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Summary
The present thesis summarizes recent developments in two-dimensional (2D) terahertz (THz)
spectroscopy at DTU, including instrumentation, numerical pulse propagation simulations,
and their combined application for distinguishing cascaded and direct nonlinear optical (NLO)
process in ZnTe.

Chapter 1 begins with a brief motivational introduction to multidimensional spectroscopy,
then delves into a ground-up overview of how 2D terahertz datasets, or ‘maps,’ are created
and interpreted.

In Chapter 2, we describe the design, development, and configuration of the 2D THz instru-
ment. We discuss the rational behind using what we call ‘2D THz-THz-polarimetry’ as the
detection method, as well as its implementation. Additionally, we provide several bench-
marks of the instrument.

Chapter 3 focuses on the development of numerical pulse propagation simulations. These
simulations enable us to isolate the underlying direct and cascaded NLO processes contribut-
ing to the measured 2D THz-THz-polarimetric maps.

In Chapter 4, we present 2D THz-THz-polarimetric measurements of direct and cascaded
NLO processes in ZnTe, alongside corresponding numerical pulse propagation simulations.
This comparative analysis allows us to effectively distinguish between cascaded and direct
processes.

Finally, we conclude the thesis with a summary of the findings and directions for future re-
search and development.
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Resumé
Denne afhandling sammenfatter de seneste udviklinger inden for to-dimensionel (2D) tera-
hertz (THz) spektroskopi påDTU, herunder instrumentering, numeriske pulspåvirkningssimu-
leringer og deres kombinerede anvendelse til at skelnemellem kaskade- og direkte ikke-lineær
optisk (NLO) proces i ZnTe.

Kapitel 1 begynder med en kort motiverende introduktion til flerdimensionel spektroskopi
og går derefter i detaljer med en grundlæggende oversigt over, hvordan 2D terahertz datasæt,
eller ‘maps’, skabes og fortolkes.

I kapitel 2 beskriver vi design, udvikling og konfiguration af det 2D THz-instrument. Vi
diskuterer begrundelsen bag brugen af det, vi kalder ‘2D THz-THz-polarimetri’, som de-
tektionsmetode, samt dets implementering. Derudover giver vi flere benchmarks for instru-
mentet.

Kapitel 3 fokuserer på udviklingen af numeriske simuleringer af pulspåvirkning. Disse simu-
leringer gør det muligt for os at isolere de underliggende direkte og kaskade NLO-processer,
der bidrager til de målte 2D THz-THz-polarimetriske maps.

I kapitel 4 præsenterer vi 2D THz-THz-polarimetriske målinger af direkte og kaskade NLO-
processer i ZnTe sammen med tilhørende numeriske pulspåvirkningssimuleringer. Denne
sammenlignende analyse giver os mulighed for effektivt at skelne mellem kaskade- og di-
rekte processer.

Til sidst afslutter vi afhandlingen med en opsummering af resultaterne og retningslinjer for
fremtidig forskning og udvikling.
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Abbreviations
1D one-dimensional

2D two-dimensional

AC autocorrelation

AR anti-reflective

BBO β barium borate

BPF band-pass filter

BS beamsplitter

DAQ data acquisition

DAST 4-N , N -dimethylamino-4′-N ′-methyl-stilbazolium tosylate

DFG difference frequency generation

DFT discrete Fourier transform

EO electro-optic

FME forward Maxwell equation

FOV field-of-view

FROG frequency resolved optical gating

FT Fourier transfrom

FWHM full-width half-maximum

GT Glan-Taylor

HeNe helium-neon laser

HWP half-wave plate

IR infrared



x Abbreviations

ND neutral density

NIR near-infrared

NL nonlinear

NLSE nonlienar Schrödinger equation

OAP off-axis parabolic mirror

ODE ordinary differential equation

OPA optical parametric amplifier

OR optical rectification

PD photodiode

PMT photomultiplier tube

PTFE polytetrafluoroethylene

QWP quarter-wave plate

SFG sum-frequency generation

SHG second harmonic generation

THz terahertz

UPPE unidirectional pulse propagation equation

ZnTe zinc telluride
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Introduction
Why terahertz? Why multiple dimensions? As a practical matter, the short answer is that I’ve
had the privilege and good fortune to join the Ultrafast Infrared and Terahertz Science group at
DTU. The long answer starts with the surprising fact that “virtually every force we experience
in everyday life, with the exception of gravity, is electromagnetic in origin” [23]. These forces
are carried by electromagnetic fields, with those oscillating near 1012 cycles per second—
terahertz (THz) frequencies—forming a particularly interesting range. Within this range lie
the fundamental ‘structural’ motions of the nuclei composing the molecules and solids that
make up our world, such as rotations, vibrations, librations, and other complex movements.
THz spectroscopies have the advantage of specifically exciting and probing these motions. In
contrast, long-established infrared (IR) spectroscopies predominantly couple to these motions
indirectly through their harmonics or, more often, electronic rather than structural excitations
[42]. These higher-frequency excitations obscure the influence of the fundamental motions.

However, this is not to say that THz excitations cannot generate a wide array of compli-
cated phenomena. THz field strengths commonly exceeding tens of kV/cm allow multiple
linear and nonlinear pathways to excite fundamental structural motions [39] or even induce
symmetry-breaking structural phase transitions that create new ones [37, 43, 51]. The result-
ing nonlinear signals are often interwoven and difficult to separate. In order to disentangle
them, multidimensional spectroscopies that probe the broader pattern of the excitation from
two-or-more THz pump pulses have been developed [32, 38, 42, 52]. In the following chapter,
we will explore two-dimensional (2D) spectroscopy in more detail.

So far we have emphasized the study of structural motions, but it is important to be aware
that we cannot always ignore the electronic contributions at THz frequencies. Indeed, Sidler
and Hamm [52] compare nonlinear contributions to 2D THz-Raman spectra in amorphous
ice and find a significant electronic contribution, Pal et al. [44] highlight the influence of
electronic interband transitions on soft-mode nonlinearities in ferroelectrics, and Kuehn et al.
[34] drive the third-order nonlinear response of n-doped GaAs/AlGaAs quantum wells far
past the perturbative limit.

In this thesis, we explore the influence of direct and cascaded nonlinear processes in the
prototypical zincblende crystal zinc telluride (ZnTe). The processes studied herein are, for
the most part, off-resonant and electronic in nature. In comparison to a direct process, cascad-
ing involves a sequence of lower-order nonlinear processes. The sequential nature provides
a degree of flexibility that allows cascades to dominate the direct processes they resemble
[10], or proceed when a direct process is symmetry forbidden [15, 25]. The overall cascaded
process scales with the constituent fields in the same way as a single quasi higher-order direct
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process, making it challenging to separate the two. However, we demonstrate that 2D THz
spectroscopy, combined with numerical pulse propagation simulations, allow us to discrimi-
nate direct and cascaded nonlinear processes in ZnTe up to third-order.

Specifically, we employ THz-THz-polarimetry, which is technically identical in its imple-
mentation to often used THz-THz-Raman spectroscopy [32, 38, 42, 52]. In both, two THz
pumps pulses excite the sample, and a third optical probe pulsemeasures thematerial response
through a modulation of its polarization. The nominal difference between the two techniques
reflects the underlying processes being measured. Polarimetry encompasses all sources of
polarization modulation, be they inelastic Raman scattering or photon-energy conservative
optical mixing processes. In our experiment, the detected signal is predominantly due to the
latter electronic contributions. The construction of the 2D THz-THz-polarimeter is discussed
in Chapter 2.

The corresponding simulations are developed in Chapter 3. They are critical for discern-
ing whether the nonlinear signals measured with 2D THz-THz-polarimetry in ZnTe occur
from ‘THz-THz’ processes between the THz pump pulses themselves or from ‘THz-probe’
processes between the THz pump pulses and the optical probe pulse used to read out the
response. Unlike in a physical crystal, the simulations allow us to freely enable or disable
nonlinear processes to better understand their individual or coupled contributions.

The measurements and simulations are brought together in Chapter 4, where we perform
a set of experiments to isolate the second- and third-order contributions to the nonlinear signal
in ZnTe. In the first experiment, a ⟨100⟩ cut ZnTe crystal is used to effectively disable second-
order (χ(2)) processes for all field polarizations, regardless of cascading. This serves as a
reference for the signature of third-order (χ(3)) processes alone. In the second experiment,
a ⟨110⟩ cut ZnTe crystal is oriented in a way that second-order processes can only occur by
cascading through a primary third-order process.

We will carry out the experiments both physically and numerically. With a comparative
analysis of the results, we hope to show a high-degree of self-consistency. This will provide
the confidence to further utilize the simulations to selectively enable or disable the underlying
THz-THz and THz-probe interactions, with the aim of isolating their contributions. Identi-
fying the contributions will allow us to assign specific direct and cascaded nonlinear optical
processes to the features in the 2D THz-THz polarimetry maps using the frequency vector
representation developed by Kuehn et al. [34, 35].



CHAPTER1
Two-Dimensional THz

Spectroscopy
In this chapter, we present a ground-up overview of two-dimensional (2D) terahertz (THz)
spectroscopy. We begin by showcasing the wealth of information generally contained in 2D
datasets through a few examples. The details in these examples are not essential, so the reader
is free to only retain what interests them.

Subsequently, we lay the ground work essential for understanding the main results pre-
sented in Chapter 4. This begins with a high-level explanation of how the 2D maps are con-
structed from multiple one-dimensional (1D) slices, and how we extract the nonlinear com-
ponents from these maps. We then guide the reader through the interpretation of an example
2D THz dataset and introduce two simple models for linking the features in these maps to
physical processes in the material. The limitations of these models are the point of departure
into the core developments of this thesis. We outline the steps to be taken in addressing these
limitations and propose the experiment that forms the main result discussed in Chapter 4.

1.1 Examples of 2D Datasets

Before discussing the underlying physics in the 2D maps or how to interpret them, we want
to generally motivate the utility of two-dimensional datasets through three examples.

See the forest through the trees
Let us begin by skipping to the end result for a moment to appreciate the broader picture
gained from 2D data. In Fig. 1.1 we compare one of our simulations to the measured exper-
imental data. Above and below the 2D maps are slices along their centers. These slices are
only one of many one-dimensional (1D) studies that make up the 2D maps. The right column
in Fig. 1.1 is unique to 2D-spectroscopy, providing an additional perspective not possible in
one-dimension—we will expand on this in the later sections. What we hope the reader can
appreciate is that the fine details in any given 1D slice carry relatively limited information in
comparison to the broader pattern of how a collection of slices relate to each other. While the
simulated and measured 2D maps are not exact replicas, there are clear patterns and symme-
tries that they share.
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Figure 1.1. Comparing simulated (top) and measured (bottom) 2D THz maps to 1D slices through their
centers. The right column is unique to 2D spectroscopy and provides additional insights. For now, the
reader is only asked to appreciate the qualitative wealth of information provided by the 2D datasets.

The complex plane
The complex plane is a 2D dataset scientists will already be familiar with. A complex number
z can be decomposed into real and imaginary components, x and y, such that z = x + iy.
The number can then be represented by a point (x, y) on the complex plane in the Cartesian
coordinate system, as done in Fig. 1.2. An elegant example for demonstrating how informa-
tion is lost when projecting from two-dimensions (x, y) to one-dimension (x) starts with the
unit circle

z = eiθ = cos(θ) + i sin(θ). (1.1)

We have plotted z in Fig. 1.2(a), and highlighted five unique points. One way to project these
points onto a single dimension is to only retain their real-value, Re(z) = x = cos(θ), and
discard the imaginary component Im(z) = y = sin(θ), as shown in Fig. 1.2(b). In effect,
the unit circle has been flattened into a line, and our five unique points have been reduced to
three. Another projector is the magnitude operator ||, which returns the distance of the points
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from the origin (0, 0). For points on the unit circle, |z| = 1. Thus, in Fig. 1.2(c) all points on
the unit circle have been overlapped on a single point at x = 1.

Asmuch as this example demonstrates the potential for a severe loss of information though
dimensional reduction, a beautiful aspect is that it also shows how a carefully thought-out 1D
experiment can retain it—2D experiments are not the be-all end-all solution! If one knows a
priori that the points lie on a circle of constant radius, then the best single dimension to project
onto is θ̂ or the angle of the points about the center (0, 0). From this perspective, exploratory
2D experiments offer a rapid avenue to devising targeted 1D studies.

1 0 1
1

0

1

y

(a)
z = ei

1 0 1
x

(b)
Re(z) = x

1 0 1

(c)
|z| = 1

Figure 1.2. Examples of information lost when projecting points from the 2D complex plane to the 1D
real line. (a) Points z on a circle in the complex plane. (b) The real components of z. (c) The magnitudes
of z.

An ultrafast-optics example
The 2D spectrograms produced by frequency resolved optical gating (FROG) are familiar
to those who work with ultra-short laser pulses. For the uninitiated, these maps show the
spectrum (frequency composition or ‘color’) of the pulse as a function of time. FROG was
the first technique allowing full characterization of sub-femtosecond duration pulses—the
shortest events ever created [55]. To fully appreciate this feat, consider that “30 fs is to 1
second as 1 second is to a million years” [55]. With the proper retrieval algorithm, one can
extract the unique spectral phase and amplitude of the pulse that generated the spectrogram.

Without getting lost in the details [55], let us look at the example in Fig 1.3. The col-
ored maps (a)-(c) are the spectrograms of three pulses that are identical except for a linear
chirp. The pulse in (a) is down-chirped, its frequency decreases with time, (b) is unchirped
(zero-phase), and (c) is up-chirped. One can calculate the time-averaged spectrum by inte-
grating the 2D spectrogram along the delay axis (i.e. summing columns left to right). The
time-averaged spectrum is shown in (d) and is identical for all pulses since they only differ
by a spectral phase (the chirp). This 1D measurement is what we would get with an optical
spectrum analyzer, and it cannot distinguish any of the three pulses. We can also integrate
the spectrograms along the frequency axis (i.e. summing rows top to bottom) to calculate
the autocorrelation of the pulses (e)-(g)—another type of 1D measurement. Here we are able
to distinguish the chirped pulses from the unchirped pulse, but we cannot tell if the chirped
pulse is up- or down-chirped.
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Down Up

Autocorrelations

OSA Spectrum

Figure 1.3. Frequency resolved optical gating (FROG) as an example of 2D spectroscopy. (a)-(c)
FROG spectrograms showing the frequency vs. time of three unique optical pulses. (a) down-chirped,
frequency decreases with time. (b) Unchirped. (c) Up-chirped, frequency increases with time. (d) The
sum across columns of spectrogram (a), (b) or (c). Equivalent to the 1D spectrummeasured on an optical
spectrum analyzer (OSA); note that all pulses have the same 1D spectrum. (e)-(f) The sum across rows
of (a)-(c). Equivalent to the 1D autocorrelation of each pulse; note that pulse (a) and (c) have the same
autocorrelation.

In conclusion, these are only a few examples of the numerous 2D datasets studied across
the sciences, and of course, two dimensions is not the limit. We hope the reader can now
appreciate the relative wealth of information contained in a 2D dataset, and the potential for
losing a significant amount of information when reducing the dimensionality.

1.2 Creating a 2D THz Dataset

2D spectroscopy is a natural extension of 1D pump-probe spectroscopy, as illustrated in
Fig. 1.4. In a pump-probe experiment, the ‘pump’ pulse excites the sample, and the ‘probe’
pulse measures a coherent change in one or more properties of the material after a time delay
t. In the depicted example, the pump pulse enters the ZnTe sample first and changes its prop-
erties. After some time t, the probe enters and samples what remains of those changes. By
sweeping t from negative to positive times, one can record the time evolution of the property
of interest. We have used ZnTe here because it has the distinctive property that the ‘change’
sampled by the probe is approximately proportional to the pump’s electric field at that very
moment. Consequently, the recorded pump-probe waveforms provide a reasonably accurate
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representation of the pump pulse’s electric field. Note, however, that the limitations of this
approximation are the basis of this thesis!

Probe

t

1D pump-probe

A B Probe

t

2D pump-probe

PumpZnTe

ZnTe

Figure 1.4. 2D spectroscopy as an extension of 1D pump-probe spectroscopy. In 1D pump-probe
spectroscopy, a ‘pump’ pulse excites the sample and a ’probe’ pulse measures coherent changes after
a time delay t. By sweeping t, the time evolution of the property of interest can be recorded. In ZnTe
the measured changes are approximately proportional to the pump’s electric field. 2D spectroscopy
introduces a second delay dimension τ , representing the separation between two pump pulses A =
EA(t) and B = EB(t). One can generate a 2D map by stepping τ and sweeping t—i.e. stacking many
1D waveforms.

2D spectroscopy adds a second delay dimension τ , which in our case corresponds to the
separation between two pump pulses A = EA(t) and B = EB(t). By iteratively stepping τ
and sweeping t, one can generate 2D maps, such as those in Fig. 1.5. Each horizontal slice
though these 2D maps is a single pump-probe waveform with a different delay between A
and B. The ‘AB’1 map shows the response for the simultaneous application of A and B. A
horizontal slice across this map at τ = 0 shows the A and B pulses are overlapped when
there is zero delay between them. In contrast, when τ is negative/positive, the A pulse comes
before/after the B pulse.

Because theB pulse’s position in t is independent of τ , each horizontal pump-probe cross-
section of the B pulse is identical. The peaks and valleys of its field therefore form vertical
red and blue stripes in the 2D maps. In comparison, the position of a peak in the A pulse is
progressively τ -shifted and follows the relationship tpk(t) = tpk(0) + τ , which is a diagonal
line in the maps.

Notably, in Fig. 1.5, we display maps of the response for the A and B pump pulses indi-
vidually, as well as simultaneously. Doing so is not just for pedagogical purposes, and in the
lab, we alternately block the pump pulses to concurrently record all three maps. In the next
section, we will discuss how these three maps are used for nonlinear spectroscopy.

1When A, B or AB are not italicized, they refer to the recorded response for the application of the A, B or A + B
pump pulse fields respectively.
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Figure 1.5. 2D maps of the responses A, B and AB for the A, B and A + B pump pulse fields
respectively, in a ZnTe detection crystal. Every horizontal row in the map is a separate 1D scan. The
response is predominantly proportional to the instantaneous field strength of the pump pulses. Dashed
lines mark the leading edge of the pulses. Although not the focus of this figure or Chapter, for reference,
the ZnTe crystal is 1 mm thick, ⟨110⟩ cut and oriented as shown in Fig. 4.8(c).

1.3 Nonlinear Spectroscopy
As previously mentioned, the response of ZnTe is not strictly linear. In fact, any material
exhibits a nonlinear response when subjected to a sufficiently high field strength.

Nonlinear spectroscopy involves isolating the nonlinear (NL) portion of the material re-
sponse R(E(t)), where E(t) is the applied time-varying electric field. To achieve this, we
utilize the three maps (i.e., for the A pulse, the B pulse, and both the A+B pulses combined)
to calculate the residual or ‘nonlinear’ component by checking for the additivity condition:

R(A + B) ̸= R(A) + R(B) (1.2)
∴ NL = R(A + B)−

(
R(A) + R(B)

)
(1.3)

To illustrate this concept, let’s consider the toy response function R
[
E(t)

]
= E(t)2. In this

case, the nonlinear component can be calculated as follows:

NL = (A + B)2 − (A2 + B2) = 2A·B, (1.4)

withA = EA(t) andB = EB(t). Notice that only the cross-term 2A·B depending on both the
A and B pulse is retained. This is an important point: the ‘nonlinear’ signal we measure does
not include nonlinearities due to a single pulse field, i.e. terms such as A2 or B2. Subtracting
the responses as we have done in calculating NL is often referred to as a ‘differential mea-
surement’. Its importance lies not only in removing single-pulse nonlinearities, but primarily
in eliminating the dominant linear A and B components that inherently depend on only one
of the fields.

Fig. 1.6 shows how we derive the residual NL signal from the maps in Fig. 1.5. The
NL signal only exists in the unhatched region where both the A and B pulse overlap. In the
hatched region, where at most one pulse is present at any given pump/probe delay, the large
linear component and single-pulse nonlinearities are below the noise floor. From a technical
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perspective, this demonstrates the effectiveness of the differential measurement. More gen-
erally, it upholds the necessity for causality when considering a signal dependent on both A
and B—it cannot exist before the latter of the two pulses arrives [34].

AB A B NL

=

Figure 1.6. Pictogram depicting how the nonlinear (NL) signal is calculated. We subtract the response
for the A and B pulse alone from the simultaneous response ‘AB’, where the sum of the pulses, A + B,
is applied. Causality requires the NL signal only exist after the arrival of both A and B (the unhatched
region). Differential measurement ensures signals in the hatched area are removed.

1.4 General Approach for Analyzing 2D Datasets
An effective method for analyzing these 2D maps is to view them both in the time and fre-
quency domains at once [32], as is done in the keystone figure for this section, Fig. 1.7. Each
row corresponds to one of the measured A, B or AB responses, or the calculated NL signal.
In the left column, we have the measured time-time (t-τ ) maps of the data. In the center col-
umn we have Fourier transformed the data along the probe axis t to generate a time-frequency
(τ -fpr) map, and in the right column we apply the Fourier transfrom (FT) once more along
the pump-axis τ to get a frequency-frequency (fpu-fpr) map. To highlight low-intensity spec-
tral features, the fpu-fpr map is log-scale. Furthermore, we have plotted the full frequency
domain to more easily visualize the symmetries of the spectral magnitudes, for example, the
parallelogram shaped pattern in the NL fpu-fpr map. However, because the measured data is
real-valued, the FT is Hermitian and could be uniquely represented on just half of the domain
[8, p.13].

The maps become progressively more complicated from top-to-bottom, so we will begin
by stepping through the columns of the B-row. In the time-time plot, we see that the response
oscillates along the probe axis (red-blue-red...) but does not vary along the pump axis (solid
vertical red and blue strips). When we FT along the probe axis to obtain the central time-
frequency map, we see that the spectral magnitude of the oscillation is peaked around νB =
2 THz. Because the response is invariant along the pump-axis, the spectral magnitude is the
same for all pump delays. In other words, all rows in the time-time and time-frequency maps
are the same. When we subsequently FT along the pump-delay axis to get the frequency-
frequency map, the time-invariance leads to a nearly pure zero-frequency (or ‘DC’, as an
electrical engineer might say) spectral magnitude in the pump-frequency dimension. The
frequency-frequency map thus has spots at [−2, 0] THz and [2, 0] THz, that is, at ±2 THz
along the probe-frequency axis and 0 THz along the pump-frequency axis.
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Figure 1.7. Time- and frequency-domain analysis of 2D maps. Rows A, B and AB represent measured
responses; NL is the calculated nonlinear signal. The columns show different time-frequency represen-
tations: (left) time-time maps, linear-scale; (center) time-frequency maps, absolute-value linear-scale;
(right) frequency-frequency maps, log-scale. Log-scale is used to highlight low-intensity spectral fea-
tures in the frequency-frequencymaps. The central frequencies of pulseA andB are νA ≃ νB ≃ 2 THz.
The scales α0, α1, α2 and∆2 are not equal, and in this case, arbitrary. Artifacts due to data truncation:
(1) shorter duration recording leads to reduced spectral resolution, ‘filling’ a spectral dip; (2) clipping
leads to a step-function like edge with broadband spectral components. (3a/b, 4a/b) Constructive/de-
structive interference. Constructive interference follows a fCI = m/τ dependence. (5a→5b) Number
of constructive interference peaks increases with τ . New spectral features: (6a) near-DC components
due to horizontal red-blue-red banding in the time-time map; (6b) correlates to constructive interference
at ∼ νA/B (only red bands); (6c) ‘cloud’ of frequencies around ∼ 2 × νA/B. Vector addition of the
central frequencies points to (6c): [νB, 0] + [νA, νA] = [νB + νA, νA] = [4, 2] THz.
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Let us now consider theA-row. In the time-timemap, there are oscillations along both the
pump and probe axes. Visually, the wavefronts (contours of constant amplitude or red/blue
stripes) appear more closely spaced than those of the B pulse. However, the time-frequency
map reveals that horizontal slices through the A pulse time-time map also have a central
frequency, νA, of approximately 2 THz. Upon further reflection, one can reason that slicing
diagonally across the wavefronts effectively widens the alternating red and blue bands.

