the implementation itself is performed. These factors are to some

degree codependent with the used hardware. Some algorithms lends themselves

better to e�cient implementations on some hardware, by e.g. being trivially

parallelized. Similarly, implementations can be tuned for speci�c hardware,

improving their e�ciency on the target platforms, at the cost of performance

when using other platforms and program simplicity.

E�ciency of implementations can be characterized by the amount of un-

necessary resource usage. When considering compute e�ciency, time which

is spent performing unnecessary, possibly unintended, work decreases the e�-

ciency of the implementation. This can e.g. be waiting for a cache-miss or the

overhead of an interpreter performing just-in-time compilation. Avoiding as

much computational work as possible, while providing correct results, makes a

program more e�cient. Similar e�ciency considerations can be made for other

metrics of interest, such as memory usage.

Topology optimization is a complex problem, consisting ofmany sub-problems

some of which are themselves complex. Therefore, ample opportunity exists for

both performance optimization and pessimization. Some of these opportunities

include;

Linear solver Most topology optimization implementations spend a majority

of the computing time solving systems of equations which arise from

partial di�erential equations. The chosen method used to solve the re-

sulting system of equations has a great e�ect on the overall topology

implementation.

Design parametrization Some topology optimization approaches reduce com-

putational complexity by removing void elements, using higher order

elements, or other approaches which result in reduced system sizes for

the linear equations.

Optimization problem formulation Some regularization methods for the

topology optimization problem are known to result in slower convergence.

For instance, the di�erentiable approximation to the heaviside projection

[10] usually relies on continuation of a projection sharpness parameter.

This drastically increases the required number of linear system solutions

to reach convergence.
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1. Introduction

Optimization solver The method used to solve the optimization problem itself

a�ects the convergence rate, which in turn a�ects the required number of

linear system solutions.

All of these choices are strictly pertaining to the problem formulation itself, and

a�ect the performance of the �nal program through the algorithmic e�ciency

of the chosen methods.

Benchmarking Performance

Comparing performance across implementations can more complex than appar-

ent at �rst glance. The interdependence between hardware and implementation

for the measured performance imply that results are di�cult to generalize, as

changing hardware might change the performance characteristics.

Measurements of computational time depend on many external factors, some

which can be controlled for, and somewhich cannot. Hence, propermeasurement

of performance must realize that the measured value is nondeterministic. This

implies that multiple measurements are necessary, and that proper statistical

methods must be taken when analyzing the results. The interested reader may

�nd an in depth discussion on how to treat performance in Hoe�er and Belli

[11].

In general, most topology optimization problems take long to execute, and

have small variation in computation time compared to the total runtime. There-

fore, for simple comparisons it is possible to treat these values deterministically.

6



Chapter2

Geometric Multigrid Methods

in Topology Optimization

[Truth] is much too complicated to
allow anything but
approximations.

The Mathematician
John von Neumann
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2. Multigrid Methods

Multigrid methods are commonly used in large-scale topology optimization

methods [12–16]. These methods scale linearly in time when solving the lin-

earized elasticity equations, if tuned properly. Since solving these equations

tend to be the most computationally intensive aspect of performing topology

optimization, multigrid methods are key for achieving good e�ciency. This

chapter summarizes multigrid methods which were not developed as part of the

dissertation, but are included nevertheless for completeness. A more complete

treatment of multigrid methods can be found in Briggs et al. [17], Trottenberg

et al. [18].

2.1 Introduction to Structured Multigrid

In this section we study the specialization of multigrid methods for Cartesian

grids, in order to develop many of the basic concepts related to multigrid meth-

ods. This specialization simpli�es some concepts, and has been used for all

implementations presented in [P4].

Prolongation and Restriction

The central notion of geometric multigrid methods is to discretise the considered

domain using a hierarchy of grids of varying spatial resolution. We wish to

solve the equations on the �nest mesh, while the coarser meshes are used to

e�ciently reduce the error. Figure 2.1 illustrates a hierarchy of two-dimensional

Cartesian meshes.

Figure 2.1: Three grids of varying spatial resolution representing the same two-

dimensional box. Some prolongation operations are illustrated indicating which

nodes of a coarser grid are used to interpolate the value at some node of the

�ner grid.
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2.1. Structured Multigrid

The prolongation operation maps a �eld from a coarse grid to a �ner grid.

The classic way of performing this mapping is to use the shape-functions of the

coarse elements to evaluate �eld values at the nodes of the �ne mesh. No other

prolongations are considered in this dissertation.

Due to the Cartesian structure of the mesh, we can guarantee to �nd valid

prolongations for all �ne nodes of the mesh. It is even possible to compute the

indices of nearby coarse or �ne nodes solely by permuting the index of a node.

This allows to write implementations where indices are computed on-the-�y,

and underlying grids are de�ned implicitly.

Since �ne nodal values are a linear combination of nearby coarse values,

the resulting operator is linear, and can be represented as a sparse matrix Pi.

Resulting in the the mapping from grid i to i + 1 as ui = Pi+1ui+1. We note

that i = 0 is used to denote the �nest mesh, increasing the index for coarser

meshes.

Restriction is the operation of mapping from a �ne grid to a coarse grid. The

usual choice for restriction is the matrix Ri = P¦
i . Note however, that this will

also scale values in the resulting coarse grid, as columns in the prolongation

Pi do not represent a partition of unity, i.e. they do not sum to 1. While this

attribute might seem problematic, as the �eld is scaled when transforming in

one direction, it works well in practice.

An alternate choice of restriction would be to re-scale the rows of P¦
i , such

that they become a partition of unity. This would enable a preservation of scaling

when restricting the displacement �eld. This method can be used, although the

choice of P¦
i has some desirable properties which will be discussed in the next

section.

Coarse Approximation of Elasticity Operator

Not only displacement �elds need be de�ned for the coarse grids, also the corre-

sponding operators, or sti�ness matrices are necessary. These are important, as

they form the foundation of reducing the solution error at every grid re�nement.

The most common approach for generating coarse grid corrections is the

Galerkin projection. Here, the operator for the �nest levelK0 is used to generate

all other matrices by prolongation and restriction.

Ki = RiKi−1Pi (2.1)

9



2. Multigrid Methods

Figure 2.2: Illustration of four material cells, discretized by four quadrilaterals

on the left, and one quadrilateral on the right. The crosses indicate integration

points. The four quadrilaterals have constant density, and thus use a Gauss

quadrature for exact numerical integration. The single quadrilateral integrates

using a Riemann sum with one quadrature point for each density.

Here we can note that choosing Ri = P¦
i ensures that all coarse level operators

of the Galerkin projection are symmetric by construction.

An alternate approach to the Galerkin projection, is to build the coarse space

operators directly from the discretization of the studied elasticity equations. If

a homogeneous medium is considered, this is relatively straightforward. The

�nite element assembly is simply performed as usual on all coarse grids. When

the material parameters are spatially varying, as is the case for topology op-

timization, care must be taken when choosing how to build the coarse space

element matrices.

Inspired by the approach used in Nguyen et al. [19], it is possible to perform

integration of local elements with spatially varying material parameters within

these elements. By introducing sub-cells of an element, as illustrated in �g. 2.2, it

is possible to construct an element with spatially varying sti�ness corresponding

to a �ner underlying mesh.

These multi-resolution elements are still linear in their displacements. There-

fore, they perform poorly in terms of accuracy if there is a high variation of

material properties within the elements. However, the accuracy is still su�cient

to reduce the residual in a multigrid context. Furthermore, the element matrices

can be pre-integrated for the mesh, and scaled with the respective Young’s mod-

ulus during optimization. This approach can be quite computationally e�cient.

10



2.1. Structured Multigrid

The multi-resolution element approach was successfully used in the OpenMP

implementations presented in [P4]. Here it was observed that this approach

did require more iterations to solve the resulting system, compared to using a

Galerkin projection. However, the bene�t is that all coarse grid operators are

constructed e�ciently with a comparably simple implementation.

Smoothing

Smoothing is the operation of reducing the error at some grid level. Several

candidates for smoothing operation exist, and the choice can have a drastic e�ect

on the computational e�ciency of the resulting multigrid strategy.

The purpose is to reduce the residual of some level ||fi−Kiui|| with respect

to some force, displacement, and matrix. Usual smoothing is either application

of a preconditioner or few iterations of an iterative solver, as these have been

designed for similar purposes. However, these are usually only applied for a

small �xed number of iterations, usually between 1 and 4.

Usual choices for preconditioning as a smoother are

Jacobi. A diagonal approximation of the sti�ness matrix. It is easy to implement

and embarrassingly parallel during execution. However, it is not very

e�ective at reducing the residual compared to other choices [2, 17].

SOR - Successive Over Relaxation but o�ers much better reduction of resid-

ual compared to a Jacobi iteration, while being slightly more involved to

implement. However, the standard de�nition of SOR cannot be parallelized.

Several variations exist to allow parallel execution of the preconditioner.

Examples include performing SOR independently on every distributed

partition, as done in PETSc [20], performing SOR independently on every

node of the �nite element mesh [21], or using a so-called colored variation

[2].

In general, any variation of SOR tends to perform better than the Jacobi pre-

conditioner. When using an iterative solver as a smoother, one of the above

preconditioners are usually applied to the iterative solving method. Good strate-

gies for iterative solvers as smoothers include

GMRES Generalized Minimum Residual, which is a general iterative solver. It

works well with non-symmetric matrices, and is generally very robust [2].
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2. Multigrid Methods

One downside is that it requires additional memory compared to alternate

methods, as it needs to store a history of vectors. However, when used for

a small �xed number of iterations as a smoother the memory requirements

tend to be low.

CG Conjugate Gradients, which only works for symmetric positive de�nite ma-

trices [2]. Fortunately, the sti�ness matrix associated with linear elasticity

is symmetric positive de�nite.

Chebyshev is an iterative solver that works very well for smoothing. First of

all, it can be tuned to very e�ectively reduce the high-frequency part of

the residual, as desired. Secondly, it requires no inner-products which

take signi�cant time to compute in a parallel setting. Unfortunately, the

Chebyshev iteration requires an estimate of the upper eigenvalue of the

considered matrix, which can be costly to compute. The Chebyshev solver

also requires the considered matrix to be positive symmetric de�nite.

A more sophisticated smoother will reduce the error faster, resulting in fewer

total V-cycle applications before the desired tolerance is achieved. However,

more sophisticated smoothers usually require more computational e�ort at

every application, resulting in an increase of work required for every V-cycle

application. Hence, a good strategy is one which results in the fastest solution

requires some balance between error reduction and time spent smoothing.

Another practical consideration is e�ort of implementation. More complex

smoothing strategies, such as SOR preconditioned Chebyshev, are signi�cantly

more demanding to implement than simpler approaches. If the considered

application is within a framework which has access to many iterative solvers and

preconditioners, such as PETSc [20], e�ort of implementation can be neglected.

More importantly, access to a wide range of smoothers allow fast and easy

comparison of performance between all available approaches.

Coarse Grid Correction

A special case of smoothing is the coarsest level in the grid hierarchy, the so-

called coarse grid correction. Usually a direct solver is employed, to solve the

system exactly. Here, the matrix factorization can be stored and reused for

every V-cycle application, reducing the computational time. Our observation is

that a direct solver usually is the best approach in terms of total time spent. If
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2.1. Structured Multigrid

i = 0 Smooth

i = 1 Smooth

i = 2 Coarse Grid Correction

Figure 2.3: Illustration of the V-cycle application. The procedure moves left to

right, smoothing from �nest to coarsest grid. After the coarse grid correction,

smoothing is performed from coarsest to �nest grid.

possible, enough grids should be employed to make the direct solver feasible on

the coarsest grid.

An alternate approach, if a direct solver is not feasible, is to run an iterative

solver for a �xed number of iterations. Usually an iterative solver as coarse grid

correction is run using a large �xed number of iterations, typically 30 to 1000,

to reduce the error signi�cantly. For instance, the large-scale results presented

in Aage et al. [22], Baandrup et al. [23] used an algebraic multigrid scheme as

the coarse grid correction to the used geometric multigrid approach.

V-cycle

The used multigrid approach can now be introduced. We consider the so-called

V-cycle, which is a simple traversal scheme between grids. During one V-cycle

application the grids are initially traversed from �nest to coarsest. At each level

the problem is smoothed, and the residual of the result is restricted to the coarser

grid. When the coarsest grid is reached, the coarse grid correction is performed,

and the result is projected to the �ner grid and smoothed. This continues until

the �nest grid is reached. The traversal pattern is illustrated in �g. 2.3.

The V-cycle is shown in pseudo-code in algorithm 1. The algorithm shows

that it is the residual of the smoothed �eld which is projected down to the coarser

grids, while the correction of that residual is projected back to the �ner grid.

13



2. Multigrid Methods

Algorithm 1: V-cycle multigrid

Data: Input force f0, prolongations Pi, OperatorsKi

Result: Smoothed �eld ũ0

1 for i ∈ {0, 1, .., n− 1} do
2 ui ← 0;
3 ui ← smoothing(ui, fi,Ki);
4 ri ← fi −Kiui;
5 fi+1 ← Ri+1ri;

6 end

7 un ← 0;
8 un ← coarse correction(un, fn,Kn);
9 for i ∈ {n− 1, n− 2, .., 0} do
10 ui ← ui + Pi+1ui+1;
11 ui ← smoothing(ui, fi,Ki);

12 end

By repeatedly applying the V-cycle the system of equations can be solved.

Another, more e�ective, way of solving the equations is to use the V-cycle as a

preconditioner for an iterative solver. Since the sti�ness matrix is symmetric

and positive de�nite (SPD), the conjugate gradient method is an apt choice

[2]. Formally, the requirement is that the preconditioner should also be SPD,

although all of the presented approaches have been found to work acceptably in

practice.

While only the V-cycle is used in this dissertation and associated articles,

there exist other cycle types. Both W- and Full-cycles perform the coarse grid

correction multiple times for every cycle application. The e�ciency of the

various cycle types is dependent on the considered problem, and should therefore

be chosen accordingly. For the elasticity problems with heterogeneous material

parameters, the V-cycle decreases the residual su�ciently fast, while using

comparably little computational e�ort every cycle, hence the usage throughout

the dissertation.

2.2 Multigrid on Unstructured Grids

When considering unstructured grids most de�nitions and considerations from

section 2.1 still hold. The main noteworthy di�erences between these methods
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2.2. Unstructured Multigrid

are that coarse grids are no longer trivially constructed from �ne grids, this

extends to the construction of prolongation and restriction operators.

Some coarsening algorithms exist, which remove nodes from a grid to obtain

a coarser representation. Although these algorithms are usually restricted to sim-

plex meshes [24–26]. Since topology optimization usually favours non-simplex

elements, usually tri-linear hexahedrals, this work is focused on manually gener-

ating all meshes of the hierarchy from the initial geometry representation. As the

meshes are not generated by coarsening, special care needs to be taken when con-

structing the prolongation operator as discrepancies between the discretizations

might exist.

Constructing Prolongation Operators

Constructing the prolongation between unstructured meshes by the element

shape-functions is fundamentally no di�erent from structured meshes. The key

di�erences are bookkeeping and catching edge-cases.

Bookkeeping refers to the challenge of �nding nodes of the �ne mesh, which

are located inside the elements of the coarse mesh. A naive approach is to check

every �ne node for every coarse element, to check whether the node resides

within the element. This process is sped-up signi�cantly by using a KD-tree, or

similar data-structure that allows fast spatial look-ups. Figure 2.4 illustrates an

example of nodes of the �ne grid found in the vicinity of the considered element.

Special care needs to be taken when a node of the �ne mesh is not within

any coarse elements. This can occur on the boundary of the domain, where the

meshes might not overlap, as illustrated by the red squares in �g. 2.4. In this

case alternate weights must be used in order to generate a suitable interpolation

for these �ne nodes. These nodes can be coupled to nearby coarse nodes with

weights found by the modi�ed Shepard’s method [27].

wk =

(

max[0, R− ||x− xk||2]

R||x− xk||2

)2

(2.2)

Here wk denotes the partition-of-unity weight used to couple a point with

coordinates x, to a neighboring point with coordinates xk . R is a suitable radius

parameter, in the same order of magnitude as the coarse element side length.

Shepard’s method provides a partition of unity by construction, similarly to the

the shape-function.
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2. Multigrid Methods

Figure 2.4: Illustration of matching nodes of the �ne mesh, squares, to an element

of the coarse mesh. Blue squares indicate �ne nodes which were found to be

inside the considered element. Grey squares indicate nodes which were not

found to be inside the element. Red squares indicate nodes which were not

found to be inside any element.

Algorithm 2 informally summarizes an algorithm to generate prolongations

between two unstructured meshes. Note that the construction of a KD tree

K is not strictly necessary, but in practice greatly improves the e�ciency of

the algorithm. The �rst part of algorithm 2, lines 1 to 11, attempts to generate

all interpolation weights using shape-functions, while keeping track of which

nodes succeeded. The second part, lines 12 to 19, identi�es nodes for which no

successful shape-function weights were found, and uses Shepard’s method to

generate weights for these nodes.

Due to the complexity of constructing the prolongation, using the prolonga-

tion for restriction Ri = P¦
i can simplify unstructured implementations. When

using the prolongation as restriction all rows of P¦
i should have at least one

non-zero value, corresponding to all coarse nodes receiving a value during re-

striction. Otherwise, Galerkin projected matrices become rank-de�cient. Usually,

this is not an issue for well-formed meshes. If however this should be ensured
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2.2. Unstructured Multigrid

algorithm 2 can be extended with an additional step similar to lines 12-19 for

the coarse nodes.

Algorithm 2: Construction of prolongation between unstructured

grids

Data: Fine meshHi−1, coarse meshHi

Result: prolongation operator Pi

1 K ← KD tree of all nodes inHi;
2 ntouched ← zero valued array of size nodes inHi−1;
3 forall elements e ∈ Hi do

4 Nfound ← nodes in K near center of e;
5 forall nodes n ∈ Nfound do

6 if n is within e then
7 ntouched[n]← ntouched[n] + 1;
8 Insert shape functions of e, for position of n, into appropriate

indices of Pi;

9 end

10 end

11 end

12 Kc ← KD tree of all nodes inHi;
13 forall nodes n ∈ Hi do

14 if ntouched[n] is 0 then
15 R← su�ciently large local radius, such that nfound ̸= ∅;
16 nfound ← nodes in Kc with distance to n less than R;
17 Insert weights from eq. (2.2) into appropriate indices of Pi;

18 end

19 end

The presented methodology can also be employed with distributed meshes,

i.e. a mesh distributed between several memory-spaces, usually implemented

with MPI. Some care must be taken to ensure that the coarse grids are distributed

in memory according to the spatial location of the �ne grids. Also, some syn-

chronization of the ntouched array in algorithm 2 must be included after line 11,

to ensure agreement between processes.
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Practicalities of Generating Coarse Grids

When generating coarse meshes independently, several practical issues might

arise. Firstly, narrow features might exist in the geometry. These are hard to

resolve in the coarser grids. This can become an issue in generating well-formed

coarse grids, which are crucial to attain a su�ciently fast convergence. To

overcome this issue, one can manually enlarge these small regions, or merge

them with neighboring regions, in order to attain a workable coarse grid.

Secondly, the multigrid method improves drastically if care is taken such that

nodes of all grids in the hierarchy coincide as much as possible, similar to the

structured case. The coinciding nodes will result in much sparser prolongation

matrices Pi, as coinciding nodes, as well-as nodes on surfaces and edges will

result in fewer non-zeros. This in turn drastically increases the sparsity of the

Galerkin projection coarse grid matrices, eq. (2.1), reducing computational e�ort

of smoothers and the coarse grid correction. Methods to achieve coinciding

nodes depend on the used meshing algorithm. For a cut-and-smooth strategy as

used in the Sculpt program [28], care must be taken that the initial structured

grids match.

For other meshing strategies, it can be harder to ensure overlapping nodes

between grids. If feasible, the coarsest mesh can be generated �rst, and re�ned

subsequently to generate the hierarchy. This is usually only feasible for domains

without curved surfaces.

2.3 Multigrid for Shell Elements

Applying the multigrid method to shell elements is a somewhat straightforward

extension to the unstructured multigrid approach. Similar to extending the

structured to unstructured approach, the main di�erence is de�ning an appro-

priate prolongation operator. This section brie�y introduces the extension of the

unstructured multigrid to shell elements. Example applications are presented in

[P1].

For this section we consider a standard thin-shell element formulation, such

as the curved isoparametric quadrilateral shell element described in Cook [3].

The techniques discussed in this chapter are general for most shell element

formulations, so long as the degrees-of-freedom are de�ned on the element

nodes.
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2.3. Multigrid for Shell Elements

Figure 2.5: Illustration of a quadrilateral shell element. The center point, found

by interpolation of corner nodes, is also shown. The illustration shows that the

four corner nodes do not lie in a plane.

Constructing Prolongation Operators

The process of constructing prolongation operators is complicated further for

shell elements. The main issue to tackle, is de�ning when a node is inside a

surface element, that is line 5 in algorithm 2. Since the elements are now surfaces

with no volume, the notion of “inside” needs reconsideration.

The point which is tested can be projected to the surface of the shell element,

where we can test whether the node is inside the element. Unfortunately, quadri-

lateral surface elements do not uniquely de�ne a surface. This is illustrated in

�g. 2.5, where the center node is drawn explicitly along with guiding lines.

To overcome the issue of multiple surfaces, we need to choose some planes

onto which we project. One robust approach is to identify the three nearest

corners of the quadrilateral, and consider the plane spanned by these. Alternately,

the two nearest corners can be used along with the center-node, obtained by

interpolation of the corner nodes using the element shape-functions. Either of

these approaches work well enough, as they will crucially project correctly near

the element edges.

Issues with Condition Numbers

The condition number of the resulting matrix is an important factor to remark

when working with shells. The de�nition of the condition number is λmax

λmin
, i.e.

the ratio between highest and lowest eigenvalue. High condition numbers of

matrices usually complicate solving their associated linear system of equations. A
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rule of thumb is that n digits of precision are lost when the matrix has condition

number 10n, when solving with an otherwise “exact” method such as a LU

factorization [29]. Most implementations try to mitigate this as much as possible

by some preconditioning of the system.

Shell structures have a tendency to exhibit high condition numbers, com-

pared to regular three-dimensional elastic discretizaitons. This can be due to

the inclusion of rotational degrees-of-freedom, which are usually a di�erent

order of magnitude in the numerical representation, compared to displacements.

High-condition numbers also arise from the physical system itself, due to the

large di�erence in sti�ness of in-plane and out-of-plane deformation modes,

which manifests in the highest and lowest eigenvalues. High condition numbers

are usually also found in the resulting black-and-white designs from topology

optimization due to the high contrast in sti�ness, hence topology optimization

with shell structures include two factors which are known for high condition

numbers.

Iterative solver strategies, such as the discussed multigrid approach, are also

a�ected by the high condition numbers. The high condition numbers usually

result in a smaller decrease of residual every iteration. This is problematic, as

it results in an increase of iterations required to achieve any desired tolerance.

Since this is caused by the physical system and discretization, few options

are available to solve the conditioning problem. Hence, the largest problems

presented in [P1] are “only” of 11 million shell elements, and require many

conjugate gradient iterations for convergence compared to similarly sized full

3D problems. Luckily, due to the two dimensional properties of surfaces, 11

million elements is su�cient to achieve very low element sizes.

Concluding Remarks

In this chapter we have summarized various multigrid methods for structured,

unstructured, and shell meshes. These methods form the foundations of all

topology optimization approaches presented in the following chapters. Special

care must be taken when composing a multigrid method as the e�ciency of the

method is dependent on grids and the problem itself. For unstructured and shell

meshes de�nition of the coarse grids and prolongation and restriction operators

greatly a�ect the resulting e�ciency.
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Chapter3

An Advection-Di�usion based

Filter for Milling
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3. Advection-Diffusion Milling Filter

Topology optimized designs are usually optimized solely for structural per-

formance, resulting in �nal designs which can be impossible, or prohibitively

expensive, to manufacture. This has motivated the creation of modi�cations to

the topology optimization problems which ensure manufactureability. These

modi�cations are usually de�ned as �ltering techniques or constraints to the op-

timization problem. This chapter treats such a modi�cation which ensures that

a design can be machined through the application of a �lter which is designed

for e�cient application to unstructured meshes [P2].

3.1 The importance of PDE-based �lters in compute

clusters

To avoid modeling artifacts during topology optimization �ltering techniques

are commonly used [6, 30]. These techniques, which were originally designed to

regularize the problem, have since then been extended to provide control of the

resulting geometry such as ensuring a minimum length-scale in the resulting

structure [31, 32] or generating porous structures [33] through constraints. The

�ltering formulations are also beginning to see use in shape optimization, where

they are used primarily for regularization [34–36]. The presentedmethodology to

ensure manufacturability by milling is implemented as a control of the optimized

geometry by �ltering. That is, the underlying design variables are mapped to a

“physical” density �eld which represents the structure. This mapping ensures

that the resulting structure can be machined.

The two most common approaches in �ltering are either applying a con-

volution operation, inspired by image analysis techniques, or solving a Partial

Di�erential Equation (PDE). The main novelty of our proposed method is to

substitute a convolution �lter with a PDE-based �lter.

When using a convolution type approach some, usually compact, �lter

kernel is chosen [6, 7]. The �ltered �eld is found by computing the convolution

of the input �eld and the �lter kernel. Larger �lter kernels result in larger

local domains for the computation of every element value. Hence, there is an

undesirable increase in required computation e�ort.

A �lter formulation based on solving partial di�erential equations, the so-

called PDE-�lter, was developed by Lazarov and Sigmund [8]. This �lter was

developed speci�cally in order to circumvent the computational e�ort associated

with large �lter kernels, along with signi�cantly easing the computation on
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3.2. The Advection-Di�usion Based Filter

unstructured and distributed meshes. Here an e�ect similar to the convolution

is obtained by solving a modi�ed Helmholtz-type partial di�erential equation.

The main advantage of using this PDE-�lter is that constructing the equations

of the discretized modi�ed Helmholtz problem only requires local knowledge

of every element, regardless of the chosen radius for the �lter or structure of

the �nite element mesh. This signi�cantly eases computation for distributed

and unstructured meshes. The drawback of using a PDE-based �lter is that a

system of equations now need to be solved to �nd the �ltered �eld. However,

the system of equations arising from the modi�ed Helmholtz equations are in

practice solved very fast by iterative solvers.

3.2 The Advection-Di�usion Based Filter

The publication [P2] presents a method to ensure that designs obtained by

topology optimisation can bemanufactured bymilling. Themethod is inspired by

the described Helmholtz-based �lter technique, and the milling �lter formulation

presented by Langelaar [37]. In fact, the general outline of this approach is similar

to the that proposed by Langelaar [37], the main di�erence being substituting a

transfer of density variables between meshes and a cumulative summation with

a solution to the advection-di�usion equation.

The notion of whether a design is manufacturable by milling needs further

elaboration. In the presented approach, it is simpli�ed to mean that all void

regions of the design can be reached by some prede�ned tool direction from a

border of the considered design domain. This means, the presented approach

does not consider some important physical aspects of milling, such as tool

thickness and vibration due to long overhangs. These potential issues need

to be addressed in post-processing. Also, the formulation includes an implicit

assumption of a convex design domain. In case the design domain is not convex,

the advection di�usion equation should, in principle, be solved on the convex

hull of the domain.

Both Langelaar [37] and Lee et al. [38] present milling �lters based on the

classical convolution based �ltering techniques. These require e�cient spatial

lookup of elements to be e�ciently implemented, which is not necessarily trivial

in unstructured or distributed meshes. However, the convolution approach lends

itself to explicit control tool size and shape, something which is not trivial in

this variation.
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An alternative formulation is presented in Hur et al. [39], which is based

on the advection-di�usion equation like the approach presented in this chapter,

but only using Dirichlet boundary conditions of value zero, which requires

solving the �ltering equations on an extended domain to enable material place-

ment on the boundaries of the design domain. Similarly, Gasick and Qian [40]

also uses the advection-di�usion, splitting boundary conditions to Dirichlet

upstream and Neumann downstream of a given tool direction, and formulates

the manufacturability as a constraint. The presented method from [P2] uses the

advection-di�usion equation similarly, but using Robin boundary conditions,

which enables solving the advection-di�usion equations on the mesh used for

the elasticity equation using a single boundary condition.

The steps of the proposed �ltering technique is shown in �g. 3.1. Initially, a

smoothing operation is applied through either the classic density �lter [6, 7], or

the PDE-based �lter [8]. Afterwards, the advection-di�usion equation is solved

for every tool direction, resulting in a “shadowed” �eld for every tool direction.

The purpose of these shadowed �elds is to project to solid everything which is

not reachable from that speci�c tool direction. These �elds are combined using

a di�erentiable approximation to the min function for each element value. Here,

an element becomes void if any tool is able to reach it. Finally a di�erentiable

approximation of the Heaviside projection is applied in order to project the

resulting values to the feasible range [0, 1].
The advection-di�usion equation used for step 2 in �g. 3.1 is shown in

eq. (3.1) along with the used boundary conditions. Here x̃ denotes the density

�ltered �eld, while ˆ̃x denotes the resulting solution. The advection direction

ui is kept constant for the entire domain, usually chosen such that it has unit

norm ||ui||2 = 1. A scaling parameter s g 1 is added to the problem, with the

purpose of increasing the solution magnitude, ensuring that downstream areas

are projected towards the upper density bound.

ui
∂ ˆ̃x

∂xi
−

1

Pe

∂2 ˆ̃x

∂x2i
= sx̃ in Ω (3.1)

ˆ̃x+ n
1

s
∇ˆ̃x = 0 on ΓR (3.2)

ˆ̃x = s on ΓD (3.3)

Dirichlet boundary conditions, eq. (3.3), can be applied to the surfaces border-
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0: Design variable x

1: Density �lter x̃

2: Shadowing steps ˆ̃x1, ˆ̃x2, ..

3: Agglomorating �elds x̄

4: Heaviside projection ¯̄x

Figure 3.1: Diagram of the various steps in the advection-di�usion based milling

�lter. Figure taken from [P2].

ing passive solid domains, denoted ΓD , ensuring that the passive solid domains

will cause a “shadowing” e�ect into the design domain, avoiding unreachable

void caused by the solid domains. The Robin boundary conditions, eq. (3.2), are

used for all other domain boundaries, which are denoted ΓR. These boundary

conditions allow material near the upstream boundary and work as Neumann

boundary conditions downstream.

The Peclet number Pe > 0 determines the ratio of advection and di�usion in

the equations. A high Peclet number indicates an advection dominated problem,

while a low Peclet number indicates a di�usion dominated problem. Since we are

interested in solving an advection-like problem, high values are usually chosen,

such as 104. The choice of advection-di�usion, instead of a pure advection

problem is mainly due to the increased numerical stability when including a
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small amount of di�usion to the problem. It was however found su�ciently

fast to be workable for the three-dimensional results presented in the following

section. If a su�ciently stabilized solution to the advection equations is available,

this can be used instead of the advection-di�usion equations, as shown in a

subsequent commercial implementation of this method [41].

Solving the Advection-Di�usion equations

Numerical instabilities are important to consider when discretizing the advection-

di�usion equations with high Peclet numbers. In the presented studies a �rst

order up-winding �nite volume scheme was used, which stabilizes the equations

to enable solutions without spurious oscillations.

If the system is su�ciently small, as is the case for the presented two-

dimensional results, a LU-factorization can be employed to solve the system of

equations. A big advantage of the direct approach, is that the factorization needs

only be computed once, as the �lter system is not dependent on the design.

The resulting equations are however not trivial to solve with iterative solvers,

due to the high degree of non-locality in the resulting solutions. It was found

that for distributed systems the �exible generalized minimal residual solver with

an additive Schwartz preconditioner, implemented in the PETSc framework [20]

workedwell. This approach still requires a considerable amount of computational

e�ort compared to a specialized method, such as a multigrid preconditioning

scheme.

3.3 Examples using the Filter

The advection-di�usion �lter is used for linear compliance minimization with a

volume constraint in two and three dimensions. For the two dimensional case a

classic cantilever problem is considered. The �lter equations are solved using a

LU-factorization. The full details of the loading and boundary conditions can be

found in [P2]. Some results for various milling directions are shown in �g. 3.2.

A reference case using the robust formulation [31, 32], is shown in �g. 3.2a.

The robust formulation is chosen as a reference as it produces a near discrete

design consisting of only 0 and 1 density values, like the proposed milling �lter.

Here, we see the resulting compliance value of 69.98 J, which will provide a

best-case performance for the more constrained designs with milling constraints.
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(a) No milling,
C = 69.98 J

(b) θ = 0,
C = 179.68

(c) θ = 160,
C = 87.49

(d) θ = 180,
C = 287.93

(e) θ = −90, 0, 180,
C = 86.92

(f) θ = ±45,±135,
C = 115.14

Figure 3.2: Reference design and results with one or multiple tool directions.

Computed using 200 × 100 elements. The �nal projected variable is shown.

Figures taken from [P2].

All designs presented in �g. 3.2 only have void regions which are reachable

from outside the domain by the desired tool directions, illustrated by the arrows

in the respective �gures. Also, all compliance values of structures with milling

�lter are higher than the reference using the robust formulation. The best

performing structures with milling constraints, �gs. 3.2c and 3.2e, still have an

increase of approximately 25%. Less favorable milling directions increase the

compliance value fourfold.

The drastic reduction in compliance value compared to the reference design

is expected since the milling �lter results in a great reduction of design freedom.

Notably, no interior voids are allowed with the milling �lter, although these

are heavily used in the reference design. Also, some directions, such as the one

shown in �g. 3.2d, disallow removal of material in unloaded regions.

In the three-dimensional case a similar study is performed. Here the GE-

engine bracket design is considered. Details of the used loading conditions are

given in [P2]. Again, the robust formulation is used to generate a reference

designwithoutmilling constraints, shown in �g. 3.3. Here, thematerial envelopes

the volume, creating large hard-to-reach areas inside the structure.

Adding a single milling direction from “above” we obtain the structure shown

in �g. 3.4 which consists of a series of plates. Note that some overhang exist
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Figure 3.3: Reference design of the bracket example with Robust formulation

and consistent boundary condition for PDE-�lter. C = 4.21 × 107 J. Figures
taken from [P2].

beneath the fastening rings where the load is applied. This is due to the design

domain mesh, which contains no elements in this area. This structure is found to

perform signi�cantly worse than the reference design, which is to be expected

due to the limitation of design freedom imposed by using only a single milling

direction.

Using �ve milling directions we achieve the structure shown in �g. 3.5, which

also indicates the used tool directions. We see that this structure is more compact,

and uses the tools from the side to remove material underneath the structure to

create thick beam-like structures. The compliance value of this structure is quite

close to the reference value, where the design restriction results in a reduction

of around 20% compliance, similar to the two-dimensional results.

As a �nal example, to show a de�ciency of the proposed milling �lter, a single

milling direction at a slight angle to the direction from “above” is considered. The

resulting structure, shown in �g. 3.6, indicates a clear �aw in the �lter. A large

central part of the structure has a hole which violates the milling direction. This

is due to the di�usive e�ects of the solution to the advection-di�usion equation,

which then result in values under the “bridge” falling under the threshold value
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3.3. Examples using the Filter

Figure 3.4: Design of the bracket example with one milling direction in the

z-axis. The tool direction is indicated by the red line next to the structure.

C = 9.28× 107 J. Figures taken from [P2].

of the Heaviside pass. This type of phenomenon can occur in thin structures

with a single tool direction.

Concluding Remarks

Solving �nely resolved topology optimization problems is not possible without

e�cient solution of the state equations. However, this is not su�cient if ad-

vanced design control such as design for a speci�c manufacturing method is

desired. The presented method for ensuring manufacturing by milling is shown

to work for large unstructured grids, enabling �ne resolution for the designs

with manufacturing constraints.
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3. Advection-Diffusion Milling Filter

Figure 3.5: Design with �ve milling directions. The tool directions are indicated

by the red lines next to the structure. C = 4.89 × 107 J. Figures taken from

[P2].

Figure 3.6: Design with one milling directions at an 14.4 degree angle. The tool

direction is indicated by the red line next to the structure. C = 9.52 × 107 J.
Figures taken from [P2].
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4. Direct-Drive Wind Turbine

In order to show an example usage of the large-scale distributed multigrid

discussed in chapter 2, we perform a case-study on the rotor of a direct drive

wind turbine. Here a rotor used to connect the shaft of the wind turbine wings

with the generator is considered. Here, it is sought to reduce the weight of the

rotor while maintaining maximal displacements in axial and radial directions.

We study this problem to show the potential of large-scale topology optimization

with unstructured grids. This study is a brief summary of [P3], with focus on

the optimization aspects of the article.

4.1 De�ning the Optimisation Problem

The rotor for the direct drive wind turbine is �tted with a series of magnets

on the larger radius, which are placed inside a coil to generate electricity. A

force is induced on the magnets during this process, which is dependent on the

distance from the magnet to the coils. In order to obtain a simpler mechanical

model several simpli�cations are made. Firstly, the resulting forces are treated

as evenly distributed surface tractions over the outer surface. Secondly, it is

assumed that there is no interaction between the rotor and the magnetic �eld,

i.e. the forces are not design dependent. Finally, it is assumed that the forces are

constant, and not a�ected by the reduction of air-gap due to displacement of

the rotor. The �nal simpli�cation is done, as we will assume small deformations,

and constrain the allowable deformation of the outer surface in the optimization

problem.

The rotor is subject to three loads, a radial load from the coil, a torsional load

which occurs during breaking, and an axial load which occurs during transport

of the rotor. These loads are all assumed to be static for simplicity. All loads

are illustrated in �g. 4.1, while their magnitudes are given in table 4.1. The air-

gap between rotor an coil gives rise to some maximally allowed displacements,

summarized in table 4.1. The radial and torsional displacements are de�ned

at the outer surface of the rotor, while the axial displacement is de�ned at the

central part of the rotor.

The loads are separated during modeling, to ensure that cross-interactions of

the loads are not used by the optimization. The three displacement constraints

are matched to the corresponding load-case in the same direction. It was found

that the gravitational loading and axial displacement constraint were trivially

satis�ed by nearly all structures. Therefore this load and constraint were removed
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4.1. De�ning the Optimisation Problem

Figure 4.1: Rotor loading conditions. Figure from [P3].

Loading Critical De�ections

1 Normal Maxwell Stress 0.2MPa Radial < 0.65mm
2 Shear Stress 40 kPa Torsional < 2.84mm
3 Gravitational Loading 9.81m/s2 Axial < 32.17mm

Table 4.1: Rotor loading conditions and critical de�ections.

from the optimization problem.

Based on the simpli�cations of the mechanical problem, we now de�ne the
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4. Direct-Drive Wind Turbine

optimization problem as

minimize
x∈Rn

1
∑ne

e=1
ve

ne
∑

e=1

veˆ̂xe

subject to:

state equation K(x̂)u
i
= fi, ∀i ∈ {1, 2}

radial deformation Pm(Dradial(u1)) f
0.65mm

sf

torsional deformation Pm(Dtorsional(u2)) f
2.84mm

sf

box constraint 0 f xe f 1, ∀e ∈ {1, .., ne}

(4.1)

Where the objective is the total volume used by the design, subject to several

constraints. Firstly, the state equations are included as an equality constraint,

although it is in practise treated as an implicit computational step to �nd the

radial and torsional deformation constraints. Special operators are introduced to

extract the deformation in radial Dradial and torsional Dtorsional directions of the

outer surface. An approximation to the maximal value of these deformations is

found using the p-mean aggregation Pm. Of special interest is the safety-factor

parameter sf , which is used to tighten the allowed deformation. Details on

several operations are omitted for brevity. Omitted details are found in [P3].

