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Abstract

Atmospheric turbulence, i.e., the randomfluctuations of the wind, impacts both the power
output and the structural loadofwind turbines. Understandingandcharacterizingatmospheric
turbulence are essential for the assessment of site conditions, to effectively use wind energy,
and to evaluate the structural integrity of wind turbine components. Traditionally, anemome-
ters mounted on meteorological masts are used to measure turbulence. However, with the
increasing size of modern wind turbines, installing and operating meteorological masts that
reach 200 m above the ground are very expensive and infeasible, especially offshore. In those
cases, lidar is a cost-effective alternative tomast-mounted anemometers. Particularly, nacelle-
based lidarshave theadvantage that theyyawwith thewind turbineand track the inflow. There-
fore, they have the potential to better characterize the flow that actually interacts with the tur-
bine than in-situ anemometers on masts.

This thesis presents research on characterizing atmospheric turbulence using measure-
ments fromnacelle lidars and applications for wind turbine control andwake studies. The the-
sis objectives are (1) to investigate the methodologies to characterize atmospheric turbulence
from nacelle-lidar measurements, (2) to study the impact of nacelle lidar scanning strategies
on characterizing atmospheric turbulence, and (3) to make the best use of a single-beam lidar
forwind turbine control andwake studies. Virtual andfieldmeasurements of nacelle lidars and
aero-elastic wind turbine simulations are used to achieve these objectives.

The study in this thesis demonstrates that different nacelle lidars are able to measure the
along-wind variance as well as a sonic anemometer, if the Doppler spectra of the radial veloc-
ities are used to account for the probe volume averaging effect. Nacelle lidars with more than
six beams and two different beam opening angles are able to accurately estimate the Reynolds
stress tensor followinga least-squareprocedure. Thebest estimationsof the sixReynolds stress-
es are found by a six-beam lidar measuring at a close focus distance with a large opening an-
gle. These findings help lidar users to obtain accurate and detailed turbulence characteristics,
which benefit wind turbine power performance assessments and optimizations, load valida-
tions and wind turbine design, and wind resource assessments in met-ocean applications.

Furthermore, the study shows that a single-beam lidarmounted in thewind turbine spinner
achieves much more control benefits compared to the same lidar based on the nacelle. Being
lower in cost andmoreflexible, the single-beam lidar in the spinnerperforms similarly to a four-
beam nacelle lidar for feedforward pitch control. In addition, by using measurements from an
inland wind farm, the study shows that the wake-induced power deficit of the downstream
wind turbine decreases with increasing turbulence intensity, which is measured by a single-
beam nacelle lidar on the upstreamwind turbine. These findings demonstrate the potential of
using a single-beam lidar for wind turbine control and wake studies.
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Synopsis
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1 | Introduction

1.1 Motivation

Climate change and the global energy crisis are promoting independence from fossil fuels
and accelerating the renewable energy transition, in which wind along solar energy are seen as
important pillars for a sustainable future. Wind energy has been growing exponentially in the
past decades. Now wind power helps the world reduce carbon dioxide emissions by over 1.2
billion tonnes a year (Global Wind Energy Council, 2022) andmeets 17% of Europe’s electricity
demand annually (WindEurope, 2023). Wind power is not only a cost-effective resource for
electricity in our daily lives but is also used for water pumping, oil and gas platforms powering,
and hydrogen production.

To effectively harvest wind power, it is essential to measure and understand the flow up-
coming to the rotor plane. Atmospheric turbulence, i.e., the random fluctuation of the wind,
impacts both the power output (Gottschall et al., 2008; Wagner et al., 2015) and the structural
loads (Conti et al., 2021; Conti et al., 2020; Dimitrov et al., 2019; Sathe, Mann, et al., 2013) of
wind turbines. Thus, accurate turbulence characteristics can potentially optimize wind tur-
bines’ energy yields and extend their lifetime. Atmospheric turbulence characteristics are also
useful for studying wind profiles (Peña, 2009; Wyngaard, 2010) and test flow models (Mann,
1994) in the atmospheric boundary layer. In addition, aviation engineering (Wang et al., 2022)
and bridge engineering (Cheynet et al., 2016) benefit from turbulencemeasurements for safety
considerations.

Turbulence typically has a length scale from ten to a few hundred meters and a time scale
from one to ten minutes (see Fig. 1.1). Under the assumption of statistical stationarity, tur-
bulence can be characterized by the Reynolds stress tensor, which contains the second-order
statistics (variances and covariances) of the three-dimensional wind components. The tradi-
tional way tomeasure turbulence is using in-situ anemometers, such as cup and sonic anemo-
meters, installed on the upwindmeteorological masts (met-masts) (International Electrotech-
nical Commission, 2019). However, with the increasing size of modern wind turbines (Vestas,
2022), installing and operating a met-mast at heights over 200 m are very expensive and infea-
sible, especially offshore, since large foundations are needed to support the masts. The masts
are also vulnerable to high winds and they cannot be easily moved from one place to another.
Thus, it becomes quite challenging to collect measurements at different locations or at heights
that extend to the top of a very large rotor.

Coherent Doppler lidar (hereafter lidar, which stands for light detection and ranging) is a
type of remote-sensing device that measures wind velocity by emitting a coherent light beam
and detecting the laser signals backscattered from natural aerosols in the atmosphere. Com-
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Introduction

Figure 1.1: Overview of the fluctuations’ length scales and durations in the atmosphere,
adopted from Berg et al., 2022.

pared tometmasts, lidars are able to scan the atmospheric flowwith high spatial resolution. Li-
dars are also compact, portable, and safe in highwinds. Nowadays, the use of nacelle-mounted
lidar systems becomes one of the key technologies for various applications. An advantage of
the forward-looking nacelle lidars is that they yaw with the wind turbine and track the inflow.
Therefore, they have the potential to better characterize the flow that actually interactswith the
wind turbine. In addition, nacelle lidars can provide a preview of the approaching wind, which
is useful for wind turbine control to react to the disturbance before the aerodynamic impacts
on the turbine structures occur.

1.2 Background

Nacelle lidars in different types and configurations have proven to be precise formeasuring
wind speeds andwind profiles (Bossanyi et al., 2012;Mikkelsen et al., 2013) for improvingwind
turbine power performance assessment (Borraccino et al., 2017; Wagner et al., 2014), support-
ing wind turbine control (Harris et al., 2007; Held et al., 2019; Schlipf, 2016; Simley, 2015), and
reducing the uncertainty of load validations (Dimitrov et al., 2019; Dimitrov et al., 2016). Using
nacelle lidars to estimate second-order statistics has not yet been widely accepted.

A common practice to estimate the second-order statistics using lidars could be by taking
the variance of the mean wind velocity reconstructed from the lidar measurements. However,
two effects can contribute to the systematic error of the estimations. First, the probe volume
inherent to a lidar system is generally larger compared to sonic anemometers. Consequently,
lidarmeasurements are the weighted average of wind velocities sampled along the laser beam.
The probe volume acts like a ‘low-pass filter’ such that the high-frequency velocity variations
cannot be detected. Therefore, the second-order statistics computed from lidar radial veloc-
ities are attenuated compared to those from cup or sonic anemometers. Those estimates are
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called the ‘filtered’ variances. Second, one lidar beamonlymeasures thewind velocity along its
radial axis, which is usually not along any wind components. Thus, the radial velocity variance
can be ‘contaminated’ by the correlations of different wind vector components (Kelberlau et
al., 2020; Sathe & Mann, 2013) and consequently be higher or lower than the along-wind vari-
ance depending on the beam orientations. When combining radial measurements in different
directions to estimate turbulence, ‘correct’ values can be obtained for the ‘wrong’ reason.

Two types of nacelle lidars are extensively used in wind energy applications, namely the
continuous-wave (CW) and pulsed lidar systems. As implied in their names, the two systems
mainly differ in their emission waveform, which is closely related to their probe volume and
scanning patterns. CW lidars operate by focusing a continuously transmitting laser beam at a
particular range. They scan at one point at a time at a high sampling rate. The probe volume
associatedwith the focal depths increases quadratically with themeasurement range (Sjöholm
et al., 2009; Sonnenschein et al., 1971). Thus, the CW lidars usually measure wind speed accu-
rately within a range of approximately 10−200m(Sathe, Banta, et al., 2015). Pulsed lidars emit
short laser pulses in bursts in the atmosphere. The backscattered signals from several given
distances can be detected, which are informed by the time delays between the pulse start and
measurement time (Peña et al., 2015). Thus, pulsed lidars are capable of measuring at multi-
ple distances all at once, but they require longer sampling time than the CW lidars. The probe
volume of the pulsed lidars remains constant regardless of the measurement ranges. They can
measure the wind from 40 − 50mup to a few kilometers.

Some recent studies put substantial efforts toward overcoming the barriers of using nacelle
lidars tomeasure second-order statistics. Mann et al., 2010 demonstrated amethod to circum-
vent the probe volume averaging effect for a conically scanning CW lidar. Themethod is based
on the assumption that the lidar Doppler spectrum is equal to the probability density func-
tion of the radial velocities in the probe volume. This method was tested experimentally by
Branlard et al., 2013, which accounts for the probe volume averaging effect and provides esti-
mates of the ‘unfiltered’ variances. Using the Doppler spectra of a conically scanning CW lidar,
Peña et al., 2017 showed that the lidar-estimated ‘unfiltered’ along-wind variance had a bias of
just 2% compared to that from a cup anemometer installed on a nearby met mast. However,
the authors found that other lidar-estimated Reynolds stresses do not agree with those from a
mast-based sonic anemometer partly due to the lidar scanning configuration.

To estimate all Reynolds stresses using lidars, Sathe,Mann, et al., 2015 proposed a six-beam
method for a ground-based lidar based on the study of Eberhard et al., 1989. Themethodneeds
radial measurements at five equally spaced azimuth angles over the lidar scanning cone and
measurements from a vertical beam in the center of the cone. The beam orientations were op-
timized using an objective function that minimizes the total random errors of Reynolds stress
estimations. Moreover, Peña et al., 2019 showed that the nacelle-based SpinnerLidar, i.e., a re-
search Doppler wind lidar that scans the wind turbine inflow in very high spatial and temporal
resolutions, is able to estimate all Reynolds stresses accurately following a least-square proce-
dure.

The lidar scanning strategy influences not only turbulence estimations but also the wind
preview quality for wind turbine control (Schlipf, Haizmann, et al., 2015). The wind preview
can be evaluated by the coherence between the true rotor-effective wind speed (REWS) and
the lidar-estimated one (Schlipf et al., 2013). The true REWS can be calculated from turbine
measurements using the torque-balance method (Held et al., 2019) or defined as the spatially
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averaged longitudinal wind component over the rotor-span area in aero-elastic simulations
(Schlipf, 2016).

This thesis aims at exploiting the ability of forward-looking nacelle lidars for characteriz-
ing atmospheric turbulence. The thesis also shows the application of a single-beam forward-
looking lidar for wind turbine control and wake studies. The findings from the thesis can ulti-
mately help optimize wind turbines’ energy capture and mitigate the loads on turbine struc-
tures.

5



2 | Objectives, hypotheses and research questions

The three main objectives of this thesis are described in this chapter. Short introductions
for each scientific paper produced in the project are given at the end of this chapter.

2.1 Objectives

The first objective is to investigate methodologies to characterize atmospheric turbulence
from nacelle-lidar measurements. As introduced in Section 1.2, previous studies showed the
potential of nacelle lidars for measuring atmospheric turbulence. There is not yet a procedure
that one can routinely follow to estimate the second-order statistics from nacelle-lidar mea-
surements. A robust algorithm is needed to reconstruct the Reynolds stress tensor from lidar
measurements, especially the along-wind variance, which is the key parameter forwind energy
applications. Therefore,Paper I-III (Appendix A.1, A.2 and A.3) apply a least-square procedure
to estimate Reynolds stresses from different nacelle lidars. The three papers aim to answer

• Cannacelle lidars provide theReynolds stress tensor as accurately as a sonic anemometer
at the turbine’s hub height? If yes, how?

• How to accurately estimate the along-wind variance using nacelle lidars?

To achieve theObjective 1, a hypothesis is formulated:

Hypothesis I:
Nacelle lidars canbeasaccurate as a sonic anemometer to estimate theReynolds stress tensor.

The second objective is to study the impact of nacelle lidar scanning strategies on charac-
terizing atmospheric turbulence. Although the Reynolds stress tensor can be estimated using
lidars relying on complex scanning patterns, e.g., the SpinnerLidar, they are too expensive to
be widely used for turbulence characterization. Following Paper I, which shows the benefit of
usingmultiple-beam lidar for turbulence estimation,Paper II andPaper III study comprehen-
sively the dependence of Reynolds stress estimations on themain features of the lidar scanning
strategy. The two papers aim to answer

• How does the lidar scanning pattern impact the turbulence estimations?

• What is the best way to scan the wind turbine’s inflow for turbulence characterization?

To achieve theObjective 2, a hypothesis is formulated:

6
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Hypothesis II:
A six-beam nacelle lidar measuring at a close distance with a large opening angle is the best
way to scan the inflow for turbulence characterization.

The third objective is to make the best use of a single-beam lidar for wind turbine control
and wake studies. A single-beam nacelle lidar is flexible and low in cost. If the along-wind
characteristics are the features of interest, the nacelle lidar should measure ideally in parallel
to themean wind direction at the turbine’s hub height. For feedforward pitch control that uses
REWS, however, measurements along a single beam cannot well represent the flow interacting
with the rotor. Therefore, Paper IV (Appendix A.4) and Paper V (Appendix A.5) focus on two
different applications of a single-beam lidar and aim to answer

• How to best use a single-beam lidar for wind turbine feedforward control?

• Can we use a single-beam nacelle lidar to study the impact of the ambient turbulence
intensity on the wake losses?

• Can we estimate the turbulence length scale frommeasurements of a single-beam lidar?

To achieve theObjective 3, two hypotheses are formulated:

Hypothesis III:
A single-beam spinner-based lidar can be as useful as a four-beam nacelle lidar for wind tur-
bine control.
Hypothesis IV:
The wake-induced power deficit decreases with the increasing ambient turbulence intensity
measured by a single-beam nacelle lidar.

2.2 Outline of the thesis

This thesis consists of two parts: the synopsis and the appendix. This chapter introduces
the scope of the thesis. Chapter 3 provides the scientific background and Chapter 4 describes
the analyzed measurements. Chapter 5 summarizes the essence of the research findings. The
main research topics in theproject are illustrated in Fig. 2.1, which spans from the estimationof
Reynolds stresses using different nacelle lidars to the application of a single-beam lidar. Chap-
ter 6 concludes the thesis and gives the outlook.

The appendix collects the conference and journal papers produced in this project. The at-
tached papers are introduced below:

• Paper I: Fu, W., Peña, A., and Mann, J.: Turbulence statistics from three different nacelle
lidars, Wind Energy Science, 7, 831–848. (Fu, Peña, et al., 2022)

Throughbothnumerical simulations andmeasurements, this study investigates the ben-
efit of usingmultiple-beamnacelle lidars formeasuring atmospheric turbulence. For the
first time, Reynolds stress estimations of the multiple-beam SpinnerLidar are compared
with those from two commercial nacelle lidars, which have two and four beams, respec-
tively. Doppler spectra of the SpinnerLidar measurements are processed to account for
the probe volume effect and to reduce the systematic error of turbulence estimations.

7
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Figure 2.1: Main research topics in the project.

Then, a least-square procedure is used to compute the Reynolds stresses from three li-
dars. We found that all three lidars can estimate well the along-wind variance. In ad-
dition, the SpinnerLidar is able to accurately measure all components in the Reynolds
stress tensor.

• Paper II: Fu,W., Sebastiani, A., Peña, A., andMann, J.: Influence of nacelle-lidar scanning
patterns on inflow turbulence characterization, Journal of Physics: Conference Series, 2265,
022 016. (Fu, Sebastiani, et al., 2022b)

This study investigates the influence of nacelle-lidar scanning strategies on Reynolds
stress estimations. Nacelle lidars with different numbers of beams, opening angles, and
focusdistancesare simulated. The lidarprobevolume isneglected. TheReynolds stresses
are computed using the same least-square procedure as in Paper I and compared with
those from a virtual sonic anemometer. Results show that a nacelle lidar with at least six
beams and two different opening angles is needed to reconstruct all Reynolds stresses.
Increasing the number of measurement points in the same beam directions has only a
marginal effect on the estimations. Enlarging the beam opening angle improves the es-
timations on the transverse Reynolds stress components, whereas increasing the focus
distance has the opposite effect.

• Paper III: Fu,W., Sebastiani, A., Peña, A., andMann, J.: Dependence of turbulence estima-
tions on nacelle-lidar scanning strategies, Wind Energ. Sci. Discuss. (Fu, Sebastiani, et al.,
2022a)

BuildinguponPaper II, thiswork includesfieldmeasurements to comprehensively study
the dependency of Reynolds stress estimations on the nacelle lidar scanning strategies.
Apart from the number of measurement points, the opening angle, and the focus dis-
tance, this work also considers the probe volume of CW and pulsed lidars. Field mea-
surements from themultiple-beam SpinnerLidar in Paper I are reused, and radial veloc-
ities at certainbeamdirections are carefully selected tomimicdifferent scanningpatterns

8
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considered in the simulations. Results from field measurements validated our findings
from the simulations. The best estimations of the six Reynolds stresses are provided by a
6-beam lidar measuring at a close distance with a large opening angle. In addition, the
along-wind variance can be estimated well from all considered lidars.

• Paper IV: Fu, W., Guo, F., Schlipf, D., and Peña, A.: Feedforward control for a 15-MWwind
turbine using a spinner-mounted single-beam lidar.

This work demonstrates the usefulness of a single-beam lidarmounted in the spinner for
feedforward pitch control compared to the same lidar on the nacelle. The single-beam
lidarmounted in the spinner can rotatewith the rotor and scan in a conical pattern in the
wind turbine above-rated operations. Also, the spinner-based set-up avoids the blockage
of lidar signals by the running blades. In this paper, we optimize the opening angle and
focus distance of the spinner-based single-beam lidar for the best coherence between
the lidar-estimated REWS and the true one. Then, the control benefits using the opti-
mized lidar configurations are evaluated using time-domain simulations performed in
OpenFAST. Results show that a single-beam lidar in the spinner brings much more con-
trol benefits than the one based on the nacelle, and the benefits are on the same level as
a four-beam CW nacelle lidar for feedforward control.

• Paper V: Fu, W., Peña, A., Mann, J., and Young, T.: Impact of the lidar-measured ambient
flow turbulence intensity on the wake losses.

This work demonstrates the potential of using a single-beam nacelle lidar for wake stud-
ies. Usingmeasurements of an inlandwind farm, the power outputs of a pair of wind tur-
bines are analyzed in different ambient turbulence intensity groups, which aremeasured
by a single-beamnacelle lidar on the upstreamwind turbine. We found a clear trend that
the power deficit decreases with the increasing ambient turbulence intensity, which in-
dicates that thewake recovers faster when the ambient flow ismore turbulent. Moreover,
we attempt to estimate the turbulence length scale and dissipation rate using the radial
velocity spectra of the single-beam lidar. This part of the work is still in progress.
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3 | Methods

This chapter introduces the methods used in this thesis to simulate turbulence fields and
nacelle lidar measurements, including the turbulence spectral model (Section 3.1), the na-
celle lidar model (Section 3.2), and the rotor-effective wind speed (Section 3.3). This chapter
also provides methods to estimate lidar radial statistics (Section 3.4), mean wind speeds (Sec-
tion 3.5), and Reynolds stresses (Section 3.6) from nacelle lidar measurements.

3.1 Turbulence spectral model

Turbulence background

Under Taylor’s frozen hypothesis, the turbulent wind field can be described by a vector field
u(x) = (u, v, w) = (u1, u2, u3), andu(x, t) = u(x − Ut, 0), where x = (x, y, z) is the position
vector described in a right-handed coordinate system, t represents the time, u, v, w are the hor-
izontal along-wind component, the horizontal lateral component and the vertical component,
respectively. U is the mean wind velocity along the x-direction. Assuming that the turbulent
wind field u(x) is incompressible, statistically stationary and homogeneous, u(x) can be de-
composed into the mean value ⟨u(x)⟩ = (U, 0, 0) and the fluctuating part u′(x) = (u′, v′, w′),
where ⟨ ⟩ denotes the ensemble averaging. Thus, the auto- or cross-covariance of the velocity
components is

Rij(r) ≡ ⟨u′
i(x)u′

j(x + r)⟩, (3.1)

where r is the separation vector and i, j = 1, 2, 3. Denoting the wave number vector k =
(k1, k2, k3) in the (x, y, z) directions, the spectral velocity tensor Φij(k), which is the Fourier
transform of the covariance tensor, describes the turbulence spectral properties of the three-
dimensional homogeneous wind field (Kristensen et al., 1989):

Φij(k) = 1
(2π)3

∫
Rij(r)exp(−ik · x)dx. (3.2)

The one-point spectra of velocity fluctuations are calculated by

Fij(k1) =
∫∫

Φij(k)dk2dk3. (3.3)

The variances of the velocity components are the integral of the auto-spectra

σ2
u,v,w =

∫ ∞

−∞
Fu,v,w(k1)dk1. (3.4)
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The single-point turbulence statistics can be obtained when the separation vector r = 0. The
variances and covariances of the three velocity components form the Reynolds stress tensor

R ≡ R(0) =

 σ2
u ⟨u′v′⟩ ⟨u′w′⟩

⟨v′u′⟩ σ2
v ⟨v′w′⟩

⟨w′u′⟩ ⟨w′v′⟩ σ2
w

 . (3.5)

Mann turbulence model

Modelling of the turbulence spectra is essential for lidar simulations and aero-elastic sim-
ulations. In this thesis, the spectral velocity tensor Φij(k) is assumed to be described by the
Mann turbulencemodel (Mann, 1994) among others (Kaimal et al., 1972; Veers, 1988), because
the characteristic of the model permits the modeling of three-dimensional spectra and coher-
ence in the atmospheric surface layer, which is important for estimating turbulence statistics
by combining lidar measurements in different beam directions. Besides the wave number k,
the Mannmodel contains three adjustable parameters:

• αε2/3 [m4/3s−2]: a product of the spectral Kolmogorov constant α and the dissipation
rate of turbulence energy ε to its two thirds power. This parameter acts as a proportional
factor to the turbulence intensity;

• L [m]: a length scale describing the size of the most energetic eddies;

• Γ [-]: a parameter describing the anisotropy of the turbulence. The smaller the Γ, the
more isotropic the turbulence. When Γ = 0, σu = σv = σw. Otherwise, σu > σv > σw.

Temporal evolution of turbulence

The structure of turbulence evolves when it approaches the rotor plane from the lidarmea-
surement plane. The evolution affects the longitudinal coherence from upstream to the rotor
plane and thus is a factor of interest for control applications (Laks et al., 2013; Schlipf et al.,
2011; Simley et al., 2012).

It is assumed that the turbulent wind fields travel with the mean wind speed U , and the
turbulence eddies in the wind fields decay exponentially with time ∆t. Then, the space-time
turbulence spectral tensorΘij is (Guo, Mann, et al., 2022)

Θij(k, ∆t) = exp
( −∆t

τe(k)

)
Φij(k), (3.6)

where τe is a parameter for wind evolution describing the lifetime of small eddies

τe(k) = γ

[
a(|k|L)−1

(
(|k|L)10 + 1

)− 2
15
]

. (3.7)

Here, γ is a constant representing the strength of turbulence evolution, which depends on the
turbulence condition. The more unstable the atmosphere, the higher the γ (Guo, Mann, et al.,
2022).

The one-dimensional cross-spectra of velocity fluctuationswith separations of∆x = U∆t,
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∆y and∆z considering wind evolution is

Fij(k1, ∆t, ∆y, ∆z) =
∫∫

Θij(k, ∆t)exp(i(k2∆y + k3∆z))dk2dk3. (3.8)

The magnitude of squared coherence is

coh2
ij(k1, ∆t, ∆y, ∆z) = |Fij(k1, ∆t, ∆y, ∆z)|2

Fii(k1, ∆t = 0)Fjj(k1, ∆t = 0) , (3.9)

where Fii(k1, ∆t = 0) can be calculated using Eq. (3.3). Equations (3.8) and (3.9) are used to
study the wind preview quality, i.e., REWS coherence estimated by the lidars.

3.2 Modelling of nacelle lidar system

Definition of lidar coordinate system and beam angles

In the simulations, the nacelle-lidar coordinate system is assumed to coincide with the tur-
bine coordinate system, as shown in Fig. 3.1. The unit vectorndescribing the beamorientation
is expressed as (Peña et al., 2017)

n(ϕ, θ) = (− cos ϕ, cos θ sin ϕ, sin θ sin ϕ), (3.10)

where ϕ is the half-cone opening angle (also called the angle to center line), i.e., the angle be-
tween the beam and the negative x-axis since the lidar measures upwind, and θ is the angle
around center line, i.e., the angle between the y-axis andn projected onto the y-z plane.

Some tools such as the OpenFAST embedded lidar simulator (Guo, Schlipf, et al., 2022)
require the azimuth angle α (also called horizontal opening angle) and the elevation angle β as
inputs to describe the beam unit vector:

n(α, β) = (− cos α cos β, sin α cos β, sin β). (3.11)

In addition, some lidarmanufacturers use the vertical opening angle ζ, which is the angle from
the center line to n projected on the x-z plane. The five commonly used beam angles are il-
lustrated in Fig. 3.1. Denoting the coordinates of a lidar scanning location as (x1, y1, z1) in the
nacelle-lidar coordinate system, the definitions of the five angles are

tan(ϕ) =

√
y2

1 + z2
1

x1
, (3.12)

tan(θ) = z1
y1

, (3.13)

tan(α) = y1
x1

, (3.14)

tan(β) = z1√
x2

1 + y2
1

, (3.15)

tan(ζ) = z1
x1

, (3.16)

which are useful to calculate any angle of interest from the others. We mostly use Eq. (3.11) to
define beam orientations (Fig. 3.1(a)).
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Figure 3.1: Sketch of the nacelle-lidar coordinate system and the lidar angles. ϕ is the half-cone
opening angle (also called angle to center line), ζ is the vertical opening angle,α is the azimuth
angle (also called horizontal opening angle), and β is the elevation angle.

Lidar measurements and the probe volume

Assuming that the yaw misalignment of the wind turbine is zero, the probe volume of a
nacelle lidar is negligible, and u, v, w are homogeneous over the lidar scanning area, the radial
velocity is the sum of the projection of the three wind components on the beam direction

vr(ϕ, θ) = −u cos ϕ + v cos θ sin ϕ + w sin θ sin ϕ. (3.17)

The radial variance can be derived by taking the second-order moment of Eq. (3.17) (Eberhard
et al., 1989)

σ2
vr,unf(ϕ, θ) = σ2

u cos2 ϕ + σ2
v cos2 θ sin2 ϕ + σ2

w sin2 θ sin2 ϕ − 2⟨u′v′⟩ cos ϕ cos θ sin ϕ

− 2⟨u′w′⟩ cos ϕ sin θ sin ϕ + 2⟨v′w′⟩ sin2 ϕ cos θ sin θ,

where the subscript ‘unf’ denotes the ‘unfiltered variance’ that is not affected by the probe vol-
ume averaging effect.

Considering the lidar probe volume, and assuming the radial velocity vr is calculated from
the Doppler spectrum by the centroid method or as the center of gravity, vr can be written as
(Mann et al., 2010)

vr(ϕ, θ, fd) =
∫ ∞

−∞
φ(s)n(ϕ, θ) · u[n(ϕ, θ)(fd + s)]ds, (3.18)

where fd is the beam focus distance, φ(s) is the lidar weighting function approximating the
shape of the probe volume and s is the distance along the beam from the focus point. In addi-
tion to the centroid method, the radial velocity can also be determined by the median and the
maximummethods from the Doppler spectrum, which is explained in Section 3.4.

The weighting function of a CW lidar is approximated by a Lorentzian function (Sonnen-
schein et al., 1971):

φ(s) = 1
π

zR
z2
R + s2 , (3.19)
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where the Rayleigh length zR is determined by the focus distance, the laser wavelength λ (typ-
ically 1.565 µm), and the transmitted beam radius at the optical lens exit rb

zR = λf2
d

πr2
b

. (3.20)

Therefore, the Full Width at Half Maximum (FWHM) of a Lorentzian function is 2zR.
Forpulsed lidar systems, theweighting function is approximatedbyaGaussian shape,which

can be expressed as (Schlipf, 2016)

φ(s) = 1
σL

√
2π

exp(− s2

2σ2
L

) with σL = ∆l

2
√

2 ln 2
, (3.21)

or as (Meyer Forsting et al., 2017; Simley, 2015)

φ(s) = 1
2∆p

{
Erf
[

s + ∆p/2
rp

]
− Erf

[
s − ∆p/2

rp

]}

with the error function Erf(x) = 2√
π

∫ x

0
exp(−t2)dt and rp = ∆l

2
√

ln(2)
,

(3.22)

where∆p is the range-gate length and∆l is the FWHM of the Gaussian function.
It can be seen from Eqs. (3.19), (3.22), and (3.21) that the probe volume of the CW systems

increases with the square of the focus distance, while the probe volume of the pulsed systems
does not depend on the measurement range. As shown in Fig. 3.2, the CW probe volume can
be smaller than the pulsed one when the lidar measures at a close distance. Assuming λ =
1.565 µm, rb = 28 mm and WL = 30 m, the two types of lidar have similar probe volume size
at a measurement range of 155m.

Figure 3.2: Comparison of theweighting functions of the CWmeasuring at 80, 155, 230, 300m
and the pulsed lidar systemsmeasuring at 155, 300m. Themarkers indicate the discretization
of the theoretical weighting functions. The weights are normalized by the peak values. Source:
Paper IV.
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Doppler spectra of radial velocities

TheDoppler spectra of radial velocities describe thedistributionofwind velocities sampled
along the beams within the lidar probe volume, from which the radial velocity is estimated.
Assuming frozen turbulence, thewindfieldu(x) ismovingwith themeanwindU . TheDoppler
spectrum can be obtained from the simulated wind fields as (Held et al., 2018)

S(vr, t) =
∫ M

−M
φ(s)δ(vr − u(ns − U t) · n)ds, (3.23)

where vr is the radial velocity, δ is the Dirac delta function, and M is the distance along the
beam that used to truncate the integral in order to simulate theDoppler spectrumusing virtual
turbulence fields in finite lengths. The amount of truncation and discretization of the Doppler
spectrumneeds tobebalancedbetween the realistic probevolumeand thecomputational cost.

Radial velocity spectra

A radial velocity spectrum represent the lidar measurements in the wave-number domain.
The theoretical radial velocity spectrum is expressed as (Mann et al., 2009)

Fvr(k1) = ninj

∫∫
|φ̂(k · n)|2 Φij(k)dk2dk3, (3.24)

where φ̂ is the Fourier transformof the lidar weighting functionφ(s). For CW lidar systems, the
Fourier transform of Eq. (3.19) is approximated by

φ̂(k · n) = exp (−|k · n|zR), (3.25)

and for pulsed lidar systems, the Fourier transform of Eq. (3.21) can be expressed as (Schlipf,
2016)

φ̂(k · n) = exp (−|k · n|2 σ2
L

2 ), (3.26)

Then, the theoretical radial velocity variance considering probe volume can be calculated from
the integral of Eq. (3.24)

σ2
vr,f =

∫ ∞

−∞
Fvr(k1)dk1, (3.27)

where the subscript ‘f’ denotes the ‘filtered’ radial velocity variance.

3.3 Modelling of rotor-effective wind speed

If the turbine yawmisalignment is negligible, REWS sensedby thewind turbine rotor canbe
calculated as the spatial average of the along-wind velocities across the rotor disk area (Schlipf,
2016):

uRR(x) = 1
πR2

∫∫
rotor

u(x)dydz, (3.28)

=
∫

u(k)eik1x1 2J1(κR)
κR

dk, (3.29)
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where R is the rotor radius, κ =
√

k2
2 + k3

2 , J1 is the Bessel function of the first kind, and the
yawmisalignment is neglected. The auto-spectrum of uRR is (Held et al., 2019)

SRR(k1) =
∫∫ ∞

−∞
Φ11(k)4J2

1 (κR)
κ2R2 dk2dk3. (3.30)

Assuming the v and w components are zero, the REWS from lidar measurements can be
computed as the mean of the along-wind velocities retrieved from the lidar measurements:

uLL(t) = 1
Nb

Nb∑
i=1

vr,i(t)
ni1

, (3.31)

where Nb is the number of measurements in a full scan and ni1 stands for the first element in
the beam’s unit vector of the ithmeasurement. The auto-spectrumof the lidar-estimated REWS
is (Guo, Mann, et al., 2022)

SLL(k1) =
Nb∑

i,j=1

3∑
l,m=1

1
N2

b ni1nj1

∫
nilnjmΦlmexp(ik·(xi−xj))φ̂(k·ni)φ̂(k·nj)dk2dk3, (3.32)

where xi is the position vector of the ith measurement and nil is the lth element in the unit
vectorn of the ith measurement.

