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A B S T R A C T

The hydrogen production curve of the electrolyzer describes the nonlinear and nonconvex relationship between
its power consumption and hydrogen production. An accurate representation of this curve is essential for
the optimal scheduling of the electrolyzer. The current state-of-the-art approach is based on piecewise linear
approximation, which requires binary variables and does not scale well for large-scale problems. To overcome
this barrier, we propose two models, both built upon convex relaxations of the hydrogen production curve.
The first one is a linear relaxation of the piecewise linear approximation, while the second one is a conic
relaxation of a quadratic approximation. Both relaxations are exact under prevalent operating conditions. We
prove this mathematically for the conic relaxation. Using a realistic case study, we show that the conic model,
in comparison to the other models, provides a satisfactory trade-off between computational complexity and
solution accuracy for large-scale problems.
1. Introduction

1.1. Background

Renewable hydrogen produced via electrolysis is widely acknowl-
edged as a key priority to achieve a clean energy transition. Sev-
eral countries in Europe and globally have published national hydro-
gen strategies to support the large-scale development of electrolyz-
ers (World Energy Council, 2021). For instance, the 2020 EU Hydrogen
strategy sets an electrolyzer capacity target of 40 GW by 2030 (Eu-
ropean Comission, 2020). Developing this technology on a large scale
poses several challenges, including the scale-up of manufacturing pro-
cesses, the improvement of system design and materials, the estab-
lishment of a supportive policy framework, and the definition of new
business models (Badgett et al., 2021; Larscheid et al., 2018).

Hybrid power plants consisting of renewable power sources
(wind and/or solar) and electrolyzers create synergies based on cross-
commodity arbitrage between electricity and hydrogen markets
(Larscheid et al., 2018). The plant operator can dynamically control
the system to take advantage of volatile electricity prices: selling

∗ Corresponding author.
E-mail addresses: enrah@dtu.dk (E. Raheli), yanwe@dtu.dk (Y. Werner), jalal@dtu.dk (J. Kazempour).

1 The first two co-authors contributed equally and are listed alphabetically.
2 In Ulleberg (2003), a widely adopted empirical equation is presented to describe the relationship between electrolyzer voltage and current density. This

equation is noninvertible, making it impossible to derive an analytical expression for the hydrogen production as a function of the power consumption of the
electrolyzer. For a comprehensive explanation of the methodology used in this paper to construct the hydrogen production curve, we direct the reader to Baumhof
et al. (2023).

electricity directly when power prices are high and producing and
selling hydrogen when power prices are low (Matute et al., 2021). In
this way, the cost of hydrogen production, which mainly depends on
the cost of electricity (Nami et al., 2022), is reduced. This requires the
development of optimal scheduling models aiming at maximizing the
profit of the hybrid power plant.

To accurately capture the operational space of the hybrid power
plant, those models should be aware of the underlying physics of
its components. This poses a challenge particularly for modeling the
electrolyzer, for which the relationship between its power consumption
and hydrogen production is nonlinear and nonconvex. We refer to this
relationship as the hydrogen production curve, which does not have a
known analytical expression.2 As the technology is still in an early
stage of development, manufacturers disclose very limited information
on technical characteristics. From modeling perspective, two main
questions arise: First, how to best approximate the hydrogen production
curve under limited information availability? Second, how to deal with
computational complexity of the nonlinear hydrogen production curve
when optimizing dispatch strategies?
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Nomenclature

Indices and sets

𝑡 ∈  Set of time steps 𝑡
𝑛 ∈  Set of subperiods 𝑛
𝑛 ⊆  Set of time steps in subperiod 𝑛
𝑠 ∈  Set of linearization segments 𝑠

Parameters

𝜆𝑡 Day-ahead power price in time step 𝑡
[e/MWh]

𝜒 Hydrogen price [e/kg]
𝐴𝑠, 𝐵𝑠, 𝐶𝑠 Polynomial coefficients for segment 𝑠

[kg∕(hMW2)], [kg∕(hMW)], [kg∕h]
𝐷max

𝑛 Maximum hydrogen production in subpe-
riod 𝑛 [kg]

𝐾su Cold startup cost of the electrolyzer [e]
𝑃min, 𝑃max, 𝑃 sb Minimum, maximum, and standby power

consumption of the electrolyzer [MW]
𝑃 𝑠, 𝑃 𝑠 Lower and upper bounds for power con-

sumption of segment 𝑠 [MW]
𝑊𝑡 Day-ahead wind power production forecast

in time step 𝑡 [MW]
𝑄1, 𝑄0 Polynomial coefficients of the linear under-

estimator [kg∕(hMW)], [kg∕h]

Variables

𝑓𝑡 ∈ R+ Power sold to the grid in time step 𝑡 [MW]
ℎ𝑡 ∈ R+ Hydrogen production of the electrolyzer in

time step 𝑡 [kg/h]
𝑝𝑡 ∈ R+ Power consumption of the electrolyzer in

time step 𝑡 [MW]
𝑧𝑠,𝑡 ∈ {0, 1} Binary variable defining the segment 𝑠 that

the electrolyzer operates on in time step 𝑡
𝑝𝑠,𝑡 ∈ R+ Power consumption of the electrolyzer in on

state in segment 𝑠 and time step 𝑡 [MW]
𝑝𝑡 ∈ R+ Power consumption of the electrolyzer in on

state in time step 𝑡 [MW]
𝑧on𝑡 , 𝑧off𝑡 , 𝑧sb𝑡 ∈ {0, 1} Binary variables defining on, off, and

standby state of the electrolyzer in time
step 𝑡

𝑧su𝑡 ∈ {0, 1} Binary variable defining a cold startup of
the electrolyzer in time step 𝑡

Notes on the nomenclature

Variables (continuous and binary) are denoted by lower-case
letters. In particular, binary variables are denoted by the letter
𝑧. Parameters are denoted by upper-case letters, except hydrogen
and electricity prices which are denoted by Greek letters. The set
R+ denotes the set of nonnegative real numbers.

1.2. Electrolyzer hydrogen production modeling: Status quo

The dashed red curve in Fig. 1 shows a schematic hydrogen pro-
duction curve of an alkaline electrolyzer. To better illustrate the non-
linear physics of the electrolyzer, the black curve depicts the ratio of
hydrogen production to power consumption, the so-called efficiency
urve. In this paper, we define the electrolyzer efficiency as the kilo-
rams of hydrogen produced per megawatt-hour of electricity con-
umed (i.e., kg/MWh). This can be converted to a percentage by
2

h

Fig. 1. Schematic efficiency (black) and hydrogen production (red) curves for an
alkaline electrolyzer. 𝑃min and 𝑃max refer to the minimum and maximum power
onsumption, respectively. 𝑃 𝜂,max is the power consumption corresponding to the peak
fficiency. This figure is plotted based on the methodology in Baumhof et al. (2023)
pplied to data from Ulleberg (2003) and Sánchez et al. (2018).

ultiplying it by the lower or higher heating value of hydrogen. The
fficiency peaks at around 20 − 40% of the electrolyzer capacity (Let-
enmeier, 2021), for which the corresponding power consumption of
he electrolyzer is denoted as 𝑃 𝜂,max. For power consumption levels
igher than 𝑃 𝜂,max, the efficiency declines almost linearly due to the
ffect of overpotentials in the polarization curve (Sánchez et al., 2020).
or consumption levels below 𝑃 𝜂,max, the efficiency drops rapidly due
o increasing Faraday losses (Ulleberg, 2003). This nonlinearity needs
o be incorporated into operational decision-making problems of the
lectrolyzer through the hydrogen production curve (red). For a more
etailed analysis of the physics and technical modeling of the elec-
rolyzer, the interested reader is referred to Ulleberg (2003), Sánchez
t al. (2018), and Zheng et al. (2022b).

