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Abstract
This thesis examines computational approaches to finding novel multiferroic materials
in two dimensions. Ferroic materials are characterized by the presence of at least one
type of primary ferroic order such as ferromagnetism, ferroelectricity or ferroelasticity.
Multiferroics on the other hand contain at least two of these orders simultaneously.
This feature has lead to a surge of interest in recent years, from researchers trying to
understand the fundamental mechanisms that drive multiferroism. In addition there
has been speculation that these materials could potential have various technological
applications.

The relevant theoretical framework for understanding the properties of materials is
quantum mechanics. This thesis applies density functional theory (DFT), a quantum
mechanical computational method that has proven very useful for investigating the elec-
tronic structure of solids as well as a variety of condensed phases. Density functional
theory is applied in conjunction with the modern theory of polarization to compute the
spontaneous polarization in ferroelectric materials from first-principles. This method is
applied in order to systematically screen databases for potential ferroelectric candidates.
This is achieved by applying high-throughput frameworks that allows researchers to
automate a large part of the computational process. The main result presented is a
screening for novel two dimensional ferroelectric materials. Spontaneous polarizations
are computed for identified ferroelectric candidates. Further analysis includes a ther-
modynamic classification using phonons as well as computations of upper bounds on
coercive electric fields. The identified ferroelectric materials include previously known
materials as well as novel ones that will likely be the subject of future investigation.

In addition recent results obtained for the Computational 2D materials database
(C2DB) are presented, with an emphasis on the addition of electric polarizations. The
thesis also briefly covers a computational study of the formation of charged domain
walls due to oxygen vacancies in BaTiO3. Our results indicate that the vacancies are
not only stabilizing agents for the negatively charged walls, but are also critical in
order to explain how these are formed in the first place.

A chapter of this thesis deals with the anomalous Hall effect in metallic magnets.
The chapter covers the necessary theoretical background specifically linear response
theory. Benchmark calculations are performed using an implementation of the anoma-
lous Hall conductivity into the DFT code GPAW. The results indicate good agreement
with literature in some cases, but is inconclusive in some scenarios. It is concluded that
adaptive refinement of k-point grids are necessary in order to conclusively demonstrate
the accuracy of the implemented code.





Resumé
Denne afhandling undersøger beregningsmæssige tilgange til at opdage nye multifer-
roiske materialer i to dimensioner. Ferroiske materialer er karakteriseret ved tilstede-
værelsen af mindst én type af primær ferroisk orden, såsom ferromagnetisme, ferroelek-
tricitet eller ferroelasticitet. Multiferroiske materialer indeholder mindst two af disse
typer af orderden samtidigt. Denne egenskab har ført til en bølge af interesse i de
senere år, fra forskere, der forsøger at forstå de grundlæggende mekanismer, der driver
multiferroisme. Derudover har der været spekulationer om, at disse materialer po-
tentielt kunne have forskellige teknologiske anvendelser. Fokus i denne afhandling er
specifikt todimensionelle multiferroiske materialer.

Det relevante teoretiske værktøj til at forstå materialers egenskaber er kvantemekanik.
Denne afhandling anvender tæthedsfunktional teori, en kvantemekanisk beregningsme-
tode der har vist sig at være meget brugbar i forbindelse med at bestemme den elek-
troniske struktur i materialer og ligeledes i adskellige kondenserede faser. Tætheds-
funktional teori er anvendt sammen med den moderne teori for polarisation til at
beregne den spontane polarization i ferroelektriske materialer fra første principper.
Denne metode bliver anvendt til systematisk at screene databaser for nye potentielle
ferroelektriske kandidater. Dette opnås ved anvendelse af såkaldte high-throughput
metoder der tillader forskere at automatisere en stor del af den beregningsmæssige
proces. Det primære resultat som præsenteres er et screening-studie af nye todimen-
sionelle ferroelektriske materialer. Spontane polarisationer beregnes for identificerede
kandidater. Yderligere analyse inkludere en termodynamisk classification ved brug af
fonon beregninger såvel som beregninger af øvre bånd på elektriske koersivfelter. De
identificerede materialer inkluderer tidligere kendte materialer såvel som nye materialer
der formentlig vil blive undersøgt nærmere i fremtiden.

Derudover præsenteres nyligt fundne resultater fra databasen Computational 2D
materials database (C2DB), hvor der særligt er lagt vægt på de fundne polarizationer.
Afhandlingen dækker også kort et beregningsmæssigt studie af formationen af ladede
domænevægge med manglende ilt atomer i BaTiO3. Vores resultater indikerer at
manglende ilt atomer ikke bare har en stabiliserende effekt på negativt ladede vægge,
men også forklare hvorfor disse opstår til at starte med.

Et kapitel i denne afhandling omhandler den anomale Hall effect i metalliske mag-
neter. Kapitlet dækker den nødvendige teoretiske viden specifikt lineær respons teori.
Benchmark beregninger er blevet udført ved brug af en implementering af den anomale
Hall ledningsevne i computer koden GPAW. Resultaterne indikerer en god overenstem-
melse med tidligere fundne resultater i nogle områder. Resultaterne er dog inkonklusive
i nogle tilfælde. Det konkluderes at en adaptiv refinering af k-punkts gittre er nød-
vendig for endegyldigt at demonstrere nøjagtigheden af den implementerede kode.
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CHAPTER 1
Introduction

The word technology has in the 21st century largely become synonymous with infor-
mation technology. If one looks at the development in society over the last 50 years
it quickly becomes apparent why this is the case. Most people in the developed world
owns an smartphone, a personal computer and likely some other electronic device.
These new technologies have been made possible by the development in quantum me-
chanics by physicists in the first half of the 20th century. Perhaps the most famous
example being the invention of the transistor[1]. The impact of this invention alone
is well summarized by Moore’s law which back in 1965 predicted that the number of
transistors in an integrated circuit would double every two years [2]. So far, it has
held up quite well and today computers form the basis for information technology
[3]. Transistors are like all electronic components build from materials, specifically
semiconductors.

Electronic components however, are just one example of the role that materials have
played in shaping modern human societies. In fact a lot of progress through human
history have been driven by advances in the applications of materials. So much so,
that historians have named entire epochs after the materials that played the most
significant role in the relevant time period [4]. When the history books of the future
are written our era may well be characterized as the silicon age due to the significance
it has played as a building block for the electronic components used in computers.

In spite of all the discoveries made so far, material science is hardly a dead discipline.
According to the American Physical Society (APS) the majority of its members iden-
tify as solid state or condensed matter physicists [5]. Scientists are still discovering
new phenomena as well as new materials. One example of which is the discovery of
multiferroics, materials that exhibit several blends of ferroic order at the same time.
The most famous examples are ferromagnetism, ferroelectricity, ferroelasticity. While
many examples of these types of ferroics are known, it is far less common to find ma-
terials that posses several types simultaneously. For a long time the number of known
multiferroic materials was small, and only few papers had been published within this
area [6]. From 1960 to 1980 less than 20 papers were published a year, by 2000 the
number was close to 50 and in 2005 about 100 papers were published a year[7]. Over
the last 20 years the interest in the field as well as the number of materials found has
increased significantly.

Besides a fundamental interest in this new family of materials, multiferroics may turn
out to offer unique applications in a variety of different technologies. Because one can
utilize the properties of several types of ferroic order using the same material, it may be
possible to design new technologies that utilize the advantages of each material property
while circumventing any potential disadvantage. Perhaps the most prominent example
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is within the world of computing where a non-volatile, low energy memory has long
been sought after. For example ferroelectrics can be used to write information using
small voltages which are convenient and have a low energy consumption. Ferromagnets
store information in magnetic degrees of freedom, which can be read without destroying
any written information. A material that posses both properties, can store and read
information using electric- and magnetic fields respectively.

Other potential applications of multiferroics include: as platforms for neuromorphic
computing [8], new forms of field effect transistors and logical gates within comput-
ing[9–12], as potential catalysts[13, 14], as antennas[15] and new forms of photovoltaic
devices[16]. Recently is has even been proposed that there may be similarities between
phenomena in multiferroics and those found in the cosmology of the early universe [17,
18].

The aim of this thesis is to search for new multiferroics, specificially those found
in two dimensions. These are materials that exist down to thickness of one atomic
layer. This a research field that, like multiferroics has grown rapidly in the last two
decades. It all started around 2004 when it was discovered that graphene could be
exfoliated from graphite using scotch tape[19]. Since then many other examples have
been found. In 2017, magnetism was observed in the two dimensional material CrI3
[20]. Two dimensional ferroelectrics have also both been predicted theoretically [21–29]
and observed experimentally [30–36]. In this work the focus has been to predict new
potential material candidates using first-principle methods. That means using basic
tenets of quantum mechanics that govern the laws of electrons and atoms without
relying on specific empirical data or constructing specific models based on approxima-
tions or assumptions. The framework being used is density functional theory (DFT).
This computational method is used in conjunction with various theoretical methods
and frameworks that are applied to investigate the different topics covered in the the-
sis. All figures presented are either made by the author or reprinted from one of the
publications with permission from the author(s).

1.1 Outline
The thesis is structured as follows:

• Chapter 2 gives an overview of the various forms of primary ferroic orders, as
well as multiferroics. The emphasis of the chapter is on the ferroelectricity and
ferromagnetism since these are the type of ferroic order most central to this thesis.
Towards the end of the chapter domains, and domain walls are briefly discussed,
with an emphasis on ferroelectrics as it applies to the work done in [III].

• Chapter 3 introduces density functional theory (DFT) as a central tool in ma-
terials science. The chapter goes on to cover the most basic elements of density
functional theory like the Hohenberg-Kohn theorems, the Kohn-Sham equations
and exchange correlation functionals. Finally additional extensions spin-orbit
coupling and DFT + U are also discussed.
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• Chapter 4 shortly introduces the concept of high-throughput methods in materi-
als science, as it applies to paper [I]. The utility of high throughput frameworks
and databases are discussed and relevant examples are given.

• Chapter 5 explains the modern theory of polarization, and how it is used for ab
initio calculations. The chapter covers the fallacies of Claussius-Mosetti picture
of polarization, the berry phase and the adiabatic theorem. It is also discussed
how to compute polarizations in practice. Furthermore related topics like the
Born effective charge tensor, and ferroelectric metals are also discussed. These
topics form the basis for understanding the work done in papers [I] and [III].

• Chapter 6 summarizes the work done in the publications [I]-[III]. The emphasis of
each section is not to describe each paper in detail, but rather to give an overview
of the motivation, method and results of each work. The necessary background
information is covered in chapters 2-5, and the papers themselves are found in
chapter 8.

• Chapter 7 concerns the anomalous Hall effect and how to predict this effect by
calculating the anti-symmetric conductivity tensor using linear response theory.
First the various types of Hall effect are summarized, then the anomalous Hall
conductivity is introduced, with an emphasis on the intrinsic component. Linear
response theory is used to derive a formula for the anomalous Hall conductivity.
We discuss the necessity of using adaptive refinement for practical computations.
The chapter concludes with a presentations of the benchmark results, using a
software implementation of the anomalous Hall conductivity in GPAW[37]. Since no
publication has come out of this work yet, the chapter is written as a standalone
chapter.

• Chapter 8 briefly summarize and conclude on the content of the thesis and give
an outline for future directions of research within the various areas covered in
the thesis.

• Chapter 9 contains copies of published works that are summarized in chapter 6.

• The final chapter is followed up by appendices that contain calculations necessary
for a thorough understanding of certain topics in the thesis. These are largely
technical sections, that are deemed to detailed to cover in the main text.



CHAPTER 2
Ferroic order

The term ferroic is a prefix that indicates the presence of ferrous iron [38]1. The name
refers to the prototypical example of a ferromagnet, one of the most commonly known
types of ferroic order. It means the presence of long-range order where microscopic
dipoles align to form some form of spontaneous macroscopic order such as magnetiza-
tion in the case of ferromagnetic materials. A characteristic feature of such materials
is that macroscopic magnetization, polarization or strain can be manipulated using
magnetic, electric or mechanical fields. At a first glance it seems as if ferromagnetism
and ferroelectricity occur for different reasons. However there are several underlying
theoretical as well as physical similarities between these phenomena. This chapter
introduces fundamental concepts of types of ferroic orders. The primary focus are
ferromagnetic and ferroelectric order as these has the largest relevance for the thesis.
Different types of ordering are discussed for magnetic and ferroelectrics, and examples
of the physical origins of their ordering are given. Other examples of ferroic order are
given, such as ferroelasticity, ferrotoroidicity and multiferroism. Lastly we discuss the
role of domains and domain walls for ferroic materials.

2.1 Ferromagnetism
The characteristic feature of ferromagnets, which distinguishes them from other phases
of matter is that they contain ordered magnet moments. That is the magnetic moments,
whether they arise from localized electrons at residing on atoms or itinerant electrons
that are freely moving about, are all aligned in a given direction such that they give rise
to a finite total magnetic moment M . Such materials are referred to as ferromagnets
and their characteristics distinguishes them from most other material phases, because
most materials either don’t contain finite magnetic moments or those magnetic mo-
ments are oriented randomly resulting in a material with a net magnetic moment of
zero. The latter type of material is known as a paramagnetic material, in such mate-
rial a finite magnetization can be induced by the application of an external magnetic
field H. In fig. 2.1 different types of ordered moments are depicted, including also
the case where moments are anti-aligned, which in the case of magnets is known as
antiferromagnetism. Another option is for some moments to be larger in size than oth-
ers, for magnets this is known as ferrimagnetism. The specific mechanisms that lead
to magnetism varies across materials, but it is generally accepted that the quantum
mechanical exchange interaction is central to explain long-range magnetic ordering in
magnetic compounds. At first sight it seems strange that quantum mechanics should

1It comes from ferrum, the latin word for iron.
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Figure 2.1: The figure shows an illustration of localized magnetic moments in a variety of
different configurations. On the upper left side the magnetic moments are all aligned, like
in a ferromagnet. On the upper right the magnetic moments have a random orientation,
like in a paramagnet material. The bottom left depicts the alignment in a antiferromagnet
system. The final sketch is of a ferrimagnetic configuration where the orientation of magnetic
moments are similar to the antiferromagnetic case but the magnitude of the moments pointing
downward is smaller than their opposites. As a result the the sum of magnetic moments still
leads to a finite magnetization.

play a role. It was first shown by Bohr and von Leeuwen, that a purely classical treat-
ment of magnetism leads one to the conclusion that magnetism isn’t possible, at least
starting from the principles of statistical mechanics [39]. The reason for this perplexing
result is that the origin of magnetism in inherently quantum mechanical and not classi-
cal. This can be understood intuitively by considering a simple quantum system with
two electrons which reside on the same atom. The Pauli exclusion principle states two
electrons cannot share the same quantum state. Furthermore because electrons are
fermions their wavefunction have a spatial and a spin component. If the two electrons
occupy the same orbital they must have different spin orientations. On the other hand
if they have the same spin orientation they cannot reside on the same orbital. In other
words the spin state actually determines what spatial state is possible. Because spa-
tial and spin degrees of freedom are mixed this way, electrostatic Coulomb repulsions
between two electrons is minimized if the two electrons are aligned. The exchange
interactions is purely quantum mechanical in nature and exists as a consequence of
the Pauli exclusion principle. The argument can be generalized to systems of many
electrons, even if those electrons are not localized spatially at some atom.

Like all phases of matter a magnets properties depends on the temperature at which
one measures them. The typical way to treat the thermodynamics is to apply Landau
theory. These are theories that model the total free energy of system with some form
of ferroic order that is characterized by a so called order parameter. In the case of
magnets the order parameter is the total magnetization and typical expression for the
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free energy would read something like the following [39]:

F (M) = aM2 + bM4 (2.1)

where F is the free energy, M is the magnetization, b is a parameter satisfying b > 0
and a = a0(T − Tc) with a0 being a positive constant. Here the temperature T is
introduced through the parameter a, which changes sign ones the temperature exceeds
the critical temperature Tc. In this way one can capture much of the phenomenology
of phase transitions from a relatively simple model. The solutions to the model is the
paramagnetic phase M = 0 at high temperatures and finite magnetization M = ±M0
that is either up or down in the ferromagnetic low temperature phase. The model
presented here have made many implicit assumptions such as the magnetization being
perfectly uniform. However the models can be extended in many cases. One can
use similar tools to analyze phase transitions in other types of ferroics, for instance
ferroelectrics which are discussed in the next section. In real experiments magnets
order is often probed by applying an external magnetic field H. A typical type of
measurement is applying a field to form hysteresis loops, a sketch of which is depicted
in 2.2. In such experiments one can extrapolate the critical field required to switch
the material from one state to another. Whether a magnet is easily switchable or not
is of huge importance for some applications. Many of the concepts introduced here
have analogies for other ferroic orders, but there are also some significant differences
that will be covered in the remainder of this chapter. The concepts introduced here
therefore also serves as a conceptual reference for understanding the other types of
ferroic order.

M

H
Hc

M0

P

E
Ec

P0

Figure 2.2: a). In the figure on the left is a sketch of a hysteresis loop for a ferromagnet.
The figure depicts how the magnetization changes sign as a function of applied auxiliary field.
The value Hc denotes the magnitude of auxilliary field for which the magnetization switches
sign, and M0 the saturated value once the magnetization is flipped entirely. The figure to the
right is a similar copy but for a ferroelectric. Here the quantity being flipped is the electric
polarization and the external field is an electric field.
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2.2 Ferroelectricity
Ferroelectricity is an analog of ferromagnetism but for electric dipoles as supposed to
magnetic ones. The first experimentally known ferroelecric was the Rochelle salt, dis-
covered by J. Valasek in 1920 [40], who demonstrated the existence of a hysteresis loop.
The main driver of ferroelectricity is long range dipole-dipole interactions, unlike ferro-
magnets where the dipole-dipole interaction is weak. The main competing interaction
is the short ranged repulsive interactions between neighboring electron clouds. Such
interactions tend to prevent the atomic displacements that cause ferroelectricity and
instead prefer high-symmetry structures where atomics are more or less situated in an
equidistant manner[41]. A key feature of ferroelectrics is that they are characterized
by a polar axis and that ferroelectricity occur in materials due to some symmetry low-
ering distortion from a non-polar structure. In other words the long-range interactions
have to win out over the shorter range interactions in order for it to be energetically
favourable for a material to form electric dipoles. Ferroelectricity occur in materials
with the formation of new chemical bonds that stabilize an off-centering distortion of
an initial high-symmetry structure [42].

Perhaps the most well known type of ferroelectrics are those found in perovskite
oxides. The canonical textbook example in this family is BaTiO3. Here the primary
driver of ferroelectricity is second order Jahn-Teller distortions 2. These are displace-
ments of the active cations, which often happen in closed shell systems where the
Coulomb repulsions between atoms is weaker. This happens because there are no ex-
tended valence electrons and an atomic distortion that leads to the formation of new
chemical bonds is therefore energetically favourable [43]. For this reason these are
sometimes called Jahn-Teller ferroelectrics.

Some ferroelectrics are known as geometric ferroelectrics. Here ferroelectricity is
in purely geometric and is often caused by so called Glazer tiltings [38]. In many
cases these are combined with the aforementioned Jahn-Teller distortions to create
electric dipole moments. These effects often lead to material with locally ordered
dipole moments that are either antialigned or of different magnetitude. They can be
therefore be thought of as anti-ferroelectric or ferrielectric in analogy their magnetic
counterpart 3.

Finally some ferroelectrics do not involve ionic displacement at all. Such ferroelectrics
are known as Charge-order ferroelectrics are less common type of ferroelectric. Here
ferroelectricity is caused by the fact the otherwise identical ions have a different num-
ber of electrons. This asymmetry in valence number in conjunction with geometric
frustration can in certain cases lead to a finite electric dipole. Currently there are
not many known ferroelectrics in this category. The most studied being LiFe2F6[45],
LuFe2O4[46, 47] and Fe3O4[48]. The few materials where this is the only driver of
ferroelectricity tend to be magnetic materials [49]. Such double ferroic materials will
be discussed later in this chapter.

2Second is emphasized here because formally speaking the energetically dominant term stems from
second order perturbation theory.

3This has caused some debate among researchers because the analogy between antiferromagnetism
and antiferroelectricity does not hold op in all cases [44].
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Unlike magnets, which can be either metallic or insulating, ferroelectrics are all
insulators. It is not that one can’t find metallic materials with a polar symmetry
group. Out of the total 32 crystallographic point groups only 10 of them are polar
point groups. Each polar point group puts a certain restriction on what orientations
the polarization can have. In order for a material to be ferroelectric, it needs not
only a polar axis, but a switchable polarization. Switchability is best demonstrated
experimentally by measuring hysteresis loop, analogous to what is done for magnets.
A picture of the same process for ferroelectrics is shown in figure 2.2. Electric fields
cannot switch polarizations because local charges screen the electric field. There is no
magnetic analog of this because there are no magnetic monopoles [38].

The phase transitions that occur in ferroelectrics can be described using Landau the-
ory, in a similar way as was done for ferromagnets in section 2.14. For ferroelectrics
the appropriate order parameter is the electric polarization P . For ferroelectrics phase
transitions can be either first or second order [50]. Like for ferromagnetics the specific
Landau theory depends on the material considered. For ferroelectrics a symmetry anal-
ysis of the crystal structure can often be used to exclude certain terms, but generally
speaking expressions are often more complicated than the simplistic version shown in
eq. 2.1.

In the literature on the phase transitions of ferroelectrics one tends to distinguish
between proper and improper ferroelectrics. The first category describe ferroelectrics
which can be described by a Landau theory where the free energy is a function of only
a single order parameter. This may be the polarization itself or some other parameter
which is a function of the polarization itself. The second category describes ferro-
electrics where the Landau free energy cannot be written as a function of a single order
parameter, but at least to order parameters are needed. In this case ferroelectricity is
often caused by the fact that the different order parameters are coupled together such
that they collectively give rise to a polar distortion. In practice one can distinguish the
two by investigating the symmetries of the modes that produce the distortions that
lead to ferroelectricity.

2.3 Other types of ferroic order
There are other interesting types of ferroic order besides ferromagnetic and ferroelec-
tric order. One other such example is ferroelastic order [51]. These are materials
where the key characteristic is the formation of spontaneous strain η. A finite strain
corresponds to a material being stretched or compressed relative to a state of zero
strain. It is a kind of mechanical analog of ferroelectricity and ferromagnetism, in that
a spontaneous strain occur without the application of any external electric, magnetic
or mechanical fields. In ferroelastic materials the application of external mechanical
stress can structurally ”switch” the strain in the ferroelastic in such a way that the
material undergoes a structural phase transformation to a twin-phase. This is depicted
in figure 2.3 where three crystal structures are sketched. They are identical except for

4For historical reasons, the literature often refers to this as Landau-Devonshire theory when fer-
roelectrics are described.
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differences in strain.
A less common and perhaps more complicated type of ferroic order is ferrotoroidal

ηy

ηx

Figure 2.3: The the left is an illustration of a ferroelastic material that has been elongated in
the longitudinal direction on the left and the horizontal direction on the right. The material
in the middle has no finite strain. The figure on the right is a sketch of two toroidal moments,
one oriented upwards and the other one downwards.

order [52]. These are material systems where non-collinear magnetic moments form
toroidal moments. These are defined as τ = r × S, where S is the electronic spin and
r their positions. Toroidal moments can be thought of as analogous to the mechanical
torque defined in classical mechanics. This type of order is however the least studied,
and a lot of research question in this area are still open.

2.4 Multiferroic order
Some materials contain more than one type of ferroic order simultaneously, without
any external field present. Such materials are known as multiferroics. The term was
first applied by Schmid in a paper in 1994 [53], in which he was referring specifically to
magnetoelectric multiferroics, that is materials that posses magnetic and electric order
simultaneously. By combining the different types of primary ferroic order one obtains
the different types of multiferroics. By combining one ferroelectrity and ferroelasticity
one gets ferroelectric-ferroelastic materials [54], where a material exhibit spontaneous
strain and simultaneously supports a finite electric dipole moment. If instead magnetic
and elastic order are simultaneously present one is dealing with a magnetoelastic mul-
tiferroic[55]. The different types of ferroic alignment possible for single ferroic phases
are also possible in multiferroics. A material can be ferroelectric and antiferromag-
netic, or antiferromagnetic and ferroelastic just to give to examples. The number of
ferroic orders present need not be limited to just two for something to be multiferroic.
In principle three or more orders can be present simultaneously [56]. If a material is
simply refered to as multiferroic it tends to mean magnetoelectric multiferroics.

Magnetoelectric multiferroics should not be conflated with materials that are simply
magnetoelectric. Magnetoelectric materials are simply materials in which an external
electric field can change the value or orientation of the magnetization or vice versa
that an external magnetic field can lead to a change in electric polarization within the
material. However it is not a requirement and rarely the case that such materials have
finite magnetic or electric orders when no external fields are present. In summary all
magnetoelectric multiferroics are also magnetoelectric but not the other way around as
illustrated in figure 2.4. The best known example of a magnetoelectric material that is
not multiferroic is the antiferromagnet Cr2O6 which doesn’t have any polarization in
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Figure 2.4: A Venn diagram that illustrates the similarities and differences between different
types of materials that are either instrinsically ferroic or polarizable using external fields.
The largest sets in blue and red denote magnetically- and electrically polarizable materials
respectively. The orange and turquoise subsets represent the subset of materials that have
electric ferroic order (ferroelectric, anti-ferroelectric etc.) and magnetic order (ferromagnetic,
anti-ferromagnetic etc.) respectively. The joint set of the magenta and orange sets represent
magnetoelectric multiferroics. The larger set in green represent materials that are merely
magnetoelectric. These include all the magnetoelectric multiferroics and a subset of materials
belonging to the remaining four categories.

its antiferromagnetic phase[57]. It does however have a finite magnetoelectric constant
αij = ∂M

∂E = ∂P
∂H . This argument also applies to other types of multiferroics. For

example a multiferroic that is ferroelastic and ferroelectric must be a piezoelectric
material, but not the other way around. A material that has magnetic and elastic
order is automatically piezomagnetic but not vice versa. This thesis is primarily been
concerned with magnetoelectric multiferroics. They are generally categorized in two
classes: Type-I and type-II Multiferroics [58].

Type-I Multiferroics are materials where the two types of ferroic orders arise indepen-
dently of each other. In such materials the underlying mechanism responsible for each
type of ferroic order is different. For this reason the temperature ranges in which the
orders are present may be different, but overlapping. The characteristic feature of these
materials however is that the different underlying mechanisms are not inhibiting each
other, or at least are only doing so partially. As a result the magnetoelectric coupling
in type-I multiferroics tend to be smaller than in type two multiferroics. The perhaps
most famous examples of type-I multiferroics would be BiFeO3[59] and YMnO3[60].

Type-II Multiferroics are materials where the different types of ferroic order simul-
taneously present are somehow interlinked. Typically this is caused by some type of



2.5 Domains, and domain walls 11

non-collinear magnetic ordering which causes the overall symmetry group of the ma-
terial to become polar. Even if the material does not undergo a structural change, a
breaking away from collinear order like that of ferromagnetism changes the magnetic
point group of a material. If the new magnetic point group is a polar point group
then the material can support a finite electric dipole, thus inducing ferroelecric order
via magnetism. A good example of a type-II multiferroic would be TbMnO3 where
ferroelectricity is caused by a magnetic spiral configuration[61].

2.5 Domains, and domain walls
Real materials, unlike idealized models of materials, cannot be described by only using
the simple concepts described so far. For example materials that are known as ferromag-
nets do not consist of one large region where all magnet moments are similarly ordered.
Instead ferroic orders in such materials tend to persist within finite regions in what are
kmown as domains. These are regions were all moments, for example magnetic ones,
are oriented along the same direction. However neighboring regions inside materials
can similarly form domains that exhibit ferromagnetic order but with magnetic mo-
ments pointing in a direction which is for example opposite that of their neighboring
domains. In real materials these different domains are then stitched together via inter-
secting regions that are known as domain walls. The reason why materials come with

Figure 2.5: Left: Sketch of material where all domains are aligned. Right: Illustration of a
material where domains are anti-aligned in orientated and as a result.

multiple domains as supposed to a single one, has to do with variety of factors such as
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sample size, shape and competing interactions. Because real materials are finite, that
have a boundary. The existence of a finite ferroics orders in the case of ferromagnetic
or ferroelectrics produces external magnetic, or electric fields. These fields then lead to
the emergence of a demagnetization field, in the case of a ferromagnetic and a depolar-
ization field in the case of a ferroelectric. Such fields result in an energy penalty [39].
If we consider the example of magnets, it is not an advantage to have a single domain
that permeate an entire material, because this would lead to a large demagnetization
field and thus a large energy penalty. Instead such materials can form domains that
are opposite in orientation in the case of a 180 degree domain wall, or ones were the
difference in orientation is 90 degrees depending on the shape and on the material in
question. These examples are depicted in figures 2.5 and 2.6.

There is also competition between interactions that are solely internal. Different
types of ferroics tend to have domains and domain walls of different sizes and shapes.
Because magnetic moments are caused by the spin of electrons they cannot simply
decrease in size, but in order to get from one domain to another, there has to be
a difference in orientation. Therefore magnetic moments perform rotations at the
domain walls. In ferromagnets perfect alignment of neighboring moments are favoured
by the exchange interaction. Therefore this type of interaction tends to favour thick
walls such that angle between neighboring moments is small. On the other hand
the so called magnetocrystalline anisotropy tends to favour one easy-axis over the
others. This interaction is minimized if fewer magnetic moments are pointing away
from the easy-axis, in other words it prefers narrow domain walls since these would
have fewer magnetic moments deviating from the easy axis. The first effect is produced
by Coulomb interactions and the second by the spin-orbit coupling. Because the first
interaction is much larger than the second one, ferromagnets tend to favour large
domains walls, typically on the order of magnetitude of several hundred atomic planes
[38].

In ferroelectrics the case is different. The concept of exchange interaction doesn’t
strictly speaking apply here, but if one thinks of the exchange interaction in magnets as
the difference between a ferromagnetic and anti-ferromagnetic state, then by analogy
one can think of a ferroelectric analogue of the exchange energy as the difference in
energy between a ferroelectric and anti-ferroelectric state [62]. Likewise a parameter
that would be analogous to the anisotropy for ferroelectrics would be the difference in
energy between ferroelectric states pointing in different directions [63]. These are of
cause not strictly speaking as well defined as the exchange interaction and the magne-
tocrystalline anistropy but they can offer some rough estimates of the size of different
interactions in ferroelectrics [38]. Calculations have shown that these two types of
interactions tend to have a similar order of magnitude and ferroelectric domain walls
have also been shown to be very narrow, typically only a few lattice constants [64].
Due to the relevant length scale being this short one can in fact perform simulations
of ferroelectric domain walls using supercell sizes that are within computational reach.
In ferroelectric materials, domain walls can in some cases become charged. This in-
troduces an extra important degree of freedom which can determine which type of
domain wall will be stable. A point to which we will return in section 6.3. The size of
both domains and domain walls can vary depending on both the material in question,
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Figure 2.6: a) Sketch of a material where the domains are oriented to cancel out any external
field. The domain walls are a mixture of 180 degree and 90 degree domain walls. b) A sketch
of a material with domains shaped more according to what is observed in experiments.

the type of ferroic order and other extrinsic factors such as the occurrence of defects
and grain boundaries. The illustrations in 2.5 are idealised pictures of domains. A
more realistic picture of how domains are shaped is depicted in fig. 2.6 b). where the
domains take on more arbitrary shapes resembling those found in experiments [18].



CHAPTER 3
Density Functional Theory

In order to understand materials one first needs a solid theoretical foundational frame-
work to describe them. The relevant framework in this case is quantum mechanics.
It seems unintuitive to worry about the quantum description of electrons when one is
merely concerned with macroscopic objects however small, such as a thin slab of mate-
rial or a molecule. But ever since it’s discovery, quantum mechanics has only proven
itself more critical in understanding and describing physical phenomena. As already
mentioned, the concern in this thesis is to describe materials from first-principles. But
up till now it has not been specified what this actually entails. In this chapter we
will discuss the Schrödinger equation and the so called many-body problem of quan-
tum mechanics, as well as discuss how to solve it for materials using a minimal set
of approximations. Subsequently it is shown how density functional theory (DFT) al-
lows a reformulation of the problem using the Hohenberg-Kohn theorem. The most
basic exchange correlation functionals are described, and their utility and limitation
are discussed. Finally we discuss extensions to DFT like spin-density functional theory,
spin-orbit coupling and Hubbard corrections.

3.1 The many body problem
The quantum many body problem is one of the most studied problems in all of physics.
In the context of condensed matter and solid state physics the problem manifests itself
attempting to to solve the Schrödinger equation [65, 66]:

HΨ(r1, r2, ..., rN ) = EΨ(r1, r2, ..., rN ) (3.1)

where Ψ(r1, r2, ..., rN ) is a many-body wavefunction with the energy E and the many
body Hamiltonian H. The most general quantum description of solids describe elec-
trons, ions and their mutual interaction through the Hamiltonian:

H = −
Ne∑
i=1

h̄2

2me
∇2

i −
Nion∑
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Vext(ri), (3.3)

where the first two terms represents the kinetic energy of the system, the second, third
and fourth terms the Coulomb interaction between electrons, between electrons and
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ions, and between ions respectively. The final term represents a potential in the case
where external field are present. A lot of interesting physics has to do specifically with
the role of the electrons, and because these are much lighter than ions, the motion
of ions can be assumed to be fixed relative to that of the electrons. The equations
that describe the two sets of particles can therefore be decoupled, and the electron
many-body problem can be studied in isolation. This was first formalized by Born and
Oppenheimer in 1927[67]. The electron many-body problem is given by:

H = −
N∑

i=1

h̄2

2m
∇2

i +
N∑

i=1

N∑
j ̸=i

e2

|ri − rj |
+

N∑
i=1

Vext(ri). (3.4)

With the ion-electron interaction now modelled as an external potential. Despite of
this simplification the many-body problem is still in general insoluble. Physicists are
often concerned with finding the groundstate, the lowest eigenstate solution. But
even this problem turns out to be notoriously difficult. Further approximations are
therefore necessary in order to proceed. One of the most used theoretical frameworks
that addresses this issue is density functional theory (DFT). Here one is concerned
with the ground state electron density, which can be obtained from the many-body
groundstate as:

ρ(r) = N

∫
d3r2...

∫
d3rN Ψ∗(r, r2, ..., rN )Ψ(r, r2, ..., rN ), (3.5)

In the reminder of this chapter we will cover the basics of DFT, such as the Hohenberg-
Kohn theorems, the Kohn-Sham equations as well as how to incorporate spin-orbit
interactions and Hubbard corrections.

3.2 The Hohenberg-Kohn theorems
The idea of studying the ground state density as supposed to the more complicated
many-body function, dates back to a theory known as Thomas-Fermi theory. Some
time later the idea was picked up by Hohenberg and Kohn who formalized two theo-
rems about the relationship between groundstate density, that now forms the basis for
modern density functional theory [68, 69].

According to the first Hohenberg-Kohn theorem, the many-body ground state and the
external potential are both uniquely determine by the density ρ(r) (up to a constant).
A corollary to this is that any groundstate property is therefore a functional of the
ground state density alone. The theorem seems very strange at a first glance. After
all the density itself is scalar function of the three spatial variables, whereas the many
body groundstate is a function of 3N variables, and therefore contains much more
information. The implication being that a certain subset of the larger information
space contains all the information necessary to derive groundstate properties.

The second Hohenberg-Kohn theorem states that density that corresponds to the
groundstate wavefunction is the density that minimizes the energy functional:

EGS = min
ρ→Φ

⟨Φ[ρ]|
(
T̂ + Ûee + V̂ext

)
|Φ[ρ]⟩ , (3.6)
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Where the arrow indicates that one finds the density, corresponding to the Φ[ρ] which
minimizes the energy functional. In other words that this ensures that the ground state
energy which is found is in fact the ground state density. Together the two theorems
ensures that a unique relationship exist between the density, and the wavefunction.
Furthermore they demonstrate that the density which qualifies as the groundstate
density can be found, at least in theory, by minimizing the energy functional in eq.
3.6.

3.3 Density functional theory and the Kohn-Sham
equations

Even though the density is a significantly simpler object than the many-body ground-
state wavefunction, one still needs a way to determine the density. To solve this
problem Kohn and Sham came up with the idea to define an auxiliary single-particle
problem with an electron density identical to that of the many-body electron prob-
lem[70]. Suppose such basis of single particles states exists. In that case we need to
solve the single particle problem:

HKS |ϕi⟩ = ϵi |ϕi⟩ (3.7)

where ϵi are called the Kohn-Sham energies, |ϕi⟩ are called Kohn-Sham states and H:

HKS =
N∑

i=1

(
− h2

2m
∇2

i + VR(ri)
)

(3.8)

is the Kohn-Sham Hamiltonian, with the reference potential VR(ri). The potential is
defined such that the density of the fictitious system equals the density of the many
body problem in question. Since this is a single particle problem one can define a Slater
determinant of single particle Kohn-Sham states. The density can then be constructed
from the Kohn-Sham states as:

ρ(r) = 2
N∑

i=1
fi|ϕi(r)|2 (3.9)

where fi denote occupation factors, ϕi Kohn-Sham eigenstates and the factor of 2 is
due to spin degeneracy. The reference potential in Eq. (3.8) explicitly depends on the
electron density:

VR(ri) = vext(ri) + vH(ri) + vxc(ri) (3.10)

= vext(ri) +
∫

ρ(r)
r − ri

+ δEXC [ρ]
δρ(r)

(3.11)

The first term is the external potential, the second is the functional derivative of
the Hartree potential and the final term is the functional derivative of the exchange-
correlation potential with respect to the density. The final term is a formal one that
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makes the expression exact. This functional is not known though, which posses a
practical problem that we will discuss shortly. Since the Kohn-Sham states are both
needed to construct the density and also depends on it the two sets of equations needs
to be solved self-consistently with respect to the electron density. The total energy of
the ground state system is obtained be summing up the eigenenergies of all occupied
Kohn-Sham states obtained via eq 3.8. Now that we have established the main idea
behind DFT we now discuss how to deal with the exchange-correlation functional.

3.4 Spin-density functional theory
So far we have treated electrons with different spin quantum numbers on equal foot-
ing. However there are many physical phenomena that can only be accounted for by
including spin as a variable in the problem description. This is particularly important
when discussing certain properties like magnetism which can only be accounted for by
including the spin degrees of freedom. In the most simple case where spins are treated
as collinear, one can simple define two new densities, one for spin up and one for spin
down electrons. From these one can define the magnetization density as the difference
between the two and the charge density as the sum of the two. Here we will instead
present the formalism in a more general way where the electron spin is non-collinear
and can have arbitrary orientation [71]. This is done by decomposing the total density
into a scalar density and a spin density:

ρ̃(r) = 1
2

(ρ(r)I + σ · m(r)) , (3.12)

here I is the 2 × 2 identity matrix, σ = (σx, σy, σz) denote the Pauli matrices, m(r) =
(mx(r),my(r),mz(r)) the magnetization density and ρ(r) the scalar density. The
charge density, can then be obtained as Tr(ρ̃(r)). The Kohn-Sham potential is now
spin-dependent due to the additional term:

V R(ri) = (vext(ri) + vH(ri) + vxc(ri)) I + µBσ · (Bxc(r) + Bext(r)) (3.13)

where:

Bxc[n,m] = δEXC [ρ,m]
δm(r)

. (3.14)

The additional spin dependent xc-potential couple to the spins similar to the way a
magnetic field does, and the term takes a form similar to that of the Zeeman-effect.
In addition an actual Zeeman-term has been added to take into account a potential
external magnetic field. The Kohn-Sham equations for a spinful system take the form:

N∑
i=1

(
− h2

2m
∇2

i I + V R(ri)
)

ϕi(r) = ϵiϕi(r), (3.15)

where we introduced the spinors:

ϕi(r) =
(
ϕi,↑(r)
ϕi,↓(r)

)
. (3.16)
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If one works in a basis where the potential term is diagonalized the problem leads to
two decoupled equations:

N∑
i=1

(
− h2

2m
∇2

i + V R(ri)
)
ϕi,↑(r) = ϵi,↑ϕi,↑(r). (3.17)

N∑
i=1

(
− h2

2m
∇2

i + V R(ri)
)
ϕi,↓(r) = ϵi,↓ϕi,↓(r). (3.18)

In this case one can distinguish the eigenenergies of spin-up and spin-down eigenstates.
This is useful if for example one wishes to perform bandstructure calculations.

3.5 Exchange-correlation functionals
Even though the Kohn-Sham equations in principle gives an exact solution to the
ground state energy in terms of the density, the true exchange correlation functional
is not actually known. As a consequence an approximation has to be made for the
exchange-correlation functional and DFT is therefore not in practice an exact theory.
However DFT has proven to be a quite accurate tool for predicting certain material
properties. One of the most common functionals is the local density approximation
(LDA)[70]. The local density approximation is modelled after the homogeneous elec-
tron gas (HEG), such that one obtains exact results for this model. The XC-functional
for the LDA reads:

ELDA
XC =

∫
ρ(r)ϵLDA

XC [ρ(r)]dr. (3.19)

The exchange correlation energy density is given by the two terms: ϵLDA
XC [ρ(r)] =

ϵLDA
X [ρ(r)] + ϵLDA

C [ρ(r)]. In the LDA the first term is given by

ϵLDA
X [ρ(r)] = −3

4

(
3
π

)1/3

ρ1/3 (3.20)

The ϵLDA
C [ρ(r)] is obtained using Monte Carlo simulations and does not have a simple

analytic form [72]. In spin density functional theory LDA is generalized to the local
spin density approximation (LSDA), although it is still often just referred to as the
LDA. In this case the exchange-correlation energy is given by:

ELSDA
XC =

∫
ρ(r)ϵLSDA

XC [ρ(r), |m(r)|]dr. (3.21)

Another commonly used type functional are the ones that rely on the generalized gra-
dient approximation (GGA) [68]. GGA functionals attempt to improve upon the upon
the LDA by adding gradient terms in the exchange correlation functional. Physically
this corresponds to modeling the density in local way like in the LDA however now
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changes in the density are taken into account. GGA functionals generally take the
form:

EGGA
XC =

∫
ρ(r)ϵXC [ρ(r)]FXC [ρ(r),∇ρ(r),∇2ρ(r), ...]dr. (3.22)

where FXC is known as the enhancement factor. The enhancement factor modifies
the LDA expression by introducing gradient terms. The most common one being
the Perdew-Burke-Ernzerhoff (PBE) functional[73]. In the case of PBE one chooses
ϵXC = ϵLDA

XC and the exchange enhancement factor reads:

FP BE
X (s) = 1 + κ− κ

1 + µs2/κ
, (3.23)

where µ = β(π2/3), β = 0.0667, κ = 0.804 and s = |∇ρ(r)|
2kF ρ is the scaled density gradient.

The enhancement factor satisfies FX(0) = 1, such that uniform electron gas is recovered
in this limit [69]. Furthermore the PBE satisfy several other formal properties and
limits, while violating others. This choice was made because the properties that are
deemed energetically are fulfilled for the PBE functional [73].

While these functionals have been widely used they do have certain limitations. Both
the LDA and GGA approximations tend to underestimate band gaps. This is due to
the so called derivative discontinuity problem [74]. The problem arises due to the fact
that densities obtained are under the constraint that the number of electrons is held
constant and certain quantities are continuous functions of the number of electrons.

Other popular DFT functionals include hybrid and meta-GGA functionals. The first
type of functionals are ones that aim to correct for the problems with the semi-local
functionals by mixing the exchange part of the exchange correlation functional with
the exact exchange from Hartree-Fock. The idea behind this is that since Hartree-Fock
tends to overestimate bandgaps, one might get more accurate results by constructing a
functional that mixes the exchange energy of Hartree-Fock with that of some functional
that underestimates band gaps. A popular example of a hybrid functional would be
HSE06 which has been widely used [75]. Practical computations with HSE06 are
however computationally quite expensive in comparison to using cheaper functionals
like PBE or LDA. The meta-GGAs on the other hand attempts to improve upon the
GGA-functionals by derivatives of the order two or higher to improve upon functionals
like PBE which contains only the first derivative [76].

3.6 Spin-orbit coupling within density functional theory
So far relativistic effects have not been mentioned. The many-body problem introduced
in section 3.1 is only a good description in the non-relativistic case. However there
are many real quantum systems like materials where the relativistic effect of spin-
orbit coupling (SOC) plays a crucial role. It principle one can formulate a relativistic
version of DFT and prove a relativistic version of the Hohenberg-Kohn theorems by
starting from the Dirac equation instead of the Schrödinger equation. However for
many purposes it is sufficient to keep the formulation non-relativistic and then add the
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leading corrections one gets from the Dirac equation. The relativistic corrections to
the Hamiltonian given in eq. 3.15 are given by:

HSOC = − p4

8m3c2 − ih̄p · ∇V
4m2c2 + σ · p × ∇V

4m2c2 , (3.24)

where the first to terms are scalar corrections known as the kinetic and the Darwin
correction and the last correction is the spin-orbit interaction. The first two corrections
can simply be included in the potential in eq. 3.15. The spin-orbit interaction has to be
treated separately. The SOC Hamiltonian can be added in a spin-polarized calculation
to the Kohn-Sham Hamiltonian in eq. 3.15 and thus enter at the level of the self-
consistent calculations done in spin density functional theory.