Thequality of thewindpreview signal providedby thenacelle lidar is evaluatedby its coher-
ence to the true REWS. The cross-spectrum of uRR and uLL considers the turbulence evolution
from the lidar measurement plane to the rotor plane

SRL(k1) =
Nb∑
i=1

3∑
l=1

1
Nbni1

∫
nilΘl1(k, ∆ti)φ̂(k · ni)exp(i(k2xi2 + k3xi3))2J1(κR)

κR
dk2dk3,

(3.33)
with∆ti denoting the elapsed time for turbulence propagating from the lidar plane to the rotor
plane, i.e.,∆ti = |∆xi|/U , where ∆xi is the longitudinal separation of the two planes. Thus,
themagnitude squared coherence γ2

RL of the lidar-rotor REWS is expressed as (Held et al., 2019;
Schlipf, 2016; Simley et al., 2018)

γ2
RL(k1) = |SRL(k1)|2

SRR(k1)SLL(k1) , (3.34)

which has values between 1 and 0.
Due towind evolution and the lidarworking principle, the lidar-estimated REWS is not per-

fectly correlated with the true one. A low-pass filter is applied to the lidar-estimated REWS to
remove uncorrelated signals in order to avoid unnecessary and harmful pitch actuations. The
cutoff frequency of the low-pass filter is selected at which the theoretical REWS transfer func-
tion drops at−3 dB (Schlipf, 2016). The REWS transfer function is given as

GRL = |SRL(f)|
SLL(f) . (3.35)
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3.4 Estimation of lidar radial statistics

Estimation of radial velocity

Three state-of-art methods can be used to determine the dominant frequency in a Doppler
spectrumofCW lidars, which affects the estimation of the ‘filtered’ second-order statistics from
lidar measurements (Held et al., 2018):

• The centroid method computes the dominant frequency fD,cen from the Doppler spec-
trum p(f) as

fD,cen =
∫

fp(f)df∫
p(f)df

. (3.36)

• The median method uses the Doppler spectrum as a probability distribution and esti-
mates the dominant frequency that corresponds to the median value.

• The maximummethod reports the dominant frequency at where the maximum peak of
the Doppler spectrum occurs.

Then, the radial velocity is calculated from the dominant frequency as

vr = λ

2 fD. (3.37)

Figure 3.3 shows a simulated Doppler spectrum using a turbulence box. The estimated radial
velocities using different methods are marked in vertical lines.
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Figure 3.3: A simulatedDoppler spectrumand the radial velocity estimates using themaximum
(max), the median (med) and the centroid (cen) methods. Source: Paper I.

Filtered and unfiltered radial velocity variances

Due to the probe volume averaging effect, some high-frequency variations of thewind can-
not be detected. The variances computed from the radial velocity time series (estimated using
centroid, maximum, or median methods) are attenuated and called the ‘filtered’ variances.

If the Doppler spectra of radial velocities are accessible, the ensemble-averaged Doppler
spectrumcan be used to circumvent the probe volumefiltering effect (Mann et al., 2010). Since
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nacelle lidars usually measure with a relatively small half-cone opening angle, it can be as-
sumed that the velocity gradient inside the probe volume of a lidar beam is negligible. Sup-
posing that all velocity variations in the probe volume are due to turbulence, the ensemble-
averaged Doppler spectrum p(vr) can be seen as a probability density function of the radial
velocity, and the radial variance is estimated as the second central statistical moment

σ2
vr,unf =

∫ ∞

−∞
(vr − µvr)2p(vr)dvr, (3.38)

where µvr represents the mean radial velocity of the ensemble-averaged Doppler spectrum

µvr =
∫ ∞

−∞
vrp(vr)dvr. (3.39)

3.5 Estimation of mean wind speeds

The mean wind speed in the along-wind direction is in the definition of the turbulence in-
tensity,

TI = σu

U
, (3.40)

which is widely used in wind energy for power performance and loads assessment. The thesis
uses two approaches to estimate the mean wind vector from different nacelle lidars.

Least-square procedure to estimate the 3D wind vector

Assuming homogeneity over the lidar scanning area, the mean wind vector U = ⟨u(x)⟩ =
(U, V, W ), the radial velocities and the correspondingbeamunit vectorsnarefitted to the least-
square formulation (Peña et al., 2019)

∆2 =
∫

(n · U − vr)2dµ, (3.41)

where
∫
dµ represents the area-weighted average of the beammeasurements. For nacelle lidars

whichhave a limitednumber ofmeasurementpoints, it is the sumof all pairs of radial velocities
and the corresponding unit vectors. The mean wind vector is estimated by minimizing the
squared difference on the right side of Eq. (3.41)

∂∆2

∂Ui
= 0 ⇒ 2

∫
(n · U − vr)nidµ = 0, for i = 1, 2, 3. (3.42)

Therefore, the mean wind vector can be calculated from
∑

n2
1

∑
n1n2

∑
n1n3∑

n1n2
∑

n2
2

∑
n2n3∑

n1n3
∑

n2n3
∑

n2
3


U

V
W

 =


∑

n1vr∑
n2vr∑
n3vr

 . (3.43)

The procedure requires at least three radial velocities measured in different beam directions to
solve the three unknowns in the mean wind vector.
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Reconstruction of the 2D wind vector

If the vertical wind component is negligible, i.e., w = 0, following Eq. (3.17), the radial
velocities can be written as

vr(ϕ, θ) = −u cos ϕ + v cos θ sin ϕ. (3.44)

Using radial velocities measured in two horizontal directions, the velocity components (u, v)
can be computed as

u = −
vr,left + vr,right

2 cos ϕ
,

v =
vr,right − vr,left

2 sin ϕ
. (3.45)

Then, the mean wind velocities (U, V ) can be computed as the average of the reconstructed
(u, v).

The approach requires only twobeamsat the sameheight, which canbeused to reconstruct
themean wind vector from 2-beam lidars. It’s also a very useful method to derive wind profiles
fromnacelle lidars that have at least two beams at different heights, e.g., 4-beam lidars, circular
scanning lidars, the SpinnerLidar, etc.

Induction correction

If the lidar measurement plane is very close to the rotor, they might be measuring within
the induction zone, where the wind slows down from the free-stream velocity while approach-
ing the rotor. The undisturbed free-stream velocity U∞ can be calculated using the method in
Simley et al., 2016

U

U∞
= 1 − a

1 + 2x

D

(
1 +

(2x

D

)2
)− 1

2
 , (3.46)

where x is the distance between the lidar measurement plane and the rotor plane, and a is the
induction factor. According to the axial momentum theory, the induction factor is influenced
by the turbine’s thrust coefficientCt and thus can be estimated fromCt = 4a(1 − a).

In Paper I, the along-wind velocities from the nacelle lidars are induction-corrected and
compared with the one derived from a sonic anemometer at the turbine’s hub height on the
met-mast.

3.6 Estimation of Reynolds stresses

The components in the Reynolds stress tensor are important for different studies. For load
validation (Conti et al., 2021; Conti et al., 2020) and wind turbine design (International Elec-
trotechnical Commission, 2019), the most frequently used component is the along-wind vari-
ance, whose square root is in the definition of the turbulence intensity. For load simulations,
other Reynolds stresses besides the along-wind variance are also needed to determine the pa-
rameters in three-dimensional turbulence models (Mann, 1998). To study the vertical wind
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profiles, two covariances form the momentum fluxes and are used to calculate the friction ve-
locity (Peña et al., 2016; Wyngaard, 2010). The turbulence kinetic energy is useful to study the
structure of turbine wakes, which is half the sum of the three velocity variances (Kumer et al.,
2016).

Assuming homogeneity over the lidar scanning area, the Reynolds stress tensor R can be
estimated using the least-square procedure (Peña et al., 2019), which fitsR, the radial velocity
variances σ2

vr and the unit vectors of the beamsn to the formulation

∆2 =
∫

(n · Rn − σ2
vr)

2dµ. (3.47)

The Reynolds stresses are estimated byminimizing the squared difference on the right side
of Eq. (3.47)

∂∆2

∂Rij
= 0 ⇒ 2

∫
(n · Rn − σ2

vr)ninjdµ = 0, for i, j = 1, 2, 3. (3.48)

Therefore, the Reynolds stresses canbe calculated from (the full solution canbe found inPaper
III)

∑
n4

1
∑

n2
1n2

2
∑

n2
1n2

3
∑

2n3
1n2

∑
2n3

1n3
∑

2n2
1n2n3

...
∑

n4
2 ... ... ... ...

... ...
∑

n4
3 ... ... ...

... ... ...
∑

2n2
1n2

2 ... ...
... ... ... ...

∑
2n2

1n2
3 ...

... ... ... ... ...
∑

2n2
2n2

3





Ruu

Rvv

Rww

Ruv

Ruw

Rvw


=



∑
n2

1σ2
vr∑

n2
2σ2

vr∑
n2

3σ2
vr∑

n1n2σ2
vr∑

n1n3σ2
vr∑

n2n3σ2
vr


,

(3.49)
whereRuu, Rvv, Rww denoteσ2

u, σ2
v , σ2

w andRuv, Ruw, Rvw denote ⟨u′v′⟩, ⟨u′w′⟩, ⟨v′w′⟩, respec-
tively. The six Reynolds stresses can be solved from Eq. (3.49) only if both of the following re-
quirements are fulfilled:

• the nacelle lidar has at least six beams (i.e., measures in six different directions),

• the nacelle lidar has at least two different half-cone opening angles.

If the nacelle lidar has fewer than six beams or the half-cone opening angles of all beams
are identical, some of the six equations in Eq. (3.49) are linearly dependent and the large ma-
trix on the left side of Eq. (3.49) is degenerate. Consequently, not all Reynolds stresses can be
solved. Nevertheless, for wind energy load characterization and power performance assess-
ment, the along-wind variance σ2

u is the key turbulence parameter. Focusing the estimation on
σ2

u, one can assume relations between theReynolds stresses to reduce thenumber of unknowns
in Eq. (3.49). The six equations can be simplified into one equation. We apply three different
assumptions:

1. ‘LSP-σ2
u’ assumption: assuming σ2

u > 0 and all other Reynolds stresses in Eq. (3.49) are
zero.

2. ‘LSP-isotropy’ assumption: assuming turbulence is isotropic, i.e., σ2
u = σ2

v = σ2
w and

⟨u′v′⟩ = ⟨u′w′⟩ = ⟨v′w′⟩ = 0.
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3. ‘LSP-IEC’ assumption: assuming the relations between the standard deviation of three
velocity components aswhat recommend in the IEC standard (International Electrotech-
nical Commission, 2019), i.e., σv = 0.7σu, σw = 0.5σu and ⟨u′v′⟩ = ⟨u′w′⟩ = ⟨v′w′⟩ = 0.

3.7 Blade interference

Measurements from forward-looking nacelle lidars are often intercepted by the passing
blades, which reduces the lidar data availability. Usually, themeasurements in the lower part of
the scanning pattern are more easily affected than those in the central or upper parts (Borrac-
cino et al., 2017). For CW lidars, the blade return signals introduce additional backscattering
signals in the lidarDoppler spectrum, which are not easily differentiated from thewind signals.
In Paper I and Paper III, the blade signals are filtered out by simulating the blade-returned ra-
dial velocity (Angelou et al., 2022; Angelou et al., 2015):

vr = |ΩSyhL|, (3.50)

whereΩ is the rotational speed, Sy is the lateral component of the beams’ unit vector, and hL is
the vertical displacement from the turbine rotation axis to the nacelle-lidar scan head. Then,
the radial velocities are discriminated when their values are very close to the simulated blade-
returned radial velocities.
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4 | Sites andmeasurements

Two datasets collected at the DTU Risø test site in Denmark and in an anonymous wind
farm have played key roles in verifying the research hypothesis and achieving the main ob-
jectives of this thesis. Two datasets both contain concurrent inflow measurements from CW
nacelle lidars and the SCADA of the research wind turbines. The dataset fromRisø test site also
hasmeasurements ofmast-mounted anemometers. Information about the sites andmeasure-
ments is given in this chapter.

4.1 DTU Risø test site

Paper I-III use measurements collected at the test site located at DTU Risø campus in
Roskilde, Denmark, next to the Roskilde fjord. There are four wind turbines in the test site,
which are marked in circles in Fig. 4.1(a). The reference wind turbine is a Vestas V52 wind tur-
bine standing at the northernmost position. Around the reference wind turbine, the terrain
is almost flat covered by low vegetation and thus can be assumed to be horizontally homoge-
neous. The V52 turbine has a rotor diameter of 52 m, a hub height of 44 m, and a rated power
of 850 kW. The supervisory control and data acquisition data (SCADA) of the V52 wind turbine
are available. A V52 meteorological mast is marked in a red square located at a distance of 120
m at the northwest of the V52 turbine.

Figure 4.1: (a) A digital surface elevation model of the Risø test site in Roskilde, Denmark. The
height above the sea level in meters is indicated in the color bar. (b) A SpinnerLidar (top), a
WindVision (middle), and a WindEye (bottom) sat on top of each other on the V52 nacelle at
the Risø test site. Source: Paper I.
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Sites and measurements

During September 2020 and June 2021, the SpinnerLidar, theWindVision, and theWindEye
were measuring the inflow on the nacelle of the V52 wind turbine, as shown in Fig. 4.1(b). The
SpinnerLidar (Peña et al., 2019) is a researchCW lidar, which scans the inflow in a rosette-curve
pattern at 400 different locations per full scan. The beam half-cone opening angle varies be-
tween 0−30°. TheWindVision (W4) andWindEye (W2) are commercial CW lidars produced by
Windar Photonics A/S (Windar Photonics, 2020), which report four and two radial velocities,
respectively, in a full scan per second. The experiment set-up of the three lidars is shown in
Fig. 4.2.

The SpinnerLidar dataset contains the rawDoppler spectra of radial velocities and system-
reported radial velocities, measurement index, quality of the estimates, spectrum total power,
beam unit vectors, focus distance and lidar positions. The W4 and W2 datasets have system-
reported radial velocities.
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Figure 4.2: (a) A 3D and (b) a 2D upwind view of the theoretical scanning patterns of the Spin-
nerLidar, the WindVision (W4), and the WindEye (W2). Source: Paper I.

The V52 mast (Fig. 4.3) is equipped with sonic anemometers and cup anemometers at dif-
ferent heights above the ground. The wind direction is measured by a wind vane at 41m (Peña
et al., 2019). The precipitation is measured by an opto sensor at 2 m. To evaluate the turbu-
lence estimations from nacelle lidars, statistics from the cup and sonic anemometers at 44 m
(equivalent to turbine’s hub height) are used as references.

4.2 Wind farmmeasurements

Paper V uses wind turbine and nacelle lidar measurements from an anonymous inland
wind farm to study the impact of atmospheric turbulence characteristics on thewake behavior.
Measurements were collected from 30 September 2021 to 20 December 2022. Figure 4.4 shows
the layout of part of thewind farmaround the referencewind turbinesT3andT10. Wind sectors
in which T3 is in freestream and T10 is only shadowed by the wake from T3 are used for the
analysis. The turbines in the wind farm have a rotor diameter of 62 m, a hub height of 49 m,
and a rated power of 1.3MW.Thewind turbines’ active power, yaw angle (relative to the north),
yaw error, and turbines’ status were recorded in the SCADA system.
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Sites and measurements

Figure 4.3: A sketch of the V52 met mast and the equipped sensors at Risø test site (DTUWind
Energy, 2014).
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Sites and measurements

A single-beam CW lidar measures the flow horizontally in a staring mode on the nacelle of
T3. The focus distance is 80 m. The dataset contains lidar Doppler spectra of radial velocities
and the system-reported wind data, including the radial velocities, the turbulence intensity,
the spectra-averaged turbulence intensity, which is equivalent to the ‘unfiltered’ TI, the spec-
tral spreads, which is the width of the spectrum indicating the amount of turbulence or flow
complexity within the probe volume, and the backscatter, which is a measure of lidar signal-
to-noise ratio.

Figure 4.4: Layout of thewind farm, inwhich thewake effect of T3 (upstream,marked in green)
on T10 (downstream, marked in red) is studied in Paper V. The coordinates of wind turbines
are relative to the location of T3.
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5 | PhD contribution

This chapter summarizes themajor findings from the scientificworks regards to thedefined
thesis objectives, formulated hypotheses, and raised research questions. The scientific works
are attached in the Appendix, in which details of the data analysis andmore results are shown.

5.1 Methodology to characterize atmospheric turbulence

Paper I-III investigate the turbulence characterization methods using nacelle lidars. The
main difference between the three paper is that Paper I uses the 2- and 4-beamCW lidars, and
the SpinnerLidar, while Paper II-III include lidars in other different scanning configurations.

Paper I first evaluates themean along-wind velocity estimated from three different nacelle
lidars and shows the radial statistics of the SpinnerLidar (Fig 5.1), which reveals the possi-
ble cross-contamination effect on the turbulence estimation when combining radial measure-
ments in different beam directions. A good estimation of the along-wind variance could be
obtained for the wrong reason sometimes, e.g., when the cross-contamination effect cancels
out the probe volume averaging effect.

Figure 5.1: Ideal contour plots of (a) the radial velocities and (b) the unfiltered radial variances,
which are both normalized by the along-wind statistics of a sonic anemometer at hub height.
Results are the mean value from virtual SpinnerLidar measurements simulated using 30 wind
field realizations. Source: reproduced from Paper I.

Moreover, Paper I studies the impacts of different radial velocity estimation methods (the
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centroid,median andmaximum) on turbulence estimation. Since thesemethods use the dom-
inant frequency of the Doppler shift, none of these methods uses all fluctuations detected in
the lidar probe volume. Variances computed from the estimated radial velocities are ‘filtered’.
Among the three methods, the centroid method is most affected by the probe volume, while
the maximummethodmitigates best the turbulence attenuation.

Theuseof theensemble-averagedDoppler spectrumof radial velocities canefficiently elim-
inate the probe volume averaging effect. Paper I shows that the ‘unfiltered’ variance of the
SpinnerLidar central beam has recovered by 10% compared to the ‘filtered’ variance from the
centroid radial velocities. The successful estimation of the ‘unfiltered’ variance relies on ‘clean’
Doppler spectra, in which the noises are eliminated and the signals left are contributed by tur-
bulence. In field measurements, the possible source of the signal noises includes reflections
from optical lenses, hard targets, moving objectives (turbine blades, clouds, passing vehicles,
birds), precipitations, etc. Therefore, Paper I put substantial efforts to process each instan-
taneous Doppler spectrum of the SpinnerLidar before using them to compute the ‘unfiltered’
variance.

The least-square procedure uses radial measurements and the unit vectors of the beams in
all available directions over a full scan to compute the Reynolds stress tensor. Results in Paper
I-III demonstrate that if the nacelle lidar has more than six beams and at least two different
opening angles, e.g. the 6-beam, 51-beam lidars, and the SpinnerLidar, all six components in
the Reynolds stress tensor can be well estimated using Eq. (3.49). The along-wind variance es-
timated by those lidars is as accurate as the one from the sonic anemometer, whereas estimates
of other components have larger uncertainties than those from the sonic anemometer.

Furthermore, results from different nacelle lidars in Paper I-III show that, when Eq.(3.49)
can not be fully solved, the ‘LSP-IEC’ assumption (in Section 3.6) is the fairest procedure to es-
timate the along-wind variance because it assumes the relations of the Reynolds stresses clos-
est to what can be observed in the atmospheric surface layer. It is a universal procedure that
works for all lidars in the study including the 6-, 51-beam lidars and the SpinnerLidar. When
the Doppler spectra of radial velocities can be used to derive the ‘unfiltered’ variance, the ‘LSP-
IEC’ assumption gives accurate σ2

u using all considered lidars. Particularly, the staring beam
performs just like a sonic anemometer in measuring the along-wind variance.

The ‘LSP-σ2
u’ assumption can systematically overestimate σ2

u when the lidar scanning pat-
tern is symmetric and the beams have only one opening angle because Eq.(3.49) can be sim-
plified to σ2

u =
∑

σ2
vr/
∑

cos2 ϕ, where∑ cos2 ϕ < 1. Nevertheless, the overestimation can
sometimes counterweigh the turbulence attenuationby theprobe volume, as shown inPaper I.
Coincidentally, we get the best along-wind variance estimates using ‘LSP-σ2

u’ assumption from
W4 andW2measurements.

The least-square procedure used in this work assumes turbulence homogeneity over the
lidar scanning area, which can be violated in complex terrains or inside wind turbine wakes.
Therefore, new methodologies to characterize turbulence under inhomogeneous inflow con-
ditions need to be investigated, such as using the constrained turbulent flow (Dimitrov et al.,
2016; Rinker, 2018), physics-informedmachine learningapproach (Zhanget al., 2021)orproper
orthogonal decomposition method (Saranyasoontorn et al., 2005).
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5.2 Impact of nacelle lidar scanning strategies on turbulence char-
acterization

Paper II andPaper III apply the least-square procedure tomore lidars and investigate how
the lidar scanning strategies affect the accuracy and the uncertainty of the Reynolds stress esti-
mations. Themain features of the scanning strategies are considered, i.e., the number of mea-
surement points, the beam opening angles, the focus distances, and the type of lidar systems.
Paper II is based on numerical simulations, while Paper III reuses the SpinnerLidar dataset in
Paper I to verify our findings from the simulations. The SpinnerLidar measurements at differ-
ent scanning locations are carefully selected to mimic lidars with different numbers of beams
or different opening angles.

Asmentioned in Section 5.1, thenumber of beamsand thenumber of opening angles deter-
mine if the nacelle lidar can estimate all six Reynolds stresses following the least-square proce-
dure. Additionally, Paper II-III show that using themulti-planemeasurements along the same
beam directions does not improve the accuracy of Reynolds stress estimations; it only reduces
slightly the estimation uncertainty of the transverse Reynolds stress components.

Furthermore, using the 6-beam lidar, Paper II-III show that increasing the beam opening
angle improves the estimation of the transverse Reynolds stress components. Since the 6-beam
lidarhas a central beamthat alignswith thealong-windcomponent, increasing theopeningan-
gle does not sacrifice the along-wind variance estimation, which in principle could happen to
the 2-, 4-beam, andcircular-scanning lidars. Whenϕ = 45°, the 6-beam lidar evenoutperforms
the SpinnerLidar, despite having much fewer beams.

The lidar probe volume has to be considered when studying the impact of the focus dis-
tance on the Reynolds stress estimations. The estimation bias and uncertainty increases with
the focus distance. Therefore, for both CW and pulsed lidars, measuring close to the rotor is
beneficial for Reynolds stress estimations.

To summarize, a 6-beam nacelle lidar measuring at a close distance with a large opening
angle is the best scanning strategy in our study for characterizing the Reynolds stress tensor.
The central beam of the 6-beam lidar guarantees that the along-wind component can be well
measuredwhen enlarging the opening angle for a better view of the lateral and vertical compo-
nents, which are important for wind directions, turbulence kinetic energy, etc. The best open-
ing angle and the focus distance of the 6-beam lidar need to be determined by further studies
and experiments for different applications.

5.3 Applicationofa single-beamlidar forwind turbine feedforward
control

Feedforward collective pitch control is one of the most promising lidar-assisted control
techniques since significant improvements in rotor speed regulations and fatigue load reduc-
tions can be achieved (Canet et al., 2021; Schlipf et al., 2014; Schlipf, Simley, et al., 2015; Schol-
brock et al., 2013). The feedforward controller uses the preview information of the approaching
wind to help the conventional feedback controller react before the aerodynamic impact on the
turbine’s structure has occurred. To achieve control benefits, thewind preview signal should be
well correlated with the wind that interacts with the wind turbine rotor plane, which is usually

28



PhD contribution

represented as the REWS. The lidar scanning strategy is one of the key factors that impact the
benefits of feedforward pitch control. Other factors include the turbine size, the wind condi-
tions, the lidar data processing, and the controller design (Schlipf et al., 2014).

A single-beam lidar is flexible and low in cost. From Paper III, it can be seen that a staring
lidar that measures horizontally gives the best along-wind statistics. For control applications,
however, measurement at a single point is not a good representative of the inflow interacting
with the wind turbine rotor. To make the best use of a single-beam lidar for control, Paper
IV simulates the lidar in the spinner of an IEA 15-MW reference wind turbine (Gaertner et al.,
2020). With an opening angle between the beam and the turbine’s horizontal axis, the spinner-
based lidar is able to scan the inflow in a circular pattern during turbine operations.

In Paper IV, the lidar beams’ opening angles andmeasurement distance are optimized for
the best wind preview quality evaluated by the REWS coherence. An additional constraint for
the lidar optimization is the buffer time, which is used to synchronize the blade pitch actuation
with the wind reaching the rotor plane. The buffer time has to be positive to ensure the wind
preview signal reaches the turbine before the wind.

Results indicate that both the CW and pulsed single-beam lidar based in the spinner can
provide a much better coherence compared to the same lidar based on the nacelle. The opti-
mum scanning configurations of CW and pulsed lidars are different, but both result in a lidar
scan radius of approximately 0.6 of the rotor radius. The CW lidar should measure at a closer
distancewith awider openingangle compared to thepulsed lidar since theprobe volumeofCW
lidars becomes very influential at large distances. The study also discusses howwind evolution
influences the measurement coherence bandwidth and the optimum lidar configurations.

The optimized configurations of the single-beam lidars in the spinner are applied for feed-
forwardpitch control. The control performances, i.e., the regulation of rotor speedfluctuations
and the reduction of tower and blade damage equivalent loads, are evaluated by aero-elastic
simulations usingOpenFAST (National Renewable Energy Laboratory, 2022). Results show that
the spinner-based single-beam lidar achieves much higher control benefits compared to the
nacelle-based ones, which are at the same level as a four-beam CW nacelle lidar.

The findings in Paper IV are limited in several aspects. First, only a mean wind speed at
18ms−1 is considered. The wind speed affects not only the optimum lidarmeasurement range
due to its impact on the buffer time but also the control benefits (Guo et al., 2023; Schlipf,
2016; Schlipf et al., 2018). Second, the paper considers only a neutral turbulence condition.
The control benefits can be higher in unstable conditions and lower in stable conditions (Guo
et al., 2023). Furthermore, the study uses the default parameters for the feedback controller.
Higher fatigue load reductions can be gained by optimizing the controller gains (Schlipf et al.,
2018). In addition, multiple measurement planes should be considered for the pulsed lidar so
that a larger scan area can be covered with the same number of beams, which improves the
REWS coherence.

In the future, one could potentially use more than one single-beam lidar in the spinner so
that multi-range measurements can be achieved even with CW lidar systems. Using multiple
single-beam lidars in the spinner can reduce the lidar full scan time and increase the system
redundancy. The wind shear can be derived from the circular pattern of the single-beam lidar,
which can be used for individual pitch control.
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5.4 Application of a single-beam lidar for wake studies

Wind turbine wake is characterized by a reduced wind speed and a more complex flow
structure, which gradually recovers while the wake travels downstream. The velocity deficit
has a direct impact on the power output of the downstream wind turbine. Previous studies
found that the atmospheric stability and ambient turbulence intensity impact the wake recov-
ery (Breton et al., 2014; Hansen et al., 2012;Maeda et al., 2011; Peña et al., 2014; Troldborg et al.,
2011).

Paper V investigates the influence of the ambient flow turbulence intensity on the wake
losses using a single-beam nacelle lidar. Measurements from an inland wind farm are ana-
lyzed. The wake losses are represented by the power deficits between a pair of wind turbines
in the wind farm. The turbulence intensity is measured by the single-beam nacelle lidar on
the upstream wind turbine. Results in Paper V show that when two turbines are both facing
the undisturbed inflow, the ratio of their power outputs is almost constant with the changing
ambient turbulence intensity. When the downstream wind turbine is affected by the wake, we
see a clear trend that the wake-induced power deficit decreases with the increasing turbulence
intensity of the ambient flow. The trend indicates that the wake recovers faster when the am-
bient flow is more turbulent. These findings demonstrate the potential of using a single-beam
nacelle lidar for wake studies.

In addition, Paper V attempts to estimate the turbulence length scale and dissipation rate
from the single-beam nacelle lidar measurements based on the Mann turbulence model. The
length scale is related to the atmospheric conditions and the dissipation rate acts as a scaling
factor on the turbulence intensity. Therefore, both parameters are important for studying the
interactions between atmospheric flow and wind turbine wakes. We propose two methods to
estimate the length scale and dissipation rate using the radial velocity spectrum. One method
uses the amount of turbulence attenuation by the lidar probe volume, which is represented by
the ratio of the ‘filtered’ to ‘unfiltered’ radial velocity variances. The other method estimates
both parameters simultaneously by fitting the modelled radial velocity spectrum to the one
computed from the measurements. Both methods assume a fixed turbulence anisotropy. So
far, we found that the estimates from two methods do not agree with each other sometimes.
The noises in the high-frequency range of the radial velocity spectra are disturbing the fitting
procedures. Therefore, we are planning to optimize the algorithmby log-binning the spectrum
and dropping a part of the signals in the high-frequency range of the spectrum. This work is
still in progress.
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6.1 Conclusion

The main objectives of this thesis were (1) to investigate methodologies to characterize at-
mospheric turbulence using nacelle lidars, (2) to study the dependence of turbulence estima-
tionson the scanning strategies of nacelle lidars, and (3) tomake thebest useof aflexible single-
beam lidar for wind turbine feedforward control and wake studies. The research objectives are
achieved using virtual and field measurements of nacelle lidars, measurements inside a wind
farm as well as aero-elastic wind turbine simulations.

We found that nacelle lidars withmore than six beams and two different beam opening an-
gles are able to retrieve all six components of theReynolds stress tensor following a least-square
procedure. If the Doppler spectra of radial velocities are used to account for the probe vol-
ume spatial averaging effect, nacelle lidars in several different scanning configurations can es-
timate the along-wind variance aswell as a sonic anemometer. Other lidar-estimated Reynolds
stresses have larger uncertainties than those from a sonic anemometer.

Enlarging the beam opening angle improves the estimation of transverse Reynolds stress
components. Increasing the lidar focus distance has negative effects on the estimation of the
Reynolds stress tensor. We obtained the best estimation of the Reynolds stress tensor from a
6-beam nacelle lidar measuring at a close focus distance with a large opening angle. The 6-
beam lidar has five beams forming a circular pattern and a central horizontal beam. Therefore,
measuring with a large opening angle using the 6-beam lidar does not sacrifice the estimation
of the along-wind variance.

Using a single-beam lidar in the wind turbine spinner, the lidar scans the inflow in a circu-
lar pattern during turbine operations. It was found that the spinner-based single-beam lidar
brings muchmore control benefits in terms of rotor speed regulations and fatigue load reduc-
tions compared to the same lidar based on the nacelle. The spinner-based single-beam lidar
achieved similar control benefits as a four-beam nacelle lidar. Furthermore, we showed that
the wake-induced power deficit of the downstream wind turbine is inversely proportional to
the ambient turbulence intensity, which is measured by a single-beam lidar on the nacelle of
the upstreamwind turbine. These results demonstrated the potential of using a simple single-
beam lidar for wind turbine control and wake studies.

6.2 Industrial applications

The research findings have the potential to be highly valuable within the wind energy and
meteorology industries. The methods of estimating Reynolds stress components are very use-
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ful for lidarusers toobtain accurate anddetailed turbulence characteristics, whichbenefitwind
turbine power performance assessments and optimizations, load validations andwind turbine
design, andwind resource assessments inmet-ocean applications. Weproved theusefulness of
themethods using fieldmeasurements of commercial nacelle lidars provided by IEAWindTask
32 for a round-robinon“turbulenceestimationusingnacelle-mounted lidar systems” (Riechert
et al., 2022). The least-square procedure was implemented as an algorithm in Python, which
can be published on GitHub as a stand-alone algorithm to assist the application in the wind
energy industry. The study on lidar scanning strategy provides insights and guidance on de-
signing and utilizing nacelle lidars for turbulence characterization.

The research findings on the low-cost and robust single-beam lidar open various possi-
bilities for wind energy industries. Using one or several single-beam lidars in the spinner, or
combining a spinner-based and a nacelle-based single-beam lidar have great potential to ben-
efit lidar-assisted control and turbulence characterization. The single-beam lidar can also be
used for estimating the wake losses to helpmake decisions on wind turbine control. Those ap-
plications can optimize wind turbine power outputs and mitigate fatigue loads on the turbine
structural components, which eventually reduces the levelized cost of wind energy.

