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Abstract—The battery energy storage system is an essential
component in the modern energy system with the development
of renewable energy, transportation electrification, and carbon-
neutral goals. Battery degradation has been the most challenging
issue of energy storage. This work presents a data-driven battery
degradation model powered by long short-term memory (LSTM)
recurrent neural network (RNN). Utilizing the battery dataset
with more than 100 batteries exposed to different operations,
the proposed model gives a precise prediction of full-discharge
capacity and internal resistance (IR) with the root-mean-square
error (RMSE) of 0.008 Ah and 0.00017 Ohm in 100 cycles,
respectively. Instead of a single capacity or state of health (SOH)
value projection, our model predicts the full-discharge capacity-
voltage trajectory of the following cycles, addresses the capacity
and energy content in different voltage ranges, and improves the
accuracy and applicability of the SOH prognosis in industrial
applications.

Index Terms—state of health, data-driven prognosis, battery
degradation modeling, battery health indicator

I. INTRODUCTION

Batteries are of vital importance with the increasing demand
for transportation electrification and energy storage in power
systems [1]. Battery aging, known as degradation, is one of the
biggest concerns of battery applications. Battery degradation
leads to deteriorating performance regarding energy storage,
power provision, energy efficiency, etc. During the inevitable
degradation process, non-linear performance deterioration is
observed, and the battery state of health (SOH) is hard to mea-
sure or predict. The inherent battery aging relates to the loss of
lithium inventory and active electrode materials, which leads
to capacity fade and power fade of battery performance [2].
Addressing the physical transformation and chemical reaction
causing the degradation, correlating the battery degradation
with the usage of the battery is one of the most viable
approaches in this field [3].

The early lithium-ion battery aging test is carried out at
NASA Ames research center on 18650 batteries [4]. After
15 years of advancement of battery aging tests, around one
thousand cells were tested and published over the world,
which became the main resource for degradation research
[5]. The operating conditions of the battery cycling, including
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temperature, current rate (C-rate), and state of charge (SOC),
are controlled regarding selected independent factors, and
the current, voltage, IR, and temperature of the batteries
are recorded over time. Some works test a group of battery
cells under the same duty profile to investigate the general
degradation behavior and inherent cell-level discrepancy. For
example, a group of 48 Nickel Manganese Cobalt is cycled
under the same duty profile [6]. Other research focuses on
diverse battery duty profile aging tests to address the usage-
induced degradation discrepancy. For instance, to investigate
the aging performance of batteries under fast charging, the
duty profiles of various charging C-rates up to 8C are applied
on 124 lithium iron phosphate batteries [7]. To reveal the
battery aging performance under random operating conditions,
77 batteries are cycled in fixed or randomized policies, where
the C-rate of 1C to 3C are implemented [8]. Overall, the
increasing amount of accessible battery aging data is observed,
and higher quality of recording and the innovative design of
duty profiles are implemented, which promotes the battery
degradation research substantially.

Various approaches to degradation modeling are practiced
to track and predict the battery degradation performance [9].
The model-based, data-driven, and hybrid approaches are the
main three categorizations for degradation modeling [10]. The
model-based approach includes the electrochemical model, the
equivalent circuit model, the empirical model, etc. To reduce
the complexity of modeling and to utilize the abundant battery
aging dataset, the data-driven approaches demonstrate the
strength of degradation prognosis in recent years. Regression
methods are implemented in the degradation research broadly,
including lasso and elastic net regression, support vector
regression, gaussian process regression, etc. [7], [11], [12].

Addressing the long-term degradation trend and short-term
fluctuations, various machine learning methods are built on the
decomposition results of degradation trajectories [13]. It en-
hances the model performance from the capacity characteristic
of the battery testing records, without knowing the forming
process of capacity at different charging/discharging stages.
Recently, LSTM neural network shows great potential for
long-term prediction, especially in the field of battery degra-
dation [14]. Various designs such as neural network structure,
feature selection, and dropout techniques are implemented for
better model performance [15]. It is also combined with other



methods such as ensemble learning, transfer learning, and
Monte Carlo methods [16], [17]. The battery accuracy of the
model evaluation parameters is quantified by RMSE, mean
absolute error (MAE), etc. Previously, one or more values
are selected to be the key indicator of capacity degradation.
For instance, the full-discharge battery capacity, SOH, IR, etc.
However, the aforementioned indicators are highly condensed
parameters for degradation description, which is insufficient to
describe the complex process and states of battery degradation.

