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A B S T R A C T

Demand-side management (DSM) is crucial to smart energy systems. This paper presents a data-driven approach
for understanding the relationship between energy consumption patterns and household characteristics to
better provide DSM services. The proposed method uses a robust learning fuzzy c-Means clustering algorithm to
automatically generate the optimal number of customer groups for DSM, and then uses symmetric uncertainty
techniques to identify the identified load patterns and socio-demographic characteristics as the features for
training a deep learning model. The model obtained can be used to predict the possibility of DSM group
membership for a given household. This approach can be applied even in situations where smart meter
data are not available, such as when new customers are added to the system or when residents change, or
due to privacy concerns. The proposed model is evaluated comprehensively, including prediction accuracy,
comparison with other baselines, and case studies for DSM. The results demonstrate the usefulness of weekly
energy consumption data and associated household socio-demographic information for distinguishing between
different consumer groups, the effectiveness of the proposed model, and the potential for targeted DSM
strategies such as time-of-use pricing, energy efficiency measures, and demand response programs.
1. Introduction

Enhancing energy efficiency is pivotal for reducing carbon emissions
and facilitating the transition to a low-carbon economy [1]. Ensuring
the security and affordability of energy also plays a significant role
in achieving climate objectives, such as the European Union’s 2030
goals [2]. To meet these goals, targeted actions are required to boost
energy efficiency, lower greenhouse gas emissions, and increase the
adoption of renewable energy sources. Notably, in 2019, the building
sector accounted for a substantial 22% of energy consumption in Euro-
pean countries and 19.7% globally [3]. Household socio-demographic
factors are acknowledged as key influencers of energy consumption pat-
terns [4]. In recent years, the widespread deployment of smart meters
in residential buildings has generated substantial datasets. These meters
provide detailed energy consumption records, typically at 30-minute
intervals, enabling utilities to gain deeper insights into household con-
sumption behaviors and offer personalized services [5]. Furthermore,
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analyzing daily load consumption data can shed light on household
activities like cleaning, TV-watching, and cooking. This knowledge can
empower households to understand their consumption habits and make
changes to conserve energy. As a result, the study of daily electricity
consumption can provide valuable insights for devising demand-side
management (DSM) strategies, including time-of-use (ToU) pricing,
energy efficiency (EE) programs, spinning reserve (SR), and demand
response (DR) programs.

Machine learning is the best tool for mining consumer habits,
particularly clustering techniques, which are among the most effec-
tive and popular methods available. Clustering algorithms are used to
identify groups of similar objects or patterns, and can be applied to
a wide range of data types, including time-series data such as daily
load profiles. By applying clustering to smart meter data, utilities can
identify customer groups with similar consumption patterns and offer
targeted energy services based on customer needs and preferences.
Additionally, clustering can be used to segment customer loads into
vailable online 6 November 2023
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different time windows and then group them based on pattern sim-
ilarity [6]. This can provide a more detailed understanding of each
cluster and even individual energy use. However, most existing work
in this area focuses on analyzing individual consumers using historical
load data, rather than cluster analysis, which does not provide a good
understanding of the underlying drivers of consumer behavior. Socio-
demographic information refers to characteristics related to the spatial
structure of buildings, economic income, household composition, social
status, and the age of the house, among other factors [7,8]. From an
economic perspective, the consumption behavior is largely determined
by one’s socio-economic characteristics [9], which means that having
a good understanding of the socio-demographic information can help
utilities to better understand the underlying reasons for their customers’
consumption and make more accurate and tailored decisions about
DSM and energy efficiency programs [10,11]. For DSM, smart meter
data are commonly used to segment different customer groups based
on their consumption patterns or intensity, and then provide targeted
DSM services. However, obtaining energy consumption data can be a
challenge in situations such as new buildings, changes in household
residents, or constraints such as data privacy. In these cases, using
socio-demographic information can be an effective way to estimate
the groups of DSM services for a new customer. For example, utili-
ties can use this information to recommend services to a customer,
e.g., from the first day of moving into a new apartment. However, most
existing work has been done to infer household socio-demographic
characteristics by analyzing smart meter data, while much less work
has been done to infer consumption based on household characteristics,
especially in the several cases mentioned above. To bridge this gap,
This paper presents a model for studying the relationship between
residential energy consumption and household characteristics in order
to provide targeted demand-side management (DSM) services. The
proposed approach uses the Robust-learning Fuzzy c-Means (RL-FCM)
algorithm to identify customer groups based on weekly load patterns,
and uses symmetric uncertainty and Pareto analysis to extract signif-
icant features for each cluster for training a deep learning network
for membership prediction across all the identified clusters. With the
trained model, utilities can estimate the DSM membership probabilities
for new customers. This study can help utilities to better manage energy
demand and design targeted DSM strategies that are tailored to the
specific needs of different consumer groups. By using the proposed
method, utilities can identify representative load patterns with given
household characteristics and predict which DSM services are likely to
be effective for each customer. This can improve the efficiency and
effectiveness of DSM programs and help utilities to better serve their
customers.

