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1. Introduction
The amount of carbon bound as dissolved organic matter (DOM) in the ocean represents a reservoir comparable 
in magnitude to that as CO2 in the atmosphere (Hansell et al., 2009). Climate change is altering the distribution 
and flow of carbon between reservoirs, and it is therefore of interest to understand and trace the production, distri-
bution, and turnover of dissolved organic carbon (DOC) in the ocean. For this reason, DOC has been selected by 
the Intergovernmental Oceanographic Commission, Global Ocean Observing System, as one of a list of Essen-
tial Ocean Variables (EOV). These are parameters that are deemed important for assessment and projection of 
climate and ocean health. A fraction of DOM absorbs light at ultraviolet (UV) and visible wavelengths. This is 
referred to as colored (or chromophoric) DOM (CDOM), and contributes to another cross cutting EOV, ocean 
color (remotely sensed spectral reflectance). CDOM light absorption influences light penetration and energy 
absorption in the surface ocean and for the Arctic, where CDOM levels are high, the latter can influence ocean 
heating and sea ice dynamics (Granskog et al., 2015; Hill, 2008; Pavlov et al., 2015; Soppa et al., 2019).

There are widespread, strong gradients in DOM across the Arctic Ocean. Some unique characteristics of the 
Arctic Ocean are its relatively small size and strong stratification of surface waters linked to sea ice. This results 
in a broad distribution of elevated concentrations of riverine DOM in surface waters (<500 m), which contrasts 
other ocean basins where river supply is rapidly diluted. This terrestrial DOM signal is superimposed on a back-
ground of oceanic DOM consisting either of aged extensively processed or recently derived material from marine 
organisms. The largest allochthonous supply of DOC to the Arctic Ocean is from inflowing Atlantic waters 

Abstract Sampling for dissolved organic carbon (DOC) in the Arctic is challenging given the limited 
access and because it is not yet possible to measure with instruments deployed in situ. Compared to DOC, 
colored dissolved organic matter (CDOM) absorption spectroscopy is an easy-to-measure, relatively quick and 
cost-effective approach which is often closely related to DOC concentrations in water samples. Here we present 
an algorithm based on quantitative and qualitative metrics of CDOM to provide DOC estimates derived from 
a Pan-Arctic data set (n = 3,302) spanning rivers to deep ocean, with DOC ranging between 31 and 1,958 μM. 
The algorithm provided robust DOC estimates (r 2 = 0.94; p < 0.0001) and could reproduce DOC profiles and 
mixing plots across different locations in the Arctic Ocean. Besides its simplicity, this method is capable of 
capturing the extremely broad range of DOC within the strong gradients observed between Arctic riverine and 
marine systems.

Plain Language Summary Surface waters in the Arctic Ocean have high content of dissolved 
organic carbon (DOC), which plays an important role in CO2 fluxes and absorbing heat, thus warming 
the ocean. Measuring DOC requires resource-intensive lab analysis. The optical properties of colored 
dissolved  organic matter (CDOM) are easier, quick and cost-effective to measure, and can therefore be sampled 
at a higher frequency or with autonomous sensors. Here we develop an algorithm that uses CDOM optical 
properties to estimate DOC concentrations across the entire Arctic Ocean, spanning from rivers (high DOC) 
to the deep waters (low DOC). The algorithm provides reliable estimates and can reproduce regional features, 
which shows that the method is effective and can be employed to increase sampling efforts for DOC in remote 
Arctic waters.
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(Anderson & Amon, 2015). The considerable difference in water flux compensates for the fact that DOC concen-
trations are an order of magnitude lower in ocean waters (∼50–60 μM) than rivers. Although the DOC budget 
appears balanced there is mineralization and changes in the quality of DOM, and the net result is that some of 
the terrestrial carbon supplied by rivers is exported to the north Atlantic. Current estimates of marine DOC 
production indicate that it is comparable to the terrestrial DOC supply by rivers. In order to follow how changing 
conditions in the Arctic, such as retreat of sea ice, altered stratification and increased river discharge (Nummelin 
et al., 2016) will influence the role of DOC in the carbon budget it is important to improve temporal and spatial 
coverage of measurements.