Currently, there is no widely adopted approach for modeling the
ydrogen production curve in a computationally tractable way. It is a
ommon practice in the literature to introduce relatively strong simpli-
ications for the hydrogen production curve. For instance, a constant
fficiency is used in Matute et al. (2021) and Pavić et al. (2022).
n Varela et al. (2021), a first and second-order polynomial approx-
mation for the hydrogen production curve is proposed. Although the
econd-order polynomial exhibits a smaller error, it has been eventually
iscarded due to its computational complexity. In Baumhof et al.
2023), it has been shown that a linear hydrogen production curve is
ot suitable when the electrolyzer frequently operates at partial load,
.e., in the range between 𝑃min and 𝑃max in Fig. 1. Instead, they propose
piecewise linear hydrogen production curve based on an incremental
ethod and assess the impact of neglecting a detailed electrolyzer
odel. However, additional binary variables, one for each linearization

egment, need to be introduced, increasing the computational burden.
imilar piecewise linearization approaches based on convex combi-
ation methods are used in Zheng et al. (2022a), Lin et al. (2021),
nd Kountouris et al. (2023). The reader is referred to Geißler et al.
2012) to learn more about different methods for the piecewise linear
pproximation.

Convex relaxation techniques of nonlinear physics are often em-
loyed in the energy system literature. For instance, extensive research
as been conducted on developing convex relaxations of the AC optimal
ower flow problem (Zohrizadeh et al., 2020) and for the optimal nat-
ral gas flow problem (Borraz-Sánchez et al., 2016). To the best of our
nowledge, convex relaxation techniques for modeling the nonlinear
ydrogen production curve of electrolyzers have not been explored.
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Fig. 2. Schematic representation of a hybrid power plant including the decision
variables of the corresponding optimization problem. The electrolyzer system includes
the hydrogen compressor and other auxiliary components.

1.3. Contributions and paper organization

Existing approaches to modeling the nonlinear hydrogen produc-
tion curve are either inaccurate, resulting in sub-optimal operational
decisions, or do not computationally scale well for large optimization
problems. Some examples of large-scale problems involving electrolyz-
ers are the operation and planning of complex power-to-x systems
with further downstream chemical processes; the trading problem in
multiple markets for electricity, hydrogen, and ancillary services; the
operation of individual stacks of large-scale electrolyzers; and the
scheduling problem under uncertainty, e.g., when the electrolyzer is
part of a renewable-based hybrid power plant.

This paper takes a new perspective on modeling the hydrogen
production curve based on convex relaxations, ensuring both accuracy
and computational scalability for large-scale problems. Starting from
the state-of-the-art piecewise linearization method, we derive a corre-
sponding linear relaxation that does not require binary variables. As
our main contribution, we propose a conic relaxation of a quadratic
approximation of the hydrogen production curve, resulting in the so-
called conic model. We mathematically define the sufficient conditions
for the conic relaxation to be exact and the necessary and sufficient
conditions for it to be inexact. We demonstrate those findings using an
illustrative case study. The conic model can be readily applied to the
large-scale optimization problems mentioned above, among others. We
numerically compare it to the state-of-the-art piecewise linearization
method and its linear relaxation counterpart, and verify ex-post its well-
performance in terms of solution quality, i.e., operational decisions, and
reduced computational complexity.

The remainder of this paper is organized as follows. Section 2
introduces the system setup and the optimal scheduling problem of
the hybrid power plant. Section 3 provides an overview of the dif-
ferent approaches to model the nonlinear hydrogen production curve,
including the proposed relaxations. In Section 4, we prove the exactness
of the proposed conic relaxation. Section 5 compares the modeling
approaches, and Section 6 concludes.

2. Scheduling problem

We consider a hybrid power plant as shown in Fig. 2, consisting of a
wind farm, an electrolyzer system, and a hydrogen demand. Hereafter,
we refer to the electrolyzer as a system including all necessary auxiliary
components, such as transformers, rectifiers, pumps, coolers, heaters,
and compressors, in addition to the electrolyzer device. Following the
current common practice, we assume that hydrogen is sold at a fixed
price and that there is an upper limit on the hydrogen demand for a
given time interval. The hydrogen demand could be constrained by
storage availability or maximum capacity of downstream facilities, such
as industry or chemical plants for further conversion into e-fuels. Here,
for simplicity, we assume that the demand is constrained by a tube
trailer with a constant capacity and scheduled (e.g., daily) pickups. As
we do not consider any constraints on the total hydrogen production
directly, it is effectively restricted by the total hydrogen demand.
We, therefore, use the terms total hydrogen production and demand
3

interchangeably. For the sake of simplicity, we assume that there is no
minimum level of hydrogen demand. Electricity generated by the wind
farm can either be sold to the grid at a perfectly known price or used for
hydrogen production through the electrolyzer. Since the primary focus
of this paper is on the modeling of the hydrogen production curve for
electrolyzer scheduling in general, ancillary services or other electricity
markets are not considered. Participation in these markets can increase
the profitability of the hybrid power plant (Zheng et al., 2023; Saretta
et al., 2023). Without loss of generality and to avoid discussion about
the carbon intensity of the hydrogen produced, we assume that the
hybrid power plant never buys electricity from the grid.3

In the following, we introduce a model for the optimal day-ahead
scheduling problem of the given hybrid power plant. We illustrate the
problem by showing the corresponding decision variables in Fig. 2.
The modeling of the hydrogen production curve and the proposed
relaxations will be presented in Section 3. To ease notational clarity,
we use upper-case and Greek symbols for parameters, and lower-case
symbols for variables. Let 𝑡 ∈  denote the set of time steps, which
is divided into 𝑛 ∈  subsets 𝑛 ⊆  , such that ∪𝑛∈𝑛 =  and
∩𝑛∈𝑛 = ∅. For example, 𝑡 ∈  could be 8760 hours of the year,
whereas 𝑛, ∀𝑛 ∈ {1, 2,… , 365}, indicates the set of 365 days.

The operator of the hybrid power plant maximizes the total profit
from selling power 𝑓𝑡 to the grid at the day-ahead power price 𝜆𝑡, and
selling hydrogen ℎ𝑡 at a constant price 𝜒 > 0. The only operational
expense considered is the startup cost 𝐾su indicated by the binary
variable 𝑧su𝑡 :

max
𝐱,𝐲,𝐳

∑

𝑡∈

(

𝑓𝑡𝜆𝑡 + ℎ𝑡𝜒 − 𝑧su𝑡 𝐾su) , (1)

where 𝐱, 𝐲, and 𝐳 denote the set of variables corresponding to the
balance of the hybrid power plant, the hydrogen production curve, and
the operational states of the electrolyzer, respectively. These three sets
will be defined later. The power balance within the hybrid power plant
is enforced by

𝑊𝑡 − 𝑓𝑡 − 𝑝𝑡 = 0, ∀ 𝑡 ∈  , (2a)

𝑓𝑡 ≥ 0, ∀ 𝑡 ∈  , (2b)

where 𝑊𝑡 denotes the deterministic day-ahead forecast of the wind
power production and 𝑝𝑡 is the day-ahead schedule for the power
consumption of the electrolyzer in time step 𝑡. Constraint (2b) prohibits
purchasing power from the grid. Without loss of generality, the cur-
tailment of wind power production is not allowed, irrespective of the
power price.

In each subset of time steps 𝑛, e.g., over every day 𝑛 ∈  , the total
hydrogen production is limited by the hydrogen demand 𝐷max

𝑛 , which,
e.g., represents the capacity of an available tube trailer for hydrogen
transportation:
∑

𝑡∈𝑛

ℎ𝑡 ≤ 𝐷max
𝑛 , ∀ 𝑛 ∈  , (2c)

ℎ𝑡 ≥ 0, ∀ 𝑡 ∈  . (2d)

Constraint (2d) ensures that the hydrogen production is nonnegative.
The set of variables 𝐱 is defined as 𝐱 = {𝑓𝑡, 𝑝𝑡, ℎ𝑡}.