6.3 Outlook

While summarizing the findings of this thesis, we found some unsolved questions for fu-
ture research. First of all, the least-square procedure for turbulence characterization assumes
homogeneity among the lidar scanning area. This worked for a wind turbine with a relatively
small rotor size. However, the inflow turbulence can be highly spatially heterogeneous forwind
turbines with large rotor spans or turbines operating in complex terrains. Methodologies such
as constrained simulations, proper orthogonal decomposition, or physics-informed machine
learning methods can be useful to reconstruct inhomogeneous wind fields.

Second, we found that enlarging the half-cone opening angle of the lidar beams improves
turbulence estimations. But how large is the best opening angle? The answer can vary with
the main turbulence features of interest and the wind turbine size. Therefore, future studies
and experiments are needed to investigate the most useful and robust 6-beam configuration
for different applications.

Furthermore, there are a lot of opportunities for optimizing the scanning strategies of the
spinner-based single-beam lidar. More thanone single-beam lidar in the spinner couldbeused
toachievemulti-planemeasurements, increase the scanning rateof a full scan, and improve the
system’s redundancy. The spinner-based lidar couldwork togetherwith a nacelle-based single-
beam lidar, which guarantees a good sight in the along-wind direction. The study of using a
single-beam lidar in the spinner for control is based on simulations. Field measurements are
valuable to test the idea and demonstrate the control benefits. Lastly, the relation between the
ambient turbulence intensity and the wind turbine power deficit can be used to improve the
existing wake loss models.
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Abstract. Atmospheric turbulence can be characterized by the Reynolds stress tensor, which consists of the
second-order moments of the wind field components. Most of the commercial nacelle lidars cannot estimate all
components of the Reynolds stress tensor due to their limited number of beams; most can estimate the along-
wind velocity variance relatively well. Other components are however also important to understand the behavior
of, e.g., the vertical wind profile and meandering of wakes. The SpinnerLidar, a research lidar with multiple
beams and a very high sampling frequency, was deployed together with two commercial lidars in a forward-
looking mode on the nacelle of a Vestas V52 turbine to scan the inflow. Here, we compare the lidar-derived
turbulence estimates with those from a sonic anemometer using both numerical simulations and measurements
from a nearby mast. We show that from these lidars, the SpinnerLidar is the only one able to retrieve all Reynolds
stress components. For the two- and four-beam lidars, we study different methods to compute the along-wind
velocity variance. By using the SpinnerLidar’s Doppler spectra of the radial velocity, we can partly compensate
for the lidar’s probe volume averaging effect and thus reduce the systematic error of turbulence estimates. We
find that the variances of the radial velocities estimated from the maximum of the Doppler spectrum are less
affected by the lidar probe volume compared to those estimated from the median or the centroid of the Doppler
spectrum.

1 Introduction

Understanding and measuring atmospheric turbulence are
essential for the effective use of wind energy, to assess
wind turbine site conditions, and for the assessment of the
structural integrity of wind turbines. Traditionally, in situ
anemometers installed on meteorological (met) masts are
used to measure turbulence. However, with the increasing
size of modern wind turbines, installing and operating a met
mast that reaches the top of the rotor disk are becoming more
and more expensive and infeasible. Nacelle lidars are com-
pact and portable. They yaw with the wind turbine and scan
over an area comparable to the rotor plane.

The Reynolds stress tensor is one of the most important
turbulence statistics used in the wind energy industry. It con-
sists of the second-order moments (variances and covari-
ances) of the wind field components. One of the Reynolds
stress components, the along-wind velocity variance, is used
in the definition of turbulence intensity (IEC, 2019) and ap-

plied in different aspects of wind energy. Other components
are also essential in wind energy and boundary-layer meteo-
rology. For example, the vertical wind shear is connected to
the friction velocity (Wyngaard, 2010), which can be com-
puted using the momentum fluxes (two covariances); the mo-
mentum fluxes can also be used to crudely estimate the height
of the boundary layer (Stull, 1988). The turbulence kinetic
energy, expressed as half the sum of the three velocity com-
ponents’ variances, is a key parameter for investigating the
turbulence structure in, e.g., wind turbine wakes (Kumer et
al., 2016).

The main objective of this study is to investigate the bene-
fit of using multiple-beam nacelle lidars for measuring inflow
turbulence. Most commercial nacelle lidars are not able to es-
timate all components of the Reynolds stress tensor due to the
limited number of beams and the scanning configuration. The
SpinnerLidar is a research continuous-wave (CW) Doppler
nacelle lidar. It scans at 400 positions at a high sampling fre-
quency, which enables characterizing the inflow in detail. We
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evaluate and compare the turbulence characterization perfor-
mance of a two- and a four-beam commercial lidar, and the
SpinnerLidar through both numerical simulations and mea-
surements inter-comparisons with in situ anemometers. For
the latter, we deployed the three lidars in a forward-looking
mode on the nacelle of a V52 wind turbine. Measurements
from sonic anemometers on a met mast are used as reference
for evaluation of the lidar-derived turbulence characteristics.

Assuming statistical homogeneity, we estimate the
Reynolds stress components by fitting lidar radial velocity
variances from the beams over the scanning pattern using
a least-squares-based method. To determine the six compo-
nents of the Reynolds stress tensor, we require at least six
radial velocity variances measured in different beam orien-
tations in analogy to the method by Eberhard et al. (1989).
Here, we discuss the limitations of using different methods
and assumptions to estimate the along-wind velocity vari-
ance with fewer than six radial velocity variances. We fo-
cus on this variance because it is a key parameter for load
validation (Dimitrov et al., 2019; Conti et al., 2021), power
performance assessment (Wagner et al., 2014, 2015; Borra-
cino et al., 2017) and wind turbine control (Schlipf et al.,
2014, 2020).

Measurements of turbulence by lidars are affected by spa-
tial average filtering effects caused by the lidar probe vol-
ume and cross-contamination effects from combining line-
of-sight velocities at different locations assuming instan-
taneous homogeneity and not only statistical homogeneity
(Sathe and Mann, 2013; Kelberlau and Mann, 2020). Both
effects contribute to the systematic error of turbulence esti-
mation using lidars. As a consequence of the first effect, a li-
dar estimates turbulence essentially through a low-pass filter
and cannot detect high-frequency variations, which yields the
so-called “filtered variances”. Held and Mann (2018) showed
that different methods of deriving the radial velocity from
the lidar Doppler spectrum influence the degree of the tur-
bulence attenuation. We explore the ability of these meth-
ods for turbulence estimation with the SpinnerLidar mea-
surements. We also compensate for the probe volume filter-
ing effect and compute “unfiltered variances” of the radial
velocity using Doppler radial velocity spectra from the Spin-
nerLidar measurements. Peña et al. (2017) used Doppler ra-
dial velocity spectra and showed that the along-wind unfil-
tered variance from a conically scanning lidar agreed well
with the one from a cup anemometer on a met mast. How-
ever, other lidar-derived estimates of velocity-component
variances were largely biased due to the lidar scanning con-
figuration.

This paper is organized as follows. Section 2 describes the
turbulence spectral model, the maximum, median and cen-
troid methods to derive the lidar radial velocities from the
Doppler spectrum, the filtered and the unfiltered radial ve-
locity variances, the least-squares method to compute the
Reynolds stress tensor, and the numerical lidar simulations.
Section 3 provides information on the measurement cam-

paign and the employed nacelle lidars. Section 4 describes
how we filter and post-process the high-frequency lidar ra-
dial velocities and the Doppler radial velocity spectra. Sec-
tion 5 shows the inter-comparison of turbulence characteris-
tics between three nacelle lidars and a mast-mounted sonic
anemometer at turbine hub height. Discussions and conclu-
sions are given in Sects. 6 and 7, respectively.

2 Methodology

2.1 Turbulence spectral model

Assuming Taylor’s frozen turbulence hypothesis (Taylor,
1938), the wind field can be described by a vector field
u(x)= (u,v,w)= (u1,u2,u3), where u is the horizontal
along-wind component, v the horizontal lateral component,
w the vertical component, and x = (x,y,z) the position vec-
tor defined in a right-handed coordinate system. The mean
value of the homogeneous velocity field is 〈u(x)〉 = (U,0,0),
so the coordinate x is in the mean wind direction. The turbu-
lence spectral properties of the three-dimensional homoge-
neous wind field are described by the spectral velocity tensor
8ij (k) (Kristensen et al., 1989):

8ij (k)=
1

(2π )3

∫
Rij (x)exp(−ik · x)dx, (1)

which is the Fourier transform of the covariance tensor
Rij (x)≡ 〈u′i(x)u′j (x+ r)〉, where 〈 〉 denotes ensemble av-
eraging, r is the separation vector, u′i are the fluctuations
around the mean and k = (k1,k2,k3) is the wave vector in
the (x,y,z) directions.

We assume that the spectral velocity tensor 8ij (k) can
be described by the model of Mann (1994) (hereafter the
Mann model), which, besides k, only contains three param-
eters (known as Mann parameters): αε2/3 is a product of the
spectral Kolmogorov constant α and the turbulent energy dis-
sipation rate ε to the two-thirds power, L is a length scale
related to the size of the energy-containing eddies, and 0 is a
parameter describing the anisotropy of the turbulence. From
the spectral tensor, the one-point spectra of velocity fluctua-
tions are calculated by

Fij (k1)=
∫∫

8ij (k)dk2dk3. (2)

The wind velocity components have the three auto-spectra
F11 (= Fu), F22, and F33. The auto-spectra can be evaluated
using Eq. (2). The variances of the velocity components are

σ 2
u,v,w =

∞∫
−∞

Fu,v,w(k1)dk1, (3)
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and these, together with the covariances, are the components
of the Reynolds stress tensor:

R =

 σ 2
u 〈u′v′〉 〈u′w′〉

〈v′u′〉 σ 2
v 〈v′w′〉

〈w′u′〉 〈w′v′〉 σ 2
w

 . (4)

2.2 Nacelle lidar

The unit vector n describing the beam orientation of a nacelle
lidar can be expressed as (Peña et al., 2017)

n(φ,θ )= (−cosφ,cosθ sinφ,sinθ sinφ), (5)

where θ is the angle between the y axis and n projected onto
the y–z plane and φ is the angle between the beam and the
negative x axis (hereafter half-cone opening angle). As with
any other Doppler lidar, nacelle lidars only measure the ra-
dial velocity (also known as the line-of-sight velocity) along
the laser beam. Thus, the radial velocity can be expressed as
(Mann et al., 2010)

vr(φ,θ )=

∞∫
−∞

ϕ(s)n(φ,θ ) ·u[n(φ,θ )(fd + s)]ds, (6)

where ϕ is the lidar weighting function that considers the
probe volume, s is the distance from the focus point along the
beam and fd is the focus distance. This equation assumes that
vr is determined from the Doppler spectrum by the centroid
or center of gravity method. For the case of the investigated
CW lidars, their weighting functions are assumed to be of the
Lorentzian form (Sonnenschein and Horrigan, 1971):

ϕ(s)=
1
π

zR

z2
R+ s

2
, (7)

where zR is the Rayleigh length that can be estimated as

zR =
λf 2

d

πr2
b
, (8)

where λ is the laser wavelength and rb the beam radius at the
output lens.

If we assume that the lidars measure at a point, instead of
over a probe volume, and that u, v and w do not change over
the scanned area, the radial velocity in Eq. (6) can be esti-
mated as the sum of the projection of the three-dimensional
wind components on the beam pointing direction:

vr(φ,θ )=−ucosφ+ v cosθ sinφ+w sinθ sinφ. (9)

The variance of the radial velocity σ 2
vr

can be derived by tak-
ing the variance of Eq. (9) (Eberhard et al., 1989):

σ 2
vr,unf(φ,θ )= σ 2

u cos2φ+ σ 2
v cos2θsin2φ+ σ 2

wsin2θsin2φ

− 2〈u′v′〉cosφ cosθ sinφ
− 2〈u′w′〉cosφ sinθ sinφ

+ 2〈v′w′〉sin2φ cosθ sinθ. (10)

Equation (10) provides accurate velocity-component vari-
ance and covariance estimates if the radial velocity variance
is unfiltered, i.e., if we are able to account for the lidar probe
volume. In practice, if the Doppler radial velocity spectrum
is available, we have means to estimate the unfiltered radial
velocity variance. This will be described in Sect. 2.4.

2.3 Estimation of the radial velocity and the filtered
radial velocity variance

Three methods are used here to determine the dominant fre-
quency from the Doppler radial velocity spectrum to com-
pute the radial velocity. The centroid method computes the
characteristic frequency f in the Doppler radial velocity
spectrum p(f ) as

fcen =

∫
fp(f )df∫
p(f )df

. (11)

The maximum method finds the frequency bin where the
maximum peak in the Doppler spectrum occurs. The median
method treats the Doppler spectrum as a probability distri-
bution and finds the frequency bin that corresponds to the
median value. These frequencies are then converted to radial
velocity estimates according to the sampling frequency of the
digitizer, the length of the fast Fourier transform, and the li-
dar’s laser wavelength. Since none of these methods consid-
ers the whole Doppler radial velocity spectrum, turbulence
statistics computed from these radial velocities are filtered.
Therefore, we use the term-filtered radial velocity variance
σ 2
vr,filt.

2.4 Estimation of the unfiltered radial velocity variance

Here, we use the Doppler radial velocity spectrum to esti-
mate the unfiltered radial velocity variance σ 2

vr,unf of the lidar
beams. Since the investigated nacelle lidars measure at small
opening angles over a relatively homogeneous inflow, the ef-
fect of the radial velocity gradient within the probe volume is
negligible (see Mann et al., 2010, for a detailed discussion).
Therefore, σ 2

vr,unf can be estimated as the second central sta-
tistical moment of the ensemble-average Doppler spectrum
of the radial velocity. The mean radial velocity can be es-
timated from the area-normalized mean Doppler spectrum
p(vr) as

µvr =

∞∫
−∞

vrp(vr)dvr, (12)
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and its variance as

σ 2
vr
=

∞∫
−∞

(vr−µvr )
2p(vr)dvr. (13)

Assuming all radial velocity contributions to the Doppler
spectrum are due to turbulence, σ 2

vr
in Eq. (13) provides an

estimate of σ 2
vr,unf. This can be used to extract the velocity

variances using Eq. (10), which gives the components of the
Reynolds stress tensor.

2.5 Estimation of the mean wind velocity

Radial velocity measurements from different beam directions
can be combined to reconstruct the mean wind. In the follow-
ing sections, we show that different approaches are used for
different lidars.

2.5.1 First approach

A least-squares formulation is used to find the mean wind
vector U = (U,V,W ) over all beam positions. Here, we min-
imize the sum of squared differences between the beam-
projected wind and the measured radial velocities:

12
=

∫
(n ·U − vr)2dµ. (14)

The integral
∫

dµ could be an area-weighted average of the
beam measurements. In practice, the integral could simply
be the sum over all pairs of radial velocity vr and the corre-
sponding beam unit vectors n among the scanning area. The
vector U that minimizes the integral must fulfill

∂12

∂Ui
= 0⇒

∫
(n ·U − vr)nidµ= 0, for i = 1,2,3. (15)

Expanding the integral and isolating U we get

Ui = (M−1)ij

∫
vrnidµ, where Mij =

∫
ninjdµ. (16)

This approach assumes wind homogeneity over the scanning
area. To get the three mean wind components, we need at
least three values of vr measured in different orientations.
This approach is used for deriving the mean wind vector from
SpinnerLidar multi-beam measurements.

2.5.2 Second approach

Assuming that the inflow wind is horizontal, i.e., w =
0 ms−1, Eq. (9) can here be reduced to

vr(φ,θ )= ucosφ+ v sinφ cosθ. (17)

To compute the mean wind components, we need at least two
radial velocities measurements and the corresponding beam

positions (φ and θ ) assuming that u and v are identical at
the focus points of a pair of beams. Therefore, a two-beam
nacelle lidar can compute u and v:

u=
vr,left+ vr,right

2cosφ
,

v =
vr,right− vr,left

2sinφ
. (18)

A similar approach can be used for a four-beam nacelle lidar.
The two upper beams and two lower beams are used sep-
arately (Larvol, 2016) to estimate u and v at two different
heights. Here, we average the estimates at the two heights to
represent the mean inflow velocity.

2.5.3 Induction correction

Due to the presence of the wind turbine, the wind slows down
as it approaches the rotor. We perform the correction of the
slowdown in speed (also referred as the induction correction)
to the estimates of lidars and the sonic anemometer using the
method in Simley et al. (2016):

U

U∞
= 1− a

1+
2x
D

(
1+

(
2x
D

)2
)− 1

2
 , (19)

where U∞ is the undisturbed free stream wind speed, x is
the distance between the lidar scanning plane and the rotor,
and a is the axial induction factor. The induction factor a is
determined using the same procedure as the one in Held and
Mann (2019) assuming the effect of the induction is constant
over a 10 min period. A steady-state thrust curve of the V52
turbine and the 10 min mean wind speeds measured by the
cup anemometer at 44 m are used to look up the thrust coef-
ficient Ct. Then, we compute the induction factor using axial
momentum theory, i.e., Ct = 4a(1− a).

2.6 Estimation of the Reynolds stress tensor

We assume that the Reynolds stresses Rij ≡ 〈uiuj 〉 are ho-
mogeneous over the rotor plane irrespective of the mean
wind field. We apply a least-squares fit to the radial veloc-
ity variances and the corresponding beam unit vectors to es-
timate the Reynolds stresses:

12
=

∫ (
n ·Rn− σ 2

vr

)2dµ. (20)

The matrix R that minimizes the integral must fulfill

∂12

∂Rij
= 0⇒

∫ (
n ·Rn− σ 2

vr

)
ninjdµ= 0. (21)

This can be written as

Rkl

∫
nknlninjdµ=

∫
σ 2
vr
ninjdµ. (22)
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The right side of Eq. (22) is written as a vector hav-
ing the length of six using the six combinations of
indices (i,j )= (1,1), (1,2), (1,3), (2,2), (2,3), (3,3) with
n1 =−cosφ, n2 = cosθ sinφ and n3 = sinθ sinφ (as given
in Eq. 5). Similarly, on the left side of Eq. (22), Rkl is rear-
ranged to a length six vector, where

∫
nknlninjdµ is a 6-by-

6 matrix with both (k, l) and (i,j ) going through the same
combinations of indices:



∑
n4

1
∑
n2

1n
2
2

∑
n2

1n
2
3

∑
2n3

1n2
∑

2n3
1n3

∑
2n2

1n2n3
. . .

∑
n4

2 . . . . . . . . . . . .

. . . . . .
∑
n4

3 . . . . . . . . .

. . . . . . . . .
∑

2n2
1n

2
2 . . . . . .

. . . . . . . . . . . .
∑

2n2
1n

2
3 . . .

. . . . . . . . . . . . . . .
∑

2n2
2n

2
3



×



Ruu
Rvv
Rww
Ruv
Ruw
Rvw

=


∑
σ 2
vrn

2
1∑

σ 2
vrn

2
2∑

σ 2
vrn

2
3∑

σ 2
vrn1n2∑
σ 2
vrn1n3∑
σ 2
vrn2n3


.

(23)

To compute the six Reynolds stresses, we need at least six ra-
dial velocity variances from different beam directions to en-
sure that the large matrix in Eq. (23) is not degenerate (i.e., its
determinant is not zero) (Sathe et al., 2015). If fewer than six
variances of the radial velocity are available, we have fewer
knowns than unknowns. If the nacelle lidar beams have only
one opening angle φ, the equations will be linearly depen-
dent, and so the determinant will be zero and Eq. (23) will
have infinite solutions. In those cases, only σ 2

u can be well
determined, and the stresses involving the lateral component
will be more noisy (Peña et al., 2019). In this study, we use
all radial velocity variances from the SpinnerLidar to calcu-
late the six Reynolds stresses.

2.7 Numerical simulations

We generate three-dimensional random turbulence fields us-
ing the Mann model (Mann, 1998) with typical values of
the model parameters: αε2/3

= 0.05 m4/3 s−1, L= 61 m and
0 = 3.2. We furthermore assume Taylor’s frozen turbulence
hypothesis:

u(x,y,z, t = 0)= u(x+Ut,y,z, t), (24)

so the wind field at any given time can be obtained by trans-
lating the wind field at time t = 0. The turbulence boxes are
18 km long in the along-wind and 128 m long in both the
vertical and lateral directions. The number of grid points
in the simulation in the three directions is (Nx,Ny,Nz)=
(8192,64,64). A total of 100 turbulence boxes with the same
Mann parameters but different seeds were generated. For
simulating lidar measurements, we add a mean wind U and a
linear vertical shear dU/dz to the along-wind velocity com-

Figure 1. Example of a Doppler radial velocity spectrum simulated
in a turbulence box, including the radial velocity estimates using the
maximum (max), the median (med) and the centroid (cen) methods.

ponent u in each box:

u= U +
dU
dz

(z− zrotor)+ u′, (25)

where U = 10 ms−1, dU/dz= 0.0288 s−1, zrotor is the tur-
bine hub height in the turbulence box, i.e., the middle grid
point in the z coordinate, and u′ is the fluctuation around the
mean from the turbulence box.

We also account for the lidar probe volume. The lidar
Doppler spectrum S(vr, t) is (Held and Mann, 2018)

S(vr, t)=

M∫
−M

ϕ(s)δ(vr−u(s) ·n)ds, (26)

where δ is the Dirac delta function and M is the distance
along the beam that we use to truncate the integral due to the
finite length of the turbulence boxes. Figure 1 shows an ex-
ample of an instantaneous Doppler radial velocity spectrum
simulated in a turbulence box for one arbitrary beam of the
SpinnerLidar, in which the radial velocity is determined by
the three methods introduced in Sect. 2.3. The velocity bin
resolution is 0.1 ms−1 bin−1 and M = 8zR, which is here-
after always used.

3 Experiment setup

3.1 Measurement campaign

A measurement campaign on a Vestas V52 wind turbine was
conducted at DTU Risø campus in Roskilde, Denmark. Fig-
ure 2 shows a layout of the test site on a digital surface el-
evation model. The terrain is slightly hilly and the surface
is characterized by a mix of cropland, grassland and coast.
A row of wind turbines stands ≈ 200–300 m south-east of
the Roskilde fjord. The V52 wind turbine (marked as a red
circle) is located at the northernmost position. It has a ro-
tor diameter D of 52 m, a hub height of 44 m and a nominal
power of 850 kW. The rotor speed is within the range of 14–
31 rpm with a nominal value of 26 rpm. The cut-in, rated and
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Figure 2. The Risø test site in Roskilde, Denmark, on a digital sur-
face elevation model (UTM32 WGS84). The V52 meteorological
mast is shown in a red square. The wind turbines are shown in cir-
cles (in red the reference V52 wind turbine). The color bar indicates
the height above mean sea level in meters.

cut-out wind speeds are 4, 14 and 25 m s−1, respectively. A
meteorological mast (marked as a red square) was mounted
at 291◦ (from the north) at a distance of 120 m (2.3D) up-
stream from the turbine. The mast is 72 m high and instru-
mented with anemometers at 18, 31, 44, 57 and 70 m above
the ground level (Peña et al., 2019): Metek USA-1 3D sonic
anemometers are on the northern side of the booms and Risø
cup anemometers on the southern side of the booms. In ad-
dition, there is a wind vane at 41 m and Risø absolute tem-
perature sensors at 18 and 70 m. There are also a Thies pre-
cipitation opto-sensor and a Vaisala pressure sensor at 2 m
(DTU Wind Energy, 2014). Three continuous-wave lidars
were mounted on the nacelle of the V52 wind turbine, as
shown in Fig. 3: the SpinnerLidar (on the top), a four-beam
WindVision (in the middle) and a two-beam WindEye (at the
bottom). The vertical displacement between the scan head of
the SpinnerLidar, WindVision, WindEye and the wind tur-
bine rotation axis is 2.47, 2 and 1.64 m, respectively. More
information about the three lidars is given in Sect. 3.2.

3.2 Nacelle lidars

Three forward-looking nacelle lidars are investigated here.
All lidars are based on a CW system and they all were scan-
ning at a single plane (see Fig. 4). The specifications for
three nacelle lidars can be found in Table 1. The Spinner-
Lidar (Peña et al., 2019) scans in a rosette-curve pattern and
generates 400 radial velocities in one full scan. For this mea-
surement campaign, the SpinnerLidar was set up to perform
a full scan every 2 s at a focus distance of 62 m. The sys-
tem also recorded the instantaneous Doppler spectrum of the

Figure 3. Three lidars sitting on the nacelle of the V52 wind turbine
at DTU Risø campus: SpinnerLidar (top), WindVision (middle) and
WindEye (bottom).

radial velocity, which is used here both to derive the radial
velocity using different methods and to estimate the unfil-
tered radial velocity variance. The SpinnerLidar streams out
average Doppler spectra at a rate of 200 Hz. Each Doppler
spectrum is represented in 256 frequency bins with a spec-
tral resolution of 195.3 kHz corresponding to a radial veloc-
ity resolution of 0.1528 ms−1 per bin. In addition, it recorded
the signal strength (here called “power”) of the instantaneous
spectrum. We also use the inclination and the azimuthal po-
sitions from the SpinnerLidar sensors to correct the scanned
locations.

The two-beam WindEye (hereafter W2) and the four-beam
WindVision (hereafter W4) are two commercial lidars from
Windar Photonics A/S (Windar Photonics, 2020). W2 mea-
sured at 37 m and has similar width of the probe volume (in-
dicated by the Rayleigh length) as the SpinnerLidar. Note
that the largest probe volume and the smallest half-cone
opening angle are those of the four-beam system. The az-
imuthal angle in Table 1 refers to the position of the beams
on the scanning cone surface (from the top of the cone). The
two beams from W2 are aligned horizontally, while the four
beams from W4 focuses at each quadrant of the rotor area.
Both systems complete a scan in 1 s.

4 Data analysis

4.1 Data selection and filtering

The measurements were collected between 1 October 2020
and 30 April 2021. We analyze the time series of all data and
their statistics within 10 min periods (in total 30 492 periods
of 10 min). There are three types of measurements: the su-
pervisory control and data acquisition of the wind turbine,
the mast measurements and the measurements from three li-
dars. We concentrate our analysis on the wind sectors, which
are relatively aligned with the mast-turbine direction (291◦)
to exclude the influence of the wakes from the nearby wind
turbines to the greatest extent. We select 10 min periods for
the analysis using the following criteria:
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Figure 4. (a) The scanning trajectory of the nacelle lidars. (b) An upwind view of the theoretical scanning pattern performed by the W2, W4
and the SpinnerLidar.

Table 1. Specifications of the nacelle lidars for the measurement campaign.

SpinnerLidar WindVision (W4) WindEye (W2)

Number of beams [–] 400 4 2
Focus distance fd [m] 62 62 37
Rayleigh length zR [m] 2.44 7.18 2.42
Half-cone opening angle φ [◦] 0–30 18 30
Beam azimuth angle θ [◦] 0–360 45, 135, 225, 315 90, 270
Time for a full scan [s] 2 1 1

– All lidars and the V52 turbine should be concurrently
operating. The turbine status is indicated by the rotor
speed, which should be higher than 14 rpm. This leaves
us 19 190 periods of 10 min.

– The wind direction measured by the wind vane and the
yaw angle of the turbine are both between 261–321◦.
The absolute difference between these two directions is
lower than 5◦. Since the dominant wind direction at this
site is west and south-west, we have 2457 periods of
10 min left after applying this filter.

– The wind speed measured by the cup anemometer at the
turbine hub height is higher than 3 ms−1.

– No precipitation is detected during the 10 min period.

After filtering, the number of the 10 min periods for the anal-
ysis is 2348.

4.2 SpinnerLidar measurements

4.2.1 Data filtering

We process the SpinnerLidar measurements for the selected
2348 periods of 10 min. The SpinnerLidar measurements are

further filtered based on both the system-reported radial ve-
locity, which is the median estimate from the raw Doppler
radial velocity spectrum, and the power of the spectrum. The
following criteria are applied (Fig. 5 shows an example of re-
sults of the SpinnerLidar filtering within an arbitrary 10 min
period):

– We filter out all measurements with system-reported ra-
dial velocity estimates below 3.2 ms−1, which is the ref-
erence minimal detectable radial velocity by the Spin-
nerLidar due to the interference of the turbine blades
(Karen Enevoldsen, personal communication, 2021).

– We simulate the radial velocity of all possible blade re-
turns as (Angelou et al., 2015)

vr = |�SyhSL|, (27)

where� is the 10 min mean rotor speed, Sy is the lateral
component of the unit vector with reference to the Spin-
nerLidar in the y–z plane, and hSL is the vertical dis-
placement between the SpinnerLidar scan head and the
wind turbine rotation axis. Equation (27) does not con-
sider the misalignment between the SpinnerLidar and
the nacelle, which is negligible (below 0.5◦) in the mea-
surement campaign. The simulated blade signals are
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Figure 5. Radial velocity as function of (a) index of the 400 beams
in each full scan, (b) the lateral component of the unit vector Sy and
(c) power for an arbitrary 10 min period. Filtered data are shown
in black and data left after filtering in blue. The red color in the
top panel represents the simulated radial velocity from the possible
blade returns.

marked in red in Fig. 5. We discriminate the wind speed
signal from the blade return signal from Eq. (27) when
the difference between them is above 0.2 ms−1.

– We filter out all measurements exceeding power values
above 100 (Peña et al., 2019) (this signal strength has
arbitrary units). We can see from Fig. 6 that some mea-
surements close to the middle of the pattern are filtered
out with this criterion.

– Finally, we filter out radial velocities exceeding its mean
± 3 times its standard deviation within the 10 min pe-
riod.

Further, there should be at least half of the raw measurements
left for the analysis to consider a 10 min period of SpinnerL-
idar measurements, which leaves us 1605 periods of 10 min
for the later post-processing.

4.2.2 Gridding the scans

We estimate the lidar scan locations using the average az-
imuthal and inclination angles of the SpinnerLidar within
the 10 min period, i.e., the system-reported coordinates are
rotated along the longitudinal and lateral axis of the Spinner-
Lidar scanhead, respectively. Figure 6a shows the scan loca-
tions in blue and the non-rotated locations in orange within
a 10 min period (26 February 2021 at 14:10:00), where the

average inclination angle is 3.15◦ and the average azimuthal
angle is 0.34◦.

Due to the turbine movement and SpinnerLidar slack, we
aggregate the azimuthal- and inclination-corrected scan lo-
cations within a grid of 1 m resolution in the y–z plane, as
shown in Fig. 6b. The coordinates of the grid cells, which
are marked in light grey, are given by the resolution and ex-
tension of the grid. The “gridded” rosette pattern is shown
in black (some are covered by red color as explained later).
All radial velocity spectra for the scans lying within each
grid cell in the given 10 min period are accumulated. We use
only grid cells, where there are more than 30 instantaneous
Doppler radial velocity spectra. In Fig. 6b, we show in red the
grid cells satisfying this criterion. Finally, we only use those
10 min periods in which we have 900 grid cells satisfying the
criterion.

4.2.3 Doppler spectra processing and usage

Figure 7 shows an example of the processing of the Doppler
radial velocity spectra from the accumulated measurements
within a grid cell close to the middle of the scan. The
raw Doppler radial velocity spectra within that grid cell are
shown in Fig. 7a. For this 10 min period (26 February 2021 at
14:10:00), the vane measures a wind direction of 291.6◦ and
the yaw angle is 291.0◦. The lidar unit vector pointing onto
this grid cell is almost parallel to the terrain (φ is around
1.4◦), thus close to the main wind direction. As shown in
Fig. 7a, high spectral values “contaminate” the spectra in the
first few velocity bins due to, e.g., optical reflections from
the bore point (i.e., the beam hitting the telescope lens per-
pendicularly) or few left blade signals. To ease the spectra
processing, we define a threshold for each individual spec-
trum, which defines the limit above which a Doppler spec-
trum is considered to be caused by the wind. The calcula-
tion of the threshold is based on the mean value (µ) plus a
number of standard deviations (σ ) within a frequency range
where no radial velocity signals are anticipated. Angelou et
al. (2012) showed that a systematic selection of the thresh-
old level should take into account the shape of the Doppler
spectrum relative to the variation of the spectrum noise level.
The number of standard deviations is thus different for the
case of a wide Doppler velocity spectrum (high turbulence
level) and a narrow one (low turbulence level). An overes-
timation of the threshold removes low-intensity fluctuations
and, subsequently, biases the estimation of the radial veloc-
ity and reduces its variance. Here, we select a threshold of
µ+3σ of the spectral values in the last 50 frequency bins. Af-
ter thresholding, we remove the spectral values up to the bin
corresponding to 2.3 m s−1, which filters out the high spectral
peaks in unrealistic low-velocity bins (Fig. 7b).