Another option is to first perform a DFT calculation and then compute matrix ele-
ments of the SOC Hamiltonian in eq. 3.15 in the basis of the KS states obtained from
the self-consistent calculations. In that case the spin-orbit corrected eigenvalues can
be obtained as [77]:

ESOC
nmkσσ′ = E0

nkσδnn′σσ′ + ⟨ϕKS
nkσ|HSOC |ϕKS

mkσ′⟩ . (3.25)

Furthermore the new eigenstates will be a linear combination of the ones obtained from
the original DFT calculation without spin-orbit coupling and will be given by:

|unk⟩ =
∑
m

∑
s=↑,↓

Cnms |u0
smk⟩ , (3.26)

where |ϕ0
mk⟩ denotes the eigenstates obtained without spin-orbit coupling and denotes

|ϕ0
mk⟩ the eigenstates obtained with spin-orbit coupling. One important application

of spin-orbit coupling in DFT calculations is the lifting of degeneracies in bandstruc-
ture calculations. Another of importance to this thesis is the calculation of magnetic
anisotropies. This is important if the wish is to find the easy/hard axis of a magnet,
since some quantization axis is prefered due to magnetocrystalline anisotropies that
can only be captured by including spin-orbit interactions. To get the anisotropy ∆αβ

one simply computes the energy differences:

∆αβ = E(θα, ϕα) − E(θβ , ϕβ). (3.27)

where E(θα, ϕα) are total energies evaluated at set of angles (θα, ϕα), (θβ , ϕβ). There
are however physical quantities affected by spin-orbit coupling that can only be accu-
rately predicted by including the spin-orbit coupling in self-consistent calculations. One
example of this would be to predict the correct orientations of non-collinear magnetic
moments.

3.7 Density functional theory with Hubbard corrections
There are several discrepancies between results obtained functionals like LDA and
PBE and real quantum systems. Besides the ones already mentioned, both of those
functionals often give erroneous results when dealing with magnetic systems. This is
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largely due to the so called self-interaction error (SIE). The SIE is a feature of semi-
local functionals like LDA and PBE where electrons experience a repulsive interaction
from themselves, which leads to a delocalization of the electron density. This in turn
leads to wrong results for systems where electrons are highly localized.

One field of study where this leads to problems is magnetic materials where the
localized character of d and f shells are crucial to capture the correct qualitative features.
Famously physicists wrongly characterized the anti-ferromagnetic Mott insulators as
ferromagnetic metals [78]. This problem was resolved by describing these systems using
the Hubbard model, a tight binding model with an on-site Coulomb interactions:

HHubbard =
∑

s=↑,↓

∑
ij

tijc
†
i,scj,s + U

∑
i

ni,↓ni,↑ (3.28)

where i is a local site index, U is the interaction strength of the Coulomb interaction,
ni,↑/↓ = c†

i,↑/↓ci,↑/↓ is the number operator for the i’th site, c†
i,↑/↓ is the creation oper-

ator for an electron with spin-up or spin-down and ci,↑/↓ is the annihilation operator
for an electron with spin-up or spin-down. Here it has been assumed that there is only
one orbital per site. But the model can easily be generalized to multi-orbital systems.

This model has subsequently inspired researchers within the field of DFT to create a
similar approach known as DFT + U, where Hubbard interactions are included in the
exchange-correlation energy [79, 80]. Here we will follow the approach first conceived
of by Dudarev [80]. The goal is to derive a correction from local Coulomb interactions
to the LSDA. We start by considering a general expression for the Coulomb interaction
on a given atom j [81]:

Uj = U

2
∑

m,m′

∑
s

n̂m,sn̂m′,−s + U − J

2
∑

m ̸=m′

∑
s

n̂m,sn̂m′,s. (3.29)

Here we have included spin and orbital degrees of freedom s and m respectively. The
index −s denotes a spin that is the opposite of s. Furthermore it has been assumed that
the Coulomb and exchange energy integrals U and J are more are less independent
orbital and spin degrees of freedom such that we need only concern ourselves with
their average values J and U respectively. The full expression for the local Coulomb
interaction includes a term corresponding to a spin-flip, but it is neglected in the
Dudarev approach since its magnitude is set by the exchange energy integral which is
usually smaller than the Coulomb energy integral in strongly correlated materials. We
will now proceed to treat the Coulomb interactions at a mean-field level:

n̂m,s = ⟨n̂m,s⟩ + δn̂m,s. (3.30)

where δn̂m,s = n̂m,s − ⟨n̂m,s⟩. In the mean-field approximation fluctuations are only
included up to a first order such that second and higher order terms of the form
δn̂m,sδn̂m′,s′ are neglected. In this approximation the expression for the local Coulomb
energies become:

UMF
j = U

2
∑

m,m′

∑
s

⟨n̂m,s⟩ ⟨n̂m′,s′⟩ + U − J

2
∑

m̸=m′

∑
m′

∑
s

⟨n̂m,s⟩ ⟨n̂m′,s⟩ . (3.31)
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We now add Hubbard corrections by formulating a conjecture for how the LDA treats
Coulomb interactions in a mean field context. The Dudarev approach postulates that
the LSDA only accounts for fluctuations in the total number of electrons at a given
site n̂s =

∑
m n̂m,s [80, 82]. This make sense since the LSDA is formulated for the

density with no reference to any particular orbitals. With this conjecture the Coulomb
interactions for the LSDA become

ULDA
j = U

2
∑

s

(∑
m

n̂m,s

)(∑
m′

n̂m′,−s

)
+ U − J

2
∑

s

(∑
m

n̂m,s

)(∑
m′

n̂m′,s

)
(3.32)

− U − J

2
∑

s

∑
m

n̂m,sn̂m,s (3.33)

= U

2
∑

s

n̂sn̂−s + U − J

2
∑

s

n̂sn̂s − U − J

2
∑

s

n̂s. (3.34)

Within the mean field approximation the expression for LSDA becomes:

⟨ULSDA
j ⟩MF = U

2
∑

s

⟨ns⟩ ⟨n−s⟩ + U − J

2
∑

s

⟨ns⟩ ⟨ns⟩ − U − J

2
∑

s

⟨ns⟩ . (3.35)

By comparing this expression with the proper treatment of the Coulomb interaction at
the mean-field level stated in eq. (3.31), we get the local energy correction missed by
the LSDA. The The Hubbard corrected expression for the exchange-correlation energy
using the Dudarev apporach can now be written as:

EDF T +U
LSDA = EDF T

LSDA + 1
2
∑

j

Ueff
j

∑
ns

(
njms − n2

jms

)
, (3.36)

where Ueff
j = Û − Ĵ . The DFT + U method is not be limited to the LDA and it

is often applied in conjunction with other DFT functionals like PBE. The issue with
DFT + U is that it doesn’t offer any insight as to which value of U will give the correct
results for a given system. It is often necessary to try different values and pick the
one that yields results that are consistent with experiments. From a theoretical point
of view this is still unsatisfying since one should be able to make predictions even
when no experimental data is available. It has been shown that the value of U can
in fact be determined self-consistently in a number of different ways[83–85]. Despite
this shortcoming DFT + U is still widely applied, and it has the advantage that it
is computational cheaper than advanced DFT functionals while often being in good
agreement with experiments.

3.8 DFT and numerical computations
In order to apply DFT one needs a computer code that implements a self-consistent
solution to the Kohn-Sham equations given a start guess. There are several existing
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computer codes in existence that can be used to do so. All work done in this thesis has
been done using the GPAW code [37] which solves eq. 3.7 using the projector-augmented
wave (PAW) method. Specific details like energy cutoff for plane waves, choice of
exchange correlation functional and k-point sampling are specified in each published
paper in section 9 or in the result sections in the following chapters.



CHAPTER 4
High-throughput methods

in materials science
Much of science, has to do with discovering hitherto unknown phenomena. However
an area of research just as important is to investigate known phenomena in all the
different varieties that they may manifest themselves. Within the field of multifer-
roics researchers are particularly eager to find new examples of materials, both to find
examples that might be more technologically applicable, but also to understand new
mechanisms that can lead to a material exhibiting multiferroic properties. The issue
however is that researchers often have to rely on intuitions that are based on what is
already known. This limits the scope of what one can do as a theoretician, since the
number of materials in the category of investigation may be small or may not constitute
a good basis on which to search for new materials that have similar properties.

High-throughput screening methods are increasingly becoming an ever larger tool, in
search for new materials with specific desirable properties [86]. The idea is similar to
what has been done in other fields, like medical science where one systematically tests
the properties of many candidate drugs [87]. Due to the increase in computational
resources made available, by high performance supercomputers it is now possible to
perform many computations in parallel, for many materials upon demand. This chapter
summarize the basic components of high-throughput studies, such as how to automate
the search process with workflows and the role of open source databases.

4.1 Databases and workflows
In the context of computational material science, the role of high-throughput studies
is that of automating computations with the goal of investigating the properties of
potential candidates, in an attempt to discover and characterize novel materials. This
runs contrary to the more conventional approach which is to manually investigate
specific materials that the researcher might see as interesting. The problem is that the
number of potential candidates is often too large and the number of actual materials
that satisfy various search criteria is often small. Therefore it is necessary to create a
kind of funnel that allows researchers to select specific candidates that can then be the
subject of further investigation. This is done using a variety of different tools.

The first tool is workflows, that allows scientists to systematically compute desired
properties of a large set of materials by automating the different parts of the compu-
tation process. There exists quite a lot of different software tools for high throughput
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applications specifically within materials science. Examples include the AiiDA [88–90],
fireworks [91], AFLOW [92] and ASR [93] packages. For this thesis we will be using
the atomic simulation environment (ASR) which is a Python based software package
that has been developed at the CAMD group at DTU, for the purpose of automating
the most common computations used in materials science. Before discussing details
specific to ASR, it is however worth giving a concrete example of how workflows are
used. If a group of researchers were interested in looking for new ferroelectric materials,
the first thing to do would be to list search criteria and what computations had to be
carried out to get the relevant data. The utility of workflows is to integrate all the
different tasks into a unified framework that can be automatically applied to all the
materials under investigation. In ASR this is concretely being done using ASR recipes.
These carry out standardized calculations for materials or molecules like finding the
groundstate, bandstructure, phonon spectra, magnetic moments to mention a few. In
addition a high-throughput framework, one needs a high performance computing task
manager to adequately manage and track computations. All projects in this thesis
relied on the MyQueue software package which is high performance computating task
scheduler with a python interface [94].

Having performed calculations the next step is to store the data obtained from com-
putations in a way that makes it easy accessible for further analysis, or for a third
party. This need is typically meet by storing gathered data in openly available materi-
als databases. These can serve as repositories of data obtained from calculations and
in some cases also as the sources of data used as input for high-throughput workflows.
The data on material structures found in these databases are often either based on
experimentally known materials or molecules or they can be databases hypothetical
structures that may potentially be synthesized experimentally. They can for example
be constructed using methods like lattice decoration, which is the basis for many mate-
rials in the C2DB[95], which we will discuss later in the thesis. Here one simply starts
from a lattice type and then run through the periodic table of elements substituting
in all possible combination of elements in order to try to find new compounds. Most
databases uses a variety of combination of methods to increase the number of materials.
Popular material databases include for example the ICSD [96], COD [97] databases and
the Materials project [98]. More recently entire databases have been created for two
dimensional compounds alone such as the C2DB database [95], the MC2D database
[99, 100] and 2DMatPedia [101].

As an end note it should be emphasized that high-throughput methods do not form
a viable basis for materials discovery on their own. Not all materials can be found
using a given workflow because certain choices and trade offs have to be made when
selecting candidates as well when performing computations. Therefore traditional in
detail studies of materials are still very much relevant and necessary and high through-
put studies cannot replace these. They may however help narrow ones search scope,
as well as save researchers hours of work on materials that are actually unlikely to
yield fruitful results. Secondly, potential material candidates should ideally be tested
experimentally. High-throughput may help experimentalists in finding a viable way to
pick new materials for synthesis or characterization. Since such work is often either
difficult, cumbersome, time consuming or expensive in terms of the necessary resources.
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It can be of great help to start with materials that at least in theory hold a greater
chance of being experimentally interesting.



CHAPTER 5
Ferroelectricity

Since their experimental discovery in 1920 [40], the interest in ferroelectrics have in-
creased dramatically. Yet a proper theoretical understanding of this class of materials
alluded physicists for decades. Despite the fact that a theory of phase-transitions as
well as prototypical experimental studies were in place already in the middle of the
20’th century, it was not until the 1990’s that a proper unified theory of ferroelectrics
existed.

In the following chapter the relevant theoretical foundations of polarization densities
and their computation is given. First the classical Clausius-Mossotti theory is intro-
duced and its fallacies for periodic systems are pointed out. Subsequently the modern
theory by Resta, King-Smith and Vanderbilt is introduced, followed by some practical
examples. Born effective charges are defined and it is shown how these can be useful to
compute the polarization in various cases. Finally some exceptional cases are discussed
such as the polarization from many-body states and the special case of polar metals.

5.1 Formal polarization: a classical approach
Originally the polarization density of a physical system, whether one was dealing with
a material or a molecule, was simply defined as the integral of the charge density times
the position within a given volume V :

P = e

V

∫
drn(r)r. (5.1)

This definition certainly seems physically intuitive and it is in principle straightforward
to compute the polarization density from first-principles using DFT. The electric charge
density has two components, an ionic one and an electronic one. The ionic density has
the form nion =

∑
i Ziδ(Ri − r), where Ri is the atomic positions and Zi the ionic

charge of the i’th atom. The ionic contribution to the polarization is then simply given
by:

P ionic = e

V

∑
i

ZiRi. (5.2)

The electronic contribution can be obtained from DFT by using the Kohn-Sham density
in eq. 3.9. This simple classical picture of the polarization density is also known as
the Clausius-Mossotti picture [102].

The approach works for finite systems like molecules. However the picture breaks
down when one considers the polarization density of a system with periodic boundary
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conditions, like a bulk solid. To see why this picture breaks down, we consider a simple
scenario where the periodic system is a one-dimensional chain with a unit cell of just
two atoms, as depicted in figure 5.1. For simplicity we will assume that the red atom
has a net charge of +e and the blue atom a net charge of −e. Due to the periodicity
of the chain we can choose to place the unit cell boundary as we like. This ambiguity
leads to a problem when one tries to determine the polarization density using any given
unit cell as reference, because one will get conflicting answers depending on how the
unit cell is placed.

It is straightforward to illustrate the practical implications of this problem with the
application of eq. 5.2 to the one dimensional chain in the two different scenarios. In the
first scenario the polarization is P = e(− a0

4 )
a0

+ −e( a0
4 )

a0
= − e

2 and in the second case it is

P = e(− a0
2 )

a0
+ −e∗0

a0
+ e( a0

2 )
a0

= 0. In the first picture there is a finite polarization density
and in the second the polarization density is 0 according to 5.2. This inconsistency
reveals a fallacy inherent in the definition of polarization density given eq. 5.1, namely
that one can get different answers depending on which unit cell one uses to measure
the polarization density.

5.2 The modern theory of polarization
The issue of how to compute the polarization density for a periodic systems went
unsolved for many years until 1992 when R. Resta resolved the problem by phrasing a
different question: which polarization is physically measurable? The answer, already
known by experimentalists, is to measure the change in polarization under an applied

a0

Figure 5.1: Depicted is an illustration of an imagined example presented in the main text,
of a one-dimensional chain of atoms. There are two atoms within one unit cell, which contain
a charge of -e and +e respectively. In the first picture the polarization density is − e

2 and in
the second picture it is 0. The illustration shows how the so called Clausius-Mossotti picture
of the polarization density is ambiguous and ill defined in periodic systems.
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electric field, such as when constructing hysteresis loops like the ones shown in fig. 2.2.
What is done in practice is to measure the current which arises due to a change in
polarization [103]. From this it is possible to infer that the relevant quantity is not
the polarization in a given state but the change in polarization from one reference to
another, since this is the experimentally observable quantity. The key to this insight
came from the observation that the change in polarization is induced adiabatically by
the flow of a current:

∆P = P (T ) − P (0) =
∫ T

0
J(t′). (5.3)

It wasn’t long after Resta published his paper that King-Smith and Vanderbilt came
up with the modern theory of polarization [104]. The idea of Smith and Vanderbilt was
to compute the change in polarization with respect to an explicit parameter that was
slowly changing. Specifically they considered what would happen to the polarization if
the systems potential was subject to an adiabatic change. A theory for how quantum
systems change under adiabatic conditions was already developed nu by the time the
modern theory of polarization was put forward [66, 105]. Such systems can be studied
by invoking the adiabatic approximation which states that if a Hamiltonian depends on
a time dependent parameter that varies at a sufficiently slow rate, then the system will
still have the same energy solutions and that the value of these also change slowly with
the changing parameter. To quantify what is meant by slowly varying, we introduce the
a time scale τ ∼ h̄

En−Em
, which is determined by the difference between energy levels.

If the Hamiltonian changes on a scale slower than τ the adiabatic approximation holds.
The eigenvalues are then obtained by solving the stationary Schrödinger equation at
each time step. Furthermore it is assumed that the values remain ordered and that
the solutions are non-degenerate. In such scenarios the solutions can be shown to take
the form [106]:

|Ψn(t)⟩ = |ϕn⟩ e− i
h̄

∫ t
En(t′)dt′

eiγn(t). (5.4)
This is the familiar form that solutions to the Schrödinger equation take, except for
the additional complex phase iγn(t). This phase takes the form:

γ(t) =
∫ t

dt′ ⟨ϕn(t′)| ∂

∂t′
|ϕn(t′)⟩ . (5.5)

It is in many cases useful to think of the adiabatic change in terms of one or several
changing parameters R(t) which then in turn is time dependent, like a set of knobs
that are being slowly turned over a time period T . In that case the phase can be
written as:

γ(T ) =
∫ T

0
dt′ ⟨ϕn(R(t′))| ∇R |ϕn(R(t′))⟩ · dR

dt
=
∫ R(T )

R(0)
⟨ϕm(R)| ∇R |ϕn(R)⟩ · dR,

(5.6)

where ∇R = ∂
∂R . For a closed look the phase is given by:

γ(C) =
∮

C
⟨ϕm(R)| ∇R |ϕn(R)⟩ · dR. (5.7)
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From these definitions we see that the phase is purely a function of the path traced out
in the parameter space R, independently of the time it took. This is of course only true
provided that the adiabatic approximation is valid. The phase is known as the Berry
phase [107] and it has a physical significance that in many cases can be measured. To
see what implications this have for the modern theory of polarization we will follow
the approach of King-Smith and Vanderbilt and derive an expression for the electronic
part of the polarization for a quantum system. We start by considering the electronic
part of the polarization density definition given in equation 5.1, but where the electron
density is written in terms of wavefunctions:

P el = −e
V

occ∑
n

∫
drfnk|ψnk(r)|2 = e

V

occ∑
n

∑
k

⟨unk| r |unk⟩ , (5.8)

where fnk denote occupation factors, the sum is over the Bloch functions unk(r) =
ψnk(r)eik·r of occupied bands. The inner product in eq. 5.8 is ill-defined because the
diagonal elements of r is not defined in periodic systems, due to the same issues of
ambiguity that we discussed for the Clausius-Mossotti picture.

Following Resta, we will now focus on the change in the polarization in eq. 5.8 rather
than the polarization itself. The idea is to write the change in polarization in terms of
a reaction coordinate λ:

∆P el =
∫ 1

0

∂P el(λ)
∂λ

. (5.9)

Inserting eq. 5.8 into eq. 5.9 one obtains the expression:

∆P el = e

V

∫ 1

0

occ∑
n

∑
k

2Re
(

⟨u(λ)
nk | r |

du
(λ)
nk

dλ
⟩

)
. (5.10)

By inserting a projection operator, eq. 5.10 becomes:

∆P el = e

V

∫ 1

0

∑
α

occ∑
n

∑
k

2Re
(

⟨u(λ)
nk | r |u(λ)

αk ⟩ ⟨u(λ)
αk |

du
(λ)
nk

dλ
⟩

)
(5.11)

= e

V

∫ 1

0

∑
α̸=n

occ∑
n

∑
k

2Re
(

⟨uλ
nk| r |u(λ)

αk ⟩ ⟨u(λ)
αk |

du
(λ)
nk

dλ
⟩

)
, (5.12)

where the change of summation to off diagonal components α ̸= n stems from the fact
that the diagonal component is purely imaginary. The off diagonal matrix elements of
r obey the relation:

⟨u(λ)
nk | r |u(λ)

αk ⟩ = −i ⟨
du

(λ)
nk

dk
|u(λ)

αk ⟩ (5.13)

Inserting this into equation 5.11 yields an expression solely in terms of derivatives:

∆P el = e

V

∫ 1

0

occ∑
n

∑
k

2Im
(

⟨
du

(λ)
nk

dk
|
du

(λ)
nk

dλ
⟩

)
, (5.14)
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after removing the projection operator due to the closure property: I =
∑

α |uαk⟩ ⟨uαk|.
Finally we rewrite the expression in eq. 5.14 such that the sum over k becomes an
integral:

∆P el = − e

(2π)d

∫ 1

0

occ∑
n

∫
BZ
dk2Im

(
⟨
du

(λ)
nk

dk
|
du

(λ)
nk

dλ
⟩

)
. (5.15)

This λ dependence in this expression can be eliminated using Stokes theorem. First
the integrand is rewritten in the following way:

2Im
(

⟨
du

(λ)
nk

dk
|
du

(λ)
nk

dλ
⟩

)
(5.16)

= Im
(

⟨
du

(λ)
nk

dk
|
du

(λ)
nk

dλ
⟩ − ⟨

du
(λ)
nk

dλ
|
du

(λ)
nk

dk
⟩
)

(5.17)

= Im
(
d

dk

(
⟨u(λ)

nk | d
dλ

|u(λ)
nk ⟩
)

− d

dλ

(
⟨u(λ)

nk | d
dk

|u(λ)
nk ⟩
))

(5.18)

= Im
(

∇(λ,k) × ⟨u(λ)
nk |∇(λ,k)|u

(λ)
nk ⟩
)
, (5.19)

where ∇(λ,k) and ∇(λ,k)× denotes the partial derivative in the (λ,k) space and the
curl ∇ × A = dA

dk − dA
dλ respectively. Inserting equation. 5.16 back into eq. 5.15 we

get:

∆P el = − e

(2π)d

∫ 1

0

occ∑
n

∫
BZ
dkIm

(
∇(λ,k) × ⟨u(λ)

nk |∇(λ,k)|u
(λ)
nk ⟩
)
. (5.20)

The integral in eq. 5.20 can now be recast as a surface integral using Stokes theorem:

∆P el = − e

(2π)d
Im
(

occ∑
n

∮
BZ
d(λ,k) ⟨u(λ)

nk |∇(λ,k)|u
(λ)
nk ⟩

)
. (5.21)

Due to the periodicity of the Brillouin zone, the values at its surface are identical and
thus the only contribution to the integral comes with the difference at the boundary
of the λ space, in other words the difference between λ = 0 and λ = 1. Finally the
change in polarization density (including the ionic contribution) can be written as:
∆P = ∆P ionic + P el(λ = 1) − P el(λ = 0) (5.22)
where:
∆P ionic = e

V

∑
i

(
Zλ=1

i Rλ=1
i − Zλ=0

i Rλ=0
i

)
(5.23)

and

P el(λ) = − e

(2π)d
Im
(

occ∑
n

∫
BZ
dk ⟨u(λ)

nk |∇(k)|u
(λ)
nk ⟩

)
(5.24)

= − e

V
Im
(

occ∑
n

∑
k∈BZ

⟨u(λ)
nk |∇(k)|u

(λ)
nk ⟩

)
(5.25)
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For practical numerical computations of polarization of materials, one has to first com-
putes Berry phases. The expression obtained in eq. 5.24 is not the most straightforward
way compute Berry phases numerically [108]. Instead we use the formula:

P = 1
2π

e

V

∑
l

ϕlal. (5.26)

where al denote lattice vectors and the phase ϕl is:

ϕl =
∑

i

Zibl · Ri − ϕelec
l , (5.27)

where the first part represent the contribution to the polarization from the ions and
the second the electronic contribution which is given by:

ϕelec
l = 1

Nk⊥bl

Im
( ∑

k∈BZ⊥bl

ln
Nk∥bl

−1∏
j=0

det
occ

(
⟨unk+jδk|umk+(j+1)δk⟩

))
, (5.28)

where BZ⊥bl
represent a plane of k-points that are orthogonal to the reciprocal lattice

vectors bl, δk is the distance between neighbouring k-points in the bl direction, Nk∥bl

and Nk⊥bl
are the number of k-points along and perpendicular to the bl direction

respectively. The derivation of this formula starting from eq. (5.24) is derived in
detail Appendix A. The logarithm of a determinant in eq. 5.28 is equivalent to a sum
over phases that ammounts to the total accumulated Berry phase along the string of
k-points from j = 0 to N − 1. The Berry phase is gauge dependent, which means it is
only defined modulo 2πn where n is an integer. This means that the polarization also
is not uniquely defined but can be written as:

P̃ = P + n
e

V
R, (5.29)

where n can be any integer and the quantity e
V R is known as the polarization quantum.

The fact that the polarization in eq. 5.29 is not unique reflects the point made by Resta,
namely that only differences in polarization are physically meaningful. Here it is useful
to define a the polarization lattice as the set of polarizations produced by inserting all
integers into the expression in eq. 5.29.

In chapter 2 it was stated that a material must have a polar point group in order to
be a ferroelectric. In other words that materials with a non-polar pointgroup do not
have a finite polarization. This does seem at odds with eq. 5.29, because if P = 0 one
can always add a polarization quantum and obtain a finite P̃ . The answer to what
seems to be a paradox is that for non-polar structures the polarization lattice obeys
P̃ = −P̃ . This is the correct definition of a material being non-polar as there are
actually counterexamples where the value P = 0 does not appear in the polarization
lattice. One such example is KNbO3 [102].

In order to compute polarization differences one has to use eqs. (5.26-5.28) together
with eq. (5.29) in order to calculate a polarization that is physically meaningful. What



5.2 The modern theory of polarization 33

one has to do compute the difference in polarization for a system in a non-polar sys-
tem where the polarization lattice is P̃ = −P̃ and a system with a polar symmetry
axis. The case corresponds to λ = 0 in eq. (5.22) and the second structure to λ = 1.
Another option more akin to what is done in experiments is to compute the difference
in polarization between energetically degenerate states with a polarization density of
similar magnitude pointing in opposite directions. In this case the polarization differ-
ence will be 2P 0, with P 0 being the spontaneous polarization. When applying eqs.
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Figure 5.2: The figure depicts the steps necessary in calculating the branch fixed in-plane
polarization for the two-dimensional material As4Se6. The polarization is given in dimen-
sionless units, such that the quantity 1 corresponds to one polarization quantum. In fig. a)
the in-plane polarization of As4Se6 is calculated using a polarization path with only 5 points
resulting in an incorrect formal polarization. In b) the same calculation is carried out with
more points. The final result is depicted in figure c), and it is seen that in this case one branch
remains fixed across all calculations. The final figure is taken from [I].

(5.28-5.26) in practice to compute the polarization the λ variable is discretized. Due
to the ambiguity in the definition of the polarization density a practical calculation of
the spontaneous polarization involves choosing to compute the polarization along some
branch. A branch is defined as calculation polarizations for different values of lambda
that are matched such that they correspond to the same value of n in eq. 5.29. Such
branches are depicted in 5.2, where the polarization is computed for As4Se6 a two-
dimensional ferroelectric found in [I]. As seen in the figure one cannot simply use the
end points or a few points between the end points to reliably construct a branch. For
each now point, other points along the same polarization lattice are found by adding
and subtracting n e

V R from the polarization n times. Each value is then compared to
the value obtained at the previous point on the branch. The point that is closest is
then chosen as the next branch point. By iterating this procedure one can then obtain
a full polarization branch and finally subtract the value at the endpoint from the one
at the starting point to obtain the total change in polarization along the branch. The
necessary number of branch points as well as points shifted points along the polariza-
tion lattice generally vary depending on the material in question. If the polarization is
many times larger than the polarization quantum the different polarization branches
will lie closer to one another and more copies as well as branch points are needed to
accurately construct a polarization branch. If the size of the polarization change rel-
ative to the polarization quantum is not known, like in a high-throughput study, one
has to use a lot of points to be on the safe side.
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In addition to the potential computational issues already mentioned, the entire frame-
work of the modern theory of polarization rests on the assumption of the adiabatic ap-
proximation. As already mentioned in chapter 2 ferroelectrics are only well defined if
they are insulating because polar metals cannot have their polarization switched since
any electric field would be screened by charged carriers. Within the framework of the
modern theory of polarization the assumption that the system must be ferroelectric
is enforced implicitly. If a band gap closes it means some of the energy bands have
crossed, and then the assumption that energies were well separated breaks down.

5.3 Coercive fields and switchability
It is not sufficient to know whether a polar material has a polarization, since it may
simply be a pyroelectric material. In order to know whether a material is ferroelectric
it is necessary to determine whether the polarization is switchable or not. One way to
answer this question theoretically is to compute the size of the electric field required to
switch the polarization. This is however much more complicated than it sounds. First
of all real ferroelectric materials contain many different domains with ferroelectric
states pointing in various directions. In addition real materials contain impurities such
as defects or grain boundaries and as such it may not be able to switch the polarization
in each domain with the same ease. However if we consider a theoretical case where
the polarization in all domains are perfectly aligned. What electric field is required to
switch the polarization in this case? One can achieve a good answer by considering
the monodomain case of switching the polarization within just one unit cell. The
polarization can be obtained using the approach outlined in section 5.2. If one can
then parameterize the energy landscape in terms of the polarization P :

E(P ) = E0(P ) − E · P , (5.30)

the coercive field can be computed as:

Ec = max
(
dE0(Pλ)
d|P|

)
. (5.31)

By computing the maximal value of the slope of E0(P ) we are computing the field ex-
actly necessary to switch the polarization from P to −P . This estimate of the coercive
field is an unrealistic estimate for real materials where polarizations are switched by
more complicated means like domain wall migration and nucleation, however it serves
an upper bound on coercive field. This is useful in high-throughput studies where one is
typically concerned with finding materials with smaller coercive fields since these might
be the best candidates for certain technological applications. If the upper bound on
the coercive field is predicted to be comparatively small for a given material, then the
actual coercive field for that material must also be small.
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5.4 Born effective charges and polarization densities
So far we have been concerned with calculating the polarization for a periodic system
using the berry phase approach. There is however a couple of drawbacks to this
approach, the primary one being that some systems that are ferroelectricly ordered,
that is the systems contain finite electric dipoles, have electric dipoles that add up
to a total polarization density of 0. The most simple example would be a material
in an anti-ferroelectric phase with neighbouring unit cells having net electric dipoles
that were anti-aligned. In this case the berry phase approach would correctly predict a
vanishing polarization density. However this approach fails to capture the local dipole
moments and it is therefore impossible to tell apart anti-ferroelectric materials from
non-ferroelectric ones. More generally ferroelectric materials contain domains that
can have local polarizations aligned in many different directions, and there are anti-
ferrielectric phases where individual electric dipoles have different magnitudes. In order
to identify these materials and characterize the origin of electric dipoles, additional
analysis tools are needed. One approach is to use so called Born effective charges.
These are charges defined such that they describe the effective charge an atom has
once it is bonded in a given chemical environment. The Born effective charges are
defined as the change in force on a given atom a under the application of an external
electric field E :

F a
i =

∑
j

(Za
ij)∗Ej , (5.32)

where (Za
ij)∗ is the Born effective charge tensor on atom a. A more applicable but

equivalent definition, is that the Born effective charge tensor of atom a is the change
in polarization density given a displacement of said atom:

Za
ij = V

e

∂P i

∂ua
j

|E=0, (5.33)

where the partial derivative of ∂P i

∂ua
j

|E=0 is the partial derivative of the polarization
density with respect to atomic displacement of the a′th atom in the j′th direction. To
perform a computation of the Born effective charge tensor using 5.33 one would use the
formula for the polarization in eq. 5.22 and then compute the change in polarization
under tiny variations in u. The notion of Born effective charge given here can be
contrasted with the simple nominal charges that individual atoms have a non-bonded
environment. The Born effective charge can then be thought of (as the name suggests)
as an effective charge of an atom in a given environment when one includes not only
the ionic but also the electronic contribution. Using the definition of polarization from
eq. 5.22 the Born effective charges then becomes:

Za
ij = δijZ

a
ij + V

e

∂P i
el

∂ua
j

|E=0, (5.34)

From this equation ne can explictly see that the Born effective charges of an atom is
the sum of the nominal ionic charge as well as a contribution from due to electrons.
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For this reason Born effective charges can be quite useful to determine how bonded
Despite being useful in for example determining how strength of a chemical bonds.
Born effective charges can also be utilized to compute the contribution to the electron
polarization from individual atoms. If for example one interested in knowing the po-
larization profile in a ferroelectric domain where the polarization varies as a function
of space. In such a scenario one has to divide the domain up into sections and then
compute the polarization of each part by adding up contributions in the following way:

Pi = 1
Ω
∑

j

∑
a

Za
ij∆Ra

j (5.35)

where Pi is the polarization in the i’th direction, ∆Rj is the displacement of atom a
in the j’th direction relative the structure in a non-polar phase and Za

ij is the Born
effective charge tensor of atom a.

5.5 Generalalized formula for the polarization
In the theory of King-Smith and Vanderbilt one obtains the polarization from a quan-
tum system under the assumption that the many-body state can be written as the
Slater determinant of single particle states. This is however not generally the case. It
is possible to derive a conceptually similar theory that doesn’t make this assumption
[109]. A formula has also been derived that extends the theory to non-crystalline in-
sulators [110]. So far it remains an open question whether or not there are known
materials where the approach derived by King-Smith and Vanderbilt fails and one has
to apply a many-body variant of the polarization1, but one could imagine it would
be relevant in for example insulators where electrons are strongly correlated. However
little research has been done in trying to carry out such calculations [111].

5.6 Ferroelectricity in metals
Thus far we have only been concerned with definitions of polarization densities that
pertain to insulating material systems. It has long been speculated whether metals
could be also support ferroelectric[112]. Recently a structural phase transition from
a non-polar to a polar phase was observed in LiOsO3[113] reviving the interest in
the field. Even if such metals can sustain a finite electric polarization it will not
be switchable since any applied field would be ineffectual due to screening, they are
therefore referred to as polar metals. Furthermore there is no unified theory of how
to calculate the polarization in such a case since metals have no gap and therefore
the adiabatic assumption made in the modern theory of polarization is no longer valid.
An exception to this is the case of polar metals with lower dimensionality like trilayer
WTe2[114]. This material is metallic and supports an out of plane polarization, but
not an in plane one. This polarization can be switched by applying an external electric

1At least to the best of my knowledge



5.6 Ferroelectricity in metals 37

field, since the material has a finite extend in the z-direction and therefore also finite
screening length.



CHAPTER 6
Results

6.1 Summary: Two-dimensional ferroelectrics from
high-throughput computational screening

Ferroelectric materials already have applications in several important technologies such
as sensors, actuators, capacitors as well as several potential future applications includ-
ing ferroelectric field transistors[11] and ferroelectric random access memory [9]. Two
dimensional ferroelectrics also has the advantage that they are not limited by a fi-
nite critical thickness in the same way that thin films made from bulk ferroelectrics
are[115]. Several two dimensional ferroelectrics have already been experimentally syn-
thesized [30–36] or have been predicted theoretically [21–29]. The purpose of this study
has been to construct a computational workflow and use it to search for new two dimen-
sional ferroelectric materials. We have then applied this workflow to polar materials
in the computational 2D materials database (C2DB). Materials from the database are

Figure 6.1: The workflow used to search for new ferroelectric materials in [I]. Only gapped,
dynamically stable structures are extracted from the C2DB database. The materials that
have a well defined adiabatic paths are potential candidates which are analyzed further..

selected according to the criteria stated in the workflow depicted in fig. 6.1. We start
by selecting dynamically stable materials, that have a polar point group and a finite
band gap. That amounted to 252 materials at the time we began the project. These
materials are then relaxed with a tighter criteria than the ones used in the original
C2DB workflow. Specifically we require that forces on all atom be smaller than 0.001
eV/Å. This is done to ensure that we get the correct value of polarization and to
verify that all structures actually have a polar pointgroup, as some were found not
to have one after a close inspection. Subsequently we construct the centrosymmetric
structures that are need as references to compute the branch fixed polarization using
eqs. (5.26-5.28). Centrosymmetric structures are constructed using evgraf[116]. One
should keep in mind that centrosymmetric is not the same as non-polar. Ideally one
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would find a reference structure that obey that ladder criteria. However the software
at our disposal did not have this as a feature. We then construct a switching path
between the centrosymmetric and polar structure using linear interpolation. Then we
change the atomic positions of the original structure such that the atomic positions of
each structure along the path become:

Rλ = λRf + (1 − λ)Ri, (6.1)

where λ ∈ [0, 1] is a reaction coordinate that parameterize different points along the po-
larization branch, λRf and Ri denote the atomic positions in the polar and non-polar
structures respectively. Knowing the polarization itself is not enough to determine
whether a polar material is a ferroelectric. If the polarization is not switchable the
material is merely pyroelectric not ferroelectric. Linear interpolation may be a good
guess for a switching path in some cases. However in many cases the initial guess
may in fact be far from the actual path and as a consequence one may get the wrong
energy barrier as well as the wrong coercive field. Furthermore it may be the case
that the band gap of one of the structures along the path vanishes if they are gener-
ated using linear interpolation. In the last case one would not simply get the wrong
values, but predict that a material is not switchable and it would be discarded. In
order to get more accurate results we use the nudged elastic band (NEB) technique to
optimize each of the structures along the switching path [117]. We found that for our
particular application the NEB technique worked best in conjunction with the FIRE
algorithm used for structural optimization of each NEB image [118]. Results for three
representative materials are shown in fig 6.2. For the first material Ge2S2 we see that
linear interpolation and NEB give almost identical results. Qualitatively one does gain
anything by using NEB for materials that fall in this category. In the case of F2Li2S2
the two methods predict qualitatively different results. Simple linear interpolation
gives a large energy barrier between the centrosymmetric and polar states and that
the centrosymmetric state is a metastable. Whereas the NEB method indicate that
there is no such barrier. In the final case of In2Te4 both methods indicate a barrier,
however the NEB method indicates that it is much lower than what is predicted by
simple linear interpolation. We have used the results obtained using the NEB method
to compute coercive fields using the approach outlined in section 5.3. The examples
given in fig. 6.2 indicate that linear interpolation in many cases are not a reliable
method qualitatively as well as quantitatively for predicting energy barriers as well as
coercive fields.

We classify the resulting ferroelectrics according to whether they are in-plane ferro-
electrics, out of plane ferroelectrics or 3D ferroelectrics who have polarization densities
with components in all three directions. We find 49 materials with in plane polar-
izations, 8 materials with out of plane polarizations and 6 materials with a three
dimensional polarization. Ferroelectric materials are classified according to their point
group. There are 10 polar point groups in total: 1, 2, m, mm2, 3, 3m, 4, 4mm, 6 and
6mm. The first four pointgroups might have an in plane axis. The remaining 6 point
groups cannot have an in-plane polarization.

There is however an exception in the case of out of plane ferroelectrics. Some two
dimensional materials may have a so called topological in-plane polarization. This is the
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Figure 6.2: Energy versus polarization for three representative ferroelectrics, taken from [I].
Left: Ge2S2 (in-plane polarization). Middle: In2Te4 which has both in-plane and out-of-plane
components of the spontaneous polarization. Right: F2Li2S2 (in-plane polarization). In all
three cases we show the energy along the linearly interpolated path (LI) and energy along the
path optimized by the nudged elastic band method (NEB). The insets show the side views of
polar and non-polar states for Ge2S2 and In2Te4 and top views for F2Li2S2..

case for all the out-of-plane ferroelectrics depicted in table II in [I]. This is a special
type of polarization that is found in so called crystalline topological insulators[119–
121]. Here the in plane values of polarization are restricted by crystal symmetries, and
therefore are a priori predictable based on symmetry alone. This is still compatible
with the theory applied so far and if one uses eq. 5.26-5.28 to compute the polarization
in such structures one still finds the correct result. However since the polarization
in such structures are fixed by symmetry one has to break the symmetry in order to
change the in plane polarization. These materials are therefore not as such in-plane
ferroelectrics as this would require that the in-plane polarization be switchable. The
out of plane polarization is however still switchable.

As an exception to the case stated above it is possible to switch a topological polar-
ization if the symmetry that protects it is broken. This is the case for In2Se3 which is
highlighted in the paper, with it’s switching path shown in fig. 7 in [I]. Interestingly
the in-plane polarization is rotated in such a way that the structure does not cross
through a state where P = 0.

As explained in section 2 one can classify the ferroelectrics according to whether they
are proper or improper ferroelectrics. Knowing the polarization density alone doesn’t
reveal anything about the origin of ferroelectricity, and while an exact knowledge of
this would require an in depth study of each candidate material we find it is worth to
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try to classify the materials we find as much as possible. If one for example wishes to
explore the thermodynamics of two ferroelectrics further it matters a great deal what
type of ferroelectric a given material is. Proper and improper ferroelectrics are driven
by different mechanisms and it would therefore require different models to predict
properties such as the critical temperature.

We have also investigated whether the ferroelectrics are proper or improper. This is
done by studying the lowest energy phonon modes of the centrosymmetric reference
structures (if they are well defined) at the Γ-point. If the phonon mode with the
lowest imaginary frequency is a polar mode, it indicates that the ferroelectric which
results from a distortion of the structure is a proper ferroelectric. If this isn’t the case
we conclude that it is an improper ferroelectric. All materials we have investigated
are found to be proper ferroelectrics. Our phonon analysis does reveal that some
materials appear to have a centrosymmetric state which is metastable. This might
have implications for whether the phase transition in the ferroelectric materials are of
first- or second-order.

Previous investigations of critical temperatures of two dimensional ferroelectrics have
used a model of the form: [21, 26, 28, 122]:

E(P ) =
∑

i

(
A

2
P 2

i + B

2
P 4

i + C

2
P 6

i

)
+ D

2
∑
⟨i,j⟩

(Pi − Pj)2
, (6.2)

to model phase transitions and compute critical temperatures. This model considers a
supercell where the summation index i represent the cell index and Pi the polarization
of each cell. The parameters A,B,C and D are Landau parameters were the first
three terms describe an anharmonic double well potential. The last term represent
dipole-dipole interactions, with the sum being limited to sites j that are neighbors to
sites i. The parameter D cannot be obtained from the data extracted in this study
and require either mean-field treatment or more computationally heavy approaches
that require supercell calculations[123]. The parameters A,B and C can be found by
fitting the first three terms above to the energy and polarization datasets obtained in
the study using DFT. If an expression of the energies in the form presented in eq. 6.2
is used in conjunction with Monte-Carlo simulations it is possible to predict critical
temperatures of ferroelectrics. Of course the exact form of the model depends on the
specific ferroelectric in question.

The polar materials considered in our study also include magnetic ones. All the
magnetic structures in the C2DB have their magnetic moments set to be ferromagnet-
ically aligned by default. This is not because they are all neccesarely ferromagnetic,
but a choice made by the database creators. Notably our workflow does not capture
ferroelectricity in any one of them. There are two primary reasons for this. The first
being that some of the magnetic materials are mabye not actually switchable and that
our workflow simply predicts them to be pyroelectric. The other explanation might
be that the gaps are mispredicted. This can happen for a number of reasons. The
first being that the magnets might be considered in magnetic configuration that is not
actually the true groundstate magnetic configuration. Several of the magnets in our
study such as VOCl2 and VOBr2 have been shown to be multiferroic, but to have an
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antiferromagnetic groundstate [124]. Another explanation is that the PBE functional
simply can’t correctly predict the band gap. It suffers from the infamous derivative
discontinuity. This problem may even also be the case for some of the ferroelectrics
that are not magnetic. Furthermore the magnetic compounds contain transition metal
atoms with partially filled d orbitals. The correct description of these materials require
local correlations to taken into account to avoid the self-interaction error as described
in section 3.7. This can be done either by applying a PBE+U approach where Hub-
bard corrections are added to the d orbitals of transition metal atoms. Another option
is to simply use a different functional like what was done for the VOX2 (with X=Cl,
Br, F, I) compounds in references [124, 125] where the HSE06 functional was applied.
This functional is however much more computationally expensive and therefore the
PBE + U approach may be a better future alternative for high-throughput studies of
magnetic ferroelectrics. The paper also highlights one polar magnetic material that
has been investigated further namely VAgP2Se6. We find the material to have a triply
degenerate ferroelectric groundstate, which is switched through rotation The magnetic
properties can be characterized using the Heisenberg model:

H = −J1

2
∑

⟨ij⟩̸

Si · Sj − J2

2
∑

⟨ij⟩⊥

Si · Sj (6.3)

We find that all the states are ferromagnetic, but an analysis of the excitation spectra
using spin-wave theory shows that the the excitation spectra depends on the polar axis.
This means that one can actually readout which ferroelectric state the material is in
by probing the magnetic excitations.