DOC measurements are restricted to discreet sampling and spatial and temporal coverage is therefore sparse and 
largely limited to that of water sampling programs. CDOM measurements are optical and therefore well suited for 
a wide variety of sensor platforms including, remote sensing (Juhls et al., 2022; Matsuoka et al., 2013), shipborne 
underway surface sampling (Dall’Olmo et al., 2017; Guay et al., 1999) and vertical profiling (Amon et al., 2003; 
Chen, 1999), and use on autonomous oceanographic platforms (Laney et al., 2014; Stedmon et al., 2021). A frac-
tion of CDOM emits blue fluorescence when excited by UV light and therefore fluorometers have until now been 
the most commonly deployed sensors to measure DOM in situ. This can provide a first order indication of DOM 
abundance but is often difficult to link to DOC as the relationship will vary depending on DOM character (origin 
or extent of processing). An improved relationship can be derived by including spectral measurements, where 
changing DOM characteristics can be taken into account (Fichot & Benner, 2011; Gonçalves-Araujo et al., 2020; 
Shen et al., 2016). Many aromatic organic compounds absorb light at UV wavelengths, and it therefore makes 
sense to attempt to link both the intensity (CDOM absorption at a specific wavelength (λ), aCDOMλ), and spec-
tral shape of absorption in the UV, to DOC concentration.

Absorption intensities from selected wavelengths can be used to improve the prediction of DOC (Fichot & 
Benner, 2011; Shen et al., 2016), going beyond a simple linear correlation between aCDOM(λ) and DOC (Massicotte 
et al., 2017). For example, Fichot and Benner (2011), hereafter FB2011 (Table S1 in Supporting Information S1), 
performed multiple linear regressions of log-transformed DOC concentrations against log-transformed aCDOM(275) 
and aCDOM(295) to surface waters from the Beaufort Sea (n = 33), and additional segregation of model fit depend-
ing on high or low CDOM regimes. The approach was later adapted and refined to extend coverage to the North 
American sector of the Arctic Ocean (Shen et al., 2016; hereafter SH2016; Table S1 in Supporting Informa-
tion S1) using a larger number of observations (n = 755). An alternative approach is to incorporate CDOM's 
qualitative information by characterizing the shape of the UV spectral absorption by fitting an exponential slope 
(S), which has been linked to DOM origin, molecular weight and degradation state (Granskog, 2012; Helms 
et al., 2008). Across a range of aquatic systems there is often a negative relationship between CDOMs spectral 
slope and the carbon specific absorption, with old, processed DOM having a high spectral slope (absorbance 
essentially dominated by UV only) and low color per unit carbon, and “fresh” terrestrial and marine DOM having 
contrasting properties (Stedmon & Nelson, 2015). We have recently utilized this phenomenon to derive an algo-
rithm to link CDOM absorption to DOC in the Arctic, using a timeseries from the Fram Strait (Gonçalves-Araujo 
et al., 2020), hereafter GA2020 (Table S1 in Supporting Information S1). Specifically, the approach characterizes 
the nonlinear relationship between the CDOM absorption slope between 275 and 295 nm (S275−295) and the ratio 
of DOC to aCDOM350 (DOC/aCDOM(350)), which can then be inverted to predict DOC from measurements of 
CDOM absorption alone. The central assumption is that the relationship between CDOM absorption and DOC 
concentration will change depending on the DOM quality. DOM across the Fram Strait has contrasting properties, 
reflecting the gradient that can be found in the central Artic (Granskog et al., 2012; Stedmon et al., 2011), with 
DOM in the outflow to the west characterized by terrestrial DOM, the inflow to the east by marine DOM, while 
deeper waters have older processed DOM (Gonçalves-Araujo et al., 2016; Makarewicz et al., 2018). Here we 
expand the data coverage to test the performance across the greater Arctic region. If successful, this will present 
an opportunity of adapting existing sensor technology to greatly expand spatial and temporal coverage of DOC 
measurements in the Arctic Ocean.

2. Data and Employed Methodology
2.1. Data Set

An Arctic DOM data set was compiled from published studies consisting of 3,302 observations covering the full 
range from high riverine concentrations to low DOM oceanic waters (Figure 1, Table 1). A minimum requirement 
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was DOC concentration, CDOM absorption (either spectra or only aCDOM(350)), S275−295 (if spectra were not 
provided) and geographical coordinates. CDOM spectra were available for 2,967 of the 3,302 observations. For 
the majority of the samples (n = 2,676), additional ancillary data such as sampling depth and salinity were avail-
able. Where necessary, DOC concentrations were converted to molarity, CDOM absorbance was converted to 
Napierian absorption coefficients (m −1), and the UV spectral slope (S275−295) was calculated.

