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Abstract

Biotechnology plays an integral role in the modern economy and is responsible for produc-

ing various bulk and specialty chemicals critical to the function of society. The bioprocess

involves using microorganisms as a miniature factory to convert substrates into valuable

molecules. Antibiotics are antimicrobial substances used to fight bacterial infections and

are commonly produced via fermentation. As global antimicrobial resistance becomes a

larger and larger threat to humanity, there has been an increased interest in the potential

of old-generation antibiotics to address the current need for new antibiotics. Faced with

increasing demand, we need to modernize the current production methods. The chem-

ical and biochemical industry is transitioning through the fourth industrial revolution, or

Industry 4.0, which is the joining of technologies that blur the lines between the physical,

digital, and biological worlds.

Digital twins based on process models are a crucial technology for industries in the chang-

ing competitive landscape following the change to Industry 4.0. Digital Twins are a digital

representation of a real-world physical product, system, or process. This technology’s

foundation and primary enabler is a mathematical model that accurately captures the rel-

evant physical and biological phenomena. However, modeling fermentation systems is

challenging due to biological complexities. Furthermore, the pharmaceutical industry has

always had a strong emphasis on quality. Legal regulations specify the required purity

of Active Pharmaceutical Ingredients and place limits on potentially harmful or efficacy-

reductive impurities. These impurities may be byproducts of the bioprocess itself and may

have very similar chemical and physical properties, making them impossible to separate

in the purification process. So far, bioprocess modeling has focused on the ability to pre-

dict the productivity of fermentation with little to no focus on product quality.

The objective of this project was to accelerate model development implementations by

developing state-of-the-art mathematical models that can analyze and simulate the Fu-

sidic Acid fermentation process. Due to its status as an antibiotic, there is a growing need

to improve the yields of Fusidic Acid at the industrial site hosted by the LEO Pharma A/S.

However, any attempts to push productivity can lead to increased byproduct formation,

which needs to be tightly controlled, especially in a pharmaceutical setting. The devel-

oped models are designed with the end goal in mind to predict the harvest of Fusidic Acid
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and the formation of a particular byproduct that is extremely difficult to separate. These

models can then be applied to gain a deeper process understanding, test new process

conditions, and be used as soft sensors. Data is needed to build the models, and one

of the essential variables used in virtually all fermentation models is the concentration of

cells in the medium. More specifically, the concentration of living or viable biomass.

This thesis describes how two models were built to predict concentrations of the main

product and the byproduct accurately. One of the models is a purely statistical model that

uses batch data collected in real-time from a currently active production and creates an

Input-Output correlation. The novelty of the method is that it is the only tool that can di-

rectly model batches of various duration without a complicated preprocessing step known

as batch trajectory synchronization. It was also the only chemometric model that could

predict both batch productivity and quality, whereas traditional methods could only predict

productivity.

The second model is a hybrid model, which combines the available scientific knowledge

with machine learning in a synergistic way. Biological systems are highly complex, and it

can take years of research to gather the available knowledge required to capture all the

relevant process phenomena accurately. On the other hand, data-driven models do not

require extensive knowledge but infer patterns and knowledge from data. Before devel-

oping the first principles model, an experimental procedure was designed to collect the

relevant data. A new linear calibration methodology was discovered that allows the con-

version of dielectric spectroscopy data to viable biomass concentration, which gives quick

and reliable estimates of viable biomass. This information was then used to calibrate a

mechanistic model that could accurately and reliably describe biological growth and main

product concentrations. With the mechanistic approach, the predictive qualities improved

significantly, with an average prediction error of 6.6%. Furthermore, the investigation into

model uncertainties revealed that the model structure had limited uncertainty propaga-

tion when simulating the process, indicating that the model is a good representative of

the physical system. Neural Networks were then directly integrated into the mechanis-

tic model to find the hidden patterns that relate the current batch culture conditions to

changes in byproduct concentrations. The final hybrid model is a kinetic description of

the process bound by conservation laws that can describe the growth and consumption
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profiles of biomass, substrates, main product, and byproducts of the Fusidic Acid fermen-

tation. Byproduct accumulation in the fermenter could be accurately predicted with an

average prediction error of 22.8% throughout a full fermentation period. The primary in-

dicator of batch quality is the concentration of byproducts, and this model can determine

whether a batch meets quality criteria. Furthermore, simulations can adjust process con-

ditions and discover substrate control methods that completely eliminate the presence of

byproducts during harvest or find alternative scenarios that increase the batch outputs of

the main product while still maintaining the quality criteria.
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Resumé

Bioteknologi spiller en integreret rolle i den moderne økonomi og er ansvarlig for at pro-

ducere forskellige bulk- og specialkemikalier, der er kritiske for samfundets funktion. Bio-

processen går ud på at bruge mikroorganismer som en miniaturefabrik til at omdanne

substrater til værdifulde molekyler. Antibiotika er antimikrobielle stoffer, der bruges til at

bekæmpe bakterielle infektioner og produceres almindeligvis via fermentering. Efterhån-

den som global antimikrobiel resistens bliver en større og større trussel mod menneske-

heden, har der været en øget interesse for potentialet i den gamle generation af antibiotika

til at imødekomme det nuværende behov for nye antibiotika. Stillet over for stigende efter-

spørgsel er vi nødt til at modernisere de nuværende produktionsmetoder. Den kemiske

og biokemiske industri er på vej gennem den fjerde industrielle revolution, eller Industry

4.0, som er sammenføjningen af   teknologier, der udvisker grænserne mellem den fysiske,

digitale og biologiske verden.

Digitale tvillinger baseret på procesmodeller er en afgørende teknologi for industrier i

det skiftende konkurrencelandskab efter skiftet til Industri 4.0. Digitale tvillinger er en

digital repræsentation af et fysisk produkt, system eller proces i den virkelige verden.

Denne teknologis fundament og primære muliggører er en matematisk model, der nø-

jagtigt fanger de relevante fysiske og biologiske fænomener. Imidlertid er modellering

af fermenteringssystemer udfordrende på grund af biologiske kompleksiteter. Derudover

har medicinalindustrien altid haft stor vægt på kvalitet. Lovlige bestemmelser specificerer

den påkrævede renhed af aktive farmaceutiske ingredienser og sætter grænser for po-

tentielt skadelige eller virkningsreducerende urenheder. Disse urenheder kan være bipro-

dukter af selve bioprocessen og kan havemeget lignende kemiske og fysiske egenskaber,

hvilket gør dem umulige at adskille i rensningsprocessen. Hidtil har bioprocesmodellering

fokuseret på evnen til at forudsige produktiviteten af   fermentering med lidt eller intet fokus

på produktkvalitet.

Formålet med dette projekt var at lægge et af nøglegrundlaget for digitale tvillingeim-

plementeringer ved at udvikle avancerede matematiske modeller, der kan analysere og

simulere Fusidinsyre-fermenteringsprocessen. Disse modeller er designet med det en-

delige mål for øje at forudsige høsten af   fusidinsyre og dannelsen af   et bestemt biprodukt,

som er ekstremt vanskeligt at adskille. Disse modeller kan derefter anvendes til at opnå
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en dybere procesforståelse, teste nye procesforhold og bruges som bløde sensorer. Data

er nødvendige for at bygge modellerne, og en af   de væsentlige variabler, der bruges i stort

set alle fermenteringsmodeller, er koncentrationen af   celler i mediet. Mere specifikt kon-

centrationen af   levende eller levedygtig biomasse.

Denne afhandling beskriver, hvordan to modeller blev bygget til præcist at forudsige kon-

centrationer af hovedproduktet og biproduktet. En af modellerne er en rent statistisk

model, der bruger batchdata indsamlet i realtid fra en aktuelt aktiv produktion og skaber

en Input-Output korrelation. Det nye ved metoden er, at det er det eneste værktøj, der di-

rekte kan modellere batches af forskellig varighed uden et kompliceret forbehandlingstrin

kendt som batch-banesynkronisering. Det var også den eneste kemometriske model, der

kunne forudsige både batchproduktivitet og kvalitet, hvorimod traditionelle metoder kun

kunne forudsige produktivitet.

Den anden model er en hybridmodel, som kombinerer den tilgængelige videnskabelige

viden med maskinlæring på en synergistisk måde. Biologiske systemer er meget kom-

plekse, og det kan tage mange års forskning at indsamle den tilgængelige viden, der

kræves for at fange alle de relevante procesfænomener præcist. På den anden side

kræver datadrevne modeller ikke omfattende viden, men udleder mønstre og viden fra

data. Før modellen udvikledes, blev der designet en eksperimentel procedure til at ind-

samle de relevante data. En ny lineær kalibreringsmetodologi blev opdaget, der tillader

konvertering af dielektriske spektroskopidata til levedygtig biomassekoncentration. Denne

information blev derefter brugt til at kalibrere en mekanistisk model, der nøjagtigt og

pålideligt kunne beskrive biologisk vækst og hovedproduktkoncentrationer. Neurale netværk

blev derefter direkte integreret i den mekanistiske model for at finde de skjulte møn-

stre, der relaterer de nuværende batchkulturbetingelser til ændringer i biproduktkoncen-

trationer. Den endelige hybridmodel er en kinetisk beskrivelse af processen bundet af

bevaringslove, der kan beskrive vækst- og forbrugsprofilerne for biomasse, substrater,

hovedprodukt og biprodukter fra Fusidinsyre-fermenteringen.
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1 Introduction
From the beginning of 2019 to the end of 2022, the world was heavily affected by the

COVID-19 pandemic. At the time of writing, the disease is estimated to have led to the

loss of life of millions worldwide. Furthermore, the crisis caused severe economic reces-

sions due to necessary countermeasures from which the world is still recovering.

The pandemic clearly shows the disastrous effects of a global health crisis which we

are not well equipped to deal with. The World Health Organization (WHO) has identi-

fied antibiotic resistance as one of today’s biggest threats to global health, food security,

and development[1]. Antibiotic resistance occurs when bacteria develop new resistance

mechanisms to commonly prescribed antibiotics, threatening the ability to treat common

infectious diseases. Without urgent action, the world could head for a post-antibiotic era,

in which common infections can kill again.

There has been renewed interest in the potential of old-generation antibiotics[2] recently

due to the global problem of advancing antimicrobial resistance. Even though they are not

a permanent solution, an increased variety of antibiotics can buy valuable time required

while implementing more long-term solutions such as social behavior changes.

A spore-forming filamentous fungus produces Fusidic acid. It has been in use at LEOPharma

A/S for commercial production of Fusidic Acid since 1962[3], and there has always been a

strong focus on the quality of the medicine, especially concerning its related substances,

of which there are many[4]. To date, the production process has only been internally

modeled via empirical means (i.e., in a lab setting) because it is tough to understand the

kinetics of the production of fusidic acid and its related substances. This difficulty largely

stems from a lack of research into the microorganism itself. Indeed there are little to no

examples in literature that explore microbiology or the biochemistry relating to the fermen-

tation of the Fusidic Acid production strain.

With the advance of new digital tools, the Process Systems Engineering (PSE) commu-
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nity is shifting its focus to more sustainable solutions for engineering problems. Modern

process systems must comply with more stringent regulations to meet today’s sustainable

development goals (SDGs)[5]. Production of antibiotics is generally not directly associ-

ated with the ever-encroaching global problem of climate change. However, sustainability

is also focused on people, and within the SDGs is also a focus on ”Good Health and Well-

Being” to ensure healthy lives and promote well-being for all ages. We need ready access

to affordable, high-quality medicine to achieve this goal. Furthermore, while antibiotics

are commonly produced in a bioprocess, the process consumes a lot of clean water, be-

coming a more precious resource every year. The entire production chain, from Active

Pharmaceutical Ingredients (APIs) to pharmacies, also consumes a lot of resources, for

example, in product purification, which commonly uses solvents sourced from the petro-

chemical industry. Improving the efficiency of the production process and reducing the

failure rate will contribute to these SDG goals by making more affordable medicine while

consuming fewer precious resources.

The manufacturing industry is trending toward the fourth industrial revolution, also known

as Industry 4.0. This is the propagation of digitalization and the Internet of Things[6]. The

backbone of digitalization efforts is a high-fidelity model that can represent the physical

system accurately. Unfortunately, the bioprocess industry seems to be adopting it slower

than many other industries such as synthetic chemical counterparts. A major obstacle

that hinders the full transition of the current bioprocesses to Industry 4.0 is the inherent

complexity of biological systems, making high-fidelity model developments a slow and

expensive task.

To serve as many patients as possible affordable medicine is needed. This can only

be achieved by driving manufacturing costs down while increasing the production of high-

quality pharmaceuticals. This requires innovations in managing and controlling production

processes to minimize resource consumption. This is best achieved with suitably predic-

tive mathematical models. Therefore, this project aims to develop new and innovative

models, not only to predict the production of pharmaceuticals but also, for the first time to

predict the production of unwanted related substances that may hamper the product qual-

ity and might be dangerous to the customers. The proposed models here will be based on

a modern data-driven approach using knowledge-based scientific and engineering prin-
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ciples. A verified functional mathematical model can be further incorporated as a digital

twin that will eliminate guesswork enabling intelligent decision-making, thereby reducing

months or years of experimental verification of changes in all scales from the laboratory

to full production scale where failures are catastrophically expensive.

Most bioprocess modeling literature focuses on building models to predict batch produc-

tivity, with little to no attention to accumulating impurities in the batch process. However,

this is a general problem in all bioprocesses but is especially relevant for pharmaceuticals.

Pharmaceuticals are under much stricter quality control. Taking another look at Penicillin,

the Europa pharmacopeia specifically states limits of impurity levels. Specifically for Peni-

cillin V, there are six identified impurities that must not exceed a given value[7]. Yet, little to

no published literature focused on modeling the growth or synthesis of these substances.

Making the process more efficient in terms of the main product is valuable for the eco-

nomics of the product. Still, if the final product doesn’t meet quality standards, it can’t

even be sold, making any productivity optimizations irrelevant. Furthermore, suppose im-

purities are a potential issue in the production process. In that case, the models used for

monitoring and controlling the batch should consider accumulation to reduce the failure

rate and increase batch-to-batch consistency.

1.1 Research goal and scope

The main hypothesis in this PhD thesis is that novel data-driven methods and the inte-

gration of machine learning into traditional mechanistic model structures can accelerate

model development of complex biological systems such as fermentation. The core objec-

tive of this project is to apply state-of-the-art modeling methodologies to an established

industrial production using a microorganism with relatively minimal research. The pro-

posed models have to meet the criteria of explaining the formation of the main product

and the evolution of a specific impurity. Therefore, the scope is set on creating, validat-

ing, and analyzing these models in a specific industrial scale setting. We’ve divided the

project into four more specific research objectives throughout the research. They are as

follows:

Advanced modeling of industrial-scale fermentation process for antibiotic production 3



• Research Objective 1:

Development of an experimental protocol to directly measure viable biomass of fil-

amentous fungi.

• Research Objective 2:

Use Multivariate techniques to create process models that predict the main products

and related substances in an industrial environment.

• Research Objective 3:

Development and analysis of a mechanistic model of a novel filamentous fungi

strain.

• Research Objective 4:

Integrate data-driven approaches with mechanistic models in a synergistic way to

fill in relevant knowledge gaps.

1.2 Thesis structure
Chapters 1,2 serve as an introduction and conclusion to the thesis and the current state-of-

the-art relevant to the research topics. Subsequent chapters 3-6 will each be dedicated to

a research objective, structured similarly to journal articles. This is because each chapter

will be used as a baseline to create a manuscript for publication in research journals. The

overview of the different chapters is as follows:

Chapter 1 Introduction

The first chapter briefly introduces this thesis’s research goals and motivations and

provides an outline of how to read this thesis.

Chapter 2 Background

This chapter gives a brief description of the fed-batch, which is used for the industrial

production of antibiotics. Also, the chapter provides an overview of state-of-the-art

bioprocess modeling within the three significant categories of data-driven, mecha-

nistic and hybrid modeling. Finally, the chapter provides a brief overview of biomass

measurements and the importance of viability.
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Chapter 3 Determining viable biomass concentration via cell capacitance

This chapter develops an experimental protocol for measuring biomass with dielec-

tric spectroscopy equipment and proposes a linear methodology for directly mea-

suring viable biomass concentration in filamentous fungi. The chapter focuses on

Research Objective 1

Chapter 4 Multimodal modeling of industrial-scale fermentation

This chapter explores the use of a novel multi-modal regression technique called

Shifted Covariates Regression (SCREAM) and its use in predicting the harvest of

main product and final batch quality w.r.t. byproducts in industrial fed-batch data.

The method is compared to traditional multiblock and multi-modal techniques used

in the bioprocess industry. The chapter focuses on Research Objective 2

Chapter 5 Mechanistic Modelling of Industrial scale batches for antibiotics

This chapter sets up an equation structure for a mechanistic fed-batch model of

the filamentous organism using viable biomass as a key process variable. The

model is identified and further analyzed within the Good modeling framework for

PAT applications. The chapter focuses on Research Objective 3

Chapter 6 Hybrid Modelling for fermentation batch quality

This chapter focuses on further expanding the model capabilities outlined in chapter

5 by integrating Neural Networks directly into the model structure in a serial hybrid

model structure. The Neural Networks thus allow the hybrid model to predict every-

thing outlined in chapter 5 and Byproduct concentration, CO2 evolution, O2 uptake,

and pH, whose underlying biochemistry is not understood. An example application

is testing model outputs with different feed rate strategies. The chapter focuses on

Research Objective 4

Chapter 7 Conclusions and Future perspectives

This chapter summarizes the main achievements of the projects and concludes by

discussing some remaining challenges and future perspectives.
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1.3 Note on confidentiality
Most of the data used in this work are confidential by LEO Pharma A/S and can not be

published unedited. To minimize the loss in understanding and explanation of phenom-

ena, it has been decided to use a scaling factor for all data related to the product yields

present in the main text, tables, and figures. Nominal model parameters that explain the

primary process will not be revealed. Specific data acquisition methods for data provided

by the company and not directly obtained by the author will not be discussed. Also, the ac-

tual numbers for various cultivation conditions and scales are not shown. Certain graphs

have axis labels removed to preserve trends and model quality while not showing real

numbers.
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2 Background

2.1 Industrial fermentation of antimicrobics
The production of secondary metabolites has been the subject of many studies because of

its industrial importance. For example, antibiotics are commonly the secondary metabo-

lite of filamentous microorganisms. Most of the global supply of antibiotics can be traced

to the fermentation of these microorganisms[1]. The consequence of being a secondary

metabolite is that the target product is not associated with cell growth. For this reason, it

is common practice to grow the cell culture before the main production starts. Industrial

bioreactors are extremely large, and a seed train commonly accomplishes the required

cell density. This is the scaling of the cell culture density from a small volume of cells in a

cell bank vial to a larger volume via repeated batch fermentations in different bioreactor

sizes[2]. The main production reactor is usually operated in a fed-batch mode to promote

the synthesis of the antibiotic. A fed-batch operation is characterized by predetermined or

controlled addition of nutrient medium in an otherwise batch operation. It was developed

to increase biomass yield in the production of Baker’s yeast[1]. For antibiotic production,

Fed-batch modes have notable advantages over a standard batch operation. They allow

for tighter control of various cellular processes. Synthesis of secondary metabolites is

usually promoted when cell growth is discouraged or limited. Proper control of nutrient

additions can thereby lead to conditions where cell growth is discouraged and thus pro-

motion of antibiotic synthesis.

