
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Mar 08, 2024

AI-based optical-thermal video data fusion for near real-time blade segmentation in
normal wind turbine operation

Jia, Xiaodong; Chen, Xiao

Published in:
Engineering Applications of Artificial Intelligence

Link to article, DOI:
10.1016/j.engappai.2023.107325

Publication date:
2024

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jia, X., & Chen, X. (2024). AI-based optical-thermal video data fusion for near real-time blade segmentation in
normal wind turbine operation. Engineering Applications of Artificial Intelligence, 127, Article 107325.
https://doi.org/10.1016/j.engappai.2023.107325

https://doi.org/10.1016/j.engappai.2023.107325
https://orbit.dtu.dk/en/publications/97aaf5d0-61dd-406e-9609-c8b62de6bc97
https://doi.org/10.1016/j.engappai.2023.107325


Engineering Applications of Artificial Intelligence 127 (2024) 107325

0

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

AI-based optical-thermal video data fusion for near real-time blade
segmentation in normal wind turbine operation
Xiaodong Jia, Xiao Chen ∗

Technical University of Denmark, Department of Wind and Energy Systems, Roskilde, 4000, Denmark

A R T I C L E I N F O

Keywords:
Damage inspection
Blade segmentation
Thermal imaging
Data fusion
Multimodal complementarity
Deep learning

A B S T R A C T

Blade damage inspection without stopping the normal operation of wind turbines has significant economic
value. Blade segmentation is a fundamental task for blade damage inspection in the field without stopping
wind turbines. This study proposes an AI-based method AQUADA-Seg to segment the images of blades from
complex backgrounds by fusing optical and thermal videos taken from normal operating wind turbines. The
method follows an encoder–decoder architecture and uses both optical and thermal videos to overcome the
challenges associated with field application. A memory is designed between the encoder and decoder to
improve the method’s performance by utilizing time history information in the videos to achieve temporal
complementarity. The designed memory shares information between optical and thermal modalities to achieve
multimodal complementarity. We collected a large-scale dataset, i.e., 100 video pairs and over 55,000 images,
of optical-thermal videos of blades in operational wind turbines to train and test the method. Experimental
results show that AQUADA-Seg: i) achieves near real-time thermal-optical blade video segmentation and can
analyze videos with complex backgrounds in real-world field applications; ii) achieves 0.996 and 0.981 MIoU
on optical and thermal videos, respectively, outperforming state-of-the-art methods, particularly in the videos
with complex backgrounds. This study provides an essential step towards automated blade damage detection
using computer vision without stopping the normal operation of wind turbines.
1. Introduction

Rotor blades are critical components of wind turbine systems and
often operate in harsh environments. This leads to blade failures becom-
ing the most important contributor to wind turbine failures, followed
by control system failures and electrical failures (Pérez et al., 2013;
Van Bussel and Zaaijer, 2001). Therefore, inspecting blades regularly
to prevent blade failure is an important task in wind turbine operation
and maintenance.

Blade damage inspection has seen dramatic advancement in the
last decades. Traditional blade inspection method requires professionals
manually check blades with rope and basket, which is labor-intensive
and time-consuming. Moreover, wind turbines must be stopped when
inspecting, resulting in extra turbine downtime and operative costs. To
reduce inspection costs, more and more computer-vision-based meth-
ods emerged, including ground-based telescopes (Wallace and Dawson,
2009), drone-based cameras (Shihavuddin et al., 2019; Wang et al.,
2019), and infrared thermography (Chen et al., 2021; Sheiati and
Chen, 2023; Chen et al., 2023, 2022). For example, Shihavuddin et al.
(2019) proposed a faster R-CNN and Inception-ResNet-v2 based method

∗ Corresponding author.
E-mail address: xiac@dtu.dk (X. Chen).

that detects blade surface damages from images taken by drone-based
optical cameras. Unlike optical camera based methods that only detect
surface damages, some laboratory studies demonstrate that infrared
thermography can detect and evaluate underneath blade damages,
which are often more severe and require more attention (Chen et al.,
2021; Sheiati and Chen, 2023; Chen et al., 2023, 2022). For exam-
ple, Chen et al. (2023) presented a computer vision and thermal im-
agery based blade damage inspection method named AQUADA PLUS.
This method can automatically localize, track, and evaluate multiple
blade damages in blades under cyclic loading simulating operational
fatigue loads. Although these methods demonstrated encouraging re-
sults in laboratories, they are too difficult to focus on blades in the field
because of distraction from noisy and complex backgrounds, resulting
in their severe performance degradation. Thus, blade segmentation be-
comes a fundamental task when applying computer-vision-based blade
damage inspection methods in the field.

