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A B S T R A C T

In the hydroelastic analysis of large floating structures, the structural and hydrodynamic
analyses are coupled, and the structural stiffness plays an important role in the accurate
prediction of the response. However, there is usually a large difference between the longitudinal
and the cross-sectional scales of modern ships, and the sectional configurations are generally
complex, making it difficult to obtain the exact structural stiffness. Using a full finite element
model to calculate the structural stiffness is inevitably time-consuming. Since modern ship
structures are usually nearly periodic in the longitudinal direction, we treat the hull as a periodic
Euler–Bernoulli beam and use a novel implementation of asymptotic homogenization (NIAH) to
calculate the effective stiffness. This can greatly improve the computational efficiency compared
with a full finite element model. Based on a combination of finite element and finite difference
methods, we develop an efficient analysis technique to solve the hydroelastic problem for
nearly-periodic floating structures. The finite element method is used to efficiently calculate the
structural stiffness, and the finite difference method is used to solve the hydrodynamic problem.
This proposed technique is validated through several test cases with both solid and thin-walled
sections. A range of representative mid-ship sections for a container ship are then considered
to investigate the influence of both transverse and longitudinal stiffeners on the structural
deformations. A simple method for including non-periodic end effects is also suggested.

1. Introduction

With the increasing needs of maritime transport, very large floating structures (VLFS) have become more common. In a traditional
hydrodynamic analysis, ships are usually regarded as rigid structures, but the increased flexibility of large ships pushes the natural
frequencies closer to the wind-wave forcing and leads to larger responses which can no longer be ignored. Over the past several
decades, hydroelastic analysis methods have been developed to predict the response of flexible structures [1–10]. Most of these
methods treat the ship as a beam model and couple the hydrodynamic and structural analyses. Euler–Bernoulli beam theory [11–
13] is the most commonly used structural model, but Timoshenko beam theory [14,15] is also often invoked to include shear
effects. The torsional response can also be predicted using a special beam model if necessary. The hydrodynamic calculations are
sometimes done using Navier–Stokes equation solvers (CFD) such as OpenFOAM [16], or STAR-CCM+ [17]. However, CFD solvers
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Fig. 1. Examples of modern container ship structures. Fig. 1(a) is from https://commons.wikimedia.org/wiki/File:Containerlader%C3%A4ume_Schiff_retouched.
jpg, and Fig. 1(b) is from https://www.bloomberg.com/news/photo-essays/2013-09-05/holy-ship, which both were accessed on March 22 2023.

are extremely time-consuming and limited to a small number of specific operational conditions. Therefore, most solvers are based
on potential-flow theory. For example, WAMIT [18–20] and HydroStar [21,22] can efficiently solve the first- and second-order
problems at zero forward speed using the Boundary Element Method (BEM). These solvers generally treat hydroelastic problems by
means of generalized radiation modes [23].

Over the past two decades, the maritime group at the Technical University of Denmark has developed an open-source
finite difference-based hydrodynamic solver, OceanWave3D-Seakeeping [24–26], which also includes generalized modes to solve
hydroelastic problems [27–29]. A key component of this solution, representing the coupling between the structural and the
hydrodynamic problems, is the structural stiffness matrix. It is a non-trivial task to accurately estimate the global structural stiffness
of a large ship, due to the large range of scales associated with the details of a sectional girder and the length of the ship. These days, a
full finite element method (FEM) model is often developed for a new ship design using commercial software such as NASTRAN [30],
ABAQUS [31], or ANSYS [32]. However, generating a full ship model using these tools is very time-consuming and computationally
intensive. The model may also fail to converge when the difference between the global and local scales is very large. Fig. 1 shows two
examples of the structural layout of real ships. The complexity of the sections is clear, illustrating how difficult it is to model all the
details using a finite element method. Considering that many modern ships are usually characterized by a nearly periodic structure
in the longitudinal direction, the structural stiffness can be efficiently calculated based on a representative microstructure which
is defined as a unit-cell. For example, the ship structure as shown in Fig. 1(a) can be seen to have a nearly periodic characteristic
along most of its length, consisting of an array of unit-cell structures.

Several methods have been developed for efficient calculation of the mechanical properties of periodic structures including, the
representative volume element (RVE) method [33] and the asymptotic homogenization method (AH) [34,35]. The RVE method can
be implemented easily but lacks a solid mathematical foundation, and thus a high calculation accuracy cannot be guaranteed. The
AH method, on the other hand, has been derived based on a rigorous mathematical perturbation theory which is able to accurately
predict the properties of periodic structures [36]. Therefore, the AH method has been further developed for various applications.
For example, many researchers [37–39] have expanded the AH method to calculate the properties of two- and three-dimensional
periodic structures. In some studies [40–42], the vibration problem has been efficiently evaluated using the AH method. To predict
the properties of one-dimensional periodic structures, the AH method has been further developed by many scholars [43–47]. The AH
method was derived using three-dimensional elasticity theory [48] and satisfies the corresponding governing equations. To apply
AH to another case, a large amount of coding work and tedious mathematical manipulations must be carried out. To improve the
calculation efficiency, Cheng et al. [49] developed a novel implementation of the AH method which is known as NIAH. Cai et al. [50]
and Yi et al. [36] modified NIAH to calculate the properties of one-dimensional periodic beams and two-dimensional periodic plates,
respectively. Xu et al. [51,52] extended the NIAH to calculate the shear properties of periodic structures. Yan et al. [53,54] used
NIAH to analyze the stiffness and stress properties of helically wound structures.

In this paper, we model flexible structures as Euler–Bernoulli beams and develop an efficient strategy to solve for their
hydroelastic response to ocean waves. By applying the NIAH method to estimate the global structural stiffness, the computational
cost is reduced significantly compared to a full FEM analysis. Based on the estimated structural stiffness, the hydroelastic response is
2
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predicted using the linear potential-flow solver OceanWave3D-Seakeeping. The strategy is validated by comparison with benchmark
numerical and experimental results for several test cases with both solid-section and thin-walled structures. Finally, we consider
several representative mid-ship sections for a container ship and illustrate how the strategy can be used for the loading analysis and
structural response of modern ships. Here we discuss the influence of both longitudinal and transverse stiffeners on the hydroelastic
response in the vertical bending modes. We also propose a simple method for including the non-periodic end effects.

The rest of this paper unfolds as follows. Section 2 describes a common workflow of the hydroelastic analysis of flexible bodies.
n Section 3, we introduce the derivation and the FEM implementation of NIAH, and develop an efficient analysis workflow for the
ydroelastic problem of periodic floating structures based on NIAH. Section 4 gives a couple of validation cases of solid-section and
hin-walled structures. Section 5 studies the hydroelastic problem of open-section models for a container ship. Section 6 concludes
his paper.

. Hydroelastic analysis workflow

In this section, based on Newman’s work [23], we briefly outline the common analysis workflow for predicting the hydroelastic
esponse of flexible structures. We adopt the eigenmodes of an Euler–Bernoulli beam to represent the generalized motion modes of
he ship, and these hydrodynamic problems are solved under the assumptions of linear potential flow theory. The corresponding
requency-domain equations of motion are

6+𝑁
∑

𝑗=1
[−𝜔2(𝑀𝑖𝑗 + 𝑎𝑖𝑗 ) + i𝜔𝑏𝑖𝑗 + 𝑐𝑖𝑗 + 𝐶𝑖𝑗 ]𝜉𝑗 = 𝑋𝑖, 𝑖 = 1, 2, … , 6 +𝑁, (1)

here 𝑖 and 𝑗 denote the force direction and the motion mode, respectively. 𝑁 denotes the total number of flexible modes, 𝜔 is the
incident wave forcing radian frequency and the response is assumed to be time-harmonic so that 𝑥𝑗 (𝑡) = ℜ{𝜉𝑗 ei𝜔𝑡} with i =

√

−1
the imaginary unit. 𝑀𝑖𝑗 and 𝐶𝑖𝑗 are inertial mass and structural stiffness coefficients respectively, which can be calculated from