2.2. Data Coverage

The observations were distributed across the entire Arctic, spanning a wide range of environmental conditions 
(Table 1, Figure S1 in Supporting Information S1). Both Eurasian and Amerasian Basins were covered, however, 
the latter is underrepresented due to lack of available data containing all the minimum required information 
needed for this study. Observations range from inland riverine waters, to estuarine, shelf seas, and open ocean 
waters, covering a comprehensive environmental gradient and encompassing most of the major endmembers and 
major water masses present in the Arctic Ocean, therefore covering the full salinity range. Further, surface waters 
under influence of sea ice melt, as well as waters from the deep ocean were included, spanning a depth range 
from 0 to ca. 5,000 m depth. With respect to DOM, the observations covered high DOM content riverine and 
estuarine waters, with high DOC and aCDOM(350), and typically low S275−295. Shelf waters presented intermediate 
and variable range values for DOM-related parameters, which are mostly related to the variable hydrographic 
dynamics observed in those domains (Gonçalves-Araujo et al., 2015a; Juhls, Lizotte et al., 2019; Juhls, Overduin, 
Gonçalves-Araujo et al., 2019; Juhls, Overduin, Hölemann, et al., 2019; Massicotte et al., 2017). Finally, the open 
ocean waters were characterized by high salinity, and low DOM content, and variable S275−295 (Gonçalves-Araujo 
et al., 2020; Shen et al., 2016; Stedmon et al., 2011).

2.3. DOC Prediction From CDOM

The approach used by GA2020 rests on the following findings: in regions in close proximity to rivers, linear rela-
tionships between aCDOM(350) and DOC often can be found (Gonçalves-Araujo et al., 2015a; Spencer et al., 2012; 
Vodacek et al., 1997), which allows for reliable DOC predictions with two endmembers (Fichot & Benner, 2011). 
In regions with two or more endmembers of more comparable DOC concentrations (i.e., shelf seas and oceanic 
waters), these relationships are rather difficult to derive (Figure 1c), since there might be two pools of similar 
concentration/intensity but different ratio of absorption to DOC (carbon specific absorption coefficient, aCDOM*) 
(Gonçalves-Araujo et  al.,  2020). However, aCDOM* is inversely correlated to S275−295 (Figure  1d), which can 

Figure 1. (a) Map showing the locations of sampling stations for the observations used in this study. Produced with Ocean Data View (Schlitzer, 2021). Scatter 
plots for (b) salinity versus aCDOM(350), (c) aCDOM(350) versus dissolved organic carbon (DOC), (d) aCDOM(350) versus S275−295, and (e) S275−295 and log(DOC/
aCDOM(350)). The red line in (e) represents the linear regression used to derive the DOC algorithm in this study, following the approach used for the GA2020 algorithm 
(Gonçalves-Araujo et al., 2020).
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Cruise/Location and reference n Depth a (m) Salinity b DOC (μM) aCDOM(350) (m −1) S275−295 (μm −1)

Arctic Great Rivers Observatory (AGRO)

Shiklomanov et al. (2018) 290 Surface River 175–1,958 0.95–43.04 12.5–25.0

Davis Strait 2013

Gonçalves-Araujo et al. (2016) 138 1–1,027 31.40–34.87 39–75 0.06–0.35 22.1–33.7

Fram Strait 2009, 2010, 2012, 2016

Granskog et al. (2012, 2020) 606 1–2679 23.22–35.15 37–222 0.05–0.86 19.7–36.8

Gonçalves-Araujo et al. (2020)