In the past few years, much effort has been devoted to building
wind turbine blade segmentation models. For example, Xu et al. (2019)
presented an optical blade segmentation method based on Canny edge
952-1976/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
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Fig. 1. Cases where single-modal fails to segment the blades but multimodal complementarity can be utilized to improve the segmentation performance. Thus, this study proposes
using both optical and thermal modalities in blade segmentation instead of a single one.
detection and morphology. This method first segments blade images
with Canny edge detection then applies morphological opening to erode
and deflate segmentation masks. Tang et al. (2021) proposed a hough
line detection and Otsu threshold segmentation based adaptive wind
turbine blades segmentation method. This method first preliminarily
locates edges of the blade line using hough line detection, then uses the
grab-cut algorithm of Otsu threshold segmentation and morphological
operations to segment blade images in the target area. Inspired by
the huge success of deep learning (LeCun et al., 2015; Silver et al.,
2016; Senior et al., 2020; Bi et al., 2023) in semantic segmentation (Oh
et al., 2019; Caelles et al., 2017; Long et al., 2015; Noh et al., 2015;
Ronneberger et al., 2015; Strudel et al., 2021), several deep learning
based blade segmentation methods have emerged recently (Wang et al.,
2022; Yang et al., 2021; Yu et al., 2023; Pérez-Gonzalo et al., 2023).
For example, Yu et al. (2023) presented a U-net based thermal blade
image segmentation model, in which hierarchical-split depth-wise sep-
arable convolution block is designed to obtain a balance between speed
and accuracy. Wang et al. (2022) proposed a U-net based optical
wind turbine segmentation model, in which two types of attention
mechanisms—ECA-Net and PSA-Net—were incorporated to enhance
the model’s details capture ability. Yang et al. (2021) presented a blade
segmentation method based on CNN and Otsu threshold. In addition,
ensemble learning was introduced to improve the segmentation perfor-
mance. Pérez-Gonzalo et al. (2023) proposed a U-Net and hole filling
based optical blade image segmentation method. This method first
employs a U-Net to generate a preliminary blade segmentation, then
applies three hole filling based postprocessing steps and random forest
to improve its segmentation accuracy.
2

1.1. Motivation

Motivation for using both optical and thermal modalities:
For segmentation: Existing blade segmentation methods either use

optical or thermal modality, but in real-world applications, we found
numerous cases where single-modal methods fail. Take Fig. 1(a) as
an example, optical modality fails to segment the blade because the
boundaries between the blade and clouds are too difficult to identify.
But if a model takes both optical and thermal modalities as input, it
can solve this case by utilizing complementary information provided
by the thermal modality Similarly, thermal modality in fails to seg-
ment the blade, but complementarity from optical modality can be
utilized to help with solving this case. Thus, we should fuse optical
and thermal modalities in blade segmentation to achieve multimodal
complementarity.

For damage detection: Although we focus on blade segmentation
here, our long-term objective of the future study is to detect blade
damage. For damage detection, the motivation for using multimodal
data is twofold. On the one hand, using both optical and thermal
modalities can detect surface and underneath damages simultaneously.
Optical modality can be used to detect surface damage, but cannot be
used to detect underneath damage, which is much more important than
surface damage in wind turbine blades. Meanwhile, thermal modality
can help to detect underneath damage. On the other hand, infrared
thermography suffers from reflectivity-emissivity issues, which cause
temperature measurement errors (Moradi and Sfarra, 2021; Gao and
Tian, 2018). It has been verified that optical modality can complement
thermal modality to correct reflectivity-emissivity problems (Moradi
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Fig. 2. Cases where optical and thermal both fail to segment the blade tip but temporal complementarity can be utilized to improve the segmentation. Thus, this study proposes
using videos instead of images in blade segmentation.
et al., 2022; Tong et al., 2023). Thus, to facilitate damage detection
and correcting reflectivity-emissivity issues in the future, optical and
thermal modalities should be used together.

Motivation for using videos instead of images:
For segmentation: Existing blade segmentation methods only work

on static images, but in real-world applications, we found many cases
where optical and thermal both fail if using only images. In the cases
of complex backgrounds, optical and thermal modalities may fail at
the same time instant, which cannot be handled with multimodal
complementarity (see Fig. 2(a)). However, blade segmentation has its
unique advantages: Except for orientation, the segmentation shapes
of blades do not change much at different times. If taking videos as
input, a model can solve these cases by utilizing temporal complemen-
tarity in the video. Take Fig. 2 as an example, a model can utilize
history complementary segmentation information from a few seconds
ago (Fig. 2(b)) to help with segmenting the current frame (Fig. 2(a)).
Therefore, we should use videos that contain historical information to
achieve temporal complementarity.

For damage detection: Another motivation for using videos is that
temporal information plays a key role in thermal-modality-based blade
underneath damage detection. Because it takes time for thermal waves
to reach the surface from subsurface defects, temporal information is
significant in thermal-modality-based damage detection. Static images
cannot provide temporal information. Therefore, not images but videos
should be used.