Despite successfully having found new ferroelectric materials, there are several short-
comings of our workflow. The first one is that our results hinges on the fact that the
materials must be gapped in order for a polarization to be computed using the Berry
phase approach. Of course some of the polar materials may simply not be switchable.
Another reason could be that the PBE functional erroneously predicts a structure
along the adiabatic path to be gapless. The PBE famously suffer from the so called
derivative discontinuity problem. An alternative approach would therefore be to sim-
ply use a better exchange correlation functional. This would come at the expense that
calculations would be more computationally heavy. In another high-throughput study
on bulk ferroelectrics a slightly different approach was taken [126]. Here the change
in volume as the material switches between it’s polar and non-polar phase was taken
into account. To get the correct polarization the authors instead used the corrected
polarization:

P̃λ,i = Pλ,i

Rpolar
i

Ωpolar
Rλ,i

Ωλ

(6.4)

for the polarization at each point along the branch. In our study this wasn’t an issue
because the evgraf software didn’t modify the unit cell and any relaxations we per-
formed only optimized atomic positions not lattice constants. A potential application
of a modifying our workflow would be looking for ferroelectric-ferroelastic multifer-
roics. In these system one has to investigate changes in polarization in conjunction
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with changes in strain. In such a case the lattice constants are not fixed and one has
to modify the polarization lattice according to eq. 6.4.

The magnetic structures investigated here are all considered in a ferromagnet state.
That means that their polar point group stems from the symmetry of the lattice, not
the magnetic order. This implicitly limits our search to magnetoelectric multiferroics
of type-I. In order to extend the search to type-II multiferroics, the workflow must be
extended to include candidate structures where the structural point group is non-polar,
but where the magnetic configuration gives rise to a polar magnetic point group. Such
work is beyond the scope of this thesis, but recent work has been done for a number
of selected two dimensional magnets with non-collinear spin configurations [127].

The workflow presented in this work could easily be applied to another dataset from
another database or for C2DB once more materials are added, such that more ferro-
electrics might be discovered. Another way to look for new materials would be to use
lattice decoration techniques for the prototypes found in this work. One would likely
find materials that were qualitatively similar, but differences in chemical composition
might yield materials that are more suited for applications. A good example would be
ferroelectrics with lower switching barriers or higher spontaneous polarizations than
other ferroelectrics from the same material family.

6.2 Summary: Recent Progress of the Computational
Materials Database (C2DB)

Ever since it was discovered that graphene could successfully be exfoliated from bulk
graphite [19], the interest in two dimensional materials within the materials science
community has exploded. Not long after other two dimensional materials were suc-
cessfully exfoliated. These include, among others, the transition metal dichalcogenides
like MoS2, noble metal dichalcogenides like PtSe2 and elemental 2D materials like
black phosphorus [128]. In 2017 the first two dimensional magnet, CrI3, was exfoliated
from its bulk counterpart [20]. Due to the surge of interest in two dimensional mate-
rials, several researchers have aimed to predict many new potentially synthesizeable
two dimensional compounds systematically by using computational methods. This has
resulted in the creation of several 2D material repositories [95, 99–101]. This paper
concerns the addition of new materials and material descriptors to the Computational
2D Materials Database (C2DB). The paper is thus a sequel to the original work were
the first materials were added in a freely available online repository among with the
most basic mechanical, electronic and magnetic properties, such as dynamic- and ther-
modynamic stability, bandstructures, electron masses and magnetic configurations[95].
In this paper new materials have been added to the database and the original property
workflow has been extended, as depicted in figure 6.3. If a given material passes the
criteria listed in the figure, the new features in the property workflow are: exfoliation
energies, Bader charges, Born effective charges, polarizabilities (optical and infrared),
piezoelectric tensors, Raman, spectra, second harmonic generation, spontaneous polar-
izations, topological invariants and exchange coupling constants computed from the
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Figure 6.3: The workflow used to generate materials found in [93], and compute their
properties. This is an updated version of the original workflow, with the addition of new
features in the property workflow.

Heisenberg model. The paper also contains a section on machine learning, where the
pDOS fingerprint is presented as an example of machine learning applied to the C2DB.
The new materials included are monolayers that are exfoliated from experimentally
known compounds and Janus monolayers. In addition to new features the paper also
included some updates to already existing features such as the dynamical stability, the
stiffness tensor, the optical absorbance, the emasses and the magnetic classification.
The paper also discusses the possibilities of creating new databases that are extensions
of the C2DB database, like a monolayer database where specific atoms are substituted
with defects or multilayer databases where homobilayers are created starting from the
monolayers found in C2DB. A defect database was later created[129].

My part of the paper was the addition of spontaneous polarizations to the workflow.
These are described in section 5.3 of the paper, which I co-wrote. The computational
method for finding the spontaneous polarization using the Berry phase is already ex-
plained in chapter 5 of the thesis. Figure 15 in [II] illustrates the computation of the
spontaneous for Ge2S2. The computations were performed for materials that in addi-
tion to satisfying the requirements listed in fig. 6.3, had a polar point group and a finite
band gap. At the time of publication the database had above 4000 materials, which
approximately 2500 more materials than the original 1500 materials. The database is
constantly being updated with new materials and new properties. Since the publica-
tion of this paper the C2DB has been updated further. In the time of writing it has a
total of 15733 materials.
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6.3 Summary: Oxygen Vacancies Nucleate Charged
Domain Walls in Ferroelectrics

Charged domain walls have attracted significant research attention due to their poten-
tial applications in areas ranging from non-volatile memory [130] and to photovoltaics
[16, 131]. The charge degree of freedom sets these domain walls apart from their neu-
tral counter has been shown to result in a much more rich phenomenology. Research in
this area has been focused on understanding the formation, structure, and behavior of
charged domain walls in ferroelectrics, as well as their interaction with external stimuli
such as electric fields.

In this project we set out to gain a better understanding of the role played by
oxygen vacancies in the formation of ferroelectric domains. Previous theoretical and
experimental work on charged domain walls indicates that oxygen vacancies act as
crucial stabilizing agents for charged domain walls [132–134]. In this work we focus on
the role oxygen vacancies plays in the formation of charged domain walls. To investigate
this phenomenon we study the perovskite oxide BaTiO3. We investigate BaTiO3 in
it’s tetragonal structure (P4mm), which has a polarization in the [001] direction. This
phase forms at 404K and persist down to 273K. Our focus is on formation of 180◦

degree domain walls where polarizations of opposite alignment meet at the domain
wall. This leads to two types of domain walls: positively charged head-to-head (HH)
and negatively charged tail-to-tail (TT) walls. The first section of the paper studies
defect free charged domain walls in BaTiO3 as a reference for later calculations with
defects. We simulate domain walls by setting up 1x1x16 supercells, with HH domain
walls situated at the zone boundaries and TT domain walls situated in the middle of
the cell. The polarization profile across the supercells are modelled according to the
function:

P a(z) = P0tanh (za/δ) (6.5)

where P0 is the saturated polarization value inside domain which is computed using
eq. (5.35) and the approach outline in section 5.4, za is the distance measured from
the center of cell a and δ = 1.75 the domain wall width. Because the domain walls
are in fact metallic, we can’t calculate the Born effective charges in this state. Instead
we have used an average between the converged values obtained for the born effective
charges in bulk tetragonal and cubic reference structures. This approach leads to a
polarization of 0.24C/m2 which is in good agreement with what has previously been
observed. Further analysis of the TT and HH domain walls is done by computing the
density of bound charges resulting from the polarization profile and the electrostatic
potential using DFT. This is done using the sliding average technique. The full ap-
proach is outlined in the appendix of the paper, but the idea is that because nuclear
and electronic charge varies rapidly at the atomic scale the charge distribution will os-
cillate rapidly as a function of distance. In order to determine the charge density (and
the potential) we perform integrals (slide averages) over the charge density around the
point of interest. We use a Gaussian dampening function for the nuclear charge and
integrate over intervals [z − c/2, z + c/2] where c is the length of the unit cell. Our
results indicate a linear potential and thus a constant electric field in each domain. Our
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computations suggest that free charge almost perfectly compensates the bound charge
at the domain walls. Projected density of states calculations provide further evidence
that the conduction electrons at the Fermi level are situated at the charged domain
walls. Projected bandstructure calculations indicate that electron (hole) doping occur
at the HH (TT) walls respectively.

The later part of the paper focuses on the formation of charged domain walls with
oxygen vacancies present. The starting point are single domains simulated using a
3×3×8 supercell. We then start by adding a single oxygen vacancy and then performing
a structural relaxation. Our analysis has revealed that it is more energetically favorable
for vacancies to occupy BaO planes as supposed to TiO2 planes. We compare the total
energy of the relaxed structures with an oxygen vacancy with the energy of a vacancy
free bulk structure. We then go on to add more than one vacancy compute the energy
as function of which BaO plane the vacancy is in for each iteration. Our analysis
shows that it is energetically favourable for oxygen vacancies to cluster at different
positions in the same BaO plane. This seems counter intuitive at first sight because
the vacancies are all positively charged and one would expect them to repel one another.
We resolve this by observing that each vacancy indices a polarization, which in turn
causes negative charge to migrate to the TT wall in order to compensate for the positive
charge of the vacancies. Thus negative TT walls are formed which in turn acts as sinks
for any additional vacancy which is added. We also compute profiles for the bound
charge density which indicate that concentration of oxygen vacancies seems to saturate
once the walls are formed, with our computations suggesting the saturated number of
vacancies lie somewhere between two and three. We interpret these results as implying
that oxygen vacancies acts to initiate the formation of TT domain walls in BaTiO3
and not merely stabilize them as previous research seems to indicate.

After the submission of paper [III], new work on Born effective charges outside the
adiabatic limit has been done [135, 136]. Those papers attempts to generalize the
notion of Born effective charges to the non-adiabatic regime. This may provide a venue
to compute the polarization profiles of supercells in a way that is more methodologically
correct.



CHAPTER 7
Anomalous Hall

conductivity in magnets
The results presented in this chapter is part of unfinished work, and
therefore not found in the list of publications in the introduction of this
thesis.

The experimental methods used for investigating magnetic materials are many. One
of the most widely used techniques when it comes to magnets is neutron scattering [39].
When it comes to two dimensional materials however neutron scattering often falls
short when faced with scattering values on the atomic scale. For such systems different
techniques have to be applied such as transport- or magneto-optical measurements.
One of the most famous two dimensional transport signatures is the Hall effect. The
effect was originally discovered by Edwin Hall, and hinted that current was caused be
negative carriers not positive ones1 [137]. Subsequently the Hall effect has been utilized
in order to determine the carrier concentration in semiconductors. After its original
discovery the Hall effect was observed in magnetic conductors but at a magnitude much
larger than what was observed for the ordinary Hall effect. It was subsequently dubbed
the anomalous Hall effect and the theoretical underpinnings of this phenomenon was
not properly understood before the later half of the 20’th century. This was a period
were various related effects have been discovered such as spin Hall effect[138, 139], an
analog of the Hall effect for spin currents. Then came the discovery of the quantized
analogs of the Hall effect first in two dimensional electron gases [140–144] and later
in topological insulators [145–148]. This era also to a deeper understanding of the
anomalous Hall effect in magnets and sparked a renewed interest in the field.

This chapter concerns a computational study into the anomalous Hall effect. First
the ordinary Hall effect is briefly introduced and then contrasted with the anomalous
Hall effect. Linear response theory is briefly introduced and subsequently used to derive
an expression for the intrinsic contribution to the Hall conductivity. Finally results
obtained using an implementation of the Hall conductivity in GPAW are presented and
compared with results found in literature.

1The electron was not discovered yet.
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7.1 Ordinary Hall Effect
The Hall effect was first discovered in 1879, by Edwin Hall, when he was investigating
the relationship between electric current and magnetic fields [137]. The effect is best
understood by considering a Hall bar setup, like the one depicted in fig. 7.1. Here a
power source provides a finite voltage across a material resulting in a finite current.
The material is simultaneously under the influence of an external magnetic field applied
perpendicular to the plane. Under such conditions a finite potential difference is gen-
erated between each side of the Hall bar in the direction perpendicular to the current.
The Hall effect can be understood by applying the classical theory of electromagnetism.
A classical charged particle moving in a electromagnetic field is under the influence of
the Lorentz force:

F = q (E + v × B) , (7.1)

where F is the Lorentz force, q is the particle charge, E the electric field, v the
velocity of the charged particle and B represents an external magnetic field. In the
Hall bar setup the electric current. J = −ev is caused by electrons with charge q = −e
running through it. The first term in 7.1 is what generates the electric current, while
the second term is what is responsible for electrons drifting to one side of the material.
The system eventually reaches a steady state when the two forces in eq. 7.1 cancel each
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Figure 7.1: a). A sketch of a Hall bar setup viewed from above. A power source delivers a
finite voltage V across a material resulting in a finite current J. Upon the application of an
external magnetic field B, the charged particles (electrons) in the material start to drift to
one side due to the Lorentz force, resulting in a finite transverse voltage.

other out. The drift of electrons to one side causes a voltage to develop perpendicularly
to the current. As shown by Hall this setup can be used to measure the charge carrier
concentration using an expression of the form [137]:

RH = VHt

JB
= 1
ne
. (7.2)
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where RH is the Hall coefficient, VH the Hall voltage i.e. the voltage that develops
from the drift component of the electric field, B is the magnetic field, J the current,
t the material thickness, e the electron charge and n the charge carrier concentration.
This effect is still widely applied to determine the electron (or hole) concentration in
semiconductors. Not long after its discovery, the Hall effect was observed in magnetic
conductors. Here the effect was much stronger, and later it was discovered that the
effect persisted in magnetic systems even in the absence of an external magnetic field.
For this reason it was given the name the anomalous Hall effect. This effect will be
the main topic for the remainder of this chapter.

7.2 Anomalous Hall effect
The anomalous Hall effect (AHE) is similar to the ordinary Hall effect, in that the
observed physics is the same. The underlying cause is however quite different. While
the ordinary Hall effect occur in materials under the application of an external mag-
netic field, the anomalous Hall effect refers to analogous phenomena but without any
external magnetic field present. Instead it happens for materials where time-reversal
symmetry is broken by different means, namely by the material having an finite in-
ternal magnetization. A finite magnetization is not enough however, as the material
must in addition have a finite spin-orbit coupling. The fact that the (AHE) requires
ferromagnetism, stems from the fact that time-reversal symmetry breaking is necessary
in order to obtain a finite Hall conductivity. The characteristic feature the Hall con-
ductivity is defined as the anti-symmetric component of the linear conductivity which
is defined through the relation:

J(r, t)α =
∫ ∞

−∞
dr′
∫ ∞

−∞
dt′σαβ(r, r′, t, t′)Eβ(r′, t′), (7.3)

where J(r, t)α denotes the current in the α’th direction and Eβ(r′, t′) the electric field
in the β’th direction. The fact that time-reversal symmetry breaking is necessary
follows directly from the Onsager relation for response functions [149]:

σαβ(ω,M) = σβα(ω,−M) (7.4)

The Hall conductivity therefore obeys the equation:

σA
xy(M) = σxy(M) − σyx(M) = σxy(M) − σxy(−M). (7.5)

As indicated by eq. 7.5 the Hall conductivity is only non-zero if time-reversal symmetry
is broken by either an external magnetic field or an internal magnetization.

There are generally three terms that contribute to the anomalous Hall conductiv-
ity[149]:

σAH
αβ = σAH-int

αβ + σint-skew
αβ + σint-sj

αβ (7.6)

The first contribution is the intrinsic contribution, which is also sometimes referred to
as Karplus-Luttinger contribution [150]. The contribution is intrinsic in the sense that
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it does not external factors such as impurities. The proposed theory by Karplus and
Luttinger was that when electrons in magnetic solids with strong spin-orbit coupling
are subject to an external electric field they acquire a transverse contribution to their
group velocity that was not previously recognised. This is analogous to the role of the
Lorentz force for the ordinary Hall effect. A Hall bar exhibiting the AHE is depicted
in figure 7.2.

The second contribution is the skew scattering term which is directly proportional to
the lifetime of the scattering electrons τ physically its involves scattering asymmetry
effects in materials with impurities.

The third contribution to the anomalous Hall conductivity is the side-jump contri-
bution. This is sometimes defined merely as the contribution which doesn’t fall into
the two other categories. In physical terms it arises during electron impurity scatter-
ing due to the spin-orbit coupling of the impurity. This contribution, unlike the skew
scattering part, is independent of the scattering time.

In concrete experiments one has to try to separate the different contributions to
the anomalous Hall conductivity. Experimentalists usually measure the resistivity, not
the conductivity. A method that has been frequently applied is to see how the Hall
component ρxy of the resistivity varies as a function of the longitudinal component
ρxx. Because the different Hall components depend on electron scattering rates at
different orders one can extrapolate the contributions from the data [149]. There
has been some debate among experimentalists regarding the accuracy of this method
when measurements are performed over a range of temperatures. Some of the recent
developments have provided more accurate schemes for separating the three different
contributions [151][152].

Most of the theoretical work attempting to describe the (AHE) from first-principles
has focused on the intrinsic component. However some work has also been done for
the side-jump contribution [153]. For the remainder of this chapter our focus will be
the intrinsic contribution.

7.3 Linear response theory
A useful framework for computing inherently non-equilibrium response functions, like
the conductivity tensor, is linear response theory [154]. The general philosophy is to
express the response function of interest, using only information about the system in
equilibrium. This description works well if the response to a weak external perturbation
is also weak. Consider a system described by a Hamiltonian:

H(t) = H0 +H ′(t) (7.7)

where H0 is the Hamiltonian in equilibrium, H ′(t) is a time-dependent contribution
that stems from some external perturbation. In equilibrium the system is simply
governed by H0. In this case the thermodynamic average of a quantity represented by
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Figure 7.2: A sketch of a Hall bar setup similar to the one displayed in 7.1, but without
an external magnetic field. Instead the material under consideration is a ferromagnetic metal
with spin-orbit coupling. The magnetic moments give rise to an finite internal magnetization
M which breaks time-reversal symmetry. Combined with spin-orbit coupling this gives rise
to a drift of electrons to one side, giving rise to a finite Hall conductivity.

the operator A is given by:

⟨Â⟩0 = Tr
(
ρ0Â

)
=
∑

n

e−βEn

Z
⟨n|A |n⟩ , (7.8)

where

ρ0 = 1
Z

∑
n

|n⟩ ⟨n| , (7.9)

is the density matrix, Z denotes the partition function, β = 1
kBT is the inverse temper-

ature, Tr denotes the trace and the bracket ⟨·⟩ indicates that a thermodynamic average
is taken. We now consider the same average but at some time t after the application
of an external perturbation. Now the density matrix from the equation above has
acquired time dependence:

ρ(t) = 1
Z

∑
n

|n(t)⟩ ⟨n(t)| , (7.10)

and the thermodynamic average is given by:

⟨Â(t)⟩ = Tr
(
ρ(t)Â

)
=
∑

n

e−βEn

Z
⟨n(t)| Â |n(t)⟩ . (7.11)

Here an assumption was made, namely that the states of the system described by
the Hamiltonian 7.7 are distributed according to the equilibrium distribution function,
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even at later times. All the time dependence is therefore packed into the states |n(t)⟩.
These can be obtained from the time-dependent Schrödinger equation:

ih̄
∂

∂t
|n(t)⟩ = Ĥ(t) |n(t)⟩ (7.12)

In the interaction picture the time evolution can be described as:

|n(t)⟩ = e− iĤ0t
h̄ Û(t, 0) |n⟩ , (7.13)

where U(t, 0) is the time evolution operator [106]:

Û(t, 0) = 1 +
∑

n

(
−i
h̄

)n ∫ t

0
dt1

∫ t1

0
dt2...

∫ tn−1

0
dtnĤ(t1)Ĥ(t2)...Ĥ(tn) (7.14)

Within linear response theory one includes only the time-evolution to linear order.
Therefore the time-evolution operator can be written as:

Û(t, 0) = 1 − i

h̄

∫ t

0
dt′Ĥ ′(t′). (7.15)

The thermodynamic average at time t:

⟨Â⟩ = ⟨Â⟩0 − i

∫ ∞

t

θ(t− t′)dt′ ⟨[Â(t), Ĥ ′(t′)]⟩0 (7.16)

or equivalently:

⟨∆A(t)⟩ = ⟨Â⟩ − ⟨Â⟩0 = (7.17)∫ ∞

−∞
dt′C(t, t′) (7.18)

where ⟨∆A(t)⟩ is the response function and where the correlation function C(t, t′) is
given by:

C(t, t′) = −iθ(t− t′) ⟨[A(t),H(t′)]⟩ (7.19)

Here A(t) is the operator for the relevant physical observable and H(t′) is the Hamil-
tonian describing the external perturbation. The formula in eq. 7.19 is known as
the Kubo formula [155]. If the external perturbations are such that the perturbing
Hamiltonian can be written:

Ĥ ′(t) = B̂f(t) (7.20)

Here B̂ denotes an operator and f(t) a function which is time-dependent. In this
scenario all the time dependence is packed into the scalar function and not the operator.
Because the scalar is perfectly commutative it can be shown that in this scenario the
correlation function C(t, t′) only depends on the time difference t− t′.
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7.4 Intrinsic contribution to the Hall conductivity
To obtain an expression for the Hall conductivity, we will first start of by finding a
general expression for the conductivity and then separate out the Hall contribution
from the any other components. The linear conductivity tensor is defined through the
relation:

J(r, t)α =
∫ ∞

−∞
dr′
∫ ∞

−∞
dt′σαβ(r, r′, t, t′)Eβ(r′, t′) (7.21)

The Fourier transformed version reads:

Jα(q, ω) = σαβ(q, ω)Eβ(q, ω) (7.22)

The electric field can be expressed in terms of fields:

Eα(r, t) = − (∇ϕ(r, t))α − dAα(r, t)
dt

(7.23)

We pick the Landau gauge where ∇ϕ(r, t) = 0. Next we Fourier transform the remain-
ing expression to obtain:

Eα(q, ω) = −i(ω + iη)Aα(q, ω) (7.24)

here we have made use of the generalized Fourier transform, where the frequency has
an imaginary component. We are using this transform instead of an ordinary Fourier
transform, in order to be consistent since a generalized Fourier transform is necessary
in the treatment of response functions. We are now going to derive an expression for
the averaged current as a function of applied electric field such the the conductivity in
eq. (7.21) can be inferred. In order to apply the machinery of linear response theory
we need to add a perturbation. An applied electric field leads to (using the Landau
gauge) a perturbing Hamiltonian of the form:

Hext(t) = e

∫
drJ(r) · Aext(r, t) (7.25)

The current operator generally has two contributions:

J(r, t) = Jpara(r) + e

m
ρ(r)Aext(r, t). (7.26)

The first of these is usually referred to as the paramagnetic term and the second the
diamagnetic. Only the second term contains external fields. The thermodynamic
average of the current becomes:

⟨J(r, t)⟩ = ⟨Jpara(r)⟩ + e

m
⟨ρ(r)Aext(r, t)⟩ (7.27)

We evaluate these within the assumptions of linear response that is we assume that
the external vector potential can be evaluated in the equilibrium state, such that
e

m
⟨ρ(r)Aext(r, t)⟩ ≈ e

m
⟨ρ(r)⟩0 Aext(r, t) (7.28)
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The Fourier transformed expression becomes:
e

m
⟨ρ(r)⟩0 Aext(r, ω) = e

im(ω + iη)
⟨ρ(r)⟩0 Eext(r, ω) (7.29)

The paramagnetic term is evaluated using linear response theory:

⟨Jpara(r, t)α⟩ = −ie
∫ ∞

t

dt′θ(t− t′) ⟨[Jα(r, t),Hext(t′)]⟩0 (7.30)

= −ie
∑

β=x,y,z

∫
dr′
∫ ∞

−∞
dt′θ(t− t′) ⟨[Jα(r, t), Jβ(r′)]⟩0 Aβ(r′, t′) (7.31)

=
∑

β=x,y,z

∫
dr′
∫ ∞

−∞
dt′eCJαJβ(t− t′)Aβ(r′, t′) (7.32)

here we used that the current in equilibrium is zero and that we are only including
linear orders in electric field such that the term proportional to Aext ·Aext is neglected.
We consider the Fourier transformed version of the equation above:

⟨Jpara(r, ω)⟩ =
∑

β=x,y,z

∫
dr′CJα,Jβ(ω) 1

i(ω + iη)
Eβ(r′, ω) (7.33)

The physical quantity of interest is the electric current which is just the number current
times the electron charge −e. By including this and comparing the results above with
the expression for the linear conductivity tensor in eq. 7.22 we see that:

σαβ(r, r′, ω) = e2

i(ω + iη)
CJαJβ(r, r′, ω) + δαβ

e2

m(iω − η)
⟨ρ(r′)⟩0 δ(r − r′) (7.34)

Additional Fourier transform in the spatial domains yields

σαβ(q, ω) = e2

i(ω + iη)
CJαJβ(q, ω) + δαβ

e2

m(iω − η)
⟨ρ(q)⟩0 (7.35)

The Hall conductivity is a phenomenon that occur under the application of a spatial
homogeneous constant electric field. Therefore we consider the limit where ω = 0,
q = 0:

σαβ = lim
ω→0

(
e2

i(ω + iη)
CJαJβ(ω)

)
− δαβ

e2 ⟨ρ⟩0
mη

(7.36)

The second term is an Ohmic contribution. It is an fact simply the Drude expression
for the conductivity. This effect occur in conductors were the time between electron-
ion collisions is τ . At a quantum level this corresponds to the lifetime of a conduction
electron in a particular state. This life time is roughly the inverse of the imaginary
frequency in eq. 7.36 τ ∼ 1

η . The second term is then δαβ
e2⟨ρ⟩0τ

m which we recognize as
the Drude conductivity [156]. The Hall conductivity is the anti-symmetric component
of the conductivity tensor in eq. 7.36:

σA
αβ = σαβ − σβα = e2 lim

ω→0

(
1

i(ω + iη)
(CJαJβ(ω) − CJβJα(ω))

)
. (7.37)
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Thus finding an expression for the anomalous Hall conductivity amounts to deriving
an expression for the Fourier transform of the current-current correlation function. An
exact expression for this function cannot be obtained analytically in all cases. If one
however considers a system of non-interacting particles as is for example the case for
the free electron gas or for a Kohn-Sham system, it is possible to derive an analytic
expression for the correlation function and also for the conductivity. A direct cal-
culation of the current-current correlation function is given in detail in Appendix B.
Furthermore the conductivity is also obtained using eq. (7.37). The result is [157]:

σA
αβ = e2

h

∫
BZ

dk

(2π)d−1

N∑
n,m

(f(Enk) − f(Emk))

( Im
(

⟨nk| dH
dkα

|mk⟩ ⟨mk| dH
dkβ

|nk⟩
)

(Enk − Emk)2

)
.

(7.38)
Here the matrix elements ⟨nk| dH

dkα
|mk⟩ = h̄vα denotes the matrix elements stemming

from the velocity operator, f(Enk) denote the Fermi-Dirac distribution function and
Enk the eigenenergies of n’th band at k. The form presented here is one where the
band indices n, m are treated on equal footing. A less computationally practical, but
very illuminating form of eq. 7.38 is given by:

σA
αβ = −e2

h

∫
BZ

dk

(2π)d−1

N∑
n

f(Enk)Ωαβ
n (k) (7.39)

where the term under the integrand:

Ωαβ
n (k) = i ⟨∂αnk| × |∂βnk⟩ = −

N∑
m ̸=n

2Im
(

⟨nk| dH
dkα

|mk⟩ ⟨mk| dH
dkβ

|nk⟩
)

(Enk − Emk)2 (7.40)

is known as the Berry curvature. It is a geometric quantity related to the Berry phase
introduced back in section 5.2. Unlike the Berry phase which is defined for a closed
loop, the Berry curvature is geometrically local it nature. While the Berry phase is
explicitly gauge dependent, the Berry curvature is a gauge-invariant quantity that is
expressed solely in terms of the wavefunctions [158]. With this expression in mind, it is
easier to see why the expression in eq. 7.38 is referred to as the intrinsic contribution,
since it depends solely on the local properties of the wavefunction without reference
to sample size, scattering or any other relevant transport quantities. A closer look at
eq. 7.38 also reveal that the primary contribution to the integrand comes from the
areas where the denominator (Enk − Emk)2 is close to zero. This explicitly shows
the importance of spin-orbit coupling since small energy differences between different
bands at the same k-point are often the result of lifted degeneracies that result from
spin-orbit coupling.

In order to compute the anomalous Hall conductivity numerically it is more conve-
nient to convert the k-point integral in eq. 7.38 into a sum such that the expression
becomes:

σA
αβ = e2

h

2π
NkV

∑
k∈BZ

N∑
n,m

(f(Enk) − f(Emk))

( Im
(

⟨nk| dH
dkα

|mk⟩ ⟨mk| dH
dkβ

|nk⟩
)

(Enk − Emk)2

)
,
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(7.41)

whereNk denotes the number of k-points and V the unit cell volume. Evaluating the ex-
pression in eq. 7.41 requires numerical evaluation of the matrix elements ⟨nk| dH

dkα
|mk⟩.

Here the states are eigenstates with spin-orbit coupling. However the response code in
GPAW used for computations presented in this thesis does not have an implementation
that can compute such matrix elements for spinors. Instead we will express the spinors
in terms of the Kohn-Sham eigenstates found without spin-orbit coupling as shown in
eq. 3.26. In such a case the integrand in eq. 7.41 takes the form:

Ωαβ(k) = −
N∑

n,m

(f(Enk) − f(Emk))
(Enk − Emk)2 (7.42)

× 2Im
((

N∑
l,p

∑
s1=↑,↓

Ck,m,s1,pC
∗
k,n,s1,l ⟨l0s1,k| ∂H

∂kα
|p0

s1,k⟩
)

(7.43)

×

(
N∑
q,r

∑
s2=↑,↓

C∗
k,m,s2,rCk,n,s2,q

(
⟨q0

s2,k| ∂H
∂kβ

|r0
s2,k⟩

)∗
))

(7.44)

With these changes the expression for the anomalous Hall conductivity in eq. 7.41 can
be written in the form:

σA
αβ = e2

h

2π
NkV

∑
k∈BZ

N∑
n,m

(f(Enk) − f(Emk))
(Enk − Emk)2 (7.45)

× Im
((

N∑
l,p

∑
s1=↑,↓

Ck,m,s1,pC
∗
k,n,s1,l ⟨l0s1,k| ∂H

∂kα
|p0

s1,k⟩

)
(7.46)

×

(
N∑
q,r

∑
s2=↑,↓

C∗
k,m,s2,rCk,n,s2,q

(
⟨q0

s2,k| ∂H
∂kβ

|r0
s2,k⟩

)∗
))

. (7.47)

This version of the Hall conductivity has been implemented using the GPAW software
package and henceforth all computations are carried out using the expression in eq.
(7.45). Numerically the denominator in eq. (7.45) does pose some challenges since
one has to get the k-point sampling right in order to compute capture all the relevant
regions of the Brillioun zone.

7.5 Adaptive k-point refinement
The expression for the anomalous Hall conductivity given in eq. 7.45 does come with
some practical issues. The integrand is inversely proportional to the difference in band
energies to the second power. As mentioned previously band splittings form the main
contributions to the anomalous Hall conductivity. However since we are dealing with
contributions from non-filled bands in metals, the results are very sensitive to how the
k-points entering in the sum in eq. 7.45 are sampled. Practical calculations reveal
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that it is very computational expensive, and in some cases practically impossible, to
converge the anomalous Hall conductivity with respect to the number of k-points by
simply using a more dense k-point grid. An approach that has been popular is to
refine certain points in the k-point grid, namely those where the integrand in eq. 7.45
are largest. In order to do so, one must first know where such points reside in the
Brillouin zone in the first place. Leaving aside the special case where one has a priori
knowledge of the system in question, the only way to do this is to first compute the
integrand in equation 7.45 for a k-point grid sufficiently dense to capture the points
of interest. Subsequently one can then construct k-point grids nested inside the initial
grid around the points of interest. It is then possible to evaluate the Berry curvature on
the new nested k-point grids and then finally add these contributions to the ones from
the initial k-point grid to get more accurate result. This method of selectively adding
k-points is known as adaptive refinement and has previously been successfully applied
to reduce the number of k-points required to compute the anomalous Hall conductivity.
The caveat to the adaptive refinement procedure is that the new k-point grid no longer

Figure 7.3: Depicted is a sketch the adaptive refinement procedure for a two dimensional
k-point grid. On the left side is a equidistant k-point grid. The right side contains a similar
figure but where the point at the center has been replaced with a 5x5 refinement grid.

has all of its points uniformly spaced. When carrying out an integral or a summation
one therefore has to attach different weight to the evaluated integrand, in this case the
Berry curvature.
To be more concrete lets assume we wish to refine a k-point grid with Nk = Nkx ×
Nky × Nkz points, where Nkx, Nky, Nkz are the number of k-points in the initial k-
point grid K. We now apply a refinement grid consisting of N ref

kx ×N ref
ky ×N ref

kz points,
at a selected point k0 ∈ K. We denote the set of points introduced by refinement as
K∗. In order to evaluate the Berry curvature on the refined grid a new weight has to
be assigned the Berry curvature at the new points which have been introduced. The
value of the Berry curvature at the old points k0 then has to be replaced according to:

Ω(k0) → 1
N ref

kx ×N ref
ky ×N ref

kz

∑
i∈K∗

Ω(ki)∀k0 ∈ K (7.48)

This procedure can then be iterated for all points that are found to be relevant, i.e.
the ones which large contributions to the Berry curvature. Since these k-points are
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only a small subset of the total grid, the resulting refined grid tends to contain fewer
points than the original. Therefore this scheme is much more numerically efficient then
simply increasing the k-point density. When it comes to the selection of points there
is no straightforward way to do it. Usually one starts by evaluating the integrand in
equation 7.45 on an initial grid and subsequently select the point where absolute value
of the integrand is largest. Performing refinement around one point is rarely sufficient,
and therefore it is necessary to pick points according to some principle, like taking all
points where the integrand is within 10% of the maximal value. Such algorithms have
been extensively used to compute anomalous Hall conductivities from first-principles
[159, 160]. Unfortunately we currently do not have an implemented version of this
algorithm that works in conjunction with the implementation of 7.45.

7.6 Results
In this part results obtained using an implementation of the anomalous Hall conduc-
tivity in eq. 7.45 are presented. We start by performing calculations for bcc Fe, fcc
Ni, hcp Co and fcc Co as these are some of the most studied examples of bulk met-
als. These will serve as benchmarks and they have the advantage that the unit cell
contain only one or two atoms making system size less of a computational bottleneck.
All calculations for bcc Fe have been done with the lattice constant a = 5.42 Bohr
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Figure 7.4: The figures show a computation of the anomalous Hall conductivity as a function
of number of k-points used in each direction for bcc Fe on the left and fcc Co on the right
respectively. The dashed blue and green line in the plot to the left represent converged results
obtained in [159] and [157] respectively. The dashed blue and green line in the plot to the
right represent converged results obtained in [161] and [159] respectively.

= 2.87 Å which is the experimental lattice constant as well as the one used in all
references where numerical computations where carried out. The same thing goes for
Co and Ni, only here the relevant parameters are different. Calculations for hcp Co
have been done with the lattice constant a = 4.73 Bohr = 2.50 Å and a hcp ratio of
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1.633. Calculations for fcc Co have been done with the lattice constant = 6.69 Bohr
= 3.54 Å. Calculations for fcc Ni have been done with the lattice constant a = 6.65
Bohr = 3.52 Å. All of these lattice constants coincide with the experimental value for
each respective material. Throughout this section all results that are presented have
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Figure 7.5: The figures show a computation of the anomalous Hall conductivity as a function
of the number of k-points used in each direction for hcp Co on the left and fcc Ni on the right
respectively. The dashed blue line in the plot to the left represent the converged result
obtained in [161]. The dashed blue and green line in the plot to the right represent converged
results obtained in [162] and [163] respectively.

been computed with the following set of computational parameters unless otherwise
stated: a plane-wave cutoff of 800 eV, a Fermi-smearing of 0.001 eV is used for occu-
pation factors. Furthermore all k-point grids used are Γ-centered. We use grids of the
form Nk = N ×N ×N for 3D materials and Nk = N ×N × 1 for 2D materials, with
N denoting the number of k-points along each direction. All calculations have been
carried out using the PBE functional unless otherwise stated. It has been shown that
Hubbard corrections are necessary to get accurate results for the anomalous Hall con-
ductivity in Ni. Previous work by Fuh. et. al. have shown that applying an effective
Hubbard parameter U= 0.7 eV leads to an anomalous Hall conductivity σA

xy = 1046
[S/cm] in good agreement with experiments performed at low temperatures [152, 163].
For this chapter we are primarily concerned with comparing the results of our calcu-
lations with those obtained by other researchers. But we have included the results
obtained with PBE + U as well to have more data to compare our results with. Our
primary concern is to assess how well converged our results are with respect to the
total of k-points. Calculations are performed by first performing a DFT calculation
at high k-point sampling to ensure that the density is converged with respect to the
number of k-points. For the calculations shown have we have used a 40 × 40 × 40 grid.
Then the Kohn-Sham equations are solved using the converged result for the density in
previous calculations. This is repeated for in an increasing number of k-points. In this
way we keep the density constant while only varying the number of k-points. This is
because the converged Kohn-Sham density is itself a function of the choice of k-point
grid. This approach ensures that we are using the same fixed density and that any
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Figure 7.6: The figure on the left show computations of the anomalous Hall conductivity
as a function of number of k-points used in each direction for Ni using an effective Hubbard
U correction of 0.7 eV and 1.3 eV respectively. The dashed blue and green line in the plot to
the left represent converged results obtained in [163]. The figure on the right is a plot of the
anomalous Hall conductivity for Fe using different Fermi smearings for the occupation factors
in eq. 7.45.

σA
xy[ S

cm ] Fe (bcc) Co (fcc) Co (hcp) Ni (fcc)
This work 700(∗) 223(∗) 408(∗) 1952(∗)

Previous Theo. 751 [157], 750 [162] 249 [161] 477 [159] 2203[159]
753[159] 481 [161] 2275[159]

This work (U=0.7) - - - 1228
Previous theo. (U=1.3) - - - 1064[163]

This work (U=1.3) - - - 937
Previous theo. (U=1.3) - - - 946[163]

Exp. (T = 0K) 1032 [164] 727(∗∗)[165] 813[161] 646 [166]
Exp. (T = 5K) 1100 [152]

Table 7.1: Comparative table of the anomalous Hall conductivity for transition metals. The
table contains values that are theoretically predicted as well as those that are experimentally
observed. The functional used for the theoretical calculations is PBE, and PBE + U in the
case of Ni. (*) The values produced using GPAW are not fully converged as evident from figures
(7.4-7.6). Instead they are the values obtained at the largest of the k-point grids presented in
the plots in figures (7.4-7.6). (**) This is the experimental value for the intrinsic contribution
only. In the paper analysis was applied to separate it from extrinsic contributions.

lack of convergence in the anomalous Hall conductivity with respect to the number of
k-points is due to poor sampling and not due to the density not being converged. In
practice it turns out to only make a big difference for low k-point densities, but it is
more methodologically clean. Results for Fe, Co and Ni are shown in figures 7.4-7.6.
We have used 20, 11, 40, and 18 bands for bcc Fe, fcc Co, hcp Co and fcc Ni respec-
tively. The hardest material to converge is by far Fe. Even at k-point grids as large as
125 × 125 × 125 corresponding to almost 2 million points in total, the anomalous Hall
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mspin [µB/atom] Fe (bcc) Co (fcc) Co (hcp) Ni (fcc)
This work PBE 2.22 1.66 1.62 0.65

Previous Theory (PBE) 2.22 [159] - 1.60 [159] 0.62 [159]
Exp. 2.13 [167] - 1.59 [167] 0.56 [167]

Table 7.2: Comparative table of the spin magnetic moments for the transition metals. The
table contains values that are theoretically predicted using GPAW as well as those obtained
theoretically in [162] and experimentally in [167].

conductivity as still not converged. The inset figure also indicates that the result still
vary between 650−700 [S/cm] The results look better in the case of hcp Co where only
up to one million k-points are used. Here the results are also not perfectly converged
but there are fewer oscillations in the plot. For fcc Ni and fcc Co the results also
seem to have the correct order of magnitude but they are like the first two cases not
converged. The results shown for fcc Co, hcp Co and fcc Ni does seem to indicate that
anomalous Hall conductivity for these three materials have a lower convergence radius.
For all 4 materials we seem to get a lower number for the Hall conductivity compared
to others. This might of cause be becomes the results are not fully converged. We
haven’t managed to fully converge any of the 4 examples given so far by sampling
increasing the k-point density. Numerically very large grids become more and more
expensive. Performing ground state calculations alone becomes a bottleneck at this
point. We would like to applied the adaptive refinement scheme mentioned in sec 7.5.
However as mentioned in the previous section we do not have a working code for the
adaptive refinement yet. A summary of comparisons between our results and the those
found in the relevant literature on the anomalous Hall conductivity is given in table
7.1. Besides k-point sampling there are a couple of other parameters that impact
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Figure 7.7: The figures show a computation of the anomalous Hall conductivity for bcc Fe
and hcp Co respectively as a function of the total number of bands used.

the value of the anomalous Hall conductivity to some extend. The anomalous Hall
conductivity is implicitly a function of the magnetization of the material, as discussed
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in section 7.2. Therefore it is worth comparing our results to those obtained by others
as well as the actual experimental values. The results for all the transition metals are
listed in table 7.2. We obtain good agreement with previous results.

Another relevant factor to take into account is the finite Fermi smearing used for
calculation the occupation factors in eq. 7.45. Calculations have been performed using
different values of Fermi smearing for the occupation factors in eq. 7.45 and using
a fixed 100 × 100 × 100 k-point grid. We have shown results for Fe in figure 7.6 as
this is the material where the choice of smearing seems to have the largest effect. The
results are depicted in fig. 7.6. For small smearings of the occupation factors the
anomalous Hall conductivity does not change much. At a large smearing of 0.273 eV
the convergence of the anomalous Hall conductivity improves significantly as expected,
it does come at the cost that the converged value of the anomalous Hall conductivity is
reduced far below what is found otherwise. This makes good sense physically because
the occupation numbers follow a Fermi-Dirac distribution which is a step function if
the smearing is zero and gets smeared out more at higher values, effectively reducing
the value of occupation factors that are otherwise 1. This lowers the total value of
the integrand in eq. 7.45 and thus the final value of the anomalous Hall conductivity.

We have also performed convergence calculations for Fe, Co and Ni with respect to
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Figure 7.8: The figures show a computation of the anomalous Hall conductivity for fcc Co
and fcc Ni respectively as a function of the total number of bands used.

the number of bands. These are depicted in figures 7.6 and 7.6. The overall trend is
the same, which is that the conductivity is more or less converged if the total number
of bands exceeds the number of occupied bands. The number of occupied bands are
8, 9, 18, 16 for bcc Fe, hcp Co, fcc Co and fcc Ni respectively. The results show
that a few extra bands in addition to the number of occupied bands are needed to get
exact convergence. Furthermore the convergence radius is in some cases larger than
in others. Generally speaking however the conductivity is seen to change very little
on the order of magnitude once enough bands are added. Having to add many bands
could easily become a computational bottleneck. The results presented here seems to
indicate that a moderate number of bands is sufficient to achieve results that would be
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satisfactory for high-throughput computations. In such scenarios an error margin like
that shown here is acceptable. In summary these results clearly indicate that k-point
convergence matters most in terms of reducing the error margin when computing the
anomalous Hall conductivity followed by occupation factor smearing and the number
of bands used. Occupation factor smearing is not a computational bottleneck and
we have shown that the number of bands necessary to achieve satisfactory results are
within reasonable limits. The primary bottleneck that prevents us from applying the
current implementation of the code for high-throughput studies is therefore k-point
sampling. As mentioned previously we unfortunately do not have a working version of
the adaptive refinement scheme described in section 7.5. There are many codes that
can currently compute the anomalous Hall conductivity. The most prominent example
would be using Wannier90 [159, 160]. In such cases one applies Wannier90 to construct
Wannier functions for a material and then compute the anomalous Hall conductivity as
a post processing step, using the obtained functions. The drawback of this method is
that the wannierization process cannot be easily be automated 2, therefore this method
is not well suited for high-throughput studies at the moment. Such methods could of
course still be useful if one had obtained results from a high-throughput study and
wanted to study one material more thoroughly. The approach taken here however
does have the advantage that computations are easy to automate. We now turn
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Figure 7.9: The figures show a computation of the anomalous Hall conductivity as a function
of the number of k-points used in each direction for FeCl2 in the T-phase on the left and the
Fe3GeTe2 on the right. The dashed blue line in the left plot to the left is the converged result
obtained in [169]. The dashed green line in the right plot is the converged result obtained in
[170].

our attention towards two dimensional systems. From a computational vantage point
investigating two dimensional magnets should pose less of a challenge since the total
number k-points used will be significantly smaller compared to computations performed
for three dimensional magnets. In order to assess the applicability of our code we have
applied it to a select number of two dimensional magnets.