The positive 45 deg slope from left to right of the wavefronts simply results from delaying
the A pulse by τ . Recalling the FT shift theorem [8, p.111], a shift in the time domain is only
an associated phase in the frequency domain. Thus, the magnitudes of the FT in the central
time-frequency plot are the same for each row, except at the top and bottom of the map where
there are measurement artifacts due to the response being clipped at the edges of themap. This
‘windowing’ results from only being able to scan a finite time-domain. In signal processing,
this would be referred to (somewhat uncreatively) as a ‘rectangular window’, since all the
measured data is equally weighted.

The clipping has two main effects, highlighted by the following annotations in the figure:
(1) the recorded response duration along the probe-axis is shorter near the upper-right of the
map, reducing our resolution in the frequency domain and thus filling a spectral dip just below
2 THz; (2) the response is discontinuously truncated in the lower-left, effectively creating a
step-function that has very broad spectral content. In the frequency domain this results in a
nearly uniform band of spectral magnitudes across all frequencies. These bands are evenmore
evident in the frequency-frequency plot. The vertical broad-spectrum bands in the frequency-
frequency plot come from the discontinuity in the upper-right of the time-time map when
taking the second FT along the pump-delay axis.

Because the wavefronts are on a positive 45 deg slope from left to right, both vertical
and horizontal cuts through the map will yield the same pulse shape—the location of the cut
only determines by how much the waveform is shifted in time. Therefore, if the time-time
map is instead Fourier transformed along the pump-delay axis, we will get a frequency-time
map the is simply a rotated version of the time-frequency map. These vertical frequency
components are the reason why the spectrum of the A pulse is displaced by [νA, νA] THz in
the frequency-frequency map. Given the similarity of the B and A time-frequency maps, one
might be wondering how a FT of the latter yields such a different frequency-frequency map:
see Note 1.1 for details.

Before looking at the AB-row, it is useful to note that one can also take an ‘image process-
ing’ perspective to analyze the results. The measured time-time maps are effectively images
that can be decomposed into a spectrum of spatial frequencies. The locations of features in the
frequency-frequency maps are related to the magnitude and direction of the wavevector of a
component spatial frequency, where the direction is normal to the wavefront (contour of con-
stant amplitude). For the B response, one can see that the wavefronts run vertically, hence
the wavevector points horizontally and the two points in the frequency-frequency map are
displaced horizontally from the origin by [±νB, 0] THz. For the A response, the wavefronts
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Note 1.1 FT of the A pulse time-frequency map

The time-frequency maps for theA and B pulses are similar, since the method used to
generate them is the same (to be discussed in Section 2.1). One might briefly be con-
fused how a second FT along the pump-delay axis of the time-frequency map could
lead to the vertically displaced spots in the frequency-frequency map. The answer is
simple: we do not FT the map as it is plotted, which only shows the spectral mag-
nitudes, but rather the complex-valued map that also contains phase information. In
the left two columns of Fig. 1.8 we have plotted the real-part of the complex time-
frequency maps for the A and B pulses. For the B pulse there are no oscillations
along the pump-delay axis, but for the A pulse there are clear oscillations. These
maps corroborate the clear differences seen in the time-time maps for the A and B
pulse.
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Figure 1.8. Complementary perspectives on Fig. 1.7. (left/center) Real component of the time-
frequencymaps for the (B/A) response. (right) Time-frequency spectral magnitudes for the AB response
plotted against wavelength instead of frequency. The lines are on τ = mλrm/c, where m is an integer,
c is the speed of light and λrm the wavelength of constructive interference. The scales α1 vary between
the plots, and in this case, are arbitrary.

run diagonally across the image with a positive slope from left to right. Again, the wavevec-
tor is normal to these fronts, thus we get two points displaced by [±νA,±νA] THz along a
negatively sloped line in the frequency-frequency map. To follow this convention, note that
the pump-frequency axis has intentionally been flipped, with positive values at the bottom
and negative values at the top.

The AB-row maps are predominantly a linear combination of the A and B maps. There
are significant nonlinear components, but they are only evident after taking the differences
of the maps [Eqn. (1.3)] as done in the NL-row. The main features in the time-time AB plot
are areas of constructive (3a) and destructive (3b) interference where the pulses overlap (see
annotations). Spectrally, we also see a clear pattern of constructive (4a) and destructive (4b)
interference. The arcs of constructive interference follow a fCI = m/τ dependence, where
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m is an integer. A special case is when the A and B pulses completely overlap (τ = 0) and
m = 0, where we see constructive interference at all frequencies (5a). Generally, as the delay
between pulses increases, so too does the number of interference peaks (5b). This relationship
is more clear if we plot the AB time-frequency map in terms of the probe-wavelength, as
done in Fig. 1.8. In these units, the arcs of interference become lines defined by λCI = cτ/m,
where c is the speed of light. The delay between pump-pulses is analogous to the distance
between mirrors in an etalon. Light will interfere constructively when the round-trip distance
is equal to a multiple of the wavelength. From a frequency perspective, the m-th harmonic
of the light will be resonant with the etalon. This suggests another useful perspective on 2D
spectroscopy: the pump-delay interferometrically selects a range of frequencies with which
to pump the sample; sweeping the pump-delay is effectively like tuning the frequency of the
effective (A + B) pump pulse.

The NL-row in the main figure (Fig. 1.7) is rich with new information that, as illustrated
in Fig. 1.6, occurs only once the A and B pulse have both arrived. Intuitively, the temporal
peaks in the NL signal align with regions in the AB time-time map where strong constructive
or destructive interference occur. A prominent feature of the temporal peaks is that they
lie in horizontal bands of alternating polarity (red and blue). Notably, in addition to these
continuous ‘DC’ offsets, is a more rapid modulation or structuring that is particularly evident
in the negative blue bands. Comparing with the time-time map in the AB-row, it is clear
the modulation period is shorter than the fundamental oscillation period of the pump pulses,
which correspond to the central frequencies νA and νB.

In the time-frequency maps, the DC offset of each band is evident around 0 THz (6a),
where we also see similar banding. The banding carries over due to the alternating nature
of the temporal bands in the pump-delay direction, which have nodes or zeros between the
red and blue stripes. Interestingly, There is also banding around the central frequencies νA
and νB at approximately 2 THz (6b). However, in this case, every other band is missing.
The remaining bands appear to be correlated to the red temporal bands where constructive
interference takes place.

The higher frequency modulations on the DC bands manifest as a ‘cloud’ centered around
4 THz (6c), which is twice the value of νA and νB. In the frequency-frequency map we see
there is one prominent spot located at a probe frequency of 4 THz. It is shifted along the
pump frequency axis by 2 THz. Based on the frequency-frequency maps for the A and B
pulses, it is apparent that the vector-sum of their frequency components overlaps this new
feature at [4, 2] THz in the NL map. Similar arguments can be made for the other features,
as they generally fall on a grid spanned by the basis vectors [νB, 0] and [νA, νA] for the B
and A pulse respectively. We will expand on this frequency vector representation in the next
section.
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1.5 Frequency Vector Representation of 2D
frequency-frequency maps

A frequency vector representation was employed by Kuehn et al. [34] for a third-order (four-
wave-mixing) signal, and generally can be used to assign plausible nonlinear mixing pro-
cesses to the discretely spaced features in the 2D frequency-frequency maps. In Fig 1.9 we
have applied the technique to the second-order nonlinear optical processes listed in Boyd [7,
p.7]. Namely, second harmonic generation (SHG), optical rectification (OR), sum-frequency
generation (SFG), and difference frequency generation (DFG). For simplicity, it is assumed
that the pulses are plane waves with a carrier frequency ν0 = νA = νB. The fields are then
defined as

ẼB(t) = EBei2πν0t + E∗
Be−i2πν0t (1.5)

ẼA(t, τ) = EAei2πν0(t+τ) + E∗
Ae−i2πν0(t+τ) (1.6)

where EB/A are the complex amplitudes, and E∗
B/A are their complex conjugates. The tilde

over Ẽ indicates the single-frequency approximation. Before the sample the total pump field
is their sum,

Ẽpu(t) = ẼB(t) + ẼA(t). (1.7)

Inside the sample these fields generate additional polarization terms. The second-order polar-
ization term is [7]

P̃ (2)(t) = ϵ0χ(2)Ẽpu(t)2 (1.8)

P̃ (2)(t) =
∑

n

P(νn)ei2πνnt, (1.9)

whereP(νn) is the complex amplitude of the polarization component oscillating at frequency
νn and χ(2) is the second-order nonlinear susceptibility. The polarization amplitudes for the
various second-order products are listed on the right of Fig 1.9. Only half the terms are
listed, which correspond to the points in the lower-right quadrant of the frequency-frequency
map; their complex conjugates also exist, which are at the negative frequencies in the upper-
left quadrant. In the frequency-frequency map, one interaction with the positive frequency
component of ẼB displaces us by [ν0, 0]. For the positive frequency component of ẼA, it is
[ν0, ν0]. It is the presence of τ in ẼA that results in the vertical, pump-frequency component
of its vector. The negative frequency components of ẼB and ẼA similarly have associated
vectors, but pointing in the opposite direction.

When we overlay the positions of the second-order mixing products on our measured
NL signal in Fig.1.9(left) we see that the corners of the parallelogram pattern likely result
from sum- and difference-frequency products between the A and B pulse. It is also reas-
suring to see that single-pulse second-harmonic products are not present in the map, as ex-
pected for a differential measurement. Notably, the ‘four leaf clover’ shaped pattern cannot
be explained by second-order mixing products and there is a central spot coincident with the
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Figure 1.9. Second-order contributions to 2D frequency-frequency maps in the plane-wave approxima-
tion. The carrier frequency is ν0. (right) Second order polarization amplitudes [7]. Purple and red dots
are for mixed and single-pulse nonlinearities, respectively. Second harmonic generation (SHG); sum
frequency generation (SFG); difference frequency generation (DFG); optical rectification (OR). (cen-
ter) Vector-chain diagram derived from [34] for the second-order polarizations. One photon from the B
pulse (∝ EB) moves us by [ν0, 0] and for the A pulse (∝ EA) it is [ν0, ν0]. The complex conjugates E∗

B

and E∗
A point in the negative direction. Vector addition to the locations for SFG and DFG are demon-

strated. (left) Overlay on the nonlinear signal from Fig. 1.7, with ν0 = 2 THz, showing SFG and DFG
likely contribute to the corner features.

optical-rectification products that should be eliminated by the differential measurement. We
will come back to these outstanding issues in a moment, but for now let us apply the insights
gained to some simple instantaneous models.

1.6 Comparison of Instantaneous Nonlinearities
A particularly powerful aspect of 2D spectroscopy is being able to create maps of model
nonlinearities and compare those ‘fingerprints’ to the measured data. We can easily create
several instantaneous models using the measured A and B maps. ‘Instantaneous’ refers to
using the amplitude of the pump fields at a single time, rather than integrating over past values.
This is a coarse approximation because the A and B maps are measured responses, not the
fields before the material, but it is a good starting point. We will consider three models:

1. NLDFG/SFG ∝ A·B, (1.10)
2. NLSHG/OR ∝ A2 + B2, (1.11)
3. NLOver-Rot. ∝ sin(A + B)− sin(A)− sin(B), (1.12)

which represent difference frequency generation (DFG)/sum-frequency generation (SFG),
second harmonic generation (SHG)/optical rectification (OR), and ‘over-rotation’, respec-
tively. The first two models are nonlinear products resulting from the expansion:

(A + B)2 = A2 + B2 + 2A·B, (1.13)

which is proportional to the second order polarization Eqn. (1.8). As demonstrated in Eqn. (1.4),
we expect that the A2 and B2 terms, which both contain SHG and OR products, will be re-
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moved by the differential measurement. In contrast, the cross term 2A ·B, which contains
both SFG and DFG products, should remain. Importantly, the A and B fields are real-valued,
allowing multiple products to be contained in a single term (see Note 1.2).

The third model is proportional to a nonlinearity commonly called ‘over-rotation’ [3] that
is inherent in the technique used to measure the THz fields in ZnTe, as discussed further in
Sections 2.4 and 4.1. The detection response function is sinusoidal and the nonlinear portion,
NLOver-Rot., is found by preforming the differential measurement numerically.

Note 1.2 A and B are real-valued

As a reminder, the fields A = EA(t) and B = EB(t) are real-valued, and therefore
can be decomposed into a pair of complex-conjugates that effectively contain both
positive and negative frequency components. For example, if A and B were single-
frequency plane-waves, then the decomposition would be identical to Eqns. (1.5) and
(1.6). However, A and B are in actuality pulses containing a broad spectrum of com-
ponent frequencies. Thus, the termsA2, B2 and 2A·B are composed of a vast number
of products between the complex amplitudes associated with each frequency: EAEA,
EAE∗

A, EBEB , EBE∗
B , EAEB , EAE∗

B and E∗
AEB .

The models are shown in Fig. 1.10, alongside the measured NL signal in the left column.
The DFG/SFG model accurately reproduces the four corners of the parallelogram pattern
observed in themeasuredNL signal. In contrast, the SHG/ORmodel is not well represented in
the data. The high-frequency SHG components are narrow lines falling in regions where there
is only noise in the NL signal (as predicted in the vector diagram overlay shown in Fig. 1.9).
Furthermore, the low-frequency OR components appear as two narrow lines intersecting at
[0, 0] THz, while the measured data has a small parallelogram or dot feature. However, this
latter feature and the ’four leaf clover’ pattern are well accounted for by the over-rotation
model.

In the right-most column of Fig. 1.10, we have naively taken a weighted sum of the
SFG/DFG and over-rotation models to produce a fairly convincing analog of the measured
NL signal. However, it is important to be aware that these maps simply show the products of
fields—the order in which these products occur has yet to be determined. In the next section,
we will discuss the questions that remain.
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Figure 1.10. Simple instantaneous nonlinearity models. Columns left to right: measured nonlinear
signal (NL); sum/difference frequency generation (SFG/DFG); over rotation (Over-Rot.); second har-
monic generation and optical rectification (SHG/OR); weighted sum of the SFG/DFG and over-rotation
models (Combination). Characteristics of the SHG/OR model are not found in the data, as predicted
in the vector diagram overlay shown in Fig.1.9. The combined model captures many of the features
present in the measured nonlinear signal.
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1.7 Outstanding Issues
There are, however, a few issues with what we have discussed so far. Firstly, we are not
directly measuring the THz pump fields, we are measuring the optical probe. This will be
discussed further in the coming chapters. For now, know that the THz fields, EA/B, slightly
modify the optical probe field, Epr, through a second-order nonlinear process generating a
polarization like the following [19]:

P (ωpr + Ω) = ϵ0χ(2)EA/B(Ω)Epr(ωpr) → E′
pr(ωpr + Ω), (1.14)

which radiates a new field component E′
pr(ωpr + Ω), where ωpr and Ω are optical and THz

angular frequencies respectively. Critically, EA/B(Ω) represents only one of the positive or
negative frequency components in the fields A = EA(t) or B = EB(t). To get a product of
the fields, A·B, we need at least a third-order direct process, or two cascaded second-order
processes. For example:

Direct: P = ϵ0χ(3)EAEBEpr (1.15)

Cascaded: P = ϵ0χ(2)
[
χ(2)EAEB

]
︸ ︷︷ ︸

Reradiated

Epr. (1.16)

These two processes are quite different beasts. In the direct process, we immediately
generate a new optical probe field that only differs in frequency from its parent by a few
THz. To put that in perspective, the center frequency of the 800 nm probe is 375 THz. In
contrast, the first step of the cascaded process is an interaction between the two THz fields,
wherein new fields at either the sum or difference of their frequencies are generated—a very
large deviation. The second step then ‘reads-out’ the newly generated components with a
small modulation of the optical probe, as in the direct process. Vector diagrams and the
instantaneous models cannot determine if either the direct or cascaded process occur, and/or
whether they both happen simultaneously.

There is a similar degree of uncertainly within the vector diagrams themselves. As shown
by Kuehn et al. [34, Fig.1], there can be multiple Louisville pathways to the same spot in the
map. In Fig. 1.11(a), we have illustrated two such paths to the positive SFG feature. As one
can imagine, the number of paths grows rapidly with the number of fields involved.

Moreover, all spots on the diagram are invariant to products of complex conjugates, such
as EBE∗

B and EAE∗
A. For instance, in Fig. 1.11(b) the positive over-rotation feature could be

reached with a single EA vector, but we know that is unlikely for two reasons: firstly, in the
NL map of Fig. 1.7 the feature is a parallelogram-shaped spot, whereas the A map has only
a narrow diagonal line; secondly, the differential measurement should eliminate single-pulse
features. If we expand our over-rotation model to third-order, a good hypothesis emerges.
Since sin(x) ≃ x− x3/6, Eqn. (1.12) becomes

NLOver-Rot. ∝∼ −
A2 ·B

2
− A·B2

2
. (1.17)
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Figure 1.11. Examples showing non-uniqueness of the vector diagrams. (a) Two Louisville pathways
to the same point. (b) A third-order path to a first-order location. Products of complex conjugates, such
as EBE∗

B , cancel in the vector diagram. SFG, sum-frequency generation; Over Rot. over-rotation. (c)
The parallelogram-shaped features result from the addition of many different frequency vectors.

Both terms are cross-products of A and B, which are what we would expect to measure. The
last term contains one factor of A, and two of B (importantly an even number). If we expand
this latter term considering just the central frequency component ν0, one of the products is
proportional to EAEBE∗

B . As illustrated in Fig. 1.11(b), the product EBE∗
B is just a hop away-

and-back to the same spot at the end of the EA vector. In the vector diagram, EBE∗
B does

nothing. However, since our fields have a broad bandwidth around ν0, different frequency
components—with different length vectors—mix to create the parallelogram shaped spot. A
schematic of the concept is sketched in Fig. 1.11(c). What we have described is in fact nothing
more than the convolution theorem of the Fourier transform [8, p.115]. In the time-domain
we have the product of multiple fields, therefore, in the frequency-domain we have their
convolution.

1.8 Moving Forward

It is at this point that we delve into the core research of this thesis. We have a general under-
standing of how to interpret the 2D THz datasets we will be working with, and two useful
tools for analyzing the physical processes behind them. However, as discussed, these tools
have their limitations. While vector diagrams provide valuable information about possible
Louisville pathways and the net number ofA andB fields involved in the nonlinear processes,
they do not reveal the order in which the fields are combined. The question of whether these
processes are direct or cascaded remains unanswered. Additionally, from a practical perspec-
tive, vector diagrams are limited to representing only a single frequency component from
each pulse. To address this, we created several simple instantaneous models incorporating
the broad bandwidth of the pulses involved, but similarly, these fail to reveal the sequence
of the underlying processes. Moreover, both the vector diagrams and instantaneous models
do not account for dispersion and loss, which significantly affect the propagation and interac-
tions between the THz pump pulses, as well as their simultaneous detection with the optical
probe.
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To overcome these limitations and gain a more comprehensive understanding of the in-
vestigated nonlinear effects, the subsequent chapters will explore an experimental approach
combined with numerical pulse propagation methods. Our focus will be on discriminating
direct and cascaded nonlinear processes in ZnTe. The experiment has two parts: in the first,
a ⟨100⟩-cut ZnTe crystal is used to effectively disable second-order (χ(2)) processes for all
field polarizations, regardless of cascading. This will serve as a reference for the signature of
third-order (χ(3)) processes alone. In the second part, a ⟨110⟩-cut ZnTe crystal is oriented in
a way that second-order processes can only occur by cascading through a primary third-order
process.

The numerical methods enable us to corroborate the measured influence of the second-
and third-order processes by selectively turning them on or off, allowing us to observe their
individual contributions. Equally important is the ability to isolate the nonlinear interactions
between the THz pumps from those between the pumps and the probe. Unlike the instan-
taneous models, these pulse propagation simulations incorporate dispersion and loss, which
have a major influence at THz frequencies in ZnTe. They also allow second- and third-order
processes to occur sequentially along the length of the crystal.

Before exploring these results, the following chapters will also provide a detailed account
of the design and implementation of the instrumentation used to measure the 2D maps. This
will ensure a complete understanding of the experimental setup and the reliability of the ob-
tained data.

By combining experimental measurements, numerical simulations, and theoretical anal-
ysis, we aim to gain a comprehensive understanding of the complex nonlinear phenomena
at play in our system. The subsequent chapters will build upon the foundations established
in this introductory chapter, providing deeper insights into the intricate interplay between di-
rect and cascaded processes, the effects of dispersion and loss, and the interpretation of the
acquired 2D maps.



CHAPTER2
Instrumentation

In this chapter, we provide a comprehensive guide for constructing the 2D THz instrument.
We begin with an overview of the optical layout and its components, along with some useful
tips and tricks for alignment. Next, we delve into the detection method used to measure the
response of our sample, namely polarimetry. We detail the implementation of polarimetry,
which is technically equivalent to the methods employed in electro-optic (EO) detection and
THz-Raman spectroscopy. We also explain our rationale for choosing polarimetry in this
particular context.

Subsequently, we discuss the implementation of the differential measurement technique
introduced in Section 1.3 for isolating the nonlinear components of the signal. In particular,
we cover the timing system that allows us to acquire the A, B, and ABmaps in a nearly parallel
manner while suppressing background noise.

Finally, we conclude the chapter by benchmarking the system to quantify several perfor-
mance metrics, and to ensure the instrument is operating as expected.