𝑀𝑖𝑗 = ∫

𝐿∕2

−𝐿∕2
𝑚ℎ𝑧𝑖 (𝑥)ℎ

𝑧
𝑗 (𝑥)𝑑𝑥, (2)

and

𝐶𝑖𝑗 = ∫

𝐿∕2

−𝐿∕2
𝐸𝐼ℎ𝑧

′′
𝑖 (𝑥)ℎ𝑧

′′
𝑗 (𝑥)𝑑𝑥. (3)

Here ℎ𝑧𝑖 is the vertical displacement defined by the 𝑖th mode shape of an Euler–Bernoulli beam, which is defined below. In Eqs. (2)
and (3), 𝑚 and 𝐸𝐼 are the distributed mass and the bending stiffness, respectively. In this paper, the distributed mass is assumed
to be uniform along the length of the ship, which can be calculated with ease once the draft is known. The bending stiffness 𝐸𝐼 is
also assumed to be constant along the ship length. The shape functions of the Euler–Bernoulli beam are given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℎ𝑧2𝑗+5(𝑝) =
1
2

(

cos 𝜅2𝑗−1𝑝
cos 𝜅2𝑗−1

+ cosh 𝜅2𝑗−1𝑝
cosh 𝜅2𝑗−1

)

, 𝑗 = 1, 2,…

ℎ𝑧2𝑗+6(𝑝) =
1
2

(

sin 𝜅2𝑗𝑝
sin 𝜅2𝑗

+ sinh 𝜅2𝑗𝑝
sinh 𝜅2𝑗

)

, 𝑗 = 1, 2,…
(4)

where 𝜅𝑗 is the natural wavenumber in eigenmode 𝑗 and 𝑝 = 2𝑥∕𝐿 is the coordinate normalized by the ship length 𝐿. 𝜅𝑗 satisfies
the equation

(−1)𝑗 tan 𝜅𝑗 + tanh 𝜅𝑗 = 0, (5)

and the first four roots are

𝜅2 = 2.3650, 𝜅3 = 3.9266, 𝜅4 = 5.4978, 𝜅5 = 7.0686. (6)

In Eq. (3), ℎ𝑧′′𝑖 is the second derivative of the mode shape with respect to its argument. The corresponding shape functions for heave,
pitch and the first four vertical bending modes are shown in Fig. 2. In Eq. (1), 𝑎𝑖𝑗 , 𝑏𝑖𝑗 and 𝑋𝑖 are the hydrodynamic coefficients,
i.e. the added mass, damping and excitation force coefficients, and 𝜉𝑗 is the motion response phasor in mode 𝑗.

The development of the hydrodynamic solution based on linear potential flow theory, is very mature at this point, although there
are still several unresolved issues when the vessel has non-zero forward speed. Relatively few hydroelastic solutions at forward
speed are available in the literature, and experimental measurements are also relatively sparse. In this paper, we use a finite
difference method to solve the hydrodynamic problem, and a detailed description of this solution can be found in Refs. [24,25,28].
As mentioned by Newman in [23] the total hydrostatic stiffness includes both gravitational and buoyancy contributions.

To complete the solution of Eq. (1), we need an accurate estimate of the bending stiffness for the ship hull, but that is not an easy
task. For periodic floating structures, we take a homogenization approach to estimate the equivalent bending stiffness. According
to solid mechanics theory [55], the homogenized bending stiffness of all sections can be expressed by

𝐸𝐼𝑦 =
1 𝐸𝑧2𝑑𝑆 𝑑𝑥, (7)
3
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Fig. 2. Shape functions for heave, pitch and the first four vertical bending modes.

Fig. 3. A standard workflow for the hydroelastic analysis. 𝐹𝑖 represents the applied force in direction 𝑖 from displacement 𝑢𝑗 in mode 𝑗. For example, to solve
the bending stiffness 𝐷22 which is used on the right-hand side, 𝐹2, 𝑢2 are the bending moment and the rotation angle around the 𝑦 axis respectively.

where 𝐼𝑦 is the average of the vertical area moment of inertia of all sections, and 𝐸 is the modulus of elasticity. The sectional
area 𝐴 is a function of 𝑥, i.e. 𝐴 = 𝐴(𝑥). The vertical coordinate 𝑧 is a function of 𝑥 and 𝑦, i.e. 𝑧 = 𝑧(𝑥, 𝑦). Exact solutions of
Eq. (7) can be used to calculate the bending stiffness of simple sections, but exact solutions are rarely available for real engineering
structures. For a ship, the cross sections are usually complex and change along the ship length, and the homogenization calculation
of the bending stiffness using Eq. (7) should be done over the whole ship, which is difficult if all geometrical details are included.
With the continuous improvement of computing techniques, FEM has been applied to calculate the bending stiffness of engineering
structures. In a standard FEM static calculation of the structural stiffness, as shown on the left side of Fig. 3, a full model is usually
required. For engineering structures with a large slenderness ratio like ships, the full-size simulation is often very time-consuming
and can have convergence issues. Therefore, in the hydroelastic analysis of large floating structures, it is key to find an accurate
and efficient way to calculate the structural stiffness.

3. New hydroelastic analysis workflow for periodic floating structures

Considering that modern ships usually have a nearly-periodic longitudinal structure, we introduce a novel implementation
of asymptotic homogenization (NIAH) to efficiently calculate the structural stiffness, and develop an efficient scheme for the
hydroelastic analysis of large ships.
4
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Fig. 4. A one-dimensional periodic structure and the corresponding unit-cell.

3.1. Asymptotic homogenization

For completeness, we briefly review the basic theory of asymptotic homogenization and describe the novel implementation. The
detailed background can be found in Refs. [34–36,49].

3.1.1. Basic theory
One-dimensional periodic structures consist of an array of identical micro-structures along the longitudinal direction. A micro-

structure is defined as a unit-cell. Fig. 4 shows the schematic diagram of a periodic structure and the corresponding unit-cell. For
convenience, two sets of coordinate systems are defined, one for the unit-cell and one for the full structure. They are 𝑂−𝑦1𝑦2𝑦3 and
𝑂−𝑥1𝑥2𝑥3, respectively. The length of a unit-cell is denoted as 𝑙, and the length of the corresponding full structure is denoted as 𝐿.
These two length parameters satisfy 𝑙

𝐿 = 𝜖 ≪ 1. The domain of the full structure is defined as 𝛺𝜖 = {(𝑥1, 𝑥2, 𝑥3)|−𝐿∕2 ≤ 𝑥1 ≤ 𝐿∕2},
and the periodic and non-periodic boundaries are defined by 𝑆𝑢 and 𝑆𝜖 , respectively. The domain of a unit-cell is defined as
𝑌 𝜖 = {(𝑦1, 𝑦2, 𝑦3)| − 𝑙∕2 ≤ 𝑦1 ≤ 𝑙∕2}. The periodic and non-periodic boundaries of a unit-cell are defined as 𝜔± and 𝑆, respectively.

Asymptotic homogenization theory has been developed based on linear elasticity theory. Under an elastic deformation assump-
tion, the relationship between stress 𝜎𝑖𝑗 , strain 𝜖𝑖𝑗 and displacement 𝑢𝑗 of a macroscopic beam satisfies

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝜎𝑖𝑗
𝜕𝑥𝑗

− 𝑓 𝜖𝑖 = 0, 𝑖𝑛 𝛺𝜖

𝜎𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙𝜖𝑘𝑙 , 𝑖𝑛 𝛺𝜖

𝜖𝑖𝑗 =
1
2

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜕𝑢𝑗
𝜕𝑥𝑖

)

, 𝑖𝑛 𝛺𝜖

, (8)

where 𝑓 𝜖𝑖 denotes a body force, 𝐸𝑖𝑗𝑘𝑙 is an elasticity coefficient, and 𝑖 and 𝑗 are both from 1 to 3. The three expressions in
Eq. (8) describe the force equilibrium condition, the constitutive condition of an elastic material, and the compatibility condition of
deformation, respectively. Considering the significant size difference between the macroscopic beam and the microscopic unit-cell,
the relationship between macroscopic and microscopic coordinates can be constructed as

(𝑦1, 𝑦2, 𝑦3) =
1
𝜖
(𝑥1, 𝑥2, 𝑥3). (9)