2At least not to a sufficient accuracy [168].
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The first materials under consideration are FeCl2 in the (T-phase) and Fe3GeTe2
since these are materials for which comparisons can be made [169, 170]. The results
are depicted in figure 7.6. For FeCl2 we achieve results that are actually fairly close to
that which was obtained by others. In this case our result also look nearly converged.
At large k-points the anomalous Hall conductivity vary on the order 0.0001e2/h. We
do however use a different lattice constant than the one used by Sawahata et. al. [169].

We have also performed calculations for Fe3GeTe2 using the LDA functional. This
material also seems somewhat difficult to converge but the variation is not as large as
for the bulk materials considered previosuly. We do however get a result which is much
larger than what was obtained by Lin et. al. [170]. Our result for the anomalous Hall
conductivity at a k-point grid of 100 × 100 × 1 is 0.57 e2/h while the reference have
found it to be 0.37 e2/h. There is some discrepancy between the magnetic moment
we have computed for Fe3GeTe2 and the one found by Lin et al. We find a magnetic
moment of 5.12 moment µB and in the reference a magnetic moment of 4.71 µB is
found[170]. This might explain a large part of the difference between our results for
the anomalous Hall conductivity. It is however hard to say since structural details
are missing from the reference. The calculations performed for FeCl2 and Fe3GeTe2
were done using a total of 26 and 45 bands respectively. and an occupation number
smearing of 0.05 eV for FeCl2 and 0.001 eV for Fe3GeTe2.
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Figure 7.10: The figures show a computation of the anomalous Hall conductivity as a
function of the number of k-points used in each direction for Br2Cu2S2 in the T-phase.

To further test the capability of the implemented code we also the van der Waals
magnet Br2Cu2S2. The calculations performed for Br2Cu2S2 were done using a total
of 54 bands and an occupation number smearing of 0.05eV . The results are depicted in
figure 7.6. The anomalous Hall conductivity computed for the vdW magnet Br2Cu2S2
seems easier to converge although there is still an error margin of about ± 0.02 e2/h
according to the inset in fig. 7.6. All relevant details regarding crystal structure and
atomic positions can be found in appendix B. Since we are not ready to perform a
full high-throughput study, no further results are presented. There are however many
candidates who would be interesting to investigate further once the aforementioned
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problems are fixed. Examples include other nodal semimetals similar to Fe3GeTe2
[170], Kagome metals [171] and other vdW-magnets [172].

7.7 Future directions
There are several ways to improve upon the results presented in this chapter as well
as several potential future directions of research. One option would be to extend the
current features that are implemented in the code such that the anomalous Hall con-
ductivity can be computed for shifted Fermi levels. In this case our result could be
compared to experiments where the electron filling is tuned using voltage gates. An-
other more computationally demanding option would be to compute the more general
frequency dependent conductivity.

There are also related areas where the anomalous Hall conductivity plays a crucial
role. Within the field of thermoelectrics the anomalous Nernst effect is an analogy
of the anomalous Hall conductivity, but for the heat conductivity as supposed to the
electric conductivity. It has been shown that one can compute the anomalous Nernst
conductivity by first computing the anomalous Hall conductivity in a relevant energy
range [172, 173]. This is straightforward if one simple shifts the Fermi level of the
system under investigation. Another application is within magneto-optical effects the
so called magneto optical Kerr effect (MOKE), which describes the change in direction
of light reflected of a magnetic surface [174]. It has several applications among them,
the ability to determine the magnetic structure of materials without destroying them.
The so called Kerr angle can be determined from the Hall conductivity alone [172, 173].
In this thesis we only discussed the linear contribution to the Hall effect. By going to
non-linear order one can derive expressions for various non-linear terms [175]. Such
effects can be dominant in the cases were the linear terms vanish, and have recently
been observed [176].



CHAPTER 8
Outlook

The main topic covered in this thesis has been multiferroics. The main results in par-
ticular being those summarized in section 6.1 and discussed in detail in paper [I]. There
are several improvements which could increase the numerical accuracy and potentially
lead to additional ferroelectric materials being discovered. The most obvious being the
shortcomings of the PBE functional due to the derivative discontinuity problem as well
as the self-interaction error discussed in sections 3.5, 3.7 and 6.1. This is not merely
an issue of getting the correct quantitative results. Mispredicting a material to be gap
less means it will get discarded in a high-throughput context. In order to correct this
better functionals have to be applied such as PBE + U or HSE. The fact that our
workflow didn’t find any magnetic ferroelectrics suggest that another functional than
PBE might be needed in this particular case. In addition one could extend the types
of magnetic order considered to states beyond ferromagnetic ones.

There are several spin off projects one could try. One would be thermodynamic
properties, as discussed in section 6.1 this would require further analysis than what was
done in paper [I], specifically one would need to compute dipole interactions between
electric dipoles at different sites. This does require relatively large supercells and
it is not something that is computationally feasible for many materials in a high-
throughput context. It is possible to look for other multiferroic orders than the ones we
focused on in this thesis. For example one could try to look at ferroelectric-ferroelastic
multiferroics, by trying to search for states with different strains. It would similarly be
viable to look at ferromagnetic-ferroelastic compounds by focusing on strain analysis
in magnets.

Chapter 7 was devoted to one topic alone: the anomalous Hall conductivity. The
focus was on the intrinsic components and how to compute this from first principles.
Benchmark results were shown from an implementation of the anomalous Hall conduc-
tivity in GPAW. Due to difficulties related to k-point convergence it was not possible to
fully validate our results. Although we did get results in some cases that were in good
agreement with results previously obtained by others. We conclude that some form of
adaptive refinement scheme is necessary in order to consistently achieve converged re-
sults. There are several other improvements of the code which could be made and many
related research topics one could investigate. A straightforward implementation would
be to compute the anomalous Hall conductivity over a range of Fermi levels, or to try
to make the more general frequency dependent conductivity computationally feasible.
One could also try to extend the theory of chapter 7 to incorporate non-linear effects
or try to investigate transport phenomena involving scattering effects since these are
not included in the intrinsic contribution to the anomalous Hall effect. As mentioned
in the end of chapter 7 there are several interesting physical quantities that can be
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derived from the anomalous Hall conductivity such as the anomalous Nernst effect and
the magneto-optical Kerr effect.

Of course high-throughput studies on their own won’t suffice in discovering new
material properties. Many materials have to be studied more thoroughly in depth
both theoretically as well as experimentally. It will be interesting to see what new
discoveries will be made within the field of two dimensional materials in the years to
come.
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Two-dimensional ferroelectrics from high throughput
computational screening
Mads Kruse 1, Urko Petralanda 1, Morten N. Gjerding1, Karsten W. Jacobsen1, Kristian S. Thygesen 1 and Thomas Olsen 1✉

We report a high throughput computational search for two-dimensional ferroelectric materials. The starting point is 252
pyroelectric materials from the computational 2D materials database (C2DB) and from these we identify 63 ferroelectrics. In
particular we find 49 materials with in-plane polarization, 8 materials with out-of-plane polarization and 6 materials with coupled in-
plane and out-of-plane polarization. Most of the known 2D ferroelectrics are recovered by the screening and the far majority of the
predicted ferroelectrics are known as bulk van der Waals bonded compounds, which makes them accessible by direct exfoliation.
For roughly 25% of the materials we find a metastable state in the non-polar structure, which may imply a first order transition to
the polar phase. Finally, we list the magnetic pyroelectrics extracted from the C2DB and focus on the case of VAgP2Se6, which
exhibits a three-state switchable polarization vector that is strongly coupled to the magnetic excitation spectrum.

npj Computational Materials            (2023) 9:45 ; https://doi.org/10.1038/s41524-023-00999-5

INTRODUCTION
Ferroelectric materials are characterized by having a spontaneous
electric polarization that is switchable by means of an external
field1. This property makes them suitable for non-volatile memory
applications, which may be based on ferroelectric tunnel
junctions, ferroelectric random access memory or ferroelectric
field effect transistors2–5. While the large dielectric constant of
ferroelectrics makes them ideal constituents of standard capaci-
tors, it has also been demonstrated that ferroelectrics can acquire
a negative capacitance under particular circumstances and this
property may be utilized to reduce the energy consumption of
conventional electronics significantly6–8. Finally, the inherent
pyroelectric and piezoelectric properties of ferroelectrics make
them useful for a wide range of sensor and actuator applica-
tions2,9. The recent discovery of monolayer ferroelectrics10 has
initiated fundamental interest in the basic properties of 2D
ferroelectricity and spurred hope that devices based on ferro-
electrics may undergo a dramatic size reduction. There is currently
an intense effort to discover new 2D ferroelectrics with optimized
properties and the list of materials that have been characterized
experimentally includes In2Se311,12, CuInP2Se613,14, MoTe215, NiI216,
SnTe10, SnSe17,18 and SnS19.
Devoid of the challenges that the synthesis of new 2D materials

usually present, density functional theory (DFT) has emerged as an
important tool to predict new ferroelectrics and characterize their
properties. The compounds studied by DFT include in-plane
ferroelectrics such as the group-IV monochalcogenides GeSe, GeS,
SnS, SnSe, GeTe, SiTe, SnTe20,21, the niobium oxyhalides (NbOI2,
NbOCr2, NbOBr2)22, the magnetic vanadium oxyhalides VOX2
(X = I, Cl, Br, F)23,24 as well as ClGaTe and γ-SbX (X = As, P)25,26. In
addition, the transition metal phosphorus chalcogenides ABP2X6
(A = Cu/Ag, B = In/Bi/Cr/V, X = S/Se)14,27–29 have been predicted
to exhibit out-of-plane polarization and thus overcome the
fundamental thickness limit below which out-of-plane polarization
vanishes in standard perovskite thin films30. Other compounds,
such as α-In2S3 and related III2-IV3 compounds have been
predicted to have both in-plane and out-of-plane components
of polarization, which are strongly intercorrelated31. The strong

confinement of electrons in 2D materials makes screening of out-
of-plane polarization inefficient and have led to the prediction of
the ferroelectric metals CrN and CrB32. Finally, the notion of sliding
ferroelectrics have recently emerged as a new type of ferro-
electrics in 2D, where the polarization of bilayer ferroelectrics is
coupled to the stacking configuration33,34.
For three-dimensional compounds there has been a vivid

search for new ferroelectrics with optimal properties. For example
with respect to lead-free energy storage materials35 or low
switching barriers for memory applications36. To this end, high
throughput DFT calculations has proven a powerful strategy that
can be used to rapidly screen thousands of materials for desired
properties. For the case of ferroelectrics, however, it is not always
straightforward to identify good candidate materials in a high
throughput framework, since one has to demonstrate the
existence of an a priori unknown switching path. In ref. 37, 16
ferroelectrics were identified from 2750 polar materials taken from
the Inorganic Crystal Structure Database (ICSD). More recently, a
high throughput project based on 67,000 materials from the
Materials Project database38 identified 126 new ferroelectrics. The
primary success criterion of such search strategies is the
subsequent experimental demonstration of ferroelectric proper-
ties of the predicted materials. Such validation may pose major
experimental challenges and in some cases predicted ferro-
electrics have been shown to condense into non-polar phases
during synthetization39. Regarding 2D materials, there seems to
be a lack of systematic high throughput search for new
ferroelectrics. One exception is a recent study where 60 new 2D
ferroelectrics were identified from lattice decoration of a certain
prototype40, but it is again not completely clear whether such an
approach actually leads to experimentally realizable materials. In
the present work, we present a high throughput screening for 2D
ferroelectrics based on the C2DB, which contains materials
obtained from lattice decoration as well as materials that are
expected to be easily exfoliable from bulk van der Waals bonded
materials. In addition to well-known 2D ferroelectrics we find a
wide range of new 2D ferroelectric materials with both in-plane,
out-of-plane and mixed polarization. The far majority of the
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materials are known experimentally in their 3D bulk form and it is
reasonable to expect that several of these may be validated
experimentally in the future.
The paper is organized as follows. We start by describing the

workflow used to obtain ferroelectric materials from C2DB and
discuss the results. In particular, we provide a detailed description of
the adiabatic path required to assign a polar insulator as ferroelectric
and classify materials according to the direction of polarization with
respect to the atomic plane and the stability of phonons in the non-
polar reference state. We then list the magnetic polar materials in
C2DB and discuss the ferromagnetic and ferroelectric compound
VAgP2Se6, which was not found by our workflow. In section
“Discussion” we provide a discussion and outlook.

RESULTS
Polar insulators in the C2DB
The starting point of the calculations performed in this work is all
dynamically stable 2D insulators from the C2DB41 that have a
polar point group. There are 252 materials satisfying these
criteria, but many of these are not expected to be ferroelectric.
For example, the Janus monolayers where a single transition
metal atom is sandwiched between two different chalcogenides
always have an out-of-plane dipole, which are not switchable by
an external electric field. Such materials can obviously not be
regarded as being ferroelectric, but one may easily calculate the
spontaneous polarization, by simply integrating the electronic
density weighted by a coordinate orthogonal to the layer over
the entire system. For polar materials with an in-plane polar axis,
this approach cannot be applied and we may only define the
spontaneous polarization if an adiabatic path that connects the
structure to a non-polar phase can be identified. In Fig. 1 we show
examples of various prototypical compounds in the C2DB
exhibiting polar point groups.
For 2D ferroelectrics it is natural to distinguish between

materials where the symmetries forbid components of the
polarization in the plane, materials where the polarizations out
of plane is forbidden and those where the polar axis is neither
constrained to the in-plane or our-of-plane directions. For the ten
crystallographic polar point groups 1, 2, m, mm2, 3, 3m, 4, 4mm,
6 and 6mm only the first four may have an in-plane polar axis. In
the cases of 2 and mm2 the polarization is parallel to the two-fold
axis, which may be either in-plane or out-of-plane. For 1 there is

no constraints on the polarization and for m the polarization is
confined to be in-plane if the mirror coincides with the atomic
plane. As mentioned above, it is possible to calculate the
spontaneous polarization for out-of-plane polar materials even if
they are not ferroelectric, but we will not go into detail with these
since this group is dominated by Janus monolayers, which have
been studied elsewhere42. In Fig. 2 we outline the workflow
applied to classify the polar and gapped materials in C2DB.

Definition of the adiabatic path
For materials that do not have an out-of-plane polar axis one
needs a non-polar reference state that can be adiabatically
connected with the polar states in order to calculate the
spontaneous polarization. We have used the module evgraf43

to generate the centrosymmetric structure of highest similarity to
the polar structure44 of all materials. This structure is then relaxed
under the constraint of inversion symmetry and the result is taken
as our reference (λ= 0) non-polar structure. We then check if
there is an adiabatic path connecting the two points by
performing nudged elastic band (NEB) calculations45 connecting
the polar and non-polar structures. In all calculations the unit cell
of the polar structure is conserved. If the band gap remains finite
along the path there is a well-defined adiabatic path and we
regard the material as being ferroelectric. We then proceed by
performing single-shot DFT calculations for each structure on the
path including the two endpoints and evaluate the formal
polarization from the Berry phase formula Eq. (2) and for each
point on the path we choose the polarization branch which
deviates the least from the former point on the path. With this
procedure the spontaneous polarization is calculated as the
(branch fixed) change in polarization along the path. In Fig. 3
we show an example of such a calculation for As2Se3, where the
polarization is shown in units of the polarization quantum ea1/A
(a1 is the unit cell vector which is parallel to the polarization
and A is the unit cell area). This represents a rather extreme case
where the spontaneous polarization is 3.5 times larger than the
polarization quantum and highlights the importance of branch
fixing on the adiabatic path. A naive single-shot calculation of the
polarization in the polar phase will yield an arbitrary point in the
infinite polarization lattice. Moreover, in general the polarization
is not guaranteed to vanish at λ= 0, since non-polar structures
may acquire a finite topological polarization with certain discrete
values dictated by the symmetry of the polarization lattice46,47.

As2Sb2O6TiClBr In2Te4

Cr2Mo2S8
Sn2S2 AgBiP2Se6

Fig. 1 Prototypes of polar materials. The first column depicts the 2 non-ferroelectric pyroelectrics TiClBr and Cr2Mo2S8. The second column
depicts two in-plane ferroelectrics As2Sb2O6 and Sn2S2. The third column depicts the ferroelectric In2Te4, which has polarization with both in-
plane and out-of-plane components and AgBiP2Se6, which has purely out-of-plane polarization.
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We note that a linear interpolation between the polar and non-
polar structures is sufficient for calculating the spontaneous
polarization as long as the system remains insulating along the
path. The NEB is therefore only required for extracting energy
barriers between the non-polar and polar structures and for the
calculation of the coercive field.

Ferroelectrics in C2DB
From the 252 stable and gapped polar materials in C2DB we have
identified 63 materials with a well-defined adiabatic path connect-
ing the polar structure to a non-polar structure. The remaining 189
compounds are classified as non-ferroelectric pyroelectrics. Except
for the magnetic materials, which are discussed below, the non-
ferroelectric pyroelectrics will not be analyzed further in the
present work. We will just mention that 63 of these have an in-
plane polar axis, 119 have an out-of-plane polar axis and 7 have a
polar axis that is neither constrained to the atomic plane or the
direction orthogonal to the atomic plane. In the Supplementary
tables we have included unit cells and atomic positions of all the
ferroelectrics found in the present work.
There are two main reasons why one may fail to define a proper

adiabatic path in the remaining materials. (1) Some point along
the path becomes metallic. (2) The calculation breaks down
because the centrosymmetric structure is unphysical with atoms
situated on top of each other (for example in the case of Janus
monolayers). We cannot exclude the existence of an adiabatic
path in either of these cases since we always consider the non-
polar phase to be centrosymmetric, which does not need to be
the case. For example, for the Janus layers one may define a path
from P to −P that does not involve a centrosymmetric structure.
However, even in the unlikely situation where no gapless structure
emerges along such a path, the energy barrier for the transition
would be rather large and is not likely to be switchable under
realistic conditions. Nevertheless, there may be other materials
where we miss a relevant adiabatic path between P and −P that

does not involve a centrosymmetric state. It may also happen that
the path passing through a centrosymmetric point is adiabatic
and may be used to extract the spontaneous polarization, but the
path is not necessarily the minimum energy path. This situation is
realized in most of the out-of-plane ferroelectrics as will be
discussed below.
The spontaneous polarization of the 63 predicted ferroelectrics

are summarized in Table 1 (in-plane polarization), Table 2 (out-of-
plane polarization) and Table 3 (both in-plane and out-of-plane
polarization). In Fig. 4 we show three examples of the energy as a
function of polarization along the adiabatic path obtained by
linear interpolation as well as the NEB optimized path. The first
one is Ge2S2, which have been subjected to extensive theoretical
scrutiny as a prototypical example of a 2D ferroelectric20,48–50. In
that case the linear interpolation and NEB paths largely coincide,
which reflect the simplicity of the ferroelectric transition that
involves a small displacement of atoms long the polarization
direction. The second example is Li2F2S2, which exhibits a
somewhat more complicated path where the different elements
undergo displacements in various directions along the path. This
is reflected in a large difference between the linearly interpolated
path and the NEB path.
Finally, the case In2Te4 has in-plane as well as out-of-plane

components of the polarization. Here the switching barrier is
lowered by an order of magnitude compared to the linear
interpolation. The centrosymmetric state is seen to reside in a local
minimum and is thus metastable, which could have important
implications for the thermodynamical properties. In fact, for these
three examples it is only the case of Ge2S2 that appears to be
representable by the Landau free energy type of expression
F= αP2+ βP4 with α < 0 relevant for second order phase transi-
tions. When the centrosymmetric phase is metastable (like In2Te4)
the path may be (roughly) fitted to a sixth order polynomial of the
form F= αP2+ βP4+ γP6 with α > 0 and β < 0 and the local
minimum might indicate a first order phase transition to the
ferroelectric phase if the free energy of the metastable state is
lowered more rapidly than the polar minimum with increasing
temperature. This could be estimated by comparing the entropy
originating from phonons in the two minima.
We have divided all the ferroelectrics into two classes

depending on whether the non-polar state is metastable or not.
As a sanity check we have calculated the phonon spectrum in the
non-polar phase for all materials and compared with the NEB
curvature. The results are shown in Fig. 5 and it is confirmed that
materials with a positive NEB curvature in the non-polar phase are
characterized by a lack of imaginary phonon frequencies
(represented as negative phonon energies in Fig. 5). We find a
total of 16 materials with metastable centrosymmetric phases. For
the materials that are unstable in the non-polar phase we have
analyzed the symmetry of the lowest imaginary phonon mode. In
all cases we find the mode to be polar and all the materials in this
work can thus be regarded as proper ferroelectrics.
Next, we distinguish between materials having in-plane

polarization, out-of-plane polarization and materials where the
polarization has both in-plane and out-of-plane components.

Fig. 3 Polarization branches for As2Se3 in units of the lattice
vector divided by unit cell area. For the adiabatic path we choose
one branch (in this case the one that crosses zero polarization at
λ= 0) and the spontaneous polarization is defined as the change in
polarization between λ= 0 and λ= 1.

Fig. 2 Summary of the workflow used in the study. We pick out all dynamically stable gapped materials with a polar point group. The
materials for which an adiabatic polarization path exists are classified as ferroelectric and the ones where it is ill defined are classified as
pyrolelectric. For ferroelectric materials additional computations are performed and the materials are further classified according to the
direction of polarization (see main text).
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Table 1. Table of materials having the spontaneous polarization aligned with the atomic plane.

Name Space group P∥ [pCm−1] ΔE [meV Å−2] Ec [V nm−1] Gap [eV] ω [meV] EH [eV/atom] ID

As4O6 P21 191 42.2 45.8 3.9 −36.1 0 4513280

Zn2As4O8 P21 313 30.7 4.51 3.6 0.00 0 9001071

W2O12Sb4 P21 238 9.82 1.08 1.7 −30.1 0.02 75595

Ag2Cl2Se4 P21 359 14.4 - 1.3 0.00 0 -

Ag2Cl2Te4 P21 45.1 20.0 - 1.3 −5.33 0 -

Ag2Br2Se4 P21 126 13.0 - 1.2 0.00 0 -

Ag2I2Te4 P21 119 19.8 - 1.0 0.00 0.01 -

Au2Cl2Te4 P21 18.3 3.88 - 0.98 0.00 0.1 -

Au2Br2Te4 P21 25.7 5.27 - 1.0 0.00 0.05 -

Au2I2Te4 P21 60.4 8.57 - 0.71 0.00 0.06 -

Na2Nb2Cl12 P21 32.2 2.26 1.66 2.3 −3.55 0 8103950

Zn2Te2(N2H4)2 P21 202 9.12 - 1.8 0.00 0.1 4113794

K2(CHO3)2 P21 44.4 0.172 - 4.5 0.00 0 9016039

As2O8Te2(OH)2 P21 395 2.68 - 3.4 0.00 0 425501

HgH2S2 C2 323 10.8 - 2.4 −13.6 0 -

NiZrF6 C2 281 31.1 18.0 0.41 −10.1 0.2 -

As4O6 Pc 502 48.3 - 4.3 −13.8 0 9014252

As2O6Sb2 Pc 783 197 - 4.0 −57.5 0 9015432

Sn2H2O6P2 Pc 301 313 - 4.3 −48.9 0 4328407

Zn2O6Se2(H2O)2 Pc 710 166 - 4.5 −52.0 0 78916

Nb2Cl4O2 Pmm2 213 0.739 0.816 1.0 0.00 0 -

Nb2Br4O2 Pmm2 199 0.626 0.811 1.0 0.00 0 416669

Nb2I4O2 Pmm2 183 5.17 - 1.0 −38.9 0 36255

Mo2Br4O4 Pmc21 240 11.7 2.59 1.4 −44.4 0 422483

W2Cl4O4 Pmc21 191 5.97 1.16 2.2 −31.1 0 28510

Sr2H8O6 Pmc21 234 45.0 - 4.4 −22.8 0 15366

Cu2Hg2Cl2Se2 Pmc21 453 50.3 - 0.83 −7.91 0.009 1001109

Hf2Zr2S8 Pma2 601 -48.9 3.79 1.1 0.00 0.2 -

Hf2Zr2Se8 Pma2 579 -36.7 5.00 0.84 0.00 0.2 -

Pb4O4 Pca21 290 10.8 0.860 2.6 −20.8 0 36250

As4S6 Pmn21 530 19.9 - 2.3 0.00 0.0002 9008211

As4Se6 Pmn21 494 15.7 2.69 1.7 0.00 0.002 9011471

Ga2In2S6 Pmn21 922 139 3.56 2.0 −21.7 0 62340

Ga2Cl2Te2 Pmn21 580 113 5.29 2.2 −18.0 0 7221395

Cu2C2Cl2O2 Pmn21 252 31.6 7.85 2.5 −12.1 0.09 63490

α-Ge2S2 Pmn21 490 30.5 1.63 1.7 −25.2 0.03 2107064

α-Ge2Se2 Pmn21 357 6.66 0.482 1.1 −14.4 0.02 9008783

α-Ge2Te2 Pmn21 314 2.30 0.190 0.81 −11.0 0.05 638005

α-Sn2O2 Pmn21 305 23.4 2.09 2.5 −25.4 0.05 20624

α-Sn2S2 Pmn21 292 3.55 0.300 1.4 −13.2 0.04 1527226

α-Sn2Se2 Pmn21 219 0.960 0.109 0.92 −7.29 0.04 1537675

α-Sn2Te2 Pmn21 138 0.0900 0.0147 0.60 −3.64 0.06 652743

β-Ge2S2 Pmn21 201 2.10 0.238 1.8 −13.0 0.05 -

β-Ge2Se2 Pmn21 161 0.589 0.0925 1.7 −7.68 0.05 -

β-Sn2S2 Pmn21 123 0.374 0.0750 1.8 −8.07 0.06 -

β-Sn2Se2 Pmn21 107 0.148 0.0345 1.6 −4.93 0.07 -

As2Sb2 Pmn21 382 7.50 - 0.75 −18.3 0.09 -

P2Sb2 Pmn21 346 6.56 0.678 0.80 −23.0 0.2 -

Cd2O6Se2(H2O)2 Pmn21 722 178 - 4.1 −52.3 0 2007038

The columns show the stoichiometry, space group, magnitude of spontaneous polarization (P∥), energy difference between the polar and the non-polar
structures (ΔE), coercive field (Ec), band gap in the polar structure, lowest phonon energy of the non-polar structure at the Γ-point (ω), energy above the
convex hull (EH) and finally the ICSD or COD identifier (ID).
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In Fig. 6 we present a scatter plot of the polarization versus energy
difference between the polar and centrosymmetric states color
coded according to the direction of polarization with respect to
the atomic plane. In Tables 1–3 we list all of the materials
including space groups, magnitude of spontaneous polarization,
band gap, coercive field and energy above convex hull. For the
materials that are known in bulk form as layered van der Waals
bonded structures we also state the identifier of the bulk material
from either ICSD51 (ID < 106) or COD (ID > 106). We note that we
find a few materials with a negative energy difference signifying
that the centrosymmetric phase is more stable. These are Hf/Zr
alloys of transition metal dichalcogenides and and their Janus
structures. The present calculations simply show that the
(centrosymmetric) T-phase is more stable than the polar H-phase,
which is the one appearing in the C2DB.
In Table 1 we display the 2D ferroelectrics with an in-plane polar

axis. Most of the materials are situated within 0.1 eV per atom of
the convex hull and can thus be regarded as being thermo-
dynamically stable (with the exceptions of Hf2Zr2S8 and Hf2Zr2Se8

Table 2. Materials with purely out-of-plane polarization (P⊥).

Name Space group P⊥ [pCm−1] Ptop ΔE [meV Å−2] Ec [V nm−1] Gap [eV] EH [eV/atom] ID

CuInP2S6 P3 4.99 (2/3, 1/3) 14.7 58.2 1.5 0 -

CuInP2Se6 P3 3.67 (2/3, 1/3) 8.17 13.7 0.49 0 71969

CuBiP2Se6 P3 2.51 (1/3, 2/3) 8.14 27.3 1.0 0 4327329

AgBiP2Se6 P3 1.39 (2/3, 1/3) 0.336 3.84 1.1 0 4327327

InP P3m1 12.5 (0, 0) 3.45 1.69 1.1 0.4 -

CSiF2 P3m1 0.656 (0, 0) 295 10.7 1.9 0.6 -

CSiH2 P3m1 19.4 (0, 0) 544 - 3.8 0 -

In2Se3 P3m1 16.9 (1/3, 2/3) 70.0 9.01 0.75 0.008 -

In addition to the columns of Table 1 we state the topological in-plane polarization (Ptop) in units of the 2D Γ-centered polarization lattice.

Table 3. Materials with in-plane polarization (P∥) as well as out-of-plane polarization (P⊥).

Name Space group P∥ [pCm−1] P⊥ [pCm−1] ΔE [meV Å−2] Ec[V nm−1] Gap [eV] ω [meV] EH [eV/atom] ID

In2Te4 P1 253 5.98 0.496 0.0935 0.49 0.00 0.2 501

TiZr3S8 P1 608 0.140 −42.8 - 1.0 0.00 0.2 -

HfZr3S8 P1 600 0.411 −46.9 - 1.2 0.00 0.2 -

Li2F2S2 P1 114 1.70 1.87 1.31 1.7 −2.13 0.5 -

Hf3ZrS8 Pm 602 0.230 −51.2 - 1.1 0.00 0.2 -

Hf3ZrSe8 Pm 580 0.261 −38.7 3.66 0.84 0.00 0.2 -

Fig. 4 Energy versus polarization for three representative ferroelectrics. a (Left): Ge2S2 (in-plane polarization). b (Middle): F2Li2S2 (in-plane
polarization). c (Right): In2Te4, which has both in-plane and out-of-plane components of the spontaneous polarization. In all three cases we
show the energy along the linearly interpolated path (LI) and energy along the path optimized by the nudged elastic band method (NEB).
The insets show the side views of polar and non-polar states for Ge2S2 and In2Te4 and top views for F2Li2S2.

Fig. 5 Lowest phonon frequency (imaginary modes represented
as negative numbers) versus energy curvature of the NEB energy
potential surface calculated in the non-polar phase. The points are
color coded according to the direction of polarization with respect
to the atomic plane.
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discussed above). It should also be noted that the far majority of
the structures are derived from layered bulk materials (implied by
the presence of the ID reference) and are thus expected to be
exfoliable from known bulk materials. The spontaneous 2D
polarization is generally on the order of a few hundred pC/m.
The largest polarization is found for Ga2In2S6 with a value of 922
pC/m, but it also exhibits a rather high barrier of 139 meV/Å2,
which could imply that it is not switchable under realistic
conditions. We emphasize again that in the present work we
have defined materials to be ferroelectric if an adiabatic path
exists that connects the structure to the closest centrosymmetric
phase. There may be several other pyroelectric materials in the
C2DB where an adiabatic path to a non-polar phase exists that we
have not found in the present study. In addition, for a given
material identified as ferroelectric there may exist a different path
that lowers the barrier by circumventing the centrosymmetric
structure. This has, for example been found to be the case for
Ge2Se249 and the stated values for barriers and coercive fields in
this work should be regarded as upper limits. However this does
not affect the reported value of the spontaneous polarization as
discussed above. Compounds in Table 1 with low barriers are of
particular interest, since these are expected to be easily switch-
able. Besides the Ge and Sn chalcogenides, which have already
been discussed extensively in literature10,17–21,49,52, we find
C2H2K2O6, Nb2Na2Cl12 and As2H2Te2O10 as interesting candidates
that are easily switchable. In addition, the niobium oxide dihalides
Nb2O2X4 (X = Cl,Br,I) have low switching barriers and large
spontaneous polarization. These have, however, been shown to
exhibit an anti-ferroelectric ground state22, which has not been
considered here. While the barrier itself does not yield a
quantitative estimate of the ease with which a ferroelectric may
switch polarization state it is expected to constitute a rough
qualitative estimate. For a more precise estimate one may
calculate the coercive field for coherent monodomain switching.
For the materials where we succeeded in converging the NEB
calculation we have calculated this field according to Eq. (4).
From Table 1 it is clear that the calculated coercive fields largely

correlate with the barrier and the lowest fields are found for
materials with small barriers. We have not put additional effort
into converging all NEB calculations since the actual switching
mechanism in ferroelectrics typically involve migration of domain
walls rather than coherent monodomain switching and the
estimated coercive fields may thus be orders of magnitude larger
than experimentally relevant coercive fields52. Nevertheless, for
the Ge and Sn monochalcogenides the fields required for
switching the polarization state through domain wall migration
have been shown to be largely correlated with the energy barrier
for switching52 and the relative values of coercive fields in Table 1

may be regarded as a rough measure of the hardness with which
the materials can be switched by an external electric field.
For the out-of-plane ferroelectrics stated in Table 2 there exist

simple adiabatic paths that do not pass through inversion
symmetric structures. Referring to the example of AgBiP2Se6 in
Fig. 1 it is easy to see that there is a path connecting states of
opposite polarity without passing through an inversion sym-
metric point. This involves shifting the Ag atom from the top Se
layer to the bottom Se layer. The path passes through a structure
with the non-polar point group 32, which does not have
inversion symmetry. For most of the materials there exists
another adiabatic path passing through a inversion symmetric
point, but the energy barrier along the 32 path is much lower.
Our general workflow only identifies paths involving a centro-
symmetric point, but we have recalculated the barriers along the
simple paths (not passing through centrosymmetric structures)
for all the materials in Table 2.
In general, we find that the magnitude of polarization is

significantly smaller in materials with purely out-of-plane polariza-
tion compared to those with in-plane polarization. The experi-
mentally known structures ABP2Se6 (A = Ag, Cu and B = In, Bi) in
Table 2 have a small out-of-plane dipole originating from the A
atom being displaced from the center of the layer towards the top
or bottom (see. Fig. 1) and the remaining materials are buckled
honeycomb structures with inequivalent atoms that naturally gives
rise to a small dipole. The polar state in these materials involves a
significant displacement of the atoms, but the magnitudes of
polarization are rather small due to small values (~0.1e) of the
z-components of Born effective charge tensors53 for the displaced
atoms. We note that CuInP2Se6 and CuInP2S6 have previously been
predicted to have anti-ferroelectric ground states by DFT27,54, but
these are not found in the present study since they can only be
extracted by investigating larger super cells.
All of the materials are classified as purely out-of-plane

ferroelectrics due to a three-fold rotational symmetry in the
plane. However, since the formal polarization Eq. (2) is not
single valued, the in-plane polarization is allowed to be non-
vanishing. In particular, for the case of three-fold rotational
symmetry the allowed values are (0, 0), (1/3, 2/3) and (2/3, 1/3)
in units of cell vectors divided by cell area (for a hexagonal cell
with 120° angle between vectors). Such a “topological
polarization“ is not switchable, but enforces gapless states at
any zigzag terminated ribbon or nanoflake47,55,56. Interestingly,
all of the experimentally known materials in Table 2 exhibit
non-trivial topological polarization.
The case of In2Se3 deserves a brief discussion in terms of

topological properties. In contrast to the remaining materials in
Table 2, this material breaks the three-fold rotational symmetry
along the adiabatic path. This allows for a coupling of the out-of-
plane polarization to the in-plane polarization, since the in-plane
polarization is only protected by topology in the relaxed polar
structures. In Fig. 7 we show the in-plane and out-of-plane
polarization of In2Se3 along the adiabatic path and indeed observe
that both components of polarization are switched simulta-
neously. While the out-of-plane components vanishes halfway
along the path, the magnitude of the in-plane component only
varies marginally, and simply rotates from one high symmetry
point to another. It thus changes topology from (1/3, 2/3) to (2/3,
1/3) along the path. We note that the coupling of polarization
components has been observed experimentally in thin films of
In2Se3,12 but to our knowledge the topological properties of the
polarization has not been unraveled prior to the present work.
In Table 3 we list all materials that have in-plane as well as out-

of-plane components of the spontaneous polarization. The only
point groups that allow for this are 1 and m. In the latter case the
mirror plane has to be orthogonal to the atomic plane to allow for
a polarization that is not purely in-plane. Again, we find a few
alloys of transition metal dichalcogenides in the H-phase that are

Fig. 6 Magnitude of polarization versus the energy difference
between the polar and non-polar phases. The points are color
coded according to the direction of polarization with respect to the
atomic plane.

M. Kruse et al.

6

npj Computational Materials (2023)    45 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



found to be more stable in the T-phase (as implied by negative
values of ΔE). These are probably not switchable under realistic
conditions and it is dubious if it is even possible to synthesize any
of them. Instead we wish to highlight the case of In2Te4, which is
the only material with mixed polarization that is experimentally
known as a van der Waals bonded bulk material and thus may be
easy to exfoliate. The out-of-plane component of polarization is
much smaller than the in-plane component, but since the
components are coupled along the switching path the in-plane
polarization can be switched by application of a purely out-of-
plane field. This could have significant practical consequences for
the operation of ferroelectric devices based on 2D materials since
a large out-of-plane field can be implemented by rather simple
means using top and bottom gates.

Magnetic polar materials
The magnetic polar materials warrant a special treatment for
several reasons. First of all, the interest in 2D magnetism has
exploded in recent years and novel 2D magnets are interesting in
their own right - polar or not. Since polar materials are
pyroelectric by definition all the polar magnetic materials from
C2DB can be regarded as being multiferroic and these
compounds may exhibit coupling between magnetic order and
polar order. In Table 4 we list all dynamically stable 2D magnetic
materials that are polar and have a finite band gap. In addition to
the gap and energy above the convex hull, we also state the spin
state of the magnetic transition metal atoms and the nearest
neighbor exchange coupling obtained from collinear energy
mapping57,58. The sign of the nearest neighbor exchange
coupling (positive for ferromagnetic interaction) in Table 4
indicates whether the true ground state is expected to have
ferromagnetic or anti-ferromagnetic order.
A few of the materials in Table 4 have already been discussed

prior to this work. For example, the vanadium oxyhalides VOX2 (X
= F, Cl, Br, I) have been shown to be switchable multiferroics23,24.
VOCl2 and VOBr2 exhibit anti-ferromagnetic order in the gapped
ground state while the ferromagnetic state is metallic. As a
consequence, they are not captured by our workflow since all
materials in C2DB are reported in their ferromagnetic state.
Furthermore, it has been argued that it is necessary to apply
beyond-PBE approaches such as HSE or PBE+U in order to
calculate the band gap accurately for these materials. VOF2 and
VOI2 may thus be predicted to be gapped and switchable in the
ferromagnetic state if a more accurate functional is applied23.
None of the materials in Table 4 have an adiabatic switching

path that passes through a centrosymmetric point why they are
not present in Tables 1–3. This does not, however, imply that none
of the compounds are ferroelectric and due to the intriguing
possibility of having coexistence of ferromagnetic and ferro-
electric orders it is worthwhile to investigate whether any of these
may be switched through an alternative path. Here we will just

focus on two examples—VAgP2Se6 and Cr2P2Se6—and leave a
systematic study of 2D multiferroics to future work.
Bulk VAgP2Se6 was synthesized and characterized in ref. 59,

where it was found to have space group C2 and to order
ferromagnetically below 18 K. The vanadium atoms are in the
oxidation state V3+, which implies a d2 configuration with a
magnetic moment of 2 μB. The basic structure of the individual
layers can be envisioned as a distorted honeycomb lattice of
alternating Ag and V atoms as shown in Fig. 8. Each V atom thus
has one nearest neighbor Ag atom (distance 3.21 Å) and two next
nearest neighbors (distance 3.96 Å), which produces a polar axis
along the short bond. Since each V atom may form three
equivalent short bonds the compound has three polarization
states where the polarization vectors are rotated by 120°. The PBE
relaxed monolayer in C2DB is dynamically stable and has the same
space group as the bulk material. In Fig. 8 we show the switching
path obtained from a NEB calculations between two such rotated
polarization states. The barrier is rather low with a value of
1.2 meV/Å2 and the structure is thus expected to be easily
switchable by application of an external electric field. We also
calculate the spontaneous polarization along the path and find
that the magnitude is nearly constant, but with an abrupt change
in direction at the point where the Ag atom is exactly between the
two V atoms. The material thus comprises an example of a system
with a switchable discrete three-state polarization, which may be
of relevance for non-volatile memory applications. The V atoms
constitute the magnetic lattice, which is hexagonal and each V
atom thus have six nearest neighbors. These are, however not
equivalent due to the polarization and the two exchange constants
(J1) orthogonal to the polar axis are distinct from the four exchange
constants (J2) along bonds that are at a 30∘ angle with respect to
the polar axis as illustrated in Fig. 8. We have calculated the two
exchange constants by an energy mapping approach60,61 using
three magnetic configurations in a 2 × 2 repetition of the unit cell.
One ferromagnetic state and two states with ferromagnetic chains
that are anti-ferromagnetically aligned with neighboring chains
and at different angle with respect to the polarization direction.
The three energies can be mapped to the nearest neighbor
isotropic Heisenberg model

H ¼ � 1
2
J1
X
hijiff

Si � Sj � 1
2
J2
X
hiji?

Si � Sj ; (1)

where Si denotes the spin of vanadium site i,〈ij〉⊥ denotes sum
over nearest neighbors perpendicular to polarization and hijiff
denotes sum over the remaining nearest neighbors. We then find
that J1= 5.5 meV and J2=−1.6 meV. It should be noted that the
nearest neighbor exchange coupling stated in Table 4 differs from
J1 calculated here, since the former value was obtained from
simple high throughput calculations where only two magnetic
configurations were considered. It is rather interesting that the
exchange path perpendicular to the polarization direction is

Fig. 7 Polarization switching of In2Se3. Left: Magnitude of the out-of-plane (P⊥) and in-plane (P∥) polarization along a path that switches
between two inversion related high symmetry points in the Wigner-Seitz cell. Right: the angle of in-plane polarization along the
switching path.
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anti-ferromagnetic whereas the remaining paths are ferromag-
netic. These exchange couplings yield a ferromagnetic ground
state, but the sign of J2 introduces magnetic frustration in the
system. The polar axis also introduces a small in-plane magnetic
anisotropy (roughly 0.06 meV per formula unit), but this will not be
easily observable since we predict (a weak) out-of-plane easy axis
in this material. The ground state magnetization is therefore not
expected to change when the polarization direction is switched
between the three discrete states. Nevertheless, the polarization
will be observable from the magnetic excitations, which will have
a dispersion that is strongly influenced by the direction of the
polar axis. In Fig. 8 we show the magnon dispersion calculated
from linear spin-wave theory62 along two different paths that
would be equivalent without the polar axis. Due to the large
difference between J1 and J2 one observes a magnon energy at
the Brillouin zone boundary (the M-point) that is more than two
times smaller in the direction parallel to the polarization
compared to the directions that are not parallel (the M′-point).
Such a switchable magnon dispersion could perhaps find
applications in information processing based on magnonics63.
The second case of Cr2P2Se6 has space group P31m, which

implies a polar axis out-of-plane. The material exhibits a rather
large ferromagnetic nearest neighbor exchange constant of
11 meV and weak out-of-plane easy axis. The structure is similar
to the P3 materials of Table 2, but the Cr atoms are centered in
the atomic plane and the P atoms are shifted slightly to the top
or bottom of the layer. Again, the switching path involves a
simple shift of the P atoms in the direction orthogonal to the

plane, which does not pass through a centrosymmetric point. We
have calculated the NEB energy along the path connecting the
two states of opposite polarization and find an energy barrier of
8.24 meV/Å2. However, the material has a rather small gap of
0.43 eV, which closes along the path and Cr2P2Se6 is therefore
not switchable according to the criterion of an adiabatic path.
Nevertheless, the out-of-plane polarization is easily calculated by
integrating the dipole density over the z-direction, which yields
P⊥ = 5.4 pC/m. Although the gap closes along the path, it is
highly likely that one may still switch the state of polarization by
an external electric field, since the metallic states confined in the
2D layer will not be able to fully screen a transverse field.
We finally mention, that all the present calculations of magnetic

materials are collinear and cannot capture potential type-II multi-
ferroics where non-collinear magnetic order introduces a polar axis.
This has, for example been found in NiI216 and Hf2VC2F264.

DISCUSSION
The starting point of the present work has been the 252 polar
insulators in the C2DB. For pyroelectric applications all of these are
interesting in their own right and may easily be filtered from the
C2DB by the point group alone. The main interest here has been
the ferroelectric properties and we have thus calculated the
spontaneous polarization of all materials where an adiabatic path
that pass through a centrosymmetric structure in close proximity
to the polar phase could be identified. These materials are
expected to be switchable by an external electric field and we

Table 4. Dynamically stable 2D polar magnetic materials that exhibits a band gap.