We consider three operational states for the electrolyzer, namely
on, standby, and off (Matute et al., 2021; Varela et al., 2021; Zheng
et al., 2022b; Baumhof et al., 2023). In the on state, the electrolyzer is
consuming power and producing hydrogen. Below a certain minimum

3 According to the ‘‘Renewable Fuels of Non-Biological Origin (RFNBO)’’
Delegated Act, published by the European Commission in 2023, there are
some exceptions that allow the hydrogen production to be labeled green when
buying electricity from the grid, e.g., when the price or carbon intensity of the
electricity is low. These exceptions are not considered in this paper but the
interested reader is referred to European Commission (2023) to learn more
about the EU regulation.
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power consumption, the electrolyzer has to be turned to standby or off.
In standby, the electrolyzer does not produce hydrogen but consumes
a small amount of power to keep the system running and be able to
turn on immediately. On the contrary, in the off state, the electrolyzer
does not consume any power but takes several minutes and a significant
amount of electricity to be switched back to the on state. The transi-
tion from the off to on state is referred to as cold startup. Modeling
these operational states and transitions in the scheduling problem
requires binary variables. The three operational states, i.e., on, off,
and standby, are indicated by binary variables 𝑧on𝑡 , 𝑧off𝑡 , 𝑧sb𝑡 , respectively.
They constrain the feasible power consumption of the electrolyzer as

𝑧on𝑡 + 𝑧off𝑡 + 𝑧sb𝑡 = 1, ∀ 𝑡 ∈  , (3a)

𝑝𝑡 ≤ 𝑃max𝑧on𝑡 + 𝑃 sb𝑧sb𝑡 , ∀ 𝑡 ∈  , (3b)

𝑝𝑡 ≥ 𝑃min𝑧on𝑡 + 𝑃 sb𝑧sb𝑡 , ∀ 𝑡 ∈  , (3c)

𝑧su𝑡 ≥ 𝑧off𝑡−1 + 𝑧on𝑡 + 𝑧sb𝑡 − 1, ∀ 𝑡 ∈  ∖1, (3d)

𝑧su𝑡=1 = 0, (3e)

𝑧on𝑡 , 𝑧off𝑡 , 𝑧sb𝑡 , 𝑧su𝑡 ∈ {0, 1}, ∀ 𝑡 ∈  . (3f)

Constraint (3a) ensures mutual exclusiveness of the operational states.
The corresponding power consumption is constrained by (3b) and (3c)
based on the standby, minimum, and maximum power consumption
levels 𝑃 sb, 𝑃min, and 𝑃max, respectively. Constraints (3d) and (3e) define
a cold startup 𝑧su𝑡 ∈ {0, 1} when the electrolyzer changes from off to on
state. Lastly, the operational states and transitions are restricted to be
binary by (3f). The set of variables 𝐳 is defined as 𝐳 = {𝑧on𝑡 , 𝑧sb𝑡 , 𝑧off𝑡 , 𝑧su𝑡 }.

The hydrogen production curve (HYP), illustrated by the red curve
in Fig. 1, relates the power consumption to the hydrogen production of
the electrolyzer in a general form of

𝑔(ℎ𝑡, 𝑝𝑡) = 0, ∀ 𝑡 ∈  . (4)

In the following section, we present three different approximation
and/or relaxation models for (4), including our proposed conic model.
Each model ends up in a set of constraints that replaces (4), which
is part of the optimal scheduling problem of the hybrid power plant
(1)–(4).

3. Modeling the hydrogen production curve

There is currently limited information available on the technical
characteristics of electrolyzers. Therefore, we compute a hydrogen
production curve using the process explained in Baumhof et al. (2023),
which is based on empirical relationships found by Ulleberg (2003)
and Sánchez et al. (2018). We refer to it as the experimental hydrogen
production curve HYP-X, which does not have a closed-form analytical
expression. Note that it is unnecessary to compute HYP-X if operational
data on power consumption and hydrogen production is available,
e.g., as in Kopp et al. (2017). The models introduced next can then
directly be constructed from the operational data. The three4 models
that replace (4) are

1. HYP-MIL: The current state-of-the-art piecewise linear approxi-
mation,

2. HYP-L: A corresponding linear relaxation,
3. HYP-SOC: A second-order cone relaxation of a quadratic approx-

imation.

These three models along with HYP-X are illustrated in Fig. 3,
together with their efficiency curves. The latter is only illustrated to
highlight the differences between the approximations and relaxations
of the hydrogen production curve but it is not used in the optimization
problem. For illustration clarity, Fig. 3 shows two segments only for

4 In Section OC.1 of the online companion (Raheli et al., 2023), we further
resent a fourth model, HYP-MISOC, which has multiple second-order cone
onstraints.
4

r

HYP-MIL and HYP-L, which are indicated by two different dashed
lines. In general, any finite number and position of segments can be
chosen depending on the desired trade-off between accuracy and com-
putational complexity. Model HYP-SOC is a relaxation of a quadratic
approximation of the experimental hydrogen production curve such
that the corresponding efficiency reaches its maximum at the power
consumption 𝑃 𝜂,max.5 A close-up on model HYP-SOC is shown in the
inset plot on the right side of Fig. 3. Let 𝑝∗ and ℎ∗ denote the optimal
power consumption and optimal hydrogen production of the elec-
trolyzer, respectively. The actual hydrogen production corresponding to
𝑝∗, according to the experimental hydrogen production curve HYP-X,
is indicated by point H1. Model HYP-SOC may not be able to attain
this point as it utilizes an approximation of the experimental curve,
which is illustrated by the blue dashed line. The solution to HYP-SOC
may therefore be located at point H2. We call the discrepancy between
H1 and H2 approximation error. For models HYP-MIL and HYP-L, this
error is always nonnegative and its magnitude can be controlled by the
number of linearization segments. This is not the case for HYP-SOC,
where the approximation error can be either positive or negative, and is
limited by the shape of the quadratic approximation. Depending on the
choice of the model for the hydrogen production curve, the magnitude
of the approximation error is below 1 kg/h.

In contrast to the nonconvex approximation HYP-MIL, models
HYP-L and HYP-SOC further admit the point H3, located in the blue
shaded area, when the relaxation of the hydrogen production curve is
inexact. We refer to the discrepancy between H2 and H3 as relaxation
gap. The theoretical magnitude of the relaxation gap is upper-bounded
by the hydrogen production curve. When the electrolyzer operates
at full capacity, this is around 17.55 kg/h. The actual magnitude of
the gap depends on the exactness of the relaxation, which is further
discussed in Section 4. Note that for model HYP-SOC, depending on the
optimal power consumption 𝑝∗, the approximation error and relaxation
gap may offset each other.

A solution point H4 with a zero relaxation gap can be recovered
from point H3 by reducing the power consumption of the electrolyzer
from 𝑝∗ to 𝑝∗∗. Point H4 is the only exact solution that has the same
hydrogen production as point H3.

In the following, we present the mathematical formulations for all
the models.

3.1. HYP-MIL

The state-of-the-art approximation of the hydrogen production curve
(Baumhof et al., 2023; Zheng et al., 2022a; Marocco et al., 2021)
follows a piecewise linearization approach as

ℎ𝑡 =
∑

𝑠∈
(𝐵𝑠𝑝𝑠,𝑡 + 𝐶𝑠𝑧𝑠,𝑡), ∀ 𝑡 ∈  , (5a)

𝑃 𝑠𝑧𝑠,𝑡 ≤ 𝑝𝑠,𝑡 ≤ 𝑃 𝑠𝑧𝑠,𝑡, ∀ 𝑡 ∈  , ∀ 𝑠 ∈  , (5b)

𝑧on𝑡 =
∑

𝑠∈
𝑧𝑠,𝑡, ∀ 𝑡 ∈  , (5c)

𝑝𝑡 = 𝑃 sb𝑧sb𝑡 +
∑

𝑠∈
𝑝𝑠,𝑡 ∀ 𝑡 ∈  , (5d)

𝑧𝑠,𝑡 ∈ {0, 1}, ∀ 𝑡 ∈  , ∀ 𝑠 ∈  . (5e)

The hydrogen production on each linear segment 𝑠 is determined by
(5a), where 𝐵𝑠 and 𝐶𝑠 denote the slope and intercept of the underlying
segment, respectively. These coefficients have to be determined ex-ante
by choosing fixed linearization points on the original nonlinear hydro-
gen production curve and performing a linear interpolation between