Altogether, the objective of this work is developing a novel AI-based
model, which achieves multimodal and temporal complementarity by
fusing optical and thermal data, to segment blades from complex
backgrounds in real-world field application videos. However, real-
world hardware differences lay a challenge on our way to achieve this
objective—where to get complementary information? Knowing where
to get complementary information is a prerequisite for the model to
utilize complementarity. Ideally, optical and thermal videos should
be perfectly synchronized and have the same field of view (FOV). In
3

this way, when a modal fails in a certain area at a certain moment,
the model can directly obtain complementary information in the cor-
responding area and moment from the other modality. Nevertheless,
real-world optical and thermal cameras are not perfectly synchronized
and they have different FOVs, spatial resolutions, frame frequencies,
and reception fields (see Fig. 3). The model cannot easily get com-
plementary information as in the ideal case. Hence, where to get
complementary information is a challenge the model needs to overcome
while utilizing complementarity.

1.2. Contributions

This paper contributes existing knowledge base as follows:

• This study presents a novel AI-based optical-thermal blade video
segmentation model named AQUADA-Seg. AQUADA-Seg achieves
near real-time optical-thermal blade video segmentation without
stopping turbines and outperforms state-of-the-art blade segmen-
tation methods.

• By taking both optical and thermal videos as input to achieve
multimodal and temporal complementarity with a tailored mem-
ory, AQUADA-Seg shows that using multimodal videos instead
of single-modal images significantly improves blade segmentation
performance, especially in real-world applications with complex
backgrounds.

• This study contributes a large-scale optical-thermal wind turbine
blade video dataset. It contains 100 optical-thermal video pairs
and over 55,000 images, among which 36 video pairs and 20,778
images were published to facilitate future studies.

1.3. Paper structure

The rest of this paper is organized as follows: we will start by
introducing our proposed method AQUADA-Seg in Section 2, then
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Fig. 3. Hardware differences between real-world optical and thermal cameras. (a) Thermal and optical videos are not perfectly synchronized. (b) Thermal and optical cameras
have different specifications. Optical camera: pixels = 1920 × 1080, FOV = 66.6◦, dpi = 300; Thermal camera: pixels = 640 × 512, FOV = 40.6◦, dpi = 72.
Fig. 4. The overall encoder–decoder architecture of AQUADA-Seg.
move to the experimental results including comparison with state-of-
the-art and ablation studies in Section 3. Finally, we conclude the paper
in Section 4.

2. Proposed method

Fig. 4 illustrates the overall architecture of AQUADA-Seg. AQUADA-
Seg follows an encoder–decoder architecture. Optical and thermal
modalities have their own encoder, decoder, and value encoder. For
each modality, we add a memory between its encoder and decoder
to store history segmentation masks. The memory adopts a key–value
structure and accesses data through attention mechanism. The de-
coder of each modality gets input from its encoder, its memory, and
importantly the other memory, then outputs a segmentation mask
of the current frame. Finally, the value encoder of each modality
encodes the segmentation mask and stores it in memory. In the fol-
lowing subsections, we will introduce the encoder–decoder architecture
of AQUADA-Seg, details of the designed memory, the loss function,
and our collected optical-thermal wind turbine blade video dataset
respectively.

2.1. Encoder-decoder architecture

Overall, AQUADA-Seg is an encoder–decoder style network. Each
modality has its own encoder, decoder, and lightweight value encoder.
4

We built the encoders and decoder following segmentation network
STCN (Cheng et al., 2021). Specifically:

Encoder of each modality takes an image as input and outputs a
representation of the image and a query key. The representation is the
‘‘code’’ and will be input into the decoder. The query key, which also
works as a memory key, will be used when reading memory. Following
common practice (Cheng et al., 2021; Oh et al., 2019), we constructed
the encoder based on Resnet-50 (He et al., 2016), removing its last
convolutional layer and classification layer.

Decoder of each modality outputs the segmentation mask of the
current input image. It takes the following three types of information
as inputs:

• Representation of the input image, which is obtained from the
encoder.

• History segmentation information read from memory.
• Multimodal complementary information obtained from the coun-

terpart modality.

We constructed the decoder following STM network (Oh et al., 2019).
In particular, decoder first fuses the image representation and memory
readout, which get from encoder and memory respectively, with a
group convolutional neural network. Then it upscales the fused feature.
Finally, masks outputted by the decoder will be bilinearly upsampled
to the original resolution.

Value encoder of each modality encodes the information that will
be stored in the value part of memory. Since the memory of each
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modality stores the history segmentation masks, value encoder encodes
the masks generated by the decoder. Because segmentation masks are
easier to encode than input images, we construct the value encoder
based on a lightweight network—Resnet-18 (He et al., 2016), removing
its last convolutional layer and classification layer.

2.2. Memory

On top of encoder–decoder architecture, we design a memory to
utilize temporal complementarity and multimodal complementarity to
enhance the model’s performance. In the following subsections, we
first introduce the details of this memory, including key–value memory
structure, memory writing, attention-based memory reading, and mem-
ory management, then move on to how AQUADA-Seg utilizes temporal
and multimodal complementarity with this memory.