NABOS 2018

Gonçalves-Araujo et al. (2023a) 318 0–250 27.38–34.90 29–177 0.09–2.41 14.3–38.0

Herschel Island

Fritz et al. (2023) 147 0–60 11.10–32.70 76–321 0.40–3.27 18.2–24.0

Transarktika

Hölemann et al. (2020) 162 2–330 17.10–34.76 60–346 0.23–6.07 15.0–28.2

Transdrift XIX

Hölemann et al. (2019c) 79 2–75 13.19–34.07 58–341 0.50–6.92 17.7–27.5

Transdrift XXI

Hölemann et al. (2019b) 24 2–23 9.40–31.02 144–522 1.89–8.58 16.8–21.5

Transdrift XXII

Hölemann et al. (2019d) 108 2–320 19.75–34.86 52–288 0.15–4.29 18.3–32.9

Transdrift XVII

Hölemann et al. (2019a) 102 2–1,116 25.67–34.91 44–158 0.03–1.74 15.5–36.3

Laptev Sea

Juhls et al. (2019) 74 2–10 13.19–32.56 91–341 0.49–6.93 17.7–26.7

Lena River

Juhls et al. (2020) 73 Surface River 411–1,517 9.82–39.26 14.1–17.3

Lena Delta 2013

Gonçalves-Araujo et al. (2015b) 56 0–28 0.90–32.63 109–732 0.94–15.72 15.5–21.4

Arctic Ocean

Hansell et al. (2021) 188 2–4,130 17.53–34.96 44–141 0.01–1.10 10.6–43.2

Makenzie Delta Region

Juhls et al. (2022) 120 0.3–1.5 0.12–30.63 142–659 0.81–10.69 10.1–22.0

Juhls, Lizotte, et al. (2019)

Central Arctic (PS94)

Hansell (2017) 531 2–4,959 27.19–35.18 45–143 0.05–1.22 21.7–40.4

Gonçalves-Araujo et al. (2023b)

East Greenland Shelf 2012

Gonçalves-Araujo et al. (2016) 182 3–1,877 27.30–35.21 48–91 0.07–0.47 19.7–32.5

North Pacific

Nelson et al. (2010) 9 9–1,911 34.99–35.29 47–58 0.07–0.12 26.6–34.3

Massicotte et al. (2017)

Bering Sea/Strait

Table 1 
Summary of Data Used (and Respective References to Access the Data) to Derive the Algorithm Presented in This Study, Along With the Number of Observations 
Derived From Each Data Set/Study (n) and the Ranges for Each Relevant Parameter Used in This Study: Depth (m), Salinity, Dissolved Organic Carbon (DOC) 
(μM), Colored Dissolved Organic Matter (CDOM) aCDOM(350) (m −1) and S275−295 (μm −1)

GONÇALVES-ARAUJO ET AL.
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thus be employed as a weighting factor for the DOM origin (Gonçalves-Araujo et al., 2020; Helms et al., 2008; 
Stedmon & Markager, 2001; Stedmon & Nelson, 2015).

To derive DOC from CDOM properties, firstly a linear regression is performed between the logarithm of absorp-
tion normalized DOC and S275−295 (Figure 1e) (Equation 1),

log10

(

DOC

𝑎𝑎CDOM(350)

)

= 𝐶𝐶 + (𝑀𝑀 × 𝑆𝑆275−295), (1)

which is then rearranged to estimate DOC (Equation 2)

𝑝𝑝DOC = 𝑎𝑎CDOM(350) × 10(𝐶𝐶+(𝑀𝑀×𝑆𝑆275−295)). (2)

For the combined data set in this study, we found the equation's coefficients to be C = 0.7792 and M = 0.0611 
(Figure 1e; Table S1 in Supporting Information S1; r 2 = 0.83; n = 3,302; p < 0.00001).

2.4. Algorithm Validation and Performance Assessment

To assess the robustness of the derived relationship, a subset of half the data was randomly sampled, used to 
derive the model and then predict DOC for the whole data set. This was repeated 1,000 times. Each of the 1,000 
individual pDOC data sets were tested against measured DOC by employing a Kruskal-Wallis H test, considering 
a significance of 1%. All 1,000 simulations did not significantly differ from the measured data set (p < 0.01) and 
did not differ among themselves (Figure S2 in Supporting Information S1), therefore showing the applicability/
robustness of the fitted model.

To assess the performance of the algorithm for predicting DOC concentrations, the regression slope (β), coeffi-
cient of determination (r 2) and p-value were estimated through linear regression model fitting comparing meas-
ured to predicted DOC values. Additionally, to complement the statistics reported for the regression models and 
to compare measured and predicted DOC concentrations, Kruskal-Wallis H tests were performed. This approach 
was applied both in the algorithm development and validation phase. All statistical analyses were performed in 
Matlab®.