According to perturbation expansion theory, any function 𝛷𝜖 can be expanded as

𝛷𝜖(𝑥1, 𝑥2, 𝑥3) = 𝛷0(𝑥1, 𝑦1, 𝑦2, 𝑦3) + 𝜖𝛷1(𝑥1, 𝑦1, 𝑦2, 𝑦3) + 𝜖2𝛷2(𝑥1, 𝑦1, 𝑦2, 𝑦3) +… . (10)

Then the derivative of function 𝛷𝜖 with respect to coordinates 𝑥𝑖 can be written as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝛷𝜖

𝑑𝑥1
= 𝜕𝛷𝜖

𝜕𝑥1
+ 1

𝜖
𝜕𝜙𝜖

𝜕𝑦1
𝑑𝛷𝜖

𝑑𝑥2
= 1

𝜖
𝜕𝛷𝜖

𝜕𝑦2
𝑑𝛷𝜖

𝑑𝑥3
= 1

𝜖
𝜕𝛷𝜖

𝜕𝑦3

. (11)

Note that the function 𝛷𝜖 is not periodic in the 𝑥2 and 𝑥3 directions, and therefore the derivatives with respect to 𝑥2 and 𝑥3 do not
have a dual-scale characteristic, which can be obtained directly through the transformation relation between the macroscopic and
5
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microscopic coordinates. Similarly, displacement and stress fields can also be expanded as

⎧

⎪

⎨

⎪

⎩

𝑢𝑖(𝐱, 𝐲) = 𝑢(0)𝑖 (𝐱) + 𝜖 ⋅ 𝑢(1)𝑖 (𝐱, 𝐲) + 𝜖2 ⋅ 𝑢(2)𝑖 (𝐱, 𝐲) +… , 𝑖 = 1, 2, 3

𝜎𝑖𝑗 (𝐱, 𝐲) = 𝜎(0)𝑖𝑗 (𝐱) + 𝜖 ⋅ 𝜎(1)𝑖𝑗 (𝐱, 𝐲) + 𝜖2 ⋅ 𝜎(2)𝑖𝑗 (𝐱, 𝐲) +… , 𝑖, 𝑗 = 1, 2, 3
. (12)

Plugging Eqs. (11) and (12) into the governing equations in elastic mechanics [48], and after some mathematical manipulations,
the zeroth-order and first-order displacement fields can be further written as

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢(0)1 = 0

𝑢(0)𝛼 = 𝑤𝛼(𝑥1)

𝑢(1)1 = 𝑣(1)1 (𝑥1) − 𝑦𝛼
𝜕𝑤𝛼 (𝑥1)
𝜕𝑥1

𝑢(1)𝛼 = 𝑣(1)𝛼 (𝑥1) − 𝜖𝛼𝛽𝑦𝛽�̄�(𝑥1)

, (13)

here 𝛼 and 𝛽 are both taken from 2 to 3. Here 𝜖𝛼𝛽 satisfies the rule of 𝜖23 = −1, 𝜖32 = 1 and 𝜖22 = 𝜖33 = 0. �̄� is the torsional angle
round the 𝑥1 axis, and 𝑤𝛼 is the bending deflection with respect to axis 𝑥𝛼 . 𝑣

(1)
1 and 𝑣(1)𝛼 represent the macroscopic displacement

f the neutral axis under tension and bending conditions, respectively. These macroscopic parameters are only related to the
acroscopic coordinate 𝑥1. The tension strain 𝜖1, bending curvature �̄�𝛼 and torsional curvature �̄�1 can be calculated through

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜖1 =
𝜕𝑣(1)1
𝜕𝑥1

�̄�𝛼 = 𝜕2𝑤𝛼
𝜕𝑥2𝛼

�̄�1 =
𝜕�̄�
𝜕𝑥1

. (14)

t is assumed that second-order displacement fields can be obtained through a linear superposition of first-order strain fields, which
an be expressed as

𝑢(2)𝑚 = 𝑈11
𝑚 (𝑦1)𝜖1 + 𝑉 𝛼1

𝑚 (𝑦1)�̄�𝛼 +𝑊 11
𝑚 (𝑦1)�̄�1, 𝑚 = 1, 2, 3. (15)

Therefore, the total displacement field to second-order can be expressed as
{

𝑢1 = 𝜖(𝑣(1)1 (𝑥1) − 𝑦𝛼
𝜕𝑤𝛼 (𝑥1)
𝜕𝑥1

) + 𝜖2(𝑈11
1 (𝑦1)𝜖1 + 𝑉 𝛼1

1 (𝑦1)�̄�𝛼 +𝑊 11
1 (𝑦1)�̄�1) + 𝑂(𝜖3)

𝑢𝛼 = 𝑤𝛼(𝑥1) + 𝜖(𝑣
(1)
𝛼 (𝑥1) − 𝜖𝛼𝛽𝑦𝛽 �̄�(𝑥1)) + 𝜖2(𝑈11

𝛼 (𝑦1)𝜖1 + 𝑉
𝛽1
𝛼 (𝑦1)�̄�𝛽 +𝑊 11

𝛼 (𝑦1)�̄�1) + 𝑂(𝜖3)
, (16)

where 𝑈11
𝑚 , 𝑉 𝛼1

𝑚 and 𝑊 11
𝑚 are the characteristic displacement fields of the microscopic unit-cell structure, which can be obtained by

solving the unit-cell equations under tension, bending and torsion. The unit-cell equation under tension can be expressed as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕
𝜕𝑦𝑗

(𝐸𝑖𝑗𝑘𝑙
𝜕𝑈11

𝑘
𝜕𝑦𝑙

+ 𝐸𝑖𝑗11) = 0, in 𝑌

(𝐸𝑖𝑗𝑘𝑙
𝜕𝑈11

𝑘
𝜕𝑦𝑙

+ 𝐸𝑖𝑗11)𝑛𝑗 = 0, on 𝑆

𝐸𝑖𝑗𝑘𝑙
𝜕𝑈11

𝑘
𝜕𝑦𝑙

𝑛𝑗 |𝜔+ = −𝐸𝑖𝑗𝑘𝑙
𝜕𝑈11

𝑘
𝜕𝑦𝑙

𝑛𝑗 |𝜔− , on 𝜔±

𝑈11
𝑘 |𝜔+ = 𝑈11

𝑘 |𝜔− , on 𝜔±

. (17)

The unit-cell equation under bending can be expressed as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜕
𝜕𝑦𝑗

(𝐸𝑖𝑗𝑘𝑙
𝜕𝑉 𝛼1𝑘
𝜕𝑦𝑙

− 𝑦𝛼𝐸𝑖𝑗11) = 0, in 𝑌

(𝐸𝑖𝑗𝑘𝑙
𝜕𝑉 𝛼1𝑘
𝜕𝑦𝑙

− 𝑦𝛼𝐸𝑖𝑗11)𝑛𝑗 = 0, on 𝑆

𝐸𝑖𝑗𝑘𝑙
𝜕𝑉 𝛼1𝑘
𝜕𝑦𝑙

𝑛𝑗 |𝜔+ = −𝐸𝑖𝑗𝑘𝑙
𝜕𝑉 𝛼1𝑘
𝜕𝑦𝑙

𝑛𝑗 |𝜔− , on 𝜔±

𝑉 𝛼1
𝑘 |𝜔+ = 𝑉 𝛼1

𝑘 |𝜔− , on 𝜔±

. (18)

The unit-cell equation under torsion can be expressed as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝜕
𝜕𝑦𝑗

(𝐸𝑖𝑗𝑘𝑙
𝜕𝑊 11

𝑘
𝜕𝑦𝑙

+ 𝜖𝛼𝛽𝑦𝛽𝐸𝑖𝑗𝛼1) = 0, in 𝑌 𝜖

(𝐸𝑖𝑗𝑘𝑙
𝜕𝑊 11

𝑘
𝜕𝑦𝑙

+ 𝜖𝛼𝛽𝑦𝛽𝐸𝑖𝑗𝛼1)𝑛𝑗 = 0, on 𝑆

𝐸𝑖𝑗𝑘𝑙
𝜕𝑊 11

𝑘
𝜕𝑦𝑙

𝑛𝑗 |𝜔+ = −𝐸𝑖𝑗𝑘𝑙
𝜕𝑊 11

𝑘
𝜕𝑦𝑙

𝑛𝑗 |𝜔− , on 𝜔±

𝑊 11
|𝜔 = 𝑊 11

|𝜔 , on 𝜔±

. (19)
6

⎩

𝑘 + 𝑘 −
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Fig. 5. Force equilibrium and displacement continuity conditions of double unit-cell structures. For periodic boundaries: subscripts 𝜔𝑙− , 𝜔𝑟− represent left boundary
of left and right unit-cells, 𝜔𝑙+ , 𝜔𝑟+ right boundary of left and right unit-cells, 𝒇 , 𝝌 force and displacement fields in the unit-cell domain. 𝜔𝑟+

𝒇 , 𝝌|𝜔𝑟+ denote force
and displacement fields on right boundary of right unit-cell, and 𝜔𝑟−

𝒇 , 𝝌|𝜔𝑟− , 𝜔𝑙+
𝒇 , 𝝌|𝜔𝑙+ , 𝜔𝑙−

𝒇 and 𝝌|𝜔𝑙− have been defined in a similar manner. 𝑌 𝑙 , 𝑆 𝑙+ , 𝑆 𝑙− and
𝑌 𝑟 , 𝑆𝑟+ , 𝑆

𝑟
− represent the domain, the top boundary and the bottom boundary of left and right unit-cells.