Each “cleaned” spectrum is then area-normalized. Fig-
ure 7c shows the ensemble-average Doppler radial velocity
spectrum from all normalized, thresholded and cleaned spec-
tra. We also show the normalized distribution of sonic mea-
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Figure 6. (a) Scan locations (before and after rotation) in an arbitrary 10 min period. (b) Gridding of the scans within the same 10 min
period. Grid cells with more than 30 radial velocity spectra are marked in red. Other details are given in the text.

Figure 7. An example of Doppler radial velocity spectra analysis
within a 10 min period (26 February 2021 at 14:10:00). The location
of the grid cell y = 0 m, z= 48 m is shown in the scanning pattern
in Fig. 6b. (a) Raw and scaled Doppler radial velocity spectra. (b)
Cleaned and normalized Doppler spectra. (c) The average Doppler
spectrum (black), the distribution of the sonic measurements at hub
height (orange) and the three radial velocity estimates, which can
be clearly seen in the inset (d).

surements at hub height within the same 10 min period pro-
jected to the direction of the grid cell unit vector, which as
illustrated are in good agreement with the ensemble-average
Doppler radial velocity spectrum. We use the ensemble-
averaged Doppler radial velocity spectrum to derive both the
unfiltered radial velocity variance and the radial velocity esti-
mates (maximum, centroid and median), which are later used
for the reconstruction of the mean wind.

All grid cells with at least 900 Doppler radial velocity
spectra within each 10 min period are considered for the re-

construction of the mean wind and the Reynolds stresses. The
three-dimensional mean wind vector is computed from the
median-, maximum- and centroid-radial velocities, using the
approach in Sect. 2.5.1. Figure 8a shows a contour map of the
median-derived radial velocity for an arbitrary 10 min period
of SpinnerLidar measurements. As expected, the highest ra-
dial velocities are found in the middle-top part of the scan.
This radial velocity contour map shows a similar pattern as
that from the average of SpinnerLidar simulations using 30
turbulence boxes (Fig. 8b).

4.3 Windar measurements

4.3.1 Data filtering

The measurements for the W2 and W4 nacelle lidars are pro-
cessed at 2 and 4 Hz, respectively. Therefore, within a 10 min
period, the optimal amount of radial velocities per beam for
W2 is 1200 and for W4 is 2400. We remove outliers of ra-
dial velocities and apply the same blade filtering using the
method described in Sect. 4.2. We set a criterion that there
should be at least 90 % of the optimal amount of data left af-
ter the filtering for a 10 min period. We do not account for
the radial velocities of a full scan when data from any beam
are missing. This leaves us 1499 periods of 10 min for the
intercomparison.

4.3.2 Methods to compute the along-wind velocity
variance

The along-wind and lateral velocities are reconstructed for
each scan (i.e., for every 1 s) using the approach described
in Sect. 2.5.2, and we compute 10 min statistics from these
velocities. Due to the limited number of beams and the un-
availability of Doppler radial velocity spectra, we only com-
pute the filtered along-wind variance using two methods.
We can compute the wind speed variance directly from the
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Figure 8. (a) Contour map of the median-derived radial velocity from the ensemble-average Doppler spectra in a 10 min period. Black dots
indicate the location of the grid cells with more than 30 Doppler spectra. (b) Contour map of the average median-derived radial velocity from
SpinnerLidar simulations using 30 turbulence boxes.

time series of reconstructed along-wind velocity U within
the 10 min periods (hereafter denoted as the “U -variance”
method). We can also compute σ 2

u using Eq. (23) with some
assumptions and three are investigated here. The first is to
assume that all Reynolds stress components apart from σ 2

u

are zero (hereafter denoted as the “LSP-σ 2
u ” method). This

basically means that Eq. (23) becomes

σ 2
u =

σ 2
vr

cos2φ
. (28)

Since the half-cone opening angle of nacelle lidars is usu-
ally small, this method tends to overestimate σ 2

u . The sec-
ond is to assume turbulence isotropy; i.e., the auto-variance
of the three velocity components is the same and they are un-
correlated (hereafter denoted as the “LSP-isotropy” method).
From Eq. (23), this means that σ 2

u is then the average of the
radial velocity variances of the lidar beams. The third option
is to assume that σv = 0.7σu and σw = 0.5σu, as suggested
in IEC (2019) (hereafter denoted as the “LSP-IEC” method).

4.4 Sonic measurements

We use the 20 Hz raw sonic measurements at hub height
(44 m) to calculate the mean horizontal wind speed and its
variance for all selected 10 min periods. Figure 9a shows
that the horizontal speed measured by the cup and the sonic
anemometer is nearly the same. When looking at the com-
puted variance in Fig. 9b, a bias of 3.4 % is found. We rotate
the sonic-measured 3-D wind components, which are defined
in the main wind coordinate system, to the coordinate sys-
tem fixed with the wind turbine so that the sonic u velocity is
aligned with the rotation axis of the turbine. We use the ve-
locity and the variance of the rotated sonic-measured mean

wind components as the reference for the comparison with
the estimates from the nacelle lidars.

5 Results

5.1 Mean wind speed

We perform comparisons of the 1499 10 min mean along-
wind velocity component reconstructed from the lidar mea-
surements with that from sonic measurements at 44 m (see
Fig. 10). The estimates from lidars and the sonic anemome-
ter are corrected for the induction using the method in
Sect. 2.5.3. The lidar-derived estimate is a rotor-effective
mean velocity since measurements at all scanning positions
are considered. As illustrated, there is a high correlation for
all nacelle lidars, as expected. The W2 and the SpinnerL-
idar estimates are slightly higher than that from the sonic
anemometer while the estimate of W4 is 2.6 % lower. From
the numerical simulation with 30 turbulence boxes, we found
that all nacelle lidars are able to estimate the along-wind ve-
locity well (not shown here); the uncertainties in the mean
wind obtained from lidar are as large as those from the sonic
anemometer.

5.2 Radial velocity variance

Figure 11a shows the simulated ratio of the unfiltered ra-
dial velocity variance to the u-velocity variance of the sonic
anemometer among the scanning area. As the simulated wind
field is based on the Mann model, the major source of cross-
contamination on the radial velocity comes from the spectral
tensor components involving w. As seen from the plot, the
ratio is higher than one above the center and lower than one
beneath it, which is due to the positive and negative contribu-
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Figure 9. Comparison of the 10 min mean horizontal (a) wind speed and (b) variance between the sonic and the cup anemometers at 44 m.
Each 10 min is shown in blue markers, a 1 : 1 relation is shown in the red dashed line, and a linear regression fit to origin in the black dashed
line (results of the regression are given on the top of the plot, where R2 is the coefficient of determination).

Figure 10. Comparison between the reconstructed along-wind mean velocity from the sonic anemometer at 44 m and (a) W2, (b) W4 and
(c) SpinnerLidar. All estimates are corrected for the induction. Features regarding the red and black dashed lines as in Fig. 9.

tion of 〈u′w′〉, respectively, to the beam radial variance. Fig-
ure 11b shows the result from the measurement campaign as
a scatter plot between the unfiltered radial velocity variance
of the central grid cell (y = 0 m, z= 48 m) from the Spin-
nerLidar to the u variance of the sonic anemometer measure-
ments at 44 m. From the measurements, the unfiltered radial
velocity variance of the central beam reaches 91.5 % of the
sonic variance, whereas the simulations show a zero bias for
that central beam. We attribute this difference to our rather
conservative method to clean Doppler radial velocity spec-
tra, which attempts to eliminate any possible noise. However,
this might lead to reduction of true turbulence contained in
the Doppler radial velocity spectrum.

In Fig. 12a, we show the probe volume filtering effect
on the scanning pattern by plotting the ratio of the filtered
to the unfiltered radial velocity variance from the simula-
tions. Here, the filtered radial velocity variance is computed
from the centroid-derived radial velocity, because the cen-

troid method experiences the most turbulence attenuation
caused by the probe volume (Held and Mann, 2018). The fil-
tering effect due to probe volume is very similar throughout
the pattern. The highest ratios are found around the center of
the pattern, where the beam aligns with the along-wind ve-
locity component. As the beam moves from the center, the
ratio decreases because the beam’s opening angle increases
and the cross-contamination from other velocity components
increases. The amount of the cross-contamination depends
highly on the anisotropy of turbulence 0. Our simulation
was conducted with a set of typical Mann parameters (see
Sect. 2.7), so the degree of simulated filtering can be dif-
ferent from that of measurements. Figure 12b shows the
comparison between the filtered and unfiltered radial veloc-
ity variance at the grid cell (y = 0 m, z= 48 m) from the
measurement campaign. The correlation is very high, as ex-
pected, and the unfiltered radial velocity variance is around
9 % higher than the centroid-derived filtered one.
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Figure 11. (a) Ratio of the unfiltered radial velocity variance to the u-velocity variance of the sonic anemometer from the simulations (30
turbulence boxes are used). (b) Comparison between the unfiltered radial velocity variance at the central grid cell (y = 0 m, z= 48 m) and
the u variance of the sonic anemometer at 44 m from the measurements. Features regarding the red and black dashed lines as in Fig. 9.

Figure 12. (a) Ratio of the filtered to the unfiltered radial velocity variance from simulations (30 turbulence boxes are used). (b) Comparison
between the SpinnerLidar filtered and unfiltered radial velocity variance at the central grid cell (y = 0 m, z= 48 m) from the measurements.
Features regarding the red and black dashed lines as in Fig. 9.

5.3 Turbulence estimates

Using the methodology described in Sect. 2.6, we estimate
the six components of the Reynolds stress tensor from the
SpinnerLidar unfiltered radial velocity variances and com-
pare them against the computed components from the sonic
anemometer measurements at 44 m for the 1499 periods of
10 min. Figure 13 shows the inter-comparison for σ 2

u . From
the simulation with 30 turbulence boxes, we get a nearly per-
fect correlation and a bias of 1.4 %, whereas from the mea-
surements the bias is 8.9 %. The bias is higher in the mea-
surements mainly because we cannot guarantee that some
variance of the radial velocity is lost when processing the
Doppler radial velocity spectra.

We perform the comparison of all Reynolds stresses com-
puted from the SpinnerLidar scans with those from the
sonic anemometer at 44 m in Fig. 14. The Reynolds stresses
from the measurement campaign are normalized by U2 with
which they are roughly proportional. The unfiltered vari-
ances from simulations were derived by the same method
(see Sect. 2.4) as for the measurements. The numerical simu-
lations show that we can accurately estimate all components
of the Reynolds stress tensor using the SpinnerLidar com-
pared to the sonic anemometer. The SpinnerLidar uncertain-
ties of 〈u′u′〉 are not very different from those of the sonic
anemometer, while the uncertainties of other components are
larger. This is mainly because all other components where
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Figure 13. Comparison of the unfiltered variance of the along-wind velocity component between the SpinnerLidar and the sonic anemometer
at 44 m from (a) numerical simulation using 30 turbulence boxes and (b) measurement campaign.

u fluctuations are not included are driven by fluctuations
of components largely misaligned with the beams. Results
from the measurements show that all Reynolds stress com-
ponents estimated from SpinnerLidar are close to those from
the sonic anemometer but biased. We even observe negative
values for 〈v′v′〉 and 〈w′w′〉. This is discussed in Sect. 6.2.

Figure 15 shows the comparison of the SpinnerLidar esti-
mations of the maximum-, median- and centroid-derived fil-
tered variances of the along-wind velocity component with
those from the 44 m sonic measurements. Results from both
the simulations using 30 turbulence boxes and the measure-
ments indicate that turbulence attenuation is most severe
using the centroid method from the Doppler radial veloc-
ity spectrum, while the maximum method gives the closest
value, as expected (Held and Mann, 2018).

Figure 16 shows the comparison of the Windar lidar recon-
structed filtered σ 2

u using different methods against σ 2
u values

from the 44 m sonic anemometer. As illustrated, about 37 %
of the variance is filtered out for both W4 and W2, when
the variance is computed by taking the statistics of the re-
constructed U time series. This is still the common prac-
tice in the wind energy community. The degree of filtering
is similar for both lidars although W4 has a larger probe
volume. From Eq. (28), we note that by using the “LSP-
σ 2
u ” method, we can overestimate the along-wind variance

when all beams are scanning horizontally (or close to). Es-
timates using the “LSP-isotropy” method take the average
of all beam variances. When the scanning geometry is sym-
metrical in the two-dimensional y–z plane (like in the W4
case), the contributions from 〈u′w′〉 might (nearly) cancel
out. The method “LSP-IEC” is perhaps a fairer procedure
when compared to the other methods, as it assumes rela-
tions between velocity components’ variances that are close
to those we can observe within the atmospheric surface layer.
Estimates from the “LSP-IEC” and “LSP-isotropy” methods

can be computed by scaling those from method “LSP-σ 2
u ”;

that explains the same correlations in Fig. 16a–c and e–g. All
inter-comparison results of the estimated along-wind compo-
nents are summarized in Table 2.

6 Discussion

6.1 Influence of spectra processing on the unfiltered
variances

The way we process the Doppler radial velocity spectra in-
fluences the unfiltered variance estimates. Therefore, we in-
vestigate the sensitivity of using a more rigorous method to
further alleviate the contamination of the Doppler spectra
from, e.g., noise. This method first determines the peak of the
Doppler signal and then moves forwards and backwards in
the vicinity of the peak velocity bin to find the two locations
(velocity bins) where the Doppler signal reaches zero. Only
Doppler signals between these two velocity bins are used
to compute the variance. The unfiltered along-wind veloc-
ity variance estimated from the SpinnerLidar measurements
shows a bias reduction of ≈ 3.0 % using the more rigorous
spectra-processing when compared to the relatively “moder-
ate” method, which is used in Sect. 4.2.3. The coefficient of
the determination reduces from 97 % to 96.6 %.

6.2 Negative SpinnerLidar-derived variances

Negative variances might result when using SpinnerLidar
measurements to estimate the Reynolds stress tensor. We find
randomly occurring negative values of σ 2

v in 7 % and of σ 2
w

in 15 % of the 10 min periods that are used for the inter-
comparison. We investigate the conditions in which this oc-
curs by simulating measurements of a nacelle lidar with 30
beams such that they cover the extent of rotor at hub height
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Figure 14. Reynolds stresses derived from the SpinnerLidar and sonic anemometer, (a) numerical simulations using 100 turbulence boxes
and (b) measurements. The markers are the means and the error bars are ± 1 standard deviation.

Figure 15. Comparison of the filtered variance of the along-wind velocity component between the SpinnerLidar and the sonic anemometer
at 44 m. (a–c) Numerical simulations using 30 turbulence boxes. (d–f) Measurement campaign.
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Figure 16. Comparison of the filtered variance of the along-wind velocity component between the Windar lidars and the sonic anemometer
at 44 m. (a–d) W4. (e–h) W2.

Table 2. Bias and coefficient of determination between the lidar-derived along-wind velocity variance using different lidars and methods and
that from the sonic anemometer at 44 m.

Lidars Methods Bias [%] Coefficient of the determination [%]

SpinnerLidar

unfiltered −8.9 97.0
filtered (max) −13.3 96.8
filtered (med) −17.1 96.6
filtered (cen) −18.6 96.5

W4
filtered (LSP-σ 2

u ) −11.4 97.3
filtered (LSP-IEC) −14.8 97.3
filtered (LSP-isotropy) −19.9 97.3
filtered (U -variance) −37.1 94.5

W2
filtered (LSP-σ 2

u ) +2.4 97.2
filtered (LSP-IEC) −12.0 97.2
filtered (LSP-isotropy) −22.6 97.2
filtered (U -variance) −36.4 95.4

(see Fig. 17a). Figure 17b shows the simulated radial veloc-
ity variances (marked in blue) of the beams across the rotor.
Each point corresponds to the average radial velocity vari-
ance from five turbulence fields. With increasing opening an-
gle, the simulated radial velocity variance decreases. By us-
ing the method in Sect. 2.6 to derive the velocity variances,
we obtain positive values of all velocity components and
σ 2
u � σ 2

v , as expected. We obtain negative σ 2
v values when

the radial velocity variances highly decrease with increasing

opening angle (high decrease marked in green in Fig. 17b). In
this case, the turbulence homogeneity assumption is not sat-
isfied. Further, we find σ 2

u ≈ σ
2
v when σ 2

vr
slowly decreases

with increasing opening angle (low decrease). Figure 18a
shows the pattern of unfiltered radial velocity variances in
one of the 10 min periods where we estimate negative σ 2

v and
σ 2
w variances. As illustrated, the pattern shows a strong de-

crease of σ 2
vr

particularly around the right side of the scans.
Figure 18b corresponds to another 10 min period where σ 2

u ≈
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Figure 17. (a) Scanning pattern of a nacelle lidar with beams across the rotor. (b) The radial velocity variances of the beams across the rotor
from simulations using five turbulence boxes.

Figure 18. Contour plots of the radial velocity variance over the SpinnerLidar scanning pattern during two 10 min periods, (a) a case with
negative σ 2

v and σ 2
w values, (b) a case with σ 2

u ≈ σ
2
v > σ

2
w .

σ 2
v > σ

2
w. The occurrence of the negative variances is less fre-

quent in our measurements when we perform the turbulence
estimation every 30 min, as expected.

7 Conclusions

In this study, we analyzed measurements of three forward-
looking nacelle lidars with different scanning configurations
to investigate the benefit of multi-beam nacelle lidars for
turbulence characterization. For the first time, the Spinner-
Lidar measurements were compared with those of commer-
cial nacelle lidars. We focused our analysis on wind sectors,
in which the inflow is relatively homogeneous. The inflow
characteristics estimated by three lidars were compared with
those from a nearby sonic anemometer at hub height.

Our results from the analysis of numerical simulations and
measurements showed that all lidars were able to estimate the
mean wind velocity well compared to the sonic anemome-

ter. We also found that the SpinnerLidar was the only one
out of the three nacelle lidars that is able to measure the six
Reynolds stress components accurately. This is due to both
its multi-beam capability and its ability to measure unfiltered
radial velocity variances.

By using the information from the Doppler radial velocity
spectrum, one can partly compensate for the probe volume
averaging effect and reduce the error of turbulence estima-
tion. We showed that using maximum-derived radial veloc-
ities to compute the along-wind velocity variance mitigates
best the turbulence attenuation caused by the lidar probe vol-
ume.

For the commercial lidars, one can estimate the along-
wind velocity variance using three different methods: scaling
the radial velocity variance with a factor of cos2φ, assum-
ing σv = 0.7σu and σw = 0.5σu, or assuming isotropic turbu-
lence. We found the smallest bias in the estimates using the
first method when compared to the sonic anemometer values.
However, the first method can overestimate the along-wind
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variance when all beams are scanning horizontally. The sec-
ond method is the fairest procedure among the three methods.
All methods showed smaller bias when compared to comput-
ing the variance from the reconstructed along-wind velocity
values in the time series.
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Abstract. Nacelle lidars with different number of beams, scanning configurations and focus
distances are simulated for characterizing the inflow turbulence. Lidar measurements are
simulated within 100 turbulence wind fields described by the Mann model. The reference
wind turbine has a rotor diameter of 52 m. We assume homogeneous frozen turbulence over
the lidar scanning area. The lidar-derived Reynolds stresses are computed from a least-square
procedure that uses radial velocity variances of each of the beams and compared with those
from a simulated sonic anemometer at turbine hub height. Results show that at least six
beams, including one beam with a different opening angle, are needed to estimate all Reynolds
stresses. Enlarging the beam opening angle improves the accuracy and uncertainty in turbulence
estimation more than increasing the number of beams. All simulated lidars can estimate the
along-wind variance accurately. This work provides guidance on designing and utilizing nacelle
lidars for inflow turbulence characterization.

1. Introduction
Characteristics of inflow turbulence are crucial for wind turbine load validation [1], power
performance assessment [2] and wind turbine control [3]. In-situ anemometers installed on
meteorological masts, such as cup and sonic anemometers, have been used to measure inflow
turbulence. Nevertheless, with the increasing size of modern wind turbines, installing a
meteorological mast that reaches the height of the blade tips has becoming more and more
unaffordable, especially in offshore conditions. In recent years, lidars of different types and
configurations have been mounted on the nacelle of wind turbines to scan the inflow [2; 4].
These forward-looking nacelle lidars have the advantage that they yaw with the wind turbine
and scan towards the main wind direction. Compared to the point-wise anemometers, lidars
measure over an area in front of the rotor, which gives the possibility to derive rotor-averaged
turbulence characteristics.

Turbulence can be characterized by the second-order moments (variances and covariances)
of the wind field components u, v and w in typically 10 min or 30 min assuming statistical
stationarity. A matrix containing these six second-order moments ⟨u′iu′j⟩ is known as the
Reynolds stress tensor, which is frequently used to describe atmospheric flow. The along-wind
variance is widely used in wind energy as it is part of the definition of the turbulence intensity,
which is an important turbulence parameter for turbine structural loads [5]. The momentum
fluxes (i.e., two covariances ⟨u′w′⟩ and ⟨v′w′⟩) are used to calculate the friction velocity, which
is closely connected to the vertical wind profile [6; 7]. The turbulence kinetic energy, i.e., half
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the sum of the variances of the three velocity components, is a key parameter for studying
wind turbine wake structure [8]. The Reynolds stresses are also useful for evaluating the three-
dimensional turbulence models for e.g., load simulations.

Compared to turbulence estimates from sonic anemometers, lidar-derived turbulence
characteristics can be biased due to the lidar scanning patterns, the spatial and temporal
resolutions intrinsic to the lidar systems and the characteristics of atmospheric turbulence.
[1; 9] studied the application of lidar measurements from different scanning patterns for load
validation. [10] optimized the scanning trajectory of nacelle lidars based on a coherence model
for the rotor-effective wind speed for control applications. Only a few works have investigated the
influence of lidar scanning pattern on turbulence characterization. [11] proposed an optimized
six-beam configuration using an objective function for a ground-based lidar to minimize the
sum of the random errors of the Reynolds stresses. [12] showed that turbulence estimates from
ground-based lidars can be improved by using the variance from the vertical beam.

Here, we compare the estimates of the Reynolds stress tensor from nacelle lidars with different
scanning patterns through numerical simulations. The Reynolds stresses are computed via a
least-square procedure that uses radial velocity variances for each of the lidars’ beams without
the need to reconstruct the wind components. We summarize how the number of beams, the half-
cone opening angle and focus distance influence the accuracy and the uncertainty of turbulence
estimates. This work provides guidance on designing and utilizing nacelle lidars for inflow
turbulence characterization.

This paper is organized as follows. Section 2 describes the simulated turbulence wind fields
and the methodology to estimate the Reynolds stresses. Section 3 provides information on the
simulated lidar scanning patterns and the simulation setup. Section 4 shows the comparison of
Reynolds stress estimation between the virtual lidars and sonic anemometer. Conclusion and
outlook are given in Section 5.

2. Methodology
2.1. Turbulence wind fields
Assuming homogeneous frozen turbulence [13], the wind fields can be described by a vector
field u(x) = (u, v, w), where u is the horizontal along-wind component, v the horizontal
lateral component, w the vertical component, and x = (x, y, z) the position vector defined
in a right-handed coordinate system. The mean value of the homogeneous velocity field is
⟨u(x)⟩ = (U, 0, 0), so the coordinate x is in the mean wind direction. We simulate lidar
measurements on the nacelle of a wind turbine with a rotor diameter (D) of 52 m using 100
randomly generated turbulence fields described by the Mann model [14; 15]. The wind fields have
typical values of the model parameters: αε2/3 = 0.05 m4/3 s−1, which is related to the turbulent
energy dissipation rate; L = 61 m, which is a turbulent length scale; and Γ = 3.2, which describes
the anisotropy of the turbulence. The turbulence boxes have lengths of 30 min in the along-
wind direction assuming a mean wind U = 10 m s−1. We add a linear shear dU/dz = 0.0288
s−1 to the u components in each box. The lengths are 128 m both in the vertical and lateral
directions. The number of grid points in the three directions are (Nx, Ny, Nz) = (8192, 64, 64).
Sonic anemometer statistics are taken at the location of the turbine rotor (i.e., center of the
turbulence boxes) as the reference for evaluation of the lidar-derived turbulence characteristics.
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2.2. Estimation of the Reynolds stresses
The Reynolds stress tensor Rij(x) ≡ ⟨u′iu′j⟩, where ui are the fluctuations around the mean,

contains the variances σ2
u,v,w and the covariances of the velocity components:

R =




σ2
u ⟨u′v′⟩ ⟨u′w′⟩

⟨v′u′⟩ σ2
v ⟨v′w′⟩

⟨w′u′⟩ ⟨w′v′⟩ σ2
w


 . (1)

The unit vector n describing the beam orientation of a nacelle lidar can be expressed as [4]:

n(ϕ, θ) = (− cosϕ, cos θ sinϕ, sin θ sinϕ), (2)

where θ is the angle between the y axis and n projected onto the y-z plane and ϕ is the angle
between the beam and the negative x-axis (the half-cone opening angle). If we assume the lidar
probe volume can be negligible and u, v, and w do not change over the scanned area, the radial
velocity can be expressed as

vr(ϕ, θ) = −u cosϕ+ v cos θ sinϕ+ w sin θ sinϕ. (3)

The radial velocity variance can be derived by taking the variance of Eq. (3), as shown in [16]:

σ2
vr(ϕ, θ) = σ2

u cos
2 ϕ+ σ2

v cos
2 θ sin2 ϕ+ σ2

w sin2 θ sin2 ϕ− 2⟨u′v′⟩ cosϕ cos θ sinϕ

− 2⟨u′w′⟩ cosϕ sin θ sinϕ+ 2⟨v′w′⟩ sin2 ϕ cos θ sin θ.
(4)

To compute the Reynolds stress tensor R, we use the simulated lidar radial velocity variance
from all beams over the scanning pattern. Assuming statistical homogeneity, we apply a least-
square fit to all radial velocity variances σ2

vr and the beam unit vectors n :

∆2 =

∫
(n ·Rn − σ2

vr)
2dµ. (5)

The matrix Rij that minimizes the integral must fulfill

∂∆2

∂Rij
= 0 ⇒

∫
(n ·Rn − σ2

vr)ninjdµ = 0. (6)

This can be written as

Rkl

∫
nknlninjdµ =

∫
σ2
vrninjdµ, (7)

where (k, l) and (i, j) go through the six combinations of indices. More details are given in [17].
Equation (7) implies that we need at least six radial velocity variances from different beam

directions to compute the six Reynolds stresses. If the nacelle lidar has fewer than six beams,
only σ2

u (Ruu) can be determined well and the stresses involving the lateral component will be
more noisy [18]. For lidars that have fewer than six beams, we use another two ways to retrieve
only σ2

u from the simulated measurements under different assumptions. The first is to correct
all radial velocity variances σ2

vr with a factor of cos2 ϕ, which is the same as solving Eq. (4)
assuming that all Reynolds stresses apart from σ2

u are zero (denoted as ‘σ2
u-LSP’ method). The

second is to assume that turbulence is isotropic, which gives σ2
u as the mean of all σ2

vr (denoted
as ‘σ2

u-isotropy’ method).
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3. Lidar scanning patterns
Figure 1 shows the considered lidar scanning patterns. The SpinnerLidar (SL in short) scans
in a rosette-curve pattern and generates 400 radial velocities in one full scan. In practice, the
SpinnerLidar streams out radial velocities at a rate of 200 Hz so it takes 2 s to finish one full
scan. It has half-cone opening angles between 0−30◦ and measures with a focus distance fd = 52
m (1D) in front of the rotor. Other lidars have ϕ = 15◦ and measure further away (at the focus
distance of 98 m) to cover the whole rotor plane. Furthermore, we simulate all considered lidars
with multiple measurement planes at fd = 49, 72, 98, 121 and 142 m. We use the simulated
radial velocity variances at all measurement levels to compute the turbulence statistics. Figure
2 illustrates the scanning trajectories of the 4-beam and 50-beam lidars with multiple planes
as examples. To investigate the influences of the lidar opening angle and the focus distance on
turbulence estimation, we simulate the 6-beam configuration [11] with a fixed focus distance of
52 m and increasing opening angles (Fig. 3(a)), and a fixed opening angle of 15◦ and increasing
focus distances (Fig. 3(b)). We neglect the lidar probe volume and assume that the lidar can
measure at a point in the simulation.
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Figure 1: Scanning patterns of the simulated lidars. The SpinnerLidar (h) has ϕ = 0− 30◦ and
scans at fd = 52 m, while other lidars (a-g) have ϕ = 15◦ and scan at fd = 98 m to cover the
whole rotor plane. Red dots represent the lidar beam scanning locations. The wind turbine
rotor is indicated in a black circle.

4. Results
We compare the six Reynolds stresses computed from the simulated measurements of lidars,
which have more than six beams and measure with a single plane, with those from a sonic
anemometer at hub height, as shown in Fig. 4. The SpinnerLidar gives the best estimation
for all six components, which is closely related to the maximum ϕ of the lidar. The 6-beam
and 51-beam lidar provide very similar results, with larger errors and higher uncertainties than
the SpinnerLidar. However, the 50-beam configuration cannot estimate the v- and w-variances
accurately. This is because the least-squares problem can lead to infinite solutions if we have
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Figure 2: Scanning trajectories of the 4-beam and the 50-beam lidars with multiple measurement
planes at fd = 49, 72, 98, 121 and 142 m. Red dots represent the lidar beam scanning locations.
The wind turbine rotor is indicated in a black circle. The turbine nacelle is marked in a black
dot on the rotor plane.
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Figure 3: Scanning patterns of the 6-beam lidar with (a) a fixed focus distance and various
half-cone opening angles, and (b) a fixed half-cone opening angle and various focus distances.
The wind turbine rotor is indicated in a black circle. The turbine nacelle is marked in a black
dot on the rotor plane.

only one ϕ value. Comparing the results from 50-beam and 51-beam lidar, we can see that
adding one central beam is very beneficial for measuring all variances.

We show the performances of 50-beam and 51-beam lidar with multiple measurement planes
on the Reynolds stresses estimation in Fig. 5, where the estimates using a single plane (marked in
green and blue) are the same as those in Fig. 4. The comparison shows that if the measurements
at a single plane are not sufficient to retrieve all Reynolds stresses, measuring at multiple planes
with the same beam configuration does not help in the turbulence reconstruction. Results from
the 51-beam lidar suggest that using multiple measurement planes does not improve the results
much in our simulations; it only reduces slightly the uncertainty of the estimations.

Figure 6 shows the four Reynolds stresses retrieved from the 4-beam and 5-beam lidars
assuming that the ⟨u′v′⟩ and ⟨v′w′⟩ covariances are negligible in Eq. (7). The Reynolds stress
estimates are very noisy so that some of them are out of the limit of the axis. In all cases,
the determinants of the matrix that results when expanding Eq. (7) are close to zero, which
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Figure 4: Reynolds stresses derived from the virtual sonic anemometer and lidars, which have
more than six beams and measure at a single distance, from 100 simulated wind fields. The
markers are the means and the error bars are ± one standard deviation.
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Figure 5: Reynolds stresses derived from the virtual sonic anemometer, the 50-beam and 51-
beam lidars measuring at a single plane and at multiple planes from 100 simulated wind fields.
The markers are the means and the error bars are ± one standard deviation.

indicates that the four Reynolds stresses cannot be estimated accurately using the least-square
procedure with the 4-beam and 5-beam configurations. Again, the comparison suggests that
using multiple measurement planes does not improve the results much in our simulations.