The full cylindrical domain is modeled. In order to ensure that symmetric

structures are able to appear, the structure was meshed by a single symmetric

wedge, which was replicated six times. Furthermore, care was taken to solve the

state equations to a high degree of accuracy, of relative residual below 10−11, to

ensure no asymmetry is introduced through errors in the displacement �eld.

4.2 Results

Three di�erent designs were reported in [P3]. One design with safety-factor

sf = 1, and two di�erent designs for safety-factor sf = 2. It was chosen

to present two di�erent designs for the same problem to highlight that the

problem was found to be sensitive to initial conditions. Speci�cally the initial

homogeneous density parameter value gave rise to di�erent designs. This is a

direct consequence of the non-convexity of the optimization problem.
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4.2. Results

Figure 4.2: Resulting designs and their respective mass and critical de�ections.

Figure from [P3].

The three presented designs are shown with their performances in �g. 4.2.

Design 1 and 2 are made for the high safety-factor of sf = 2, while design 3 is

made for the lower sf = 1. It can be seen that the torsional case is dominating

for all three designs, as they all satisfy the radial displacement constraint with a

comfortable margin. It is also clear that design 3 has a signi�cantly decreased

mass, as the maximal torsional de�ection is signi�cantly larger than the two

other designs. This is also notable in the design itself, where all structural

members are thinner for design 3.

Upon close inspection it can be seen that the torsional deformation of design

2, 1.43mm, is slightly higher than the allowed value of 1.42mm. This is due

to the approximation nature of the P-mean aggregation, which can result in

inexact control of the actual maximal value.

Both design 1 and 3 use only in-plane spokes near the boundaries of the rotor.

Their shapes are both six-fold rotational symmetric, similarly to the underlying

mesh. Notably, design 1 uses two layers thicker spokes, which are �xed to plates

near the rotor center. Design 3 has a smaller inner plate, and instead adds a

small truss near the inner plate. Design 2 is drastically di�erent, where spokes

begin near the boundaries, and merge to a single spoke in the central plane of
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4. Direct-Drive Wind Turbine

the structure. This allows design 2 to obtain a lower volume than design 1, while

still remaining feasible in the aggregated maximal displacement constraint.

Concluding Remarks

The value of large-scale topology optimization has been shown by study of a

direct drive wind turbine. It is clear that resolving the thin spokes and plates

of the �nal designs require a high spatial �delity of both design and elastic

equations. While not discussed in this summary, it can be seen in [P3] that the

topology optimized designs outperform the considered alternatives signi�cantly.

36



Chapter5

GPU Acceleration

37



5. GPU Acceleration

The focus on how to implement large-scale topology optimization is changed

in this chapter. Instead of considering traditional compute clusters, which use a

set of computers connected through some fast interconnect, we now consider

using graphical processing units (GPUs) to accelerate the computations. By

accelerating the computation su�ciently, it becomes unnecessary to utilize mul-

tiple computers, as a single desktop computer becomes able to solve su�ciently

large topology optimization problems.

In order to achieve the goal of solving large systems on a single desktop,

Cartesian grids, and the problem simpli�cations they enable, are used. This

includes o�ine integration of sti�ness matrices, implicit indices for neighbors

and coarsening, and the ability to convert the �nite element method into a stencil

approach.

Modern compute clusters also include computers with GPU acceleration,

which can be used to reach even larger scales. However, in this work only

single-GPU implementations have been considered. The reasoning for this is

two-fold; single-GPU implementations are also a precursor for multi-GPU imple-

mentations, so developing an e�cient single-GPU implementation a necessary

step towards multi-GPU methods. Secondly, not all would-be practitioners of

large-scale topology optimization have access to the large compute clusters.

If it can be shown that it is feasible to solve su�ciently �ne discretizations

using a single GPU an expansion to a distributed framework is no longer strictly

necessary.

The structure of the Cartesian grid is exploited to improve the computational

e�ciency in these implementations. This is a common approach within simple

topology optimization applications, e.g. Sigmund [42] uses the 2D grid exten-

sively. This approach can be limiting when considering optimizing an arbitrary

design domain with passive regions. Some solutions exist for this issue, such as

adaptive re�nement or hard-kill methods, although not explored in this work.

5.1 Strategies for GPU Acceleration

In many ways, a GPU used for general purpose computing can be thought of as a

large vector processor. Through this lens, programs for GPUs should be similar in

structure to those targeting vector extensions on modern CPUs. Both programs

express the parallelism by applying a single instruction to multiple pieces of

data. For scienti�c computing it is common to implement the parallelism in a
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5.1. Strategies for GPU Acceleration

single program, multiple data (SPMD) type architecture. As the name implies,

a single program is run for multiple pieces of data. This model maps well to

vector processors if the programs are kept su�ciently free of branching.

Several practicalities must be considered when choosing an approach to

implement GPU acceleration. Several parameters are important to consider when

choosing a method to implement GPU acceleration. Ease of implementation

should be considered, as this will be re�ected in development time. Ease of

achieving the desired performance is equally important, as the use of GPU

acceleration implies that the considered software is performance critical.

The “kernel-based” frameworks for general purpose GPU programming

CUDA [43] and OpenCL [44] de�ne so-called kernels, which are functions called

for every piece of data. These approaches are in accordance with the SPMD

model, as the single program is made explicit. These frameworks also give

explicit access to the di�erent types of memory on the GPU, which enable

the laborious programmer to achieve very high performance. However, as

“kernel-based” approaches require a high degree of explicit speci�cation, initial

implementations can perform poorly, due to lack of optimization.

An alternate approach is the “pragma-based” approaches OpenACC [45] and

OpenMP version 4.0 and onward [46]. These approaches take a notably di�erent

approach, by marking loops in the source code to be executed on the GPU. Then

the loop-body is extracted to a kernel, to be executed over the same iteration

space. These approaches give some control of the GPU memory, but in general

less than the “kernel-based” frameworks.

A �nal approach is to use languages speci�cally designed to generate GPU

code. Speci�cally, several array-based functional languages have recently ap-

peared, where the parallelism is implicitly de�ned. These languages include

Lift [47], Dex [48], and Futhark [49]. By only allowing homogeneous parallel

operation on arrays at the language level, these languages are able to compile to

kernels for the GPU. This transformation typically includes optimization passes,

which improve the performance of the resulting implementations. These lan-

guages typically o�er little control over memory layout and kernel formulation,

as this is left to the optimizing compiler. However, they are sometimes compara-

ble to hand-tuned “kernel-based” implementations in terms of performance [49].

Hence, a very good performance can be achieved with little e�ort compared to

other approaches. However, the achievable performance is limited by the capa-

bilities of the optimizing compiler, potentially rendering this approach unable
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5. GPU Acceleration

to achieve performance observed by hand-tuned kernel implementations.

5.2 A reference CPU implementation

In order to properly evaluate GPU accelerated implementations, a baseline

CPU implementation was written. The motivation for writing yet another CPU

based implementation was to have a CPU version which used a similar strategy

for solving the system, used the same problem speci�c optimization, and was

optimized for modern compute hardware. To ensure fair comparison it was

necessary to implement a CPU version where the same structural properties of

the problem are exploited, and where similar care was given to implementation

details.

Another motivation for implementing an optimized CPU implementation

was the implementation presented by Liu et al. [50], which showed that as-

tonishing performance is attainable using a single CPU when proper care is

taken. The implementation from Liu et al. [50] itself was unfortunately not

chosen as a baseline for GPU acceleration, due to important di�erences in the

mesh representation, and extensive software dependencies. Hence, there was

a motivation to build a reference implementation using only widely available

technologies.

The implementation was performed in C99 using OpenMP to enable multi-

threading and SIMD instructions. The CHOLMOD implementation of Cholesky

factorization was used for the coarse-space correction, and the CBLAS interface

was used for some non performance critical matrix-matrix products [51].

The sti�ness matrix multiplication of the �nest grid was found to be a

performance bottleneck. Therefore several performance improvements were

included.

• The iteration space was changed from elements, which is the natural

choice in FEM, to nodes. This was done to simplify parallelization and

avoid data-races in a lock-free manner. Every node is updated based on a

stencil which includes weights based on the neighboring element values.

• Adomain padding, or halo, of zero valued nodes and elements was added to

the domain boundary in order to avoid branching in the stencils. Through

this mechanism, boundaries are handled by reading zero values into the

stencil, rather than requiring an edge-case on the domain boundaries.
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5.3. GPU implementations

• The sti�ness matrix multiplication was also made to operate on an array,

or pencil, of consecutive nodes within the inner iteration. This was done

to enable SIMD instructions for all nodal operations. The padding was

extended to ensure that no edge-case with a shorter array was necessary.

Using all of these performance improvements, the throughput of the sti�ness

matrix multiplication was found to be 12 GB/s, when compiled using GCC with

aggressive optimization �ags. This is comparable with Liu et al. [50], which

achieved 16 GB/s by writing AVX512 assembly and aligning memory with

memory pages.

5.3 GPU implementations

Two GPU accelerated implementations were considered for this work. The �st

used the specialized Futhark language, which an array based language designed

speci�cally for GPU programming. The second implementation is based on the

CPU reference implementation, and uses OpenMP o�oading to transform loops

to GPU kernels. As with the CPU reference program, all of the implementations

utilize the structure of a Cartesian grid to simplify the required computations.

All implementations were validated to solve the linear elasticity problem,

and the topology optimization problem correctly. Figure 5.1 shows a resulting

cantilever structure computed using the Futhark based implementation.

It was found that both approaches to GPU acceleration were able to imple-

ment the desired programs with relative ease. The article [P4] compares a code

snippet of the various implementations, and refers to similar snippets written in

other frameworks for GPU implementation. The conclusion of these comparisons

is that it is simpler to implement GPU acceleration through high-abstraction

approaches.

Performance benchmarks

Performance benchmarks are carried out for the GPU accelerated implemen-

tations. Here, the reference CPU implementation is crucial, as it allows us to

compare performance to an optimized CPU implementation.

The publicly available PETSc CPU based implementation of Aage et al. [13]

is also considered, to show the performance of publicly available prior work.

Notice that this implementation is targeting a distributed memory setting, which
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5. GPU Acceleration

Figure 5.1: Cantilever structure optimized with 65.5 million elements, �lter

radius of 2.5 elements, and a volume fraction of 10%. The 100 design iterations

were solved in approximately 2 hours using the Futhark implementation, using

a NVIDIA A100 GPU. Figure taken from [P4].

introduces additional overhead compared to our CPU reference. Also, the coarse-

space correction was changed from the default settings to a LU decomposition, to

better match all other implementations. This was found to reduce the wall-clock

run-time across all tested mesh re�nements for this implementation, compared

to default settings.

The benchmarkswere performed on two testmachines. The implementations

which do not use GPU acceleration, OpenMP-CPU and Aage et al., were tested

on a machine with two Intel Xeon 8160 processors, launched in 2017 with a

suggested retail price of 4.700$ each. The two implementations which did use

a GPU accelerator were ran on a machine with a Intel Xeon 6226R CPU and a

NVIDIA A100 GPU. The A100 was launched in 2020 at a recommended retail

price of 12.500$. The purpose of using a di�erent machine for the non-accelerated

implementations was to use computing hardware in a similar price-range to

the A100 in order to give some possibility of comparison. However, it is worth

noting that the used GPU is signi�cantly newer than the CPUs, resulting in

better compute capabilities at the given price.

Figure 5.2 shows the wall-clock run-times for all implementations across a

series of mesh re�nements. It can be seen that the implementation of Aage et al.
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Figure 5.2: Wall-clock run-times for various topology optimization implementa-

tions and mesh re�nements. All problems solve a cantilever problem, similar to

that shown in �g. 5.1, with a �lter radius to 5% of the domain depth. All testes

are performed with 4 multigrid levels, with the exception of square nodes, which

are computed using 5 multigrid levels. Figure taken from [P4].

[13] performs slowest across all mesh sizes. This is in due to a lack of problem

speci�c optimization, as this implementation uses PETSc [20], which is a general

purpose distributed linear algebra library written using MPI. Furthermore, this

implementation uses assembled matrices for the �nest level, unlike all other

implementations.

It can be sen that the Futhark based implementation is slow for small problem

sizes compared to both OpenMP based implementations. This is likely due to

some overhead present when launching the GPU computation kernels. Both

GPU accelerated implementations are faster than the CPU reference for larger

problem sizes, with the Futhark implementation being the fastest. However, it is

also noteworthy that the Futhark implementation also consumes signi�cantly

more memory on the GPU, compared to the OpenMP-GPU implementation,

limiting the largest problem solved by the Futhark implementation to 65M

elements.

For large problems, it is found that adding a �fth multigrid level speeds-up

the computation, due to a reduced computational e�ort in performing the coarse-

grid correction, as indicated by the square nodes in �g. 5.2. The performance is

increased signi�cantly more for the GPU accelerated implementations, due to
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Figure 5.3: Relative speedup at selected re�nements of �g. 5.1. All wall-clock

times are normalized to the OpenMP-CPU implementation. Higher is better.

Figure taken from [P4].

the poor coarse space correction in the Futhark implementation, and reduced

data transfer in the GPU accelerated OpenMP implementation.

Figure 5.3 shows the relative improvements in wall-clock time at select

re�nements from �g. 5.2. The used metric is improvement over the OpenMP

CPU reference implementation, as this implementation is our best-case CPU

performance. It can now be seen that the GPU accelerated OpenMP implemen-

tation always is slightly faster than the reference, until �ve levels are used for a

large resolution. While a speedup of a factor of two might not seem impressive,

remember that we compare towards an optimized reference, which is itself four

times faster than the PETSc based implementation. The performance of the

GPU accelerated OpenMP implementation with 5 levels and 65M elements, still

corresponds to about 17 minutes for the �rst 20 design iterations in absolute

terms.

Extension to Non-linear Elasticity

The Futhark based implementation was extended to nonlinear elasticity, in

order to show that the language is su�ciently simple to allow extensibility.

The approach from Buhl et al. [52] was used to perform optimization of end-
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(a) Linear. (b) Nonlinear.

Figure 5.4: Double clamped beam example computed with 768 000 elements, a

volume fraction of 0.1, a �lter radius of 2.5 elements, and a load of 0.00015N.

Figure taken from [P4].

compliance. The elastic material was modeled using Green-Lagrange strains

and a Neo-Hookean material model [52, 53].

It was found feasible to implement the non-linear approach in Futhark,

although some key implementation details had to be reworked to accommodate

the new problem. Most signi�cantly, all local element matrices were no longer

identical save a scaling, as they were now strain dependent. This meant that the

nodal-stencil approach became less feasible, as computational e�ort was required

to recompute all element matrices. Therefore a typical element based assembly

was chosen, using the generalized histogram of Futhark [54] to implement

the assembly operation itself. Figure 5.4 shows a double clamped cantilever

optimized for both linear compliance and nonlinear elastic end-compliance.

More structures, and a comparison of compliance measures, is given in [P4].

Due to the additional need for element-wise integration of matrices, and

the changed assembly routine, the nonlinear implementation is signi�cantly

slower than the linear counterpart. For instance, one application of the sti�ness

matrix takes 1.3ms in the linear case and 1075ms in the nonlinear case, using

2 million elements and the A100 GPU. This is indeed a limiting factor, and is

why the nonlinear example uses less than a million elements. To implement a

more e�cient nonlinear approach, an implementation structured around the

non-linearity should be devised. However, this implementation shows that the

used approaches are extensible.
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Concluding Remarks

Taking care to implement the topology optimization program in a way which

utilizes available hardware e�ciently is key for performing the computations in

a reasonable amount of time. This is seen by comparing the presented reference

OpenMP-CPU program with the PETSc based program from Aage et al. [13]

shows a large improvement in e�ciency on the same hardware. By using

GPU acceleration, even through abstract o�oading mechanisms, we see further

improvement of performance using similarly priced hardware.
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Figure 6.1: Example interior of dehomogenized structure. Image courtesy of

Peter D. L. Jensen.

This chapter deals with the shape optimization of shell structures. On

�rst glance, this subject should be outside the scope of a dissertation dealing

with topology optimization. However, some motivation exist for this seeming

deviation of topic.

6.1 Motivation for Shape Optimization

This dissertation is written as part of a larger research project. Here, several

approaches were considered for e�cient solution of very large-scale topology

optimization problems. One of these approaches was the so-called dehomoge-

nization. The method �rst solves a coarse topology optimization problem using

some homogenized anisotropic microstructure, which is then interpreted to

generate a �nely resolved shell structure, such as the one shown in �g. 6.1. The

choice of recreating shell structures was motivated by the known optimallity of

shell structures in many situations [55]. This conversion from microstructure

distribution to shell structure is a heuristic method, which does not consider me-

chanical performance. The conversion also breaks the underlying assumptions

of the homogenization, such as separation of scales, which might also result in a

changed mechanical performance.

This lack of control of mechanical performance in the �nal shell structure

motivated the current chapter. By applying shape and thickness optimization to

the resulting structures, as a �nal post-processing step, mechanical performance

of the resulting structureswould be ensured. Special modeling requirements arise

from these dehomogenized structures, specially the ability to handle complex
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input geometries with many shell intersections.

The optimization of shape and thickness of shell structures is interesting to

consider as a contrast to large-scale topology optimization. By injecting prior

knowledge of an initial structure and limiting the design-space to permutations

of this initial structure, it is possible to reduce the computational complexity of

the problem by orders of magnitude.

6.2 A Formulation for Shape Optimization

When performing shape optimization two fundamental approaches are usually

considered. The �rst type of approaches rely on some abstract geometry repre-

sentation, such as splines or other CAD parameters. These parameters are then

used as design variables to ensure that the resulting design can be interpreted

easily, and is su�ciently regular. Alternately, so-called “parameter-free” or nodal

methods work with the nodal positions of the �nite element mesh directly. Here

the term nodal methods is preferred, as the methods use plenty of parameters

which are not related to the CAD representation. It will be seen that these

methods have similarities to topology optimization methods, due to the high

number of design variables. For this work a nodal method is employed as we do

not have access to any underlying CAD parameters.

This work uses a simple triangular shell element formulation, which triv-

ially enables accurate modeling of shell intersections [56, 57]. The element

is originally formulated for �nite deformations, but is restricted to the linear

in�nitesimal deformations in this work.

Parameterizing and Regularizing Shape

The used nodal shape parametrization is based on nodal relocation, i.e. a change

from an initial con�guration to the current con�guration. The unchanging

initial nodal locations x0 are coupled to the current node locations x by some

coordinate change ∆x. This is illustrated in �g. 6.2.

x = x0 +∆x (6.1)

In principle, this change of coordinates ∆x could be used directly as design

variables. In practice, however, it is found to result in an optimization problem

which is very hard to solve satisfactorily. We therefore introduce a regularization
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x0

x

∆x

Figure 6.2: Sketch of updated nodal positions x de�ned as a relocation ∆x from

the initial mesh con�guration x0. Figure from [P5].

by �ltering to this formulation. By solving a partial di�erential equations similar

to the Helmholtz equation, on the initial mesh de�ned by x0, we smooth the

changes in coordinates with neighboring nodes. When discretized with �nite

elements, this leads to the following expression.

∆x =
[

r2L+M
]−1

M xd (6.2)

Here, the matrices L andM denote the assembled �nite element operators, r
denotes a radius, which controls the smoothness of the resulting solution. A full

explanation of this �ltering technique can be found in [P5] or Asl and Bletzinger

[36]. The unsmoothed coordinate relocations xd are used as design variables to

control the shape of the shell structure.

This approach uses the initial mesh x0 as a constant reference, and de�nes

shape as an relocation of this surface. This inherently puts the formulation at a

disadvantage when considering arbitrarily large relocations, as x0 and x begin

to di�er signi�cantly. However, when the resulting structures are “near” the

initial structure, this approach was found to be e�ective.

However, �ltering the shape changes is not su�cient to ensure regularity

of the resulting �nite element mesh with node coordinates x. Elements can

become distorted, resulting in unacceptably poor accuracy in the �nite element

approximation of the deformation. This will ultimately result in shapes which

are optimized for spurious sti�ness in the �nite element modeling of malformed

meshes.
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6.2. A Formulation for Shape Optimization

To mitigate the potentially malformed meshes a second regularization is

implemented as a constraint on a mesh quality measure. Here the so-called

radius ratio of the triangular elements ρ is used as a quality metric.

ρ =
R

2r
=

abc

(b+ c− a)(c+ a− b)(a+ b− c)
(6.3)

The radius ratio ρ is computed from the three side-lengths of the triangle

a, b, c. This metric for every triangle is aggregated into a single value ρagg using
the p-norm, which can then be constrained.

ρagg =

(

1

ne

ne
∑

i=1

ρi
p

)
1

p

(6.4)

Optimisation Problem

Using the described parametrization of shape, along with a similar parametriza-

tion of thickness described in detail in [P5] we can now formulate the shape

optimization problem.

minimize
xd,hd

C = u¦Ku (6.5a)

subject to

state equation Ku = f (6.5b)

�lters ∆x = Fxd (6.5c)

hf = Fhhd (6.5d)

volume v∗ ≤ V ∗ (6.5e)

radius ratio ρagg ≤ ρlim (6.5f)

bounds xlow ≤ [xd]i ≤ xupp ∀i (6.5g)

hlow ≤ [hd]i ≤ hupp ∀i (6.5h)

The presented approach for shape parametrization can be extended to cover

non-linear elasticity or alternate objective functions and constraints. In the

considered formulation linear elastic compliance is minimized subject to nodal
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6. Shape Optimisation

relocations and nodal thicknesses and a constraint on the used volume as shown

in eqs. (6.5a) and (6.5e). The remaining equations are only present to make

explicit all relations and constraints which are introduced to regularize the

problem or ensure correctness.

The resulting problem resembles a topology optimization problemwith nodal

variables. Some nodal �eld is regularized through �ltering, and is used to de�ne

the resulting sti�ness matrix of the system. However, due to the dimensionality

of surfaces, we note that the resulting �nite element meshes are much smaller

than those required to solve similar topology optimization problems, resulting

in smaller optimization problems in practice.

6.3 Examples

A few examples of shape and thickness optimization of shell structures are con-

sidered. We use one example to show the e�ect of the regularization parameters,

and one example to consider the widely used cantilever example from topology

optimization. More examples can be found in [P5].

Michell Sphere

We consider a cylinder which is subjected to a torsional load, as shown in �g. 6.3.

These boundary conditions are similar to those of the Michell sphere [58]. This

example is also considered in a topology optimization problem by Sigmund

et al. [55], which �nd that the solution is a variable thickness sphere, with high

thickness near the clamped and loaded boundaries. In the context of shape

optimization, the example helps illustrate the averse e�ect of regularization

parameters, as they sometimes prohibit �nding mechanically optimal solutions.

If this problem is solved for shape optimization with parameters of ρlim = 1.1
and rsupp = 0.5, which are consistent with suitable default parameters identi�ed

in [P5], we get the solution shown in �g. 6.4a. This result is not consistent with

the expected solution of a perfect sphere. Upon inspection, it is found that this

structure reaches the limit of the quality constraint eq. (6.5f), where “in�ating”

the cylinder further would result in breaking the constraint.

Increasing the allowed average triangle distortion to ρlim = 1.5, the example

is rerun resulting in the structure shown in �g. 6.4b. Now the structure is able

to “in�ate” to the size of the full sphere, attaining an aggregated radius ratio
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6.3. Examples

Figure 6.3: Boundary conditions and initial con�guration of cylinder under

torsion. Both lines with boundary conditions and forces are �xed to have no

relocation during shape optimization through Dirichlet boundary conditions in

the �lter equations.

(a)
ρlim = 1.1,
rsupp = 0.5,
C = 0.74 J

(b)
ρlim = 1.5,
rsupp = 0.5,
C = 0.350 J

(c)
ρlim = 1.5,
rsupp = 0.2,
C = 0.347 J

Figure 6.4: Shape and thickness optimized cylinder under torsion, with various

regularization parameters. Figures taken from [P5].

higher than the original bound. However, the resulting structure is still not fully

spherical, as some variable curvature is present. Upon inspection, it is found

that the resulting structure is aligned with the used Cartesian coordinates. This

could imply that the �ltering is playing an e�ect, as every coordinate component

is �ltered independently.

Reducing the used �lter size results in a structure which is perfectly spherical,

as shown in �g. 6.4c. This result is now in very good agreement with the

presented result from Sigmund et al. [55].

If this example is considered in isolation, it would seem to show that the ap-

plied regularization to the problem through �ltering and radius-ratio constraints

are too strict for many interesting applications. However, it was in general

found throughout the examples of [P5] that the radius ratio constraint value of
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6. Shape Optimisation

Figure 6.5: Initial con�guration of cantilever example. The green surface is sub-

jected to a traction force, and is kept in place during the optimization. Similarly,

the opposite end of the structure is clamped and also restricted to remain on the

initial plane.

ρlim = 1.1 gave rise to good results. Likewise, many applications found that in-

creasing the �lter radius consistently provided smoother and better performing

structures.

Cantilever

A cantilever example was built based on the classical topology optimization

structure. The initial structure is shown in �g. 6.5. The bound constraints

for the un�ltered node locations eq. (6.5g) are used to make approximate box

constraints to the �nal design corresponding to the usual 2 × 1 × 1 domain

usually used in the topology optimization problem. As these constraints are

applied to the un�ltered, and not the �ltered, nodal relocations, they are indeed

only approximate.

Figure 6.6 shows the optimized cantilever structure. As the initial structure

is vaguely modeled after a well-performing structure. It is seen that the resulting

structure somewhat remains withing the bounding box, with a small error at the

top and bottom. The �anges are bent slightly inward, and pushed further out

from the initial con�guration. The connection between �anges and loaded plate

is realigned, such that the surfaces are near continuous. The thicknesses are

redistributed, in a manner such that the central plate is similar to the well-studied

“variable thickness plate” problem [4].
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6.3. Examples

Figure 6.6: Resulting structure of the cantilever example. Elements with a

resulting thickness lower than 1× 10−5 are removed for clarity. The resulting

compliance is C = 27.17 J (Cm = 27.02 J, Cb = 0.15 J).

Dehomogenized Cantilever

A single example is included of a dehomogenized cantilever structure, similar to

that presented in the previous section. Note however, that the used volume and

force magnitudes di�ers from the previous cantilever example, thus we cannot

compare compliance values directly.

The tools which transform the dehomogenized structure to a shell based

�nite element mesh are currently under development. Therefore, several defects

are present in the initial mesh, shown in �g. 6.7. The initial mesh is generated

using a uniform thickness, as interpreting the thickness from the homogenization

was not yet implemented. Some of the surfaces do not connect, as the interior

surface stops before intersecting the outer hull. Similarly, some interior surfaces

intersect the outer hull, but are not contained within it, resulting in exterior shell

segments. The area where the load is applied is meshed irregularly, giving poor

control of the actual area which is subject to traction loads. Most shell elements

are near equilateral (ρ ≈ 1), although a signi�cant amount of outliers exist

near surface intersections. E�orts to improve element quality near intersections

has introduced angled elements, resulting in intersections which are no longer
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6. Shape Optimisation

Figure 6.7: Initial dehomogenzied cantilever beam. Meshed with 190.000 ele-

ments and uniform thickness of 0.01. Part of the structure has been made trans-

parent to reveal the internal sti�eners. The initial compliance is C = 0.170 J
(Cm = 0.163 J, Cb = 0.007 J), and the initial volume is 0.144m3.

perfectly perpendicular.

Despite these issues the initial mesh shown in �g. 6.7 is used for an initial

study of the e�ect of optimizing the shape and thickness of these shell structures.

It is seen that the initial structure has an initial compliance of 0.170 J and

volume of 0.144m3. As the thickness information was not preserved, these

numbers should not be expected to match their counterparts in the homogenized

setting, although the uniform thickness was chosen to achieve something near

the original target volume of 0.2m3.

It is noteworthy that bending only composes 4% of the measured compliance

in the initial structure. This domination of membrane loading shows a good

correspondence with the tensile dominated result from homogenization. As

thin shell structures have much better sti�ness in the membrane direction, this

indicates that the dehomogenized structure is performing quite well before

optimizing the thickness and shape.

Optimizing shape and thickness results in the structure shown in �g. 6.8.

Here it is clear that the thickness has been redistributed extensively. The in-

ner sti�eners are reduced to a minimal thickness, indicating that they should

potentially be removed altogether. This is somewhat to be expected, as the

homogenized formulation used to generate this base structure included con-

straints to force shells to be active in all three direction, irrespective of physical
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6.3. Examples

Figure 6.8: Result of shape and thickness optimization of dehomogenized can-

tilever. Part of the structure has been made transparent to reveal the internal sti�-

eners. The resulting compliance is C = 0.133 J (Cm = 0.131 J, Cb = 0.002 J),
and the initial volume is 0.144m3.

performance. The presented post-optimization includes no such constraints. The

bending contribution towards the �nal compliance is reduced to 1.5%, possibly

due to slight realignments of the shell and increasing thickness in areas with

high membrane loading.

Concluding Remarks

This chapter has studied a case of restricting the design optimization problem to

one of improving the shape of a known topology. We formulate the optimization

problem, eq. (6.5), in a very similar way to a standard topology optimization

problem, eq. (1.1), and solve it using the same nested approach. It is notable that

suitable designs of shell structures can be found with a high degree of design

freedom, within the given bounds, with signi�cantly less computational e�ort

compared to usual topology optimization. However, the resulting designs are

only adaptations of the initial base structures, which in turn implies that the

speci�cation of the initial structure is paramount to obtain the best resulting

structures. The shown preliminary result of optimizing a dehomogenized struc-

ture shows great promise of using optimization of shape and thickness as a

post-processing tool for dehomogenized structures.
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Chapter7

Concluding Remarks

There is nothing so useless as
doing e�ciently that which should
not be done at all.

Peter Drucker
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7. Concluding Remarks

Several implementation approaches to high-�delity topology optimization

have been studied. The methodologies can be divided into distributed computing

discussed in chapters 3 and 4, and single desktop computing discussed in chap-

ter 5. Both methods build upon the multigrid method, chapter 2, to e�ciently

solve the state equations of the topology optimization problems.

A key question which remains to be answered is what approach is best suited

to implement computationally e�cient, high �delity, topology optimization.

Chapter 5 shows that it is possible to solve �nely resolved topology optimization

problems using comparably accessible hardware in a matter of hours. Adopting

this approach and extending it to e�ciently handle arbitrary design domains and

boundary conditions is, in my opinion, the most promising direction for e�cient

solutions of topology optimization problems with linear state equations. This

is doubly true as the hardware cost of a single, albeit very expensive, desktop

computer are far lower than those of accessing a high performance computing

cluster. This seems to be a promising path to enable a wide range of users to

access high �delity topology optimization.

Nonlinear problems are not able to achieve the same computational im-

provement by using a Cartesian grid, as individual elements require numerical

integration at every tangent evaluation regardless of the identical element shapes.

This is apparent in the signi�cant increase of computation time shown in chap-

ter 5. The improved �exibility of unstructured meshes might prove bene�cial

as complex design domains can be represented directly through the mesh. The

main computational bottleneck of integration can be mitigated by storing the

matrix or stencil on all multigrid levels, but this comes with an increase in

memory requirements of nearly a factor 100, potentially limiting the achievable

resolution due to lack of memory. However, Cartesian grids could still o�er

some bene�ts. Rewriting the nonlinear �nite element formulation to a Cartesian

stencil, by could potentially greatly increase the implementation e�ciency, and

leverage linear implementations. In either case, e�ciently implementing the ele-

ment level integration will be central in achieving acceptable performance. The

best approach for nonlinear problems, where local integration is unavoidable,

remains an open question.

Restricting the optimization problem to improving an initial structure, as

done in the shape optimization problem, presented in chapter 6, reduced the

computational cost signi�cantly. Here the full optimization problem was solved

in ten minutes for most cases, with software which has not undergone signi�cant
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performance analysis or optimization. This is a reminder that solving a simpli�ed

optimization problem is much preferable, if feasible. In many industrial contexts,

injecting prior knowledge is also a way to ensure su�ciently simple designs

and comparability with manufacturing procedures.

Hardware for high performance computing is evolving to be more hetero-

geneous, and thus complex. Modern systems exhibit heterogeneity both by

having various types of computing hardware, e.g. including GPU acceleration,

and by introducing additional heterogeneity within every system component,

e.g. by non-uniform memory access. Implementing e�cient software for these

systems is also becoming increasingly complex as the implementation needs

re�ect system behavior. It does well to remember that a majority of practitioners

and researchers in structural optimization do not have profound knowledge of

neither hardware architecture or software engineering. Many implementation

details required to e�ciently utilize modern hardware are distractions from the

theory of structural optimization itself. As such, practitioners should be shielded

from increasing complexity by some performance aware abstraction to enable

users to utilize the performance improvements of modern hardware. More spe-

cialized compute acceleration platforms such as custom FPGA accelerators or

quantum computing will presumably have similar requirements for abstraction

and simplicity for wide adoption.

To summarize, for many topology optimization problems it is possible to

use the linearity of the problem along with a Cartesian grid to create very

e�cient implementations. These can already be developed into powerful tools

for large-scale topology optimization on single machines. Even if linearity is not

available, it is conjectured that utilizing the structure of a Cartesian grid will

prove to be a viable approach for large-scale applications. Shape optimization of

dehomogenized structures has been shown to improve their shape and thickness

distribution further, even though the base structures perform quite satisfactorily.
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A B S T R A C T

This work presents a high performance computing framework for ultra large scale, shell-element based topology
optimization. The shell elements are formulated using a linear elastic, small strain assumption and are of the
solid type, meaning that each quadrilateral shell element is extruded and assigned 24 degrees of freedom. The
resulting linear system is solved using a fully parallelized multigrid preconditioned Krylov method, tailored
specifically for unstructured quadrilateral shell meshes. The multigrid approach is shown to have good parallel
scaling properties and is able to efficiently handle the ill-conditioning arising from the ‘Solid Interpolation of
Material Properties’ (SIMP) method. For the optimization, the classical minimum compliance design problem
with multiple load cases, prescribed minimum length scale and a local volume constraint is investigated.
The latter is implemented through efficient PDE-filtering in contrast to usual local image filtering based
implementations. Finally, the framework is demonstrated on two idealized examples from civil and aerospace
engineering, solving shell optimization problems with up to 11 million shell elements on 800 cores. As an
example, this resolution corresponds to a minimum feature size of 1.5 cm on a high-riser of height 80 m.

1. Introduction

Shell structures can achieve high stiffness-to-weight ratios, and are
therefore often found in weight critical applications including aircrafts,
high-risers and ships. On the other hand, topology optimization is a
numerical optimization tool used to create high performance structures,
tailored to specific load cases, with little or no prior knowledge of the
optimal structure [1]. Thus, topology optimization and shell structures
provide a near-perfect combination in the pursuit for stiffness optimal
and light-weight constructions.

Performing structural optimization using shell elements presents
several possibilities and challenges. For example, the shell thickness
can be optimized as a varying field throughout the structure [2].
Alternatively, applying the regular SIMP approach [3,4] can be used to
determine the optimal perforation of a given shell structure. Another
large class of shell topology optimization problems is the orientation
of anisotropic material features, whether it is stiffening beads [5–7]
or composite laminates [8]. Furthermore, applications of shell element
based topology optimization include [9,10], which present simulta-
neous topology and shape optimization of curved plates, where the
resulting structures carry the loads efficiently through in-plane strains.
A discrete material optimization framework is presented in [11], which
is specifically developed to choose between several laminate directions
in shell structures. This framework is expanded several times to include
optimizing the shell thickness [12], and in order to improve the discrete

∗ Corresponding author.
E-mail addresses: eratr@mek.dtu.dk (E.A. Träff), sigmund@dtu.dk (O. Sigmund), naage@mek.dtu.dk (N. Aage).

formulation [13]. A case study optimizing the thickness of a reinforcing

shell layer of a submarine sail, which forms part of the outer submarine

structure, is considered in [14]. Optimization of buckling phenomena

of shells is studied in [15], where regularization schemes are included

to avoid spurious buckling modes in void regions. A framework for

the placement of reinforcing patches is presented in [16], where the

patches act as a reinforcement onto an existing shell structure. A case

study in which a wind turbine wing is optimized is presented in [17],

using a genetic algorithm approach for the outer turbine skin, and

topology optimization for the reinforcing spars.

Numerical analysis of shell structures using finite elements results

in very high condition numbers of the resulting stiffness matrices

compared to those of standard solid elements [18]. The high condi-

tion numbers have adverse effect on the numerical accuracy of direct

solution methods, and have significant impact on the efficiency of

iterative solution methods. The ill-conditioning occurs due to the large

difference between high frequency in-plane deformation modes, and

low frequency out-of-plane deformation modes, as shown in [18].

Usually, direct solution methods are applied to shell structures, even

when tackling large scale problems as e.g. done in [19], which solves

a finite element problem using approximately 920,000 quadrilateral

shell elements. In [20] the authors present a multigrid method for

shell structures, which shows that many iterations are needed for
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Fig. 1. Illustration of the extrusion process for interpreting quadrilateral shell elements as hexahedrals. The red arrows indicate the normals of the quadrilateral surfaces, while V3

is used to denote the approximated shell normal at a given node. Each node in the quadrilateral mesh is extruded to two nodes in the corresponding hexahedral mesh, as shown
in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Illustration of the projection process used to evaluate if a node is within a quadrilateral.

Fig. 3. Sketch of the used geometry for the fuselage example. The outer shell is shown in yellow, the floor plate in green, and the various reinforcing plates are shown in blue.
The three regions with boundary conditions, are shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

convergence in thin shells, where the conditioning problem is worst.
Combining the high condition numbers of shell structures with the
highly heterogeneous material parameters encountered in topology
optimization, which further increases the condition number, presents
a severe challenge that must be overcome in order to allow for ultra
high resolution topology optimization of shells structures.

The conjecture that ultra high resolution is a necessity in order to
achieve maximum insight into a given design space, has been demon-
strated in many recent works including [21–26]. As an example, [22]
discretizes an entire 26 m long aircraft wing, with a maximum element
size of 0.8 cm, allowing the optimization to create many local features

that would not have been possible using a coarse mesh. Moreover, the
infill possibilities provided by additive manufacturing, require a highly
resolved design space in order to allow for the formation of an intricate
infill layout.

In this work, a framework for performing high resolution topology
optimization of shell structures is presented. First, a fully parallelized
multigrid preconditioner based on the approach from [22] is developed
to facilitate the solving of very large scale shell topology optimization
problems. The prolongation operators for the unstructured shell grids
are obtained using a variation of the approach presented in [20] for a
continuum shell element formulation. The proposed solver setup allows
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Fig. 4. Speed-up factor for the first design iteration of fuselage example with approximately 45 million degrees of freedom. The parallel version with 160 cores is used as the
base case, due to memory constraints the problem is not solved on fewer compute nodes.

Fig. 5. Geometry of the Lotte tower test example. The square bottom of the tower is
clamped. Two load cases, each consisting of two point loads, are depicted with green
and blue arrows. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

for the solution of systems with up to 11 million quadrilateral shell
elements (69 million degrees of freedom) with highly heterogeneous
material coefficients. The framework is then employed on selected
design problems from civil and aerospace engineering and the findings
are summarized and discussed.

2. Shell finite element model

Throughout this work linear elasticity using small strains for shells
is considered. We present a methodology for using a continuum shell

formulation defined for hexahedral elements, on a mesh of quadrilat-
eral shell elements. This methodology is introduced, since continuum
shell formulations have desirable properties with respect to symmetry
and multigrid methods (see Section 3 for details). Furthermore, as most
available meshing software focuses on quadrilateral shell elements, the
development of this approach was necessary. The method works by
creating an equivalent hexahedral element for each quadrilateral when
integrating the element.

