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Abstract
In this paper, we provide a geometric analysis of a new hysteresis model that is
based upon singular perturbations. Here hysteresis refers to a type of regularization of
piecewise smooth differential equations where the past of a trajectory, in a small neigh-
borhood of the discontinuity set, determines the vector-field at present. In fact, in the
limit where the neighborhood of the discontinuity vanishes, hysteresis converges in an
appropriate sense to Filippov’s sliding vector-field. Recently (2022), however, Bonet
and Seara showed that hysteresis, in contrast to regularization through smoothing,
leads to chaos in the regularization of grazing bifurcations, even in two dimensions.
The hysteresis model we analyze in the present paper—whichwas developed by Bonet
et al in a paper from 2017 as an attempt to unify different regularizations of piece-
wise smooth systems—involves two singular perturbation parameters and includes
a combination of slow–fast and nonsmooth effects. The description of this model is
therefore—from the perspective of singular perturbation theory—challenging, even
in two dimensions. Using blowup as our main technical tool, we prove existence of an
invariant cylinder carrying fast dynamics in the azimuthal direction and a slow drift in
the axial direction.We find that the slow drift is given by Filippov’s sliding vector-field
to leading order.Moreover, in the case of grazing, we identify two important parameter
regimes that relate the model to smoothing (through a saddle-node bifurcation of limit
cycles) and hysteresis (through chaotic dynamics, due to a folded saddle and a novel
return mechanism).
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1 Introduction

In this paper, we consider piecewise smooth (PWS) systems of the following form:

ż =
{

Z+(z) y > 0

Z−(z) y < 0
, (1)

where z = (x, y) ∈ R
n+1, Z±(z) = (X±(z), Y±(z)). The set � : y = 0 is called the

discontinuity set or switching manifold. In a more general setting, one could define the
switching manifold � as a smooth hypersurface h(z) = 0 for some regular function
h : Rn+1 → R. Locally, however, we can always introduce coordinates (x, y) so that
h(x, y) = y. We will suppose that Z± are smooth vector-fields, each defined in a
neighborhood of �.

The basic problem of (1) is how to define solutions of (1) on �. The case when
Y+(x, 0) < 0 and Y−(x, 0) > 0 is most interesting from a technical point of view,
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Fig. 1 Illustration of Filippov’s
sliding vector-field Xsl in the
case of stable sliding

because in this case orbits of either system ż = Z±(z) reach� in finite time, see Fig. 1.
This is known as (stable) sliding. To be able to define a forward flow, a vector-field
must be assigned on �. The most common way to do this, is through the Filippov
vector-field defined by

Xsl(x) := X+(x, 0)p(x) + X−(x, 0)(1 − p(x)),

p(x) := Y−(x, 0)

Y−(x, 0) − Y+(x, 0)
∈ (0, 1). (2)

The PWS systems, where (2) is assigned along the subset of the switching mani-
fold with Y+(x, 0)Y−(x, 0) < 0, are called Filippov systems. Filippov systems may
also be viewed more abstractly in the sense of differential inclusions (Filippov 1988).
They occur naturally in mechanics, e.g., in friction modeling(Bossolini et al 2017;
Kristiansen2021).However, even suchmechanicalmodelsmay suffer fromnonunique-
ness of solutions, and a meaningful forward flow may not be defined at all points
(Bossolini et al. 2017).

From a modeling perspective, nonuniqueness may be interpreted as an insufficient
model where additional information or complexity has to be added in order to select
a unique forward trajectory. From this point of view, it is therefore important to study
regularizations of (1). There are two basic examples of regularizations of (1), one is
smoothing and another one is hysteresis. In this paper, we shall—following Sotomayor
and Teixeira (1996)—define regularization by smoothing as replacing (1) with an
ε-family of smooth systems:

ẋ = X
(

z, φ
( y

ε

))
,

ẏ = Y
(

z, φ
( y

ε

))
,

(3)

with Z(z, p) = (X(z, p), Y (z, p)) defined by:

Z(z, p) := Z+(z)p + Z−(z)(1 − p), (4)

for Z± = (X±, Y±). Regarding the function φ in (3), we assume the following
assumption, so that (3) approaches (1) pointwise for ε → 0 for y �= 0.
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Fig. 2 Illustration of hysteresis
in the case of stable sliding. In
comparison with regularization
by smoothing, hysteresis can be
interpreted as introducing a
negative boundary layer, the size
of which is given by 2α

Assumption 1 The smooth “regularization function” φ : R → R satisfies the
monotonicity condition

φ′(s) > 0,

for all s ∈ R and, moreover,

φ(s) →
{
1 for s → ∞,

0 for s → −∞.
(5)

On the other hand, in hysteresis, solutions of ż = Z+(z) are extended to y = −α

before switching to ż = Z−(z). Here, α > 0 is some small parameter. Solutions of
ż = Z−(z) are similarly extended to y = α before switching occurs, see Fig. 2.

In smoothing, we basically introduce a boundary layer of orderO(ε) around y = 0
where p = φ(yε−1) changes by an O(1)-amount. From this point of view, it is also
useful to think of hysteresis as introducing a “negative” boundary layer around y = 0
of size 2α.

In both types of regularizations, forward solutions can be uniquely defined for all
ε > 0, α > 0, respectively, and in some cases, ε, α → 0 can be analyzed. For example,
inKristiansen andHogan (2018) the authors studied the regularization by smoothing of
a visible–invisible twofold inR3. The twofold is a well-known singularity of Filippov
systems that give rise to nonuniqueness of solutions. The results of Kristiansen and
Hogan (2018) showed that the smooth system has a well-defined limit for ε → 0
which selects a distinguished forward trajectory through the twofold. In this way, the
nonuniqueness has (in a certain sense) been resolved.

Reference Kristiansen (2020) also studied regularization by smoothing but consid-
ered the planar grazing bifurcation scenario, where a limit cycle of Z+ grazes� while
Z− remains transverse and points toward �. The results showed, in line with Bonet
and Seara (2016) and analysis based upon the associated Filippov system (Kuznetsov
et al. 2003), that in the case of a repelling limit cycle, the smooth system has a locally
unique saddle-node bifurcation of limit cycles. The analysis rested upon a careful
description of the local dynamics, through a local transition map Ploc : �in → �out,
near the grazing point which is given by a visible fold, see illustration in Fig. 3. These
results, together with Jelbart et al. (2021a, b, c) and Kristiansen and Szmolyan (2021)
working on similar systems, were obtained by adapting methods from Geometric Sin-
gular Perturbation Theory (Fenichel 1979; Jones 1995). In particular, these references
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Fig. 3 Illustration of the planar
visible fold, which is important
for the grazing bifurcation. The
visible fold separates the
switching manifold � into stable
sliding (x < 0) and crossing
points (x > 0)

use a modification of the blowup method (Dumortier and Roussarie 1996; Krupa and
Szmolyan 2001) to gain smoothness of systems of the form (3).

Recently, in Bonet and Seara (2022) the authors performed a related study of the
grazing bifurcation, but using regularization by hysteresis instead. Interestingly, the
results are completely different in this case. In fact, hysteresis leads to chaotic dynamics
for any 0 < α � 1 under the same assumptions.

In this paper, we consider a new regularization of (1) developed by Bonet et al.
(2017):

ẋ = X(z, p),

ẏ = Y (z, p),

ε|α| ṗ = φ

(
y + α p

ε|α|
)

− p,

(6)

for 0 < ε, |α| � 1.1 Notice that the dimension of (6) is one greater than the dimension
of (1). The connection between (6) and (1) at the pointwise level is as follows: By
Assumption 1, (6) converges pointwise to

ż = Z(z, p),

p =
{
1 y > 0

0 y < 0
,

(7)

for ε, α → 0 for y �= 0, which upon using (4) projects to (1). This model was
introduced by Bonet et al. (2017), in a general framework where Z(z, p) depends
nonlinearly on p, with the purpose to incorporate smoothing and hysteresis in one
single unified framework. The authors present asymptotic results for both α < 0 and
α > 0, connecting the dynamics of (6) in the latter case with Filippov’s sliding vector-
field. Since trajectories in hysteresis cross each-other in the “negative boundary layer,”
recall Fig. 2, it makes sense that the smooth model (6) is defined in an extended space.

1 In contrast to Bonet et al. (2017), we write their κ as ε.
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In Bonet et al. (2017), the authors consider functions φ, see Assumption 1, that
reach 0 and 1 at finite values:

φ(s) =
{
1 for all s ≥ 1

0 for all s ≥ −1
, φ′(s) > 0 for all s ∈ (−1, 1). (8)

Such functions have—following Sotomayor and Teixeira (1996)—been called
Sotomayor–Teixeira regularization functions. In this paper, also to exemplify the power
of our approach, we will follow Jelbart et al. (2021a, b, c), Kristiansen and Szmolyan
(2021) and Kristiansen (2020) and consider general regularization functions that are
truly asymptotic, like analytic ones, e.g.,

φ(s) = 1

2
+ 1

π
arctan(s). (9)

For this purpose, we add the following technical assumption:

Assumption 2 The regularization function φ has algebraic decay as s → ±∞, i.e.,
there exists a k ∈ N and smooth functions φ± : [0,∞) → [0,∞) such that

φ(s−1) =
{
1 − φ+(s)sk, s > 0,

φ−(−s)(−s)k, s < 0,
(10)

and
β+ := φ+(0) > 0, β− = φ−(0) > 0. (11)

There could be different k values k± for s→±∞, respectively, but for simplicity we
take these to be identical. In the following, β− will play little role so we will therefore
for simplicity write β+ as β. For (9), k = 1 and β = 1

π
.

Lemma 1.1 Suppose that Assumption 2 holds and consider (6) on any compact domain
U+ upon which y > 0. This system has an attracting slow manifold Sε,α—of the graph
form p = 1 + O(εk |α|k)—which carries the reduced problem:

ż = Z+(z) + O(εk |α|k), (12)

This holds uniformly and smoothly on the compact subset U+ and on this set (12) is
therefore a smooth O(εk |α|k)-perturbation of ż = Z+(z).

Proof By Assumption 2, we have the following on U+

x ′ = ε|α|X(z, p),

y′ = ε|α|Y (z, p),

p′ = 1 − p −
(

ε|α|
y + α p

)k

φ+
(

ε|α|
y + α p

)
,
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in terms of the fast time defined by ()′ = ε|α|(̇). Setting ε = 0, α = 0 on y > 0 gives
the layer problem

x ′ = 0,

y′ = 0,

p′ = 1 − p,

for which S0 = {(x, y, p) ∈ U+ | p = 1} clearly is a normally hyperbolic and attract-
ing critical manifold. The result then follows from Fenichel’s theory (Fenichel 1979),
see also Jones (1995, Theorem 2). 	


A similar result clearly holds within y < 0. The objective of our analysis is to
uncover what occurs near y = 0.

It is possible to obtain some intuition on the dynamics of (6) by looking at the
equation for the p-nullcline:

φ

(
y + α p

ε|α|
)

− p = 0, (13)

see also Bonet et al. (2017, Fig. 3). Given that p is a fast variable of (6), it is tempting
to think about the set defined by (13) as a critical manifold (ignoring for the moment
that it depends on ε and α in a singular way). We can solve (13) for y as a function of
p, ε and α by using φ−1. This gives

y = F(p, ε, α) := ε|α|φ−1(p) − α. (14)

Now, the graph y = F(p, ε, α), p ∈ (0, 1), of the function F has fold points at
(y, p) = (y f , p f ) whenever

F ′
p(p f , ε, α) = ε|α| 1

φ′ (φ−1(p f )
) − α = 0, F ′′

pp(p f , ε, α) �= 0,

see Fig. 4. Because the former condition can be written as

φ′ (φ−1(p f )
)

= ε sign α,

we only have fold points (using Assumption 1) for sign α = 1. In this case, assuming
that Assumption 2 holds, it is a simple calculation to show that there exist two fold
points (y±

f , p±
f ) and that these have the following asymptotics

(y−
f , p−

f ) =
(
O

(
αε

k
k+1

)
,O

(
ε

k
k+1

))
,

(y+
f , p+

f ) =
(
O(α), 1 + O

(
ε

k
k+1

))
,
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with respect to ε, α → 0, near p = 0 and p = 1, respectively. The leading order
terms can expressed in terms of β and k, see also (16) below.

In this paper, we will focus on α > 0; the case α < 0 is simpler and can be handled
by the same methods.

The graph of F has an S-shape, see Fig. 4, but since F converges pointwise to 0
for p ∈ (0, 1) as ε, α → 0, the folds (black disks) are only visible upon magnifica-
tion/blowup of y. Moreover, due to the singular nature it is a priori unclear whether
this folded structure behaves like folds in slow–fast systems, see, e.g., Szmolyan and
Wechselberger (2001, 2004). Nevertheless, if we continue to think of the graph of
F as a critical manifold and p as the fast variable, the S-shape structure hints at a
hysteresis-like mechanism for fast transitions between p = 0 and p = 1 through the
fold points. The folded structure becomes more profound for larger values of α > 0.
Our blowup approach (see Sect. 4) will describe this in further details and motivate
coordinates, including (ν213, p213, ρ213) defined by

⎧⎪⎨
⎪⎩

y = −α(1 + ρk
213 p213) + αρk

213ν213,

p = (1 + ρk
213 p213),

ε = ρk+1
213 ,

(15)

that can be used to describe the dynamics in a rigorous way. In fact, (15) leads to the
following equations: ẋ = 0 and

ν̇213 = −ν213

(
βν−k

213 + p213
)

,

ṗ213 = −ν213

(
βν−k

213 + p213
)

,

with β = φ+(0), in the dual singular limit α, ρ213 → 0. This system has the set R213
defined by p213 = −βν−k

213, ν213 > 0, as a manifold of equilibria. R213 is normally
hyperbolic everywhere except at

p213, f = −β (kβ)−
k

k+1 , ν213, f = (kβ)
1

k+1 , (16)

which is a fold point, see the left subfigure in Fig. 14 for an illustration. In the case
of sliding, we find that the fold point is a simple jump point, whereas in the case of
grazing it becomes a canard point (folded saddle singularity, within a certain parameter
regime). Notice that the location of the fold point (16) is by (15) in agreement with
the asymptotics for (y+

f , p+
f ) above.

We anticipate that our approachwill have general interest. It is clear that (6) involves
a combination of slow–fast and nonsmooth effects. The analysis of such system seems
to be rare. Reference Kristiansen (2021) offers an exception. This manuscript studied
a model of a friction oscillator, also of the form (3) but with φ non-monotone, in
the presence of a timescale separation. The combination of slow–fast and nonsmooth
effects was shown to lead to chaotic dynamics through a horseshoe obtained through
a folded saddle singularity (Szmolyan and Wechselberger 2001) and a novel return
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Fig. 4 Illustration of the graph of F (in orange), see (14). For ε, α > 0 small enough, F has two folds

(black disks) located O(ε
k

k+1 )-close to p = 0 and p = 1, respectively. The parameter α measures the
separation of the fold points in the y-direction. The pointwise limit for ε, α → 0 is indicated in red and
blue. In particular, the blue lines at p = 0 and p = 1 are asymptotes for the graph (14)

mechanism. We will obtain something similar for (6) in the case of the grazing bifur-
cation. However, the analysis of (6) is more involved, and as opposed to the system in
Kristiansen (2021), the slow–fast and nonsmooth effects are more combined. On top
of that, (6) involves two small parameters 0 < ε, |α| � 1.

We hope that our analysis of (6) will provide a template for the analysis of similar
systems with several singular parameters as well as a combination of slow–fast and
nonsmooth phenomena. At the same time, it is our anticipation that our results, in
particular on the grazing bifurcation and the unification of known results on smoothing
and hysteresis, will stimulate further research on the model (6).

1.1 Overview

The remainder of the paper is organized as follows. In Sect. 2, we present the blowup
approachwhichwill form the basis for our analysis of (6) withα > 0. This will include
a review of this method in the context of regularization by smoothing. Although the
results on smoothing are well known to experts, we believe that the use of the blowup
approach in this context provides a good platform to extend it to the analysis of (6).
In Sect. 3, we then present the first main results, summarized in Theorem 3.1, on the
dynamics of (6) for ε, α > 0 both sufficiently small in the case of stable sliding. In
proving this result, we also lay out the geometry of the dynamics using our blowup
approach. In Sect. 4, we prove an important lemma on a return map (resting upon the
description of a transition map near the blowup of the folds in Fig. 4) that is used to
prove Theorem 3.1. Finally, in Sect. 5, we turn our attention to the grazing bifurcation.
The main results of this section are stated in Theorem 5.2. In particular, for the grazing
bifurcation, we identify two separate parameter regimes in the (ε, α)-plane. In one
regime, we obtain a locally unique saddle-node bifurcation, as in the regularization by
smoothing (Kristiansen 2020), while in the other regime, we obtain chaotic dynamics,
consistent with the results in Bonet and Seara (2022) on regularization by hysteresis.

123



    6 Page 10 of 64 Journal of Nonlinear Science             (2024) 34:6 

The chaotic dynamics is obtained through a horseshoe and folded saddle singularities
of the blowup of the folds in Fig. 4.