3. Results and Discussion
The good performance of the log-linear Pan-Arctic algorithm can be gauged by the significant linear regres-
sion model and through the r 2 and β values being both close to 1, as observed for the DOC versus pDOC plots 
(Figure 2a). The performance of the log-linear algorithm was much better (i.e., greater r 2 and β) than a linear 
regression of DOC with aCDOM(350) (Figure 2b) and it is clear that the inclusion of S275−295 as an explanatory vari-
able accounting for differences in DOM quality, is beneficial. Although significant correlations between CDOM 
and DOC are frequently reported, they can be expected to vary both geographically and temporally. For instance, 
two studies conducted in the Laptev Sea in different sampling periods reported different CDOM versus DOC 
relationships (Gonçalves-Araujo et  al.,  2015a; Juhls, Lizotte et  al.,  2019; Juhls, Overduin, Gonçalves-Araujo 
et al., 2019; Juhls, Overduin, Hölemann, et al., 2019). This makes the use of CDOM absorption as a proxy for 
DOC particularly challenging as it may require both regional and seasonal parametrizations.

Comparing the log-linear algorithm published for the Fram Strait (GA2020, Figure 2c) to measured DOC 
concentrations showed similar high consistency (r 2 = 0.92), however with lower accuracy (β = 0.82). This poorer 

Cruise/Location and reference n Depth a (m) Salinity b DOC (μM) aCDOM(350) (m −1) S275−295 (μm −1)

Tanaka et al. (2016) 95 5 26.85–32.43 61–110 0.13–0.75 22.4–35.2

Nishioka et al. (2020)

Summary 3,302 0–4,959 0–35.29 31–1,958 0.01–43.04 10.1–40.4

 aSome studies had their observations conducted at the surface and no actual sampling depth was reported. For those, we have adapted a sampling depth of 0.  bFor 
practical purposes, when salinity at river sites was not measured and it was assumed to be 0.

Table 1 
Continued

GONÇALVES-ARAUJO ET AL.
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performance was already expected and was one of the motivations for developing a Pan-Arctic algorithm, since 
the GA2020 algorithm was developed based on much narrower range of DOC concentrations (ranging from 37 to 
222 μM), compared to the range observed in this study (31–1,958 μM). Indeed, the Fram Strait algorithm under-
estimated DOC concentrations at high DOC, showing that the Pan-Arctic algorithm is a remarkable improve-
ment, especially for riverine, estuarine, and coastal environments with higher DOC concentrations (see Figure 2).

FB2011 (Fichot & Benner, 2011) and SH2016 (Shen et al., 2016) developed approaches that fit multiple linear 
regressions to log-linearized DOC concentrations against log-linearized aCDOM(275) and aCDOM(295). When 
applying SH2016 to our data set, it performed poorly (Figure 2e). This could be because their observations were 
restricted to low DOC concentrations (<129 μM), thus, suppressing the effects of high DOC supplied by major 
Arctic rivers. FB2011, on the other hand, was developed based on coastal and shelf observations in the Beaufort 
Sea under influence of the Mackenzie River outflow, reaching values of 600 μM. Therefore, the FB2011 method 
performed well and provided robust and accurate DOC estimates (Figure 2d), however, it still performed slightly 
poorer than our new Pan-Arctic algorithm (i.e., β closer to 1 for the Pan-Arctic algorithm). In their study, Fichot 
and Benner (2011) have explored non-linear fitting to aCDOM and S275−295 but found the best results to be provided 
by the method they presented, which was developed through exploring multiple linear regression fittings. Here 
we show that fitting a linear regression to log-transformed aCDOM(350) and S275−295 provided as good DOC predic-
tions, however with an improved β value (Figure 2), which demonstrates the improvement of the Pan-Arctic 
algorithm. Notably the Pan-Arctic algorithm considers a much broader range of environments and, consequently, 
DOC concentrations. Additionally, the FB2011 and SH2016 algorithms are presented as two equations, depend-
ing on the aCDOM(275) values, thus requiring adjustments in algorithms' coefficients according to thresholds 
presented in their studies (see Table S1 in Supporting Information S1). Those thresholds (and consequently, the 
coefficients) differed between the two methods: 3.5 and 1.42 m −1 for FB2011 and SH2016, respectively (Fichot 
& Benner, 2011; Shen et al., 2016). Here we have developed a simpler method that works across the full range of 
CDOM and DOC values reported in the data sets (both for deriving the algorithm and for posterior validation).