5 We estimate the coefficients of the quadratic approximation by minimiz-
ng the sum of squared residuals while giving a relatively higher weight to the
esidual corresponding to 𝑃 𝜂,max. We found this approximation to deliver better
ecisions in the scheduling model than just minimizing the sum of squared
esiduals.
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Fig. 3. Approximation (blue dashed) and relaxation (blue shaded) of the experimental nonconvex (black) hydrogen production and efficiency curves using two segments (except
HYP-SOC). The experimental hydrogen production and efficiency curves are taken from Baumhof et al. (2023), based on Ulleberg (2003) and Sánchez et al. (2018). For an
exemplary optimal power consumption 𝑝∗, the actual amount of hydrogen produced according to the experimental curve is indicated by point H1. Points H2 and H3 denote
olutions when the relaxation HYP-SOC is exact and inexact, respectively. Point H4 marks the only exact solution that has the same hydrogen production as point H3 but lower
ower consumption 𝑝∗∗.
hem (see Fig. 3). In addition, variable 𝑝𝑠,𝑡 is the power consumption
orresponding to segment 𝑠 in time step 𝑡. Binary variable 𝑧𝑠,𝑡 indicates
hether the electrolyzer operates on segment 𝑠 in time step 𝑡. Con-

traint (5b) enforces that the power consumption on each segment is
etween the lower and upper bounds 𝑃 𝑠 and 𝑃 𝑠, respectively, if the
egment is active. Constraint (5c) ensures that only one segment can
e active when the electrolyzer is in on state. The power consumption
f the electrolyzer is then defined by (5d) depending on the operational
tate. For || = 1, model HYP-MIL represents a linear hydrogen
roduction curve, which does not require binary variables, as done
n Varela et al. (2021). The interested reader is referred to Baumhof
t al. (2023) for a more detailed explanation of the approximation of
he hydrogen production curve based on piecewise linearization and a
iscussion on the impact of the number of segments.

.2. HYP-L

The piecewise linearization of the hydrogen production curve (5a)–
5e) becomes computationally challenging with an increasing number
f segments due to the required binary variables. A natural idea would
hen be to relax (5a), which allows the removal of associated binary
ariables. By this, (5a)–(5e) reduce to

𝑡 ≤ 𝐵𝑠𝑝𝑡 + 𝐶𝑠𝑧
on
𝑡 , ∀ 𝑡 ∈  , ∀ 𝑠 ∈  , (6a)

min𝑧on𝑡 ≤ 𝑝𝑡 ≤ 𝑃max𝑧on𝑡 , ∀ 𝑡 ∈  , (6b)

𝑡 = 𝑝𝑡 + 𝑃 sb𝑧sb𝑡 , ∀ 𝑡 ∈  . (6c)

The power consumption of the electrolyzer in on state is now given by
𝑝𝑡. Constraint (6a) is an intersection of hypographs of concave functions
and are therefore convex (Boyd and Vandenberghe, 2004). The set of
constraints (6a)–(6c) is equivalent to (5a)–(5d) when (6a) is binding
at the optimal solution. In contrast to piecewise linearization, this
formulation is computationally efficient even for a comparatively high
number of segments.

3.3. HYP-SOC

By looking into the experimental hydrogen production curve in
ig. 1, one may hypothesize that it has a quadratic shape. This is further
upported by a semi-linear power-to-hydrogen conversion efficiency
or power consumption levels higher than 𝑃 𝜂,max. Accordingly, we
pproximate the experimental hydrogen production curve HYP-X by

a second-order polynomial:

ℎ = 𝐴𝑝2 + 𝐵𝑝 + 𝐶, ∀ 𝑡 ∈  , (7)
5

𝑡 𝑡 𝑡
where 𝐴 < 0, 𝐵 > 0, and 𝐶 < 0. As mentioned earlier, the second-
order polynomial can be straightforwardly fitted to operational data
of the electrolyzer, if available. This is a great advantage over models
HYP-MIL and HYP-L, as it does not require choosing the number and
the location of linearization points.

Constraint (7) is a nonconvex quadratic equality constraint. With
binary variables required for modeling the operational states of the
electrolyzer, the resulting optimization model would be a mixed-integer
nonlinear programming (MINLP) problem, which is generally hard
to solve with existing off-the-shelf solvers, even to locally optimal
solutions. In contrast to existing approaches in the literature, e.g., as
in Varela et al. (2021), we propose using a relaxed version of (7), which
can be amended to include the operational states of the electrolyzer as

ℎ𝑡 ≤ 𝐴𝑝2𝑡 + 𝐵𝑝𝑡 + 𝐶𝑧on𝑡 , ∀ 𝑡 ∈  , (8a)

𝑃min𝑧on𝑡 ≤ 𝑝𝑡 ≤ 𝑃max𝑧on𝑡 , ∀ 𝑡 ∈  , (8b)

𝑝𝑡 = 𝑝𝑡 + 𝑃 sb𝑧sb𝑡 , ∀ 𝑡 ∈  . (8c)

For every time step 𝑡 that the electrolyzer is on, i.e., 𝑧on𝑡 = 1, (8a)
enforces a convex quadratic inequality constraint for 𝐴 < 0. This
constraint can be reformulated into an efficiently solvable rotated
second-order cone (SOC) constraint, as shown in Section OC.2 of the
online companion (Raheli et al., 2023). In the following, we stick to
the convex quadratic form as we find it to be more intuitive here. The
set of constraints (8a)–(8c) is equivalent to (7) when (8a) is binding for
every time step 𝑡 at the optimal solution. We then say that the relaxation
is exact. If (8a) is nonbinding, i.e., there is a difference between the
right and left-hand side of constraint (8a), then the relaxation gap is
nonzero. This is illustrated by the discrepancy between points H2 and
H3 in Fig. 3.

Accounting for binary variables needed to model the operational
states of the electrolyzer, the resulting problem is a mixed-integer
second-order cone programming (MISOCP) problem, which is effi-
ciently solvable by existing off-the-shelf solvers like Gurobi, Mosek, and
CPLEX, that directly support convex quadratic constraints.

3.4. Summary

An overview of the three models is given in Table 1. Hereafter, we
use terms HYP-MIL, HYP-L, and HYP-SOC, not only to refer to the
hydrogen production curve but also to the resulting scheduling problem
of the hybrid power plant.

The objective function (1) is common to all three models. We
group the constraints into three groups. The first group consists of
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Table 1
Summary of constraints for the three different models. The objective function (1) is
common to all models.

HYP-MIL HYP-L HYP-SOC

Hybrid power plant Power balance: (2a)
Grid exchange: (2b)

Hydrogen demand: (2c)– (2d)

Electrolyzer states Mutual exclusiveness: (3a)
Power consumption limits: (3b)–(3c)

Startup and state binaries: (3d)–(3e), (3f)

Hydrogen production (5a)–(5e) (6a)–(6c) (8a)–(8c)

Model type MILP MILP MISOCP

all constraints related to the hybrid power plant as a system, which
are all linear. The second group includes all constraints related to the
operational states of the electrolyzer, requiring binary variables. The
first and second groups are common to all three models. The third
group depends on the model of the hydrogen production curve that
replaces constraint (4), i.e., the state-of-the-art piecewise linear approx-
imation (HYP-MIL), a linear relaxation counterpart (HYP-L), or the
proposed conic relaxation (HYP-SOC). Due to the binary variables 𝐳 for

odeling the operational states, the resulting scheduling problem of the
ybrid power plant becomes either a mixed-integer linear programming
MILP) or a MISOCP problem. When neglecting the operational states,
odels HYP-L and HYP-SOC reduce to a linear programming (LP) or
second-order cone programming (SOCP) problem, respectively. This

s not the case for model HYP-MIL, which requires additional binary
ariables for the piecewise linearization of the hydrogen production
urve.

We define the set of variables related to the hydrogen production
urve 𝐲 as 𝐲L = 𝐲SOC = {𝑝𝑡}, and 𝐲MIL = {𝑝𝑠,𝑡, 𝑧𝑠,𝑡} for HYP-L, HYP-SOC,
nd HYP-MIL, respectively.

. On the exactness of the conic relaxation

Models HYP-L and HYP-SOC are exact when inequality constraints
6a) and (8a), respectively, are binding at the optimal solution. In
he following, we derive sufficient conditions for model HYP-SOC to
e exact as well as necessary and sufficient conditions for it to be
nexact. Similar analytical results can be obtained for HYP-L. Focusing
n HYP-SOC, if (8a) is nonbinding at optimum, i.e., the relaxation gap
s nonzero, an intuitive interpretation is that a fraction of hydrogen
roduced is being wasted (i.e., the difference between points H2 and
3 in Fig. 3) or that an unnecessarily high amount of power is being
onsumed (i.e., the difference between points H3 and H4 in Fig. 3).