The first expressions in Eqs. (17), (18), (19) represent the body force equilibrium condition in the unit-cell domain, the second the
surface force equilibrium condition on the non-periodic boundaries of the unit-cell, the third the surface force equilibrium condition
on the periodic boundaries, and the fourth the displacement continuity condition on the periodic boundaries. Fig. 5 visualizes these
force equilibrium and displacement continuity conditions.

Under the periodic boundary conditions, to solve the above unit-cell equations, first-order stress fields can be expressed in the
form of displacement fields, i.e.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏1𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙
𝜕𝑈11

𝑘
𝜕𝑦𝑙

+ 𝐸𝑖𝑗11, Tension

𝑏𝛼𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙
𝜕𝑉 𝛼1𝑘
𝜕𝑦𝑙

− 𝑦𝛼𝐸𝑖𝑗11, Bending

𝑏4𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙
𝜕𝑊 11

𝑚
𝜕𝑦𝑙

+ 𝜖𝛼𝛽𝑦𝛽𝐸𝑖𝑗𝛼1, Torsion

. (20)

Therefore, the total stress can be further expressed as

𝜎𝑖𝑗 = 𝜎(0)𝑖𝑗 + 𝜖𝜎(1)𝑖𝑗 + 𝑂(𝜖2) = 𝜖(𝑏1𝑖𝑗𝜖1 + 𝑏
𝛼
𝑖𝑗 �̄�𝛼 + 𝑏

4
𝑖𝑗 �̄�1) + 𝑂(𝜖

2). (21)

Ignoring shear and buckling effects, periodic structures are equivalent to Euler–Bernoulli beams, and the corresponding constitutive
equation is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁1
𝑀2
𝑀3
𝑇1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐷11 𝐷12 𝐷13 𝐷14
𝐷21 𝐷22 𝐷23 𝐷24
𝐷31 𝐷32 𝐷33 𝐷34
𝐷41 𝐷42 𝐷43 𝐷44

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜖1
�̄�2
�̄�3
�̄�1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (22)

where 𝐷11 is the tension stiffness in the longitudinal direction. 𝐷22 and 𝐷33 are the bending stiffness with respect to axis 𝑥2 and
𝑥3, respectively. 𝐷44 is the torsional stiffness around axis 𝑥1. The off-diagonal elements are the coupling stiffness coefficients. In
asymptotic homogenization theory, the resultant forces and moments in the unit-cell domain can be denoted as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁1 = ⟨𝜎(1)11 ⟩

𝑀𝛼 = ⟨−𝑦𝛼𝜎
(1)
11 ⟩

𝑇1 = ⟨𝜖𝛼𝛽𝑦𝛽𝜎
(1)
𝛼1 ⟩

, (23)

where the operator ⟨⟩ is a homogenization operator, which is defined by Eq. (24). Given any quantity 𝜓 , the homogenization solution
of ⟨𝜓⟩ is

⟨𝜓⟩ = 1 𝜓𝑑𝑦1𝑑𝑦2𝑑𝑦3 =
1 𝜓𝑑𝑦1𝑑𝑦2𝑑𝑦3. (24)
7

|𝑌 | ∫𝑌 𝑙 ∫𝑌
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Plugging Eq. (21) into Eq. (23), and according to the definition of effective stiffness in Eq. (22), we have

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁1
𝑀2
𝑀3
𝑇1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⟨𝑏111⟩ ⟨𝑏211⟩ ⟨𝑏311⟩ ⟨𝑏411⟩

⟨−𝑦2𝑏111⟩ ⟨−𝑦2𝑏211⟩ ⟨−𝑦2𝑏311⟩ ⟨−𝑦2𝑏411⟩

⟨−𝑦3𝑏111⟩ ⟨−𝑦3𝑏211⟩ ⟨−𝑦3𝑏311⟩ ⟨−𝑦3𝑏411⟩

⟨𝜖𝛼𝛽𝑦𝛽𝑏1𝛼1⟩ ⟨𝜖𝛼𝛽𝑦𝛽𝑏2𝛼1⟩ ⟨𝜖𝛼𝛽𝑦𝛽𝑏3𝛼1⟩ ⟨𝜖𝛼𝛽𝑦𝛽𝑏4𝛼1⟩

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜖1
�̄�2
�̄�3
�̄�1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

. (25)

Therefore, to solve the effective property of a periodic beam structure, the first step is to calculate the characteristic displacements
𝑈11
𝑘 , 𝑉 𝛼1

𝑘 and 𝑊 11
𝑘 which are the solution to the unit-cell Eqs. (17), (18) and (19). Then the stress fields 𝑏1𝑖𝑗 , 𝑏

2
𝑖𝑗 , 𝑏

3
𝑖𝑗 and 𝑏4𝑖𝑗 can be

calculated by plugging the characteristic displacements into Eq. (20). Finally, the effective stiffness is obtained from Eq. (25).

3.1.2. Implementation of asymptotic homogenization
In Section 3.1.1, the derivation of asymptotic homogenization has been introduced. In this section, we introduce the finite element

implementation of the AH method. We express unit-cell Eqs. (17), (18) and (19) in a generalized form as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑏𝑖𝑗
𝜕𝑦𝑗

= 0, in 𝑌

𝑏𝑖𝑗𝑛𝑗 = 0, on 𝑆
𝑏𝑖𝑗𝑛𝑗 |𝜔+ = −𝑏𝑖𝑗𝑛𝑗 |𝜔− , on 𝜔±

𝑢𝑖|𝜔+ = 𝑢𝑖|𝜔− , on 𝜔±

. (26)

ased on the virtual work principle, for any virtual displacement 𝑣𝑖, we have

∫𝑌
𝑣𝑖𝑏𝑖𝑗,𝑗𝑑𝑌 − ∫𝑆

𝑣𝑖𝑏𝑖𝑗𝑛𝑗𝑑𝑆 − ∫𝜔+
𝑣𝑖𝑏𝑖𝑗𝑛𝑗𝑑𝑆 − ∫𝜔−

𝑣𝑖𝑏𝑖𝑗𝑛𝑗𝑑𝑆 = 0. (27)

Since the corresponding displacement field must satisfy continuity conditions between neighboring unit-cells, the sum of the third
and fourth terms of Eq. (27) must be zero, and only the first two terms are left. Then applying integration by parts and the Gauss
theorem on the first term, Eq. (27) can be written as

∫𝑌
𝑣𝑖𝑏𝑖𝑗,𝑗𝑑𝑌 − ∫𝑆

𝑣𝑖𝑏𝑖𝑗𝑛𝑗𝑑𝑆 = ∫𝑌
(𝑣𝑖𝑏𝑖𝑗 ),𝑗𝑑𝑌 − ∫𝑌

𝑣𝑖,𝑗𝑏𝑖𝑗𝑑𝑌 − ∫𝑆
𝑣𝑖𝑏𝑖𝑗𝑛𝑗𝑑𝑆

=∫𝑆
𝑣𝑖𝑏𝑖𝑗𝑛𝑗𝑑𝑆 + ∫𝜔+

𝑣𝑖𝑏𝑖𝑗𝑛𝑗𝑑𝑆 + ∫𝜔−
𝑣𝑖𝑏𝑖𝑗𝑛𝑗𝑑𝑆 − ∫𝑌

𝑣𝑖,𝑗𝑏𝑖𝑗𝑑𝑌 − ∫𝑆
𝑣𝑖𝑏𝑖𝑗𝑛𝑗𝑑𝑆

= − ∫𝑌
𝑣𝑖,𝑗𝑏𝑖𝑗𝑑𝑌 .