In aerobic fermentations where oxygen is required, the fed-batch allows considerably

more feedstock to be converted to a product than in a simple batch. In aerobic fermenta-

tions, oxygen supply is often a limiting factor due to its poor solubility in water. In a batch

process, all the feedstock will be included in the initial blend, leading to increased demand

for oxygen at rates surpassing what can be supplied. This will lead to batches with short

durations and low product concentrations[3]. Conversely, a fed batch can supply nutri-

ents at a rate that keeps oxygen demand low, allowing for longer batch durations with

higher product concentrations. High product concentration, often referred to as a titer, is
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Figure 2.1: Sketch of a fermentor running in a basic fed-batch setup

one of the primary descriptors describing a bioprocess’s economics. This is because high

product concentrations mean less downstream processing, leading to savings on recov-

ery and water recycling and disposal. Long-duration batches are also preferred because

of reduced downtime from restarting short batches, which will increase productivity.

2.2 Fermentation models
Models use the critical process parameters (CPPs) as inputs to predict critical quality at-

tributes (CQAs) of, e.g., the desired product. Once the model structure is established,

the model parameters must be determined. Afterward, it’s crucial that the model is prop-

erly validated by evaluating models on independent test data. Furthermore, it is vital to

prove the model’s reliability by relying on the eventual application. Several methods and

tools exist to determine the credibility of models, including identifiability, uncertainty, and

sensitivity analysis[4]. The promising potential of these modeling tools combined with

pilot-scale validation has been successfully demonstrated for fungi/yeast fermentation for

industrial enzymes[5] and lab-scale fermentations for starter cultures[6]. However, this

potential has been untapped for fusidic acid production or the quality of the fermentate.

Batch quality can contain a broad scope, so for this work, any mention of fermentation

or batch quality will refer to the concentration of related substances. There are multiple

approaches to identifying a model structure before any training or calibration is done. The

proper method is selected based on model purpose and access to relevant data. Biopro-
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cess models can be divided into three major categories: data-driven, mechanistic, and

hybrid. Model explainability refers to the concept of being able to understand the model so

that the results are trustworthy and any model biases can be explained. The mechanistic

model translates existing knowledge about a process into governing equations and pro-

vides valuable insights into the underlying behavior of the system. Data-driven methods

are more difficult to interpret as model developers are not aware of how the input variables

are combined and processed to give a certain output beyond a simple linear regression.

However, they can discover hidden patterns without prior knowledge. The explainability

of hybrid models is dependent on what extent data-driven methods are incorporated into

a mechanistic model structure. They contain all the available process knowledge but can

also reveal the underlying structures or patterns in the data regarding poorly understood

aspects of the physical system.

2.2.1 Data Driven models

Data-driven models are purely empirical approaches. When there is limited process un-

derstanding but a wealth of process data is available, the empirical models are an attrac-

tive approach to modeling the process. Data-driven methods include modern machine

learning algorithms such as Neural Networks and more traditional multivariate modeling

methods.

Multivariate modeling techniques refer to methods such as Principal Component Analysis

(PCA) and Partial Least Squares (PLS). Both methods can be applied to identify trends

within a large multivariate dataset or be used for process modeling PCA is not an Input-

Output model but rather a dimensionality reduction technique. PLS is a tool that can be

used for linear calibration and modeling of a multivariate input signal to realize the process

variable.

PCA and PLS, on their own, take no definitive account of the ordered nature of the dataset,

i.e., that the data is collected in a sequential matter. This is a flaw when using these meth-

ods directly on batch data due to the dynamic nature of fermentation. It is expected that

process variables change over time. Data collected from batch or fed-batch processes

have a three-dimensional structure assuming that process variables are being measured

continuously. Multi-way models are thus utilized in practice for data-driven models for

batch data. Multi-way principal component analysis (MPCA) and multi-way partial least
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squares (MPLS) proposed by Nomikos and MacGregor[7] have been successfully used in

modeling batch data[8]. These algorithms do not result in three-dimensional models be-

cause the methodology involves unfolding the three-dimensional data structure, thereby

converting the data into a standard two-dimensional matrix. Ordinary PCA and PLS al-

gorithms are then applied to the unfolded process data. Despite widespread application,

MPCA and MPLS have been criticized due to two primary drawbacks. Unfolded data

treats each measurement of the same variable as an independent variable. Thus, un-

folded datasets may have a sizeable variable number but a small sample size, leading

to unreliable estimates of model parameters[9]. Furthermore, unfolding a dataset de-

stroys the three-way structure meaning that MPCA and MPLS can not offer an explicit

description of any potential three-way interactions. These disadvantages may reduce

monitoring performance, prediction ability, and interoperability. Another disadvantage of

MPCA and MPLS is that these are linear methods, while fermentation is essentially a

non-linear process. In case of significant non-linear characteristics in the dataset, model

developers must utilize a non-linear modeling method such as Neural Networks[10] or

modify the linear formulations of PCA and PLS to use a nonlinear kernel projection into a

high-dimensional feature space[11][12].

Recently there has been an increase in research in analyzing batch data using tensor

analysis methods[13]. These algorithms keep the batch data structure’s three-way repre-

sentation by explicitly modeling each dimension as tensors. This usually leads to models

that have better intuitive interpretability. Tensor models also commonly have much fewer

parameters because the data is compressed in three directions which generally leads

to more stable models. There are multiple tensor models available, and the selection

should be based on the dataset’s nature and the model’s purpose. Parallel Factor Anal-

ysis (PARAFAC) and Tucker decomposition are dimensionality reduction models that are

well known and are sometimes described as multi-way generalized PCA[14]. These mod-

els act as a substitute for MPCA and are commonly used for batch process monitoring[15].

For regression purposes and multilinear calibration, it is common to use one of these; N-

way Partial Least Squares (NPLS), Higher-Order Partial Least Squares (HOPLS), and

Multiway Covariates Regression (MCOVR)[16][17].

A case of tensor methods that may be of particular interest is decomposition methods
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based on the PARAFAC2 algorithm[18]. PARAFAC2 has been used successfully in fault

detection for semiconductor production[19]. Similarly, a generalized Tucker2 (GTucker2)

model has been proposed for monitoring a penicillin-fed-batch process[19]. The advan-

tage of these models is that they allow for uneven-length data sets, i.e., batches can have

varying durations without needing a complex time-alignment preprocessing step. Multi-

linear methods that allow a relaxation in one mode are, therefore, almost perfectly suited

for modeling industrial fed-batch processes because they handle the two most difficult

aspects of the nature of the dataset; They are more likely to avoid the curse of dimen-

sionality induced by data unfolding and naturally solve the uneven length problem without

batch trajectory synchronization. For regression purposes, there is a recent development

with Shifted Covariates Regression (SCREAM) model[20], which combines PARAFAC2

and MCOVR algorithms into a single method. This is the only uneven tensor algorithm for

regression found in the literature and has so far not been applied to fermentation data.

Input-Output models are much less expensive to develop. However, data-driven mod-

els only match the conditions in the experiments that were made but do not immediately

inform the scientist very much about the underlying principles of the process. Since no sci-

entific knowledge is required to build the models, they are unaware of any first principles.

Data-driven models may lead to predictions that conflict with fundamental constraints like

conservation principles, particularly when outside the domain of training. Purely data-

driven models are usually limited in the application of monitoring and control of an al-

ready established process and are not suitable for process design, intensification, and

optimization.

2.2.2 Mechanistic models

Mechanistic models are based on fundamental physical principles such as conversation

laws like mass, energy, and momentum balances. Mechanistic models, typically consist-

ing of differential equations approximating the kinetics of a process solved by a numerical

approach, are preferred as they contain the relevant scientific knowledge needed to de-

scribe a system’s behavior adequately. The most common model seen in the literature is

some variation of the Monod model. This empirical relation shares the mathematical form
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of the even more famous Michaelis-Menten enzyme kinetics[21].

dX

dt
= µmax

S

KS + S
X (2.1)

In general mechanistic models describing biomass growth can be classified into unstruc-

tured and structured models[22]. Structured models include a fairly detailed description of

the important reactions inside the cells. They represent a good understanding of the bio-

process. However, these models are difficult to obtain due to requiring knowledge about

reaction kinetics, thermodynamics, transport, and physical properties. Unstructured mod-

els are simpler and based on pooling all cellular components into a single representative

biomass concentration. The biochemical reaction kinetics are then described as some

function of component and biomass concentrations in the media and other cultivation

conditions such as pH and temperature. These functions are usually empirical, and the

Monod model is an example of an unstructured mechanistic model. Unstructured models

are much easier to make while still commonly applicable to real fermentation systems.

The Monod expression is not universally applicable. There are dozens of variations of

Monod-type kinetics[23][24] to describe bacterial growth. A way to limit the scope of

available model structures and the associated complexities is to review models based

on similar microorganisms. To that end, we narrow the focus to Penicillin fermentation

models. Penicillin fermentation shares many similar characteristics to the process being

studied in this work. The microorganism Penicillium chrysogenum is a filamentous fungus

with a secondary antibiotic metabolite, and industrial production is usually carried out in

a fed-batch process with similar cultivation conditions. One of the prominent early exam-

ples is the unstructured model of Bajpai and Reuss[25], which was shown to give good

agreement with experimental results from Pirt and Righoletto[26]. This model has been

used as a basis for developing modular simulation packages for the penicillin fermenta-

tion process [27][28] and is an excellent inspiration for designing an equation structure for

modeling different filamentous microorganisms. Further research into mechanistic mod-

eling of Penicillium chrysogenum fungus has led to the development of an industrial-scale

fed-batch fermentation simulator by Goldrick et al.[29]. It’s a highly detailed work show-

ing the applicability of mechanistic models. It has been extensively used to test various

batch process monitoring and control methods[30]. The biotechnological industry increas-
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ingly applies mechanistic models because it has realized their significance[5][31]; they are

advantageous for predicting dynamic system behavior in different scenarios, while data-

driven or statistical models sometimes fail[32].

2.2.3 Hybrid model

Biological systems are notoriously complex, so sufficient knowledge is rare and difficult

to obtain. For example, the previously mentioned industrial fed-batch simulator utilizes

a morphologically structured model from Paul and Thomas[33]. Incorporating such de-

tails requires years of extensive research into the morphological dynamics of the fungus.

In contrast, modern statistical/data-driven models rely only on empirical or historical data,

the correlations between inputs and outputs detected by choice of various Machine Learn-

ing algorithms with PLS or Artificial Neural networks (ANN)”. As such data-driven models

might match the conditions, the experiments were made but did not immediately inform

the scientist very much on the underlying principles of the process and thus can be unre-

liable when exploring new designs.

Hybrid models are not a new invention. Research into the development of modeling ap-

proaches that combine mechanistic and data-driven elements started appearing in the

1990s; an example in the bioprocess industry dates back to 1994 with the work of Schu-

bert et al.[34] However, hybrid models are receiving increased interest in recent years[35].

This interest is spurred on by technological developments where we now have easy ac-

cess to massive amounts of data, advanced analytical tools, and computation resources.

This new world, along with the emergent Industry 4.0, is opening up opportunities to pro-

vide unique solutions to old problems. Hybrid models are a broad category with many

design decisions on identifying appropriate models. White and black-box models can be

organized in serial and parallel structures. The type of available information and purpose

is used to define the hybrid structure. The parallel structure finds good use in situations

where a mechanistic model can predict the relevant phenomena but has limited predictive

power or accuracy due to potential unknown effects[36][37]. The final prediction is a fu-

sion of outputs from mechanistic and data-driven models. They are directly combined via

addition, subtraction, etc.. or a combination via a weighing function[38]. An established

full mechanistic explanation must already be present to make a parallel hybrid model.

For this work, there is more interest in the serial structure. The serial design where the
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Figure 2.2: Illustration of available hybrid modeling structures commonly used in research
and industry today.

black-box model outputs are fed into the mechanistic equations is more common and has

seen widespread success for modeling chemical and biochemical processes[39][40][41].

The mechanistic model usually represents this structure’s fundamental conservation laws

and transport phenomena. The data-drivenmodel is then used for the part of the biological

phenomenon that either lack knowledge or is too complex to formulate a proper equation

structure. Integration of data-driven models allows the prediction of unknown biochemi-

cal reaction kinetics. It is argued that this approach extrapolates better than a pure data-

driven model and is more reliable and interpretable. Furthermore, tying ANNs to mecha-

nistic models reduces the complexity of ANN leading to higher accuracy models[42].

While Neural Networks are often used as the data-driven component, it is not required.

Other machine learning algorithms, such as Support Vector Machines, have been suc-

cessfully integrated into a hybrid model structure describing a fermentation process[43].

ANNs have infinite configurations and can theoretically fit linear and non-linear input and

output relationships. When looking at what machine learning model to use, it is clear that

there is no correct choice or perfect hybrid model. Rather, a model with good enough

accuracy to fit the purpose should be considered, which should be decided based on var-

ious validation techniques available.
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In modern times, hybrid models are constructed using both approaches, where our knowl-

edge is incorporated, and a data-driven approach takes care of what is not understood[44].

The general goal is to gather all available knowledge while improving prediction accura-

cies by taking advantage of big data. However, all approaches rely on data, and collection

and access to data is something that has only happened in recent years, i.e., technology

is at a point where we can now consider such modeling approaches.

2.3 Biomass measurements
Biomass is a critical parameter in a fermentation process. It’s a key variable to optimize to

reach maximum efficiency for many bioprocess products and, in some cases, is the main

product[45]. Every single fermentation mechanistic model uses biomass as a fundamen-

tal variable and is present in practically all kinetic functions. Thus, any model development

relies on accurate biomass measurements. However, it is often difficult to measure de-

spite being a key variable. There are diverse methods for the quantification of biomass

which are useful in different cases, depending on the application.

Mechanistic model development typically uses off-line quantificationmeasurements, which

is when the result is manually obtained because it’s not impeded by time delay. The most

widely applied biomass estimation method is the cell dry weight method. This is a method

where cells in a sample are separated from the broth and weighed after thorough drying.

It’s a simple but time-consuming method. A significant criticism of this method is that it

cannot distinguish viable cells from dead cells[46]. Furthermore, the process is erroneous

if the broth contains other insoluble materials.

2.3.1 Viable Biomass

Being able to distinguish between viable and dead biomass is not often considered when

developing mechanistic models. However, it should be evident that dead cells do not

grow or produce anything and should not contribute to model predictions. Therefore,

models that can accurately predict viable biomass should be more reliable and applica-

ble. Microorganisms have a limited lifespan, and in long fermentation processes such as

a fed-batch process, some cells are expected to die and leave behind cell debris which

impacts the dry weight. Relying on cell dry weight may lead to experimental observa-

tions and conclusions that cells grow indefinitely. In reality, if the nutrient amount is kept
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Figure 2.3: Illustration of a potential problem with relying on CDW as the ”gold standard”
for biomass

consistent through controlled feeding, the cell culture in the batch will reach a stationary

phase where dead cells are replaced by new cells at approximately similar rates[47]. Sup-

pose a mechanistic model predicts indefinite growth because it’s calibrated to fit cell dry

weight. In that case, it’s natural that productivity is overestimated by simply extending a

fermentation runtime because the model thinks there are more productive cells when the

fermentation duration is extended. We are thus interested in more sophisticated methods

that can accurately distinguish between viable and dead biomass.

There have been several definitions of the term ”Viable Biomass.” The debate is com-

plicated due to the presence of biologically active but not culturable cells because the

conditions do not favor them[48]. We will limit our interest to all metabolically active cells

for developing the bioprocess model in this work.

Measuring viable biomass is not an easy task. Madrid et al.[49] provide an excellent

overview of the technologies used to estimate biomass. However, many proposed meth-

ods fail due to the physiology of a particular microorganism or the methods being too

expensive or subjective to be practically utilized in an industrial setting. One of the main

difficulties in collecting data on viable biomass in filamentous organisms’ fed-batch culture

is the complicated morphological We. The photograph in figure 2.4 illustrates the com-
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Figure 2.4: Example microscopic image detailing the complex morphological structure of
a filamentous fungus during a fed-batch fermentation process

plex morphology. Quantifying viable biomass of filamentous fungi after germination has

been only possible with staining methods such as the BacLight[50] followed by rigorous

image analysis[33]. Recent developments have been in adapting modern flow cytometry

technology for viability estimates in Penicillium chrysogenum[51]. However, these very

recent developments. Both these methods are incredibly time-consuming for developing

appropriate protocols and require specialized equipment and materials.

Dielectric spectroscopy is interesting because of its ease of use and general applicability[52].

Modern probes take advantage of a biological phenomenon called β-disperion to provide

an estimate of microbial growth within a fermentation medium. β-disperion is the ability

of a biological cell membrane to filter out low-frequency currents and allow the high fre-

quency to pass through[53]. This allows the probe to collect biomass measurements in

real-time setting by measuring the dielectric properties of the media at high and low cur-

rent frequencies. β-disperion is only observed when the cell membrane is intact, meaning

this measurement technique automatically filters out most dead biomass and other solids

in the medium. It’s been proven successful in monitoring filamentous organisms[54]. The

main problem with dielectric spectroscopy is with the unit itself. It measures dielectric

properties usually in pF/cm but not biomass concentration, meaning that the collected

data can not be directly used in mechanistic models because there is no way to include
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dielectric value in a mass conservation balance. Instead, a calibration curve is needed to

convert the dielectric measurement to biomass concentration. This, however, has been

surprisingly difficult to achieve consistently[55]. It has been established in mammalian cell

culture that dielectric spectroscopy measurement correlates with biomass concentrations

and not the number of active cells[56]. However, this correlation has never been success-

fully identified for an entire fed-batch fermentation of filamentous organisms. This is due

to a lack of available viability data due to the problematic viability measurements leading

researchers to try to correlate dielectric measurements with Cell Dry Weight which starts

showing discrepancies as the fermentation reaches later phases.
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3 Determining viable biomass

concentration via cell capacitance:

Linear calibration methodology
*Disclosure: The following chapter is a journal article submitted to Biotechnology letters.

The format has been adjusted to fit the thesis.

Abstract
Objectives: Dielectric spectroscopy is commonly used for online monitoring of biomass

growth. It is however not often utilized for quantitative viable biomass determination due

to poor correlation with dry weight. A calibration methodology is developed that can di-

rectly measure viable biomass concentration using dielectric values.

Results: The methodology is applied on an industrial scale fermentation of Acremonium

fusidioides. By mixing fresh and heat-killed samples, a linear model including sample

viability could be fitted with the dielectric β-dispersion (ΔC) values and total solids con-

centration. With a total of 26 samples across 21 different cultivations, three different

measurement methods were tested: A modern annular probe in an offline setting with

two different sample volumes of 2 and 100 mL, and a legacy viable cell analyzer. The

linear model provided an R2 value of 0.99 between ΔC and viable biomass across the

sample set using either instrument. The difference in ΔC when analyzing 100 mL and 2

mL samples with an annular probe can be adjusted by a scalar factor of 1.33 within the

microbial system used in this study, preserving the linear relation with R2 of 0.97.