2.2.1. Memory details

Key–value Memory Structure
As illustrated in Fig. 4, we designed a key–value memory for optical

and thermal modalities respectively. Key works as indexes, responsible
for memory reading. Value stores history segmentation masks. Key
comes from the encoder, which is essentially a compressed image rep-
resentation. Value comes from the value encoder, which is essentially a
compressed segmentation mask. After decoder outputs a segmentation
mask of the current frame, the model updates memory by adding a new
key and value to it.

Attention-based Memory Reading
AQUADA-Seg reads memory in an attention-based way. When seg-

menting the (𝑁 + 1)th frame of input video, the model first encodes it
with encoder, then starts to read memory. At this time, memory stores
segmentation information of previous 𝑁 frames. Let 𝐤𝑀 ∈ R𝐷𝑘×𝑁𝐻𝑊

be the memory key, 𝐯𝑀 ∈ R𝐷𝑣×𝑁𝐻𝑊 be the memory value, 𝐤𝑄 ∈
R𝐷𝑘×𝑁𝐻𝑊 be the query key obtained from the encoder, where 𝐷𝑘 and

𝑣 denote the dimensions of key and value, 𝐻 and 𝑊 denote the
spatial dimensions. We employ a similarity function 𝑠(⋅) to compute the
similarity matrix 𝐒 ∈ R𝑁𝐻𝑊 ×𝐻𝑊 of 𝐤𝑀 and 𝐤𝑄. This process can be
written as:

𝐒𝑖𝑗 = 𝑠
(

𝐤𝑀𝑖 ,𝐤𝑄𝑗
)

. (1)

In practice, we use the L2 similarity function proposed in STCN (Cheng
et al., 2021), and normalize the similarity matrix with

√

𝐷𝑘. Then, we
let 𝐒 pass a softmax function to get the softmax-normalized attention
weight matrix 𝐖 ∈ R𝑁𝐻𝑊 ×𝐻𝑊 , which can be represented by:

𝑖𝑗 =
exp

(

𝐒𝑖𝑗
)

∑

𝑛
(

exp
(

𝐒𝑛𝑗
)) . (2)

Finally, the memory readout of the (𝑁 + 1)th frame 𝐦𝑄
𝑁+1 can be

computed as the weighted sum of memory value, which can be written
as:

𝐦𝑄
𝑁+1 = 𝐯𝑀𝐖. (3)

he memory readout 𝐦𝑄
𝑁+1 works as the temporal complementary in-

ormation and will be input into the decoder to assist the segmentation
f the (𝑁 + 1)th frame.

Memory Management
As we update memory for each frame of the video input, the

emory size gradually increases as the number of frames increases.
f we do not manage memory, it will explode soon. Especially when
raining the model with long videos. Following Cheng and Schwing
2022), we divide memory into different segments and start to clean up
he oldest saved masks when the memory reaches its limit. In addition,
ince wind turbines rotate periodically, blade segmentation does not
equire large memory.
5

.2.2. Memory design for utilizing temporal complementarity and multi-
odal complementarity

With the designed memory, AQUADA-Seg can utilize temporal com-
lementarity when segmenting new frames. Specifically, AQUADA-Seg
aves history masks in memory and reads these masks when segmenting
he current frame. Because the shape of blade segmentations does
ot change much at different times, historical segmentation informa-
ion is of great value for segmenting the current frame. Moreover,
ttention-based memory reading helps AQUADA-Seg find the most use-
ul information for segmenting the current frame. Thus, AQUADA-Seg
tilizes temporal complementarity when segmenting new frames.

AQUADA-Seg utilizes multimodal complementarity by sharing com-
lementary information between optical and thermal modalities via the
emory. As described above, AQUADA-Seg inputs the information read

rom memory into the decoder of the current modality to help with
ts segmentation. Inspired by Jia et al. (2023), we made AQUADA-
eg also share this information with the other modality (see blue lines
n Fig. 4). Since optical and thermal videos are almost synchronized,
nformation read from optical memory, which is most useful for seg-
enting the current optical frame, is also of great help for segmenting

he current thermal frame, and vice versa. Thus, when a modality
ails – its encoder and memory fail to provide useful information
or its segmentation – it still can utilize complementary information
btained from the other modality to assist its segmentation. With this
ross-modal complementary information sharing, AQUADA-Seg utilizes
ultimodal complementarity in blade segmentation.