In summary, The main contributions of our approach are:

• The challenge of delivering targeted Demand-Side Management
(DSM) services in scenarios lacking smart meter data, such as
when new customers are introduced or resident changes occur,
or due to privacy concerns, has been identified.

• A machine learning model has been introduced to predict the
likelihood of DSM membership for households based on their
characteristics. This model offers utility providers the capability
to provide customized DSM services upon the addition of a new
customer to the system, irrespective of the availability of their
energy consumption data.

• A comprehensive evaluation of the proposed model has been con-
ducted, encompassing assessment of prediction accuracy, compar-
ison with three baseline models, and a specific case study illustrat-
ing DSM application. The results obtained affirm the effectiveness
of the proposed model.

The rest of this paper is organized as follows: Section 2 reviews
the literature on clustering of load patterns and feature selection.
Section 3 describes the proposed method, including the introduction of
2

the RL-FCM algorithm, symmetric uncertainty, and the LSTM prediction
model. Section 4 conducts the experiments to evaluate the proposed
method. Finally, Section 6 concludes the paper and presents directions
for future work.

2. Related work

This section begins with a review of state-of-the-art studies and tech-
niques for identifying household load patterns and exploring customers’
socio-demographic features. Subsequently, we delve into the process of
feature selection.

2.1. Clustering of consumption profiles

For some years ago when smart meters were not available, cus-
tomers were typically classified into different groups based on their
household characteristics, such as building structure, socio-economic
features, consumption habits, and attitudes towards energy use. These
characteristics were typically identified through door-to-door surveys.
However, the widespread rollout of smart meters has led to a shift in
research on household clustering from an attribute-based approach to
a consumption pattern-based approach. The availability of fine-grained
consumption data has made it possible to perform more precise and
innovative household clustering [12]. This has allowed researchers to
identify more detailed and accurate load patterns and better understand
the underlying drivers of consumer behavior.

Clustering is a commonly used technique in data analysis that
involves finding groups in the data that have the highest similarity
within the same cluster and the greatest variation between different
clusters. The main methods currently used for clustering household
electricity consumption include k-means [13], fuzzy k-means and fuzzy
c-means (FCM) [14], probabilistic and generative models [15], hierar-
chical clustering [16], self-organizing maps [17], and DBSCAN [18].
Additionally, since smart meter data are continuously recorded over
time, there are also clustering algorithms developed specifically for
time series data, such as online [19] and dynamic [20] clustering. A
number of relevant studies using clustering-based methods are listed
in Table 1 and their use of smart meter data to investigate household
consumption is described in detail.

Robust-learning Fuzzy c-Means (RL-FCM) is an improved version
of the FCM algorithm that can automatically determine the optimal
number of clusters [38]. The FCM algorithm uses fuzzy membership
to assign each data sample to multiple clusters with different member-
ship values, allowing for more accurate identification of data samples
belonging to different clusters [39]. However, the conventional FCM
algorithm requires manual post-processing methods, such as the el-
bow, silhouette coefficient, and gap statistic, to determine the optimal
number of clusters, which can be time-consuming and computationally
expensive [40–42]. To address this issue, the RL-FCM algorithm uses
an adaptive learning rate and a robust error function to automati-
cally determine the optimal number of clusters [38,43]. The adaptive
learning rate allows the algorithm to converge quickly and avoid local
minima, while the robust error function ensures that the clusters are
well-separated and compact. In our study, the RL-FCM algorithm is
employed to model real-world smart meter data and to ascertain the
primary representative load patterns and the consumption distribution
of each household.