The methodology for creating an equivalent hexahedral requires
access to the shell normals defined on the element nodes. In order to
approximate these vectors the normal vector for each quadrilateral is
computed. Then the nodal normal vector is found by averaging the
normal vectors of all connected elements, as depicted in Fig. 1. When
constructing the equivalent hexahedral, all nodes are translated by
half the shell thickness ℎ in both directions along the corresponding
nodal normal, as also depicted in Fig. 1. During the assembly process
the nodes in the quadrilateral mesh can be considered as owning
the degrees of freedom corresponding to both extruded nodes in the
equivalent hexahedral mesh.

A drawback of this extrusion method, is that arbitrary shell thick-
nesses cannot be considered. The formation of hourglass hexahedral
elements is possible if the shell thickness is large relative to the element
side length. Therefore careful monitoring of the validity of the extruded
mesh is necessary. In this work the scaled Jacobian metric is computed
for all elements, and the computations are stopped if minimum value of
the metric is unsatisfactory, which for this work is chosen as less than
0.2.

The shell element is a slightly modified version of the continuum
shell element presented in [27]. The used formulation employs both
the Mixed Interpolation of Tensorial Components (MITC) correction
when interpolating the out-of-plane shear strains and the Assumed
Natural Strains (ANS) correction when computing the normal strain
in the out-of-plane normal direction. Unlike the original formulation
from [27], this version does not employ the Enhanced Assumed Strains
(EAS) correction, as this correction negatively affects the efficiency of
iterative solvers. As in the original formulation, it is possible to include
multiple layers with varying material properties, which is used to
implement passive domains during the optimization when formulating
a shell reinforcement problem. Finally, the Scaled Thickness Condition-
ing (STC) [28] is applied to the formulation, in order to reduce the
condition number associated with thin shell elements. For complete-
ness, the full shell element formulation including design dependence is
given in Appendix A.

The accuracy of the element implementation was verified using a
set of standard test examples. For the centrally loaded circular clamped
plate and for the hemispherical problem presented in [29], the element
is found to converge to the exact deformation value. For the pinched
diaphragm supported cylinder study [30], the element implementation
was found to deviate by 5% of the analytical displacement value.
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Table 1
Summary of the used smoothers, preconditioners and steps used in the multigrid
preconditioner.

Level(s) Smoother Preconditioner Steps

Finest Flexible CG Multigrid –
Intermediate Chebyshev [34] SOR [34] 4
Coarse GMRES [34] Algebraic multigrid (PETSc GAMG) [35] 200

3. Multigrid approach

It is well-known that solving large scale problems using direct
methods is not feasible in general. Therefore, iterative methods must
be employed. Here we use a Galerkin projection based multigrid pre-
conditioned Krylov subspace solver in order to efficiently solve large
scale heterogeneous shell problems [31].

The used multigrid method is based on the scheme presented in [22,
32], which uses a standard V-cycle multigrid method with Galerkin
projection as preconditioner for the preconditioned flexible conjugate
gradients solver [33,34]. For topology optimization problems the solver
uses the deformation of the previous design as initial guess for the CG
iterations, allowing for fast convergence for smaller design changes.
Information about the used hierarchy of smoothers is summarized in
Table 1.

The prolongation operator is based on [20] which deals with de-
generated, i.e. quadrilateral, shell elements. The prolongation operator
maps the displacement fields from a coarse mesh onto a fine mesh.
In the presented approach the displacement fields of the interior and
exterior nodes of the hexahedrals are treated separately, resulting in
a prolongation for quadrilateral shell elements which prolongs six
different fields. This treatment of the displacements as two separate
fields is performed to avoid smoothing of the field through the shell
thickness, as there exists no additional nodes through the thickness in
the coarser meshes.

The operator is constructed in parallel using the shape functions of
the coarse mesh to interpolate coarse nodal values to a given node in
the fine mesh. In practice this requires some additional computations,
due to both the lack of structure in the mesh and due to the 2.5D nature
of shells. The pseudo-code for computing the prolongation operator
between two meshes is shown in algorithm 1. The KD-tree used in
algorithm 1 is introduced to avoid performing a search for all potential
nodes in the unstructured meshes. Similarly, the second loop, which
handles all fine nodes, is introduced to implement a heuristic addition
for nodes which were never found to reside within a coarse element.
The process of projecting a node onto the element plane, and determin-
ing if it is within the said element, is depicted in Fig. 2. The potential
nodes are identified, and projected onto the plane of the quadrilateral,
wherein it is checked whether they are inside the quadrilateral.

3.1. Implementation

The multigrid approach is implemented using the PCMG precondi-
tioner in PETSc [36–38], which also contains the multigrid cycles and
smoothers. The prolongation operator is constructed in parallel as a pre-
processing step. The efficiency of the multigrid approach and element
is confirmed by the strong scaling results presented in Fig. 4, where
the fuselage example from Fig. 3 (and Section 5.2) is studied with
approximately 45 million degrees of freedom. A near linear speedup is
observed until 480 processors, or 93 000 degrees of freedom pr. core.

The Lotte tower design problem from Fig. 5 [39] is used to examine
the residual as function of conjugate gradient iterations, see more
details in Section 5.1. Fig. 6 shows the convergence of the multigrid
approach for various multigrid levels using homogeneous material
parameters in the domain. As can be seen, the required number of
iterations to reach a given tolerance increases with the number of

Algorithm 1: Pseudo-code to construct prolongation

Data: Fine mesh öi, coarse mesh öi−1

Result: prolongation operator P
K ∶= KD tree of all nodes in öi;
ntouched ∶= zero valued array of size nodes in öi;
forall the elements e * öi−1 do

ie ∶= global indices associated with e;
ce ∶= Center of e;
le ∶= approximate element size of e;
nfound ∶= nodes in K within 1.5 × le of ce;
forall the nodes n * nfound do

ñ ∶= projection of n onto plane of e;
if ñ is within e then

ntouched[n] ∶= ntouched[n] + 1;
in ∶= global indices associated with n;
N ∶= shape functions in e corresponding to position
of ñ;
Insert N into the submatrix in × ie of P ;

end

end

end
Synchronize values of ntouched across processors;
Kc ∶= KD tree of all nodes in öi−1;
forall the nodes n * öi do
if ntouched[n] is 0 then

nfound ∶= 3 nearest nodes to n in Kc ;

wfound ∶=
1

|nfound−n|2 ;
̄wfound ∶=

wfound1
wfound

;

Insert ̄wfound into P such that n is coupled to nfound;

end

end

multigrid levels. However, the cost of each iteration decreases with
more levels, as the coarse problem size decreases.

A study of the residual decrease for the same domain with various
shell thicknesses is shown in Fig. 7. The number of iterations required
to reach convergence increases drastically as the thickness decreases
relative to the size of the shell. This is due to the increasing condition
number, as the difference between the largest and smallest eigenvalues
increases. The increasing condition number drastically reduces the
convergence rate of Krylov methods.

Fig. 8 shows the required number of CG iterations for convergence
during design iterations for a typical topology optimization problem.
It can be seen that the required number of iterations increases in the
beginning, as the heterogeneity of the material parameters increases
fast. After some iterations, however, the design changes become smaller
and more localized, allowing the CG iterations to benefit from the
non-zero initial guess from the previous design iteration.

The presented multigrid approach, and associated implementation,
is not limited to shell elements. Similar performance as that presented
in Fig. 4 has been observed when using the framework to solve topology
optimization problems using hexahedral elements, although far fewer
iterations are needed to reach convergence in the iterative solving pro-
cess. The scaling tests, along with the numerical results of Section 5.2,
were run on the DTU Sophia cluster with two AMD EPYC 7351 16-Core
processors and 128 GB memory per node and infiniband interconnect.

4. Optimization formulation

The considered optimization problem is the well-studied minimum
compliance problem for linear elasticity with multiple load cases [1].
Each element in the mesh is assigned a design variable xe * [0, 1]. The
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Fig. 6. Residuals for the Lotte tower example (Section 5.1) with various multigrid levels. Meshed using 126,024 elements (757,560 dof) and a shell thickness of 0.1.

Fig. 7. Residuals for the Lotte tower example (Section 5.1) with 4 multigrid levels, and various shell thicknesses. Meshed using 126,024 elements (757,560 dof).

Fig. 8. Used number of CG iterations for all design iterations during the optimization of the Lotte tower example (Section 5.1). The model is meshed using approximately 11
million elements, with a shell thickness of 0.015m.

field of design variables is modified through a set of filters in order
to obtain the so-called physical density, which is used to interpolate
the stiffness and mass of the corresponding element. The robust for-
mulation [40,41] is applied to ensure both a minimum length scale
and a 0–1 final design. The robust formulation removes the need for
the usual penalization of intermediate densities, as discussed in [42].
A linear Young’s modulus interpolation scheme is used, corresponding
to the ‘Simplified Isotropic Material with Penalization’ (SIMP) method
with penalization value p = 1, as shown in Eq. (1).

E(xe) = Emin + xe(E0 − Emin), Emin = 10−6E0, 0 d xe d 1 (1)

E0 denotes the background stiffness and Emin denotes the stiffness of a
weak material used to imitate void.

To prevent numerical artifacts such as checkerboards and mesh
dependency we add regularizations in the form of the Helmholtz PDE-
filter [43], and the robust formulation [41]. Furthermore, a modified
local volume constraint [23] is developed for the problem, which uses
the Helmholtz PDE-filter instead of a local average to calculate the local
volume fraction.

In order to simplify the notation the PDE filtering operator Fr ∶

R
n
³ R

n for a given radius r is introduced. Here n denotes the number
of elements in the finite element mesh. The operator is defined as
ė = Fr(Ė) where y is the solution to the modified Helmholtz PDE
with homogeneous Neumann boundary conditions defined on the same
mesh. Two realizations of this operator are used when formulating the
optimization problem; the solid filtering, which replaces the density
filter Fsolid with r = rsolid, and the local volume filter, which replaces
the neighborhood average [23] for the local volume filter FLV with
r = rLV. Usually the filter radii are chosen such that rLV ≫ rsolid. The
authors note that all of the presented radii are corrected to obtain the
scalar coefficient r∗ =

r

2
√
3
used in the PDE formulation, as discussed

in [42].

As with the PDE filter, the heaviside projection is introduced using
an operator H� ∶ R

n
³ R

n which depends on two parameters � and
�. The operator is defined for a given threshold value �, while the
value of � is increased throughout the optimization using a continu-
ation scheme. The operator is defined such that Ę = H�(ė) is applied
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Fig. 9. Close up of resulting topology for the Lotte Tower example using 11.6 million
shell elements and filter radii of rsolid = 8 cm and rLV = 96 cm.

element-wise in the vectors as

ze =
tanh �� + tanh �(ye − �)

tanh �� + tanh �(1 − �)
, "e * {1,& , ne}. (2)

Three realizations of the Heaviside operator are used in the robust
formulation; the nominal H�n , dilated H�d , and eroded H�e . In this
work, the used threshold values are �n = 0.5, �d = 0.4 and �e = 0.6.
The continuation scheme of � begins by setting � ∶= 0.01, then after
every 30 iterations the value is updated � ∶= � + 1. When � = 8,
or at iteration 240, the update scheme changes to � ∶=

6

5
� every 30

iterations. This continues until iteration 600, where the value of beta
� H 59.4. The optimization is run for a maximum of 650 iterations.
This conservative choice of �-continuation is chosen due to the slower
increase in value, compared to the usual continuation scheme used
in e.g. [41]. The slower increase is not strictly necessary, but results
in smaller jumps in � value, which is found to improve convergence
stability.

Given a set of nl load cases with their respective force vectors Ąi *
R
n, i * {1,& , nl}, and corresponding weights wi * R. The optimization

formulation can then be written as:

minimize
Ė*Rne

nl1
i=1

wiēć
⊤Ąi

subject to:

state equation ć(H�e (Fsolid(Ė)))ēć = Ąi, "i * {1,& , nl}

global volume
11ne

e=1
ve

ne1
e=1

ve(H�d (Fsolid(Ė)))e d V ∗
g

local volume ‖FLV(H�d (Fsolid(Ė)))‖plv d V ∗
l

(3)

Note that this is the reduced version of the robust formulation,
which relies on knowledge about the compliance and both constraints.
Namely, it is known that the compliance attains its maximum value
for the eroded realization, while both volume constraints attain their
maximal values for the dilated realization.

The local volume constraint is aggregated using the p-norm approx-
imation, with a penalty value of plv = 16. All examples presented

Fig. 10. Resulting topology of the Lotte tower example with filter radii of rsolid = 8 cm

and rLV = 96 cm.

here are conducted with the global and local volume fractions V ∗
g

=

V ∗
l
= 0.5. It is noted that applying the volume constraint on the dilated

field does not directly control the resulting volume in the nominal

case. As all examples presented in this paper are purely academic, with

arbitrarily chosen volume constraints, a variation in resulting volume

fractions is accepted, and the resulting nominal volume fractions are

stated. If control of the nominal volume is desired, the volume fraction

update scheme presented in [41] may be used. Furthermore, the exact

control of the volume fraction is complicated by the approximate

nature of the p-norm aggregation used for the local volume constraint.

The approximation error in the local volume constraint might prevent
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Fig. 11. Resulting topology of the Lotte tower example with filter radii of rsolid =

22.5 cm and rLV = 4.5m.

the optimizer from using more material, even if the global volume
constraint allows for more material.

Finally, the sensitivities are obtained using the discrete adjoint
method and the optimization problem is solved using a fully paral-
lelized implementation of the Method of Moving Asymptotes (MMA)
[44,45].

5. Numerical examples

5.1. Lotte tower - perforation design

The first example of high resolution topology optimization using
shell elements is the Lotte Tower example, originally suggested in [39].

The tower has a square base of size 10m by 10m meters which is
clamped, and a circular top with radius 5m where the loads are applied.
The tower is 80 m high, and is subjected to two sets of point-loads
of magnitude 1N at the circular top, as depicted in Fig. 5. The tower
itself is modeled as an empty shell where the cross-section linearly
varies between the square at the bottom and the circle at the top.
The geometry was meshed using Cubit [46] with a mapping algorithm,
resulting in 11,637,184 elements on the finest mesh, corresponding to
an average element size of 1.6 cm. The coarser meshes were meshed
independently using the same approach but using fewer elements. This
mesh refinement is so highly resolved that an illustration of the used
mesh is difficult to render. Instead, the refinement can be inferred from
the close-up of the results presented in Fig. 9.

The tower is optimized using a filter radius of rsolid = 8 cm or five
times average element size. Using the expression presented in [47]
it can be found that this corresponds to imposing a length-scale of
3.2 cm or 2 times the average element size. The local volume constraint
is computed based on the dilated realization, with a filter radius of
rLV = 96 cm. The studied problem is that of optimal perforation of a
shell, i.e. no passive shell layers have been included.

A close-up of the resulting structure is shown in Fig. 9 in order
to illustrate the refinement of the structure. It can be seen that the
small bone-like features are resolved with multiple elements across
their thickness.

An overview of the resulting structure is shown in Fig. 10. It can be
seen that it is very intricate, consisting of many small bone-like features
which are oriented to carry the loads. Arches are formed near the points
where the loads are applied and underneath. Near the corners of the
square base many vertical substructures can be found, which branch
out to the arches throughout the height of the structure. Note that
the entire structure is modeled without any symmetry in the design
variables. Nevertheless, the resulting designs are near symmetric, al-
though not fully. This is due to numerical noise and non-convexity of
the optimization problem.

An alternate version of the tower has been run using the same
parameters, with the exception of the filter radii which are changed to
rsolid = 22.5 cm (15 times the average element size) for the solid filter,
and rLV = 4.5m for the local volume filter. The resulting structure is
shown in Fig. 11, which reveals many of the same structural features,
albeit with a larger minimum member size, than the example using a
lower filter radius. The non-symmetry of the solution is much more
apparent in this example due to the large structural features. It can be
seen that the non-symmetry is particularly concentrated on the middle
of the lower flat sections, and between the loaded arches near the top
of the tower. This coincides with the areas with lower strain density,
where material is applied late in the optimization process, and only has
little effect on minimizing the objective function.

The resulting compliance values are 0.334 J for the rsolid = 8 cm, rLV =

96 cm filter radii, and 0.316 J for the rsolid = 22.5 cm, rLV = 4.5m filter
radii. As the filter radius rsolid is increased, the compliance value should
increase, as a larger feature size is enforced on the optimization algo-
rithm. Oppositely, when the local volume filter radius rLV is increased,
the compliance values should decrease, as less complexity is forced on
the resulting structure. Thus when increasing both radii, it is difficult to
predict the effect on the compliance value, which in this case is lower.

The final volume fractions for the two designs were 0.46 for the
rsolid = 8 cm, rLV = 96 cm filter radii, and 0.45 for the rsolid =

22.5 cm, rLV = 4.5m filter radii. These values are lower than the
maximally allowed value of 0.5 for the reasons discussed in Section 4.

Fig. 12 shows the iteration history of the weighted compliance for
the Lotte tower example with filter radii rsolid = 8 cm and rLV = 96 cm

from Figs. 9 and 10. It can be seen that the compliance steadily de-
creases, with the exception of the discontinuities which occur when the
� value is increased through the continuation scheme. As expected, the
final compliance is higher than the value found for the homogeneous
design in the first iteration. This is a consequence of the linear stiffness

78



Thin-Walled Structures 160 (2021) 107349

8

E.A. Träff et al.

Fig. 12. Weighed compliance over design iterations for the Lotte tower example with filter radius of rsolid = 8 cm and local volume filter radius rLV = 96 cm. The compliance weights
are chosen as w1 = w2 = 1.9898 × 10−2, such that w1J1 = w2J2 = 5 for the initial conditions.

Fig. 13. Small local filter size - Overview of the resulting topology of the fuselage example. A white plate has been added to the components which have been modeled using
a passive shell. Likewise, a blue background plate is added to the reinforcing plates near the wing, in order to improve the visualization. The example uses a filter radius of
rsolid = 7.5 cm (7.9 elements) and local volume filter radius rLV = 127 cm (130 elements). The radii of the two enlarged circles are 127 cm and 15 cm, respectively. The elements are
shown in the innermost enlargement, in order to illustrate the mesh refinement.

interpolation, which makes the compliance of the homogeneous design
lower than what is usually obtained using standard SIMP with p = 3.

Both of the tower examples ran for 650 design iterations on 25
compute nodes on the DTU Sophia cluster, i.e. a total of 800 cores. The
full optimization procedure takes around 17 h, or an average of 94 s
pr. design iteration, and solves the state field a total of 1300 times, due
to the two load cases.

5.2. Fuselage - reinforcement design

The second example concerns the optimal reinforcement of the
fuselage of the NASA common research model [48] depicted in Fig. 3.
The geometry of the common research model is used to define the

outer shell of the fuselage. Additionally, a floor panel and some vertical

stiffeners are added. The mesh is generated using a paving algorithm

implemented in Cubit [46], and consists of 7,488,576 shell elements,

with an average element size of 0.95 cm. The coarse grids for the multi-

grid prolongation are generated independently in a similar fashion,

targeting larger average element sizes. Like the Lotte tower, the mesh

refinement is so highly resolved that an illustration is difficult to render.

However, the elements in a close-up are shown in Fig. 13 to give an

impression of the mesh. The filter size for the solid filter for the robust

formulation is rsolid = 7.5 cm or 7.9 times the average element size,

corresponding to imposing a length-scale of 3 cm or 3 times the average

element size.
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Fig. 14. Small local filter size - Close up of the central part of the fuselage. Computed
with a filter radius of rsolid = 7.5 cm (7.9 elements) and local volume filter radius
rLV = 127 cm (130 elements).

Fig. 15. Small local filter size - Close up of the tail section of the fuselage. The
reinforcement structure of the floor can also be seen. Computed with a filter radius of
rsolid = 7.5 cm (7.9 elements) and local volume filter radius rLV = 127 cm (130 elements).

The outer shell, shown in yellow in Fig. 3 and floor panel shown
in green, are both modeled as shells reinforced symmetrically from
both sides. In both cases the central 0.13 cm is modeled as a passive
domain, while two outer reinforcements, each with thickness 1.2 cm,
are modeled using the SIMP approach with a single design variable.
This corresponds to the innermost 5% of the shell being passive. The
plate structures shown in blue in Fig. 3 are modeled without any
passive domain and a thickness of 2.54 cm, which corresponds to a shell
perforation design problem.

Three variations of the fuselage example are considered. The two
first variations vary the local volume filter size, which is used for the

Fig. 17. Large local filter size - Close up of the central part of the fuselage. Computed
with a filter radius of rsolid = 7.5 cm (7.9 elements) and local volume filter radius
rLV = 300 cm (260 elements).

Fig. 18. Large local filter size - Close up of the tail section of the fuselage. The
reinforcement structure of the floor can also be seen. Computed with a filter radius of
rsolid = 7.5 cm (7.9 elements) and local volume filter radius rLV = 300 cm (260 elements).

local volume constraint. The fuselage is studied using a local volume
filter size of rLV = 127 cm and rLV = 300 cm, which corresponds to 130

and 260 times the average element size respectively. The final variation
studies the effects of including a thicker passive shell in the outer skin
and on the floor plate. Here, a passive shell of 40%, instead of the
usual 5%, is studied. The variation in passive thickness is performed
using a local volume filter radius of rLV = 127 cm, corresponding the
first variation. The three cases are denoted as ‘small local filter size’,
‘large local filter size’, and ‘thick passive shell’ respectively, to help
distinguish the designs.

A symmetry boundary condition is applied on the mid-plane of
the fuselage, such that only half the fuselage is modeled. A Dirichlet
boundary condition with zero displacement in the ‘upwards’ direction is

Fig. 16. Large local filter size - Overview of the resulting topology of the fuselage example. It should be noted that a white plate has been added to the components which have
been modeled using a passive shell. Likewise, a blue background plate is added to the reinforcing plates near the wing, in order to improve the visualization. Computed with a
filter radius of rsolid = 7.5 cm (7.9 elements) and local volume filter radius rLV = 300 cm (260 elements).
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Fig. 19. Thick passive shell - Overview of the resulting topology of the fuselage example. It should be noted that a white plate has been added to the components which have
been modeled using a passive shell. Likewise, a blue background plate is added to the reinforcing plates near the wing, in order to improve the visualization. Computed with a
filter radius of rsolid = 7.5 cm (7.9 elements) and local volume filter radius rLV = 127 cm (160 elements). The outer aircraft skin and floor are modeled with a passive central shell
corresponding to 40% of the total shell thickness.

Fig. 20. Thick passive shell - Close up of the central part of the fuselage. Computed
with a filter radius of rsolid = 7.5 cm (7.9 elements) and local volume filter radius
rLV = 127 cm (160 elements). The outer aircraft skin and floor are modeled with a
passive central shell corresponding to 40% of the total shell thickness.

applied at two edges at the intersection of the interior vertical stiffeners
and the outer shell, and along the edge which connects a point from
each curve. A single point on the top of the outer shell is given a
Dirichlet boundary condition in the direction along the length of the
fuselage, to avoid rigid body motion.

Two load cases are considered for the fuselage example. The first
load case is an internal pressure of magnitude 35N∕cm2 on the outer
shell. In order to ensure equilibrium in the loads along the length of the
fuselage, an additional force is distributed along the intersection of the
outer shell and the vertical reinforcement near the tail. The second load
case is a simplified gravity load. It is applied as a design independent
body load of magnitude 15.6N∕cm3 on both the outer shell and the floor
panel.

The purpose of this model is to show the efficiency of the proposed
method for large unstructured meshes. It should therefore be noted
that this geometry does not represent an actual aircraft, due to the
lack of windows and several internal reinforcing beams among other
things. We remark that the applied load-cases and boundary conditions
do not represent the physical loading of a fuselage, as such were
not available to the authors. Furthermore, a realistic physical system
would need to take additional effects into account, such as buckling,
dynamics, thermal and electromagnetic responses. In relation to these
considerations it is worth mentioning an additional benefit of using the
local volume constraint. This constraint ensures that the final designs
are free of long, slender and disconnected structural members, at least
for the cases with a thin passive background shell. From the work
of [49] it was found that such structures have significantly improved

Fig. 21. Thick passive shell - Close up of the tail section of the fuselage. The
reinforcement structure of the floor can also be seen. Computed with a filter radius of
rsolid = 7.5 cm (7.9 elements) and local volume filter radius rLV = 127 cm (160 elements).
The outer aircraft skin and floor are modeled with a passive central shell corresponding
to 40% of the total shell thickness.

buckling resistance compared to designs obtained using the classical
minimum compliance formulation. However, since this has not been
proven or demonstrated by buckling analysis of the obtained shell
structures, this interesting research question together with inclusion of
global buckling constraints, is left for future investigations.

Figs. 13, 16 and 19 shows an overview of the resulting structures
of the fuselage for all considered cases. For all three realizations it can
be seen that rings are formed along the radial direction of the cylinder
as a reinforcement against the internal pressure. Near the center of the
fuselage, the rings are also connected by axial reinforcements, which
carry the simplified gravity loading. These axial reinforcements slowly
curve into the radial reinforcements in a smooth transition.

In the realizations with a thin passive support small load carrying
arms appear in the unreinforced patches of the outer skin, as can be
seen in Figs. 13 and 16. These arms appear to prevent the unreinforced
patch to locally have a large deformation by adding some additional
reinforcement. The arms are not observed in the case with a thick
background plate, where the background bending stiffness is higher.
This phenomenon is studied further in Appendix B. These two designs
have compliance values of 818 kJ and 766 kJ, for the small and large
local filter size respectively. It can be seen that the compliance value
of the structure with larger allowed feature size is lower as expected,
due to the increased design freedom (see Figs. 15 and 18).

In the case with a thicker passive domain, many of the supporting
structures are not connected, as seen in Fig. 19. This effect is due to the
high background stiffness of the passive shell, which will sufficiently
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Fig. 22. Comparison of the various fuselage examples. From top to bottom: small local filter size, large local filter size, and thick passive shell.

carry the loads in areas with low strain energy density without the need
for reinforcement. This design has a compliance value of 571 kJ, which
is higher than both realizations with a thinner passive plate. This is
expected, as more material is used compared to the two other designs.
The full designs can be compared in Fig. 22, where the full fuselages
are shown side by side (see Fig. 21).

It can be seen that all three realizations contain the same basic fea-
tures. The smaller feature size results in more substructures, which form
web like reinforcements. As the filter size is increased the optimization
algorithm generates larger substructures. In Fig. 13 the first spyglass
is a circle with radius corresponding to the used local volume filter. It
can be seen that even the smallest features of the resulting structure are
resolved by a large number of finite elements. It can also be observed
that even the smallest used local volume filter is quite large compared
to the overall structure. Due to the weighting factor which occurs in
the PDE filtering, the distance between elements has a large effect on
the resulting local volume fraction. Therefore, a large filter must be
employed in order to achieve the desired local volume constraint.

The internal reinforcements near the wing connection are shown
in Figs. 14, 17 and 20. They form a webbing support, which helps
carrying the loads across the various sections. In the intersection of the
support with the other shells it can be seen that the supporting material
is placed as an extension of the reinforcements.

The floor panels are stiffened with cross beams, as shown in Figs. 14,
17 and 20 for the small local filter size. A line runs along the center of
the plate with no reinforcing material, due to low bending moments at
this point in the structure.

We remark that the ‘small local filter size’ case has a global volume
fraction of 0.4524, which is considerably lower than the constraint.
Likewise, the ‘large local filter size’ case has a volume fraction of 0.4517
and the ‘thick passive shell’ case has a volume fraction of 0.4316. This is
due to the application of the volume constraint on the dilated field, and
the local volume filter, which overestimates the volume in the p-norm
aggregation used for the local volume constraint, as discussed in [23].
This could in principle be circumvented by an adaptive constraint
technique, but has not been further pursued here.

6. Conclusion

This paper presents a design approach for generating optimized
reinforcement or perforation of shell structures. The approach is based
on a solid-shell element formulation and a multigrid preconditioned
Krylov iterative method, which allows to efficiently solve the series of
state equations associated with the optimization process. The multigrid
preconditioner employs geometric multigrid restriction for the fine

levels, and an algebraic multigrid method to obtain the solution of
the coarse space problem. The approach overcomes the ill-conditioning
problems arising partly due to shell formulations and partly due to high
stiffness contrast in the element-based design parameterization. Using
the proposed design method a series of academic optimization problems
are solved, each repeatedly solving finite element problems using up
to 11.6 million shell elements with +69.8 million degrees of freedom.
This paves the way for solving large unstructured systems with shell
elements for real life applications in future work.

The approach makes use of local-density control which ensures dis-
tributed material and hence a certain robustness towards unpredicted
loads. For reinforcements problems, like the airplane fuselage problem
considered, skin stiffness itself as well as applied minimum length-
scale eliminate the need for locally connected reinforcements. This
may seem counterintuitive but satisfies the applied pressure loading
and optimization setting. Future studies includes buckling constraints,
dynamics, thermal effects, electromagnetic effects, local load fluctu-
ations or even finer design resolutions (and correspondingly smaller
length scales imposed) which should help eliminate the aforementioned
artifacts.

7. Reproducibility

The used meshes, geometry files, and final designs can be made
available upon reasonable request.
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Appendix A. Shell element formulation

This appendix provides a detailed summary of the used shell ele-
ment formulation in order to facilitate reproduction of the proposed
framework. For the original formulation, the reader is referred to [27].

A.1. Transformation matrix

In order to perform the numerical integration a transformation ma-
trix is constructed. With onset in the normal vector to the shell surface
at node I , here denoted ĒI

3
, two additional vectors are computed using

the method proposed by [30], yielding

ĒI
1
= ăā × ĒI

3
, ĒI

2
= ĒI

3
× ĒI

1
. (A.1)

or as

ĒI
2
= ĒI

3
× ăĀ, ĒI

1
= ĒI

2
× ĒI

3
. (A.2)

for the case where Ē3 and ăā are parallel. The node director basis inside
a given element Ēi is found by interpolating the basis vectors defined
at each node ĒI

i
using the quadrilateral bilinear shape functions.

The transformation matrix from coordinate system A to coordinate
system B is constructed using direction cosines as

tij = ÿi ç Āj , ĔB =

⎧⎪⎨⎪⎩

t11 t12 t13
t21 t22 t23
t31 t32 t33

⎫⎪⎬⎪⎭
ĔA. (A.3)

which allows for the construction of the transformation matrix

Đ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(t11)
2 (t12)

2 (t13)
2 t11t12 t11t13 t12t13

(t21)
2 (t22)

2 (t23)
2 t21t22 t21t23 t22t23

(t31)
2 (t32)

2 (t33)
2 t31t32 t31t33 t32t33

2t11t21 2t12t22 2t13t23 t11t22 + t12t21 t11t23 + t13t21 t12t23 + t13t22

2t11t31 2t12t32 2t13t33 t11t32 + t12t31 t11t33 + t13t31 t12t33 + t13t32

2t21t31 2t22t32 2t23t33 t21t32 + t22t31 t21t33 + t23t31 t22t33 + t23t32

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A.4)

which allows the strain and constitutive laws to be transformed as
follows

�B = Đ�A, ÿB = ĐĐÿAĐ. (A.5)

A.2. Isoparametric formulation

In the continuum shell element formulation the displacement field
and physical coordinates are interpolated using standard trilinear hex-
ahedral shapefunctions [30].

The Jacobian matrix used to transform from the isoparametric ref-
erence space to the usual orthonormal basis [30] is defined as follows.

Ć =

⎡⎢⎢⎢⎢⎣

)x
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)x
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)�
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)z

)�

)z

)�

⎤
⎥⎥⎥⎥⎦
=

81
I=1

⎡
⎢⎢⎢⎢⎣

NI,�xI NI,�xI NI,�xI

NI,�yI NI,�yI NI,�yI

NI,�zI NI,�zI NI,�zI

⎤
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=
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]
,

(A.6)

Ć−1 =

⎡⎢⎢⎢⎣
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⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

ăĀĐ

ăāĐ

ăĂĐ

⎤⎥⎥⎥⎦
. (A.7)

The covariant, ăI , and contravariant, ăąĐ, bases are found directly
from the Jacobian and its inverse [27,30].

Table A.2
MITC tying points.

�L �L �L

A −1 0 0
B 0 −1 0
C 1 0 0
D 0 1 0

Table A.3
ANS tying points.

� � �

A1 −1 −1 0
A2 1 −1 0
A3 1 1 0
A4 −1 1 0

The design dependent constitutive matrix for an isotropic material
using the SIMP model is expressed as follows

ÿ =
�pE0

(1 + �)(1 − 2�)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 − � � � 0 0 0

1 − � � 0 0 0

1 − � 0 0 0
1−2�

2
0 0

Sym. 1−2�

2
0

1−2�

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(A.8)

where � is the design variable and p = 1 is the penalty parameter.
The constitutive matrix is formulated in the contravariant basism,
i.e. Eq. (A.4) is applied with tij = Ēi ç {ă

j} to obtain ĐĒ.

ÿ̄ = ĐĒĐ

ÿĐĒ (A.9)

A.3. Strain displacement matrix

The bi-linear strain interpolation matrix þ interpolates deformations
at element nodes to strains in the covariant basis at an internal point
defined by some given �, �, � * [−1, 1]. The matrix uses the regular
interpolations for the in plane components �̃11, �̃22, and ̃12 strains,
while alternative interpolations are applied in the remaining three
strains to prevent locking.

To prevent out-of-plane shear locking, i.e. in ̃23 and ̃31, the Mixed
Integer Tensorial Components (MITC) is employed [50] based on the
four tying points A, B, C, and D shown in Table A.2.

Additionally, to prohibit locking in the shell normal direction, the
Assumed Normal Strain (ANS) interpolation is used for �̃33 [51,52],
using four new tying points A1, A2, A3, and A4 as depicted in Table A.3.

This leads to following strain–displacement relation for node I

þI =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ăĐ

1
NI,�

ăĐ

2
NI,�

14
L=1

1

4
(1 + �L�)(1 + �L�)ă

Ĉ
Ă

Đ
NL

I,�

ăĐ

1
NI,� +ăĐ
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1

2
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I,2
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ā

Đ
NC

I,�
)
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.10)

Collecting the contribution from each of the nodal points, yields the
complete strain–displacement matrix, i.e.

þ =

[
þ1 þ2 & þ8

]
, (A.11)
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Fig. A.23. Illustration of the two isoparametric spaces.

A.4. Stiffness matrix integration and loads

The local stiffness matrix is obtained by standard Gaussian quadra-
ture, i.e.

će = +
e

þĐÿ̄þ dV

H
1
GP

|J |þĐÿ̄þ.
(A.12)

If multiple material layers are used a new isoparametric space
is introduced for each layer, as depicted in Fig. A.23. The resulting
numerical integration scheme becomes

će H

nlay1
L=1

1
GP

þĐÿĈþ|J � ||J r|, (A.13)

The two external force integrals can be approximated by a Gaussian
quadrature in the isoparametric space. The body force can integrated
by the same quadrature rule s the stiffness matrix

ĄĔčĊ = +
e

ĊeĀ̂ dV

H
1
GP

|J |ĊeĀ̂.
(A.14)

The surface forces, i.e. pressure loads and tractions, are obtained
by integrating over the corresponding surface, determined by the two
isoparametric coordinates �1, �2 * {�, �, �}. Let J�1 denote the column
of the Jacobian Ć corresponding to �1. The surface integral is then
computed by Gaussian quadrature as

ĄđēĐĄ =+)
e

Ċe Ē̂ dA

H
1
GP

‖J�1 × J�2
‖2Ċe Ē̂.

(A.15)

Now the resulting system of equations can be assembled using the
regular

ćē = ĄĔčĊ + ĄđēĐĄ . (A.16)

We remark that the resulting system of equations is poorly condi-
tioned and hence, provides a challenge for iterative solvers.

A.5. Conditioning

To improve the performance of the proposed iterative solver, the
Scaled Thickness Conditioning (STC) presented by [28] is included to
reduce the condition number of the system matrix for thin continuum
shells. The method uses a scaling parameter ñ, which for thin shells has
the following optimal value

ñopt H l1 + l2

2ℎ
, (A.17)

where l1 and l2 denote the element side lengths. The nodal scaling
matrices are computed for nodes lying in the element mid-plane cor-
responding to the ANS nodes shown in Table A.3. For consistency, the

nodes are denoted � * {A1, A2, A3, A4} and the nodal scaling matrices
are given as

đ�
Ā
=

1

��

⎡⎢⎢⎢⎣

ñ+1
2ñ 0 0

0
ñ+1
2ñ 0

0 0
ñ+1
2ñ

⎤⎥⎥⎥⎦
, đ�

ā
=

1

��

⎡⎢⎢⎢⎣

ñ−1
2ñ 0 0

0
ñ−1
2ñ 0

0 0
ñ−1
2ñ

⎤⎥⎥⎥⎦
, (A.18)

where �� denotes the number of elements attached to node �. Using the
nodal scaling matrices, the element scaling matrices are constructed as
follows

đe =

⎡
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. (A.19)

The nodal scaling matrices đe are assembled to a symmetric global
scaling matrix ď by the regular finite element assembly. The scaling
matrix is then applied to obtain the scaled stiffness matrix and force
vector, i.e.

ćñ = ďćď, Ąñ = ďĄ , ē = ďēñ . (A.20)

The resulting scaled linear system of equations now reads

ćē = Ą õ ćñēñ = Ąñ . (A.21)

Note, that the matrix ď is never assembled in order to reduce the
memory usage. Instead, the scaled stiffness and forces are obtained
during assembly by performing the corresponding local products.

Appendix B. A small study on the emergent ‘arm’ supports

The occurrence of non-connected reinforcements, dubbed ‘arms’,
in the fuselage example merited further study. Intuition states that
closed cells provide a better reinforcement, as the reinforcing material
supports itself better and thus provides a stiffer reinforcement. In
order to study whether the ‘arms’ provide some benefit two reinforced
structures, shown in Figs. B.24 and B.25, are studied. Both cases are
clamped plates of size 20 × 20 subjected to a uniform pressure load,
where a fourth of the domain is modeled using symmetry conditions.

The reinforcement is placed on both sides of the base plate. The
total thickness with reinforcements is set to a constant of 1, while the
fraction of base thickness to reinforcement thickness is swept. Both
plates are reinforced with material corresponding to a volume fraction
of V = 0.36, such that the compliance values can be compared directly.
The plates are resolved with 100 × 100 elements.

The resulting compliance values are shown in Table B.4. From
there it can clearly be seen that the cross connected reinforcement
performs better when the reinforced plate is thick compared to the
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Fig. B.24. Plate with overlapping reinforcements shaped as a cross.

Fig. B.25. Plate with reinforcement in the form of ‘arms’, note that the four
reinforcements are not connected.

Table B.4
Compliance values for both reinforcement configurations for a series of base plate
thicknesses. It can be seen that the cross performs best when the stiffness contrast
between the reinforced an non-reinforced areas is low, while the arms perform better
when this contrasts is high.

Base plate thickness Cross Arms

40% 2.05229 2.442617
20% 3.629288 4.303002
10% 13.88358 12.2136
5% 94.69309 72.91165
1% 5821.474 4370.23
0.1% 11634.7 8735.052
0.01% 11708.35 8818.975

reinforcement. As the thickness decreases the ‘arm’ like structure be-
comes better performing. Therefore it can be concluded that the ‘arm’
reinforcements which occur in the fuselage designs are a part of the
desired solution, and not some artifact due to enforced lengthscale and
volume constraint.
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Abstract

This paper introduces a simple formulation for topology optimization problems ensuring manufacturability by machining.