In the following, we always assume that a solution to problem
YP-SOC exists, as 𝑝 = 0, 𝑓 = 𝑊 , and 𝑧off = 1 is trivial. Recall
e assume that the hydrogen price is positive, such that the objective

unction is strictly increasing in hydrogen production, as stated in
ection 2. Now, we provide analytical results for the exactness of
elaxation (8a).

heorem 1. If the maximum total hydrogen production constraint (2c) is
nonbinding at optimum, then the relaxation (8a) is exact.

Proof. See Appendix A.1.

Intuitively, if the hydrogen price is positive, there is no incentive to
waste hydrogen as long as it can be sold to the demand. The hydrogen
production corresponds to point H2 in Fig. 3. This theorem applies to a
wide range of relevant use cases wherein the total hydrogen production
is unconstrained. This could be the case wherein hydrogen production
facilities are located next to large hydrogen consumers or a direct
connection to hydrogen pipeline infrastructure or large storage facilities
exists. In some real-life applications, however, the maximum total
hydrogen production is constrained, e.g., by the capacity of available
6

tube trailers for hydrogen transportation. For that case, we derive
another theorem providing a sufficient condition for exactness based
on electricity prices being positive.

Theorem 2. Suppose the maximum total hydrogen production (2c) is
binding at optimum for sub-period 𝑛. If the power prices are positive 𝜆𝑡 >
0,∀𝑡 ∈ 𝑛, then the relaxation (8a) is exact.

Proof. See Appendix A.2.

Intuitively, when the power price is positive, Theorem 2 implies that
increasing the power consumption of the electrolyzer is unprofitable if
additional hydrogen cannot be sold. To complete our analyses, we now
focus on cases with nonpositive electricity prices, which constitute a
highly profitable business case for an electrolyzer. When buying power
from the grid and spilling wind is not allowed, there is a monetary
incentive for the electrolyzer to maximize its consumption of local wind
power production, even if the hydrogen demand is already satisfied.

Theorem 3. Let  −
𝑛 ⊆ 𝑛 be the subset of hours in sub-period 𝑛, such

that 𝜆𝑡 ≤ 0,∀𝑡 ∈  −
𝑛 . If the total hydrogen production in those hours equals

the maximum demand, i.e., ∑𝑡∈ −
𝑛
ℎ𝑡 = 𝐷max

𝑛 , such that (2c) is binding at
optimum for sub-period 𝑛, then there exists at least one time step 𝑡 ∈  −

𝑛 for
which the relaxation (8a) is inexact.

Proof. See Appendix A.3.

Intuitively, when power prices are negative, it is most profitable to
increase the power consumption of the electrolyzer as much as possi-
ble. If the corresponding hydrogen production exceeds the maximum
total demand level, it is wasted without additional cost. The wasted
hydrogen production equals the difference between points H2 and H3
in Fig. 3. Due to the opportunity cost related to the negative power
prices, this is more profitable than reducing the power consumption to
H4. While Theorem 3 states that relaxation (8a) is inexact when it is
economically most profitable for the hybrid power plant, the necessary
conditions are hardly met in practice. We demonstrate this based on a
realistic case study in Section 5. Note that the theorems stated here,
including Theorem 3, extend to the case where the electrolyzer is
allowed to buy electricity from the grid and wind spillage is allowed.

The necessary condition for inexactness of relaxation (8a) stated in
Theorem 3 can be checked a priori. For each sub-period 𝑛, one can
evaluate in advance if the total maximum possible hydrogen production
during hours with nonpositive prices is greater than or equal to the
maximum demand, i.e.,
∑

𝑡∈ −
𝑛

𝐴𝑃
2
𝑡 + 𝐵𝑃 𝑡 + 𝐶 ≥ 𝐷max

𝑛 , ∀ 𝑛 ∈  , (9)

where 𝑃 𝑡 = min{𝑊𝑡, 𝑃max}, ∀𝑡 ∈  . It follows from Theorem 3 that if
ondition (9) is not fulfilled, then the relaxation is exact. The converse
s not necessarily true. If the relaxation (8a) is inexact, model HYP-SOC
ay obtain a solution like H3 in Fig. 3. This might include a sub-optimal

olution for the binary variables related to the operational states of the
lectrolyzer.

In cases where it cannot be guaranteed a priori by using the heuris-
ic in (9) that the relaxation gap will be zero, the feasible region should
e tightened. One option is to enforce a linear underestimator (Taylor
nd Rapaport, 2021) to the chosen model of the hydrogen production
urve. For model HYP-SOC, this can be done by adding the following

constraint:

ℎ𝑡 ≥ 𝑄1𝑝𝑡 +𝑄0, ∀ 𝑡 ∈  , (10)

where coefficients 𝑄0 and 𝑄1 can be derived from a linear interpolation
of the points corresponding to the minimum and maximum power
consumption. The linear underestimator (10) substantially reduces the

feasible region of model HYP-SOC, as shown in Fig. 4. In the case
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Fig. 4. Intersection of the feasible regions defined by the hydrogen production curve HYP-SOC and the corresponding linear underestimator for the hydrogen production (left)
and efficiency (right).
considered here, the theoretical magnitude of the relaxation gap for
a single time step is reduced from around 17.55 kg/h to 0.7 kg/h.

A nonzero relaxation gap, e.g., point H3 in Fig. 3, implies that
the solution will be physically infeasible for the electrolyzer system in
practice. In that case, a physically feasible solution should be restored
a posteriori. For the hybrid power plant considered here, when using
the linear underestimator (10), this can always be done by reducing
the power consumption of the electrolyzer from 𝑝∗ at point H3 to
𝑝∗∗ at point H4, as shown in Fig. 3. This might lead to sub-optimal
solutions in more complex setups, e.g., when considering additional
chemical downstream processes. In those cases, other techniques for
recovering a feasible solution can be applied, e.g., the convex–concave
procedure as done by Taylor et al. (2022) for biochemical processes
or Wei et al. (2017) for AC optimal power flow. Other options are
discussed by Venzke et al. (2020) in the context of AC optimal power
flow.

5. Numerical study

We consider a hybrid power plant consisting of a 1-MW electrolyzer
and a 2-MW wind farm. Hourly wind capacity factors for year 2019
are obtained from the Renewable.ninja web platform (Staffell and
Pfenninger, 2016) for a wind farm located in Eastern Denmark. The
day-ahead electricity prices in the same year for the corresponding
bidding area (DK2) are taken from ENTSO-e (2022). The electrolyzer
has a minimum operating power of 𝑃min = 0.15 MW and a standby
power consumption of 𝑃 sb = 0.01 MW. We assume a cold-startup cost
of 𝐾su = e50, borrowed from Varela et al. (2021). Hydrogen is sold at a
fixed price of 𝜒 = e2.1/kg. Recall that electricity must not be purchased
from the grid.

The public repository (Raheli et al., 2023) contains the input data
and code implementation in the Pyomo package (Hart et al., 2011;
Bynum et al., 2021) for Python, where optimization models have been
solved by the Gurobi solver (Gurobi Optimization, 2023).6

5.1. Exactness of the proposed conic relaxation

As discussed in Section 4, the exactness of the relaxation in HYP-SOC
depends on the power prices and total hydrogen production. The latter

6 Apart from Gurobi, we solved all models with MOSEK (MOSEK ApS,
022). Even though MOSEK is specialized in solving SOCP problems, we
xperienced longer solution times than Gurobi for model HYP-SOC. This is
ue to the high number of binary variables for modeling the electrolyzer states
nd the comparatively fast solution speed of the MIP solver in Gurobi.
7

is affected by the wind power availability. In the remainder of the
paper, we use the term operating conditions to indicate a combination
of power prices, wind availability, and type of hydrogen demand
(i.e., constrained or unconstrained). To validate our analytical results in
Section 4, we consider four cases with different profiles of wind power
availability and power prices:

Case (a): Mostly negative hourly power prices and low wind power
availability,

Case (b): Solely positive hourly power prices and comparatively high
wind power availability compared to that in Case (a),

Case (c): Some negative hourly power prices and comparatively high
wind power availability as in Case (b),

Case (d): Mostly negative hourly power prices as in Case (a) and
comparatively high wind power availability as in Case (b).