Conclusions: It is possible to estimate viable biomass utilizing dielectric spectroscopy

without excessive viability studies. The same novel method can be applied to calibrate

different instruments to measure viable biomass concentration. Small sample volumes

are appropriate as long as the sample volumes are kept consistent.
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3.1 Introduction

The concentration of active biomass is a key process parameter for any bioprocess. De-

spite its importance, it is extremely difficult and time-consuming to measure and for some

organisms, it is practically impossible. Even for simple organisms, measuring active or

viable biomass is subjective and may not be practical[1]. The most widely accepted stan-

dard technique for quick estimations of biomass is the use of Optical Density calibrated

to Cell Dry Weights (CDW)[2]. However, these techniques measure total biomass, in-

cluding dead cells which may lead to inaccuracies when determining strain parameters

like observed yield. Furthermore, CDW can not differentiate between biomass and non-

biological solids present in the media.

Dielectric spectroscopy is the only known method that allows for online monitoring of ac-

tive biomass[3]. In the radio-frequency range, the media permittivity is dominated by the

capacitive behavior of cell membranes of intact cells. The frequency-dependence of the

media permittivity in this region is also known as the β-dispersion. Biocapacitance is

widely used in the fermentation and cell culture industries for monitoring purposes. The

trends can be utilized to detect abnormalities in cellular growth[4] or even directly adapted

for developing control strategies[5]. However, there is value in being able to monitor

biomass concentrations instead of dielectric properties. Biomass concentration is widely

utilized for more accurate process modeling, control, and establishing growth kinetics,

yield, and stoichiometry which are critical in process optimization and intensification[6].

Unfortunately, there is no universal relation between dielectric spectroscopy and active

biomass concentration that is transferable between different biological systems. Due

to difficulties in independently measuring active biomass, most online measurements of

biomass rely on establishing a correlation between permittivity increments and CDW. This

works well for systems with low biomass concentration due to the measurement technique

being extremely robust to changes in media composition and conditions[7]. However, in

practice this endeavor frequently fails at later stages of fermentation[8], the likely cause is

due to the accumulation of cell debris, non-viable biomass, and other non-soluble solids

during the fermentation period[9].
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The term viable biomass is not clearly defined, and different viability measurement tech-

niques give different results[10]. Dielectric spectroscopy only measures changes in di-

electric properties which are usually directly influenced by the amount of cytoplasm sur-

rounded by an intact plasmamembrane and thus indirectly estimatesmembrane integrity[4].

It has been established for mammalian cells that dielectric spectroscopy can measure vi-

able cell densities regardless of different cell growth phases[11]. Dielectric spectroscopy

isn‘t limited to these types of organisms so a similar correlation should exist for most bio-

processes. The viability of a filamentous organism is extremely difficult to measure, the

only reliable protocols are expensive and time-consuming to develop[12]. A quick and

easy estimation of active biomass concentration for these types of organisms would be

invaluable for those interested in going beyond analyzing data trends.

In this work, we will report the use of dielectric spectroscopy applied in the study of in-

dustrial filamentous fungal fermentation. We will show the relationship between dielectric

spectroscopy and active biomass via viability control by mixing fresh and heat-killed sam-

ples, and then establish how dielectric spectroscopy can be used for easy and direct

measurement of viable cell dry weights.

3.2 Materials and Methods

3.2.1 Microorganism and media conditions

Samples were obtained from the main bioreactors used for the commercial manufactur-

ing of Fusidic Acid at the Ballerup site of LEO Pharma A/S. Fresh samples were taken

from industrial fermentations from various times of cultivation. The conditions and media

are similar to the process description of Fusidic Acid fermentation reported by Daehne et

al.[13], but updated details regarding present-day operating conditions, component con-

centrations, and organisms are considered sensitive information and are not disclosed

3.2.2 Cell Dry Weight

Cell Dry Weight (CDW) measurements are performed by passing a known mass of fer-

mentation broth through a 70 mm glass fiber filter paper with an applied vacuum. The

filtrate is washed two times by filling the funnel with deionized water. The washed filtrate
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was then placed in a drying oven at a temperature of 100 °C for at least 48 hours. Final

CDW values are expressed in unit dry weight per unit fermentation broth weight.

3.2.3 Dielectric Spectroscopy

The permittivity of each sample was measured using FUTURA Pico 12 mm annular probe

using the microbial setting and dual-frequency mode measuring at 580 kHz and 15650

kHz. Modern instruments usually report permittivity increment (denoted as∆C from now)

as the measurement difference between these two points. Due to sample volume con-

straints in smaller scales of operation and our need to often utilize offline measurements,

the systematic deviation between small and large sample volumes needed to be estab-

lished. The permittivity of fresh samples was measured with 2 mL cell suspension in a 1

cm diameter tube and a 100 mL suspension in a 10 cm diameter sterilized plastic bottle.

The manufacturer recommends the use of a minimum of 8 cm diameter sample container,

preventing artificial shifts in capacitance[14]. A 2 mL sample is an approximate practical

limit.

For legacy reasons, certain samples were alsomeasured in an older at-line Viable Cell An-

alyzer (ABER Instruments 822). This device measures permittivity at a single frequency

of 1 kHz. The instrument has a built-in sample chamber with a stirrer and temperature

control and requires approximately 2 mL for accurate measurements. To measure ∆C a

small portion of the fresh sample is filtered, and the permittivity of the cell-free filtrate is

recorded and utilized as the media background. A total of 26 samples were generated for

this study from 21 independent cultivations. 15 samples were analyzed using the annular

probe with 2 mL of broth in a tube and a larger flask containing approximately 100 mL of

broth. The rest of the samples were analyzed using the viable cell analyzer.

3.2.4 Viability control: Mixed fresh heat-killed sample

The procedure follows previously published methods used by Véronique et al.[15] as a

viability assay. A portion of each sample was moved to a separate container and heat-

killed by placing the container in a water bath for 30 minutes at 70 °C. Heat-killed and

fresh samples were mixed at approximately 0%, 25%, 50%, 75%, and 100% w/w, with

the actual portions being accurately weighed. The permittivity of the samples was then

measured.
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3.2.5 Experimental Analysis and calibration

Calibration and methodology were applied and developed in MATLAB R2021a. The cal-

ibration intends to find a mathematical relationship that directly converts dielectric spec-

troscopy measurements to viable biomass concentration without the need to measure the

cell viability independently. The theory supports a direct linear relationship between ∆C

and viable biomass (XV iable). However, we will also introduce an offset (β2) to account

for any residual permittivity.

∆C = β1XV iable + β2 (3.1)

β2 is easy to estimate from killed samples. If no residual permittivity persists then β2 = 0.

Estimating β1 is a much more challenging task as XV iable is not known. However, XV iable

can be written as a relationship to CDW (XTDW ) as

XV iable = αMfracXTDW (3.2)

Where α denotes the viability fraction of a fresh sample which can take a value from 0 to

1 and is unique for each fresh sample. Here we have also introduced the mass fraction

of a fresh sample Mfrac, which allows us to include all the data from the mixed fresh

and killed measurements, a completely killed sample has Mfrac = 0. Note that the α

value is shared across different sample mixings as long as the same fresh sample is used

when mixing. Once a relationship between viable biomass concentration and dielectric

spectroscopy is confirmed an optimization routine is used to fit sample viability fractions

so that the estimated viable biomass concentration follows the established relationship. If

α is known for each sample, thenXV iable can be calculated for all samples. Subsequently,

β1 can be estimated via linear regression. The optimal α will result in the best fit to a linear

relationship and thus can be estimated via optimization by utilizing the R2 value as the

optimization objective, thus, the optimization is formulated as follows.
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αopt = argmax
α

R2

0 < α < 1

(3.3)

This optimization problem was solved with MATLAB’s fmincon function which utilizes an

Interior Point algorithm. The calibration methodology was later easily ported over to Mi-

crosoft Excel using the native GRG Nonlinear which gave the same results for more gen-

eral use. Note that the data presented in this work have been arbitrarily scaled to preserve

industry-sensitive information and thus exact units will not be included on the axes. In-

stead, axis ticks are preserved to illustrate the overall trend.

3.3 Results and Discussions

3.3.1 Linear relation

Initial measurements of a sample from a bioreactor on the viable cell analyzer show no

significant change in the permittivity signal after leaving a sample in an open container for

90 minutes at ambient conditions, indicating that the microbial system is stable throughout

the analysis. Subjecting broth to heat treatment by placing the sample container in a

water bath at 70 °C led to a rapid loss of permittivity signal. The signal stabilized at

low permittivity measurements after 15 minutes, see Supplementary Figure A.1. Some

residual broth permittivity remains even after further heat treatment. Still, the microbes

are considered dead as permittivity does not decrease further with longer heat treatment.

For the rest of this work, each sample portion that is killed will be placed in the 70 °C water

bath for a minimum of 30 minutes to ensure that the sample is fully dead.

The classical issue of traditional calibration methods based only on measured Cell Dry

Weight (CDW) is seen in Figure 3.1. At low biomass concentrations in the early phase,

there is a strong linear relationship between CDW and Permittivity Increment (ΔC). At

higher biomass concentrations, corresponding to middle and late phases, this correla-

tion weakens significantly. This can mostly be explained by the total CDW measurement

being a poor estimate of viable CDW rather than dielectric spectroscopy failing at high

biomass concentrations.
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Figure 3.1: Comparison of measured CDW and ∆C. Dielectric spectroscopy of certain
samples in ABER Viable Cell Analyzer and others. No single sample is measured on both
instruments

One sample was measured at 10% intervals of the fresh mass fraction to verify linearity;

the results are shown in Fig 2a). Furthermore, Fig. 2b) shows three of the measured

samples subject to viability control. The samples are selected so that each phase of the

fermentation is represented. These are expected results when ∆C is linearly correlated

with viable biomass. In the early phase, there is usually a direct relationship between

CDW and ∆C. Viability control suggests a direct relationship between viable biomass

and ∆C during that phase, indicating that CDW is a good estimator for viable biomass in

the growth phase. At higher biomass concentrations, which typically occur in the middle

and late phases, the direct relationship between CDW and ∆C begins to fail. However,

for this microbial system, viability control shows evidence of a linear relationship between

viable biomass concentration and ∆C, even at higher biomass concentrations. The re-

sults confirm a linear relationship between permittivity and viable biomass concentration

for the entire fermentation duration.
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Figure 3.2: Differences in permittivity increment (ΔC) at different dilution levels. Fig. 2a
Shows a single sample in the stationary phase measured on the Viable Cell Analyzer at
an increment of approx. 0.1 fresh sample mass fraction. Fig. 2b shows the permittivity
increment of three selected samples to represent different fermentation phases at different
dilution levels, measured on the ABER FUTURA Probe.

3.3.2 Dielectric spectroscopy calculation

Following the calibration methodology, it was possible to select a value for α for each of

the analyzed samples that gave an extremely strong linear correlation (Figure 3.3). It is

important to consider that the vector α containing viability fractions can be scaled with a

single scalar without a drop in R2 value, thus we have decided to normalize the estimated

values so that the highest α value after the optimization routine takes a value of 1. This is

equivalent to assuming that at least one of the measured samples consists of only viable

biomass as the solid phase. This may not always be a realistic assumption. However, as

a correction to CDW, only non-active biomass is subtracted from the measurement and is

thus a better approximation to active biomass than the original CDW measurement while

at the same time being a much faster measurement technique, requires lower samples

volumes and with modern probes, can be used for online data collection. Furthermore, if

independent viable cell analysis could be done, it only needs to be done on one sample to

calibrate the probe to measure active biomass accurately, as a single viability measure-

ment can be utilized to scale all α values for other samples properly correctly.

Figure 3.3 shows the estimated viable biomass (XV iable) after the estimation of the viability

fraction of all samples via optimization and subsequent corrections for both measurement

devices. Linear calibration is displayed in Table 1. The probe generally measures lower
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Figure 3.3: Determination of hidden relation between viable biomass and∆C after apply-
ing the viable fraction corrections on CDW measurements. Two independent calibrations
are obtained depending on the measurement device used for ∆C

∆C than the viable cell analyzer for similar viable biomass concentrations and strain. The

difference can be explained because the probe and instrument utilized different measure-

ment techniques at different frequencies and also a measured capacitance shift due to

small sample containers. The important thing to note is that the signal is still able to es-

tablish the linear trend between ∆C and viable biomass; each method can be calibrated

easily. These calibrations can be utilized directly to measure viable biomass concentra-

tion using dielectric spectroscopy in the current fermentation.

Table 3.1: Parameters for the linear correlation between ∆C and viable biomass across
the three different measurement types.

Measurement type Slope (β1 Intercept (β2)

Viable Cell Analyzer 1.67± 0.05 9.49± 1.39
Annular probe (2 mL) 0.89± 0.02 11.91± 0.76
Annular probe (100 mL) 1.18± 0.12 15.84± 0.83

3.3.3 Sample volume required with Annular probe

All fresh samples measured with the annular probe were also measured in a larger sample

container to examine the influence of the wall effect on such small sample volumes. As

expected, there was a difference in the ∆C reading depending on the container size due

to close proximities between the electrode and container wall in smaller tubes. However,
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Figure 3.4: The difference in ∆C when measuring the same fresh samples with different
sample volumes when using the annular probe. Viable biomass is calculated using the
linear correlation calibrated with the 2 mL samples measured with the annular probe.

the ∆C difference between large and small samples is very consistent throughout. Thus,

the wall effect is largely the same as long as the container volume is kept consistent

throughout a sampling campaign. A small sample of 2 mL can be used for direct offline

measurements, but the scale difference must be noted if one intends to utilize the same

calibration between different sample volumes or when transitioning to online monitoring.

Figure 3.4 shows the comparison between when the same fresh samples are analyzed

using the probe in a small tube container of 2 mL and a larger container of 100 mL, which

is large enough to achieve a better resolution of the permittivity signal without artificial

shifts. The viable biomass depicted in Fig. 4 is calculated using the linear constants

from Table 1 with the 2 mL samples and directly compared to the ∆C measured on 100

mL samples. A new linear relation was constructed, which is also illustrated in Figure

3.4 utilizing the 100 mL samples, and the constants are shown in Table 3.1. It was es-

tablished by Fernandes et al.[14] that moving from offline to online could be done with a

simple scalar conversion factor. This scaling factor is likely dependent on the microbe and

measurement techniques and thus has to be determined individually. While other studies

concluded that offline analysis could be done with a modern probe as long as the elec-

trode was not close to a surface to measure the full signal, the results here establish that
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it is possible to go even further down in the sample volume while retaining the information

of interest. The conversion factor for this microbial system when estimating ∆C of a 100

mL sample utilizing 2 mL measurement was estimated to be 1.33±0.07. It is hypothesized

that a similar scaling factor method could be utilized for 2 mL offline samples to calibrate

the probe for online monitoring.

3.4 Conclusions
This work explored the use of dielectric spectroscopy measurements in an industrial fer-

mentation system utilizing a filamentous fungus, using off-line measurements of various

sample volumes, with modern and legacy equipment. Viability control, where a fresh sam-

ple containing an unknown fraction of living biomass is mixed with a killed portion of the

same sample, indicates a strong linear relationship between viable biomass and Permit-

tivity Increment (∆C), in all cases, at every stage of the fermentation. Classically, the

correlation between ∆C and Cell Dry Weight (CDW) did not exist past a certain fermen-

tation phase. For the first time, a simple calibration methodology was developed using

∆C measurement frommixed fresh and heat-killed samples. This method provides better

estimations of viable biomass concentration without going through the long and difficult

procedure of calibration with independent viability measurements. The constants for the

linear relationship were specific to the instrument, sample volume, and container diam-

eter. The constants may be more generally applicable to other fermentation processes

or organism types. Exploring this would require additional work, which could be done

in other laboratories. We will apply the present calibration to modeling work presently

underway in our laboratories and production facilities.
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4 Multi-modal modeling of

industrial-scale fermentation

Abstract
The Shifted Covariates Regression Analysis for Multi-way data (SCREAM) modeling tools

is applied for quality prediction in batch processes. This model has two prominent advan-

tages. The first one is that it relies on tensor decomposition and thus avoids the potential

”curse of dimensionality” and information loss when the data structure is unfolded. The

second advantage is that it can model uneven-length problems without requiring batch

trajectory synchronization. The method is tested on simulated and real industrial-scale

fed-batch datasets. The model’s performance is compared to traditional multi-way re-

gression models, Unfold Partial Least Squares (Unfold-PLS) and multilinear PLS (NPLS).

SCREAM showed comparable performance to established methods when predicting the

harvest of the main product with an average prediction error of 12.73%. However, when

predicting byproduct concentration in a dataset from an industrial sponsor, SCREAM per-

forms better than other available regression approaches with an average prediction error

of 42.74% compared to the error of 93.24% with Unfold-PLS.
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4.1 Introduction

Batch and fed-batch processes are widely used in manufacturing specialty chemicals, in-

cluding food, biochemicals, and pharmaceuticals. Models of batch processes are greatly

valued as they can efficiently support batch scheduling and optimization of process per-

formance. While mechanistic models are considered ideal for this purpose[1], model de-

velopment can be limited due to a lack of understanding of the complex system dynamics

and available measurements of key process variables.

Bioprocesses are an excellent example of batch processes with limited system dynamic

knowledge while also commonly accompanied by a large amount of data. Data-driven

modeling can help interpret these large datasets and describe the process without prior

knowledge[2]. This is especially relevant in pharmaceutical settings, which depending

on the novelty of the working cell culture, may contain no systematic knowledge. Despite

needing no prior knowledge, data-driven models can help identify process trends and thus

facilitate mechanistic model building in the future.

On the industrial side, a predictive model that can estimate the quality of the batch at

harvest can yield significant benefits. The recovery process‘s efficiency may depend on

difficult-to-measure batch quality variables. Depending on the sampling and measure-

ment methods, this information may only be available after commencing recovery to meet

production demands due to time constraints. Batchesmay not be up to specification; thus,

additional resources are wasted. Furthermore, suppose the recovery process relies on

solvents, the solvent used may be optimized, and the process can be made more efficient

if the yield of the main product can be estimated ahead of time.

The process systems engineering community is seeing an increased interest in using ma-

chine learning and artificial intelligence algorithms to solve various problems in the bio-

chemical industry[3]. However, it isn‘t easy to use these data-driven techniques directly

due to the unique nature of the batch and fed-batch datasets. In standard regression,

data are arranged in a two-way structure; a table or a matrix, but batch data is a three-

way data consisting of batch x time x process variable. Furthermore, unfolding the data

to conform to a two-dimensional structure is not trivial due to the varying run times which

leads to Fed-batch process data being an uneven three-way data array.

Multivariate tools have been utilized in batchmodeling, primarily for monitoring purposes[4].
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Most of these tools are based on more traditional bilinear models such as Principal Com-

ponent Analysis (PCA) or Partial Least Squares (PLS). There has also been success in

using specialized three-way models to handle the batch process data structure. A signifi-

cant motivation for using three-waymodels is preserving the three-way structure within the

model for easier interpretation and to avoid the curse of dimensionality[5]. Traditionally as

part of a preprocessing step, time alignment is required to make the dataset „even, “ which

is a burdensome task to do correctly[6]. There are novel methods that allow for more flex-

ible modeling of multi-way data. The most widely used is the PARAFAC2 model[7], but

recently a specialized version of the Tucker model called GTucker2 has shown promise

in monitoring a penicillin process[8].