The method distinguishes itself from existing methods by using the advection–diffusion equation with Robin boundary

conditions to perform a filtering of the design variables. Furthermore, the approach is easy to implement on unstructured

meshes and in a distributed memory setting. Finally, the proposed approach can be performed with few to no continuation

steps in any system parameters. Applications are demonstrated with topology optimization on unstructured meshes with up to

64 million elements and up to 29 milling tool directions.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Keywords: Manufacturability; Machining; Milling; Filtering; Topology optimization

1. Introduction

Topology optimization (TO) is a widely adopted method for structural optimization [1,2]. The main advantage of

TO is its ability to generate structures of arbitrary topology regardless of the prescribed initial conditions, i.e. little

to no prior knowledge of the optimal structure is required. Due to this property, topology optimization is often

used in the initial conceptualization of new designs. If a manufacturing method, such as milling, is imposed on the

designer when conceptualizing a part, the main advantage of topology optimization can become a disadvantage.

The freedom for TO to generate arbitrary topologies can result in structures with features, which are impossible to

manufacture with traditional machining techniques. This can be characterized as a mismatch between the constraints

placed on the designer and the constraints used in the TO formulation.

Extending the topology optimization approach to ensure manufacturability is an ongoing field of research. A wide

variety of methods for topology optimization which ensures manufacturability by additive manufacturing have been

proposed during recent years [3–7]. The additive manufacturing approaches usually constrain the allowed overhang

of the structure in order to ensure self-support during the manufacturing process. Other types of manufacturing are

also considered in the literature, such as Wang et al. [8], which introduces a method for ensuring topologies that

can be extruded, by utilizing the so-called PDE-filter [9] with high anisotropy.
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Several approaches for manufacturable TO using milling have been suggested. Gersborg and Andreasen [10]

propose a method to consider an explicitly castable or millable design by using one design variable for each row

or column of a structured grid. This approach is contrasted by Guest and Zhu [11], which proposes a similar

method, but retains all design variables and uses cumulative summation along rows or columns as a filter to ensure

that a design can be cast or milled. The approach by cumulative summation is extended to arbitrary directions

by Langelaar [12], which maps the densities to a structured grid aligned with the milling direction in order to

perform the summation. Finally, Hur et al. [13] recently proposed a milling filter, which uses a modified variant

of the advection–diffusion equation to perform the cumulative summation for the level-set formulation, not quite

unlike the proposed method. In Hur et al. [13] Dirichlet boundary conditions are used for the flow problem, which

introduce the need for domain padding in order to correctly capture non-zero physical densities on the boundary of

the design domain.

The approaches which use a cumulative sum provide a high degree of control allowing tool shapes to be taken

into account [12]. If the sum operation is precomputed, the resulting matrix will contain many non-zero values and

result in very high memory usage, which hinders application on large-scale systems. A matrix free implementation

of the rotation mapping and cumulative sum is possible which significantly lowers the memory usage. However,

such a matrix-free implementation is nontrivial to write for distributed memory systems. This paper presents an

approach to perform the milling tool emulation, by solving the advection–diffusion equation with Robin boundary

conditions. The proposed approach is conceptually simple and scales well, facilitating the solution of high resolution

3D problems. Like the cumulative summation approach, this method can be employed without any continuation

scheme, and with little to no tuning for problem specific parameters. For now, however, the approach is limited to

milling considerations without explicit tool shapes.

This paper is organized as follows; Section 2 introduces the formulation necessary for the advection–diffusion

filtering step; Section 3 introduces the optimization problem used for numerical examples; Section 4 discusses the

computational efficiency of the presented methodology; Section 5 presents two and three dimensional machinable

results, with machining in one or multiple directions and Section 6 provides a discussion of the presented

methodology and a conclusion.

2. Formulation

The milling filter is based on the approach presented by Langelaar [12], with the notable difference that the

cumulative sums have been replaced by solving the advection–diffusion equation, with a dominating advective

term. The filter relates the design variables to a ‘physical’ density field, which guarantees that the resulting void

regions are reachable by a tool direction from outside the design domain. This relation is performed through a series

of filters, of which most are already common in many topology optimization approaches. A brief overview of the

steps used to compose the complete milling filter is presented in Fig. 1. The initial design variable is filtered in

step 1, yielding the regularized design field, ρ̃, as discussed in Section 2.1. In step 2, the shadowing operations

are performed, resulting in the shadowed intermediate design fields, ˇ̃ρs , as discussed in Section 2.2. Note that a

shadowing step is performed for each prescribed tool direction. The shadowed intermediate design fields are then

agglomerated in step 3, resulting in the intermediate agglomerated variable ˇ̃ρ, as discussed in Section 2.3. Finally,

in step 4, the agglomerated variable is projected, as discussed in Section 2.4. The sensitivity analysis of the filter

is included in Section 3.2 for completeness.

2.1. Step 1: Smoothing of design field

A density filter is initially applied to the design field. This can be performed either by a classical convolution

approach [14], or by employing the so-called PDE-filter which solves a modified Poisson equation to perform density

filtering [9,15]. The reader is referred to the cited articles for details on the respective filters and their sensitivity

analysis.

The density filter is introduced to regularize the design field. This is especially useful when evaluating a black

and white field, where the gradients will be zero in most of the void region (due to the SIMP interpolation) and in

parts of the solid region (due to the agglomeration of shadowing steps). By including the density filter, non-zero

gradient values will be smoothed into the domain with zero sensitivities.

In this work, the convolution approach is used for the 2D examples in Section 5.1, due to the widespread use

of this approach for 2D codes, such as [16,17]. The PDE-filter approach [9,15] is used in the 3D examples, due to

the increased performance and reduced memory footprint compared to the convolution approach.

89
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Fig. 1. Flowchart and visualization of the composition of filters to realize the milling filter. Two tool directions are used for the milling

filter, resulting in two distinct shadowed fields.

2.2. Step 2: Shadowing by advection–diffusion

The advection–diffusion equation describes the transport of a scalar field, it is known from e.g. heat transfer

problems. The steady state advection–diffusion equation is given as:

Pe ui

∂T

∂xi

−
∂2T

∂x2
i

= q (1)

where T is the transported field, ui the prescribed advective field, q the normalized source term and Pe the Peclet

number which is the ratio between the advective and diffusive transport.

In the presented shadowing methodology, a regularized design field ρ̃ is used as a source term, and the obtained

transported field ˇ̃ρs is shadowed in the direction of the constant advection term us
i of unity norm ∥us

i ∥ = 1,

corresponding to the machining direction, where s refers to the shadowing angle index, since multiple shadowing

angles may be applied. For numerical reasons, the equation is normalized by the Peclet number. Thus, the equation

solved using the filter notation becomes

us
i

∂ ˇ̃ρs

∂xi

−
1

Pe

∂2 ˇ̃ρs

∂x2
i

= sρ̃ in Ω (2)

where s is a factor scaling the source term on an element basis. The factor s is chosen such that the solution can

go from 0 (void) to 1 (solid) over a single element and is further discussed in Section 2.2.2. The scaling is applied

on the source rather than on the solution, as unstructured meshes are considered.

Solutions to Eq. (1) are known to become numerically unstable in cases with a high Peclet number. However,

while paying a price in solution accuracy, the Finite Volume formulation using an upwind difference scheme on the

advection term is known to be numerically stable for high Peclet numbers. The derivations of the used finite volume

schemes are presented in Appendix A. Alternate stable discretization schemes with better numerical properties exist,

e.g. [18], but these are also more cumbersome to implement.

90
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Fig. 2. Overview of the employed boundary conditions on the optimization domain Ω with shadowing directions θ1 and θ2. The passive solid

domain ΩP has Dirichlet-type boundary conditions along its boundary ΓD to the optimization domain. Free boundaries of the optimization

domain, ΓR , have Robin-type boundary conditions imposed.

2.2.1. Boundary conditions

The advection–diffusion equation is only solved in the optimization domain. Hence, boundary conditions are

imposed on free boundaries, as well as on the boundaries between the optimization- and passive solid domains —

as illustrated in Fig. 2.

The employed boundary conditions on the free domain boundaries, ΓR , should allow material to be placed

adjacent to the free boundary. While the problem would not be well posed if only using Neumann boundary

conditions, homogeneous Dirichlet boundary conditions do not allow the appearance of material at the boundary.

Robin type boundary conditions are found to allow material at the boundary:

ˇ̃ρs + n
1

s
∇ ˇ̃ρs = 0 on ΓR (3)

where n is the outward pointing surface normal at the boundary.

On the domain boundaries adjacent to solid passive domains, ΓD , Dirichlet boundary conditions are introduced

to obtain the shadow of the passive domain in the corresponding milling direction. This ensures manufacturability

of the full design, including the passive domains.

ˇ̃ρs = 1 on ΓD (4)

The implementation presented in the present work is based on unstructured meshes, hence passive void elements

are not required. If one wants to use the presented methodology with the use of passive void elements, the authors

suggest to ensure that the embedded design domain is machinable with the used tool directions.

Further details on the boundary conditions and their implementations are given in Appendix A.

2.2.2. Choice of Peclet number and scaling factor

The s parameter, that is used for scaling the source term in the advection–diffusion equation, Eq. (2), is set such

that a ρ̃ = 1 value permits the shadowed variable to go from 0 to 1 over one cell face (normal to the shadowing

direction). Assuming a very large Peclet number, and |ui | = 1, this parameter should be set as:

s =
1

he

(5)

where he is the average element side length.

The choice of Peclet number is critical to the effect of the advection–diffusion filtering step on the obtained

results. As straight walls are machinable, the conic (diffusive) effects of the filter are to be minimized. The desired

effect of the shadowing is hence to obtain features parallel to the specified direction, ui , with as little diffusion

as possible. This can be achieved by using a high Peclet number. When setting Pe k 1, the problem becomes

advection dominated. This is also seen in Fig. 3, where the field from Fig. 3(a) is shadowed in a diagonal direction

91
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Fig. 3. Shadowing step performed on the field (a) with different Peclet numbers. Note the different color-bars for the respective cases. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

at three different Peclet numbers. With Pe = 0.1, as seen in Fig. 3(b), the diffusive effect is clearly dominating.

When raising the Peclet number to Pe = 100, as demonstrated in Fig. 3(c), the regime is advection dominated,

however diffusion still has a significant effect. In the case with Pe = 104, seen in Fig. 3(d), information is seen

to almost exclusively propagate downstream. However, inside the shadowed region, some diffusive effects are still

observed, as the propagated value decreases slightly in the downstream direction. This diffusive effect will always

be present when solving the equations with the finite volume method, as some numerical diffusion occurs regardless

of the chosen Peclet number. As the values inside these regions are usually ˇ̃ρs k 1, this is not an issue as they are

thresholded using the smooth Heaviside projection, introduced in Section 2.4. The influence of this artifact can be

reduced by setting the Heaviside projection threshold η to some low value close to zero, forcing a more conservative

placement of material downstream.

It should be noted that the Peclet number is defined based on a characteristic length scale of the considered

domain. This implies that when larger domains are considered, a lower Peclet number will suffice to achieve similar

results. For reference, Fig. 3 is computed on a domain of unit side-lengths. A rule of thumb to choose the Peclet

number based on a characteristic domain length lc is

Pethumb =
104

lc

. (6)

The constant 104 is by no means a fixed rule, as acceptable results have also been found using constant factors

of 103, 105, and 106. We do however advise ensuring that the used Peclet number satisfies Pe lc > 103.

2.3. Step 3: Field agglomeration

The resulting fields of the shadowing for each tool direction ˇ̃ρs are agglomerated to a single field using the

p-mean, which provides a differentiable approximation to the min operator.

ˇ̃ρe =

(

1

ns

ns
∑

s=1

( ˇ̃ρe
s )p

)
1
p

≈ min
s

ˇ̃ρe
s (7)

Here p < 0 denotes an agglomeration parameter. The p-mean becomes a more accurate approximation of the min

operator, but also more non-linear, as p → −∞. In practice p = −4 is commonly used throughout this article, as

it was found that the field projection step reduces the effect of a low accuracy approximation of the min operator.

When a large number of milling directions are used it becomes necessary to use a lower value of p, in order to

ensure a sufficiently good approximation of the min operator. Other field agglomeration approaches are possible as

discussed in detail in [19]. For instance, Langelaar [12] suggested using the KS functional for the agglomeration.

For large problems, however, where ˇ̃ρs can take very large values, due to the high number of elements along one

axis, this resulted in numerical issues with the KS function, and the p-mean was found to be more robust in these

cases.
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2.4. Step 4: Field projection

The aggregated fields are projected using the smoothened Heaviside filter [20] in order to bound the final density

field between 0 and 1:

¯̌
ρ̃e =

tanh(βη) + tanh(β( ˇ̃ρe − η))

tanh(βη) + tanh(β(1 − η))
(8)

where β is the projection sharpness and η the projection threshold. A desirable side effect is that a black-and-white

design is also obtained. Throughout this article the value η = 0.5 is used, while β is chosen to either 8 or 10

depending on the required projection sharpness.

3. Optimization formulation

The general optimization problem is formulated on the design variables ρ.
¯̌
ρ̃ is used to denote the ‘physical’

density field, and is obtained by performing all milling filter steps described in Section 2 on the design field ρ. The

posed optimization problem is minimization of the compliance with a global volume constraint:

min
ρ∈RN

c(ρ) = u¦K(
¯̌
ρ̃)u

s.t. g(ρ) =
V (

¯̌
ρ̃)

V ∗
− 1 f 0

K(
¯̌
ρ̃)u − p = 0

0 f ρi f 1 i = 1 . . . N

(9)

where K(
¯̌
ρ̃) is the stiffness matrix, p the load vector and u the resulting displacement vector. The volume constraint

is enforced based on the volume of the current design, V (
¯̌
ρ̃), and the maximum allowable volume, V ∗.

The Solid Isotropic Material Penalization (SIMP) interpolation scheme is used to map the element projected

design variable
¯̌
ρ̃e to the corresponding Young’s modulus [14]:

E(
¯̌
ρ̃e) = Emin + (

¯̌
ρ̃e)p (Emax − Emin) (10)

Where Emin and Emax are the lower and upper values of the Young’s modulus, respectively and p is the SIMP

penalization parameter.

3.1. Parameters for the method of moving asymptotes

The optimization problem is solved using the Method of Moving Asymptotes [21] implemented by [22] with

non standard parameters. These parameters are necessary as the milling filter projection does not work for low

projection sharpnesses, as this results in
¯̌
ρ̃ not being bounded correctly. This requires the usage of a constant and

high β value. When optimizing with a constant projection sharpness, the problem becomes highly sensitive and the

asymptotes in the MMA algorithm hence need to be tightened, as discussed by Guest et al. [23].

Therefore, to eliminate oscillatory behavior the initial asymptotes are tightened by setting the initial asymptote

spacing, asyinit,

s0 =
0.5

2β + 1
. (11)

Furthermore the parameter to widen the asymptotes, asyincr, is set to 1.05 and the parameter to tighten them,

asydecr, to 0.65 instead of 1.2 and 0.7, respectively, in the standard distribution of MMA. The outer mover limit

was set to 0.1 per design iteration.

A scaling parameter is applied on the objective function, such that its value is 10 in the first optimization iteration.

When the scaled objective function gets below 0.1 the scaling parameter is updated by a factor of 10. Likewise the

volume constraint is used in a scaled formulation, as shown in Eq. (9). This ensures a good numerical conditioning

on the optimization problem.
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3.2. Sensitivity analysis

The sensitivities of the objective- and constraint functions are obtained with respect to the final projected element

variable,
¯̌
ρ̃e. The sensitivities of a function f with respect to the projected variable,

∂ f

∂
¯̌
ρ̃

are projected back to the

design variable, ρ, by use of the chainrule:

d f

dρ
=

d f

d
¯̌
ρ̃

∂
¯̌
ρ̃

∂ ˇ̃ρ

ns
∑

s=1

[

∂ ˇ̃ρ

∂ ˇ̃ρs

∂ ˇ̃ρs

∂ρ̃

]

∂ρ̃

∂ρ
. (12)

where the therm ∂ ˇ̃ρs

∂ρ̃
, represents the chainrule term of the shadowing step. To correct the filter for the advection–

diffusion equations the discretized milling filtering step is considered in tensor notation:

As
i, j

ˇ̃ρs, j = ρ̃i (13)

differentiating the expression with respect to the regularized field ρ̃i and multiplying with the sensitivities
∂ f

∂ ˇ̃ρs, j

with

respect to the shadow yields

As
i, j

∂ f

∂ρ̃i

⏐

⏐

⏐

⏐

s

=
∂ f

∂ ˇ̃ρs, j

(14)

which in matrix notation yields to solving the transposed filtering equation:

As⊺ ∂ f

∂ρ̃

⏐

⏐

⏐

⏐

s

=
∂ f

∂ ˇ̃ρs

(15)

where the partial derivatives
∂ f

∂ρ̃

⏐

⏐

⏐

s
need to be summed for all shadowing steps to obtain the full sensitivity with

respect to the regularized field, as seen in Eq. (12). More details on the sensitivity analysis and chain-rule terms

are outlined in Appendix B.

4. Computational efficiency

The computational cost of introducing the proposed milling filter depends directly on both the desired number of

milling directions and the number of constraints used in the optimization formulation. For every milling direction an

advection–diffusion equation needs to be solved at every design iteration. Likewise, an adjoint system of equations

needs to be solved for every tool direction for the objective function and for every constraint every design iteration.

When also accounting for the used density filter this results in a total of (nconstraints+2)(ntools+1) linear system solves

for filtering, where nconstraints denotes the number of constraints and ntools denotes the number of tool directions.

The worst case presented in this article uses one constraint and 29 tool directions, resulting in 90 auxiliary linear

systems solutions every design iteration. While many auxiliary systems might need to be solved, the time required

to solve the finite volume problems is significantly lower than the time required to solve the linear elasticity state

equation, since they are scalar problems and are hence much cheaper than the vectorial state problem. Furthermore,

the system matrix of the advection–diffusion problem does not change between design iterations, amortizing the

computational cost of constructing preconditioners, as these can be stored throughout the optimization process. The

cost of solving the advection–diffusion equation depends on a large set of parameters, where some of the most

significant are; the used discretization of the equations, the number of elements in the mesh, and the used method

to solve the resulting system of equations.

The used method for solving the resulting system of equations is also of great importance for the efficiency. If

the system is sufficiently small, e.g. less than one million elements, a direct solution technique is the most viable

strategy. As the operator does not change with the design iterations, only one LU factorization is required for every

tool direction for the entirety of the optimization problem. This is the approach used in the 2D examples from

Section 5.1.

If the number of elements grows too large, iterative solvers are required. For the presented 3D examples the

Flexible Generalized Minimal RESidual [24] method was used, with additive Schwartz preconditioning, which in

turn uses incomplete LU to approximate the local solutions. All of these solvers are implemented by the Portable,

Extensible Toolkit for Scientific Computation [25]. More advanced preconditioners, such as the multigrid method
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Table 1

Summary of used optimization parameters.

2D cantilever 3D cantilever GE Bracket

Projection sharpness β 8 8 10

Projection threshold η 0.5 0.5 0.5

SIMP penalization p 3, 5 3 3

Filter radius rmin 0.03 0.0085 0.7 mm

Peclet number Pe 104 104 500

Heat source factor 1 100 1

p-mean penalization −3 1, −4, −6 −4

Young’s module Emax 1 1 113.8 GPa

Young’s module ratio Emin/Emax 10−9 10−4 → 10−7 10−3 → 10−6

Poisson’s ratio ν 0.3 0.3 0.342

Initial design variable ρini t 0.005, 0.02 0.002 0.004

Volume fraction V ∗ 0.5 0.15 0.137135

Number of design iterations - 250 200

employed in solving the linear elastic state equation, can also be implemented in order to improve the computational

efficiency of solving the advection–diffusion equation [26,27]. This was not deemed necessary during our numerical

examples, as the solution time of the auxiliary problems never exceeded reasonable limits.

The discretization technique for the advection–diffusion problem is a finite volume scheme with an upwind

difference scheme, which is known to be numerically stable for large Peclet numbers. Unfortunately, this means that

the adjoint problem corresponds to a downwind difference scheme, which is not so stable. It is observed that solving

the adjoint problem requires up to 6 times the iterations before the convergence criteria are reached, compared to

the forward problem for the advection–diffusion equation. This could be mitigated by explicitly constructing the

adjoint operator using an upwind scheme, although this might introduce a small error due to the difference in the

discretization schemes. Alternately, another discretization scheme might have better properties for both the forward

and adjoint problems, e.g. [18].

Using a finite volume scheme for solving the advection–diffusion PDE means that the design field representation

corresponds to one degree of freedom per design element. Hence no mapping is required between elements and

nodes.

5. Numerical examples

The introduced methodology is first demonstrated on a two dimensional cantilever beam example, which was also

used by [12]. The same cantilever beam is then optimized in three dimensions, showcasing how the methodology

works on large scale. Finally the GE engine bracket [28] is optimized to illustrate how the methodology can be used

in an industrial example. The three dimensional examples are implemented in a preexisting in-house unstructured

topology optimization code [29]. The optimization parameters for all three cases are given in Table 1. Note that

the homogeneous initial value of the design vector is also stated as an optimization parameter, as the choice of this

parameter is important as the resulting initial design should neither be pure solid nor pure void. This is due to the

sensitivities vanishing in SIMP at pure void and in the Heaviside projection if the agglomerated field is ˇ̃ρ k 1.

As 3D results can be difficult to fully understand from the figures provided in the following sections, STL files

(thresholded at
¯̌
ρ̃ > 0.5) of all results are available as supplementary material and have been uploaded to https://d

oi.org/10.11583/DTU.16930198 [30].

5.1. Two dimensional cantilever examples

In the following, the optimization results on a two dimensional cantilever beam are discussed. The design domain

of dimensions 2 × 1 is clamped on the left hand side and point loaded in the lower right corner, as shown in Fig. 4.

The domain is discretized by 200 × 100 rectangular elements. In addition to the parameters seen in Table 1, the

milling directions are selected to a variety of combinations. The SIMP penalization is set to p = 5 for the cases

with one or two milling directions and to p = 3 for other cases. The increased SIMP penalization is used in the
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Fig. 4. Problem setup of the 2D cantilever beam example. Material can be placed inside the design domain of dimensions 2 × 1, depicted

in gray.

Fig. 5. Reference design and single tool direction designs for the 2D case. The final projected variable,
¯̌
ρ̃ is shown.

cases with few tool directions to avoid designs with intermediate densities since these designs have a tendency to

perform relatively well in terms of compliance, and therefore need to be penalized further. Furthermore, the initial

design variable value is set to ρini t = 0.005 for cases with a single milling direction and ρini t = 0.02 if multiple

directions are considered.

A reference example is optimized using the robust formulation [20]. For the reference, the β value is continuated,

and the SIMP penalization power is set to p = 1. The projection thresholds are set to ηdilated = 0.2, ηnominal = 0.5

and ηeroded = 0.8, for the dilated, nominal and eroded fields, respectively. This choice of threshold values should

ensure a minimum length scale of 0.9rmin = 2.7 elements. The volume fraction on the dilated field is updated

regularly, such that the nominal volume fraction matches the desired one, shown in Table 1. The obtained reference

example is seen in Fig. 5(a). The objective values and number of design iterations corresponding to the designs are

seen in Table 2. It should be noted that this reference design is constrained by a minimal length-scale of the solid

members, while the upcoming designs are not.

Results optimized with a single milling direction are shown in Fig. 5. It is observed that all of the resulting

designs are distinctly shaped by their corresponding tool direction. From Table 2 it can be seen that all of the

obtained structures have a higher compliance than the reference design. The best performing design Fig. 5(e) has

a compliance, which is 25% higher than the reference design. From this, it is seen that constraining the design to

be filtered from a single tool direction severely limits the design freedom of the optimization algorithm.

Designs optimized with multiple milling directions are shown in Fig. 6. Having multiple milling directions

impacts the obtained design, as material can be removed from multiple directions. This is most notably seen when

comparing Figs. 5(b), 6(a) and 6(b). In the first case, Fig. 5(b), material can only be removed from the right hand
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Fig. 6. Resulting designs when using multiple tool directions for the 2D case. The final projected variable,
¯̌
ρ̃ is shown.

Table 2

Comparison of compliances of the two dimensional results.

Figure θmilling C C/Cre f Num. It.

5(a) 69.98 1.00 650

5(b) 0 179.68 2.57 501

5(c) −30 224.23 3.20 500

5(d) 240 211.04 3.01 243

5(e) 160 87.49 1.25 195

5(f) 180 287.93 4.11 194

6(a) {−90, 0} 220.46 3.15 500

6(b) {−90, 0, 180} 86.92 1.24 491

6(c) {45, 135, 225, 315} 115.14 1.65 536

side, resulting in material being placed in the lower left triangle part of the design domain. In the second case, seen

in Fig. 6(a), material can also be removed from below, resulting in material being placed near the upper design

domain boundary. In Table 2, it is seen that the first case, with a single direction performs better than the latter one,

which indicates that a local minimum with an inferior performance has been obtained. The same local minimum

was also observed by Langelaar [12]. The solutions find different local minima, due to the tool directions heavily

affecting the initial density layout which is found using a homogeneous design variable distribution. This could

potentially be avoided with an other starting guess.

With a third milling direction, as seen in Fig. 6(b), the obtained design can become attached to both extremities

of the supported side. In the performance comparison, Table 2, it is also seen that this design performs better than

the ones presented in Figs. 5(b) and 6(a) and only 24% worse than the reference design from Fig. 5(a).

The design obtained when optimizing with the four diagonal tool directions is seen in Fig. 6(c). The design has

some features similar to the one from Fig. 6(b). However, the groove going into the structure from the support

plane cannot be deeper with the selected tool orientations. The selected tool directions are also responsible for the

triangular shape, seen inside the groove. This triangular shape does not bear any load, however it cannot be removed

with the selected tool directions. The design performs 32% worse than the one seen in Fig. 6(b), which is most

likely due to the high amount of non-load bearing material.

It is noted that the performance of the designs with θmilling = 160 and θmilling = {−90, 0, 180} have very

similar compliances and are also similar in a qualitative manner. It is noted that the design with θmilling = 160,

seen in Fig. 5(e), is feasible with both sets of milling directions, this is not the case for the design obtained with

θmilling = {−90, 0, 180}, seen in Fig. 6(b). This might explain the slightly lower compliance of the design seen in

Fig. 6(b).

A large qualitative similarity is observed between the designs obtained by Langelaar [12] and the ones presented

in Figs. 5 and 6 — with the exception of the reference design (Fig. 5(a)). The differences in the reference designs

are probably due to different formulations being used for obtaining the reference design by [12] and the presented

work.

5.2. Three dimensional cantilever examples

The three dimensional cantilever beam has a similar design domain as the two dimensional one from Fig. 4, where

the out of plane direction is modeled with the thickness 1. The applied load is a line load at the corresponding 3
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Fig. 7. Reference cantilever beam obtained with no milling and a robust formulation (nominal design is shown). Cnominal = 1.15 × 107.

Fig. 8. Cantilever beam with a single milling direction from the front and back. C = 1.37 × 107.

dimensional position. The domain is discretized with a mesh containing 31.25 million hexahedral elements. The

applied filter radius corresponds to approximately 1.5 elements. The optimization settings are shown in Table 1. The

results are computed on 10 nodes at the DTU Sophia cluster, which has 2 AMD EPYC 7351 16-core processors

and 125 GB memory at every node. The solution time is between 55 and 450 s per design iteration, depending on

the number of milling directions.

A benchmark cantilever beam without imposed manufacturability is optimized using the robust formulation [20].

In this case, the β-value for the Heaviside projection sharpness is ramped up to a final value of 59.4, and the

benchmark optimization process is run for 700 iterations. The threshold values are set to η = 0.2 in the dilated-,

η = 0.5 in the nominal- and η = 0.8 in the eroded field — resulting in a minimum length scale of 0.00765.

The reference design obtained with the robust formulation is seen in Fig. 7. The final robust objective, used as a

reference is evaluated on the nominal field as a postprocessing step to the optimization.

In the early design iterations of optimizations considering machining, the structure is not connected to the support

and load, due to a milling tool coming from the support plane — or loaded line. This renders the linear elasticity

equation very difficult and slow to solve due to the ill conditioning. As a remedy, a continuation scheme is applied

on the Young’s module contrast, which is reduced by a factor of 10 after 20, 40 and 60 iterations. The optimization

is hence started with Emin = 1 × 10−4 Emax and reaches Emin = 1 × 10−7 Emax at iteration 60.

Several milling direction cases are considered. In the cases with a single milling direction, the p norm power

is set to p = 1 as no element-wise minimum is required. In cases with less than 10 milling directions, it is set to

p = −4 and to p = −6 for cases with more than 10 directions. The p norm power is changed with the varying

number of tool directions due to the changing characteristics of the p norm. A lower value of p results in a less

accurate approximation of the min operator, but also results in a less non-linear operator, which is desired during

the optimization.

The cantilever beam is optimized using milling directions normal to the supported plane (in both directions). The

obtained design is seen in Fig. 8. The obtained structure consists of two vertical plates that curve down towards the

loaded line. A plate at the bottom of the domain connects the two vertical ones.

In Fig. 9, the design obtained with a single milling direction from top is shown. The design consists of two

vertical plates, however they are not connected at the bottom of the domain. A third vertical plate connects the two

other ones along the loaded line. This third plate is higher than the plates to which it is connected. This could be to

add some bending stiffness along the loaded line. Note that numeric diffusion creates a non feasible disconnection

between the part and the support plane at approximately one third of the support height. The disconnection is

98
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Fig. 9. Cantilever beam with a single milling direction from the top. C = 1.53 × 107.

Fig. 10. Cantilever beam with a single milling direction from the side. C = 1.37 × 107.

Fig. 11. Cantilever beam with a single milling direction with a 45 degree angle in the plane. C = 1.62 × 107.

due to numerical diffusion in the discretization of the advection diffusion equation, which is discussed in detail in

Section 2.2.2 along with potential solutions to this problem.

A cantilever beam obtained with milling only from one side, orthogonal to both the load direction and the normal

of the clamped surface, is shown in Fig. 10. The design cross section resembles the two dimensional cantilever beam

design with no milling constraints seen in Fig. 5(a). However, this three dimensional design is not a pure extruded

version of the two dimensional design, as less structure is present in the side where the milling tool comes from.

This probably reflects that a design, where the load can be transferred to a reduced part of the domain performs

better.

A beam optimized with a similar direction, which has been rotated 45 degrees towards the supporting plane, is

seen in Fig. 11. The resulting cross section of the structure is seen to resemble the one from Fig. 10. However,

the skewed milling direction affects the design drastically, both qualitatively and in terms of compliance value. It

can be observed that the angle forces material to be placed at locations that are unfavorable, as none of the other

designs make use of them (most notably the upper left side over the loaded line).

The three previously shown cases with directions normal to the domain boundaries are combined to a single

case, with six milling directions, where the milling directions follow the cartesian coordinate system, in positive

and negative directions. The design obtained with six milling directions is shown in Fig. 12. The obtained design

resembles the one obtained with no milling constraint, Fig. 7. However, the hollow interior of the side walls from

the reference is infeasible with the milling filter, and has hence been replaced by holes in the structure connecting

the top and bottom.
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Fig. 12. Cantilever beam with six milling directions, normal to the bounding box surfaces. C = 1.33 × 107.

Fig. 13. Cantilever beam with 29 milling directions, coming from direction from the northern hemisphere. C = 1.32 × 107.

Table 3

Comparison of performance of the 3D cantilever beam

designs, obtained with different milling directions and

comparison with reference design obtained without

milling.

Figure Num. tools C C/Cre f

7 0 1.15 × 107 1.0

8 2 1.37 × 107 1.192

9 1 1.53 × 107 1.331

10 1 1.37 × 107 1.194

11 1 1.62 × 107 1.408

12 6 1.33 × 107 1.159

13 29 1.32 × 107 1.148

A cantilever beam is also optimized using a set of 29 milling directions, all coming from the northern hemisphere,

as described by [12]. The design obtained with this combination of milling directions is seen in Fig. 13. The design

is very similar to the one using 6 directions seen in Fig. 12. However, most of the holes through the structure in the

middle have been filled, and the thickness of that structure is varied instead. Some of the overhang near the only

remaining hole next to the loaded line are only realizable due to some of the milling directions with the skewed

angles.

The performance of the obtained designs is compared in Table 3. As expected, all designs obtained with the

machinability constraints perform worse than the benchmark using the robust formulation. Furthermore, it is also

observed that adding more milling directions improves the performance of the design, as this also increases the

design freedom of the optimization process. In the work of Hur et al. [13], the orientations of the tools are also

determined by the optimization. This can be considered an alternative to representing the full span of admissible

tool directions, as the tool directions obtained by the optimization need to be admissible for manufacturing. There

is currently no direct comparison of the resulting structures from the two approaches for topology optimization

considering multi-axis machining.

As in the two dimensional results, discussed in Section 5.1, it is again seen that the chosen milling directions

have a large influence on the performance of the obtained designs. If one wishes to only consider only a single

milling direction, the direction should be chosen carefully, as it can have a large influence on the performance of
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Fig. 14. Geometry of GE Jet Engine Bracket example. The pin with increased stiffness is shown in blue, while the passive rings which are

kept solid are shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

the optimized design. A surprising discrepancy in performance is observed between the designs obtained with the

milling directions normal to the supported plane from Fig. 8 and the one obtained with the milling direction from

above from Fig. 9. The design with the milling direction from above performs ≈ 11% worse, even though the

obtained designs are somewhat similar, qualitatively.

5.3. Three dimensional GE bracket examples

To demonstrate the real-world possibilities of the milling filter, the GE jet engine bracket [31] is used as an

industrial example, which is shown in Fig. 14. The original bracket geometry, material properties, and load cases

are adapted from [28,31], with slight simplifications. The pinned boundary interfaces are modeled by clamping the

inner surface of the bolt interface. The rigid pin is included in the model using 10 times the Young’s modulus of

the used material. The rigid pin is modeled as a part which is fused to the passive ring, as correct modeling of

contact during structural optimization is beyond the scope of this article. All six interfaces in the bracket model

are assigned a passive solid ring, in order to ensure that an interface exists. The compliance of the structure is

minimized subject to a constraint of volume fraction V ∗ = 0.137 in the design domain, corresponding to a total

bracket weight of 300 g for the design and the passive solid rings.

The minimum Young’s modulus Emin is updated using a simple continuation scheme, as also described in

Section 5.2. The optimization begins with Emin = 1 × 10−3 Emax which is decreased by an order of magnitude

every 15 iterations until reaching Emin = 1 × 10−6 Emax at iteration 45.

The large size of the computational domain (160 × 110 × 90 mm) allows to use a lower Peclet number than in

the previous examples. This is due to the Peclet number being a function of the characteristic domain length.

It should be noted that the bracket design domain is non-convex due to the two flanges which support the bolt.

This non-convexity has some important implications for the solution of the advection–diffusion equation on the

bracket domain. The boundaries will not transport information across the gaps in the design domain, treating every

domain surface as an outer surface from where a tool might remove material. This will have an effect, as placing

material in one flange, will not force the formulation to place material in the other flange due to the milling filter.

As the flanges represent a small part of the domain, this error is limited, although present.

As discussed in Section 2.2, the surfaces which separate the passive rings from the design domain are modeled

using a Dirichlet boundary condition in the advection–diffusion equation in order to ensure that the passive rings

also introduce material downstream into the design domain. Furthermore, it should be noted that while the stiffened

pin, shown in blue in Fig. 14, is included in the model, it is omitted from the visualization.

The bracket examples are solved using a mesh of 64 million hexahedral elements. The results are computed on

20 nodes at the DTU Sophia cluster. The computations take between 17 and 31 h, where solving the milling filters

and their adjoint problems usually take between 25 and 45 s for each tool direction, compared to the linear elasticity

solver which usually takes between 70 and 100 s for each load case. .

A reference example is included for the bracket in order to compare the resulting structures and compliance

values. The reference example is computed using the robust formulation [20] with β-continuation, using a PDE-

based filter with consistent boundary conditions [32], which emulate a padded domain. The robust formulation is
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Fig. 15. Reference design of the bracket example with Robust formulation and consistent boundary condition for PDE-filter. C = 4.21×107 J.

Fig. 16. Design of the bracket example with one milling direction in the z-axis. C = 9.28 × 107 J.

Table 4

Comparison of compliance of the GE jet engine

bracket examples.

Figure Num. tools C C/Cre f

15 0 4.21 × 107 J 1

16 1 9.28 × 107 J 2.20

17 5 4.89 × 107 J 1.16

18 5 4.91 × 107 J 1.17

19 4 5.12 × 107 J 1.22

20 4 6.09 × 107 J 1.45

22 1 9.52 × 107 J 2.26

used due to the included Heaviside filter, which results in discrete 0–1 designs, like the proposed milling filter. This

allows for a more accurate comparison of compliance values, as neither method is forced to include intermediate

densities in the final design. Though, it should be noted that the robust formulation imposes a length-scale on the

final design, which is not present in the milling filter. The resulting reference structure is shown in Fig. 15.

The first example, which is performed using only one milling direction from the top is shown in Fig. 16. It

can be seen that the volume underneath the passive rings, which contain the rigid pin, is set to solid due to the

Dirichlet boundary condition on the shadowing step — with the exception of the undercut under the two rings,

which is not a part of the design domain. This prescribes the use of an already small global volume fraction, leaving

little material for the remaining structure. All four supporting bolts are connected by thin legs, which connect in a

cross shaped structure. From the resulting compliance values, shown in Table 4, it is clear that the single direction

performs poorly, resulting in approximately twice the compliance value of the reference case. This is somewhat

expected, given the restriction of available material and severely restricted design freedom.

Two additional bracket examples each using five mutually orthogonal milling directions are visualized by the

red bars along with the resulting structures in Figs. 17 and 18. The structures both differ from the reference by

being more compact almost truss-like, as opposed to the shell-like reference structure. The compliance value of

both examples with five directions is very close to the reference value, considering the design restrictions, deviating

with only 16% and 17%. From this, and similar cantilever examples with many tool directions, it can be seen that

structures generated, for the considered linear elastic compliance minimization problems with milling constraints

using many tool directions, perform well compared to reference designs, when taking into account the severe

limitations in design freedom.
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L.C. Høghøj and E.A. Träff Computer Methods in Applied Mechanics and Engineering 391 (2022) 114488

Fig. 17. Design with five milling directions. C = 4.89 × 107 J.

Fig. 18. Design with five milling directions. C = 4.91 × 107 J.

Fig. 19. Design with four milling directions at an 45 degree angle. C = 5.12 × 107 J.

Fig. 20. Design with four milling directions at an 14.4 degree angle. C = 6.09 × 107 J.

Additional numerical examples are also given with more constrained tool directions, to evaluate the milling

approach itself, as structures under very limiting manufacturing constraints are generated. Fig. 19 shows the bracket

with four non cartesian tool directions. Again, an agreeable structure with only 22% increase in compliance

compared to the reference is obtained. If closely examined, the structure shows two ‘spikes’ in the center of the

structure. These spikes do not carry any load, but cannot be removed by any of the given tool directions without

also removing some vital load-carrying structural member. Therefore they can be compared to the phenomenon

seen in Fig. 6(c), where non-load carrying material is also present.

An alternate version of the four directions is shown in Fig. 20, where all four directions have a 14.4 degree angle

to the vertical axis and are aligned with one of the other axes. In this case, the resulting structure is forced to use a

significant amount of material under the supporting rings in form of spikes, as can also be seen in the zoom into the

corresponding area in Fig. 21. These spikes appear as there is no milling direction which allows the removal of this

material. Similarly, any structural member which has material removed from under it needs to have a ‘wedge’-like

shape as the tools need to reach the void under the structure.
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Fig. 21. Zoom in on the wedge-like features from the design obtained with the four milling directions at a 14.4 degree angle, seen in

Fig. 20.

Fig. 22. Design with one milling directions at an 14.4 degree angle. C = 9.52 × 107 J.