For each of the four cases, we build an illustrative case study for
a time period of one day (24 hours). For that, we select different
combinations of two realistic wind profiles (low and high wind) and
three power price profiles (solely positive, some negative, and mainly
negative prices). The data is visualized in the top row of Fig. 5. Among
the four illustrative days, the one representing Case (c) is the only one
that combines wind and price profiles of the same day in 2019. Note
that the two price profiles in Cases (c) and (d) correspond to the two
days in 2019 with the highest number of hours with negative power
prices. In total, the dataset for 2019 includes 95 hours with negative
electricity prices, spread across 20 days. Days that belong to Case (d)
were only observed twice in 2019.

To create a situation where the maximum daily hydrogen produc-
tion constraint (2c) becomes binding, we choose a rather low hydrogen
demand of 𝐷max = 252.7 kg for all cases. This value corresponds to
the amount of hydrogen that is produced when the electrolyzer is
operated in full-load operation 60% of the time. The optimal power
consumption, hydrogen production, and the relaxation gap for Cases
(a)–(d) are shown in the bottom row of Fig. 5. Recall that by relaxation
gap, we refer to the discrepancy between the right and left-hand sides
of constraint (8a), which is illustrated by points H2 and H3 in Fig. 3.
Note that all results on the exactness of the relaxation of the hydrogen
production curve presented in this subsection can be similarly obtained
for model HYP-L.

In Case (a), despite frequent negative power prices, there is not
enough wind power available over the day such that the total hydrogen
demand (2c) reaches the upper limit. The comparably higher wind
power availability in Case (b) in combination with low but positive
power prices results in a binding maximum total hydrogen demand.
For both Cases (a) and (b), it follows immediately from Theorem 1 and

Theorem 2, respectively, that the relaxation HYP-SOC is exact.
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Fig. 5. Top row: Wind capacity factor (left axis) and day-ahead power price (right axis) profiles for four illustrative days. Bottom row: Optimal electrolyzer power consumption
(blue) and hydrogen production (green) for model HYP-SOC. The pink line shows the hydrogen production corresponding to a zero relaxation gap, which is illustrated by the
shaded area (gray). When the relaxation (8a) is exact, i.e., the gap is zero, the green and pink lines coincide. The last column shows the result for Case (d) when adding the linear
underestimator (10) to model HYP-SOC.
The maximum total hydrogen production is binding in Case (c) too.
It is, however, non-binding for the 12 h with negative prices only.
Hence, it does not fulfill the necessary condition for the inexactness
of relaxation (8a) as stated in Theorem 3. Note that the operation
during hours with negative prices is preferred even if operating in
hours with positive prices is profitable. Case (d) has an even higher
number of hours with negative prices (17 h), such that the hydrogen
demand becomes binding during the operation in those hours only. This
satisfies the necessary and sufficient conditions stated in Theorem 3.
As a consequence, relaxation (8a) is inexact at optimum, leading to a
non-zero relaxation gap equal to the shaded area in Fig. 5.7

Recall that Case (d) represents a rare combination of prolonged
hours with negative power prices (17 h), excessive wind availability
(95% average wind capacity factor), and restrictive maximum hydrogen
demand (60% of the total full-load production). For all other combi-
nations of those three factors, which we define as prevalent operating
conditions, the relaxation is exact. While negative power prices are
rarely observed in electricity markets at the moment, they might occur
more frequently in the future. Nonetheless, this will not compromise
the applicability of the proposed relaxations in terms of exactness,
as it additionally requires a constrained maximum production limit
(Theorem 3). Recall that we assume a highly restrictive maximum
demand limit set by tube trailers with fixed schedules to illustrate
our mathematical findings on the exactness of the relaxations. For the
future, we envision that electrolyzers will be placed close to pipeline
infrastructure, large storage facilities, or industrial consumers, in which
the maximum hydrogen demand can be considered unconstrained.

In the last column of Fig. 5, Case (d) is solved after adding the linear
underestimator (10) to model HYP-SOC. Compared to Case (d), this
reduces the number of hours with an inexact relaxation from 17 to 1
and the total relaxation gap from 43 kg to 0.7 kg of hydrogen. It can
further be noticed that the electrolyzer is now operated in standby state
instead of on state in hours 13 and 15. For HYP-SOC without linear

7 Note that for model HYP-SOC the solver reports a solution where all
time steps have a non-zero feasibility gap. This is not necessarily always true,
as multiple optimal solutions exist in this case. When solving the same case
study with the linear relaxation HYP-L, the aggregated relaxation gap is fully
allocated to the minimum possible number of time steps.
8

underestimator, this was possible because the hydrogen production in
on state is bounded below by zero, as can be seen in Fig. 3. After adding
the linear underestimator (10), the minimum hydrogen production in
on state is 2.9 kg/h, as can be seen in Fig. 4. Since the maximum
hydrogen demand (2c) is binding, the minimum hydrogen production
cannot be accommodated when including the linear underestimator.
Consequently, the electrolyzer must be turned into standby or off state.
This indicates that an inexact relaxation may lead to a sub-optimal
solution for the binary variables related to the operational states of
the electrolyzer, compared to solving the original MINLP including
nonconvex constraint (7) directly.

5.2. Comparison of the solution quality

This section compares the models proposed in Section 3 in terms
of profit, dispatch decisions, and hydrogen production. Based on the
heuristic proposed in Eq. (9), we found that for the year 2019, the
proposed relaxations are exact for a maximum hydrogen demand above
𝐷max = 296.3 kg, corresponding to the hydrogen produced when the
electrolyzer runs in full-load operation 70.4% of the time. For the
relaxations to be inexact for more than 2 days, an unrealistically low
maximum hydrogen demand below 25% is necessary. This emphasizes
that the proposed relaxations are exact under prevalent operating
conditions. Therefore, we choose a maximum daily hydrogen demand
corresponding to 90%, which ensures that the relaxations HYP-L and
HYP-SOC are always exact. This implies that HYP-L results in the same
dispatch decisions as HYP-MIL. Therefore, we do not explicitly report
the results for model HYP-L.

We use the term HYP-MIL𝑖 for 𝑖 ∈ {1, 2, 10, 24} to refer to model
HYP-MIL with 𝑖 linearization segments. Model HYP-MIL24, i.e., model
HYP-MIL with 24 segments, is used as a benchmark in the following.
A detailed explanation of how we choose the location of linearization
points is given in Section OC.3 of the online companion (Raheli et al.,
2023). The interested reader is further referred to Marocco et al. (2021)
for a different choice of linearization points.

We first compare the different models in terms of dispatch decisions
for a selected day in 2019, where the hydrogen production is not limited
by wind power availability. Fig. 6(a) shows the wind profile, electricity
prices, and optimal electrolyzer power consumption of HYP-MIL24,
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which is chosen as a benchmark. For each model formulation, the
hourly relative difference of the optimal power consumption compared
to the benchmark, denoted as 𝛾𝑡, is defined as

𝛾𝑡 =
𝑝∗𝑡 − 𝑝∗,MIL24

𝑡

𝑝∗,MIL24
𝑡

, ∀ 𝑡 ∈  , (11)

where 𝑝∗𝑡 is the optimal power consumption of the electrolyzer in
hour 𝑡 obtained from the underlying model and 𝑝∗,MIL24

𝑡 is that of
the benchmark. The relative difference 𝛾𝑡 is shown for all models in
Fig. 6(b). For models HYP-MIL1 and HYP-MIL2, the relative difference
is comparatively large in hours where the electrolyzer operates at
partial loading. This is the case when the electricity price is in the
range of 31 to 43 e/MWh (cf. Appendix in Baumhof et al. (2023)).
The average daily difference, i.e., 𝛾̄ = (

∑

𝑡 |𝛾𝑡|)∕24 for HYP-MIL1 and
HYP-MIL2 is 36% and 21%, respectively. In comparison, HYP-SOC
exhibits significantly better performance, with an average error of
around 5%. To achieve a similar solution quality with HYP-MIL (and
HYP-L), at least 10 segments are needed.8

To validate the robustness of our findings presented in Fig. 6, we
solve the different models for the entire year 2019 and compare the
profit and dispatch results. To fairly compare the different models in
terms of hydrogen production, an ex-post analysis is performed to take
the model-specific approximation errors into account. The ex-post anal-
ysis consists of solving the underlying optimization problem, fixing the
optimal power consumption of the electrolyzer, and then calculating
the corresponding hydrogen production based on HYP-X, indicated by
point H1 in Fig. 3. The reason for the ex-post analysis is that the model
determines the choice of dispatch decisions (i.e., how much power
should be sold to the grid and how much power should be consumed by
the electrolyzer), while the actual hydrogen production depends on the
electrolyzer physics and not on the approximated model that is adopted
in the scheduling problem. The difference in the hydrogen production
quantities and profits derived from the scheduling model and those
from the ex-post analysis, therefore, serve as an indicator of the quality
of the approximation of the experimental hydrogen production curve
HYP-X. Recall that we cannot solve the scheduling model including
HYP-X directly, as it is not possible to derive a corresponding analytical
function. If it was possible to solve scheduling model HYP-X directly,
then the results of its ex-post analysis would be exactly the same as
those derived from the optimization model. To replicate this idealized
benchmark as best as possible, we choose the ex-post results of model
HYP-MIL24 as a benchmark for our case studies. Note that we do not
account for the hydrogen production corresponding to the approxima-
tion error in the scheduling problem, which could potentially make the
maximum hydrogen production constraint (2c) binding.