2 Blowup

The blowup approach (Dumortier and Roussarie 1996; Krupa and Szmolyan 2001),
which in its original framework was developed as a method to deal with lack of hyper-
bolicity, has recently been adapted (Kristiansen and Hogan 2018) to deal with smooth
systems approaching nonsmooth ones. Within this framework, we gain smoothness
rather than hyperbolicity by applying blowup.

2.1 A Blowup Approach for Regularization by Smoothing

A particular emphasis in the development of blowup for smooth systems approaching
nonsmooth ones, has been on systems of the form (3). Within our context, these
systems correspond to regularization of the PWS system (1) by smoothing and the
blowup approach proceeds as follows:

Firstly, wework in the extended space (x, y, ε) by adding the trivial equation ε̇ = 0.
At the same time, to ensure that ε = 0 iswell defined,we consider this extended system
in terms of a fast time:

x ′ = εX
(

z, φ
( y

ε

))
,

y′ = εY
(

z, φ
( y

ε

))
,

ε′ = 0.

(17)

Then, (x, y, 0) is a set of equilibria, but (x, 0, 0) is extra singular due to the lack
of smoothness there. This set is therefore blown up through a cylindrical blowup
transformation defined by

(r , (ȳ, ε̄)) �→
{

y = r ȳ,

ε = r ε̄,
(18)

for r ≥ 0, (ȳ, ε̄) ∈ S1, leaving x fixed. Here, S1 is the unit circle in R
2. Notice that

r = 0, (ȳ, ε̄) ∈ S1 maps to (y, ε) = (0, 0) and the preimage of the set of points
(x, 0, 0) is a cylinder; it is in this sense that the set of point (x, 0, 0) is blown up by
(18). See Fig. 5.

Under the Assumption 2, φ(yε−1) = φ(ȳε̄−1) extends smoothly to (ȳ, ε̄) ∈ S1 ∩
{ε̄ ≥ 0}. This leads to the following, see Kristiansen and Hogan (2018).

Lemma 2.1 Let V denote the vector-field associated with (17) and let � :
(x, r , (ȳ, ε̄)) �→ (x, y, ε) be the blowup transformation defined by (18). Moreover, let
�∗(V ) be the pullback of V . Then,

V̂ := ε̄−1�∗(V ) defined on (x, r , (ȳ, ε̄)) ∈ R
n × [0,∞) × S1 ∩ {ε̄ > 0},
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Fig. 5 Illustration of blowup in the case of regularization by smoothing. Upon blowup, we gain smoothness
and hyperbolicity along the edges of the cylinder (indicated by the double-headed arrows, see Sect. 2.5)
as well as a critical manifold (in pink) when the associated PWS system has stable sliding. The most
fundamental result, see Proposition 2.2, is then that the slow flow on this critical manifold is given by
Filippov’s sliding vector-field (Color figure online)

extends smoothly and nontrivially (i.e. V̂ is not identically zero) to ε̄ = 0.

We suppose that the following holds.

Assumption 3 The PWS system (1) has stable sliding along the discontinuity set �:

Y+(x, 0) < 0, Y−(x, 0) > 0.

We also assume that � is a compact domain in Rn .

In this way, Z± are each transverse to �. This leads to V̂ having hyperbolic prop-
erties along r = 0, ε̄ = 0, see Kristiansen and Hogan (2018). This also holds true
even if Z(z, p) depends nonlinearly on p. However, for the purpose of this section,
we suppose the following.

Assumption 4 Z(z, p) is affine with respect to p as in (4).

Then, we have the following.

Proposition 2.2 (Kristiansen andHogan 2018; Llibre et al. 2009; Sotomayor and Teix-
eira 1996) Consider (3) and suppose that Assumptions 3 and 4 both hold. Then, V̂
has a normally hyperbolic critical manifold, carrying a reduced slow flow defined by
ẋ = Xsl(x), where Xsl is the Filippov sliding vector-field, see (2).

The result is illustrated in Fig. 5, see figure caption for further details, and has been
known to experts for many years, see also Sotomayor and Teixeira (1996).

2.2 Directional Charts

In practice, the analysis of V̂ is performed in directional charts. Since we will use
different directional charts in the sequel, we nowdefine these blowup-dependent charts
(in some generality, following Szmolyan andWechselberger (2001,Definition 3.1) and
Kristiansen and Hogan (2018) before we apply these concepts to (18).
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Fig. 6 Given a blowup and an associated directional blowup (two edges in the diagram), we define the
corresponding chart as the mapping (the final, third edge in the diagram) that makes the diagram commute
(on a subset of [0,∞) × Sn−1)

Consider x = (x1, . . . , xn) ∈ R
n , κ = (κ1, . . . , κn) ∈ N

n and the following
general, weighted (or quasihomogeneous Kuehn 2015), blowup transformation:

� : [0,∞) × Sn−1 → R
n : (ρ, x̄) �→ x, (ρ, x̄) �→ (ρκ1 x̄1, . . . , ρ

κn x̄n), (19)

Here, the preimage of x = 0 is {0} × Sn−1 where

Sn−1 =
{

x̄ = (x̄1, . . . , x̄n) ∈ R
n|

n∑
i=1

x̄2i = 1

}
,

is the unit (n − 1)-sphere. The positive integers κi ∈ N are called the weights of the
blowup, see Kuehn (2015).

Definition 2.3 Let j ∈ {1, . . . , n} and write x̂ j = (x̂1, . . . , x̂ j−1, x̂ j+1, . . . , x̂n) ∈
R

n−1. Then, the directional blowup in the positive j-th direction is the mapping

 j : [0,∞) × R
n−1 → R

n,

obtained by setting x̄ j = 1 in (19):

 j : (ρ̂, x̂ j ) �→ x = (ρ̂κ1 x̂1, . . . , ρ̂
κ j−1 x̂ j−1, ρ̂

κ j , ρ̂κ j+1 x̂ j+1, . . . , ρ̂
κn x̂n). (20)

The directional chart (x̄ j = 1) is then the coordinate chart

� j : [0,∞) × Sn−1 → [0,∞) × R
n−1,

such that

� =  j ◦ � j .

The directional blowup in the negative j-th direction and the associated directional
chart (x̄ j = −1) are defined completely analogously (by setting x̄ j = −1 in (19)).

We illustrate the concepts of a directional blowup and a directional chart in Fig. 6.
Notice that the directional blowup (20) is a diffeomorphism for ρ̂ > 0. But the preim-
age of x = 0 is ρ̂ = 0, x̂ ∈ R

n−1. � j exists and is unique, see Kristiansen and Hogan
(2018, Equation (5.5)). The details are not important and therefore omitted.
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With slight abuse of notation, we will, as is common in the literature, simply refer
to (20) as the (directional) charts x̄ j = 1 (although they are actually the coordinate
transformations in the local coordinates of the charts themselves, see also Fig. 6).
Notice that the directional blowups are easy to compute: We just substitute x̄ j = 1
into (19), see (20).

In the context of (18), we have three directional charts (ȳ = ±1) and (ε̄ = 1) so
that (18) takes the following local forms:

(ȳ = 1)1 :
{

y = r1,

ε = r1ε1,

(ε̄ = 1)2 :
{

y = r2y2,

ε = r2,

(ȳ = −1)3 :
{

y = −r3,

ε = r3ε3.

(21)

(In the radial case of (18), they simply correspond to central projections onto the lines
ȳ = 1, ε̄ = 1 and ȳ = −1, respectively, see also Kristiansen and Hogan (2018, Fig.
6).) These charts cover the relevant part of the cylinder with ε̄ ≥ 0. As indicated, we
refer to the three charts in (21) by (ȳ = 1)1, (ε̄ = 1)2, (ȳ = −1)3, respectively, and
the subscripts relate to the numbering used on the corresponding coordinates (r1, ε1),
(r2, y2) and (r3, ε3), respectively. The charts (ȳ = 1)1 and (ε̄ = 1)2 overlap for ȳ > 0
and the equations

r1 = r2y2, ε1 = y−1
2 ,

define smooth change of coordinates there. Similarly, (ȳ = −1)3 and (ε̄ = 1)2
overlap for ȳ < 0 and the equations r3 = r2y2, ε3 = −y−1

2 define smooth change of
coordinates there. (Obviously, (ȳ = 1)1 and (ȳ = −1)3 do not overlap.) Notice also
that in (ε̄ = 1)2 we have y = εy2 upon eliminating r2 and the blowup transformation
therefore relates to this important scaling where

φ
( y

ε

)
= φ(y2),

changes by anO(1)-amount. Moreover, in terms of (x, y2, r2), V̂ becomes slow–fast:

ẋ = εX(x, εy2, φ(y2)),

ẏ2 = Y (x, εy2, φ(y2)),
(22)

with r2 = ε = const.
Using Assumptions 3 and 4, it follows that (22) has a normally hyperbolic critical

manifold for ε = 0, carrying reduced slow flow given by (2). This essentially proves
Proposition 2.2. We illustrate the local dynamics in Fig. 7.
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Fig. 7 Slow–fast dynamics in
the (ε̄ = 1)2-chart (for ε = 0) in
the case of regularization by
smoothing. The reduced
problem is given by Filippov

2.3 A Different Version of Blowup

We emphasize that, while the blowup (18)—following Lemma 2.1—leads to gain
of smooothness, blowup is traditionally associated with gain of hyperbolicity. In
this version of blowup, the starting point is a vector-field V having a fully nonhy-
perbolic equilibrium point (or a set of degenerate equilibria) with the linearization
having only zero eigenvalues. Assuming that the equilibrium is at the origin, a blowup
transformation � is then of the form (19) with the weights κ chosen such that

V̂ := ρ−k�∗(V )

on (ρ, x̄) ∈ (0, ρ0] × Sn−1, extends smoothly and nontrivially to ρ = 0 for some
k ∈ N. The most useful situation is when the division by ρ−k (desingularization)
leads to hyperbolicity of equilibria within ρ = 0, so that the usual hyperbolic methods
(linearization, stable, unstable and centermanifolds, etc.) of dynamical systems theory,
see, e.g., Wiggins (2003), can be applied. See also Dumortier et al. (2006, Chapter
3.3) for general results on blowup (including the use of Newton polygons to select the
weights) for planar systems.

Blowup has been extremely successful in the analysis of slow–fast systems,
Dumortier and Roussarie (1996), Kosiuk and Szmolyan (2009), Krupa and Szmolyan
(2001) and Szmolyan and Wechselberger (2001), where loss of hyperbolicity occurs
persistently in the layer problem. Here, the weights κ of the blowup transformation
can often be directly related to the geometry of the problem. For example, for the
planar fold jump point, see, e.g., Krupa and Szmolyan (2001, Equation 2.5) where

x ′ ≈ −y + x2,

y′ = 0,
(23)

for ε = 0, we have a quadratic tangency between the critical manifold y ≈ x2 and
the (degenerate) fiber y = 0. In order to gain hyperbolicity, the weights κ have to be
so that this tangency is “broken.” This can be achieved by x = ρ x̄, y = ρ2 ȳ, ρ ≥ 0,
(x̄, ȳ) ∈ S1. Indeed, y ≈ x2 leads ȳ ≈ x̄2, (x̄, ȳ) ∈ S1 (θ ≈ ±0.67 if x̄−1 ȳ = tan θ ),
while y = 0 leads to ȳ = 0. For further details, we refer to Krupa and Szmolyan
(2001).

In this paper, we will combine these two different versions of blowup (gaining
smooothness and gaining hyperbolicity) to study (6). Similar combinations of blowup
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have been used to study bifurcations in systems of the form (3), see, e.g., Kristiansen
(2020) for an analysis of the grazing bifurcation and Jelbart et al. (2021b, c) for an
analysis of boundary equilibrium bifurcations (where equilibria of either Z± collide
with � upon parameter variation).

2.4 A Blowup Approach for (6)

To study (6) with α > 0, we now proceed as in Sect. 2.1. First, however, due to the
timescale separation of (6), we introduce a fast time and augment trivial equations for
ε and α ≥ 0:

x ′ = εαX(z, p),

y′ = εαY (z, p),

p′ = φ

(
y + α p

εα

)
− p,

ε′ = 0,

α′ = 0.

(24)

Now, since (6) is PWS with respect to both ε → 0 and α → 0, we anticipate that we
will need to perform two blowup transformation. In light of this, Sect. 2.1 suggests
that we should consider (24) with respect to an even faster timescale, corresponding to
multiplying the right hand side by εα again. But notice, despite the similarities, there
is also a fundamental difference between (24) and (17) insofar that the discontinuity
set of (24) for ε, α → 0 is y = 0, x ∈ �, p ∈ R, but the discontinuity only enters
the p-equation. To avoid too many multiplications and subsequent divisions by the
same quantities, we will therefore proceed more ad hoc in the following; in fact, the
analysis will show that it is only necessary to multiply the right hand side of (24) by
ε in order gain smoothness.

A priori it is not obvious how the two blowup transformations should be organized
and whether the order is important, but leaving ε and α as independent small parame-
ters, we will show that it is convenient to first blowup with respect to α. (See the end
of the section for a further discussion of this.) We therefore first apply the following
blowup transformation

(r , (ȳ, ᾱ)) �→
{

y = −r ᾱ p + r ȳ,

α = r ᾱ,
(25)

where r ≥ 0, (ȳ, ᾱ) ∈ S1, leaving all other variables x , p and ε untouched. In this way,
we gain smoothness with respect to α ≥ 0 for any ε > 0. Indeed, the transformation
(25) gives a smooth vector-field V for ε > 0 on (x, p, ε, (r , (ȳ, ᾱ)), with r ≥ 0,
(ȳ, ᾱ) ∈ S1, ᾱ ≥ 0, by pullback of (24) (without the need for further transformation
of time, as the division by ε̄ in Lemma 2.1). Notice specifically, that using (25) the
first term in the p-equation in (24) becomes:

φ

(
y + α p

εα

)
= φ

(
ȳ

εᾱ

)
, (26)
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Fig. 8 Illustration of the two consecutive blowup transformations relating to (6). The first cylinder
corresponds to (25). The second one corresponds to (27)

which for each ε > 0 is smooth on (ȳ, ᾱ) ∈ S1 ∩ {ᾱ ≥ 0}. However, there is still a
lack of smoothness along (ᾱ, ȳ) = (1, 0) as ε → 0. To deal with this, we perform a
second blowup transformation:

(ν, ( ¯̄y, ε̄)) �→
{

ᾱ−1 ȳ = ν ¯̄y,

ε = νε̄,
(27)

where ν ≥ 0, ( ¯̄y, ε̄) ∈ S1. Indeed, in this way, (26) becomes regular

φ

(
y + α p

ε|α|
)

= φ

( ¯̄y
ε̄

)
,

under Assumption 2. We illustrate the blowup transformations in Fig. 8.
As described in Sect. 2.1 in the context of regularization by smoothing, we will

also use different directional charts in the analysis of (6) to cover the two cylinders. In
particular, to cover the first cylinder, defined by (25) and (ȳ, ᾱ) ∈ S1, we (re-)consider
the two charts defined by:

(ȳ = 1)1 :
{

y = −r1α1 p + r1,

α = r1α1,
(28)

(ᾱ = 1)2 :
{

y = −r2 p + r2y2,

α = r2.
(29)

We will refer to these charts by (ȳ = 1)1 and (ᾱ = 1)2, respectively, henceforth. In
principle, we will also need the chart (ȳ = −1)3 that covers ȳ < 0 of cylinder, but
since the analysis there is identical to the analysis in the (ȳ = 1)1-chart we skip this.
The change of coordinates between the charts (ȳ = 1)1 and (ᾱ = 1)2 is given by the
expressions:

r1 = r2y2, α1 = y−1
2 . (30)
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Subsequently, to cover the second cylinder due to (27), we notice that in (ᾱ = 1)2,
(27) becomes

y2 = ν ¯̄y,

ε = νε̄,

for ν ≥ 0, ( ¯̄y, ε̄) ∈ S1. Therefore, we define the following charts

(ᾱ = 1, ¯̄y = 1)21 :
{

y2 = ν21,

ε = ν21ε21,
(31)

(ᾱ = 1, ε̄ = 1)22 :
{

y2 = ν22y22,

ε = ν22.
(32)

In both charts, we have α = r2. (The chart corresponding to ¯̄y = −1 is again similar
to ¯̄y = 1 and therefore left out.) The change of coordinates is given by the expressions

ν21 = ν22y22, ε21 = y−1
22 , (33)

valid for y22 > 0.
The two blowup transformations relate to two important scalings. Firstly, in the

(ᾱ = 1)2-chart, we have
y = −α p + αy2, (34)

upon eliminating r2 and consequently

φ

(
y + α p

ε|α|
)

= φ
( y2

ε

)
. (35)

Through the coordinate y2, we therefore zoom in on a O(α)-neighborhood of y = 0.
From (26), we understand that the resulting vector-field V2 in terms of (x, y2, p, r2, ε)
is itself PWS in the limit ε → 0. Consequently, following Sect. 2.1 and the results for
gaining smoothness of (17), we see that through (27), we obtain a smooth vector-field
V 2 on (x, p, α, ν, ( ¯̄y, ε̄)), ν ≥ 0, ε̄ ≥ 0, by pullback of εV2. This system has ε̄ as a
common factor and it is therefore V̂2 := ε̄−1V 2 that we will study (please compare
with Lemma 2.1).