Finally, a last example with a single tool direction is shown in Fig. 22, but this time the tool direction is at a

14.4 degree angle with the vertical axis, like in the previous example, but only the direction coming from the side

of the bolt flanges is considered. Again it can be seen that a thin-walled structure appears, but this time all of the

walls have the expected angle. One curious artifact of this example is that the optimizer is able to circumvent the

milling filter, and generate a hole in the bottom part of the central wall. This is understandable in a structural sense

as the bottom part of the wall carries little load, but still a very undesirable artifact in the milling filter. This effect

occurs due to an interesting interplay between the advection–diffusion filter and the Heaviside projection. As can

be seen in Fig. 3(d), the advection–diffusion-filtered value can slowly decrease along the advection direction. This

is partly due to the numerical diffusion due to the used upwind scheme, which is necessary for numerical stability.

If the value gets below the Heaviside parameter η, which is 0.5 in this case, the Heaviside projection will project

the design towards 0, rather than 1, allowing such a hole to appear. This can be solved by setting a lower η value,

although the example is included here for completeness.

6. Conclusion

The article presents a formulation for performing topology optimization of manufacturable structures through

milling by using a PDE-based alternative to a cumulative summation. The proposed method has been shown to

generate manufacturability by machining in a number of numerical examples in two and three dimensions, resulting

in topologies where all void regions are reachable through a tool direction from outside the domain. The proposed

method has also shown itself to work for larger topology optimization problems, as shown by the numerical examples

consisting of 64 million elements. From the large-scale examples it can also be seen that the increased number of

elements allows thin shell members in the structures to be resolved, notably in the bracket. This would not be

possible on lower resolutions.

The proposed method for performing the cumulative summation by solving the advection–diffusion equation,

can also be considered a significant simplification of the mapping process [12], since it is not necessary to keep

track of multiple meshes, and their relative orientation.

In the shown examples the proposed method accounts for a non-negligible fraction of the total computational

effort of the optimization. However, there is no hard limit to the size of problems, for which this method

can be applied. Furthermore, it should be possible to improve the wall clock time of the advection–diffusion

solver [18,26,27] — which is left as future work.
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Some disadvantages of the PDE-based formulation can also be noted from the numerical examples. The

advection–diffusion equation is unable to transport material through regions which have not been meshed, such

as between the two flanges of the bracket example. When a milling direction across flanges is chosen, no coupling

between the flanges occurs.

The transport problem could in principle be solved by developing special boundary conditions, which couple

the field values across the gap in the mesh. This would require a quite non-trivial effort in terms of mathematical

and software development. An easier alternative, would be to use an auxiliary mesh of a convex bounding volume

(e.g. the bounding box) of the domain, and solve the advection–diffusion problems on this mesh, somewhat similar

to the approach used in [12]. Solving the advection–diffusion equation in the convex bounding volume is still

expected to scale better with the number of elements, compared to performing a cumulative summation.

Another disadvantage is the lack of control in the tool-shape, which is possible when explicitly computing the

cumulative summations [12]. A further challenge is the diffusivity term of the advection–diffusion equation, which

is needed for numerical stability. It can be seen from the presented results that the diffusive terms can be kept very

small.

While it is difficult to guarantee a tool shape based on the solution of the advection–diffusion equation, it could

be possible to ensure a minimum member thickness of the features in the resulting design. This could be done by

providing eroded, nominal, and dilated variations of the design field during Heaviside projection phase. These fields

could then be used to provide a robust formulation based on [20]. This extension of the milling formulation is left

to further work, as it is considered somewhat a separate issue from the advection–diffusion based approach.

The proposed method sometimes shows erosion of structures downstream due to numerical diffusion, as discussed

in Section 2.2.2 and shown by example in Fig. 22. While this drawback is important to note for the proposed method,

the effects can be alleviated somewhat by appropriate choice of Heaviside parameters in the following projection.

It is found that the chosen milling directions have a large impact on the compliance of the resulting structures

when few milling directions are used. This is to be expected, as the milling filter poses a large restriction on the

possible structures.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could

have appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank Assoc. Prof. Dr. Schousboe Andreasen, Assoc. Prof. Dr. Aage, and Prof. Dr.

Sigmund for technical discussions, proof-reading, and supervising our PhDs.

The authors acknowledge the support of the Villum Foundation, Denmark for funding the aforementioned PhDs

through the Villum Investigator Project InnoTop.

Appendix A. Finite volume implementation with upwind scheme

The advection–diffusion equation from Eq. (2) is integrated over a control volume. After applying the Gauss

divergence theorem, the finite volume form of the equation over a control volume V with boundaries S is

obtained [33]:
∫

S

ni u
s
i
ˇ̃ρsd S −

∫

S

1

Pe
ni∇ ˇ̃ρsd S =

∫

V

ρ̃dV (A.1)

Finite difference schemes are used to describe the fluxes through the faces of the cell. The stencil for the respective

face consists of the two cells adjacent to the face. The diffusive flux through the face is described using a Center

Difference Scheme (CDS):

ni∇ ˇ̃ρs

⏐

⏐

⏐

f
=

⏐
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d

d · A
|A|2

⏐

⏐

⏐

⏐

ˇ̃ρs

⏐

⏐

⏐

N
− ˇ̃ρs

⏐

⏐

⏐

P

|d|
(A.2)

where A is the normal area vector and d the distance between the cell center and the neighbor cell center [34]. The

subscript f refers to the face value, P to the cell and N to the neighbor adjacent to the face.
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In order to guarantee numerical stability, an upwind difference scheme is used for the advection coefficient in

the hence, the interpolated value at the face is the one from the upstream cell:

if : (ni u
s
i ) f > 0 : ˇ̃ρs

⏐

⏐

⏐

f
= ˇ̃ρs

⏐

⏐

⏐

N

if : (ni u
s
i ) f < 0 : ˇ̃ρs

⏐

⏐

⏐

f
= ˇ̃ρs

⏐

⏐

⏐

P

(A.3)

where ni is the outward pointing surface normal.

The Robin boundary conditions are introduced in Eq. (3), using a linear interpolation of the ˇ̃ρs value on the cell

boundary and CDS equation (A.2) on the corresponding gradient, the following boundary condition contribution is

found for the boundary face:

ˇ̃ρs
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⏐

N
= − ˇ̃ρs

⏐

⏐

⏐

P

1
2

− ni
1
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|d||A|

1
2

+ ni
1
s

Ad

|d||A|

(A.4)

Dirichlet boundary conditions are implemented adjacent to passive domains. Here, the surface contribution is

given as:

ˇ̃ρs = 1 x ∈ ∂Ω (A.5)

the right hand side in these cells is corrected with:

−2a f (A.6)

where a f is the surface contribution of the boundary face.

Appendix B. Sensitivity analysis

The sensitivity of the full milling filter can be found by applying the chain rule on all operations, as seen in

Eq. (12).

The derivative of the compliance w.r.t. the used density field can be found for each element as [14]

dc

d
¯̌
ρ̃e

= −u¦ dK

d
¯̌
ρ̃e

u = −ue¦ dKe

d
¯̌
ρ̃e

ue (B.1)

where the e superscripts denote the element density, deformations, and local stiffness matrix.

The partial derivative of the Heaviside projection can be found analytically for every entry of the density field

as

∂
¯̌
ρ̃e

∂ ˇ̃ρe
=

β

(

1 − tanh2(β( ˇ̃ρe − η))
)

tanh(βη) + tanh(β(1 − η))
(B.2)

The partial derivative of the p-norm agglomeration for a given field i can be found analytically for every element

e as

∂ ˇ̃ρe

∂ ˇ̃ρe
s

=

(

1

n

ns
∑

s=1

( ˇ̃ρe
s )p

)
1
p −1

1

n
( ˇ̃ρe

s )p−1 (B.3)

The final partial derivative ∂ρ̃

∂ρ
depends on the chosen density filtering strategy. In both cases applying the partial

derivative corresponds to performing the density filtering on the accumulated sensitivity dc
dρ̃

.
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Abstract

Topology optimization is well suited to computationally achieve highly optimized designs with respect to objective

and constraint functions, and when coupled with additive manufacturing, enables the fabrication of complex structures

that can offer improved generator performance and increased power density. Here, topology optimization was used

for light-weighting high power direct drive generators. The rotor of a 5 MW wind turbine generator was analyzed

to determine geometric avenues of mass reduction with varying safety factors. Three designs were created with

safety factors between 1 and 2 which resulted in structural mass reductions ranging between 54%-67% compared to

a baseline design leading to a 13%-25% increase in power density. These designs represent a ∼50% structural mass

reduction compared to a previous structural optimization design using triply periodic minimal surfaces. All deflections

were less than their critical limits and the topology optimized rotor designs exhibited 64% lower radial deflection than

baseline. Deflections of the topology optimized designs were verified with commercial code and supported through

experimental validation using digital image correlation with additively manufactured rotors. Computational resource

use was reduced as compared to past parameter optimization approaches, and manufacturability studies demonstrated

that topology optimization holds potential for significant mass reduction of direct drive generators.

Keywords: Topology Optimization, Direct Drive Generators, Additive Manufacturing, Wind Turbines, Mass

Reduction
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2000 MSC: 0000, 1111

1. Introduction

Electric machines are an integral part of modern society. Electric generators create 98% of the worlds electricity

supply [1] and are found in nearly all power generation technologies worldwide. AC generators are composed of a

rotor and stator in which a typical configuration utilizes magnet poles on the rotating rotor and copper coils within

slots on the stator. AC generators can be classified by phase count (typical 3 phases), rotor arrangement (outer or inner

rotor), excitation scheme (AC, DC, brushless, permanent magnet), and generation method (induction, synchronous).

In 2020, power generation comprised 32% of all U.S. greenhouse gas emissions [2] and, in 2019, accounted for

44% of global CO2 emissions [3]. To address this, low carbon power generation technologies can be used. These

include wind, solar, geothermal and nuclear sources. With the exception of solar, each low carbon power generation

source previously mentioned requires an electric generator to convert chemical or mechanical energy to electrical.

In 2020, predominantly land based wind turbines provided 7.2% of grid electricity in the United States with

projections by the U.S. Energy Information Administration to reach 12.5% of the total electricity supply by 2050 [4].

Similar trends of increasing wind reliance can also be seen in Europe. For example, 47% of Danish electric power was

produced by wind in 2019. In U.S. states with large wind resources, (Texas, Idaho, North Dakota), the levelized cost

of electricity (LCOE) of wind is lower than competing fossil fuel technologies (petroleum, coal, natural gas). In 2023,

the LCOE of a combined cycle gas power plant entering service is 33.21$/MWh as compared to the onshore wind

∗Corresponding author: Gregory.Whiting@colorado.edu
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1. Stator

2. Copper Coil

3. Airgap

4. Permanent Magnet

5. Rotor Backiron

6. Structural Support

7. Shaft

Figure 1: Permanent magnet direct drive generator schematic.

LCOE of 30.44 $/MWh [5]. Rising fossil fuel costs further contribute to more favorable LCOE assessment of low

carbon power generation systems. Further advances in wind turbine technologies and generator design hold potential

to continually drive down both onshore and offshore wind LCOE. Additionally, advances in grid stabilization with

inverter inertia technology [6] and battery storage [7] address several challenges for wind energy, namely, variable

generation and no mechanical grid inertia.

Synchronous generators are particularly well suited for wind turbines in order to accommodate variable speed

generation. Inverters allow electrical rectification of the generator output to match grid conditions no matter the wind

speed [8]. In order to increase efficiency and remove the need for external power, electrically excited rotor field wind-

ings can be replaced by permanent magnets. Furthermore, in 2012 researchers at the U.S. National Renewable Energy

Lab (NREL) found that the gearbox was the single most expensive component to repair or replace. The mean time

before gearbox failure was 5 years and increased to 9 years with optimized gearbox design for more accurate loading

conditions [9]. Even a 9 year failure timeframe is undesirable for offshore wind where reliability is paramount; there-

fore, improved reliability can be achieved through a direct drive coupling system removing the gearbox altogether.

A permanent magnet, direct drive generator schematic is seen in Fig. 1. In order to maintain the same power output

at lower rotational speeds, the torque must increase. This increase in torque results in significantly higher generator

diameters vastly increasing its size, mass, and volume. Furthermore, as much as 90% of the generator mass in a direct

drive generator can be inactive mass used solely to support the rotor and stator and prevent closing of the airgap [10].

Therefore, substantial weight savings of the generator can be realized with structural mass optimization.

Analytical design tools developed in the 2000’s furthered the understanding of electromagnetic forces and struc-

tural deflection of a generator under load resulting in designs such as a spoked arm and solid disk design in the rotor

and stator [11, 12, 13]. These analytical equations were used with a genetic algorithm optimization approach in 2013

by Zavos et al. in order to select for optimal cost, mass, and deflection constraints, resulting in a 30% reduction in

total generator mass through parameter optimization alone [14]. Attempts to account for loading rotor eccentricity

and air gap closure resulted in new designs with more complex structures such as bridge chamfers and elliptical holes

[15]. With increasing geometric complexity, researchers turned to finite element analysis for design iteration. Pa-
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rameter optimization using triply periodic minimal surfaces for the rotor of a 5 MW permanent magnet direct drive

(PMDD) generator resulted in a 34% reduction in structural mass [16] compared to the baseline design [17] (Fig.

2). Initial topology optimization attempts on the rotor and stator was performed using commercial code [18, 19],

resulting in mass reduction. However, challenges to using commercial code included non-symmetric designs, lack of

clearly defined structures, and lack of multiple length scale structures for improved stiffness. Non-symmetric results

would result in centrifugal forces and eccentricity during operation and creation of large holes instead of lattice type

supports suggests a non optimized numerical scheme. Fig. 2 shows the progression of rotor topologies using different

optimization methods.

Figure 2: Rotor designs in literature include a 1D model genetic algorithm approach as the baseline design (NREL 2017), initial efforts at using

topology optimization in commercial codes to reduce structure mass (Zavos et al. 2013, Sola et al. 2020, Sola et al. 2021), parameter optimization of

more complex analytically defined geometries (Hayes et al. 2017), and the first use of parameter optimization of TPMS structures for lightweighting

direct drive generators (Hayes et al. 2021)

Topology optimization allows for high design freedom by determining what elements should be empty or solid

to satisfy a given objective function subject to constraints. The optimization technique can be used for almost all

governing physics or multiphysics application however much research has focused on structural compliance problems

[20, 21]. In these problems, material is added only where needed which allows for significant lightweighting [22].

Previous attempts at lightweighting direct drive generators with topology optimization utilized generic commercial

code solvers. Several challenges existed with commercial code solutions including asymmetry, local minima, and

lack of feature resolution. Obtaining a functional design for large direct drive generators using topology optimization

requires small feature sizes and thus discretization with tens or even hundreds of million elements. Efficient compu-

tational infrastructure catered to the problem at hand is important in producing viable results. Past work by Baandrup

et al. and Aage et al. have employed gigavoxel topology optimization on large structures resulting in a 28% mass

reduction in girder weight for a suspension bridge [23] and 2-5% reduction in mass of a full NASA common research

model aeroplane wing [24].
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This study presents density based volume minimization for linear elasticity as a means of generating lightweight

lattice designs for the rotor of a 5 MW direct drive wind turbine generator. Three rotor designs with safety factors

between 1-2 were created using the topology optimization framework and deflections validated with a commercial

code and digital image correlation of a printed part. Deflections were under the critical deformation limit in all

directions and structural mass reductions between 54-67% were found, suggesting a strong use case for topology

optimized rotor designs. This work exceeds the previous structural mass reduction scheme for a 5 MW direct drive

generator by 50% and to the authors’ knowledge is the current best structural mass savings approach to lightweighting

direct drive generators.

Loading

1. Normal Maxwell Stress: 0.2 MPa

2. Shear Stress: 40 kPa

3. Gravitational Loading: 9.81 m/s2

Critical Deflections

1. Radial < 0.65 mm

2. Torsional < 2.84 mm

3. Axial < 32.17 mm

Figure 3: Rotor loading conditions and critical deflections

2. Materials and Methods

2.1. Rotor Loading Criteria

The low speed, high torque PMDD generator has three main loading criteria seen in Fig. 3. First, the normal

component of the Maxwell stress acts to close the airgap. Second, the tangential component of the Maxwell stress

opposes the torque of the shaft resulting in power transformation. Thirdly, gravity acts as a body force on the entire

structure seen mostly during transportation. Loading conditions in this study agree with those used in literature for
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a 5 MW radial flux PMDD generator [12]. The normal component of the Maxwell stress was 0.2 MPA, the shear

stress resulting from the tangential component of the Maxwell stress was 40 kPa, and gravietational acceleration was

9.81 m/s2. The critical deflection criteria was a radial deflection less than 10% of the air gap diameter, torsional

deflection less than 0.05◦ angle of twist, and an axial deflection less than 2% of the axial length. For the machine

topology studied, this results in a critical radial, torsional, and axial deflection of 0.65 mm, 2.84 mm, and 32.17 mm

respectively.

2.2. Topology Optimization Approach

The topology optimization problem (discussed in detail in the Theory section) was solved for torsional deflection

safety factors of 1 and 2 (ie: for the nominal load and twice the nominal load with varying initial conditions). In the

literature, typically a safety factor of 1 is used as this value represents the accepted limits in the design of the generator

[12, 17]. In this study, the impact of doubling the safety factor on the final design was explored. This study suggests

that mass reduction could still be made even when defining a more stringent set of deflection constraints. The three

resulting designs can be found in Fig. 4 and were used for printing the experimental parts as well as validation with

commercial code.

2.3. Mesh Independence and Commercial Code Validation

A mesh independence study was performed by evaluating the three topology optimized designs at three different

mesh sizes (10, 20, and 30 mm elements) and comparing deflection results. A difference of less than 5% between the

two finest meshes constitutes finite element convergence. The mesh file for each design was imported into commercial

code package Abaqus for FEA validation. In this study, a simple static analysis was performed and the developed code

compared against the commercial code FEA results.

2.4. Experimental Validation

In order to experimentally validate the topology optimized designs, a representative scaled model was printed in

polylactic acid (PLA) using fused deposition modeling (FDM). The model was printed solid with 100% infill with a

Raise 3D dual extrusion printer configured with PVA dissolvable supports (Raise 3D, Pro2 series, Irvine, CA, USA).

Since low deformation existed in the 5 MW loading conditions, we assumed the material is well below its yield

strength, solely elastic deformation occurs with no non-linearities, and thus the linear Hooke’s law applies. Therefore,

the topology optimized rotor designs can be simulated and verified with a different material than structural steel for

ease of manufacturing while still providing validation of the FEA process. In this study, the 5 MW rotor design

was scaled to 3% to a radius of 100 mm. Due to the difficulty of applying a continuous radially outward load and

shear stress along the circumference of the rotor, for experimental validation, a 60 mm torque arm was added to the

part. Additionally, a square shaft was added to the design to facilitate holding the part in a vice. The torque arm

and shaft allowed for easy and accurate loading enabling the creation of a digital twin in Abaqus for FEA analysis.

Since torsional deformation was found to be dominant in the 5 MW rotor designs, ability to resolve the torque arm

deflections in the printed model was used to validate the ability to resolve the 5 MW rotor deflections. For experimental

validation, a dead weight test was used to experimentally apply a highly accurate torque to the rotor. For this study,

a 0.63628 kg deadweight was used leading to an applied force of 6.25 N to the torque arm. Digital image correlation

(DIC) was employed using a 24.2 MP Rebel T7i camera (Canon, Melville, NY). A speckle pattern was first applied to

the part with flat black spraypaint. Images were taken before and after hanging a deadweight from the torque arm and

the opensource digital image correlation software DICe by Sandia National Labs used for analysis [25]. The digital

twin was simulated in Abaqus in PLA with a density, elastic modulus and Poisson’s ratio of 1200 kg/m3, 2306 MPa,

and 0.35 respectively.

3. Theory

The applied topology optimization formulation is a density based volume minimization for linear elasticity with

multiple displacement constraints [26]. It also uses the robust formulation to ensure a minimal length-scale [27].

For the density based topology optimization, a finite element model of the rotor design domain is generated. Rings

of solid material are prescribed on the inner and outer parts of the rotor, with a thickness of 64 mm and 66.37 mm

respectively. The remainder of the rotor is also discretized using finite elements, but here every element is given a

design, or density, variable, which indicates whether the element is solid or void. All of the element-wise design
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variables are collected in a vector denoted x, while the subscript xe is used to denote the design variable of a specific

element e.

3.1. Filter and Regularization

In order to impose a minimum length-scale the modified robust formulation for linear elasticity is applied [27].

This approach allows for control of the final length-scale, without incurring the usual high computational cost of the

robust formulation, by exploiting properties of the linear elasticity and volume constraint.

The first step in the robust approach consists of a convolution type filtering of the design variables. Besides

being the basis for the robust approach, this is also needed in order to regularize the otherwise ill-posed optimization

problem such that checkerboards and mesh dependent designs are avoided [26]. The filtered field x̃ is found by

solving a modified Helmholtz equation, which uses the design variables as the forcing term [28]. The Robin boundary

conditions are used on the free boundaries to remove the boundary effects on the domain [29]. The usual Neumann

boundary condition is used for boundaries between the design domain and the inner and outer rings. The equation

solved is

−r2∇2x̃ + x̃ = x in Ω (1)

Where Ω is used to denote the design domain. Here r denotes the term used to control the filter size in the equation,

which should be set to r = 2
√

3R to obtain the physical filtering radius R. The filter equations are solved using a first

order finite volume discretization. This is chosen to avoid any interpolation, as the density values are constant on the

element level in the finite element analysis.

The robust formulation builds on the filtered design field and considers three different design realisations, nominal,

dilated, and eroded. In the original formulation of the robust approach, the objective and all constraints are evaluated

on all design evaluations, and the worst-case is always chosen from the three. This ensures that the final design is

robust with respect to dilation and erosion of the structure. The modified robust formulation used shows that more

material will always lead to lower deformation and higher volume. Therefore in this work, the deformation is only

evaluated on the eroded design, as this is known a-priori to be the worst-case. Likewise, the volume is only evaluated

on the dilated design.

In order to create the different designs a differentiable approximation to the Heaviside function is used:

x̄e =
tanh βη + tanh β(x̃e − η)
tanh βη + tanh β(1 − η)

, ∀e ∈ {1, .., n}. (2)

Here η controls the point at where the design is thresholded, and β controls the sharpness of the threshold. The

used values of η are 0.5 for the nominal design x̄, 0.8 for the eroded design x̂, and 0.2 for the dilated design ˆ̂x. These

settings ensure a minimal feature size of 64 mm when a filter radius of 40 mm is used. The value of β is increased

slowly throughout the design iterations, in a continuation scheme. For this work, the scheme increases β slowly in the

beginning, and faster towards the end. The full scheme is given in table A.1.

3.2. Stiffness interpolation

In this work the standard Solid Isotropic Material with Penalization method (SIMP) interpolation is applied to

interpolate the Young’s modulus as a function of the evolving density field x̄ [26]. The stiffness interpolation for

element e is thus

Ee = Emin + x̂
p
e (E0 − Emin), Emin = 10−6E0 (3)

Where E0 is the Young’s modulus of the solid material, and p is the penalisation variable, which controls how

hard intermediate densities are penalised. For this work a penalisation of p = 3 is used.

3.3. Deformation constraints

In order to ensure that the outer surface of the rotor retains its original geometry, two deformation constraints are

included in the optimization problem. From section 2.1, only the radial and torsional (1) and (2) from fig. 3) load-cases

are considered. This is deemed reasonable as it was found that the axial deformation constraint was fulfilled by all

designs. The two remaining load cases are treated individually, this is, to compute the radial deformation constraint,
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only the normal Maxwell stress is applied to the structure, and to compute the torsional deformation constraint, only

the shear stress is applied.

In order to compute the constraint value, firstly the node-based directional deflections are found for every node on

the outer surface, by taking the inner product between the nodal deformation, and the radial or torsional unit direction

vector for the corresponding node. These values collected in vectors are denoted Dradial and Dtorsional respectively.

Secondly, in order to reduce the number of constraints, the directional deformations are aggregated using the p-

mean function, which is a differentiable approximation to the maximum function, using the aggregation parameter

p∗ = 16.

Pm(v) =















1

n

n
∑

i=1

v
p∗

i















1
p∗

(4)

Hence a differentiable scalar approximation to the maximal deflection is obtained. While there is some error

compared to the true maximal deformation, this is mitigated by updating the used constraint value for the optimization

problem every 20 design iterations. The update scales the constraint value, in order to correct for the error in the p-

mean approximation. Additionally, the deformation constraints are scaled by a safety factor s f .

3.4. Optimization problem

Now the full optimization problem is presented, implicitly using the definitions from previous sections. The

volume is minimised, subject to the linear elastic state equations, the deformation constraints, and a box constraint for

each design variable.

minimize
x∈Rn

1
∑ne

e=1
ve

ne
∑

e=1

ve
ˆ̂xe

subject to:

state equation K(x̂) ui = fi, ∀i ∈ {1, 2}

radial deformation Pm(Dradial(u1)) f 0.65mm

s f

torsional deformation Pm(Dtorsional(u2)) f 2.84mm

s f

box constraint 0 f xe f 1, ∀e ∈ {1, .., ne}

(5)

The problem is solved using the method of moving asymptotes [30]. No explicit symmetry constraint was used

for the optimization formulation. Six-way symmetric designs are obtained as the underlying finite element mesh was

six-way symmetric, and the elasticity equations were solved with high precision.

4. Results and Discussion

4.1. Optimized Rotor Designs

Three topology optimized (TO) designs were created by varying the desired torsional safety factor from 1-2 and

can be seen in Fig. 4. TO design 1 (Fig. 4a) and TO design 2 (Fig. 4b) were created with a safety factor of ∼2 but

started using different initial conditions. Design 1 used a homogeneous density distribution of 0.25 whereas design 2

used 0.6. As topology optimization is a non-convex optimization problem, there is no guarantee that the found minima

are global. This implies that different designs can be obtained by varying the initial design of a problem formulation, as

seen in the difference between designs 1 and 2. The presented designs were selected from a set of trials, where a range

of initial homogeneous density distributions were considered. Since topology optimization problems are inherently

non-convex, different starting guesses may lead to different local optima. In this work, all obtained designs satisfy

constraints and hence the different local minima provide the design engineer with different design options and the

final design may thus be chosen due to other criteria like manufacturing costs, handability or aesthetics. A flowchart

depicting the design process is given in Fig. 5.

TO designs 1 and 2 exhibited radial deflections of 0.26 mm and 0.19 mm respectively and torsional deflections of

1.41 mm and 1.43 mm respectively. TO design 3 (Fig. 4c) was created with a safety factor of ∼1 and an initial density

distribution of 0.15 and resulted in a radial deflection of 0.20 mm and torsional deflection of 2.62 mm. All torsional
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Figure 4: (a) TO rotor design perspective and cross sectional views (b) FEA radial and torsional deflections and inactive mass compared to baseline

and previous designs

deflections were below the critical limit of 2.84 mm and radial deflections were well below the critical limit of 0.65

mm. The significant difference in torsional deflections between designs 1 and 2 and design 3 was due to the use of

different safety factors. The TO designs had radial deflections 64% lower than the baseline spoked arm design [17].

This is important as it leads to greater airgap stability and lower eccentricity during rotor operation. All designs had

axial deflections less than or equal to 0.813 mm which was less than 3% of the axial critical limit.

The rotor designs are shown in Fig. 4a-c. TO designs 1, 2, and 3 depicted radially outward cylindrical connected

spokes with a thickened inner ring near the stress concentration at the shaft constraint. Design 1 and 3 depicted two

planes of spokes along the axial axis close to the axial faces of the rotor backiron. Design 1 had spoke diameters of

∼84 mm while design 3 had thinner but more numerous spokes of ∼50 mm with greater interconnectivity. Design

2 showcased similar deflection and mass to design 1, yet is the only design with self connecting spokes in the axial

direction showcasing a plane of symmetry in spoke geometry about the axial midplane. In this design, the spokes

extended from the axial edges near the backiron faces in a convex and concave direction before reconnecting from

either side with spokes that attach to the rotor backiron along the axial midplane. This was the most complex design

out of the three yet resulted in fewer attachment points to the rotor backiron due to its self interconnectivity.

The inactive mass or structural mass is comprised of non-magnetically active regions of the rotor. As the backiron

is magnetically active, the inactive mass comprises the structural support material which prevents airgap closure and

allows connection to the drivetrain shaft. The inactive mass of the topology optimized designs was markedly lower

than the baseline design. The lowest mass TO design was design 3 with a factor of safety in the torsional direction

slightly above 1 and resulted in an inactive mass of 5.46 mT (1 mT = 1000 kg). This was 50% lower than the past

best triply periodic minimal surface lattice design [16] and remarkably, 67% lower than the baseline design [17]. TO

design 3 resulted in a total mass reduction of 11 mT of structural steel compared to baseline. The other two designs

offer a higher factor of safety in the torsional direction with the sacrifice of added mass. TO designs 1 and 2 resulted

in inactive masses of 7.55 mT and 7.19 mT respectively which were 54% and 56% less than the baseline spoked arm

design respectively.
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Figure 5: Optimization scheme flowchart

4.2. Mesh Independence and Commercial Code Validation

The voxel based topology optimized designs where subsequently converted into STL-files which were then used

for generating body fitted meshes. Each topology optimized design mesh was refined three times in order to determine

the influence of mesh size on the results. As design complexity increased or feature size decreased, a more refined

mesh was needed to properly resolve the design. For TO designs 1 and 2, mesh refinement resulted in a less than 2.5%

change in torsional and radial deflection suggesting proper mesh refinement at the initial level. Design 3 featured

spoke sizes roughly half that of designs 1 and 2 resulting in greater mesh resolution necessary to resolve all features.

Further mesh refinement for design 3 beyond this point resulted in a less than 1% change in deflections suggesting

proper element size. Commercial code validation using Abaqus against the density representation in the Portable,

Extensible Toolkit for Scientific Computation (PETSc) based code resulted in a deviation of less than 1.6% for all

three designs for the radial deflection and torsional deviations for designs 1, 2, and 3 of 9.8%, 15.8%, and 8.6%

respectively. This discrepancy is in part due to the jagged nature of the density based geometry representation in

the PETSc based code. Nevertheless, mesh refinement and agreement with commercial code supports the developed

code’s FEA capabilities on the rotor structures.

4.3. Computational Resources

Each topology optimized design was computed using 13.2 million hexahedral finite elements on the DTU Sophia

cluster [31] using 10 compute nodes, each with two 16-core AMD EPYC 7351 CPUs, for a total of 320 CPU cores.

Each design ran between 14 and 20 hours, resulting in 4480 to 6400 core hours used for each design when utilizing an

iterative solver setup similar to that presented in [32]. However, it should be noted that several iterations were needed
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Figure 6: Experimental and simulation comparison for torque arm addition

to find the best parameters for computing the designs, where each iteration required several runs on the cluster.

The previous lowest mass parameter optimization algorithm in literature for lightweighting permanent magnet direct

drive rotors utilized a genetic algorithm with triply periodic minimal surfaces. This past work required ∼ 8500 core

hours per design [16]. However, it should be noted that the genetic algorithm and triply periodic minimal surface

lattice generation technique required serial computing between generations due to the result dependence on concurrent

computations resulting in limited opportunities for parallel computing speedup. Therefore, the true run time was much

greater than the computation resource cost alone would suggest. Therefore, to the authors’ knowledge, this study

represents the largest geometric weight savings (∼ 67% to baseline) with the least computational cost for the rotor of

a PMDD generator.

4.4. Experimental Validation

The deformation magnitude between the printed torque arm designs and Abaqus FEA showed good agreement

suggesting high ability of the FEA code in resolving the rotor geometries. Images of the printed parts, DIC results,

and simulation results with the concurrent color maps can be seen in Fig. 6. The torque arm extension with design

1 had the highest error with 8.3% deviation between FEA and digital image correlation. Despite having the highest

complexity of the three designs, design 2 depicted the lowest deviation within 1.8% of the FEA result. The average

deviation between DIC and FEA analysis was 4.4%. The ability of the printer to resolve the small cylindrical spokes

most likely accounts for the deviation in results. For example, a minimum feature size of 3 mm seen in design 1 and 2

results in 7.5 layer widths compared to 4 layer widths for the 1.6 mm feature sizes of design 3. This results in greater

error between the actual printed geometry and the mesh file used for FEA analysis. Nevertheless, good agreement

existed between the torque arm loading for both the printed PLA parts and digital twin FEA analysis suggesting good

ability of the FEA tools in accurately capturing the deflection in the designs with varied material properties for the 5

MW design.

4.5. Manufacturability for Large Machines

Topology optimization coupled to additive manufacturing techniques excels at both designing and manufacturing

highly complex parts. However, additive manufacturing techniques such as powder bed fusion, selective laser melting,

or electron beam melting are typically high cost [33] and limited to parts less than 1 m [34]. This adds complexity to
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manufacturing these topology optimized rotor designs as traditional additive manufacturing approaches prove difficult

and expensive. One potential solution is hybrid additive manufacturing using powder binder jetting of a mold and

traditional sand casting. This process has been explored in the past for large, complex generator support structures

[35]. In this process, the sand mold of the support structure can be printed using large format binder jetting machines

capable of printing sizes up to 4 m [36]. Since the mold is printed, it can create the complex spoke patterns of

the topology optimized designs. Next, traditional casting can be used to create the metal topology optimized rotor

support designs. Using traditional casting decreases cost while maintaining high complexity associated with additive

manufacturing. Note that only the support structures need to be manufactured as rotor electromagnetically active

regions can be produced by traditional stamping or lasercutting processes. These rotor support designs post-cast can

then be welded at the spoke intersection points to the rotor backiron as traditionally done for rotor support structures.

Each topology optimized design has different manufacturing challenges. Designs 1 and 3 have greater weld points

due to two planes of spokes, yet they are symmetric allowing for significantly lower height molds since the support

part can be printed as two separate parts resulting in higher production. Design 2, with less spokes connecting to

the rotor backiron, would reduce the final welding needs but require larger molds with lower productivity due to its

interconnective, axial-varying pattern.

4.6. Influence of Lightweighting on Power Density

Increased power density of electric machines can be accomplished by increasing the total power output of the

machine or decreasing the total mass of the machine. Topology optimization as a means of lightweighting the rotor

enabled up to a 25% increase in power density as compared to the baseline design. This increase in power density was

solely due to geometric design and further improvements in power density could be made by applying the topology

optimization method to the stator for complete generator structural optimization. Additionally, by reducing the mass

of the generator, the nacelle mass can be decreased resulting in lower downstream costs as the tower can be designed to

withstand reduced load. Furthermore, this topology optimization approach at reducing the structural mass of electric

machines can be applied to motors. In this way, improved power density via structural mass topology optimization

holds promise for electric machines across a variety of industries. In the power generation sector with objectives of

greatest efficiency at lowest cost, improved power density by lower structural mass reduces the generator material

cost and downstream costs associated with supporting the generator mass. In the electric motor propulsion sector,

improved power density enables higher thrust to weight ratios for electric aviation and greater fuel economy due to

lower vehicle mass for automotive applications.

5. Conclusions

Structural designs for the rotor of a direct drive wind turbine generator was performed using large scale topol-

ogy optimization methods and high performance computing. Three designs were created using a safety factor of

1 and 2 and varying initial configurations. All designs showed a solid star disc structure near the shaft connection

and cylindrical spokes radially outward. The topology optimized designs were within the radial, torsional, and axial

critical limits. Large structural mass reduction was achieved through these designs with the lightest design reducing

the rotor structural mass by 67% compared to the baseline design. This translates to an increase in power density

of the 5 MW reference generator by up to 25%. These designs represent a 50% improvement over the current best

lattice optimized support structures. This work provides a framework for creating custom topology optimized electric

machine support structures, and can be extended to the stator for even greater mass reduction. Recommendations for

future work include enabling a generalized rotor and stator structural optimization input allowing structural coupling

to electromagnetic optimization. This would allow greater force densities to be realized with lower deflections. Addi-

tionally, extending the application to electric motors holds potential for improving their power density. Reduced top

mass in the nacelle of wind turbines offers downstream cost savings due to lower structural support needs. The results

of this study also holds promise for other electric machines, such as enabling increased power density (kW/kg) vital

for electric propulsion industries.
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Appendix A. Continuation scheme for projection sharpness β

See table A.1 for the sharpness continuation scheme.
iteration β

0 0.01

40 1

80 2

120 3

150 4

180 5

210 6

240 7

270 8

300 9.6

330 11.5

360 13.8

390 16.5

420 19.9

450 23.9

480 28.7

510 34.4

540 41.3

570 49.5

600 59.4

Table A.1: The continuation scheme for the projection sharpness. At the given iteration, the sharpness is set to the given value.
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Abstract

This work presents topology optimisation implementations for linear elastic compliance minimisation in three
dimensions, accelerated using Graphics Processing Units (GPUs). Three different open-source implementations
are presented for linear problems. Two implementations use GPU acceleration, based on either OpenMP 4.5
or the Futhark language to implement the hardware acceleration. Both GPU implementations are based on
high level GPU frameworks, and hence, avoid the need for expertise knowledge of e.g. CUDA or OpenCL. The
third implementation is a vectorised and multi-threaded CPU code, which is included for reference purposes.
It is shown that both GPU accelerated codes are able to solve large-scale topology optimisation problems
with 65.5 million elements in approximately 2 hours using a single GPU, while the reference implementation
takes approximately 3 hours and 10 minutes using 48 CPU cores. Furthermore, it is shown that it is possible
to solve nonlinear topology optimisation problems using GPU acceleration, demonstrated by a nonlinear
end-compliance optimisation with finite strains and a Neo-Hookean material model discretised by 1 million
elements.

Keywords: Topology Optimisation, GPU acceleration, Structural Optimisation

1. Introduction

Topology optimisation is a rapidly maturing technology which enables automatic design of application
tailored structures [5, 36]. At the time of writing, this design method has been shown to work for a wide
variety of physics. Nevertheless, the computational cost of performing the optimisation is challenging for
many practical use-cases. Large-scale topology optimisation problems usually take days to run on expensive
compute clusters [2, 1], which are only readily available to few large companies and academics. Therefore,
the research community seeks to improve the computational efficiency of topology optimisation in order to
make the methods easily available to small and medium sized companies. One approach is to use graphics
processing units (GPUs) to accelerate the computation.

Advantages of GPU accelerated computing. Modern GPUs offer a great computing power to
price ratio, compared to the more general purpose central processing units (CPUs). Consider the Nvidia
3080Ti GPU, which promises a theoretical limit of 34 TFLOPS on 32-bit floating point numbers. This card
was launched in 2021 at a recommended retail price of 1200 USD [30]. A similarly priced CPU, the Intel
Xeon W-3335 launched in 2021 with recommended retail price 1300 USD, promises a theoretical limit of 1
TFLOPS on 32-bit floating point numbers (4 GHz× 16 cores× 16 SIMD-lanes) [18]. This order of magnitude
improvement of computing speeds explains the current interest in using GPUs for computationally intensive
tasks outside of graphics processing. It should be noted however, that many graphics cards are optimised for
32-bit floating point performance, as these are commonly used for graphics. The graphics cards with good
64-bit floating point performance are usually high-end cards designed specifically for acceleration of scientific
and machine learning workloads. This is a relevant observation as topology optimisation implementations
rely on 64-bit, as the high precision is required to avoid truncation errors which arise in the solvers, both for
the physics and the optimisation problem [20].
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Challenges of general purpose GPU programming. The GPU is able to attain large performance
improvements over the CPU by exploiting the large amount of parallelism in graphics processing. The GPU
can be thought of as a stream processor, which applies some function, a so-called kernel, to a large set of
inputs. It is crucial that implementations for the GPU follow this structure. Most frameworks for general
purpose GPU programming, e.g. CUDA or OpenCL, are based on the notion of kernels, in order to ensure
that the resulting programs are structured correctly [31, 38]. While these frameworks are able to produce
very efficient code for the GPU, it is challenging to port CPU programs to GPUs, as the reformulation of the
problem to kernels is left to the programmer. One important aspect of the highly parallel GPU architecture
is that problems with irregular data access, such as sparse matrix factorisation, are non-trivial to implement
efficiently.