2.1 Optical Layout

With reference to Figure 2.1, we will start at the laser amplifier in panel (a), stepping through
the components sequentially in the direction of propagation. The source laser for our setup
is a “Solstice Ace” Ti:sapphire regenerative amplifier from Spectra-Physics. It is a typical
table-top source centered at 800 nm, with 1 kHz repetition rate, and a 4.7 mJ pulse energy.
Further output characteristics can be found in Table 2.1. The output of the laser amplifier
is fed to a custom “HE TOPAS” optical parametric amplifier (OPA) from Light Conversion,
which consists of a standard “TOPAS C” OPA—used as a seed/preamplifier—and the final
amplification stage of a standard HE TOPAS. For a fundamental review of optical parametric
amplification, see Boyd [7, sec. 1.2.5 and sec. 2.8]. The output wavelength of the OPA is set to
1500 nm, at which the pulse energy after the wavelength-separator (WLS) is typically 850 µJ.
The depleted 800 nm pump light from the last amplification stage in the OPA is sampled with
a fused silica wedged (W) and repurposed as a probe. In Section 2.3 we discuss the OPA and
using the depleted pump light as a probe in more detail. Here, at the output of the OPA, the
1500 nm pump and 800 nm probe diverge. We will examine the pump path first, then return
to trace the probe path.
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Figure 2.1. Schematic of the 2D THz instrument. (a) Shows the 800 nm probe (red) and 1500 nm pump
(yellow) beam routing after the OPA and leading up to the second section in (b). (b) The 800 nm probe
is conditioned (amplitude, spectral content, polarization), and the 1500 nm pump is converted to THz
(in a purged environment). The 800 nm probe and THz pump are overlapped on the ZnTe sample. The
interaction between pump and probe in ZnTe is measured with polarimetry. Component abbreviations:
OPA, optical parametric amplifier; WLS, wavelength separator; W, wedge; BD, beam dump; Fx-Dly,
fixed delay; BS, beam splitter; BPF, band pass filter; CP, chopper; DAST, 4-N , N -dimethylamino-
4′-N ′-methyl-stilbazolium tosylate; PTFE, Polytetrafluoroethylene; ZnTe, zinc telluride; N2, nitrogen;
HWP, half-wave plate; QWP, quarter-wave plate; GT, Glan-Taylor polarizer; WP, Wollaston polarizer;
ND, neutral density filter; PD, photo diode.



2.1 Optical Layout 23

Table 2.1. Typical output characteristics of our Solstice Ace laser amplifier.

Parameter Value
Pulse Width 90 – 100 fs
Repetition Rate 1 kHz
Average Power 4.7 W
Pulse Energy 4.7 mJ
Pre-Pulse Contrast Ratio1 1000:1
Post-Pulse Contrast Ratio1 100:1
Operating Temperature Range1 ±5°C
Energy Stability1 <0.5% rms over 24 hours
Beam Pointing Stability1 <5 µrad (rms)7
Wavelength 780–820 nm
Spatial Mode1 TEM00 (M2 <1.25, both axes)
Beam Diameter (1/e²) 10-11 mm (nominal)
Polarization Linear, Horizontal
1 Factory specifications, see details at https://www.spectra-

physics.com/en/f/solstice-ace-ultrafast-
amplifier.

2.1.1 Pump Path
Thewavelength-separator (WLS) separates theOPA signal from the idler, the latter of which is
internally dumped. The beam passes through a fixed delay line (Fx-Dly A&B) to compensate
for the extra length of the probe path, then is split by the 50:50 beamsplitter (BS; Thorlabs
BSW12) for the separate ‘A’ and ‘B’ THz generation stages. The B path-length is fixed, but
offset (Fx-Dly B) so that the A and B path lengths are equal when the motorized stage in the
A delay line (Dly A) is at the center of its range.

Continuing on panel (b), the A and B pump beams enter a sealed acrylic box purged
with nitrogen (N2) to displace water-vapor-laden ambient air. The extent of the purge-box
is indicated by the gray hatched box in panel (b). Both the A and B THz generation stages
and the full extent of the THz beam path are housed in the purge-box. We use two separate
but identical THz generation stages to avoid nonlinear interactions between the two 1500 nm
pump pulses that could otherwise occur if they were temporally coincident in a single 4-N ,
N -dimethylamino-4′-N ′-methyl-stilbazolium tosylate (DAST) crystal. Using two crystals re-
sults in dissimilarities between the two THz pulses, however, due to the field-resolved nature
of the studies performed herein, it is straight forward to characterize each pulse and account
for the differences in later modeling.

As described inmore detail in Section 2.6.1, we loosely focus the 1500 nm pump pulses on
the DAST crystals with 75 mm lenses such that the full 5 mm aperture of the crystal produces
a visible emission. This emission is presumed to be the second harmonic of the 1500 nm
pump, given its reddish color and strong correlation to the intensity of the THz field that is
generated by the twin process optical rectification (OR; see Note 2.1).

https://www.spectra-physics.com/en/f/solstice-ace-ultrafast-amplifier
https://www.spectra-physics.com/en/f/solstice-ace-ultrafast-amplifier
https://www.spectra-physics.com/en/f/solstice-ace-ultrafast-amplifier
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If we conservatively estimate that 99 % of the pump intensity falls within the 5 mm aper-
ture, then the 1/e2 and ‘top-hat’ diameters are 3.2 mm and 2.3 mm respectively [53, p.665].
The latter value yields an average fluence of 10.6 mJ/cm2 for a pump pulse energy of 450 µJ.
This upper-bound on the fluence just crosses the 10 mJ/cm2 threshold where degradation of
the transparency [21] and ablation [17] in DAST have been observed.

Note 2.1 Intra-pulse difference frequency generation

THz generation in nonlinear crystals is commonly referred to as ‘optical rectification’
for the sake of simplicity. However, a more accurate description of the process is intra-
pulse difference frequency generation. This perspective emphasizes the fact that short
pulses possess a wide spectral bandwidth, and the components within that bandwidth
intermix to produce a diverse range of THz frequencies [10, 46].

Because optical rectification is a coherent process [4], the THz field will initially inherit
the wavefront curvature of the pump field and also come to a focus after the 75 mm lens.
However, due to the frequency dependence of diffraction, the focal position will be some-
what shifted. To account for this, the 75 mm lenses are placed on translation stages so that
the divergence of the THz beams can be optimized [49]. Afterwards, the THz beams are
collimated with 2 in focal length, 1 in diameter off-axis parabolic mirrors (OAPs). The 99 %-
transmission beam diameters are approximately (10± 2) mm. The beams are made parallel
and equidistant to the ‘collimated’ axis of a 2 in focal length, 2 in diameter OAP that overlaps
their foci at the typical sample plane. To reduce comatic aberrations, a D-shaped mirror is
used to bring the two collimated beams close together before the focusing/combining OAP,
such that they are nearly touching. The focus at the (typical) sample plane is then remapped
by two 4 in focal length, 2 in diameter OAPs onto the ZnTe crystal—ordinarily called the
‘detection’ crystal, but here it is our sample. At this point, the probe pulse is recombined and
used for polarimetry, discussed in detail in Section 2.4.

2.1.2 Probe Path
Let us now return to the output of the OPA and consider the path of the probe pulse. An
uncoated fused-silica wedge (W) samples the depleted 800 nm pump from the OPA to be
used as the probe. A wedge is the preferred method for taking a few-percent sample of a
beam, as we can easily separate the dispersion-free first-surface reflection from the reflection
off the back face that passes through the material. In comparison, parallel-surface optics such
as absorptive or reflective neutral density (ND) filters would act as etalons producing a series
of attenuated echos after the probe pulse that appear as pre-pulses when used for pump-probe
measurements. Furthermore, transmission optics—particularly absorptive ND filters—are
susceptible to thermal lensing [50] at high average powers.

Notably, it is important that the wedge is not anti-reflective (AR) coated for 800 nm, since
we want to enhance, not suppress, the 800 nm content of the sampled portion of the beam.
The refractive index of fused silica is relatively flat across the visible and near-infrared (NIR)
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portions of the spectrum [41], so that other by-products of the optical parametric amplification
process (such as the second harmonics of the signal and idler) are not preferentially enhanced.

A motorized stage delays the probe with respect to the A and B THz pulses (Dly pr).
After the delay stage, a series of optical components condition the probe. The first is an ND
filter, which adjusts the maximum amplitude of the probe pulse, and since it is designed for
the visible range, also acts as a long-wavelength-pass filter. Further spectral filtering with
a 40 nm-wide, 800 nm-centered band-pass filter (BPF; Thorlabs FBH800-40) attenuates by-
products of the optical parametric amplification process. The first Glan-Taylor (GT; Thorlabs
GT15) polarizer cleans up the probe polarization. The subsequent half-wave plate (HWP) and
GT polarizer act as a variable attenuator (see Note 2.2).

Note 2.2 Polarization-based variable attenuator

It is important to remember that a polarization-based attenuator should only be used for
fine-tuning the optical power. If used to nearly extinguish the passed light, the signal
(pulse) will be severely degraded. Rotating the HWP effectively increases the trans-
mission of orthogonally-polarized light. If the signal is supposedly linearly polarized,
then the orthogonal component is noise. Increasing the attenuation therefore decreases
the signal-to-noise ratio. Large attenuation factors are best done with a spectrally-flat
reflector at a near zero-degree incident angle; for example, the first-surface of a fused
silica wedge.

The final GT polarizer is placed right before the through-hole in the OAP that combines
the probe and THz beams. Having a polarizer as the last element mitigates the depolarizing
effects of scattering in the components before it. However, crystal polarizers like the GT rely
on total internal reflection to separate polarization components, and therefore can only tolerate
a limited range of input angles. This range is called the field-of-view (FOV), and care must
be taken when focusing though the prism to stay within it. The 17.2 mm hard aperture of the
GT polarizer, before the 500 mm focal length lens, limits the maximum angle of incidence to
0.99 deg, which is just within the FOV of [±1,∓6.5] deg, where the sign is dependent on the
orientation of the polarizer.

After the ZnTe crystal, the probe is recollimated with the 60 mm lens and (in the absence
of any depolarization) made circularly polarized by the quarter-wave plate (QWP). The S-
and P-polarized light components are then separated by a Wollaston prism and detected sepa-
rately on photodiodes PD1 and PD2. The fixed and variable ND filters, before PD1 and PD2
respectively, are used to balance the response of the two photodiodes. One should not use the
QWP to balance the photodiodes, but rather find the inflection point in the differential signal
between PD1 and PD2 as the QWP is rotated. This point corresponds to the point of maxi-
mum circularity on the polarization. Operating away from the point of maximum circularity
results in an asymmetric response for positive versus negative phase retardations between the
S- and P- polarized components
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2.2 Alignment Tips and Tricks
In this section, we will briefly provide a few tips and tricks for aligning the setup. The in-
formation is not necessary for understanding the experiment or the results, but could prove
useful for more than 2D THz spectroscopy.

2.2.1 Aligning Off-Axis Parabolic Mirrors
Let us start with a reliable procedure for aligning off-axis parabolic mirrors, as illustrated in
Fig. 2.2. OAPs are often cursed for being difficult to align, but the key to success is being
methodical and eliminating free parameters one at a time. The first step is to mount the OAP
at the correct height on a rigid post, as shown in panel (a). We aim to be within ±10 µm of
the target beam height. Importantly, if the OAP is mounted in a mirror mount, it should also
be fixed on a rectangular base so that later fine-alignment is preserved. The initial coarse
alignment of the mirror mount needs to be within the range of the actuators, but the closer
the better. Laying the assembly shown in panel (a) down on the optical table with a flat plate
under the mirror mount face is a good way to rough-align all the components. For the fine
alignment, we use a helium-neon laser (HeNe) that is aligned along a row of holes and leveled
at the target beam height, as depicted in panel (b). The beam is expanded to around 25 mm
in diameter. It is important to use optics that do not aberrate the beam in the expander, since
we will later use aberrations to identify OAP misalignment. With the reference beam set, the
mounted OAP is inserted in the path as shown in panel (c), and the beam is reflected down
a perpendicular row of holes. We move iris I2, which was used to level the HeNe beam, and
use it as a target. Another iris, I3, is placed along the row of holes near the focus. The goal
at this stage is to fix rotation angle R1. We take an iterative approach. First, I1 is closed so
that the beam diverges more slowly, and R1 is coarsely adjusted to level the beam over a long
distance. Then, with iris I1 open, we translate (T1) the OAP and minimize the coma. Moving
a piece of card stock through the focus should reveal a uniformly expanding circular beam.
In contrast, a comatic beam crosses the focus at an angle and expands asymmetrically. Next,
rotation angles R2 and R3 are adjusted to remove astigmatism, which is seen as an elliptic
beam with a major axis that rotates through the focus. The last step of the cycle is to close
iris I1 again and adjust T2 and R1 to center the beam through both iris I3 and I2. The cycle is
repeated until there is a diminishing return. The last part of the alignment procedure, shown
in panel (d), fine-tunes rotation angles R2 and R3, as well as translation T1. A beam profiler
is used to closely inspect for astigmatism and coma about the focus. It is mounted on a stage
so that it can be precisely moved through the focus. We iteratively sweep across the focus
while making small changes to R2, R3, and T1 and monitoring for improvement. Once the
beam maintains a circular shape through the focus, this typically corresponds to the smallest
achievable spot size. It is prudent to repeat the cycle in panel (c), making slight adjustments
to R1 and T2 if the beam is no longer centered on iris I3—if changes are made, one must also
repeat the procedure in panel (d). As with all alignment, repeat to exhaustion.

The ex-situ alignment just described is repeated for each OAP in the setup. The rectangu-
lar bases make it easy to then position the pre-aligned OAPs with respect to each other. As



2.2 Alignment Tips and Tricks 27

(b)

(c)

Coma

Astig.

T1T2

I1

I1 I1

I2

I2I2

I3

T1

R1

R3

R2

R3R2

(d)

Beam Profile

(a)

Figure 2.2. Ex-situ alignment of off-axis parabolic mirrors. (a) The OAP is mounted on a rectangular
base at the correct height ±10 um (b) The HeNe beam is aligned along a row of table holes and leveled
at the correct height with irises I1 and I2. (c) The OAP is inserted in the beam and adjusted to reflect it
down a perpendicular row of holes. Translation T1 and rotations R2/R3 are associated with coma and
astigmatism, respectively. Translation/rotation T2/R1 only affect the horizontal/vertical pointing. The
iris I1 is narrowed to restrict the divergence after the OAP. (d) A beam profiler is placed at the focus
of the OAP. Fine alignment of the OAP increases the focused spot circularity and decreases the size.
Iris I1 is opened to maximize aberrations. The left and right beam profile insets are examples from the
instrument at SLAC. The left inset shows relatively circular diffraction rings from iris I1 just outside
the focus. The right inset shows the focused spot—any structure is below the 6.5 x 6.5 um pixel size.

captured in Fig. 2.2 (a), the base is butted up against two M6 screws with carefully matched
head sizes. The same screws can be used to re-reference the OAP in another location. In addi-
tion, a second base can be butted up against the OAP base and used as a parallel reference for
translating the OAP. Typically, we repeat procedure (c) and (d) in Fig. 2.2 for each OAP as
they are placed sequentially, but OPAs used for recollimation are more difficult because they
do not focus the beam. A procedure like in Fig. 2.2 (c), but for a collimated beam, works well
even if one has to use a plane-mirror to divert the beam a few meters to look for coma, astig-
matism and collimation (defocus). Another option, if there are space constraints, is a shearing
interferometer like the one depicted in Fig. 2.3 (also see Chapter 4 in [40]). The beam is well
collimated when the interference fringes are parallel to the inscribed line. Curved fringes in-
dicate aberrations other than defocus, and one can adjust the OPA position to try and correct
these errors.

Figure 2.3. Adjusting collimation with a shearing interferometer. The beam is collimated when the in-
terference fringes are parallel to the inscribed line. Curved lines indicate aberrations other than defocus.



28 2 Instrumentation

2.2.2 Aligning delay stages
There is already a comprehensive guide to aligning optical delay stages from WiredSense
[58], we will only add a few suggestions. Much of the work can be eliminated by using a
retro-reflector or hollow roof-mirror. A hollow roof-mirror has the advantage that it does not
vertically displace the beam (without one easily knowing). However, these components are
quite expensive, so we use two right-angle prism mirrors butted against a common flat back
surface to make our own hollow roof-mirror, as illustrated in Fig. 2.4 (a). This configuration

(b)(a) Increasing delay

[um]

[u
m

]

Figure 2.4. Delay stage alignment hints. (a) Using a hollow roof-mirror makes alignment relatively
easy, since incoming and outgoing beams are always parallel. (b) Movement of the beam profile with
stage displacement. A reference image of the focused beam profile (bottom) is saved, and we see the
difference in intensity as the beam walks up (top). When the incoming beam is parallel to the stage,
there is no displacement.

also allows us to vary the separation distance of the mirrors. With the mirrors known to be
at a right angle to each other, we can assume the incoming and outgoing beams are parallel.
Moreover, the alignment is insensitive to a rotation of the assembly in the plane of reflection.
Therefore, the only critical adjustment is ensuring the incoming beam is parallel to the stage.
We find that placing a beam profiler at a focus after the stage makes this alignment fairly easy.
The procedure is as follows:

1. Move the stage to one end.

2. Save a reference image—the bottom beam profile in Fig. 2.4 (b).

3. Move the stage to the other end.

4. Look for a displacement of the beam profile—the top profile in figure Fig. 2.4 (b).

5. Angle the incoming beam in one direction—remember the direction.

6. Save a reference image.

7. Move the stage back to the initial end.

8. If the displacement is larger, angle the incoming beam in the opposite direction, if it is
smaller, continue in the same direction.

9. Repeat until the beam profile displacement is negligible.
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It may seem obvious, but if one cannot eliminate a vertical displacement of the focused beam
profile using this process, then they should make sure the translation stage is mounted to a flat
surface. Sometimes a small dent in the table needs to be honed with an oil stone. Furthermore,
it may be necessary to evenly (and lightly) torque all the screws mounting the stage to the
optical table. Using a torque-wrench would be the ideal solution.

2.3 Optical Parametric Amplifier
To efficiently pump the DAST organic crystals, an optical parametric amplifier (OPA) is used
to convert the 800 nm pulses from the Ti:sapphire amplifier to 1500 nm. Although this is not
the optimal wavelength for the intra-pulse difference frequency generation process in DAST,
which is around 1450 nm [30, Fig. 9], it was selected because the OPA is most efficient there.
Nonetheless, the spectral bandwidth of the 100 fs full-width half-maximum (FWHM) pulses
is only 0.44/100 fs = 4.4 THz [53, Eqn. 9.13], and within that range, pump wavelengths
between 1250 nm and 1500 nm have comparable coherence lengths in DAST [30, Fig. 9].

After the last stage of amplification in the OPA, the depleted 800 nm pump light is repur-
posed as a probe. By doing this, we maximize the common path between pump and probe,
which reduces the impact of pointing drift and vibrational noise. Furthermore, any path length
differences due to thermal expansion in the OPA are naturally matched.

However, a detrimental aspect of using the depleted pump light is that fluctuations in
the OPA’s conversion efficiency are mapped to the probe’s intensity. Moreover, the static
birefringence of the β barium borate (BBO) crystal used in the final amplification stage of
the OPA, as well as the polarization-sensitive nature of phase matching in the parametric
amplification process [7, sec. 2.3], lead to a significant decrease in the extinction ratio of the
probe polarization after it passes through the crystal. Moreover, poor alignment of the OPA
exacerbates the problem, and should be an early suspect if there is a substantial increase in
probe intensity and polarization noise between measurements.

In a future design revision, we recommend sampling a small portion of the pump light just
before the BBO crystal. To reduce the noise further, one could sample the oscillator output
and use some form of active path length compensation. However, the reader is forewarned to
ensure that their detection scheme is able to gate-out the requisite probe pulse, which is now
separated from its neighbors by just 1/80 MHz = 12.5 ns.

2.4 Polarimetry and EO detection
The detection method we employ can broadly be defined as polarimetry. Its implementation
is depicted in Fig. 2.5, and its context in the larger 2D THz instrument is indicated with a
dashed box in Fig. 2.1. The measured quantity in polarimetry is a polarization modulation of
the 800 nm probe. Before the sample (ZnTe crystal), the 800 nm probe is linearly polarized.
Interactions with the THz pump fields in the samplemodulate the probe polarization, inducing
ellipticity. The following quarter-wave plate (QWP) biases the polarization such that, in the
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absence of a sample or THz-field, the probe polarizationwould be circular and divided equally
into linear S- and P-polarization components by the Wollaston polarizer (WP). However, the
slight modulation of the polarization by the sample and THz-field creates an imbalance that
is measured as an intensity difference, ∆I , on photodiodes PD1 and PD2. The overall signal
measured with polarimetry is a normalized intensity difference or ‘modulation’∆S = ∆I/I0,
where I0 is the total probe intensity. To ensure that the intensity difference on the photodiodes
is zero in the absence of a THz field, we use a fixed and variable neutral density (ND) filter to
balance the intensities with the THz beam blocked. The 60 mm lens is solely for recollimating
the beam, which is focused through the ZnTe sample.

PD1 PD2

 ZnTe
(Sample)

QWP
WP60mm ND

S-polarization

P-polarization

Figure 2.5. Schematic of polarimetric detection. The 800 nm probe is initially linearly polarized. The
polarization is modulated by the sample (ZnTe crystal) and THz pump fields, inducing an ellipticity. A
cartoon polarization evolution is drawn at several locations. The quarter-wave plate (QWP) biases the
polarization to make it circular in the absence of a sample or THz-field. The Wollaston polarizer (WP)
separates circularly polarized light into equal S- and P-polarization components, but the sample and
THz-field induce an imbalance. This imbalance is detected as an intensity difference on photodiodes
PD1 and PD2. The neutral density (ND) filters are set to balance the intensities with the THz beam
blocked. The 60 mm lens recollimates the beam after passing through the ZnTe sample.

Polarimetry encompasses all sources of polarization modulation, be they inelastic Raman
scattering or photon-energy conservative optical mixing processes. The prior source is often
used to great success in 2D THz-THz-Raman spectroscopy [32, 38, 42, 52]. However, in our
experiment the detected signal is predominantly due to the latter electronic contributions, thus
wewill nominally call the method used in this thesis 2D THz-THz-polarimetry. To emphasize,
THz-THz-Raman spectroscopy and THz-THz-polarimetry are technically identical in their
implementation; it is the specificity that distinguishes the two.

It should also be made clear that both THz-THz-Raman spectroscopy and THz-THz-
polarimetry are in-situ measurements—information about the sample is directly encoded in
the optical probe by the THz pump fields. This is in contrast to ex-situ THz-transmission spec-
troscopy [34, 44], where information about the sample is encoded in the THz pump fields and
subsequently extracted by the probe with THz-THz-polarimetry in a separate detection crys-
tal. In the context of THz-transmission spectroscopy, the latter stage of THz-THz-polarimetry
in a detection crystal is called ‘electro-optic (EO) detection’. EO detection is typically con-
sidered to be linearly proportional to the THz field strength in the low-field limit [2, 45] and,
therefore, any measured nonlinearities should be due to the sample, not the detection. As can
be seen in Fig. 2.1, our instrument was designed for THz-transmission spectroscopy (based
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on [34]). The typical sample plane is indicated at the first intermediate focus of the THz
beams, and the detection plane is at the final focus where the ZnTe crystal is located. Given
the design of our instrument, why have we called the ZnTe crystal the ‘sample’ ? Well, it soon
became clear that outside the small-field limit, there are a wide variety of nonlinear processes
occurring in the ZnTe detection crystal that are worth investigating in themselves. This real-
ization is the basis of Chapter 4. For now, we will continue to focus on the instrumentation
in a material-agnostic fashion.