Name Space group Gap [eV] J [meV] Spin [ћ] Axis EH [eV/atom] ID

ReAu2F6 P1 0.18 - 1/2 3D 0.2 -

NiPS3 P1 0.075 5.9 1/2 3D 0.3 646140

Cu2I4O12 P21 0.73 3.3 1/2 ∥ 0.03 4327

Cr2Cu2P4S12 P21 1.1 1.2 3/2 ∥ 0 1000355

CoZrBr6 C2 0.39 - 1/2 ∥ 0 -

VAgP2Se6 C2 0.35 1.9 1 ∥ 0.004 1509506

Mn2H4O8S2 Pc 2.1 −2.1 2 ∥ 0.08 74810

VF2O Pmm2 0.76 13 1/2 ∥ 0.001 -

VCl2O Pmm2 0.81 −26 1/2 ∥ 0 24380

VBr2O Pmm2 0.77 −14 1/2 ∥ 0 24381

VI2O Pmm2 0.50 6.8 1/2 ∥ 0 -

NiC6Cl2H4N2 Pmm2 0.86 9.1 1 ∥ 0.2 7227895

Mn2Cl2Sb2S4 Pmc21 0.35 −3.0 2 ∥ 0.08 151925

Mn2Br2Sb2Se4 Pmc21 0.26 −3.2 2 ∥ 0.09 1528451

Ti4Cl4Se4 Pmn21 0.042 - 1/2 ∥ 0.1 -

Ti4Br4Se4 Pmn21 0.063 - 1/2 ∥ 0.1 -

VClBr P3m1 1.3 −4.1 3/2 ⊥ 0.01 -

VClI P3m1 1.1 −2.5 3/2 ⊥ 0.06 -

VBrI P3m1 1.2 −1.5 3/2 ⊥ 0.02 -

VSSe P3m1 0.013 58 1/2 ⊥ 0 -

VSeTe P3m1 0.12 74 1/2 ⊥ 0.01 -

Nb3Cl8 P3m1 0.21 - 1/6 ⊥ 0 408645

Nb3Br8 P3m1 0.29 - 1/6 ⊥ 0 1539108

Nb3I8 P3m1 0.19 - 1/6 ⊥ 0 1539109

CrHO2 P3m1 0.092 3.0 3/2 ⊥ 0.2 9012135

Cr2P2Se6 P31m 0.43 11 3/2 ⊥ 0.01 626521

In addition to the columns shown in Table 1, we also state the nearest neighbor exchange constant (positive for ferromagnets) and the spin carried by the
magnetic atoms. The polar axis follows from the point group symmetries and is stated for convenience.

M. Kruse et al.

8

npj Computational Materials (2023)    45 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



found 49 materials with purely in-plane polarization, 8 materials
with purely out-of-plane polarization and 6 materials with mixed
components of polarization. In particular, we have recovered most
of the well-known 2D ferroelectrics, but have extended the list by
a large number of new 2D ferroelectrics. We emphasize that most
of the discovered compounds are known as bulk van der Waals
bonded materials and are expected to be easily exfoliable. Each of
the materials in Tables 1–3 thus warrants a more detailed study of
ferroelectric properties with respect to stability under ambient
conditions, domain wall formation, Curie temperatures etc, but
this is out of scope for the present work.
It is worth stressing that the present study is by no means

exhaustive. The requirement of having a centrosymmetric non-
polar phase that is adiabatically connected to the polar structure is
not in general fulfilled for all ferroelectrics. The case of CuInP2Se6
comprises an example where the polar structure has point group 3
and the non-polar structure has the non-centrosymmetric point
group 32. It is possible to filter materials where a non-
centrosymmetric non-polar structure may exist in a systematic
way. For example, if the polar structure contains a two-fold axis and
an orthogonal mirror plane (this is the case for half of the materials
in Table 1) it is expected that the non-polar state (roughly)
conserves the mirror and the non-polar state thus cannot reside in a
chiral point group, which leaves only five possible non-
centrosymmetric points groups that will typically be inconsistent
with the Bravais lattice. We have not attempted to perform such
analysis here, but merely point at possible future directions for a
more systematic search for 2D ferroelectrics.
Finally, we have allocated special attention to the magnetic polar

materials present in the C2DB. While none of these are switchable
through an adiabatic path passing through a centrosymmetric
point, the materials are inherently multiferroic even if they are not
ferroelectric and are expected to exhibit non-vanishing Dzya-
loshinskii-Moriya interactions, magnetoelectric coupling and a
range of other properties that are dependent on broken time-
reversal and broken inversion symmetry. We have highlighted the
case of VAgP2Se6 (point group 2) where the non-polar structure is in
close proximity to a structure of 32 symmetry, which lacks inversion
symmetry. It is, however, straightforward to identify three
equivalent polar structures and calculate the spontaneous polariza-
tion as well as the barrier for switching. We found that the structural
space for switching comprises nearly discrete states of polarization,
which situates the material rather far from a Landau free energy

type of description (at low temperatures). Moreover, we showed
that the polar axis introduces highly anisotropic nearest neighbor
exchange interactions, which introduces a strong coupling of the
magnetic excitations spectrum to the polar state of the material.
Again, we believe that all of the compounds listed in Table 4
warrant a more detailed study and there could be several additional
materials that allow for an adiabatic switching path that does not
involve a centrosymmetric point.

METHODS
Formal polarization
The defining property of ferroelectric materials is the presence of a
spontaneous electrical polarization, which is switchable by
application of an external electric field. While the polarization is
not well defined in bulk materials one may define the spontaneous
polarization as the change in polarization with respect to a non-
polar state that can be adiabatically connected to the polar phase.
According to the modern theory of electrical polarization65–67, one
can calculate the formal 2D polarization for a system in a given
configuration as

P ¼ e
1
A

X
a

Zara �
X
n

Z
BZ

dk

ð2πÞ2 hunkji∇kjunki
 !

(2)

where e denotes the electron charge, A is the unit cell area, Za is
the charge of nucleus a (including core electrons), unk are Bloch
states represented in a smooth gauge such that the k-space
derivative is well defined and the sum runs over occupied states.
The formal polarization is only defined modulo eRi/A, where Ri

is an arbitrary lattice vector. This is due to the fact that the nuclei
positions can be chosen in any unit cell and the Brillouin zone
integral may change by Ri/A by a gauge transformation of
the Bloch states. Nevertheless, differences in polarization along
any adiabatic path (continuous change of atomic positions
where the system remains insulating) is well defined since one
may track the polarization along a particular branch. One can
therefore define the spontaneous polarization as

Ps ¼
Z λ¼1

λ¼0
dλ

dPλ

dλ
: (3)

where λ parameterizes an adiabatic path between a non-polar
reference structure (λ= 0) and the polar ground state (λ= 1).

Fig. 8 Polar states and magnetic excitations of VAgP2Se6. Left: Polarization and energy along the adiabatic path that switches the polarization
by 120°. The top shows a schematic view of the Ag/V lattice with the two inequivalent nearest neighbor exchange interactions indicated in the
two polarization states. Right: Magnon energies along different directions in the Brillouin zone (polar axis indicated by dashed line) derived from
nearest neighbor interactions. We note that K and K0 are equivalent but are given different labels here to distinguish the ΓK and ΓK0 directions.
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Coercive field
The coercive field is defined as the electric field required to switch a
ferroelectric material between two different polarization states. In
reality this is likely to involve complicated structural reorganization,
which is typically dominated by migration of domain walls19,52,68–70.
In the present work we simply calculate the field required for
coherent monodomain switching, which may be orders of
magnitude larger than the actual field required for polarization
switching mediated by domain wall motion. Nevertheless, the field
provides a rough measure of the polarization stiffness in the material
and yields an upper bound for the true coercive field.
The coercive field for monodomain switching can be estimated

by finding the minimum energy path connecting the two
structures corresponding to λ= 0 (non-polar) and λ= 1 (polar),
which may be obtained by the nudged elastic band method45. In
the presence of an electric field the energy will acquire a term
proportional to E � P and the the system will change polarization
state when the force originating from the field matches the
maximal slope of the energy along the path. If the field is applied
parallel to the polarization the magnitude of the coercive field
may then be calculated according to

Ec ¼ max
dEðPλÞ
djPj

� �
; (4)

where E(Pλ) is the energy per unit area along the path. We note
that even in the realm of strict monodomain switching, this is
an approximate approach since the true minimal path in the
presence of an electric field may differ from that found without
a field.

Computational details
All the calculations in the present work were carried out using
the electronic structure package GPAW71,72, which applies the
projector-augmented wave (PAW) method and a plane wave basis
set. We have used the Perdew-Burke-Ernzerhof (PBE) functional, a
plane wave cutoff of 800 eV, a k-point density of 12 Å and a Fermi
smearing of 0.05 eV. All structures were relaxed with a force
tolerance of 1 meV/Å. For details on the implementation of Eq. (2)
we refer to ref. 53.
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ADDITIONAL TABLES WITH STRUCTURAL DETAILS

Below we state the structural details of the materials presented in tables I, II and III in the main text. The
structures are also available at https://cmrdb.fysik.dtu.dk/c2db/.

Name Unit cell vectors [Å] Atomic positions [Å]

HgH2S2

a1:(4.153, -0.078, 0.0)
a2:(0.0, 4.152, 0.0)
a3:(0.0, 0.0, 19.126)

S1:(2.903, 0.813, 11.111)
H1:(0.016, 0.831, 11.598) Hg1:(3.143, 2.941, 9.561) S2:(1.02, 2.661, 8.01)

H2:(1.013, 3.928, 7.524)

NiZrF6

a1:(5.5, -2.21, 0.0)
a2:(0.0, 5.037, 0.0)
a3:(0.0, 0.0, 17.78)

Zr1:(-1.332, 4.465, 8.89)
Ni1:(1.295, 2.748, 8.891) F1:(-0.355, 2.758, 9.726) F2:(2.956, 4.587, 10.353)

F3:(1.789, 1.136, 9.687) F4:(2.971, 2.941, 8.095) F5:(0.28, 0.486, 7.423)
F6:(0.625, 4.256, 8.054)

In2Te4

a1:(4.255, -2.117, 0.0)
a2:(0.005, 7.798, 0.0)
a3:(0.0, 0.0, 34.196)

Te1:(1.738, 1.679, 19.885)
Te2:(-0.444, 4.827, 16.72) Te3:(1.757, 3.484, 14.66) Te4:(1.725, 5.476, 18.656)

In1:(-0.389, 0.532, 18.559) In2:(3.895, 1.906, 16.018)

HfZr3S8

a1:(7.121, 0.0, 0.0)
a2:(0.0, 6.18, 0.0)

a3:(0.0, 0.0, 18.269)

Zr1:(0.001, 0.012, 8.961)
Zr2:(3.566, 0.011, 9.394) Zr3:(1.79, 3.103, 8.968) Hf1:(5.349, 3.099, 9.25)

S1:(-0.046, 2.123, 7.502) S2:(1.716, 5.108, 10.675) S3:(0.041, 2.028, 10.635)
S4:(1.851, 5.211, 7.542) S5:(3.623, 2.009, 7.638) S6:(5.413, 5.163, 10.765)

S7:(3.537, 2.141, 10.768) S8:(5.281, 5.121, 7.633)

TiZr3S8

a1:(7.034, 0.0, 0.0)
a2:(0.0, 6.098, 0.0)
a3:(0.0, 0.0, 18.234)

Ti1:(0.012, -0.001, 8.936)
Zr1:(3.534, 0.02, 9.278) Zr2:(1.747, 3.048, 9.31) Zr3:(5.304, 3.05, 8.887)

S1:(0.084, 1.978, 7.506) S2:(1.679, 5.16, 10.714) S3:(-0.062, 1.895, 10.588)
S4:(1.731, 5.085, 7.633) S5:(3.451, 2.018, 7.573) S6:(5.407, 5.048, 10.575)

S7:(3.603, 2.096, 10.734) S8:(5.307, 5.194, 7.5)

Li2F2S2

a1:(5.161, -0.0, 0.0)
a2:(0.0, 5.797, -0.0)
a3:(0.0, 0.0, 18.615)

Li1:(0.459, 0.849, 9.825)
Li2:(2.472, 3.043, 8.94) S1:(4.31, 4.628, 9.368) F1:(1.001, 2.515, 9.757)

S2:(3.134, 0.394, 9.726) F2:(3.001, 1.323, 8.171)

As4O6

a1:(4.694, 0.0, -0.0)
a2:(0.0, 8.397, -0.0)
a3:(0.0, 0.0, 32.19)

As1:(0.039, -0.077, 17.168)
As2:(2.386, 0.706, 15.022) As3:(4.471, 5.502, 15.612) As4:(2.124, 3.524, 16.578)

O1:(0.742, 8.436, 15.466) O2:(3.089, 0.59, 16.724) O3:(4.404, 6.544, 17.132)
O4:(2.058, 2.481, 15.058) O5:(3.884, 4.0, 16.477) O6:(1.537, 5.025, 15.713)

Zn2As4O8

a1:(4.641, -0.0, 0.0)
a2:(-0.0, 5.123, -0.0)
a3:(0.0, 0.0, 35.817)

As1:(0.154, 2.575, 20.689)
O1:(1.929, 3.036, 20.8) As2:(-0.0, 0.014, 15.128) As3:(2.488, 4.794, 20.729)

As4:(2.307, 2.232, 15.088) Zn1:(3.539, 1.15, 17.946) Zn2:(1.256, 3.711, 17.87)
O2:(2.866, 0.474, 15.017) O3:(4.259, 4.332, 20.887) O4:(0.536, 1.771, 14.93)
O5:(0.07, 2.453, 18.9) O6:(0.083, 5.014, 16.917) O7:(2.378, 4.994, 18.939)

O8:(2.418, 2.432, 16.878)

Cu2I4O122

a1:(4.471, 0.0, 0.0)
a2:(-0.0, 9.453, 0.0)
a3:(0.0, 0.0, 36.314)

Cu1:(1.686, 1.749, 18.15)
O1:(2.917, 3.205, 18.489) I1:(0.814, 4.373, 16.057) O2:(1.055, 2.534, 16.447)

O3:(3.56, 4.415, 15.416) Cu2:(3.922, 6.5, 18.164) I2:(3.05, 3.876, 20.257)
I3:(2.365, 8.533, 20.206) O4:(5.153, 5.044, 17.825) O5:(3.29, 5.714, 19.867)
O6:(1.324, 3.834, 20.898) O7:(2.308, 0.944, 19.853) O8:(2.61, 7.895, 18.443)
O9:(0.602, 8.13, 20.563) I4:(0.129, 9.169, 16.109) O10:(4.544, 7.305, 16.462)

O11:(0.374, 0.354, 17.871) O12:(-1.634, 0.119, 15.752)

W2O122Sb4

a1:(5.027, -0.009, 0.0)
a2:(0.009, 5.684, 0.0)
a3:(0.0, 0.0, 38.007)

W1:(1.184, 4.484, 19.088)
W2:(3.703, 1.679, 18.886) Sb1:(4.284, 4.907, 15.862) Sb2:(1.038, 2.051, 15.809)

O1:(2.619, 0.311, 18.432) O2:(2.681, 3.1, 18.415) O3:(0.684, 4.448, 17.262)
O4:(4.727, 1.606, 17.292) O5:(0.477, 0.406, 14.872) O6:(4.78, 3.252, 14.91)

Sb3:(1.777, 1.26, 22.113) Sb4:(3.55, 4.112, 22.165) O7:(2.209, 4.562, 20.682)
O8:(3.202, 1.714, 20.712) O9:(2.992, 0.071, 23.103) O10:(2.269, 2.916, 23.065)

O11:(0.168, 3.06, 19.559) O12:(0.106, 0.165, 19.542)

Ag2Br2Se4

a1:(5.278, 0.0, 0.0)
a2:(0.0, 8.245, 0.0)
a3:(0.0, 0.0, 18.17)

Br1:(0.214, 0.179, 7.273)
Br2:(2.852, 7.817, 10.897) Se1:(3.012, 4.996, 8.131) Se2:(0.373, 2.999, 10.039)
Se3:(4.65, 5.077, 10.046) Se4:(2.011, 2.918, 8.124) Ag1:(3.825, 1.227, 9.095)

Ag2:(1.185, 6.768, 9.074)

Ag2Cl2Se4

a1:(5.277, 0.0, 0.0)
a2:(0.0, 8.26, 0.0)
a3:(0.0, 0.0, 18.17)

Cl1:(4.998, 7.911, 7.51)
Cl2:(2.361, 0.431, 10.659) Se1:(3.289, 5.275, 8.143) Se2:(0.651, 3.068, 10.027)
Se3:(4.947, 5.148, 10.061) Se4:(2.308, 3.194, 8.109) Ag1:(4.115, 1.429, 9.042)

Ag2:(1.476, 6.914, 9.127)
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Ag2Cl2Te4

a1:(5.595, 0.0, 0.0)
a2:(-0.0, 8.61, 0.0)
a3:(0.0, 0.0, 18.17)

Cl1:(0.223, 0.135, 7.583)
Cl2:(3.02, 7.974, 10.587) Te1:(3.123, 5.195, 7.91) Te2:(0.325, 2.914, 10.26)

Te3:(4.793, 5.398, 10.212) Te4:(1.996, 2.711, 7.958) Ag1:(3.985, 1.234, 9.16)
Ag2:(1.188, 6.874, 9.01)

Ag2I2Te4

a1:(5.612, 0.0, 0.0)
a2:(-0.0, 8.77, 0.0)
a3:(0.0, 0.0, 18.17)

I1:(5.494, 8.389, 7.151)
I2:(2.689, 8.026, 11.019) Te1:(3.023, 5.027, 7.957) Te2:(0.217, 2.618, 10.213)
Te3:(4.695, 5.106, 10.25) Te4:(1.889, 2.539, 7.92) Ag1:(3.864, 0.945, 9.088)

Ag2:(1.058, 6.7, 9.082)

Au2Br2Te4

a1:(5.697, 0.0, 0.0)
a2:(-0.0, 8.769, 0.0)
a3:(0.0, 0.0, 18.17)

Br1:(0.185, 0.035, 7.462)
Br2:(3.036, 8.022, 10.709) Te1:(3.093, 5.157, 7.912) Te2:(0.245, 2.901, 10.26)
Te3:(4.917, 5.44, 10.16) Te4:(2.069, 2.618, 8.013) Au1:(3.916, 1.363, 9.518)

Au2:(1.067, 6.694, 8.652)

Au2Cl2Te4

a1:(5.674, 0.0, 0.0)
a2:(-0.0, 8.651, 0.0)
a3:(0.0, 0.0, 18.17)

Cl1:(0.359, 0.238, 7.581)
Cl2:(3.197, 8.039, 10.586) Te1:(3.14, 5.234, 7.88) Te2:(0.303, 3.044, 10.286)

Te3:(4.963, 5.579, 10.127) Te4:(2.126, 2.7, 8.04) Au1:(3.962, 1.49, 9.606)
Au2:(1.124, 6.787, 8.559)

Au2I2Te4

a1:(5.697, 0.0, 0.0)
a2:(-0.0, 8.894, 0.0)
a3:(0.0, 0.0, 18.17)

I1:(5.626, 8.61, 7.301)
I2:(2.778, 8.163, 10.871) Te1:(3.039, 5.139, 7.962) Te2:(0.19, 2.74, 10.21)

Te3:(4.872, 5.27, 10.212) Te4:(2.023, 2.609, 7.961) Au1:(3.937, 1.178, 9.196)
Au2:(1.088, 6.7, 8.975)

Zn2Te2(N2H4)2

a1:(4.191, -0.003, 0.0)
a2:(-0.002, 6.905, -0.0)

a3:(0.0, 0.0, 38.053)

Zn1:(2.676, 2.931, 19.329)
Zn2:(0.644, 6.384, 18.723) Te1:(2.746, 0.366, 20.034) Te2:(0.577, 3.82, 18.019)
N1:(2.575, 3.799, 21.298) N2:(0.748, 0.348, 16.755) H1:(2.757, 4.809, 21.199)
H2:(0.566, 1.358, 16.854) N3:(3.555, 3.242, 22.205) N4:(3.956, 6.695, 15.849)
H3:(3.952, 5.681, 16.037) H4:(1.605, 3.684, 21.641) H5:(1.717, 0.232, 16.412)
H6:(3.558, 2.229, 22.016) H7:(3.23, 3.363, 23.17) H8:(0.092, -0.088, 14.883)

Na2Nb2Cl122

a1:(6.655, 0.0, -0.0)
a2:(0.0, 7.026, 0.0)
a3:(0.0, 0.0, 39.343)

Cl1:(-0.139, 0.227, 19.248)
Cl2:(5.155, 3.74, 20.094) Cl3:(5.531, 5.47, 16.618) Cl4:(6.139, 1.957, 22.725)

Nb1:(0.734, 6.812, 16.953) Nb2:(4.281, 3.298, 22.39) Cl5:(6.366, 1.714, 16.221)
Cl6:(5.304, 5.227, 23.122) Cl7:(1.726, 6.354, 14.94) Cl8:(3.289, 2.841, 24.403)
Na1:(3.887, 6.237, 19.55) Na2:(1.128, 2.724, 19.793) Cl9:(1.893, 4.886, 17.959)

Cl10:(3.122, 1.373, 21.384) Cl11:(2.641, 1.085, 17.713) Cl12:(2.374, 4.598, 21.63)

K2(CHO3)2

a1:(3.78, -0.0, -0.0)
a2:(-0.0, 5.782, 0.0)
a3:(0.0, 0.0, 36.6)

K1:(0.018, 0.057, 19.6)
K2:(0.877, 2.949, 17.002) H1:(1.571, 3.64, 21.781) H2:(3.105, 0.749, 14.821)
C1:(2.306, 2.853, 20.193) C2:(2.369, 5.744, 16.408) O1:(2.915, 3.129, 19.128)
O2:(1.76, 0.238, 17.474) O3:(1.926, 1.748, 20.645) O4:(2.749, 4.639, 15.956)

O5:(2.021, 3.991, 20.99) O6:(2.654, 1.1, 15.611)

As2O8Te2(OH)2

a1:(4.773, 0.0, 0.0)
a2:(0.0, 6.314, 0.0)
a3:(0.0, 0.0, 36.1)

Te1:(0.002, 0.001, 19.069)
Te2:(2.389, 1.691, 17.03) As1:(3.851, 4.821, 16.092) As2:(1.464, 3.186, 20.007)

O1:(3.27, 3.226, 15.83) O2:(0.883, 4.78, 20.269) O3:(4.598, 4.855, 17.683)
O4:(2.211, 3.152, 18.416) O5:(1.79, 0.401, 18.561) O6:(4.176, 1.291, 17.538)
O7:(2.583, 5.955, 15.887) O8:(0.196, 2.051, 20.212) O9:(0.298, 5.12, 14.893)

O10:(2.685, 2.887, 21.206) H1:(1.184, 5.388, 15.314) H2:(3.571, 2.618, 20.786)

AgBiP2Se6

a1:(6.747, -3.373, 0.0)
a2:(0.0, 5.843, 0.0)
a3:(0.0, 0.0, 33.563)

Bi1:(6.747, 0.0, 16.57)
Se1:(2.096, 3.65, 14.987) Se2:(-1.26, 2.203, 14.987) Se3:(-0.836, 5.833, 14.986)
Se4:(4.301, 3.844, 18.573) Se5:(4.551, 0.196, 18.573) Se6:(1.268, 1.803, 18.573)

P1:(3.373, 1.948, 17.872) P2:(3.373, 1.948, 15.582) Ag1:(0.0, 3.895, 17.25)

BiCuP2Se6

a1:(6.642, -3.321, -0.0)
a2:(-0.0, 5.754, 0.0)
a3:(0.0, 0.0, 33.515)

Bi1:(6.643, -0.0, 17.107)
Se1:(2.104, 3.558, 18.604) Se2:(5.351, 2.152, 18.605) Se3:(2.51, 0.042, 18.605)
Se4:(1.145, 5.627, 14.98) Se5:(0.978, 1.948, 14.98) Se6:(-2.124, 3.932, 14.981)

P1:(0.0, 3.835, 15.716) P2:(0.0, 3.835, 18.012) Cu1:(3.321, 1.917, 15.413)

CuInP2S6

a1:(6.167, -3.083, -0.0)
a2:(0.0, 5.341, -0.0)
a3:(0.0, 0.0, 33.465)

Cu1:(0.004, 0.003, 18.097)
In1:(3.087, 1.783, 16.396) P1:(0.004, 3.564, 17.74) P2:(0.003, 3.563, 15.483)
S1:(0.858, 5.352, 18.358) S2:(1.126, 1.929, 18.358) S3:(-1.972, 3.409, 18.359)
S4:(1.964, 3.629, 14.943) S5:(-0.92, 1.832, 14.944) S6:(-1.035, 5.229, 14.944)

CuInP2Se6

a1:(6.449, -3.224, 0.0)
a2:(-0.0, 5.585, -0.0)
a3:(0.0, 0.0, 33.465)

Cu1:(-0.0, -0.0, 18.212)
In1:(3.224, 1.861, 16.499) P1:(-0.0, 3.723, 17.891) P2:(-0.0, 3.723, 15.608)

Se1:(0.894, 5.661, 18.582) Se2:(1.231, 1.98, 18.582) Se3:(-2.126, 3.529, 18.582)
Se4:(2.114, 3.865, 15.012) Se5:(-0.934, 1.821, 15.012) Se6:(-1.181, 5.483, 15.012)

In2Se3

a1:(4.097, -2.048, 0.0)
a2:(0.0, 3.546, -0.0)
a3:(0.0, 0.0, 36.367)

In1:(1.882, 1.162, 20.924)
Se1:(3.931, -0.019, 22.242) In2:(-0.166, 2.345, 16.701) Se2:(-0.166, 2.344, 19.244)

Se3:(3.931, -0.019, 15.456)
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CF2Si
a1:(3.161, -1.58, 0.0)
a2:(0.0, 2.737, 0.0)
a3:(0.0, 0.0, 18.625)

Si1:(0.0, 0.0, 9.117)
C1:(-0.0, 1.825, 9.689) F1:(0.0, 0.0, 7.5) F2:(-0.0, 1.825, 11.126)

InP
a1:(4.215, -2.108, 0.0)

a2:(0.0, 3.65, 0.0)
a3:(0.0, 0.0, 15.495)

In1:(0.0, 2.434, 7.504)
P1:(2.108, 1.217, 7.991)

As4O6

a1:(4.651, -0.375, -0.0)
a2:(0.032, 5.625, -0.0)
a3:(0.0, 0.0, 33.864)

As1:(0.017, 0.055, 18.916)
As2:(2.155, 2.883, 14.948) As3:(-0.187, 5.028, 15.648) As4:(2.326, 2.232, 18.217)

O1:(4.2, 4.68, 17.423) O2:(2.062, 1.851, 16.442) O3:(3.896, 3.426, 15.015)
O4:(1.758, 0.598, 18.85) O5:(4.078, 1.728, 18.355) O6:(1.565, 4.525, 15.509)

Zn2O6Se2(H2O)2

a1:(4.867, -0.222, -0.0)
a2:(-0.115, 5.768, 0.0)
a3:(0.0, 0.0, 33.865)

Zn1:(1.591, 4.924, 16.668)
Zn2:(4.136, 1.983, 17.197) Se1:(2.068, 2.077, 14.971) Se2:(4.39, 4.904, 18.894)

O1:(2.79, 0.841, 16.006) O2:(0.246, 3.783, 17.859) O3:(0.424, 0.602, 18.02)
O4:(2.746, 3.429, 15.845) O5:(2.743, 4.87, 18.482) O6:(0.42, 2.044, 15.383)
O7:(2.708, 2.084, 18.782) H1:(1.939, 1.48, 18.613) H2:(2.342, 3.001, 18.748)
O8:(0.164, 5.026, 15.083) H3:(4.262, 4.307, 15.252) H4:(0.02, 0.175, 15.117)

As2O6Sb2

a1:(4.657, -0.46, -0.0)
a2:(0.021, 5.638, -0.0)
a3:(0.0, 0.0, 34.073)

As1:(0.016, 0.04, 19.117)
As2:(2.115, 2.87, 14.956) Sb1:(2.252, 2.362, 18.39) Sb2:(-0.307, 5.17, 15.683)
O1:(1.762, 0.526, 19.047) O2:(3.861, 3.355, 15.026) O3:(2.011, 1.862, 16.47)
O4:(4.109, 4.692, 17.602) O5:(4.162, 1.716, 18.529) O6:(1.603, 4.525, 15.544)

Sn2H2O6P2

a1:(4.776, -1.264, -0.0)
a2:(-0.153, 6.599, 0.0)
a3:(0.0, 0.0, 34.237)

Sn1:(-0.113, 0.137, 18.482)
Sn2:(-0.745, 3.437, 15.755) P1:(2.262, 2.442, 18.566) P2:(1.63, 5.741, 15.672)
O1:(3.108, 1.322, 19.221) O2:(2.476, 4.621, 15.016) O3:(3.052, 3.415, 17.653)
O4:(3.684, 0.116, 16.584) O5:(1.003, 1.883, 17.831) O6:(0.371, 5.182, 16.406)

H1:(1.81, 3.251, 19.633) H2:(2.442, -0.048, 14.604)

Pb4O4

a1:(5.724, 0.0, 0.0)
a2:(0.0, 5.24, 0.0)
a3:(0.0, 0.0, 32.37)

Pb1:(-0.063, -0.175, 14.858)
Pb2:(0.222, 2.445, 17.511) Pb3:(3.084, 2.445, 14.859) Pb4:(2.799, -0.175, 17.512)

O1:(5.213, 1.966, 15.45) O2:(0.671, 4.586, 16.92) O3:(3.533, 4.586, 15.45)
O4:(2.351, 1.966, 16.92)

Hf3ZrS8

a1:(7.097, 0.0, 0.0)
a2:(0.0, 6.153, 0.0)
a3:(0.0, 0.0, 18.249)

Zr1:(0.006, 0.009, 8.841)
Hf1:(3.554, 0.006, 9.221) Hf2:(1.781, 3.082, 9.172) Hf3:(5.327, 3.082, 9.174)

S1:(0.005, 2.147, 7.5) S2:(1.735, 5.149, 10.651) S3:(0.006, 1.998, 10.633)
S4:(1.85, 5.1, 7.517) S5:(3.554, 2.03, 7.615) S6:(5.373, 5.149, 10.652)

S7:(3.554, 2.08, 10.749) S8:(5.258, 5.1, 7.518)

Hf3ZrSe8

a1:(7.365, 0.0, 0.0)
a2:(0.0, 6.379, 0.0)
a3:(0.0, 0.0, 18.428)

Zr1:(0.004, 0.009, 9.029)
Hf1:(3.687, 0.005, 9.278) Hf2:(1.847, 3.196, 9.243) Hf3:(5.526, 3.196, 9.243)
Se1:(0.004, 2.196, 7.492) Se2:(1.817, 5.332, 10.871) Se3:(0.004, 2.1, 10.858)
Se4:(1.895, 5.298, 7.503) Se5:(3.687, 2.114, 7.568) Se6:(5.556, 5.332, 10.871)

Se7:(3.687, 2.147, 10.931) Se8:(5.478, 5.298, 7.503)

Hf2Zr2S8

a1:(7.105, 0.0, 0.0)
a2:(0.0, 6.169, 0.0)
a3:(0.0, 0.0, 18.28)

Zr1:(0.008, 0.012, 8.896)
Zr2:(3.56, 0.012, 9.386) Hf1:(1.784, 3.094, 9.136) Hf2:(5.337, 3.094, 9.144)
S1:(0.007, 2.142, 7.5) S2:(1.709, 5.132, 10.706) S3:(0.009, 2.014, 10.632)
S4:(1.859, 5.135, 7.573) S5:(3.562, 2.014, 7.649) S6:(5.412, 5.134, 10.709)

S7:(3.559, 2.143, 10.78) S8:(5.261, 5.133, 7.575)

Hf2Zr2Se8

a1:(7.374, 0.0, 0.0)
a2:(0.0, 6.395, 0.0)
a3:(0.0, 0.0, 18.465)

Zr1:(0.006, 0.007, 9.063)
Zr2:(3.693, 0.007, 9.405) Hf1:(1.849, 3.206, 9.233) Hf2:(5.536, 3.206, 9.234)

Se1:(0.006, 2.196, 7.501) Se2:(1.794, 5.321, 10.919) Se3:(0.006, 2.107, 10.864)
Se4:(1.904, 5.322, 7.549) Se5:(3.693, 2.107, 7.603) Se6:(5.591, 5.321, 10.919)

Se7:(3.693, 2.196, 10.966) Se8:(5.481, 5.322, 7.549)

Mo2Br4O4

a1:(3.984, -0.0, -0.0)
a2:(-0.0, 7.767, 0.0)
a3:(0.0, 0.0, 34.767)

Mo1:(2.27, 3.704, 17.386)
O1:(0.0, 3.858, 17.386) O2:(2.053, 1.976, 17.386) Mo2:(1.753, 7.588, 17.386)
O3:(1.97, 5.86, 17.386) Br1:(2.128, 0.164, 14.969) Br2:(1.895, 4.048, 14.969)

Br3:(2.128, 0.164, 19.802) Br4:(1.895, 4.048, 19.802) O4:(0.039, -0.026, 17.386)

W2Cl4O4

a1:(3.92, 0.0, -0.0)
a2:(0.0, 7.736, -0.0)
a3:(0.0, 0.0, 34.434)

W1:(0.172, 3.602, 17.217)
O1:(-0.009, 1.834, 17.217) O2:(1.929, 3.735, 17.217) W2:(3.678, 7.47, 17.217)
O3:(1.92, -0.133, 17.217) O4:(3.859, 5.702, 17.217) Cl1:(3.801, 3.874, 19.491)

Cl2:(3.801, 3.874, 14.943) Cl3:(0.048, 0.006, 14.943) Cl4:(0.048, 0.006, 19.491)
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Sr2H8O6

a1:(3.621, -0.0, -0.0)
a2:(0.0, 6.923, 0.0)
a3:(0.0, 0.0, 35.702)

Sr1:(-0.0, -0.141, 18.493)
Sr2:(-0.0, 3.32, 17.209) O1:(-0.0, 0.662, 15.971) O2:(-0.0, 4.123, 19.731)

O3:(1.811, 6.018, 20.201) O4:(1.811, 2.557, 15.501) O5:(1.811, 5.261, 17.305)
O6:(1.811, 1.8, 18.397) H1:(0.775, 1.224, 15.654) H2:(2.846, 1.224, 15.654)

H3:(2.846, 4.686, 20.048) H4:(0.775, 4.686, 20.048) H5:(1.811, 6.301, 21.129)
H6:(1.811, 2.84, 14.573) H7:(1.811, 5.637, 16.405) H8:(1.811, 2.176, 19.297)

Cu2Hg2Cl2Se2

a1:(4.158, 0.0, 0.0)
a2:(-0.0, 7.047, 0.0)
a3:(0.0, 0.0, 39.524)

Hg1:(2.079, 7.681, 20.268)
Hg2:(2.079, 4.157, 19.255) Se1:(2.079, 1.916, 17.963) Se2:(2.079, 5.44, 21.561)

Cu1:(0.0, 0.745, 18.071) Cu2:(0.0, 4.268, 21.453) Cl1:(0.0, 2.036, 21.744)
Cl2:(0.0, -1.487, 17.78)

Nb2Br4O2

a1:(3.944, 0.0, 0.0)
a2:(0.0, 7.07, 0.0)

a3:(0.0, 0.0, 34.045)

Nb1:(2.147, 3.957, 17.023)
Br1:(1.911, 1.941, 15.25) Br2:(1.948, 5.476, 14.923) Nb2:(2.147, 6.996, 17.023)
Br3:(1.911, 1.941, 18.795) Br4:(1.948, 5.476, 19.123) O1:(-0.019, 3.918, 17.023)

O2:(-0.019, -0.035, 17.023)

Nb2I4O2

a1:(3.969, 0.0, -0.0)
a2:(0.0, 7.581, -0.0)
a3:(0.0, 0.0, 34.533)

Nb1:(-0.051, 4.406, 17.266)
O1:(2.129, 4.377, 17.266) I1:(0.176, 2.196, 15.387) I2:(0.146, 5.987, 14.968)

Nb2:(-0.051, -0.013, 17.266) O2:(2.129, 7.596, 17.266) I3:(0.176, 2.196, 19.146)
I4:(0.146, 5.987, 19.565)

Nb2Cl4O2

a1:(3.942, 0.0, -0.0)
a2:(0.0, 6.739, -0.0)
a3:(0.0, 0.0, 34.045)

Nb1:(2.147, 3.74, 17.023)
Cl1:(1.908, 1.85, 15.35) Cl2:(1.949, 5.22, 15.079) Nb2:(2.147, 6.7, 17.023)

Cl3:(1.908, 1.85, 18.695) Cl4:(1.949, 5.22, 18.966) O1:(-0.021, 3.693, 17.023)
O2:(-0.021, 0.008, 17.023)

As4S6

a1:(4.618, -0.075, 0.0)
a2:(0.027, 11.354, 0.0)

a3:(0.0, 0.0, 32.82)

As1:(4.664, -0.036, 15.697)
As2:(2.317, 5.628, 17.123) As3:(2.294, 8.936, 17.124) As4:(0.023, 3.245, 15.696)

S1:(1.56, 9.736, 15.115) S2:(3.907, 4.072, 17.705) S3:(3.864, 10.511, 17.707)
S4:(1.593, 4.821, 15.113) S5:(1.33, 1.6, 16.647) S6:(3.601, 7.291, 16.173)

As4Se6

a1:(4.531, -0.052, 0.0)
a2:(0.018, 12.079, 0.0)
a3:(0.0, 0.0, 33.177)

As1:(-0.007, 12.069, 15.927)
As2:(2.285, 6.038, 17.25) As3:(2.27, 9.419, 17.252) As4:(0.031, 3.371, 15.925)

Se1:(1.587, 10.37, 15.142) Se2:(3.878, 4.339, 18.035) Se3:(3.85, 11.131, 18.038)
Se4:(1.61, 5.083, 15.139) Se5:(1.461, 1.687, 17.011) Se6:(3.7, 7.735, 16.166)

Cd2O6Se2(H2O)2

a1:(5.042, -0.0, 0.0)
a2:(-0.0, 6.049, -0.0)
a3:(0.0, 0.0, 34.123)

Cd1:(2.232, 5.365, 16.734)
Cd2:(4.753, 2.341, 17.39) Se1:(2.69, 2.341, 14.959) Se2:(0.169, 5.365, 19.165)
O1:(3.609, 5.365, 18.649) O2:(1.088, 2.341, 15.474) O3:(3.45, 1.033, 15.865)
O4:(0.929, 0.625, 18.259) O5:(3.45, 3.649, 15.865) O6:(0.929, 4.057, 18.259)
O7:(0.561, 5.365, 15.088) O8:(3.082, 2.341, 19.036) H1:(2.482, 3.119, 18.918)

H2:(2.482, 1.563, 18.918) H3:(-0.039, 4.588, 15.206) H4:(-0.039, 0.094, 15.206)

Ga2In2S6

a1:(3.813, 0.0, 0.0)
a2:(-0.0, 6.252, 0.0)
a3:(0.0, 0.0, 37.098)

In1:(0.0, 0.007, 16.914)
In2:(1.907, 3.133, 20.184) Ga1:(1.907, 3.484, 15.924) Ga2:(0.0, 0.358, 21.174)

S1:(1.907, 4.659, 17.975) S2:(0.0, 1.533, 19.122) S3:(0.0, 4.427, 14.934)
S4:(1.907, 1.301, 22.164) S5:(0.0, 4.342, 21.42) S6:(1.907, 1.216, 15.678)

Ga2Cl2Te2

a1:(4.165, -0.0, -0.0)
a2:(0.0, 5.943, -0.0)
a3:(0.0, 0.0, 35.15)

Ga1:(-0.0, 0.014, 18.504)
Ga2:(2.083, 2.985, 16.646) Cl1:(-0.0, 1.411, 20.23) Cl2:(2.083, 4.382, 14.92)

Te1:(-0.0, 1.35, 16.202) Te2:(2.083, 4.322, 18.948)

Cu2C2Cl2O2

a1:(3.702, -0.0, 0.0)
a2:(0.0, 5.042, -0.0)
a3:(0.0, 0.0, 37.181)

Cu1:(-0.0, 4.034, 17.387)
Cl1:(1.851, 2.548, 17.662) Cu2:(1.851, 1.513, 19.794) Cl2:(-0.0, 5.069, 19.519)
C1:(1.851, 2.459, 21.348) O1:(1.851, 3.014, 22.352) C2:(0.0, -0.061, 15.832)

O2:(0.0, 0.493, 14.829)

α-Ge2Se2

a1:(4.274, 0.0, -0.0)
a2:(0.0, 3.973, -0.0)
a3:(0.0, 0.0, 17.11)

Se1:(0.231, -0.0, 7.252)
Se2:(2.368, 1.986, 9.857) Ge1:(0.597, -0.0, 9.765) Ge2:(2.734, 1.986, 7.344)

α-Ge2S2

a1:(4.482, 0.0, -0.0)
a2:(0.0, 3.652, 0.0)
a3:(0.0, 0.0, 17.11)

S1:(0.136, -0.0, 7.487)
S2:(2.377, 1.826, 9.623) Ge1:(0.731, -0.0, 9.837) Ge2:(2.972, 1.826, 7.273)

α-Ge2Te2

a1:(4.376, -0.0, -0.0)
a2:(-0.0, 4.23, 0.0)
a3:(0.0, 0.0, 17.11)

Te1:(0.29, -0.0, 7.037)
Te2:(2.478, 2.115, 10.073) Ge1:(0.561, -0.0, 9.756) Ge2:(2.749, 2.115, 7.354)

α-Sn2O2

a1:(5.025, 0.0, 0.0)
a2:(0.0, 3.339, 0.0)
a3:(0.0, 0.0, 32.15)

Sn1:(0.2, 0.0, 17.26)
O1:(1.059, 1.67, 16.212) Sn2:(2.712, 1.67, 14.89) O2:(3.572, 0.0, 15.938)

α-Sn2Se2

a1:(4.411, -0.0, 0.0)
a2:(-0.0, 4.285, 0.0)
a3:(0.0, 0.0, 17.11)

Se1:(0.299, -0.0, 7.225)
Se2:(2.504, 2.142, 9.884) Sn1:(0.549, -0.0, 9.935) Sn2:(2.755, 2.142, 7.175)
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α-Sn2Te2

a1:(4.581, 0.0, 0.0)
a2:(0.0, 4.546, 0.0)
a3:(0.0, 0.0, 17.11)

Te1:(0.372, -0.0, 6.977)
Te2:(2.663, 2.273, 10.133) Sn1:(0.507, -0.0, 9.895) Sn2:(2.797, 2.273, 7.215)

α-Sn2S2

a1:(4.325, -0.0, 0.0)
a2:(0.0, 4.064, 0.0)
a3:(0.0, 0.0, 17.11)

S1:(0.236, -0.0, 7.421)
S2:(2.399, 2.032, 9.689) Sn1:(0.598, -0.0, 9.986) Sn2:(2.761, 2.032, 7.124)

β-Sn2Se2

a1:(6.181, 0.0, 0.0)
a2:(0.0, 3.909, 0.0)
a3:(0.0, 0.0, 18.0)

Sn1:(-0.083, -0.0, 7.98)
Sn2:(3.008, 1.954, 10.02) Se1:(0.083, 1.954, 9.879) Se2:(3.173, -0.0, 8.121)

β-Sn2S2

a1:(5.856, -0.0, 0.0)
a2:(-0.0, 3.787, -0.0)

a3:(0.0, 0.0, 18.0)

Sn1:(-0.103, -0.0, 7.891)
Sn2:(2.825, 1.894, 10.109) S1:(0.103, 1.894, 9.67) S2:(3.03, 0.0, 8.33)

P2Sb2

a1:(5.949, 0.0, 0.0)
a2:(0.0, 3.721, -0.0)
a3:(0.0, 0.0, 18.0)

Sb1:(-0.165, -0.0, 7.988)
Sb2:(2.809, 1.861, 10.012) P1:(0.165, 1.861, 9.726) P2:(3.14, 0.0, 8.274)

As2Sb2

a1:(6.234, 0.0, 0.0)
a2:(-0.0, 3.841, -0.0)

a3:(0.0, 0.0, 18.0)

Sb1:(-0.174, -0.0, 8.103)
Sb2:(2.943, 1.92, 9.897) As1:(0.174, 1.92, 9.935) As2:(3.291, -0.0, 8.065)

β-Ge2S2

a1:(5.679, -0.0, -0.0)
a2:(-0.0, 3.499, -0.0)

a3:(0.0, 0.0, 18.0)

Ge1:(-0.154, -0.0, 8.074)
Ge2:(2.685, 1.75, 9.926) S1:(0.154, 1.75, 9.718) S2:(2.994, 0.0, 8.282)

β-Ge2Se2

a1:(5.894, 0.0, 0.0)
a2:(0.0, 3.661, -0.0)
a3:(0.0, 0.0, 18.0)

Ge1:(-0.11, -0.0, 8.182)
Ge2:(2.837, 1.83, 9.818) Se1:(0.11, 1.83, 9.937) Se2:(3.057, -0.0, 8.063)
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Abstract
The Computational 2D Materials Database (C2DB) is a highly curated open database organising a
wealth of computed properties for more than 4000 atomically thin two-dimensional (2D)
materials. Here we report on new materials and properties that were added to the database since its
first release in 2018. The set of new materials comprise several hundred monolayers exfoliated from
experimentally known layered bulk materials, (homo)bilayers in various stacking configurations,
native point defects in semiconducting monolayers, and chalcogen/halogen Janus monolayers. The
new properties include exfoliation energies, Bader charges, spontaneous polarisations, Born
charges, infrared polarisabilities, piezoelectric tensors, band topology invariants, exchange
couplings, Raman spectra and second harmonic generation spectra. We also describe refinements
of the employed material classification schemes, upgrades of the computational methodologies
used for property evaluations, as well as significant enhancements of the data documentation and
provenance. Finally, we explore the performance of Gaussian process-based regression for efficient
prediction of mechanical and electronic materials properties. The combination of open access,
detailed documentation, and extremely rich materials property data sets make the C2DB a unique
resource that will advance the science of atomically thin materials.