.3. Loss function

Following previous semantic segmentation studies (Cheng et al.,
021; Cheng and Schwing, 2022; Wang et al., 2022), we employ binary
ross entropy loss (BCE loss) and Dice loss (Milletari et al., 2016) to
rain AQUADA-Seg. The loss function of AQUADA-Seg can be written
s:

𝑜𝑠𝑠 = 𝐿Thermal
BCE + 𝐿Optical

BCE + 𝛼(𝐿Thermal
Dice + 𝐿Optical

Dice ), (4)

Thermal
BCE = − 1

𝑁

𝑁
∑

𝑖=1

(

𝑦𝑖 ⋅ log
(

�̂�𝑖
)

+
(

1 − 𝑦𝑖
)

⋅ log
(

1 − �̂�𝑖
))

, (5)

𝐿Thermal
Dice = 1 − 2

𝑁
∑

𝑖=1

𝑦𝑖 ⋅ �̂�𝑖
𝑦𝑖 + �̂�𝑖

, (6)

where 𝛼 is a trade-off parameter, 𝑁 is the number pixels in a thermal
frame, 𝑦𝑖 is the binary label of the 𝑖th pixel from this frame, �̂�𝑖 is the
model’s prediction of the same pixel. Since 𝐿Optical

BCE is similar to 𝐿Thermal
BCE

and 𝐿Optical
Dice is similar to 𝐿Thermal

Dice , we do not repeat them here.

2.4. Optical-thermal wind turbine blade video dataset

To train AQUADA-Seg, we collected a large-scale optical-thermal
wind turbine blade video dataset. Moreover, we make it publicly avail-
able to facilitate future studies. It can be accessed here.1 This dataset
contains 100 optical-thermal video pairs and over 55,000 images from
22 different wind turbines. The videos are collected from each turbine
at different time and under different environmental conditions. We
only published the data collected from DTU Vestas V52 wind turbine,
i.e., 36 optical-thermal video pairs and 20,778 images. The data from
other 21 commercial turbines is not published due to confidentiality.
Table 1 tabulates the information of this dataset. Table 2 compares
some existing datasets (Zampokas et al., 2022; Pérez-Gonzalo et al.,
2023; Wang et al., 2022; Yu et al., 2023) that can be used for blade
segmentation. To the best of our knowledge, our dataset is the largest
wind turbine blade dataset to date.

1 https://aquada-go.github.io/.

https://aquada-go.github.io/
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Table 1
Information of the optical-thermal wind turbine blade video dataset used in this study.

Number of optical-thermal videos (in pairs) 100
Number of images 55 880
Number of wind turbines 22a

Train/test size 70/30
Turbine IDs in train set (1, 2, 3,…, 17, 18)
Turbine IDs in test set (1, 2, 5, 6, 9, 13, 15, 16, 19, 20, 21, 22)
Average frames in each video 279
Optical video frame size in pixels 1920 × 1080
Thermal video frame size in pixels 640 × 512

a We collect videos from each turbine at different time and under different environmental conditions.
Table 2
Comparison of existing datasets that can be used for wind turbine blade segmentation.

Reference Number of images Optical Thermal Publicly available

Wang et al. (2022) 330 ✓ No
Yu et al. (2023) 312 ✓ No
Zampokas et al. (2022) 224 ✓ Yes
Pérez-Gonzalo et al. (2023) 2032 ✓ No
This study 55 880a ✓ ✓ Yes

a Due to confidentiality, only a part of the data was published, i.e., 36 optical-thermal video pairs and 20,778 images. It can be found at
https://aquada-go.github.io/.
Fig. 5. Drone-based optical-thermal blade video data acquisition when the wind
urbine is in normal operation.

All blade videos are taken with DJI Zenmuse H20T2 or DJI Mavic
Enterprise Advanced3 while wind turbines are in normal operation.
e fixed the frame frequencies of the optical and thermal cameras

o 30 FPS. The fusion color palette is chosen for thermal cameras.
e first fly the drone to a position where the horizontal distance

rom the hub nose is 12 ± 4 m and the vertical distance is 2 m (see
ig. 5). We tilt up the camera 15 degrees to avoid taking videos
f the thermal source from the nacelle. Then, we take both optical
nd thermal videos in pairs. For long blades, we take videos of them
orizontally or vertically in several segments. The interval between
ideoing positions of different segments is about 5 m. We take videos
rom both sides of the blades, i.e., both from upwind and downwind
irections. In addition, to increase the diversity of data and improve
he robustness of the model, we also take various videos from different
ngles and distances. Fig. 6 demonstrates some optical-thermal images
n this dataset and their segmentation masks.

. Experimental results

In this section, we first compare AQUADA-Seg with state-of-the-art
ethods, then conduct ablation studies to evaluate the effectiveness of

2 https://enterprise.dji.com/zenmuse-h20-series.
3 https://enterprise.dji.com/mavic-2-enterprise-advanced.
6

our two major differences, i.e., multimodal vs. single-modal and videos
vs. images.