Table 2 presents the annual profit, electricity sales, and hydrogen
production, as a difference compared to the HYP-MIL24 benchmark.
While the total annual profit is similar for all models, the share of
hydrogen production and power sales for HYP-MIL1 and HYP-MIL2
differ substantially compared to the HYP-MIL24 benchmark. Due to
the inaccurate approximation of the hydrogen production curve, the
number of hours when it is profitable to produce hydrogen is consid-
erably reduced, leading to approximately 14% and 7% less hydrogen
production, respectively. The corresponding monetary loss is partially
compensated by an increase in wind energy sold to the grid. Model
HYP-SOC shows higher accuracy in decision-making, with a difference
in hydrogen production lower than 1% compared to the benchmark.
Similarly to the one-day example, at least 10 segments are necessary to
achieve the same results with HYP-MIL as with the conic model.

8 Note that a different choice of linearization points, e.g., based on the
method presented in Marocco et al. (2021), may slightly affect the number
of segments needed to achieve a similar solution accuracy between HYP-SOC
and HYP-MIL/HYP-L.
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Fig. 6. (a): Optimal electrolyzer power consumption for the HYP-MIL24 benchmark on
an illustrative day. (b): Hourly relative difference 𝛾𝑡 of the optimal electrolyzer power
consumption compared to the benchmark.

Table 2
Difference in the annual profit, hydrogen production, and power sales compared to the
HYP-MIL24 benchmark. Note that results for HYP-L are not explicitly reported as they
coincide with HYP-MIL for the considered case study.

Profit Hydrogen production Power sales

HYP-MIL24 – – –
HYP-MIL10 −0.003% −0.12% 0.05%
HYP-MIL2 −0.26% −7.06% 3.66%
HYP-MIL1 −0.63% −13.84% 6.52%
HYP-SOC −0.01% −0.89% 0.48%

5.3. Comparison of the computational performance

We now compare the different models in terms of their solution
time, and then analyze how it scales with the problem size. To do so,
we extend the deterministic day-ahead scheduling problem proposed in
Table 1 to a two-stage stochastic problem and run it for a single day us-
ing different numbers of scenarios 𝜔 ∈ 𝛺. We assume perfect foresight
for the electricity prices but uncertainty in wind power production.
In the second stage, the electrolyzer adjusts its power consumption to
minimize the real-time imbalance cost based on the scenario-specific
wind power realization. Owed to the fast dynamics of the electrolyzer,
we further assume that it is able to change its operational states
compared to the day-ahead schedule. The stochastic model formulation
is reported in Section OC.4 of the online companion (Raheli et al.,
2023). We use the same price profile as in the case study reported in
Fig. 6. For the wind power scenarios, the first 24 hours of the dataset
provided in Pinson (2013) are used. The problem was solved using a
High Performance Computing Cluster node with two AMD EPYC 7551
processors clocking at 2 GHz and using a maximum of 8 threads. As
this section focuses on the computational performance only, we do not
further elaborate on the quality of the solution for the stochastic model
and look solely at in-sample results.

Table 3 summarizes the number and type of variables and con-
straints in each of the hydrogen production curve models. Fig. 7 shows
the computational time for the different models in a range of 1–500
scenarios.

All proposed models are solved within 5 seconds for up to 10
scenarios. By increasing the number of scenarios, the number of binary
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Fig. 7. Computational performance of the different models for an increasing number
of scenarios. Each data point represents the average computational time obtained from
100 repetitions, except for 500 scenarios, where only 10 repetitions are used due to the
ncreased computational time.

Table 3
Number of variables and constraints for modeling the hydrogen production curve as
a function of the number of segments ||, time steps | |, and scenarios |𝛺|.

# Variables # Constraints

Binary Continuous LP/MILP SOC/MISOC

HYP-MIL ||| ||𝛺| ||| ||𝛺| (2|| + 3)| ||𝛺| 0
HYP-L 0 | ||𝛺| (|| + 3)| ||𝛺| 0
HYP-SOC 0 | ||𝛺| 3| ||𝛺| | ||𝛺|

variables in the HYP-MIL model increases comparatively fast, as shown
in Table 3. For 24 and 10 segments, the linear relaxation HYP-L is
solved approximately 80% faster than the corresponding HYP-MIL,
while achieving the same solution. For 100 scenarios, the HYP-SOC
model is almost three times faster than HYP-L10 and almost two times
faster than HYP-L2. Even for 500 scenarios, the HYP-SOC model shows
a satisfactory computational performance compared to both HYP-MIL
and HYP-L. This might be attributed to the avoidance of binary vari-
ables and the comparably lower number of constraints required to
model the hydrogen production curve, even if the constraints are conic
instead of linear. In contrast to model HYP-SOC, HYP−MISOCP, which
is presented in Section OC.1 of the online companion (Raheli et al.,
2023), experiences an exponentially increasing computational time that
makes it intractable for large applications.

Note that the major part of the computational time is attributed
to finding feasible integer solutions for the operational states of the
electrolyzer. When fixing the binary variables to their optimal value,
the computational time for model HYP-SOC including 500 scenarios
reduces from 207.9 to 3.7 s. This highlights the applicability of the
proposed relaxations for real-time rescheduling and the benefit of
heuristics finding a set of near-optimal operational states.

For 500 scenarios, the inclusion of linear underestimator (10) in
model HYP-SOC reduces the computational time significantly (−28%),
even though it is always inactive at the optimal solution since the
relaxation is exact in the considered case study. In order to generalize
the benefits of adding a linear underestimator to other case studies
and model HYP-L, further analyses should be conducted. As this paper
focuses on comparing the different modeling approaches in conditions
where the relaxations are exact, we leave this aspect for future research.

6. Conclusion

An accurate representation of the nonlinear and nonconvex hydro-
gen production curve of the electrolyzer, which captures the relation-
ship between power consumption and hydrogen production, is essential
10
for its optimal scheduling. The current state-of-the-art modeling ap-
proach of the hydrogen production curve is based on piecewise linear
approximation. This approach requires carefully selecting the number
and the location of linearization points, which impacts the accuracy
of dispatch decisions and the computational complexity. The accuracy
increases with the number of linearization segments at the expense
of adding one binary variable per segment. For our case study, we
found out that using at least ten linearization segments yields suffi-
ciently accurate dispatch decisions. To further highlight computational
issues raised by the number of binary variables in the state-of-the-art
piecewise linear approximation, we developed a two-stage stochastic
program where renewable power production uncertainty is modeled
via scenarios. We showed that by growing the number of scenarios and
therefore the number of binary variables (indicating active segments
for every scenario), the computational time increases significantly,
imposing a serious barrier.

This paper proposes two modeling approaches for the hydrogen
production curve based on convex relaxations. The first one, HYP-L, is a
linear relaxation of the state-of-the-art piecewise linear approximation
HYP-MIL, which does not require binary variables. Although this leads
to a significantly improved computational performance compared to
HYP-MIL, it still requires choosing the number and location of lin-
earization points. Additionally, the high number of segments needed
to ensure the accuracy of the solution impacts the computational
performance of large-scale problems.