1. Introduction

The discovery of new materials, or new properties
of known materials, to meet a specific industrial
or scientific requirement, is an exciting intellectual
challenge of the utmost importance for our envir-
onment and economy. For example, the successful
transition to a society based on sustainable energy
sources and the realisation of quantum technologies
(e.g. quantum computers and quantum communic-
ation) depend critically on new materials with novel
functionalities. First-principles quantum mechanical
calculations, e.g. based on density functional the-
ory (DFT) [1], can predict the properties of mater-
ials with high accuracy even before they are made

in the lab. They provide insight into mechanisms
at the most fundamental (atomic and electronic)
level and can pinpoint and calculate key properties
that determine the performance of the material at
the macroscopic level. Powered by high-performance
computers, atomistic quantum calculations in com-
bination with data science approaches, have the
potential to revolutionise the way we discover and
develop new materials.

Atomically thin, two-dimensional (2D) crystals
represent a fascinating class of materials with excit-
ing perspectives for both fundamental science and
technology [2–5]. The family of 2D materials has
been growing steadily over the past decade and counts
about a hundred materials that have been realised

© 2021 The Author(s). Published by IOP Publishing Ltd
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in single-layer or few-layer form [6–10]. While some
of these materials, including graphene, hexagonal
boron nitride (hBN), and transition metal dichal-
cogenides (TMDCs), have been extensively studied,
the majority have only been scarcely characterised
and remain poorly understood. Computational stud-
ies indicate that around 1000 already known layered
crystals have sufficiently weak interlayer (IL) bond-
ing to allow the individual layers to be mechanic-
ally exfoliated [11, 12]. Supposedly, even more 2D
materials could be realised beyond this set of already
known crystals. Adding to this the possibility of stack-
ing individual 2D layers (of the same or different
kinds) into ultrathin van der Waals (vdW) crystals
[13], and tuning the properties of such structures
by varying the relative twist angle between adjacent
layers [14, 15] or intercalating atoms into the vdW
gap [16, 17], it is clear that the prospects of tailor
made 2D materials are simply immense. To support
experimental efforts and navigate the vast 2D mater-
ials space, first-principles calculations play a pivotal
role. In particular, FAIR5 [18] databases populated by
high-throughput calculations can provide a conveni-
ent overview of known materials and point to new
promising materials with desired (predicted) proper-
ties. Such databases are also a fundamental require-
ment for the successful introduction and deployment
of artificial intelligence in materials science.

Many of the unique properties exhibited by 2D
materials have their origin in quantum confinement
and reduced dielectric screening. These effects tend
to enhance many-body interactions and lead to pro-
foundly new phenomena such as strongly bound
excitons [19–21] with nonhydrogenic Rydberg series
[22–24], phonons and plasmons with anomalous dis-
persion relations [25, 26], large dielectric band struc-
ture renormalisations [27, 28], unconventional Mott
insulating and superconducting phases [14, 15], and
high-temperature exciton condensates [29]. Recently,
it has become clear that long range magnetic order
can persist [30, 31] and (in-plane) ferroelectricity
even be enhanced [32], in the single layer limit.
In addition, first-principles studies of 2D crystals
have revealed rich and abundant topological phases
[33, 34]. The peculiar physics ruling the world of 2D
materials entails that many of the conventional the-
ories and concepts developed for bulk crystals break
down or require special treatments when applied to
2D materials [26, 35, 36]. This means that com-
putational studies must be performed with extra
care, which in turn calls for well-organised and well-
documented 2D property data sets that can form
the basis for the development, benchmarking, and
consolidation of physical theories and numerical
implementations.

5 FAIR data are data which meet principles of findability, accessib-
ility, interoperability, and reusability.

The Computational 2D Materials Database
(C2DB) [6, 37] is a highly curated and fully open
database containing elementary physical properties
of around 4000 2D monolayer crystals. The data
has been generated by automatic high-throughput
calculations at the level of DFT and many-body
perturbation theory as implemented in the GPAW
[38, 39] electronic structure code. The computa-
tional workflow is constructed using the atomic sim-
ulation recipes (ASR) [40]—a recently developed
Python framework for high-throughput materials
modelling building on the atomic simulation envir-
onment (ASE) [41]—and managed/executed using
the MyQueue task scheduler [42].

The C2DB differentiates itself from existing
computational databases of bulk [43–45] and low-
dimensional [11, 12, 46–50] materials, by the large
number of physical properties available, see table 1.
The use of beyond-DFT theories for excited state
properties (GW band structures and Bethe–Salpeter
equation (BSE) absorption for selectedmaterials) and
Berry-phase techniques for band topology and polar-
isation quantities (spontaneous polarisation, Born
charges, piezoelectric tensors), are other unique fea-
tures of the database.

The C2DB can be downloaded in its entirety or
browsed and searched online. As a new feature, all
data entries presented on the website are accom-
panied by a clickable help icon that presents a sci-
entific documentation (‘what does this piece of data
describe?’) and technical documentation (‘how was
this piece of data computed?’). This development
enhances the usability of the database and improves
the reproducibility and provenance of the data con-
tained in C2DB. As another novelty it is possible to
download all property data pertaining to a specific
material or a specific type of property, e.g. the band
gap, for allmaterials thus significantly improving data
accessibility.

In this paper, we report on the significant C2DB
developments that have taken place during the
past two years. These developments can be roughly
divided into four categories: (1) General updates
of the workflow used to select, classify, and stabil-
ity assess the materials. (2) Computational improve-
ments for properties already described in the 2018
paper. (3) New properties. (4) New materials. The
developments, described in four separate sections,
cover both original work and review of previously
published work. In addition, we have included some
outlook discussions of ongoing work. In the last
section we illustrate an application of statistical learn-
ing to predict properties directly from the atomic
structure.

2. Selection, classification, and stability

Figure 1 illustrates the workflow behind the C2DB. In
this section we describe the first part of the workflow

2
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Table 1. Properties calculated by the C2DB monolayer workflow. The computational method and the criteria used to decide whether the
property should be evaluation for a given material is also shown. A ‘∗’ indicates that spin–orbit coupling (SOC) is included. All
calculations are performed with the GPAW code using a plane wave basis except for the Raman calculations, which employ a double-zeta
polarised basis of numerical atomic orbitals [51].

Property Method Criteria Count

Bader charges PBE None 3809
Energy above convex hull PBE None 4044
Heat of formation PBE None 4044
Orbital projected band structure PBE None 2487
Out-of-plane dipole PBE None 4044
Phonons (Γ and BZ corners) PBE None 3865
Projected density of states PBE None 3332
Stiffness tensor PBE None 3968
Exchange couplings PBE Magnetic 538
Infrared polarisability PBE EPBEgap > 0 784
Second harmonic generation PBE EPBEgap > 0, non-magnetic,

non-centrosymmetric
375

Electronic band structure PBE PBE∗ None 3496
Magnetic anisotropies PBE∗ Magnetic 823
Deformation potentials PBE∗ EPBEgap > 0 830
Effective masses PBE∗ EPBEgap > 0 1272
Fermi surface PBE∗ EPBEgap = 0 2505
Plasma frequency PBE∗ EPBEgap = 0 3144
Work function PBE∗ EPBEgap = 0 4044
Optical polarisability RPA@PBE None 3127
Electronic band structure HSE06@PBE∗ None 3155
Electronic band structure G0W0@PBE

∗ EPBEgap > 0, Natoms < 5 357
Born charges PBE, Berry phase EPBEgap > 0 639
Raman spectrum PBE, LCAO basis set Non-magnetic, dyn. stable 708
Piezoelectric tensor PBE, Berry phase EPBEgap , non-centrosym. 353
Optical absorbance BSE@G0W0

∗ EPBEgap > 0, Natoms < 5 378
Spontaneous polarisation PBE, Berry phase EPBEgap > 0, nearly centrosym.

polar space group
151

Topological invariants PBE∗, Berry phase 0< EPBEgap < 0.3 eV 242

Figure 1. The workflow behind the C2DB. After the structural relaxation, the dimensionality of the material is checked and it is
verified that the material is not already present in the database. Next, the material is classified according to its chemical
composition, crystal structure, and magnetic state. Finally, the thermodynamic and dynamic stabilities are assessed from the
energy above the convex hull and the sign of the minimum eigenvalues of the dynamical matrix and stiffness tensor. Unstable
materials are stored in the database; stable materials are subject to the property workflow. The C2DB monolayer database is
interlinked with databases containing structures and properties of multilayer stacks and point defects in monolayers from the
C2DB.
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until the property calculations (red box), focusing
on aspects related to selection criteria, classification,
and stability assessment, that have been changed or
updated since the 2018 paper.

2.1. Structure relaxation
Given a prospective 2D material, the first step is to
carry out a structure optimisation. This calculation is
performed with spin polarisation and with the sym-
metries of the original structure enforced. The latter is
done to keep the highest level of control over the res-
ulting structure by avoiding ‘uncontrolled’ symmetry
breaking distortions. The prize to pay is a higher risk
of generating dynamically unstable structures.

2.2. Selection: dimensionality analysis
A dimensionality analysis [52] is performed to
identify and filter out materials that have disin-
tegrated into non-2D structures during relaxation.
Covalently bonded clusters are identified through an
analysis of the connectivity of the structures where
two atoms are considered to belong to the same
cluster if their distance is less than some scaling of
the sum of their covalent radii, i.e. d< k(r covi + r covj ),
where i and j are atomic indices. A scaling factor
of k= 1.35 was determined empirically. Only struc-
tures that consist of a single 2D cluster after relaxation
are further processed. Figure 2 shows three examples
(graphene, Ge2Se2, and Pb2O6) of structures and
their cluster dimensionalities before and after relax-
ation. All structures initially consist of a single 2D
cluster, but upon relaxation Ge2Se2 and Pb2O6 disin-
tegrate into two 2D clusters as well as one 2D and two
0D clusters, respectively. On the other hand, the relax-
ation of graphene decreases the in-plane lattice con-
stant but does not affect the dimensionality. Accord-
ing to the criterion defined above only graphene will
enter the database.

2.3. Selection: ranking similar structures
Maintaining a high-throughput database inevitably
requires a strategy for comparing similar structures
and ranking themaccording to their relevance. In par-
ticular, this is necessary in order to identify differ-
ent representatives of the same material e.g. result-
ing from independent relaxations, and thereby avoid
duplicate entries and redundant computations. The
C2DB strategy to this end involves a combination of
structure clustering and Pareto analysis.

First, a single-linkage clustering algorithm is used
to group materials with identical reduced chem-
ical formula and ‘similar’ atomic configurations. To
quantify configuration similarity a slightly modi-
fied version of PyMatGen’s [53] distance metric is
employed where the cell volume normalisation is
removed to make it applicable to 2D materials sur-
rounded by vacuum. Roughly speaking, the metric
measures the maximum distance an atom must be
moved (in units of Å) in order to match the two

Figure 2. Three example structures from C2DB (top:
graphene, middle: Ge2Se2, bottom: Pb2O6) with their
respective cluster dimensionalities cluster before (left) and
after (right) relaxation. The number NxD denotes the
number of clusters of dimensionality x. Note that the
number of atoms of the structures depicted in the left and
right columns can differ because the relaxation can change
the lattice constants.

atomic configurations. Two atomic configurations
belong to the same cluster if their distance is below
an empirically determined threshold of 0.3 Å.

At this point, the simplest strategy would be to
remove all but the most stable compound within a
cluster. However, this procedure would remove many
high symmetry crystals for which a more stable dis-
torted version exists. For example, the well known
T-phase of MoS2 would be removed in favour of
the more stable T ′-phase. This is undesired as high-
symmetry structures, even if dynamically unstable at
T= 0, may provide useful information and might in
fact become stabilised at higher temperatures [54].
Therefore, the general strategy adopted for the C2DB,

4
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Figure 3. Illustration of the Pareto analysis used to filter out duplicates or irrelevant structures from the C2DB. All points
represent materials with the same reduced chemical formula (in this case ReS2) that belong to the same cluster defined by the
structure metric. Only structures lying on the (N,∆H)-Pareto front are retained (black circles) while other materials are excluded
(red circles). The philosophy behind the algorithm is to keep less stable materials if they contain fewer atoms per unit cell than
more stable materials and thus represent structures of higher symmetry.

is to keep a material that is less stable than another
material of the same cluster if it has fewer atoms in
its primitive unit cell (and thus typically higher sym-
metry). Precisely, materials within a given cluster are
kept only if they represent a defining point of the (N,
∆H)-Pareto front, where N is the number of atoms
in the unit cell and ∆H is the heat of formation. A
graphical illustration of the Pareto analysis is shown
in figure 3 for the case of ReS2.

2.4. Classification: crystal structure
The original C2DB employed a crystal prototype clas-
sification scheme where specific materials were pro-
moted to prototypes and used to label groups of
materials with the same or very similar crystal struc-
ture. This approach was found to be difficult to
maintain (as well as being non-transparent). Instead,
materials are now classified according to their crys-
tal type defined by the reduced stoichiometry, space
group number, and the alphabetically sorted labels of
the occupiedWyckoff positions. As an example,MoS2
in the H-phase has the crystal type: AB2-187-bi.

2.5. Classification: magnetic state
In the new version of the C2DB, materials are classi-
fied according to their magnetic state as either non-
magnetic or magnetic. A material is considered mag-
netic if any atomhas a localmagneticmoment greater
than 0.1 µB.

In the original C2DB, the magnetic category was
further subdivided into ferromagnetic (FM) and anti-
ferromagnetic (AFM). But since the simplest anti-
ferromagnetically ordered state typically does not
represent the true ground state, all material entries
with an AFM state have been removed from the
C2DB and replaced by the material in its FM state.
Although the latter is less stable, it represents a

more well defined state of the material. Crucially, the
nearest neighbour exchange couplings for all mag-
netic materials have been included in the C2DB (see
section 5.8). This enables amore detailed and realistic
description of the magnetic order via the Heisenberg
model. In particular, the FM state of a material is not
expected to represent the true magnetic ground if the
exchange coupling J< 0.

2.6. Stability: thermodynamic
The heat of formation,∆H, of a compound is defined
as its energy per atom relative to its constituent ele-
ments in their standard states [55]. The thermody-
namic stability of a compound is evaluated in terms of
its energy above the convex hull, ∆Hhull, which gives
the energy of the material relative to other compet-
ing phases of the same chemical composition, includ-
ing mixed phases [6], see figure 4 for an example.
Clearly, ∆Hhull depends on the pool of reference
phases, which in turn defines the convex hull. The
original C2DB employed a pool of reference phases
comprised by 2807 elemental and binary bulk crys-
tals from the convex hull of the Open Quantum
Materials Database (OQMD) [55]. In the new ver-
sion, this set has been extended by approximately
6783 ternary bulk compounds from the convex hull of
OQMD, making a total of 9590 stable bulk reference
compounds.

As a simple indicator for the thermodynamic
stability of a material, the C2DB employs three
labels (low, medium, high) as defined in table 2.
These indicators are unchanged from the original
version of the C2DB. In particular, the criterion
∆Hhull < 0.2 eV atom−1, defining the most stable
category, was established based on an extensive
analysis of 55 experimentally realised monolayer
crystals [6].

5
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Figure 4. Convex hull diagram for (Bi,I,Te)-compounds.
Green (red) colouring indicate materials that have a convex
hull energy of less than (greater than) 5 meV. The
monolayers BiI3, Bi2Te3 and BiITe lie on the convex hull.
The monolayers are degenerate with their layered bulk
parent because the vdW interactions are not captured by
the PBE xc-functional.

Table 2. Thermodynamic stability indicator assigned to all
materials in the C2DB.∆H and∆Hhull denote the heat of
formation and energy above the convex hull, respectively.

Thermodynamic stability
indicator Criterion (eV atom−1)

Low ∆H> 0.2
Medium ∆H< 0.2 and∆Hhull > 0.2
High ∆H< 0.2 and∆Hhull < 0.2

It should be emphasised that the energies of
both monolayers and bulk reference crystals are
calculated with the Perdew-Burke-Ernzerhof (PBE)
xc-functional [56]. This implies that some inac-
curacies must be expected, in particular for mater-
ials with strongly localised d-electrons, e.g. certain
transition metal oxides, and materials for which
dispersive interactions are important, e.g. layered
van der Waals crystals. The latter implies that the
energy of a monolayer and its layered bulk parent (if
such exists in the pool of references) will have the
same energy. For further details and discussions see
reference [6].

2.7. Stability: dynamical
Dynamically stable materials are situated at a local
minimumof the potential energy surface and are thus
stable to small structural perturbations. Structures
resulting from DFT relaxations can end up in saddle
point configurations because of imposed symmetry
constraints or an insufficient number of atoms in the
unit cell.

In C2DB, the dynamical stability is assessed from
the signs of the minimum eigenvalues of (1) the
stiffness tensor (see section 3.1) and (2) the Γ-point

Hessian matrix for a supercell containing 2× 2 repe-
titions of the unit cell (the structure is not relaxed in
the 2× 2 supercell). If one of these minimal eigen-
values is negative the material is classified as dynam-
ically unstable. This indicates that the energy can be
reduced by displacing an atom and/or deforming the
unit cell, respectively. The use of two categories for
dynamical stability, i.e. stable/unstable, differs from
the original version of the C2DB where an interme-
diate category was used for materials with negative
but numerically small minimal eigenvalue of either
the Hessian or stiffness tensors.

3. Improved property methodology

The new version of the C2DB has been generated
using a significantly extended and improved work-
flow for property evaluations. This section focuses on
improvements relating to properties that were already
present in the original version of the C2DB while new
properties are discussed in the next section.

3.1. Stiffness tensor
The stiffness tensor, C, is a rank-4 tensor that relates
the stress of amaterial to the applied strain. InMandel
notation (a variant of Voigt notation) C is expressed
as anN ×N matrix relating theN independent com-
ponents of the stress and strain tensors. For a 2D
material N = 3 and the tensor takes the form:

C=

 Cxxxx Cxxyy

√
2Cxxxy

Cxxyy Cyyyy

√
2Cyyxy√

2Cxxxy

√
2Cyyxy 2Cxyxy

 , (1)

where the indices on the matrix elements refer to the
rank-4 tensor. The factors multiplying the tensor ele-
ments account for their multiplicities in the full rank-
4 tensor. In the C2DB workflow, C is calculated as a
finite difference of the stress under an applied strain
with full relaxation of atomic coordinates. A negat-
ive eigenvalue of C signals a dynamical instability, see
section 2.7.

In the first version of the C2DB only the diagonal
elements of the stiffness tensor were calculated. The
new version also determines the shear components
such that the full 3× 3 stiffness tensor is now avail-
able. This improvement also leads to a more accurate
assessment of dynamical stability [57].

3.2. Effective masses with parabolicity estimates
For all materials with a finite band gap the effective
masses of electrons and holes are calculated for bands
within 100 meV of the conduction band minimum
and valence band maximum, respectively. The Hes-
sian matrices at the band extrema (BE) are determ-
ined by fitting a second order polynomium to the
PBE band structure including SOC, and the effective
masses are obtained by subsequent diagonalisation of
the Hessian. The main fitting-procedure is unaltered
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Figure 5. Left: The PBE band structures of Rh2Br6 and MoS2 (coloured dots) in regions around the conduction band minimum.
The dashed red line shows the fit made to estimate the effective masses of the lowest conduction band. The shaded grey region
highlights the error between the fit and the true band structure. The mean absolute relative error (MARE) discussed in the main
text is calculated for energies within 25 meV of the band minimum. For MoS2 the fit is essentially on top of the band energies.
Right: The distribution of the MARE of all effective mass fits in the C2DB. The inset shows the full distribution on a log scale. As
mentioned in the main text, very large MAREs indicate that the band minimum/maximum was incorrectly identified by the
algorithm and/or that the band is very flat. Only three materials have MAREs> 1000% but these each have several bands for
which the fit fails.

from the first version of C2DB, but two important
improvements have been made.

The first improvement consists in an additional k-
mesh refinement step for better localisation of the BE
in the Brillouin zone. After the location of the BE has
been estimated based on a uniformly sampled band
structure with k-point density of 12 Å, another one-
shot calculation is performed with a denser k-mesh
around the estimated BE positions. This ensures a
more accurate and robust determination of the loc-
ation of the BE, which can be important in cases
with a small but still significant spin–orbit splitting or
when the band is very flat or non-quadratic around
the BE. The second refinement step is the same as
in the first version of C2DB, i.e. the band energies
are calculated on a highly dense k-mesh in a small
disc around the BE, and the Hessian is obtained by
fitting the band energies in the range up to 1 meV
from the BE.

The second improvement is the calculation of the
mean absolute relative error (MARE) of the polyno-
mial fit in a 25 meV range from the BE. The value of
25 meV corresponds to the thermal energy at room
temperature and is thus the relevant energy scale for
many applications. To make the MARE independent
of the absolute position of the band we calculate the
average energy of the band over the 25meV and com-
pare the deviation of the fit to this energy scale. The
MARE provides a useful measure of the parabolicity

of the energy bands and thus the validity of the effect-
ive mass approximation over this energy scale.

Figure 5 shows two examples of band struc-
tures with the effective mass fits and corresponding
fit errors indicated. Additionally, the distribution of
MARE for all the effective mass fits in the C2DB
are presented. Most materials have an insignificant
MARE, but a few materials have very large errors.
Materials with a MARE above a few hundreds of per-
centages fall into two classes. For some materials the
algorithm does not correctly find the position of the
BE. An example is Ti2S2 in the space group C2/m. For
others, the fit and BE location are both correct, but
the band flattens away from the BE which leads to a
large MARE as is the case for Rh2Br6 shown in the
figure or Cl2Tl2 in the space group P-1. In general a
small MARE indicates a parabolic band while materi-
als with large MARE should be handled on a case-by-
case basis.

3.3. Orbital projected band structure
To facilitate a state-specific analysis of the PBE Kohn–
Sham wave functions, an orbital projected band
structure (PBS) is provided to complement the pro-
jected density of states (PDOS). In the PAW meth-
odology, the all-electron wave functions are projec-
ted onto atomic orbitals inside the augmentation
spheres centred at the position of each atom. The
PBS resolves these atomic orbital contributions to the

7



2D Mater. 8 (2021) 044002 M N Gjerding et al

Figure 6. Orbital projected band structure and orbital projected density of states of MoS2 in the H-phase. The pie chart symbols
indicate the fractional atomic orbital character of the Kohn–Sham wave functions.

wave functions as a function of band and k-point
whereas the PDOS resolves the atomic orbital char-
acter of the total density of states as a function of
energy. The SOC is not included in the PBS or PDOS,
as its effect is separately visualised by the spin-PBS
also available in the C2DB.

As an example, figure 6 shows the PBS (left) and
PDOS (right) of monolayer MoS2 calculated with
PBE. The relative orbital contribution to a givenBloch
state is indicated by a pie chart symbol. In the present
example, one can deduce from the PBS that even
though Mo-p orbitals and S-p orbitals contribute
roughly equally to the DOS in the valence band, the
Mo-p orbital contributions are localised to a region in
the BZ around theM-point, whereas the S-p orbitals
contribute throughout the entire BZ.

3.4. Corrected G0W0 band structures
The C2DB contains G0W0 quasiparticle (QP) band
structures of 370 monolayers covering 14 different
crystal structures and 52 chemical elements. The
details of these calculations can be found in the ori-
ginal C2DB paper [6]. A recent in-depth analysis of
the 61.716 G0W0 data points making up the QP band
structures led to several important conclusions relev-
ant for high-throughput G0W0 calculations. In par-
ticular, it identified the linear QP approximation as
a significant error source in standard G0W0 calcu-
lations and proposed an extremely simple correc-
tion scheme (the empirical Z (empZ) scheme), that
reduces this error by a factor of two on average.

The empZ scheme divides the electronic states
into two classes according to the size of the QP
weight, Z. States with Z ∈ [0.5, 1.0] are classified as
QP consistent (QP-c) while states with Z ̸∈ [0.5,1.0]
are classified as QP inconsistent (QP-ic). With this
definition, QP-c states will have at least half of their
spectral weight in the QP peak. The distribution of

the 60.000+ Z-values is shown in figure 7. It turns
out that the linear approximation to the self-energy,
which is the gist of the QP approximation, introduces
significantly larger errors for QP-ic states than for
QP-c states. Consequently, the empZmethod replaces
the calculated Z of QP-ic states with the mean of the
Z-distribution, Z0 ≈ 0.75. This simple replacement
reduces the average error of the linear approximation
from 0.11 to 0.06 eV.

An illustration of the method applied to MoS2 is
shown in figure 7. The original uncorrected G0W0

band structure is shown in blue while the empZ cor-
rected band structure is shown in orange. MoS2 has
only one QP-ic state in the third conduction band at
the K-point. Due to a break-down of the QP approx-
imation for this state, the G0W0 correction is greatly
overestimated leading to a local discontinuity in the
band structure. The replacement of Z by Z0 for this
particular state resolves the problem. All G0W0 band
structures in the C2DB are now empZ corrected.

3.5. Optical absorbance
In the first version of the C2DB, the optical absorb-
ance was obtained from the simple expression [6]

A(ω)≈ ωImα2D(ω)

ϵ0c
, (2)

whereα2D is the long wavelength limit of the in-plane
sheet polarisability density (note that the equation
is written here in SI units). The sheet polarisabil-
ity is related to the sheet conductivity via σ2D(ω) =
−iωα2D(ω). The expression (2) assumes that the elec-
tric field inside the layer equals the incoming field (i.e.
reflection is ignored), and hence, it may overestimate
the absorbance.

In the new version, the absorbance is evaluated
from A= 1−R−T, where R and T are the reflected
and transmitted powers of a plane wave at normal
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Figure 7. Top: Distribution of the 61 716 QP weights (Z)
contained in the C2DB. The blue part of the distribution
shows QP-consistent (QP-c) Z-values while the orange part
shows QP-inconsistent (QP-ic) Z values. In general, the
linear expansion of the self-energy performed when solving
the QP equation works better for Z closer to 1. About 0.3%
of the Z-values lie outside the interval from 0 to 1 and are
not included in the distribution. Bottom: G0W0 band
structure before (blue) and after (orange) applying the
empZ correction, which replaces Z by the mean of the
distribution for QP-ic states. In the case of MoS2 only one
state at K is QP-ic.

incidence, respectively. These can be obtained from
the conventional transfer matrix method applied to
a monolayer suspended in vacuum. The 2D mater-
ial is here modelled as an infinitely thin layer with a
sheet conductivity. Alternatively, it can be modelled
as quasi-2D material of thickness d with a ‘bulk’ con-
ductivity of σ = σ2D/d [58], but the two approaches
yield very similar results, since the optical thickness
of a 2D material is much smaller than the optical
wavelength. Within this model, the expression for the
absorbance of a suspended monolayer with the sheet
conductivity σ2D reads:

A(ω) = Re
{
σ2D(ω)η0

}∣∣∣∣ 2

2+σ2D(ω)η0

∣∣∣∣2 , (3)

where η0 = 1/(ϵ0c)≈ 377 Ω is the vacuum imped-
ance.

If the light–matter interaction is weak, i.e.
|σ2Dη0| ≪ 1, equation (3) reduces to equation (2).

Nonetheless, due the strong light–matter interaction
in some 2D materials, this approximation is not reli-
able in general. In fact, it can be shown that the max-
imum possible absorption from equation (3) is 50%,
which is known as the upper limit of light absorp-
tion in thin films [59]. This limit is not guaranteed
by equation (2), which can even yield an absorbance
above 100%.

As an example, figure 8 shows the absorption
spectrum of monolayer MoS2 for in- and out-of-
plane polarised light as calculated with the exact
equation (3) and the approximate equation (2),
respectively. In all cases the sheet polarisability is
obtained from the BSE to account for excitonic effects
[6]. For weak light–matter interactions, e.g. for the z-
polarised light, the two approaches agree quite well,
but noticeable differences are observed in regions
with stronger light–matter interaction.

4. Newmaterials in the C2DB

In this section we discuss the most significant exten-
sions of the C2DB in terms of new materials. The
set of materials presented here is not complete, but
represents the most important and/or well defined
classes. The materials discussed in sections 4.1 and
4.2 (MXY Janus monolayers and monolayers extrac-
ted from experimental crystal structure databases)
are already included in the C2DB. The materials
described in sections 4.3 and 4.4 (homo-bilayers and
monolayer point defect systems) will soon become
available as separate C2DB-interlinked databases.

4.1. MXY Janus monolayers
The class of TMDC monolayers of the type MX2
(where M is the transition metal and X is a chalco-
gen) exhibits a large variety of interesting and unique
properties and has been widely discussed in the liter-
ature [60]. Recent experiments have shown that it is
not only possible to synthesise different materials by
changing the metal M or the chalcogen X, but also by
exchanging the X on one side of the layer by another
chalcogen (or halogen) [61–63]. This results in a class
of 2D materials known as MXY Janus monolayers
with brokenmirror symmetry and finite out-of-plane
dipolemoments. The prototypicalMXY crystal struc-
tures are shown in figure 9 for the case of MoSSe
and BiTeI, which have both been experimentally real-
ised [61–63]. Adopting the nomenclature from the
TMDCs, the crystal structures are denoted as H- or
T-phase, depending on whether X and Y atoms are
vertically aligned or displaced, respectively.

In a recent work [64], the C2DB workflow was
employed to scrutinise and classify the basic elec-
tronic and optical properties of 224 different MXY
Janus monolayers. All data from the study is avail-
able in the C2DB. Here we provide a brief discussion
of the Rashba physics in these materials and refer the
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Figure 8. Optical absorption of standalone monolayer MoS2 for x/y-polarisation (left) and z-polarisation (right) at normal
incident in the BSE framework, obtained using equation (2) (blue) or equation (3) (orange). The crystal structure cross-sectional
views are shown in the inset with the definition of directions.

Figure 9. Atomic structure of the MXY Janus monolayers in
the H-phase (left) and T-phase (right). The two prototype
materials MoSSe and BiTeI are examples of experimentally
realised monolayers adopting these crystal structures (not
to scale).

interested reader to [64] for more details and analysis
of other properties.

A key issue when considering hypothetical mater-
ials, i.e. materials not previously synthesised, is their
stability. The experimentally synthesised MoSSe and
BiTeI are both found to be dynamically stable and
lie within 10 meV of the convex hull confirming
their thermodynamic stability. Out of the 224 ini-
tial monolayers 93 are classified as stable according to
the C2DB criteria (dynamically stable and ∆Hhull <
0.2 eV atom−1). Out of the 93 stable materials, 70
exhibit a finite band gap when computed with the
PBE xc-functional.

The Rashba effect is a momentum dependent
splitting of the band energies of a 2D semiconductor
in the vicinity of a band extremum arising due to
the combined effect of spin–orbit interactions and
a broken crystal symmetry in the direction perpen-
dicular to the 2D plane. The simplest model used to
describe the Rashba effect is a 2D electron gas in a per-
pendicular electric field (along the z-axis). Close to

the band extremum, the energy of the two spin bands
is described by the Rashba Hamiltonian [65, 66]:

H= αR(σ× k) · êz, (4)

whereσ is the vector of Pauli matrices, k= p/ℏ is the
wave number, and the Rashba parameter is propor-
tional to the electric field strength, αR ∝ E0.

Although the Rashba Hamiltonian is only meant
as a qualitative model, it is of interest to test its valid-
ity on the Janus monolayers. The electric field of
the Rashba model is approximately given by E0 =
∆Vvac/d, where∆Vvac is the shift in vacuumpotential
on the two sides of the layer (see left inset of figure 10)
and d is the layer thickness. Assuming a similar thick-
ness for all monolayers, the electric field is propor-
tional to the potential shift. Not unexpected, the lat-
ter is found to correlate strongly with the difference in
electronegativity of the X and Y atoms, see left panel
of figure 10.

The Rashba energy, ER, can be found by fitting
E(k) = ℏ2k2/2m∗ ±αRk to the band structure (see
right inset of figure 10) and should scale with the elec-
tric field strength. However, as seen from the right
panel of figure 10, there is no correlation between the
two quantities. Hence we conclude that the simple
Rashba model is completely inadequate and that the
strength of the perpendicular electric field cannot be
used to quantify the effect of spin–orbit interactions
on band energies.

4.2. Monolayers from known layered bulk crystals
The C2DB has been extended with a number of
monolayers that are likely exfoliable from experi-
mentally known layered bulk compounds. Specific-
ally, the Inorganic Crystal Structure Database (ICSD)
[67] and CrystallographyOpenDatabase (COD) [68]
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Figure 10. Left: Correlation between the electronegativity difference of X and Y in MXY Janus monolayers and the vacuum level
shift across the layer. Right: Correlation between the Rashba energy and the vacuum level shift. Structures in the H-phase (e.g.
MoSSe) are shown in black while structures in the T-phase (e.g. BiTeI) are shown in orange. The linear fit has the slope
1.35 eV/∆χ (Pauling scale). The insets show the definition of the vacuum level shift and the Rashba energy, respectively.
Modified from [64].

have first been filtered for corrupted, duplicate and
theoretical compounds, which reduce the initial set
of 585.485 database entries to 167.767 unique mater-
ials. All of these have subsequently been assigned a
‘dimensionality score’ based on a purely geometrical
descriptor. If the 2D score is larger than the sum of
0D, 1D and 3D scores we regard the material as being
exfoliable and we extract the individual 2D compon-
ents that comprise the material (see also section 2.2).
We refer to the original work on the method for
details [52] and note that similar approaches were
applied in [11, 12] to identify potentially exfoliable
monolayers from the ICSD and COD.

The search has been limited to bulk compounds
containing less than six different elements and no
rare earth elements. This reduces the set of relevant
bulk materials to 2991. For all of these we extracted
the 2D components containing less than 21 atoms
in the unit cell, which were then relaxed and sorted
for duplicates following the general C2DB workflow
steps described in sections 2.1–2.3. At this point 781
materials remain. This set includes most known 2D
materials and 207 of the 781 were already present
in the C2DB prior to this addition. All the materi-
als (including those that were already in C2DB) have
been assigned an ICSD/COD identifier that refers to
the parent bulk compound fromwhich the 2Dmater-
ial was computationally exfoliated.We emphasise that
we have not considered exfoliation energies in the
analysis and a subset of these materials may thus be
rather strongly bound and challenging to exfoliate
even if the geometries indicate van der Waals bonded
structures of the parent bulk compounds.

Figure 11 shows the distribution of energies
above the convex hull for materials derived from

parent structures in ICSD or COD as well as for the
entire C2DB, which includes materials obtained from
combinatorial lattice decoration as well. As expected,
the materials derived from experimental bulk materi-
als are situated rather close to the convex hull whereas
those obtained from lattice decoration extend to ener-
gies far above the convex hull. It is also observed that
a larger fraction of the experimentally derived mater-
ials are dynamically stable. There are, however, well
known examples of van der Waals bonded structures
where the monolayer undergoes a significant lattice
distortion, which will manifest itself as a dynamical
instability in the present context. For example, bulk
MoS2 exists in van derWaals bonded structures com-
posed of either 2 H-MoS2 or 1 T-MoS2 layers, but a
monolayer of the 1 T phase undergoes a structural
deformation involving a doubling of the unit cell [69]
and is thus categorised as dynamically unstable by
the C2DBworkflow. The dynamically stablematerials
derived from parent bulk structures in the ICSD and
COD may serve as a useful subset of the C2DB that
are likely to be exfoliable from known compounds
and thus facilitate experimental verification. As a first
application the subset has been used to search for
magnetic 2Dmaterials, which resulted in a total of 85
ferromagnets and 61 anti-ferromagnets [70].

4.3. Outlook: multilayers
The C2DB is concerned with the properties of cova-
lently bonded monolayers (see discussion of dimen-
sionality filtering in section 2.2). However, multilayer
structures composed of two or more identical mono-
layers are equally interesting and often have prop-
erties that deviate from those of the monolayer. In
fact, the synthesis of layered vdW structures with a
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Figure 11. Distribution of energies above the convex hull
for the 2D materials extracted from bulk compounds in
ICSD and COD (top) and for the entire C2DB including
those constructed from combinatorial lattice decoration
(bottom). Dynamically stable materials are indicated in
blue.

controllable number of layers represents an interest-
ing avenue for atomic-scale materials design. Several
examples of novel phenomena emerging in layered
vdW structures have been demonstrated including
direct-indirect band gap transitions inMoS2 [71, 72],
layer-parity selective Berry curvatures in few-layer
WTe2 [73], thickness-dependent magnetic order in
CrI3 [74, 75], and emergent ferroelectricity in bilayer
hBN [76].

As a first step towards a systematic exploration of
multilayer 2D structures, the C2DB has been used as
basis for generating homobilayers in various stack-
ing configurations and subsequently computing their
properties following a modified version of the C2DB
monolayer workflow. Specifically, the most stable
monolayers (around 1000) are combined into bilay-
ers by applying all possible transformations (unit
cell preserving point group operations and transla-
tions) of one layer while keeping the other fixed. The
candidate bilayers generated in this way are subject
to a stability analysis, which evaluates the binding
energy and optimal IL distance based on PBE-D3 [77]
total energy calculations keeping the atoms of the
monolayers fixed in their PBE relaxed geometry, see
figures 12 and table 3.

Figure 12. An illustration of the optimisation of the
interlayer (IL) distance for MoS2 in the AA stacking. The
black crosses are the points sampled by the optimisation
algorithm while the blue curve is a spline interpolation of
the black crosses. The inset shows the MoS2 AA stacking
and the definition of the IL distance is indicated with a
black double-sided arrow.

Table 3. Exfoliation energies for selected materials calculated with
the PBE+D3 xc-functional as described in section 4.3 and
compared with the DF2 and rVV10 results from [11]. The
spacegroups are indicated in the column ‘SG’. All numbers are in
units of meV Å−2.

Material SG PBE+D3 DF2 rVV10

MoS2 P-6m2 28.9 21.6 28.8
MoTe2 P-6m2 30.3 25.2 30.4
ZrNBr Pmmn 18.5 10.5 18.5
C P6/mmm 18.9 20.3 25.5
P Pmna 21.9 38.4 30.7
BN P-6m2 18.9 19.4 24.4
WTe2 P-6m2 32.0 24.7 30.0
PbTe P3m1 23.2 27.5 33.0

The calculated IL binding energies are generally in
the range from a few to a hundred meV Å−2 and IL
distances range from1.5 to 3.8 Å. A scatter plot of pre-
liminary binding energies and IL distances is shown
in figure 13. The analysis of homobilayers provides an
estimate of the energy required to peel a monolayer
off a bulk structure. In particular, the binding energy
for the most stable bilayer configuration provides a
measure of the exfoliation energy of the monolayer.
This key quantity is now available for all monolayers
in the C2DB, see section 5.1.

4.4. Outlook: point defects
The C2DB is concerned with the properties of 2D
materials in their pristine crystalline form. How-
ever, as is well known the perfect crystal is an ideal-
ised model of real materials, which always contain
defects in smaller or larger amounts depending on
the intrinsic materials properties and growth condi-
tions. Crystal defects often have a negative impact on
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Figure 13. Scatter plot of the calculated interlayer distance
and binding energies of (homo)bilayers of selected
materials from C2DB. A few well known materials are
highlighted: MoS2, graphene (C2), and hexagonal boron
nitride (hBN). The bilayer binding energies provide an
estimate of the monolayer exfoliation energies, see
section 5.1.

physical properties, e.g. they lead to scattering and life
time-reduction of charge carriers in semiconductors.
However, there are also important situations where
defects play a positive enabling role, e.g. in doping of
semiconductors, as colour centres for photon emis-
sion [78, 79] or as active sites in catalysis.

To reduce the gap between the pristine model
material and real experimentally accessible samples,
a systematic evaluation of the basic properties of the
simplest native point defects in a selected subset of
monolayers from the C2DB has been initiated. The
monolayers are selected based on the stability of the
pristine crystal. Moreover, only non-magnetic semi-
conductors with a PBE band gap satisfying Egap >
1 eV are currently considered as such materials are
candidates for quantum technology applications like
single-photon sources and spin qubits. Following
these selection criteria around 300 monolayers are
identified and their vacancies and intrinsic substitu-
tional defects are considered, yielding a total of about
1500 defect systems.

Each defect system is subject to the same work-
flow, which is briefly outlined below. To enable point
defects to relax into their lowest energy configuration,
the symmetry of the pristine host crystal is intention-
ally broken by the chosen supercell, see figure 14 (a).
In order tominimise defect–defect interaction, super-
cells are furthermore chosen such that the minimum
distance between periodic images of defects is larger
than 15 Å. Unique point defects are created based on
the analysis of equivalent Wyckoff positions for the
host material. To illustrate some of the properties that
will feature in the upcoming point defect database, we
consider the specific example of monolayer CH2Si.

First, the formation energy [80, 81] of a given
defect is calculated from PBE total energies. Next,

Slater–Janak transition state theory is used to obtain
the charge transition levels [82, 83]. By combining
these results, one obtains the formation energy of
the defect in all possible charge states as a function
of the Fermi level. An example of such a diagram is
shown in figure 14 (b) for the case of the VC and CSi
defects in monolayer CH2Si. For each defect and each
charge state, the PBE single-particle energy level dia-
gram is calculated to provide a qualitative overview of
the electronic structure. A symmetry analysis [84] is
performed for the defect structure and the individual
defect states lying inside the band gap. The energy
level diagram of the neutral VSi defect in CH2Si is
shown in figure 14 (c), where the defect states are
labelled according to the irreducible representations
of the Cs point group.

In general, excited electronic states can be mod-
elled by solving the Kohn–Sham equations with non-
Aufbau occupations. The excited-state solutions are
saddle points of the Kohn–Sham energy functional,
but common self-consistent field (SCF) approaches
often struggle to find such solutions, especially when
nearly degenerate states are involved. The calcula-
tion of excited states corresponding to transitions
between localised states inside the band gap is there-
fore performed using an alternative method based
on the direct optimisation (DO) of orbital rotations
in combination with the maximum overlap method
(MOM) [85]. This method ensures fast and robust
convergence of the excited states, as compared to SCF.
In figure 14 (d), the reorganisation energies for the
ground and excited state, as well as the zero-phonon
line (ZPL) energy are sketched. For the specific case of
the Si vacancy inCH2Si, theDO-MOMmethod yields
EZPL = 3.84 eV, λ

reorg
gs = 0.11 eV and λreorgexc = 0.16 eV.

For systems with large electron-phonon coupling (i.e.
Huang–Rhys factor > 1) a one-dimensional approx-
imation for displacements along the main phonon
mode is used to produce the configuration coordin-
ate diagram (see figure 14 (d)). In addition to the ZPL
energies and reorganisation energies, the Huang–
Rhys factors, photoluminescence spectrum from the
1D phonon model, hyperfine coupling and zero field
splitting are calculated.

5. New properties in the C2DB

This section reports on new properties that have
become available in the C2DB since the first release.
The employed computational methodology is
described in some detail and results are compared
to the literature where relevant. In addition, some
interesting property correlations are considered along
with general discussions of the general significance
and potential application of the available data.

5.1. Exfoliation energy
The exfoliation energy of a monolayer is estimated as
the binding energy of its bilayer in the most stable
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Figure 14. Overview of some of the properties included in the 2D defect database project for the example host material CH2Si.
(a) The supercell used to represent the defects (here a Si vacancy). The supercell is deliberately chosen to break the symmetry of
the host crystal lattice. (b) Formation energies of a C vacancy (green) and C–Si substitutional defect (purple). (c) Energy and
orbital symmetry of the localised single-particle states of the VSi defect for both spin channels (left and right). The Fermi level is
shown by the dotted line. (d) Schematic excited state configuration energy diagram. The transitions corresponding to the vertical
absorption and the zero-phonon emission are indicated.

stacking configuration (see also section 4.3). The
binding energy is calculated using the PBE+D3 xc-
functional [86] with the atoms of both monolayers
fixed in the PBE relaxed geometry. Table 3 compares
exfoliation energies obtained in this way to values
from Mounet et al [11] for a representative set of
monolayers.

5.2. Bader charges
For all monolayers we calculate the net charge on the
individual atoms using the Bader partitioning scheme
[87]. The analysis is based purely on the electron
density, which we calculate from the PAW pseudo
density plus compensation charges using the PBE xc-
functional. Details of the method and its implement-
ation can be found in Tang et al [88]. In section 5.4
we compare and discuss the relation between Bader
charges and Born charges.