3.1. Metrics

We use two commonly used segmentation metrics, i.e., MIoU and
MPA to compare all the results. Mean Intersection over Union (MIoU)
is a common metric for semantic segmentation. It computes the coinci-
dence ratio between ground truth and the model’s prediction. MIoU is
defined as follows:

MIoU = 1
𝑀

𝑀
∑

𝑖=1

(

TP
TP + FP + FN

)

, (7)

where 𝑀 is the number of classes, TP is true positive, FP is false
positive, FN is false negative, and FP is false positive. Mean Pixel
Accuracy (MPA) also is a popular segmentation metric, which computes
the mean of the right predicted pixel ratio from different classes. MPA
is defined as follows:

MPA = 1
𝑀

𝑀
∑

𝑖=1

(

TP + TN
TP + TN + FP + FN

)

. (8)

3.2. Comparison with state-of-the-art

3.2.1. Settings

Compared Methods: To the best of our knowledge, we are the
first to segment wind turbine blades with videos and there are not
any wind turbine blade video segmentation methods. Hence, we com-
pare AQUADA-Seg with two state-of-the-art blade image segmentation
methods—Improved-UNet-Thermal (IUNet-T) (Yu et al., 2023) and
Improved-UNet-Optical (IUNet-O) (Wang et al., 2022). Table 3 gives
an overview of these two state-of-the-art methods and AQUADA-Seg.

Because these methods work either on optical or thermal data, we
train them with data only from one modality. Because these methods
only work on images, we test them on all video frames and take the
average as their results on video. According to the study (Wang et al.,
2022), 10% of training data is used as the validation set for IUNet-O.

Data Preprocessing: AQUADA-Seg shares complementary infor-
mation between different modalities. To unify the shape of shared
information across different modalities as well as to reduce computa-
tion burden, we first resize frames of optical and thermal videos to
852 × 480. Then, we conduct data augmentation, including random

rotation, random crop, random horizontal flip, and random color jitter.

https://aquada-go.github.io/
https://enterprise.dji.com/zenmuse-h20-series
https://enterprise.dji.com/mavic-2-enterprise-advanced
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Fig. 6. Some optical-thermal images in our dataset and their segmentation masks. We can see these images vary considerably in the videoing distance, background, videoing
angle, and lighting, indicating they are close to the images taken in real-world applications.
Table 3
Overview of AQUADA-Seg and two relevant state-of-the-art methods that only work on single-modal data.

Methods Working modality Backbone Proposed year Reference

IUNet-T Thermal UNet 2023 Yu et al. (2023)
IUNet-O Optical Res-UNet 2022 Wang et al. (2022)
AQUADA-Seg Optical and thermal Resnet and Encoder–decoder 2023 This study
Table 4
Comparison of MIoU between different methods (higher is better, N.A. for not applicable).

Methods

IUNet-T (Yu et al., 2023) IUNet-O (Wang et al., 2022) AQUADA-Seg (This study)

Thermal 0.916 N.A. 0.981
Optical N.A. 0.919 0.996
Table 5
Comparison of MPA between different methods (higher is better, N.A. for not applicable).

Methods

IUNet-T (Yu et al., 2023) IUNet-O (Wang et al., 2022) AQUADA-Seg (This study)

Thermal 0.953 N.A. 0.992
Optical N.A. 0.969 0.998
Training Details: Following previous work (Cheng et al., 2021;
Cheng and Schwing, 2022), we train AQUADA-Seg with different
stages. In the first stage, we train the model with static images. In
the second stage, we mixed videos from DAVIS video segmentation
dataset (Perazzi et al., 2016; Pont-Tuset et al., 2017) and our collected
dataset to train the model. At this stage, since DAVIS dataset only con-
tains optical data, we make a copy of the optical data as thermal data.
In the third stage, we train the model with our collected optical-thermal
wind turbine blade video data. These three stages were iterated 5k,
8k, and 8k times respectively. The model is implemented with Pytorch
(v1.13.0) and optimized by AdamW with a beginning learning rate of
1 × 10−5. Besides, MultiStepLR is employed to adjust the learning rate.
We train the model with a computer provided by Denmark Technical
University Computing Centre. This computer is equipped with two 32-
core Intel Xeon Gold 6226R CPUs, 756 GB of memory, and two NVIDIA
A100 (40 GB) GPUs. The entire training takes approximately 52 h.

3.2.2. Results and discussion
In the test phase, we tested the model only on a single GPU. To

reduce the impact of hardware on the results, we ran test 10 times and
recorded the average.

Tables 4 and 5 report the blade segmentation results of all the
methods in terms of MIoU and MPA, respectively. On thermal data,
we can see that AQUADA-Seg outperforms the state-of-the-art method
(IUNet-T) by 0.065 (0.981 − 0.916) or 7.096% (0.065/0.916) on MIoU
and 0.039 (0.992−0.953) or 4.092% (0.039/0.953) on MPA. On optical
data, AQUADA-Seg outperforms the state-of-the-art method (IUNet-O)
by 0.077 (0.996 − 0.919) or 8.379% (0.077/0.919) on MIoU and 0.029
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(0.998−0.969) or 2.993% (0.029/0.969) on MPA. These results demon-
strate the superiority of AQUADA-Seg on both thermal and optical wind
turbine blade segmentation.