2.2. Household load patterns and socio-demographic information

Predicting the DSM membership of new customers based on their
socio-demographic information is a challenging and important task
for utilities and retailers to design and implement customized DSM
services. DSM membership is the category of load consumption pattern
that a household belongs to, which reflects its electricity usage behavior
and preferences. In this paper, we address this question by applying
a machine learning approach. Previous studies have applied machine
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Table 1
Studies on clustering of consumption data using different methods for different purposes.

Ref Data size Methods Description and results

[4] 265 residential
meters/surveys

Hierarchical Using hierarchical clustering to identify 10 patterns of electricity consumption by the
dataset in the city of Évora, Portugal, combined with daily electricity consumption from
smart meters, and grouped into four different types of annual consumption curves,
including:U-shaped (sharp and soft), W-shaped and flat.

[21] 220 K household data K-means, Hierarchical The consumers’ lifestyle is captured by typical load shape, and five distinctive segmentation
schemes enable selecting certain program development, pricing, and marketing purposes.

[22] 785 households Hierarchical Dividing daily consumption into six time intervals with different load shape characteristics
as the daily features, and exploring the consuming peaks of each interval in a day. The
cluster-specific results enable customers identified as potential targets for DSM, net
metering, and hybrid programs.

[23] 269 peak-period load
profiles

K-means, Hierarchical
agglomeration

The raw data sample was considered with 5 p.m to 9 p.m (28 h) and be normalized. Then,
the cumulative load profiles were clustered to capture their temporal variations in
consumption patterns. Finally, the clustering results have been applied to several
classification algorithms for predicting residential peak demand.

[24] 300 users consumption
data

Hierarchical Using the hierarchy tree to study the whole monthly consumption data samples. Nine
abnormal users consuming behaviors were identified, and four representative monthly load
patterns were obtained after the clustering.

[25] 103 homesuse data Optimal k-means The shape of seasonal profiles, an optimal number of clusters in each season, and the
correlation between different profiles of the 103 homes were determined. The results found
that the data fell into one of two seasonal groups, and some households use more
expensive electricity (from the perspective of the wholesale electricity market) than others.
It also suggests that some policies may have a more significant impact on low-income
households during peak electricity consumption periods.

[26] 4963 households Gaussian Mixture
Model

Analyze the fine-grained temporal profiles to obtain the behavior features, which were used
to identify consumers with homogeneous consumption profiles. After the analysis of
Davies–Bouldin score, 15 clusters were identified and then summarized seven regular load
profiles and one sparse group that was considered as the abnormal profile.

[27] A household with 60
days consumption data

Hierarchical, FCM The consumption patterns of the household appliances were analyzed by both clustering
algorithms. The contextual features of an hour of the day, day of the week, and appliances
have been extracted, and the household behaviors based on their house characteristics are
revealed. The study can help consumers, and power companies understand the relationship
between energy demand and support.

[28] 672 customers FCM By using the Hausdorff distance, a dynamic clustering algorithm based on the FCM is
presented to study dynamic time series clustering, identification, and visualization of
temporal load profiles. After quantitative analysis, the FCM-based algorithm provides a
well-balanced cluster and load patterns, which can help companies quickly obtain the main
consumption patterns and making decision support for consumers.

[29] 15,433 households K-means Electricity load patterns are broken down across the Danish region, and polynomial
probability regression is used to examine household characteristics that have a significant
impact on load patterns. Variations in the timing and size of electricity consumption are
then taken into account, pointing to four household groups in Denmark that show
similarities in terms of evening peaks in electricity consumption, seasonal variations in
electricity demand, and rising demand at weekends.

[30] 3427 records and 235
feature values

Deep learning Proposed a load forecasting method that uses aggregated smart meter data and a
population dataset to predict customer electricity consumption, and the results find that the
features significantly impact their consumption profiles.

[31] 845 English households Regression analysis By considering the multicollinearity in electricity consumption data, different types of
features (socio-demographics, building factors, attitudes, self-reported behaviors, and
appliance ownership and use) are tested to study which individual features have the most
significant explanatory power in the region of non-heating electricity consumption.
Thetextbackslash results show that appliance ownership and usage are the highest
explanatory power variables.

[32] 3941 customers Clustering, multinomial
logistic regression

Investigate the load profiles of each day in six months to describe the weekends,
intra-daily, and seasonal difference of domestic demand. A set of profile categories (PCs) is
then identified, and each PC is linked to a corresponding household characteristic by
applying multinomial logistic regression. The results show that it is possible to classify
customers according to their personal characteristics in relation to their electricity use
without knowing the household’s electricity consumption beforehand.