In Fig. 7, we analyze how the accuracy and the uncertainty of the Reynolds stresses estimation
change when increasing ϕ and fd of the 6-beam lidar. We compare them with those from the sonic
anemometer and the SpinnerLidar. Both the error and the uncertainty decrease as the opening
angle increases. Specifically, for ϕ = 45◦, the six-beams configuration provides lower uncertainty
than the SpinnerLidar despite having much fewer beams. Increasing the focus distance has an
opposite effect as increasing the beams’ opening angles due to the random error on the variances
of the radial velocity. The radial velocity variances of the beams are less correlated when the
lidar scans over a larger area. We performed the same analysis with the 51-beam lidar and
observed the same trends (not shown here).
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Figure 6: Reynolds stresses derived from the virtual sonic anemometer, the 4-beam and 5-beam
lidars measuring at a single plane and at multiple planes from 100 simulated wind fields. The
markers are the means and the error bars are ± one standard deviation.
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Figure 7: Influence of increasing opening angle ϕ and focus distance fd on the Reynolds
stresses estimation for the virtual sonic anemometer, the SpinnerLidar, and all 6-beam lidar
configurations from 100 simulated wind fields.
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We also simulate the nacelle lidars with all considered scanning patterns at the five
measurement planes mentioned above, and retrieve the along-wind variance using the ‘σ2

u-LSP’
and ‘σ2

u-isotropy’ methods, respectively. The results are shown in Fig. 8. Table 1 summarizes
the relative errors of the lidar-derived estimates compared to the one from the sonic anemometer.
The results in first row are computed solving Eq. (7), from which we get perfect estimations
of the along-wind variance using lidars with more than six beams. Furthermore, we find as an
overall trend that lidar-derived σ2

u are overestimated using the ‘LSP’ method, when compared
to the estimate from the sonic anemometer, while they are slightly underestimated using the
‘isotropy’ method. The biases are in general smaller when σ2

u are computed using the ‘isotropy’
method. Overall, all simulated lidars are able to estimate σ2

u well, despite of their different
number of beams. The staring lidar acts like a sonic anemometer in our simulation and achieves
zero relative error since no probe volume is considered and the beam is perfectly aligned with
the along-wind component.

sonic staring 2-beam 4-beam 5-beam 6-beam 50-beam 51-beam SL

1.1

1.2

1.3

1.4

1.5

1.6

σ2 u
 [m

2  s
−2
]

Figure 8: The along-wind variance derived from simulated lidars using the ‘σ2
u-LSP’ method (in

solid lines) and ‘σ2
u-isotropy’ method (in dashed lines). All lidars measure at multiple planes.

Table 1: Relative error of the mean value of the lidar-derived along-wind variance using 100
simulated wind fields, when compared to the one from the sonic anemometer. All lidars measure
at multiple planes. Negative values indicate that the along-wind variance is underestimated.

staring 2-beam 4-beam 5-beam 6-beam 50-beam 51-beam SL

⟨u′u′⟩ [%] — — — — 0.00 — 0.00 0.17
σ2
u-LSP [%] 0 4.75 3.76 2.92 3.03 3.65 3.56 6.53

σ2
u-isotropy [%] 0 -2.27 -3.91 -2.52 -2.66 -3.30 -3.23 -6.07

5. Conclusion and Outlook
Our results show that at least six beams, including one beam with a different opening angle,
are needed to estimate all the six Reynolds stresses accurately. The accuracy and uncertainty
in turbulence characterization are better improved by enlarging the opening angle than by
increasing the number of beams. Enlarging the measurement area of the nacelle lidars with the
same beam orientation reduces the accuracy and increases the uncertainty. Compared to the
point-wise sonic anemometer, all considered lidars can estimate the along-wind variance with



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 022016

IOP Publishing
doi:10.1088/1742-6596/2265/2/022016

9

a relative error lower than 7%. All in all, the lidar with a 6-beam configuration and a large
opening angle gives the best estimates of all Reynolds stresses.

This study should be extended by modelling the lidar probe volume in the simulation, which
can cause turbulence attenuation. For continuous-wave lidar, the focus distance is closely related
to the impact of the probe volume. Further studies on the lidar scanning pattern should also
consider the inhomogeneity of the inflow. Modern wind turbines are often operating inside
a wind farm or have large vertical span among the rotor area. Under those conditions, the
turbulence homogeneity assumption is violated. Therefore, there is a need to investigate the
scanning strategy for characterizing inhomogeneous inflows.
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Abstract. Through numerical simulations and the analysis of field measurements, we investigate the dependence of the accu-

racy and uncertainty of turbulence estimations on the main features of the nacelle lidars’ scanning strategy, i.e., the number

of measurement points, the half-cone opening angle, the focus distance and the type of the lidar system. We assume homoge-

neous turbulence over the lidar scanning area in front of a Vestas V52 wind turbine. The Reynolds stresses are computed via

a least-squares procedure that uses the radial velocity variances of each lidar beam without the need to reconstruct the wind5

components. The lidar-retrieved Reynolds stresses are compared with those from a sonic anemometer at turbine hub height.

Our findings from the analysis of both simulations and measurements demonstrate that to estimate the six Reynolds stresses

accurately, a nacelle lidar system with at least six beams is required. Further, one of the beams of this system should have a

different opening angle. Adding one central beam improves the estimations of the velocity components’ variances. Assuming

the relations of the velocity components’ variances as suggested in the IEC standard, all considered lidars can estimate the10

along-wind variance accurately using the least-squares procedure and the Doppler radial velocity spectra. Increasing the open-

ing angle increases the accuracy and reduces the uncertainty on the transverse components, while enlarging the measurement

distance has opposite effects. All in all, a 6-beam continuous-wave lidar measuring at a close distance with a large opening

angle provides the best estimations of all Reynolds stresses. This work gives insights on designing and utilizing nacelle lidars

for inflow turbulence characterization.15

1 Introduction

Inflow turbulence characteristics are important for wind turbine load validation (Conti et al., 2021), power performance assess-

ment (Gottschall and Peinke, 2008; Wagner et al., 2014) and wind turbine control (Dong et al., 2021). The traditional way to

measure inflow turbulence uses the in-situ anemometers installed on meteorological masts, such as cup and sonic anemome-

ters. However, rotor planes of the modern wind turbines have large vertical span that can reach 250 m above the ground. It20

is more and more costly to install a meteorological mast that reaches the height of the blade tips, especially under offshore

conditions. Recently, nacelle lidars of different types and configurations have been used to scan the inflow (Harris et al., 2006;

Mikkelsen et al., 2013; Wagner et al., 2015; Peña et al., 2017; Fu et al., 2022a). Compared to the point-wise, mast-mounted

anemometers, forward-looking nacelle lidars yaw with the wind turbine and measure at different points in front of the rotor,

which can potentially better characterize the inflow that actually interacts with the wind turbine.25

1



Assuming statistical stationarity, turbulence can be represented by the variances and covariances of the wind field compo-

nents u,v and w (u1,u2,u3) averaged typically over 10 or 30 min. The homogeneous velocity field can be decomposed into

the mean Ui and the fluctuating part u′
i. The Reynolds stress tensor, a matrix containing the six second-order moments ⟨u′

iu
′
j⟩,

describes the variability of the atmospheric flow in some detail. The terms in the Reynolds stress tensor are frequently used in

wind energy and meteorology. The square root of the along-wind variance is a part of the definition in the turbulence intensity,30

which is a key turbulence parameter for the structural loads assessment and the design of wind turbines (IEC, 2019). However,

this is not the only component that is important for loads (Petersen et al., 1994). The two covariances ⟨u′w′⟩ and ⟨v′w′⟩ form

the momentum fluxes, which are used to calculate the friction velocity and are closely connected to the vertical wind profile

(Wyngaard, 2010; Peña et al., 2016). The half the sum of the variances of the three velocity components is the turbulence

kinetic energy, which is an important parameter for investigating wind turbine wake structures (Kumer et al., 2016). Also, the35

Reynolds stresses are needed to determine the parameters of the three-dimensional turbulence models for, e.g., load simulations

(Mann, 1994).

Compared to turbulence estimates from traditional anemometry, the accuracy and the uncertainty of lidar-derived turbulence

characteristics can be affected by not only the spatial and temporal resolutions intrinsic to the lidar systems and the characteris-

tics of atmospheric turbulence but also the lidar scanning strategies (Sathe et al., 2011; Smalikho and Banakh, 2017). Dimitrov40

and Natarajan (2017) and Conti et al. (2021) applied lidar measurements using different scanning strategies for load validation.

Schlipf et al. (2018) optimized the scanning trajectory of nacelle lidars based on a coherence model for the rotor-effective wind

speed to improve control performance. Only a few works investigated the dependence of turbulence estimations on lidar scan-

ning strategies. Sathe et al. (2015) explained that at least six radial velocity variances are needed to compute all six Reynolds

stresses, and proposed for a ground-based lidar an optimized six-beam configuration using an objective function which mini-45

mizes the sum of the random errors of the Reynolds stresses. Newman et al. (2016) showed that using the variance from the

vertical beam improves the turbulence estimates from ground-based lidars. Fu et al. (2022a) investigated the benefit of using

multiple-beam nacelle lidars by comparing the accuracy of turbulence estimations from a SpinnerLidar (a lidar measuring the

inflow at 400 positions) with two- and four-beam lidars.

Lidars measure the radial velocity (also known as the line-of-sight velocity) along the laser beam. Sathe and Mann (2013)50

and Fu et al. (2022a) showed that the variance along a single beam can be higher or lower than the u-variance measured by

sonic anemometers depending on the beam orientation. This is due to the correlation between different velocity components,

which can be described in the three-dimensional spectral velocity tensor model by Mann (1994) (hereafter Mann model). We

need to assume homogeneity when combining the radial velocity variances along different laser beam directions to reconstruct

the Reynolds stresses. Compared to the in-situ anemometers, the lidar’s measurement volume is generally larger, which leads55

to turbulence attenuation.

There are two main types of nacelle lidar systems, namely continuous-wave (CW) and pulsed. They mainly differ on the

working principle and the way they probe the atmosphere within their measurement volume. The probe volume of a CW system

increases with the square of the focus distance, while the one of a pulsed system remains constant with measurement range

(Peña et al., 2015). The ‘unfiltered’ radial velocity variances (in which the volume-averaging effect is compensated) can be60
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retrieved from the Doppler radial velocity spectra, which are normally available in CW systems (Mann et al., 2010; Branlard

et al., 2013).

This work investigates the dependence of the accuracy and the uncertainty of the turbulence estimations on the main features

of the nacelle lidars’ scanning strategy, i.e., the number of measurement positions within a full scan, the half-cone opening

angle, the focus distance and the type of the lidar system. We select eight scanning patterns, which are commonly known or65

widely used in the wind energy industry. Homogeneous frozen turbulence is assumed throughout our analysis. The Reynolds

stresses are estimated via a least-squares procedure using radial velocity variances instead of computing from the reconstructed

mean wind velocities. Estimates from a sonic anemometer at turbine hub height are used as reference. Compared to Fu et al.

(2022b), here we study the topic using not only numerical simulations with turbulence boxes but also the SpinnerLidar mea-

surements collected at DTU Risø test site. We select measurements at certain beam scanning locations of the SpinnerLidar to70

imitate lidars with different scanning configurations. Another main difference to Fu et al. (2022b) is that we consider the probe

volume of both a CW and a pulsed lidar system in our simulations, which plays an important role, especially when studying

the influence of the focus distance on the turbulence estimation.

This paper is organized as follows. Section 2 introduces the turbulence spectral model and the modeling of nacelle lidars.

Section 3 describes how the unfiltered radial velocity variance and the Reynolds stresses are estimated. It also gives details about75

the setup of the numerical simulations, the considered lidar scanning strategies and the field experiment. Section 4 compares the

Reynolds stress estimations between the lidars and the sonic anemometer at turbine hub height from both numerical simulations

and measurements. Discussions are given in Section 5. Section 6 concludes the work and provides the outlook.

2 Theoretical background

2.1 Turbulence spectral model80

Assuming Taylor’s frozen turbulence (Taylor, 1938), the wind field can be described by u(x) = (u,v,w), where x= (x,y,z)

is the position vector defined in a right-handed coordinate system, u the horizontal along-wind component, v the horizontal

lateral component, and w the vertical component. The homogeneous wind field u(x) can be decomposed into the mean value

⟨u(x)⟩= (U,0,0), where ⟨ ⟩ denotes ensemble averaging, and the fluctuating part u′(x) = (u′,v′,w′). U is the mean wind

velocity along the x-direction. The one-dimensional single point (co-)spectra of any component of the wind field are given as85

(Mann, 1994)

Fij(k1) =
1

(2π)

∞∫

−∞

Rij(x1,0,0)exp(−ik1 ·x1)dx1, (1)

where k1 is the first component of the wave vector k, Rij(r)≡ ⟨u′
i(x)u

′
j(x+ r)⟩ is the Reynolds stress tensor, r is the

separation vector, and u′
i are the fluctuations around the mean of the wind field. The wave number can, via Taylor’s hypothesis,

be related to the frequency f through k1 = 2πf/U . The auto-spectra of the three wind components Fu,v,w (= F11,22,33) can90
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be evaluated using Eq. (1). The velocity components’ variances are

σ2
u,v,w =

∞∫

−∞

Fu,v,w(k1)dk1. (2)

We assume that the Mann model well describes the spatial structure of the turbulent flow. Besides k1 and the other two

components of the wave vector k, the Mann model contains three parameters: αε2/3, which is related to the turbulent energy

dissipation rate, L to a turbulence length scale, and Γ to the anisotropy of turbulence. This model is chosen because it describes95

the correlations between different velocity components, which play an important role in deriving turbulence statistics from

measurements of multiple-beam lidars pointing at different directions.

2.2 Nacelle lidar and modeling of the probe volume

The unit vector n describes the beam orientation of a nacelle lidar, which can be expressed as (Peña et al., 2017):

n(ϕ,θ) = (−cosϕ,cosθ sinϕ,sinθ sinϕ), (3)100

where θ is the angle between the y axis and n projected onto the y-z plane and ϕ the angle between the beam and the negative

x-axis (also known as the half-cone opening angle), as shown in Fig.1.

Figure 1. Definition of the coordinate system and beam angles for nacelle lidar modeling.

The radial velocity of a lidar can be written as the convolution of the weighting function φ and the radial velocity sampled

along the beam in the probe volume (Mann et al., 2010):

vr(ϕ,θ) =

∞∫

−∞

φ(s)n(ϕ,θ) ·u[n(ϕ,θ)(fd + s)]ds, (4)105
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where s is the distance from the focus point along the beam and fd the focus or measurement distance. The relation assumes

that the velocity is determined from the Doppler spectrum as the center of gravity, see Held and Mann (2018). We use the

following weighting functions to approximate the probe volume of different types of lidar:

– CW lidar (Sonnenschein and Horrigan, 1971):

φ(s) =
1

π

zR

z2R + s2
with zR =

λf2
d

πr2b
, (5)110

where zR is the Rayleigh length, λ the laser wavelength and rb the beam radius at the output lens.

– pulsed lidar (Meyer Forsting et al., 2017):

φ(s) =
1

2∆p

{
Erf

[
s+∆p/2

rp

]
−Erf

[
s−∆p/2

rp

]}

with the error function Erf(x) =
2√
π

x∫

0

exp(−t2)dt and rp =
∆l

2
√

ln(2)
, (6)

where ∆p is the range-gate length and ∆l the Gaussian lidar pulse Full Width at Half Maximum (FWHM).

Variances calculated from the centroid-derived radial velocities are attenuated by the lidar probe volume, which acts like a115

low-pass filter to the wind velocity fluctuations. Therefore, we refer to them as the ‘filtered’ radial velocity variances. If we

assume that the lidar probe volume can be negligible and that u,v, and w are constant over the scanned area, the radial velocity

can be expressed as

vr(ϕ,θ) =−ucosϕ+ v cosθ sinϕ+w sinθ sinϕ. (7)

The ‘unfiltered’ radial velocity variance can be derived by taking the variance of Eq. (7), as shown in Eberhard et al. (1989):120

σ2
vr,unf(ϕ,θ) = σ2

u cos
2ϕ+σ2

v cos
2 θ sin2ϕ+σ2

w sin2 θ sin2ϕ− 2⟨u′v′⟩cosϕcosθ sinϕ

− 2⟨u′w′⟩cosϕsinθ sinϕ+2⟨v′w′⟩sin2ϕcosθ sinθ. (8)

3 Methodology

3.1 Estimation of the unfiltered radial velocity variance

In practice, the unfiltered radial velocity variance σ2
vr,unf in Eq. (8) can be estimated from the Doppler radial velocity spectrum.

When the nacelle lidar measures at a small opening angle over a relatively homogeneous inflow and the wind shear is not125

very strong, the effect of radial velocity gradient within the lidar probe volume can be negligible (see Mann et al., 2010, for

a detailed discussion). In this case, one can estimate σ2
vr,unf as the second central statistical moment of the ensemble-averaged

Doppler spectrum of the radial velocity within typically a 10- or 30-min period. Each Doppler spectrum is area-normalized
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before computing the ensemble-averaged Doppler spectrum p(vr). The mean radial velocity can be estimated as

µvr =

∞∫

−∞

vrp(vr)dvr, (9)130

and its variance as

σ2
vr
=

∞∫

−∞

(vr −µvr)
2p(vr)dvr. (10)

Assuming that all contributions of the radial velocity to the Doppler spectrum are because of turbulence, σ2
vr

in Eq. (10) provides

an estimate of σ2
vr,unf. This assumption is reasonable when beams are close to horizontal.

3.2 Estimation of the Reynolds stresses135

The Reynolds stress tensor R≡R(x= 0) contains the variances and covariances of the velocity components:

R=




σ2
u ⟨u′v′⟩ ⟨u′w′⟩

⟨v′u′⟩ σ2
v ⟨v′w′⟩

⟨w′u′⟩ ⟨w′v′⟩ σ2
w


 . (11)

To compute R, we use the radial velocity variances from all beams over the lidar scanning trajectory. Assuming spatial homo-

geneity, we apply a least-squares fit to the radial velocity variances σ2
vr

. This can be done since the variance in any direction n

can be written as n ·Rn or niRijnj using the index notation and assuming summation over repeated indices. We then sum the140

squared differences between the measured radial variances σ2
vr

and n ·Rn for any given Reynolds stress tensor R. In order to

avoid too many indices, we express this sum as integral
∫

dµ such that the sum we are going to minimize can be written as

∆2 =

∫
(n ·Rn−σ2

vr
)2dµ. (12)

The matrix Rij that minimizes the integral must fulfill

∂∆2

∂Rij
= 0⇒ 2

∫
(n ·Rn−σ2

vr
)ninjdµ= 0. (13)145

This can be written as

Rkl

∫
nknlninjdµ=

∫
σ2
vr
ninjdµ, (14)

where (k, l) and (i, j) are each of the indices combinations (1,1),(1,2),(1,3),(2,2),(2,3),(3,3), n1 =−cosϕ, n2 = cosθ sinϕ

and n3 = sinθ sinϕ (as given in Eq. 3), i.e. Fu et al. (2022a),:



∑
n4
1

∑
n2
1n

2
2

∑
n2
1n

2
3

∑
2n3

1n2

∑
2n3

1n3

∑
2n2

1n2n3
∑

n2
1n

2
2

∑
n4
2

∑
n2
2n

2
3

∑
2n1n

3
2

∑
2n1n

2
2n3

∑
2n3

2n3
∑

n2
1n

2
3

∑
n2
2n

2
3

∑
n4
3

∑
2n1n2n

2
3

∑
2n1n

3
3

∑
2n2n

3
3∑

n3
1n2

∑
n1n

3
2

∑
n1n2n

2
3

∑
2n2

1n
2
2

∑
2n2

1n2n3

∑
2n1n

2
2n3

∑
n3
1n3

∑
n1n

2
2n3

∑
n1n

3
3

∑
2n2

1n2n3

∑
2n2

1n
2
3

∑
2n1n2n

2
3∑

n2
1n2n3

∑
n3
2n3

∑
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3
3

∑
2n1n

2
2n3

∑
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2
3

∑
2n2

2n
2
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




Ruu

Rvv

Rww

Ruv

Ruw

Rvw




=




∑
n2
1σ

2
vr∑

n2
2σ

2
vr∑

n2
3σ

2
vr∑

n1n2σ
2
vr∑

n1n3σ
2
vr∑

n2n3σ
2
vr




. (15)150
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To solve the six Reynolds stresses from Eq. (15), two requirements of the nacelle lidar scanning pattern need to be fulfilled

(see Sathe et al., 2015, for a detailed discussion):

– the lidar has at least six beams or measures at six different locations within one full scan;

– the lidar beams have at least two different opening angles.

If a lidar has less than six beams, or the opening angles of all beams are identical and some of the six equations are linearly155

dependent, we have fewer knowns than unknowns in Eq. (15), which leads to infinite solutions. In those cases, only the along-

wind variance σ2
u can be estimated well (Peña et al., 2019). To solve σ2

u from Eq. (15), assumptions of some Reynolds stresses

terms are needed to reduce the number of unknowns. Here, we use three different assumptions, as introduced in Fu et al.

(2022a):

– All Reynolds stresses apart from σ2
u are zero (denoted as ‘LSP-σ2

u’ method). For lidars with only one half-cone opening160

angle, this means σ2
u =

∑
σ2
vr
/
∑

cos2ϕ.

– Turbulence is isotropic, i.e., σ2
u = σ2

v = σ2
w and that other terms are negligible (denoted as ‘LSP-isotropy’ method). This

method is the same for lidars with only one half-cone opening angle as taking the mean of all radial velocity variances.

– The relations between velocity components’ standard deviation σv = 0.7σu and σw = 0.5σu, as recommended in IEC

(2019), and all covariances are negligible (denoted as ‘LSP-IEC’ method).165

3.3 Numerical simulations

We simulate lidar measurements on the nacelle of a wind turbine with a rotor diameter (D) of 52 m using 100 randomly gen-

erated turbulence boxes. The boxes contain the fluctuations of the three wind components. The turbulence boxes are described

by the Mann model with typical values of the model parameters αε2/3 = 0.05 m4/3 s−1, L= 61 m and Γ = 3.2. The selected

three parameters are adopted from Mann (1994) and characterize a neutral atmospheric stratification on a typical offshore site.170

The dissipation rate αε2/3 is a scaling factor on the turbulence intensity. The number of grid points in the three directions

are (Nx,Ny,Nz) = (8192,64,64). The lengths of the turbulence boxes in the vertical and lateral directions are both 128 m.

The boxes have lengths of 30 min in the along-wind direction assuming a mean wind U = 10 m s−1. We add a linear shear

dU/dz = 0.0288 s−1 on top of the along-wind velocity component u in each box:

u= U +
dU
dz

(z− zrotor)+u′, (16)175

where zrotor is the turbine hub height in the turbulence box, i.e., the middle grid point in the z-coordinate.

We simulate eight lidars with different scanning patterns, as shown in Fig. 2. Statistics of the sonic anemometer are taken

at the location of the turbine rotor center (which is also the center of the turbulence boxes) as the reference for evaluating the

lidar-derived turbulence characteristics. The SpinnerLidar scans in a rosette-curve pattern and has half-cone opening angles in

the range 0− 30°. It generates 400 radial velocities in one full scan. The SpinnerLidar is simulated with a focus distance of180
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52 m (1D) in front of the rotor, while other lidars are simulated with the focus distance of 98 m due to their smaller opening

angles (ϕ= 15°) to cover the whole rotor plane. We also simulate all considered lidars with multiple measurement planes at

fd = 49, 72, 98, 121 and 142 m, which are arbitrarily selected. As examples, Fig. 3 shows the scanning trajectories of the

4-beam and 50-beam lidars measuring at the five planes. We then use the radial velocity variances at all measurement levels

to compute the turbulence statistics. Furthermore, to study the dependence of the turbulence estimations on the opening angle185

and the focus distance, we simulate the 6-beam configuration, proposed by Sathe et al. (2015), with extra setups: a fixed focus

distance of 52 m and increasing opening angles (see Fig. 4(a)), as well as a fixed opening angle of 15° and increasing focus

distances (see Fig. 4(b)).
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(h) SpinnerLidar (SL)

Figure 2. Selected lidar scanning patterns for numerical simulations. The SpinnerLidar (h) has ϕ= 0− 30° and scans at fd = 52 m, while

other lidars (a-g) have ϕ= 15° and scan at fd = 98 m to cover the whole rotor plane. The lidar beam scanning locations are marked in blue

dots. The wind turbine rotor is represented in a black dashed circle.

We consider the lidar probe volume when we investigate the dependence of the Reynolds stresses estimation on ϕ and fd.

The Doppler radial velocity spectrum S(vr, t) is simulated as (Held and Mann, 2018)190

S(vr, t) =

M∫

−M

φ(s)δ(vr −u(ns−U t) ·n)ds, (17)
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Figure 3. Scanning trajectories of the 4-beam and the 50-beam lidars measuring at fd = 49,72,98,121 and 142 m. Features regarding the

blue dots and the dashed circle as in Fig. 2. The turbine nacelle is marked in a black dot on the rotor plane.
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Figure 4. Scanning strategies of the 6-beam lidar with (a) a fixed focus distance and various half-cone opening angles, and (b) a fixed half-

cone opening angle and various focus distances. Features regarding the dashed circle and the black dot as in Fig.3.
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where δ represents the Dirac delta function, the integral is truncated with the distance M along the beam, and φ(s) can be

described by Eq. (5) or (6) depending on the type of the lidar system. The resolution of the Doppler radial velocity spectrum is

0.1 m s−1 per velocity bin, which is hereafter always used. Parameters used for modelling the probe volume are summarized in

Table 1 (Meyer Forsting et al., 2017). We select M as shown in Table 1 so that 95% of the area under both weighting functions195

is covered. Figure 5 compares the modelled lidar probe volume for CW and pulsed lidars at focus distances fd = 52, 98 and

120 m. The size of the probe volume for CW lidars increases with the square of the focus distance (see Eq. 5), while it remains

the same for pulsed lidars.

CW

λ= 1.565× 10−6m

rb = 2.8× 10−2 m

M = 8zR

pulsed

∆l = 24.75 m

∆p= 38.4 m

M = 1.2∆l

Table 1. Parameters for modelling the CW and pulsed lidar probe volume in numerical simulations.

Figure 5. Comparison of the modelled lidar probe volume for CW and pulsed lidars at three different focus distances.

The time lag between each measurement within a full scan is not considered but assumed that measurements are taken at the

same time. In the numerical simulations neglecting lidar probe volume (see results in Sections 4.1 and 4.2), the time resolution200

of the wind field is used as the lidar scan rate, i.e., lidars complete one full scan in dt= dx/U = 0.22 s. In the simulations

considering lidar probe volume (see results in Section 4.3), the lidars are assumed to finish a full scan in 2 s.
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3.4 Field measurements

During the period from 1 October 2020 to 30 April 2021, a SpinnerLidar was deployed on the nacelle of a Vestas V52 wind

turbine at DTU Risø campus in Roskilde, Denmark, measuring the flow in front of the turbine. The V52 wind turbine has a205

rotor diameter of 52 m and a hub height of 44 m. Between the scan head of the SpinnerLidar and the turbine rotation axis, there

is a vertical displacement of 2.47 m. A test site layout is shown on a digital surface elevation model in Fig. 6. The terrain is

slightly hilly and its surface is characterized by a mix of cropland, grassland and coast. The dominant wind directions during

this period at this site are west and south-west. The V52 wind turbine (marked with a red circle) stands at the northernmost

position of a row of wind turbines (marked in black circles). There is also a meteorological mast (marked as a red square)210

mounted at 120 m (≈ 2.3D) upstream from the V52 wind turbine at 291° from the north. One of the Metek USA-1 3D sonic

anemometers on the mast is located at 44 m above the ground, and its turbulence statistics is used as references to be compared

with the estimations from the nacelle-based lidars. A cup anemometer is located at the same height as the sonic anemometer

on the mast. There are also a wind vane at 41 m and a Thies precipitation opto sensor at 2 m on the mast.

Figure 6. A digital surface elevation model (UTM32 WGS84) showing the Risø test site in Roskilde, Denmark. The height above the mean

sea level is indicated by the color bar (in meters). A row of wind turbines are marked in circles (in red the reference V52 wind turbine). The

meteorological mast is shown in a red square.

The SpinnerLidar (Peña et al., 2019) is based on a CW system and it was set up to scan the inflow at a focus distance of 62215

m (≈ 1.2D, see Fig. 7). The Rayleigh length zR of the SpinnerLidar at this focused distance is 2.44 m. It reported 400 radial

velocities at a rate of 200 Hz, so it took 2 s to finish one full scan. The system also stored the instantaneous Doppler spectrum

of the radial velocity, which allows us to estimate the unfiltered radial velocity variance.

The measurements used for the analysis are from the wind sectors, which are relatively aligned with the mast-turbine direc-

tion (i.e., the 10-min averaged wind direction measured by the vane is within 291°± 30°). The yaw misalignment of the V52220
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Figure 7. The scanning trajectory of the SpinnerLidar in the measurement campaign.

turbine is below 5°, thereby minimizing the influence of nearby wind turbine wakes. We use a 10-min period, when the lidar

and the V52 wind turbine are concurrently operating, and the averaged wind speed from the cup anemometer at 44 m is higher

than 3 m s−1. No precipitation was detected during the analyzed 10-min periods. After filtering, 2348 10-min periods are used

for the analysis.

The SpinnerLidar measurements are post-processed to remove the signals reflected by the wind turbine blades, the telescope225

lens (the beam can hit the lens perpendicularly) or other hard targets. Such a procedure filters out some measurements close to

the middle of the pattern. To compensate for the nacelle movement, we rotate the system-reported beam scanning coordinates

using the 10-min averaged azimuthal and inclination angles of the SpinnerLidar, which are typically around 0.3° and 3°,

respectively. Taking the motion of the turbine and the slack of the SpinnerLidar into consideration, we divide the y–z plane

into grids of 1-m resolution to aggregate the corrected scan locations. In the given 10-min, all Doppler radial velocity spectra230

lying within each grid cell are accumulated, and only measurements within the grid cells, where there are more than 30

instantaneous Doppler spectra, are used for the reconstruction. At least 900 grid cells should satisfy the criterion in the 10-min

periods for our analysis. The light-grey dots in Figs. 8 and 9 represent the grid cells (for this particular case we have 1127

grid cells) satisfying the criterion in one arbitrary 10-min period. Other details about the measurement campaign and how the

SpinnerLidar measurements are selected, filtered and processed can be found in Fu et al. (2022a). The post-processing of the235

measurements leaves us 1294 time periods for the final comparison.

To imitate lidars with different scanning strategies, we select SpinnerLidar measurements at certain grid cells to estimate the

Reynolds stresses, as marked in red in Fig. 8. Due to the rotation of the system-reported lidar unit vectors, the corresponding

half-cone opening angles of the grid cells are typically higher in the upper circle than those in the lower circle of the pattern,

e.g., the ϕ of the top beam reaches 32° while the ϕ of the bottom beam is 27°. To mimic the simulation setup of the 6-beam240

lidar in Fig. 4(a), we select 6 grid cells with different levels of opening angle (see Fig. 9), in which the central grid is always

used. The mean half-cone opening angles of the 5 grid cells forming the circles are 12°, 19° and 30°, respectively. We estimate
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the unfiltered radial velocity variance σ2
vr,unf using the Doppler radial velocity spectra collected in each selected grid cell. The

Doppler spectra processing and usage are described in detail in Fu et al. (2022a).
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Figure 8. Selected lidar scanning patterns (in red) from the gridded SpinnerLidar scans (in light grey), which are at the focus distance of

62m.

4 Results245

In this section, we show comparisons of the Reynolds stresses computed from the considered lidars against those from the

sonic anemometer at turbine hub height in bar plots. In the plots, markers correspond to the means of the estimations from 100

turbulence fields and the error bars are ± one standard deviation indicating the uncertainty of the estimation. The Reynolds

stresses estimated from the measurements are normalized by the square of the mean along-wind velocity estimated by the lidar

U2 as we analyze a wide range of observed turbulence conditions. The mean wind velocity is computed by applying a least-250

square fit to the lidar radial velocities from all beams (Fu et al., 2022a). Results in Sections 4.1 and 4.2 neglect the lidars’ probe

volumes to study the influence of the number of beams. Nevertheless, for the CW lidar system, the probe volume increases

with the square of the focus distance. Also, for pulsed lidar systems, the probe volume effect cannot be easily compensated

since the Doppler spectra are usually not accessible. Therefore, the probe volumes are considered in Section 4.3 to show how

different factors are altogether influencing the turbulence estimations.255
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Figure 9. Selected grid cells for the 6-beam lidar with three different levels of the half-cone opening angle. The central grid coincides in the

three cases. The gridded SpinnerLidar scans are shown in light grey.

4.1 Estimation of Reynolds stresses by multiple-beam lidars

We show in Fig. 10 the estimations of the six Reynolds stresses by the lidars, which have more than six beams and measure

at a single plane, as well as those of the sonic anemometer. Results in Fig. 10(a) are from simulations that assume the lidars

measure at the focus point only, i.e., no probe-volume averaging is accounted for. Results from both the simulations and the

measurements show that the SpinnerLidar gives the best estimation for all six components. The results for the 6-beam and260

51-beam lidars are very similar with larger errors and higher uncertainties than those of the SpinnerLidar. The 50-beam lidar

can estimate the covariances accurately, while it shows large errors and uncertainties for ⟨v′v′⟩ and ⟨w′w′⟩; these are so noisy

that some of them are out of the limit of the figure’s axis. This is because the least-squares problem as formulated in Eq. (14)

can lead to infinite solutions if we have only one opening angle ϕ. By comparing the results from the 50- and 51-beam lidar, we

can see that the addition of a central beam is very beneficial for the computation of the variances of the velocity components,265

because the central beam provides an additional opening angle to the 50-beam lidar making the matrix on the left side of

Eq. (15) not singular. In principle, adding an extra beam in any different opening angle than the others in the 50-beam scanning

pattern will improve the estimations. The central beam is the best option for improving the estimation of the ⟨u′u′⟩ since the

beam aligns with the along-wind velocity component and can fully capture its variation when the probe volume is neglected.