There can be no conclusions drawn as to which three-way model is the best for batch

process data because they might serve different purposes[9][10]. When applied to batch

data, the most common applications of multivariate models can fit into the following cat-

egories; Process optimization, Process monitoring, or Product quality prediction. This

study focuses on quality prediction, where a regression model is built to predict a quality

variable Y from recorded batch measurements X

For Regression purposes, Marini and Bro [11] developed a regression method for GC-MS

data to quality variables; this is a difficult task due to baseline drifts which leads to shifts in

the dataset. The Shifted Covariates Regression Analysis for Multi-way data (SCREAM)

method is a modification to Multivariate Covariates Regression (McovR)[12] to utilize the

PARAFAC2 engine when decomposing the data structure over the traditional constrained

Tucker models. This allows direct regression of data without correcting the baseline drifts.

An additional feature is that since PARAFAC2 is used for decomposing, SCREAM can

handle three-way arrays where each slice is of varying lengths. This makes it a promising

tool for the regression of batch data as it takes both the three-way structure and the vary-

ing runtime of independent batches without requiring time adjustment as a preprocessing

step. This study will explore the application of SCREAM and multilinear PLS (NPLS)[13]

as regression tools in the fermentation industry while also comparing it to the more tradi-

tional method of unfold-PLS.
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4.2 Materials and Methods

4.2.1 Model Backgrounds

Unfold-PLS

Unfold Partial Least Squares or Unfold-PLS is a standard tool in literature for multivariate

analysis of batch data[14] and is commonly referred to as Multiblock PLS. Despite hav-

ing a unique name, this is a standard PLS model with an unfolding preprocessing step.

Unfolding is the act of turning a 3-D data array into a 2-D matrix by taking slabs from an

(IxJxK) data array to create multiple 2-D matrices and then aligning them to give a single

2-D matrix. Since there are different ways to unfold 3-D displays, and it‘s usually based on

the type of data, the unfolding used throughout this work will be discussed during model

development.

Given an unfolded array X of size (KxIJ), the PLS model seeks to decompose X into

a series of scores and loadings that maximizes variance explained while having a high

correlation with response Y.

X = TP⊤ + E (4.1)

Y = UQ⊤ + F (4.2)

Where T consists of R extracted orthonormal score vectors from X, and U are the score

vectors from Y having maximum covariance with T. Matrices P and Q represent loadings

while E and F are respectively the residuals for X and UY. PLS is a subsequent method

meaning the components are estimated one at a time by solving the following optimization

min
w

[cov(t, y|t = Xw; ||w|| = 1] (4.3)

The solution to this problem is the following result

w =
X⊤y

||X⊤y|| (4.4)
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The score vector of this first component is found using t = Xw. Subsequent components

are found by deflating the X and y blocks. The quality variable y is predicted, assuming

a linear relationship between the score matrices.

U = βT (4.5)

Where β is a regression vector. Further review of Multiblock algorithms can be found in

the original paper by Kourti et al.[15].

NPLS

NPLS is the multiway generalization of traditional PLS. Whereas two-way PCA and PLS

try to summarize the data matrix by decomposing it into a sum of dyads, the three-way

NPLS utilizes triads to summarize the data. Unlike unfold-PLS, the NPLS model is truly

multilinear. We will limit the discussion to Tri-PLS1, a three-way PLS regression onto a

single univariate variable. For a three-way data array, X and univariate dependent data y,

A single component of X is a decomposition into a score vector and two weight vectors.

Essentially each mode or dimension gets a unique vector. A single-component Tri-PLS

model of X is given as

X = t(wJ ⊗wI) + E (4.6)

y = tb+ f (4.7)

Where ⊗ denotes the Kronecker product of the two vectors.

NPLS models are determined by finding the weight vectors wJ and wI such that the

covariance between t and y is maximized. N-PLS models are the solution to the following

optimization problem

min
wJ ,wI

[cov(t, y|t = X(wJ ⊗wI); ||wJ || = ||wI || = 1] (4.8)

Finding the solution to problem 4.8 requires defining a matrix, Z(JxK) with elements

zij =
K∑
k=1

ykxijk (4.9)
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The solution to the NPLS optimization problem is found as the left and right singular vec-

tors of Z. The score vector t is then found via regression of X onto w.

w = (wJ ⊗wI) (4.10)

t = Xw
(w⊤w)

(4.11)

The NPLS algorithm is a sequential method, meaning that the vectors for each subse-

quent component can be determined by deflating the arrays X and y and then repeating

the steps required to find a single-component model.

NPLS works directly with multi-way data like ones from a batch process and does not

require any unfolding. The three-way structure is kept and can be utilized in model inter-

pretation. NPLS uses far fewer parameters and is more strict than its Unfold-PLS coun-

terpart, which could lead to better predictive power. A drawback of the Unfold PLS and

NPLS models is that all slabs or batches must contain the same number of data points,

i.e., the data array must be even. We refer to the paper by Bro[13] for further details

regarding NPLS. This work builds N-PLS models utilizing the scripts available with the

N-way toolbox, freely available at http://www.models.life.ku.dk/nwaytoolbox.

SCREAM

The SCREAMmodel utilizes a PARAFAC2 fitting algorithm based on an Alternating Least

Squares (ALS) approach. PARAFAC2 models are expressed as

Xk = ADkB⊤
k + Ek k = 1, ...,K (4.12)

Here Xk is a single slab of the entire three-way structure X, or the data from a single batch.

For a PARAFAC2 model with F components, the matrix A is a matrix (IxF ) of loadings

in the I direction. For batch data, this is usually the variable loadings. Dk is a diagonal

matrix (IxF ) containing the k’th row of the matrix C(KxF ) which has the loadings in the

K or batch direction. C is similar to a score matrix in ordinary 2-way PCA. Finally, Bk is

the loadings in the J direction or the time point direction. Generally, Bk holds the loadings

where the shifts happen. Finally, Ek contains the residuals. PARAFAC2 models are made
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unique by the constraint that the cross-product of each Bk is the same, i.e., B⊤
k Bk = H

for all k = 1,…K. The standard PARAFAC does not have a unique loading matrix in the

J direction for each slab Xk but instead uses a single B for the entire three-way structure.

Different Bk loadings allow PARAFAC2 to directly model three-way arrays of batch data

of various lengths and make it more flexible when handling shifts in batch data.

Fitting a PARAFAC2model is the least squares minimization of the following loss function.

K∑
k=1

||Xk − ADkB⊤
k ||2 (4.13)

Note that C is a 2D matrix, and consequently a direct multi-linear regression onto Y is

possible using C as the predictors. This would be the multimodal equivalent of Principal

Component Regression (PCR). However, there is no guarantee that the C score matrix is

predictive of Y as it attempts to summarize the entire X, array. Thus, changes in X, which

may have no significance on the output Y, will still affect the C matrix.

For prediction purposes, it is sought to seek a score matrix C that is relevant for predicting

Y. For a single dependent variable y, the prediction capabilities are expressed with the

following loss function.

||y− Cr||2 (4.14)

where r is a vector of regression coefficients. Making a predictive model relevant for X

and y requires minimizing both loss functions. This is the same setup as in the two-way

Principal Covariate Regression (PCovR), where a weighing parameter α between 0 and

1 is introduced. This parameter controls to what degree the fitting should summarize X or

predict y. The SCREAMmodel is then fitted by minimizing a combination of loss functions

4.13 and 4.14.

α
K∑
k=1

||Xk − ADkB⊤
k ||2 + (1− α)||y− Cr||2 (4.15)

The PARAFAC2 direct fitting algorithm[7] is utilized to solve this minimization problem

while maintaining the uniqueness constraint. These modeling techniques have two hy-

perparameters that must be determined, the number of factors F and the value of the

weighing parameter α. Improper selection of these parameters leads tomodels that do not
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predict or overfit y. The original MATLAB scripts used in this study for building SCREAM

models are available at http://www.models.life.ku.dk/scream.

Initial implementations of the model on batch data performed poorly, where even resam-

pling the training data would lead to different predictions. The suspected reason for this

discrepancy is due to a local minima issue. PARAFAC2 direct fitting algorithm utilizes

A to minimize the fitting function. Prediction of new samples using PARAFAC2 is not

trivial. Predicting new samples also uses ALS but keeps the variable matrix A and cross-

product matrix H, fixed. Thus, in the presence of multiple local minima, different initial

guesses can give different results. The original implementation utilized a random initial

guess for the score matrix C. We propose modifying the original SCREAM implementa-

tion by changing how C is initialized when predicting new samples. Instead of random

guesses of C, we propose selecting the score values ck for each new batch to match the

same ck of the batch it most closely resembles from the training set. To determine which

batch in the calibration set most corresponds new batch in a prediction, we extract the

first Principal Component from each batch in the calibration set and the prediction set and

compare the geometric distance. The ck of the batch in the calibration with the lowest

distance from a new batch when comparing the Principal components is used to initial-

ize the PARAFAC2 direct fit algorithm. This modification vastly stabilized the prediction

element of the SCREAM model.

4.2.2 Preprocessing

While the SCREAM model does not require time alignment, it is still necessary to perform

centering and scaling operations when working with batch process data. Furthermore,

PARAFAC2 models are considered more sensitive to noise captured in the dataset com-

pared to other multivariate methods because time profiles are estimated for each batch

separately[16]. To address this, a Savitzky-Golay derivative filter is used to smooth each

process variable to reduce the overall noise; this is a common technique when modeling

batch data[17].

Multi-modal data centering and scaling are more complex and can be done in multiple

ways[18]. Improper centering and scaling can reduce model qualities and even lead to

degeneracies in multi-way models[19]. Research considering multivariate methods on

batch data indicates that mean-centering the data followed by single slab scaling on a
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mean-centered array leads to more predictive models[20] and thus will be used through-

out this work.

Mean centering is done by computing and subtracting the mean for each time point within

the batch period.

xij =

∑I
i=1 xijk
K

(4.16)

x∗ijk = xijk − xij (4.17)

Single slab scaling is a method in which all time points for a single process variable are

scaled for equal cumulative variance. To account for the uneven data array, the data is

temporarily made even by extending each batch duration to the longest duration batch

(Jmax) and filling the matrix slabs with missing elements or NaN values. The scaling is

then done with the following;

RMSi =

√∑K
k=1

∑Jmax
j=1 x2ijk

IJmax −NNaN
(4.18)

x∗ijk =
xijk

RMSi
(4.19)

Where NNaN is the number of missing elements when the matrices are artificially ex-

tended to make the data structure even.

An additional preprocessing step is performed only before fitting a SCREAMmodel, where

X and Y blocks are scaled to have a sum of squares of 1. This makes it easier to select

optimal alpha values during hyperparameter optimization.

4.2.3 Model implementation

A model implementation workflow was developed, followed throughout the study, and is

shown in Figure 4.1. The starting point is a raw dataset containing time series of multiple

monitored process variables throughout multiple batches. Whether batches require filter-

ing depends on the level of noise captured in the dataset, and the final model is used.

Since PARAFAC2 algorithms are more sensitive to noise and missing data, we especially

recommend some sort of data filtering or smoothing if SCREAM is intended to be used.
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Figure 4.1: Proposed methodology for multimodal or multivariate regression modeling of
batch process data
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Figure 4.2: Illustration of unfolding three-way batch data into a 2-D matrix

Time alignment is required when NPLS or unfold-PLS models are used but not when se-

lecting SCREAM models. For this work, only the cut-to-shortest method is used to align

the data. This is a very simplistic batch trajectory synchronization method where all data

that passes a time point exceeding that of the shortest duration batch is simply omitted

from the dataset used for modeling.

Cross-validation is the recommended hyperparameter tuning technique when using ex-

perimental data[21]. The Venetian blinds segmentation method divides the batches into

each segment. Batches are segmented before mean centering and multiway scaling is

applied. This ensures that the left-out-batches during cross-validation do not influence

the model calibration at all[22]. In the case of Unfold PLS, a separate unfolding step is

required. There are multiple ways of unfolding three-way matrices. Still, for this work, we

will only consider unfolding to preserve the variable dimension, i.e., all measurements of

a single process variable are grouped in the final matrix. Given a 3-D batch data array

containing I process variables, J time indices, and K batches, the unfolding returns a

2-D matrix of size (KxIJ). This is illustrated in Figure 4.2. When tuning the hyperpa-

rameters for the different model types, we recommend a cross-validation and grid search

optimization routine. MPLS and NPLS models only have a single integer hyperparameter

representing a number of factors or components. Thus a grid is not necessary, but rather

the number of factors is increased until the root mean square error in cross-validation

(RMSECV) increases which is an indicator of overfitting.

RMSECV =

√∑N
k=1 (yk − ŷk,CV )

2

N
(4.20)
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Where ŷk,CV is the predicted value of the response for the i’th sample in cross-validation.

SCREAM models utilize the same hyperparameter but also introduce α that can take any

value between 0 and 1. When optimizing hyperparameters for SCREAM models, a grid

search from 0.5 and 1 with a step size of 0.02 is used to find the α value, which provides

the lowest RMSECV for each factor. When hyperparameters are found that minimize RM-

SECV, a new model is built using all the training data with the selected hyperparameters.

The model quality is reported by examining the model root mean square error on the test

data prediction error (RMSEP) and associated bias.

bias =

∑n
k=1(yk − ŷk)

K
(4.21)
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4.3 Results and Discussions

4.3.1 Penicillin Data

A generated dataset based on the industrial simulation of Penicillin by Goldrick et al.[23].

This simulator is freely available at www.industrialpenicillinsimulation.com. The simula-

tion has been widely used to analyze the applicability and benchmark new model method-

ologies of bioprocesses at industrial scales[24]. The dynamic simulations are heavily de-

tailed and have the option of intentionally adding process faults to test model robustness.

The list of monitored process variables is shown in Table 4.1.

Table 4.1: List of monitored process variables used for regression using the simulated
dataset

Number Process Variable

1 Sugar feed rate (L/h)
2 Acid flow rate (L/h)
3 Base flow rate (L/h)
4 Cooling water flow rate (L/h)
5 Airhead pressure (bar)
6 Substrate concentration (g/L)
7 Dissolved oxygen concentration (mg/L)
8 Broth Volume (L)
9 Vessel Weight (kg)
10 pH
11 Temperature (K)
12 Generated heat (kJ)
13 Carbon dioxide percent in off-gas (%)
14 PAA flow rate (L/h)
15 Oxygen Uptake rate (g/min)
16 Oxygen percent in off-gas (%)
17 Carbon evolution rate (g/h)

Two types of data are generated, and both are uneven in length. One type was generated

by running the simulator repeatedly under normal operating conditions with slight varia-

tions. The simulator automatically induces variations when simulating multiple batches

without user interventions by random permutations of the internal biochemical kinetic pa-

rameters. This dataset consists of 100 reference batches and is used for training and

evaluating the model. The second dataset was generated by running the simulator by

considering different faults occurring during the process. The description of each fault

number is listed in Table 4.2. Each fault number also has slight variations, and ten batches
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are simulated for each fault type for a total of 60 faulty batches. This ensures that both

minor and significant deviations in batch harvest are observed. The data containing faulty

batches are not used for any model calibration and are purely used to test model applica-

bility and robustness.

Table 4.2: List of monitored process variables used for regression using the simulated
dataset

Fault no. Fault Magnitude Time (hr)

1 Disturbance in aeration flow rate (L/hr) 20,20 [20,24],[100,110]
2 Disturbance in vessel back pressure (bar) 2,2 [100,104],[200,230]
3 Disturbance in base flow rate (L/hr) 2,20,20 [20,30],[76,92],[200,214]
4 Disturbance in base flow rate (L/hr) 5,10 [80,84],[140,160]
5 Disturbance in coolant flow rate (L/hr) 2 [70,90]
6 All of the above faults

Dataset being uneven means that the batches had varying runtimes, with the shortest

batch length being fermented for 82 hours; thus, when building NPLS and Unfold-PLS,

a time-cut of all data after 82 hours of batch runtime is removed to make the data even

in length. However, these omitted readings will be included when building a SCREAM

model. The models are calibrated to predict the total harvested Penicillin amount at the

end of the batch.

During model calibration, the batches with induced faults are not included but rather re-

served for testing model robustness and the ability to predict outcomes when the pro-

cess is not running according to specifications. Before building the model, the data is

partitioned by setting 30 of the 100 good batches aside to test model quality during stan-

dard operation. The remaining 70 are then divided into equal-sized nine segments for

cross-validation in order to select the appropriate model hyperparameters. Unfold-PLS

and NPLS models with two components had the lowest prediction errors during cross-

validation. The results of hyperparameter tuning of the SCREAM model are shown in

Figure 4.3. Utilizing two factors and setting α = 0.52 led to the lowest cross-validation er-

ror. A total of 160 batches were simulated and subsequently analyzed with the proposed

methodology. The batches had varying runtimes, with the shortest batch length being at

82 hours, thus when building NPLS and Unfold-PLS a time-cut of all data after 82 hours

of batch runtime is performed to make the data even in length.
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Figure 4.3: Results of grid search hyperparameter tuning of SCREAM model for the sim-
ulated penicillin dataset

Table 4.3: Comparison of the results obtained by different regression methods on the
simulated industrial Penicillin dataset

Method RMSEP Normal Batches Bias RMSEP Faulty Batches

Unfold-PLS 611 163.4 848
NPLS 647 122.8 1057
SCREAM 588 189.5 20602

During model calibration, the batches with induced faults are not included but rather re-

served for testing model robustness. 100 of the simulated batches have no induced faults

and 30 of them are set aside to test model quality during standard operation. The re-

maining 70 are divided into 9 equal-sized segments for cross-validation in order to select

the appropriate model hyperparameters. Venetian blinds technique is used to divide the

batches into segments. When optimizing hyperparameters for SCREAM models, a grid

search from 0.9 and 1 with a step size of 0.01 is used to find the α value which provides

the lowest RMSECV for each factor.

The resulting model performances are shown in Table 4.3. SCREAM model is the most

accurate when predicting the penicillin harvest when only considering standard operation

with a root mean square error of 588 kg when looking at the test data. Figure 4.4 shows

the final model regression using SCREAM.

It is interesting to look at the performance metrics when the models are to predict the
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Figure 4.4: Parity-plot showing SCREAM model predictions compared to the measured
Penicillin harvest during normal operation

outcome of faulty batches. While SCREAM predicts better during normal operation, the

model is entirely unviable when batches are operated in a way that does not conform to

normal operation. This indicates that while SCREAM can obtain more accurate predic-

tions within the scenarios, it’s calibrated in. Still, the increased flexibility and complexity

result in trade-offs regarding outliers or batches with faulty operations. Similar effects can

be seen in model bias and two very noticeable outliers in Figure 4.4.