[33] 29,393 buildings;
2,075,259 profiles in a
single home

Clustering A framework based on a deep auto-encoder and an adaptive self-organizing map (SOM)
clustering algorithm is proposed to address the statistical analysis of the electricity
consumption data and their features. The results show that the energy consumption levels
can be plotted on a city map, and the related significant features also have been identified.

[34] 15,797 households Time series analysis,
Emploi du temps, EDT

The first quantifies the variation in the direct energy intensity, and non-energy expenditure
intensity of daily activities and examines the extent to which the energy and non-energy
intensity of activities are sensitive to household characteristics. Three dimensions of
household differences have been explored: income, household composition, and housing
type. The results show that income would impact energy consumption, while single-parent
households would also become another potential trend for energy intensity consumption.

(continued on next page)
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Table 1 (continued).
Ref Data size Methods Description and results

[35] 4232 households Classification,Multiple
linear regression

A system using supervised machine learning methods for automatically estimating
household ‘‘characteristics" that is related to socio-economic features based on their load
patterns was proposed. The results show that the system achieves an accuracy of over 70%
for most of the characteristics assessed in all households and even more than 80% for some
characteristics.

[11] 4232 households Support Vector
Machine (SVM),
Principal Component
Analysis (PCA)

Propose a deep convolutional neural network (CNN) to extract features from the raw
profiles, then the household characteristics were identified by a support vector machine
model. Finally, the comparison of the method of the study with state-of-the-art machine
learning techniques has been conducted. The results show CNN model can promote the
accuracy of identifying socio-demographic information based on the load profiles.

[36] 4232 households Discrete wavelet
transform, SVM

Proposed a Time–Frequency Feature combination model which includes the discrete wavelet
transform, random forest, and support vector machine to infer the household
characteristics. The results show that the proposed method displays a better performance
with the incorporation of frequency domain features.

[37] 4232 households PCA, Deep learning By using the federated learning technique, a model base-PCA for identifying distributed
electricity households characteristics with the consideration of the privacy of retailers was
proposed. Based on this, an artificial neural network is trained in a joint manner using
three weighted averaging strategies to explore the relationship between consumer data and
the corresponding social characteristics of users. The results show that by using PCA to
extract features along with consumption load patterns, the recognition model achieves
better performance.
learning techniques to explore the relationship between load consump-
tion patterns and socio-demographic information. Some studies pre-
dicted household electricity consumption based on socio-demographic
features [4]. Others identified different load consumption patterns
using clustering algorithms and then inferred the socio-demographic
characteristics of households [8,11]. We have summarized some of the
related works in Table 1.

Our approach differs from existing works in two aspects. First, we
use the Robust-learning Fuzzy c-Means (RL-FCM) clustering algorithm
to identify diverse load consumption patterns, which is more robust
and flexible than conventional clustering methods. Second, we use
these patterns as labels for prediction, taking into account the socio-
demographic characteristics of households. This enables us to classify
new customers into potential customer groups and offer corresponding
DSM services.

2.3. Features selection

Feature selection has been shown to be a useful technique for
identifying and removing irrelevant and redundant features, enhancing
the efficiency of the learning task, and improving the interpretability
of the results [44]. In general, there are four main categories of feature
selection methods: embedded, filter, wrapper, and hybrid approaches.
The filter-based method takes into account the attributes of the fea-
tures in the feature selection process. The filter-based feature selection
process is independent of any classifier, and the correlation between
features plays an important role in the multivariate approach [45]. Fil-
tering approaches have higher computational performance compared to
other categories [44]. Wrapper methods are a type of feature selection
approach that involves training a model with a subset of features, and
then evaluating its performance to determine which features to keep or
discard [46]. In the wrapper approach, the feature selection process is
embedded in a specific classifier and uses the classification accuracy
as a criterion for the feature selection process. This means that the
classifier is trained and tested repeatedly to select the most relevant
features for the classification task [47]. The wrapper approach is com-
putationally more expensive than the filter approach, but it can provide
better results in some cases because it takes into account the interaction
between the features and the classifier [48]. The hybrid approaches
combine the advantages of different methods and are widely used in
the field of feature selection. These approaches include the use of an
embedded approach to pre-process the data, followed by a filter or
wrapper approach to further refine the selected features. An example
of a hybrid approach is the combination of a genetic algorithm with a
4

wrapper method [49]. This approach has been shown to be effective
in selecting the most relevant features and improving the performance
of the learning task [49]. In the field of feature selection, symmetric
uncertainty is a popular method used to measure the statistical inde-
pendence between two feature values and between features and target
classes [50]. This method has been applied in a variety of studies to
identify effective features for different tasks and contexts [51–53]. In
the context of electricity consumption and socio-demographic features,
symmetric uncertainty has been used to identify the most relevant
features for predicting household electricity consumption [54]. In this
paper, symmetric uncertainty will be employed to identify effective
socio-demographic features for different load patterns.