2.5 Chopping and Timing

As discussed in Section 1.3, we use a differential measurement technique to extract the non-
linear signal, ‘NL’. This involves recording the response for the individual application of the
THz pump pulses—referred to as ‘A’ and ‘B’— and their simultaneous application, ‘AB’.
In addition, we record a null response, ‘N’, that is used for removing background noise. In
implementing this technique, we aim to maximize the data acquisition speed and improve the
statistical accuracy of our measurements by utilizing every laser pulse effectively. To achieve
this, we employ a chopping scheme that generates a cyclic permutation of the sequence [AB,
A, B, N]. To reduce common-mode noise, it is crucial to record the A, B, AB, and N data
points sequentially for each delay position in the 2D maps.

The positions of the choppers in the instrument are indicated in Fig. 2.1. ChopperCPB op-
erates at half the laser repetition rate (fr/2), while CPA operates at a quarter of the repetition
rate (fr/4). A timing diagram showing the open and closed windows of the chopper blades
is provided in Fig. 2.6. The master clock is a trigger signal from the laser amplifier synchro-
nized to the repetition rate, fr. From fr, we derive the ‘DELAY’ signal that is shifted by half
the repetition period, 500 µs. Chopper CPB is synchronized to the rising edge of the DELAY
signal, and chopper CPA is synchronized to the rising edge of the phase-locked-loop (PLL)
output from CPB. By synchronizing CPA to CPB, instead of directly to the DELAY signal,
we eliminate any ambiguity regarding which rising edge to synchronize to. This ensures that
we consistently maintain a cyclic permutation of [AB, A, B, N], and avoid permutations of
[A, AB, N, B].

To determine our position in the cyclic sequence [AB, A, B, N], we utilize an AND gate
to generate an index pulse from the PLL outputs of CPB and CPA. This index pulse is set to
a high state when both the A and B pulses are unblocked— i.e. the AB pulse. By monitoring
this index, we can precisely determine our position in the sequence and assign measurements
to the correct map.

The timing system was designed to mitigate errors due to asynchronous jitter in the PLLs
of the choppers (approximately 4 µs). This jitter leads to overlaps between the falling edge
of CPA and the rising edge of CPB, creating short glitches (< 8 µs) in the AND signal.
However, we sync the choppers to the DELAY signal instead of directly to the laser trigger
signal fr. The rising edge of the DELAY signal is shifted 500 μs after the rising edge of the
trigger signal, ensuring that the trigger signal is centrally positioned between the rising edges
of the DELAY signal. By doing so, we push the glitches far outside the measurement window,
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which is only 20 µs after the rising edge of the trigger signal fr. To be clear, the integrating
photodetector (IPD4B) used for the measurement is directly triggered by the laser at fr to
minimize jitter.

The timing system is shown schematically in Fig. 2.7. So far, we have discussed the
timing signals generated synchronously from the laser amplifier trigger signal fr. Those are
the DELAY, PLL fr/2, PLL fr/4 and AND signals. In addition, there is an asynchronous
‘GATE’ signal generated by a data acquisition (DAQ) device (NI USB-6008) controlled by
the instrument driver running on our computer. When the gate signal is pulled LOW, the
trigger signal to the IPD4B is blocked and it stops integrating pulses. The GATE signal is
pulled low while the delay stages are moving and settling. Once we are ready to acquire data,
the GATE is opened, the requested number of pulses are integrated, and the GATE is closed
again. The asynchronicity of this process requires us to record the AND signal along with
each integrated pulse, that way we can correctly index the pulses to the cyclic [AB, A, B, N]
sequence. We also discard the first reading, since the rising edge of the GATE can cause a
glitch.

To ensure the AND index pulse corresponds to the optical AB pulse and that the opti-
cal pulses are not physically clipped by the chopper, we adjust the mechanical phase of the
choppers accordingly. The method is described in the next section.

2.5.1 Chopper phasing
Artificial nonlinear signals can result from the chopper being out of phase, or only partially
blocking the pump beam. To prevent these issues, it is important to center the beam in the
aperture of the chopping wheel and verify the beam is smaller than the openings in the blade.
Placing the chopper at a focus of the beam is the optimal configuration, as it increases the
margin for error in setting the phase of the chopper.

To adjust the phase, we remove the organic crystals and place a photodiode where the
pump beams are both focused. It is important to focus onto the photo diode so that the entire
pump beam profile is integrated. In fact, here we are most interested in the outer edge of the
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beam profile where it could be partially clipped by the chopper. One must be certain that
the focused beam is well within the active area of the photodiode, or risk returning a false-
negative for clipping. The photodiode signal is monitored on an oscilloscope along with the
timing index (‘AND’) pulse that is used as a trigger. The chopper phase is coarsely adjusted
so that the AB index mark is aligned with the AB photodiode pulse, which is followed by the
A photodiode pulse, as shown in the timing diagram (Fig. 2.6). The A and B beam paths are
alternately blocked to identify the pulses in the sequence. The B beam is then blocked and the
phase of theCPA chopper is adjusted in one direction until the onset of signal leakage into the
B or N photodiode bins—the phase value is noted. The adjustment is repeated in the opposite
direction to find the other window-edge. The phase between these two edge-values centers
the A beam in the chopper window. The same procedure is repeated for the B pulse with the
A pulse blocked—now monitoring the A and N photodiode bins. Following this procedure,
any residual signal in the N photodiode bin indicates one or both of the pump beam diameters
is too large.
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2.6 Benchmarking
In this section, we quantify several performance metrics and provide the results of a few basic
tests to confirm that the instrument is operating as expected.

2.6.1 THz power measurement
To measure the THz power of the ‘A’ pump pulse, we pumped the DAST crystal at 1500 nm,
an average power of 185 mW, and a repetition rate of 500 Hz (the repetition rate of the laser
amplifier was 1 kHz, but we chopped the beam at 500 Hz to reduce the average power). The
pump pulse energy is therefore 185/500mJ = 370 µJ. Additionally, the beamwasmodulated
with another chopper at 25 Hz as required by the Gentec T-Rad power meter, detector head
THz9B-BL-DZ.

1500 nm Pump

Gentec
T-Rad

f=75mm
Flip f=2in

DAST PTFE

Figure 2.8. Schematic of the THz power measurement. The DAST and PTFE layer are flipped to
measure an upper bound approximation for the residual 1500 nm pump light leaking though the PTFE
filters. Component abbreviations: DAST, 4-N , N -dimethylamino-4′-N ′-methyl-stilbazolium tosylate;
PTFE, Polytetrafluoroethylene.

The DAST crystal is placed well within the 75 mm focal length of the pump-focusing
lens, such that the full 5 mm aperture of the crystal is filled. The crystal is mounted on the
back of a glass substrate, which provides mechanical support and thermal dissipation. The
crystal is on the rear face of the substrate so that the emitted THz radiation is not attenuated
by the substrate.

Within a few mm of the rear face of the crystal, a 0.1 mm thick polytetrafluoroethylene
(PTFE) diffusing film is placed to scatter and absorb the residual 1500 nm pump light. A
second absorbing/diffusing film is placed a few cm after the crystal, and a third is placed
in the collimated beam after the OAP. The PTFE film is more effective as a diffuser than
an absorber, therefore, it is important that the first layer of PTFE is close to the crystal to
widely disperse the pump light. The subsequent layers of PTFE block the small portion of the
now highly divergent residual pump light that is colinear with the THz beam. Increasing the
distance and/or adding turns in the THz beam path further decreases the residual pump light.

Tomeasure the amount of residual pump light, we flip the order of the first PTFE layer and
DAST crystal. Because absorption of the pump light in PTFE and DAST is predominantly a
linear process, and THz generation is a second-order nonlinear process [30], attenuation of
the pump light should be similar, whereas the amount of THz generated should be substan-



2.6 Benchmarking 35

tially reduced. In the flipped configuration, the measured residual pump light is 320 µW, or
only 0.173 % of the total.

Accounting for the residual pump power, wemeasure an average THz power of 1.530 mW,
which corresponds to a pulse energy of 3.60 µJ. The efficiency of the generation process is
therefore 0.827 %. The measured values are summarized in Table 2.2. We have not measured
the power of the ‘B’ pulse, but based on the polarimetric/EO response, it is of the same order
of magnitude.

Table 2.2. THz power measurement results.

Parameter Value Note
Pump Parameters
Wavelength 1500 nm
Rep-rate 500 Hz Laser-rep 1 kHz, chopped
Gentech mod. 25 Hz Not sync’d to laser
Avg. power 185 mW
Pulse energy 185/500 mJ = 370 µJ
Residual power 320 µW Flipped crystal mount
Residual energy 320/500 uJ = 370 nJ
THz Parameters
Avg. power 1.530 mW Pump residual subtracted
Pulse energy 1.53/500 mJ = 3.60 µJ
Generation Efficiency
Efficiency 3.06/370 ∗ 100 = 0.827 %

2.6.2 THz Spectrum Measurement

In Fig. 2.9 we provide a measurement of the THz ‘A’ pulse’s temporal waveform (a) and its
spectrum (b). Two measurements were taken sequentially with a few minutes of waiting time
between, as the enclosure was being purged with dry nitrogen to remove atmospheric water
vapor. The absorption lines of water vapor serve as a useful ruler for ensuring the spectrum
has been scaled correctly. At the bottom of panel (b), are the absorption lines for water cal-
culated by Peter Uhd Jepsen [9, Chapter 6] from the HITRAN database [22]. We see a good
agreement between the peak positions of the measured/calculated absorption dips/peaks, re-
spectively. The system has a maximum dynamic- and spectral-range of around 40 dB and
8 THz respectively.

2.6.3 Polarimetry Probe-Intensity Dependence

The modulation signal measured with polarimetry, ∆S = ∆I/I0 (Section 2.4), should be
independent of the total probe intensity, I0, based on the assumptions made in this thesis. In
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Figure 2.9. Temporal waveform (a) and spectrum (b) of the THz ‘A’ pump pulse on a good day. The
system has a maximum dynamic- and spectral-range of around 40 dB and 8 THz respectively. The
absorption lines of water, calculated by Peter Uhd Jepsen [9, Chapter 6] from the HITRAN database
[22], serve as a useful ruler in (b).

Section 4.1 we will explore this property from the perspective of the small-field approxima-
tion for electro-optic detection [45]. It can also be inferred through inspection of the nonlinear
polarization terms in Section 3.2.1 that generate ∆I . These terms are all linear in the probe
field, and thus the normalized modulation ∆S should be independent of the probe intensity.

To determine the validity of our assumptions, we performed the same polarimetric mea-
surement (EO detection) at several probe powers while holding all other parameters constant.
Since we do not change the focused spot size of the probe in the ZnTe crystal, we assume the
probe intensity is linearly proportional to the probe power. The probe intensities on photodi-
odes PD1 and PD2 (Fig. 2.5; components of the Wieserlabs WL-IPD4B boxcar photodiode
integrator) are kept constant with a variable ND filter after the Wollaston polarizer; by doing
so, we eliminate possible nonlinearities in the detection. To be clear, in these measurements
we are determining the effect of varying the probe intensity on the ZnTe crystal, not on the
photodiodes. The complementarymeasurement will be discussed in Section 2.6.4. Note, how-
ever, that for the two lowest probe powers we were unable to maintain the same intensity on
the photodiodes, as can be seen in the sum of the PD1 and PD2 intensities, I0, in Fig. 2.10 (a).
This deviation is also apparent in panel (b), where otherwise the intensity difference between
PD1 and PD2, ∆I , is relatively constant with probe power. In Panel (c) the intensity differ-
ences are normalized by the sums to calculate the modulation, ∆S. Normalization greatly
reduces the degree to which the waveforms measured at a lower I0 deviate from the others.
However, there still appears to be a small shift in the modulation amplitude with probe inten-
sity. To better view the trend, we have extracted the peak modulation value at two maxima
in the THz waveform. The peak values are plotted in panel (c), and fit with a line. In the
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fit, we have excluded the peaks for the waveforms where I0 was significantly lower. For
both maxima in the waveform, the modulation depth decreases with probe power. While we
have not investigated the cause of this decrease, one possible explanation is a corresponding
increase in free-carrier concentration through two-photon absorption of the probe [12]. For
the higher probe powers, we do see a visible green emission from the ZnTe crystal, and there
is strong evidence in the literature that free carriers attenuate the THz field [47, 56]. It is
curious, however, that the trend is not clearly quadratic in probe power if it is related to two-
photon absorption. In our measurements, we keep the probe power fixed to avoid deviations.
We also choose a value at the lower end of the range, 266 µW, where there is little visible
emission from the ZnTe crystal.

2.6.4 Polarimetry WL-IPD4B-Count Dependence
We repeated the measurements in Section 2.6.3, except the probe power (∝ intensity) was
held constant at 540 µW in the ZnTe crystal, but varied on photodiodes PD1 and PD2. The
measurements acquired with the Wieserlabs WL-IPD4B boxcar photodiode integrator are
plotted in Fig. 2.11. Generally, we find that the photodiodes and boxcar-integration are very
linear across the tested range, except perhaps at the lowest intensity. We typically operate
with approximately 125 × 103 counts on each photodiode, or I0 = 250 × 103 counts. The
maximum integrated count value for each photodiode is 220 ≈ 1× 106 counts.
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Figure 2.10. Polarimetry probe-power dependence in ZnTe. (a) Sum of the intensities on photodiodes
PD1 and PD2 (Fig. 2.5)—i.e. the total probe intensity, I0. A variable neutral density filter is used to
maintain a constant value; for the lowest two probe powers, it is not possible. (b) The difference of the
intensities on PD1 and PD2, ∆I . Except for the lowest two probe powers, there is only a small ampli-
tude difference between the THz waveforms. (c) The normalized intensity difference ∆S = ∆I/I0.
Normalization greatly reduces the amplitude deviation for the lowest two probe powers. (d) Peak mod-
ulation at two maxima in the THz waveform, fit with a linear trend line. There is a gradual decrease
in modulation depth with increasing probe power. This is possibly due to two-photon absorption of
the probe and the related free-carrier generation. However, the lack of a clear quadratic dependence in
probe power is curious if this is a two-photon process.
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Figure 2.11. Dependence of the polarimetric signal on the total count returned by the WL-IPD4B
(∝ intensity on photodiodes PD1 and PD2). (a) Sum of the intensities on photodiodes PD1 and PD2
(Fig. 2.5)—i.e. the total probe intensity, I0. A variable neutral density filter is used to adjust the incident
probe intensity. (b) The difference of the intensities on PD1 and PD2, ∆I . (c) The normalized intensity
difference ∆S = ∆I/I0. (d) Peak modulation at two maxima in the THz waveform, fit with a linear
trend line. There is only a very gradual increase in modulation depth with the total number of integrated
counts.
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CHAPTER3
Numerical Pulse

Propagation
In this chapter, we develop numerical tools that allow us to improve on the predictions of in-
stantaneous models discussed in Section 1.6. Often, the interaction between a THz-frequency
field and an optical-frequency probe pulse within non-centrosymmetric crystals (such as
ZnTe) is modeled as the ‘linear’ electro-optic (Pockels) effect. This is a second-order nonlin-
ear optical process wherein the quasi static THz field induces a birefringence that modulates
the polarization of the probe [45]. For small fields, the birefringence is linearly proportional
to the applied THz field strength (see Section 4.1). However, this interpretation does not ac-
count for the non-zero frequency of the THz fields, and is not easily extended to strong fields
or higher order interactions.

A more accurate and extensible picture views the interaction as sum- and difference-
frequency mixing between the THz field and optical probe [19]. This is also a second-order
nonlinear optical process, but in this case the THz and optical-probe fields, together, induce a
nonlinear polarization in the material. Importantly, the induced polarization is not limited to
a simple instantaneous product of the fields (producing sum- and difference-frequencies), but
also contains higher-order direct and cascaded products. The great benefit of this picture is
that we can leverage decades of research on approaches to simulating these nonlinear optical
processes.

In particular, we are guided by the work of Caumes et al. [10], who studied a “Kerr-
like nonlinearity induced via terahertz generation and the electro-optical effect”. In short,
it was shown that an optical pump pulse can generate a co-propagating THz field, which in
turn can modulate the polarization of an optical probe pulse through the electro-optic effect.
A subsequent experiment demonstrated that cascading can similarly occur between the THz
field and the probe alone: the THz field can rotate the probe polarization via the electro-optic
effect, such that second-harmonic generation of the probe is no longer symmetry forbidden
[15]. As highlighted in Section 1.7, our 2D measurements contain a signal proportional to a
product of the two THz pump fields EA and EB . We suggested two possible contributions:

Direct: P = ϵ0χ(3)EAEBEpr (3.1)

Cascaded: P = ϵ0χ(2)
[
χ(2)EAEB

]
︸ ︷︷ ︸

Reradiated

Epr. (3.2)
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The first contribution is a direct third-order process between the THz fields and the optical
probe. The second contribution involves two cascaded second-order processes, wherein the
first step of the cascaded process entails the direct mixing of the two THz pump fields. To
distinguish between the two contributions, we apply numerically-solved derivatives of the
unidirectional pulse propagation equation (UPPE) developed by Kolesik and Moloney [33],
with an algorithm similar to that used by Caumes et al. [10].

Our method is a two-step process. In the first ‘THz-THz’ step, we propagate the THz
pump fields alone, in a carrier-resolved manner, to map their linear and nonlinear evolution
through the crystal. In the second ‘THz-probe’ step, we propagate the optical probe through
the material, considering its interaction with the previously calculated THz field map. A
flowchart of the method is provided in Fig. 3.1. Since the bandwidth of the optical probe
pulse is relatively small compared to its central frequency, the slowly varying envelope ap-
proximation (SVEA) is sufficiently accurate for the latter propagation [1, p.34]. Separating
the THz and probe propagation calculations greatly reduces the numerical overhead. How-
ever, by isolating the THz field propagation, we essentially assume that the probe has an
insignificant effect on the evolution of the THz field—equivalent to assuming the THz field
is a ‘strong pump’ in the second propagation. This approximation is supported by the rela-
tively small probe energy of 266 nJ, the large pump energy of 3.06 uJ, and the disparity in
their photon energies—∼1.55 eV and ∼0.0124 eV respectively. As a result, there are around
103 pump photons for every probe photon.

We only consider processes up to third-order in our simulation, although, quasi higher-
order processes can still occur through cascading. As a practical matter, this approach avoids
increasing analytic and numerical complexity beyond third-order; however, it does not pre-
vent us from capturing the prevailing nonlinear behavior, since lower order contributions
tend to be most significant. The nonlinear susceptibility tensors, χ(n), generally decrease in
strength by 10−12n for n > 1 [7, p.3].

In the following sections, we outline the derivation and implementation of our method for
studying direct and cascaded second- and third-order nonlinear optical processes between
THz fields and an optical probe-pulse. We begin by following the procedure of Kolesik
and Moloney [33] for deriving the forward Maxwell equation (FME) [29] and nonlienar
Schrödinger equation (NLSE) from the UPPE. These are the carrier-resolved and envelope-
approximation propagation equations, respectively. We then proceed to calculate the relevant
polarization components, and finally, we give a brief description of the ‘THz-THz’ and ‘THz-
probe’ steps of the method.

3.1 Derivation of the FME and NLSE

Kolesik and Moloney [33] provide an excellent guide for the development of numerically-
solved pulse propagation simulations, which we have fully utilized in this section. Our only
contributions are minor modifications that tailor their solutions to our specific problem. The
unidirectional pulse propagation equation UPPE that they developed differs from solving
Maxwell’s equations only in the approximation that the backward traveling or “reflected”
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Figure 3.1. Flow chart of the numerical pulse propagation simulations. There are three parallel threads
leading to the final nonlinear map (NL): one each for the A and B THz pump pulses alone, and one
for their combined application. In each case we start with a low-field-strength (LFS) reference of the
THz waveform (see Section 4.1), multiply it by a deconvolution factor to account for dispersion, loss,
and the optical pulse duration, and then a scaling factor to simulate a chosen field strength. The THz
pulses alone are propagated with the forward Maxwell equation (FME) to generate a map of their linear
and nonlinear (‘THz-THz’) evolution through the crystal. This map is then sampled by the probe in a
following ‘THz-probe’ propagation, carried out with the nonlinear Schrödinger equation (NLSE). The
result is a 2D map of the polarimetric signal one would measure in the experiment. As done with the
experimental data, the three maps are differenced to calculate the residual nonlinear (NL) signal.

components of the field are not required for calculating the nonlinear response of the medium.
By further constraining the UPPE, one can derive other commonly used approximations of
Maxwell’s equations, such as the nonlinear Schrödinger equation (NLSE), and the forward
Maxwell equation (FME). The following assumptions have been made for both the FME and
the NLSE:

1. The pulse propagates down the z-coordinate axis.

2. The z or longitudinal components of the field are negligible in comparison to the trans-
verse components (i.e. no extreme focusing).

3. Backward-traveling waves do not contribute to the nonlinear polarization.

4. The medium is homogeneous (but not necessarily isotropic)

5. Pulse propagation is sufficiently captured within a finite volume in space and time (this
restriction is only for the numerical solution).
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The scalar approximation of the UPPE is the starting point for deriving the NLSE and FME,
it is defined as follows [33, Eqn. (39)]:

∂zEkxky (z, ω) = iKEkxky (z, ω) + iQPkxky (z, ω), (3.3)

where
K(kxky, ω) =

√
ω2ϵ(ω)/c2 − k2

x − k2
y, (3.4)

and
Q(kxky, ω) = ω2

2ϵ0c2
√

ω2ϵ(ω)/c2 − k2
x − k2

y

. (3.5)

To derive the NLSE and FME, one selects appropriate approximations for K and Q.