(28)

lugging Eq. (28) into Eq. (27), we can obtain the weak form of an effective integration, which can be expressed as

∫𝑌
𝑣𝑖,𝑗𝑏𝑖𝑗𝑑𝑌 = 0. (29)

lugging Eq. (20) into Eq. (29), then using the finite element method to discretize the displacement fields, based on the principle
f minimum potential energy, the finite element form of the unit-cell equation can be written as

⎧

⎪

⎨

⎪

⎩

𝐊𝝌1 = 𝐟1

𝐊𝝌𝛼 = 𝐟𝛼

𝐊𝝌4 = 𝐟4
, (30)

here

𝐊 = ∫𝑌
𝐁𝑇𝐄𝐁𝑑𝑌 (31)

nd
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐟1 = ∫𝑌 𝐁𝑇𝐄𝜖10𝑑𝑌

𝐟𝛼 = ∫𝑌 𝐁𝑇𝐄𝜖𝛼0𝑑𝑌

𝐟4 = ∫𝑌 𝐁𝑇𝐄𝜖40𝑑𝑌

. (32)

n Eqs. (31) and (32), 𝐊 is the total stiffness matrix, 𝐁 is the matrix of strain–displacement relationships, and 𝐄 is the material
onstitutive matrix. 𝝌1, 𝝌𝛼 and 𝝌4 are the total nodal displacement vectors corresponding to the characteristic displacement fields
𝑈11, −𝑉 𝛼1 and −𝑊 11. 𝐟1, 𝐟𝛼 and 𝐟4 are the nodal force vectors due to unit strain fields which can be defined as

𝜖 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

𝜖11
𝜖22
𝜖33
𝛾𝑥𝑦
𝛾𝑦𝑧

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

, 𝜖10 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

1
0
0
0
0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

, 𝜖𝛼0 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

−𝑦𝛼
0
0
0
0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

, 𝜖40 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

0
0
0

−𝑦3
0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

, (33)
8
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⎭ ⎩

0
⎭ ⎩

0
⎭ ⎩

𝑦2
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where 𝝐10, 𝝐
𝛼
0 and 𝝐40 represent the strain in tension, bending and torsion, respectively. After the characteristic displacement fields

re obtained, the characteristic stress fields can be expressed in finite element form, i.e.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐛1 = 𝐄(𝜖10 − 𝜖
1)

𝐛𝛼 = 𝐄(𝜖𝛼0 − 𝜖𝛼)

𝐛4 = 𝐄(𝜖40 − 𝜖
4)

, (34)

where 𝜖1 = 𝐁𝝌1, 𝜖𝛼 = 𝐁𝝌𝛼 , and 𝜖4 = 𝐁𝝌4 are the characteristic strain fields due to the characteristic displacement fields. Therefore,
the effective stiffness matrix can be expressed in the form of strain energy, i.e.

𝐷𝐻
𝑖𝑗 = 1

𝑌 ∫𝑌
(𝜖𝑖0 − 𝜖

𝑖)𝐄(𝜖𝑗0 − 𝜖
𝑗 )𝑑𝑌 , 𝑖, 𝑗 = 1,… , 4. (35)

3.1.3. Novel implementation of asymptotic homogenization
Although Section 3.1.2 gives the finite element implementation of asymptotic homogenization, it is still difficult to use

commercial software to execute calculations. This is not only due to the difficulty of applying the corresponding unit strain fields in
FEM software, but also because the FEM implementation of the strain–displacement relationship depends on the element type. Each
unit-cell finite element model requires a lot of coding work and tedious mathematical derivation to produce the AH calculation,
which must be repeated for a new choice of finite element model. In 2013, Cheng et al. [49] proposed a novel implementation of
asymptotic homogenization which is known as NIAH. In NIAH, the effective stiffness matrix is expressed in terms of displacement
fields rather than strain fields, and finite element software is used as a black box to execute FEM calculations, which greatly improves
the computational efficiency. In NIAH, the force fields are expressed in terms of displacement fields, and accordingly the force in
Eq. (32) can be expressed as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐟1 = ∫𝑌 𝐁𝑇𝐄𝜖10𝑑𝑌 = 𝐊𝝌1
0

𝐟𝛼 = ∫𝑌 𝐁𝑇𝐄𝜖𝛼0𝑑𝑌 = 𝐊𝝌𝛼0
𝐟4 = ∫𝑌 𝐁𝑇𝐄𝜖40𝑑𝑌 = 𝐊𝝌4

0

. (36)

In NIAH, applying the corresponding displacement fields 𝝌 𝑖0 on all nodes, and after a static calculation, nodal force fields 𝐟 𝑖 can
e obtained with ease. For solid finite elements, every node has three translational degrees of freedom, and the displacement field
nder unit strain conditions can be expressed as

𝝌 𝑖0 =
⎧

⎪

⎨

⎪

⎩

𝑢
𝑣
𝑤

⎫

⎪

⎬

⎪

⎭

, 𝝌1
0 =

⎧

⎪

⎨

⎪

⎩

𝑦1
0
0

⎫

⎪

⎬

⎪

⎭

, 𝝌2
0 =

⎧

⎪

⎨

⎪

⎩

−𝑦1𝑦2
𝑦21∕2
0

⎫

⎪

⎬

⎪

⎭

, 𝝌3
0 =

⎧

⎪

⎨

⎪

⎩

−𝑦1𝑦3
0

𝑦21∕2

⎫

⎪

⎬

⎪

⎭

, 𝝌4
0 =

⎧

⎪

⎨

⎪

⎩

0
−𝑦1𝑦3
𝑦1𝑦2

⎫

⎪

⎬

⎪

⎭

. (37)

For beam or shell finite elements, three rotational degrees of freedom must also be included, and the corresponding displacement
fields are

𝝌 𝑖0 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑢
𝑣
𝑤
𝜃𝑦1
𝜃𝑦2
𝜃𝑦3

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, 𝝌1
0 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑦1
0
0
0
0
0

⎫

⎪

⎪

⎪
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⎪
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, (38)

where 𝜃𝑦1 , 𝜃𝑦2 and 𝜃𝑦3 represent three rotational degrees of freedom. After obtaining the force field, Eq. (32), the unit-cell
equation (30) can be solved with periodic boundary conditions. To describe the unit-cell equation (30) better, a transformation
matrix 𝐓 is introduced, which transforms the master nodal degree of freedom �̃� 𝑖 into the total nodal degree of freedom 𝝌 𝑖 by

𝐓�̃� 𝑖 = 𝝌 𝑖. (39)

Note that for beam or shell finite elements a master node is a node that has six degrees of freedom, which means that it can move
in three translational and three rotational degrees of freedom. The finite element form of the unit-cell equation (30) can be written
as

�̃��̃� 𝑖 = 𝐟 𝑖, (40)

where �̃� = 𝐓𝑇𝐊𝐓 and 𝐟 𝑖 = 𝐓𝑇 𝐟 𝑖.
In NIAH calculations using commercial FEM software, the periodic boundary conditions can be implemented by coupling the

nodal degrees of freedom of two periodic boundaries of the unit-cell. Applying the nodal force 𝐟 𝑖 and the periodic boundary
conditions on the unit-cell, after a static FEM calculation, the characteristic displacement field 𝜒 𝑖 can be obtained. Note that to
9
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Fig. 6. A new workflow of the efficient analysis of hydroelastic solution.

the degrees of freedom of any master node. Then the stiffness matrix Eq. (35) can be expressed in terms of initial displacement
fields 𝜒 𝑖0 and characteristic displacement fields 𝜒 𝑖, i.e.