3. Method

Fig. 1 shows an overview of the proposed method. The proposed
model uses a four-step approach to unravel the relationship between
residential electricity consumption profiles and socio-demographic in-
formation. The first step involves obtaining and processing the original
data into a suitable format. The second step involves using the Robust-
Learning Fuzzy C-Means (RL-FCM) clustering algorithm to identify
typical consumption patterns for all of the consumers’ data, which can
capture the optimal number of clusters for the consumption data. In the
third step, feature engineering is used to identify a subset of decisive
socio-demographic information for different consumption patterns in
each cluster. In the final step, a tailored model is built to evaluate
the mapping relationship between household consumption patterns and
the selected socio-demographic information. This approach allows for a
better understanding of the relationship between household electricity
consumption and socio-demographic factors, which can help electricity
providers to provide more tailored services and develop more effective
policies for demand-side management.

3.1. Data preparation

The raw data contains both energy consumption data and household
social background information, but not all of the data is complete.
As a result, preprocessing is necessary. The consumption data has
strong temporal variations within each day, making it difficult to
capture with distinct dynamic conditions. In addition, as noted in a
study by Wang et al. [55], the same household may use electricity
differently on weekdays and weekends. As a result, it is advisable to
analyze consumption characteristics at the weekly level. We denote

the number of households as 𝑆, and the consuming data is divided
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Fig. 1. Overview of the proposed framework.
Table 2
The Socio-Demographic information to be identified.

Feature Question no. Socio-Demographic information F Question no Socio-Demographic information

F1 300 Age of the chief earner F7 450 House type
F2 310 Chief earner has retired or not F8 452 Rented of owned
F3 401 Social class of chief earner F9 4531 Age of house
F4 410 Live alone F10 460 Number of bedrooms
F5 420 Number of adult residents F11 4704 Cooking facility type
F6 43 111 Number of children residents F12 4905 Energy efficient light bulb proportion
into weekly formats. We denote the total number of weeks in the load
data as 𝑊 , and each week is denoted as 𝑤 (𝑤 ∈ 1, 2,… ,𝑊 ). Any
weekly data with missing or formatting errors is removed. Finally, each
household’s weekly consumption data is complete, and each week 𝑤
is split into 336 semi-hourly intervals (48 × 7), i.e., 𝑡 = 1,… , 336.
The consumption profile of household 𝑠(𝑠 ∈ 𝑆) in semi-hourly in-
terval 𝑡 on week 𝑤 is defined as 𝑋𝑠

𝑤,𝑡. Because 𝑋𝑠
𝑤,𝑡 is a scale of

load profiles within 336 dimensions, we can ignore the normalization
step and use the real data directly. In this study, twelve questions
related to household socio-demographic information were identified
and compared with existing literature. These questions are presented in
Table 2, alongside the corresponding question numbers from the orig-
inal questionnaire. The socio-demographic information encompasses
both integer variables (e.g., ‘‘age of house’’) and categorical variables
(e.g., ‘‘social class of chief earner’’), which have been assigned integer
labels. The twelve questions have been quantified and converted into
ordinal classifications, as indicated in Table 3. However, it is worth
noting that socio-demographic information is typically gathered in a
single snapshot through door-to-door surveys, while consumption data
is continuously recorded by smart meters. If the socio-demographic
information of a household undergoes changes (e.g., due to alterations
in income, household size, or retirement), this may disrupt the mapping
between household consumption data and socio-demographic informa-
tion. To mitigate this issue, consumption data for all households has
been selected for up to 50 weeks, commencing from the date when
residents completed the survey. It is assumed that socio-demographic
information remains relatively stable over this period and is applicable
to the selected consumption data.
5