Unfold-PLS performs slightly better than NPLS for this case study. This is not unexpected

as Unfold-PLS models will always describe an equal or higher amount of covariance and

have a higher number of model parameters than NPLS with an equal number of compo-

nents. It was a bit more surprising to see that Unfold-PLS models also outperform both

SCREAM and NPLS when predicting the outcome of faulty batches. Looking at Figure

4.5, NPLS undershoots significantly when the harvest is under 1000 kg leading to a higher

RMSEP value. Otherwise, they have very similar overall prediction performance and sim-

ilar systematic errors depending on the fault numbers used. While the SCREAM method

shows stronger predictive qualities when focusing purely on batches at standard opera-

tion, this process may have better overall choices. This is not only due to its incapability

to establish any predictive qualities when batches are not running according to specifica-

tions but also to the sheer difficulty of building and maintaining such a model. There is a
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Figure 4.5: Parity-plot showing NPLS model predictions compared to the measured Peni-
cillin harvest during faulty operation

relatively large degree of bias in the SCREAM model, indicating a bit of overfitting to get

decent cross-validation. Poor results on faulty batches suggest that this model configu-

ration is susceptible to small changes in the data.

Furthermore, building adequate SCREAM models requires much more resources and

time than the PLS counterparts. This is mainly due to the drawbacks of the PARAFAC2

engine compared to the sequential component approach of PLS. PARAFAC2models gen-

erally take longer to build due to the ALS algorithm required to find the optimal load-

ing matrices. It is also recommended to run multiple different starting iterations of the

PARAFAC2-ALS due to a risk of local minima, which adds to the runtime. Furthermore,

because SCREAM implementations add additional hyperparameters that need to be es-

tablished for accurate model regression, we are already seeing a grid of 100s of potential

model configurations compared to NPLS’s meager seventeen possible configurations,

i.e., the maximum possible number of components, where each SCREAM configuration

takes significantly longer to evaluate correctly. Proper expertise can help lower the search

space, but PLS-based models will always be significantly faster to develop.

Suppose the extra prediction accuracy gained during regular operation is not crucial for

any other processes or analysis. In that case, we do not recommend selecting the SCREAM

modeling method over PLS for the simulated case study. PLS-based models are much
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faster and easier to build and can retain some prediction power during faulty operation.

In this case study, selecting between NPLS and Unfold-PLS would depend mainly on the

model’s purpose. If only regression is required, then Unfold-PLS is clearly the correct

choice as it outperforms NPLS even on faulty batches. However, if model interpretation

is desired, then NPLS has some advantages because of the explicit modeling of variable

and time mode.

4.3.2 Industrial Case study

LEO Pharma provides another dataset used in this work for a different case study. The

data is obtained from a fed-batch production utilizing a filamentous fungus and consists

of 43 batches in total. This dataset consists of two dependent variables to be predicted.

The goal of the analysis is to predict the final concentration of the main product and the

concentration of related substances, which directly correlate to batch quality. To get a

better insight into the applicability of each method for either purpose, separate models

are built using the same modeling method to predict one quality variable at a time.

Of the 43 batches, 13 are held over for testing model performance, leaving 30 batches for

model calibration. The training dataset is further segmented into six segments for k-fold

cross-validation to determine model hyperparameters. Model performance indicators are

also only reported on the test set. For this case study, model performance is reported in

this article using the root mean sum of square error as a percentage of the mean (RMSSE)

for confidentiality reasons.

RMSSE(%) = 100 ∗ RMSEP

ŷ
(4.22)

Where ŷ is the mean value of the quality variable for all measurements in the test set.

Predicting main product concentration was possible with all three modeling types within

acceptable levels of accuracy. Both PLS-based methods can sufficiently predict main

product yields and do it even slightly better than the best-obtained SCREAM model. The

parity plot in figure 4.6 doesn’t reveal any significant outliers that would severely affect

the summary statistics. Still, there seems to be a significant bias in the test data toward

with model underestimating the main product concentration. Furthermore, the R2 value

of 0.47 is low but slightly improved over bilinear methods, as shown in table 4.4. The
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Figure 4.6: Parity-plot showing SCREAM model predictions compared to the measured
Main Product concentration at harvest with data from Industrial sponsor

poor correlation may indicate that the dataset exhibits significant non-linear effects when

predicting the main product across all modeling methods. This is expected as the main

product is the result of fermentation which is a non-linear process. Since all modeling

methods discussed here are linear, there is a limitation on the predictive capabilities when

utilizing the entire dataset. Better results can be obtained by incorporating a non-linear

kernel projection or utilizing first principles models.

Table 4.4: Comparison of the results obtained by different regression methods on the
dataset obtained from LEO Pharma

Method RMSSE (%) R2 RMSSE R2 (%)
Main Product Related Substances

Unfold-PLS 11.21 0.46 93.24 0.35
NPLS 12.55 0.33 98.52 0.39
SCREAM 12.73 0.47 42.74 0.83

However, in the case of Related Substances concentration, there is a significant quality

improvement when selecting the SCREAMmodel over PLS-basedmethods. The RMSEE

drops from 98.5% down to 42.7% purely by using the novel model type. The comparison

between SCREAM-predicted and measured related substance concentration is shown in

Figure 4.7. Since related substance concentration is directly related to batch quality, it

is more important to predict the high concentration. It indicates that the model can be
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Figure 4.7: Parity-plot showing SCREAM model predictions compared to the measured
related substance concentration at harvest with data from Industrial sponsor

directly used to determine if the batch is up to standard before initiating the downstream

process. The additional flexibility of the SCREAM method allows the modeling of related

substances within acceptable accuracies in the process, which was previously impossible.

For the industrial dataset, SCREAMshows significant improvement over NPLSwhen look-

ing at the related substance concentration variable. The expected reason is that data lost

during the cut-to-shortest time alignment method is crucial for accurate predictions of re-

lated substances. PLS methods could achieve similar prediction levels with better time

alignment methods if this is the case. However, SCREAM is preferred as more sophisti-

cated time alignment to achieve similar prediction accuracy may destroy the interpretabil-

ity of the models.

However, the data lost at the end or shifts in the data do not seem to affect the prediction

of the main product as severely, and PLS methods can maintain good predictions for that

variable. The simulated case study shows that SCREAM is risky to use in general and

may have no predictive power when extrapolating outside the scenarios it is calibrated

in, such as in cases where an unexpected fault during operation occurs. It is impossible

to confirm that this would also be the case for this dataset as it does not contain any

batches that have known faulty operations. For this case study, NPLS is recommended
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as the modeling tool when analyzing or predicting the productivity or amount of main

product obtained from the batch. However, the flexibility of SCREAM is required when

investigating the batch quality or accumulation of related substances.

4.4 Conclusions

This work proposes a methodology to create multi-modal regression models for the anal-

ysis of bioprocess batch data. Two different multi-way models are examined, and the

predictive power is compared to the more traditional multiblock methods. Modifications

to the novel SCREAM model are proposed to make model predictions more consistent

when handling bioreactor data. When studying the penicillin simulation process, it was

determined that the SCREAM method had the lowest error when only normal operating

conditions were considered. However, SCREAM has some drawbacks in terms of the

difficulty of modeling and its risk of being overly sensitive to minor changes. SCREAM

could only predict batches with no significant deviations from the calibration set and lost

all predictive qualities when the simulation was run with induced faults.

This work focused on quality variable prediction, and from that point of view, Unfold-PLS

is the superior model when predicting the main product in both case studies due to rela-

tively low prediction error on the calibration set and fairly robust when considering faulty

batches. Of course, modeling objectives are not mutually exclusive, and it is possible to

build models focusing on quality prediction and use them as a basis for process optimiza-

tion or monitoring. With this in mind, NPLS could be the preferred model type since the

prediction errors are not considerably worse. Multi-modal models contain fewer param-

eters than their unfolded counterparts and preserve the multilinear structure, making it

easier to interpret models and generate valuable insights.

This study indicates that the powerful and flexible SCREAMmodels are not recommended

as the first choice of models. However, if severe shifts or varying runtimes are suspected

to affect model predictive power negatively, SCREAM is a promising regression method.

The most significant advantage of SCREAM is the ability to solve the uneven-length prob-

lem naturally. The case study relating to industrial antibiotic fermentation shows that our

proposed modifications to the SCREAM modeling methodology allowed the model to ac-

curately predict the batch quality of related substances without any batch trajectory syn-
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chronization steps, which is something Unfold-PLS and NPLS model types failed to do.

This confirmed the SCREAM method as a practical engineering tool in the data-driven

analysis of batch process data.
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5 Mechanistic Modelling of Industrial

scale batches for antibiotic production

Abstract
An unstructured mechanistic model is proposed to describe the industrial-scale produc-

tion of Fusidic Acid in fed-batch cultivations. The model accounts for differences in dead

and viable biomass and the effect of the primary carbon source and oxygen on cell growth

and production. The model parameter is calibrated, and performance is tested using ex-

perimental data obtained from an operating industrial production in Denmark. Parametric

uncertainty and correlation are considered using a statistical bootstrap analysis technique.

Model reliability w.r.t. parametric uncertainty is analyzed utilizing a Monte Carlo simula-

tion approach to calculate the effects of uncertainty propagation. The model predicted

the main product concentration with a relative mean error of 7%. Model uncertainty in

main product harvest is extremely low, indicating reliable model outputs. These success-

ful implementations open up opportunities for soft-sensor implementations for key state

variables but also set a good foundation for further model extensions, such as hybrid

modeling.
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5.1 Introduction

Industrial microbiology has been one of the most common methods for the mass produc-

tion of antibiotics since the wide-scale production of penicillin. In a very similar sense,

Fusidic Acid is a secondary metabolite that is commercially produced using a filamen-

tous microorganism[1]. However, while there is extensive literature on the modeling of

penicillin production with varying degrees of complexity[2][3][4][5], there is no published

research on the mechanistic modeling of the Fucidin process. The bioprocess industry

has seen rapid advancements toward digitalization. This has led to increasing interest in

industrial applications of digital twins. These technologies require good-quality process

models to act as the foundation. Mechanistic models are the gold standard as they in-

corporate current knowledge into a first principles mathematical description of the system

of interest[6]. While more difficult to develop, these model types are notably beneficial

for application in the fermentation industry since they can be better extrapolated to new

scenarios than machine learning algorithms and artificial intelligence.

A mechanistic model describes the dynamic behavior of a system with a series of math-

ematical formulas, typically ordinary differential equations (ODEs). These models are

based on prior knowledge of the system phenomena like mass, energy, and moment bal-

ances.

The mechanistic model of Bajpai and Reuss [2] is a good starting point when designing

a model structure for a poorly researched organism. It’s unstructured, has low complex-

ity, few parameters, and can be calibrated based on experimentally measured growth

profiles. Furthermore, it was made to model the secondary metabolites of a filamentous

organism and showed excellent agreement with experimental data[7]. Extensions and

changes will be proposed based on observed phenomena on industrial and lab scales to

improve predictive qualities and applications.

When developing and applying models for bioprocesses, it is considered good modeling

practice to analyze the model’s reliability. To that end, the models developed here will

be done through the framework of Good modeling practices proposed by Sin et al. [8],

which advocate the use of statistical methods to analyze inherent model uncertainties re-

sulting from experimental and the overall identifiability of the model. This allows judging

the model’s fitness to the purpose under uncertainty as a proactive solution when dealing
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with uncertainties for process development[9].

This study aims to design and evaluate a mechanistic model to quantitatively describe

the behavior of an industrial scale Fucidic Acid process. To this end, a mechanistic model

structure is inspired by unstructured penicillin models with extensions or modifications

to account for observable phenomena seen both in the production setting and during

lab experiments performed at LEO Pharma A/S. Industrial-scale data is collected to cal-

ibrate and validate model parameters and structure. A statistical parameter estimation

technique was performed to get more reliable parameter mean values and quantify para-

metric uncertainties in the model based on available data. Monte Carlo simulations of

the dynamic model were performed using estimated uncertainties from the parameter

estimation techniques to propagate model uncertainties to the predicted output. Finally,

output distributions of the main product are used to assess the model’s applicability in an

industrial setting.

5.2 Materials and Methods
Before delving into experimental data collection and model structure, it’s important to note

that all the data and subsequent modeling work is done on a mass basis rather than a

volume basis. It is common in the literature to report component concentrations in g/L,

but this work will utilize g/kgBroth. There are three primary reasons for this

1. Measuring fermentation broth mass is significantly easier than broth volume.

2. Broth densities will vary throughout fermentation. This is sometimes overlooked de-

spite being a popular method of estimating alcoholic content in beer production[10].

3. Water evaporation is significantly easier to calculate on a mass basis.

5.2.1 Fermentation Media

Samples were obtained from the main bioreactors used for the commercial manufactur-

ing of Fusidic Acid at the Ballerup site of LEO Pharma A/S. In addition, fresh samples

were taken from industrial fermentations from various cultivation times. The conditions

and media are similar to the process description of Fusidic Acid fermentation reported

by Daehne[11]. Still, exact details regarding present-day operating conditions, compo-

nent concentrations, and microorganisms are considered sensitive information and are
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not disclosed.

5.2.2 Experimental data collection

Cell Dry Weight

Samples are obtained from the production line and are transferred to the laboratory with

the filtration equipment and the oven quickly after taking the sample. For filtration,70 mm

diameter glass fiber filters are pre-dried for two days at 100◦C. Before filtration, one of

these filters was put in a holder made of aluminum foil and weighed together. The filter

was then transferred to the 70 mm diameter Buchner funnel attached to the 1 L Buchner

flask. Around 10-20 mL biomass fraction was slowly poured onto it while the vacuum

was on. Next, the bottle with the remaining sample was weighed again, allowing biomass

calculation on a mass basis. Next, the filtered biomass was washed with around 40 mL

of distilled water at least twice, shaking up the biomass on the filter as much as possible

to dissolve any solid particulates like sugar crystals. After washing, the wet biomass was

placed in the oven with an aluminum foil container for two days at 100◦C. After two days,

the aluminum foil, filter, and biomass were placed in a desiccator and weighed after they

were cooled down to room temperature.

Main product and byproducts

The main product and all relevant related substances are measured in an offline setting.

We use a High-Performance Liquid Chromatography (HPLC) method that uses a Waters

Acquity CSH Phenyl-Hexyl column. The column temperature is set to 60, and a mobile

phase with 70% MeOH with 30% 0.1 w/w% H3PO4 is used at 0.6 mL/min. The injection

volume is 3 µ L, and the runtime is 6 min. Ethanol was used as the mobile phase solvent.

Viable Biomass

Viable biomass is measured via capacitance by placing approximately 2 mL of fermenta-

tion broth sample in a tube flask and using a Futura Pico probe. The capacitance signal

is converted to viable biomass concentration using a relation developed explicitly for this

strain. For more details on this method and obtaining a calibration curve, see chapter 3.

The dataset used in this study did not contain direct measurement of viable biomass as

the samples were collected before analysis equipment to measure it was obtained. How-

ever, when the equipment was available, and the experimental protocol was developed,

a separate sampling campaign was commenced to compare viable biomass and CDW in
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Figure 5.1: Model structure, works as soft sensor

the industrial process over the entire fermentation period. With this data, we could ob-

serve biomass’s average viability throughout fermentation. To have additional observed

variables for better model calibration, we augment the original dataset to introduce an

estimated viable biomass concentration.

XV iable ≈ XTDW − fV iability(t) (5.1)

Where fviability(t) is an experimental correlation that describes the cell viability as a func-

tion of time, specifically during standard operating conditions. The correlation is not re-

ported here due to confidentiality reasons.

5.3 Model Structure

5.3.1 Component concentration balance

The following extension of the traditional fed-batch equation is utilized for the overall con-

centration balance. For component i, the instant change in concentration Ci is calculated.

dCi

dt
= qi +

E

M
Ci +

Ffeed

M
(Ci,f − Ci) + klai(C

∗
i − Ci) (5.2)

Where the first term qi denotes the biochemical kinetic rate of component i, the second

term accounts for increased concentration due to mass loss from water evaporation and

offgas balance, where E describes the broth mass change due to evaporation and offgas

balance E = Fevaporation + FCER − FOUR. It is assumed that all relevant components are

non-volatile and thus are not present in the offgas. The third term describes the dilution

due to feed where Ffeed is the feed rate, M is the broth weight, and Ci,f is the concentra-

tion of component i in the feed. The final term describes the mass transfer of component

i from the gas phase to the liquid phase, where klai is the mass transfer coefficient of

component i and C∗
i is the equilibrium solubility of component i. For simplifications, it is

assumed that kla is 0 for all components except oxygen.
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As the model is unstructured, it is assumed that all the biochemical kinetics can be ex-

plainedwith a specific growth rate term. Which can be either positive, indicating growth/pro-

duction, or negative, indicating consumption.

q = µX (5.3)

A particular case is includedwith viable biomass, which can degrade based on exponential

decay by introducing a death rate term kd. The death rate is necessary as observations

with bio-capacitance indicate that viable biomass decreases during the later stages of

fermentation. However, there is never an observed reduction in Total Dry Weight (XTDW ),

indicating an accumulation of cell debris.

qX = (µX − kd)X (5.4)

Which leads to the accumulation of cell debris XD as

qD = kdX (5.5)

To further account for the difference between measured total dry weight and measured

viable biomass, it is important to note that the main product is Fusidic Acid which is poorly

insoluble in aqueous solutions. Thus the precipitated main product Pprecipitated also con-

tributes to XTDW . Overall this becomes.

XTDW = X +XD + Pprecipitated (5.6)

5.3.2 Biomass Growth

The Contois model kinetics is utilized for biomass growth due to the excellent agreement

with experimental data for multiple microbial systems[12]. The specific growth rate is

expected to depend on a primary carbon source and dissolved oxygen. The lag phase

when the fermenter is initially inoculated will also be considered, as proposed by Sin et
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al.[13]. The overall growth is described by

µX = µX,max
S

KSXX + S

O

KOXX +O

(
1− exp

(
−t

tlag

))
(5.7)

Temperature effects are not considered due to limited variations in the experimental data.

In addition, the pH result is observed to be inconsequential in the current conditions via

lab studies and will thus not be included in the equation structure. This data relating to

broth pH and growth is confidential and thus not shown or referenced.

5.3.3 Main product

As the fermentation utilizes a filamentousmicroorganism, it is assumed that themain prod-

uct is a secondary metabolite and is not associated with growth. Therefore, the Contois

kinetics are reused and are used to describe specific product growth. Dissolved oxygen

is omitted for product growth as lab experiments have determined that the fungus can

synthesize the main product at low oxygen concentrations. The data relating to dissolved

oxygen concentrations is confidential and thus not shown or referenced.

µP = µP,max
S

KSPX + S
(5.8)

The main product is not fully soluble in aqueous solutions and will precipitate out of the

liquid phase. Since the main product is a weak acid, solubility is based on pH, and the

following relation is utilized.

Pprecipitated = P − 2.453 · 10−6exp(1.808 ∗ pH) (5.9)

5.3.4 Substrate consumption

The main carbon source consumption is biomass growth, main product synthesis, and

cell maintenance. The specific substrate consumption rate in the process is described as

µS =
µX

YSX
+

µP

YSP
+mS

S

KSSX + S
(5.10)

It is common to utilize a constant mS as the consumption required for maintenance and

other biological activities[14]. However, this has been criticized as improbable because
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it predicts active substrate consumption despite being completely depleted[15]. Thus

substrate consumed for maintenance is modeled in a Contois-like manner. As substrate

depletes, the microorganism will utilize it less for maintenance purposes, and the specific

consumption rate µS is zero when no substrate is present.