Next, we emphasize that in the (ᾱ = 1, ε̄ = 1)22-chart, we have y2 = εy22 upon
eliminating ν22 and consequently

y = −α p + αεy22. (36)

Therefore, we also have that

φ

(
y + α p

ε|α|
)

= φ (y22) , (37)

andwe see that coordinate y22 provides a zoomonaO(αε)-neighborhoodof y = −α p.
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It is obvious that the scaling defined by (36) is important; this captures the region
where the first term in the equation for p in (24) changes by an O(1) amount with
respect to ε, α → 0. It also seems reasonable that the scaling (34) is useful, but it not
obvious why the scaling defined by

y = −α p + εy1, (38)

seems to play no role. To see this we have to insert this expression into (24). This gives

ε ẏ1 = α
(
φ

( y1
α

)
− p

)
+ εαY (x, y, p).

Here, we would like to divide by ε on the left hand side, but for this we will have to
make assumptions on ε relative to α (i.e., whether ε−1α is small, moderate or large).
If we insert (34) instead, then we obtain

α ẏ2 = α
(
φ

( y2
ε

)
− p

)
+ εαY (x, y, p).

Here, α is a common factor on both sides which can therefore be divided out. This
explains why (34) and (36) are both important in our analysis and why (38) will not
be used.

Finally, we emphasize that, while it might seem tempting to include y, ε and α

in a single spherical blowup transformation, this only works well upon imposing
specific order dependency on ε and α. In contrast, our approach based on two separate
blowup transformations allows us to consider the small parameters 0 < ε, α � 1
independently and thus cover a full neighborhood of (ε, α) = (0, 0).

2.5 Notation

Throughout the paper, we follow the convention that a set S in the blowup space is
given a subscript when viewed in a chart. That is, the subset of a set S, which is visible
in the chart (ȳ = 1)1, will be called S1. Similarly, S2 in the chart (ᾱ = 1)2. In the
charts, (ᾱ = 1)2 and (ᾱ = 1, ε̄ = 1)22, r2 = α and ν22 = ε are constants, so when
working in these charts, it is most convenient to eliminate r2 and ν22, respectively,
and return to treat ε and α as parameters. The only important thing to keep in mind in
regard to this, is that when we change coordinates (e.g., through (30) and (33)) then
this has to be viewed in the appropriate space. For example, in the (ᾱ = 1)2-chart, we
will obtain a slow manifold Sε,α,2 in the (x, y22, p)-space. When writing this in the
(ȳ = 1)1-chart, we first have to embed Sε,α,2 in the extended (x, y22, p, ε, α)-space
in the obvious way. We can then apply the change of coordinates (30) with r2 = α

and obtain Sε,α,1. We will henceforth perform similar change of coordinates without
further explanation, moving back and forth between different spaces, treating ε and α

as parameters whenever it is convenient to do so.
Moreover, when illustrating phase space diagrams, we follow the convention of

using different arrows on orbits to separate slow and fast directions. In particular,
fast orbits are indicated by double-headed arrows, while slow orbits are indicated
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by single-headed ones. More generally, we adapt a similar notation to separate
hyperbolic directions (double-headed arrows) from center/nonhyperbolic directions
(single-headed arrows).

3 Main Results in the Case of Stable Sliding

In this section, we will use the blowup approach, outlined in the previous section, to
describe the dynamics of (6) under the Assumption 3 of stable sliding. More specifi-
cally, we will provide a detailed study of the dynamics in each of the charts (ȳ = 1)1,
(ᾱ = 1)2, (ᾱ = 1, ¯̄y = 1)21, (ᾱ = 1, ε̄ = 1)22. In summary, this analysis reveals the
existence of two critical manifolds C and M ; these are essentially related to the blue
and red dotted curves in Fig. 4. Whereas C extends onto the first blowup cylinder,
obtained by (25), M lies on the subsequent blowup cylinder, obtained by (27). More-
over, C is normally attracting and enables an extension of Sε,α in Lemma 1.1 up to
y = cα, for c > 0 and all ε, α > 0 small enough. On the other hand, M is normally
repelling. Using the geometric representation used in Fig. 8, we illustrate the findings
in Fig. 9. On both C and M , we obtain a desingularized slow flow; the direction of this
flow is also indicated in the figure but we emphasize that x (not shown) is a constant
for this reduced flow. This leads to a singular cycle �x for each x ∈ �, which we
indicate in Fig. 9 using curves of increased thickness. Due to the desingularization
alongC ,�x is akin to a relaxation cycle in slow–fast systems. In the full blowup space,
the curves �x make up a singular cylinder � = {�x }x∈� of dimension n + 1. The first
main result basically says that this singular cylinder persists for 0 < ε, α � 1 and
that this manifold carries a reduced flow, which can be related to the Filippov sliding
vector-field (2).

Theorem 3.1 Suppose that Assumptions 1, 2 and 3 all hold true and let K > 1. Then,
there exists a δ > 0 such that for any 0 < ε, α < δ, (6) has an invariant cylinder Cε,α

of dimension n + 1, contained within y ∈ (−Kα, Kα). Cε,α is uniformly Lipschitz in
the blowup space and converges to � in the Hausdorff distance as ε, α → 0.

Let �0 be a local section on {y = −α p} transverse to Cε,α and define x �→
x+(x, ε, α) and x �→ T (x, ε, α) to be the corresponding return map and the transition
time, respectively. Then

x+(x, ε, α) = x + α
[
|Y+(x, 0)|−1 + |Y−(x, 0)|−1

]
Xsl(x) + O(α2, ε

k
k+1 α), (39)

T+(x, ε, α) = α
[
|Y+(x, 0)|−1 + |Y−(x, 0)|−1

]
+ O(α2, ε

k
k+1 α), (40)

where the order of the remainder remain unchanged upon differentiation with respect
to x. Specifically,

lim
ε,α→0

x+(x, ε, α) − x

T+(x, ε, α)
= Xsl(x).

Theorem 3.1 generalizes Proposition 2.2 to the framework of (6) with 0 < ε, α � 1
without any order dependency on ε and α.
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Fig. 9 Illustration of the dynamics on the blowup system. Our analysis reveals two normally hyperbolic
critical manifolds C and M . In case of stable sliding, the reduced slow flow on these invariant manifolds
reveals closed a singular cycles �x (thick curves) for each x ∈ �. This cycle does not have completely
desirable hyperbolicity properties due to the degeneracy at the point Q (indicated by the single-headed
arrows, see Sect. 2.5). The slow flow on M is given by p′ = −Y (x, 0, p) and we illustrate the situation
consistent with the Assumption 4. In this case, we also have that ẋ = Xsl (x) on the critical manifold defined
by Y (x, 0, p) = 0, see Lemma 3.5

We firmly believe that our approach can be modified to obtain a similar result for
the Sotomayor–Teixeira regularization functions, see (8). Here, the role of k will be
replaced by the order of smooothness of φ at ±1 (assuming finite smoothness), see
Bonet and Seara (2016, p. 10) (where k is called p). In fact, as discussed in Kristiansen
(2017, Section 3.1 and App. A), the Sotomayor–Teixeira regularization functions are
somewhat easier to handle in general as they do not require compactification.

We prove Theorem 3.1 in the following. In Sects. 3.1–3.4, we first analyze the
dynamics in each of the charts (ȳ = 1)1, (ᾱ = 1)2, (ᾱ = 1, ε̄ = 1)22, (ᾱ = 1, ¯̄y =
1)21, respectively. In Sect. 3.5, we then collect the findings in the local charts into a
global result, see Fig. 9. This includes a detailed description of �x . Following this
in Sect. 3.6, we first present a description of the return map defined on the section
�0

22 : y22 = 0 transverse to � in the (ᾱ = 1, ε̄ = 1)22-chart, see Lemma 3.8. The
description of this mapping rests upon a subsequent blowup transformation of the
degenerate point Q, which sits at the interface between C and M , with the purpose
of gaining hyperbolicity. The details of this blowup analysis of Q and the proof of
Lemma 3.8 are delayed to Sect. 4. (The main idea of the proof of Theorem 3.1 can be
understood without this blowup). Before this in Sect. 3.7, we show how Lemma 3.8
implies Theorem 3.1. Here, we rely on a general result (Szmolyan and Wechselberger
2004, Theorem A.1) on the existence of an invariant curve for a return mapping.

3.1 Analysis in the (ȳ = 1)1-Chart

In this chart, we insert (28) into (24) and obtain

x ′ = εr1α1X1(x, r1, p, α1, ε),
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r ′
1 = r1α1

(
1 − φ+ (εα1) εkαk

1 − p + εY1(x, r1, p, α1, ε)
)

,

p′ = 1 − φ+ (εα1) εkαk
1 − p,

α′
1 = −α2

1

(
1 − φ+ (εα1) εkαk

1 − p + εY1(x, r1, p, α1, ε)
)

,

(41)

and ε′ = 0, using Assumption 2. This system is the local form of V in the (ȳ = 1)1-
chart. As already advertised above, we will henceforth treat ε as parameter in this
chart. In (41), we have defined

X1(x, r1, p, α1, ε) := X(x, y, p), Y1(x, r1, p, α1, ε) := Y (x, y, p),

with y = −α p + r1 and α = r1α1 on the right hand sides. The system (41) is a slow–
fast system in nonstandard form with respect to the small perturbation parameter ε.
Indeed for ε = 0, the set C1 defined by p = 1 is a critical manifold of the layer
problem:

x ′ = 0,

r ′
1 = r1α1 (1 − p) ,

p′ = 1 − p,

α′
1 = −α2

1 (1 − p) ,

see illustration in Fig. 10. The linearization around any point in C1 produces −1 as
the only nonzero eigenvalue. C1 is therefore normally attracting.

Lemma 3.2 Consider any compact submanifold S0,1 of C1, defined as the graph p = 1
over a compact domain D1 in the (x, r1, α1)-space. Then for all 0 < ε � 1, there
exists a locally invariant slow manifold Sε,1, which is also a smooth graph over D1:

p = P1(x, r1, α1, ε),

where

P1(x, r1, α1, ε) = 1 − φ+ (εα1) εkαk
1 + O(εk+1αk+1

1 ).

Fig. 10 Dynamics in the
(ȳ = 1)1-chart. The manifold
C1 is normally hyperbolic. C1
actually extends to any
α = r1α1 but in this picture we
illustrate the α = 0 limit
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Fig. 11 Reduced dynamics on the normally hyperbolic critical manifold C1 (blue in Fig. 10) in the case
when Y+(x, 0) < 0. Within α1 = 0 the system is equivalent to z′ = Z+ upon time reparametrization for
r1 = y > 0. The line r1 = α1 = 0 is normally hyperbolic, each point having stable and unstable manifolds
(green and orange, respectively) under the assumption Y+(x, 0) < 0. In particular, the former invariant
manifold lies within r1 = 0, and along this set x is a constant (Color figure online)

Proof Direct calculation. 	


For any α > 0 small enough, we let Sε,α,1 denote the constant α-section, defined by
α = r1ε1, of the center manifold Sε,1. The resulting invariant manifold Sε,α,1 provides
an extension of the slow manifold Sε,α in Lemma 1.1 into the (ȳ = 1)1-chart.

On Sε,1, we have a reduced flow defined by

ẋ = r1X1(x, r1, P(x, r1, α1, ε), α1, ε),

ṙ1 = r1
(

Y1(x, r1, 1 − βεkαk
1, α1, ε) + O(εk+1αk+1

1 )
)

,

α̇1 = −α1

(
Y1(x, r1, 1 − βεkαk

1, α1, ε) + O(εk+1αk+1
1 )

)
, (42)

upon desingularization, corresponding division of the right hand side by εα1.

Lemma 3.3 Consider (42). Then, (x, 0, 0) defines a set of equilibria for all ε ≥ 0 and
it is normally hyperbolic and of saddle type if Y+(x, 0) �= 0.

The reduced problem is illustrated in Fig. 11. Notice it is identical to what is found
by smoothing the PWS system, recall (17) and Fig. 5, near the edge of the blowup
cylinder defined by (18).

3.2 Analysis in the ( ¯̨ = 1)2-Chart

In this chart, we insert (29) into (24) and obtain the following equations

x ′ = εαX(x,−α p + αy2, p),

y′
2 = φ

( y2
ε

)
− p + εY (x,−α p + αy2, p),

p′ = φ
( y2

ε

)
− p,

(43)
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with ε′ = α′ = 0. Within ε = 0, we re-discover the manifold of equilibria C1 from
the (ȳ = 1)1-chart, in the following form:

C2 : p = 1.

Notice that the dependency on α is regular. In particular, note that C2 is a critical
manifold for any α ≥ 0. We will often view it within α = 0 (as in Fig. 10 since
α = r1α1 in the (ȳ = 1)1-chart).

The manifold C2 is also normally attracting for (43) and carries the following
reduced problem

x ′ = 0,

y′
2 = Y+(x, 0),

upon passage to the slow time for ε = α = 0.
In further details, let S0,α,2 ⊂ C2 be a compact submanifold contained within

y2 > 0 for any α ≥ 0. Then, S0,α,2 perturbs to a slow manifold Sε,α,2 by Fenichel’s
theory for 0 < ε � 1 and an easy calculation shows that it takes the following graph
form:

Sε,α,2 : p = P2(y2, ε, α),

where

P2(y2, ε, α) = 1 − φ+(y−1
2 ε)y−k

2 εk + O(εk+1).

As a slow manifold, Sε,α,2 is nonunique but we may fix a copy such that it extends
Sε,α,1. The reduced problem on Sε,α,2 is given by

x ′ = αX(x,−αP2(y2, ε, α) + αy2, P2(y2, ε, α)),

y′
2 = Y (x,−α + αy2, 1) + O(εk)

= Y+(x, 0) + O(εk, α).

(44)

3.3 Analysis in the ( ¯̨ = 1, �̄ = 1)22-Chart

Consider (24) in terms of a faster time corresponding to multiplication of the right
hand side by ε. Then by inserting (32) into these equations, we obtain the following

ẋ = ε2αX(x,−α p + εαy22, p),

ẏ22 = φ(y22) − p + εY (x,−α p + εαy22, p),

ṗ = ε(φ(y22) − p),

(45)

and ε′ = α′ = 0. The system (45) is now a slow–fast system with respect to ε ≥ 0 in
standard form, x and p being slowwhile y22 is fast. For ε = 0, we obtain the following
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layer problem:
ẋ = 0,

ẏ22 = φ(y22) − p,

ṗ = 0,

(46)

and consequently the set M22 defined by (x, y22, φ(y22)) is a critical manifold, even
for α > 0. As with C , we will often think of M22 within α = 0.

The manifold M22 is normally repelling, since the linearization of (46) around
any point (x, y22, φ(y22)) produces φ′(y22) > 0 as a single nonzero eigenvalue, see
Assumption 1.

Lemma 3.4 Consider any compact submanifold N0,α,22 of M22, defined as the graph
p = φ(y22) over a compact domain E22 in (x, y22)-space for any α ≥ 0. Then for
all 0 < ε � 1, there exists a locally invariant slow manifold Nε,α,22 which is also a
smooth graph over E22:

p = P22(x, y22, ε, α),

where

P22(x, y22, ε, α) = φ(y22) + εY (x, 0, φ(y22)) + O(ε2, εα).

The reduced problem on Nε,α,22 is given by

x ′ = αX(x,−αP22(x, y22, ε, α) + εαy22, P22(x, y22, ε, α)),

y′
22 = −φ′(y22)

−1Y (x, 0, φ(y22)) + O(ε, α),
(47)

in terms of a slow time (that corresponds to dividing the right hand side of (45) by ε2).

Proof For the reduced problem, we first use that

ṗ = ε (φ(y22) − p) = −ε2 (Y (x, 0, φ(y22)) + O(ε, α)) ,

on Nε,α,22. Then upon realizing that p = φ(y22)+O(ε), we obtain the desired result.
	


Notice that for ε = α = 0, we can also write (47) as

x ′ = 0,

p′ = −Y (x, 0, p),
(48)

which is more convenient.

Lemma 3.5 Suppose that Assumptions 3 and 4 both hold. Then, (48) has a critical
manifold K22 defined by

Y (x, 0, p) = 0,
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Fig. 12 Dynamics in the
(ᾱ = 1, ε̄ = 1)22-chart. The
critical manifold M22 is
normally hyperbolic and
repelling and if Assumptions 4
and 3 hold true then there exists
an unstable critical set K22 of
the slow flow on M22, carrying
Filippov’s sliding flow as a
reduced slow flow, see
Lemma 3.5

which is normally repelling. The reduced problem on K22 is given by

ẋ = Xsl(x), (49)

recall (2), with respect to the original (slow) time of (6) for ε = α = 0.

Proof Using 4, we obtain that K22 is given by

p = Y−(x, 0)

Y−(x, 0) − Y+(x, 0)
.

Inserting this into ẋ = limα,ε→0 α−1x ′, where x ′ is given as in (47) with
P22(x, y22, 0, 0) = p, produces (49), see also (2). Finally, the stability of K22 is
determined by the linearization of (48). We obtain −Y+ + Y− > 0 (using Assumption
3) as the single nontrivial eigenvalue. This completes the proof. 	


In Fig. 12, we summarize the findings.