5.3. Spontaneous polarisation
The spontaneous polarisation (Ps) of a bulk mater-
ial is defined as the charge displacement with respect
to that of a reference centrosymmetric structure
[89, 90]. Ferroelectric materials exhibit a finite value

of Ps that may be switched by an applied external field
and have attracted a large interest for a wide range of
applications [91–93].

The spontaneous polarisation in bulk materials
can be regarded as electric dipole moment per unit
volume, but in contrast to the case of finite systems
this quantity is ill-defined for periodic crystals [89].
Nevertheless, one can define the formal polarisation
density:

P=
1

2π

e

V

∑
l

ϕlal, (5)

where al (with l ∈ {1,2,3 }) are the lattice vectors
spanning the unit cell,V is the cell volume and e is the
elementary charge. ϕl is the polarisation phase along
the lattice vector defined by:

ϕl =
∑
i

Zibl ·ui −ϕelecl , (6)

where bl is the reciprocal lattice vector satisfying bl ·
Rl = 2π and ui is the position of nucleus iwith charge
eZi. The electronic contribution to the polarisation
phase is defined as:
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Figure 15. Depicted in the blue plot is the formal
polarisation calculated along the adiabatic path for GeSe,
using the methods described in the main text. The orange
plot shows the energy potential along the path as well as
outside. Figure inset: The structure of GeSe in the two
non-centrosymmetric configurations corresponding to
−Ps and Ps and the centrosymmetric configuration.

ϕelecl =
1

Nk⊥bl
Im

∑
k∈BZ⊥bl

× ln
Nk∥bl−1∏
j=0

det
occ

[
⟨unk+jδk⟩

∣∣umk+( j+1)δk

]
,

(7)

where BZ⊥bl = {k|k · bl = 0} is a plane of k-points
orthogonal to bl, δk is the distance between neigh-
bouring k-points in the bl direction andNk∥bl (Nk⊥bl)
is the number of k-points along (perpendicular to)
the bl direction. These expression generalise straight-
forwardly to 2D.

The formal polarisation is onlywell-definedmod-
ulo eRn/V where Rn is any lattice vector. However,
changes in polarisation are well defined and the spon-
taneous polarisation may thus be obtained by:

Ps =

ˆ 1

0

dP(λ)

dλ
dλ, (8)

where λ is a dimensionless parameter that defines an
adiabatic structural path connecting the polar phase
(λ= 1) with a non-polar phase (λ= 0).

The methodology has been implemented in
GPAW and used to calculate the spontaneous polar-
isation of all stable materials in the C2DB with a PBE
band gap above 0.01 eV and a polar space group
symmetry. For each material, the centrosymmetric
phase with smallest atomic displacement from the
polar phase is constructed and relaxed under the con-
straint of inversion symmetry. The adiabatic path
connecting the two phases is then used to calculate the
spontaneous polarisation using equations (5)–(8). An
example of a calculation forGeSe is shown in figure 15
where the polarisation along the path connecting
two equivalent polar phases via the centrosymmet-
ric phase is shown together with the total energy. The

spontaneous polarisation obtained from the path is
39.8 nCm−1 in good agreement with previous calcu-
lations [94].

5.4. Born charges
The Born charge of an atom a at position ua in a solid
is defined as:

Za
ij =

V

e

∂Pi
∂uaj

∣∣∣∣∣
E=0

. (9)

It can be understood as an effective charge assigned to
the atom to match the change in polarisation in dir-
ection i when its position is perturbed in direction j.
Since the polarisation density and the atomic position
are both vectors, the Born charge of an atom is a rank-
2 tensor. The Born charge is calculated as a finite dif-
ference and relies on the Modern theory of polarisa-
tion [95] for the calculation of polarisation densities,
see reference [96] for more details. The Born charge
has been calculated for all stable materials in C2DB
with a finite PBE band gap.

It is of interest to examine the relation between the
Born charge and the Bader charge (see section 5.2). In
materials with strong ionic bonds one would expect
the charges to follow the atoms. On the other hand,
in covalently bonded materials the hybridisation pat-
tern and thus the charge distribution, depends on the
atom positions in a complex way, and the idea of
charges following the atom is expected to break down.
In agreement with this idea, the (in-plane) Born
charges in the strongly ionic hexagonal hBN (± 2.71e
for B and N, respectively) are in good agreement
with the calculated Bader charges (± 3.0e). In con-
trast, (the in-plane) Born charges in MoS2 (−1.08e
and 0.54e for Mo and S, respectively) deviate signi-
ficantly from the Bader charges (1.22e and−0.61e for
Mo and S, respectively). In fact, the values disagree
even on the sign of the charges underlining the non-
intuitive nature of the Born charges in covalently bon-
ded materials.

Note that the out-of-plane Born charges never
match the Bader charges, even for strongly ionic insu-
lators, and are consistently smaller in value than the
in-plane components. The smaller out-of-plane val-
ues are consistent with the generally smaller out-of-
plane polarisability of 2D materials (for both elec-
tronic and phonon contributions) and agrees with the
intuitive expectation that it is more difficult to polar-
ise a 2Dmaterial in the out-of-plane direction as com-
pared to the in-plane direction.

Figure 16 shows the average of the diagonal of
the Born charge tensor, Tr(Za)/3, plotted against the
Bader charges for all 585 materials in the C2DB for
which the Born charges have been computed. The
data points have been coloured according to the ion-
icity of the atom a defined as I(a) = |χa −⟨χ⟩|, where
χa and ⟨χ⟩ are the Pauling electronegativity of atom
a and the average electronegativity of all atoms in the
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Figure 16. Born charges, Tr(Z)/3, vs. Bader charges for
3025 atoms in the 585 materials for which the Born charges
are calculated. The colors indicate the ionicity of the atoms
(see main text).

Figure 17. Bader and in-plane Born charges vs. band gap.

unit cell, respectively. The ionicity is thus a measure
of the tendency of an atom to donate/accept charge
relative to the average tendency of atoms in themater-
ial. It is clear from figure 16 that there is a larger
propensity for the Born and Bader charges to match
in materials with higher ionicity.

Figure 17 plots the average (in-plane) Born charge
and the Bader charge versus the band gap. It is clear
that large band gap materials typically exhibit integer
Bader charges, whereas there is no clear correlation
between the Born charge and the band gap.

5.5. Infrared polarisability
The original C2DB provided the frequency depend-
ent polarisability computed in the random phase
approximation (RPA) with inclusion of electronic
interband and intraband (for metals) transitions [6].
However, phonons carrying a dipole moment (so-
called IR active phonons) also contribute to the polar-
isability at frequencies comparable to the frequency of
optical phonons. This response is described by the IR
polarisability:

Figure 18. Total polarisability, including both electrons and
phonons, of monolayer hBN in the infrared (IR) frequency
regime. The resonance at around 180 meV is due to the
Γ-point longitudinal optical phonon. At energies above all
phonon frequencies (but below the band gap) the
polarisability is approximately constant and equal to the
static limit of the electronic polarisability, α∞.

αIR(ω) =
e2

A
ZTM−1/2

(∑
i

did
T
i

ω2i −ω2− iγω

)
M−1/2Z,

(10)

whereZ andM arematrix representations of the Born
charges and atomicmasses,ω2i and di are eigenvectors
and eigenvalues of the dynamical matrix, A is the in-
plane cell area and γ is a broadening parameter rep-
resenting the phonon lifetime and is set to 10 meV.
The total polarisability is then the sum of the elec-
tronic polarisability and the IR polarisability.

The new C2DB includes the IR polarisability of
all monolayers for which the Born charges have been
calculated (stable materials with a finite band gap),
see section (5.4). As an example, figure 18 shows the
total polarisability of monolayer hexagonal hBN. For
details on the calculation of the IR polarisability see
reference [96].

5.6. Piezoelectric tensor
The piezoelectric effect is the accumulation of
charges, or equivalently the formation of an electric
polarisation, in a material in response to an applied
mechanical stress or strain. It is an importantmaterial
characteristic with numerous scientific and techno-
logical applications in sonar, microphones, acceler-
ometers, ultrasonic transducers, energy conversion,
etc [97, 98]. The change in polarisation originates
from the movement of positive and negative charge
centres as the material is deformed.

Piezoelectricity can be described by the (proper)
piezoelectric tensor cijk with i, j,k ∈ {x,y,z}, given by
[99]:

cijk =
e

2πV

∑
l

∂ϕl
∂ϵjk

ali, (11)

which differs from equation (5) only by a derivative of
the polarisation phasewith respect to the strain tensor
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Table 4. Comparison of computed piezoelectric tensor versus
experimental values and previous calculations for hexagonal BN
and a selected set of TMDCs (space group 187). All numbers are
in units of nC/m. Experimental data for MoS2 is obtained from
[102].

Material Exp. Theory [101] C2DB

BN — 0.14 0.13
MoS2 0.3 0.36 0.35
MoSe2 — 0.39 0.38
MoTe2 — 0.54 0.48
WS2 — 0.25 0.24
WSe2 — 0.27 0.26
WTe2 — 0.34 0.34

ϵjk. Note that cijk does not depend on the chosen
branch cut.

The piezoelectric tensor is a symmetric
tensor with at most 18 independent components.
Furthermore, the point group symmetry restricts the
number of independent tensor elements and their
relationships due to the well-knownNeumann’s prin-
ciple [100]. For example, monolayerMoS2 with point
group D3h, has only one non-vanishing independ-
ent element of cijk. Note that cijk vanishes identic-
ally for centrosymmetric materials. Using a finite-
difference technique with a finite but small strain
(1% in our case), equation (11) has been used to
compute the proper piezoelectric tensor for all non-
centrosymmetric materials in the C2DB with a finite
band gap. Table 4 shows a comparison of the piezo-
electric tensors in the C2DB with literature for a
selected set of monolayer materials. Good agreement
is obtained for all these materials.

5.7. Topological invariants
For all materials in the C2DB exhibiting a direct band
gap below 1 eV, the k-space Berry phase spectrum
of the occupied bands has been calculated from the
PBE wave functions. Specifically, a particular k-point
is written as k1b1+ k2b2 and the Berry phases γn(k2)
of the occupied states on the path k1 = 0→ k1 = 1 is
calculated for each value of k2. The connectivity of
the Berry phase spectrum determines the topological
properties of the 2D Bloch Hamiltonian [103, 104].

The calculated Berry phase spectra of the relev-
ant materials are available for visual inspection on the
C2DB webpage. Three different topological invari-
ants have been extracted from these spectra and are
reported in the C2DB: (1) The Chern number, C,
takes an integer value and is well defined for any
gapped 2D material. It determines the number of
chiral edge states on any edge of the material. For any
non-magnetic material the Chern number vanishes
due to time-reversal symmetry. It is determined from
the Berry phase spectrum as the number of crossings
at any horizontal line in the spectrum. (2) The mir-
ror Chern number, CM , defined for gapped mater-
ials with a mirror plane in the atomic layer [105].
For such materials, all states may be chosen as mirror

eigenstates with eigenvalues ±i and the Chern num-
bers C± can be defined for each mirror sector separ-
ately. For a material with vanishing Chern number,
the mirror Chern number is defined as CM = (C+ −
C−)/2 and takes an integer value corresponding to
the number of edge states on any mirror symmetry
preserving edge. It is obtained from the Berry phase
spectrum as the number of chiral crossings in each
of the mirror sectors. (3) The Z2 invariant, ν, which
can take the values 0 and 1, is defined for materi-
als with time-reversal symmetry. Materials with ν= 1
are referred to as quantum spin Hall insulators and
exhibit helical edge states at any time-reversal con-
serving edge. It is determined from the Berry phase
spectrum as the number of crossing points modulus
2 at any horizontal line in the interval k2 ∈ [0, 1/2].

Figure 19 shows four representative Berry phase
spectra corresponding to the three cases of non-
vanishing C, CM and ν as well as a trivial insulator.
The four materials are: OsCl3 (space group 147)—
a Chern insulator with C= 1, OsTe2 (space group
14)—a mirror crystalline insulator with CM = 2, SbI
(spacegroup 1)—a quantum spin Hall insulator with
ν= 1 and BiITe (spacegroup 156)—a trivial insulator.
Note that a gap in the Berry phase spectrum always
implies a trivial insulator.

In [106] the C2DB was screened for materi-
als with non-trivial topology. At that point it was
found that the database contained 7 Chern insulat-
ors, 21 mirror crystalline topological insulators and
48 quantum spin Hall insulators. However, that does
not completely exhaust the the topological proper-
ties of materials in the C2DB. In particular, there
may be materials that can be topologically classified
based on crystalline symmetries other than themirror
plane of the layer. In addition, second order topolo-
gical effectsmay be present in certainmaterials, which
imply that flakes will exhibit topologically protected
corner states. Again, the Berry phase spectra may be
used to unravel the second order topology by means
of nested Wilson loops [107].

5.8. Exchange coupling constants
The general C2DB workflow described in
sections 2.1–2.3 will identify the FM ground state
of a material and apply it as starting point for sub-
sequent property calculations, whenever it is more
stable than the spin-paired ground state. In reality,
however, the FM state is not guaranteed to comprise
the magnetic ground state. In fact, AFM states often
have lower energy than the FM one, but in general
it is non-trivial to obtain the true magnetic ground
state. We have chosen to focus on the FM state due
to its simplicity and because its atomic structure and
stability are often very similar to those of other mag-
netic states. Whether or not the FM state is the true
magnetic ground state is indicated by the nearest
neighbour exchange coupling constant as described
below.
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Figure 19. Berry phase spectra of the Chern insulator OsCl3 (top left), the crystalline topological insulator OsTe2 (top right), the
quantum spin Hall insulator SbI (lower left) and the trivial insulator BiITe (lower right).

When investigating magnetic materials the ther-
modynamical properties (for example the critical
temperatures for ordering) are of crucial interest. In
two dimensions the Mermin–Wagner theorem [108]
comprises an extreme example of the importance of
thermal effects since it implies that magnetic order
is only possible at T= 0 unless the spin-rotational
symmetry is explicitly broken. The thermodynamic
properties cannot be accessed directly by DFT. Con-
sequently, magnetic models that capture the crucial
features of magnetic interactions must be employed.
For insulators, the Heisenberg model has proven
highly successful in describing magnetic properties
of solids in 3D as well as 2D [109]. It represents the
magnetic degrees of freedom as a lattice of localised
spins that interact through a set of exchange coup-
ling constants. If the model is restricted to include
only nearest neighbour exchange and assume mag-
netic isotropy in the plane, it reads:

H=− J

2

∑
⟨ij⟩

Si · Sj −
λ

2

∑
⟨ij⟩

SziS
z
j −A

∑
i

(
Szi
)2
, (12)

where J is the nearest neighbour exchange constant,
λ is the nearest neighbour anisotropic exchange con-
stant andAmeasures the strength of single-ion aniso-
tropy. We also neglect off-diagonal exchange coup-
ling constants that give rise to terms proportional to
Sxi S

y
j , S

y
i S

z
j and SziS

x
j . The out-of-plane direction has

been chosen as z and ⟨ij⟩ implies that for each site i
we sum over all nearest neighbour sites j. The para-
meters J, λ and A may be obtained from an energy
mapping analysis involving four DFT calculations
with different spin configurations [70, 110, 111]. The
thermodynamic properties of the resulting ‘first prin-
ciples Heisenberg model’ may subsequently be ana-
lysedwith classicalMonte Carlo simulations or renor-
malised spin wave theory [36, 112].

The C2DB provides the values of J, λ, and A as
well as the number of nearest neighbours Nnn and
the maximum eigenvalue of Sz (S), which is obtained
from the total magnetic moment per atom in the
FM ground state (rounded to nearest half-integer for
metals). These key parameters facilitate easy post-
processing analysis of thermal effects on themagnetic
structure. In [113] such an analysis was applied to
estimate the critical temperature of all FM materials
in the C2DB based on a model expression for TC and
the parameters from equation (12).

For metals, the Heisenberg parameters available
in C2DB should be used with care because the Heis-
enberg model is not expected to provide an accur-
ate description of magnetic interactions in this case.
Nevertheless, even for metals the sign and magnitude
of the parameters provide an important qualitative
measure of the magnetic interactions that may be
used to screen and select materials for more detailed
investigations of magnetic properties.
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A negative value of J implies the existence of an
AFM state with lower energy than the FM state used
in C2DB. This parameter is thus crucial to consider
when judging the stability and relevance of a mater-
ial classified as magnetic in C2DB (see section 2.5).
Figure 20 shows the distribution of exchange coupling
constants (weighted by S2) of the magnetic materials
in the C2DB. The distribution is slightly skewed to the
positive side indicating that FM order is more com-
mon than AFM order.

The origin ofmagnetic anisotropymay stem from
either single-ion anisotropy or anisotropic exchange
and it is in general difficult a priori to determ-
ine, which mechanism is most important. There
is, however, a tendency in the literature to neglect
anisotropic exchange terms in a Heisenberg model
description of magnetism and focus solely on the
single-ion anisotropy. In figure 20 we show a scat-
ter plot of the anisotropy parameters A and λ for the
FM materials (J> 0). The spread of the parameters
indicate that the magnetic anisotropy is in general
equally likely to originate from both mechanisms
and neglecting anisotropic exchange is not advis-
able. For ferromagnets, the model (equation (12))
only exhibits magnetic order at finite temperatures if
A(2S− 1)+λNnn > 0 [113]. Neglecting anisotropic
exchange thus excludes materials with A< 0 that sat-
isfiesA(2S− 1)+λNnn > 0. This is in fact the case for
11 FM insulators and 31 FM metals in the C2DB.

5.9. Raman spectrum
Raman spectroscopy is an important technique used
to probe the vibrational modes of a solid (or
molecule) by means of inelastic scattering of light
[114]. In fact, Raman spectroscopy is the domin-
ant method for characterising 2D materials and can
yield detailed information about chemical composi-
tion, crystal structure and layer thickness. There exist
several different types of Raman spectroscopies that
differ mainly by the number of photons and phon-
ons involved in the scattering process [114]. The first-
order Raman process, in which only a single phonon
is involved, is the dominant scattering process in
samples with low defect concentrations.

In a recent work, the first-order Raman spec-
tra of 733 monolayer materials from the C2DB were
calculated, and used as the basis for an automatic
procedure for identifying a 2D material entirely from
its experimental Raman spectrum [115]. The Raman
spectrum is calculated using third-order perturba-
tion theory to obtain the rate of scattering processes
involving creation/annihilation of one phonon and
two photons, see reference [115] for details. The
light field is written as F(t) = Finuin exp(−iωint)+
Foutuout exp(−iωoutt)+c.c. where Fin/out and ωin/out
denote the amplitudes and frequencies of the
input/output electromagnetic fields, respectively. In
addition, uin/out =

∑
i u

i
in/outei are the correspond-

ing polarisation vectors, where ei denotes the unit

Figure 20. Top: Distribution of exchange coupling
constants in C2DB. Bottom: Single-ion anisotropy A vs
anisotropic exchange λ for ferromagnetic materials with
S> 1/2. The shaded area indicates the part of parameter
space where the model (equation (12)) does not yield an
ordered state at finite temperatures.

vector along the i-direction with i ∈ {x,y,z}. Using
this light field, the final expression for the Stokes
Raman intensity involving scattering events by only
one phonon reads [115]:

I(ω) = I0
∑
ν

nν + 1

ων

∣∣∣∣∑
ij

uiinR
ν
iju

j
out

∣∣∣∣2 δ(ω−ων).

(13)

Here, I0 is an unimportant constant (since Raman
spectra are always reported normalised), and nν
is obtained from the Bose–Einstein distribution,
i.e. nν ≡ (exp[ℏων/kBT]− 1)−1 at temperature T
for a Raman mode with energy ℏων . Note that
only phonons at the Brillouin zone center (with
zero momentum) contribute to the one-phonon
Raman processes due tomomentum conservation. In
equation (13), Rν

ij is the Raman tensor for phonon
mode ν, which involves electron–phonon and dipole
matrix elements as well as the electronic trans-
ition energies and the incident excitation frequency.
Equation (13) has been used to compute the Raman
spectra of the 733 most stable, non-magnetic mono-
layers in C2DB for a range of excitation frequen-
cies and polarisation configurations. Note that the
Raman shift ℏω is typically expressed in cm−1 with
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Figure 21. Comparison of the calculated and experimental (extracted from [62]) Raman spectrum of MoS2 (left) and MoSSe
(right). The excitation wavelength is 532 nm, and both the polarisation of both the incoming and outgoing photons are along the
y-direction. The Raman peaks are labelled according to the irreducible representations of the corresponding vibrational modes.
Adapted from [115].

1 meV equivalent to 8.0655 cm−1. In addition, for
generating the Raman spectra, we have used a Gaus-
sian [G(ω) = (σ

√
2π)−1 exp(−ω2/2σ2)] with a vari-

ance σ= 3 cm−1 to replace the Dirac delta function,
which accounts for the inhomogeneous broadening
of phonon modes.

As an example, figure 21 shows the calcu-
lated Raman spectrum of monolayer MoS2 and the
Janus monolayer MoSSe (see section 4.1). Experi-
mental Raman spectra extracted from reference [62]
are shown for comparison. For both materials,
good agreement between theory and experiment is
observed for the peak positions and relative amp-
litudes of the main peaks. The small deviations can
presumably be attributed to substrate interactions
and defects in the experimental samples as well as
the neglect of excitonic effects in the calculations.
The qualitative differences between the Raman spec-
tra can be explained by the different point groups
of the materials (C3v and D3h, respectively), see ref-
erence [115]. In particular, the lower symmetry of
MoSSe results in a lower degeneracy of its vibrational
modes leading tomore peaks in the Raman spectrum.

Very recently, the Raman spectra computed
from third order perturbation theory as described
above, were supplemented by spectra obtained from
the more conventional Kramers–Heisenberg–Dirac
(KHD) approach. Within the KHD method, the
Raman tensor is obtained as the derivative of the static
electric polarisability (or equivalently, the susceptib-
ility) along the vibrational normal modes [116, 117]:

Rν
ij =

∑
αl

∂χ
(1)
ij

∂rαl

vναl√
Mα

. (14)

Here, χ(1)
ij is the (first-order) susceptibility tensor, rα

and Mα are the position and atomic mass of atom

α, respectively, and vναl is the eigenmode of phonon
ν. The two approaches, i.e. the KHD and third-order
perturbation approach, can be shown to be equi-
valent [114], at least when local field effects can be
ignored as is typically the case for 2D materials [35].
We have also confirmed this equivalence from our
calculations. Furthermore, the computational cost of
both methods is also similar [115]. However, the
KHD approach typically converge faster with respect
to both the number of bands and k-grid compared
to the third-order perturbation method. This stems
from the general fact that higher-order perturba-
tion calculations converge slower with respect to k-
grid and they require additional summations over a
complete basis set (virtual states) and hence a lar-
ger number of bands [118]. Currently, Raman spec-
tra from both approaches can be found at the C2DB
website.

5.10. Second harmonics generation
Nonlinear optical (NLO) phenomena such as har-
monic generation, Kerr, and Pockels effects are
of great technological importance for lasers, fre-
quency converters, modulators, etc. In addition,
NLO spectroscopy has been extensively employed
to obtain insight into materials properties [119]
that are not accessible by e.g. linear optical spec-
troscopy. Among numerous nonlinear processes,
second-harmonic generation (SHG) has been widely
used for generating new frequencies in lasers as well
as identifying crystal orientations and symmetries.

Recently, the SHG spectrum was calculated for
375 non-magnetic, non-centrosymmetric semicon-
ducting monolayers of the C2DB, and multiple 2D
materials with giant optical nonlinearities were iden-
tified [120]. In the SHGprocess, two incident photons
at frequency ω generate an emitted photon at fre-
quency of 2ω. Assume that a mono-harmonic electric
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Figure 22. (Left panel) SHG spectra of monolayer Ge2Se2, where only non-vanishing independent tensor elements are shown.
The vertical dashed lines mark ℏω= Eg /2 and ℏω= Eg , respectively. The crystal structure of Ge2Se2 structure is shown in the
inset. (Right panel) The rotational anisotropy of the static (ω= 0) SHG signal for parallel (blue) and perpendicular (red)
polarisation configurations with θ defined with respect to the crystal x-axis.

field writtenF(t) =
∑

iFieie−iωt+c.c. is incident on
the material, where ei denotes the unit vector along
direction i∈ {x, y, z}. The electric field induces a SHG
polarisation density P(2), which can be obtained from

the quadratic susceptibility tensor χ(2)
ijk ,

P(2)i (t) = ϵ0
∑
jk

χ
(2)
ijk (ω,ω)FiFje

−2iωt + c.c., (15)

where ε0 denotes the vacuum permittivity. χ(2)
ijk is a

symmetric (due to intrinsic permutation symmetry

i.e. χ(2)
ijk = χ

(2)
ijk ) rank-3 tensor with at most 18 inde-

pendent elements. Furthermore, similar to the piezo-
electric tensor, the point group symmetry reduces the
number of independent tensor elements.

In the C2DB, the quadratic susceptibility is calcu-
lated using density matrices and perturbation theory
[118, 121] with the involved transition dipole mat-
rix elements and band energies obtained from DFT.
The use of DFT single-particle orbitals implies that
excitonic effects are not accounted for. The number
of empty bands included in the sum over bands was
set to three times the number of occupied bands.
The width of the Fermi–Dirac occupation factor was
set to kBT= 50 meV, and a line-shape broadening
of η= 50 meV was used in all spectra. Furthermore,
time-reversal symmetry was imposed in order to
reduce the k-integrals to half the BZ. For various 2D
crystal classes, it was verified by explicit calculation
that the quadratic tensor elements fulfil the expec-
ted symmetries, e.g. that they all vanish identically for
centrosymmetric crystals.

As an example, the calculated SHG spectra for
monolayer Ge2Se2 is shown in figure 22 (left panel).

Monolayer Ge2Se2 has five independent tensor ele-

ments, χ(2)
xxx, χ

(2)
xyy , χ

(2)
xzz , χ

(2)
yyx = χ

(2)
yxy , and χ

(2)
zzx =

χ
(2)
zxz , since it is a group-IV dichalcogenide with an
orthorhombic crystal structure (space group 31 and
point group C2v). Note that, similar to the linear
susceptibility, the bulk quadratic susceptibility (with
SI units of mV−1) is ill-defined for 2D materi-
als (since the volume is ambiguous) [120]. Instead,
the unambiguous sheet quadratic susceptibility (with
SI units of m2 V−1) is evaluated. In addition to
the frequency-dependent SHG spectrum, the angu-
lar dependence of the static (ω= 0) SHG intens-
ity at normal incidence for parallel and perpendic-
ular polarisations (relative to the incident electric
field) is calculated, see figure 22 (right panel). Such
angular resolved SHG spectroscopy has been widely
used for determining the crystal orientation of 2D
materials. The calculated SHG spectra for all non-
vanishing inequivalent polarisation configurations
and their angular dependence, are available in the
C2DB.

Since C2DB has already gathered various mater-
ial properties of numerous 2D materials, it provides
a unique opportunity to investigate interrelations
between different material properties. For example,
the strong dependence of the quadratic optical
response on the electronic band gap was demon-
strated on basis of the C2DB data [120]. As another
example of a useful correlation, the static quadratic
susceptibility is plotted versus the static linear sus-
ceptibility for 67 TMDCs (with formula MX2, space
group 187) in figure 23. Note that for materials with
several independent tensor elements, only the largest
is shown. There is a very clear correlation between
the two quantities. This is not unexpected as both

21



2D Mater. 8 (2021) 044002 M N Gjerding et al

Figure 23. Scatter plot (double log scale) of the static sheet

quadratic susceptibility |χ(2)
ijk | versus the static sheet linear

susceptibility |χ(1)
ij | for 67 TMDCs (with chemical formula

MX2 and space group 187). A few well known materials are
highlighted.

the linear and quadratic optical responses are func-
tions of the transition dipole moments and transition
energies. More interestingly, the strength of the quad-
ratic response seems to a very good approximation to
be given by a universal constant times the linear sus-
ceptibility to the power of three (ignoring polarisation
indices), i.e.

χ(2)(0,0)≈ Aχ(1)(0)3, (16)

where A is only weakly material dependent. Note that
this scaling law is also known in classical optics as
semi-empirical Miller’s rule for non-resonant quad-
ratic responses [122], which states that the second
order electric susceptibility is proportional to the
product of the first-order susceptibilities at the three
frequencies involved.

6. Machine learning properties

In recent years, material scientists have shown great
interest in exploiting the use of machine learning
(ML) techniques for predicting materials properties
and guiding the search for new materials. ML is the
scientific study of algorithms and statistical models
that computer systems can use to perform a specific
task without using explicit instructions but instead
relying on patterns and inference. Within the domain
of materials science, one of the most frequent prob-
lems is the mapping from atomic configuration to
material property, which can be used e.g. to screen
large material spaces in search of optimal candidates
for specific applications [123, 124].

In the ML literature, the mathematical represent-
ation of the input observations is often referred to as
a fingerprint. Any fingerprint must satisfy a number
of general requirements [125]. In particular, a finger-
print must be:

(a) Complete: The fingerprint should incorporate all
the relevant input for the underlying problem,
i.e. materials with different properties should
have different fingerprints.

(b) Compact: The fingerprint should contain no or
a minimal number of features redundant to the
underlying problem. This includes being invari-
ant to rotations, translations and other trans-
formations that leave the properties of the system
invariant.

(c) Descriptive: Materials with similar target values
should have similar fingerprints.

(d) Simple: The fingerprint should be efficient to
evaluate. In the present context, this means that
calculating the fingerprint should be signific-
antly faster than calculating the target property.

Several types of atomic-level materials finger-
prints have been proposed in the literature, includ-
ing general purpose fingerprints based on atom-
istic properties [126, 127] possibly encoding inform-
ation about the atomic structure, i.e. atomic pos-
itions [125, 128, 129], and specialised fingerprints
tailored for specific applications (materials/proper-
ties) [130, 131].

The aim of this section is to demonstrate how
the C2DB may be utilised for ML-based prediction
of general materials properties. Moreover, the study
serves to illustrate the important role of the finger-
print for such problems. The 2Dmaterials are repres-
ented using three different fingerprints: two popular
structural fingerprints and a more advanced finger-
print that encodes information about the electronic
structure via the PDOS. The target properties include
the HSE06 band gap, the PBE heat of formation
(∆H), the exciton binding energy (EB) obtained from
the many-body BSE, the in-plane static polarisability
calculated in the RPA averaged over the x and y polar-
isation directions (⟨αi⟩), and the in-plane Voigt mod-
ulus (⟨Cii⟩) defined as 14 (C11+C22+ 2C12), whereCij

is a component of the elastic stiffness tensor in Man-
del notation.

To introduce the data, figure 24 shows pair-plots
of the dual-property relations of these properties. The
plots in the diagonal show the single-property histo-
grams, whereas the off-diagonals show dual-property
scatter plots below the diagonal and histograms above
the diagonal. Clearly, there are only weak correla-
tions between most of the properties, with the largest
degree of correlation observed between the HSE06
gap and exciton binding energy. The lack of strong
correlations motivates the use of ML for predicting
the properties.

The prediction models are build using the Ewald
sum matrix and many-body tensor representation
(MBTR) as structural fingerprints. The Ewald finger-
print is a version of the simple Coulomb matrix fin-
gerprint [128] modified to periodic systems [125].
The MBTR encodes first, second and third order
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Figure 24. Pair-plot of selected properties from C2DB. The diagonal contains the single property histograms. Below the diagonal
are two-property scatter plots showing the correlation between properties and above the diagonal are two-property histograms.
properties include the HSE06 band gap, the PBE heat of formation (∆H), the exciton binding energy (EB) calculated from the
BSE, the in-plane static polarisability calculated in the RPA and averaged over the x and y polarisation directions (⟨αi⟩), and the
in-plane Voigt modulus (⟨Cii⟩) defined as 14 (C11+C22+ 2C12), where Cij is a component of the elastic stiffness tensor.

terms like atomic numbers, distances and angles
between atoms in the system [129]. As an alternative
to the structural fingerprints, a representation based
on the PBE PDOS is also tested. This fingerprint6

encodes the coupling between the PDOS at different
atomic orbitals in both energy and real space. It is
defined as:

ρνν ′(E,R) =
∑
a∈cell

∑
a ′

ρaν(E)ρa ′ν ′(E)G

× (R− |Ra −Ra ′ |) , (17)

where G is a Gaussian smearing function, a denotes
the atoms, ν denotes atomic orbitals, and the PDOS
is given by:

ρaν(E) =
∑
n

|⟨ψn|aν⟩|2G(E− ϵn) , (18)

6 Details will be published elsewhere.

where n runs over all eigenstates of the system. Since
this fingerprint requires a DFT-PBE calculation to
be performed, additional features derivable from the
DFT calculation can be added to the fingerprint. In
this study, the PDOS fingerprint is amended by the
PBE band gap. The latter can in principle be extrac-
ted from the PDOS, but its explicit inclusion has been
found to improve the performance of the model.

A Gaussian process regression using a simple
Gaussian kernel with a noise component is used as
learning algorithm. The models are trained using 5-
fold cross validation on a training set consisting of
80% of the materials with the remaining 20% held
aside as test data. Prior to training the model, the
input space is reduced to 50 features using principal
component analysis (PCA). This step is necessary to
reduce the huge number of features in the MBTR
fingerprint to a manageable size. Although this is
not required for the Ewald and PDOS fingerprints,
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Figure 25. Prediction scores (MAE normalised to standard deviation of property values) for the test sets of selected properties
using a Gaussian process regression.

Figure 26.ML predicted HSE06 gap values vs. true values for Ewald, MBTR and PDOS fingerprints with MAE’s for train and test
set included. The PDOS is found to perform significantly better for the prediction of HSE06 gap.

we perform the same feature reduction in all cases.
The optimal number of features depends on the
choice of fingerprint, target property and learning
algorithm, but for consistency 50 PCA components
are used for all fingerprints and properties in this
study.

Figure 25 shows the prediction scores obtained
for the five properties using the three different fin-
gerprints. The employed prediction score is the mean
absolute error of the test set normalised by the
standard deviation of the property values (stand-
ard deviations are annotated in the diagonal plots
in figure 24). In general, the PDOS fingerprint out-
performs the structural fingerprints. The difference
between prediction scores is smallest for the static
polarisability ⟨αi⟩ and largest for the HSE06 gap. It
should be stressed that although the evaluation of
the PBE-PDOS fingerprint is significantly more time
consuming than the evaluation of the structural fin-
gerprints, it is still much faster than the evaluation of
all the target properties. Moreover, structural finger-
prints require the atomic structure, which in turns

requires a DFT structure optimisation (unless the
structure is available by other means).

The HSE06 band gap shows the largest sensitiv-
ity to the employed fingerprint. To elaborate on the
HSE06 results, figure 26 shows the band gap predicted
using each of the three different fingerprints plotted
against the true band gap. The mean absolute errors
on the test set is 0.95 and 0.74 eV for Ewald and
MBTR fingerprints, respectively, while the PDOS sig-
nificantly outperforms the other fingerprints with a
test MAE of only 0.21 eV. This improvement in pre-
diction accuracy is partly due to the presence of the
PBE gap in the PDOS fingerprint. However, our ana-
lysis shows that the pure PDOS fingerprint without
the PBE gap still outperforms the structural finger-
prints. Using only the PBE gap as feature results in a
test MAE of 0.28 eV.

The current results show that the precision ofML-
based predictions are highly dependent on the type
of target property and the chosen material repres-
entation. For some properties, the mapping between
atomic structure and property is easier to learn while
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others might require more/deeper information, e.g.
in terms of electronic structure fingerprints. Our res-
ults clearly demonstrate the potential of encoding
electronic structure information into thematerial fin-
gerprint, and we anticipate more work on this relev-
ant and exciting topic in the future.

7. Summary and outlook

We have documented a number of extensions and
improvements of the C2DBmade in the period 2018–
2020. The new developments include: (1) A refined
and more stringent workflow for filtering prospect-
ive 2D materials and classifying them according to
their crystal structure, magnetic state and stability.
(2) Improvements of the methodology used to com-
pute certain challenging properties such as the full
stiffness tensor, effective masses, G0W0 band struc-
tures, and optical absorption spectra. (3) Newmater-
ials including 216 MXY Janus monolayers and 574
monolayers exfoliated from experimentally known
bulk crystals. In addition, ongoing efforts to system-
atically obtain and characterise bilayers in all possible
stacking configurations as well as point defects in the
semiconducting monolayers, have been described.
(4) New properties including exfoliation energies,
spontaneous polarisations, Bader charges, piezoelec-
tric tensors, IR polarisabilities, topological invariants,
magnetic exchange couplings, Raman spectra, and
SHG spectra. It should be stressed that the C2DB will
continue to grow as new structures and properties are
being added, and thus the present paper should not be
seen as a final report on the C2DB but rather a snap-
shot of its current state.

In addition to the above mentioned improve-
ments relating to data quantity and quality, the C2DB
has been endowed with a comprehensive document-
ation layer. In particular, all data presented on the
C2DB website are now accompanied by an inform-
ation field that explains the meaning and representa-
tion (if applicable) of the data and details how it was
calculated thus making the data easier to understand,
reproduce, and deploy.

The C2DB has been produced using the ASR
in combination with the GPAW electronic structure
code and theMyQueue task and workflow scheduling
system. The ASR is a newly developed Python-based
framework designed for high-throughput materi-
als computations. The highly flexible and modular
nature of the ASR and its strong coupling to the well
established community-driven ASE project, makes
it a versatile framework for both high- and low-
throughput materials simulation projects. The ASR
and the C2DB-ASR workflow are distributed as open
source code. A detailed documentation of the ASR
will be published elsewhere.

While the C2DB itself is solely concerned with
the properties of perfect monolayer crystals, ongo-
ing efforts focus on the systematic characterisation

of homo-bilayer structures as well as point defects in
monolayers. The data resulting from these and other
similar projects will be published as separate, inde-
pendent databases, but will be directly interlinked
with the C2DB making it possible to switch between
them in a completely seamless fashion. These devel-
opments will significantly broaden the scope and
usability of the C2DB+ (+ stands for associated data-
bases) that will help theoreticians and experimental-
ists to navigate one of the most vibrant and rapidly
expanding research fields at the crossroads of con-
densed matter physics, photonics, nanotechnology,
and chemistry.
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We study the influence of oxygen vacancies on the formation of charged 180° domain walls in
ferroelectric BaTiO3 using first principles calculations. We show that it is favorable for vacancies to
assemble in crystallographic planes, and that such clustering is accompanied by the formation of a charged
domain wall. The domain wall has negative bound charge, which compensates the nominal positive charge
of the vacancies and leads to a vanishing density of free charge at the wall. This is in contrast to the
positively charged domain walls, which are nearly completely compensated by free charge from the bulk.
The results thus explain the experimentally observed difference in electronic conductivity of the two types
of domain walls, as well as the generic prevalence of charged domain walls in ferroelectrics. Moreover, the
explicit demonstration of vacancy driven domain wall formation implies that specific charged domain wall
configurations may be realized by bottom-up design for use in domain wall based information processing.
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Domain walls (DWs) in ferroelectric crystals are two-
dimensional topological defects separating domains of
distinct directions of the spontaneous polarization. They
are ubiquitous, and significantly affect physical properties
[1–3] such as polarization switching [4,5], dielectric
permittivity [6,7], and piezoeletric response [8,9]. In
addition, DWs are typically highly mobile [10] and their
position may be controlled by external electric fields. The
versatile properties of DWs [11,12] have thus opened
exciting avenues for applications in electronics, such as
diodes [13] and nonvolatile memory devices [14,15], and
are promising candidates as building blocks for the next
generation of photovoltaics [16,17].
The properties of individual DWs strongly depend on the

orientation of the spontaneous polarization (P) with respect
to the DW. When the normal component of P changes
across the wall, a net bound charge is created in the DW
[18], giving rise to electric fields that typically far exceed
the coercive field for polarization reorientation. Such a
charged domain wall (CDW) would be highly unstable
without a mechanism to screen the bound charge [19–21].
As such, unambiguous verification that CDWs are present
in proper ferroelectric crystals [18,20,22,23] has led to the
conclusion that charged impurities must play a fundamental
role in stabilizing CDWs [24].
The role of oxygen vacancies (VOs) as a stabilizing agent

for CDWs has been studied both experimentally and by
simulations [25–31]. In addition, it is known that VOs may
assemble in perovskite lattice planes under certain conditions
[32–36]. However, these two effects have generally been
regarded as unrelated, as themostwidely acceptedview is that
VOs serve to stabilize CDWs that have formed spontaneously,

or by other means. However, previous studies have also
shown that VOs located at axial sites of TiO6 octahedra in
PbTiO3 create a displacement of the Ti atom [37] and a
corresponding dipole moment. This suggests an alternative
view inwhich vacanciesmay in fact facilitate the formation of
CDWs instead of simply delivering a stabilizing charge
distribution. The notion that VOs may directly nucleate
CDWs has broad implications for the understanding and
application of CDWs in general. However, the formation
mechanisms of CDWs remain elusive due to the apparent
strong instability of CDWs and the technical challenges
associated with carrying out ab initio studies of CDWs in
both pristine and doped ferroelectrics.
In this Letter, we describe results from first-principles

calculations of 180° domain walls in BaTiO3 showing that
it is favorable for oxygen vacancies to accumulate in
planes, and that such accumulation gives rise to CDWs
forming spontaneously. In particular, we demonstrate that
the screening of the bound charge of head-to-head (HH)
CDWs occurs through the filling of local conduction bands,
regardless of vacancies. The negative charge at tail-to-tail
(TT) CDWs is screened by the positive charge from the
vacancies, thus quenching the p-type conductivity charac-
terizing TT CDWs in the pristine system.
BaTiO3 presents a phase transition from cubic (Pm3̄m)

to tetragonal (P4mm) structure at ∼404 K, a subsequent
first-order transition to an orthorhombic (Amm2) structure
at ∼273 K and finally another first-order transition at
∼183 K to a rhombohedral (R3m) structure with polari-
zation in the (111) direction [38,39]. Here we will focus on
the tetragonal phase, but expect that the conclusions will
hold true for other phases and similar compounds.
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Our calculations were done in the framework of density
functional theory (DFT), implemented in the GPAW
electronic structure package [40,41] using the projector-
augmented wave method [42], the local density approxi-
mation (LDA) [43] and a plane wave basis. We used a
plane-wave cutoff of 700 eV and a Γ-centered Monkhorst-
Pack k-point grid with a density of 6 Å. Forces were
typically relaxed below 0.01 eV=Å (for details on the
atomic structure and Born effective charges see the
Supplemental Material [44]).
We begin by considering 180° CDWs in BaTiO3 without

any vacancies. This will serve as a reference system that
allows us to gain insight into the influence of vacancies on
the electronic properties of CDWs. In addition, it is known
that a dilute distribution of CDWs in oxide perovskites can
be stable and robust in defect-free thin films [22]. We thus
construct a 1 × 1 × 16 supercell of tetragonal BaTiO3 and
divide it into two areas of opposite polarization parallel to
the long axis of the supercell. The polarization of the
subcell α can be written as Pi;α ¼ ð1=ΩÞPj;a∈α Z

�a
ij d

a
j

[47]. Here Ω is the unit cell volume, daj is the displacement
of atom a with respect to its position in the centrosym-
metric structure in direction j, Z�a

ij is the Born effective
charge tensor of atom a and the sum runs over atoms in unit
cell α. Since the Z�a

ij depend on the local electronic
structure, we average the tensors obtained for the cubic
and tetragonal phases of BaTiO3 [44]. The atomic displace-
ments of the supercell are smoothed so the polarization
profile becomes Pα ¼ P0 tanhðzα=δÞ, where zα is the center
position of unit cell α and P0 is the magnitude of the
calculated bulk polarization, 0.24 C=m2, which is in good
agreement with the experimental value of 0.26 C=m2

[48,49] and computational works using the LDA
[50,51]. We set δ ¼ 1.75 as the structural width of the
wall and adopt BaO centered DWs, since the VOs used in
the simulations described below are more stable at these
planes. We did not relax the structure, as it would so be
driven into a single domain. Finally, we emphasize that,
although this structure is a somewhat artificial representa-
tion of a CDW, its primary intention is to unravel the basic
principles of screening in the system.
Figure 1 shows a schematic representation of the super-

cell, including the profile of polarization per unit cell as
calculated following the procedure in Ref. [47]. We also
show the bound charge density ρb arising from the
polarization profile, as well as the electrostatic potential
obtained from DFT. As expected, a positive (negative)
bound charge density peak is located at the HH (TT) wall
and is accompanied by a minimum (maximum) of the
potential. The integrated bound charge density at each of
the walls has magnitude 2P0 by construction and the
potential energy difference (ΔV) between the walls is
roughly 2.3 eV. Since the potential between the walls is
linear, the electric fields inside the two domains can be

regarded as constant and the total charge density at the
CDWs are then related to the potential energy difference by
Gauss law as

σtotðdÞ ¼
ε0ΔV=e

d
; ð1Þ

where d is the distance between the walls and ε0 is the
vacuum permittivity. Inserting the values obtained from
DFTyields a charge density of σtot ¼ 0.0048 C=m2. This is
2 orders of magnitude smaller than the bound charge
indicating that the bound charge is almost fully compen-
sated by free charge.
The mechanism behind the screening can be envisioned

by considering two CDWs in close proximity with bound
charge densities �2P0. Without any screening mechanism,
the electric field between the walls would be determined by
the polarization P0 only. However, if the distance between
the walls is increased, the potential difference between the
walls increases (due to the constant electric field) and the
conduction (valence) bands are lowered (raised) at the HH
(TT) until they are aligned [22,23,52]. At this point, charge
will be transferred between the walls to align the Fermi
levels at the walls, and the potential energy difference will
be pinned at the value of the band gap. Thus, when the
difference between the walls d is increased in Eq. (1), ΔV

FIG. 1. Properties of the unrelaxed CDWs in a 1 × 1 × 16
supercell. Top: schematic atomic structure with exagerated
displacements. The blue arrows indicate the direction of polari-
zation; green, blue and red spheres indicate Ba, Ti, and O atoms,
respectively. The dots indicate positions of Ti atoms in the
individual unit cells. Second from top: polarization profile of the
supercell. Second from bottom: bound ρb and smoothed free ρf
charge density. Bottom: electrostatic potential energy vðzÞ
averaged over the plane orthogonal to z and total charge density
ρ obtained from a sliding window average.
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will remain fixed while the electric field and charge density
at the walls decrease.
For CDWs at large separation, the charge densitywill thus

be finite, albeit orders of magnitude smaller than the bound
charge. In our calculations we obtain a LDA band gap for
BaTiO3 of 1.9 eV, which is in agreement with the potential
difference of 2.3 eV. Note that for such a “pristine” CDW
structure, the total charge density at the walls is roughly
determined by the band gap and the distance between the
walls, whenever d exceeds the “short-circuit distance”
dsc ¼ ε0Egap=2eP0. Integrating the charge density through
the CDW (obtained from a sliding window average (see
Supplemental Material [44] for details) yields 0.005 C=m2,
which is in agreement with the result obtained from Eq. (1).
We have checked that the calculated potential difference is
the same for 1 × 1 × 8 and 1 × 1 × 12 unit cell systems.
The screening described above is more clearly visualized

from the band structure and projected density of states
(PDOS) resolved in individual unit cells, shown in Fig. 2.
Given the indirect band gap in BaTiO3, the electron (hole)
doping at the HH (TT) walls occurs at different locations in
the 2D Brillouin zone. The band structure shows that the Γ
point mediates the electron doping at the HH wall, whereas
the hole doping mainly occurs at theM point. Resolving the
PDOS in contributions from different unit cells yields a
profile reminiscent of the electrostatic potential. For a given
unit cell, the PDOS resembles that of bulk BaTiO3, but
shifted according to the local value of the electrostatic
potential. The PDOS also implies that charge carriers in the
vicinity of the Fermi level are strictly localized at the two
CDWs as expected, which implies that we can calculate the
free charge density at the HH (TT) wall by adding the
norm-squared wave functions of the conductive states
below(above) the Fermi level (see Supplemental Material
for details [44]). This procedure yields a free charge density
of �0.40 C=m2 at the two walls, which (almost) cancel the
bound charge density at the two walls as anticipated. The
smoothed free charge density is shown in Fig. 1 and
exhibits a profile that compensates the bound charge.