5.3.5 Mass balance and evaporation

The overall change in broth rate is estimated by considering each element that enters

or leaves the fermenter. Since we are working on an industrial scale, any sample-taking

is considered negligible and not considered. In an aerobic fed-batch process, there is

a constant air supply, and the additional substrate is fed at specific time intervals based

on the feeding strategy. Therefore, water evaporation is considerable at industrial scales

if no condensers are used and should be included[16]. Furthermore, since the model is

based on broth mass over volumes, wemust also consider the effect of the gas evolutions.

Aerobic fermentations consume O2 and release CO2, and there is a weight difference in

the molecules which can lead to mass loss in the broth.

dM

dt
= Ffeed − Fevaporation + FOUR − FCER (5.11)

Evaporation can be calculated as the difference between water vapor entering and leaving

the fermenter.

Fevaporation = ṁH2O,out − ṁH2O,in (5.12)

Water vapor in the process air can be estimated with the ideal gas law.

ṁH2O =
ϕp∗H2O

Q

RT
(5.13)

The relative humidity is not measured in offgas; it is assumed to be saturated (ϕ = 1) in

the outlet. There have been several proposals for estimating saturation pressure, but a

simple and effective method is to use a steam table or the Antoine equation.

log10p
∗
H2O = A− B

C + T
(5.14)

The parameters used are from Bridgeman and Aldrich[17], A = 5.08, B = 1838.67, and

74 Advanced modeling of industrial-scale fermentation process for antibiotic production



C = −31.74. Unfortunately, we could not determine an acceptable mechanistic model to

describe Oxygen Uptake Rates (OUR) and Carbon Dioxide Evolution Rates (CER). How-

ever, these measurements are available with realtime offgas analysis via mass spectrom-

etry.

5.3.6 Oxygen Mass Transfer

This model will only estimate the mass transfer of oxygen gas particles into the broth. We

will use the common following empirical relation to calculate kLa of oxygen[18].

kLa = c

(
Ppower

M

)a

vbg (5.15)

Where a,b, and C are empirical constants,M is the total broth weight, Ppower is the energy

dissipation in the fermentation broth, and vg is the superficial gas velocity.

The energy dissipation is calculated as the summation of agitation power and aeration

Ppower = Pagitator + Pair (5.16)

Where Pagitator is the power imposed by the agitator. The energy dissipated due to aer-

ation is calculated using the following relationship by Roels and Heijnen[19]

Pair =
1

22.4

vgRT

Z
ln(1 +

ρgZ

Po
) (5.17)

Where R is the universal gas constant, T is the vessel temperature, g is the gravitational

constant, ρ is the broth density, P0 is the pressure at the bottom of the tank, and Z is the

liquid height.

5.4 Modeling methodology

5.4.1 Parameter Estimation

The working strain contains minimal information in the literature, and no attempts have

been made before to develop kinetic models. The biochemical kinetics portion of the

model contains 11 parameters, and there is no prior information to draw from regarding

potential parameter values. This lack of a previous study means an expert review is

impossible, and all parameters must be estimated simultaneously.
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We employ the bootstrapmethod[20] for parameter estimation to calibrate themodel. This

method is preferable as it can evaluate parameter distribution without assumptions about

the underlying error distribution. Furthermore, the covariance and correlation between

parameters during estimation can also be calculated easily from the results of bootstrap

analysis. The method assumes that the experimental data is a function of the underlying

model with added noise. If all the experimental observations are stored in a vector, y a

frequentist approach assumes the following

y = f(θ) + ϵ (5.18)

Where θ is a vector containing all the true model parameters and ϵ is a vector containing

measurement noise, assuming a stochastic process.

Bootstrap does not assume that a true parameter value exists but rather a parameter

estimator θ as a random variable. Establishing the distribution of θ using bootstrap is

done with the following steps

1. Perform a reference parameter estimation using non-linear least squares

In this step, we use the lsqnonlin in MATLAB to find a parameter subset that mini-

mizes the sum of square errors from the model predictions and experimental data,

assuming no errors in the experimental measurement.

2. Generate synthetic data by bootstrap sampling and repeat parameter estimation

A residual vector is generated using the model predictions calculated using the pa-

rameter set in Step 1. Then, synthetic data is generated by random sampling with

replacement from the residual vector and adding it to the model prediction. For

each synthetic data, the parameter estimation is repeated with the lsqnonlin, and

the different parameter sets are recorded.

3. Review and analyze results

This step revolves around the statistical analysis of all parameter sets obtained in

Step 2. This involves finding the parameter mean value standard deviation, calcu-

lating the covariance and correlation matrix and plotting the distribution of the pa-

rameters, and concluding which parameters are identifiable within the framework.
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We are primarily interested in the biochemical parameters described above for this work.

Therefore, a complete list is presented in table 5.1.

Table 5.1: Summary of biochemical model parameters

Parameter Description Unit

µX,max Maximum specific biomass growth g
kg h

KSX Contois saturation constant g
kg h

tlag Lag Time h
µP,max Maximum specific product synthesis g

kg h

KSP Substrate limitation constant g
kg

mS Substrate maintenance term g
kg

KSS Maintenance saturation constant g
kg

YSX Biomass substrate yield coefficient g
g

YSP Product substrate yield coefficient g
g

kd Biomass specific death rate g
kg h

KOX Oxygen limitation constant g
kg

5.4.2 Monte Carlo based Uncertainty analysis

Within the context of uncertainty analysis, which is concerned with estimating the error

propagation from a set of inputs to a group of model outputs. The Monte Carlo is one

of the most reliable and utilized methods for uncertainty analysis with complex chemical

engineering models[21]. The Monte Carlo method is a numerical analysis method and

includes three main steps:

1. Define input parameters and distribution

2. Sample from defined distribution using a random number generator

3. Perform the simulations with the generated samples

4. Statistical analysis and interpretation of the results

The definition and identification of the model input uncertainty range depend on the case

study. The defined uncertainty range heavily influences the output of the Monte Carlo

analysis; thus, each case study must be systematically evaluated to provide accurate un-

certainty ranges. For step 1, uncertainties in the biological model parameters are consid-

ered and are obtained as a direct result of the bootstrap parameter estimation technique.

They will be represented by a covariance matrix which includes a standard deviation and

correlation matrix.

Advanced modeling of industrial-scale fermentation process for antibiotic production 77



For step 2, the Latin Hypercube Sampling (LHS) technique[22] is used for initial sam-

ple generation to ensure that the sample space is decently covered. The Iman Conover

rank correlation method[23] is subsequentially applied to induce the correlation matrix

calculated from the sample parameter estimation. The final sampling step is through the

inverted probability distribution to real values (icdf function in MATLAB) so that the gen-

erated samples follow the same distribution as obtained from the parameter estimation.

For this work, we will generate 500 parameter sets for further analysis.

Step 3 repeatedly runs the dynamic simulation utilizing the parameter sets generated from

the samplings in step 2. This results in 500 model predictions for each time step.

Step 4 revolves around analyzing the 500model predictions, such as generating themean

and standard deviations of the model output at each time step and assessing the overall

uncertainty propagation.

5.4.3 Implementation

The model implementation, the simulations, and the abovementioned statistical methods

are performed in Matlab R2021B (The Mathworks, Natick, Massachusetts). The model

equations (ODE and algebraic) were solved using a stiff-solver (ode15s with integration

accuracy set to 1.0E-07), while parameter estimation was performed using the lsqnonlin

algorithm available in Matlab. Model inputs and outputs are summarized in Tables 5.2

and 5.3.

Table 5.2: Summary of biochemical model inputs

Variable Description Unit

F Substrate Feed Rate kg
h

Cf Concentration of substrate in feed g
kg

Pagitator Energy dissipation from agitator W

Q Aeration rate L
hr

TAir Process Air Temperature K
P Air pressure barg
ϕ Relative Humidity fraction
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Table 5.3: Summary of biochemical model outputs

Variable Description Unit

X Viable Biomass concentration g
kg

S Substrate concentration g
kg

FA Main Product concentration g
kg

XTDW Total Dry Weight g
kg

O Dissolved Oxygen concentration g
kg

pH Broth pH levels
W Broth Weight kg

CER Carbon Dioxide Evolution Rate mol
hr

OUR Oxygen uptake rate mol
hr

5.5 Results

5.5.1 Model fit and parameter estimation

Experimental data collected from sampling industrial production are used for parameter

estimation. Before any additional analysis, we want to ensure that the mechanistic de-

scription provided so far can adequately model the fermentation process. The initial fit

can be seen in Figure 5.2. This fit is estimated by minimizing the error via a single use

of the lsqnonlin before any bootstrap analysis. The prior estimation showed a generally

satisfactory fit with experimental data and can accurately describe the concentration pro-

files of viable biomass and main product. It also captured the concentration of the primary

carbon source reasonably.

The overall prediction accuracy is displayed in Table 5.4. Model quality was assessed

with the root mean sum of squared errors (RMSSE) but is reported here as a scaled

percentage deviation from the experimental measured mean value.

RMSSE(%) = 100 ∗

√
1
n

∑N
i=1 (ymeas,i − ŷi)

2

ȳ
(5.19)

Initial parameter estimation shows that the Model has the most trouble predicting main

carbon source concentrations. If all measurements are included, there is an error of ap-

proximately 20%. It’s hypothesized that the complex media blend gives rise to multiple

available carbon sources. At the same time, the Model focuses only on a singular primary

carbon source. This may lead to different consumption rates depending on the variation
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Figure 5.2: Model fits industrial fermentation data when the Model is simulated on the
batch left out for validation

Table 5.4: Model evaluation quality for each process variable in the experimental dataset

Process Variable RMSSE (%) R2

CDW 12.75 0.98
Viable Biomass 12.99 0.91
Main Product 6.60 0.99
Substrate 19.52 0.98

in the initial media blending. Both biomass measurements show a similar error of approx-

imately 13%. The R2 for both biomass measurements exceeded 0.9, indicating a strong

correlation between model predictions and measured biomass. Similarly, with the sub-

strate predictions, it may be possible to improve fits by considering the effects of potential

alternative carbon sources, but this is a highly complicated data collection and modeling

process.

However, for engineering purposes, we are primarily interested in the main product con-

centration, which is the main economic driver of the entire process. Therefore, the com-

parison of measured and simulated growth profiles of all sampled batches is shown in
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Figure 5.3: Model fits industrial fermentation data when the Model is simulated on the
batch left out for validation

Figure 5.3. The model simulation profile follows the measured trend over the entire batch

duration. The overall fit to themain product considering all experimental values is depicted

in figure 5.4 with an overall prediction error of 6.6%. This is a significant improvement over

the data-driven modeling methods utilized in chapter 4, which had the lowest prediction

error of 11.21% and vastly exceeded the expected prediction accuracy required for further

downstream processing.

This is a fit using 11 parameters. Parameter estimation using the bootstrap methodology

is performed to assess model reliability. The parametric mean values and the standard

deviation are estimated as well as the covariance and correlation matrices between them.

It is considered that the estimated parameters depend on the nominal parameter values

obtained through a single use of lsqnonlin, model structure, and cultivation conditions.

Bootstrap parameter estimation results are shown in Table 5.5, and the Distribution is

visualized in figure 5.5. The mean parameter value is not shown to preserve the confi-

dentiality of the working cell bank. Parameter uncertainty is represented as the relative
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Figure 5.4: Parity plot showing Model fits with experimental data for both calibration and
validation batches when predicting main product concentration

error (RE) between the standard deviation of the parameter estimate concerning the es-

timated mean value.

REi =
σθi
θ̄i

(5.20)

None of the parameters had a relative error of over 15%, and only three were over 10%.

However, not all parameters are uniquely identifiable. A correlation coefficient smaller

than 0.5 is often considered a statistical threshold for a parameter to be uniquely identifi-

able. A significant linear dependency of parameters µX,max and KSX describe biomass

growth. It is common for these parameters to show linear dependency when a biochemical

model is fit using raw fermentation data. The issue is usually traced to the model equa-

tion structure. Increasing µX,max will result in an increased biomass growth rate while

raisingKSX will reduce the growth rate. Some parameters met the criterion, but since the

parameter set is considered whole, the linear dependency between parameters should

be considered. Thus in the following Monte Carlo simulations to estimate the effect of

propagating parameter uncertainties, we will consider the correlation matrix in table 5.5.

5.5.2 Uncertainty Analysis

Propagation of uncertainty was estimated by simulating the dynamic fermentation mod-

els using 500 LHS samples in a Monte Carlo procedure. The experimental data from
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Figure 5.5: Distribution of model parameters plotted as relative to their mean value.

the first batch in the dataset (i.e., the validation batch) is used as a reference. The raw

simulation results from the Monte Carlo procedure are plotted in Figure 5.6 along with the

experimental measurements. Looking at the viable biomass profile, we can see that most

simulations show the typical fermentation curves, consisting of exponential, stationary,

and death phases. This is indicated by the mean and confidence bands. Each simu-

lation uses a different set of parameter values. Some simulations show odd behavior

of increased biomass growth after the death phase. Overall the uncertainty band for vi-

able biomass measurement is the largest; this can be traced back to the overall large

parameter distribution of parameters µX,max andKSX . The uncertainty band for the main

product is significantly lower than all other process variables, indicating a very reliable

model response when predicting the main product.

Despite the wide uncertainty bands for viable biomass, the uncertainty bounds for CDW

and Main product concentrations are much narrower. This is likely the result of a narrow

uncertainty in the µP,max parameter, which is the main driver for product growth.
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Figure 5.6: 500 Monte Carlo simulations using parameter distribution and correlation de-
termined via bootstrap analysis.
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Figure 5.7: Distribution of main product concentration from the Monte Carlo analysis at
end-of-batch. Plotted as relative to the mean value of all Monte Carlo simulation outputs

5.6 Discussion
Despite themodel not being verified due to not all parameters being uniquely identifiable, it

has been validated for the current industrial cultivation conditions by leaving one batch out

for testing purposes. Thus it can still be of use for a wide array of applications. The primary

performance metric of the process is the final concentration of the main product when

the batch is harvested. The previous section showcased low uncertainty propagation

due to parametric uncertainties, especially for the main product. Consider uncertainty in

model predictions during harvest depicted in figure 5.7. We can see that most simulations

harvest prediction clusters within 2% of the experimentally measured mean value.

Previous work on this process yielded a multivariate model that can estimate harvest

yields with an error margin of 11.21%, detailed in chapter 4. The mechanistic model can

predict with even less error, and the uncertainty in model parameters shows that themodel

predictions are very reliable. Even considering a worst-case scenario in the uncertainty

distribution, themechanistic model is still expected to bemore accurate than amultivariate

model. Since the confidence interval is so narrow for both parameter and model output

uncertainties, it is likely unnecessary to hunt for identifiable parameter subsets as the

model is reliable enough for engineering applications. Furthermore, all essential batch

states can be modeled using readily available sensor readings. Thus the model could be
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used with a state estimator for process monitoring and control if we were only concerned

with the main product yields.

However, the work still has some missing elements if it should be used as the basis of a

digital twin. One of the main drawbacks of using the current iteration for batch planning

or as the basis for digital twins is that the model cannot run as an independent simulation.

This is because the model relies on OUR and CER data to estimate evaporation accu-

rately. Without this information, any optimization that relies on model outputs will probably

underestimate final product concentrations while overestimating the current broth weight.

This will provide a risk of suggesting feed strategies that will underfill the tank. Further-

more, and this is related to the scope of this research, the model does not predict batch

quality concerning related substances. All these missing variables stem from a lack of

scientific knowledge required to develop mechanistic descriptions that can accurately de-

scribe their rate of change.

In the current state, the mechanistic model uses batch measurements to calculate esti-

mates of key process variables that describe the batch states that are not observable.

Furthermore, since parametric uncertainties and correlations matrix have been identified,

this model could be used as a probabilistic model-based soft sensor for monitoring[24].

It would be interesting to test the applicability of the current iteration as a soft sensor by

investigating the sensitivity to faulty data. The groundwork laid in this chapter will be cru-

cial for further model developments, especially if we consider hybrid models to account

for the unknown variables.

5.7 Conclusions

A mechanistic model structure was proposed to describe an antibiotic production process

of a novel filamentous fungi strain. The model can be used to simulate growth profiles

on an industrial scale. It can simulate biomass growth, main product synthesis, and sub-

strate uptake. Due to the lack of sophisticated hardware sensor technology, these key

process variables are not commonly measured on-line. The predictions are supported

by readily available on-line measurements such as offgas mass spectrometry to evaluate

carbon evolution and oxygen uptake. The model was built utilizing experimental data via

rigorous sampling of industrial scale batches and parameter estimation techniques within
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the Good modeling practices framework. Uncertainties in parameters were obtained via

statistical analysis, and the propagation of uncertainties is shown via Monte Carlo anal-

ysis to have a minimal effect when predicting the main product concentrations at a large

scale.

However, we cannot assign proper scientific reasoning to all the model parameters be-

cause not all parameters are uniquely identifiable. Thus, care should be used if the model

needs to describe the biological characteristics of the working cell bank. Limitations of the

model that prevent direct application in the current process are the lack of information re-

garding oxygen uptake rate and carbon evolution rate, which lead to model errors if these

values are ignored. Furthermore, the model cannot simulate the accumulation of related

substances, which is crucial for this process. Future work will use this model as a foun-

dation for the integration of machine learning techniques to expand the model capabilities

to obtain readily available predictions of the missing key state variables.
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6 Hybrid Modelling for fermentation batch

quality

Abstract
The capabilities of a mechanistic model built to analyze the industrial-scale fed-batch

fermentation for the production of Fusidic Acid is extended by incorporating data-driven

models. Key missing state variables that prevented the implementation of the model as

a state-of-the-art simulator were identified. Two Artificial Neural Networks (ANN) were

integrated into the model block flow with the role of underlying learning functions that de-

scribe the missing biochemical kinetics. The result is a hybrid model that can accurately

predict the concentration profiles of a problematic byproduct with a relative error of 22%.

Furthermore, it can also measure carbon dioxide evolution rate (CER), Oxygen uptake

rate (OUR), and changes in pH. This model can be exploited to explore new production

strategies while taking into account not only the productivity of a batch but also the qual-

ity of the batch. An example application is showcased where, with more conservative

nutrient-feeding strategies, it is possible to eliminate the byproduct at the fed-batch stage

at the cost of a slightly reduced main product harvest. On the other hand, we also show

the potential effects w.r.t. batch quality of more aggressive feeding strategies to increase

fed-batch throughput.
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6.1 Introduction

The biotechnological industry heavily relies on mathematical models as a core component

of the business model and manufacturing economics. The gold standard is a mechanis-

tic model. These models are preferred as they contain relevant scientific knowledge to

describe the system’s behavior. Mathematical models are essential elements of the bio-

pharmaceutical industry for process optimization and intensification. However, biological

systems are notoriously complex, and developing such a model can be a massive time

and resource investment. Otherwise, they will have difficulty accurately describing the

process. To simplify things, first principles models most often utilize an empirical approach

to describe the growth of the cell culture. The list of appropriate equations to choose from

is large[1], and that only accounts for cell growth; further modeling is needed to account

for the production of products, substrate uptakes, gas evolution, and more.