𝐷𝑖𝑗 =
1
|𝑌 |

(𝝌 𝑖0 − 𝝌 𝑖)𝑇𝐊(𝝌 𝑗0 − 𝝌 𝑗 ), 𝑖, 𝑗 = 1,… , 4. (41)

To avoid assembling the total stiffness matrix 𝐊, applying the characteristic displacement field 𝝌 𝑖 on the unit-cell, then running a
static FEM calculation, the nodal reaction force 𝐏𝑖 can be obtained, which can also be solved analytically by

𝐏𝑖 = 𝐊𝝌 𝑖. (42)

Finally, the equivalent stiffness matrix can be written as

𝐷𝑖𝑗 =
1
|𝑌 |

(𝝌 𝑖0 − 𝝌 𝑖)𝑇 (𝐟 𝑗 − 𝐏𝑗 ). (43)

In NIAH calculations, commercial FEM software can directly output the parameters on the right-hand side of Eq. (43), and then the
effective stiffness can be calculated easily.

3.2. Efficient analysis workflow for the hydroelastic problem

In this paper, we use the NIAH method to calculate the structural stiffness of periodic floating structures, and develop an efficient
analysis workflow for solving the hydroelastic problem. Fig. 6 illustrates this new workflow. Similar to the workflow shown in
Fig. 3, this new workflow also includes two modules, i.e. the structural stiffness calculation and the hydroelastic analysis. To solve
the structural stiffness, we take commercial FEM software as a black box to execute the NIAH calculation. The first step is to create
a unit-cell model of the periodic structure. Then applying the initial nodal displacement field 𝜒 𝑖0 on the unit-cell, running a static
calculation, the nodal force field 𝐟 𝑖 can be obtained. The next step is to apply the force field 𝐟 𝑖 on the unit-cell, and after a static
calculation, the characteristic displacement field 𝝌 𝑖 can be obtained. Then applying the characteristic displacement field 𝝌 𝑖 on the
unit-cell, running a static calculation, the characteristic force field 𝐏𝑖 can be obtained. Plugging these parameters into Eq. (43), the
effective stiffness coefficients 𝐷𝑖𝑗 can be computed.

For the hydrodynamic solution, we apply the OceanWave3D-Seakeeping solver [27–29]. Plugging the bending stiffness into
Eq. (3), the structural stiffness coefficients 𝐶𝑖𝑗 can be obtained. Note that in this workflow the vertical bending stiffness 𝐸𝐼𝑦 in
Eq. (3) is the stiffness coefficient 𝐷22 which is solved by NIAH. The mass matrix coefficient 𝑀𝑖𝑗 can be obtained based on Eq. (2). The
hydrodynamic coefficients 𝑎𝑖𝑗 , 𝑏𝑖𝑗 and 𝑋𝑖 are computed from the radiation and diffraction solutions, and the hydrostatic coefficients
𝑐𝑖𝑗 are computed by numerical integration over the wetted surface. Finally, the motion response can be predicted by plugging all
of the coefficients into the equation of motion Eq. (1). The hydrodynamic solutions allow us to study the effects of transverse and
10
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Fig. 7. Birds-eye view of the barge and various views of the bow pontoon for the 6 mm bar case.

Fig. 8. Unit-cell model in NIAH calculation.

longitudinal stiffeners on the final hydroelastic response of a ship. For more details on the hydrodynamic solution, the reader is
referred to Refs. [24–26,28].

4. Validation cases

In this section, the implementation of the new scheme shown in Fig. 6 is validated using several test cases with both solid and
thin-walled structures.

4.1. A solid structure

The first validation case is a barge model which was tested experimentally by Malenica et al. [56]. This model consists of 12
pontoons which are connected by two solid rectangular steel bars running the full length of the structure. The bars are 50 mm wide
and span a range of thicknesses in order to modify the stiffness. We consider here the two cases of 6 and 4 mm thickness. The barge
is 2445 mm × 600 mm × 250 mm. The gap between neighboring pontoons is 15 mm. For the case of the 6 mm bars, the geometry of the
bow pontoon is different from the other pontoons, as shown in Fig. 7. In this hydroelastic analysis, a small deformation is assumed
so that the neighboring pontoons do not touch each other. Therefore, we assume the structural stiffness is provided only by the steel
bars, as shown in Fig. 8. For the steel material, the modulus of elasticity and Poisson’s ratio are 210 Gpa and 0.3, respectively.

We use the commercial finite element software ANSYS [32] to apply NIAH and estimate the structural stiffness. The schematic
diagram of the unit-cell is shown in Fig. 8. The length of the unit-cell model is denoted as 𝑙, the breadth 𝑏, the height ℎ. The unit-cell
model of 𝑙 = 10 mm, 𝑏 = 50 mm and ℎ = 6 mm is used for the stiffness calculation of the 50 mm × 6 mm steel bar, and the unit-cell
of 𝑙 = 10 mm, 𝑏 = 50 mm and ℎ = 4 mm is used for the 50 mm × 4 mm steel bar. Fig. 9 shows the FEM model of these two unit-cells
which are discretized by 3000 and 1360 SOLID95 [32] elements respectively. For convenience we denote the 50 mm × 4 mm model
as Model 1 and the 50 mm × 6 mm model as Model 2. Table 1 lists the diagonal coefficients of the structural stiffness matrix and
compares the analytical results with the NIAH calculations. The coefficients correspond to: the axial tension stiffness, the vertical and
transverse bending stiffness and the torsional stiffness around the axis, respectively. For a rectangular solid section these coefficients
are given exactly by

𝐷 = 𝐸𝑏ℎ, 𝐷 = 𝐸𝑏ℎ3 , 𝐷 = 𝐸ℎ𝑏3 , 𝐷 = 𝐺𝛽𝑏ℎ3, (44)
11
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Table 1
Structural stiffness of solid rectangular beams.

Method 𝐷11 (GN) 𝐷22 (GN m2) 𝐷33 (GN m2) 𝐷44 (GN m2)

Model 1 Analytical 42 56 8750 80.6 – 86.1
NIAH 42 56 8750 81.8

Model 2 Analytical 63 189 13 125 267.8 – 272.2
NIAH 63 189 13 125 268.8

Fig. 9. Finite element model of unit-cells.

Fig. 10. Relative error of structural stiffness by NIAH with increasing number of elements.

where 𝐸 is the elasticity modulus, and 𝐺 is the shear modulus which can be obtained from 𝐺 = 𝐸∕2(1 + 𝜇) for isotropic materials,
where 𝜇 is Poisson’s ratio. According to [57], 𝛽 ≈ 0.307 when 𝑏∕ℎ = 8, 𝛽 ≈ 0.312 when 𝑏∕ℎ = 10, 𝛽 ≈ 0.333 when 𝑏∕ℎ = ∞. Taking the
analytical results as a reference, we carry out a convergence analysis of the structural stiffness with increasing number of elements.
The relative error is computed from

𝐸𝑟𝑟. =
|

|

|

|

|

|

𝐷𝑁𝐼𝐴𝐻
𝑖𝑗 −𝐷𝑅𝑒𝑓.

𝑖𝑗

𝐷𝑅𝑒𝑓.
𝑖𝑗

|

|

|

|

|

|

+ 𝜖, (45)

where 𝐷𝑁𝐼𝐴𝐻
𝑖𝑗 denotes the structural stiffness calculated by NIAH, and 𝐷𝑅𝑒𝑓.

𝑖𝑗 is the exact value. The value of 𝜖 = 10−16 is added
here for plotting convenience to handle cases of exactly zero error. For the torsional stiffness, the reference values are taken as
81.8 GN m2 and 268.8 GN m2 respectively. Fig. 10 shows the relative error in the structural stiffness by NIAH. The horizontal axis
𝑁𝑒 represents the number of elements. From Fig. 10, the results can always be seen to agree well with the reference solutions for
the tension and bending stiffness. This is because the FEM grids for a solid rectangle are very simple and regular, which allows them
to (almost) exactly describe the structural information even for a small number of elements. The torsion stiffness gradually tends to
the referenced values with increasing number of elements. Since the torsional references are not exact solutions, the relative error
does not tend to machine precision, and the error partially comes from the error associated with the reference values.

In the hydrodynamic calculations, the draft of the wet model is 120 mm, and the gravitational acceleration is taken as 9.81 m∕s2.
With respect to the motion modes, heave, pitch and the first four vertical bending modes have been considered in this case. The
12
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Fig. 11. Vertical displacement response at the mid-ship section.