Remark 3.6 Interestingly, the contraction and expansion rates along Sε,α and Nε,α are
different with respect to ε, α > 0 in the following sense: Suppose that X1 �= 0. Then,
when x1 changes by an order O(1)-amount for the reduced flow on Sε,α , there is
contraction along the stable fibers of the order O(e−cε−1α−1

), c > 0. On the other
hand, under the same assumptions on Nε,α , see (45), if x1 changes by an orderO(α)-
amount for the reduced problem on Nε,α in backward time then there is a contraction
along the (unstable) fibers of the order O(e−cε−2

), c > 0.
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3.4 Analysis in the ( ¯̨ = 1, ¯̄y = 1)21-Chart

Consider again (24) in terms of a faster time corresponding tomultiplication of the right
hand side by ε. Then by inserting (31) into these equations, we obtain the following

ẋ = ν221ε21αX21(x, ν21, p, α),

ν̇21 = ν21

[
1 − φ+(ε21)ε

k
21 − p + ν21ε21Y21(x, ν21, p, α)

]
,

ṗ = ν21

(
1 − φ+(ε21)ε

k
21 − p

)
,

ε̇21 = −ε21

[
1 − φ+(ε21)ε

k
21 − p + ν21ε21Y21(x, ν21, p, α)

]
,

(50)

upon desingularization through division of the right hand side by ε21. Here, we treat
α as parameter and have introduced the following quantities

X21(x, ν21, p, α) := X(x,−α p + αν21, p), Y21(x, ν21, p, α) := Y (x, −α p + αν21, p).

The set B21 defined by ν21 = ε21 = 0 is a set of equilibria for any α ≥ 0. The
linearization about any point in this set has two nontrivial eigenvalues: ±(1 − p).
Consequently, the subset Q21 ⊂ B21 defined by p = 1 is fully nonhyperbolic, also
for any α ≥ 0.

Let ν21 = 0 in (50). Then,

ẋ = 0,

ṗ = 0,

ε̇21 = −ε21

(
1 − φ+(ε21)ε

k
21 − p

)
.

Besides B21, we see that the set M21, defined by

M21 : p = 1 − φ+(ε21)ε
k
21, ε21 > 0, (51)

is a set of equilibria within ν21 = 0. M21 corresponds to the subset of M22 with y22 > 0
by (33). The corresponding graph (51) ends in Q21 for ε21 = 0.

There is obviously another critical set C21, given by ε21 = 0, p = 1, ν21 > 0,
emanating from Q21. It corresponds to C1 from the (ȳ = 1)-chart, see Sect. 3.1.

Both sets, M21 and C21 are normally hyperbolic, M21 being repelling, whereas C21
is attracting. The set Q21—at the interface of these critical manifolds with different
normal stability—acts like a regular fold jump point of slow–fast systems, see Krupa
and Szmolyan (2001) and Szmolyan and Wechselberger (2004). In particular, there is
only one mechanism (a fast jump, magenta in Fig. 13) with which one can leave Q21
(upon entering from either C21 or M21). (For further details, see Sect. 4.1 where Q21
is blown up.) Notice that as in the case of the planar fold piont (23), there is tangency
between p = 1 (the jump mechanism) and M21 within ν21 = 0 for k > 1, but the
tangency is of order k in the present case.
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Fig. 13 Dynamics in the
(ᾱ = 1, ¯̄y = 1)21-chart. The
critical manifolds M21, B21 and
C21 are all normally hyperbolic
away from the degenerate point
Q21 at ν21 = ε21 = 0, p = 1

Let ε21 = 0 in (50). Then,

ẋ = 0,

ν̇21 = ν21 (1 − p) ,

ṗ = ν21 (1 − p) .

It follows that each point on the critical set (x, 0, p, 0) ∈ B21 with p < 1 is connected
by a heteroclinic orbit through the dynamics of (50) to a point on C21. In particular,
we have the following result, which follows from a simple calculation.

Lemma 3.7 Consider (50). Then for each p < 1 and any α ≥ 0, there is a heteroclinic
connection contained within ε21 = 0, having (x, 0, p, 0) ∈ B21 as the α-limit set and
(x, 1 − p, 1, 0) ∈ C21 as the ω-limit set.

We illustrate our findings in the (ᾱ = 1, ¯̄y = 1)21-chart in Fig. 13.

3.5 Collecting the Local Results Into a Global Picture

Figure 9 summarizes the findings in the local charts. Notice specifically, that while
we have focused on the upper part of the cylinders, the analysis of the lower part is
identical and therefore skipped. In conclusion, we obtain a singular cycle �x for each
x ∈ �sl , x being a constant on the two cylinders. �x is the union of six pieces γxi ,
i = 1, . . . , 6 where:

1. γx1 is a heteroclinic connection on the first cylinder. It is described in the coor-
dinates of the (ᾱ = 1, ¯̄y)21-chart in Lemma 3.7 (corresponding to p = 0 in
this result). In particular, x is constant along γx1 and its α-limit set is given by
(ν21, p, ε21) = (0, 0, 0) on B21, whereas theω-limit set is given by (ν21, p, ε21) =
(1, 1, 0), belonging to the normally attracting set C21.

2. γx2 is an orbit segment of the desingularized system on the attracting manifold
C . In the coordinates of the (ᾱ = 1)2-chart, γ2x takes the following form p = 1,
y2 ∈ (0, 1], ε = α = 0. In the coordinates of the (ᾱ = 1, ¯̄y = 1)21-chart, it ends
at Q21.
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3. γx3 is a heteroclinic connection on the second cylinder, connecting the degenerate
point Q with a partially hyperbolic point on the other side. In the coordinates of
the (ᾱ = 1, ε̄)22-chart, γx3 is given by p = 1, y22 ∈ R, ε = α = 0.

The remaining pieces γxi , i = 4, 5, 6 are obtained in a similar way. When x ranges
over the compact domain �, we obtain a compact cylinder � := {�x }x∈� .

3.6 A ReturnMap

Consider the (ᾱ = 1, ε̄ = 1)22-chart and define a local section �0
22 in the (x, y22, p)-

space at y22 = 0 with p ∈ I 0 a small neighborhood of p = 0, see Fig. 9, treating both
ε ≥ 0 and α ≥ 0 as sufficiently small parameters. � then intersects �0

22 in p = 0 (for
ε = α = 0). For ε > 0, α > 0, sufficiently small, we will then have a well-defined
return map P22 : �0

22 → �0
22, (x, p) �→ (x+, p+) with (x+, 0, p+) being the first

return of (x, 0, p) to�0
22 upon following the forward flow. In particular, the following

holds.

Lemma 3.8 The mapping P22 is given by

x+(x, p, ε, α) = x + α
[
(1 − p)|Y+(x, 0)|−1X+(x, 0) + |Y−(x, 0)|−1X−(x, 0)

]
+ O

(
α2, ε

k
k+1 α

)
,

p+(x, p, ε, α) = s22(x, ε, α) + O(e−c/ε),

(52)

with s22(x, ε, α) = O(ε
k

k+1 ) smooth in x, continuous in 0 ≤ ε, α � 1. The remainder
terms remain unchanged upon differentiation with respect to x and p.

We prove Lemma 3.8 in Sect. 4.

3.7 Completing the Proof of Theorem 3.1

We now show how Lemma 3.8 implies Theorem 3.1. For this, we first realize that
the return map in Lemma 3.8 satisfies the hypothesis of Szmolyan and Wechselberger
(2004, Theorem A.1) regarding the existence of an invariant curve.

Proposition 3.9 The mapping P22 has an invariant curve given by the graph

p = c22(x, ε, α),

with c22(x, ε, α) = O(ε
k

k+1 ) smooth in x and continuous in ε, α → 0.

Proof To apply (Szmolyan andWechselberger 2004, TheoremA.1), we first writeP22
in terms of (x, p̃) where p̃ := p − s22(x, ε, α). We drop the tilde. Then following
Lemma 3.8, P22 for α, ε → 0 is given by (x, p) �→ (x, 0). In comparison with
Szmolyan and Wechselberger (2004, Theorem A.1), we therefore have y = x , z = p,
G0(y) = y with G ′

0(y) �= 0 and H2(ε) = O(e−c/ε). The conditions of Szmolyan and
Wechselberger (2004, Theorem A.1) are easily verified. 	
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Upon applying the flow map to the invariant curve of P22 in Proposition 3.9, we
obtain the desired invariant cylinder Cε,α in Theorem 3.1. To finish the proof of The-
orem 3.1, we just have to prove (39). For this, we reduce the mapping P22 to the
invariant manifold Cε,α . From the previous analysis, we obtain

x �→ x + α
[
|Y+(x, 0)|−1X+(x, 0) + |Y−(x, 0)|−1X−(x, 0)

]
+ O

(
α2, ε

k
k+1 α

)
.

Using (2) we can write [· · · ] as
(
|Y+(x, 0)|−1 + |Y−(x, 0)|−1

)
Xsl(x).

This completes the proof of the expression for x+ in (39). The expression for the
transition time is similar; in fact, it can be obtained from the expression for x by
setting X+ = X− = 1 (since ṫ = 1).

4 Proof of Lemma 3.8

To prove Lemma 3.8, we will chop the return map P22 into several local pieces.
However, to describe the local transition near the degenerate set Q, we have to perform
an additional blowup step. In the following,wefirst analyze this blowup transformation
and the associated dynamics in separate local charts. In this way, we obtain singular
cycles �x with improved hyperbolicity properties.

4.1 Blowup ofQ

We work in the (ᾱ = 1, ¯̄y = 1)21-chart with the coordinates (x, ν21, p, ε21), treating
α as a parameter. Then, Q takes the local form (x, 0, 1, 0), x ∈ �, which is blown up
by the following transformation

ρ ≥ 0, (ν̄21, p̄, ε̄21) ∈ S2 �→

⎧⎪⎨
⎪⎩

ν21 = ρk ν̄21,

p = 1 + ρk p̄,

ε21 = ρε̄21,

(53)

that leaves x fixed. Notice that the weights on p and ε21 are so that the tangency
between p = 1 and M21, see (51), is “broken” in the blown up space (recall the
discussion around (23)). This transformation induces a vector-field V 21 by pullback
of (50), having ρk as a common factor. It is therefore the desingularized vector-field
V̂ = ρ−k V 21 that we study in the following.

Seeing that ν21, ε21 ≥ 0 we are only interested in the quarter sphere defined by
ν̄21, ε̄21 ≥ 0, see Figs. 14 and 15. Consider the two directional charts, ν̄ = 1 and ε̄ = 1
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with chart-specific coordinates defined by

(ᾱ = 1, ¯̄y = 1, ν̄21 = 1)211 :

⎧⎪⎨
⎪⎩

ν21 = ρk
211

p = 1 + ρk
211 p211,

ε21 = ρ211ε211.

(ᾱ = 1, ¯̄y = 1, ε̄21 = 1)212 :

⎧⎪⎨
⎪⎩

ν21 = ρk
212ν212

p = 1 + ρk
212 p212,

ε21 = ρ212.

Although these charts cover the relevant part of the sphere (except for p̄ = ±1 but this
part is trivial), we prefer to cover a compact subset of ν̄21, ε̄21 > 0 using a separate
chart. This chart, which we will refer to as (ᾱ = 1, ¯̄y = 1, ν̄21ε̄21 = 1)213, is defined
by the coordinates (ρ213, p213, ν213) and the equations

(ᾱ = 1, ¯̄y = 1, ν̄21ε̄21 = 1)213 :

⎧⎪⎨
⎪⎩

ν21 = ρk
213ν213,

p = 1 + ρk
213 p213,

ε21 = ρ213ν
−1
213.

The advantage of working with this chart, is that in these coordinates

ε = ν21ε21 = ρk+1
213 , (54)

and ρ213 is therefore conserved. In comparison, we have

ε = ν21ε21 = ρk+1
211 ε211 = ρk+1

212 ν212, (55)

in the other charts. Notice that we also have ν̄21ε̄
−k
21 = νk+1

213 , which is why we only use
these coordinates to cover a compact subset of ν̄21, ε̄21 > 0. The coordinate changes
between the different charts are given by the following expressions:

⎧⎪⎪⎨
⎪⎪⎩

ρ211 = ρ213ν
1
k
213,

p211 = p213ν
−1
213,

ε211 = ν
− k+1

k
213 ,

⎧⎪⎨
⎪⎩

ρ212 = ρ213ν
−1
213,

p212 = p213νk
213,

ν212 = νk+1
213 .

(56)
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4.2 Entry Chart ( ¯̨ = 1, ¯̄y = 1, �̄21 = 1)211

In this chart, we obtain the following equations:

ẋ = ρk+1
211 ε211αX211(x, ρ211, p211, α),

ρ̇211 = 1

k
ρ211

[
−p211 − φ+(ρ211ε211)ε

k
211 + ρ211ε211Y211(x, ρ211, p211, α)

]
,

ṗ211 = (1 − p211)
(
−p211 − φ+(ρ211ε211)ε

k
211

)
− ρ211ε211 p211Y211(x, ρ211, p211, α),

ε̇211 = −k + 1

k
ε211

[
−p211 − φ+(ρ211ε211)ε

k
211 + ρ211ε211Y211(x, ρ211, p211, α)

]
,

(57)
where

X211(x, ρ211, p211, α) := X21(x, ρk
211, 1 + ρk

211 p211, α),

Y211(x, ρ211, p211, α) := Y21(x, ρk
211, 1 + ρk

211 p211, α).

Setting ρ211 = ε211 = 0, we find ẋ = 0 and

ṗ211 = −p211(1 − p211).

Consequently, (x, 0, 0, 0) and (x, 0, 1, 0) are both partially hyperbolic. The former
allows us to extend the critical manifoldC21 in chart (ᾱ = 1, ¯̄y = 1)21 onto the blowup
sphere as a normally hyperbolic invariant manifold C211. In fact, within ρ211 = 0 we
have that p211 = −βεk

211 is a manifold of equilibria R211 and C211 will therefore
include these points, at least locally. We will see the resulting slow–fast structure
more clearly in the chart (ᾱ = 1, ¯̄y = 1, ν̄21ε̄21 = 1)213 which we analyze in the
following section. The hyperbolicity of C211 allows us to extend the slow manifold
Sε,α as a constant ε-section Sε,α,211, defined by (55), of a center manifold Sα,211.

Lemma 4.1 There exists an attracting center manifold Sα,211 of (x, 0, 0, 0) for (57) for
all 0 ≤ α � 1, which is a graph over a compact domain D211 in the (x, ρ211, ε211)-
space:

p211 = P211(x, ρ211, ε211, α),

where

P211(x, ρ211, ε211, α) = −φ+(ρ211ε211)ε
k
211

(
1 + kρ211ε211Y+(x, αρk

211) + O(ρ211ε
2
211)

)
.

Proof Direct calculation. In the expression for P211, we have used that
Y211(x, ρ211, 0, α) = Y+(x, αρk

211). 	
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The reduced problem on Sα,211 is given by

ẋ = ρk
211αX211(x, ρ211, P211(x, ρ211, ε211, α), α),

ρ̇211 = 1

k
ρ211

[
Y211(x, ρ211,−βεk

211, α) + kεk
211Y+(x, αρk

211) + O(εk+1
211 )

]
,

ε̇211 = −k + 1

k
ε211

[
Y211(x, ρ211,−βεk

211, α) + kεk
211Y+(x, αρk

211) + O(εk+1
211 )

]
,

upon dividing the right hand side by ρ211ε211. Whenever we have stable sliding, we
have Y+(x, 0) < 0 and we can therefore divide through by −[· · · ] > 0:

ẋ = ρk
211α

(
− X+(x, 0)

Y+(x, 0)
+ O(εk

211, α)

)
,

ρ̇211 = −1

k
ρ211,

ε̇211 = k + 1

k
ε211.

(58)

We will now describe a transition map P4
211 : �4

11 → �5
11 where �4

11 : ρ211 = cin
to �5

11 : ε211 = cout. We express this map in terms of (x, ρ211, p̃211, ε211) with p̃211
defined by

p̃211 = p211 − P211(x, ρ211, ε211, α).

and then restrict p̃211 to a sufficiently small neighborhood of 0.

Lemma 4.2 The transition map P4
211 from �4

11 to �5
11 takes the following form

P4
211(x, cin, p̃211, ε211, α) =

⎛
⎜⎜⎜⎜⎝

x − ck
inα

X+(x,0)
Y+(x,0) + O

(
α2, αε

k
k+1
211

)
cin(c

−1
outε211)

1
k+1

O(e−c/ε211)

cout

⎞
⎟⎟⎟⎟⎠ ,

for some c > 0. The order of the remainders remains unchanged upon differentiation
with respect to x and p̃211.

Proof The proof is standard using Fenichel’s theory and normal forms, see, e.g., Jones
(1995). In particular, since p̃211 = 0 is invariant, we have

ṗ211 =
(
−1 + O(ε211ρ211, ε

k
211)

)
p211, (59)

upon dropping the tildes. Then upon invoking Fenichel’s normal form Jones (1995),
we straighten out the stable fibers of Sα,211 by setting x̃ = x+O(ρk+1

211 ε211α). Then, the
(x̃, ρ211, ε211)-system is independent of p211 and described by (58) upon dropping the
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tilde. We then simply integrate the ρ211 and ε211-equations in (58), insert the resulting
expressions into the x-equation and estimate x . On the other hand, on the timescale
of (58), (59) becomes

ṗ211 = ρ−1
211ε

−1
211|Y+(x, 0)|−1

(
−1 + O(ε211ρ211, ε

k
211)

)
p211.