Across 10 tests, the average maximum GPU memory allocated of
AQUADA-Seg was 1584 MB. The average test FPS of AQUADA-Seg is
26.75, showing that it achieves near real-time wind turbine blade seg-
mentation without stopping turbines. Notably, AQUADA-Seg segments
RGB and thermal videos simultaneously. This new capability opens
vast opportunities for real-world applications. For example, AQUADA-
Seg provides at least the following three possibilities if it is applied to
blade damage detection: (i) Unlike previous methods that either detect
surface damages based on optical data or detect underneath damages
based on thermal data, detecting both these damages simultaneously is
possible now. (ii) Unlike previous image-based blade damage detection
methods that can only obtain damage status at a certain moment.
AQUADA-Seg enables the detection and intervention of blade damages
in near real-time, thus avoiding significant property loss. (iii) Obtaining
detailed damage progress in normal operating wind turbines is possible.
By analyzing the damage progress, blade researchers not only can get a
better understanding of damages but also gain clues for blade structure
designs.

To intuitively compare the performance of these methods, we con-
ducted a case study. Specifically, we selected some cases with simple
or complex backgrounds from the test set and compared segmentations
of these methods. Table 6 compares the results. From Table 6 we can
see that:

• Both relevant methods and AQUADA-Seg are capable of segment-
ing simple cases. The backgrounds of these cases are simple, with
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Table 6
Comparison of segmentations from AQUADA-Seg and state-of-the-art methods. All these methods are capable of handling cases where
backgrounds are simple and boundaries between blades and backgrounds are clear. In cases where the background is complex and blades
and background are mixed, AQUADA-Seg clearly outperforms state-of-the-art methods.
only sky in background and relatively few clouds, which makes
clear boundaries between blades and backgrounds.

• For complex cases, however, AQUADA-Seg clearly outperforms
the relevant methods. The backgrounds of these cases are com-
plex, with either a landscape (e.g., column 2, row 7 and column
5, row 6) or a dense layer of clouds (e.g., column 2, row 5 and
column 5, row 7). Blades and backgrounds are mixed together,
and the boundary between them is difficult to distinguish. Single-
modal based state-of-the-art methods fail to segment these cases.
However, AQUADA-Seg achieves remarkable results even in these
complex cases due to multimodal complementarity.

• Our dataset contains numerous complex cases, which are closer
to real-world field situations.

We designed software with a user-friendly GUI as shown in the
video.4

3.3. Multimodal vs. single-modal

The first big difference between AQUADA-Seg and existing blade
segmentation methods is that AQUADA-Seg takes multimodal data as
input while existing methods take single-modal data as input. Here, we
investigate the effectiveness of multimodal data on blade segmentation
with experiments.

3.3.1. Settings
In this experiment, we compare the following three methods:

• This study, the AQUADA-Seg method.
• Thermal-only, which is implemented by removing optical parts

from AQUADA-Seg.
• Optical-only, which is implemented by removing thermal parts

from AQUADA-Seg.

For AQUADA-Seg, we use the same experimental setting as in
Section 3.2. For Thermal-only and Optical-only, we also train them with
3 stages and the same iterations that are used in AQUADA-Seg. But in
the third stage, we train Thermal-only only with thermal data and train
Optical-only only with optical data. Other settings stay unchanged.

4 https://aquada-go.github.io/.
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Table 7
Comparison of contribution from different modalities in terms of MIoU.

Modalities

Thermal-only Optical-only Thermal and optical (This study)

Thermal 0.941 N.A. 0.981
Optical N.A. 0.953 0.996

Table 8
Comparison of contribution from different modalities in terms of MPA.

Modalities

Thermal-only Optical-only Thermal and optical (This study)

Thermal 0.968 N.A. 0.992
Optical N.A. 0.980 0.998

3.3.2. Results and discussion
Tables 7 and 8 compare the results of these methods in terms of

MIoU and MPA. From these results, we can see that: (i) The model
trained with multimodal data outperforms the model trained with
single-modal data. This confirms that using multimodal data can im-
prove the performance of blade segmentation. (ii) Among the methods
trained with single-modal data, the modal trained with optical data
outperforms that trained with thermal data. This may be because
unlike thermal data which can only provide temperature information,
optical data can provide richer information, such as color information
and texture information. Thermal modality is more likely to fail than
optical modality. (iii) If you mainly focus on thermal blade segmen-
tation, introducing optical modality and utilizing the complementar-
ity of multimodal data can significantly improve the segmentation
performance.

To intuitively investigate the effectiveness of multimodal comple-
mentarity, we conducted a case study. Table 9 compares the results
from models trained with single-modal and multimodal data. From
Table 9 we can see that: Since the information provided by a single
modality is limited, it is inevitable that single-modal fails. For example
case 1, case 3, and case 8. In these cases, blades and backgrounds
are mixed together. It is too difficult for models trained with single-
modal data to handle these cases (see the third column in Table 9).
AQUADA-Seg takes both thermal and optical modalities as inputs and

https://aquada-go.github.io/
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Table 9
Segmentation comparison between single-modal methods and our multimodal method.
can handle these cases by utilizing the complementarity between these
two modalities. Thus, better segmentation performance is achieved.