The production of pharmaceuticals has always had a strong focus on quality. A common

method for producing Active Pharmaceutical Ingredients (API) is via biological processes

or fermentation of high-producing bacteria or fungal strains. These processes have been

subject to mechanistic modeling for use in batch optimization, monitoring, and control[2].

However, the metabolic pathways responsible for the main product can lead to the ac-

cumulation of related substances and other impurities in the batch that hampers the final

product quality and may be impossible to remove in the downstream process[3]. Mech-

anistic models rarely consider batch quality, and even the most state-of-the-art models

are focused on the main product only[4]. There is a strict definition of allowed quantities

of defined impurities when a product is used as a pharmaceutical[5]. There is little value

in utilizing a mathematical model for process optimization if there is a risk that the model

suggested optimal conditions further promote the accumulation of impurities. A high-yield

process is worthless if the product can’t be sold because it fails quality checks.

Several key drawbacks were highlighted previously in the mechanistic model presented

in chapter 5 that prevent its full utilization as a digital twin. Especially if we consider the

purpose and scope of such a model. None of the equation structures predict oxygen con-

sumption rates or carbon dioxide evolution rates. Consequently, the model relies on batch

measurements obtained from online sensors as a replacement. However, this informa-

tion must be estimated to simulate a batch in a new scenario fully. Otherwise, the mass
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balance component will lead to errors due to overestimating the broth weight. Unfortu-

nately, due to the complex broth mixture, the stoichiometry of the biochemical reaction is

unknown and is also expected to change throughout the fermentation. Thus a rate model

of carbon evolution based on stoichiometric balance is not accessible. Furthermore, the

empirical model suggested by Birol et al.[6] did not work for this particular process. Mod-

eling CO2 production in the same way as the main product and O2 as another substrate

also did not give model structures that fit the profile.

Furthermore, another major component that is especially relevant for the pharmaceutical

industry that forms this study’s scope is the concentration of a related substance. This

compound is integral to the batch’s final quality, and strict requirements must be met;

otherwise, the batch is considered a failure. No mechanistic description can accurately

explain the growth and decay kinetics.

Due to the complexity of biological systems, a hybrid model approach can be a poten-

tial alternative. The concept of hybrid modeling in this context combines a first principles

mechanistic model and machine learning models into a single model. They’ve seen an

emergence in research in process modeling for Industry 4.0[7] due to increased compu-

tational power and the amount of available data. The idea is that a mechanistic model is

built that incorporates all the obtained scientific knowledge and integrated machine learn-

ing algorithms to predict underlying functions of phenomena that are poorly understood

or too complex[8]. Machine learning and Artificial Intelligence algorithms such as Artificial

Neural Networks (ANN) have seen an increase in popularity in various research fields,

and the use of Hybrid modeling has seen success in chemical engineering, such as in

particle processes[9][10][11].

This study focuses on applying a hybrid modeling framework by integrating data-driven

or black-box models to support the mechanistic model previously developed for the fer-

mentation of filamentous fungi that produce Fusidic Acid.

6.2 Materials and Methods

6.2.1 Dataset description

The industrial scale dataset used to calibrate the kinetic model for this study is re-used.

The dataset already contains information regarding related substances. Refer to chapter
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Figure 6.1: Proposed Hybrid model structure after integrating Neural Networks before
remaining biochemical kinetic expressions and conservation equations.

5 of this thesis for more detailed information regarding experimental data.

6.2.2 Model Structure

For this particular study, a serial structure configuration is presented in Figure 6.1. This

is because we already have a decent mechanistic structure representing mass balance

around the fermenter. The kinetic model also explains a variety of crucial process vari-

ables, such as viable biomass growth, main product synthesis, and substrate consump-

tion. The data-driven model is then used to account for the part of the phenomenon in

which there is no available model.

In this case, the hybrid model can be considered an extension of an existing mechanis-

tic model and is learning the functional relationship between the current batch state and

the instant rate of change. A simplified version of how the dynamic model estimates the

current state, which forms the basis of the functional relationships the hybrid should learn.

xi+1 = xi + f(xi,ui, θ) (6.1)

Where the i denotes a specific time point, we bring up this formulation to emphasize

that data-driven models are used to estimate kinetic rates that generally are not directly

measurable.
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6.2.3 Incorporating Data-Driven model elements

The mechanistic model already describes the majority of the kinetics. However, four pro-

cess variables currently lack adequate mechanistic descriptions for this process. These

are outlined in table 6.1.

Table 6.1: List of observed variables to hybridize

State Variable Importance Availability

Concentration of related substances Main indicator of Batch Quality Offline
Carbon Dioxide Evolution Rate Evaporation calculations Online
Oxygen Uptake Rate Evaporation calculations Online
pH Precipitation of main product Online

Using data-driven models like Neural networks can present a challenge because there are

no limits on the output. In many ways, we can improve the reliability of neural networks by

incorporating asmuch scientific knowledge as possible when deciding the overall equation

structure. We can improve hybrid models’ reliability by carefully considering the ”what

should the data-driven model predict?”

A good start is looking at three of the four state variables related to biological activity.

q = µXV iable (6.2)

Where µ is the specific growth or consumption rate of a given component. We can en-

sure that the rate of change of these components is tied to biological activity by having the

data-driven models predict µ as a function of the current batch state variables x and input

variables u rather than the overall rate of change. This inclusion of scientific knowledge

and assumptions provides an important example of why hybrid models are preferred over

purely data-driven models. In this case, the growth and consumption of specific compo-

nents are directly tied to biological activity since all activity goes to 0 when XV iable is 0.

This will not necessarily be the case if the data-driven models predict the biochemical rate

of change q.

Simply predicting µ is a good start but isn’t perfect since µ is allowed to be negative or

positive. This is the desired effect when predicting related substances, but there could be

scenarios where a data-driven model predicts the uptake of carbon dioxide and release
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of oxygen. For these two cases, it can be fixed with the following

µCER = max(0, fCER(x,u)) (6.3)

µOUR = min(0, fOUR(x,u)) (6.4)

Where f is the function describing neural network outputs, note that we are not putting

the same restriction on the specific related substance rate µRS because we can observe

both formation and consumption in the experimental data.

The mechanism for pH is unknown. However, Ebrahimpour has successfully modeled pH

dynamically in a bioprocess for cream cheese production using a black-box long short-

term memory model[12]. For this work, we will rely on a more traditional shallow neural

network to predict changes in pH using batch state. It is believed that pH changes cor-

relate to certain biological activities when batch states are correct. Due to the broth’s

complexity, we could not determine any special rules regarding the change in pH values.

It was observed to both increase and decreased over the process, and thus the pH is

modeled simply as
d(pH)

dt
= fpH(x,u) (6.5)

6.2.4 Neural Networks

While several data-driven different modeling techniques can be incorporated into a mech-

anistic description, the most commonly used is the Artificial Neural Network (ANN). Be-

cause they are universal approximators, they can model any linear and non-linear behav-

ior and require no structural knowledge of the modeled system[13].

ANNs are loosely based on how the human brain processes information. They consist

of a series of data processing units called neurons connected by information flows. ANN

performs non-linear operations to the information flowing through them so that a prob-

lem becomes linearly separable in the final feature space. Each neuron computes the

weighted sum of all signals received from its connection from a previous layer plus a bias

term. This weighted sum is then used as an input in an activation function to generate
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Figure 6.2: Schematic representation of a Feed-Forward ANN with one hidden layer

layer output. The transformation between layers can be summed with

a = f(z) = f(Wx+ b) (6.6)

Where a is referred to as an activation, f(.) is an activation,W is a matrix containing neu-

ron weights, and b has the neuron biases of the current layer and x is the input to the net-

work. The activation a can be fed-forward into more hidden layers, ANNs with more than

one hidden layer are often called Deep Neural Networks (DNN). There are multiple-choice

activation functions, but most ANNs focus on a linear, hyperbolic tangent, sigmoid, or rec-

tified linear units. A single-layer ANN can be sufficient for regression problems, and it’s

been proven that given enough neurons, they can fit any input-output relationship given.

But, of course, more neurons mean more parameters making more complex models and

increasing the chance of overfitting.

6.3 Model development
Since the mechanistic model has already been adequately identified, the overall hybrid

model identification follows the direct approach[14]. This workflow starts with identifying a

mechanistic model without considering a data-driven model and, subsequently, identifying
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the data-driven model. Since the development and calibration of the kinetic model are

already finished and detailed in the previous chapter, the focus here is the implementation

and training of the neural networks.

6.3.1 ANN Development and Training

The ANN model structure used in this study will be restricted to a shallow neural network,

i.e., only one hidden layer. These network structures are often sufficient for regression

problems. Furthermore, shallow ANNs rely on fewer parameters than their DNN coun-

terparts which makes them computationally easier to train as they require fewer model

evaluations to calculate gradients. Shallow neural networks with fewer nodes are also

likely to be more robust, as they don’t have the same opportunity to overemphasize the

effects of measurement noise and errors.

For this work, we will use the hyperbolic tangent function for the activation when through

the hidden layer. The nodes in the input and output layers were chosen to have lin-

ear transfer functions. Training ANN for regression is done by adjusting network bias

and weights to minimize a loss function. This is usually achieved with various gradient-

based algorithms. This work will optimize neural network weights and biases using the

Levenberg-Marquardt backpropagation algorithm[15]. For deciding on the best network

structure and identification of network parameters, the dataset is divided into three par-

titions, a training, validation, and test partition. For deciding the test set, it was decided

to leave the entire first batch in the dataset out, designated as the test data. This is the

same test data omitted during the mechanistic model calibration work featured in chapter

5. The remaining data was partitioned randomly into training and validation sets. The

purpose of the validation set is to provide an early stopping criterion to prevent overfitting.

Different numbers of nodes in the hidden layer were considered and are considered a

hyperparameter to optimize. Different network structures were compared based on their

performance on the loss function value when considering the test set only. The training

environment is summarized in Table 6.2.

We can use a single neural network with multiple outputs as the data-driven model block.

However, for convenience, we will develop two separate ANN models labeled as the

byproduct model and online model. The byproduct model is made for predicting related
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Table 6.2: Summary of the ANN training environment

Description Setting

Training Algorithm Levenberg-Marquardt backpropagation
Activation function in hidden layer Hyperbolic tangent
Activation function in output layer Linear
Loss Function Mean Squared Error
Maximum number of epochs 1000
Maximum validation failure 6
Training Ratio 0.7
Validation Ratio 0.3
Data partition method Random split

substance accumulation only, and the onlinemodel is used to predict state variables cap-

tured via online sensors, which are oxygen uptake, carbon evolution, and pH changes.

We develop two different models because phenomena measured using online via fre-

quent measurement, the kinetic terms can be estimated directly from the process data.

However, in cases where kinetic terms are not readily available, a particular pre-training

phase is adopted for otherwise unnecessary model training.

6.3.2 Byproduct model

One of the significant difficulties in training models is predicting the rate of related sub-

stance accumulation. The specific growth rate µRS can not be calculated directly using

the available process data. The primary reason is that the experimental data is obtained

via offline analysis, a slow measurement method that has to be done manually, giving a

very sparse growth profile. This makes the actual rates impossible to measure; thus, the

model has to be trained to fit the final measured concentration.

L(θ) =
∑N

i=1(CRS,pred,i − CRS,measured,i)
2

N
(6.7)

Every time the loss function is evaluated during model training, we require evaluating the

entire dynamic model. This involves solving differential equations for every loss function

evaluation, which can lead to severe performance issues. The performance impact de-

pends on the numerical solver and the model’s stiffness, which depends on parameters

and error tolerance specifications. In our implementation, we see that simulating a single

batch over an entire fermentation period can take up to 3000 function calls. With four

batches in the training set, this requires 12000 evaluations of neural networks for just a
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single estimation of the loss function. This makes evaluating the gradient, even for simple

models, a much more computationally expensive task.

For this, we advocate for a pre-training step in which the neural network is trained on a set

of estimates which we define as f̂RS . A similar solution was proposed by Shah et al. when

training DNNs for use in a hybrid setting[16]. The idea is that a model that fits through

an interpolated fit between data points is already significantly better than a model using

completely randomized parameters. Furthermore, any neural network configuration that

can not properly predict this curve fit is also unlikely to be a suitable candidate for model-

ing the actual specific growth rate. The consequences are that fitting to the estimate f̂RS

as the pre-training step gives us a vastly better initialization of the neural network, dras-

tically reducing the number of epochs required to train an optimal model. Furthermore,

we can also utilize the quality of fit to f̂RS to estimate the number of neurons required in

the hidden layer for a suitable model, i.e., this pre-training phase can also be used for

hyperparameter tuning.

Figure 6.3: Illustration of spline curve fitting used to generate rate estimations used in
ANN pre-training phase and the resulting estimate of specific growth rate profile

We define a function h(t) as a curve fit between all experimental points. This study will

always use a spline function as the basis for the curve fitting. Primarily because it is an

easy choice and it is possible to adjust the fitting with a smoothing parameter to remove

any visual artifacts. This was an accepted methodology to estimate underlying kinetics

back when the hybrid was first proposed for a bioprocess [17]. This function is then used
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as a temporary stand-in for the experimental data by CRS ≈ h(t). Since h(t) is a well-

defined curve fit, it’s easily differentiable. Thus we can define an estimate of the specific

growth rate by incorporating the value in the mass balance as

f̂RS =
1

XV iable

(
d(h(t))

dt
− E

M
h(t) +

Ffeed

M
h(t)

)
(6.8)

Note that all these values are available through the previously developed kinetic model.

The pre-training step is thus training a neural network where the loss function minimizes

the error in f̂RS . Once a suitable model that fits f̂RS is identified, we update the net-

work parameter and weight biases by switching the loss function to minimize the error in

experimental data using equation 6.7.

6.3.3 Online model

The remaining unknown phenomena µCER, µOUR, and fpH are easier to develop hybrid

models for. This is because all these values can be estimated reasonably well with avail-

able process data. While specific rates for oxygen uptake and carbon evolution are not

directly measured, the overall rates qCER and qOUR are measured and available in the

dataset because of the use of a mass spectrometer. Since a kinetic model has already

been calibrated for the process, it is possible to simulate a batch in the dataset as a soft

sensor to get estimates of XV iable at every time point. The specific rates can then easily

be calculated using equation 6.2.

We also wanted the model to predict change in pH according to equation 6.5. While d(pH)
dt

is not directly measured, pH is available online, and it is estimated frequently. Note that

fermentation processes are slow, with growth parameters often expressed per hour, but

pH is recorded every few seconds. Because of the frequent pH measurements, we can

do numerical differentiation of the experimental pH curve, which provides a reasonable

estimate for fpH . Since all these process variables can be estimated well enough with

available process data, updating the network weight and biases is unnecessary after the

training phase. Instead, the models are trained to fit the calculated kinetics, and model

quality is evaluated directly afterward.

Advanced modeling of industrial-scale fermentation process for antibiotic production 103



6.3.4 Implementation

The existing mechanistic model code developed in MATLAB R2021b from chapter 5 is

modified to include direct predictions from neural networks in the kinetic expressions. To

reduce simulation runtime, a custom code for Feed Forward Neural Networks and the

Levenberg-Marquardt training algorithm was written from scratch rather than relying on

the Mathworks Neural Network Toolbox. ANN weight and biases are randomly initial-

ized. This custom initialization utilizes only homogeneous double floating point number

arrays when performing Neural Network calculations, which reduces the average simu-

lation runtime from approximately 30 seconds to approximately 0.5 seconds on an AMD

Ryzen 5 1600 CPU. The Neural Network code will be made available at GSI Research

Group Github page at github.com/gsi-lab.

6.4 Results

The hybrid modeling method is used to train a model for industrial-scale production. The

same batch inputs u that are measured are used for simulation purposes. The mechanis-

tic model with measured process data is used to estimate relevant state variables x such

as Viable Biomass, Substrate concentration, etc., used for training the neural networks.

With the combined inputs u and states x, we estimate the specific rate of change µRS

via curve fitting and numerical differentiation. With the estimated hidden function fRS , the

neural network is initialized by training an ANN by minimizing neural network prediction

error. A single hidden layer neural network with six nodes in the hidden layer was deter-

mined to be optimal in terms of prediction error on the test data.

The best network was further trained by changing the loss function to estimate the error in

actual byproduct measurements to more accurately represent the hidden rate functions.

The predicted concentration of the related substance compared to the experimental data

of all measured batches is illustrated in Figure 6.4. Visually the model growth profile is in

excellent agreement with the collected data. Utilizing the same inputs u and x, we can

estimate the rates relevant for the uptake of oxygen and evolution of carbon dioxide us-

ing measured data as well as the rate of change of pH. Since these measurements are

available in realtime with a frequency much shorter than the process timescale, we can

assume that the estimated rates are good representations of the hidden rates the neural
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Figure 6.4: Hybrid model performance when predicting related substances across all
available industrial data

Figure 6.5: Parity-plot showing end-of-batch predictions of related substances when uti-
lizing trained hybrid model
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Figure 6.6: comparison of prediction from hybrid model against experimental data for
Carbon Evolution Rate (CER)

network needs to fit. Therefore, it was determined that a single-layered neural network

with 15 nodes in the hidden layer was the most optimal ANN structure for predictions.

Figures 6.6 to 6.8 shows the comparison between data measured by online sensors and

the hybrid model.

The overall prediction accuracy is displayed in Table 6.3. Model quality was assessed

with the root mean sum of squared errors (RMSSE) but is reported here as a scaled

percentage deviation from the experimental measured mean value.

RMSSE(%) = 100 ∗

√
1
n

∑N
i=1 (ymeas,i − ŷi)

2

ȳ
(6.9)

There is a good agreement between all measured process variables and the model pre-

dictions. The RMSSE of the related substance is 22.8% which can be alarming, but it’s

a significant improvement over the SCREAM method from chapter 4. Furthermore, this

prediction accuracy is good enough to determine whether a batch is a failure quality-wise
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Figure 6.7: comparison of prediction from hybrid model against experimental data for
Oxygen Uptake Rate (OUR)
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Figure 6.8: comparison of prediction from hybrid model against experimental data for pH
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Table 6.3: Hybrid model evaluation quality for each process variable in the experimental
dataset

Process Variable RMSSE (%) R2

Related Substance 22.79 0.92
CER 7.55 0.94
OUR 7.47 0.94
pH 2.18 0.88

due to accumulation. It can also determine when the process should be stopped to pre-

vent batch failure. The low prediction errors of CER and OUR mean that broth weight can

be more reliably simulated without requiring off-gas measurements as model inputs. The

worst case deviation when considering the prediction errors on CER and OUR is approx-

imately 1% of the total broth weight.

Looking at the predicted and measured batch profiles, there is a measured reduction in

carbon evolution and oxygen uptake at the end of the process, which the model captures.