From here, using (55), we then estimate p211 = O(e−c/ε211) uniformly on �5
11 for

some c > 0. The partial derivatives of P4
211 can be handled in a similar way. The

expression for the ρ211-component, ρ211,out, follows from the conservation of ε, recall
(55):

ck+1
in ε211 = ρk+1

211,outcout.

	


4.3 Analysis in the ( ¯̨ = 1, ¯̄y = 1, �̄21�̄21 = 1)213-Chart

In this chart, we obtain the following equations:

ẋ = ρk+1
213 ν213αX213(x, ν213, p213, ρ213, α),

ν̇213 = ν213

(
ρ213Y213(x, ν213, p213, ρ213, α) − φ+(ρ213ν

−1
213)ν

−k
213 − p213

)
,

ṗ213 = −ν213

(
φ+(ρ213ν

−1
213)ν

−k
213 + p213

)
,

(60)

and ρ̇213 = 0. Notice that we restrict attention to a compact set with ν213 > 0, to avoid
the singularity at ν213 = 0. Here, we have defined X213 and Y213 by

X213(x, ν213, p213, ρ213, α) : = X(x,−α(1 + ρk
213 p213) + αρ2k+1

213 ν213, 1 + ρk
213 p213),

Y213(x, ν213, p213, ρ213, α) : = Y (x, −α(1 + ρk
213 p213) + αρ2k+1

213 ν213, 1 + ρk
213 p213).

For ρ213 = 0, which corresponds to ε = 0, we obtain the layer problem

ẋ = 0,

ν̇213 = −ν213

(
βν−k

213 + p213
)

,

ṗ213 = −ν213

(
βν−k

213 + p213
)

,

recall (11), writing φ+(0) as β+ = β for simplicity. Consequently, the set R213 defined
by p213 = −βν−k

213, ν213 > 0, ρ213 = 0 is a manifold of equilibria; it coincides with
R211 from the (ᾱ = 1, ¯̄y = 1, ν̄21 = 1)211-chart upon change of coordinates, see
(56). The linearization about any point in R213 gives a single nonzero eigenvalue
kβν−k−1

213 − 1. This gives the following.
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Fig. 14 To the left, we illustrate the dynamics in the (ᾱ = 1, ¯̄y = 1, ν̄21ε̄21 = 1)213-chart using a projection
onto the (p213, ν213)-coordinate plane. Here, we find a critical manifold R213 which has a regular fold
jump point (in green). On the right, we summarize the findings on the blowup of Q. The local diagram on
the left covers the subset of the sphere that is bounded away from the edges (purple) (Color figure online)

Lemma 4.3 Let

ν213, f := (kβ)
1

k+1 . (61)

Then R213 divides into a repelling part R213,r for 0 < ν213 < ν213, f and an attracting
part R213,a for ν213 > ν213, f . Moreover, if Y+(x, 0) < 0 for all x then the degenerate
subset J213 of R213 defined by ν213 = ν213, f consists of regular jump points.

Proof The statement about the jump points follows from an analysis of the reduced
problem on R213:

x ′ = 0,

ν′
213 = Y+(x, 0)

ν2213

ν213 − kβν−k
213

.
(62)

This can be obtained fromWechselberger (2020) or more directly by writing the slow
manifold approximation as

p213 = −φ+(ρ213ν
−1
213)ν

−k
213 + ρ213

kβν−k
213

ν213 − kβν−k
213

Y213(x, ν213,−βν−k, 0, 0)

+ O(ρ2
213, ρ213α), (63)

where Y213(x, ν213,−βν−k, 0, 0) = Y+(x, 0), inserting the result into the (x, ν213)-
subsystem, writing the system in terms of the slow time and then letting ρ213 → 0.

	


The dynamics of the layer problem and the reduced problem are illustrated in
Fig. 14.
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4.4 Exit Chart ( ¯̨ = 1, ¯̄y = 1, �̄21 = 1)212

In this chart, we obtain the following equations:

ẋ = ρk+1
212 ν2212αX212(x, ν212, p212, ρ212, α),

ν̇212 = −(1 + k)ν212
[−ρ212ν212Y212(x, ν212, p212, ρ212, α) + φ+(ρ212) + p212

]
,

ṗ212 = −kp212
[−ρ212ν212Y212(x, ν212, p212, ρ212, α) + φ+(ρ212) + p212

]
− ν212(φ+(ρ212) + p212)

ρ̇212 = ρ212
[−ρ212ν212Y212(x, ν212, p212, ρ212, α) + φ+(ρ212) + p212

]
.

(64)
Here, we have defined

X212(x, ν212, p212, ρ212, α) = X21(x, ρk
212ν212, 1 + ρk

212 p212, α),

Y212(x, ν212, p212, ρ212, α) = Y21(x, ρk
212ν212, 1 + ρk

212 p212, α).

For α = 0, ν212 = 0, we re-discover the manifold of equilibria M22 from the chart
(ᾱ = 1, ε̄ = 1)22 in the following graph form

M212 : p212 = −φ+(ρ212), ρ212 > 0.

The graph ends at a partially hyperbolic point p212 = −φ+(0) = −β < 0, recall (11).
On the other hand, consider α = 0 and the (ν212, p212, ρ212)-subsystem with x fixed.
Then, the point qexit,212 : p212 = 0, ν212 = 0, ρ212 = 0 is fully hyperbolic for the
resulting (ν212, p212, ρ212)-subsystem. Indeed the linearization of this system around
(0, 0, 0) produces the following eigenvalues

−(1 + k)β, −kβ, β,

independent of x .
For later convenience, we will now describe details of a transition map P7

212 :
�7

213 → �8
213 for all α ≥ 0 sufficiently near pexit and with x ∈ �sl , from

�7
213 : ν212 = cin to �8

213 : ρ212 = cout, with cin > 0 and cout > 0 small
enough. For this, we first divide the right hand side of (64) by the square bracket:[−ρ212ν212Y212(x, p212, ρ212, α) + φ+(ρ212) + p212

]
> 0, using that this quantity is

≈ β and therefore positive in a sufficiently small neighborhood of qexit,212. This gives

ẋ = ρk+1
212 ν2212α X̃212(x, ν212, p212, ρ212, α),

ν̇212 = −(k + 1)ν212,

ṗ212 = −kp212 − ν212 + ν2212ρ212Z212(x, ν212, p212, ρ212, α)

ρ̇212 = ρ212,

(65)
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where X̃212 = X212/ [· · · ] and

Z212(x, ν212, p212, ρ212, α) := − Y212(x, p212, ρ212, α)

−ρ212ν212Y212(x, p212, ρ212, α) + φ+(ρ212) + p212

Lemma 4.4 The transition map P7
212 for systems (64) from �7

213 to �8
213 is given by

P7
212(x, cin, p212, ρ212, α) =

⎛
⎜⎜⎜⎝
P7
212x (x, p212, ρ212, α)(

ρ212
cout

)k+1
cin

P7
212p(x, p212, ρ212, α)

cout

⎞
⎟⎟⎟⎠

where (x, p212) �→ P7
212x (x, p212, ρ212, α),P7

212p(x, p212, ρ212, α) are both smooth
and continuous with respect to ρ212 and α, satisfying

P7
212x (x, p212, ρ212, α) =O(ρk

2α), P7
212p(x, p212, ρ212, α) = (p212 − cin)c

−k
outρ

k
212

+ O(ρk+1
212 ).

The order of the remainder terms remain unchanged upon differentiation with respect
to x and p212.

Proof We solve (65) for ν212 and ρ212, so that ν212(t) = cine−(k+1)t , ρ212(t) = etρ2,in
and define u2(t) by p212(t) = cine−(k+1)t + (u2(t) − cin)e−kt . Inserting this into the
p212 equation gives

u̇2 = e−(k+1)t c2inρ2,inZ212(x, ν212(t), cine−(k+1)t + (u2(t) − cin)e
−kt , ρ212(t), α),

together with

ẋ = e−(k+1)tρk
2,inα X̃212(x, ν212(t), cine−(k+1)t + (u2(t) − cin)e

−kt , ρ212(t), α).

The transition time is T = log
(

coutρ
−1
2,in

)
. Notice that quantities Z212(· · · ), X̃212(· · · )

are uniformly bounded on this domain. By integrating the equations, we therefore
obtain

u2(T ) = u2(0) + O(ρ2,in), x(T ) = x(0) + O(ρ2,in).

	


Recall that ε = ρk+1
212 ν212 in this chart.

123



Journal of Nonlinear Science             (2024) 34:6 Page 37 of 64     6 

4.5 Completing the Proof of Lemma 3.8

In Fig. 15, we summarize the findings from our analysis of the two cylindrical blowups
and the blowup of Q. In particular, the blowup of Q gives rise to an improved singular
cycle.

In Fig. 15, we also indicate different sections �i , i = 1, . . . , 8, that are each
transverse to �, that we use to decompose the return mappingP22 in Lemma 3.8. (The
sections�0,1 are defined in a neighborhood of p = 0, whereas�4,7,8 are defined near
p = 1. �2,3 are defined in between p = 0 and p = 1, but sufficiently close to these
values, respectively. The remaining sections �5,6 are defined on a blowup of p = 1.)
We describe each of the local mappings �i−1 → �i , i = 1, . . . , 8 in the following.
We try to strike the balance between including a complete, rigorous and self-contained
analysis while at the same time avoiding too many details, that can be found elsewhere
in similar contexts. We provide appropriate references along the way.

50 → 51

The transition from�0 and�1 is regular in the (ᾱ = 1, ε̄)22-chart. We therefore leave
out further details.

51 → 52

On the other hand, the transition map from �1 to �2 is described in the coordinates
(x, ν21, p, ε21) of the (ᾱ−1 ȳ = 1, ᾱ = 1)21-chart. We therefore consider (50) and
define the sections as follows �1

21 : ε21 = cin, p ∈ Iin to �2
21 : ν21 = cout, p ∈ Iout,

with Iin and Iout open neighborhoods of p = 0. Notice, for these values of p, the set
B21 is normally hyperbolic, see Fig. 13.

To describe the mapping P1
21 : �1

21 → �2
21, it is convenient to divide the right

hand side of the Eq. (50) by the square bracket [· · · ], which is ≈ 1− p and therefore
positive for all ε21, ν21 ≥ 0 sufficiently small. Seeing that dp

dν21
= 1 for ε21 = 0,

ν21 > 0 it is also convenient to express the map in terms of p̃ := p − ν21. This gives

ẋ = ν221ε21α X̃21(x, ν21, p̃, ε21, α),

ν̇21 = ν21,

˙̃p = ν21ε21H21(x, ν21, p̃, ε21, α),

ε̇21 = −ε21,

(66)

for some new smooth functions X̃21 and H21. We then have the following.

Lemma 4.5 The transition map P1
21 for system (66) from �1

21 to �2
21 is given by

P1
21(x, ν21, p̃, cin, α) =

⎛
⎜⎜⎝
P1
21x (x, ν21, p̃, α)

cout
P1
21p(x, ν21, p̃, α)

ν21cin
cout

⎞
⎟⎟⎠ ,
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where x, p̃ �→ P1
21x (x, ν21, p̃, α),P1

21p(x, ν21, p̃, α) are both smooth and satisfy

P1
21x (x, ν21, p̃, α) = O(ν21α log ν21), P1

21p(x, ν21, p̃, α) = O(ν21 log ν21),

with the order of the remainder unchanged upon differentiation with respect to x and
p̃.

Proof Theproof is standard, see, e.g.,DeMaesschalck andSchecter (2016, Proposition
2.1). 	


52 → 53

The transition map from �2 → �3 is regular in the (ᾱ = 1, ¯̄y = 1)21-chart and
further details are therefore left out.

53 → 54,5

The transitionmap from�3 to�4 is obtained fromFenichel’s theory near the normally
attracting manifold C , e.g., by working in the (ᾱ = 1)2-chart. In fact, by working in
chart (ᾱ = 1, ¯̄y = 1)21 and using the blowup transformation (53) this result can be
extended all the way up to the section �5 on the blowup of Q21. The details are given
in Lemma 4.2.

55 → 56

The transition map from �5 to �6 is best described in the chart (ᾱ = 1, ¯̄y =
1, ν̄21ε̄21 = 1)213 where the equations are slow–fast. The transition map is then given
as a regular fold (jump set) with ρ213 = ε as the small parameter. See, e.g., Szmolyan
and Wechselberger (2004) for further details.

56 → 57

The exit from the blowup sphere, that we describe by a transitionmap from�6 to�7 is
given by the transition near a resonance saddle. The details were given in Lemma 4.4.

57 → 58

The transition map from �7 → �8 is regular in the (ᾱ = 1, ε̄ = 1)22-chart and
further details are therefore left out.

Analyzing the half-map:50 → 58

First, we state a simple corollary of the analysis above.
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Fig. 15 The dynamics of the full
desingularized system, including
the spherical blowup of Q. The
cycle �x (thick curves) has
improved hyperbolicity
properties. We also indicate the
sections �0−8 used in the proof
of Lemma 3.8

Corollary 4.6 Upon extension by the forward flow, the slow manifold Sε,α intersects
�8

22 in chart (ᾱ = 1, ε̄ = 1)22 in a curve defined by

y22 = 0, p = s22(x, ε, α),

where

s22(x, ε, α) = 1 + O(ε
k

k+1 ),

with the order of the remainder being unchanged upon differentiation with respect to
x.

This essentially follows from Lemma 4.4 with ρ212≈ε.
Now, let �8

22 be defined by y22 = 0, p ∈ I 8 a small neighborhood of p = 1 and
x ∈ �. From the proceeding analysis, themapQ22 : �0

22 → �8
22, (x, p) �→ (x+, p+)

is well defined for all ε, α > 0 sufficiently small. In particular, we have

x+(x, p, ε, α) = x + α(1 − p)|Y+(x, 0)|−1X+(x, 0) + O(α2, ε
k

k+1 α),

p+(x, p, ε, α) = s22(x, ε, α) + O(e−c/ε),

with the order of the remainder unchanged under differentiation with respect to x, p.
Here, the leading order expression for x+ follows from Lemma 4.2 with cin = (1− p),
recall also Lemma 3.7. The expression for the map from �8

22 to �0
22 is similar; the

leading order terms follow by replacing + by − and by replacing 1 in the expression
for s22 by 0. This completes the proof of Lemma 3.8 (upon redefining s22).

5 Main Results in the Case of Grazing

In this section, we consider (6) under the following assumption (which replaces
Assumption 3 henceforth):

123



    6 Page 40 of 64 Journal of Nonlinear Science             (2024) 34:6 

Assumption 5 The PWS system Z± is planar z = (x, y) ∈ R
2 and each Z± depends

smoothly on an unfolding parameter μ ≈ 0 defined in a neighborhood of 0. In partic-
ular, for μ = 0, Z+ has a hyperbolic and repelling limit cycle γ0 that has a quadratic
tangency with � at x = 0. Z−, on the other hand, is assumed to be transverse to �.

Consequently, forμ = 0 we have that (x, y) = (0, 0) is a visible fold point (Jeffrey
and Hogan 2011; Kristiansen 2020) of the piecewise smooth system Z±, see T in
Fig. 3. In fact, by the implicit function theorem, Z+ has visible fold point for each
μ≈0 and this point depends smoothly on μ. Then upon using Bonet and Seara (2016,
Proposition 14), see also Kristiansen (2020), we can transform the PWS system Z±
locally into

Z+(z, μ) =
(

1 + f (z, μ)

2x + yg(z, μ)

)
, Z−(z, μ) =

(
0
1

)
, (67)

by a C∞-diffeomorphism. Here, f and g are smooth functions with f (0, μ) = 0 for
all μ≈0; for (67) the fold point is therefore fixed at (x, y) = (0, 0). This is the system
that we will use to study the local dynamics near (x, y) = (0, 0). We will henceforth
suppress the dependency of f and g on μ since this will play little role.

Since the limit cycle γ0 in Assumption 5 is hyperbolic for Z+, we have a repelling
limit cycle γμ of Z+ for everyμ≈0. Let Y (μ) = mint y(t) along γμ so that Y (0) = 0.
We assume the following degeneracy condition.

Assumption 6 Y ′(0) > 0.

We illustrate the setting in Fig. 16.
Under these assumptions, reference Kristiansen (2020) proved that the system

obtained from regularization by smoothing (3) has a locally unique saddle-node bifur-
cation of limit cycles at μ = o(1) with respect to ε → 0. On the other hand, reference
Bonet and Seara (2022) also showed that the system obtained from regularization by
hysteresis has chaotic dynamics (through a Baker-like map) for all α > 0 sufficiently
small provided μ≈0 is sufficiently small. In this section, we try to bridge these two
results by working on (6), using (as in Kristiansen (2020)) the normal form (67) to
perform the analysis near (x, y) = (0, 0).