3.1.1 Deriving the NLSE from the UPPE
For the NLSE one assumes a carrier-modulated envelope solution for the electric field, with
angular frequency ω0 and wave number k0 = k(ω0). The approximations for K and Q are

K ≃ k0 + v−1
g (ω − ω0) +������k′′

2
(ω − ω0)2 −������1

2k0
(k2

x + k2
y), (3.6)

Q ≃ ω0

2ϵ0n(ω0)c
, (3.7)

where vg is the group velocity of the probe pulse. We further assume that dispersion can be
ignored for the ∼100 fs FWHM probe pulse, and that it is a plane wave, leading respectively
to the cancellation of the last two terms in K. The electric field and its Fourier transform are
then

E(x, y, z, t) ≃ E(z, t) = A(z, t)ei(k0z−ω0t), (3.8)

FT: E(z, ω − ω0) = A(z, ω − ω0)eik0z, (3.9)

whereA(z, t) is the complex envelope of the pulse. Substituting K, Q and E(z, ω−ω0) into
Eqn. (3.3) yields

∂zA+���ik0A =���ik0A+ iv−1
g (ω − ω0)A+ iω0

2ϵ0n(ω0)c
P (3.10)

Unlike Kolesik and Moloney [33], we maintain a generalized nonlinear polarization ampli-
tude P(z, ω). Transforming the NLSE to the time-domain, we obtain

∂zA(z, t) = −v−1
g ∂tA(z, t) + iω0

2ϵ0n(ω0)c
P(z, t), (3.11)

where we have used the relation i(ω − ω0)→ −∂t when applied to a function modulated at
carrier frequency ω0.
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To make the NLSE more amenable to numerical solution, we transform to a reference
frame moving at the group velocity vg by making the substitutions t̂ = t− v−1

g z and ẑ = z.
The temporal and spatial operators ∂t̂ and ∂ẑ can be found with the chain rule. For ∂t̂ we have

∂tf(ẑ, t̂) = ∂f(ẑ, t̂)
∂ẑ

∂ẑ

∂t
+ ∂f(ẑ, t̂)

∂t̂

∂t̂

∂t
(3.12)

= ∂f(ẑ, t̂)
∂ẑ

(0) + ∂f(ẑ, t̂)
∂t̂

(1) (3.13)

= ∂f(ẑ, t̂)
∂t̂

(3.14)

∴ ∂t = ∂t̂, (3.15)

and for ∂ẑ we have

∂zf(ẑ, t̂) = ∂f(ẑ, t̂)
∂ẑ

∂ẑ

∂z
+ ∂f(ẑ, t̂)

∂t̂

∂t̂

∂z
(3.16)

= ∂f(ẑ, t̂)
∂ẑ

(1) + ∂f(ẑ, t̂)
∂t̂

(−v−1
g ) (3.17)

∴ ∂z = ∂ẑ − v−1
g ∂t̂. (3.18)

Making these substitutions, the NLSE in the moving frame takes the form

∂ẑA(ẑ, t̂) = iω0

2ϵ0n(ω0)c
P(ẑ, t̂). (3.19)

3.1.2 Deriving the FME from the UPPE
For the FME, few approximations are needed following the derivation of the scalar UPPE.
In line with the requirement that the z or longitudinal component of the field is small, it is
assumed that k2

x, k2
y ≪ k2

z = ϵ(Ω) Ω2/c2, where we have made a change of variable name
ω → Ω in anticipation that the FME will be used for the THz pump pulses. Given this
assumption, the paraxial and zeroth-order approximations of K and Q respectively are then

K ≃ k(Ω)− c

2Ωn(Ω)
(k2

x + k2
y), Q ≃ Ω

2ϵ0cn(Ω)
. (3.20)

Substituting K and Q into Eqn. (3.3) yields

∂zEkxky (z, Ω) = ik(Ω)Ekxky (z, Ω)− ic

2Ωn(Ω)
(k2

x + k2
y)Ekxky (z, Ω)

+ iΩ
2ϵ0cn(Ω)

Pkxky
(z, Ω). (3.21)
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The foregoing equation can be transformed to real-space in the transverse direction using
the Fourier transform pair ikx/y → −∂x/y , or when used in succession, −(k2

x + k2
y) →

(∂2
x + ∂2

y) = ∇⊥. Applying this relation, we have

∂zE(x, y, z, Ω) = ik(Ω)E(x, y, z, Ω) + ic

2Ωn(Ω)
∇⊥E(x, y, z, Ω)

+ iΩ
2ϵ0cn(Ω)

P (x, y, z, Ω). (3.22)

Assuming a plane-wave approximation for the THz pump pulses, there is no transverse spatial
dependence, and the FME reduces to

∂zE(z, Ω) = ik(Ω)E(z, Ω) + iΩ
2ϵ0cn(Ω)

P (z, Ω). (3.23)

As done for the NLSE, we transform to a reference frame moving at the probe group velocity
vg by making the substitutions t̂ = t − v−1

g z and ẑ = z. Ensuring our solutions are in the
same reference frame allows us to easily calculate coupled polarization products involving
both the THz and optical-probe fields. Using the relation ∂z = ∂ẑ − v−1

g ∂t̂ (Eqn. 3.18) and
∂t̂ → −iΩ, the FME in the moving frame is

∂ẑE(ẑ, Ω) + iΩv−1
g E(ẑ, Ω) = ik(Ω)E(ẑ, Ω) + iΩ

2ϵ0cn(Ω)
P (ẑ, Ω). (3.24)

Rearranging the equation reveals that the moving frame of reference effectively re-centers the
refractive index of the material about the group-index seen by the probe, ng(ω0) = c/vg . In
this form,

∂ẑE(ẑ, Ω) = i [n(Ω)− ng(ω0)] Ω
c

E(ẑ, Ω) + iΩ
2ϵ0cn(Ω)

P (ẑ, Ω). (3.25)

If the nonlinear polarization term is zero, the solution to Eqn. (3.25) is simply the pulse at
z = 0 multiplied by a factor carrying the spectral phase accrued with respect to that of the
optical probe pulse. Solving for that case, we obtain

∂ẑE(ẑ, Ω) = i [n(Ω)− ng(ω0)] Ω
c

E(ẑ, Ω) (3.26)

∴ E(ẑ, Ω) = E(z = 0, Ω)ei[n(Ω)−ng(ω0)] Ω
c z. (3.27)

The vectorial nature of light is partially captured with the FME by simultaneously solving
two coupled scalar equations, one for each transverse component of the field. Again, the
following equations assume a relatively small longitudinal (êz) field component:

∂ẑE(ẑ, Ω)êi = i [n(Ω)− ng(ω0)] Ω
c

E(ẑ, Ω)êi + iΩ
2ϵ0cn(Ω)

P (ẑ, Ω)êi, i ∈ {x, y}.

(3.28)
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3.1.3 Calculating DFT Terms in the FME Jacobian

This subsection is not strictly necessary for understanding the simulations, however, it may
be useful for those trying to implement their own solver. When calculating the polarization
terms in the FME, we first Fourier transform to the time-domain where products and powers
of the fields are computed, then inverse Fourier transform the result to get the spectral rep-
resentation. These Fourier transforms, implemented numerically using the discrete Fourier
transform (DFT) in NumPy [24], couple the FME ordinary differential equations (ODEs) to-
gether, since each ODE represents one frequency component of our pulse. In NumPy the
forward and inverse DFT are defined as follows:

forward DFT: Ak =
N−1∑
m=0

am exp
{
−2πi

mk

N

}
k = 0, . . . , N − 1, (3.29)

inverse DFT: am = 1
N

N−1∑
k=0

Ak exp
{

2πi
mk

N

}
m = 0, . . . , N − 1. (3.30)

Note again that the temporal signal at the m-th index is a weighted sum of all frequencies
from k = 0 to k = N −1. It is also worth pointing out that k is not an angular frequency; the
factor of 2π is absorbed to retrieve the angular-frequencies we have, at times, simply called
‘frequencies’.

As an example for demonstrating the DFT-produced coupling between ODEs, let us con-
sider ODEs of the form

dE(z, Ω)
dz

= Y (z, Ω) = F
[
F−1E(z, Ω)

]α = F E(z, t)α = F P (z, t), (3.31)

where z is the propagation distance, E(z, Ω) is the electric field in the frequency domain, and
Y (z, Ω) is the rate of change of that field in z. Here we consider a generic polarization term
P (z, t) = [E(z, t)]α in the time-domain. Discretizing the initial field at N points in time and
applying the definitions of the forward and inverse DFT, we have

Yj =
N−1∑
m=0

e−2πi mj
N

[
1
N

N−1∑
k=0

Eke2πi mk
N

]α

. (3.32)

The Jacobian for our system of ODEs is a squareN×N matrix, where the (j, l)-th element
is dYj/dEl. The l-th index represents the k-th frequency component of the field, but has been
redefined to avoid confusion with the generic k-th index used in the definition of the DFT.
Loosely speaking, the elements represent the change in the growth rate of the field at Ωl with
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respect to the present strength of all other fields at Ωk, k ∈ [0, N ].

↑
dYj

↓

← dEl →
dYj

dEl

 (3.33)

We can partially calculate dYj/dEl as follows:

dYj

dEl
=

N−1∑
m=0

e−2πi mj
N

d
dEl

[
1
N

N−1∑
k=0

Eke2πi mk
N

]α

(3.34)

=
N−1∑
m=0

e−2πi mj
N α

[
1
N

N−1∑
k=0

Eke2πi mk
N

]α−1
1
N

N−1∑
k=0�

�
��

δkl

dEk

dEl
e2πi mk

N (3.35)

=
N−1∑
m=0

e−2πi mj
N︸ ︷︷ ︸

at Ωj

(
α
[
F−1E

]α−1
)

m︸ ︷︷ ︸
Mixing Prods.

1
N

e2πi ml
N︸ ︷︷ ︸

at Ωl

. (3.36)

The last line is particularly illuminating: the mixing products of the field are sandwiched
between two exponentials that essentially isolate the magnitude of the contributions at Ωj

(the ‘output’ frequency) and −Ωl (the ‘input’ frequency), which is the difference frequency
Ωk = Ωj − Ωl. If the medium were linear (α = 1), the sum would reduce to

∑N−1
m=0 δjl/N ,

which is 1 iff j = l and zero otherwise. In other words, if no new frequency components are
being generated, the rate of change of the field component at Ωj is solely dependent on its
current magnitude, and the Jacobian is the identity matrix.

If the medium is nonlinear and the polarization contains higher order terms (α > 1), then
frequency-mixing generates new frequency components atΩk. Rearranging Eqn. (3.36) once
more, so that

dYj

dEl
= 1

N

N−1∑
m=0

(
α
[
F−1E

]α−1
)

m︸ ︷︷ ︸
Mixing Prods.

e−2πi
m(j−l)

N︸ ︷︷ ︸
at Ωk=(Ωj−Ωl)

, (3.37)

makes the mixing products at Ωk = (Ωj − Ωl) more clear. Viewed from a different perspec-
tive, one contribution to the rate of sum frequency generation Yj = dEj/dz at frequency
Ωj = Ωk + Ωl, is proportional to the magnitude of the field components at Ωk and Ωl. Each
column of the Jacobian considers a contribution with a different Ωl.
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3.2 Calculating Polarization Terms

Generally, the total polarization P̃ induced in a material is not linear in the electric field E.
Instead, it can be represented by an expansion in powers of E as follows [1, p.15]:

P̃ = ϵ0

(
χ(1) ·E + χ(2) : EE + χ(3) ... EEE + · · ·

)
, (3.38)

where ϵ0 is the vacuum permittivity and χ(j) is the jth order susceptibility. The susceptibility
χ(j) is a material-dependent tensor of rank j + 1. In our simulations, we only consider the
first three terms of the expansion. The first linear term is treated separately and will largely
be removed by operating in a reference frame moving at the group velocity of the optical
probe pulse. In the NLSE [Eqn. (3.19)] and the FME [Eqn. (3.28)], P and P represent the
nonlinear portions of P̃. In the following, we detail how we calculate the polarizations for the
THz-probe and THz-THz simulations separately. From here on, the coordinate system has
been changed such that the pulse travels down the x-coordinate; therefore, x → y, y → z
and z → xwith respect to Section 3.1. This will prove to be a more simple frame of reference
when calculating the polarization components of ZnTe.

3.2.1 THz-Probe Polarization Terms
Let us start with the second-order polarization term

P(2) = ϵ0χ(2) : EE, (3.39)

where E is the total real electric field. Following the approach of Cornet et al. [14], for the
optical probe field we have an envelope-modulated plane-wave

Ẽpr = 1
2

[
Ãpr(x, t)ei(kprx−ωprt) + c.c.

]
, (3.40)

where Ãpr(x, t) is the complex envelope of the pulse and c.c. is the complex conjugate. How-
ever, as done for the derivation of the NLSE (Sec. 3.1.1), we only consider the forward-
traveling component by dropping the complex conjugate and absorbing the factor of 1/2,
yielding:

Epr = Apr(x, t)ei(kprx−ωprt). (3.41)

For the THz pump field we simply have Epu, which is the measured real-field. We do not
factor a carrier frequency out of Epu, because it only consists of a few cycles that vary slowly
in comparison to the envelope of the optical probe pulse. The total field in the crystal is a
sum of the probe and THz fields,

E = Epr + Epu. (3.42)
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Inserting the total field into the definition of the second order polarization, Eqn. (3.39), we
have

P(2) = ϵ0χ(2) : (Epr + Epu)2, (3.43)

P(2) = ϵ0χ(2) :

���Epr
2︸︷︷︸

∼2ωpr

+ 2EprEpu︸ ︷︷ ︸
∼ωpr

+���Epu
2︸ ︷︷ ︸

∼0

 . (3.44)

In our simulations, we only consider components with an angular frequency near ωpr. The
THz components (∼ 0) are not detectable on a photo diode, and will be treated separately
in the next section. We have run the experiment with and without a 40 nm bandpass filter
centered at ωpr ↔ 800 nm (Thorlabs FB800-40), which would filter out the components
near the second harmonic 2ωpr, and saw little if any change.

The second-order polarization of interest can be expanded as a summation over its various
polarization components as follows:

P(2) = ϵ0χ(2) : 2EprEpu, (3.45)

P
(2)
i = 2ϵ0

∑
jk

χ
(2)
ijkEprj

Epuk
, (3.46)

P
(2)
i = 2ϵ0

∑
jk

χ
(2)
ijkAprj

ei(kprx−ωprt)Epuk
. (3.47)

We also treat the polarization as a forward propagating plane-wave oscillating at the probe
frequency, and define

P(2) = P(2)(x, t)ei(kprx−ωprt). (3.48)

The complex envelope of the polarization amplitude is then

P(2)
i (x, t) = 2ϵ0

∑
jk

χ
(2)
ijkAprj

Epuk
. (3.49)

In Section 4.2 we explicitly calculate the non-zero polarization terms for both ⟨100⟩ and ⟨110⟩
cut ZnTe. For now, we move on to calculating the third-order terms.

The process proceeds as before, except we cube the total field to obtain

P(3) = ϵ0χ(3) ... (Epr + Epu)3, (3.50)

P(3) = ϵ0χ(3) ...

���Epr
3︸︷︷︸

∼3ωpr

+�����3Epr
2Epu︸ ︷︷ ︸

∼2ωpr

+ 3EprEpu
2︸ ︷︷ ︸

∼ωpr

+���Epu
3︸ ︷︷ ︸

∼0

 . (3.51)
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Again, we only keep the terms oscillating near ωpr. Expanding the selected term as a summa-
tion over the various polarization components we have

P(3) = ϵ0χ(3) ... 3EprEpu
2, (3.52)

P
(3)
i = 3ϵ0

∑
jkl

χ
(3)
ijklEprj

Epuk
Epul

, (3.53)

P
(3)
i = 3ϵ0

∑
jkl

χ
(3)
ijklAprj

ei(kprx−ωprt)Epuk
Epul

. (3.54)

Using a similar plane-wave assumption for the polarization, the corresponding complex en-
velope becomes

P(3)
i (x, t) = 3ϵ0

∑
jkl

χ
(3)
ijklAprj

Epuk
Epul

. (3.55)

When calculating the NLSE [Eqn. (3.19)], the sum of the second- and third-order polar-
izations is taken as the total nonlinear polarization,

Pi(x, t) = P(2)
i (x, t) + P(3)

i (x, t). (3.56)

3.2.2 THz-THz Polarization Terms
Calculating the second and third order contributions to the nonlinear polarization for the THz-
THz simulations proceeds in the same manner as for the THz-probe simulations. However,
the total field E is now simply Epu. Depending on the particular sub-simulation, Epu will be
one of the THz pump pulses A = EA(t) or B = EB(t), or the sum of both.

Let us start again with the second-order polarization term, immediately substituting the
total field Epu to find

P(2) = ϵ0χ(2) : EpuEpu︸ ︷︷ ︸
∼±2Ω0 and ∼0

, (3.57)

where Ω0 is the approximate center-angular-frequency of the THz pump pulses. As before,
this can be expanded as a sum over polarization components:

P(2) = ϵ0χ(2) : EpuEpu, (3.58)

P
(2)
i = 2ϵ0

∑
jk

χ
(2)
ijkEpuj

Epuk
. (3.59)

Notably, this is as far as we need to go, sincewewill not bemaking an envelope approximation
in the FME. The process is the same for the third-order polarization:

P(3) = ϵ0χ(3) ... EpuEpuEpu︸ ︷︷ ︸
∼±3Ω0 and ∼±Ω0

, (3.60)

P
(3)
i = ϵ0

∑
jkl

χ
(3)
ijklEpuj

Epuk
Epul

. (3.61)
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The sum of the second- and third-order polarizations is again taken as the total nonlinear
polarization,

Pi(x, t) = P
(2)
i (x, t) + P

(3)
i (x, t). (3.62)

One major deviation from the THz-probe polarizations is that the Fourier transform of the
total polarization,

Pi(x, Ω) = F{Pi(x, t)}, (3.63)
will be used in the FME, since the equation is solved in the frequency-domain. However, as
a practical matter, the total polarization will still be calculated in the time-domain, where it is
intuitive to multiply the fields, rather than in the frequency domain where computation would
require convolving the spectra [8, p. 115].

3.3 THz-THz simulations
In this first part of the simulation, we propagate the THz pump fields alone to map their linear
and nonlinear evolution through the crystal. We will be solving the carrier-resolved forward
Maxwell Equation [Eqn. (3.28)] that was rederived from the UPPE in Section 3.1.2. We
continue to work in the coordinate systemwhere the pulse travels down thex-coordinate (x→
y, y → z and z → x with respect to Section 3.1). Making the transformation, Eqn. (3.28)
takes the form

∂Epu(x, Ω)
∂x

= i
[n(Ω)− ngr(ω0)]Ω

c
Epu(x, Ω) + iΩ

2ϵ0cn(Ω)
Ppu(x, Ω). (3.64)

As a reminder, we have already taken a plane wave approximation, and are operating in a
reference frame moving at the group velocity of the optical probe, vg = c/ngr(ω0). We
consider the center wavelength of the probe to be 800 nm, and determine the respective group
refractive index, ngr, in ZnTe using the values tabulated by [36]. For the refractive index in the
THz domain, n(Ω), the real component is derived from the model for the dielectric constant
provided by Gallot et al. [20, Eqn. (1)]. The imaginary component was extracted with an
interpolation of the power absorption coefficient provided by the same authors [20, Fig. 1(b)].
We chose to interpolate themeasured data for the imaginary components, since their model for
the dielectric constant does not account for two broad absorption features around 1.6 THz and
3.7 THz. The values are provided in Fig. 3.2, where we have converted the imaginary index
components to more commonly used power absorption coefficients, α, using the relation

α = 2Ω
c

Im
[
n(Ω)

]
. (3.65)

The vector FME will be solved as two separate scalar equations, one for each of the
transverse components ŷ and ẑ. The general second- and third order polarization terms were
defined in Section 3.2.2, and the vector Ppu is the sum over the transverse components

Ppu(x, Ω) =
∑

i

Pi(x, Ω). (3.66)



3.3 THz-THz simulations 53

0

100

200
Pw

r. 
Ab

so
rp

. [
cm

1 ]

1.6 THz

3.6 THz
Im[n( )] model

interp.
extract.

0 1 2 3 4 5
Frequency [THz]

3.0

3.5

4.0

4.5

Re
fra

ct
iv

e 
In

d. Re[n( )]

Figure 3.2. Power absorption coefficient and refractive index for ZnTe derived from [20] and used in
the simulation. (a) The power absorption coefficient, α. There are two broad peaks at 1.7 THz and
3.6 THz in the data extracted from [20, fig. 1(b)] that are not included in the Lorentzian model [20,
Eqn. (1)]. Thus, we have interpolated the data and extended it with the model. (b) The refractive index
of ZnTe based on a Lorentzian oscillator model [20, Eqn. (1)].

The specific form of the polarization in ZnTe, for several experimental configurations, is
discussed in Section 4.2.

Our model needs an initial field to propagate. To that end, we have recorded a reference
THz waveform at a low field strength, such that any measured nonlinearities are negligible.
To record the waveform, we used electro-optic detection (Section 2.4) in a ⟨110⟩ cut ZnTe
crystal with a thickness of l = 1 mm. The details of this measurement are discussed in
Section 4.1. The reference field is apodized with a Tukey window and interpolated with a
spline so that is can be uniformly sampled at any desired density, typically we use 28 points.
These points are distributed over a window that is approximately five times wider than the
reference pulse, to avoid window-edge effects as the pulse disperses during the simulation.
We zero pad the reference waveform so that the simulation domain is [−10 ps, 18 ps], where
0 ps is approximately the leading edge of the pulse.

Notably, the resulting waveform represents the field measured as it propagates across the
length of the crystal, not the field at the front face of the crystal. We will call this measured
fieldEpu(x = l, t). AlthoughEpu(x = l, t) contains negligible nonlinear content, the effects
of material dispersion and loss, as well as convolution with the finite-duration optical probe,
are significant. To attempt to nullify these contributions and retrieve an accurate representa-
tion of the waveform at the front face of the crystal, we Fourier transform Epu(x = l, t) and
apply a deconvolution factor in the frequency domain. The spectrum of the THz waveform
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at the front face of the crystal, and the input to our simulation, is taken to be:

Epu(x = 0, Ω) = 1
f(Ω)

∫ ∞

−∞
eiΩtEpu(x = l, t)dt. (3.67)

The deconvolution factor, f(Ω), is given by Gallot and Grischkowsky [19]:

f(Ω) = Copt(Ω)χ(2)
eff (ω0; Ω, ω0 − Ω)exp(i∆kl)− 1

i∆k
. (3.68)

It is the product of three distinct contributions. The first,Copt, accounts for the non-zerowidth
of the optical probe pulse. It is the spectral amplitude of the optical probe pulse autocorrelation
(AC), given by

Copt = 1
∆Ω
√

2π
exp(−Ω2/(2∆Ω2)), (3.69)

for a Gaussian pulse with a spectral bandwidth

∆Ω = 2π
0.44

FWHMpr

1
2
√

ln(2)
, (3.70)

where FWHMpr is the full-width-at-half-maximum duration of the probe pulse, which is
approximately 100 fs. The factor Copt loosely conforms to the convolution theorem of the
Fourier transform [8, p.115], since one can imagine electro-optic detection as a cross-correlation
between the THz field and the optical probe pulse. In the time-domain, a wide-duration op-
tical pulse will average a large section of the THz waveform, thus smoothing it out. In the
frequency domain, a wide-duration pulse has a narrow spectrum. The spectrum of its auto-
correlation, which has the carrier removed, is centered about zero THz, thus acting like a
low-pass filter. The second contribution,

χ
(2)
eff = n(Ω)2 − 1, (3.71)

is the frequency dependent magnitude of the second order susceptibility (based on Miller’s
rule [6]). The strength of the electro-optic effect is frequency dependent, and is strongly
suppressed for high-frequencies near the 5.32 THz phonon in ZnTe [20]. The remaining
contribution,

exp(i∆kl)− 1
i∆k

, (3.72)

accounts for a lack of phase matching as well as absorption in the material. The wave vector
mismatch of a THz field component relative to the effective group-wave-vector for the optical
probe pulse is given by:

∆k = Ω
c

[n(Ω)− ngr(ω0)] . (3.73)

After applying the deconvolution factor, the THz field is propagated through the material.
We use the solve_ivp method from SciPy [57], which is a wrapper of the FORTRAN solver

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
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LSODA from ODEPACK [26]; although, a custom solver would likely be more efficient
[33]. The spatial step size is selected adaptively by the solver as the solution progresses.
The resulting THz waveforms at incremental depths into the material/crystal are interpolated
with a bivariate spline approximation over a rectangular mesh (RectBivariateSpline). This
spatio-temporal map of the linear and nonlinear evolution of the THz field will be sampled
by the optical probe in the ‘THz-probe’ simulation, as discussed in the following section. An
example map is provided in Fig. 3.3.
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Figure 3.3. Spatio-temporal map of the linear and nonlinear evolution of the THz pump pulse in 1 mm
thick, ⟨110⟩ ZnTe. The THz pump is initially completely ŷ polarized, but as it propagates, a new ẑ
polarized component is generated. For both components, a long oscillating tail fans outs as the pulse is
dispersed in the crystal. The probe delay range of the full map is [−10 ps, 18 ps], but we have cropped
it here to [−3 ps, 5 ps]. The peak field strengths of the ŷ and ẑ components over the map are indicated
in the lower left corner.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RectBivariateSpline.html
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3.4 THz-probe simulations
In this second part of the simulation, we propagate the optical probe pulse, considering its
nonlinear interaction with the previously calculated spatio-temporal map of the THz pump
pulse evolution. Specifically, we will be solving the nonlinear Schrödinger equation (NLSE)
[Eqn. (3.19)] that was rederived from the UPPE in Section 3.1.1. We continue to work in the
coordinate system where the pulse travels down the x-coordinate (x→ y, y → z and z → x
with respect to Section 3.1). In addition, we want to emphasize that the simulation time,
tsim, is not equal to the probe-delay, t (see Note 3.1). Making these variable substitutions,
Eqn. (3.19) takes the form

∂xApr(x, tsim) = iω0

2ϵ0n(ω0)c
P(x, tsim). (3.74)

Note again that we are operating in a reference frame moving at the group velocity of the
optical probe, vg = c/ngr(ω0). It is also worth mentioning that most of the quantities are de-
termined by the center angular frequency of the optical probe, ω0, corresponding to an 800 nm
wavelength. This vector NLSE equation will be solved as two separate scalar equations, one
for each of the transverse components ŷ and ẑ. The general second- and third order polar-
ization terms were defined in Section 3.2.1, and the vector P is the sum over the transverse
components

P(x, t) =
∑

i

Pi(x, t). (3.75)

The specific form of the polarization in ZnTe, for several experimental configurations, is
discussed in Section 4.2.