In this work, we expand the battery degradation indicator
to a series of capacities at different voltage levels during the
discharge process combined with IR to better describe the
battery health state. The LSTM machine learning algorithm is
used to address the battery life prediction in different operation
conditions, which is a good fit for long-term degradation
behavior and short-term battery performance fluctuation. The
selected battery dataset includes the battery life from hundreds
to thousands of cycles, which are grouped in training and
testing datasets arbitrarily. Conventional SOH indicators like
full-discharge capacity and IR can be precisely predicted, and
the battery state of energy at different voltages can be extracted
by the novel SOH indicators.

The paper is organized as follows. The recent progress and
challenges of battery degradation prognosis are presented in
the introduction section. In Section II, the dataset used for
modeling is introduced. The LSTM neural network structure
and model evaluation parameters are presented in Section
III. The details of the data-driven modeling are presented in
Section IV. The model results are presented by conventional
indicators and our novel indicators in Section V. Finally,
the challenge and opportunity of the proposed degradation
prognosis framework are discussed in Section VI. Section VII
concludes our work.

II. BATTERY AGING DATA

Capturing the long-term battery degradation performance is
a time-consuming task, especially with the increasing lifetime
of modern lithium-ion battery cells. Therefore, it is essential
to run the batteries in a controlled environment from the
beginning of life to the end of life, which normally takes
from months to years. The battery dataset from the work of
[7] is used in this work, consisting of 124 commercial lithium
iron phosphate (LFP) degradation testing results published in
2019. The batteries are cycled in the 30 ◦C with various
combinations of fast-charging policies with the combination
of different charging C-rates. The discharging process of all
the batteries is carried out at 4C, which gives a good reference
for the full-discharge capacity in each cycle. The batteries are
cycled at least to 80% of the nominal 1.1Ah discharge capacity,
which is defined as the end of life (EOL). As shown in Fig. 1,
The EOL ranges from a few hundred cycles to more than two
thousand cycles. The initial full-discharge capacity tested by
the 4C constant current is around 1.05 Ah, and the test finishes
up to 0.7Ah for the short-life batteries. As shown in Fig. 2,
the IR is presented along the battery cycle count. The IR is
tested by the pulse current at 80% SOC during the charging

Fig. 1: Degradation performance of the batteries in the dataset:
full-discharge capacity development over cycle count

Fig. 2: Degradation performance of the batteries in the dataset:
IR development over cycle count

process, which shows a correlation with the full-discharge
capacity. Though the batteries are cycled in a temperature
chamber set at 30◦C, the temperature measurement on the
surface of the battery changes constantly caused by the energy
conversion loss and the heat effect of the current. However,
the temperature measurement is hard to use directly in the
modeling, since the cell temperature is influenced by internal
causes such as the IR development, C-rate, etc., and external
causes such as the characteristic of the temperature chamber,
battery placement, sensor accuracy, etc.

III. METHODOLOGY

A. Structure of LSTM

With the increasing lifetime of lithium-ion batteries, it is
essential to capture the long-term degradation development to-
gether with short-term fluctuation by contemporary algorithms.
The RNN is a powerful deep-learning tool with great potential
for tasks involving sequential inputs. However, the gradients



Fig. 3: The data flow of LSTM cell at time step t [18]

Fig. 4: Illustration of data and features for modeling: IR
(feature No.1) + 10 discharge capacity at different voltages
(feature No.2-11) with cycle step of 100 cycles

of RNN tend to explode or vanish during the backpropagation
training process, which hinders the long-term memory of the
model. The LSTM is a type of RNN equipped with both long-
term and short-term memory [19], as the LSTM unit allows
the gradients to be passed unchanged during the training. As
shown in Fig. 3, the data flow in the LSTM cell from time step
t−1 to t is presented. The input includes the cell state at time
step t−1 (ct−1), the hidden state at time step t−1 (ht−1), and
the input series at time step t (Xt). The outputs are the cell
state (ct) and hidden state (ht) at the time step t, which are
passed to the next LSTM cell. In this work, The Xt are the
features extracted from the battery operation records. During
the training process, the input weights, recurrent weights, and
biases are learned. The gate design gives the LSTM network
the ability to have long-term memory. As shown in Fig. 3, the
f, g, i, and o represent the forget gate, cell candidate, input
gate, and output gate, respectively. In the calculation flow, ct
is given by:

ct = ft ⊙ ct−1 + it ⊙ gt (1)

and the hidden state at time step t is given by:

ht = ot ⊙ σc(ct) (2)

where the ⊙ denotes the element-wise multiplication for
vectors, and σc denotes the hyperbolic tangent gate activation

function. The detailed LSTM architecture and training process
can be found at [18], [19].