To present the result, we define two wedge-shaped regions in the (ε, α)-plane.
Firstly, for ε0 > 0, α0 > 0, let W1(ε0, α0) be the region defined by 0 < α ≤ ε2kα0
for 0 < ε ≤ ε0. On the other hand, let W2(ε0, ε1, α0) be the region defined by

0 < α
k+1

k ε0 < ε ≤ α
k+1

k ε1,

for 0 < α ≤ α0 and 0 < ε0 < ε1. We illustrate the two regions in Fig. 17. These
regions do not overlap for ε1 > ε0 > 0 and α0 ≥ 0 sufficiently small.

In the following, we will sometimes write W1(ε0, α0) and W2(ε0, ε1, α0) as W1 and
W2 for simplicity.

For N ∈ N, N ≥ 2, let �N denote the space of all N -symbol sequences s =
{. . . , s−1, s0, s1, . . .}, si ∈ {0, 1, . . . , N −1} for all i ∈ Z, equipped with the complete
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Fig. 16 The grazing bifurcation. We assume that the smooth vector-field Z+ has a repelling limit �0 for
μ = 0 having a quadratic tangency with �. Under a further degeneracy condition, which ensures that the
perturbation �μ of �0 as a limit cycle of Z+ for μ≈0 transverses � with nonzero speed, see Assumption
6, reference Bonet and Seara (2022) has shown that, while regularization by smoothing leads to a saddle-
node bifurcation of limit cycle (Kristiansen 2020), regularization by hysteresis leads to chaotic dynamics.
Theorem 5.2 is an attempt to bridge these two regimes by working on (6)

Fig. 17 The two regions in the
(ε, α)-plane relevant for
Theorem 5.2

metric:

d(s, s̃) =
∞∑

i=−∞

1

2|i |
δsi ,s̃i

1 + δsi ,s̃i

, δi, j :=
{
1 for i = j

0 for i �= j,

see (Wiggins 2003, Chapter 24.1).
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Proposition 5.1 (Wiggins 2003, Proposition 24.2.2) The full shift on N symbols σ :
�N → �N , defined by

σ(s) = {. . . , s0, s1, s2, . . .}, that is (σ (s))i = si+1 for all i ∈ Z,

is continuous and chaotic in the following sense:

1. There is a countable infinity of periodic orbits, consisting of orbits of all periods.
2. There is an uncountable infinity of nonperiodic orbits.
3. There is a dense orbit.

The case N = 2 is the most familiar one, since this is the shift map relevant to the
standard Smale’s horseshoe.

Theorem 5.2 Consider (6) under the Assumptions 1, 2, 4, 5 and 6 so that (4) holds
with Z± given in a small neighborhood of (x, y) by (67). Fix any N ∈ N. Then for
ε1 > ε0 > 0 and α0 > 0 all sufficiently small, we have the following:

1. For any (ε, α) ∈ W1(ε0, α0), there exists a μ≈0 such that the system (6) has a
saddle-node bifurcation of limit cycles.

2. For any (ε, α) ∈ W2(ε0, ε1, α0), there exists a μ≈0 such that there is a return
map defined by the system (6) having an invariant cantor set upon which the map
is homeomorphic to the full shift σ : �N → �N on N symbols.

The Assumption 4 (p �→ Z(z, p) is affine) is mainly added for simplicity. In fact,
it is not needed in item 1 and the statement of item 2 could also be generalized by
including a milder assumption on p �→ Z(z, p) at x = 0, see Remark 5.13. We
again expect that our approach can be modified to obtain a similar result for the
Sotomayor–Teixeira regularization functions, see (8). We leave these generalizations
to the interested reader.

To prove the theorem, we have to describe the local transition near the grazing point
with�. Before going into details, we first emphasize that Z± in (67) has stable sliding
for x < 0 and crossing for x > 0 along�. Therefore, the blowupdynamics for x < 0 in
a compact interval is covered by Theorem 3.1 and the blowup dynamics for ε = α = 0
is therefore as in Fig. 15 in this case. The blowup dynamics for x > 0 on the other
hand, where Assumption 3 is violated and crossing occurs, is shown in Fig. 18. This
follows from the blowup analysis with Y+ > 0. In each of the two diagrams, Figs. 15
and 18, x is constant on the cylinders and there is only slow flow in the ȳ-direction.
In order to describe the details of the dynamics associated with the visible fold, we
will need to zoom in on x = 0 so that the dynamics in this direction for 0 < ε, α � 1
becomes comparable with the dynamics in the ȳ-direction. We achieve this zoom
through blowup. In particular, in Sect. 5.1, we first reduce to the slow manifold Sε,α

obtained as a perturbation of the critical manifold C in the (ȳ = 1)1-chart and then
perform two separate blowup transformations. In the parameter regime (ε, α) ∈ W1,
this is sufficient to prove Theorem 5.2 (1). Interestingly, we find that the details are
similar to those in Kristiansen (2020) covering the grazing bifurcation in the case of
regularization by smoothing.
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Fig. 18 Blowup dynamics in the
case of crossing upwards where
Y+(x, 0) > 0, Y−(x, 0) > 0
(corresponding to x > 0 for the
visible fold in Fig. 3). In this
case, the flow on C (blue) moves
upwards and there is no
equilibrium of the reduced flow
on M (moving downwards)
when Assumption 4 holds

On the other hand, in order to prove Theorem 5.2 (2) in the regime (ε, α) ∈ W2 we
have to follow dynamics that becomes unbounded in the chart (ȳ = 1)1. In Sect. 5.3,
we will specifically work on the blowup of Q. Here, we will study the reduced prob-
lem on the critical manifold R213 in the (ᾱ = 1, ¯̄y = 1, ν̄21ε̄21 = 1)213-chart for x≈0
using a separate blowup transformation. This gives rise to a folded saddle singularity
(Szmolyan and Wechselberger 2001) for (ε, α) ∈ W2 and an associated canard orbit
along which (extended versions of) the slowmanifolds Sε,α and Nε,α , obtained as per-
turbations of C and M in chart (ȳ = 1)1 and (ᾱ = 1, ε̄ = 1)22, respectively, intersect
transversally (see Proposition 5.12). This provides the main horseshoe-like mecha-
nism for the chaotic dynamics in Theorem 5.2 (2). In fact, the geometric construction
is similar to Kristiansen (2021), which (inspired by the work of Haiduc (2009) on the
forced van der Pol) proved existence of chaos in a friction oscillator in the presence
of slow–fast and nonsmooth effects. We therefore complete the proof of Theorem 5.2
(2) in Sect. 5.4 by exploiting this connection.

In the proof of Theorem 5.2, we will therefore again try to strike the balance
between including a complete, rigorous and self-contained analysis, while at the same
time avoiding too many details, that can be found elsewhere (Kristiansen 2020 for
item 1 and (Kristiansen 2021; Haiduc 2009) for item 2) in similar contexts.

Finally, we should emphasize that the mechanism we find for the chaotic dynamics
in case (ii) is very similar in nature to the one used in Bonet and Seara (2022) to
prove existence of chaos in the case of hysteresis. This horseshoe-like mechanism
occurs in an exponentially small regime (with respect to ε, α → 0) and is therefore
probably not troubling from an engineering perspective. Moreover, any time series of
the chaotic dynamics would appear to be periodic, with only very minor changes in the
amplitudes at each oscillation. This has been referred to as micro-chaotic dynamics,
see Glendinning and Kowalczyk (2010) (for micro-chaotic dynamics in the context of
hysteresis).
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Fig. 19 Dynamics of the
reduced problem on Sε,1, see
(68), within the invariant
subspaces α1 = 0 and r1 = 0

5.1 Analysis of the Slow Flow on S�,˛ in the Case of the Visible Fold

In this section, we work in the (ȳ = 1)1-chart and consider the reduced flow on Sε,1,
recall Lemma 3.2, in the case of (67). For this, we use (42) with Z± as in (67):

ẋ = r1(1 + f (x, r1))
(
1 − βεkαk

1 + O(εk+1αk+1
1 )

)
,

ṙ1 = r1
[
(2x + r1g(x, r1))

(
1 − βεkαk

1

)
+ βεkαk

1 + O(εk+1αk+1
1 )

]
,

α̇1 = −α1

[
(2x + r1g(x, r1))

(
1 − βεkαk

1

)
+ βεkαk

1 + O(εk+1αk+1
1 )

]
.

(68)

The dynamics of this system within the invariant subspaces α1 = 0 and r1 = 0 are
illustrated in Fig. 19. Notice that r1 = x = 0, α1 ≥ 0 is a line of degenerate singular-
ities for ε = 0. We will again need to perform consecutive blowup transformations to
resolve the degeneracy stemming from the terms of the form εkαk

1. For this, we first
blowup with respect to α1 and then subsequently blowup with respect to ε. In further
details, we first apply the transformation (also used in Kristiansen (2020)):

σ ≥ 0, (x̄, r̄1, ᾱ1) ∈ S2 �→

⎧⎪⎨
⎪⎩

x = σ k x̄,

r1 = σ 2kr̄1,

α1 = σ ᾱ1.

(69)

Notice that weights on x and α1 are so that the terms 2x and βεkαk
1 in the equations

for r1 and α1 in (68) balance up. At the same time, the weights on x and r1 are so that
the quadratic tangency of the grazing orbit within α1 = 0 of the vector-field Z+ with
the x-axis (see Fig. 19) is “broken.”

Since r1, α1 ≥ 0 we are only interested in the subset of S2 where r̄1, ᾱ1 ≥ 0.
This gives a vector-field V 1 on σ ≥ 0, (x̄, r̄1, ᾱ1) ∈ S2 by pullback of (68). It has
σ k as common factor and it is therefore V̂ := σ−k V that has improved hyperbolicity
properties.
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It is not difficult to analyze V̂ in the directional charts. In particular, in the chart
defined by

(ȳ = 1, r̄1 = 1)11 :

⎧⎪⎨
⎪⎩

x = σ k
11x11,

r1 = σ 2k
11 ,

α1 = σ11α11,

where α = σ 2k+1
11 α11, we obtain the following equations

ẋ11 = (1 + σ k
11 f11(x11, σ

k
11))(1 + O(εkσ k

11α
k
11)) − 1

2
x11 [· · · ] ,

σ̇11 = 1

2k
σ11 [· · · ] ,

α̇11 = −2k + 1

2k
α11 [· · · ] ,

(70)

where

[· · · ] = (2x11 + σ k
11g11(x11, σ

k
11))(1 + O(εkσ k

11α
k
11)) + βεkαk

1 + O(εkσ11α
k
11),

with σ k
11 f11(x11, σ k

11) := f (x, r1), and g11(x11, σ k
11) := g(x, r1). We find two

hyperbolic equilibria:

q±
11 : (x11, σ11, α11) = (±1, 0, 0), (71)

for any ε ≥ 0. The eigenvalues of the linearization around these points are

−2x11,
1

k
x11,−2k + 1

k
x11, (72)

with x11 = ±1 at the two points q±
11, respectively. Whereas the point q−

11 has a
two-dimensional unstable manifold within σ11 = 0, and a one-dimensional unstable
manifold within α11 = 0 (corresponding to the grazing orbit of the PWS system (67)
within x < 0), the point q+

11 has a two-dimensional stablemanifold within σ11 = 0 and
a one-dimensional unstable manifold within α11 = 0 (corresponding to the grazing
orbit of the PWS system (67) within x > 0). Compare also with Figs. 19 and 20.

The dynamics on the sphere is given by

ẋ13 = 1,

ṙ13 = 2x13,
(73)
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Fig. 20 The reduced flow on
Sε,1 in the (ᾱ = 1)1-chart upon
blowing up α1 = r1 = x = 0 to
a sphere (in blue) (Color figure
online)

upon using the coordinates (x13, r13) defined by

(ȳ = 1, r̄1ᾱ1 = 1)13 :

⎧⎪⎨
⎪⎩

x = σ k
13x13,

r1 = σ 2k
13 r13,

α1 = σ13r−1
13 ,

where α = r1α1 = σ 2k+1
13 . However, in the chart defined by

(ȳ = 1, ᾱ1 = 1)12 :

⎧⎪⎨
⎪⎩

x = σ k
12x12,

r1 = σ 2k
12 r12,

α1 = σ12,

we find that x12 = r12 = 0, σ12 ≥ 0 is a degenerate line for ε = 0. We summarize the
findings in Fig. 20.

To gain hyperbolicity and resolve the dynamics near the degenerate line (pink in
Fig. 20), we proceed to augment ε̇ = 0 and then apply the following cylindrical blowup
transformation:

ξ ≥ 0, (x̄12, r̄12, ε̄) ∈ S2 �→

⎧⎪⎨
⎪⎩

x12 = ξ k x̄12,

r12 = ξ2kr̄12,

ε = ξ ε̄,

(74)

leaving σ12 untouched. (This transformation can bemotivated in the sameway as (69).)
Let V̂12 be the vector-field in the (ȳ = 1, ᾱ1 = 1)12-chart with ε̇ = 0 augmented. The

blowup transformation (74) then gives a vector-field V̂ 12 by pullback of V̂12. It has ξ k

as a common factor and it is therefore ̂̂V 12 := ξ−k V̂ 12 that we shall study.
To study ̂̂V 12 and cover the relevant part of the sphere, we use two charts:

(ȳ = 1, ᾱ1 = 1, r̄12 = 1)121 :

⎧⎪⎨
⎪⎩

x12 = ξ k
121x121,

r12 = ξ2k
121,

ε = ξ121ε121,
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(ȳ = 1, ᾱ1 = 1, ε̄ = 1)122 :

⎧⎪⎨
⎪⎩

x12 = ξ k
122x122,

r12 = ξ2k
122r122,

ε = ξ122.

(75)

The change of coordinates is given by the following expressions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ121 = ξ122r
1
2k
122,

x121 = r
− 1

2
122 x122,

ε121 = r
− 1

2k
122 .

In the chart (ȳ = 1, ᾱ1 = 1, r̄12 = 1)121, where

α = σ 2k+1
12 ξ2k

121, ε = ξ121ε121, (76)

are conserved, we (again) find two hyperbolic equilibria at

z±
121 : (x121, σ12, ξ121, ε121) = (±1, 0, 0, 0). (77)

The eigenvalues of the linearization around these points are given by

−2x121,−2x121,−2k + 1

k
x121,

2k + 1

k
x121, (78)

with x121 = ±1 at the two points z±
121, respectively. The unstable manifold for z−

121
is three-dimensional and contained within ξ121 = 0. However, for z−

121 it is the stable
manifold that is three-dimensional; in fact, z+

121 will be the ω-limit set of all points
with ξ121 = 0, ε121 �= 0. Notice, that since

αε−2k = σ 2k+1
12 ε−2k

121 , (79)

see (76), each three-dimensional invariant manifold is foliated by constant values of
σ 2k+1
12 ε−2k

121 = const.
To describe the dynamics in further details, we focus on the cylinder ξ = 0,

(x̄12, r̄12, ε̄) ∈ S2, σ12 ≥ 0, and the two invariant subspace of ̂̂V 12|ξ=0 given by
σ12 = 0 and ε̄ = 0. The reason for doing so, is that these invariant spaces capture
different scaling regimes of ε and α. In particular, within the (ȳ = 1, ᾱ1 = 1, r̄12 =
1)121-chart, (76) holds and on σ12 = const. we therefore have by (79) that

ε2k∼αε2k
121. (80)

(Here, we have used ∼ to indicate that two quantities differ by a constant that only
depends upon the constant value of σ12.) Consequently, orbits lie close to ε̄ = 0 (i.e.,
ε121 = 0) provided that

0 < ε2k � α � 1. (81)
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Fig. 21 Dynamics in the
(ȳ = 1, ᾱ1 = 1, r̄12 = 1)122-
chart on ε̄ = 0

Notice also that on σ12 = const. we have

x ∼ √
αx121, (82)

upon eliminating ξ121. This will be important later on.
On the other hand, in the (ȳ = 1, ᾱ1 = 1, ε̄ = 1)122-chart, we have

α = σ 2k+1
12 ξ2k

122r122, ε = ξ122.

and r122 = const. therefore corresponds to

α ∼ σ 2k+1
12 ε2k .

Consequently, orbits follow σ12 = 0 provided that 0 < α � ε2k � 1.
We study each of these invariant subspaces in the following using the two charts

(ȳ = 1, ᾱ1 = 1, r̄12 = 1)121 and (ȳ = 1, ᾱ1 = 1, ε̄ = 1)122.

Dynamics of̂̂V12|�=0 in the invariant subspace �̄ = 0

In the (ȳ = 1, ᾱ1 = 1, r̄12 = 1)121-chart, we obtain the following local form of ̂̂V 12
within ξ121 = ε121 = 0:

ẋ121 = 1 − x2121,

σ̇12 = 2σ12x121.
(83)

The dynamics of this system are illustrated in Fig. 21. Notice in particular that there
are two invariant lines

L±
121 : x121 = ±1, (84)

along which we have σ̇12 > 0 and σ̇12 < 0 for σ12 �= 0. These sets therefore belong
to the stable and unstable manifolds of the points z±

121, given by (77), respectively.
Notice also that the dynamics within ξ = ε̄ = 0 is unbounded (only bounded on one
side of L−

121).
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Lemma 5.3 Consider any c̃3 > 0 and let P̃3
121x denote the x121-component of the

transition map of (83) from

�̃3
121 : σ12 = c̃3 > 0, x121 < 0,

to

�̃4
121 : σ12 = c̃3 > 0, x121 > 0.