Results in Fig. 10 (a) indicate that nacelle lidars are able to characterize inflow turbulence as accurate as the sonic anemome-270

ter with reasonable uncertainties, when the lidar has at least six beams and two different opening angles. We see the similar

trends from the measurements shown in Fig. 10 (b). The unfiltered Reynolds stresses estimated from all lidar measurements
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are generally close to those from the sonic anemometer but biased. What unexpected and rare are the negative values of ⟨v′v′⟩
and ⟨w′w′⟩ observed in some periods of the measurements, as shown and discussed in Fu et al. (2022a).
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Figure 10. Reynolds stresses derived from the sonic anemometer and lidars, which have more than six beams and measure at a single

distance. (a) simulated with 100 virtual wind fields. The lidars’ probe volumes are neglected. (b) computed from the unfiltered radial velocity

variance of the measurements. The markers are the means and the error bars are ± one standard deviation indicating the uncertainty of the

estimation.

Figure 11 shows four of the Reynolds stresses retrieved from the 4- and 5-beam lidars. ⟨u′v′⟩ and ⟨v′w′⟩ are neglected275

in Eq. (15). In all cases, the determinants of the matrix in Eq. (15) are close to zero, which indicate that the 4- and 5-beam

configurations cannot estimate these four Reynolds stresses accurately using the least-square procedure. Results from multiple-

plane cases show that measuring at several planes with the same beam orientations does not aid much in the Reynolds stress

reconstruction, as the determinant of the matrix in Eq. (15) does not change. For the 5-beam lidar, adding measurement planes

only slightly reduces the uncertainty of the ⟨u′u′⟩ and ⟨u′w′⟩ components. This lack of sensitivity is partly due to Taylor’s280

frozen hypothesis, as we do not account for evolution in the turbulence fields. We observe the same trend by comparing the

estimation of these stresses from a 50-beam lidar measuring at a single and multiple planes (not shown here).

4.2 Estimation of the along-wind variance by all considered lidars

In case the nacelle lidar has fewer than six beams, not all six Reynolds stresses can be solved from Eq. (15). We focus our

estimations on the along-wind variance and retrieve σ2
u from all considered lidars using the ‘LSP-σ2

u’, ‘LSP-isotropy’ and ‘LSP-285

IEC’ methods, respectively, as introduced in Section 3.2. Results are shown in Fig. 12. All lidars are simulated to measure at a

single plane (same as in Fig. 2) without accounting for the probe volume. Results from measurements are computed using the

unfiltered radial velocity variances.

Both simulation and measurement results show, as a general trend, that lidar-derived σ2
u values are overestimated using the

‘LSP-σ2
u’ method when compared to those from the sonic anemometer, while they are underestimated using the ‘LSP-isotropy’290

method. The ‘LSP-IEC’ method gives the most accurate estimates among the three methods, as it assumes relations between the
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Figure 11. Reynolds stresses derived from the virtual sonic anemometer, the 4- and 5-beam lidars measuring at a single and multiple (multi)

planes from 100 simulated wind fields. The lidars’ probe volumes are neglected.

variances of the velocity components that might be close to those we can find within the atmospheric surface layer. The staring

lidar performs like a sonic anemometer in our simulations as the beam is perfectly aligned with the along-wind component and

the effect of lidar probe volume is not considered. Overall, all considered lidars are able to estimate σ2
u very well, despite of

their different number of beams.295

Table 2 summarizes the relative errors of the means of lidar-derived estimates compared to the one from the sonic anemome-

ter. A negative value indicates that the along-wind variance is underestimated and vice-versa. The results in the first row of the

table are computed solving the full matrix of Eq. (15) (same as ⟨u′u′⟩ showed in Fig. 10, here denoted as ‘LSP-6Re’ method),

from which we get perfect estimations of σ2
u using the 6- and the 51-beam lidars, and the SpinnerLidar without the effect of

the probe volume in the simulations. Furthermore, for lidars that have at least six beams and two different opening angles, the300

method ‘LSP-6Re’ is the best option to compute σ2
u among others, because it does not assume any relations between the six

Reynolds stresses. While for lidars with fewer than six beams or only one opening angle, the ‘LSP-6Re’ does not work well

and the ‘LSP-IEC’ gives the best estimation of σ2
u. These results are aligned with one of the main findings in Fu et al. (2022a).

In this work, the ‘LSP-IEC’ gives even smaller errors because we are able to compensate for the probe volume effect and use

the ‘unfiltered’ radial velocity variances. In addition, comparing the relative errors between the 4- and 5-beam lidars, and those305

between the 50- and 51-beam lidars, we find again that the addition of a central beam can sometimes improve the estimation

of the along-wind variance.

4.3 Dependence of Reynolds stresses estimations on the opening angle, focus distances and the type of lidar

The results shown in this section include the averaging effect of the lidar probe volume. In Fig. 13, we analyze how the accuracy

and the uncertainty of the Reynolds stresses estimations change when increasing the half-cone opening angle ϕ for the 6-beam310

lidar. The simulation setup has been shown in Fig. 4(a). We compare these estimations with those from the sonic anemometer

and the SpinnerLidar. The lidar probe volumes are modelled as in a CW system. Simulation and measurement results show

that both the error and the uncertainty decrease as the opening angle increases. Specifically, the 6-beam lidar with ϕ= 45°
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Figure 12. The along-wind variance derived from all considered lidars using the ‘LSP-σ2
u’ method (solid lines), ‘LSP-isotropy’ method

(dashed lines) and ‘LSP-IEC’ method (dotted lines). All lidars from simulations are assumed to have no probe volume and they measure at a

single plane (Fig. 2).

in the simulations provides lower uncertainty than the SpinnerLidar despite having much fewer beams, as the SpinnerLidar’s

maximum opening angle is ϕ= 30°. We observe the same trend when simulating the probe volume with a 6-beam pulsed315

system (not shown here). Possible reasons for the positive bias of the v- and w-variances seen from the simulation results are

discussed in Section 5.

We study the dependence of the Reynolds stresses estimations on the increasing focus distance fd for the 6-beam lidar

based on numerical simulations. The setup has been shown in Fig. 4(b). We assume the lidar systems to be continuous-wave

and pulsed, as shown in Fig. 14(a) and (b), respectively. All Reynolds stresses are computed using the centroid-derived radial320

velocity variances. Therefore, the estimated variances are attenuated by the probe volume and in general smaller than those

from the sonic anemometer. For both types of lidar, we see that increasing the focus distance has negative effects on the

estimation of all Reynolds stresses. The uncertainty increases due to the random error on the variances of the radial velocity;
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methods staring 2-beam 4-beam 5-beam 6-beam 50-beam 51-beam SL

simulations

(without probe volume)

LSP-6Re — — — — 0 9.7 0 0.1

LSP-σ2
u 0 4.7 3.6 2.8 3.0 3.6 3.5 6.3

LSP-isotropy 0 −2.3 −3.4 −2.6 −2.6 −3.4 −3.3 −6.2

LSP-IEC 0 1.1 0.9 0.7 0.9 0.9 0.9 1.3

measurements

(unfiltered variance)

LSP-6Re — — — — −5.4 −23.9 −5.5 −5.6

LSP-σ2
u −6.8 16.4 14.3 8.0 8.9 18.7 17.9 6.2

LSP-isotropy −6.8 −12.9 −13.8 −11.9 −12.0 −11.1 −11.0 −9.0

LSP-IEC −6.8 0 2.1 −0.3 0.1 5.4 5.0 0

Table 2. Relative error [%] of the mean values of the lidar-derived along-wind variance to the one from the sonic anemometer. The lidars’

probe volumes are neglected in the simulations. Results from the simulations are computed using measurements at a single plane (same set

up as Fig. 2). A negative value indicates that the along-wind variance is underestimated and vice-versa.
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Figure 13. Dependence of the Reynolds stresses estimations on the increasing half-cone opening angle ϕ for the 6-beam lidar (single plane),

the sonic anemometer and the SpinnerLidar (ϕ= 0–30°). The probe volume in the simulations is assumed to be as in CW systems. All

Reynolds stresses are computed using the unfiltered radial velocity variances.
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they are less correlated when the lidar scans over a larger area. In the case of the CW system, the bias for the estimations

increases with fd due to its growing probe volume, while the bias is almost constant for the pulsed system, as expected. For325

the closest focus distance fd = 52 m, the bias of the estimations from the pulsed system is evidently larger than those from the

CW system, where the later system gives accurate estimations of all Reynolds stresses. We perform the same analysis with the

51-beam lidar and observe the same trends (not shown here).

Figure 14. Dependence of the Reynolds stresses estimations on the increasing focus distance fd for the 6-beam lidar (single plane, ϕ= 15°),

compared to those from the sonic anemometer. The probe volume in the simulations are assumed to be as in (a) a CW system, and (b) a

pulsed system. All Reynolds stresses are computed using the centroid-derived (filtered) radial velocity variances.

5 Discussion

Results shown in Fig. 13 are from simulations that consider the CW lidar probe volume to mimic the lidar’s behavior in the330

reality. Then, the Doppler radial velocity spectra are used to compute the ‘unfiltered’ velocity variances for both simulations

and measurements. Compared to the estimations from the sonic anemometer, we observe positive biases of the lidar-retrieved

v- and w- variances. The biases decreas with increasing the half-cone opening angle ϕ. The reason is that although the large

matrix on the left side of Eq. (15) is not degenerate (i.e., its determinant is not zero) for a 6-beam lidar, the coefficients for

Rvv and Rww are very small (in the order of 10−3) for ϕ= 15°; the equation system is only balanced by overestimating both335

terms Rvv and Rww. The coefficients are proportional to the value of the opening angle ϕ, so they increase to 10−2 in the

case of ϕ= 30°, and to 10−1 in the case of ϕ= 45°, which explains why the biases are reduced with larger opening angles.

The positive biases for Rvv and Rww are slightly more evident in the simulations with probe volume compared to the case in

which the probe volume is neglected (see Fig. 10 (a)), because the simulated radial velocity variances are different in the two

scenarios.340

As shown in Fig. 13, increasing the lidar opening angle improves the accuracy and uncertainty of Rvv and Rww estimations.

The uncertainty of σ2
u is not much influenced if the lidar has a central beam that always aligns with the mean wind, e.g. the

six-, 51-beam lidars, and the SpinnerLidar. For nacelle lidars without a central beam, enlarging the opening angle brings higher
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uncertainty to σ2
u estimation, which is a key parameter for assessing wind turbine loads (IEC, 2019). Therefore, the optimum

opening angle for turbulence estimations depends on which Reynolds stress is of interest. In addition, for control applications,345

the large opening angle is beneficial for measuring wind directions, but sacrifices the accuracy of rotor-effective wind speed

and wind shear estimations (Simley et al., 2018). The optimum opening angle is also very much relevant to the turbine’s size.

In this work, we characterize turbulence in front of a small wind turbine at 1D and 1.2D in the simulations and the field

experiment, respectively. Taylor’s frozen turbulence hypothesis (and homogeneity) is assumed throughout our numerical sim-

ulations, because the wind evolution is not very relevant to turbulence statistics, but more to the rotor-effective wind speed350

estimations (Chen et al., 2021). Mann et al. (2018) showed that turbulence is slightly affected by the stagnation in front of

the wind turbine rotor as it goes through the induction zone. The change of the low-frequency wind variation is related to the

thrust coefficient of the wind turbine, but the main turbulence statistics do not change. In addition, the yaw misalignment of the

wind turbine is not considered in this work. A small yaw misalignment (below 20°) does not affect much σ2
u estimations but

increases the uncertainty of Rvv and Rww estimations. For modern wind turbines with very large rotor disks, the single-point355

turbulence statistics do not represent well the inflow turbulence affecting the wind turbine. The least-square procedure cannot

be used to characterize the inhomogeneous inflow. New methodologies, e.g., constrained simulations (Dimitrov and Natarajan,

2017; Conti et al., 2021), are needed to reconstruct the inhomogeneous wind field.

We show from both simulations and measurements that all six Reynolds stress components can be estimated accurately

when using a nacelle multi-beam lidar. Although the spectral turbulence model used here (the Mann model), which is the360

basis of our simulated turbulence fields, assumes two of these components to be zero, namely ⟨u′v′⟩ and ⟨v′w′⟩, the methods

and techniques introduced in this work enable us to estimate all components accurately. This is advantageous for the study of

atmospheric flow over complex terrain and, particularly, in offshore conditions, where turbulence measurements are scarce and

expensive, and where we rely very much on models to assess the site conditions that impact wind turbines. These models often

assume relations between the turbulence components and/or use parametrizations of stresses/fluxes that are invalid due to the365

nature of the flow phenomena and the interaction between the waves and the wind field. For example, surface stresses over

long-lasting waves can be highly misaligned with the vertical gradient of the horizontal wind; most parametrizations of the

air-sea interaction assume such an alignment to estimate momentum fluxes within the marine boundary layer. Offshore nacelle

lidars can therefore help us understanding phenomena that are otherwise difficult to assess with traditional anemometry used

for offshore wind power development.370

6 Conclusion and Outlook

This study investigated the dependence of the Reynolds stresses estimations on different number of beams, half-cone opening

angles, focus distances, single or multiple measurement planes, and different types of the Doppler wind nacelle lidars using

both numerical simulations and measurements. The considered lidar scanning patterns included the staring lidar (single beam),

the 2-, 4-, 5-, 6-, 50-, 51-beam lidars and the SpinnerLidar, which reports 400 radial velocities with one scan. We assumed a375

homogeneous inflow turbulence (both for the simulations and measurements) and the Taylor’s frozen turbulence (for the simu-
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lations). The lidar-retrieved turbulence estimations were compared with those from a sonic anemometer at turbine hub height.

Analysis of both numerical simulations and measurements showed that to estimate all the six Reynolds stresses accurately, a

nacelle lidar system with at least six beams is required. Also, one of the beams of this system should have a different opening

angle. Adding one central beam improves the estimations of the velocity components’ variances. Measuring at multiple planes380

with the same beam orientations only reduces the uncertainty but not the bias in the reconstruction, if Taylor’s frozen turbu-

lence hypothesis is applied. All considered lidars can estimate the along-wind variance accurately by using the least-squares

procedure and the assumption that the relations of the velocity components’ variances are as suggested in the IEC standard.

Also, the Doppler radial velocity spectra are needed for the accurate estimations. For both CW and pulsed lidars, increasing

the opening angle reduces both the error and uncertainty of the estimations, while increasing the focus distance has opposite385

effects. In short, from all tested scanning strategies, a 6-beam CW lidar measuring at a close distance with a large opening

angle gives the best estimations of all Reynolds stresses. The optimum value of the opening angle depends on the Reynolds

stress term of interest and also the wind turbines’ size. Further studies or experiments are needed to study the best opening

angle of the 6-beam lidar for different applications.

In this work, the single-point turbulence statistics are estimated using the least-square procedure, which assumes homogene-390

ity over the lidar scanning area. Wind turbines nowadays are often operating inside a wind farm or have large spans over the

swept area. The assumption of homogeneous turbulence can be violated under those conditions. Therefore, further studies on

the optimized lidar scanning strategy for turbulence estimation should consider the inhomogeneity of the inflow. Additionally,

the proposed nacelle lidar scanning strategies can be used to study the wind evolution, the spatial correlations of turbulence

and estimate multi-point statistics, which better characterize the inflow that interacts with the turbine than the hub height ones.395

The wind field reconstruction of the inhomogeneous wind fields can benefit from constrained simulations, which incorporate

lidar measurements into three-dimensional turbulence wind fields. Future works could also consider the non-Gaussianity of

turbulence (Liu et al., 2010; Schottler et al., 2017) and the scale-dependent anisotropy of wind fluctuations (Syed et al., 2023).
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Abstract. Feedforward blade pitch control is one of the most promising lidar-assisted control strategies due to its significant

improvement in rotor speed regulation and fatigue load reduction. A high-quality preview of the rotor-effective wind speed

is a key element to control benefits. In this work, a single-beam continuous-wave or a pulsed lidar system is simulated in the

spinner of a bottom-fixed IEA 15 MW wind turbine. The single-beam lidar can rotate with the wind turbine rotor and scan the

inflow with a circular pattern, which mimics a multiple-beam nacelle lidar at a lower cost. Also, the spinner-based lidar has5

an unimpeded view of the inflow without intermittent blockage from the rotating blade. The focus distance and the cone angle

of the spinner-based single-beam lidar are optimized for the best wind preview quality based on a rotor-effective wind speed

coherence model. Then, the control benefits of using the optimized spinner-based lidar are evaluated for an above-rated wind

speed in OpenFAST with an embedded lidar simulator and virtual four-dimensional Mann turbulence fields considering the

wind evolution. Results are compared against those from a single-beam nacelle-based lidar. Furthermore, this work attempts10

to study the correlations between the fatigue loads of the tower and blades with different turbulence parameters. The optimum

scanning configurations of both CW and pulsed lidars lead to a lidar scan radius of 0.6 of the rotor radius. Results show that a

single-beam lidar mounted in the spinner brings much more control benefits than the one based on the nacelle, and it can be as

helpful as a 4-beam CW nacelle lidar for feedforward control.

1 Introduction15

In the past decade, lidar-assisted wind turbine control (LAC) is of growing interest in the wind energy community. Among

different control strategies, blade pitch feedforward control is one of the most promising LAC techniques, due to the significant

improvement in the regulation of the rotor speed and the reduction of the fatigue loads (Canet et al., 2021). Whereas the

conventional feedback controller reacts to the wind disturbance after the effect of turbulent wind on the structure has occurred,

the feedforward controller is able to utilize the preview information of the approaching wind provided by, e.g., lidars, which20

helps the turbine to react in advance. The collective pitch control, in which the blades are controlled all together, uses the

rotor-effective wind speed (REWS) as a key input to the feedforward controller.

In 2022, the installed prototype of the world’s biggest wind turbine had a rated power of 15 MW. It has reached over 200 m

in height and the rotor-swept area is equivalent to four soccer fields (Venditti, 2022). The inflow to wind turbines of such size
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cannot be measured by anemometers installed on a meteorological mast. As remote sensing devices, forward-looking lidars25

mounted on the nacelle or the spinner of the wind turbines have a better sight of the wind approaching the rotor, and they can

provide a high-quality wind preview. They are aligned with the wind turbine rotor and always track the incoming wind. Also,

nacelle lidars can measure the inflow remotely at different locations over the rotor-swept area. The REWS estimated from a

lidar system by combining the radial measurements over a full scan might more closely resemble the true REWS, which is the

spatial average of the longitudinal wind velocities across the rotor disk (Schlipf et al., 2015a), than a point-wise anemometer.30

Therefore, they have the potential to deliver inflow characteristics that are better correlated with turbine signals (rotor speed,

fatigue loads, etc.) than those derived from point-wise anemometers, e.g., cup and sonic anemometers.

Two types of nacelle lidar systems have been tested for wind turbine control, namely the continuous-wave (CW) and pulsed

systems. The CW lidars usually measure at one range gate at a time with adjustable focus distance at a high sampling rate.

Pulsed lidars are able to collect backscattered signals from several range gates according to the response time, but they require35

typically long sampling periods. Both lidars have been reported useful for LAC (Mikkelsen et al., 2013; Kumar et al., 2015).

Schlipf et al. (2014) found a decrease in the rotor speed variation during the above-rated operation of the CART2 using

feedforward pitch control and a circularly-scanning pulsed lidar. Scholbrock et al. (2013) showed the mitigation on tower fore-

aft loads using measurements from a three-beam pulsed lidar for the feedforward controller on the CART3. Scholbrock et al.

(2015) achieved a reduction in yaw error using the circularly-scanning CW lidar replacing the turbine-based wind vane, etc.40

Although many other relevant studies are based on aero-elastic simulations (Harris et al., 2006a; Bossanyi et al., 2012; Simley

et al., 2014), the results from the above experiments demonstrate control improvements when using LAC (Simley et al., 2018).

The benefit of LAC needs to be balanced with the investment in using nacelle lidars. The simplest basic option is a single-

beam staring lidar system. It is also robust and flexible. As the first field test of a nacelle-mounted lidar, Harris et al. (2006b)

demonstrated that a single-beam CW lidar measuring at hub height is able to detect the fluctuations of the longitudinal ve-45

locity at 200 m upstream of a Nordex N90 wind turbine. Nevertheless, the measurement at a single location is not a good

representative of the REWS interacting with the turbine rotor.

Compared to the staring lidar mounted on the wind turbine nacelle, the single-beam lidar in the spinner can rotate with

the rotor during turbine operation, scan a good portion of the inflow coming to the rotor disk, and reduce the cost of nacelle

lidars relying on complex scanning patterns. Another advantage of using a spinner-based lidar, over a nacelle-mounted system,50

is the unimpeded view of the inflow without intermittent signal blockage by the blades, which increases data availability. A

proof-of-concept field experiment was conducted by Mikkelsen et al. (2013), in which a ZephIR single-beam lidar system

was deployed in the spinner of a NM80 2.3 MW wind turbine. They showed that the system is capable of measuring the

upcoming wind and turbulence structure in real time. Based on a simulation study of the spinner-based CW lidar on the NREL

5 MW wind turbine, Simley et al. (2014) examined the accuracy of different measurement scenarios and found a minimum55

root-mean-square error of the along-wind component at a scan radius of 75% blade span, while at 69% blade span the lidar

provides lowest blade-effective wind speed error.

This work aims at demonstrating the usefulness of a single-beam lidar for wind turbine feedforward control if the lidar is

mounted in the spinner compared to a nacelle-based system. Our reference wind turbine is the bottom-fixed variable-speed
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collective-pitch-controlled IEA 15-MW turbine (design class 1B) with a rotor diameter of 240 m and a hub height of 150 m60

(National Renewable Energy Laboratory, 2020). We consider both continuous-wave and pulsed Doppler lidars. Based on

the four-dimensional (4D) Mann turbulence model that considers wind evolution (Guo et al., 2022a), we optimize the focus

distance and the cone angle of the spinner-mounted single-beam lidar to achieve the highest coherence between the rotor- and

the lidar-estimated REWS. Then, through time-domain simulations using the 4D Mann turbulence fields with typical turbulence

parameters of near-neutral atmospheric stability conditions, the performance of the feedforward control using the optimized65

lidar is evaluated. The ROSCO controller (Abbas et al., 2022) is used as the reference feedback controller. The simulations are

conducted in the open-source aero-elastic tool OpenFAST (National Renewable Energy Laboratory, 2022), and the results are

compared against those using a single-beam nacelle-based lidar.

This paper is organized as follows. Section 2 describes the background for this work including the turbulence spectral model,

the modeling of the wind evolution, the spinner-based lidar, and the wind preview quality. Section 3 introduces the set-up of70

time-domain simulations. Section 4 shows the results of the lidar configuration optimization, which is followed by Section 5,

where we evaluate the performance of the feedforward control. Discussions are given in Section 6. Section 7 concludes the

work and provides the outlook.

2 Background

2.1 Mann turbulence spectral model75

The three-dimensional wind field can be described by a vector field u(x, t0) = (u,v,w) = (u1,u2,u3) at a given time t0,

where u,v,w are the horizontal along-wind, the horizontal lateral and the vertical wind components, respectively. The vector

x= (x,y,z) is the position vector defined in the right-handed Cartesian coordinate system. Using Reynolds decomposition, the

wind field can be decomposed into the mean wind speed U = ⟨u(x,0,0)⟩= (U,0,0), where ⟨ ⟩ denotes ensemble averaging,

and the fluctuating parts (u′,v′,w′). Assuming Taylor’s frozen hypothesis (Taylor, 1938), the velocity fluctuations do not80

propagate with time. Therefore, the wind field after a given time ∆t can be derived as

u(x,y,z, t0 +∆t) = u(x−U∆t,y,z, t0). (1)

The wind field can also be expressed in the wavenumber domain using the three-dimensional Fourier transform

u(k, t0) =
1

(2π)3

∫
u(x, t0)exp(−ik ·x)dx, (2)

where k = (k1,k2,k3) and
∫

dx≡
∫∞
−∞

∫∞
−∞

∫∞
−∞ dxdydz. Denoting complex conjugate by * and the three velocity compo-85

nents by indices i, j = 1,2,3, the ensemble average of the Fourier coefficients is the spectral velocity tensor:

⟨u∗
i (k, t0)uj(k

′, t0)⟩=Φij(k)δ(k−k′). (3)

With the Dirac delta function δ(.), Eq. (3) implies the homogeneity of the stochastic wind field, i.e., ⟨u∗
i (k)uj(k

′)⟩ is zero

for k ̸= k′. Here, we assume that the spectral tensor Φij(k) can be described by the Mann model (Mann, 1994), in which,
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besides the wave number k, three adjustable parameters are used: αε2/3, where α is the spectral Kolmogorov constant and ε90

the turbulent energy dissipation rate, L, which is a length scale describing the size of the most energy-containing eddies, and

Γ, which represents the turbulence anisotropy and distortion of the eddies from the vertical velocity shear in the atmospheric

surface layer. The characteristics of the Mann model permit the modeling of three-dimensional spectra and coherence. The

model is also recommended by the IEC 61400-1 standard IEC (2019) for the calculation of wind turbine loads.

2.2 Temporal evolution of turbulence95

Turbulence structures evolve when they approach the rotor. To consider the temporal evolution of turbulence, we assume that

the stochastic field travels with the mean wind speed U in the along-wind direction. However, we assume the turbulent eddies

decay exponentially with time. The spectral velocity tensor Φij then becomes space-time tensor Θij (Guo et al., 2022a)

Θij(k,∆t) = exp
( −∆t

τe(k)

)
Φij(k), (4)

with100

⟨u∗
i (k, t0)uj(k

′, t0 +∆t)⟩=Θij(k,∆t)δ(k−k′), (5)

where τe is a new eddy lifetime that considers the temporal evolution. We also assume this eddy lifetime as in (Guo et al.,

2022a)

τe(k) = γ
[
a(|k|L)−1

(
(|k|L)10 +1

)− 2
15

]
, (6)

where γ is a coefficient that determines the strength of turbulence evolution. Guo et al. (2022a) and Guo et al. (2023) considered105

γ ≈ 400 for near-neutral atmospheric stability conditions, and γ ≈ 200 for stable atmospheric conditions.

The one-dimensional cross-spectra of all velocity fluctuations with separations ∆y and ∆z that consider evolution is then

Fij(k1,∆t,∆y,∆z) =

∫
Θij(k,∆t)exp(i(k2∆y+ k3∆z))dk⊥, (7)

where
∫

dk⊥ ≡
∫∞
−∞

∫∞
−∞ dk2dk3. The one-point cross-spectra and auto-spectra of the velocity components can be obtained

when the separations ∆y and ∆z are zero, and i= j in Eq. (7). The magnitude squared coherence of all velocity components110

is

coh2
ij(k1,∆t,∆y,∆z) =

|Fij(k1,∆t,∆y,∆z)|2
Fii(k1,∆t= 0)Fjj(k1,∆t= 0)

, (8)

where

Fii(k1,∆t= 0) =

∫
Φii(k)dk⊥. (9)

2.3 Spinner-mounted single-beam lidar115

A single-beam lidar system mounted in the wind turbine spinner is simulated. With an angle between the beam and the turbine’s

horizontal axis, the spinner-based lidar is able to scan the inflow in a circular pattern without signal blockage from the turbine
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blades or the nacelle, which is otherwise an issue in nacelle-mounted lidars. The beam orientation n can be expressed as

n(ϕ,θ) = (n1,n2,n3) = (−cosϕ,cosθ sinϕ,sinθ sinϕ), (10)

where ϕ is the half-cone opening angle, θ is the angle between the y-axis and the beam direction projected on the y-z plane.120

The beam unit vector can also be expressed with the beam azimuth α and elevation angle β, which is used in the OpenFAST

lidar simulator (Guo et al., 2022b)

n(α,β) = (−cosαcosβ,sinαcosβ,sinβ). (11)

The four angles are marked in Figure 1. The rotor shaft of the reference wind turbine has a tilt angle of 6◦. Therefore, the lidar

beam unit vector is rotated around the y-axis. The red circles in Figure 1 indicate the scanning locations of the single-beam125

lidar before the rotation around the y-axis.

Figure 1. Scanning trajectory of the single-beam lidar in the spinner of the IEA 15-MW wind turbine. The used lidar angles are marked.

Since the typical feedforward collective pitch controller is active beyond rated wind speeds only, the rotational speed of the

wind turbine has reached its rated value. For the reference wind turbine, the rated wind speed is vR = 10.59 ms−1 and the

rated rotor speed is ΩR = 7.56 rpm. The turbine is controlled to maintain its rotor speed close to the rated value. Therefore, the

single-beam lidar needs ≈ 8 s to complete a full scan. Assuming that the rotor speed is almost constant and the beam scanning130

locations are fixed with a sampling frequency fs = 4 Hz, the spinner-based lidar can measure 32 radial velocities in one circular

scan. Therefore, θ can be modelled as

θ =
2π

60
ΩRi/fs, (12)

where i= 1,2, ...,32 is the beam index.
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Assuming that the dominant radial velocity vr in the Doppler spectrum of radial velocities within the probe volume can be135

determined by the centroid method (Held and Mann, 2018; Fu et al., 2022), vr is the convolution of the lidar weighting function

due to its probe volume φ(s) and the wind components along the beam

vr(ϕ,θ) =

∞∫

−∞

φ(s)n(ϕ,θ) ·u[n(ϕ,θ)(fd + s)]ds. (13)

The weighting function of a CW lidar system is approximated by a Lorentzian function (Sonnenschein and Horrigan, 1971)

φ(s) =
1

π

zR

z2R + s2
, and its Fourier transform is φ̂(k,n) = exp(−|k ·n|zR) with zR =

λf2
d

πr2b
, (14)140

where s is the distance to the beam focus and zR is the Rayleigh length determined by the focus distance fd, the laser wavelength

λ, and the transmitted beam radius at the exit of the optical lens rb. For pulsed systems, we assume the weighting function has

a Gaussian-shape parameterized by a standard deviation σL (Cariou, 2013)

φ(s) =
1

σL
√
2π

exp
(
− s2

2σ2
L

)
, and its Fourier transform is φ̂(k,n) = |k ·n|exp

(
−|k ·n|2σ

2
L

2

)
with σL =

WL

2
√
2ln2

, (15)

where WL is the Full-Width at Half Maximum (FWHM). The probe volume of CW lidars increases with the square of the145

focus distance, whereas it is constant at any range for pulsed systems. In our study, we assume λ= 1.565 µm,rb = 28 mm and

WL = 30 m (Peña et al., 2016).

The weighting functions need to be truncated to simulate lidar measurements in turbulence boxes of finite length. We

discretize Eq. (14) with a resolution of ∆s= 0.1zR and consider smax = 6zR and smin =−6zR. Similarly, we use smax = 1.5WL

and smin =−1.5WL with a resolution of ∆s= 2.5 m (≈ 0.08WL) for Eq. (15). The discretized weights are normalized to have150

the sum one. Since WL = 2zR, the pulsed lidar probe volume is more compact and centralized than that of the CW. Figure 2

compares the truncated theoretical weighting functions of the two lidar systems measuring at different ranges. To illustrate the

two types of weighting functions, the weights in Figure 2 are normalized by the maximum values. In our case, the pulsed lidar

has a similar FWHM with the CW lidar focusing at 155 m.

The amount of truncation needs to be balanced between a realistic probe volume and the limited size of the virtual wind155

fields. The truncation and discretization influence the amount of the turbulence attenuation by the probe volume. However, the

small turbulent eddies do not greatly impact the coherence of the REWS, since the spatial averaging by the rotor disk has a

similar filtering effect on the true REWS.

2.4 Lidar wind preview quality

2.4.1 Rotor-effective wind speed from the wind turbine160

If the yaw misalignment is neglected, the true REWS is the spatial average of the longitudinal velocities u across the rotor-swept

area defined by the rotor radius R (Schlipf et al., 2015a):

uRR(x) =
1

πR2

∫∫

rotor

u(x)dydz. (16)
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Figure 2. Weighting functions of the CW lidar measuring at 80 m, 155 m, 230 m, 300 m and the one of the pulsed lidar measuring at 155 m,

300 m. The weights are normalized by the maximum values for illustration purposes. The blue and red markers indicate the discretization of

the functions.