Note 3.1 Comparison to the experiment

The probe-delay, t (Fig. 1.4), is an initial relative delay between the THz field and
the optical probe pulse. For each t, we carry out a full THz-probe simulation with an
array of tsim values that sample the delayed waveforms. This is very much like the
experiment, where we step the probe delay stage (‘Dly Pr’ in Fig. 2.1) to increment
t, then record the probe ŷ and ẑ intensities on photodiodes (effectively an integration
over tsim). We repeat this process for all delays t.

Because the FWHM duration of the probe is considerably shorter than the extent of the
THz pump pulses and the variations within them, we use a simulation subdomain with a
smaller step-size than for the THz-THz simulation, and interpolate the THz map. The subdo-
main is given by

tsim ∈ [t− 10 FWHMpr, t + 10 FWHMpr], (3.76)

where the value of the initial THz-probe delay, t, is incremented for each simulation (Note 3.1).
A subdomain 20 times wider than the pulse duration avoids edge-effects at the boundary.



3.4 THz-probe simulations 57

Typically, there are 28 THz-probe delays (simulations), and 27 simulation times, tsim, in the
subdomain.

Each simulation is initialized with the probe having a Gaussian complex envelope at the
front face of the crystal, given by:

Apr(x = 0, tsim) =

(
2
√

ln 2
FWHMpr

√
π

)1/2

exp

[
−2 ln 2 (tsim − t)2

FWHM2
pr

]
. (3.77)

Notably, this is the electric field envelope, not the power envelope. The factor before the
exponential normalizes the pulse energy to 1.

After simulating the probe-propagation for a given delay t, the effective polarimetric sig-
nal,∆S, is calculated. This is implemented numerically in much the sameway it is performed
experimentally in the lab. Conceptually, we do the following:

1. Apply the Jones matrix for a quarter-wave plate (QWP) to circularize the probe polar-
ization.

2. Apply the Jones matrix for a polarizer to separate the S- and P-polarized components
of the probe.

3. Integrate the intensity of the S- and P-polarized components and take their difference.

4. Normalize the difference by the total integrated probe intensity.

We will now expand on those concepts. Before the crystal, the probe is linearly polarized
at an angle θpr, which is defined absolutely in Fig. 4.7. However, regardless the absolute
value, the angle of the QWP and polarizer are always defined relative to the probe angle. The
QWP angle θqwp is set to ‘bias’ the polarization of the probe so that, in the absence of any
modulation by the crystal/THz-field, it is circularly polarized. This requires the QWP fast and
slow axes to be at 45 deg to θpr, thus, θqwp = θpr + 45 deg. The Wollaston polarizer angle
θpol is set such that, in the absence of the QWP and crystal/THz-field, the probe is entirely
P-polarized. Therefore, θpol = θpr. The Jones matrices for the QWP with its fast axis along
ŷ, and the polarizer with its axes along ẑ and ŷ, are as follows:

Jqwp =
[
1 0
0 −i

]
, Jpol =

[
1 0
0 1

]
. (3.78)

Rather than calculating Jonesmatrices for the rotated components, in the simulation it is easier
to rotate the fields after the crystal. We apply a series of rotations matrices

R(θ) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (3.79)

where the total Jones matrix for detection is

Jtot = JpolR(−θpol)R(θqwp)JqwpR(−θqwp). (3.80)
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Detection takes place in the frame of the polarizer, where the S- and P-polarized components
of the probe are already separated—we do not rotate back into the lab-frame. The detected
intensity difference is

∆I =
∑
tsim

(
|AprS

|2 − |AprP
|2
)

. (3.81)

This difference is then normalized by the total probe intensity to get the modulation, ∆S =
∆I/I0, which takes a value between 0 and 1.

In the absence of a THz pump field, the probe is perfectly circularly polarized and the
polarizer will split the probe into equal S- and P-polarized components. The resulting intensity
difference on the photo diodes, and modulation ∆S, would then be zero or ‘balanced’. When
the probe interacts with the crystal/THz-field the ‘effective’ polarization is modified (see
Section 4.2 for further insights) so that the polarization after the QWP is elliptic, and the S-
and P-polarization components after the polarizer are not equal.



CHAPTER4
Nonlinear Optical
Processes in ZnTe

In this chapter, we synthesize what we have discussed thus far and apply it to studying direct
and cascaded nonlinear optical processes in ZnTe.

When discussing the instrumentation in Chapter 2, it may have seemed slightly odd that
we avoided directly calling the measurement method electro-optic (EO) detection, and rather
emphasized that the measurements were polarimetric. Indeed, we too started this project from
the perspective that we were simply electro-optically detecting the fields in ZnTe, but it soon
became apparent that this was too narrow a perspective. As emphasized in Section 2.4, po-
larimetry encompasses all sources of polarization modulation on the optical probe, be they
inelastic Raman scattering [32, 38, 42, 52] or photon-energy conservative optical mixing pro-
cesses [34, 44, 52]. Electro-optic detection results from just one of the numerous possible
optical mixing contributions due to non-resonant interactions between the electric fields and
the electronic-structure of the material. Specifically, in non-centrosymmetric crystals like
ZnTe, the dominant interaction between the THz field and the optical probe is the ‘linear’
electro-optic (Pockels) effect—this is the basis of electro-optic detection. For small fields,
the polarization modulation of the optical probe is linearly proportional to the applied THz
field strength [45]. However, make no mistake, the ‘linear’ electro-optic effect is a nonlinear
process—it is linear in either the THz or optical field, but the overall process is a nonlinear
product of the two. This product is more clearly seen in the polarization term associated with
the linear electro-optic effect,

P(2) = ϵ0χ(2) : 2EprETHz, (4.1)

where Epr is the optical probe field and ETHz ≡ Epu is the THz pump field, which can take
on the value EA(t), EB(t) or [EA(t) + EB(t)], depending on whether the ‘A’, ‘B’ or both
THz pump pulses are applied to the sample.

Rediscovering that electro-optic detection can be viewed as a nonlinear process [19] was
the main point of departure in moving away from the often-used intuitive perspective that the
quasi static THz field induces a birefringence ‘sensed’ by the optical probe [45]. Guided by
the work of others, in Chapter 3 we developed numerical methods that now allow us to simu-
late other nonlinear processes occurring in parallel or sequentially with the linear electro-optic
effect. In particular, we followed a long line of publications starting with Bosshard et al. [4]
who showed that, through optical rectification, an optical pump pulse can generate a surround-
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ing static electric field that subsequently rotates the polarization of a co-propagating optical
probe pulse via the electro-optic effect. Caumes et al. [10] extended this to include not only
the static electric field, but also the THz-frequency field radiated by—and co-propagating
with—this traveling static impulse. This co-propagating THz-frequency field also modifies
the polarization of the optical probe pulse through the electro-optic effect, just as if electro-
optic detection were occurring in parallel. Further, Cornet et al. [15] demonstrated that begin-
ning with a THz (rather than optical) pump pulse is no less interesting, in that the electro-optic
effect can rotate the polarization of an optical probe such that it cascades into a previously
symmetry-forbidden second harmonic generation process.

With the foregoing in view, the present chapter focuses on the power of 2D THz-THz-
polarimetry in discriminating between cascaded processes—such as those just discussed—
and concomitant direct processes. As highlighted in Section 1.7, our 2D measurements con-
tain a signal proportional to a product of the two THz pump fieldsEA and EB . We suggested
two possible contributions:

Direct: P = ϵ0χ(3)EAEBEpr (4.2)

Cascaded: P = ϵ0χ(2)
[
χ(2)EAEB

]
︸ ︷︷ ︸

Reradiated

Epr. (4.3)

The first contribution is a direct third-order process between the THz fields and the optical
probe. The second contribution involves two cascaded second-order processes. In the first of
the cascaded processes, the two THz pump fields directlymix and radiate product fields; in the
second process, the product fields are detected by the optical probe. To distinguish between
the direct and cascaded processes, we have taken a combined experimental and numerical
approach.

In the first experiment, our fields are normally-incident on a ⟨100⟩-cut (‘inactive’) ZnTe
crystal so that second-order (χ(2)) processes are symmetry-forbidden for all transverse polar-
izations. The resulting measurement acts as a reference for the signature of third-order (χ(3))
processes alone. These experimental results are complemented by a simulation where we
have set χ(2) = 0 to confirm that third-order processes account for what we have measured.

In the second experiment, our fields are normally-incident on a ⟨110⟩-cut (‘active’) ZnTe
crystal. In this case, the field polarizations are configured so that second-order processes
are initially forbidden, but can be accessed by cascading from a primary third-order process.
For this experiment, our simulations are particularly illuminating. The ability to separate
THz-THz and THz-probe interactions allows us to determine that the cascaded second-order
processes suggested in Eqn. (4.3) are existent, but negligible. In fact, all THz-THz nonlinear
contributions are negligible with respect to the THz-probe contributions. However, we also
find that there is still a significant cascaded second-order THz-probe contribution, not yet
considered.

In the following, we will start by detailing how the reference THz waveforms used in
our simulations were retrieved from the polarimetric measurements. These measurements
were carried out at low field strengths, where a straightforward interpretation using the small
field approximations for electro-optic detection [45] is acceptable. We also demonstrate the
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limitations of this model at higher field strengths. Notably, the latter part is slightly tangential,
so please bear with us. Subsequently, we calculate the polarization terms for ZnTe using
the framework laid out for a general material in Section 3.2. These polarization terms are
dependent on the crystal and field orientations, and we will discuss how we selected the
orientations to achieve the desired suppression of χ(2) processes for each experiment. Finally,
we provide the experimental and numerical results in a side-by-side fashion, showing how
cascaded and direct processes are plainly discriminated. We will offer possible explanations
for the specific features in the nonlinear maps.

Finally, the experimental and numerical results will be provided in a side-by-side fash-
ion, demonstrating how cascaded and direct processes are plainly discriminated. Possible
explanations for the specific features in the nonlinear maps will be offered.

4.1 Reference Waveforms

For our simulations, it is crucial to have an accurate reference for the amplitude and shape of
the THz electric field before it interacts with the ZnTe detection crystal. While accounting for
linear dispersion and loss in the crystal is relatively straight forward, untangling nonlinearities
post-measurement poses a significant challenge. To ensure a reliable reference in a regime
where nonlinearities can be safely ignored, we recorded a series of waveforms using 0 to 10
attenuating silicon (Si) wafers before the detection crystal. In this way, we gain a greater
context for the degree to which our 10-wafer measurement is linear. To minimize potential
nonlinear effects introduced by the wafers themselves, we placed them in a collimated section
of the beam path between the two 4 in off-axis parabolic mirrors shown in Fig. 2.1, where the
field strengths are already several orders of magnitude lower.

Themeasurementsweremade using EOdetection—a sub-variant of polarimetry—discussed
in more detail in Section 2.4. The relevant operating parameters and material properties are
listed in Tbl. 4.1. Throughout this section, we only discuss the ‘AB’ waveforms, with the
pump delay τ equal to zero and both the A and B THz pulses temporally overlapped (refer-
ence Fig. 1.4). This configuration produces the maximum attainable electric field strength.
However, the simultaneously acquired A and B waveforms are what we will use in our sim-
ulations. We oriented the ⟨110⟩ cut ZnTe detection crystal such that αp = −45 deg and
φp = (αp−90 deg). The subscript p is used to indicate ‘Planken’ variables [45], as illustrated
in Fig. 4.1. Note that this is not the typical orientation for EO detection where αp = 90 deg.
Fig. 4.2 shows that the chosen angles place us near a local maximum in the detection effi-
ciency at approximately −28 deg, but avoid the global maximum at 90 deg to further reduce
nonlinearities (Note 4.1).

The resulting recordings of the normalized intensity modulation, ∆S = ∆I/I0, are
shown in Fig. 4.3(a). As the number of wafers decreases from 10, the waveform largely
maintains the same shape, only flattening slightly where the peak modulation depth reaches
a value of 0.444. However, beyond this threshold the waveform becomes highly structured,
indicating a far-from-linear detection regime. The maximum theoretical modulation depth,
∆Smax(αp, φp), depends on the orientation of the fields with respect to the crystal, but does
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ZnTe
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<100> <010>

ETHz
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Figure 4.1. Definition of the crystal coordinate system used by Planken et al. [45]. The THz and NIR
fields co-propagate along the −x̂ ′ axis.

Table 4.1. Electro-optic detection parameters and material proper-
ties.

Parameter Value Parameter Value
λpr 800 nm ZnTe-cut ⟨110⟩
ωpr 2πc/λpr L 1.0 mm
npr

1 2.85 r41
2 −2.72 pm/V

1 [36]
2 [10, 54], see Note 4.5
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Figure 4.2. Calibration of the ZnTe crystal holder angle. The measured modulation depths ∆S at a
fixed delay (black crosses, normalized to 1), are fit with the small-field approximation Eqn. (4.4) (blue),
assuming φp = (αp − 90 deg). In this way we are able to determine the absolute angle of our fields
with respect to the ⟨001⟩ axis of the ZnTe crystal. See Note 4.2 for more details.

Note 4.1 ZnTe Orientation

Typically, we will be operating at αp = 90 deg and φp = (αp − 90 deg). This is
the global maximum of the EO detection efficiency, as show in Fig. 4.2. Fortunately,
in the small-field detection regime, the relative field/crystal orientations about the x̂ ′

axis affect only the amplitude, not the shape of the THz waveform. The latter only
depends on the dispersion of both the refractive index npr in the near-infrared (NIR)
range and the electro-optic coefficient r41 [45].
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Note 4.2 Crystal Holder Calibration

The crystal holder angle was calibrated by recording the modulation depth ∆S at a
fixed delay for several crystal angles, and subsequently fitting the data with the small-
field approximation [45]

∆S(αp, φp) ≈
ωprn

3
prETHzr41L

2c
(cos αp sin 2φp + 2 sin αp cos 2φp). (4.4)

The results are shown in Fig. 4.1. To ensure the validity of this approximation, the
field was attenuated with a pair of wire-grid polarizes. The polarizers were set such
that the attenuation factor was 0.087—equivalent to ∼ 7 Si wafers.

not exceed 1. This limit is apparent upon inspecting the modulation equation [45]:

∆S(αp, φp) = sin[2(φp − θp)] sin
{

ωpr

c
[ny(αp)− nz(αp)]L

}
. (4.5)

In Eqn. (4.5), we observe that the modulation depth is proportional to the product of two sine
functions. The argument of the leading sine only contains geometric parameters φp and θp.
The later parameter, θp, represents the rotation angle of the index ellipsoid’s principal axes
about x̂ ′ and is related to αp by [45]

2θp = − arctan(2 tan αp)− nπ, (4.6)(
n− 1

2

)
π ≤ αp <

(
n + 1

2

)
π, n = 0, 1, . . . .

Using these relations, we find that the leading sine reduces to 1 when αp = 90 deg and
φp = (αp − 90 deg), which corresponds to the maximum detection efficiency. However,
if we maintain the relationship between φp and αp but set αp = −45 deg, the leading sine
sets the limit ∆Smax ≈ 0.447. Indeed, in Fig. 4.3(a), we observe a peak modulation depth
of approximately 0.444, which is close to this theoretical limit. The influence of the second
sine-function in Eqn. (4.5) is more clearly seen in Fig. 4.3(c), where we have extracted the
peak modulation depth as a function of the total attenuation factor γ (Note 4.3)—in effect, the
incident THz field strength. We fit these peaks with a phenomenological sine function having
γ in the argument. The excellent agreement demonstrates that, for large fields, the measured
modulation ∆S deviates far from the linear approximation in Eqn. (4.4) and is instead nearly
sinusoidal.

We can retrieve the THz field strength in absolute units by using a small-field approxima-
tion (Note 4.4) for the principal refractive indices, as given by [45]:

ny(αp) ≈ npr +
n3

pr

2
ETHzr41[cos αp sin2 θp + cos(αp + 2θp)], (4.7)

nz(αp) ≈ npr +
n3

pr

2
ETHzr41[cos αp cos2 θp − cos(αp + 2θp)].
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Figure 4.3. Measured field-strength dependence of EO-detection for αp = −45 deg and φp = (αp −
90 deg). Silicon (Si) wafers are used to attenuate the field. Relevant operating parameters and material
properties are found in Tbl. 4.1. (a) The measured modulation depth (fraction of 1). At higher field
strengths ∆S is highly structured and no longer approaches the theoretical maximum of 0.447. (b)
Field strength retrieved from ∆S using Eqn. (4.8). Similarly to (a), the apparent field strength is lower
with less attenuation. (c) The peak modulation depth in (a) is fit with a phenomenological sine function
having ETHz in the argument. The factor γ̂ accounts for material properties and the attenuation factor
(Note 4.3).

Note 4.3 Si Wafer Attenuation

Each Si wafer imparts an attenuation factor of 0.701, which accounts for reflection
losses at the front and rear surface assuming a constant refractive index nSi = 3.417
and no absorption in the material [16]. The total attenuation for a series of wafers is
then γ = 0.701Nw , where Nw is the number of Si wafers.
Coincidentally, the factor of 0.701 is the same as the power transmission coefficient
T for a single air/Si interface. This is because T = |t||t|, where |t| is the magnitude
of the complex amplitude transmission coefficient for a single interface, and for each
wafer we have two interfaces.
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Inserting these relations into Eqn. 4.5 and simplifying the trigonometric expressions yields:

∆S(αp, φp) ≈ sin[2(φp − θp)]

sin
{

ωprn
3
prETHzr41L

2c
(cos αp cos 2θp − 2 sin αp sin 2θp)

}
. (4.8)

As previously noted, the leading sine term determines themaximummodulation depth,∆Smax.
We have calculated its value for two different scenarios: the current geometry with αp =
−45 deg, and the configuration that maximizes detection efficiency withαp = 90 deg. Again,
for all cases considered φp = (αp − 90 deg). The results are as follows:

∆Smax = sin[2(φp − θp)] ≈

{
0.447, αp = −45 deg
1, αp = 90 deg

. (4.9)

The respective inner geometric terms in the second sine are:

(cos αp cos 2θp − 2 sin αp sin 2θp) ≈

{
1.58, αp = −45 deg
2, αp = 90 deg

. (4.10)

Note 4.4 Small-Field Approximation

The small-field approximation made in Eqn. (4.7) is quite different from that used to
derive Eqn. (4.4). The sinusoidal nature of the polarimetric measurement described by
Eqn. (4.5) is not inherently field dependent, but rather has to do with the 2π cyclicity
of phase. For example, when two half-wave plates are stacked consecutively, the total
retardation amounts to a full-wave, which, for sinusoidal signals, acts as an identity
operator. In other words, the signal comes back on itself after a 2π phase retardation,
just like the sine function. By considering the argument in Eqn. (4.5) to be small, we
are assuming the phase retardation is small. Although this assumption often holds true
for small fields, it is still possible to detect a seemingly “nonlinear” signal even for a
small field if the crystal length, L, is large.
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These calculations reveal that ‘detuning’ the crystal away from the maximum detection
efficiency angle (αp = 90 deg) reduces the attainable modulation depth, as well as the rate
of modulation through the argument in the second sine. Solving Eqn. (4.8) for ETHz, and di-
viding by the attenuation factor γ due to the Si wafers, allows us to recover the electric field
before attenuation and detection [Fig. 4.3(b)] from the modulation depths [Fig. 4.3(a)].The
parameters and material properties used for the calculations are listed in Table 4.1. The recov-
ered peak field strength when using 10 Si wafers before the detection crystal is 82.2 kV/cm.
When only one or two attenuating wafers are used, it is no longer possible to recover the field.
In fact, at these high field strengths, the deeply structured waveforms appear to have a lower
peak field strength.

A lower recovered peak field strength is to be expected outside the small-field limit, but
it is intriguing that the waveforms never reach the maximum modulation depth in Fig. 4.3(a).
To understand this, consider again Eqn. 4.8. The second sine term is periodic in the field
strength ETHz, reaching a maximum value when the argument is equal to π/2, which occurs
when

π/2 ≈ 1.58
ωprn

3
prETHzr41L

2c
(4.11)

∴ ETHz ≈ 40 kV/cm. (4.12)

At this field strength we reach ∆Smax, and what is called the ‘over-rotation’ point—the point
at which larger field strengths lead to smaller modulations. However, fields exceeding this
point should always reach∆Smax before decreasing again (perhaps multiple times if the field
strength is great enough, since a sine function is cyclic). Instead, in Fig. 4.3(a) we only see
a highly structured region reaching approximately 3/4 of ∆Smax. The expected behavior is
shown in Fig. 4.4, where we have used Eqn. (4.8) to calculate the theoretical ∆S signal for
the 10-wafer reference waveformwith a peak field strength of 82.2 kV/cm (Bell and Hilke [3,
Fig. 7(b)] have reported similar results). The leading positive peak in Fig. 4.4(a) is essentially
cut and mirrored about ∆Smax ≈ 0.447. The same behavior is seen in Fig. 4.4(b) where we
have retrieved the waveform in absolute units, except the field turns at the over-rotation point,
ETHz ≈ 40 kV/cm.