An alternate approach to the kernel based model is to use compiler directives to declare loops as kernel
executions to be performed by the GPU. This approach is followed by OpenMP and OpenACC which
both allow loop bodies to be compiled into kernels as specified by compiler directives [8, 11]. Hence, such
approaches are interesting when seen from a mechanical engineering perspective.

A practical approach to general purpose GPU programming. An alternat approach to writing
explicit kernels is to use a programming language with higher levels of abstraction, which can be compiled
to GPU kernels. One such language is Futhark [14, 12, 15], which was chosen for this work due to the
thoroughness of its language documentation. Similar languages include Dex [32], and Lift [37]. There are
several advantages to using Futhark. Writing software at a higher level of abstraction is generally faster.
While purely based on perception, it is our experience that using Futhark has significantly reduced the
total development time of the presented GPU programs, compared to the corresponding reference program.
Furthermore, the Futhark compiler includes an aggressive ahead-of-time optimisation, which results in
efficient compute kernels with little effort compared to writing the GPU kernels by hand.

Prior work in topology optimisation using GPUs. The use of general purpose GPU programming
for topology optimisation problems goes back more than a decade to Wadbro and Berggren [39] who developed
a CUDA implementation to optimise two-dimensional heat conductors. Schmidt and Schulz [34] solved a
linear elasticity problem using the conjugate gradient method and were the first to discus the details of
writing a GPU kernel for topology optimisation. Further work exploits the structure of Cartesian grids to
improve the performance of GPU implementations by introducing multigrid preconditioners with low memory
overhead [41, 23, 21].

An interesting issue not handled in this work concerns the solution of topology optimisation problems
on unstructured meshes. A key challenge for unstructured meshes, is to avoid concurrent writes to a single
node, or so-called data-races. One way to avoid data-races is to use graph-colouring, as done in Zegard and
Paulino [43], Mart́ınez-Frutos et al. [22]. Recently, it has been considered to build an algebraic multigrid
solver on the CPU and transferring it to the GPU, in order to efficiently solve unstructured problems [16].

Summary of this work. In this work we present two GPU accelerated topology optimisation implemen-
tations for the linear elastic minimum compliance problem [5], one using the Futhark language, and the other
using OpenMP 4.5 to generate GPU kernels. Furthermore, we present a reference implementation for the
CPU based on OpenMP for performance comparisons. All presented codes are made publicly available, and
it is the authors’ hope that the accessibility of such codes will make high resolution topology optimization
a viable option for a larger group of researchers and practitioners than those currently exploiting these
possibilities.

Our implementations assume a Cartesian grid and we exploit this structure of the problem to improve the
performance. We show that both GPU accelerated implementations for the linear problem are able to solve
topology optimisation problems with more than 50 million hexahedral elements and 100 design iterations in
a matter of hours on a single Nvidia A100 GPU [28].

Finally, we demonstrate the extendibility of one of the GPU implementations by solving a nonlinear
elasticity problem. To this end we use the Futhark language to solve a nonlinear end-compliance problem
[7] using finite strains and a Neo-Hookean material formulation. As in the linear case, a Cartesian grid is
used, and exploited for performance in the implementation. The nonlinear equilibrium is solved using a
Newton-Krylov approach. The nonlinear problem has a greatly increased computational complexity, due to
the need for numerically integrating all element contributions during every matrix-free application of the

127



tangent matrix. We show that it is indeed feasible to solve topology optimisation problems with nonlinear
elasticity on the GPU, although it is notably slower than its linear counterpart. This implementation is also
made publicly available.

2. Theory and Methods

This section is intended to provide the reader with a sufficient overview over the theoretical background
of the considered topology optimisation problems.

2.1. Elasticity

Linear Elasticity. Finite element analysis of small strain linear elasticity is well-known and is based on
the following strain energy density

ϕL =
¼

2
(Ekk)

2 + µEijEij , (1)

Where ¼ and µ denote the Lamé parameters and Eij is the strain tensor. This formulation is thoroughly
covered in many textbooks. In this work a tri-linear hexahedral element fornulation is used, which can be
found in Cook et al. [10]. For the sake of brevity, the formulation is not reproduced in this article. The
interested reader is referred to Cook et al. [10].

Nonlinear elasticity. When considering large deformations, Green-Lagrange strains and a Neo-Hookean
material model are adopted. The energy expression for the Neo-Hookean formulation is [19]:

ϕNL =
¼

2
(ln J)2 +

µ

2
(Cii − 3)− µ ln J, J = |fij | (2)

Here fij denotes the deformation gradient tensor, Cij = fikfkj denotes the Cauchy-Green tensor, and ¼ and
µ the Lamé parameters

¼ =
¿E

(1 + ¿)(1− 2¿)
, µ =

E

2(1 + ¿)
(3)

In order to stabilise the void elements an interpolation between the nonlinear energy and the linear
formulation is used [40]. The interpolation on the element level is given as:

ϕe = Ee [ϕNL(µeue) + (1− µe)ϕL(ue)] (4)

Here ϕL is the energy corresponding to the linear formulation. Note that the Young’s modulus from the Lamé
parameters is moved out as a scaling parameter of the entire energy. µe is an element-wise interpolation
parameter, based on the filtered element density x̃e, given by

µe =
tanh(´Ä0) + tanh(´(x̃e − Ä0))

tanh(´Ä0) + tanh(´(1− Ä0))
(5)

where the parameters ´ = 500 and Ä0 = 0.1 are used for this work. The details of the formulation are given
in Appendix A.

2.2. Topology optimisation formulation

The chosen topology optimisation problem treated in this work is the classical problem of compliance
minimisation with density filtering and a volume constraint. A detailed explanation of the formulations can
be found in Bendsøe and Sigmund [5], Buhl et al. [7] for the linear and nonlinear case respectively. The
problems are summarised here for completeness.

Density filter. Ensuring that non-physical phenomena, such as chequer-boarding are avoided, the
density filter is applied [6]. The density filter applies a local weighted average to the elements

x̃i =

∑

j xjwij
∑

j wij

, wij = max[r − dij , 0] (6)

128



Where x is the local element density, r is the filter radius, and dij is the distance between element centres of
element i and j. x̃ denotes the filtered density. Note that wij only takes non-zero values when dij < r. The
element-wise constant densities are preferred as this improves the efficiency of the linear implementation, as
element contributions with a constant Young’s module are faster to compute.

Stiffness interpolation. In order to avoid intermediate densities in the resulting design, the Solid
Isotropic Material Penalisation (SIMP) is used [5]. The interpolation occurs between some solid material
stiffness Emax, and a low void stiffness Emin chosen so low that it does not have any practical effect on the
solution to the elasticity problem. In this work it is chosen such that Emin = 10−6Emax. The element-wise
interpolation is

Ee = Emin + (Emax − Emin)x̃e
p (7)

The penalisation parameter p is chosen to reduce the Youngs Module at intermediate values. In this work a
value of p = 3 is used throughout. For every finite element the local Young’s Module is computed by the
interpolation. The assembly of local finite element matrices is otherwise unaffected.

Linear optimisation problem. The linear optimisation problem is a compliance minimisation problem
for linear elasticity. The problem is analogous to that solved in several Matlab implementations [35, 3], with
the exception that it is extended to three dimensions. The formal definition of the problem is

minimize
x∈Rne

u¦f

subject to:

filter x̃ = F (x)

state equation r(u, x̃) =
∂Π

∂u
− f = 0

volume
1

∑ne

e=1 ve

ne
∑

e=1

ve[x̃]e ≤ V ∗

box 0 ≤ [x]e ≤ 1, ∀e ∈ {1, 2, ..., ne}

(8)

Here F is used to denote the elementwise computation of the filter operation from eq. (6), and Π is used
to denote the integral of ϕ in the considered domain and f is the nodal load vector. For the linear problem
we have that r(u, x̃) = K(x̃)u− f , where K(x̃) denotes the assembled stiffness matrix using the given density
values to interpolate the Young’s module. Note that for the employed rectangular grids, where all elements
have identical shape and size, simplifying the volume constraint in practise. The optimisation problem is
solved using the Optimality Criteria method [5], similar to the 88-line Matlab code presented in Andreassen
et al. [3].

Nonlinear optimisation problem. The nonlinear optimisation problem is in many aspects similar
to the linear problem. Both volume constraint, filter technique, and stiffness interpolation are unchanged
from the linear problem. The goal of the optimisation process is to minimise the end-compliance, i.e. the
compliance of the final deformation [7]. Indeed eq. (8) is still valid for the nonlinear problem, with the small
change of interpretation that r(u, x̃) is no longer a linear system. Instead, a nonlinear problem is solved to
find the end-displacement, and a corresponding linear adjoint problem is solved in order to compute the
gradients.

In order to compute the sensitivities of the residual, the adjoint method is used to obtain an analytic
expression for the gradients. The derivation of the adjoint expression for end-compliance can be found in
Buhl et al. [7]. Given a system where equilibrium has been found, the Lagrange multiplier ¼ can be found by

Kt(uequilibrium)¼ = f (9)

Where Kt(uequilibrium) denotes the tangent matrix in the system of equilibrium. Using the Lagrange multiplier,
the sensitivity with respect to an element can be found by

∂(u¦f)

∂Äe
= ¼¦

∂r

∂Äe
(10)

The right hand derivative term can be found by taking the partial derivative of eq. (A.22).
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2.3. Solving the linear systems

The multigrid preconditioned conjugate gradient method is used to solve the linear systems, arising from
both linear elasticity, as well as the linearisations of the nonlinear elastic problem. The method is widely used
in large-scale topology optimisation problems [2, 4], as its error smoothing properties allow for an efficient
solution of a design iteration by reusing the previous solution as an initial guess. In this work a V-cycle
multigrid is employed as the preconditioner for the conjugate gradient method.

Conjugate gradient. The preconditioned conjugate gradient method is used to solve the linear problems.
The method is well established, and details can be found in e.g. Saad [33]. For the linear elastic problem the
mixed precision scheme presented in Liu et al. [20] is used. 32-bit floating point numbers are used to store
the auxiliary vectors, while the matrix operations and multigrid hierarchy are computed using 64-bit floating
point numbers.

The conjugate gradient method requires that the system matrix solved is symmetric positive definite
(SPD). While this is always the case for linear elasticity, it is possible to generate non-SPD matrices in
the nonlinear case when instabilities occur in the solution. In practice this does not happen unless the
magnitude of the applied load is too high compared to the load-carrying ability of the structure. To remedy
this potential issue a load continuation scheme, as discussed in section 3, is introduced during the early
design iterations.

Multigrid preconditioner. A V-cycle multigrid, shown in algorithm 1, is used as the preconditioner
for the conjugate gradient method. The prolongation matrices Pl are used to project the vectors and
matrices between grids. These prolongation matrices are constructed by using the element shape-functions
to point-wise evaluate the coarse grid value at the nodes of the finer mesh. In practise the operators Pl and
Kl are never assembled in matrix form, but are implemented through functions, with the exception of Kl for
the coarsest grids.

For the OpenMP implementations, the used coarse space matrices are not the Galerkin projections
shown in algorithm 1 lines 1-3. Instead, the linear elastic stiffness matrix is assembled on the coarse grid,
with spatially varying densities within each tri-linear hexahedral element, similar to the approach used in
Nguyen et al. [24]. In practice, this means that the coarse grid matrices are assembled by considering the
larger coarse elements with a multiresolution density described by the finest level density distribution. The
element formulation itself is unchanged from Nguyen et al. [24]. This approach gives rise to a slightly worse
preconditioner, but a much simpler implementation. It was therefore chosen for the OpenMP codes, to
reduce their inherent complexity.

Algorithm 1: Multigrid V-cycle

Data: Initial residual b0, Stiffness matrix K0

Result: smoothed displacement u0

1 for l=1,...,L do

2 Kl ← P¦

l Kl−1Pl ; // construct coarse space matrices

3 end

4 for l=0,1,...,L-1 do

5 ul ← SSOR(0, bl,Kl) ; // smooth

6 rl ← bl −Klul ; // compute residual

7 bl+1 ← Pl+1¦rl ; // restrict residual

8 end

9 Solve KLuL = bL as tight as possible ; // solve coarse space

10 for l=L-1,L-2,...,0 do

11 ul ← ul + Plul+1 ; // prolong solution estimate

12 ul ← SSOR(ul, bl,Kl) ; // smooth

13 end

Smoothing. The used multigrid preconditioner uses nodal symmetric successive over-relaxation (SSOR)
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iterations to smooth the residual at all levels. This smoother is similar to the one used in Wu et al. [42],
although it is extended to retain symmetry properties.

Algorithm 2: Nodal symmetric successive over-relaxation

Data: displacement vector u, force vector f , stiffness matrix K, damping parameter É(= 0.6)
Result: smoothed displacement û

1 s← Ku ; // apply stiffness matrix

2 û← u;
3 forall nodes n in mesh do // Update independently

4 M ← Kn ; // nodal 3x3 matrix

5 r ← sn −Mun ;

6 ûn
1 ←

1
M11

(fn1 − r1 −M12û2 −M13û3);

7 ûn
2 ←

1
M22

(fn2 − r2 −M21û1 −M23û3);

8 ûn
3 ←

1
M33

(fn3 − r3 −M31û1 −M32û2);

9 end

10 u← Éû+ (1− É)u ; // Damped update

11 û← u;
12 s← Ku;
13 forall nodes n do // Update independently

14 M ← Kn;
15 r ← sn −Mun;

16 ûn
3 ←

1
M33

(fn3 − r3 −M31û1 −M32û2);

17 ûn
2 ←

1
M22

(fn2 − r2 −M21û1 −M23û3);

18 ûn
1 ←

1
M11

(fn1 − r1 −M12û2 −M13û3);

19 end

20 û← Éû+ (1− É)u;

Algorithm 2 shows the nodal SSOR smoothing as implemented for the multigrid. Here the superscript
(·)n is used to describe accessing the local vector of size 3, or 3 × 3 matrix, associated with node n. The
nodal SSOR is applied successively for several smoothing sweeps, in this work two sweeps are always used
unless otherwise stated. The damping parameter É is chosen as a constant 0.6 in this work, as this is found
to perform consistently well through trials. The OpenMP implementations use the simpler Jacobi iteration
to smooth the residual on intermediate levels.

Coarse space correction. The coarse space correction is solved approximately using the Jacobi
preconditioned conjugate gradient method. Ideally a direct solver should be employed, as the coarse problem
is typically so small that a direct solver yields the best results. Unfortunately, a sparse matrix direct solver
is currently not available in the Futhark ecosystem, and therefore an alternative approach was necessary.

Similar to the PETSc based topology optimisation framework from Aage et al. [2], the Futhark imple-
mentation uses yet another Krylov method to solve the coarse space correction. Specifically, the Futhark
implementation uses the Jacobi preconditioned conjugate gradient due to memory efficiency, and due to ease
of implementation. The conjugate gradient method is run as a coarse space correction for 800 iterations
(4000 iterations in the nonlinear case), or until a relative tolerance of 10−10 is achieved. The OpenMP
implementations, on the other hand, use a direct solution strategy for the coarsest level, using the Cholmod
package to implement the factorisation and back substitution [9].

3. Implementation.

This section is intended to provide the reader with a sufficient overview over the three linear elastic
implementations in question, their differences, complexities, and limitations. However, as none of the
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presented code frameworks are shorter than 100 lines, cf. the multitude of Matlab codes, it is not possible
to go through the frameworks line by line. Instead the most important and crucial parts are highlighted
and explained in detail. The three implementations follow very similar structures and, unless otherwise
noted, details given in this section are valid for all implementations. Two slower reference implementations
written in Matlab are also present in the OpenMP repositories, which can be used to compare with the
provided implementations. These Matlab implementations are not discussed further in this work, as they are
significantly less efficient than the provided OpenMP-CPU implementation. The three implementations are
denoted as follows.

Futhark The first GPU accelerated implementation is developed in the Futhark language [14]. The Futhark
implementation for the linear problem is available at doi:10.5281/zenodo.7791871.

OpenMP-GPU The second implementation is written in the C language with OpenMP 4.5, and uses GPU
acceleration through OpenMP. The OpenMP-GPU implementation is available at doi:10.5281/zenodo.7791868.

OpenMP-CPU Finally, a version of the OpenMP implementation which only uses OpenMP to parallelise
the work on the CPU is presented, mostly as a reference code. This implementation is available at
doi:10.5281/zenodo.7791870.

Remark, that the exact details of the solver setup differs between the Futhark implementation and the two
OpenMP based implementations. This is because there is no direct factorisation implementation available
for sparse matrices in Futhark, and the coarse space correction is therefore only computed approximately
using the conjugate gradient algorithm [25]. In principle, it would be possible to split the futhark kernels in
a way that allowed a direct solver to be employed on the coarse level, but this was not chosen, as it would
introduce a lot of complexity to the implementation, and hence, it was deemed outside the scope of this
work which attempts striking a balance between simplicity and performance. In contrast, the OpenMP
implementation has easy access to any direct solver which has a C interface. It was chosen to use the best
possible solver setup for each implementation, in order to avoid restricting the performance artificially. As
the multigrid method generally performs better with a direct solution on the coarse space, it was chosen for
the OpenMP implementations. The direct solver comes at the cost of transferring data between the CPU
and GPU every time the preconditioner is applied. We nevertheless found that the total number of used
iterations was reduced, resulting in an overall reduction of compute time. The second and final difference
between the Futhark and OpenMP implementations is that the Futhark implementation uses nodal successive
over-relaxation for smoothing the residual between multigrid levels, while the OpenMP implementations use
Jacobi smoothing. SSOR was only implemented for Futhark, as the high-level language eased writing an
additional smoother. While the SSOR implementation was found to perform better, it was not ported to the
OpenMP based codes, due to a consideration of the improvement of run-time compared to the time required
for implementation.

Matrix-free operator. In order to update all nodes in the finite element mesh independently, a nodal
traversal approach is used. An informal way to describe the update f = Ku is by

fn
i =

∑

e∈En

Ee

24
∑

j=1

Ke,n
ij ue

j , i ∈ {1, 2, 3} (11)

where fn
i denotes a component of the resulting force vector at node n, En denotes the set of neighbouring

elements of the node n, Ee denotes the Young’s modulus associated with element e, Ke,n
ij denotes a 3× 24

slice of the preintegrated stiffness matrix, where the three rows correspond to the node n, and ue
j denote the

local deformations associated with the nodes of element e.
While this approach requires additional work, as ue

j and Ee are computed once for every neighbouring
node, we can parallelise the updates across nodes, without the usual problem of potential data-races if the
nodal values are updated element-by-element. In order to apply the matrix-free operator for a coarse space,
such as the next-to finest mesh, the nodal values are prolonged to the fine mesh, and the fine mesh matrix-free
operator is applied. The resulting values are then restricted to the original mesh. This is in contrast to most
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standard FEM implementations. The reader is referred to Schmidt and Schulz [34], Wu et al. [41] which
treat the subject of nodal updates more thoroughly.

Assembly of coarse operators. For the coarse levels in the multigrid preconditioner, the Galerkin
projection of the matrices is constructed and stored in memory. The computation of the matrices is shown in
algorithm 1 and an example for level 2 is given in eq. (12).

K2 = P¦

2 P¦

1 K0P1P2 (12)

The matrices cannot be computed using sparse matrix-matrix products, as the matrices for the finest
levels cannot be stored in memory. Instead, the coarse matrices are computed by repeatedly applying
vectors from the standard basis of the coarse space. As an example, the first column of the assembled
matrix at level 2 can be extracted by applying matrices of the left hand side of eq. (12) to e1, i.e. the basis
vector with value 1 in the first entry and 0 in all other entries. By repeatedly prolonging the values using
matrix-free representations of Pl, then applying the matrix-free fine level operator K0, and finally restricting
the resulting values back to the coarse mesh. The locality of the prolongation and restriction can be used
to only compute fine values in a small neighbourhood around the node which is being expanded, which is
needed for making this approach feasible. For the alternate coarse space matrix formulation used in the
OpenMP implementations, a usual finite element assembly is used for the coarse space matrices as described
in section 2.3.

3.1. Comparison of languages

In order to compare the complexity of the different implementations, we show the implementation
of the density filter in both Futhark and C with OpenMP in Listing 1 and 2. The purpose of this
comparison is to show the differences in programming styles, and ease of use. The interested reader may
compare these implementations with the simpler convolutionTexture examples [27] and the optimised
convolutionSeparable [26] example provided by NVIDIA, which both implement a separable convolution
in two dimensions. As the density filter on a structured grid is also a separable convolution, albeit in three
dimensions and with a slightly more complex filter kernel, these implementations give a good indication of
how an equivalent CUDA implementation might look.

We note that there is a trade-off for performance in the choice of high-level languages. The simplicity
comes at a loss of control of the exact layout of memory, thread groupings, and more. Therefore, a carefully
written and tuned lower-level implementation will most probably outperform the presented implementations.
Furthermore, high-level languages do not absolve the user from knowing some architectural details to achieve
the best performance, such as e.g. having to set an appropriate stencil size in the OpenMP implementations
to match available parallelism.

The Futhark implementation in listing 1 is based on a functional programming language, which uses higher
order functions. The concept of this implementation is to compute the two sums from eq. (6) independently,
before computing the filtered density value. Initially a series of helping methods and types are defined on
lines 1-32. Specially noteworthy is the sumOverNeighbourhood, which is a so-called higher-order function
that evaluates an input function for all neighbouring elements, and sums the results. This is a core operation
in the density filter, which is used to compute both the sum of weights (line 40), and the sum of the scaled
densities (line 41). The implementation of sumOverNeighbourhood makes use of pipes (written |>) which
work much like Unix pipes, passing the output of the left expression as input to the function to the right.
Another noteworthy detail is the partial application of functions, which is used to create new function, seen
in lines 37, 40, and 41. Here the first input values of a function are passed, to create a new function that
takes the remaining input.

1 type index = {x: i64 , y: i64 , z: i64}

2
3 -- Check if index is valid.

4 let isInsideDomain nelx nely nelz (idx :index) :bool =

5 idx.x >= 0 && idx.y >= 0 && idx.z >= 0 &&

6 idx.x < nelx && idx.y < nely && idx.z < nelz

7

133



8 -- Compute weight given radius , element , and neighbour.

9 let getFilterWeight rmin (ownIdx :index) (neighIdx :index) =

10 f32.max 0 (rmin - f32.sqrt( f32.i64 (

11 (ownIdx.x-neighIdx.x)*( ownIdx.x-neighIdx.x) +

12 (ownIdx.y-neighIdx.y)*( ownIdx.y-neighIdx.y) +

13 (ownIdx.z-neighIdx.z)*( ownIdx.z-neighIdx.z))))

14
15 -- Sums the output of computeValue in a local neighbourhood with radius boxRadius of

element [i,j,k].

16 let sumOverNeighbourhood boxRadius nelx nely nelz i j k (computeValue :index -> f32) =

17 let boxSize = 2* boxRadius +1

18 in tabulate_3d boxSize boxSize boxSize (\ii jj kk ->

19 let neighIdx :index = {x=i+ii-boxRadius ,y=j+jj -boxRadius ,z=k+kk-boxRadius}

20 in

21 i f isInsideDomain nelx nely nelz neighIdx

22 then computeValue neighIdx

23 else 0)

24 |> map (map f32.sum)

25 |> map f32.sum

26 |> f32.sum

27
28 -- given origin and neighbour indices , compute the weighted density contribution .

29 let getScaledDensity (x :[][][] f32) rmin ownIdx neighIdx =

30 let wgt = getFilterWeight rmin ownIdx neighIdx

31 let dens = #[ unsafe] x[neighIdx.x,neighIdx.y,neighIdx.z]

32 in wgt*dens

33
34 -- For all elements , compute the filtered density.

35 entry forwardDensityFilter [nelx][nely][nelz] (rmin :f32) (x :[nelx][nely][nelz]f32) :[nelx

][nely][nelz]f32 =

36 let boxRadius = i64.max 0 (i64.f32 (f32.ceil (rmin -1)))

37 let sumOverThisNeighbourhood = sumOverNeighbourhood boxRadius nelx nely nelz

38 in tabulate_3d nelx nely nelz (\i j k->

39 let ownIdx :index = {x=i,y=j,z=k}

40 let weightSum = sumOverThisNeighbourhood i j k (getFilterWeight rmin ownIdx)

41 let scaledDensity = sumOverThisNeighbourhood i j k (getScaledDensity x rmin ownIdx)

42 in scaledDensity / weightSum)

Listing 1: Density filter implementation in Futhark

The C implementation using OpenMP in listing 2 is based on a slightly different algorithm for computing
the density filter. Instead of adding 0 values for the out-of-bounds neighbours, as done in the Futhark
implementation, their contributions are not computed, by adjusting the size of the inner loop. The
C implementations have domain padding, changing the loop limits (line 10-12), and complicating the
computation of indices slightly (lines 13,30). A gridContext data-structure is used to store grid dimensions,
including information on the padding. The domain padding is added to allow an efficient implementation of
the stiffness matrix operator, which is one of the most time-consuming methods. While the density filter
would be faster if a style like the Futhark implementation was used, this was not prioritised, as the overall
program time spent in the density filter is low.

1 void applyDensityFilter(const struct gridContext gc, const DTYPE rmin , const DTYPE *rho ,

DTYPE *out) {

2 const uint32_t nelx = gc.nelx;

3 const uint32_t nely = gc.nely;

4 const uint32_t nelz = gc.nelz;

5
6 const uint32_t elWrapy = gc.wrapy - 1;

7 const uint32_t elWrapz = gc.wrapz - 1;

8
9 #pragma omp target teams distribute parallel for collapse (3) default(none) firstprivate(

nelx ,nely ,nelz ,rmin ,elWrapy ,elWrapz) shared(out ,rho)

10 for (unsigned int i1 = 1; i1 < nelx + 1; i1++)

11 for (unsigned int k1 = 1; k1 < nelz + 1; k1++)

12 for (unsigned int j1 = 1; j1 < nely + 1; j1++) {
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13 const uint32_t e1 = i1 * elWrapy * elWrapz + k1 * elWrapy + j1;

14 double oute1 = 0.0;

15 double unityScale = 0.0;

16
17 // loop over neighbourhood

18 const uint32_t i2max = MIN(i1 + (ceil(rmin) + 1), nelx + 1);

19 const uint32_t i2min = MAX(i1 - (ceil(rmin) - 1), 1);

20
21 for (uint32_t i2 = i2min; i2 < i2max; i2++) {

22 const uint32_t k2max = MIN(k1 + (ceil(rmin) + 1), nelz + 1);

23 const uint32_t k2min = MAX(k1 - (ceil(rmin) - 1), 1);

24
25 for (uint32_t k2 = k2min; k2 < k2max; k2++) {

26 const uint32_t j2max = MIN(j1 + (ceil(rmin) + 1), nely + 1);

27 const uint32_t j2min = MAX(j1 - (ceil(rmin) - 1), 1);

28
29 for (uint32_t j2 = j2min; j2 < j2max; j2++) {

30 const uint32_t e2 = i2 * elWrapy * elWrapz + k2 * elWrapy + j2;

31 const double filterWeight = MAX(0.0, rmin - sqrt((i1 - i2) * (i1 - i2) + (j1 - j2) *

(j1 - j2) + (k1 - k2) * (k1 - k2)));

32
33 oute1 += filterWeight * rho[e2];

34 unityScale += filterWeight;

35 }

36 }

37 }

38 out[e1] = oute1 / unityScale;

39 }

40 }

Listing 2: Density filter implementation in C with OpenMP

The OpenMP pragma which parallelises the density filter is shown in line 9. To get the corresponding
multi-threaded CPU implementation, the keywords target teams distribute should be removed. This is
a standard pragma that compiles the loop-body to a GPU kernel, with a collapse keyword to indicate that
it is the iteration space of all three loops which must be distributed. The firstprivate clause is used to
indicate that thread-local copies of the variable are created, initialised with the current value of the variable.
The shared clause indicates that these variables are accessible by all threads, and that the programmer is
responsible to avoid data-races.

While the Futhark implementation is about the same length as the C implementation, it has several
advantages. By moving the summation out as a higher order function, the filtering method itself is written
very concisely, and other similar methods, such as the filtering of the gradients using the chain rule, can
use the same set of helping functions. While helping functions are also possible to implement in C, the
implementation of local neighbourhood summation would quickly become complex and prone to mistakes,
due to the use of function pointers. Furthermore, the strict type system in Futhark allows many types to be
inferred by the compiler, and ensures that there is no unexpected behaviour due to implicit type conversions.
As a partial summary, the authors infer that Futhark is in many ways simpler to work with than C/OpenMP,
despite the additional need to learn the Futhark language in the first place.

When comparing these implementations to the CUDA convolution examples [26, 27], it can be seen that
the CUDA examples are significantly longer, even though they solve a simpler problem. When trimming the
CUDA programs for headers and such, it can be seen that the simple and optimised implementations are 130
and 175 lines respectively, compared to the around 40 lines for both Futhark and OpenMP in listings 1 and
2. The optimised kernel splits the computation into blocks, adds a halo, unrolls loops, and uses more of such
transformations to improve the performance. While this is necessary to achieve the best performance on a
GPU, it also decreases readability and ease of understanding of the implementation.

[17, 28]. [29].
Tuning the OpenMP-GPU Implementation. In general, GPUs excel at doing simple, identical

operations on many pieces of data simultaneously. This is known as Single Program Multiple Data (SPMD).
In principle, adding OpenMP directives for GPU acceleration to an existing C-code is a simple process.
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top3d.c
Main program.

top3dmgcg
Optimisation loop.

update_solution
Update densities with OC.

solveStateMG_halo
Solve Ku = f

with CG-MG.

getComplianceAndSensetivity_halo
Compute ∂u>f

∂x .
setupGC

Setup grid context.

applyDensityFilter
Apply density 昀椀lter.

setFixedDof_halo
Set boundary conditions.

assembleSubspaceMatrix
Assemble coarsest grid matrix.

applyStateOperator_stencil
Apply matrix-free K to vector.

VcyclePreconditioner
Multigrid V-cycle.

smoothDampedJacobi_halo
Matrix-free Jacobi smoother.

smoothDampedJacobiSubspace_halo
Coarse Jacobi smoother.

applyStateOperatorSubspace_halo
Apply coarse matrix.

solveSubspaceMatrix
Solve coarsest matrix.

Figure 1: Program structure of the OpenMP-GPU implementation. Each node represents a significant function.

However, it is required to refactor some loops to increase the level of parallelism and to reduce the number of
registers used in the loop bodies to achieve efficient kernels.

As copying data between the CPU and the GPU introduces overhead, it is important to think about
where data resides and when it is transferred. Determining which parts of the program should run on the
host and the accelerator, therefore, has to be decided by inspecting profiling results for various problem sizes.
Due to the overhead of transferring data, it may be beneficial to run some inefficient kernels on the GPU if
that can bring down the number of transfers.

As an example, the density filter kernel in listing 2 is rather complex and does not achieve high streaming-
multiprocessor throughput due to non-uniform access patterns. However, by running it on the GPU we
can limit the number of data transfers. Further, it is important to verify that the map clause has the
intended behaviour. When doing a reduction on the GPU it may be needed to use the always,tofrom

map modifier for the reduction variable. Otherwise, the reduction variable may be uninitialised on the
GPU and the result may not be copied back to the CPU. That depends on whether or not the reduc-
tion variable has already been mapped. It is also important to ensure that the environment variable
OMP TARGET OFFLOAD is set to MANDATORY. Otherwise, bugs can be introduced if a kernel may be executed on
the host instead of the accelerator while the result is transferred back from the accelerator.

3.2. OpenMP implementation structure.

The two OpenMP based implementations are structured similarly and are therefore both covered in
this section. The program execution begins in main.c, which reads parameters from the command line,
and calls the optimisation routine. The main parts of the implementation are described in this section. A
sketch of the most important functions, and their calling sequence is presented in fig. 1, to help navigate the
implementation.

System definitions. The header definitions.h is used to set several important system-wide parameters,
which are used by the entire program. Most importantly, the stencil size and floating point types are defined
here. The stencil size indicates the amount of nodes in the finite element mesh are updated simultaneously.
For the CPU version best performance is achieved by selecting the number of double precision floating points
which fit in the vector instructions of the machine, which are 4 for AVX2, or 8 for AVX512. The default
value is set to 8, which ensures acceptable performance on all current CPUs. For the GPU version best
performance is usually achieved with 64 or 128, depending on the used GPU. Again, the default value is set
to the higher value of 128 to ensure acceptable performance everywhere.

definitions.h also defines the gridContext struct, which is used to store all necessary grid data, such
as local element matrices, material parameters, and boundary conditions. Additional methods to use the
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futtop.c
Main program.

solveSystem
Solve Ku = f .

assembleMultigridData
Assemble coarse grid matrices.

io.c
Methods for writing

results to VTU.

designIteration
Update design.

assembleSti昀昀nessMatrix
Assemble coarse grid matrix.

extractInverseDiagonal
Extract and invert diagonal

from assembled matrix.

cgSolveMG
Solve with CG-MG.

applySti昀昀nessMatrix
Apply matrix-free K to vector.

vcycle_l0
V-cycle level 0.

sorMatrixFree
SOR smoother.

vcycle_l2
V-cycle level 2.

performDesignIteration
Update design.

getComplianceSensitivity
Compute ∂u>f

∂x .
updateDesignOC

Update densities with OC.
densityFilter

Apply density 昀椀lter.

cgSolveJacSubspace
Solve coarse grid.

applyAssembledSti昀昀nessMatrix
Apply pre-assembled coarse grid matrix.

sorAssembled
SOR smoother.

Figure 2: Program structure of the Futhark implementation. Each node represents a significant function.

struct are defined in grid utilities.h, such as the initialisation utility setupGC. This is also where the
boundary conditions are defined in the function setFixedDof halo, and where they can be modified.

Optimisation. stencil optimization.c is the central file for the optimisation process, where the
main optimisation loop is defined in the top3dmgcg method. Optimisation specific methods, such as
filtering (applyDensityFilter), computation of sensitivities (getComplianceAndSensitivity halo), and
the optimality criteria update (update solution) are also implemented here.

Multigrid solver. The multigrid solver is implemented in the multigrid solver.c file, which in-
cludes the conjugate gradient method for the fine level (solveStateMG halo), and the multigrid pre-
conditioner itself (VcyclePreconditioner). Grid operations, such as the matrix-free stiffness matrix
product for the fine level (applyStateOperator stencil), matrix-free stiffness matrix product for the
coarse level (applyStateOperatorSubspace halo), and prolongations between grids are defined in
stencil methods.c, using utility methods from stencil utility.h. The Cholmod [9] direct solver for the
coarse grid (solveSubspaceMatrix) is called in coarse solver.c, and the assembly of the coarse grid
matrix is defined in coarse assembly.c.

Utilities. Additional utility methods are also included in separate files. local matrix.c defines the
integraiton of the local matrices, which is performed once before starting the program. write vtk.c defines
methods to write the result to a vtk file. A small benchmark suite is also present in benchmark.cpp, using
the Google Benchmark library.

3.3. Futhark implementation structure.

The Futhark implementation is structured differently from the OpenMP implementation, due to the
functional nature of the Futhark language. This structure is sketched in fig. 2, to help navigate the
implementation. The execution begins in the futtop.c file, which contains the main part of the program.
The GPU kernels which are called from the C code are defined in the libmultigrid.fut source file, which
imports all necessary Futhark sources.

Optimization. The main design loop is implemented in futtop.c, which calls four different GPU
kernels, all defined in libmultigrid.fut. These kernels apply the density filter, assemble the coarse
space matrices (assembleMultigridData), solve the linear system (solveSystem), and update the design
variables (designIteration). The choice was made to split the functionality into multiple kernels, as this
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(a) Cantilever. (b) MBB beam. (c) Double clamped beam.

Figure 3: Domains for the presented examples in this article. Purple is used to denote a surface with a symmetry condition
normal to the surface. Green is used to indicate the position of the traction loads. Brown is used the indicate the position of the
diriclet boundary conditions. For (a) and (c) red indicates a clamped surface. For (b) brown indicates that the displacement is 0
in the vertical direction, furthermore one point on the brown surface in (b) is prescribed a zero displacement in the y direction.

improves the compilation time of the Futhark compiler. Updating the design variables with the optimallity
criteria method is implemented in the updateDesignOC method, defined in optimization.fut. The
forward and backward filtering are implemented in densityFilter.fut.

Multigrid solver. The preconditioned conjugate gradient solver cgSolveMG is defined in solver.fut,
while the multigrid preconditioner vcycle l0 is defined in multigrid.fut. Similarly, projection.fut
implements the projection between multigrid levels, sor.fut implements the smoothing operations sorMa-

trixFree and sorAssembled, assembly.fut implements the assembly of coarse matrices, and so on. Of
special interest is applyStiffnessMatrix defined in applyStiffnessMatrix.fut, which implements the
matrix-free stiffness matrix product, and boundaryConditions.fut which define the boundary conditions
for the problem, which are then called by applyStiffnessMatrix.

Utilities. The program makes use of several utility methods, which helps keep the code concise. These
are defined in utilities.fut for general array utilities, and indexUtilities.fut for indices and element
numbering. Pre-computed matrices are also stored in the separate source files keConstants.fut and
assemblyWeights.fut. Methods to write VTK files are implemented in io.c.

4. Numerical experiments

In order to validate the correctness and performance of the GPU implementations, several numerical
examples are presented here. Three examples are considered for both linear and nonlinear elasticity, a
cantilever (aspect ratio 2 × 1 × 1), the MBB beam (aspect ratio 3 × 1 × 1), and a double clamped beam
example (aspect ratio 1.5 × 1 × 1), as shown in fig. 3. For all presented examples the following material
parameters are used E = 1Pa and ¿ = 0.3.

4.1. Linear elasticity

This section is intended to demonstrate that the presented algorithms produce physically sound designs,
and more importantly, to discus the efficiency and scaling of the presented implementations.

Cantilever. The first linear elastic example is the cantilever example. The cantilever domain is shown
in fig. 3a. A constant traction load is applied on a small circular surface, with radius corresponding to a fifth
of the domain width, as shown by green in fig. 3a.

A resulting design for the Futhark code is presented in fig. 4 for a 640×320×320 mesh with approximately
65.5 million elements. The design was optimised using a volume fraction of V ∗ = 0.1, filter radius r = 2.5
elements, and 100 design iterations. The resulting designs for the other two codes are not shown, as they are
indistinguishable. The presented result was computed using the Futhark implementation on an A100 GPU in
7380 seconds (∼ 2 hours). In comparison, the OpenMP implementations are estimated to take approximately
2 hours (GPU) and 3.15 hours (CPU) , by extrapolating the computation time of the first 20 design
iterations presented in fig. 6.
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Figure 4: Linear cantilever example with 65.5 million elements, volume fraction of V ∗ = 0.1, and filter radius of 2.5 elements.
Computed using the Futhark implementation on a Nvidia A100 GPU to run 100 design iterations, in 7380 seconds, approximately
2 hours. The shown result is thresholded such that elements with filtered density lower than 0.5 are removed.

It can be seen that the resulting structure has the expected V-shape near the clamped boundary, as the
bending stiffness is increased by placing material near the top and bottom of the domain. The structure has
a bottom plate, and a top plate, which curve into two supporting bars for the load.

MBB beam. The classic MBB beam example is also considered. The domain is shown in fig. 3a, where
the brown line denotes a rolling boundary condition, which allows displacement along the longer aspect ratio,
but restricts displacement in to two remaining directions.