3.4. Videos vs. images

The second big difference between AQUADA-Seg and existing blade
segmentation methods is that AQUADA-Seg takes videos as input while
existing methods take images as input. Here, we investigate the ef-
fectiveness of temporal complementarity on blade segmentation by
comparing the results from models with access to different amounts
of temporal information.

3.4.1. Settings
We investigate the effectiveness of temporal complementarity by

controlling the temporal information that can be utilized by the model.
AQUADA-Seg saves history segmentation information in memory and
updates memory for every segmented frame. Therefore, we can control
the max number of history frames that AQUADA-Seg can access by
9

controlling memory size. Thus simulating situations where the model
obtains different amounts of temporary information. Here, we compare
the performance of AQUADA-Seg with access to different numbers of
frames, including 0, 25, 75, 100, 150, 200, 250, and 300. MIoU is
selected as the evaluation metric. Other settings stay unchanged as in
Section 3.2.

3.4.2. Results and discussion
Fig. 7 illustrates the performance of AQUADA-Seg with access to

different numbers of history video frames. From Fig. 7, we can see
that: when the number of frames AQUADA-Seg can access is less than
150, the performance of AQUADA-Seg gradually improves with the
growth of Memory. When this number exceeds 150, the performance
of the model gradually stabilizes. This verified that we can indeed
improve the blade segmentation performance by utilizing temporal
complementarity with a designed memory. In addition, since wind
turbine blade videos are periodic, there is an upper bound to improve
the segmentation performance by increasing the memory size. The
recommended memory size for our case is 150 frames.
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Fig. 7. Comparison of the performance of AQUADA-Seg with access to different
numbers of history video frames.

3.5. AQUADA-Seg’s robustness against noisy input

Although deep-learning-based methods achieve state-of-the-art per-
formance in various real-world tasks, their robustness against input
noise is still a hot topic, because noisy input may cause dramatic
performance degradation, thereby leading to disasters in real-world
applications (Maulik et al., 2020; Li et al., 2020). In this subsection,
we investigate the robustness of AQUADA-Seg against noisy input.

3.5.1. Settings
In this experiment, we investigate the relationship between perfor-

mance of AQUADA-Seg and the magnitude of input noise. We first
randomly replace 1%, 2%, 3%, 4%, and 5% of optical videos with noisy
input in the test set. Then observe AQUADA-Seg’s performance under
noisy input. We construct noisy input by weighted stacking frames
from different time instants of the same video. Specifically, for a
randomly selected test optical video, we first randomly select a number
𝛥𝑡 between 3 and 10. Then, starting from Frame1, we stack Frame1 and
Frame(1 + 𝛥𝑡) with weights of 0.8 and 0.2. Fig. 8 shows a frame of the
noisy input.

3.5.2. Results and discussion
Table 10 shows the optical segmentation performance of AQUADA-

Seg under different magnitudes of input noise. From Table 10 we can
see that: with the increase of magnitude of input noise, AQUADA-Seg’s
performance drops, but slightly. This may be because when optical
modality is affected by a small magnitude of noise, the model can use
the information of thermal modality to assist its segmentation. Hence,
we can conclude that AUQADA-Seg has high robustness when a single
modality is affected by noisy input.

4. Conclusion and future work

In this paper, we propose AQUADA-Seg, an AI-based encoder–
decoder style method that achieves near real-time optical-thermal wind
turbine blade video segmentation. AQUADA-Seg fuses both optical and
thermal videos captured from normal operating wind turbines and
improves the blade segmentation performance by utilizing temporal
and multimodal complementarity with a tailored memory. AQUADA-
Seg utilizes temporal complementarity by storing history segmentations
in the memory and reading them when segmenting new frames. In ad-
dition, AQUADA-Seg utilizes multimodal complementarity by sharing
complementary segmentation information via the memory. Experimen-
tal results from a large-scale optical-thermal video dataset show that
AQUADA-Seg considerably outperforms state-of-the-art optical or ther-
mal blade segmentation methods, particularly in cases when complex
backgrounds are present in real-world applications.

For neural-network-based methods, reliability of the generated re-
sults is important, especially in real-world applications where huge
10
Fig. 8. A frame of noisy input. We construct noisy input by weighted stacking the
original frame and another frame at a different time instant from the same video.

Table 10
AQUADA-Seg’s performance under different magnitudes of input noise.

Performance Magnitudes of the input noise

0% 1% 2% 3% 4% 5%

MIoU 0.996 0.995 0.994 0.990 0.983 0.976
MPA 0.998 0.997 0.996 0.993 0.988 0.981

property losses and personal casualties may occur. In the future, we
intend to extend AQUADA-Seg by introducing probabilistic neural net-
work, enabling the method to output a prediction distribution rather
than just the best prediction, thus, assessing the uncertainty of the
method’s output. Another future study is near real-time wind turbine
blade damage detection by utilizing multimodal complementarity.
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