Then, P̃3
121x is only well defined for x121 ∈ (−1, 0) and here it is given by the reflection

around x121 = 0:

P̃3
121x (x121) = −x121, x121 ∈ (−1, 0). (85)

Proof Direct calculation. Notice in particular that if t121 denotes the time in (83), then
this system is reversible with respect to (x121, σ12, t121) �→ (−x121, σ12,−t121). From
this (85) follows. 	


Dynamics of̂̂V12|�=0 in the invariant subspace �12 = 0

In the (ȳ = 1, ᾱ1 = 1, ε̄ = 1)122-chart, we obtain the following local form of ̂̂V 12
within ξ122 = σ12 = 0:

ẋ122 = kx122 [β + 2x122] + r122,

ṙ122 = (2k + 1)r122[β + 2x122]. (86)

Within r122 = 0, we find two equilibria, one given by x122 = 0 and another given by
x122 = −β

2 . The first point is hyperbolic and repelling for (86), whereas the second
one is partially hyperbolic, the linearization having a single nonzero and negative
eigenvalue. A simple calculation reveals the following:

Lemma 5.4 There exists a unique, attracting center manifold G122 for (86) of the point
(x122, r122) = (−β

2 , 0). G122 is its (nonhyperbolic) unstable manifold, along which
r122 is increasing.

Upon using that [· · · ] occurs in both equations of (86), it is a direct calculation to
show that the transformation:

(x122, r122) �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u =
(

βr
− 1

2
122

)− 1
2k+1

x122,

v =
(

βr
− 1

2
122

)− 2
2k+1

,

(87)
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Fig. 22 Dynamics in the
(ȳ = 1, ᾱ1 = 1, ε̄ = 1)122-
chart. In this chart, we find a
unique center manifold G122
within σ21 = 0. The mapping
from �0

122 → �1
122 is described

by the Chini equation and it is
contractive and concave as a
function of x on �1

122, see
Lemma 5.5. This property is
essential in the proof of
Theorem 5.2 (2)

for r122 > 0, brings (86) into the Chini equation (Kristiansen 2020; Olver et al. 2011):

u̇ = 1,

v̇ = 2u + v−k .
(88)

This equation also appeared in the blowup analysis of the grazing bifurcation for
regularization by smoothing in Kristiansen (2020). In particular, from this reference
we obtain the following result (see Fig. 22 for an illustration).

Lemma 5.5 Consider any c3 > 0 and let x122 �→ P3
122x (x122) denote the x-component

of the transition map of (86) from

�3
122 : r122 = c3, x122 < −1

2
β,

to

�4
122 : r122 = c3, x122 > −1

2
β.

Then,

(P3
122x )

′(x122) ∈ (−1, 0), (P3
122x )

′′(x122) < 0, (89)

and

lim
x122→− 1

2β−
(P3

122x )
′(x122) = −1, lim

x122→−∞(P3
122x )

′(x122) = 0.

Proof SeeKristiansen (2020, Lemma 3.12) (andUldall Kristiansen 2023) describing a
similar transition map for the Chini equation. By inverting (87), we obtain the desired
result. 	
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Fig. 23 The reduced flow on C1 in the (ᾱ = 1)1-chart upon two consecutive blowup transformations
of the degenerate set α1 ≥ 0, r1 = x = ε = 0. The dynamics on the cylinder obtained by the blowup
transformation (74) (its boundary ε̄ = 0 being indicated in pink) breaks up into different regimes, depending
on the ratio of ε and α. For example, whenever (ε, α) ∈ W2 then the dynamics near ε̄ = 0 (pink) becomes
relevant, whereas within (ε, α) ∈ W1 the green region where ε̄ > 0, described by the Chini equation (88),
becomes relevant. In this region, which is more visible in Fig. 24, the attracting center manifold G produces
a contraction—which is absent for (ε, α) ∈ W2, see Lemma 5.3—of the return map Ploc , see Lemma 5.5.
It is the balance of this contraction and the expansion along γ0 that gives rise to the saddle-node bifurcation
in Theorem 5.2 (1)

Remark 5.6 Within ξ122 = r122 = 0, we have the following

ẋ122 = kx122 (β + 2x122) ,

σ̇12 = −σ12 (β + 2x122) ,

and hence σ12 ≥ 0, x12 = ξ122 = r122 = 0 is contained within the stable manifold
of (x122, r122, σ12, ξ122) = 0. Moreover, x122 = −β

2 , σ12 ≥ 0, ξ122 = r122 = 0 is a
normally hyperbolic critical manifold H122. Through desingularization (by division
by r122), it is possible to show that σ12 is monotonically decreasing on H122.

We summarize the findings in the two charts in Fig. 23.

5.2 Proof of Theorem 5.2 (1)

For the proof Theorem 5.2 (1), we work on the slow manifold Sε,α that has been
extended, through the blowup approach in Sect. 3, to the first blowup cylinder. On this
manifold, using the (x, y)-coordinates and the system (67) locally near (x, y) = 0,
we then consider the return map P on a section �in = {(x, y) : y = cin, x ∈ Iin},
for some appropriate closed interval Iin ⊂ (−∞, 0) so that �in is transverse to γ0.
We then decompose P into a local transition map Ploc : �in → �out, with �out =
{(x, y, p) : y = cout, x ∈ Iout}, see Fig. 3, and a global map Pglo : �in → �out. The
latter is regular on the attracting slow manifold, and we therefore turn our attention to
Ploc.

In order to describePloc, we use the chart (ȳ = 1)1 and the blowup transformations
(69) and (74), that resolve the degeneracy of x = r1 = 0, α1 ≥ 0 for ε = 0, and chop
the mapping into separate transition maps, see Fig. 24: P0 : �0 → �1 near q−, a
regular map P1 : �1 → �2 being a regular perturbation of (73), P2 : �2 → �3
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Fig. 24 Illustration of the
sections �0−7 relevant in the
proof of Theorem 5.2 (1). In
comparison with Fig. 23, we
leave out the dynamics on the
cylinder ε̄ = 0, since this regime
is not relevant for the proof of
Theorem 5.2 (1)

near z−, a regular map P3 : �3 → �4 being a regular perturbation of the map in
Lemma 5.5, P4 : �4 → �5 near z+, a regular map P5 : �5 → �6 being a regular
perturbation of (73), and finally P6 : �6 → �7 near q+.

Although the eigenvalues near the points q±, z± are resonant, it is possible, follow-
ing Kristiansen (2020), to achieve a (suitable) linearization near each of this points.
We will only present the details near q− and z−.

Local transition map near q−

Consider (70) and divide the right hand side − 1
2 [· · · ], which is ≈ −x11 and therefore

positive near q−
11. This gives

ẋ11 = x11 − 2(1 + σ k
11 f11(x11, σ k

11))

2x11 + σ k
11g11(x11, σ k

11)
+ εkαk

11A11(x11, σ11, α11, ε),

σ̇11 = −1

k
σ11,

α̇11 = 2k + 1

k
α11,

(90)

for A11 smooth.

Lemma 5.7 There exists a smooth diffeomorphism of the form

(x̃11, σ̃11, α̃11) �→

⎧⎪⎨
⎪⎩

x11 = X11(x̃11, σ̃ k
11, α̃11, ε),

σ11 = σ̃11S11(x̃11, σ̃ k
11, α̃11, ε),

α11 = α̃11S11(x̃11, σ̃ k
11, α̃11, ε)

−2k−1,

as well as a regular transformation of time, such that (90) becomes

˙̃x11 = 2x̃11 + εk α̃k
11 Ã11(x̃11, σ̃11, α̃11, ε),

˙̃σ11 = −1

k
σ̃11,

˙̃α11 = 2k + 1

k
α̃11.

(91)
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Here X11, S11 and Ã11 are all smooth and satisfy X11(0, 0, 0, 0) = −1,
S11(0, 0, 0, 0) = 1 and

Ã11(x11, σ11, α11, ε) = O(σ11α11, σ
k
11),

respectively.

Proof The proof can be found in Kristiansen (2020), see Lemma 3.5 and Lemma 3.6
in this reference, but essentially we use that the α11 = 0 subsystem is equivalent to
z′ = Z+(z) which is regular. This enables a linearization within α11 = 0 through the
flow box theorem. Subsequently, we linearize the non-resonant systemwithin σ11 = 0.
	


Consider (91) and notice that α = σ̃ 2k+1
11 α̃11 is still conserved in the tilde variables.

We therefore drop the tildes and describe the transition mapP0
11 from�0

11 : σ11 = cin
to�1

11 : α11 = cout by integrating these equations. This produces the following result.

Lemma 5.8 P0
11 is well defined for x11 ∈

[
−c

(
α11c−1

out

) 2k
2k+1

, c
(
α11c−1

out

) 2k
2k+1

]
with

c > 0 fixed small enough and given by (x11, cin, α11) �→ (P0
11x , cin(α11c−1

out)
1

2k+1 , cout)
with

P0
11x (x11, α11, ε) =

(
α11c−1

out

)− 2k
2k+1

x11 + O
(

εkα
1

2k+1
11

)
.

The order of the remainder terms does not change upon differentiation with respect to
x11.

Proof Simple calculation. 	

The analysis near q+ is almost identical. In particular, although the local mapping

near q− is expanding, the local mapping near q+ contracts by the same order.

Local transition map near z−

We work in the (ȳ = 1, ᾱ1 = 1, r̄12 = 1)121-chart. Here, we have the following
equations

ẋ121 = (1 + σ k
12ξ

k
121 f121(x121, σ

k
12ξ

k
121))(1 + O(ξ k

121ε
k
121α

k
12)) − 1

2
x121 [· · · ] ,

ξ̇121 = 2k + 1

2k
ξ121 [· · · ] ,

σ̇12 = −σ12 [· · · ] ,
ε̇121 = −2k + 1

2k
ε121 [· · · ] ,
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where

[· · · ] = 2x121 + σ k
12ξ

k(2k−1)
121 g121(x121, σ

k
12ξ

k
121)(1 − βξ k

121ε
k
121σ

k
12)

+ βεk
121σ

k
12 + O(ξ121ε

k+1
121 σ12)

Moreover,

σ k
12ξ

k
121 f121(x121, σ

k
12ξ

k
121) := f (σ k

12ξ
k
121x121, σ

2k
12 ξ2k

121),

which is well defined since f (0, 0) = 0, and

g121(x121, σ
k
12ξ

k
121) := g(σ k

12ξ
k
121x121, σ

2k
12 ξ2k

121).

Working near z−
121 where x121 = −1, we divide the right hand side by − 1

2 [· · · ] ≈ 1.
This gives the following equivalent system

ẋ121 = x121 − 2(1 + σ k
12ξ

k
121 f121(x121, σ k

12ξ
k
121))

2x121 + σ k
12ξ

k(2k−1)
121 g121(x121, σ k

12ξ
k
121)

+ A121(x121, ξ121, σ12, ε121),

ξ̇121 = −2k + 1

k
ξ121,

σ̇12 = 2σ12,

ε̇121 = 2k + 1

k
ε121,

(92)
with A121(x121, ξ121, σ12, ε121) = O(εk

121σ
k
12, ξ121ε

k+1
121 σ12).

Lemma 5.9 There exists a smooth diffeomorphism of the form

(x̃121, ξ̃121, σ̃12, ε̃121) �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x121 = X121(x̃121, ξ̃121, σ̃12, ε̃121),

ξ121 = ξ̃121S121(x̃121, ξ̃121, σ̃12, ε̃121),

σ12 = σ̃12S121(x̃121, ξ̃121, σ̃12, ε̃121)
− 2k

2k+1 ,

ε121 = ε̃121S121(x̃121, ξ̃121, σ̃12, ε̃121)−1

as well as a regular transformation of time, such that (92) becomes

˙̃x121 = 2x̃121 + Ã121(x̃121, ξ̃121, σ̃12, ε̃121),

˙̃
ξ121 = −2k + 1

k
ξ̃121,

˙̃σ12 = 2σ̃12,

˙̃ε121 = 2k + 1

k
ε̃121.

(93)
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Here, X121, S121 and Ã121 are all smooth and satisfy X121(0, 0, 0, 0) = −1,
S121(0, 0, 0, 0) = 1 and

Ã121(x̃121, ξ̃121, σ̃12, ε̃121) = O(ξ̃121ε̃
k
121σ̃12),

respectively.

Proof The proof follows the proof of Lemma 5.7, with only minor modifications. 	

Consider (93) and notice that α = σ̃ 2k+1

12 ξ̃2k
121 and ε = ξ̃121ε̃121 are still conserved

in the tilde variables. We therefore drop the tildes and describe the transition mapP2
121

from �2
121 : ξ121 = cin to �3

121 : ε121 = cout by integrating these equations.

Lemma 5.10 The transition map P2
121 is well defined for

0 ≤ σ12 ≤ ε
2k

2k+1
121 α

1
2k+1
0 , (94)

and x121 ∈
[
−c

(
ε121c−1

out

) 2k
2k+1

, c
(
ε121c−1

out

) 2k
2k+1

]
with c > 0 and α0 small enough

and given by (x121, cin, σ12, ε121) �→ (P2
121x , (ε121c−1

out)cin,P2
12σ , cout) with

P2
12σ (x121, σ12, ε121) =

(
ε121c−1

out

)− 2k
2k+1

σ12

P2
121x (x121, σ12, ε121) =

(
ε121c−1

out

)− 2k
2k+1

x121 + O(ε121P2
12σ (x121, σ12, ε121)).

The order of the remainder terms does not change upon differentiation with respect to
x121. Moreover, by (94)

P2
12σ (x121, σ12, ε121) ∈ (0, c

2k
2k+1
out α

1
2k+1
0 ). (95)

Proof Simple calculation. 	

The analysis near z+ is almost identical. In particular, although the local mapping

near z− is expanding, the local mapping near z+ contracts by the same order.

The local mapPloc

Let xin denote the value of x on �0 = �in of the grazing orbit of Z+. Similarly, let
xout be the corresponding value on �7 = �out. (ε, α) ∈ W1(ε0, α0) implies that

0 < σ12 ≤ ε
2k

2k+1
121 α

1
2k+1
0 ,
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in the (ȳ = 1, ᾱ1 = 1, r̄12 = 1)121-chart and it is therefore consistent with (94).
Consequently, by Lemmas 5.8 and 5.10, we consider any (ε, α) ∈ W1(ε0, α0) with
α0 > 0 small enough and x in a small neighborhood of xin:

x − xin ∈
[
−cε

2k
2k+1 α

2k
2k+1 , cε

2k
2k+1 α

2k
2k+1

]
,

for some c > 0. This leads to the following.

Lemma 5.11 Let x �→ Ploc,x (x) denote the x-component of the map Ploc from �0 →
�7. For any x2 ∈ [−c, c], we then have

ε− 2k
2k+1 α− 2k

2k+1

(
Ploc,x (xin + ε

2k
2k+1 α

2k
2k+1 x2) − xout

)
= P̂3

122x (x2) + o(1), (96)

with P̂3
122x = ψ+ ◦P3

122x ◦ψ− for some diffeomorphisms ψ±, for (ε, α) ∈ W1(ε0, α0)

with α0, ε0 > 0 sufficiently small.
The following can be said about ψ±: For any δ > 0 and any n ∈ N, there are

constants cin, cout, c > 0 such that |ψ ′± − 1| ≤ δ, |ψ(k)
± | ≤ δ for all k = 2, . . . , n.

Moreover, the remainder term o(1) is bounded by a constant cm(α0) → 0 for
α0 → 0 in Cm, m ∈ N fixed.

Proof The proof is similar to Kristiansen (2020, Lemma 4.3). In particular, we write
Ploc as the composition of themapsP0−6 and the result then follows fromLemmas 5.5,
5.8 and 5.10, near q− and z−, along with similar results (these maps are basically the
inverses (to leading order) of those in Lemmas 5.8 and 5.10) near q+ and z+. The fact
that the remainder term can be bounded by a constant cm(α0) follows from (95). 	


From this lemma, it follows that P̂3
122x also satisfies the estimates (89) on x2 ∈

[−c, c]. In fact, one can show (see Kristiansen 2020, Theorem 1.3) and (Uldall
Kristiansen 2023) that for any l ∈ (0, 1), there exists constants, including c > 0,
such that (P̂3

122x )(x2) can be extended in such a way that (96) holds and such
that (P̂3

122x )
′(x2) attains all values in [−1 + l,−l] while (P̂3

122x )
′′(x2) < 0. To do

this one just extends Ploc through a redefinition of �3 and �4. Specifically, in the
(ȳ = 1, ᾱ1 = 1, r̄12 = 1)121-chart, we would consider �3

121 : x121 = −1 ± cout.
We now write the regular map Pglo in a similar way. In fact, we focus on P−1

glo . Let

P−1
glox(x, μ) be the x-component of P−1

glo . Since it is regular it depends smoothly on x

and on the unfolding parameterμ. ByAssumption 5, we have thatP−1
glox(xin, 0) = xout.