This phenomenon is also experimentally observed in the related substance profiles. It ap-

pears at the end of the batch, usually when there is no more carbon source; the biomass

consumes the related substance without replenishing it. Despite the limited off-line sam-

ples taken during each batch, the model can capture this phenomenon quite well. The pH

profiles are interesting, with a steady increase to a steady-state value followed by signifi-

cant growth as the process reaches the end. This continued rise in pH is unique as most

fermentations which is an odd phenomenon, especially considering that the main product

is a weak acid. This behavior has so far been unexplained. The spike in pH at the end of

the process is also interesting, and the biological explanation for this phenomenon is un-

known. The hybrid model, however, can capture and model this slow rise to a steady state

and even the spike at the end. The results showcase the power of machine learning algo-

rithms to learn underlying functions of complex biological dynamics with the combination

of experimental data and previously established kinetic models.

6.5 Discussions

The previous section highlights the capabilities of the hybrid model to estimate process

variables with unknownmechanisms, which can approximate kinetic rates based on batch

inputs and currently modeled state variables.
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Looking at the predicted related substance profile in figure 6.4, there is an oddity present

in Batch 3 and 4. The predicted byproduct is shown to decay rapidly sometime in the

middle of the fermentation. Unfortunately, due to the sparse data collection of related

substance concentration, this decay was not experimentally observed. At first glance,

this may seem like a flaw in the model. However, we can see a similar phenomenon

coinciding if we also consider the offgas evolution depicted in figures 6.6 and 6.7. For

Batch 3, this is also observed experimentally in the offgas data. This indicates a potential

process disturbance captured somewhere in the state variables x and batch inputs u, and

the data-driven models take these disturbances into account in an expected way.

The hybrid model can achieve excellent results on all four missing critical process vari-

ables despite limiting the models to a single hidden layer. The recent trend in the literature

is to jump to Deep Learning approaches immediately. But this study shows that shallow

neural networks can result in highly reliable models even for complex biological phenom-

ena.

The incorporation of the data-driven models in a hybrid setting allows the simulation of an

entirely new batch without any reliance on process measurements. This vastly expands

the scope of model applications. Before the inclusions, the model was limited to a soft

sensor, but now it can be used in many ways, such as process optimization. Further-

more, including the critical process parameter of related substance concentration means

that the model is now much better suited as a basis for a digital twin in the pharmaceutical

industry as both batch productivity and quality are considered.

6.5.1 Quality vs Productivity

We can already explore one simple application example in terms of process optimization.

The major motivation for this research is exploring how to improve batch efficiency and

productivity while ensuring proper product quality via strict control of related substances.

The experimental data and hybrid model indicate that related substance growth and decay

are associated with the batch state, especially the available carbon source. The available

substrate can be controlled by adjusting the feed in a fed-batch process. To that end, we

will explore the model-predicted implications of adjusting how the batch is fed. Two dos-

ing scenarios are suggested and compared with a reference batch from the experimental

dataset. A PI controller is included in the model code to adjust the feed rate based on
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Figure 6.9: Comparison of different concentration profiles while pursuing various nutrient
feed strategies
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predicted substrate levels. Everything else regarding the initial batch state and process

air conditions is similar.

Table 6.4: Comparison of effects of implementing two possible dosing strategies

Feed Strategy Main Product harvest Byproduct concentration

Reference Batch +0 % +0 %
Low Substrate -17% -100%
High Substrate +55% +168%

The substrate, main product, and related substance concentration profiles are depicted

in figure 6.9. The overall performance of the batches compared to the reference is shown

in Table 6.4. The growth profile displays concentration, but the table shows the total

harvested product. All dosing strategies show similar levels of the main product con-

centration. However, the high dosing strategy has a much larger working volume due

to more feed and thus results in a larger overall harvest. A high-dosing strategy does

have a lower concentration of the main product around the middle phase of the fed batch.

This is expected due to increased nutrient feed leading to a larger dilution effect. The hy-

brid models predict that overfeeding to increase harvest per batch can lead to a dramatic

increase in related substance concentration and, thus, a much-increased risk of batch

failing qualification. On the other hand, with a more conservative feeding strategy and a

slight reduction in the main product harvested, it is possible to eliminate the presence of

this related substance at harvest.

Due note that this is a simplistic example of a hybrid model application. So far, we have

not considered the tank vessel’s total working volume, which in most industrial applica-

tions should be filled. Only two scenarios were also considered, and it is unnecessary to

eliminate the related substance. There would likely be a fixed constraint in the allowed

final concentration, which is also dependent on the recovery process and thus decided by

considering the entire process pipeline factoring in various risk management strategies.

With a fixed limit of related substance and considering all other constraints, such as tank

volume, it would be possible to utilize a variety of modern optimization methods such as

MOSKOPT[18] to determine optimal batch operations.
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6.6 Conclusions

A hybrid model was developed by incorporating Neural Networks into an existing mech-

anistic model to simulate an industrial fermentation of filamentous organisms producing

Fusidic Acid. Combining machine learning models into a mechanistic framework allows

for versatile modeling of the fed-batch process. The model capabilities are thus extended

to predict the evolution of unwanted related substances and other key state variables

needed to do the overall mass balance work. The byproduct, oxygen uptake, and carbon

kinetics release are all estimated by feeding the current cultivation conditions as infor-

mation into a shallow neural network. The pH levels are also described using a Neural

Network to predict the change in pH based on the current batch state.

This modeling approach is demonstrated in an industrial-scale case study, where the

model is trained and tested using experimental data obtained from an already operating

industrial production. It was determined from error statistics that the models perform well

predicting the missing batch states, even with limited training data and a complete lack of

kinetic insights.

Model application is demonstrated via a simple example where the nutrient feed rates

are adjusted, demonstrating that with different feed-rate set points, it is possible to con-

trol the level of the final byproduct concentration. With conservative feeding strategies,

the model predicts that it can completely eliminate the related substance if deemed nec-

essary. However, it is also possible to push for higher levels of the main product with

more aggressive feeding strategies. Optimization algorithms can use this hybrid model

to search for scenarios where the main product harvest is maximized while keeping the

quality in check.

It is of interest to further expand the hybrid model by subjecting it to the Modeling frame-

work of Sin et al. [19] to assess the reliability of the hybrid models in terms of uncer-

tainty and sensitivity analysis. There is growing research in determining the uncertainty

of Neural Networks[20], but a more efficient training strategy is required to be feasible.

Uncertainty and sensitivity analysis of the Neural Network parameters will also give further

insights into the robustness of the simulation during different process operating conditions.

Furthermore, while the model achieved good results on the validation data obtained dur-

ing standard operation, it would be relevant to run a test batch with the feed strategy
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proposed by the hybrid model simulations to validate the model applicability for process

optimization further.
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7 Conclusions and Future perspectives

7.1 Achievements
Bioprocess modeling plays a key role in designing and maintaining fermentation pro-

cesses while also giving key understandings of the relationship between current batch

states and microbial kinetics. In terms of developing new state-of-the-art models, this

thesis has shown that there are still ongoing developments in classic mechanistic and

data-driven modeling. But the reemerging focus on hybrid modeling shows excellent po-

tential in solving some old and general problems in the bioprocess industry.

For the first time, a modeling methodology where the focus is shifted from only predicting

the productivity of fed-batch processes but also other batch quality indicators, such as the

accumulation of harmful byproducts that render the main product useless. We’ve applied

a novel data-driven method that had the flexibility of naturally solving the uneven-batch

length problem as a regression tool. This was the only multivariate method that could

sufficiently predict the byproduct accumulation without resorting to batch trajectory syn-

chronization methods.

The conservation balance was also developed from the point of view of using viable

biomass as the backbone for all kinetic activity. This was only possible due to our ef-

forts in developing experimental protocols and linear calibrations that allow for easy and

fast measurements of viable biomass directly through dielectric spectroscopy. The suc-

cess of the linear calibration has prompted LEO Pharma to adopt the technique in the

standard workflow when collecting lab scale data during experiments to gain further pro-

cess understanding.

The conservation balance and biochemical models inspired by equation structures used

in industrial-scale penicillin models with slight modifications proved a success in develop-

ing a mechanistic model that describes several key features relevant to producing Fusidic

Acid. Testing the model on an individual batch proved a good fit, and the statistical anal-

ysis of model parameters and uncertainties showed extremely reliable results giving a

strong mechanistic foundation to test a hybrid model framework.
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The hybrid model created using a serial structured approach by integrating ANNs into the

mechanistic model equation structure provided a method of predicting the kinetics of a re-

lated substance as a function of the current culture conditions. During the development,

significant issues arose with the training of the models being exceptionally computation-

ally expensive. This is because the model was written in a MATLAB environment where

the machine learning algorithms were obtained from the Neural Network toolbox. This

made model evaluation a slow process and gradient descent algorithms for training an

unfeasible process. We’ve managed to massively reduce the model runtime by rewrit-

ing a custom Neural Network engine with the focus of only using memory-efficient data

types, i.e., allowing double precision arrays and no structure or class types as the tool-

box version uses. This level of optimization is generally not needed in standard Machine

Learning applications. Still, in cases where a single model evaluation may need 10000

Neural Network evaluations, this led to significant performance increases. Splitting the

training problem for byproducts in a pre-training phase also reduced the computational

cost in model development. The hybrid models performed exceptionally well on all the

data we were able to provide and successfully modeled all the missing state variables

deemed necessary to simulate the process with the given purpose. We demonstrate the

potential of the models by changing some aspects of the process and show the effects

on batch efficiency and quality.

7.2 Remaining Challenges
Despite the achievements attained with the work done during the study, several areas are

open for further improvement identified throughout the study.

7.2.1 Data Quality

Hybrid and mechanistic models prove potent for describing complex biological phenom-

ena, and we’ve successfully taken advantage of machine learning algorithms to predict

the concentration of related substances. However, in the current framework, they are not

as readily available for implementation as purely data-driven ones. This is not necessarily

due to a lack of data but the correct data, a problem that is relevant in the bioprocess indus-

try. Biomass is, for example, an essential process variable in all mechanistic fermentation

models, whether it’s unstructured or structured fashion, and it’s natural that any black box
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model integration will still use biomass as a critical variable, meaning that this data needs

to be readily available for training. However, even with the increased presence of Pro-

cess Analytical Technology (PAT) packages and Quality by Design (QbD) principles, it’s

not guaranteed that biomass data is available. So despite having a lot of data to work

with, there may not be enough of the correct type of data meaning that manual experi-

mental work is still required, and the number of batches available for model development

will be limited. We addressed the viable biomass aspect of this project and how it could

be obtained in real-time in production. However, other fermentation metabolites that are

key for the overall mechanistic mass balance still need our attention, such as the main

product and byproducts.

7.2.2 Lab and Industrial scale differences

This work was done using data collected from an already-established industrial process.

However, most experiments used to support process developments are done at a lab

scale. This is the scale new scenarios and process optimization suggestions initially

tested due to the expenses associated with industrial-scale test batches. If new phenom-

ena are discovered vital for process optimization, it is imperative that a model developed

at the lab scale can be transferred to full scale without too much error. Looking at the

model proposed in this thesis, some modifications are required to the proposed equation

structure. Due to a significantly smaller scale, most fed-batch lab experiments are done

with a condenser installed to prevent evaporation of all the media before the experiment

is concluded. It is common to completely ignore the effects of evaporation on the lab

scale when developing mass conservation balances. However, it’s been established that

evaporation can be a significant factor even with a condenser setup[1]. The experimen-

tal correlation relating to condenser temperature can be used to account for evaporation

at the lab scale. Furthermore, oxygen transfer at the lab scale will need to be adjusted.

Oxygen transfer relies on experimental correlation for mass transfer coefficient kla whose

parameters are expected to change due to different tank geometry and impeller type.

In the current facility, the transfer between lab and full scale is, at this moment, an untested

issue. Even if the model with proposed modifications can be calibrated for lab scale, there

is no guarantee that a direct transfer is possible until proven otherwise. Should further

model development reveal discrepancies in model predictions between scales, further re-
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search is required depending on the severity of the model error. Note that this may not

be a model-specific issue but rather differences in the environment caused by the varying

hydrodynamics of scale-up or scale-down. This is a well-known problem that is still being

actively researched today. There have been great strides in Computational Fluid Dynam-

ics (CFD) to understand and avoid process heterogeneity at a large scale[2]. Identifying

and eliminating process heterogeneities at both industrial and lab-scale couldmake kinetic

models more transferable between scales and support further process developments by

combining lab experiments with state-of-the-art models.

7.2.3 Hybrid training

The power of the hybrid model methodology is showcased as it established a predic-

tive tool for kinetics which there was no prior knowledge, and managed to integrate with

mechanistic models. But of course, it doesn’t explain everything. While researching and

developing the hybrid model, we can find myriad ways to extend the capabilities further.

As an example for this research, we focused on one troublesome byproduct. However,

according to pharmacopeia, ten more identified impurities must be lower than a certain

fraction; otherwise, the final product can not be sold[3]. It is possible to use the same

hybrid model methodology to account for every single one with the proper data collection.

It is also possible to consider using a parallel hybrid approach to enhance further the pre-

diction quality of state variables that we could model adequately. For example, we could

use data-driven models to improve the main carbon source consumption estimate, which

of the main state variables had the highest error.

Model training has been a consistent bottleneck throughout this work. Before further ex-

tending capabilities as new phenomena are observed or more details are required as the

process becomes more sophisticated, it’s advocated at least factor in the computational

costs of training the models. This work largely tried to mitigate the issue by reducing the

cost of model evaluations by focusing on code optimizations. However, it’s expected that

the computation difficulty will again be an issue with further complex models, no matter

how much code optimization is implemented. A more permanent solution might be to

reevaluate how the gradient in the loss function is calculated. To that end, combining

automatic differentiation with backpropagation is interesting and has been successfully

implemented in training hybrid models[4]. Compared to finite-difference, this approach
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scales significantly better with increasing model parameters. To benefit from his tech-

nique, a software environment is required to support automatic differentiation, which isis

only become available recently.

7.2.4 Implementation onto current process

The work presented in this thesis was done to create the basis for a digital twin for the

Fusidic Acid fermentation process. While we’ve shown the capabilities of the models to

create a simulation of the system, it can’t be said that all the work of building a Digital Twin

of the process is complete. A logical next step would be applying these process models

to generate value in the current production. However, this is a multifaceted problem and

would require a different approach than a pure biochemical engineering one. The models

could be written into a software package allowing plant personnel to run and explore var-

ious scenarios or even analyze batches currently in production. This does require some

relevant knowledge in software engineering and User Interface design so that the relevant

people can utilize the models.

Since the model no longer relies on measurement, it can be taken beyond soft sensors

and utilized for process optimization. Furthermore, the statistical analysis on the mecha-

nistic part gives uncertainties in model outputs. We can take advantage of the uncertainty

information directly with newly developed simulation-based framework tools[5] to further

analyze the models, hedge the uncertainties, and find optimal process settings after con-

sidering everything we can change within the GMP framework. Part of the problem for-

mulation that motivated this research is that the model’s focus on productivity and quality

can be utilized as objective and constraint functions in an optimization procedure since

the hybrid model has been validated to quantify these state variables.

Part of Industry 4.0 uses Digital Twin of soft sensors, which rely on high-quality models

due to the difficulties of developing hardware sensors that measure vital process vari-

ables. After incorporating the hybrid, we now have a reliable way of generating predictions

of all relevant complicated to estimate state variables. Furthermore, complementing the

models with a modern state-of-the-art filter for the measurements or incorporating proba-

bilistic elements will give more accurate measurements over a current batch process[6].

This provides more data for crucial process variables that we can take advantage of to

improve the Data-driven tensor models presented in this work or even the hybrid models
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themselves.

7.3 Future perspective
Although simulation models prove potent for describing a fermentation process, there are

still complex phenomena vital in practical applications that can’t be explained with cur-

rent mechanistic modeling knowledge. While the hybrid may be the emergent solution to

these old problems, there is still room for improvement before the industry can take full

advantage of them. As part of future work, it would be interesting to compare the different

frameworks that have been recently proposed and combine them in a software package

so that future researchers can readily take advantage of the other modeling tools.

We touched a bit upon the lack of relevant data in the bioprocess industry to fully take ad-

vantage of big data in a hybrid framework. Further improvement of online methods, such

as taking full advantage of spectroscopic technology or implementing current models as a

soft-sensor, might provide a real-time estimation of the formation of various fermentation

metabolites. This will allow us to take full advantage of the hybrid model framing method-

ology in the presence of Big Data by incorporating all recorded batches rather than a

select few via a sampling campaign.

I hope that applying the hybrid modeling framework is a success in the PSE community

and the bioprocess industry and motivates research and development to further the cur-

rent state-of-the-art. The combination of mechanistic modeling and machine learning is a

way to speedily solve practical problems today instead of simply waiting for the solutions

of tomorrow, which could come way down the line. As it stands, hybrid modeling is still

a bit of a niche for the general researcher. There are no official toolboxes in MATLAB

or standard packages for Python within SciPy or Tensorflow, with a sizeable community

focusing on hybrid modeling despite the recent resurgence. I hope this will change and

we see more widespread adoption of the hybrid and multimodal models as common tools

in the engineering toolbox.
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A Supplementary Materials for Chapter 3

Figure A.1: Dielectric spectroscopy reading on Legacy ABER Cell Analyzer for a sample
in ambient conditions and two subsequent samples placed in a water bath at 50°C and
70°C, respectively. It takes approximately 15 minutes to kill a sample in a water bath 70°C
and about 30 minutes to kill a sample in a 50°C water bath while a sample in ambient
conditions remains stable for over 90 minutes
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Figure A.2: Various sample volumes considered for this work when measuring with the
ABER FUTURA Pico probe. From left to right, the samples are approximately 4 mL, 3
mL, 2 mL, 1 mL and 0.5 mL

Figure A.3: Dielectric spectroscopy readings with the ABER FUTURA Pico probe with
different sample volumes. Two samples are considered, the end of the fermentation sam-
ple is taken right before harvest resulting in higher biomass concentrations, and another
sample is taken after 4-hour fermentation resulting in lower biomass concentrations. The
readings are consistent for 2 mL volumes and above for both high and low biomass con-
centrations.
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Figure A.4: Dielectric spectroscopy reading of approximately 100 mL bulk sample with
the ABER FUTURA Pico probe
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B Supplementary Materials for Chapter 4

Figure B.1: Comparison of default random initialization for SCREAM prediction on cali-
brated data and the proposed PCA based initialization

Figure B.2: Example output from the IndPenSim v2.02 software used to generate sim-
ulated industrial fed-batch data. Showcased here are batch profiles generated during
normal operation and profiles during a fault in aeration rates.
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Figure B.3: Model loadings and score matrices generated by the SCREAM source code
when modeling the simulated industrial data from the IndPenSim software

Advanced modeling of industrial-scale fermentation process for antibiotic production 131



C Supplementary Materials for Chapter 5

Figure C.1: 500 generated parameter samples used in the Monte Carlo Uncertainty anal-
ysis after applying Imon-Conover rank correlation method and inverse probability function
on LHS generated samples.
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D Supplementary Materials for Chapter 6

Figure D.1: Training performance of the byproduct model over number of gradient descent
epochs
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Figure D.2: Regression performance of the byproduct model for the pre-training initializa-
tion phase. See main chapter for final regression results
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Figure D.3: Training performance of the Online model over number of gradient descent
epochs

Figure D.4: Regression performance of the Online model
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