Table 2
The bending stiffness coefficients of thin-walled box-like structures.

Method 𝐷11 (GN) 𝐷22 (GN m2) 𝐷33 (GN m2) 𝐷44 (GN m2)

Model 1

Dizy [58] 10.3 1.91 5.58 1.71
Analytical [58] 10.3 1.91 5.58 1.71
FEM 10.4 1.92 5.58 1.71
NIAH 10.3 1.91 5.58 1.71

Model 2
Dizy [58] 10.5 1.94 5.62 1.72
FEM 10.6 1.94 5.66 1.74
NIAH 10.5 1.94 5.65 1.72

Model 3
Analytical 13.7 2.16 5.58 –
FEM 13.7 2.17 5.58 1.72
NIAH 13.7 2.16 5.58 1.72

total vertical displacement response along the ship length is calculated from

𝑢(𝑥) =
|

|

|

|

|

|

6+𝑁
∑

𝑗=1
𝜉𝑗ℎ

𝑧
𝑗 (𝑥)

|

|

|

|

|

|

, (46)

where 𝑁 is the number of flexible modes. The dimensionless result appears in Fig. 11 where 𝐴 is the incident wave amplitude, 𝜆
the wave length and 𝐿 the ship length. Comparing our numerical solutions with the experimental results from Malenica [56], a
general agreement can be seen, though there are some differences especially for the 4 mm bar case. Unfortunately, no error bounds
are available for these experiments, so the accuracy is unknown. There are also possible modeling errors associated with our results
where the ship hull is approximated by a uniform Euler beam, and shear effects and the torsional deformation are not included.
Our geometric model is also continuous, as opposed to the physical model which was composed of 12 discrete pontoons. Also, the
structural stiffness in our numerical model is assumed to be provided only by the steel bars while in the physical model, the bar is
rigidly attached to each section which may slightly modify the effective overall stiffness.

4.2. Thin-walled structures

In this section, we consider three thin-walled box-like structures. The first one has no reinforced stiffeners, the second one has
transverse reinforced stiffeners, and the third one has a longitudinal stiffener. For convenience, they are denoted as Model 1, 2
and 3 respectively, where Models 1 and 2 are taken from Dizy et al. [58]. In Model 2, the distance between neighboring stiffeners
is 1 m, and the stiffener thickness is 𝑡 = 0.025 m. In Model 3, the stiffener thickness is 𝑑 = 0.05 m. The global size of the three
macroscopic structures is the same, with length 𝐿 = 16 m, breadth 𝐵 = 2 m, height 𝐻 = 1 m, and the wall thickness is 𝑡 = 0.025 m.
A schematic diagram of the macroscopic structures and the corresponding microscopic unit-cells is shown in Fig. 12. Fig. 13 shows
the FEM models of the unit-cell in the NIAH calculation, and these three unit-cell FEM models are discretized by 2400, 6938 and
3200 SOLID95 [32] elements respectively. Consistent with Dizy et al. [58], the modulus of elasticity and Poisson’s ratio are set to
70 Gpa and 0.3, respectively. FEM calculations based on full models are also carried out. Table 2 compares the results showing that
the NIAH calculations agree well with the other methods.
13
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Fig. 12. Three types of thin-walled box-like structures and the corresponding unit-cell models.

Fig. 13. The unit-cell FEM model of thin-walled box-like structures.

To analyze the convergence of the stiffness calculations with increasing number of elements, we calculate the relative difference
from

𝐷𝑖𝑓𝑓 =
|

|

|

|

|

|

𝐷𝑁𝐼𝐴𝐻
𝑖𝑗 −𝐷𝑅𝑒𝑓

𝑖𝑗

𝐷𝑅𝑒𝑓
𝑖𝑗

|

|

|

|

|

|

+ 𝜖, (47)

where the reference solution is the analytic value for Model 1, and for the tension and bending stiffness of Model 3. For Model 2 and
the torsion stiffness of Model 3, however, there are no exact solutions so we instead take a very fine NIAH model as the reference
value. Convergence of the NIAH calculations is shown in Fig. 14. It can be seen that the coefficients generally agree well with the
reference values with only small differences associated with increasing number of elements. The calculation errors here come from
various sources including geometric imperfections in the FEM model and the grid generation method adopted. For example, for
Models 1 and 3, the volume grids are directly extruded from the surface grids, but Model 2 is partitioned into several divisions
before meshing. Even so, the calculation accuracy shown here is much higher than typical engineering requirements.

To explore the influence of the reinforced stiffeners on the motion response, we further carry out hydroelastic calculations using
OceanWave3D-Seakeeping. Note that in the hydrodynamic analysis, the wet model of these three thin-walled box-like structures is
the same with draft 1 m, breadth 2 m, and length 16 m. In this case, surge, heave, pitch and eight vertical bending modes have
been considered. Based on Eq. (46), we obtain the frequency-domain solution of the vertical displacement of these three models
14
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Fig. 14. Relative error of the structural stiffness by NIAH with increasing number of elements.

Fig. 15. Vertical motion response at the midsection of box-like structures.

at any position, and Fig. 15(a) shows the dimensionless displacement at the mid-ship section. It can be seen that the influence of
the stiffeners on the vertical displacement response is small in this case. In addition to the displacement, the structural deformation
is also a key parameter in the loading analysis and the structural design of a ship. Ignoring the contributions from the rigid-body
modes, the vertical deformation of the structure can be obtained by summing up the motion displacement in all elastic modes using

𝑤(𝑥) =
|

|

|

|

|

|

𝑁
∑

𝑗=7
𝜉𝑗ℎ

𝑧
𝑗 (𝑥)

|

|

|

|

|

|

. (48)

Dimensionless results are presented in Fig. 15(b). It is clear that the vertical deformation of Model 3 is generally smaller than Models
1 and 2, showing that the longitudinal stiffeners are effective at reducing the vertical bending deformation. The vertical deformation
of Models 1 and 2 are nearly the same, indicating that the transverse stiffeners have little influence on bending, as might be expected
since they are mainly used to stiffen the ship in torsion. Although we have not yet implemented torsional modes in our solver, this
is planned as future work.

5. Hydroelastic analysis of a container ship

In this section, we apply the new strategy to several representative container ship sections. Fig. 16 illustrates the development
of the cross-section model, the unit-cell model, and the full model based on a real container ship. The length of the ship is 𝐿 = 400

, the breadth 𝐵 = 50 m, and the height 𝐻 = 25 m. The length of the unit-cell is denoted as 𝑙, the breadth 𝑏, the height ℎ.
Fig. 17 gives a detailed description of the unit-cell model. Considering the structural characteristics of a real ship section, the

all of the model is not approximated by a solid plane, but consists of many hollow cubes with length 𝑎 = 2.5 m and wall thickness
= 0.125 m, and in fact the hollow cubes work as the longitudinal and transverse stiffeners. In Fig. 17, sections S1 and S2 show two
ransverse cuts through the unit-cell while S3, S4 and S5 show three longitudinal cuts. The modulus of elasticity is E = 210 Gpa,
nd Poisson’s ratio 𝜇 = 0.3.

.1. Convergence with unit-cell size

To instill confidence in the calculations, we perform a convergence analysis with respect to unit-cell size. Three different unit-
ell sizes are considered, consisting of 1, 2 and 3 unit-cells, respectively. The unit-cells have been discretized by 25552, 51104
15
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Fig. 16. A container ship and the corresponding unit-cell model.

Fig. 17. Schematic diagram of a unit-cell model for a container ship.

and 76656 SOLID95 [32] elements respectively, and the corresponding FEM models are shown in Fig. 18(a) where the transverse
cutting plane S1 and the longitudinal cutting plane S4 are shown as well. Using Eq. (47), we calculate the relative difference in
the structural stiffness between the three unit-cell models as shown in Fig. 18(b), in which the reference model is the model with 3
unit-cells. Clearly there are only very small differences between these models, which means the model with 1 unit-cell can estimate
the coefficients with high precision.