Consequently, we obtain the following expansion: There exists ν0 ∈ (−1, 0) and
ν1 > 0 such that

ε− 2k
2k+1 α− 2k

2k+1

(
P−1
glox(x, μ) − xout

)
= υ0x2 + υ1μ2 + O

(
ε

2k
2k+1 α

2k
2k+1

)
, (97)

for

x = xin + ε
2k

2k+1 α
2k

2k+1 x2, μ = ε
2k

2k+1 α
2k

2k+1 μ2, (98)
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Fig. 25 Illustration of the maps Ploc and P−1
glo restricted to the slow manifold in the case (ε, α) ∈ W1, see

Theorem 5.2 (1). Here xin is the x-value of the orbit of Z+ that grazes � on �0. In the parameter regime
(ε, α) ∈ W1, the mapping Ploc is then dominated by the attraction toward the attracting center manifold
G122 on one side (green) x � xin and the dynamics of Z+ (which itself is as close to x �→ −x as desired
upon adjusting the domains) on the other side x � xin. The transition in-between (in purple), which extends

over aO(ε
2k

2k+1 α
2k

2k+1 )-neighborhood of xin, is described by the Chini equation, see (88), and it is concave
cf. Lemma 5.5. On the other hand, since γ0 is repelling, it follows thatPglo is expanding. In particular,Pglo
moves with nonzero speed for μ≈0 by Assumption 6 and this therefore gives the saddle-node bifurcation
of limit cycles as solutions ofP−1

glo = Ploc when the two graphs are tangent at a point (Color figure online)

The fact that ν0 ∈ (−1, 0) follows from the fact that γ0 is repelling, see Kristiansen
(2020, Lemma 1.6). Moreover, ν1 > 0 follows by Assumption 6.

To solve the fixed-point equation Px (x, μ) = x , we therefore solve Plocx = P−1
glox.

By (96) and (97) this gives

ν0x2 + ν1μ2 = P̂3
122x (x2) + o(1),

setting x and μ equal to the expressions in (98). Seeing that (P̂3
122x )

′(x2) attains all
values in [−1+ l,−l] with 0 < l < 1+ ν0 < 1, we obtain a (locally unique) saddle-
node of the fixed point by applying the implicit function theorem, see Kristiansen
(2020, Lemma 4.5). The proof in the present case is identical (Fig. 25). In this way,
we have completed the proof of Theorem 5.2 (1).

5.3 Dynamics on the Blowup ofQ

To prove Theorem 5.2 (2), we consider the regime (ε, α) ∈ W2(ε0, ε1, α0) where

0 < α
k+1

k ε0 ≤ ε ≤ α
k+1

k ε1. In this case, the dynamics within ε̄ = 0 becomes relevant,
recall (81).We therefore decomposePloc in a different way, replacing�3 and�4 with
�̃3 and �̃4, respectively, see Lemma 5.3. In this way, since the mapping from �̃3 and
�̃4 within ε121 = 0 is completely “neutral” with no contraction, see (85), it follows
that for all x ∈ Iin and α0 small enough, so that the dynamics is uniformly bounded
in the (ȳ = 1)1-chart, then Ploc is as close as desired (upon adjusting the domains) to
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a reflection x �→ −x . Consequently, there can be no saddle-node bifurcations of limit
cycles in this chart within this parameter regime.

In order to prove Theorem 5.2 (2) and describe the chaotic dynamics, we have to
follow the set L−. Recall that this set is unbounded in the (ȳ = 1, ᾱ1 = 1, r̄12 = 1)121-
chart, see (84), so we follow it across the first blowup cylinder and toward the blowup
of the point Q.

In the following, we focus on the (ᾱ = 1, ε̄ = 1, ν̄1ε̄1 = 1)213-chart of the blowup
of Q and Eq. (60), repeated here for with Z± as given in (67):

ẋ = ρk+1
213 ν213α [1 + O(x, α)] ,

ν̇213 = ν213

(
ρ213Y213(x, ν213, p213, ρ213, α) − φ+(ρ213ν

−1
213)ν

−k
213 − p213

)
,

ṗ213 = −ν213

(
φ+(ρ213ν

−1
213)ν

−k
213 + p213

)
,

(99)

and ρ213 = ε
1

k+1 , where

Y213(x, ν213, p213, ρ213, α) = (2x + yg(x, y))p + 1 − p, (100)

using Assumption 4, for

y = −α(1 + ρk
213 p213) + αρ2k+1

213 ν213,

p = 1 + ρk
213 p213,

on the right hand side of (100). Therefore for ρ213 = 0, we find the critical manifold
R213 as a graph p213 = −βν−k

213 over ν213 > 0. R213 divides into an attracting part
R213,a for ν213 > ν213, f and a repelling part R213,r for ν213 < ν213, f .

For x = 0 so that Y+ = 0 on y = 0, see (67), the fold curve J213 given by
R213 ∩ {ν213 = ν213, f } no longer consist purely of jump points. In particular, we
will now show that it also includes folded singularities/canard points (Szmolyan and
Wechselberger 2001):

The system (99) is slow–fast (in nonstandard form) with respect to ρ213 = 0 (which
corresponds to ε = 0, recall (54)). The reduced problem on R213 is given in (62) for
ρ213, α → 0, repeated here for convenience:

x ′ = 0,

ν′
213 = 2x

ν2213

ν213 − kβν−k
213

.
(101)

Consequently, for ρ213 = α = 0 the set x = 0 is completely degenerate. We therefore
proceed to blowup x = α = ρ213 = 0. We will only need one chart: Let α213, x213 be
defined by

{
α = ρk

213α213,

x = ρk
213x213.

(102)
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Seeing that ε = ρk+1
213 , the scaling of α can be written as α = ε

k
k+1 α213 which is

therefore consistent with the regime W2(ε0, ε1, α0). In particular, ε1 > 0 sufficiently
small in W2(ε0, ε1, α0) implies that α213 > 0 is large enough. Upon using (102), we
then obtain the following equations for the reduced problem:

ẋ213 = ν213α213,

ν̇213 =
[
2x213 − α213g0 + βν−k

213

] ν2213

ν213 − kβν−k
213

,
(103)

after having desingularized through division of the right hand side by ρk
213. Here, we

have introduced g0 := g(0), see (67). Recall that R213,a corresponds to ν213 > ν213, f

whereas R213,r corresponds to ν213 < ν213, f . ν3 = ν213, f , where the denominator
of the right hand side of (103) vanishes, is the degenerate set J213. To analyze this
situation, we proceed as usual (Szmolyan andWechselberger 2001) by considering the
desingularized system, obtained by multiplying the right hand side by 1 − kβν−k−1

213 :

ẋ213 = α213

(
ν213 − kβν−k

213

)
,

ν̇213 =
[
2x213 − α213g0 + βν−k

213

]
ν213.

(104)

On R213,a , this multiplication corresponds to a time reparametrization, whereas on
R213,r the direction of orbits of (104) has to be reversed to agree with (103). The
dynamics of (104) is easy to study: For eachα213 > 0, there exists a unique equilibrium
at

(x213, f , ν213, f ), x213, f := 1

2
α213g0 − 1

2
βν−k

213, f . (105)

It is a saddle; the linearization having the following eigenvalues eigenvalues:

−1

2
v213, f ± 1

2

√
8(k + 1)ν213, f α213 + ν2213.

These eigenvalues are clearly real and of opposite sign for any α213 > 0. See Fig. 26.
In terms of the slow–fast system obtained from (99), with x and α scaled according
to (102) and ρ213 > 0 being the small timescale separation parameter:

ẋ213 = ρ2k+1
213 ν213α213

[
1 + O(ρk

3 )
]
,

ν̇213 = ν213

(
ρ213Y213(ρ

k
213x213, ν213, p213, ρ213, ρ

k
213α213) − φ+(ρ213ν

−1
213)ν

−k
213 − p213

)
,

ṗ213 = −ν213

(
φ+(ρ213ν

−1
213)ν

−k
213 + p213

)
,

(106)
the point (x213, ν213, p213) = (x213, f , ν213, f ,−βν−k

213, f ) is therefore a folded saddle
(Szmolyan and Wechselberger 2001). In particular, by Szmolyan and Wechselberger
(2001, Theorem 4.1) we have the following:
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Fig. 26 Reduced dynamics on the critical manifold R213 within the scaling regime defined by (102). R213
is attracting for ν213 > ν213, f and repelling for ν213 < ν213, f . For any α213 > 0, there exists a (singular)
canard (for ρ213 = 0, in cyan) of the folded saddle (105), which perturbs for all 0 < ρ213 � 1 within
(ε, α) ∈ W2 by slow–fast theory, see Proposition 5.12. The (singular) canard is a stable manifold of the
(folded) saddle of the desingularized reduced problem on R213

Consider the slow–fast system (106), having R213,a and R213,r as attracting and
repelling (but noncompact) normally hyperbolic critical manifolds. Fix appropriate
compact submanifolds of R213,a and R213,r ; basically these sets have to contain an open
subset of the singular canard in their enterior. Then by extending the resulting Fenichel
slow manifolds (obtained as perturbations of these compacts sets) by the forward and
backward flow, respectively, we obtain the extended attracting and repelling slow
manifolds.

Proposition 5.12 Fix a compact interval K ⊂ (0,∞). Then, there exists a ρ2130 > 0
sufficiently small, such that for any α213 ∈ K , 0 ≤ ρ213 < ρ2130 there exists a canard
trajectory as a transverse intersection of the extended attracting and repelling slow
manifolds. The canard trajectory is an O(

√
ρ213)-perturbation of the stable manifold

of the (folded) saddle (cyan in Fig. 26).

In fact, by working in separate charts, we can fix the Fenichel slow manifolds as
extended versions of the slow manifolds Sε,α and Nε,α , by applying the forward and
backward flow to these manifolds. In this way, we can therefore extend the canard in
Proposition 5.12 near M on the second cylinder, see Fig. 27. The canard has an unstable
foliation along Nε,α . By following this foliation back toward C on the ¯̄y-positive side
of M , see Fig. 27 (black orbits), we obtain a foliation of points on Sε,α , specifically on
C for ε = ρk+1

213 , α = ρk
213α213 → 0, with α213 > 0 fixed. In fact, these points form

a curve which is a graph over y2 = ȳ/ᾱ ∈ (0, 1) in chart (ᾱ = 1)2, or equivalent a
graph over α1 = y−1

2 ∈ (1,∞) in chart (ȳ = 1)1, recall (30). We focus on a compact
subset Fε,α of this curve given by α1 ∈ [c1, c2] in the chart (ȳ = 1)1 with

1 < c1 < c2, (107)

fixed. For simplicity, we will frequently suppress ε and α and write Fε,α as F .
We have the following regarding F : By applying the scaling (102) with ε = ρk+1

213
to the system (47), and upon using Assumption 4, we obtain a desingularized flow on
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Fig. 27 Blowup dynamics for (ε, α) ∈ W2. On the left, we show the reduced, desingularized dynamics on
C1 in the (ȳ = 1)1-chart upon application of the two consecutive blowup transformations, see (69) and
(74). In red we have indicated the repelling limit cycle γ0. It extends onto the cylinder ε̄ = 0, due to the
blowup (74), in the singular limit ε, α → 0, with the limit understood within the parameter regime W2. In
comparison with Fig. 23, we leave out the dynamics along ε̄ > 0 since this is not relevant for the regime
(ε, α) ∈ W2. At the same time, we also indicate the canard in cyan, see also Fig. 26, and the set F (black)
which is the set of base points on C1, obtained by following the unstable foliation of the canard along M .
On the right, we illustrate the dynamics in the projection also used in Fig. 15, where the fast dynamics are
also visible. Here, we specifically indicate how the canard (cyan) extends across the two cylinders following
C on top and M below. The section �, transverse to M and the canard, is used in the proof of Theorem 5.2
(2) (Color figure online)

the manifold M22 in the (ᾱ = 1, ε̄ = 1)22-chart:

ẋ213 = α213φ(y22),

ẏ22 = −1 − φ(y22)

φ′(y22)
,

(108)

for ρ213 → 0. Consequently, along the canard orbit following M22, x213 changes by
an O(1)-amount. Seeing that x = αα−1

213x213, we can therefore write the curve F in
the (ȳ = 1, ᾱ1 = 1, r̄12 = 1)121-chart using the coordinates (x121, ξ121, ε121, σ12) on
C1, see (75), with x = √

αx121, as follows

F121 : σ12 ∈ [c1, c2], x121 = 0, r121 = ε121 = 0,

recall (82), for ρ213 → 0. In particular, we use that x121 ∼ √
αx213 → 0 for α → 0.

See Fig. 27.

Remark 5.13 (108) is the only place in the proof of Theorem 5.2, where we use
Assumption 4. This assumption could easily be relaxed; we only need that the slow
flow of x213, y22 is well defined on M22 with y22 decreasing.

5.4 Completing the Proof of Theorem 5.2 (2)

Our strategy for completing the proof of Theorem 5.2 is as follows: Let μ≈0 and
consider ε1 > 0 small enough, so that the system has a repelling limit cycle, that when
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written in the (ȳ = 1, ᾱ1 = 1, r̄12 = 1)121-chart intersects σ12 = 1 transversally for
each (ε, α) ∈ W2(0, ε1, α0) provided that α0 > 0 is small enough. The fact that this
is possible follows from the analysis above in the (ȳ = 1, ᾱ1 = 1, r̄12 = 1)121-chart,
see the start of Sect. 5.3. Next, by decreasing α0 > 0 if necessary there exists an
0 < ε0 < ε1 such that there is a canard trajectory for each (ε, α) ∈ W2. In fact, the
canard has an unstable foliation on the repelling side, which—when carried across
Nε,α near M—gives a twist-like return to the slow manifold Sε,α . This induces the
foliation of point on Sε,α given by the curve F .

At the same time, since the limit cycle is repelling, we can track the canard back-
wards on Sε,α , and conclude that the limit cycle is the α-limit set of the canard. Upon
increasing the interval [c1, c2] ⊂ (1,∞), recall (107), we can therefore ensure that
the canard transversally intersects the curve Fε,α on Sε,α in at least n ∈ N points
for all ρ213 > 0 small enough. The proof of the theorem then follows Kristiansen
(2021, Theorem 4.1), which is inspired by Haiduc (2009, Theorem 1) in a similar
setting. In particular, we define a return map in the (ᾱ = 1, ε̄ = 1)22-chart using
the scaling (102), with ε = ρk+1

213 , defined on a section �22 transverse to M22 and
the canard. Since the expansion along M is greater than the contraction along C ,
recall Remark 3.6, we will study this mapping in backward time (so that M becomes
attracting and C repelling). By flowing Nε,α ∩ �22 backwards near the canard, we
obtain—due to the transverse intersection of Sε,α and Nε,α along the canard – a stable
foliation of the canard on the Sε,α side. For each transverse intersection i = 1, . . . , n
of the canard with Fε,α on Sε,α , we then further obtain a small subset of this foliation
which, upon extension by the backward flow, eventually returns to �22 in a “horizon-
tal” curve Hi that extends an O(1) distance in the direction tangent to Nε,α ∩ �22 at
the canard. At the same time, Hi is exponentially close to Nε,α ∩ �22. This gives n
disjoint horizontal curves H1, . . . , Hn , whose preimages are n disjoint exponentially
small intervals I1, . . . , In on Nε,α ∩ �22. By the unstable foliation of Nε,α , we obtain
n “vertical strips” V1, . . . , Vn over I1, . . . , In . These strips get mapped to horizon-
tal strips that contain the curves H1, . . . , Hn , respectively. We call these thickened
(although exponentially small) versions by the same symbols.

This gives the basics of the horseshoe, with n disjoint horizontal strips H1, . . . , Hn

and n disjoint vertical strips V1, . . . , Vn that intersect in n × n exponentially small
squares. Theorem 5.2 (2) therefore follows from the Conley–Moser theorem, see, e.g.,
Wiggins (2003, Theorem 25.2.1). In particular, the verification of the cone-properties
of this theorem can be done in the exact same way as in the proof of Kristiansen
(2021, Theorem 4.1), see Kristiansen (2021, p. 2387), using the foliations of the slow
manifolds and the transverse intersection of Sε,α and Nε,α along the canard. A similar
verification (in the context of the forced van der Pol) can be found in Kuehn (2015,
Chapter 14.5), and we therefore leave out further details.

6 Discussion

In this paper, we have described the dynamics of a new model (6) of hysteresis based
upon singular perturbations. We focused upon α > 0, as this case corresponds to
hysteresis, and studied two scenarios where the associated PWS system (1) has stable
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sliding, see Theorem 3.1, and (2) has a repelling limit cycle grazing � in the plane,
see Theorem 5.2. In particular, in Theorem 5.2 we identified two parameter regimes
in the (ε, α)-plane, where the dynamics of (6) resembles regularization by smoothing
and regularization by hysteresis, respectively.

In future work, it would be interesting to perform the same analysis for α < 0, but
also, in the case of the grazing bifurcation, to explore the transition between the two
regimes of Theorem 5.2. Presumably there is an actual curve in the (ε, α)-plane along
which saddle-node limit cycles “touch” or “grazes” the foliation of points, described
by F in the singular limit and bounded by α1 = 1 from above, due to the twist and
return to Sε,α away from the canard. An analysis of such a bifurcation scenario is
interesting in its own right and in future work we aim to describe this in a simpler
setting.
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