It is perhaps not entirely surprising that Eqn. (4.8) does not hold up at high field strengths
given the small-field approximation made in Eqn. (4.7). However, we now have our first
opportunity to test if the numerical pulse propagation methods developed in Chapter 3 more
accurately represent what we see in these measurements. As an input to the simulation, we
again use the electric field retrieved from the referencemeasurement takenwith 10 attenuating
Si wafers and having a peak field strength of 82.2 kV/cm [Fig. 4.3(b)]. Note that this is the
same field we will soon use for modeling direct and cascaded nonlinearities in Section 4.3.
Overall, we are pleased to see a generally good agreement between the simulation results in
Fig. 4.5 and the measured data in Fig. 4.3. The ripples preceding the pulse in the simulation
are due to the deconvolution process used to account for dispersion and loss in the ZnTe
crystal (see Section 3.3). We unfortunately have not had time to adequately analyze these
results, however, we hypothesize that the inability of Eqn. (4.8) to account for the behavior
at high field strengths stems from neglecting dispersion and third-order nonlinearities. We
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Figure 4.4. Theoretical waveforms for the unattenuated (0 silicon [Si] wafers) electric field calculated
with Eqn. 4.8. As input, we used the electric field retrieved from the reference measurement taken with
10 attenuating Si wafers, having a peak field strength of 82.2 kV/cm [Fig. 4.3(b)]. The EO detection
parameters are listed in Table 4.1. In (a) we see the modulation depth reaches the theoretical maximum
of 0.447. The peak of the pulse is essentially cutoff and flipped across this limit. In (b) we have
inverted Eqn. (4.8) to find ETHz from the calculated values of ∆S. Because arcsin is only defined on
[−π/2, π/2], the recovered field similarly is clipped at the over-rotation point ETHz ≈ 40 kV/cm.

have previously found that when only second-order THz-probe nonlinearities are considered
in our simulations, they are visually indistinguishable from the Planken model [Eqn. (4.8)]
up to a field strength of at least 44 kV/cm

We repeated these simulations but rotated the crystal such that αp = 90 deg, maximizing
the detection efficiency. The results are presented in Fig. 4.6. In panel (a), the modulation
depth approaches 1, as expected from Eqn. (4.9). For high levels of attenuation, both the
simulation with αp = −45 deg and αp = 90 deg yield a peak field strength of 85.4 kV/cm
(cf. Fig. 4.5(b) and Fig. 4.6(b)). However, noticeable differences in the retrieved fields emerge
at lower levels of attenuation. Although further investigation is required, it is worth noting
that the assertion by Planken et al. [45] regarding the waveform’s structure being independent
of crystal angle appears to be limited to the small-field regime (as considered by them).
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Figure 4.5. Simulated field-strength dependence of EO-detection for αp = −45 deg. All parame-
ters/properties match those used in the measurements in Fig. 4.3. We used the electric field retrieved
from the reference measurement taken with 10 attenuating silicon (Si) wafers as the input (Fig. 4.3(b),
82.2 kV/cm peak). (a) The simulated modulation depth (fraction of 1). (b) Field strength retrieved from
∆S using Eqn. (4.8). (c) The peak modulation depth in (a) fit with a phenomenological sine function
having ETHz in the argument. The factor γ̂ accounts for material properties and the attenuation factor
(Note 4.3). Generally, the simulations match the behavior seen in the measurements.
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Figure 4.6. Simulated field-strength dependence of EO-detection for αp = 90 deg. All other param-
eters/properties match those used in the measurements in Fig. 4.3. We used the electric field retrieved
from the reference measurement taken with 10 attenuating silicon (Si) wafers as the input (Fig. 4.3(b),
82.2 kV/cm peak). (a) The simulated modulation depth (fraction of 1). Withαp = 90 deg the detection
efficiency is enhanced and ∆S approaches the theoretical maximum of 1. (b) Field strength retrieved
from ∆S using Eqn. (4.8). (c) The peak modulation depth in (a) is fit with a phenomenological sine
function havingETHz in the argument. The factor γ̂ accounts for material properties and the attenuation
factor (Note 4.3). For high attenuation (small-fields) the simulation is similar to that for αp = −45 deg
(Fig. 4.5). At higher fields, the structure of the waveforms is not independent of αp.
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4.2 ZnTe Polarization Terms
In Section 3.2 we calculated the second- and third-order polarizations generally for any ma-
terial. In this section, we will use the crystal-symmetries of ZnTe and our knowledge of the
fields to narrow down the relevant contributions. ZnTe is a cubic crystal with a 4̄3m point-
group. Assuming Kleinman symmetry (Note 4.5), the only non-zero elements of χ

(2)
ijk are [7,

p.47]:
ijk ∈ {XY Z = XZY = Y ZX = Y XZ = ZXY = ZY X},

where capital X, Y, Z denote crystallographic axes, and all elements have the same value of
χ̄(2) = 90 × 10−12 m/V [10]. For χ

(3)
ijkl, there are four independent terms following the

relationships [7, p.53]:

ijkl ∈ {a = XXXX = Y Y Y Y = ZZZZ,

b = Y Y ZZ = ZZY Y = ZZXX = XXZZ = XXY Y = Y Y XX,

b = Y ZY Z = ZY ZY = ZXZX = XZXZ = XY XY = Y XY X,

b = Y ZZY = ZY Y Z = ZXXZ = XZZX = XY Y X = Y XXY },

where a = 3 × 10−19 m2/V2 and b = a/1.9 [10]. To be clear, these tensor elements are

Note 4.5 Kleinman Symmetry

Kleinman symmetry is valid whenever dispersion (and by extension via the Kramers–
Kronig relations, absorption) of the susceptibility can be neglected and allows us to
freely permute the indices of the susceptibility tensors [7]. It is often valid for optical
frequencies in the NIR and visible ranges, far from ionic and electronic resonances
[6, 7]. However, for the THz frequencies considered herein, Kleinman symmetry is
a poor approximation given the large TO phonon at 5.32 THz, and the smaller, yet
broad, second-order phonon absorption bands around 1.6 THz and 3.7 THz [20, 48].
Lack of Kleinman symmetry is plainly evident in the disparity between the optical
susceptibility χ̄(2) = 90 × 10−12 m/V [10] and the electro-optic coefficient r41 =
3.9 pm/V [3], which can be converted to a susceptibility with the relation [6]

2χ
(2)
ijk = dijk = −1

4
n2

i n2
jrijk, (4.13)

where in any system of units χ(2) = 2d by convention [7, p.50]. Using this relation,
we find χ̄

(2)
r41 ≈ −130 × 10−12 m/V, a factor of -1.4 times χ̄(2). The author admits

he does not understand the significance of the sign change, but it results from a Taylor
expansion of the optical indicatrix [5, 54].

in the crystal reference frame (X, Y, Z), whereas our fields are defined in the lab/simulation
reference frame (x̂, ŷ, ẑ). Tomove between the two, we use the rotationmatrixR(ϕ, θ), which
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rotates the crystal by an angle ϕ about the ẑ axis, then by an angle θ about the x̂ axis. The order
and direction of the rotations is important. The direction is defined in Fig. 4.7 and follows
the ‘right-hand-rule’.

a) b)<001>/

<100> <010>

<001
>

<100
> <010

>

Figure 4.7. Definition of the crystal rotation angles used in the simulations. Angle brackets ⟨XY Z⟩
denote crystallographic axes; lab/simulation-frame axes are indicated by x̂, ŷ, ẑ. The crystal- and lab-
frames are initially coincident. (a) The crystal is first rotated about the ẑ axis by angle ϕ, (b) and then
about the x̂ by angle θ. The order and direction are important. Note that the illustrated ϕ-rotation is in
the negative direction, and that both ϕ and θ are defined with respect to the ŷ axis.

In addition to the orientation of the crystal in the lab-frame, we can judiciously set the po-
larization of the electric fields to eliminate alternative confounding contributions to the total
nonlinear-polarization. We will first only describe the purpose of our selected polarizations,
then follow up with calculations of the polarization terms to justify the choices. In Fig. 4.8 the
three crystal-field configurations considered in our study are illustrated. In all cases, the op-
tical probe (Epr) and THz pump (Epu) fields co-propagate down the x̂ axis. Panel (a) shows
‘inactive’ ⟨100⟩ cut ZnTe. The name refers to the lack of a detectable electro-optic effect—a
χ(2) process—for fields polarized in the cut-plane. In fact, all in-plane χ(2) processes are
symmetry-forbidden in this configuration, and this property will allow us to measure the sig-
nature of χ(3) processes alone (Note 4.6).

Epr
45°

<100>/

<001>/

<010>/ <001>/

<100> <010>

Epr
45°

Epu Epu

a) b) <001>/

<100> <010>

Epr
Epu

c)

Figure 4.8. ZnTe crystal and field orientations used in the experiments and simulations. See Fig. 4.7
for axis and angle definitions. (a) ‘Inactive’ ⟨100⟩ cut, rotation angles ϕ = 0 deg and θ = 0 deg. (b)
‘Active’ ⟨110⟩ cut, rotation angles ϕ = −45 deg and θ = −90 deg. Probed such that χ(2) processes
cancel. (c) ‘Active’ ⟨110⟩ cut, rotation angles ϕ = −45 deg and θ = −90 deg. Probed such that χ(2)

processes are maximally imbalanced. (a, b, c) The THz polarization angle, θpu, is 90 def in all cases.
(a, b) The optical probe polarization angle, θpr, is 45 def , and (c) 0 def . The polarization angles are
defined like the crystal angle θ.

Although we can freely choose any in-plane polarizations for Epr and Epu in the ⟨100⟩
cut crystal, they are strategically chosen for the second half of the experiment in panel (b),
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Note 4.6 ‘Inactive’ ZnTe

Recall, a major assumption we made when deriving the FME and NLSE equations
(Section 3.1) was that the longitudinal (x̂) components of the fields are negligible in
comparison to the transverse (ŷ, ẑ) components. This immediately shows why the
⟨100⟩ cut ZnTe, depicted in Fig. 4.8(a), is called ‘inactive’: all second-order tensor
elements with j, k = X are zero, and the remaining elements XY Z and XZY only
produce a polarization in the X = x̂ direction. Radiation from a polarization in x̂
does not propagate in the x̂ direction, so it will not be detectable after the crystal.
Furthermore, since the radiated field does not co-propagate in the crystal, cascaded
effects are likely negligible—this assumption appears to bear out in the experiments
discussed later in Section 4.3. In order to create a detectable second-order polarization
and make the crystal ‘active’, we need to reorient the crystal and electric fields.

where the crystal has been rotated and cut along the ⟨110⟩ plane making it ‘active’. With
Epr = 45 deg and Epu = 90 deg, χ(2) processes are perfectly balanced in opposition, and
do not alter the polarization of the probe. To be clear, χ(2) processes still occur (and likely
shift the spectrum of the probe [19, 31]), but they do not influence the signal measured with
polarimetry. Polarimetry will only detect a χ(2) process if it cascades from a primary χ(3)

process. The primary χ(3) process can be said to break the equilibrium between the two op-
posing χ(2) processes. Therefore, a difference in the signal measured between configurations
(a) and (b) is evidence towards a cascaded process.

While somewhat tangential to the main experiment, panel (c) shows a typical configura-
tion for electro-optic detection [45], as used in Section 4.1 to record reference waveforms of
the THz electric fields. To Transition from panel (b) to (c), we rotated the probe to 0 deg, pur-
posefullymaximizing the imbalance between theχ(2) processes. We previously presented our
repetition of the angle-dependent measurements performed by Planken et al. [45] in Fig. 4.2,
and reconfirmed that the configuration in panel (c) yields the greatest detection efficiency.
This outcome aligns with the predictions made by their small-field index-ellipsoid model;
in the following, we provide an alternative argument based on the second-order polarization
terms.

To calculate the polarization terms, we first need to project the electric fields, E, from
the lab-frame into the crystal-frame with the rotation operator R(ϕ, θ). Recall, the nonlinear
tensor χ is defined in the crystal-frame X, Y, Z, not the lab-frame x̂, ŷ, ẑ. Afterwards, to find
the nonlinear polarization in the lab-frame, P, we project out of the crystal frame with the
inverse operator R(ϕ, θ)−1. This procedure can be written as

P = ϵ0R(ϕ, θ)−1χR(ϕ, θ)E. (4.14)

The total operator
[
ϵ0R(ϕ, θ)−1χR(ϕ, θ)

]
, for ⟨110⟩ and ⟨100⟩ cut crystals assuming neg-

ligible longitudinal field components Eprx
and Epux

, is provided in Appendix A. For the
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second-order THz-Probe polarizations, Eqn. (4.14) takes the formP
(2)
prx

P
(2)
pry

P
(2)
prz

 = ϵ0R(ϕ, θ)−1χ(2)R(ϕ, θ)


Epry

Epuy

Epry
Epuz

Eprz
Epuy

Eprz
Epuz

 . (4.15)

For a ⟨110⟩ cut crystal, ϕ = −45 deg, and in both configurations (b) and (c) in Fig. 4.8,
θ = −90 deg. In these cases, Eqn. (4.15) reduces toP

(2)
prx

P
(2)
pry

P
(2)
prz

 = 2ϵ0χ̄(2)

 0
−Eprz

Epuz

−Epry
Epuz

−�����Eprz
Epuy

 . (4.16)

We have canceled the field term with Epuy
because the THz pump polarization angle at the

front surface of the crystal is θpu = 90 deg—in other words, entirely ẑ-polarized. This could,
however, change when the fields propagate through the crystal, but for now we are only
making an argument based on the prevailing initial condition. In Fig. 4.9 we have plotted the
in-plane components of this polarization, P

(2)
pry

and P
(2)
prz

. The Epu and Epr field strengths
have been normalized to 1, thus the in-plane components are:

Epuz
= 1, Epry

= cos(θpr), and Eprz
= sin(θpr). (4.17)

Considering we are making a polarimetric measurement, what we are really interested in
is the rate at which the probe polarization changes in the crystal. There are two ways the probe
polarization can be modified: (1) ŷ-polarized photons are converted to ẑ-polarized photons,
and vice versa; (2) ŷ-polarized photons are retarded with respect to ẑ-polarized photons, and
vice versa. The first process is associated with polarization terms that are orthogonal to the
constituent probe electric field component. These are terms with the form Pprj

∝ Epri

and j ̸= i. The second process results from the parallelly-polarized terms with j = i. In
this second process, one can imagine the radiation from an induced-polarization as virtually-
absorbed and re-emitted photons—the momentary absorption imparts a small delay in time.
Alternatively, causality requires the induced polarization to occur after the electric field has
arrived, so the radiated field must be delayed with respect to the generating field.

The second-order polarizationwe are considering here [Eqn. (4.16)] initially only contains
‘cross-polarized’ terms, with j ̸= i. To approximate the rate of the polarization change,
we calculate the magnitude-squared difference, ∆|i ̸= j|, between conversion from ŷ to ẑ
polarized photons (ŷ→ ẑ) and ẑ to ŷ polarized photons (ẑ→ ŷ). Explicitly,

∆|i ̸= j| = |Ppry
|2 − |Pprz

|2 (4.18)

= | − Eprz
Epuz

|2 − | − Epry
Epuz

|2. (4.19)

Inspecting ∆|i ̸= j| as a function of θpr in Fig. 4.9(a), we see it is peaked at θpr = 0 deg
(configuration (c) in Fig. 4.8) and θpr = 90 deg. These angles maximize the polarization mod-
ulation rate of the probe, which aligns with the prediction of the small-field index-ellipsoid



74 4 Nonlinear Optical Processes in ZnTe

model (Section 4.1 and [45]). Importantly, Fig. 4.9(a) also shows that the second-order modu-
lation rate is zero for θpr = 45 deg. At this angle, the χ(2) processes are in equilibrium. This
is what we desired for configuration (b) in Fig. 4.8, where second-order processes should
only produce a measurable effect if cascading from a primary third-order process breaks the
equilibrium.
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Figure 4.9. Second- and third-order nonlinear polarization terms in ⟨110⟩ cut ZnTe as a function of the
probe polarization angle θpr. The crystal angle, θ, is −90 deg, and the THz pump polarization angle,
θpu, is 90 deg. See Fig. 4.7 for angle definitions. The curves show the nonlinear polarization terms
Pprj

∝ Epri
. ‘Orthogonal’ terms with j ̸= i, and ‘parallel’ terms with j = i are grouped separately.

∆|i ̸= j| is the magnitude-squared difference of the ẑ → ŷ and ŷ → ẑ terms. ∆|i = j| is the magnitude-
squared difference of the ŷ → ŷ and ẑ → ẑ terms in a rotated frame fixed at a 45 deg angle to the probe
(see text for details). (a) Second-order (χ(2)) nonlinear polarization terms. Both i = j terms are zero.
(b) Third-order (χ(3)) nonlinear polarization terms. Both i ̸= j terms are zero.

We can apply a similar analysis for the third-order polarization terms that we selectively
prioritize in configuration (b) (Fig. 4.8). At the front-face of the ⟨110⟩ cut crystal, we haveP

(3)
prx

P
(3)
pry

P
(3)
prz

 = 3ϵ0

2

 0
2bEpry

E2
puz

(a + 3b)Eprz
E2

puz

 . (4.20)

Notice that these are ‘parallel-polarized’ terms with j = i, rather than ‘cross-polarized’ terms
with j ̸= i. Again, with Pprj

∝ Epri
, there is an in-plane effective retardation of the probe

that is proportional to the nonlinear polarization magnitude. If the nonlinear polarization in
ŷ and ẑ is not the same, then the material is essentially birefringent and acts as a waveplate.
From this perspective, the change in the probe’s polarization depends on both the magnitude
of the birefringence and the orientation of the ‘fast’ (less retardation) and ‘slow’ (more retar-
dation) axes of the waveplate with respect to the probe. For example, if the probe is entirely



4.2 ZnTe Polarization Terms 75

polarized along either the slow or fast axis then, regardless the magnitude of the birefringence,
there will be no change in the probe’s polarization, because all the components either travel
‘slow’ or ‘fast’—we need part of the probe to travel faster than the other to produce a phase
difference that changes its polarization (see [13] for a refresher on waveplates). Therefore,
rather than calculating the magnitude-squared difference of the nonlinear polarization along
the ŷ and ẑ axes, like we did for ∆|i ̸= j|, we will first transform the polarizations to a ro-
tated coordinate frame (ŷ → ŷ ′, ẑ → ẑ ′) where the magnitude of the probe is equal on both
axes. This is like passing a waveplate at 45 deg to the fast or slow axis, and will produce the
maximum polarization change. The polarization in the rotated frame is

(P ′
pry

, P ′
prz

) = R(−θpr − 45◦)(Ppry
, Pprz

), (4.21)

where R(−θpr − 45◦) projects to a coordinate frame angled at 45 deg to the probe. The
magnitude-squared difference of the ‘parallel-polarized’ terms (i = j) in the rotated frame is

∆|i = j| = |P ′
pry
|2 − |P ′

prz
|2. (4.22)

In Fig. 4.9(b), ∆|i = j| is plotted as a function of θpr. We see the function is peaked at
θpr ≈ ±45 deg. Conveniently, this is the same angle that balances the second-order pro-
cesses in configuration (b) (Fig. 4.8). Operating near the maximum of ∆|i = j| provides a
better chance of detecting χ(3) processes, which are on the order of 1e−9 times weaker than
competing χ(2) processes (compare the amplitudes in Fig 4.9).

It is not a coincidence that the maximum of ∆|i = j| occurs when the probe is at approx-
imately±45 deg to the THz pump field—the THz field modifies the refractive index in what
is called the ‘Terahertz Kerr effect’ [18], which has been demonstrated in liquids [27] and
our material of interest ZnTe [14]. A keen observer will notice that the peaks of ∆|i = j|
are slightly shifted from 45 deg towards 90 deg. We believe this is because the nonlinear-
polarization, and hence the magnitude of the birefringence, also depends on the field strength
of the probe. When the probe and THz pump fields are aligned, it increases the birefringence.
Note that for our argument we normalized both the probe and pump electric field strengths
to 1, but in the experiment the THz field is much stronger (see the introduction of Chapter 3).
Therefore, we expect the peak polarization modulation in the experiment to occur nearer to
45 deg than depicted in Fig. 4.9(b).

The same analysis was also applied to configuration (a) in Fig. 4.8, having a ⟨100⟩ cut crys-
tal. The resulting polarization terms as a function of the probe angle are plotted in Fig. 4.10.
The key difference is that the second-order nonlinear polarization terms are all zero for any
probe angle. This property is clear upon inspection of the second-order nonlinear polarization
vector (also found in Appendix A):P

(2)
prx

P
(2)
pry

P
(2)
prz

 = 2ϵ0χ̄(2)

− sin (2θ) cos (2θ) cos (2θ) sin (2θ)
0 0 0 0
0 0 0 0




Epry
Epuy

Epry
Epuz

Eprz
Epuy

Eprz
Epuz

 , (4.23)

where all the transverse (ŷ/ẑ) contributions are zero. Moreover, one can see that this condition
holds for any pump angle as well. The robustness of this property is why we have chosen a
⟨100⟩ crystal for isolating the third-order (χ(3)) nonlinear contribution.
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With respect to the third-order polarization terms plotted in Fig. 4.10(b), it is fortuitous
that their probe-angle dependence is the same for all crystal/field configurations used in the
experiments [(a), (b), and (c) Fig. 4.8]. Comparing Fig. 4.10(b) and Fig. 4.9(b), it is apparent
that only the magnitudes of the third order terms have changed. This property increases our
confidence that the third-order nonlinear signal measured in both the ⟨110⟩ and ⟨100⟩ crystal
will be the same, given the THz pump field is scaled appropriately.
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Figure 4.10. Second- and third-order nonlinear polarization terms in ⟨100⟩ cut ZnTe as a function of
the probe polarization angle θpr. The crystal angle, θ, is 0 deg, and the THz pump polarization angle,
θpu, is 90 deg. See Fig. 4.7 for angle definitions. The curves show the nonlinear polarization terms
Pprj

∝ Epri
. ‘Orthogonal’ terms with j ̸= i, and ‘parallel’ terms with j = i are grouped separately.

∆|i ̸= j| is the magnitude-squared difference of the ẑ → ŷ and ŷ → ẑ terms. ∆|i = j| is the
magnitude-squared difference of the ŷ → ŷ and ẑ → ẑ terms in a rotated frame fixed at a 45 deg angle
to the probe (see text for details). (a) Second-order (χ(2)) nonlinear polarization terms. All terms are
zero. (b) Third-order (χ(3)) nonlinear polarization terms. Both i ̸= j terms are zero.
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4.3 2D THz-THz Polarimetry of ZnTe
With the foundations of the experiment laid, we can now present the culminating result in
Fig.4.11. The experimental 2D THz-THz-polarimetry measurements on 1 mm-thick ⟨100⟩
and ⟨110⟩ cut ZnTe are depicted at the top and bottom, respectively. Between these exper-
imental measurements, simulations at several field strengths are included. All maps show
only the nonlinear (NL) residual component, derived using a differential measurement as
discussed in Section1.3.