Figure 5 shows a resulting MBB design using the linear formulation. The result is computed using the
Futhark implementation, the results from the two other implementations are not shown, as they are identical.
This example contains 41 million elements and was computed in 4 hours using the Futhark implementation
and a Nvidia A100 GPU as accelerator. Compared to the cantilever, the MBB example uses more time to
compute for fewer elements. This is due to the fact that the loading and larger domain aspect ratios makes
it harder for the iterative solvers, and more iterations are required to solve the system [1].

The resulting structure makes intuitive sense, i.e. it can be seen to have two plates on the top and bottom
of the domain with stiffening structure in between. The two round supporting corners are connected by
beams, as the rolling support only supports in the vertical direction.

4.2. Performance Analysis of Linear Elasticity

Having established that all the presented implementations are capable of solving the design problem to
satisfaction, it is time to consider the scaling and efficiency. To achieve this, the cantilever example is used.
The wall-clock time of computing the first 20 design iterations is compared across implementations, for a
variety of mesh sizes. The Gnu Compiler Collection (version 11.2) was used to compile the OpenMP-CPU
code, the NVIDIA HPC SDK (version 22.5) was used for OpenMP-GPU, and the Futhark compiler (version
0.21.11) with GCC was used for the Futhark code. The used compiler flags can be found in the Makefile of the
respective code repositories. It should be noted that the performance of the OpenMP-CPU implementation
is sensitive to compiler optimisations, most notably enabling manipulation of floating point expressions
assuming associativity greatly improves performance. The OpenCL backend was used for the Futhark
compiler. Both the CUDA and OpenCL backends were tested, and it was found that the OpenCL backend
resulted in faster GPU-kernels for this specific program. The multicore backend was also tested for the
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Figure 5: Linear MBB beam example with 41 million elements, a volume fraction of V ∗ = 0.1, and a filter radius of 2.5 elements.
The shown result is thresholded such that elemenst with filtered density lower than 0.5 are removed.

Futhark program, which generates a multithreaded CPU program. However, this backend was found to
perform significantly worse than the OpenMP-CPU code. This is somewhat expected, as the main focus
of Futhark is compilation to GPU-kernels. For the remainder of this work we consider only the OpenCL
backend of Futhark.

Two different test machines are used for the performance benchmarks. For the tests of CPU based
implementations a machine with two Intel Xeon 8160 CPUs is used. The same machine also has a Nvidia
1080Ti GPU, which is used for GPU acceleration. The other machine used for testing has a Nvidia A100
GPU (80gb), and an Intel Xeon 6226R CPU, which has 16 cores and 700 Gb of RAM. One A100 GPU
and the two Intel Xeon 8160 processors have a similar recommended retail price at launch (12,500 USD
vs 2× 4700 USD), although the CPUs were launched in 2017, and the A100 in 2020 [17, 28]. This is also
reflected in their double precision theoretical peak performances, which are 19.5TFLOPS for the A100 [28],
and 3.2TFLOPS for the two Intel Xeon 8160 processors (2× 24 cores× 32FLOP/core× 2.1GHz). This is
an important observation when comparing the performance across various hardware components, in order to
achieve a better comparison. Overall, the A100 GPU setup is both slightly more expensive, and is significantly
newer than the CPU setup. Ideally, the release date and launch price would match better between the used
CPU and GPU configurations, but unfortunately we are limited to the resources available to us. Finally, the
CPU benchmark machine is also equipped with a Nvidia 1080Ti GPU, with a theoretical peak performance
of 0.35TFLOPS for double precision, which was launched in 2017 at 699 USD recommended retail price [29].
The 1080Ti is used to show the performance of the GPU implementations on consumer-grade GPU hardware,
which is optimised for single precision floating point operations. As such, the 1080Ti is expected to be a bad
match for these implementations, which perform key operations in double precision. However, there is a a
tendency for compute capabilities of high-end GPUs to become available in the consumer grade market after
some generations, e.g. tensor cores are becoming available in the consumer cards produced by NVIDIA.

While computing times are in general a stochastic parameter, it was found that the variations in wall-clock
time were much smaller than the differences between implementations, therefore results for a single sample
are presented.

Two studies are performed, one with varying filter radius and the second with a physically constant filter
radius. For the variable filter example, a filter radius of 1.5 elements is used for all tests, meaning that
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Figure 6: Runtimes for 20 design iterations of a linear elastic minumim compliance cantilever example with a volume fraction
of V ∗ = 0.1. The optimisations were performed using a filter radius of 1.5 elements, resulting in possibly different topologies
obtained for every mesh size. The blue and green lines indicate the OpenMP implementations for CPU and GPU respectively.
The purple and red lines show the Futhark implementation on two different GPUs. All shown times are computed using 4
multigrid levels, with the exception of the additional points shown with dashed line and square marks, which are computed
using 5 levels.Z

the physical filter radius is decreased when the mesh is refined. This means that the resulting structure is
different for every refinement considered. This will affect the iterative solver, which can potentially have
great variation in the number of solver iterations across designs. The constant filter radius example uses a
filter radius of a 20th of the domain width, corresponding to 1.6 elements on the coarse mesh to 8 elements
on the fine mesh.

The timings for the variable filter can be seen in fig. 6. It can be seen that all implementations are
capable of solving large problems in a reasonable time. The slowest implementation is the OpenMP-CPU
implementation, solving the problem with 65.5 million elements. It still performs 20 design iterations in 3800
seconds (63 minutes), which can be extrapolated to about 3.15 hours for the entire topology optimisation
problem. In contrast, the OpenMP code which is ported to the GPU completes the same 20 design iterations
in 2300 seconds (40 minutes) using the A100 GPU, which extrapolates to about 2 hours to complete the
full problem. Similarly, the Futhark implementation completes the 20 design iterations in 2096 seconds
(∼ 35 minutes). Problems with less that 4 million elements are solved faster by the pure OpenMP-CPU
implementation, as the overhead of offloading outweighs the performance improvements.

The two GPU accelerated implementations perform better for the largest problems if a fifth multigrid
level is added. These data points are shown as squares in fig. 6, and the computation times are reduces to
1105 seconds and 1264 seconds for Futhark and OpenMP-GPU respectively, reducing the estimated times for
the entire optimisation problem to 55 and 63 minutes respectively. We speculate that the mechanisms for
performance improvement are quite different in the GPU implementations. For OpenMP-GPU, the amount
of data to be transferred between the GPU and CPU is reduced, along with the size of the direct system to
be solved on the CPU. This is beneficial, even at the cost of a slight decrease in the accuracy of the multigrid
approximation. In the Futhark implementation however, the accuracy of the coarse grid correction increases,
as the fixed number of iterations on the coarse grid can reduce the error further.

Figure 6 also shows the performance when using the Nvidia 1080Ti GPU with the Futhark implementation.
The 1080Ti is representative of a consumer grade GPU, which is more limited in both memory and compute
power compared to the A100 GPU. The curve stops at 8 million elements, as the Futhark implementation
goes out-of-memory for more finely refined meshes. It is seen that the Futhark implementation running on
a 1080Ti is notably slower than the other considered implementations. This is a reflection of the fact that
the 1080Ti is optimised towards single precision floating point operations, while our implementations rely
heavily on double precision. It is also influenced by the fact that the retail price of the 1080Ti is an order of
magnitude lower than the other used compute devices.
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Figure 7: Runtimes for 20 design iterations of a linear elastic minumim compliance cantilever example with a volume fraction of
V

∗ = 0.1. The optimisations were performed using a constant filter radius of 1/20 of the domain width. The blue and green
lines indicate the OpenMP implementations for CPU and GPU respectively. The red line shows the Futhark implementation on
the A100 GPU. All shown times are computed using 4 multigrid levels, with the exception of the additional points shown with
dashed line and square marks, which are computed using 5 levels.

The performance comparison for the fixed filter size, as seen in fig. 7, results in less variation across mesh
refinements, as the considered optimisation problem is constant. However, the cost of applying the filter
grows with the filter radius, to a point where applying the filters and updating the densities account for
approximately 10% of the runtime, for the Futhark implementation with 65.5 million elements, where the
filter radius corresponds to 8 elements.

For the comparison with fixed filter size, we have also timed the implementation from Aage et al. [1] based
on MPI and PETSc. This test is performed on the same machine as the OpenMP-CPU implementation. It
should be noted that this implementation is designed for running on multiple compute nodes on a cluster,
although this capability is not used for the present comparison. The problem solved is slightly different, as
the PDE-based filter is used. The reason for this difference is that the PETSc implementation assembles the
filtering matrix explicitly in memory, resulting in too high computation times and memory usage for large
filter radii. By choosing the PDE-based filter, the practical difference for the timing results is minimised, as
most of the reported time is spent solving the linear elastic equations. We have changed the solver settings
on the coarsest grid from the default SOR preconditioned GMRES, to a direct solution by LU factorisation,
to better match the used solver settings used in the other implementations. This change in solver settings
improved the performance of the PETSc based implementation for all considered mesh sizes.

It can be seen that the PETSc based implementation is overall slower than the presented OpenMP-CPU,
when running on a single desktop machine. This is expected, as the implementation is designed to solve
relatively small systems at every MPI rank, scaling with more MPI ranks for larger problems, e.g. by
explicitly assembling all matrices.

For both computational experiments it can be seen that the Futhark implementation has an increase in
used runtime for 33M elements and above, most notably in the variable filter radius case. This is likely due
to a change of used GPU kernel. Futhark compiles several kernels, and chooses which to launch at runtime
based on the input size.

A relative performance comparison for the fixed filter size is shown in fig. 8. The wall-clock time of
the OpenMP-CPU implementation is scaled with the respective wall-clock times, to give an indication of
the improvement. We chose OpenMP-CPU as the reference, since it is the fastest implementation without
GPU-acceleration.

We see that the OpenMP-GPU implementation is fastest in the coarse case, while the Futhark implemen-
tation is significantly slower. Inspecting fig. 7 it becomes clear that the Futhark implementation is almost
unaffected in the runtime until 8 million elements. This indicates an overhead in launching the GPU kernels,
which heavily affects the total compute time for small grids. As the OpenMP based implementations are
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Figure 8: Relative runtime improvement over the OpenMP-CPU implementation for the first 20 iterations using 4 multigrid
levels with constant filter radius. The three mesh refinements correspond to three vertical slices of fig. 7. Higher is better.
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Figure 9: Sum of used iterations in the conjugate gradient solver for the first 20 design iterations. All shown times are computed
using 4 multigrid levels, with the exception of the additional points shown with dashed line and square marks, which are
computed using 5 levels.

able to complete in less time than the overhead, they outperform the Futhark implementation drastically for
coarse problems.

Both GPU kernels perform well at the intermediate refinement of 8 million elements, while they suffer
a slowing down in the finest meshes with 4 multigrid levels. As already discussed, we see that adding a
fifth multigrid level improves the relative performance of the GPU accelerated implementations drastically
due to different reasons. We note that adding a fifth multigrid level only slightly improves the runtime of
OpenMP-CPU, as seen by the blue dashed lines with square marks in fig. 7. The large difference in relative
performance when using 4 or 5 multigrid levels for 65M elements is thus explained by a small improvement
in runtime for the OpenMP-CPU implementation, along with a drastic drop in runtime for both GPU
accelerated implementations.

Interpreting the difference in total runtimes of the presented implementations is not straightforward, as
the used multigrid preconditioners also vary. Some performance improvement is due to better utilisation
of GPU hardware, some is due to a better suited preconditioner. In order to aid the comparison, fig. 9
shows the total amount of conjugate gradient iterations spent by the various implementations. The two
OpenMP implementations use the same preconditioner, and can thus be compared directly, resulting in
a improvement of a factor of 2-4 by using GPU acceleration. Figure 9 also shows very good agreement
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Figure 10: GPU memory usage of the Futhark and OpenMP-GPU implementations as a function of mesh refinement.

between the number of iterations used for these implementations. A small variations occurs between the two
implementations, which can be attributed to the difference in floating point execution on the hardware. The
Futhark implementation is able to achieve slightly better performance for large problems, even though it uses
a coarse grid correction which results in more conjugate gradient iterations, as seen in fig. 9. Finally, it can
be noted that the PETSc based implementation uses very few conjugate gradient iterations, even though it
is the slowest implementation. This is due to the difference of implementation in the smoothing operations,
which for the PETSc implementation reduce the error very effectively, but are not possible to implement
efficiently for GPU accelerators. We can conclude that both presented approaches are viable for writing GPU
accelerated topology optimisation implementations, specially considering the relative ease of implementation.

When increasing the number of multigrid levels, the number of solver iterations increase for the OpenMP
based implementations, while remaining somewhat stationary for the Futhark based implementation. Still,
the performance improves for both GPU accelerated implementations. In the case of the OpenMP-GPU
implementation the amount of data which needs to be transferred between GPU and main memory every
iteration is drastically reduced, which could explain the much improved relative performance. Also, the
coarse space correction which is performed on the CPU is reduced in complexity as the number of levels
increase. Hence, a larger fraction of computing is performed on the GPU. For the Futhark implementation,
this decrease of computation time is likely due to a reduction in the computational effort required to solve
the coarse grid correction on the GPU.

We note that the performances of the presented GPU codes shown in figs. 6 and 7 are not necessarily
the fastest available. Some other works exploit the structure of topology optimisation problems to achieve
high performance with multigrid preconditioning, e.g. Wu et al. [41] and Mart́ınez-Frutos et al. [23]. These
works also use lower-level implementations with better control of memory placement and other factors which
greatly affect performance. However, as these codes are not publicly available it is not possible to quantify
the performance gap between these and the presented implementations.

Memory usage. GPU memory is a very limited and costly resource. Most current cards have memory
in the range of 8-16 GiB, while only few expensive cards designed for GPGPU come with more memory. One
example of this is the Futhark implementation tested on a 1080Ti card with 8GiB, shown in fig. 6. The
implementation runs out of memory when run with more than 8 million elements, which is why the curve
stops earlier than the others.

The GPU memory usage of the two GPU implementations is shown in fig. 10. Here we see a clear
difference between the two approaches, although they both grow linearly in the amount of memory used. The
Futhark implementation uses significantly more memory across all mesh sizes. This is a consequence of the
incremental flattening strategy implemented by the compiler to automatically transform nested parallelism.
This memory usage is the reason that 65 million elements is the limit for the Futhark implementation when
using the A100 GPU. The OpenMP-GPU implementation has much lower memory usage, enabling it to run
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on cards with less memory, and solve larger problems. Here, the main bottleneck is transferring the coarse
solution to the CPU every V-cycle. While the Futhark implementation uses much more memory than the
OpenMP-GPU implementation, we note that it is still able to fit problems with 65 million elements onto a
single GPU, which is sufficient for many use-cases.

5. Extension to Nonlinear Elasticity

To demonstrate the relative ease with which the presented GPU frameworks can be extended beyond the
trivial linear elasticity problems, this sections discuss how to incorporate nonlinearity. Remark that there is
only one nonlinear elastic implementation included, which is based on Futhark due to ease of implementation.
The interested reader may find the implementation at doi:10.5281/zenodo.7791869.

Nonlinear matrix-free approach. It should be noted that the nonlinearity of the problem requires
that the local matrices are numerically integrated for every matrix-vector product, as the tangent matrix is
not stored in memory. This results in a large increase in computational work compared to the linear case,
where a pre-computed local matrix was used to enable fast matrix vector products. Due to this change,
an element-wise strategy was adopted for the matrix-vector product, to ensure that every local element
matrix needs only to be computed once. In this matrix-free approach all element contributions are computed
independently, and the finite element assembly of the nodal values are computed using a generalized histogram
implemented in the Futhark core language [13]. That is, instead of using a formulation as seen in eq. (11),
the assembly follows

fe = EeK
eue (13)

for every element, followed by a local-to-global assembly of the resulting element forces fe.
As an example, the Futhark linear implementation takes 1.316ms for a single matrix-vector product,

while the nonlinear case takes 1075.4ms, using 2 million elements on the A100 GPU. While this may seem
discouraging, it is still possible to perform topology optimisation using this approach, although the presented
topology optimisation examples presented in this work do not go beyond 1 million elements.

Newtons method. A Newton-Krylov method with a backtracking line-search is employed for the
nonlinear problem [25]. A sequence of linearisations are solved, where each linearisation is approximately
solved using the presented multigrid-preconditioned conjugate gradient method. The Newton method is built
on top of the modified linear solver in Futhark. Due to the ease of composition in the functional language
the implementation of the Newton method itself is very compact.

Load continuation for the nonlinear problem. The initial design iterations of the nonlinear problem
can sometimes experience convergence issues, due to a low stiffness for the entire structure compared to
the magnitude of the load. In order to resolve this, several approaches are possible. One is to create a
continuation on the stiffness penalisation parameter p discussed in section 2.2, beginning with a linear
interpolation, and incrementally increasing the value of p to finally obtain the desired penalisation. Another
approach, which was used in this work, is to use a reduced load for the initial design iterations, linearly
increasing the load over the first 20 design iterations, until the desired load is reached at iteration 20. Here
the calling C code modifies the force vector passed into the Futhark methods, in order to implement this
load continuation.

Cantilever. The cantilever example is revisited for the nonlinear elastic problem. The example is
computed on a domain of 3m× 1m× 1m domain for a material with E = 1Pa and ¿ = 0.3. A load of 0.002N
is applied to the cantilever.

From fig. 11 it can be seen that the structure found using the nonlinear formulation is quite different
from its linear counterpart. The nonlinear cantilever does not have a plate on the bottom connecting the
support to the loading, as the structure is able to use the reorientation of the hanging beam to decrease
the end-compliance. This is consistent with the findings of Buhl et al. [7], where similar hanging features
are found. The nonlinear structure took approximately 14 hours to compute, which can be compared to its
linear counterpart, which takes minutes to complete.

Figure 12 shows the deformed configurations of the cantilever designs, in the nonlinear formulation. It
can be seen that for the nonlinear design the beam connecting the load reorients, such that it is in tension
under loading. This effectively shortens the cantilever, and allows for a lower end-compliance.
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(a) Linear. (b) Nonlinear.

Figure 11: Cantilever computed with 1 million elements, a volume fraction of 0.3, a filter radius of 1.5 elements, and a load of
0.002N.

(a) Linear. (b) Nonlinear.

Figure 12: Deformed configurations of the designs from fig. 11, computed with the nonlinear elasticity. Elements with density
below 0.5 are removed for visualization.
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Linear compliance Nonlinear compliance
Linear design 3.82× 10−4 Nm 3.62× 10−4 Nm

Nonlinear design 4.13× 10−4 Nm 3.62× 10−4 Nm

Table 1: Comparison of compliance values for the two designs shown in fig. 11, under both linear and nonlinear elasticity.

(a) Linear. (b) Nonlinear.

Figure 13: Double clamped beam example computed with 768 000 elements, a volume fraction of 0.1, a filter radius of 2.5
elements, and a load of 0.00015N.

Table 1 shows a cross-check of the linear elastic and end-compliance values for the two cantilever designs.
It can be seen that the linear design has a much lower linear compliance compared to the nonlinear design.
This is expected due to the bottom plate, which greatly increases the stiffness in the linear regime. The
nonlinear end-compliance of the two structures is almost identical, with the nonlinear optimisation being
slightly lower, than the linear counterpart (on the 4th decimal).

Double clamped beam. The double clamped beam from Buhl et al. [7] is interpreted in 3D and
included here. The design domain shown in fig. 3c shows the modelled domain with a symmetry condition
shown in blue. The structure is discretised using 120× 80× 80 (768 000) elements. The topology optimisation
is performed with a filter radius of 2.5 elements, and a volume fraction of 10%. The nonlinear end-compliance
is optimised for a load of 0.00015 newton, on a domain of 1.5× 1× 1 meters, using Young’s module 1Pa for
the solid.

The linear result is shown in fig. 13a, where it can be seen that the linear analysis makes a simple truss
structure with two straight bars. While this structure is very stiff for small deformations, it will buckle if
the applied load becomes too high. The nonlinear structure shown in fig. 13b is different from the linear
structure, as it has two bars connecting to the support on either side of the loaded surface. The upper bars
stabilise the structure in regards to buckling as they are loaded in tension and do not buckle. The central
part of the structure has a vertical plate underneath the loaded surface, which is supported by the trusses
where the structure hangs from. The upper part of the structure is similar to the two dimensional example
provided in Buhl et al. [7], while the lower structure is similar to the linear result.

6. Discussion

The three implementations for compliance minimisation of linear elasticity show that it is possible to
write simple but efficient GPU codes without resorting to explicitly allocating memory and writing separate
kernels, as done in e.g. CUDA. The slowest implementation, using OpenMP without GPU acceleration,
is able to solve optimisation problems with 65 million elements in approximately 3.15 hours on a desktop
machine. This is already a large-scale problem, of a scale that usually requires a high performance computing
cluster. The GPU accelerated implementations both cut this time to 2 hours when using a single Nvidia
A100 GPU. This shows that efficient large-scale topology optimisation is not restricted to highly tuned
implementations, and can be obtained with high levels of abstraction.

It is especially noteworthy that the Futhark based implementation performs as fast as it does, even
though it only employs an approximate solver for the coarse space correction. The Futhark language allows
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for a concise implementation, which is in contrast to the C implementation where an efficient implementation
is seldom the simplest. For instance the overhead of manually tracking indexation between grids accounts
for a significant additional amount of code and complexity in the C implementations. This is in large part
thanks to the work done on the Futhark compiler, which to our experience emits efficient GPU kernels, with
little tuning to the Futhark code.

The implementations rely heavily on the structured nature of the grid. Specifically, the local element
matrices are all identical to some scaling, since all elements have identical geometry. This allows for one
single element matrix to be integrated offline, and reused for the application of all elements, circumventing
the need for numerical integration when applying the stiffness matrix. It might be possible to rewrite the
linear implementations for unstructured grids, but not without a significant drop in performance. Another
approach to handle arbitrary design domains could be to mesh the entire bounding box, and include passive
void domains to restrict the design to the desired domain, as done in Aage et al. [2]. While it might
seem counter-intuitive, it might be best for performance to model void elements around a complex domain.
The performance improvements obtained from the simplified indexing and similar element matrices, could
outweigh the cost of including passive void elements.

Other works such as Wu et al. [41] and Liu et al. [20] both use a structured mesh, but avoid working
with the passive void elements arising from embedding a non-trivial design domain. As further work, the
presented codes can be extended to enable non-trivial domains by allowing to remove passive void elements.
Another option is to include a classic hard-kill strategy, where void elements are removed throughout the
optimisation iterations. However, one should take care with updating the used elements, as indexing and
non-trivial memory access very quickly becomes prohibitively costly on GPU hardware, potentially negating
the performance improvements made by avoiding computation on some elements.

It has also been shown that it is possible to solve nonlinear problems with a million degrees of freedom on
the GPU in a reasonable time-frame, although some work is needed before large-scale applications become
possible. The nonlinear formulation requires numerical integration of all elements every time the stiffness
matrix is needed. This makes the used matrix-free approach more computationally costly, compared to the
linear problem, as the elements need to be numerically integrated every time the tangent matrix is applied.
One possible alleviation is to explicitly assemble the full tangent matrix for the nonlinear problem, although
this would greatly increase the memory consumption of the program. This would be feasible for the examples
considered in this article, as they are no larger than 1 million elements, but could become infeasible for larger
meshes as they would no longer fit in the GPU memory.

To summarise, GPU acceleration is now at the point where it is feasible to solve large-scale linear elastic
topology optimisation problems on a single desktop system. High level languages and compilers like Futhark
simplify the implementation process even further. It is our hope that the provided codes may serve as a
basis for future research in topology optimisation.
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[13] Henriksen, T., Hellfritzsch, S., Sadayappan, P., Oancea, C., 2020. Compiling generalized histograms for gpu, in: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis, IEEE Press. pp. 1–14.
doi:doi:10.1109/SC41405.2020.00101.

[14] Henriksen, T., Serup, N.G.W., Elsman, M., Henglein, F., Oancea, C.E., 2017. Futhark: Purely functional gpu-programming
with nested parallelism and in-place array updates, in: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ACM, New York, NY, USA. pp. 556–571. doi:doi:10.1145/3062341.3062354.

[15] Henriksen, T., Thorøe, F., Elsman, M., Oancea, C., 2019. Incremental flattening for nested data parallelism, in: Proceedings
of the 24th Symposium on Principles and Practice of Parallel Programming, ACM, New York, NY, USA. pp. 53–67.
doi:doi:10.1145/3293883.3295707.
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Appendix A. Nonlinear element formulation

This appendix aims to describe the implemented nonlinear formulation thoroughly.

Appendix A.1. Basic definitions

Given the undeformed configuration X, and some deformed configuration x, they can be related through
a deformation u.

x = X + u, (A.1)

From this we can find the deformation gradient fij .

fij =
∂xi

∂Xj

= ¶ij +
∂ui

∂Xj

, (A.2)

And the Cauchy-Green tensor
Cij = fikfkj , (A.3)

From this the Green-Lagrange strain tensor is defined

ϵij =
1

2
(Cij − ¶ij). (A.4)

Appendix A.2. Neo-Hookean material model

The used Neo-Hookean energy funciton is

Πint =
¼

2
(ln J)2 +

µ

2
(Cii − 3)− µ ln J, J = |fij | (A.5)

note that J denotes the determinant of the deformation gradient.
Here the lame parameters are used

¼ =
¿E

(1 + ¿)(1− 2¿)
, µ =

E

2(1 + ¿)
, (A.6)

The second Piola-Kirchhoff stress for the Neo-Hookean energy is

Ãij =
∂Πint

∂ϵij
= ¼ ln JC−1

ij + µ(¶ij − C−1
ij ), (A.7)
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And the elasticity tensor is

Cijkl =
∂Πint

∂ϵij∂ϵkl
= ¼C−1

ij C−1
kl + (µ− ¼ ln J)(C−1

ik C−1
jl + C−1

il C−1
jk ). (A.8)

Appendix A.3. Finite element discretization of Neo-Hookean material model

Assuming basic FE knowledge and Cook-like notation.
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 (A.9)

[D] =
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= [J ]−1[D]ref (A.10)

[F ] = [D] + [I], J = |[F ]| (A.11)

[C] = [F ]¦[F ] (A.12)

[ϵ] =
1

2
([C]− [I]) (A.13)

[Ã] = ¼ ln |[F ]|[C]−1 + µ([I]− [C]−1) (A.14)

The elasticity tensor is renamed E, to avoid clash with the Cauchy-Green deformation tensor.

[E] = Cijkl transformed to voigt notation (A.15)

Appendix A.4. Finite element discretization of strains

The following write-up of the Green-Lagrange strains is based on Zienkiewicz and Taylor [44]
The Green-Lagrange strains can be written as

{ϵ} = {ϵ0}+ {ϵL} (A.16)

where {ϵ0} are the usual linear strains

{ϵ0} = [B0]{u}, (A.17)

And {ϵL} denote the additional Lagrangian strains,

{ϵL} =
1

2
[A]{Θ} =

1

2
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(A.18)

here {Θx}
¦ = {∂u

∂x
, ∂v
∂x

, ∂w
∂x
}, {Θy}

¦ = {∂u
∂y

, ∂v
∂y

, ∂w
∂y
}, and {Θz}

¦ = {∂u
∂z

, ∂v
∂z

, ∂w
∂z
}. Which can be computed

similarly to eq. (A.10).
Similarly, the Lagrange interpolation can be found by

[BL] = [A][G] = [A] [[g1][g2][g3][g4][g5][g6][g7][g8]] (A.19)
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where

[gi] =
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Ni,y 0 0
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Ni,z 0 0
0 Ni,z 0
0 0 Ni,z





























(A.20)

Now the full interpolation is defined as

[B̄] = [BL] + [B0] (A.21)

Finally, the element residual and tangent matrix can be found as:

{Re} =

∫

V e

[B̄]{Ã}dV − {Pe} (A.22)

[ke] =

∫

V e

[G]¦[M ][G]dV +

∫

V e

[B̄]¦[C][B̄]dV (A.23)

where

[M ] =





Ã11[I3] Ã12[I3] Ã13[I3]
Ã12[I3] Ã22[I3] Ã23[I3]
Ã13[I3] Ã23[I3] Ã33[I3]



 (A.24)
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Abstract

This work presents a consistent formulation for
concurrent optimisation of shape and thickness of
thin-walled structures. The presented formulation,
which is based on the principle of relocating the
nodes, achieves consistency by using the initial
finite element mesh as a reference for the updated
coordinates. To ensure physical validity the co-
ordinate changes are regularised by a filter and a
constraint on an aggregation of mesh quality met-
rics. This resulting method is shown to robustly
optimise thin-walled structures, and the benefits
and limitations of the method through a series of
simple examples.

1 Introduction

Thin-walled structures are a cornerstone in many
engineering applications. Due to high stiffness-to-
weight ratios, they appear in many constructions
where low weight is desired, ranging from packaging
to aircraft. Well designed shell structures can
take form as e.g. increased fuel efficiency, reduced
expenditure of material and resources, or decreased
cost of production. Due to this ubiquity, there is a
need for simple, versatile, and efficient automatic
design tools.

The optimisation of shell structures is by no
means a new topic. Some initial developments can
be found in Ramakrishnan and Francavilla (1974)
and Mohr (1979), which optimised shells of revolu-
tion. Mohr (1979) used facet elements which model
the shell by piecewise flat elements combined with
symmetry conditions, parametrising the shape of
the shell by nodal relocations, an approach similar
to current state-of-the-art (Antonau et al., 2022).

Botkin (1982) also performed shape optimisa-
tion with facet elements, but introduced so-called
“design-elements”, which parametrise the design
with a small number of control variables. Com-
plex shell structures are considered in Gates and
Accorsi (1993), where the shape of an existing de-
sign is parametrised by the movement of edges in

the geometry, as control points for the underlying
splines.

Eschenauer and Weinert (1992) consider
parametrising the shape by interpolating between
control points using piecewise linear functions, B-
splines, and Bezier curves. Parametrising the de-
sign by nodal positions of the finite element mesh
(as we do herein) can be considered as a special
case of the piecewise linear functions, with a large
number of control points. Ramm et al. (1993)
also develops an approach based on interpolation
between control points.

Free-form shape optimisation, considering nodal
coordinates as design variables, has in the past
decade received attention (Arnout et al., 2012; Blet-
zinger, 2014; Hojjat et al., 2014). These works pro-
pose that filtered nodal coordinates achieve both
the necessary regularity, and high design freedom.
Even more recent works are focused on improving
the mathematical programming aspects and the
introduction of variable filters, as summarised in
Antonau et al. (2022). The method presented in
this article may indeed be considered a continua-
tion of the vertex morphing method of Hojjat et al.
(2014).

Several of the works outlined above consider
the simultaneous optimisation of thickness (Es-
chenauer and Weinert, 1992; Ramm et al., 1993).
There exists a close connection between optimising
the thickness defined for every node or element
and density based topology optimisation (Maute
and Ramm, 1997).

This article presents a simple method for con-
current optimisation of the shape and thickness of
shell structures. This form-finding method starts
from an initial shell shape and thickness distribu-
tion, and improves the performance characteristics
of the shell by solving a mathematical optimisa-
tion problem to find a change in shape and new
thickness distribution. Such shape and thickness
optimisation can be used as tools by engineers de-
signing shell structures, to help guide towards the
best possible structures.

The presented method is a novel combination of
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several well-studied concepts: A parametrisation
of shape by relocation of nodes in the finite element
mesh (Bletzinger, 2014), a simple yet robust shell
element formulation (Van Keulen and Booij, 1996),
a filtering technique for relocation and thickness
(Lazarov and Sigmund, 2011), an aggregated con-
straint on a measure of element qualities, all within
a simple and consistent mathematical program-
ming problem solved with a standard sequential
convex programming technique (Svanberg, 1987).
The volume-constrained linear elastic compliance
minimisation problem is considered, although the
composition presented here can be extended for
other objectives and constraints.

2 Shell Element Formulation

We use the simplest shell element formulation of
the family developed in van Keulen (1993), also
summarised in Van Keulen and Booij (1996). In
this section, we summarise properties and imple-
mentation details of the formulation. The used
linear variation of the shell element is described
with more detail in appendix A.

The element formulation assumes that every
element is a facet, i.e. a flat section, modelled
with separate membrane and plate elements. The
used membrane element is the well-known con-
stant strain triangle (Zienkiewicz et al., 2013). The
bending is modelled by a constant bending element
which uses three out-of-plane displacements and
rotations about the element edges to characterise
the bending (Morley, 1971). The resulting degrees-
of-freedom used by the element are sketched in
fig. 1. In this work we restrict the formulation to
infinitesimal deformations, although the original
formulation accounts for finite deformations.

Due to the faceted nature of the element em-
ployed, many elements are required to model com-
plex shell curvature. Furthermore, constant thick-
ness is assumed for every facet, requiring many
elements also to correctly capture smooth transi-
tions in thickness across the structure. Studies of
the accuracy of the element are presented in van
Keulen (1993); Van Keulen and Booij (1996).

An advantage of the formulation is that it does
not require surface normals at the nodes of the
mesh, as is the case for many shell formulations.
This simplifies changing the shape of the finite ele-
ment mesh, as there is no need to update surface
normals. Another benefit is that the element for-
mulation also trivially handles kinks in the shell
surfaces and arbitrary intersections between multi-

Figure 1: Sketch of degrees-of-freedom in local
coordinates. One out-of-plane and two in-plane
deformations at every node, and one rotation about
every edge.

ple shell surfaces, without any drilling degrees-of-
freedom or such. Although simple, the behaviour
and deficiencies of the element are relatively well
understood.

Slender structures, such as shells, are susceptible
to issues with stability and large deformations. By
choosing an infinitesimal displacement model of the
shells, we must also restrict our use of the optimi-
sation tool, and our interpretation of the optimised
structures, to the regime where our underlying as-
sumptions are met. The presented approach can
in principle be extended to the finite deformation
regime. Only the shell element formulation and
compliance objective function need to be adapted.
In practise, moving to a finite deformation model
can complicate the optimisation, as the solving the
non-linear state equations can fail if a proper load
increment strategy is not chosen.

3 Parametrisation of Structure

The choice of design representation in structural
optimisation is not always trivial, and it has a great
effect on the usefulness of the final approach. A
parametrisation which is too restrictive can result
in structures which are far from mechanically op-
timal. A parametrisation which is too permissive
can result in structures which are only performing
well due to modelling errors. Here, we describe the
chosen parametrisations, nodal relocations xd and
nodal thickness hd, and provide some reasoning
behind the choices made.

3.1 Shape

The shape is parametrised by relocations of the
original node positions of the mesh. These reloca-
tions are regularised by the application of a filter
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Figure 2: Sketch of updated nodal positions x

defined as a relocation ∆x from the initial mesh
configuration x0.

and a constraint on a measure of the mesh quality,
details in sections 3.1.1 and 3.1.2.

Given some design variables xd ∈ R
3nn we wish

to find the resulting node positions of the finite ele-
ment mesh x ∈ R

3nn . Here nn denotes the number
of nodes in the finite element mesh, i.e. we have
3 relocation variables for every node in the finite
element mesh. Conceptually, the relocation vari-
ables can be considered similar to the displacement
variables of the elastic finite element problem.

First, the design variables are filtered to attain
the filtered node relocations

∆x = F xd (1)

Here F : R3nn → R
3nn denotes the filter as a linear

operator, details are given in section 3.1.1.
The filtered node relocations ∆x are simply

added to the the initial nodal coordinates in the
finite element mesh x0 ∈ R

3nn

x = x0 +∆x (2)

Note that the presented formulation treats the
current mesh node positions x as a combination of
the initial position x0 and some relocation defined
by xd. Also since xd = 0 implies that ∆x = 0
due to the linearity of F, we have that x = x0.
Therefore, xd = 0 is always chosen as the initial
value for the optimisation problem.

The main advantage of using nodal relocations
to define the change in shape is a huge design-
freedom, as the parametrisation is incredibly ver-
satile. Another notable advantage is the simplicity,
as updating the mesh with a nodal relocation can
be done by relocating all node coordinates inde-
pendently. One drawback of the parametrisation
is the amount of design variables, which due to
efficiency and practical considerations will limit
the choice of optimisation algorithm to first-order
methods. It is also crucial to retain a good finite

element mesh in order to guarantee a sufficiently
accurate solution of the elastic equations.

3.1.1 Regularisation by Filter

To regularise the resulting node relocations, a filter-
ing strategy is applied. The used implicit filtering
strategy was originally developed for densities in
topology optimisation problems by Lazarov and
Sigmund (2011). Recently, Asl and Bletzinger
(2022) showed that the method can be applied on
surfaces for shape optimisation. Furthermore, we
note that the filtering process can be applied to
intersecting and discontinuous surfaces, such as
the one shown in fig. 3.

The implicit filter is defined by solving the fol-
lowing differential equation for each relocation com-
ponent on the initial mesh configuration.

−r2∇2∆xi +∆xi = xid on Γ0 (3)

Where i ∈ {1, 2, 3} denotes the three spatial com-
ponents of the relocations. Here ∆x and xd are
considered continuous functions, defined on the
initial geometry of the shell Γ0.

The scalar r controls the filter radius, and is
chosen a-priori as constant for the entire domain.
Note that the filter radius r gives rise to a sup-
port of radius rsupp = 2

√
3r ≈ 3.5r (Lazarov et al.,

2016). We only report and discuss the used sup-
port radius rsupp, as this gives a better physical
interpretation of the filter radius.

The differential equation can be modified to
include Dirichlet boundary conditions on a selected
subset of the shell surface ¶Γi

0.

∆xi = 0 on ¶Γi
0 (4)

This is used to define non-design regions, where
the shape of the shell remains unchanged. The set
¶Γi

0 can be chosen independently for each reloca-
tion component i in order to constrain a point to
a surface or line which is aligned with the stan-
dard basis. In principle, arbitrary constraints can
be considered by solving all three relocation com-
ponents as one system, and applying multi-point
constraints across components.

The implicit filter is solved using a standard
finite element approach. The element matrices
Le and Me for the linear triangle are given in
appendix B. These element matrices are assembled
to the global matrices L and M respectively. The
final discretised system is then

[

r2L+M
]

∆xi = Mxi
d (5)
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Implicitly, the boundary conditions from eq. (4)
are applied to

[

r2L+M
]

. If the boundary con-
ditions ¶Γi

0 are identical for the three coordinate
components, the matrix

[

r2L+M
]

can be reused.
Otherwise, three different matrices must be con-
structed, one for each relocation component.

The system matrix(es)
[

r2L+M
]

is symmetric
and positive definite, and can thus be solved using
Cholesky factorisation or conjugate gradients.
For completeness, the linear operator F dis-

cussed in section 3.1.1 can be formally stated as
applying the linear operator Fi for every coordi-
nate component i ∈ {1, 2, 3}

Fi =
[

r2L+M
]−1

M (6)

3.1.2 Radius Ratio Constraint

In order to ensure that the finite element analysis
of the elastic equations is sufficiently accurate at
every iteration, a constraint on a quality measure of
the elements is added to the optimisation problem.
The chosen quality measure is the so-called ra-

dius ratio Ä, which is defined as R
2r , where R and

r denote the circum-radius and in-radius respec-
tively. A discussion on this quality metric is given
in Pébay and Baker (2003).

The radius ratio can be computed for a triangle
using the edge-lengths a, b, c

Ä =
R

2r
=

abc

(b+ c− a)(c+ a− b)(a+ b− c)
(7)

The radius ratio has the properties that Ä g 1
always. The value Ä = 1 implies an equilateral
triangle, while higher values of Ä imply more dis-
tortion of the triangle.

The radius ratios for all elements are aggregated
to a single vale using the p-mean function.

Äagg =

(

1

ne

ne
∑

i=1

Äi
p

)
1

p

(8)

where p is a penalisation in the p-mean. As p →
∞ the aggregation approaches the max operator,
which is non-differentiable. Äi is used to denote
the radius ratio Ä of element i. For this work the
penalisation p = 20 is used unless otherwise stated.