Held and Mann (2019) demonstrated that this REWS can be rewritten as

uRR(x) =

∫
u(k)eik1x1

2J1(κR)

κR
dk, (17)165

where κ=
√

k22 + k23 and J1 is the Bessel function of the first kind. Held and Mann (2019) also showed that the auto-spectrum

of uRR is

SRR(k1) =

∞∫

−∞

Φ11(k)
4J2

1 (κR)

κ2R2
dk⊥. (18)

2.4.2 Rotor-effective wind speed estimated by the lidar

Assuming that the turbine yaw misalignment is negligible, the center line of the lidar scanning trajectory is well aligned with170

the turbine rotation axis, and v and w are considered to be zero, the u component can be estimated directly from the radial

velocity. The lidar-estimated REWS is the mean of the along-wind component retrieved from the radial velocities:

uLL(t) =

Nb∑

i=1

1

Nbni1
vr,i(t), (19)

where Nb is the number of measurements over a full scan and ni1 is the first element in the unit vector of the ith measurement.

Because the longitudinal wind evolution is the most important factor for control, and the considered lidars in this work only175

measure at a single plane, the wind evolution between each measurement in a full scan is not considered, which should have

only a marginal effect on our optimization. The auto-spectrum of the lidar-estimated REWS is (Guo et al., 2022a)

SLL(k1) =

Nb∑

i,j=1

3∑

l,m=1

1

N2
b ni1nj1

∫
nilnjmΦlmexp(ik · (xi −xj))φ̂(k ·ni)φ̂(k ·nj)dk⊥, (20)
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where xi denotes the position vector of the lidar measurement, nil stands for the lth element in the unit vector n of the ith

measurement.180

For control purposes, the lidar scanning strategy is considered optimal, if it provides REWS estimates that correlate the best

with the true REWS sensed by the rotor disk. Considering the turbulence evolution from lidar measurement planes to the rotor

plane, the cross-spectrum between uRR and uLL can be expressed as (Guo et al., 2022a)

SRL(k1) =

Nb∑

i=1

3∑

l=1

1

Nbni1

∫
nilΘl1(k,∆ti)φ̂(k ·ni)exp(i(k2xi2 + k3xi3))

2J1(κR)

κR
dk⊥, (21)

where ∆ti denotes the time needed for the turbulence field to travel from a lidar plane to the rotor plane, given a good estimation185

by their longitudinal separation divided by the mean along-wind speed, i.e., ∆ti = |∆xiR|/U .

2.4.3 Rotor-effective wind speed coherence

The wind preview quality can be evaluated by the magnitude squared lidar-rotor REWS coherence (Schlipf, 2016; Simley et al.,

2018)

γ2
RL(k1) =

|SRL(k1)|2
SRR(k1)SLL(k1)

, (22)190

which is a value between 0 and 1. The measurement coherence bandwidth (MCB) is defined as the wave number k0.5 where

γ2
RL drops below 0.5. The corresponding frequency can be calculated by f0.5 = k0.5U/(2π). The larger the MCB, the better

the wind preview quality. Therefore, maximizing the MCB is the goal of lidar trajectory optimization.

To evaluate the lidar wind preview quality, the so-called ‘smallest detectable eddy size’ deddy,min is used by control engineers,

which is the size of the eddies that can still be detectable by the lidar with the 50% coherence assuming turbulence isotropy195

(Schlipf et al., 2018)

deddy,min =
2π

k0.5
. (23)

The smallest detectable eddy size is inversely proportional to the MCB. To have a measure that is independent of the rotor size,

the deddy,min can be normalized by the rotor diameter of the reference wind turbine. A normalized deddy,min close to 1D indicates

a very good lidar for fatigue load reduction, while a value between 1.5D and 2D is satisfying.200

The wind preview quality of the considered lidar configurations is directly calculated for the reference wind turbine in

the frequency domain using Eqs. (18), (20) and (21) instead of using time-domain simulations, which greatly reduces the

computational effort and provides a clear MCB value compared to that estimated from simulated spectra of coherence in time

domain. Then, the controller performance using the optimal lidar is evaluated with time domain aero-elastic simulations using

Mann turbulent wind fields with the same turbulence characteristics.205
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3 Time-domain simulation set-up

3.1 Simulation environment

The time-domain aero-elastic simulations are performed for the IEA 15-MW wind turbine using the open-source tool Open-

FAST (National Renewable Energy Laboratory, 2022), in which a lidar simulator is embedded. Using the latest version of

the OpenFAST lidar simulator (see Guo et al., 2022b, for more details), the probe volume, the turbine nacelle motion, and210

the turbulence evolution are included. The weighting function of the probe volume is given in discrete points as explained in

Section 2.3.

The four-dimensional stochastic turbulence fields are generated by the 4D Mann turbulence generator developed by Guo

et al. (2022a). The turbulence fields have model parameters αε2/3 = 0.2882 m4/3 s−2, L= 49 m and Γ = 3.1, which are

typical of near-neutral atmospheric conditions and corresponding to the IEC class 1B with a turbulence intensity of ≈ 15% at215

the mean wind speed of 18 ms−1. The mean wind field U = (Uref,0,0) at the turbine hub height and a power law shear profile

with a shear exponent of 0.14, i.e., U(z) = Uref

(
z

zHH

)0.14

, is added upon the turbulence boxes, where zHH is the turbine hub

height. The turbulence box has dimensions of 4096×64×64 grid points in the x, y, and z directions, respectively. The grid size

in y and z directions are both 4.5 m to cover the whole rotor disk and the tower in the vertical direction, while the resolution in

the x direction is ∆x= (0.5 s)Uref. All simulations are performed for a single wind speed of Uref = 18 ms−1. The blade, tower220

and generator degree of freedoms (DOFs) are enabled.

Figure 3. Structure of the communication interface between the OpenFAST and the controller dynamic-link library chain.

As illustrated in Figure 3, the turbulent wind acts as a disturbance to the turbine. The turbine-lidar unit delivers lidar radial

velocities and simultaneous turbine signals (generator speed and pitch angle) to the control unit, which then sends control

signals (generator torque and demanded pitch angle) back to the turbine to demand control actions. Therefore, without the

feedforward controller that relies on the wind preview, the feedback controller calculates control demands based on the past225

turbine signals and reacts to the disturbance only after the aerodynamic impact on the turbine’s structure has occurred. The

feedforward controller can utilize the lidar-estimated preview information and assists the feedback controller to react in ad-

vance. Since OpenFAST can only refer to a single dynamic-link library (DLL) as the control unit, a wrapper DLL is configured

to encapsulate and call the lidar data processing, feedforward pitch controller and feedback controller (ROSCO; Abbas et al.
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2022) sequentially in order to exchange signals with OpenFAST (Guo et al., 2023). The three subunits are introduced in the230

following subsections.

3.2 Lidar data processing

The simulated spinner-based lidar completes a full scan in approximately 8 s with a sampling frequency of 4 Hz. Therefore, the

latest 32 measurements are collected to reconstruct the REWS using Eq. (19), and the reconstructed REWS is updated every

0.25 s. In frequency-domain optimization, the beam scanning locations in the circular pattern are assumed to be fixed, while in235

time-domain simulation, the beam scanning locations depend on the rotor azimuth positions and nacelle motions in real-time.

In practice, the REWS estimated from the lidar measurements is not perfectly correlated with the real one sensed by the

rotor. Therefore, a filter needs to be applied to the lidar-estimated REWS before using it for the feedforward controller to avoid

unnecessary and harmful reactions from the pitch actuator. Here, a first-order Butterworth low-pass filter is applied

Gfilter(s) =
ωcutoff

s+ωcutoff
, (24)240

with a cutoff angular frequency ωcutoff = 2πfcutoff = kcutoffUref, which is calculated from the cut-off wavenumber kcutoff where

the theoretical REWS measurement transfer function drops at −3 dB (Schlipf, 2016; Guo et al., 2023) and s is the complex

frequency. The theoretical REWS transfer function is calculated from Eqs. (21) and (20)

GRL =
|SRL(f)|
SLL(f)

. (25)

The low pass filtering usually delays a signal due to the frequency-depending phase shift. For the first-order filter, the consumed245

time Tfilter is approximated by

Tfilter =
arctan(

fdelay

fcutoff
)

2πfdelay
, (26)

where fdelay is the interested frequency (in our case 0.025 Hz), in which the simulated rotor speed spectrum by the feedback-

only control has its highest energy. Therefore, the higher the cutoff frequency, the more useful information is available in the

lidar-estimated REWS signals, and less time is needed for filtering the signal.250

3.3 Feedforward controller

The feedforward controller is designed to stabilize the rotational speed in the changing inflow wind speed by demanding an

additional pitch angle θFF before the disturbance hits the rotor. In this way, the rotor speed acceleration Ω̇ caused by the wind

speed fluctuations can be compensated by the additional pitch angle.

The design of the feedforward controller follows the methodology given in Schlipf (2016) and Guo et al. (2023). Considering255

a reduced wind turbine model with a single rotor rotation DOF:

JΩ̇ =Ma(uRR,Ω,θp)−MG, with Ma =
1

2
ρπR2

cP(λ,θp)

Ω
u3

RR and λ=
ΩR

uRR
, (27)
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where J is the rotor inertia, θp is the blade pitch angle, cP is the turbine power coefficient, λ is the tip speed ratio, Ma is the

aerodynamic torque and MG is the generator torque. The aerodynamic effect on the rotational speed change can be canceled

out if Ma(uRR,Ω,θp) =MG. Therefore, by changing the pitch angle, the aerodynamic torque is adjusted to be close to the rated260

value of the generator torque. The feedforward pitch angle θFF should follow the static pitch curve θFF = θp,ss(u), which can

be obtained by steady-state simulations with a feedback controller and the uniform and constant wind of all speeds between

cut-in and cut-off, as shown in Figure 4. At the cut-in wind speed, the blades have an initial pitch angle. The pitch angle first

decreases to make the best use of the incoming wind, and increases after reaching the rated wind speed of 10.59 ms−1. Thus, a

feedforward pitch rate θ̇FF can be calculated using the derivation of the static pitch curve (see Schlipf, 2016, Chapter 6.1.1 for265

more details), which is delivered to the integrator included in the feedback controller.

Figure 4. Static pitch curve of the bottom-fixed IEA 15-MW wind turbine performed with ROSCO in OpenFAST.

3.4 Feedback controller

The modular Reference Open-Source COntroller (ROSCO) developed by Abbas et al. (2022) for fixed and floating wind

turbines is used as the feedback controller in this work. The feedback controller contains two parts: a torque controller, which

mainly regulates the generator torque MG to maximize the energy yield in below-rated wind speeds and keeps the power steady270

in above-rated wind speeds, and a collective blade pitch controller, which maintains the rated generator speed in the fluctuating

wind by changing the blade pitch angle.

The baseline collective blade pitch controller is achieved by a proportional-integral controller described in Jonkman et al.

(2009). Therefore, the calculated pitch angle is

θFB = kp∆Ω+KI

t∫

0

∆Ω dt, (28)275

where kp is the proportional gain, KI the integral gain, ∆Ω=ΩG,rated −ΩG the difference between the contemporary generator

speed and its rated value, and s the complex frequency. The default values of the feedback controller gains are used in this

study.
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The integral block of the feedback controller uses the feedforward pitch rate θ̇ passed by the feedforward controller. This

gives the total demanded pitch angle θc as280

θc = θFB +

t∫

0

θ̇FF dt. (29)

Then, the pitch actuator moves the blades according to the demanded pitch angle. The pitch actuator is modelled as a second-

order damper system with the cut-off frequency of 1.5708 rad s−1 and the damping ratio of 0.707 (Abbas et al., 2022), so the

pitch actuation takes Tpitch ≈ 0.9 s for frequencies lower than 0.04 Hz for the reference wind turbine.

3.5 Buffer time of REWS signal285

To synchronize the pitch actuation with the REWS interacting with the turbine, the preview signal is usually buffered with a

suitable time Tbuffer. Tbuffer contains the advection time of the wind field from the lidar measurement plane to the rotor plane

Tlead =
∆x
Uref

, the averaging time of the lidar raw measurement (half of a full scan time Tscan), the time consumed by the low-pass

filter Tfilter, and the pitch actuator delay Tpitch (Schlipf, 2016):

Tbuffer = Tlead −
1

2
Tscan −Tfilter −Tpitch. (30)290

To ensure the controllers have enough time to react to the wind disturbance before the wind hits the rotor, Tbuffer has to be larger

than zero. Since Tlead and Tfilter are influenced by the lidar scanning trajectory, Tbuffer > 0 s is a constraint to select the optimal

configuration.

4 Optimization of lidar configuration for wind preview quality

The measurement range along the x-direction and the half-cone opening angle ϕ of the spinner-based single-beam lidar is295

optimized. The focus distance can be calculated from the measurement range by fd = x/cosϕ. The optimization is done in

the frequency domain based on the coherence model given in Section 2.4. The lidar configuration is considered to be optimal

when the highest MCB (also written as k0.5) is achieved. In our optimization, only a single measurement range is considered

for both CW and pulsed lidars.

The optimization is done at a mean wind speed of 18 ms−1. With the same turbulence characteristics, the mean wind speed300

value does not affect much the optimization results, only slightly the general level of wind evolution (Guo et al., 2023). As

shown in Figure 5(a) and (c), both CW and pulsed spinner-based lidars can achieve a maximum k0.5 more than 0.014 m−1 cor-

responding to a deddy,min smaller than 1.87D, while the nacelle-based single-beam lidar achieves only approximately 0.005 m−1

(the single-point measurements provide k0.5 that are almost constant but slightly reduce with further measurement ranges). The

best scanning configurations of CW and pulsed lidars are different, but the best range-opening angle combinations both result305

in a scan radius at approximately 72 m (0.6R) (see Figure 5(b) and (d)). Due to the rotor shaft tilt angle, the lidar scanning

area is at the middle-top part of the rotor plane. Also, the results indicate that the CW lidar gives better REWS coherence

12



Figure 5. Left: optimization of the range x and half-cone opening angle ϕ of the spinner-based lidar based on coherence model. The selected

optimum configurations at a mean wind speed of 18 ms−1 are marked in a red circle. Right: The scanning pattern of the selected optimum

configurations.

when it measures closer to the rotor with a wider angle compared to the pulsed lidar. This is expected since the probe volume

filtering effect becomes more influential for CW lidars the further the measurement range. However, when measuring at 190 m

and ϕ= 21◦ with a CW lidar, the filtered REWS signal has a very short buffer time (0.7 s); this distance will be too close310

for controllers to react if the wind speed is higher than 19 ms−1. Although measuring at 160 m and ϕ= 24◦ with a CW lidar

provides the highest MCB in our optimization, it is not usable due to a negative buffer time. Measuring at 220 m and ϕ= 18◦

with a pulsed lidar gives a buffer time of 1.62 s, and the controller would have enough time to react for a mean wind speed

below 20 ms−1. A larger measurement range should be selected for both types of lidars if the full wind speed range (up to

the wind turbine cut-off wind speed) is considered. When the measurement range increases from the optimum point, the MCB315

could decrease and the low-pass filter will have a lower cut-off frequency and need a longer time to process the lidar measure-
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ment. Therefore, it is essential to estimate the REWS coherence for the selected scanning pattern and design the feedforward

controller accordingly.

Time domain simulations were executed in OpenFAST with the embedded lidar simulator, the optimal configurations of

both lidars given in Figure 5(b)(d), the feedforward-feedback combined controller and 4D Mann turbulence fields with a mean320

wind speed of 18 ms−1. To ensure statistical convergence of 10-min simulations, 21 realizations (seeds) of the same turbulence

fields are used (Liew and Larsen, 2022). The filtered REWS uLL time series is collected, and the real REWS uRR is calculated

from the virtual turbulence fields by averaging the along-wind time series among the rotor swept area. Simulations with similar

set-ups are performed using the nacelle-based lidar. The nacelle-based CW lidar is simulated at a measurement range of 200m

so that the controller has enough time to react to the turbulent wind with a mean wind speed of 18 ms−1 (it takes longer to325

filter the REWS signal estimated from the nacelle-based than the spinner-based lidar due to the low MCB). Figure 6 compares

the REWS coherence and transfer functions from time-domain simulations and those calculated in the frequency domain using

the method presented in Section 2.4. Results of the CW and pulsed types of lidar are shown in the upper and lower panels,

respectively.

Comparing the left plots (spinner-based) with the right plots (nacelle-based) in Figure 6, we see that the coherence in terms330

of the k0.5 has been improved a lot by using the optimized lidar in the spinner. Overall, the simulated REWS coherence fits with

the analytical models, which indicates that the scanning configurations optimized in the frequency domain are also providing

the best wind preview in the time domain. Some noise appears at high frequencies due to the spectra estimation process.

5 Feedforward control benefits

The benefits of using the feedforward pitch controller are evaluated in this section. Time-domain simulations are performed335

using the optimized lidar in the spinner and on the nacelle, respectively, first with the feedback controller only, and then with

the feedforward-feedback combined controller. Simulations in each scenario are executed using turbulence fields with the

same turbulence characteristics for 21 different seeds (Liew and Larsen, 2022). Therefore, for lidar in CW and pulsed systems,

respectively, 2× 2× 21 simulations are carried out. All DOFs of the 15-MW reference wind turbine are enabled and no wave

are simulated. The simulation time is 640 s in total, in which the first 40 s is the transient and excluded from the analysis.340

Then, the spectra of the rotor speed, the tower base bending moment and the blade root bending moment are calculated from

the simulated time series. Here, only results of CW lidars are shown, since similar results are found for pulsed lidars.

The analytical spectrum of the rotor speed using feedforward control is modelled as

SΩΩ = |GΩuLL |2SRR(1− γ2
RL), (31)

where GΩuLL is the closed-loop transfer function from the REWS to the rotor speed, which consists of the linearized wind345

turbine model, the pitch actuator, the control units and the generator torque controller (Schlipf et al., 2015b).

Results are shown in Figure 7, in which the left panels are from spinner-based lidar and the right panels are from the nacelle-

based lidar. The benefits of using feedforward control (FBFF) compared to the feedback-only (FB-only) case are well visible

14



Figure 6. Coherence of the REWS using the optimal single-beam lidar (a)(c) in the spinner and (b)(d) on the nacelle. Upper panel for CW

lidars, lower panel for pulsed lidars. Simulation results are averaged from 21 wind field realizations.
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mainly at low frequencies. This is expected since the low-frequency range is where the lidar wind preview signal correlates

well with the real REWS. In Figure 7(a) and (b), the simulated rotor speed spectra fit well with the analytical one for the350

frequency range below 0.2 Hz (below the 1P of the turbine). Significant reductions of the rotor speed variations are achieved

using the spinner-based configuration compared to the nacelle-based one. Furthermore, within the low-frequency range, higher

load reductions on the tower-base fore-aft (below 0.07 Hz) and blade-root flap-wise directions (below 0.1 Hz) can be seen

using the spinner-based lidar.

The standard deviation of the rotor speed and the fatigue loads, i.e., damage equivalent loads (DELs) of the tower-base355

and blade-root bending moments are calculated from the time series. To estimate the DELs, the rain flow counting method

introduced by Matsuichi and Endo (1968) is applied. The DELs are based on a reference number of cycles of 2× 106 and a

turbine lifetime of 20 years. Wöhler exponents of 4 and 10 are used for the tower-base fore-aft and blade-root flap-wise bending

moments, respectively (Schlipf, 2016). Statistically, by using FBFF with the single-beam CW lidar in the spinner instead of

on the nacelle, the reduction of the mean rotor speed standard deviation is improved from 13.8% to 47.4%, and the reduction360

of the tower-base fore-aft bending moment DEL increases from 1.0% to 4.3%. The strategy also brings 3.1% reduction to the

blade-root flap-wise moment DEL. Since the default feedback controller parameters are adopted, the DEL reductions can be

further improved by optimizing the controller gains (Schlipf et al., 2018).

Similar results and trends are seen from the simulations using the pulsed lidar, which are summarized in Table 1. We have

also optimized the scanning pattern of a 4-beam CW nacelle lidar, which provides a MCB around 0.011 m−1 measuring at365

220 m with ϕ= 15◦. The optimized 4-beam nacelle lidar is applied and simulated with 21 realizations of the same turbulence

fields. Results in Table 1 show that the control benefits gained using the spinner-based single-beam lidar are larger than those

we can achieve using the same lidar on the nacelle, and that the benefits using a spinner-beam single-lidar are of a similar level

to those using a 4-beam system.

reductions spinner (CW) nacelle (CW) spinner (pulsed) nacelle (pulsed) 4-beam nacelle (CW)

rotor speed standard deviation -47.4% -13.8% -44.0% -14.1% -44.6%

tower-base fore-aft DEL -4.3% -1.0% -4.1% -1.1% -4.3%

blade-root flap-wise DEL -3.1% 0.4% -2.7% 0.2% -2.9%
Table 1. Control benefits of feedforward-feedback combined controllers relative to using feedback-only controllers for: a single-beam lidar

in the spinner and on the nacelle both using a CW and a pulsed system, and a 4-beam CW lidar on the nacelle at a mean wind speed of

18 ms−1.

6 Discussions370

The goal of this study is to demonstrate that a single-beam lidar mounted in the spinner brings much more benefit of feedfor-

ward control compared to the single-beam lidar based on the nacelle. The study optimizes the lidar scanning configurations for
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Figure 7. Spectra of the rotor speed (RotSpeed), tower-base fore-aft (TwBsMyt) and blade-root flap-wise bending moments (RootMyc1)

with feedback-only and the feedforward-feedback combined controller using the optimal single-beam CW lidar (a)(c)(e) in the spinner and

(b)(d)(f) on the nacelle at a mean wind speed of 18 ms−1. Simulation results are averaged from 21 wind field realizations. Some relevant

structural frequencies are marked.
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the best wind preview quality considering the longitudinal wind evolution in the wind field. The optimum configurations for

both CW and pulsed lidars are selected for a mean wind speed of 18 ms−1.

The strength of wind evolution is one of the factors that affect the optimal lidar scanning strategy. Other factors include375

the number and the location of measurements, the turbulence spectra, and the severity of contamination by the transverse

velocity components, which is affected by the lidar beam directions (Guo et al., 2022a). The smaller the beam opening angle,

the smaller the contribution of the transverse velocity components to the radial velocity. To reveal the impact of turbulence

evolution, Figure 8 shows the optimization results of the CW and pulsed lidars if the evolution is neglected. The maximum

achievable MCBs of both lidars are overestimated, compared to those shown in Figure 5. In addition, for the CW lidar, assuming380

frozen turbulence does not change the shape of the MCB curve. This is expected because the probe volume of a CW lidar

increases quadratically with the focus distance, which plays a more important role in determining the MCBs than the turbulence

evolution. As for the pulsed lidar whose probe volume does not change with the measurement range, the highest MCB is

reached with a different configuration compared to the one in Figure 5. The new optimum configuration has a smaller opening

angle ϕ= 15◦ and a further measurement distance at x= 270 m due to the disregard of wind evolution. The resulting lidar scan385

radius remains at ≈ 0.6R. Owing to the rotor shaft tilt angle, measuring too far away from the rotor causes the lidar scanning

area to be easily out of the rotor swept area. Therefore, the MCB decreases from the optimum point when the lidar measures

at x= 270 m with a wider opening angle or with ϕ= 15◦ at a further measurement distance. In summary, it is essential to

consider wind evolution for the optimization of lidar scanning configuration and for the estimation of a realistic MCB.

Figure 8. Optimization of the range x and half-cone opening angle ϕ of the spinner-based lidar when wind evolution is neglected.

As mentioned in Section 4, for higher wind speeds, larger measurement ranges are needed for both CW and pulsed lidars so390

that the controllers have enough time to react to the wind disturbance. Further work needs to be done with the full wind speed

range to decide the best scanning configuration of the single-beam lidar in the spinner. Also, the controller performances can
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be influenced by turbulence conditions. Only neutral atmospheric stability is considered in this work. Guo et al. (2023) showed

that the control benefit is at its highest in unstable, middle in neutral, and lowest in stable turbulence conditions.

7 Conclusion and Outlook395

A single-beam Doppler lidar is flexible and low in cost. Using the single-beam lidar in the spinner, the lidar can rotate with

the rotor at an almost steady rotational speed in the turbine’s above-rated operations and scans a good portion of the inflow to

the rotor disk. Also, the spinner-based lidar can have an impeded view of the inflow without periodic blockage by the running

blades, which improves the lidar data availability.

Based on a coherence model of the lidar-rotor REWS using 4D Mann turbulence model, this work optimizes the measure-400

ment range and the half-cone opening angle of the spinner-mounted single-beam lidar based on a CW and a pulsed system,

respectively, at a single wind speed of 18 ms−1 for the bottom-fixed IEA 15-MW wind turbine. The optimum configurations

of the two types of lidars are different due to the spatial averaging effect of their probe volumes, but they both result in a scan

radius of approximately 0.6 of the turbine radius. The optimum configurations of both types of lidars give a MCB of around

0.014 m−1, which corresponds to the smallest detectable eddy size of 1.87D. Large lidar measurement ranges are needed to405

ensure the turbine controllers have enough time to react to the wind disturbance over the full wind speed range, which slightly

reduces the MCB.

Using time-domain simulations and 4D Mann turbulence wind fields in the neutral condition, the benefits of regulating rotor

speed variation and reducing fatigue loads on the tower and blades using the feedforward controller and the spinner-based

single-beam lidar are evaluated for the reference turbine at a single wind speed of 18 ms−1. Results are compared against a410

single-beam and a 4-beam nacelle-based lidar. The control benefits using the optimized spinner-based configurations of both

CW and pulsed lidars are much higher than the single-beam nacelle lidar, and they are on a similar level to the 4-beam nacelle

lidar.

For future work, full wind speed ranges up to the wind turbine cut-off wind speed should be considered to select the optimum

scanning trajectory of the spinner-based single-beam lidar for the IEA 15-MW wind turbine. The pulsed lidar could potentially415

deliver a better wind preview signal than the one shown in this work when measurements at multiple range gates are combined.

In addition, more reductions in fatigue loads could be achieved by optimizing the parameters of the feedback controller. In the

future, more than one single-beam lidar can be used in the spinner to add redundancy to the system, meanwhile, having the

possibility to achieve a shorter full scan time or multi-plane measurements even with a CW lidar system.

Code availability. The 4D Mann turbulence generator is accessible via https://github.com/MSCA-LIKE/4D-Mann-Turbulence-Generator.420

The source code of the ROSCO controller can be found by https://github.com/NREL/ROSCO, version 2.6.0. The source code and compiled

DLLs for the ROSCO feedback controller, the lidar data processing and a collective pitch feedforward controller, and a wrapper DLL are

accessible via https://github.com/MSCA-LIKE/Baseline-Lidar-assisted-Controller.

19



Author contributions. All authors participated in the conceptualization and design of the work. FG and WF derived the REWS coherence

model. DS and WF designed the lidar-data-processing unit for the spinner-based lidar and did load characterization. WF did lidar optimiza-425

tions, performed time-domain simulations and wrote the manuscript. All authors supported the whole analysis and reviewed and edited the

manuscript.

Competing interests.

Acknowledgements. This study is funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-

Curie grant agreement No. 858358 (LIKE – Lidar Knowledge Europe, H2020-MSCA-ITN-2019). The authors would like to thank Prof. Jakob430

Mann for the discussion on the modeling of wind evolution and REWS spectra.

20



References

Abbas, N. J., Zalkind, D. S., Pao, L., and Wright, A.: A reference open-source controller for fixed and floating offshore wind turbines, Wind

Energy Science, 7, 53–73, https://doi.org/10.5194/wes-7-53-2022, 2022.

Bossanyi, E. A., Kumar, A., and Hugues-Salas, O.: Wind turbine control applications of turbine-mounted LIDAR, Journal of Physics:435

Conference Series, 555, 012 011, https://doi.org/10.1088/1742-6596/555/1/012011, 2012.

Canet, H., Loew, S., and Bottasso, C. L.: What are the benefits of lidar-assisted control in the design of a wind turbine?, Wind Energy Science,

6, 1325–1340, https://doi.org/10.5194/wes-6-1325-2021, 2021.

Cariou, J.-P.: Pulsed lidar, in: Remote Sensing for Wind Energy, chap. 5, pp. 104–121, DTU Wind Energy-E-Report-0029(EN), 2013.

Fu, W., Peña, A., and Mann, J.: Turbulence statistics from three different nacelle lidars, Wind Energy Science, 7, 831–848,440

https://doi.org/10.5194/wes-7-831-2022, 2022.

Guo, F., Mann, J., Peña, A., Schlipf, D., and Cheng, P. W.: The space-time structure of turbulence for lidar-assisted wind turbine control,

Renewable Energy, 195, 293–310, https://doi.org/10.1016/J.RENENE.2022.05.133, 2022a.

Guo, F., Schlipf, D., Zhu, H., Platt, A., Cheng, P. W., and Thomas, F.: Updates on the OpenFAST Lidar Simulator, Journal of Physics:

Conference Series, 2265, 042 030, https://doi.org/10.1088/1742-6596/2265/4/042030, 2022b.445

Guo, F., Schlipf, D., and Cheng, P. W.: Evaluation of lidar-assisted wind turbine control under various turbulence characteristics, Wind

Energy Science, 8, 149–171, https://doi.org/10.5194/wes-8-149-2023, 2023.

Harris, M., Hand, M., and Wright, A.: Lidar for Turbine Control: March 1, 2005 - November 30, 2005, Tech. rep.,

https://doi.org/10.2172/881478, 2006a.

Harris, M., Hand, M., and Wright, A.: Lidar for turbine control, National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-450

500-39154, https://www.nrel.gov/docs/fy06osti/39154.pdf, 2006b.

Held, D. P. and Mann, J.: Comparison of methods to derive radial wind speed from a continuous-wave coherent lidar Doppler spectrum,

Atmospheric Measurement Techniques, 11, 6339–6350, https://doi.org/10.5194/amt-11-6339-2018, 2018.

Held, D. P. and Mann, J.: Lidar estimation of rotor-effective wind speed - An experimental comparison, Wind Energy Science, 4, 421–438,

2019.455

IEC: IEC 61400-1. Wind turbines – Part 1: design guidelines, International standard, International Electrotechnical Commission, Geneva,

Switzerland, https://standards.iteh.ai/catalog/standards/sist/3454e370-7ef2-468e-a074-7a5c1c6cb693/iec-61400-1-2019, 2019.

Jonkman, J., Butterfield, S., Musial, W., and Scott, G.: Definition of a 5-MW Reference Wind Turbine for Offshore System Development,

https://doi.org/10.2172/947422, 2009.

Kumar, A., Bossanyi, E., Scholbrock, A., Fleming, P., Boquet, M., and Krishnamurthy, R.: Field Testing of LIDAR Assisted Feedforward460

Control Algorithms for Improved Speed Control and Fatigue Load Reduction on a 600 kW Wind Turbine, in: European Wind Energy As-

sociation Annual Event, Paris, https://www.researchgate.net/publication/305637934_Field_Testing_of_LIDAR_Assisted_Feedforward_

Control_Algorithms_for_Improved_Speed_Control_and_Fatigue_Load_Reduction_on_a_600_kW_Wind_Turbine, 2015.

Liew, J. and Larsen, G. C.: How does the quantity, resolution, and scaling of turbulence boxes affect aeroelastic simulation convergence?,

Journal of Physics: Conference Series, 2265, https://doi.org/10.1088/1742-6596/2265/3/032049, 2022.465

Mann, J.: The spatial structure of neutral atmospheric surface-layer turbulence, Journal of Fluid Mechanics, 273, 141–168,

https://doi.org/10.1017/S0022112094001886, 1994.

21



Matsuichi, M. and Endo, T.: Fatigue of metals subjected to varying stress, https://www.semanticscholar.org/paper/

Fatigue-of-metals-subjected-to-varying-stress-Matsuichi-Endo/467c88ec1feaa61400ab05fbe8b9f69046e59260, 1968.

Mikkelsen, T., Angelou, N., Hansen, K., Sjöholm, M., Harris, M., Slinger, C., Hadley, P., Scullion, R., Ellis, G., and Vives, G.: A spinner-470

integrated wind lidar for enhanced wind turbine control, Wind Energy, 16, 625–643, https://doi.org/10.1002/WE.1564, 2013.

National Renewable Energy Laboratory: Definition of the IEA Wind 15-Megawatt Offshore Reference Wind Turbine, Tech. rep., IEA Wind

TCP Task 37, https://www.nrel.gov/docs/fy20osti/75698.pdf, 2020.

National Renewable Energy Laboratory: OpenFAST Documentation, https://openfast.readthedocs.io/en/main/, 2022.

Peña, A., Floors, R., Sathe, A., Gryning, S. E., Wagner, R., Courtney, M. S., Larsén, X. G., Hahmann, A. N., and Hasager,475

C. B.: Ten Years of Boundary-Layer and Wind-Power Meteorology at Høvsøre, Denmark, Boundary-Layer Meteorology, 158, 1–26,

https://doi.org/10.1007/s10546-015-0079-8, 2016.