In order to study the role of VOs in the formation of
CDWs, we use a bulk, single domain represented in a 3 ×
3 × 8 supercell as the starting point. We find the most stable
position for a planar distribution of oxygen vacancies is the
BaO plane (see Fig. S2 in the Supplemental Material [44]),
although the formation energies of a single vacancy are
similar in both planes [53]. We therefore begin by intro-
ducing one vacancy into a BaO plane, and fully relax the
supercell (see the top part of Fig. 3). Following this
relaxation, we see that the vacancy strongly repels the
neighboring Ti atom towards the opposite direction of the
initial polarization, thereby decreasing the local polariza-
tion, as shown in Fig. 3. This occurs through the breaking
of the bonding orbital formed by the emptied O p and the Ti
t2g, in a similar scenario to that described by Park et al. for
PbTiO3 [37]. We note that we obtain the same configura-
tion if we set an artificial DW in a 3 × 3 × 8 supercell, put a
vacancy on it and relax it.
We will now show that it is favorable for additional

vacancies to migrate to a plane with an initial amount of
vacancies. To this aim, we define the energy cost of adding
the ith vacancy in unit cell α relative to the energy cost of
adding a single vacancy in a bulk BaO plane:

ΔEiα ¼ Eiα − Eði−1Þα0 − ðE1 − EbulkÞ; i > 1; ð2Þ

where Ebulk is the energy of a single domain without
vacancies, E1 is the energy of the supercell with a single
vacancy in any BaO plane, and Eiα is the energy of the
supercell with the ith vacancy placed in unit cell α and i − 1
vacancies at their optimal positions (α0).
We first calculate E1α, starting with a fully relaxed

configuration with a vacancy in the BaO plane, and
calculate the energy of the structure with a second vacancy
in all the possible BaO planes. The result, shown in Fig. 3,
shows that the optimal position of the second vacancy is the
plane where the first vacancy was placed. We have checked
that vacancies in the TiO2 plane are always more unfav-
orable (see Fig S3 in the Supplemental Material [44]). We

FIG. 2. Left: projected band structure of the unrelaxed 1 × 1 × 16 supercell with no vacancies. Right, the projected density of states
resolved in individual unit cells.
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then calculate E2α by the same procedure starting with the
relaxed structure with two vacancies in a single BaO plane.
Again, the optimal position is the BaO plane where the
other vacancies are located. And the same happens to the
fourth vacancy, although we see that it experiences a
weaker attraction to the three initial vacancies [see
Fig. 3], indicating that once enough vacancies needed to
form the wall are assembled, the attraction for further
vacancies decreases. This attraction between vacancies may
seem counterintuitive, since they present a charge of þ2e
and should thus repel one another. However, the vacancies
induce a polarization that initiates a negatively charged
DW, which in turn provides the attractive long-ranged force
between the vacancies. This process is evident in Fig. 3,
where we show the polarization profiles for 1, 2, and 3
vacancies at their optimal positions in the third panel,
starting from the top. The first vacancy introduces a
local polarization reminiscent of a negatively charged
domain wall, attracting the next vacancy. When additional

vacancies diffuse to the optimal position at the wall the
local polarization is distorted further, until a TT DW is fully
formed. This suggests that accumulation of oxygen vacan-
cies in planes occurs naturally in the material. Depending
on the initial distribution of vacancies in the crystal, they
could potentially accumulate in alternative plane geom-
etries creating other types of DWs such as 90 degree
walls [54].
In our simulations a single vacancy corresponds to a 11%

oxygen depletion in a single BaO plane. It is natural to ask
whether our findings will hold true at realistic vacancy
distributions. For a random distribution of vacancies there
will inevitably be some planes with a higher concentration
than others, which will act as sinks for vacancies of the
neighboring environment. The actual accumulation will be
mediated through thermally assisted diffusion, however, a
quantitative estimation of diffusion rates is beyond the
scope of this work.
It is instructive to compare the smoothed free charge

density profiles shown in Fig. 3 during the DW formation
process, with the case without vacancies shown in Fig. 1. In
all cases we see a similar picture at the HH wall, where the
negative free charge screens the positive bound charge. In
contrast, as the TTwall is formed it presents nearly no free
charge since the bound charge already compensates the
positive charge of the VOs. In fact, the apparent finite
charge at the TT wall in Fig. 3 is nearly exclusively an
artifact of the finite supercell size as shown in the
Supplemental Material [44], where we also show the
raw charge densities used to calculate smoothed free charge
profiles in Fig. 3. Once seeded, the HH-TT DW pair are
structurally protected topological defects. As shown in
Fig. 1, the HH wall is not fully screened by free charge and
this enforces a net negative charge in the TT wall area.
Because of charge neutrality we have σf þ 2envac ¼ 0,
where σf is the total free charge in the supercell and nvac the
vacancy number at the wall. This is verified in the increase
of free charge at the TTwall at increasing nvac, as shown in
Fig. 3 and Table S3 in the Supplemental Material [44]. In
addition the complete screening for well separated walls
implies σf;HH ∼ σb;HH and we conclude that the optimal
vacancy density at the wall, when σf;TT ¼ 0, is given by
nvac;0 ∼ ðP0=eÞ. In our system this number lies between
two and three vacancies per supercell. Figure 3 suggests the
concentration of DW vacancies saturates once the wall is
formed. As additional vacancies provide a localized screen-
ing charge for the TT bound charge, the ability of the TT
wall to conduct is very limited, in agreement with experi-
ments [24]. Moreover, such extra free charge will be
manifestly delocalized, unlike the pristine wall free charge
(see Fig. S4 in the Supplemental Material [44]), reducing
the potential difference between walls (see Fig. S5 [44])
and significantly increasing their stability. Compared to the
pristine case, the conductivity mechanism of the HH wall
remains essentially unaffected though; Ti t2g states from the

FIG. 3. Top: Schematic illustration of the vacancy migration
that leads to domain wall formation in a 3 × 3 × 8 supercell. The
crosses indicate the lowest formation energy positions at each
BaO plane. Below, we show the energy cost ΔEiα for the ith
vacancy at position α (see text) given that i − 1 vacancies are
situated at their optimal positions. Pz;iα is the polarization profile
of the supercell with i vacancies at their optimal positions. The
bottom panel shows the smoothed free (ρf) charge density
profiles for the relaxed supercell with one, two, and three
vacancies at the central BaO plane.
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conduction band shift below the Fermi level in the HH wall
area, similarly to the pristine system (see Figs. S1 and S6
in Ref. [44]).
In conclusion, we have shown that, having an initial

oxygen vacancy cluster in tetragonal BaTiO3, it is favorable
for other vacancies to migrate to the BaO plane defined by
this cluster and that a TT domain wall is formed in the
process. The driving force is the negative bound charge
emerging at the TT wall. It naturally follows from our
calculations that oxygen vacancies are attracted to TT DWs,
which has already been suggested in the past [24,32].
However, the fact that oxygen vacancies play a critical role
in the formation of CDWs has not been demonstrated
previously and provides a significant indication as to why
and how CDWs form. Moreover, the implications of this
mechanism are potentially far reaching, since it suggests
that particular CDW distributions may be accomplished by
simply seeding a ferroelectric with a suitable distribution of
vacancies. Such control will be a crucial ingredient for the
future development of domain wall nanoelectronics.
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ADDITIONAL STRUCTURAL DETAILS

As building blocks of our supercells we use a relaxed tetragonal BaTiO3 unit cell with lattice parameters and the atomic
positions indicated in Table S1. The tetragonality of the structure is 1.010, in very good agreement with experimental value
of 1.011 [1, 2]. We calculate the Born effective charges for this structure above as well as for the cubic phase with a lattice
parameter of a = 3.946 Å, which corresponds to a cubic structure with the same volume of as the relaxed tetragonal structure.
The non-vanishing components of the calculated Born effective charge tensors are listed in Table S2. The results are in close
agreement with [3]. The Born effective charge tensor applied in the present work is obtained by averaging these two tensors.

FREE CHARGE DENSITY CALCULATION METHOD

In order to calculate the free charge density across the supercell long axis plotted in Figs. 1 and 3 of the main text we use the
following expression:

ρ f (z) = ρ f ,TT(z)+ρ f ,HH(z) (1)

where

ρ f ,TT(z) =
e

ANk
∑
k

∫
dxdy

(
∑

n|εF<εnk<εVBM

|ψTT
nk (r)|2 + ∑

n|εCDM<εnk<εF

|ψTT
nk (r)|2

)
(2)

and

ρ f ,HH(z) =
e

ANk
∑
k

∫
dxdy ∑

n|εCDM<εnk<εF

|ψHH
nk (r)|2 (3)

here A is the supercell area parallel to the walls, Nk is the number of k points, x and y are the coordinates parallel to the walls.
nEF , n∗vBM and n∗CBM represent the Fermi level, valence band maximum and conduction band minimum respectively. ψTT

nk and ψTT
nk

are wave functions at the nth band at k point k, which satisfy
∫ L/2+d

L/2−d

∫
dxdyψTT

nk (r)|2dz > 0.5 and
∫ d
−d
∫

dxdyψHH
nk (r)|2dz > 0.5,

respectively; L is the supercell length in z direction and d is chosen convienently. In order to ensure an accurate sampling of the
Brillouin zone, we calculated it applying eq. 1 on high k point densities. In the pristine case (as in figure 1 in the main text), the
right summand in eq. 2 vanishes as there are no free electrons at the TT wall area; while in the case with vacancies (as in figure
3 of the main text or figure S4) it is the left summand on the right side of eq. 2 that vanishes, as all states below the Fermi level
are occupied in the TT wall area.

TABLE S1: Relaxed BaTiO3 tetragonal structure with space group P4mm (no. 99) lattice parameters a = b = 3.933 Å and a = 3.971 Å.

Atom Wyckoff p. x y z
Ba 1a 0.000 0.000 0.010
Ti 1b 0.500 0.500 0.521
O 1b 0.500 0.500 -0.009
O 2c 0.500 0.000 0.497
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TABLE S2: Non-vanishing components of Born-effective charge tensors obtained for BaTiO3 tetragonal and cubic structures. Parallel and
perpendicular directions are defined taking as a reference the Ti-O band directions, as done in Ref 3. For the O atoms at 2c positions in the
tetragonal structure, we define the perpendicular (to the Ti-O bond) I and II directions as being, in addition, parallel and perpendicular to the
tetragonal axis, respectively.

Tetragonal
xx,yy zz

Z∗Ba 2.74 2.79
Z∗Ti 7.11 6.34

⊥ ‖
Z∗O1

-2.09 -5.05

I II
Z∗O2

-1.94 -2.15 -5.60

Cubic
xx,yy,zz

Z∗Ba 2.75
Z∗Ti 7.28

⊥ ‖
Z∗O -2.16 -5.71

TOTAL NET CHARGE AT THE WALLS

To gain insight on the charge distribution at the DWs we calculate the charge density per unit length in the supercell, n(z).
Within the projector-augmented wave formalism the all electron density ne(z) can be obtained, and we can represent the nuclear
charges as point charges. Then, after integrating the electronic density over the coordinates parallel to the domain walls we get:

ρ(z) =−ρe(z)+∑
i

Ziδ (z− zi), (4)

where ne(z) is the all-electron density, zi are the coordinates of the nuclei and Zi are the nuclear charges. The charge density
is rapidly varying at the atomic scale due to the localized nuclei and core electrons. Any integral of Eq. 4 will thus depend
strongly on the domain of integration and the charge residing at the domain walls cannot be obtained in any sensible way. To
accommodate this problem we consider the sliding window average for the density and in addition we convolute the nuclear
charge with a Gaussian function. We integrate over the directions perpendicular to the wall and then obtain the averaged one-
dimensional charge density

ρ̃(z) =
1
c

∫ z+c/2

z−c/2

(
ρe(z′)+∑

i
Ziδ (z− zi− z′)g(z′)

)
dz′, (5)

where we defined the Gaussian distribution as g(x) = 1
σ
√

2π
exp
{
−x2

2σ2

}
with σ = 0.0877Å and c is the unit cell length. This way

we obtain the smoothened total charge density shown in Fig. 1 in the main text.
At the bottom part of Fig. 1 in the main text we see wide regions on both sides of the walls where the charge density is

constant. This allows for a well-defined computation of the net charge within the wall regions. We find a net charge density of
-0.005 C/m2 at the TT wall area and the exact opposite, 0.005 C/m2 at the HH area. Note that, if the supercell were insulating
we would see, at any region enclosing one domain wall, an absolute net charge density of 2P0 ≈ 0.48 C/m2, where P0 is the
absolute value of the spontaneous polarization of the bulk crystal (P0 =0.24 C/m2 for the tetragonal unit cell in our calculations).
This indicates nearly full charge compensation of the bound charge by free carriers. In addition, the bound charge enclosed at the
walls is smaller than the one expected from the polarization change, given that the absolute value of the free charge calculated at
the walls is 0.40 C/m2. This is expected from the fact that the definition of Born effective charges becomes problematic in metal-
ferroelectric interfaces [4]. It is instructuve to transform the charge densities at the walls into atomic units. We have for the net
charge at the wall, for a=b≈ 3.9Å square unit cell parameter (area = 55.4 a2

0), and taking into account that 1 e= 1.602×10−16 C:
σtot= 0.005

55.4 ea−2
0 , which means that per unit cell area, the CDWs present a net charge of about 0.005 e.
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FIG. S1: PDOS at the HH wall of the 1x1x16 supercell containing a HH and TT wall. Ti t2g states, Ti non-t2g states and the rest are
differentiated with different colors. The Fermi level is set as the origin for the energies.

Finally, we also apply an analogous sliding window average to the electrostatic potential to obtain the smooth function ṽ(z)

ṽ(z) =
1
c

∫ z+c/2

z−c/2
v(z′)dz′ (6)

where v is the electrostatic potential, which includes the nuclear potential as well as the Hartree potential.

APPLICATION OF THE PSEUDO-CAPACITOR MODEL

In order to apply the Eq. 1 in the main text on the present system, we calculate the electrostatic potential generated by a net
charge density of ±0.005 C/m2 residing at the two walls. We have

∆V =
σtotd

ε0
(7)

and obtain (in atomic units) σtot= 0.005
55.4 ea−2

0 ; d=63.54 a0; ε0 =
1

4π
e2a−1

0 E−1
h . We thus have ∆V ≈0.007 Ehe−1, so e∆V ≈2.1 eV,

which is essentially matching the electrostatic energy difference (2.3 eV) between the walls in Fig. 1 of the main text.

PDOS OF 1X1X16 SUPERCELL WITHOUT VACANCIES

In Fig. S1 we show the projected density of electronic states (PDOS) at the HH wall in the 1x1x16 system with no vacancies
and two charged domain walls. We see that t2g d orbitals account for the majority of electronic states just below the Fermi level
and therefore host the conduction band electrons that account for the conductivity of the HH wall.

DETERMINING THE OPTIMAL CRYSTALLOGRAPHIC PLANES FOR THE VACANCIES

We take the 1x1x16 supercell containing a HH and TT wall as described in the main text and distinguish between two cases:
one with BaO centered walls and another with TiO2 centered walls. Then we remove an oxygen atom from the TT wall in each
supercell and relax the forces. Both relaxed configurations are shown in Fig. S2. For the Ba centered case, there are no oxygen
atoms left at the TT wall, while in the Ti centered case half of the oxygens are present after setting the vacancies. We find that
the BaO centered walls with vacancies are more stable by about 0.5 eV. This occurs because the total depletion of oxygens at the
TT wall allows for a stronger polarization change at the wall. Hence we select a BaO plane in the bulk supercell for the position
of the initial VO in our stability calculations. In fact, the TT wall grows naturally from an initial bulk configuration where an
oxygen vacancy plane has been placed in a BaO plane. In Fig. S3 we show the energy cost profiles for adding a second oxygen
vacancy in Ti planes, once one vacancy has been pinned at a BaO plane. The calculations are repeated for the case with three
initial oxygen vacancies at the BaO plane. We see that the potential energy well towards the BaO plane is mimicked by the TiO2
planes as well, but their energy is higher compared to the BaO planes, and therefore less favourable.
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FIG. S2: The two DW configurations in 1x1x16 supercells used in order to determine the crystallographic plane where the oxygen vacancies
are placed in the calculations. In a) BaO centered TT wall with vacancies, in b) TiO2 centered TT wall with vacancies. The forces of both
structures have been relaxed.

FIG. S3: Energy cost profiles for the ith vacancy at α unit cell within the 3x3x8 supercell (the energies are defined as for Fig. 3 in the main
text) at Ba and Ti planes. The case where two (three) vacancies are fixed at a wall position is shown at the top (bottom), and the energies are
calculated with respect to that of the relaxed configuration with two and three vacancies at the BaO plane wall, respectively.

FREE CHARGE PROFILES ALONG THE WALL FORMATION PROCESS

In table S3 we show the free charges at the relaxed structure in a 2x2x8 supercell, separated by head-to-head and tail-to-tail
regions. We calculate the free charges by integrating eqs. 2 and 3 separately.

In figure S4 we illustrate the effect of using a truncated integration in eq.1, wherein we do d = L/6 in the wave functions
entering eqs. 2 and 3. The result of the truncated integration for two DW vacancies in a 3x3x8 supercell are shown at the top,
while the middle panel shows the full integration (d = L/4) results. We see the truncated integration (which is used for the free
charge plots in fig 3 of the main text) avoids the artificial overlap of free charges originated at the different walls due to the small
supercell size. In the lower panels we illustrate the effect of using a larger supercell for free charge integration (doing again
d = L/4), comparing the HH wall free charge profiles with one DW vacancy in 2x2x8 and 2x2x16 supercells with structures
relaxed: we see the HH free charge localizes within the wall, more efficiently the larger the simulation cell. In contrast, the free
charge at the TT wall generated to compensate the excess positive charge of vacancies it very delocalized. For the reference we
also show at the bottom panel the polarization profile of the relaxed 2x2x16 supercell with a DW vacancy: we see that, despite
being a much sharper DW, the free charge of the TT wall tends to spread massively in the supercell.

ELECTRONIC PROPERTIES OF RELAXED SUPERCELLS WITH OXYGEN VACANCIES

To demonstrate the influence of the VO on the electronic properties of the HH wall, the 1x1x16 above is not sufficient to
study the TT wall, since the VO concentration is unrealistically large. The bound charge at the wall thus cannot compensate the
positive charge and electrons migrate to the conduction band. Therefore, we adopt the 3x3x8 supercell described in the main
text to show the influence of vacancies on the full system. In Fig. S5 we show the density of states per TiO2 plane with two VO
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FIG. S4: Free charge densities obtained by integrating the squares of wave functions using eq. 1 (see details in the text). Starting from the top,
truncated and non-truncated charge densities in a 3x3x8 system with 2 wall vacancies. In the next two panels, HH and TT wall free charges
for relaxed 2x2x8 and 2x2x16 supercells with a DW vacancy. At the bottom, polarization profile of the relaxed 2x2x16 supercell with a DW
vacancy
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TABLE S3: Calculated free charge at head-to-head and tail-to-tail domain wall areas.

Vacancies at TT wall HH wall free charge (e) TT wall free charge (e)
0 0 0
1 1.32 0.68
2 3.15 0.85
3 4.28 1.72

FIG. S5: Density of states of the relaxed 3x3x8 supercell with a HH and TT wall, with two vacancies at the latter, projected into the atomic
orbitals of TiO2 planes. The Fermi level is set as the origin for the energies.

at the TT wall plane: there are HH wall states below the Fermi level as in the vacancy-free case, ensuring its n type conductivity
and showing the little influence of vacancies on its conducting properties. In the TT wall area some delocalized free charge has
emerged due to the vacancy positive charge, flattening the electrostatic potential between walls.

To see the pure influence of vacancies on the HH wall we work again with the 1x1x16 supercell containing a single oxygen
vacancy at a BaO plane. We then calculate the PDOS at the HH wall, in a similar way as done in the previous section with for
the pristine system. As shown in Fig. S6 we find that, again, Ti t2g states dominate this region of the DOS, suggesting little
influence of the VO on the (n type) conductivity mechanism of the HH walls.
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FIG. S6: PDOS at the HH wall of the relaxed 1x1x16 supercell containing a HH and TT wall and an oxygen vacancy at the latter. Ti t2g states,
Ti non-t2g states and the rest are differentiated with different colors. The Fermi level is set as the origin for the energies.
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APPENDIXA
Appendix A: Berry phase

formula for the polarization
density

Here we show how to obtain the expression for polarization presented in eqs. (5.26-
5.28). Specificially we derive a now expression for the electronic contribution starting
from the expression presented eq. 5.24. While the ladder expression is theoretical
correct it is not very practical for numerical computations. The expression derived here
is implemented in the GPAW code[37] and it is the method used for all computations
related to polarization calculations in this thesis. To show the validity eqs. (5.26-5.28)
expression we start from eq. 5.24. For purposes that will be clear later we focus on
the polarization in the n’th direction:

n · P el(λ) = − e

NV
Im
(

occ∑
m

∑
k∈BZ

⟨u(λ)
mk|n · ∇(k)|u

(λ)
mk⟩

)
(A.1)

The derivatives can be expanded to first order as:

∇k |uλ
nk⟩ =

|uλ
mk+δk⟩ − |uλ

mk⟩
δk

(A.2)

where 1
δk = k̂ 1

∆k . We end up with a product of the form n̂ · 1
δk = n̂ · k̂ 1

∆k∥
= 1

∆k∥
,

where ∆k∥ is the k-point spacing in the direction parallel to n̂. By plugging eq. A.2
into eq. (A.1) we obtain:

n · P el(λ) = − e

NV
Im

 ∑
k⊥∈BZ

∑
k∥∈BZ

∑
m

1
∆k∥

(⟨umk+δk|umk⟩ − 1)

 (A.3)

The k-point spacing can be rewritten as ∆k∥ = |bBZ|
N∥

= 2π
|a∥|N∥

. Where |b|BZ and |a∥|
are the length in the n’th direction of the Brillioun zone and the unit cell respectively.
N∥ Denotes the total number of k-points along the direction parallel to n̂. We now
substitute the sum over occupied bands with a trace, such that eq. (A.3) becomes:

n · P el(λ) = −
e|a∥|

2πN⊥V
Im

 ∑
k⊥∈BZ

∑
k∥∈BZ

Trocc (⟨unk+δk|umk⟩ − 1)

 . (A.4)
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Here the trace is in the space of band indices (n,m) and the subscript indicates that
only occupied states are included. We will now make use of the following matrix
identity S − I ≈ ln (S)), where I is the identity matrix and S is an matrix where the
elements are close to those in the identity matrix. Now eq. (A.4) becomes:

n · P el(λ) = −
e|a∥|

2πN⊥V
Im

 ∑
k⊥∈BZ

∑
k∥∈BZ

Trocc (ln (⟨unk+δk|umk⟩))

 . (A.5)

The equation above can be rewritten by using the identity Tr (ln (S)) = ln (det (S)),
where det is the determinant. Now eq. A.5 can be written as:

n · P el(λ) = −
e|a∥|

2πN⊥V
Im

 ∑
k⊥∈BZ

∑
k∥∈BZ

ln (detocc (⟨unk+δk|umk⟩))

 (A.6)

We now use the fact that the sum over logarithms is equivalent to take the logarithm
of a product to rewrite eq. (A.6) as:

n · P el(λ) = −
e|a∥|

2πN⊥V
Im

 ∑
k⊥∈BZ

∑
k∥∈BZ

ln
∏

k

detocc (⟨unk+δk|umk⟩)

 (A.7)

We now change notation with respect to the product over k points to make it explicit
that it is a product of states along a string:

n · P el(λ) = −
e|a∥|

2πN⊥V
Im

 ∑
k⊥∈BZ

ln
Nk∥bl

−1∏
j=0

detocc
(
⟨unk+jδk|umk+(j+1)δk⟩

) (A.8)

The electronic contribution to the polarization can then be written as:

P el = − e

2πV
∑

l

alϕ
el
l (A.9)

ϕel
l = Im

 1
N⊥

∑
k⊥∈BZ

ln
Nk∥bl

−1∏
j=0

detocc
(
⟨unk+jδk|umk+(j+1)δk⟩

) (A.10)

The total polarization, with the ionic contribution included then becomes:

P (λ) = e

2πV
∑

l

alϕl (A.11)

where

ϕl =
∑

i

Zibi · Ri − ϕel
l . (A.12)



APPENDIX B
Appendix B: Linear
response and Hall

conductivity
This Appendix explains contains two parts. The first part is simply the convetion of
Fourier transforms used in the main text and the in later part of this appendix. The
second part contains a detailed calculation of the current-current correlation function
used to derive the expression for the anomalous Hall conductivity presented in chapter
7 in the main text.

B.1 Fourier transforms
We will be applying two types of Fourier transforms in the the main text and in the
following section. The first type is Fourier transform in the temporal domain. The
temporal Fourier transform is defined as:

F̃ (ω + iη) =
∫
dtF (t)ei(ω+iη)t (B.1)

Here F (t) is a function in the time domain and F̃ (ω + iη) is the Fourier transform
of F (t). The factor η is included to ensure that the Fourier transform is still well
defined in cases where F (t) doesn’t have a natural dampening build in. (An example
of this would be the non-interacting electron gas). This is sometimes referred to as the
generalized Fourier transform. The inverse temporal Fourier transform is then given
by:

F (t) = lim
η→0+

∫ ∞

−∞

dω

2π
F (ω + iη)e−iωt (B.2)

The spatial Fourier transform is defined as:

F (q) =
∫
drF (r)eiq·r (B.3)

The inverse spatial Fourier transform is defined as:

F (r) = 1
2π

∫
dqF (q)e−iq·r (B.4)
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For correlation (two-point) functions the definition can be extended as:

F (q, q′) = 1
Ω

∫ ∫
drdr′e−iq·rF (r, r′)eiq′·r′

(B.5)

We will be dealing exclusively with crystals which are periodic in the spatial coordinate.
Due to this symmetry the physically observable variables (correlation functions etc.)
satisfy F (r, r′) = F (r + R, r′ + R). Where R is a lattice vector. From this it follows
that:∫
dr

∫
dr′g(r, r′) =

∑
R

∫
Ωcell

dr

∫
dr′g(r + R, r′ + R) (B.6)

Here we changed the integration volume in the first integral from that of the whole
material to that of the unit cell. We will now show what this means for the Fourier
transform of the two point function:

F (q + G, q + G′) = 1
Ω

∫
dr

∫
dr′e−i(q+G)·rF (r, r′)ei(q+G′)·r′

(B.7)

= 1
Ω
∑
R

∫
Ωcell

dr

∫
dr′e−i(q+G)·(r+R)F (r + R, r′ + R)ei(q+G′)·(r′+R) (B.8)

= 1
Ωcell

∫
Ωcell

dr

∫
dr′e−i(q+G)·rF (r, r′)ei(q+G′)·r′

(
Ωcell

Ω
∑
R

ei(G′−G)·R

)
(B.9)

= 1
Ωcell

∫
Ωcell

dr

∫
dr′e−i(q+G)·rF (r, r′)ei(q+G′)·r′

. (B.10)

In the more general case one gets:

F (q + G, q′ + G′) = 1
Ω

∫
dr

∫
dr′e−i(q+G)·rF (r, r′)ei(q′+G′)·r′

(B.11)

= 1
Ω
∑
R

∫
Ωcell

dr

∫
dr′e−i(q+G)·(r+R)F (r + R, r′ + R)ei(q′+G′)·(r′+R) (B.12)

= 1
Ωcell

∫
Ωcell

dr

∫
dr′e−i(q+G)·rF (r, r′)ei(q′+G′)·r′

(
Ωcell

Ω
∑
R

e−i(q−q′)·R

)
(B.13)

= 1
Ωcell

∫
Ωcell

dr

∫
dr′e−i(q+G)·rF (r, r′)ei(q′+G′)·r′

(2π)dδ(q − q′) (B.14)

= F (q + G, q′ + G′)(2π)dδ(q − q′) = F (q + G, q + G′) (B.15)

B.2 Conductivity from linear response
The purpose of this appendix is obtain an expression for the anomalous Hall conduc-
tivity from the current-current correlation function. The conductivity tensor is related
to the current-current correlation function:

σαβ(q, ω) = 1
i(ω + iη)

CJαJβ(q, ω), (B.16)
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and from the anti-symmetric part of the conductivity tensor we can get the Hall con-
ductivity. We are only interested in the conductivity tensor in the limit q = 0, ω = 0.
It is however easier to start from the more general and then derive the later. In the
spatial-temporal domain the current-current correlation function is given by:

CJαJβ(r, r′, t, t′) = −iθ(t− t′) ⟨[Jα
0 (r, t), Jβ

0 (r′, t′)]⟩ (B.17)

First step is to rewrite the current-current correlation function by Fourier transform:

CJαJβ(q, q′, t, t′) = −iθ(t− t′)
∫
dr

∫
dr′e−iq·r ⟨[Jα

0 (r, t), Jβ
0 (r′, t′)]⟩ eiq′·r′

(B.18)

= −iθ(t− t′)
∫
dr

∫
dr′ 1

(2π)2

∑
q1,q2

⟨[Jα
0 (q1, t), J

β
0 (q2, t

′)]⟩ e−iq·reiq′·r′
eiq1·reiq2·r′

(B.19)

= −iθ(t− t′)
∑

q1,q2

⟨[Jα
0 (q1, t), J

β
0 (q2, t

′)]⟩ 1
(2π)

∫
dr3ei(q1−q)·r 1

(2π)

∫
dr′3

ei(q′+q2)·r′
.

(B.20)

Finally one obtains:

CJαJβ(q, q′, t, t′) = −iθ(t− t′) ⟨[Jα
0 (q, t), Jβ

0 (−q′, t′)]⟩ . (B.21)

We now use the identity CJαJβ(q, q′) = CJαJβ(q, q) to define:

CJαJβ(q, t, t′) = −iθ(t− t′) ⟨[Jα
0 (q, t), Jβ

0 (−q, t′)]⟩ (B.22)

We now turn to the frequency dependence of the conductivity. We will limit further
discussion to the q = 0 case, here the correlation function reduces to:

CJαJβ(t, t′) = −iθ(t− t′) ⟨[Jα
0 (t), Jβ

0 (t′)]⟩ (B.23)

Since the perturbation stemming from the applied electric field fulfills the requirement
given in the end of section 7.3, we may use only the time difference τ = t− t′:

CJαJβ(ω) =
∫ ∞

−∞
dτCαβ(τ)ei(ω+iη)τ (B.24)

= −i
∫ ∞

−∞
dτei(ω+iη)τθ(τ)

(
⟨e

iH0t
h̄ Jαe− iH0t

h̄ e
iH0t′

h̄ Jβe− iH0t′
h̄ ⟩ (B.25)

− ⟨e
iH0t

h̄

′

Jβe− iH0t′
h̄ e

iH0t
h̄ Jαe− iH0t

h̄ ⟩

)
(B.26)

(B.27)

To evaluate the averages in the equation above we will now make use of that fact that
the Hamiltonian is that of a single particle system with well defined band indices n
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and momenta k:

CJαJβ(ω) = − i

h̄

∫ ∞

0
dτei(ω+iη)τ

∫
BZ

dk

(2π)d

N∑
n

(B.28)

×

(
⟨nk| e

−βH0

Z
e

iH0t
h̄ Jαe− iH0t

h̄ e
iH0t

h̄

′

Jβe− iH0t′
h̄ |nk⟩ (B.29)

− ⟨nk| e
iH0t′

h̄ Jβe− iH0t′
h̄ e

iH0t
h̄ Jαe− iH0t

h̄ |nk⟩

)
(B.30)

= − i

h̄

∫
BZ

dk

(2π)d

∫
BZ

dk′

(2π)d

N∑
n

f(Enk)
N∑

m ̸=n

∫ ∞

0
dτei(ω+iη)τ (B.31)

×

(
⟨nk| e

iH0t
h̄ Jαe− iH0t

h̄ |mk′⟩ ⟨mk′| e
iH0t′

h̄ Jβe− iH0t′
h̄ |nk⟩ (B.32)

− ⟨nk| e
iH0t′

h̄ Jβe− iH0t′
h̄ |mk⟩ ⟨mk| e

iH0t
h̄ Jαe− iH0t

h̄ |nk⟩
)

(B.33)

= − i

h̄

∫
BZ

dk

(2π)d

N∑
n

N∑
m ̸=n

f(Enk)
∫ ∞

0
dτei(ω+iη)τ (B.34)

×

(
ei

(Enk−Emk)
h̄ tei

(Enk−Emk)
h̄ t′

⟨nk| Jα |mk⟩ ⟨mk| Jβ |nk⟩ (B.35)

− ei
(Enk−Emk)

h̄ t′
ei

(Enk−Emk)
h̄ t ⟨nk| Jβ |mk⟩ ⟨mk| Jα |nk⟩

)
(B.36)

= − i

h̄

∫
BZ

dk

(2π)d

N∑
n

N∑
m ̸=n

f(Enk)
∫ ∞

0
dτ

(
ei(ω+iη+ (Enk−Emk)

h̄ )τ ⟨nk| Jα |mk⟩ ⟨mk| Jβ |nk⟩

(B.37)

− ei(ω+iη− (Enk−Emk)
h̄ )τ ⟨nk| Jβ |mk⟩ ⟨mk| Jα |nk⟩

)
(B.38)

=
∫

BZ

dk

(2π)d

N∑
n

N∑
m̸=n

f(Enk)

(
⟨nk| Jα |mk⟩ ⟨mk| Jβ |nk⟩
(h̄ω + ih̄η + (Enk − Emk))

− ⟨nk| Jβ |mk⟩ ⟨mk| Jα |nk⟩
(h̄ω + ih̄η − (Enk − Emk))

)
.

(B.39)

To get an expression for the Hall conductivity we focus in on the anti-symmetric part of
the conductivity tensor σA

αβ = σαβ −σβα. The components can be found by computing
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the anti-symmetric part of the current-current correlation function:

CA
JαJβ(ω) = CJαJβ(ω) − CJβJα(ω) (B.40)

=
∫

BZ

dk

(2π)d

N∑
n

N∑
m̸=n

f(Enk)

(
⟨nk| Jα |mk⟩ ⟨mk| Jβ |nk⟩
(h̄ω + ih̄η + (Enk − Emk))

(B.41)

− ⟨nk| Jβ |mk⟩ ⟨mk| Jα |nk⟩
(h̄ω + ih̄η − (Enk − Emk))

(B.42)

− ⟨nk| Jβ |mk⟩ ⟨mk| Jα |nk⟩
(h̄ω + ih̄η + (Enk − Emk))

+ ⟨nk| Jα |mk⟩ ⟨mk| Jβ |nk⟩
(h̄ω + ih̄η − (Enk − Emk))

)
(B.43)

=
∫

BZ

dk

(2π)d

N∑
n

N∑
m̸=n

f(Enk)

(
⟨nk| Jα |mk⟩ ⟨mk| Jβ |nk⟩ (B.44)

×
(

1
(h̄ω + ih̄η + (Enk − Emk))

+ 1
(h̄ω + ih̄η − (Enk − Emk))

)
(B.45)

− ⟨nk| Jβ |mk⟩ ⟨mk| Jα |nk⟩
(

1
(h̄ω + ih̄η − (Enk − Emk))

(B.46)

+ 1
(h̄ω + ih̄η + (Enk − Emk))

))
(B.47)

=
∫

BZ

dk

(2π)d

N∑
n

N∑
m̸=n

f(Enk) (B.48)

×

(
⟨nk| Jα |mk⟩ ⟨mk| Jβ |nk⟩

(
1

(h̄ω + ih̄η)2 − (Enk − Emk)2

)
(B.49)

− ⟨nk| Jβ |mk⟩ ⟨mk| Jα |nk⟩
(

1
(h̄ω + ih̄η)2 − (Enk − Emk)2

))
(B.50)

We now use that: ⟨nk| Jα |mk⟩ ⟨mk| Jβ |nk⟩ = ⟨nk| Jβ |mk⟩∗ ⟨mk| Jα |nk⟩∗. to reduce
the expression for the current-current correlation function to:

CA
JαJβ(ω) =

∫
BZ

dk

(2π)d

N∑
n

N∑
m̸=n

f(Enk)2iIm
(
⟨nk| Jα |mk⟩ ⟨mk| Jβ |nk⟩

)
(B.51)

×
(

(h̄ω + ih̄η)
(h̄ω + ih̄η)2 − (Enk − Emk)2

)
(B.52)

The relationship between the correlation function and the conductivity is:

σA
αβ(ω) = e2

i(ω + iη)
CA

JαJβ(ω) (B.53)
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The conductivity therefore becomes

σA
αβ(ω) = e2h̄

∫
BZ

dk

(2π)d

N∑
n

N∑
m ̸=n

f(Enk)

(
2Im

(
⟨nk| Jα |mk⟩ ⟨mk| Jβ |nk⟩

)
(h̄ω + ih̄η)2 − (Enk − Emk)2

)
(B.54)

In the single particle picture the current operator is given by: Jα = vα and the velocity
operator is given by: vα = 1

h̄
dH
dkα

, where H is the Hamiltonian [154]. The conductivity
can then be written as:

σA
αβ(ω) = e2

h
2π
∫

BZ

dk

(2π)d

N∑
n

N∑
m̸=n

f(Enk)

(2Im
(

⟨nk| dH
dkα

|mk⟩ ⟨mk| dH
dkβ

|nk⟩
)

(h̄ω + ih̄η)2 − (En − Em)2

)
(B.55)

In practical computations it is often helpful to treat the eigenstate indices n and m on
equal footing with respect to summation. To this end we use the fact that expressions
of the type:
N∑
m

N∑
n ̸=m

f(En)A(En, En) (B.56)

can be rewritten as
N∑
m

N∑
n

1
2

(f(En) − f(En))A(En, Em) (B.57)

provided that A(En, Em) = A(Em, En). Here f(En) denote the Fermi-Dirac distri-
bution function and A(En, Em) a well-behaved function of both summation variables.
The Hall conductivity then takes the form [157]:

σA
αβ(ω) = e2

h

∫
BZ

dk

(2π)d−1

N∑
n,m

(f(ϵnk) − f(ϵnk))

( Im
(

⟨nk| dH
dkα

|mk⟩ ⟨mk| dH
dkβ

|nk⟩
)

(h̄ω + ih̄η)2 − (Enk − Emk)2

)
(B.58)

To get an expression for the Hall conductivity we consider the dc limit where ω → 0
and η → 0 to get:

σA
αβ = e2

h

∫
BZ

dk

(2π)d−1

N∑
n,m

(f(ϵnk) − f(ϵnk))

( Im
(

⟨nk| dH
dkα

|mk⟩ ⟨mk| dH
dkβ

|nk⟩
)

(Enk − Emk)2

)
(B.59)

converting the integral to a sum we get:

σA
αβ = e2

h

2π
NkV

∑
k∈BZ

N∑
n,m

(f(ϵnk) − f(ϵnk))

( Im
(

⟨nk| dH
dkα

|mk⟩ ⟨mk| dH
dkβ

|nk⟩
)

(Enk − Emk)2

)
(B.60)
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B.3 Supplementary tables
The table contains atomic positions and lattice vectors in units of Å for the relevant
two dimensional magnetic materials mentioned in the main text.



1

Name Unit cell vectors [Å] Atomic positions [Å]

Fe3GeTe2

a1:(3.909, 0.0, 0.0)
a2:(-1.954, 3.385, 0.0)
a3:(0.0, 0.0, 24.0)

Te1:(2.329, 1.693, 14.575)
Te2:(2.329, 1.693, 9.425) Ge1:(0.301, 2.864, 12.0) Fe1:(0.301, 0.522, 13.242)

Fe2:(0.301, 0.522, 10.758) Fe3:(2.329, 1.693, 12.0)

Br2Cu2S2

a1:(4.686, 0.0, 0.0)
a2:(-0.0, 3.488, 0.0)
a3:(-0.0, 0.0, 21.342)

Cu1:(2.343, 0.0, 9.537)
Cu2:(0.0, 1.744, 11.805) S1:(2.343, 1.744, 11.123) S2:(-0.0, 0.0, 10.219)

Br1:(2.343, 1.744, 7.76) Br2:(-0.0, -0.0, 13.583)

FeCl2 (T-phase)
a1:(3.556, -0.0, 0.0)
a2:(-1.778, 3.08, 0.0)
a3:(-0.0, 0.0, 17.443)

Fe1:(-0.0, 0.0, 8.721)
Cl1:(1.778, 1.027, 10.111) Cl2:(0.0, 2.053, 7.332)
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Ferroic order is a phenomenon of enourmous importance in the field of materials science. The
word refers to materials that posses long-range order in specific material properties such as mag-
netization, polarization or elasticity. A good example is ferromagnetism which occur in magnetic
materials where microscopic magnetic dipoles align over long distances to produce a macro-
scopic magnetization. In such materials the magnetization can be controlled externally, which
has lead to a variety of interesting applications. Recent advances in material science have un-
covered a new form a ferroic material, the so called multiferroics. These are materials where
several types of ferroic order are simultaneously present. Combining different types of ferroic or-
der may open the possibility for novel applications in wide range of different technologies from
new electronics for computing or information storage to new forms of chemical catalysts.

The goal of this thesis is to apply computational methods to uncover new types of multifer-
roics materials. This is done using first-principles methods, which applies the most fundamental
equations of quantum mechanics to materials without prior empirical knowledge of the system
in question and using only a minimal set of assumptions. These methods are applied in a high-
throughput framework where one attempts to investigatemanymaterials at once by automating
the computational process. The thesis presents results from a study of new two-dimensional ferro-
electric materials. These are materials that are as thin as one atomic layer and has become an
increasingly popular materials platform over the last decade. These materials do not suffer from
some of the drawbacks of their bulk counterparts such as limitations on thickness.

Lastly the thesis presents a chapter on the study of the anomalous Hall conductivity inmagnetic
systems with spin-orbit coupling. Benchmark calculations are presented for Fe, Co and Ni, using
software implementation of the Hall conductivity in the GPAW code maintained at DTU. Finally
results are shown for selected two dimensional systems.
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