5.2. Influence of stiffeners on the structural stiffness

In practice, the layout of the stiffeners in a ship hull is chosen in order to satisfy all relevant structural requirements. In this
section, we study the influence of different numbers of both transverse and longitudinal stiffeners on the global structural stiffness
coefficients of a container ship hull. Based on the results from Section 5.1, a 1-unit-cell model (as shown in Fig. 18(a)) is sufficient
to produce accurate results, so all calculations are made using a 1-unit-cell. Six structural layouts are chosen, as shown in Fig. 19.
16
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Fig. 18. Convergence of the structural stiffness with the increasing unit-cell size.

Table 3
The structural stiffness of the container ship models with different stiffener layouts calculated by
NIAH.

𝐷11 (× 104 GN) 𝐷22 (× 106 GN m2) 𝐷33 (× 106 GN m2) 𝐷44 (× 104 GN m2)

Model 1 1.904 1.154 7.176 2.190
Model 2 1.899 1.154 7.160 2.172
Model 3 1.897 1.154 7.154 2.166
Model 4 1.984 1.260 7.538 2.202
Model 5 2.005 1.260 7.537 2.185
Model 6 2.055 1.265 7.595 2.185

Model pairs (1, 4), (2, 5), and (3, 6) have transverse stiffener spacings of 10, 20 and 30 m respectively, and this is also the size of the
corresponding unit-cell. Model 1 here is exactly the same as the 1-unit-cell model in Section 5.1, as shown in Fig. 19(a). Models 4 to
6 include additional longitudinal stiffeners, as can be seen from the sectional cuts S1. Models 1 to 3 are discretized by 25552, 48656
and 71760 SOLID95 [32] elements respectively, while Models 4 to 6 are discretized by 26344, 50864, 76800 SOLID95 elements
respectively

Table 3 lists the structural stiffness results of the six models by NIAH calculations. Comparing the stiffness coefficients between
Model pairs (1, 4), (2, 5) and (3, 6), it can be observed that the influence of the longitudinal stiffeners on the tension and bending
stiffness is more significant than for the torsional stiffness. Comparing the stiffness between Models 1 to 3, it is clear that the
influence of the transverse stiffeners on the tension stiffness and the bending stiffness is very small. These calculations illustrate
how the transverse and longitudinal stiffeners influence the global stiffness of a ship hull.

5.3. Motion response

To study the influence of the stiffeners on the final hydroelastic response, we use the strategy of Fig. 6 to calculate the vertical
motion response of the six container ship models discussed above. The ship is in head seas, with the waves incident from 𝛽 = 180◦,
where 𝛽 is the wave propagation direction measured from the positive 𝑥-axis. For convenience, in this section, the model draft
is assumed to be identical with the structural height, i.e. 25 m. Based on Eq. (46), the total vertical displacement response along
the ship length can be calculated. The corresponding dimensionless frequency-domain results at the mid-ship section are shown in
Fig. 20. From Fig. 20(a) it is clear that the vertical displacements of Models 1–3 are nearly identical, while from Figs. 20(b), 20(c),
20(d) small reductions can be seen from the longitudinal stiffeners in the shorter-wave range. This illustrates how longitudinal
stiffeners are more effective at reducing the vertical bending deformation than transverse stiffeners. The vertical deformation along
the ship length due only to the elastic modes is calculated using Eq. (48) and shown in Fig. 21. This figure plots the dimensionless
vertical deformation results at nine different positions along the ship in waves of dimensionless wavelength of 𝜆∕𝐿 = 0.714864, and
the horizontal axis is the ratio of the 𝑥 coordinate to half the ship length. It can be seen that a relatively large deformation appears
at the ship ends, which is consistent with engineering experience.

5.4. Discussion

The proposed workflow can greatly improve the efficiency of a hydroelastic analysis of large floating structures by introducing
the asymptotic homogenization method to efficiently estimate the structural stiffness. In Sections 5.1 and 5.2, the length of the
17
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Fig. 19. Finite element models of unit-cells with different transverse and longitudinal stiffener layouts.

unit-cell models (10 m, 20 m, 30 m) and the corresponding full models (400 m) differ by at least an order of magnitude. Using
the same FEM discretization strategy for all models, the full model requires respectively 40, 20, and 13.3 times as many degrees
of freedom as the corresponding unit-cell models. Similarly, in the first validation case of Section 4.1, the length of the unit-cell
and the full solid models are 10 mm and 2445 mm respectively, and in the second validation case of Section 4.2, the length of the
unit-cell and the full models are 1 m and 16 m, respectively. Since the computational cost of an FEM analysis scales at least linearly
with the number of elements (and usually super-linearly), the cost is at least an order of magnitude larger than that of a unit-cell
model. This shows that using the new workflow in Fig. 6 to study the hydroelastic problem for nearly-periodic floating structures
is much more efficient than the old workflow based on a full FEM model in Fig. 3.

Large modern ships, which are the target for this analysis, generally have a relatively long parallel mid-body which is very-
nearly periodic, but the bow and stern regions are of course rather different. However, the variation of sectional properties in these
regions is typically nearly linear, which allows us to propose a very simple strategy for including the end effects into the analysis.
To illustrate, consider the 11,400 TEU container ship from the paper by Senjanović et al. [59]. This ship is 363.44 m long, 45.6 m
wide and 29.74 m deep, and its vertical and transverse sectional area moments of inertia are plotted in Fig. 22. Here, ’Senjanovic
18
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Fig. 20. Vertical displacement response at mid-ship section for various container ship models.

- STIFF’ denotes calculations using the program STIFF [60], and ’Senjanovic - FEM’ denotes results from a full FEM model. The
average value of the FEM results [59] is indicated by the horizontal blue line computed from

𝜓𝑎𝑣𝑔. =
1
𝐿 ∫

𝐿

0
𝜓(𝑥)𝑑𝑥, (49)

where 𝜓(𝑥) is either 𝐼𝑦, or 𝐼𝑧. Although the engine room near 𝑥 = 90 m introduces some nonlinear variation into the sectional
roperties, they can be reasonably well approximated by the red lines labeled ‘Simplified’ in the plots. This line is obtained by using
he NIAH approximation over the parallel mid-body, which in this case runs from about 𝑥 = 99 m to 𝑥 = 224 m, and then drawing
traight lines from there to the bow and stern values. For the vertical and transverse area moment of inertia, the bow and stern
alues can be estimated from an FEM or other method. The error in the average value using the simplified method for this example
s less than 1.35%. This illustrates how the suggested method can be easily applied to the practical analysis of large modern ships.

. Conclusions

In the hydroelastic analysis of flexible structures, an accurate estimate of the structural stiffness is key for the correct prediction
f the motion response to wave loads. However, for modern ships, the complexity of the cross section, and the large difference in
cales between the local hull-girder elements and the length of the ship makes it challenging to accurately calculate the structural
tiffness. Since modern large ship hulls are generally nearly periodic along much of their length, with a nearly-linear behavior
owards the ends, we have introduced a novel implementation of asymptotic homogenization (NIAH) to efficiently calculate the
tructural stiffness which can greatly improve the computational efficiency. This implementation of NIAH is combined with a
inearized potential flow hydrodynamic solver to provide efficient estimates of the hydroelastic response of ships. The effectiveness
f the proposed workflow has been validated through several examples using both solid-section and thin-walled models.

Considering the structural configuration of real ships, we also use the new workflow to study the hydroelastic response of several
epresentative open-section models of a container ship. The calculation of the structural stiffness using NIAH has been shown to
e rapidly convergent with unit-cell size. The influence of both transverse and longitudinal stiffeners on the motion response was
19
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Fig. 21. Vertical deformation along a container ship in waves with 𝜆∕𝐿 = 0.714864.

Fig. 22. Longitudinal distribution of ship cross-section geometrical properties [59].
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studied for a representative large container ship model. These calculations illustrate how longitudinal stiffeners mainly influence
the bending stiffness while transverse stiffeners mainly change the torsional stiffness, which can provide guidance for the proper
design of the hull girder. A simple method for including the end effects was also proposed and demonstrated to give very small
errors using a real container ship.

In this work, the hull girder has been treated as a uniform Euler–Bernoulli beam, so shear effects have been neglected. Work
s however in progress to include sheer effects by treating the ship as a Timoshenko beam. The implementation of hydroelastic
olutions including both shear and torsional modes will be presented in a future publication.
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