Schlipf, D.: Lidar-Assisted Control Concepts for Wind Turbines, Ph.D. thesis, https://doi.org/10.18419/opus-8796, 2016.

Schlipf, D., Fleming, P., Haizmann, F., Scholbrock, A., Hofsäß, M., Wright, A., and Cheng, P. W.: Field testing of feedforward

collective pitch control on the CART2 using a nacelle-based lidar scanner, Journal of Physics: Conference Series, 555, 012 090,480

https://doi.org/10.1088/1742-6596/555/1/012090, 2014.

Schlipf, D., Haizmann, F., Cosack, N., Siebers, T., and Cheng, P. W.: Detection of wind evolution and lidar trajectory optimization for

lidar-assisted wind turbine control, Meteorologische Zeitschrift, 24, 565–579, 2015a.

Schlipf, D., Simley, E., Lemmer, F., Pao, L., and Cheng, P. W.: Collective Pitch Feedforward Control of Floating Wind Turbines Using Lidar,

Journal of Ocean and Wind Energy, 2, https://doi.org/10.17736/jowe.2015.arr04, 2015b.485

Schlipf, D., Fürst, H., Raach, S., and Haizmann, F.: Systems Engineering for Lidar-Assisted Control: A Sequential Approach, Journal of

Physics: Conference Series, 1102, 012 014, https://doi.org/10.1088/1742-6596/1102/1/012014, 2018.

Scholbrock, A., Fleming, P., Fingersh, L., Wright, A., Schlipf, D., Haizmann, F., and Belen, F.: Field testing LIDAR-based feed-forward

controls on the NREL controls advanced research turbine, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum

and Aerospace Exposition 2013, https://doi.org/10.2514/6.2013-818, 2013.490

Scholbrock, A., Fleming, P., Wright, A., Slinger, C., Medley, J., and Harris, M.: Field test results from lidar measured yaw control for

improved yaw alignment with the NREL controls advanced research turbine, Tech. rep., https://www.nrel.gov/docs/fy15osti/63202.pdf,

2015.

Simley, E., Pao, L. Y., Frehlich, R., Jonkman, B., and Kelley, N.: Analysis of light detection and ranging wind speed measurements for wind

turbine control, Wind Energy, 17, 413–433, https://doi.org/10.1002/WE.1584, 2014.495

Simley, E., Fürst, H., Haizmann, F., and Schlipf, D.: Optimizing lidars for wind turbine control applications-Results from the IEA Wind Task

32 workshop, Remote Sensing, 10, https://doi.org/10.3390/rs10060863, 2018.

Sonnenschein, C. M. and Horrigan, F. A.: Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,

Applied Optics, 10, 1600–1604, https://doi.org/10.1364/AO.10.001600, 1971.

Taylor, G. I.: The spectrum of turbulence, Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 164,500

476–490, https://doi.org/10.1098/rspa.1938.0032, 1938.

Venditti, B.: Animation: The World’s Biggest Wind Turbines, https://www.visualcapitalist.com/

visualizing-the-worlds-biggest-wind-turbines/, 2022.

22



Scientific manuscripts

A.5 Impact of the lidar-measured ambient flow turbulence inten-
sity on the wake losses

Fu, W., Peña, A., Mann, J., and Young, T.: Impact of the lidar-measured ambient flow turbu-
lence intensity on the wake losses.

This manuscript is under preparation.

119



Impact of the lidar-measured ambient flow turbulence intensity on
the wake losses
Wei Fu1, Alfredo Peña1, Jakob Mann1, and Tom Young2

1Department of Wind and Energy Systems, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
2Renewable Energy Systems, Third Floor STV, Pacific Quay, Glasgow G51 1PQ, UK

Correspondence: Wei Fu (weif@dtu.dk)

Abstract. The power outputs of a pair of wind turbines inside an inland wind farm are analyzed. The power deficits are

studied in different ambient turbulence intensity levels, which are measured by a single-beam nacelle lidar on the upstream

wind turbine. Results show a clear trend that the power deficit decreases with increasing ambient turbulence intensity, which

indicates that the wake recovers faster when the ambient flow is more turbulent. Furthermore, we attempt to estimate the

turbulence length scale and dissipation rate from the radial velocity spectra of the single-beam lidar, and study the impact of5

length scale and dissipation rate on the wake losses. This part of work is still in progress. Overall, this work demonstrates the

potential of using a single-beam nacelle lidar for wake studies.

1 Introduction

As a wind turbine extract kinetic energy from the incoming wind, the flow behind the rotor is characterized to have a reduced

wind speed and a more complex turbulence structure, which gradually recovers with the downwind distance (Aitken et al.,10

2014). Previous studies showed that the ambient turbulence intensity and atmospheric stability conditions, the later ones are

usually classified based on the turbulence length scale, have evident effects on the wake behavior (Maeda et al., 2011; Troldborg

et al., 2011; Hansen et al., 2012; Breton et al., 2014; Peña et al., 2014). Particularly, it was found that the velocity deficit in

the wind turbine wakes recovers faster when the turbulence intensity of the ambient flow is higher (Wu and Porté-Agel, 2012;

Troldborg et al., 2011). This effect has a direct impact on the power production of the downstream wind turbine. By analyzing15

measurements in the Horns Rev offshore wind farm, Hansen et al. (2012) showed that the maximum power deficit of two

turbines decreases from 0.5 to less than 0.4 when turbulence intensity increases from 4% to 12%. Those studies highlighted

the importance of characterizing atmospheric turbulence of the ambient flow for estimating wind turbine wake losses.

Coherent Doppler lidars measure the wind velocity by detecting the dominant Doppler shift between the emitted coherence

light beam and the signals backscattered from the aerosols in the atmosphere. Now lidar is a cost-effective alternative to20

meteorological masts and sometimes is the only option to access the wind resources around wind turbines and wind farms,

especially in offshore conditions. Lidars mounted on the wind turbine nacelle (hereafter nacelle lidars) have the advantage that

they yaw with the wind turbines and always track the inflow. Thus, they can potentially better measure the flow that interacts

with the wind turbine than mast-mounted anemometers.
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Due to the probe volume, lidar radial velocities are the weighted average of wind velocities sampled along the beam. The25

probe volume acts like a low-pass filter, and the high-frequency wind fluctuations cannot be fully detected by lidars. Thus,

the second-order statistics derived from the radial velocities are attenuated and called the ‘filtered’ variances. The Doppler

radial velocity spectrum, which is the raw lidar data and represents the distribution of wind velocities sampled in the probe

volume, can be used to compensate for the spatial averaging effect and to estimate the ‘unfiltered’ second-order statistics,

which approximate those measured by a sonic anemometer (Mann et al., 2010; Branlard et al., 2013). The degree of turbulence30

attenuation, i.e., the ratio of the ‘filtered’ to ‘unfiltered’ second-order statistics, varies with the size of the probe volume relative

to the turbulence length scale Mann et al. (2010).

By using the Doppler spectrum, nacelle lidars in different configurations were shown to be able to accurately measure

turbulence statistics of homogeneous flow (Peña et al., 2017, 2019; Fu et al., 2022a, b), among which a single-beam lidar

operating in the staring mode is the simplest measurement configuration. Being the first field test of a nacelle-based lidar,35

Harris et al. (2006) presented that a single-beam continuous-wave (CW) lidar measuring horizontally can detect the along-

wind fluctuations. Fu et al. (2022b) showed that the same single-beam nacelle lidar is able to measure the along-wind variance

as well as a mast-mounted sonic anemometer. In addition, the single-beam lidar was used to understand the probe volume

averaging effect through its radial velocity spectrum (Sjöholm et al., 2009).

For the first time, measurements of a single-beam CW nacelle lidar are analyzed for wake studies. In this work, the lidar40

scans the flow on the upstream wind turbine in an inland wind farm. We study the relations of the lidar-measured ambient

turbulence intensity with the power deficit of the downstream wind turbine. Also, we try to estimate the turbulence length

scale and dissipation rate from the single-beam lidar measurements and relate them with the power deficit. The turbulence

kinetic energy dissipation rate indicates the strength of turbulence and acts as a scaling factor on the turbulence intensity. It

also describes the rate of energy transfer into small eddies in the inertial subrange and thus influences the wake mixing with45

the ambient flow. Banakh et al. (1999) estimated the dissipation rate using the width of the Doppler spectrum. But the method

can be used only when the lidar probe volume is much smaller than the length scale. The dissipation rate can also be estimated

using the radial velocity structure function (Banakh et al., 1999), which needs two-point statistics and this cannot be obtained

from the single-beam lidar. In this work, the turbulence length scale and dissipation rate are estimated using the lidar radial

velocity spectrum. One method estimates the length scale based on the ratio of the ‘filtered’ to ‘unfiltered’ radial velocity50

variance and then computes the dissipation rate by fitting the theoretical spectrum described by the Mann turbulence spectral

model (Mann, 1994) to the measured one. The other method estimates the length scale and dissipation rate simultaneously by

fitting the model to the measured spectrum. This part of study is still in progress.

This paper is organized as follows. Section 2 introduces turbulence background, the modelling of lidar radial velocity spec-

trum, the methods to estimate radial velocity variances, turbulence length scale and dissipation rate. Section 3 describes the55

test site and used datasets. Section 4 studies the impact of the ambient turbulence intensity on the wake shape. Section 5 shows

the estimation of the turbulence length scale and dissipation rate. Some shortcomings and possible future work of the study are

discussed in Section 6. Section 7 concludes the work.
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2 Methodology

2.1 Turbulence background60

The three-dimensional wind field can be represented by the vector field u(x) = (u,v,w) = (u1,u2,u3), where the position

vector x= (x,y,z) is defined in a right-handed Cartesian coordinate system, and u,v,w are the along-wind, lateral and vertical

component, respectively. Assuming Taylor’s frozen hypothesis (Taylor, 1938), the fluctuating part of the homogeneous wind

field is time-independent and is transferred by the mean wind speed U = ⟨u(x,0,0)⟩= (U,0,0). The mean wind direction is

along the x-axis. The wind field can also be written in the wave-number domain as a Fourier integral,65

u(k) =
1

(2π)3

∫
u(x)exp(−ik ·x)dx, (1)

where k = (k1,k2,k3) is the wave vector. For the homogeneous wind field, the ensemble-averaged absolute squared Fourier

coefficients form the three-dimensional spectral tensor Φij(k):

⟨u∗
i (k)uj(k

′)⟩=Φij(k)δ(k−k′), (2)

where δ(.) is the Dirac delta function, * denotes complex conjugate, and i, j = 1,2,3 implies the three velocity components. We70

assume that the spectral velocity tensor Φij(k) is described by the Mann turbulence model (Mann, 1994), which contains three

tunable model parameters: αε2/3 is the multiplication of the spectral Kolmogorov constant and the turbulent kinetic energy

dissipation rate ε to its two-third power, L is the length scale describing the size of the most energetic eddies, and Γ describes

the turbulence anisotropy.

The one-point spectra of the velocity components can be calculated from the spectral tensor by75

Fij(k1) =

∫∫
Φij(k)dk2dk3. (3)

Thus, the auto-spectrum of the along-wind component is Fu = F11. The along-wind variance is calculated as the integral of

the auto-spectrum

σ2
u =

∞∫

−∞

Fu(k1)dk1, (4)

The turbulence intensity (TI) can be calculated from the standard deviation of the along-wind component σu and the mean80

wind, i.e., σu/U .

2.2 Theoretical lidar radial velocity spectrum

The radial velocity measured by lidar is the convolution of the lidar weighting function that approximates the probe volume

and the wind components projected in the beam direction (Sjöholm et al., 2009)

vr(n,fd) =

∞∫

−∞

φ(s)n ·u[n(fd + s)]ds, (5)85
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where n is the beam unit vector, fd is the beam’s focus distance, φ(s) is the weighting function and s is the distance to the

beam focus in the radial direction. Equation (5) assumes that the radial velocity is estimated from the Doppler spectrum by

the center of gravity (centroid) method. Another method to estimate the radial velocity is the median method (Held and Mann,

2018), which uses the Doppler spectrum as a probability distribution of the radial velocities and finds the frequency bin that

corresponds to the median value.90

The beam unit vector for a single-beam nacelle lidar that aligns with mean wind direction is

n= (n1,n2,n3) = (−1,0,0), (6)

in which n1 is negative since the beam is pointing upwind. The weighting function of a CW lidar is approximated by a

Lorentzian function (Sonnenschein and Horrigan, 1971; Sjöholm et al., 2009)

φ(s) =
1

π

zR

z2R + s2
, (7)95

where zR is the Rayleigh length (half of the full-width half maximum of the distribution). At a given focus distance, the

Rayleigh length can be estimated by the laser wavelength λ and the transmitted beam radius at the output lens rb

zR =
λf2

d

πr2b
, (8)

The spectrum of radial velocity measured by a lidar beam is expressed as (Mann et al., 2009)

Fvr(k1) = ninj

∫∫
|φ̂(k ·n)|2Φij(k)dk2dk3, (9)100

where φ̂ is the Fourier transform of the lidar weighting function. For a CW lidar, the Fourier transform of Eq. (7) is approxi-

mated by

φ̂(k ·n) = exp(−|k ·n|zR). (10)

From Eq. (9), the theoretical radial velocity variance of a CW lidar is calculated as

σ2
vr
=

∞∫

−∞

Fvr(k1)dk1. (11)105

If the lidar probe volume can be fully circumvented and the single-beam nacelle lidar is well aligned with the mean wind,

the ‘unfiltered’ radial velocity variance is equal to the along-wind variance, i.e., σ2
vr,unf = σ2

u. With the impact of the probe

volume, the ‘filtered’ radial velocity variance is smaller than the along-wind variance, i.e., σ2
vr,f < σ2

u. Based on the Mann

turbulence model, Fig. 1 shows the along-wind spectrum, the radial velocity spectrum and the ratio σ2
vr,f/σ

2
u using different

model parameters. The frequency can be transferred from the wave number by f = k1U/(2π). The turbulence attenuation110

in the lidar spectrum can be clearly seen in the high-frequency range. The amount of variance attenuation (1−σ2
vr,f/σ

2
u) is

inversely proportional to L and Γ. The dissipation rate acts like a scaling factor to both the lidar radial and the along-wind

spectra, which does not influence the amount of attenuation. Therefore, if the value of Γ is known or assumed, the σ2
vr,f/σ

2
u is

a function of L.
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Figure 1. Influence of Mann parameters on the shape of the along-wind spectrum (dashed lines), the radial velocity spectrum (solid lines),

and the ratio of lidar-measured to the true along-wind variance. (a) black: Γ = 3, red: Γ = 4. (b) black: L= 40 m, green: L= 100 m, (c)

black: αε2/3 = 0.5 m4/3s−2, blue: αε2/3 = 1 m4/3s−2. Black curves in (a)-(c) are the same. The lidar probe volume size is fixed.

2.3 Estimation of the filtered and unfiltered radial velocity variance115

As shown in Held and Mann (2018) and Fu et al. (2022a), the radial velocity variances computed from the time series of the

median- or centroid-derived radial velocity are ‘filtered’ because none of these methods considers the whole Doppler spectrum.

The centroid-derived variance is more affected by the probe volume than the median one.

The ensemble-averaged Doppler spectrum can be used to account for the spatial averaging effect and provides the ‘unfil-

tered’ radial velocity variance. Assuming that all velocity fluctuations detected in the lidar probe volume are contributed by120

turbulence, the mean of the Doppler spectra p(vr) accumulated in a period can be seen as a probability density function, where

the ‘unfiltered’ radial velocity variance is estimated as the second-order central statistical moment

σ2
vr,unf =

∞∫

−∞

(vr −µvr)
2p(vr)dvr, (12)

in which µvr is the mean radial velocity

µvr =

∞∫

−∞

vrp(vr)dvr. (13)125

In practice, the ensemble-averaged Doppler spectrum can be computed as the mean of the area-normalized Doppler spectra

within a given time period (Fu et al., 2022a). The accurate estimation of the ‘unfiltered’ variance relies on ‘clean’ Doppler

spectra, in which the noise and contamination due to reflections of hard targets, moving objectives, etc., are removed. The

noise and contamination also affect the estimation of radial velocities. Therefore, the Doppler spectra are carefully filtered and

processed to eliminate the noise and contamination as much as possible before being used to estimate the ‘unfiltered’ variance130

and the radial velocity spectrum, which is described in Section 5.
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2.4 Estimation of turbulence length scale and dissipation rate

Two methods are used to estimate the turbulence length scale and the dissipation rate from the single-beam nacelle lidar

measurements. Both methods assume that the turbulence anisotropy is constant, i.e., Γ = 3.5.

Assuming that the ‘unfiltered’ radial velocity variance of the single-beam nacelle lidar is the along-wind variance as it is135

measured by a sonic anemometer, the first method estimates the turbulence length scale Lest by interpolating the measured ratio

σ2
vr,f/σ

2
vr,unf from the theoretical ones, which is pre-computed based on the Mann model using Γ = 3.5 and different values of

L, as shown in Fig. 2. For computing the theoretical ratio, the integrals in Eq. (4) and Eq.(11) were discretized and truncated

by k1,min = 10−3 m−1 and k1,max = 10 m−1 in order to match the length of the analyzed lidar measurements (in periods of 30

min). Then, the theoretical radial velocity spectrum Fvr(k1;Γ = 3.5,L= Lest,αϵ
2/3) is fitted to the measured radial velocity140

spectrum to obtain αϵ2/3. The second method estimates L and αϵ2/3 simultaneously by fitting the theoretical radial velocity

spectrum Fvr(k1;Γ = 3.5,L,αϵ2/3) to the measured one without considering the ratio σ2
vr,f/σ

2
vr,unf. Both fittings minimize the

sum of the squared residuals between the estimated theoretical spectrum and the measured one in the wave number range of

k1,min = 10−2 m−1 and k1,max = 1 m−1.

Figure 2. The theoretical ratio of ‘filtered’ radial velocity variance to the along-wind variance computed from the Mann model with different

turbulence length scales and anisotropy. We assume Γ = 3.5 in the study.

3 Site and measurements145

The measurements used in this work were collected in an anonymous inland wind farm from 30 September 2021 to 20 Decem-

ber 2022. There is no coast nearby the wind farm. The dominant wind direction is southwest. The wind turbines in the wind

farm, marked in Figure 3, have a rotor diameter D of 62 m, a hub height of 49 m, and a rated power of 1.3 MW. This study fo-

cuses on the wake effect from T3 (upstream wind turbine, marked in green) on the power deficit of the T10 (downstream wind
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turbine, marked in red). The 10-min mean active power outputs of the two wind turbines are recorded in the supervisory control150

and data acquisition (SCADA). The SCADA data also contains 10-min averaged wind speeds measured by a cup anemometer

on the nacelle of T3, both wind turbines’ yaw angle (relative to the north) and the yaw error, and the turbines’ status indicating

if they are spinning and generating power. For measurements before 23 August 2022, we applied the yaw angle correction of

−7.5◦ (northing offset) for T3.

Figure 3. Layout of the wind farm, in which the coordinates of wind turbines are relative to the location of T3 wind turbine. The study

focuses on the T3 wake effect on the T10 turbine.

On the nacelle of T3, a single-beam CW lidar measures the flow horizontally in a staring mode. The measurement range is155

80 m, at which the lidar Rayleigh length is 18.02 m. The lidar system streams out Doppler spectra at a rate of 48.8 Hz. Each

Doppler spectrum is represented in 256 frequency bins corresponding to a radial velocity resolution of 0.1528 m s−1. The

system also reports high-frequency wind data at 10 Hz, which contains the radial velocities derived using the median method,

the turbulence intensity (TI), the spectra-averaged turbulence intensity (SATI, a sonic-equivalent measure of TI), the spectral

spreads (the width of the spectrum indicating the amount of turbulence or flow complexity within the probe volume), and the160

backscatter (a measure of lidar signal-to-noise ratio).

4 Impact of the ambient turbulence intensity on the wake losses

We first study the relations between the lidar-estimated ambient TI and the wake shape, which is represented by the power

deficit in different wind directions. Figure 4 shows the ratio of the 10-min mean active power of T10 to T3 over the wind

direction, which is the sum of the 10-min averaged T3 yaw position and its yaw error. The following filtering criteria are165

applied to select 10-min periods for the analysis

– T3 and T10 are both generating power. To study the wake effect, we select time periods when T3 active power is between

0.2 - 1 MW (14514 10-min periods left).
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– T3 yaw error is below 5◦ and the difference between T3- and T10-measured wind directions is below 10◦ (10644 10-min

periods left).170

– In addition, we dropped some consecutive days to remove the outliers of the T10/T3 power ratio (10458 10-min periods

left).

Figure 4. The ratio of the 10-min mean active power of T10 to T3 over wind directions, which is the sum of T3 yaw position and yaw error.

The total number of points is 10458. Wind sectors used for analysis are shadowed in a grey square.

The dashed vertical lines in Fig. 4 mark four of the wind directions, in which T3 or T10 can be affected by the surrounding

turbines. The legend of the figure gives the distance and directions between two turbines calculated from the turbine coordi-

nates. When T3 is in free stream and T10 is only shadowed by the wake of T3, we see the power reduction of T10 in wind175

directions of 240◦ − 266◦ in Fig. 4, where the points form a U shape and its bottom is at the T3-T10 direction. When both

T3 and T10 are in the free stream, their power ratio is close to but slightly above 1, as can be seen in wind directions of

210◦ − 240◦. When the wind direction is around 280◦, we see a peak in the figure because T3 is shadowed by the wake from

T2. T3 can also be affected by the wake from T6 when the wind comes from 152◦. We can roughly see a U shape around 203◦

due to the impact of T6 on the T10 but blended with the points that have a power ratio around 1. This is probably because T6180

was offline for quite some months in 2022. Our main interest is the wind sectors where T3 is in free stream and T10 is only

affected by the wake of T3. We apply further filtering criteria to select 10-min periods:

– Assuming the wake expands horizontally within 20◦, we use the samples in wind directions of 226.9◦−262.3◦, as marked

in a grey square in Fig. 4. The nacelle lidar should be concurrently operating. This leaves us 2042 10-min periods.

– To eliminate the impact of the wind turbine thrust coefficient on the wake shape, we use the time periods, when the wind185

speed measured by the cup anemometer on the T3 nacelle is between 7− 10 ms−1. We have 1170 periods of 10 min for

the analysis.
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We describe the wake shape with the so-called wake depth, which is the difference between the wake-free level and the wake

level and reflects the amount of power deficit. The wake-free level is estimated using the T10/T3 power ratio when both turbines

are in the free stream. We fit a parabolic curve (f(x) = ax2 + bx+ c) to the samples in the wake-free sector (226.9◦ − 242◦,190

marked in orange) and take the peak of the fitted curve as the wake-free level, as shown in Fig. 5(a). The algorithm provides

optimum f(x) so that the sum of the squared residuals between f(x) and the samples is minimized. Again, we fit the parabolic

curve f(x) to the samples in the wake sector (242◦ − 262.3◦, marked in pink) and take the power ratio at the bottom of the

curve as the wake level. To remove outliers, the points in the selected wind sectors are filtered by their mean ± 2 times their

standard deviation (the unused points are marked in blue). Fig. 5(b) shows the distribution of the lidar-measured TI values of195

the samples in Fig. 5(a). The TI values are mostly below 0.12.

Figure 5. (a) Definition of the wake-free level and the wake level estimated by fitting parabolic curves to the samples. See the text for more

details. (b) Distribution of TI values of the samples in (a).

We divide all samples in Fig. 5 into six groups according to the TI values measured by the nacelle lidar. The wake-free levels

and wake levels are estimated for each group, as shown in Fig. 6(a). The selection of the TI ranges is arbitrary but we try to

balance the number of samples in each group to reduce the fitting uncertainty. Figure 7 shows the trend of the wake-free levels,

wake levels, and wake depths with the increasing TI levels. It can be seen that the wake-free level remains close to 1.15, which200

is slightly above 1 probably owing to the terrain effect; the height of ground for T3 is 268 m while for T10 is 275 m. The wake

level increases from 0.42 to 0.62 with TI levels from (0.01,0.06] to (0.12,0.53]. Consequently, the wake depth (power deficit)

decreases from nearly 0.7 to 0.5.
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Figure 6. Estimation of the wake-free level and wake level in different TI groups. The TI is measured by the single-beam nacelle lidar. N is

the number of samples in each group.

5 Estimation of length scale and dissipation rate from lidar measurements

In order to get the measured radial velocity spectra that can reach down to 10−3 Hz, we analyze the SCADA data and lidar205

measurements based on periods of 30 min. The same filtering criteria of the turbines’ status and yaw error in Section 4 are

applied, which leaves us 4042 periods of 30 min over full available wind directions and wind speeds. Again, we focus our

analysis on the wind sectors between 226.9◦− 262.3◦ so that the nacelle lidar on T3 is not affected by wakes, which leaves us

840 periods of 30 min.

The lidar Doppler spectra in 48.8 Hz are first integrated into 10 Hz spectra, which are then filtered based on the 10 Hz210

system-reported radial velocities, backscatters, and spectral spreads. The following filtering criteria are applied:

– Since the lidar beam is perpendicular to the rotor, the blades act just like a shutter. Thus, the blade-blocked signals are

detected and removed when vr = 0 ms−1 or the spectra in all frequency bins are NaNs.
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Figure 7. Estimated wake-free levels, wake levels, and wake depths in different TI groups.

– The anomalously high radial velocities are removed when vr ≥ 30 ms−1 .

– The backscatter is the sum of all spectral signals above the noise threshold, which is a measure of the lidar signal-to-noise215

ratio. Measurements are dropped if the backscatter is lower than 0.06.

– The contaminated Doppler spectra are identified and removed if the spectral spread is greater than 0.75vr ms−1.

– We remove the spectral values that belong to the radial velocity bins lower than 2.45 ms−1 in all Doppler spectra to

eliminate strong low-frequency signals (contaminations), which might be caused by remaining blade signals or optical

reflections.220

After applying the filters, the number of 10 Hz Doppler spectra for a 30-min period is typically between 9800 to 14000 in a

30-min period. We estimate the centroid radial velocities from the Doppler spectra to calculate the ‘filtered’ radial velocity

variance because the centroid method can best reveal the probe volume averaging effect. To remove the impact of the mean

wind velocity on the variances, the centroid radial velocities and the Doppler spectra are detrended before being used to

calculate the ‘filtered’ and ‘unfiltered’ radial velocity variance, respectively.225

We compute the lidar radial velocity spectrum using the 10 Hz centroid radial velocities, which are linearly interpolated so

that there are 18000 measurements in each 30-min period. The radial velocity spectrum is calculated using Welch’s method,

which divides the time series into overlapping segments, computes the modified periodogram for each segment, and takes

the mean of all periodograms. As shown in Fig.8, increasing the length of the segment allows the spectrum to go down

to lower wave numbers (or frequencies), but makes the spectrum noisier especially below the wave number of 10−2 m−1230

due to less averaging. In our case, each segment has 6000 measurements that correspond to a 10-min time series and the
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number of overlapping measurements is 5400 (90% of the segment length). Therefore, the spectrum is the mean of roughly 21

periodograms.

Figure 8. Impact of the number of measurements per segment for computing the radial velocity spectrum using Welch’s method.

Figure 9 shows the distribution of the estimated ratio σ2
vr,f
/σ2

vr,unf
from the Doppler spectra analysis of the 796 periods of 30

min. All values are below 1, which is expected. However, some very low and high values are outside the ratio predicted by235

the model, which has a range from 0.32 to 0.82, as shown in Fig. 2. The σ2
vr,f
/σ2

vr,unf
of the high values indicate that there is

less spatial filtering in the measurements than predicted in the model, or the probe volume size in the model is overestimated.

Assuming a higher anisotropy will generally increase the modelled ratio, but the maximum ratio with Γ = 4 is 0.91, which

cannot fully explain the highest ratio in the measurements. The measured ratio could also be influenced by the remaining

outliers in the measurements. For time periods when the estimated σ2
vr,f
/σ2

vr,unf
is out of the range of the pre-computed ratio, the240

first method does not work.

We found that the estimated length scales using the two methods described in Section 2.4 are different most of the time.

There are some anomalously high and low estimations from both methods. The first method works well when the estimated

raio σ2
vr,f
/σ2

vr,unf
is 0.6− 0.7, as shown in Fig. 10(a) and (b). In these cases, the estimated length scales seem realistic, and

the resulting lidar spectrum captures the main shape of the measured spectrum, especially in the range close to the inertial245

subrange. However, when the ratio σ2
vr,f
/σ2

vr,unf
gets large, as shown in Fig. 10(c), the estimated length scale is too high and the

dissipation rate might be also greatly overestimated in order to ensure the best fit of the two spectra below the wave number

of 10−2 m−1. Consequently, the estimated lidar radial velocity variance (proportional to the area below the spectrum) and the

along-wind variance (proportional to the lidar variance) are overestimated. Method 2 can generally better capture the shape of

the spectrum in Fig. 10(c) but is sensitive to noise, as shown in Fig. 10(b) and (d). We observe that after applying all the filters,250

there are still some outliers in some time periods that are causing noises in the high-frequency part of the measured spectrum.

This leads to some unrealistic estimations of the length scale by method 2.
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Figure 9. (a) Estimated σ2
vr,f/σ

2
vr,unf compared to the ratio of TI to SATI in the system. (b) Distribution of the estimated σ2

vr,f/σ
2
vr,unf .

Figure 10. The estimated L, αϵ2/3 (in legends) and the modelled radial velocity spectra (dashed lines) from the measured radial velocity

spectrum (solid line) in three periods of 30 min. The two methods are described in Section 2.4.
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6 Discussion

This manuscript is under preparation, so there are still many things that could be improved. First, we study the relations of

the wake shape, characterized by the power deficit of two wind turbines inside a wind farm, with the ambient atmospheric255

turbulence intensity measured by a single-beam nacelle lidar. The wake shape is fitted with a parabolic curve to the samples.

The samples can be smoothed and averaged in moving wind direction bins. Due to the limited number and the dispersal of

points, the fittings are involved with some uncertainties, which should be evaluated and plotted in Fig. 7. In addition, despite

using the constraint on the wind speeds, we cannot totally exclude the influence of the thrust coefficient on the wake behavior

due to the lack of the turbines’ thrust curve. We plan to verify the findings with a narrower wind speed bin.260

The turbulence length scale and dissipation rate of the ambient flow are estimated from the single-beam lidar measurements

using two methods. Both methods fit the theoretical radial velocity spectrum from the model to the measured one assuming the

anisotropy is 3.5. Additionally, The first method uses the amount of attenuation of the lidar-measured turbulence by the probe

volume. Since there are no point-wise anemometers near the upstream wind turbine, such as the cup and sonic anemometers, it

is hard to verify the estimated parameters. International Electrotechnical Commission suggests that the length scale parameter265

of the Mann model at the hub height of our reference wind turbine (47 m) should be approximately 0.8× 0.7× 49 = 27.44

m. Comparing the two methods, method 1 is model-dependent, and it needs successful estimations of the ‘unfiltered’ radial

velocity variance or the along-wind variance from a sonic anemometer. Method 2 can in principle better capture the whole

shape of the measured radial velocity spectrum, but it is sensitive to noises. We are planning to improve the fitting algorithm

of method 2 by log-smoothing the spectrum and dropping signals up from the wave number of 10−1 m−1.270

7 Conclusion

A single-beam lidar is flexible, robust and low in cost. This work shows the potential of using a single-beam CW nacelle lidar

for estimating wake losses and studying the wake behavior. By analyzing the power output of two wind turbines inside a wind

farm and measurements of a single-beam nacelle lidar on the upstream wind turbine, we found a clear trend that the wake-

induced power deficit decreases with the increasing ambient turbulence intensity estimated by the lidar. This trend indicates that275

the wake recovers faster when the ambient flow is more turbulent. This shows that a single-beam nacelle lidar can potentially

aid in wind turbine control and help to make decisions if the turbine needs downrating or more advanced turbine operation

modes. The relations between the power deficit and ambient turbulence characteristics can eventually be useful for validating

existing wake models (Peña et al., 2014).

Furthermore, we show that the amount of turbulence attenuation by the lidar probe volume varies with turbulence length280

scale and anisotropy. Based on this, we introduce two methods to estimate the turbulence length scale and dissipation rate

from the measured radial velocity spectrum assuming a fixed anisotropy. Due to the lack of references from e.g. cup or sonic

anemometers, the estimates cannot be verified. Further work is needed to optimize the fitting algorithms and test the methods.

We aim to correlate the estimated length scale and dissipation rate to the wake deficits as we did with the turbulence intensity

to study the wake behavior.285
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