Figure 2. Scatter plots for measured (x-axis) versus predicted dissolved organic carbon (DOC) (y-axis) (in μM) for (a) the Pan-Arctic algorithm developed in this study, 
(b) a single linear regression between aCDOM(350) and DOC, (c) the Fram Strait algorithm (Gonçalves-Araujo et al., 2020; GA2020), (d) the Beaufort Sea algorithm 
(Fichot & Benner, 2011; FB2011) and (e) the North American Arctic Basin algorithm (Shen et al., 2016; SH2016). Red lines indicate the 1:1 line and the linear fit is 
presented as a blue line. In the titles, the r 2 and regression slope (β) for each plot are provided individually. Note the reduced number of observations for fitting FB2011 
and SH2016 (d), (e) due to lack of available colored dissolved organic matter spectra in some data sets.
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Figure 3 shows that the estimates of DOC concentrations derived using the developed approach capture geograph-
ical and vertical gradients well. Examples of water column profiles and mixing plots in both low and high DOM 
waters are shown. At the selected low DOM stations there is a vertical gradient in DOM quality with surface 
waters influenced by terrestrial DOM and deeper waters with DOM of primarily marine origin. The salinity 
mixing plots indicate mixing of these two end members as well as a dilution due to sea ice melt contribution in 
surface waters. The algorithm is clearly capable of encompassing these gradients in DOM quality and quantity. 
For the selected stations in close proximity to riverine input the algorithm also performs well replicating the high 
DOC concentrations in plume and shelf waters.

We propose that the method presented here provides an opportunity to greatly expand coverage of DOC concen-
trations across diverse Arctic systems, spanning riverine, estuarine, coastal, and open ocean waters, and is capa-
ble of replicating geographical and vertical trends. This opens new opportunities for deriving high resolution 
DOC concentrations based on in situ spectroscopic measurements rather than water sampling, and this has the 
potential to greatly increase coverage of DOC concentrations in the remote and under-sampled Arctic waters. In 
particular the algorithm presented here holds promise for developing DOC estimates from in situ measurements 
using, for instance, spectroscopic nitrate sensors, which already measure UV absorption to quantify nitrate. These 
sensors are already designed for deployment on autonomous platforms such as moorings, tethered profilers and 
Argo floats. What is now needed is an assessment of the suitability of their design and performance for estimating 
DOC. It is not currently routine to save the spectral data collected by these sensors, but this potential should be 
harnessed in the future. This could provide a method suitable for high-resolution and long-term in situ monitoring 

Figure 3. Selected profiles for measured (left) and predicted (center) dissolved organic carbon (DOC) (μM) at low (top panel) and high DOC sites (bottom panel): 
DOC profiles and DOC versus salinity plots. Scatter plots (right) show the correlation between measured (x-axis) versus predicted DOC (y-axis) for each respective 
group of selected stations. Red lines indicate the 1:1 line and the linear fit is presented as a blue line, whereas the r 2 and regression slope (β) for each plot are provided 
individually. Produced with Ocean Data View (Schlitzer, 2021).
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of DOC concentrations in aquatic systems, which are particularly relevant for remote regions undergoing consid-
erable change such as the Arctic.

Data Availability Statement
The data on which this article is based are available in Fritz et  al.  (2023), Gonçalves-Araujo 
et al. (2015b, 2023a, 2023b), Granskog et al. (2020), Hansell (2017), Hansell et al. (2021), Hölemann et al. (2019a, 
2019b, 2019c, 2019d), Hölemann et al. (2020), Juhls, Lizotte et al., 2019, Juhls, Overduin, Gonçalves-Araujo 
et  al.,  2019, Juhls, Overduin, Hölemann, et  al.,  2019, Juhls et  al.  (2020), Massicotte et  al.  (2017), Nishioka 
et al. (2020), Shiklomanov et al. (2018), and Tanaka et al. (2016).
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