B. Model evaluation parameters

The RMSE is used to measure the model performance,
comparing the difference between the predicted value with the
measured value. It is defined as:

RMSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2 (3)

where the ŷj is the estimation value of item j, yi is the
measurement value of item j, and n is the number of items.
To better represent the model performance compared with the
scale of the measurement data, the mean absolute percentage
error (MAPE) is calculated as:

MAPE =
100%

n

n∑
j=1

∣∣∣∣∣yj − ŷj
yj

∣∣∣∣∣ (4)

IV. MODELING

With adequate battery aging test resources and a flexible
machine learning framework, our model aims at providing a
multi-indicator battery health prognosis for battery degrada-
tion. The novel indicators we proposed including battery dis-
charge capacity at different voltage levels and IR are the main
outputs. Different from the prior capacity prediction works,
which only cover the full-discharge capacity, we would like to
address the discharge capacity from the fully charged battery
to different voltage levels. Specifically, the LFP batteries in
the selected dataset have an operation range from 3.5 volts
to 2 volts in each constant-current discharging process. As
the capacity change is recorded for every 0.0015 volts, there
are 1000 capacity measurements in the discharge process.
Therefore, we define the capacity feature in our model by
the number of capacity measurements, which are measured in
the same voltage distance. For instance, 1 capacity feature is
the single full-discharge capacity, 10 capacity features are the
10 discharge-capacity records at each 0.015 volts voltage drop
from 3.5 volts, and so on.

As shown in Fig. 4, the prepared dataset of 1 IR feature at
row No.1 plus 10 capacity features at row No.2 to No.11 with
a cycle step of 100 cycles is organized together. The cycle
step is the prediction interval defined in our model, which is
100 cycles. In our model, the input is a series of features at
any specific cycle step, and the prediction target is the series
of features at the cycle step of the furture. The design of the
same structure of input and output gives the flexibility of both
closed-loop prediction and open-loop prediction. Since 100
cycles are already significant for battery usage, the open-loop
prediction approach is used, therefore, the model predicts the
battery aging performance in 100 cycles at different stages, and
prior degradation performance is memorized. As there are 124
batteries in the dataset, the first 90 % of the batteries are used
as training datasets and the rest 10% batteries are used as the
test datasets, which are 109 and 13 respectively.



Besides capacity records and IR, two other features are
considered in the modeling, including the capacity difference
and end-of-cycle temperature. The capacity difference is cal-
culated by subtracting the first-cycle capacity records from
each following cycle, and the end-of-cycle temperature is the
temperature measurement at the end of each full-discharge
process. The extra features did not turn out to enhance the
model accuracy, which is detailed in the results section.

TABLE I: Model performance evaluated by full-discharge
capacity prediction accuracy

Model Model inputs and performance
No. No. of Capacity Features RMSE MAPE
1 1 0.00968 0.73%
2 10 0.00804 0.59%
3 100 0.00906 0.71%
4 1000 0.0102 0.76%
5 10a 0.00986 0.76%
6 10b 0.0144 1.15%

aPlus capacity difference features
bPlus capacity difference and end-of-cycle temperature features.

TABLE II: Model performance evaluated by IR prediction
accuracy

Model Model inputs and performance
No. No. of Capacity Features RMSE MAPE
1 1 1.65E-04 0.76%
2 10 1.70E-04 0.85%
3 100 3.26E-04 1.77%
4 1000 4.97E-04 2.80%
5 10a 1.78E-04 0.87%
6 10b 3.22E-04 1.66%

aPlus capacity difference features
bPlus capacity difference and end-of-cycle temperature features.