It is important to note that the used aggregation
provides no guarantees to the actual maximal value
in the mesh, but rather constrains a mean value
which behaves somewhat like the maximum. We
note that the inexact nature of aggregation is not
necessarily a big issue, as it is sufficient that the
maximal radius ratio is only enforced in an average
sense.

Figure 3: Example of shell structure composed of
multiple surfaces. Here every surface is coloured
distinctly.

3.2 Thickness

The shell element assumes a spatially constant
thickness for every element. We choose a slightly
different parametrisation for use in the optimisa-
tion approach, defining a thickness for every node
on every surface. This means that if a node lies
on several surfaces, e.g. fig. 3, it will have several
thickness variables, one for each surface.

The nodal design thickness is filtered with the
same process as the nodal relocations, section 3.1.1,
on every surface.

−r2∇2hsf + hsf = hsd on Γs
0 (9)

where Γs
0 denotes the surface s of an initial geome-

try. For the thickness, only the natural Neumann
boundary condition is used. In practise, the exact
same discretisation presented in section 3.1.1 is
used for every surface. We denote the filter by
the linear operator Fh : Rnh → R

nh which takes
a vector of thickness on every surface, where nh

denotes the total number of nodal thicknesses, and
applies the filter for every surface independently.

Every element thickness he is defined as the aver-
age value of the three coinciding node values of the
filtered thickness hf = Fhhd on the corresponding
surface.

he =
1

3

∑

i∈Ne

[hf]
s
i (10)

where Ne denotes the node indices of the three
nodes associated with element e, and s denotes the
surface in which element e lies, and [·] is used to
denote accessing the corresponding component of
the vector.

4 Optimisation Problem

In this work we consider compliance minimisation
with a constraint on the amount of material used,
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and the constraint on the mesh quality. Here we
present the formal optimisation problem for opti-
mising the shape and thickness of shell structures.
First, some last pieces used in the formal optimi-
sation problem are defined.

4.1 Linear Elastic Compliance

Linear elastic compliance is a natural objective for
optimising the linear stiffness of a structure. The
choice of linear modelling is discussed in detail in
section 2.
The linear elastic compliance is denoted as

C = u¦Ku = u¦f (11)

Where K denotes the assembled stiffness matrix,
and is implicitly dependent on the current nodal
coordinates x and the element thickness h. The
force is denoted f, which is possibly dependent
on the nodal coordinates x, if pressure loading is
considered.
For shells the linear compliance can be decom-

posed into a contribution from the associated with
bending Cb and a contribution from the strains
associated with the membrane Cm.

C = Cb + Cm (12)

Each contribution can be found for every ele-
ment, by considering only the relevant degrees-of-
freedom in the local coordinate system. I.e. the
bending strain energy of an element with local
deformations ue is

Cb e = Aeu
¦
e T

¦

[

0 0

0 B¦

b CbBb

]

Tue (13)

Similarly, the membrane contribution is found
by

Cm e = Aeu
¦
e T

¦

[

B¦
mCmBm 0

0 0

]

Tue (14)

The global quantities Cb, Cm can then be found
by summation of element contributions.

4.2 Volume Constraint

When optimising the thickness of a shell structure
for stiffness it is usually very useful to consider
the total volume as either the objective or a con-
straint. This stems from the property that adding
material will always result in increased stiffness. If
there are no limitations on the amount of material,
then the resulting structure will thus have maxi-
mal thickness everywhere. One exception is when a

volume dependent load is considered, such as grav-
ity, it is no longer clear that maximum thickness
everywhere is optimal.

The total volume of the domain is defined as

v =

ne
∑

i=1

∫

Se

hidSe =

ne
∑

i=1

hiAi (15)

where the element thickness hi depend on the thick-
ness representation, and the element areas Ai de-
pend on the mesh relocation xd.

In order to ease the conceptual use of the con-
straint, it is normalised to a fraction of the initial
volume

v∗ =
v

v0
(16)

where v∗ is here called the volume fraction, and v0
is the value of v in the initial configuration of the
design.

4.3 Problem Formulation

Now we state the considered formal optimisation
problem in eq. (17). We note that some definitions
and interdependencies are left implicit, to keep
the problem statement somewhat concise. These
implicit details are clarified below.

minimise
xd,hd

C = u¦Ku (17a)

subject to

state equation Ku = f (17b)

filters ∆x = Fxd (17c)

hf = Fhhd (17d)

volume v∗ f V ∗ (17e)

radius ratio Äagg f Älim (17f)

bounds xlow f [xd]i f xupp ∀i (17g)

hlow f [hd]i f hupp ∀i (17h)

The design variables stated in eq. (17a) are defined
as vectors of all nodal relocations xd ∈ R

3nn and
nodal-surface thickness hd ∈ R

nh . The notation
[·]i is used to denote value of the ith index in a
vector.

The system matrixK in eq. (17b) depends on ∆x

and the elementwise thickness, derived implicitly
from hf by eq. (10). Likewise the force vector f can
potentially depend on the nodal relocations ∆x.

The volume fraction limit V ∗ and radius ratio
measure limit Älim are both user choices. They
are chosen as V ∗ = 1 and Älim = 1.1 by default.

158



The bounds or box constraints shown in eqs. (17g)
and (17h) are implicitly defined for every element
in the two design vectors xd and hd.
The bound values of the relocations xlow,xupp

are user choices. They can be set to very large
to allow arbitrary relocation, or can be set close
to 0 to disallow large change in position of the
mesh nodes. It is also possible to specify variable
relocation bounds for every coordinate, to ensure
that the resulting shape lies within a predefined
coordinate aligned box.
The bounds values for the shell thickness

hlow,hupp are also user choices. The upper bound
should not be excessively thick, as it could possi-
bly break the assumptions of the underlying shell
theory, which breaks the accuracy of the finite el-
ement model, which in turn breaks the physical
interpretation of the optimisation problem. The
lower bound of the thickness can be set to a value
orders of magnitude lower than the initial values
and upper bounds, to mimic the removal of that
shell section. This is inspired by the techniques
used in topology optimisation (Bendsøe and Sig-
mund, 2004).

The problem formulation stated in eq. (17) can
be simplified to a pure shape or thickness opti-
misation problem. If optimising only for shape,
the design variable hd is removed from eq. (17a),
and eq. (17h) is removed. If optimising only for
thickness the design variable xd is removed from
eq. (17a), along with eqs. (17e) to (17g).
All examples presented later in this work are

solved using the Method of Moving Asymptotes
(Svanberg, 1987), which is a method commonly
used for topology optimisation. The choice of op-
timisation algorithm can have a large effect on
the resulting designs, and it is not clear that the
Method of Moving Asymptotes is the best method
for solving shape-optimisation problems. Neverthe-
less, we chose the Method of Moving Asymptotes
due to its availability.

4.4 Gradients

In order to efficiently solve the optimisation prob-
lem, the gradients of the objective function C and
constraints v∗, Äagg with respect to the design vari-
ables xdesgin,h are needed.

The partial derivative with respect to the reloca-
tion xi

d can be computed from a partial derivative
with respect to relocation ∆xi by

∂·

∂xi
d

= M
[

r2L+M
]−1 ∂·

∂∆xi
, i ∈ {1, 2, 3}

(18)

where some transpositions have vanished due to
the symmetry of M and

[

r2L+M
]

.
From eq. (2) we can relate the gradients of the

coordinates and the gradients of the filtered relo-
cations.

∂·

∂∆x
=

∂·

∂x
(19)

This can be applied with eq. (18) to obtain the
gradients with respect to the design variables used
in the problem formulation.
The gradient of the objective function with re-

spect to the coordinates and thickness can be found
using the adjoint method, using the self-adjoint
property of the problem (Bendsøe and Sigmund,
2004).

∂C

∂[x]i
= −u¦ ∂K

∂[x]i
u+ 2u¦ ∂f

∂[x]i
(20)

Due to the locality of the partial derivatives the
only non-zero contributions to ∂K

∂[x]i
and ∂f

∂[x]i
come

from adjacent elements. This is also the case for
the nodal thickness. Thus the gradient ∂C

∂x
can be

treated as a finite element assembly of the local
terms of eq. (20). The gradients with respect to
thickness are treated identically.
The local terms such as ∂ke

∂[x]i
can be quite non-

trivial to derive, such as the following expression

∂ke

∂[x]i
=

∂

∂[x]i

(

AeT
¦
e B¦

e CeBeTe

)

(21)

Where Ae, Te, Be are all dependent on every co-
ordinate. Therefore, all local gradient terms are
computed using automatic differentiation, sidestep-
ping the necessity of derivation completely. The
automatic differentiation is carried out using the
autodiff library (Leal, 2018).

5 Examples

We present some examples of the shown method.
The examples are ordered in increasing complexity,
from simple sanity checks to more complex exam-
ples. The first examples, sections 5.1 to 5.4, study
the effect of variations in some of the parameters
used in the optimisation problem, in order to gain
some understanding of their influence. The follow-
ing examples, sections 5.5 to 5.8, show the method
applied to more complex examples with pressure
load, intersecting shells, or from the literature.

All examples have many parameters, which are
not necessarily interesting for the interpretation
of the results, but are crucial for their reproduc-
tion. These parameters are therefore summarised
in table 1 in the appendix.
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Figure 4: Initial geometry of curved sanity-check
with boundary conditions and loads. The com-
pliance of the initial structure is C = 3.34MJ
(Cm = 22 kJ, Cb = 3.32MJ).

Figure 5: Resulting optimised structure with loads
and line indicating boundary conditions. The re-
sulting element thickness, used for the finite ele-
ment analysis are shown by color. The used radius
ratio constraint is Älim = 1.1, while the used filter
is rsupp = 0.5. The computed compliance for this
structure is C = 512.7 J (Cm = 511.3 J, Cb = 1.46 J)

5.1 Curved Shell

Initially we consider a simple optimisation problem,
on a curved shell. We consider an initial geometry
which is the quarter of a cylinder of height 2m, ra-
dius 1m, and thickness 0.01m. One line is clamped,
while the other is subjected to a distributed trac-
tion, oriented to be in the plane which contains
the two lines, as shown in fig. 4. The surface is
discretised using 162 triangles.

The two lines are forced to retain their original
position through the boundary conditions of the
relocation filter.

The resulting structure shown in fig. 5 is a flat
plate. This is exactly as expected, as the mem-
brane stiffness is high, compared to the bending
stiffness. We note that there is still some bending
in the resulting structure as Cb ≠ 0. It is possi-
ble to compute the analytic membrane compliance
for a uniform-thickness flat plate, with the same
volume as the considered example. We find the
ideal compliance as C = Cm = 509.6 J, which is
lower than our found structure. This difference
can be ascribed to the curved boundaries of the

Figure 6: Resulting optimised structure with no
constraint on the radius ratio Älim = ∞. The
computed compliance for this structure is C =
1970 J (Cm = 1768 J, Cb = 202 J). The resulting
volume fraction is approximately 0.55, well below
the constraint value of 1.

Figure 7: Resulting optimised structure with a
constraint on the radius ratio of Älim = 3. The
computed compliance for this structure is C =
511.2 J (Cm = 510.4 J, Cb = 0.79 J).

plate, with higher thickness, which should not oc-
cur since ¿ = 0. All-in-all, our approach passes the
first sanity check.

5.2 The Effect of the Radius Ratio Con-

straint

We study the effect of the radius ratio constraint
on the simple example presented in section 5.1,
which used a constraint value of Älim = 1.1. The
purpose of this study is to gain some insight to
the effect of the quality constraint, and whether
or not such a constraint is necessary. All other
parameters are kept equal.

First, the same example is run without the ra-
dius ratio constraint. From the resulting structure,
fig. 6, it is clear that the resulting structure is ex-
ploiting modelling errors. All nodes of the finite
element mesh are relocated to an in-plane cen-
tral bar, which exploits modelling errors to gain
spurious stiffness. Interestingly, this structure is
not able to utilise all available material, due to
the low surface area of the resulting plate. This
leads to a drastically decreased compliance value,
when compared with fig. 5, although the resulting
compliance value of 13 505 J cannot be interpreted
physically, due to the mesh distortion.

Adding a high radius ratio constraint Älim = 3 to
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Figure 8: Resulting optimised structure with a
constraint on the radius ratio of Älim = 1. The
computed compliance for this structure is C =
2679 J (Cm = 1226 J, Cb = 1453 J).

the same problem gives the result shown in fig. 7.
Here we see a plate appearing, but with distorted
elements in the center and sides of the plate. Again,
the resulting compliance value is hard to compare
fairly, as the mesh distortion hinders a physical
interpretation of the number. But, the resulting
value is slightly lower than the result from fig. 5,
indicating that the optimisation algorithm is able
to utilise some modelling error to improve the
numerically estimated compliance. Another factor,
is that the in-plane skew of triangles, might allow
for more advantageous distributions of thickness,
leading to better compliance values.
Finally, we consider tightening the constraint

too far, setting Älim = 1, i.e. requiring all triangles
to be equilateral. It should be noted that the
initial conditions are now infeasible with respect
to the radius ratio constraint. Figure 8 shows the
resulting structure, which is no longer a flat plate.
In an attempt to make all triangles equilateral, the
mesh now has a high curvature at almost every
edge. The resulting structure is still infeasible with
respect to the constraint, as some of the triangles
near the fixed boundary cannot become equilateral.
As expected, the compliance value is significantly
worse than the case from section 5.1, although the
physical interpretation is not possible, again, this
time due to the high curvature of the resulting
mesh.
We can summarise that the radius ratio con-

straint indeed does have an effect on the resulting
structure. It can be used to ensure sufficiently
good resulting meshes, effectively enforcing some
regularity in the resulting finite element mesh.

5.3 The Effect of Filter Radius

As with the previous section, we investigate the
effect of regularisation on the simple example from
section 5.1. Here, we investigate the effect of the
filter radius rsupp.

We consider a zero filter radius rsupp = 0, shown

Figure 9: Resulting optimised structure with relo-
cation filter support radius of rsupp = 0. The com-
puted compliance for this structure is C = 1829 J
(Cm = 1824 J, Cb = 5.32 J).

Figure 10: Resulting optimised structure with re-
location filter support radius of rsupp = 0.25. The
computed compliance for this structure is C = 579 J
(Cm = 511.3 J, Cb = 10.6 J).

in fig. 9. This results in a very distorted surface,
and corresponding high compliance value. It is
interesting that lowering the filter radius, which
should increase the design-freedom, actually leads
to worse solutions. Here it is clear that the filter
provides some regularity for the shape updates.
This is in accordance Ghantasala et al. (2021),
which also show distorted results obtained with a
gradient descent method if no filter is applied.

Increasing the filter radius to rsupp = 0.25, which
is slightly larger than the average element side-
length of 0.2, we see that the structure becomes
smoother, as shown in fig. 10. It can be seen that
a filter radius with support slightly larger than an
element is not sufficient to regularise the problem
to result in a flat plate. It can be seen that the
compliance value is slightly higher compared to the
flat result from fig. 5, as some of the out-of-plane
shell is mitigated by moving the plate thickness to
the flat areas of the structure.

Increasing the filter radius to rsupp = 2, i.e. twice
the radius used for the result presented in fig. 5,
gives a perfectly flat plate, as shown in fig. 11. This
filter radius support corresponds to the length of
the clamped and loaded lines. Here the boundary
of the flat plate is smoother than the result shown
in fig. 5, and the thickness distribution is also
slightly more evenly distributed. This increased
smoothness is potentially why the larger filter ra-
dius also results in a lower compliance value.
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Figure 11: Resulting optimised structure with relo-
cation filter support radius of rsupp = 2. The com-
puted compliance for this structure is C = 511.8 J
(Cm = 510.2 J, Cb = 1.64 J).

Figure 12: Geometry of the cylinder example. One
side of the cylinder is clamped, while the other
is subjected to a rotation. The computed com-
pliance for this initial structure is C = 1.62 J
(Cm = 1.62 J, Cb = 0.003 J).

5.4 Cylinder in Torsion

In order to construct the limitations of applying
too much regularisation, we study a cylinder under
torsion. This example is based on the well known
Michell sphere (Michell, 1904) which is originally
composed of trusses. Sigmund et al. (2016) show
that the optimal structure is actually a spherical
shell. By considering a cylinder under torsion,
shown in fig. 12, we recreate boundary conditions
similar to those of the Michell sphere. We consider
a cylinder of length 1m, radius 0.1m, and thickness
0.01m.

The choice of high filter and strict quality mea-
sure seem apt based on the experiences from the
previous examples. Using these parameters we ob-
tain the structure shown in fig. 13. We observe
that the structure is not spherical. Upon further
inspection it is found that the radius ratio con-
straint is the limiting factor, as all elements are
pushing the boundary of their allowed ratio.

Considering the limiting factor of the radius ratio
constraint, we increase the bound of the constraint
to Älim = 1.5 and obtain the structure shown in
fig. 14. We observe that the structure is still not
spherical. Here, the radius of the structure has
increased significantly, compared to the previous
case, but the structure seems to have developed a
slightly cube-like shape. The cube-like features are
oriented with the standard basis vectors. Recall
that the filter treats the three coordinate compo-

Figure 13: Original solution to the cylinder prob-
lem, using the parameters from table 1. The re-
sulting compliance is C = 0.74 J (Cm = 0.74 J, Cb =
0.0002 J).

Figure 14: The cylinder example, where the ra-
dius ratio constraint is slackened to Älim = 1.5.
The resulting compliance is C = 0.350 J (Cm =
0.350 J, Cb = 4× 10−5 J).

nents separately, which could indicate that these
cube-like features are a result of the high filter
radius.

We now decrease the filter radius to rsupp = 0.2
and keep the increased bound of the constraint.
The resulting structure is shown in fig. 15. We
observe that the structure is spherical as initially
expected.

This small study on the torsional cylinder has
shown some of the limitations of the presented for-
mulation for shape optimisation of shell structures.
While the radius ratio constraint is important to
retain an accurate finite element model, it can also

Figure 15: The cylinder example, where the radius
ratio constraint is slackened to Älim = 1.5, and the
filter radius is reduced to rsupp = 0.2. The resulting
compliance is C = 0.347 J (Cm = 0.347 J, Cb =
6× 10−5 J).
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(a) Circular Plate
C = 5.59MJ
(Cm = 0J, Cb = 5.59MJ)

(b) Sphere
C = 34.36 J
(Cm = 34.36 J, Cb ≈ 0 J)

Figure 16: Initial designs for pressure loaded de-
signs. The gray surfaces indicate symmetry condi-
tion. The red lines indicate zero-rotation rolling
boundary conditions, i.e. symmetry conditions.

limit the relocation of the mesh towards a mesh-
agnostic optimal shape. Similarly, the filer on the
relocation generally helps convergence to smooth
surfaces, but can also limit the realisable surfaces.
Our experience is in general that structures where
the final shape is curved are more sensitive to high
filter radii.

5.5 A Study of Spheres

In order to study the effects of initial geometries,
we consider a pressure loaded structure. Two initial
structures, shown in fig. 16, are considered with
matching boundary conditions. The zero-rotation
rolling boundary condition applied to the initial
circular plate will potentially act as a symmetry
condition. The relocations are constrained to force
the structure to remain on the respective symmetry
surfaces. The initial sphere and circular plate both
have radius 1m, and are discretised with element
sizes of 0.05m.

For this case, a pressure loaded unsupported
structure, we would expect the resulting structure
to be a sphere of uniform thickness, as this carries
all loads in the membrane. More specifically, we
expect the smallest possible sphere with the highest
possible thickness, as lower surface area implies
a lower loads. Due to this, we would expect our
structure to vanish, as zero area would imply zero
force.

We change the direction of the inequality vol-
ume constraint in eq. (17e), to enforce a minimally
allowed amount of material. We set the minimum
volume in absolute terms to 0.0002m3, to ensure
the same constraint value for the two initial struc-
tures.

The resulting structures are shown in figs. 17

Figure 17: Resulting optimised structure with
pressure load and circular plate as initial con-
dition. The mesh is coloured with the element
radius ratio element quality measure. The com-
puted compliance for this structure is C = 81.92 J
(Cm = 51.36 J, Cb = 30.56 J).

Figure 18: Resulting optimised structure with pres-
sure load and sphere as initial condition. The mesh
is coloured with the element radius ratio element
quality measure. The computed compliance for
this structure is C = 6.70 J (Cm = 6.70 J, Cb =
6.6× 10−6 J).

and 18. It can be seen that the initial spherical
structure remains spherical. Although not visible
from fig. 18, the radius of the sphere has decreased,
and the thickness is the maximally allowed thick-
ness everywhere, as expected.

The structure arising from the flat plate, fig. 17,
also has the maximally allowed thickness every-
where, but is not spherical. It should be noted
that the structure is still changing slowly after 500
design iterations, unlike other presented results
shown here.

Near the original edge of the shell structure,
fig. 17, a lip has formed. The elements on this lip
can be seen to have a high radius ratio, indicating
high skewness. Chances are that these elements can
no longer change in the desired direction, as this
would violate the radius ratio constraint. These
elongated elements will also cause some spurious
stiffness due to their shape, although it is not clear
to what extent.
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(a) Circular Plate.
C = 44.61 J
Cm = 44.60 J
Cb = 0.01 J

(b) Sphere.
C = 44.61 J
Cm = 44.60 J
Cb = 0.01 J.

Figure 19: Resulting designs for a pressure loaded
plate and sphere, when the outer circular curve is
fixed in place.

We observe that the spherical structure has a
drastically lower compliance value, compared to
the non-spherical result obtained from a flat initial
structure. This highlights a fundamental challenge
in node-based shape optimisation; The resulting
structure needs to be representable by morphing
the nodes of the initial mesh. Sometimes, this is
not easily achieved, as the finite elements in the
morphed mesh are of poor quality. Sometimes, the
form updates do not reach a known optimum, due
to non-convexity in the underlying optimisation
problem.

A variation of the pressure loaded problem is to
disallow design change in the circular boundary
of the plate, and one of the circular cross-sections
of the sphere. Since the structure is now ensured
from vanishing due to the forced equator, we use
the usual volume constraint again, still with an ab-
solute limit of 0.0002m3. By forcing the spherical
radius in what amounts to an equator for the opti-
mised structures, the expected optimal structure
is no longer necessarily a perfect sphere.

We see the resulting structures with fixed equa-
tors in fig. 19, where two things are immediately
apparent. Both initial structures result in near
identical resulting structures, whose main differ-
ence seems to be caused by discretisation. Sec-
ondly, the resulting structure is not spherical, but
ellipsoid. The fixed equator of the ellipsoid is the
major radius of the structure, while the radius is
reduced in the perpendicular direction to reduce
the area, and thus reduce the magnitude of the
pressure loading. The spherical initial guess con-
verges faster than a flat initial guess. This is seen
from fig. 20, which shows some of the intermediate
structures during optimisation.

The inclusion of the fixed equator can be inter-
preted as a reduction of the design space, which
apparently changes the problem sufficiently such
that both initial structures result in near identical

(a) Plate, iteration 50. (b) Sphere, iteration 50.

(c) Plate, iteration 150. (d) Sphere, iteration 150.

(e) Plate, iteration 250. (f) Sphere, iteration 250.

Figure 20: Structure during selected iterations for
circular plate and sphere with fixed equators.

results.

5.6 Cantilever

We present a small study of a cantilever beam,
where we consider separate surfaces. The initial
geometry is shown in fig. 3, where the green surface
is loaded with a downward pointing distributed
load. The opposite end of the structure is clamped
along the shell edges. All edges and surfaces with
loads or boundary conditions are fixed in place by
boundary conditions in the shape filter. Parameter
details are given in table 1.

As an additional twist on the example, the move
limits of the relocation xlow, xupp are adapted based
on the initial position, such that the relocation val-
ues will stay within a box of size 2× 1× 1, which
is the domain of the classic topology optimisation
problem. However, we note that the resulting struc-
ture might not reside exactly within these bounds,
as the bounds are imposed on the unfiltered vari-
ables.
The resulting structure and bounding box are

shown in fig. 21. We note that the resulting
structure is slightly outside of the soft bounding
box. The thickness distribution along the cen-
tral plate resembles the variable thickness sheet
results from topology optimisation (Bendsøe and
Sigmund, 2004). It can also be seen that the shape
of the stiffening flange is changed, to help carry
the bending moments.

The intersections between surfaces in the initial
geometry are kept during optimisation, due to
the nature of filtering on the change from initial
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Figure 21: Resulting structure of the cantilever
example. Elements with a resulting thickness lower
than 1×10−5 are removed for clarity. The resulting
compliance is C = 27.17 J (Cm = 27.02 J, Cb =
0.15 J).

Figure 22: Geometry for half-cylinder exam-
ple. The two indicated boundary edges are fully
clamped. The compliance of the initial structure
is C = 62.83 J (Cm = 0.27 J, Cb = 62.56 J).

geometry. If only minor changes to an existing
structure are desired, this can be considered an
advantage. If, however, a fully free form-finding is
desired, this is a clear disadvantage.

5.7 Half-cylinder

We study the half-cylinder under a point load pre-
sented in Asl and Bletzinger (2022), with initial
geometry shown in fig. 22. This is a pure shape
optimization problem, where the thickness is kept
constant. The two clamped edges are kept in place,
while the two remaining edges are kept in their
original planes. Three different finite element mesh
types are considered, in order to show the influence
of meshing in this example, illustrated in fig. 23.
The first mesh is unstructured and unsymmetric,
denoted original. The second mesh is also unstruc-
tured, but now four-fold symmetric. The third and
final mesh is generated by splitting a structured
mesh of quardilaterals into triangles, it is hence
also four-fold symmetric. All three meshes agree
on the initial compliance values stated in the cap-

Figure 23: Illustration of the three studied mesh
types for the half-cylinder example.

Figure 24: Resulting structure of half-cylinder ex-
ample with the original unsymmetric unstructured
mesh. The resulting compliance is C = 0.096 J
(Cm = 0.088 J, Cb = 0.008 J).

tion of fig. 22. The optimisation parameters are
kept identical for the three examples, unless stated
otherwise, and can be found in table 1.

The resulting structure of the non-symmetric
original mesh is shown in fig. 24. The upper part of
the structure has a cross shaped stiffener, which dis-
tributes the point force. Stiffeners are also added
further down the curvature of the structure, al-
though they are not symmetric. As the load is
inherently symmetric, we would expect symmetry
in this resulting structures. This result might be
due to the unsymmetric node placement, which
means that the symmetry of the problem is not
reflected in the used design variables.

Changing the underlying mesh to be symmetric,
but still unstructured, we obtain the results pre-
sented in fig. 25. Here we see that the resulting
structure is symmetric as expected. The result-
ing compliance value is also lower, meaning that
the symmetric structure performs better than the
non-symmetric counterpart.

Finally, we consider a fully structured mesh
which is also symmetric. We note that the ini-
tial value of the radius ratio constraint for this
mesh is Äagg ≈ 1.2. We therefore choose to in-
crease the allowed element radius ratio from 1.1 to
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Figure 25: Resulting structure of half-cylinder
example with a symmetric unstructured mesh.
Here the used radius ratio constraint has been
increased to Älim = 1.3. The resulting compliance
is C = 0.086 J (Cm = 0.077 J, Cb = 0.009 J).

Figure 26: Resulting structure of half-cylinder ex-
ample with a symmetric structured mesh. The
resulting compliance is C = 0.090 J (Cm =
0.082 J, Cb = 0.008 J).

1.3, to avoid a situation similar to that presented
in fig. 8. The resulting structure is shown in fig. 26,
where we see a near symmetric resulting structure.
While not clear from any visualisation, the top
cross stiffener is slightly skewed to one side, ren-
dering the structure non-symmetric. The resulting
compliance is also slightly higher than for the fully
symmetric result. We speculate that this might be
due to a slight non-symmetry in the initial mesh.

We have seen the importance of the underly-
ing mesh, once again, in this example. Symmetry,
or rather node distribution, plays an important
role for the resulting structures. However, we also
see that the core features are similar for all three
results. All achieve a cross shaped stiffener on
the top, with some stiffener around the curvature.
While not seen in fig. 24, the back side of the
non-symmetric structure is similar to the two sym-
metric results, indicating slightly better agreement
than shown.

If truly symmetric structures are desired, the
mesh should be modelled with symmetry directly,
as done in the example from section 5.5, which

Figure 27: Geometry for cowling example. The
two black edges of 2.5m, indicated with thick
lines, indicate fully clamped edges. The com-
pliance of the initial structure is C = 3241 J
(Cm = 3.98 J, Cb = 3237 J).

would also reduce the computational cost of the
model. This was not chosen for this example, as
we wish to study the effect of non-symmetry of the
mesh to the resulting structures.

5.8 Cowling

We study the cowling example with a point load,
as shown in fig. 27. This example is originally
presented in Arnout et al. (2012), where it is de-
signed for high bending in the original geometry.
We have tried to reconstruct the example as close
as possible. One possible source of difference is our
interpretation of the geometric constraints. We
constrain all four straight edges of the cowling to
remain in their respective planes of the initial shell.
A maximal relocation, or bead depth, is imposed by
box constraints. Similarly, the shell is not allowed
to grow larger than the initial height and depth,
imposed again by box constraints. The remaining
parameters are given in table 1.

The thickness-to-radius ratio of the initial shell
structure from Arnout et al. (2012) is 10. Such
a thick shell is a poor match for the used shell
element, specially considering that shape optimisa-
tion tends to generate high curvature areas, which
would further decrease the thickness-to-radius ratio.
We therefore consider a variation of the example, by
considering a thinner shell, with base thickness of
0.05mm, resulting in an initial thickness-to-radius
ratio of 100.

The result are shown in fig. 28 for pure shape
optimisation. Here curved part of the shell is stiff-
ened by flattening, and inserting bent stiffeners.
The shell is bent slightly inward in both top and
bottom. It can be seen that the compliance is
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Figure 28: Result of shape optimization of cowling
example. The resulting compliance is C = 4.09 J
(Cm = 3.89 J, Cb = 0.20 J).

Figure 29: Result of shape and thickness optimiza-
tion of cowling example. The resulting compliance
is C = 3.67 J (Cm = 3.15 J, Cb = 0.51 J).

reduced drastically from the initial configuration,
and that the compliance of the resulting structure
is mainly due to membrane strains.

Figure 29 shows the result of combined optimisa-
tion of thickness and shape. Here, similar feature
the pure shape optimisation can be seen, although
the bent stiffeners have smaller radius and larger
thickness. The thickness is distributed primarily
in the top of the structure, leaving only a slight
stiffening near the point load. The compliance is
lower when optimising both shape and thickness,
compared to only optimising shape, although the
difference is not very large when comparing to the

Both optimised cowling examples show very high
curvature in some elongated stiffeners. The stiff-
eners are estimated to have radii of 0.225m in the
most curved areas, which correspond to thickness-
to-radius ratios of 4.5 and 2.25 for the shape-only
and shape-and-thickness case respectively. These
ratios both clearly break with the thin-walled as-
sumption of the shell elements, brining into ques-
tion the validity of the solved finite element model.

While the placement of stiffeners is quite intuitive
from a mechanical perspective, correctness of the
underlying finite element mode is important to
guarantee validity optimised results. Hence, a suffi-
ciently large filter is sometimes needed, to disallow
problematic high-curvature sections, if shell ele-
ments are to be used for modelling the mechanical
response.

6 Discussion

In this work we have presented a consistent for-
mulation for optimisation of shape and thickness
of shell structures. Almost all of the components
used in this formulation are not novel, but the key
contribution is composition.

We are able to define a mathematically consis-
tent optimisation problem by always referencing
back to the initial mesh coordinates. Meaning that
the optimisation problem shown in eq. (17) does
not change during the design history, as the filters
and updates do not depend on the design variables.
This is not only advantageous in some strict math-
ematical sense. Optimisation algorithms which in-
corporate the history, such as quasi-Newton meth-
ods, or the used Method of Moving Asymptotes.

The main drawback of the relocation based for-
mulation is that some shapes are not realisable
with the regularised parameters. Also, some shapes
are not realisable, as the resulting aggregated ra-
dius ratio would be too high. This method should
primarily be considered for small changes, or cor-
rections, to shell structures which are already close
to the desired final design.

Lastly, the presented constraint on the aggre-
gated radius ratio has shown to be a very useful
tool for ensuring a sufficiently accurate finite ele-
ment analysis for the resulting shapes.

Reproducibility

How to access code goes here.

Acknowledgements

The authors would like to thank Dirk P. Munro
for his generously given confusion.

The authors would also like to acknowledge the
Villum foundation, without whom the Danes would
be destitute.

167



Appendices

A Shell Formulation

This is a summary of the linear shell element. For
the derivation, and finite deformations, please refer
to Morley (1971); van Keulen (1993); Van Keulen
and Booij (1996).

A.1 Local system

We introduce a local coordinate system for each
element. The coordinate system is defined by the
orthonormal basis vectors ē1, ē2, ē3, which are con-
structed from the nodal coordinates x1,x2,x3.

The coordinate system is constructed such that
ē3 denotes the out-of-plane direction. This is
achieved by defining the basis as the unit normal
for the plane of the triangle.

ē3 =
(x2 − x1)× (x3 − x1)

||(x2 − x1)× (x3 − x1)||2
(22)

The first two basis vectors are chosen, somewhat
arbitrarily, as

ē1 =
x2 − x1

||x2 − x1||2
, ē2 = ē3 × ē1 (23)

Which ensures an orthonormal basis by construc-
tion. .

Using the basis-vectors, the local rotation matrix
for a point Tpoint can be found by

Tpoint =
[

ē1 ē2 ē3
]

(24)

This matrix can be used to rotate the nodal dis-
placements from the global reference ui, vi, wi to
the local reference ūi, v̄i, w̄i.





ūi
v̄i
w̄i



 = Tpoint





ui
vi
wi



 , i ∈ {1, 2, 3} (25)

The transformation of all element degrees-of-
freedom can now be defined by the element matrix
T. The matrix is constructed from entries of Tpoint

to couple the displacements locally in each node,
and the identity matrix to transfer the edge rota-
tions ϕ12, ϕ23, ϕ31 without change.
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(26)

A.2 Membrane formulation

The membrane aspect is modelled using a standard
constant strain triangle (CST) formulation. The
element is defined for the in-plane deformations in
the plane spanned by ē1 and ē2.

The considered triangle can be parametrised by
the coefficients ai and bi, where the sides of the
triangle are specified by

si = aiē1 − biē2, i ∈ {1, 2, 3} (27)

As the triangle sides vectors si can also be found
from the nodal coordinates, as shown in fig. 30, this
gives a way to compute the triangle coefficients.

ai = s¦i ē1, bi = −s¦i ē2, i ∈ {1, 2, 3} (28)

These coordinate coefficients can be used to rede-
fine the triangular problem in a basis defined by
the edge normals.

The area shape functions are introduced

Ài =
Ai

Ae
, i ∈ {1, 2, 3} (29)

Where Ai denote the areas of the subtriangles
shown in fig. 30, and Ae denotes the area of the
entire triangle. Taking the spatial derivatives of
the area coordinates result in the following

d¦
1 =

1

2Ae

[

b1 b2 b3
]

,

d¦
2 =

1

2Ae

[

a1 a2 a3
]

(30)

Which can be used to define the membrane strain-
interpolation matrix Bm

ϵm = Bm

















ū1
ū2
ū3
v̄1
v̄2
v̄3

















, Bm =





d¦
1 0

0 d¦
2

d¦
2 d¦

1



 (31)
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Figure 30: Area coordinates and element side vec-
tors.

Finally, we note that the linear constitutive law
for membranes is given by

Cm =
Eh

1− ¿2





1 ¿ 0
¿ 1 0
0 0 1−ν

2



 (32)

A.3 Bending formulation

The bending is modelled using a constant bending-
plate element and derived in Morley (1971);
Van Keulen and Booij (1996). We summarise the
resulting formulation, but do not provide the full
derivation for brevity.

The deformation is modelled using out-of-plane
displacements w̄1, w̄2, w̄3 at the nodes along with
rotations about the element edges ϕ12, ϕ23, ϕ31.
These variables are used to define relative rotations,
which in turn are used to compute the change in
curvatures »b. The relation is given by the matrix
Bb

»b = Bb

















w̄1

w̄2

w̄3

ϕ12

ϕ23

ϕ31

















(33)

Where it should be noted that the edge rotations
are defined about s1, s2, s3. In order to ensure
correctness during the assembly of local matrices,
the local definitions must be changed, such that
triangles sharing an edge define the rotation in
the same direction. The direction is changed by
changing the sign of the appropriate column of
Bb, and can be done based on the node numbers
associated with the edge.

The constitutive law for bending is given by

Cb =
Eh3

12(1− ¿2)





1 ¿ 0
¿ 1 0
0 0 1−ν

2



 (34)

The side-lengths of the triangle can be found by

s212 = b23 + a23,

s223 = b21 + a21,

s231 = b22 + a22

(35)

The sidelengths are used in the final expression
for the curvature interpolation Bb along with the
triangle coefficients from the previous section.

B
¦

b =



































(
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31

−
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12

) (
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−
b2a2

s2
31
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2

(

b2
2

s2
31

−
b2
3
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12

)

(

b3a3
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12
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) (
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(
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(

b1a1

s2
23

−
b2a2

s2
31

) (
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(
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−
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−
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−
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(36)

A.4 Element formulation

The resulting finite element formulation applies
the membrane and bending systems separately for
the deformations in the local coordinate system.
The resulting stiffness matrix can be found as

ke =

∫

Ve

T¦

[

B¦
mCmBm 0

0 B¦

b CbBb

]

TdVe (37)

As expression is constant in the element, the inte-
gration can be simplified to

ke = AeT
¦

[

B¦
mCmBm 0

0 B¦

b CbBb

]

T (38)

Where Ae denotes the area of the element.

B Filter Matrices

The finite element formulation of the filter for linear
triangular elements is presented here. The area
coordinates from appendix A are used as the shape
functions.

Nf =
[

À1 À2 À3
]

(39)

The derivatives of the shape functions can be found
by using eq. (30).
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Bf =
1

2Ae

[

b1 b2 b3
a1 a2 a3

]

(40)

Using the shape-functions the mass matrix of this
scalar problem discretised by a linear triangle is

Me =

∫

Ve

N¦

f NfdVe =
Ae

9





1 1 1
1 1 1
1 1 1



 (41)

And the discretised Laplace operator for the trian-
gle is

Le =

∫

Ve

B¦

f BfdVe = AeB
¦

f Bf (42)

Note that both matrices are only constructed for
the initial mesh configuration, i.e. only x0 is used
to compute the shape function derivatives and
areas.

C Example parameters

See table 1 for all parameters.

D Compliance of membrane

We start with a cylindrical shell modelling a quarter
of a cylinder with radius r = 1m and thickness
ho = 0.01m. This is then transformed to a flat
plate of identical volume with sidelengths d = 2m
and L =

√
2m. First, we wish to find the thickness

of the resulting flat plate, denoted h. We note that
from the volume conservation we have that

v =
1

4
2Ãrd = hdL (43)

From this we find the resulting thickness of the
plate as.

h =
1
42Ãrd

dL
=

Ã

dL
ho ≈ 0.011 10m (44)

The resulting force is found by integrating the
line load of

√
2N/m.

f =

∫

l

√
2N/mdl = 2

√
2N ≈ 2.83N (45)

Recalling the Young’s modulus E = 1Pa, we
can now find an equivalent spring stiffness, under
linear elastic assumptions.

k = E
A

L
= E

dh

L
(46)

Using the spring stiffness we find the resulting
displacement u.

u = k−1f =
2

h
m ≈ 180.18m (47)

we realise that this is well beyond linear elastic
assumptions, to say the least, but we continue the
example nevertheless.
Finally, we find the resulting compliance. We

recall that since the plate is flat, and we pull only
in the membrane direction we have that Cb = 0.
The resulting compliance is found as:

C = Cm = uf ≈ 509.6 J (48)
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