As argued in the previous section, the measurement on ⟨100⟩ cut ZnTe (top) should isolate
third-order nonlinearities since the crystal and fields were oriented as illustrated in Fig. 4.8(a).
In contrast, themeasurement on ⟨110⟩ cut ZnTe (bottom)would allow second-order nonlinear-
ities to occur only via cascading through a primary third-order process, given that the crystal
and fields were oriented as illustrated in Fig. 4.8(b). Comparing the two measurements, it is
clear there is a difference between them, suggesting second-order nonlinearities are at play in
the ⟨110⟩ cut crystal.

To begin to attribute specific nonlinear processes to the features in these maps, rows (b)
through (e) present a sequence of simulations where only nonlinear mixing products arising
from THz-probe interactions were enabled. All nonlinear THz-THz interactions were dis-
abled, although, linear dispersion and absorption of the THz pulses were still accounted for
when generating the spatio-temporal maps of the THz fields in the crystal (refer to Sections 3.3
and 3.4 for implementation details).

In row (b), the simulation for ⟨100⟩ cut ZnTe shows a marked similarity to the instanta-
neous sum- and difference-frequency generation (SFG and DFG) model presented in the in-
troduction (Fig. 1.10). This is reasonable since, when only third-order processes are allowed,
the direct process dominates:

P = ϵ0χ(3)EAEBEpr. (4.24)

The productEAEB in this polarization termwas the basis of the instantaneous SFG/DFGmap.
Surprisingly, a simple (instantaneous) multiplication of the measured fields can produce an
accurate approximation of the full simulation, which integrates the evolution of the fields over
the length of the crystal.

Moving from row (b) to row (c) in the main figure, we transitioned to a ⟨110⟩ cut crystal,
where second-order process are allowed via cascading, and reduced the simulated peak field
strength to 10 kV/cm. By sweeping the field strength from 10 kV/cm in row (c) to 40 kV/cm
in row (e), we reveal that direct DFG/SFG features precede a multitude of secondary features
that emerge around them. This order and the dependence on field strength suggest the pres-
ence of cascading, because typically, lower-order processes would dominate from the begin-
ning, as evidenced by comparing the magnitudes of the second- and third-order polarization
terms in Fig. 4.9. Therefore, it is likely that the direct third-order DFG/SFG processes in-
deed imbalance the second-order processes, allowing them to be detected with polarimetry as
intended by the selection of the crystal and field orientations shown in Fig.4.8(b).
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Figure 4.11. 2DTHz-THz-polarimetrymaps of the experimental (Exp.) and simulated (Sim.) nonlinear
signal from 1 mm thick, ⟨100⟩ and ⟨110⟩ cut ZnTe. (caption continues on next page. . . )
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Figure 4.11. (. . . continued) Rows (a) and (f) are the measured experimental data. Between them, in
rows (b)-(e), are a series of simulations showing the evolution of the nonlinear signal as the crystal ori-
entation and field strength are varied. For rows (a)-(b), the crystal is ⟨100⟩ cut, and oriented as specified
in Fig.4.8(a). Moving to rows (c)-(f), we have changed to a ⟨110⟩ cut crystal, oriented as specified in
Fig.4.8(b). The columns show different time-frequency representations: (left) time-time maps, linear-
scale; (center) time-frequency maps, absolute-value linear-scale; (right) frequency-frequency maps, log-
scale. The colormap scales are found in Tbl. 4.2. The nonlinear signals in rows (a) and (b), for the
⟨100⟩ crystal, serve as a reference of the primary third-order sum- and difference-frequency genera-
tion DFG/SFG contributions alone. In rows (c) through (e), for the ⟨110⟩ crystal, the emergence of
secondary features with increasing field strength is indicative of cascading. Generally, there is good
agreement between the experimental and simulated data, assuming a 40 kV/cm peak field strength in
the models. Annotations a1 and f1 point out differences in the structure. Annotations a2 and f2 indicate
a uniform attenuation of the measured data at higher probe-frequencies.

Table 4.2. Scales for the colormaps in Fig. 4.11

Row Type Cut Pk. Field α0 α1 α2 ∆2
(a) Exp. ⟨100⟩ > 25 kV/cm 2.50E−3 0.06 −0.22 12.46
(b) Sim. ⟨100⟩ 40 kV/cm 4.11E−3 0.05 −0.65 13.22
(c) Sim. ⟨110⟩ 10 kV/cm, 2.42E−4 2.83E−3 −3.46 12.97
(d) Sim. ⟨110⟩ 25 kV/cm 1.39E−3 0.02 −1.82 14.57
(e) Sim. ⟨110⟩ 40 kV/cm 3.00E−3 0.03 −1.27 13.96
(f) Exp. ⟨110⟩ > 25 kV/cm 0.08 1.52 2.95 10.54

However, we have yet to conclusively eliminate THz-THz nonlinearities as a significant
contribution. The associated re-radiated polarization term is embedded in the cascaded pro-
cess:

P = ϵ0χ(2)
[
χ(2)EAEB

]
︸ ︷︷ ︸
Reradiated THz

Epr, (4.25)

This process also contains the product EAEB . To determine its effect, we re-simulated the
conditions from row (e) in the main figure, but with THz-THz nonlinearities enabled. The
results are presented in Fig.4.12(a). For comparison, in Fig.4.12(b), we disabled THz-THz
nonlinearities again. Inspecting the two simulations, it is difficult to visually identify any
differences in their patterns or magnitudes. In Fig.4.12(c), we computed their difference,
which appears to show that THz-THz components enhance the SFG content, albeit to a very
small degree. However, it is worth noting that not accounting for dispersion of the second-
order susceptibility could potentially underestimate the enhancement (Note4.5). Overall, the
THz-THz contributions are on the order of 10−5 times smaller. Thus, it seems appropriate to
consider them negligible.

By eliminating the influence of THz-THz interactions in our models, the vector diagrams
introduced in Section 1.5 now offer greater clarity regarding the specific processes contribut-
ing to features in the frequency-frequency maps. We begin by analyzing the simulation for
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Figure 4.12. Comparison of the nonlinear (NL) signal for ⟨110⟩ cut ZnTe, oriented as in 4.8(b), with
THz-THz nonlinear interactions on (a) and off (b). (b) This is the same nonlinear signal as in row-(e)
of Fig. 4.11. (c) The difference of the nonlinear signals, (a) − (b). The nonlinear signals in (a) and
(b) are visually indistinguishable, since the additional nonlinear content in (c) is approximately 10−5

of the amplitude. Notably, THz-THz nonlinearities seem to preferentially enhance the sum-frequency
components, as seen in the frequency-frequency plot of difference (c).

⟨100⟩ cut ZnTe presented in row (b) of the main figure (Fig. 4.11), where only third-order
nonlinearities are symmetry-allowed. We already identified the four main features in the
frequency-frequency map (forming a left-leaning parallelogram) as direct third-order DFG
and SFG products. For this crystal cut, the next-lowest-order processes are quasi fifth-order,
arising from subsequent third-order processes that cascade from the primary direct third-order
DFG and SFG products. The pathways for these processes are illustrated as vector chains
in Fig. 4.13(a), and the locations of their products are indicated on the ⟨100⟩ frequency-
frequency map in Fig. 4.13(b). Notably, the contribution from third-order cascading is weak,
suggesting the secondary features that emerge with increasing field strength for the ⟨110⟩ cut
in rows (c) through (e) result from second-order cascading.

To highlight the significance of this finding, it is important to understand that in the ⟨110⟩
cut crystal, second-order cascading can also produce quasi fifth-order products that are indis-
tinguishable from those produced by third-order cascading. Second-order cascading is similar
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Figure 4.13. Frequency vector representation of quasi-fifth-order products cascading from direct third-
order products. (a) Vector-chain diagram. Direct third-order products (purple circles) at the difference-
or sum-frequencies (DFG/SFG) are the same as in Fig. 1.9 (introduction, Section 1.5), but here the
origin is shifted such that [0, 0] = ωpr. The DFG or SFG terms can cascade with another third-order
process to effectively create fifth-order products (red squares for DFG terms and green triangles for SFG
terms). Similarly, two second-order processes can also cascade from the primary DFG or SFG terms
(the same red squares and green triangles, respectively). Notably, third- and second-order cascaded
products overlap in the frequency-frequency plots, highlighting the importance of comparing 2D THz-
THz-polarimetry maps for the ⟨100⟩ cut (b), where only third-order products are allowed, and the ⟨110⟩
cut (c), where second-order processes are also allowed. Features beyond direct DFG and SFG (purple
circles) appear to largely result from second-order cascading.
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to its third-order counterpart, except that two second-order processes cascade from the direct
third-order DFG and SFG products. The locations of these quasi fifth-order products are indi-
cated on the ⟨110⟩ frequency-frequency map in Fig. 4.13(c), marking several of the secondary
features. Significantly, the majority of the ‘smooth’ features can be accounted for by the quasi
fifth-order products, including the prominent feature at [0, 0]THz, which can be attributed to
quasi fifth-order optical rectification.

Before presenting our hypothesis, let us examine the quasi fourth-order terms presented
in Fig.4.14. These terms arise from just one second order process cascading from the primary
direct third-order DFG and SFG products. In the vector diagram shown in Fig.4.14(a), each
primary DFG and SHG product gives rise to four possible cascaded pathways radiating away
from it. Unlike for the fifth-order products, some of these pathways overlap. The cascaded
products at the end of these pathways are indicated on the ⟨110⟩ frequency-frequency map
in Fig. 4.14(b), where we are pleased to observe that the remaining secondary features have
been marked. Notably, the products resulting from multiple excitation pathways align with
the more structured features in the map, which we attribute to spectral interference. Each
pathway may impart a different phase, leading to spectral holes where there is destructive
interference, and peaks where constructive interference occurs.
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Figure 4.14. Frequency vector representation of quasi-fourth-order products cascading from direct third-
order products. (a) Vector-chain diagram. Direct third-order products (purple circles) at the difference-
or sum-frequencies (DFG/SFG) are the same as in Fig. 1.9 (introduction, Section 1.5), but here the
origin is shifted such that [0, 0] = ωpr. The DFG or SFG terms can cascade with another second-order
process to effectively create fourth-order products (red squares and four-point stars for DFG terms, and
green triangles and five-point stars for SFG terms). Notably, some products overlap in the frequency-
frequency plots, and these happen to be the more structured features in the map for the ⟨110⟩ cut crystal
(b). We hypothesize that the structure results from spectral interference between the two cascaded
excitation pathways when they are in/out of phase.
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To drive-home the influence of cascading in the ⟨110⟩ crystal, we performed a simple
numerical experiment. Unlike in the real world, we can freely enable or disable χ(2) and χ(3).
This allows us to examine the contributions of second- (χ(2)) and third-order (χ(3)) processes
separately. Although we have already presented evidence supporting cascading, let us mo-
mentarily adopt a naive perspective. In Fig. 4.15(a) the nonlinear signal with both χ(2) and
χ(3) enabled is presented, which is simply a reproduction of row (e) in the main figure. It
is a complicated nonlinear map, which one would expect given the wide variety of possible
second- and third-order processes. Consequently, a logical first step is reducing the complex-
ity by disabling χ(3) and observing the sole contribution of the second-order processes. This
scenario is presented in Fig. 4.15(b), resulting in only numerical noise. It appears second-
order processes are entirely negligible, which is perhaps not surprising given we oriented the
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Figure 4.15. A simple numerical experiment to demonstrate the influence of cascading in the ⟨110⟩
crystal. We selectively enable or disable χ(2) and χ(3) to determine their influence separately. (a) Non-
linear signal with both χ(2) and χ(3) enabled, showing the full array of nonlinear products. (b) Sole
contribution of χ(2) with χ(3) disabled, resulting in numerical noise only. (c) Sole contribution of χ(3)

with χ(2) disabled, showing an incomplete array of nonlinear products. These findings indicate the
presence of emergent phenomena, where the full nonlinear signal exceeds the sum of its parts. The
interaction or ’cascade’ between the second- and third-order processes is evident in the 2D maps, con-
firming the sensitivity of 2D THz-THz-polarimetry in revealing cascaded phenomena.
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crystal and fields as shown in Fig. 4.8(b), with the aim of nullifying the second-order contri-
bution to the polarimetric signal. Given this outcome, it might be reasonable to expect third-
order processes are the sole contributors. However, as demonstrated in Fig. 4.8(c), where only
χ(3) is enabled, we do not recover the full array of nonlinear features. This surprising result
reveals the presence of emergent phenomena: the whole nonlinear signal is greater than the
sum of its parts. There are processes that evolve in the crystal only when both χ(2) and χ(3)

are non-zero. In other words, the second- and third-order processes interact or ‘cascade’ with
each other. The products of these interactions are plainly evident in the 2D maps, proving 2D
THz-THz-polarimetry is a sensitive technique for revealing cascaded phenomena.

4.3.1 Improvements and Future work
With a better understanding of the simulations established, we can now comment on a few
features in the measured data that deviate from our models. In the ⟨100⟩ frequency-frequency
plot displayed in row (a) of the main figure (Fig. 4.11), there are additional features along the
horizontal mid-line (pump-frequency = 0 THz) in comparison to the simulation in row (b).
The sharp point at the origin, [0, 0] THz, is perhaps simply an overall ‘DC’-offset of the data
that was not entirely removed. However, the feature labeled ‘a1’ cannot be dismissed as
easily. It is located at approximately [2, 0] THz, which overlaps the fundamental frequency
of the B pump pulse, as shown in Fig. 1.7. Given the breadth of the feature, we know it is not
simply leakage of the B-pulse fundamental, but likely contains products of the A-pulse that
cancel, such as EAE∗

A (refer back to Section 1.7). One possible explanation is that the fields
are not perfectly normally-incident on the ⟨100⟩ cut-plane and there is a small second-order
contribution from the terms

P(−νB) ∝ ϵ0χ(2)E∗
A

[
DFG

]
[−ν0, 0], (4.26)

P(νB) ∝ ϵ0χ(2)E∗
A

[
SFG

]
[ν0, 0]. (4.27)

The products from these terms are indicated in Fig. 4.14. Alternatively, this feature could be
a third-order THz-THz ‘pump-probe’ signal, where the A-pulse pumps the sample and the
B-pulse is influenced by the resulting material change [35]. This nonlinearity has the form

P(νB) ∝ ϵ0χ(3)EAE∗
AEB [ν0, 0], (4.28)

and is not necessarily included in our model. For example, if the A-pulse generates free
carriers through impact-ionization, then that would increase the attenuation of the B-pulse
and would not be included in our model [28]. If the THz-THz pump-probe process is strongly
dependent on field strength, it would perhaps also explain why we do not see a ‘B-pump A-
probe’ signal since, as shown in Fig. 4.16, the A-pulse is higher amplitude than the B-pulse.

On the matter of field strengths, Fig. 4.16(b) raises a glaring oversight: for the measure-
ments in the main figure (Fig. 4.11), there were two wire grid polarizers (PureWave PW005-
012-075) placed in the collimated section of beam path between the two 4 in off-axis parabolic
mirrors shown in Fig. 2.1. Unfortunately, we did not record reference waveforms with the po-
larizers in place and in a nitrogen-purged environment. However, the polarizers were oriented
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with the wires perpendicular to the polarization direction of the THz pump fields in order to
be maximally transparent. The theoretical transmission factor for each polarizer is > 0.97
(see specifications), although based on the measurements, it seems likely that the real-world
transmission factor is lower. Regardless, it is difficult to make a conclusive statement, since
we observe strong ringing after the main pulse in Fig. 4.16(b) that is indicative of water-vapor
absorption (refer back to Section 2.6.2). Therefore, we considered the peak field strengths
used in our simulations to be fitting parameters that we adjusted to obtain the optimal qualita-
tive pattern. It is possible that small deviations in the fine-structure of the measurements, for
example the feature annotated ‘f1’ in row (f) of the main figure, are due to a slight alteration
of the THz pump pulses with respect to the reference waveforms.
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Figure 4.16. Comparison of the A and B THz pump pulse electric fields. These are the recovered field
strengths before attenuation. (a) Attenuation with 10 Si wafers, relatively well purged environment. (b)
Attenuation with wire grid polarizers, unpurged environment.

With respect to the amplitudes of the nonlinear signals in the main figure (Fig.4.11), it
is difficult to ignore the fact that the magnitude of the nonlinear signal for the experimental
⟨110⟩ data in row (f) is an outlier. In this work, we have primarily focused on the qualitative
pattern of features rather than their absolute magnitude. As mentioned, we considered the
peak field strengths used in our simulations as fitting parameters. With that said, we were
pleased to see a generally good agreement between the magnitudes of the experimental and
simulated data for the ⟨100⟩ cut crystal, in rows (a) and (b) respectively (refer to Tbl.4.2
for values). The simulations, too, generally behave as one would expect for the ⟨110⟩ cut
crystal in rows (c) through (f): the magnitude of the nonlinear signal increases with field
strength, ultimately reaching a value α0 = 3.00E−3 at 40 kV/cm, which is very close to
α0 = 4.11E−3 for the ⟨100⟩ simulation at the same field strength. The magnitudes for the
⟨100⟩ and ⟨110⟩ cuts should be similar since the second-order processes cascade from primary
third-order processes, and therefore, the latter largely sets the upper bound. At the moment,
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we do not know if the deviation of the experimental ⟨110⟩ measurements is simply an error
of scaling or if it is truly physical. It is an area of active investigation.

The final aspect of improvement under discussion is the disparity in magnitude between
the direct third-order DFG and SFG products. In general, all features at higher probe frequen-
cies in the measured frequency-frequency maps are weaker, as indicated by annotations ‘a2’
and ‘f2’. We do not see the same behavior in the simulations, even though linear absorption
is taken into account (refer back to Section 3.3). It would have been reasonable to attribute
additional attenuation to the broad absorption peak at 3.7 THz in Fig. 3.2, but the reality is
more complex. Indeed, completely neglecting the absorption peak makes little difference in
the simulation. This is because the frequency-frequency maps display the THz modulation at
optical frequencies. It is important to remember that we indirectly measure the THz field as a
modulation of the optical probe’s polarization. The origins of the frequency-frequency maps,
which are currently [0, 0] THz, should realistically be shifted to [2πω0, 2πω0] THz, where ω0
is the carrier angular frequency of the probe. The significance of this is that once the THz
fields modulate the probe polarization, the resulting product is shifted up by the optical carrier
frequency of the probe, and the absorption coefficient at THz frequencies is irrelevant.

However, the same phonons responsible for the broad absorption peak at 3.7 THz may
potentially alter the nonlinear susceptibility. Typically, Miller’s rule, which estimates the non-
linear susceptibility as a product of the linear susceptibilities at all the involved frequencies,
provides a reasonable approximation. For the third-order susceptibility considered here, it
takes the form:

χ(3)(ωf ,±Ω,±Ω, ω0) = δχ(1)(ωf )χ(1)(Ω)χ(1)(Ω)χ(1)(ω0), (4.29)

where ωf ∈ ω0 ± {2Ω, 0} is the final product angular frequency and δ is assumed to be
frequency-independent and nearly the same for all materials [7, Sec. 5.2]. The issue with
Miller’s rule in our case is that a few-THz change is essentially negligible at optical fre-
quencies, where the susceptibility is relatively flat. Consequently, χ(1)(ωf ) ≈ χ(1)(ω0) and
χ(3)(ω0±2Ω) ≈ χ(3)(ω0±0), implying that both SFG and DFG should be equally favorable.
However, our measurements indicate that χ(3)(ω0 ± 2Ω) must be less than χ(3)(ω0 ± 0).

Based on the literature, it is possible that a more complex second-order phonon process
is altering the effective third-order nonlinear susceptibility, as the broad absorption band at
3.7 THz arises from the difference modes between optical and acoustic phonons in ZnTe
[11, 48]. It is conceivable that the phonons associated with the 3.7 THz absorption band
also provide a non-radiative decay channel for the considered SFG process. Schall et al. [48]
demonstrated that cooling ZnTe below 50 K nearly eliminates these second-order phonon
absorption bands, offering a straightforward experiment to potentially determine their role in
attenuating the SFG product.



Conclusion
The foregoing chapters have reported recent developments in two-dimensional (2D) tera-
hertz (THz) spectroscopy at DTU, including instrumentation, a numerical pulse propagation
methodology for simulation, and their combined application for distinguishing cascaded and
direct nonlinear optical (NLO) process.

Specifically, we have performed a series of experiments to demonstrate the capacity of
2D THz-THz-polarimetry for distinguishing direct and cascaded nonlinear optical properties
in ZnTe. Firstly, a ⟨100⟩ cut ZnTe crystal was used to effectively disable second-order (χ(2))
processes for all field polarizations, regardless of cascading. This served as a reference for the
signature of third-order (χ(3)) processes alone. Secondly, a ⟨110⟩ cut ZnTe crystal was ori-
ented in a way that second-order processes could only occur by cascading through a primary
third-order process.

The results of these measurements were presented alongside corresponding numerical
pulse propagation simulations. A comparative analysis of the measured and simulated non-
linear polarimetric maps revealed a high degree of self-consistency. This result provided the
confidence to further utilize the simulations to selectively enable or disable the underlying
second- and third-order processes numerically, aiming to isolate their independent and cou-
pled contributions. By doing so, we determined that ‘THz-THz’ processes between the two
THz pump pulses themselves made negligible contributions to the nonlinear signal. Instead,
the predominant contributions came from both direct and cascaded nonlinear ‘THz-probe’
processes between the THz pump pulses and the optical probe pulse.

With the identification of ‘THz-probe’ nonlinearities as the main contributors, we then
were able to assign specific direct and cascaded nonlinear optical processes to features in the
2D frequency-frequency maps using the frequency vector representation developed by Kuehn
et al. [34, 35].

The numerical tools and methodologies developed are immediately applicable to all other
zincblende crystals and can be extended to include other crystal space groups and higher-
order nonlinear optical processes. Moreover, we have highlighted the possible contribution
of coupled second-order phonon processes to the nonlinear polarimetric maps, suggesting a
potential direction for future research.

Overall, the instrumentation and interpretations reported herein are applicable to a broad
range of physical phenomena. It is our hope that this thesis proves to be a valuable resource
for future endeavors in this field.
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• Malte L.Welsch, Martin J. Cross, Tobias O.Buchmann, Simon J. Lange, Edmund J. R.
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mid-infrared light” (in preperation)

• Malte L.Welsch, Martin J. Cross, Lars R. Lindvold, Simon J. Lange, Edmund J. R.
Kelleher, Peter U. Jepsen, ”Electron field emission into liquids and gases: exploring
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• Martin J. Cross, Malte L.Welsch, Edmund J. R. Kelleher, Peter U. Jepsen, ”Discrim-
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(talk)
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