V. RESULTS

A. Results evaluated in conventional indicators

Conventionally, the degradation model is evaluated by the
prediction accuracy of the full-discharge capacity and IR,
which are covered by our model. As shown in Table I and
Table II, the model performance is evaluated by full-discharge
and IR prediction accuracy, respectively. The RMSE and
MAPE are the average values of all the testing datasets.
There are six models presented, and the sensitivity analysis
is carried out by the difference in the model inputs. From
model No.1 to No.4, different No. of capacity, features are
given from 1 to 1000. Model No.2 with 10 capacity features
gives the lowest RMSE and MAPE for full-discharge capacity
prediction and Model No.1 wins for IR prediction accuracy.
Therefore, the increasing amount of capacity information at
different voltages during the discharge process improves the
modeling performance of full-discharge capacity prediction at
the beginning, and the modeling performance decreases when
there is too much information during the discharge process,
which may shift the focus of model performance from predict-
ing the full-discharge capacity to the multi-voltage capacity.

However, increasing information on the discharge capacity
at different voltage levels does not increase the performance
of the IR prediction, the potential reason might be that the
LSTM is a very flexible method and can fit IR development
pretty well already with the full-discharge capacity feature,
etc. The model performance on all the testing datasets is
presented by the histogram of RMSE and MAPE in Fig. 5. And
further-step trajectory predictions are demonstrated in Fig. 6,
which shows precise prediction results on fully-discharge
capacity and IR. Besides the feature combination of IR and
discharge capacity, Model No.5 and Model No.6 are used
to investigate the supplement features of capacity difference
and end-of-cycle temperature. However, the additional feature
does not improve the model’s performance in the conventional
evaluation framework.

B. Results evaluated in novel indicators

As shown in Fig. 7, the model accurately gives the predic-
tion of the full discharge trajectory of the future cycle step, and
the development of the discharge performance of the test case
is presented. Instead of full-discharge capacity, 1000 points of
discharge capacity are predicted from 3.5 volts to 2 volts. The
red smooth lines are the measurement records, and the noisy
lines in other colors are the predictions. The test case has a
cycle life of 900 cycles, and the prediction is made from the
6th cycle step to the 9th cycle step, which is from 600 cycles to
900 cycles. In summary, the model shows a great performance
for degradation prognosis during the whole discharge process
at different voltage levels.

VI. DISCUSSION

Overall, the model proposed in this work gives a novel scope
of degradation prognosis. Traditionally, various single values
are used to describe the battery SOH such as full-discharge
capacity, IR, remaining useful life, etc. However, degradation
is a complex process and is hard to be described by single val-
ues. Another limitation of the conventional capacity prediction
is the neglect of voltage during the charging and discharging
process. In most applications, the remaining useful power and
energy of the battery are the most important information rather
than capacity. As the voltage is changing during the battery
discharge process, it is impossible to estimate the remaining
energy accuracy without the voltage information. With our
novel indicator of the full capacity-voltage information during
discharge, the remaining energy can be easily estimated by the
integration of capacity on voltage. Furthermore, the accessible
energy from any voltage range or SOC range can also be
accurately calculated by definite integrations.

VII. CONCLUSION

In this work, the data-driven degradation model powered by
LSTM is proposed for degradation prognosis by predicting the
capacity-voltage trajectories for the full-discharge process at
different stages. Besides accurately forecasting the capacity-
voltage relation, the LSTM model gives precise predictions
on full-discharge capacity and IR. Our best model achieves



(a) Capacity prediction: RMSE (b) Capacity prediction: MAPE (c) IR prediction: RMSE (d) IR prediction: MAPE

Fig. 5: Model performance on testing datasets

(a) Capacity prediction (b) IR prediction

Fig. 6: Degradation prognosis: trajectories of full-discharge
capacity and IR

Fig. 7: Degradation prognosis: discharge capacity at all voltage
levels during the discharge process

0.008 Ah RMSE and 0.59% MAPE on capacity prediction,
and 0,00017 Ohm RMSE and 0.85% MAPE on IR prediction
in 100 cycles. Besides the conventional SOH indicators, our
model depicts the useful discharge capacity at different voltage
levels of the full discharge process, which improves the
SOH indicators significantly. The precise prediction of the
novel SOH indicators can be used to estimate the available
capacity and energy at any discharge voltage range of various
applications in the future.
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