Those barriers are resolved by our second model, HYP-SOC, which
is a conic relaxation of a quadratic approximation of the hydrogen
production curve. The quadratic approximation can be directly fitted
to operational data of the electrolyzer, making it especially suitable in
cases with limited information availability on the underlying physics
of the hydrogen production curve. Based on a realistic case study,
we showed that HYP-SOC provides a satisfactory trade-off between
accuracy of decisions and computational performance for large-scale
problems. Between the two proposed relaxations, HYP-SOC exhibits a
slightly better computational performance than HYP-L for large-scale
problems at the expense of moving from a (mixed-integer) linear to
a second-order cone problem. We conclude that the linear relaxation
provides an appropriate choice if the model type is to be kept linear,
otherwise, we suggest using the conic model.

We mathematically proved that the proposed conic relaxation is ex-
act under prevalent operating conditions. Similar proofs can be derived
for the linear relaxation. We further presented a heuristic to check the
exactness of the conic relaxation a priori based on the wind power
availability — this can be very useful in practice. An extreme case
was presented to illustrate how a combination of prolonged negative
electricity prices, high wind power availability, and a restrictive upper
limit for hydrogen production may lead to an inexact solution.

In that case, the feasible region of the problem should be tightened
and an exact solution should be restored a posteriori. We were able
to show that introducing a linear underestimator to the hydrogen pro-
duction curve substantially reduces the feasible region. Furthermore,
it ensures that an exact solution can always be restored by reducing
the power consumption of the electrolyzer. Future research should
investigate how the linear underestimator impacts the computational
time in cases wherein the relaxation is inexact. As the production of
green hydrogen in hours with negative electricity prices constitutes
a particularly profitable business case for the electrolyzer, further re-
search should address how an exact yet optimal solution can be restored
when other assets or downstream processes are considered.

When disregarding the operational states of the electrolyzer, the
two proposed relaxations of the hydrogen production curve are convex.
This is a valuable property in cases where global optimality guarantees
and meaningful dual variables are desired, e.g., in a market-clearing
problem. Future research should explore how the proposed modeling
approaches can be integrated into market-oriented applications. Addi-

tionally, the conic relaxation and exactness findings may be applicable
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to other components with similar nonlinear physics, e.g., batteries with
a semi-linear linear efficiency curve (Engelhardt et al., 2022). Finally,
future work should focus on accurate modeling of the auxiliary assets
and downstream processes, such as the compressor and methanol or
ammonia production, which may introduce additional nonconvexities
to the optimal scheduling problem of an electrolyzer.
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Appendix A. Mathematical proofs

Let (𝐱̇, 𝐲̇, 𝐳̇) denote a feasible point to problem HYP-SOC. For the
following proofs, we assume that the set of binary variables 𝐳 associated
with the operational states of the electrolyzer is fixed to 𝐳̇. In this case,
HYP-SOC reduces to a convex problem. We use (𝑝∗, ℎ∗, 𝑓 ∗) to denote
an optimal solution to problem HYP-SOC for given 𝐳̇.

Lemma 1. Suppose the electrolyzer is in standby or off state at time step
𝑡, such that 𝑧̇sb𝑡 + 𝑧̇off𝑡 = 1. Then, the relaxation (8a) is exact.

Proof. It follows from mutual exclusiveness of the states (3a) that
̇ on
𝑡 = 0. Constraints (8a)–(2d) and (8b) ensure that the hydrogen

production ℎ𝑡 and associated power consumption 𝑝̃𝑡 are equal to zero.
Relaxation (8a) is therefore exact when the electrolyzer is in standby
or off state.

Without loss of generality, we assume that there exists a time step
𝜏 ∈  , for which the electrolyzer is in on-state 𝑧̇on

𝜏 = 1. In this case, it
follows from (3a) and (8c) that 𝑝𝜏 = 𝑝̃𝜏 . In the following, we will prove
the exactness of relaxation (8a) under certain assumptions.
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A.1. Proof of Theorem 1

Suppose that 𝜏 ∈ 𝑛 and ℎ∗𝜏 < 𝐴(𝑝∗𝜏 )
2 +𝐵𝑝∗𝜏 +𝐶, i.e., (8a) is inexact.

We define

ℎ̀𝑡 =

{

ℎ∗𝑡 , 𝑡 ≠ 𝜏,
ℎ∗𝑡 + 𝜖, 𝑡 = 𝜏,

where 𝜖 is a small positive number, such that ℎ̀𝜏 ≤ 𝐴(𝑝∗𝜏 )
2+𝐵𝑝∗𝜏 +𝐶. Let

the objective function (1) be denoted by 𝑈 . As the hydrogen price is
positive 𝜒 > 0, 𝑈 is always increasing in ℎ𝑡 for a given 𝐳̇. It follows di-
rectly that 𝑈 (ℎ̀, 𝑓 ∗) ≥ 𝑈 (ℎ∗, 𝑓 ∗). As, by assumption, the total maximum
ydrogen production is not constrained by the demand, such that (2c)
s nonbinding at ℎ∗, it is possible to find 𝜖 such that ℎ̀ is feasible. That
ontradicts the optimality of ℎ∗. Therefore, relaxation (8a) must be
xact at optimum for a given 𝐳̇ when the electrolyzer is in on-state.

The exactness of relaxation (8a) for the case when the electrolyzer
s in standby or off state follows from Lemma 1, which completes the
roof.

.2. Proof of Theorem 2

It follows directly from the power balance of the hybrid power
lant (2a), that 𝑓 ∗ = 𝑊 − 𝑝∗. Suppose that in sub-period 𝑛, con-

straints (8a) are binding at optimum for all time steps, such that ℎ∗𝑡 =
𝐴(𝑝∗𝑡 )

2 + 𝐵𝑝∗𝑡 + 𝐶,∀𝑡 ∈ 𝑛, and that 𝜏 ∈ 𝑛. We define

𝑝́𝑡, 𝑓𝑡) =

{

(𝑝∗𝑡 , 𝑓
∗
𝑡 ), 𝑡 ≠ 𝜏,

(𝑝∗𝑡 + 𝜖, 𝑓 ∗
𝑡 − 𝜖), 𝑡 = 𝜏,

here 𝜖 is a small positive number. Suppose (𝑝́, ℎ∗, 𝑓 ) denotes a feasible
oint to HYP-SOC, such that 𝑓 = 𝑊 −𝑝́ and 𝑓𝜏 < 𝑓 ∗

𝜏 . Then ℎ∗𝜏 < 𝐴(𝑝́𝜏 )2+
𝑝́𝜏 + 𝐶, i.e., relaxation (8a) is inexact. As the objective function 𝑈 is

ncreasing in 𝑓 when 𝜆 > 0, it follows that 𝑈 (ℎ∗, 𝑓 ) < 𝑈 (ℎ∗, 𝑓 ∗), which
contradicts optimality of 𝑓 . This proves the optimality of (𝑝∗, ℎ∗, 𝑓 ∗)
and the exactness of the relaxation (8a) for a given 𝐳̇.

The exactness of relaxation (8a) for the case when the electrolyzer
is in standby or off state follows from Lemma 1, which completes the
proof.

A.3. Proof of Theorem 3

Suppose in sub-period 𝑛 the set of nonpositive power prices is
nonempty  −

𝑛 ≠ ∅, and the relaxation (8a) is binding at optimum for all
time steps with nonpositive prices, such that ℎ∗𝑡 = 𝐴(𝑝∗𝑡 )

2+𝐵𝑝∗𝑡 +𝐶,∀𝑡 ∈
 −
𝑛 . We define (𝑝́𝑡, 𝑓𝑡) as in the proof of Theorem 2 for 𝜏 ∈  −

𝑛 , such
that ℎ∗𝜏 < 𝐴(𝑝́𝜏 )2 + 𝐵𝑝́𝜏 + 𝐶, i.e., constraint (8a) is nonbinding. As the
objective function 𝑈 is decreasing in 𝑓 when 𝜆 < 0, it follows that
𝑈 (𝑓 ) ≥ 𝑈 (𝑓 ∗), which contradicts the optimality of 𝑓 ∗. We conclude that
in sub-period 𝑛, for a given 𝐳̇, there exists at least one time step 𝜏 ∈  −

𝑛 ,
for which the optimal solution (𝑝∗, ℎ∗, 𝑓 ∗) has a nonzero feasibility gap,
i.e., relaxation HYP-SOC is inexact.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.compchemeng.2023.108450.
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