3.2. Clustering consumption pattern by RL-FCM algorithm

The real world data often contains outliers and irregular data.
As discussed earlier, the traditional Fuzzy C-Means (FCM) clustering
algorithm is sensitive to noise, which can seriously affect the perfor-
mance of clustering. In order to overcome this issue, manual techniques
such as the elbow method, silhouette coefficient, and gap statistic are
often used to identify the optimal number of clusters. However, these
techniques can be challenging to implement and require significant
technical expertise. In order to address this issue, a robust-learning
FCM (RL-FCM) clustering algorithm was proposed in [38] that can
automatically identify the optimal number of clusters without requiring
parameter selection or initialization. In this study, we apply the RL-FCM
algorithm to uncover typical consumption patterns in the preprocessed
data from step 3.1. The RL-FCM algorithm is also free of the fuzziness
index m, allowing for more flexible and efficient clustering.

In our study, we have defined the 𝑋𝑠
𝑤,𝑡 as the consumption profile

of the household 𝑠(𝑠 ∈ 𝑆) in semi-hourly 𝑡 on week 𝑤, and the
number 𝑛 of all the consumption data weekly is determined as 𝑛 =
50 × 𝑆. We let 𝑋 = {𝑥1,… , 𝑥𝑛} be the 𝑛 consumption sample data
in a 𝑡-dimensional Euclidean space R𝑑 , and 𝑉 = {𝑣1,… , 𝑣𝑐} be the 𝑐
cluster centers. The Euclidean distance measure is used to calculate the
distance between every pair of load profiles, with 𝑑𝑖𝑘 = |

|

𝑥𝑖 − 𝑣𝑘|| 2 =
√

∑

𝑗 = 1𝑑
(

𝑥𝑖𝑗 − 𝑣𝑘𝑗
)2.

Compare with the conventional fuzzy c-means (FCM) algorithm
[56], the objective function of the RL-FCM adds several entropy terms
to free the fuzziness index m, adjust bias, and find the best num-
ber of clusters. Specifically, the entropy term of membership with



Energy 286 (2024) 129593H. Wen et al.

b
w
c
t
c
t
t
i
o
u

𝐽

w
n
𝑔
r

𝑣

Table 3
The quantified ordinal classification of the features.

F1 Label
value

F2 Label
value

F3 Label
value

F4 Label
value

18 – 25 1 An employee 1 AB 1 Yes 1
26 – 35 2 Self-employed (with employees) 2 C1 2 No 2
36 – 45 3 Self-employed (with no employees) 3 C2 3
46 – 55 4 Unemployed (actively seeking work) 4 DE 4
56 – 65 5 Unemployed (passively seeking work) 5 F [RECORD

ALL FARMERS]
5

65+ 6 Retired 6

F5 Label
value

F6 Label
value

F7 Label
value

F8 Label
value

1 1 0 1 Apartment 1 ent (from a private landlord) 1
2 2 1 2 Semi-detached

house
2 Rent (from a local authority) 2

3 3 2 3 Detached house 3 Own Outright (not mortgaged) 3
4 4 3 4 Terraced house 4 Own with mortgage etc 4
5 5 4 5 Bungalow 5 Other 5
6 6 5 6
7 or more 7 6 or more 7

F9 Label
value

F10 Label
value

F11 Label
value

F12 Label
value

< 5 years 1 1 1 Electrical 1 None 1
5 – 10 years 2 2 2 Not electrical 2 About a quarter 2
10 – 30 years 3 3 3 About half 3
30 – 75 years 4 4 4 About three quarters 4
> 75 years 5 5+ 5 All 5
𝛼

w
c
𝑐

t
c
d
o
a
c
𝛼
a

∑𝑐
𝑘=1

∑𝑛
𝑖=1 𝜇𝑖𝑘 ln𝜇𝑖𝑘 is used to replace the fuzziness index 𝑚 and adjust

ias. Next, the mixing proportion 𝛼 = (𝛼1,… , 𝛼𝑐 ) of clusters is applied,
here 𝛼𝑘 is the probability that one sample point belongs to the 𝑘th

luster under the given binding ∑𝑐
𝑘=1 𝛼𝑘 = 1. Thus, − ln 𝛼𝑘 represents

he information in the event that a data sample point belongs to the 𝑘th
luster, and the entropy term ∑𝑐

𝑘=1
∑𝑛

𝑖=1 𝜇𝑖𝑘 ln 𝛼𝑘 is used to summarize
he average information under each data sample point belonging to
he corresponding cluster. Furthermore, the entropy term ∑𝑐

𝑘=1 𝛼𝑘 ln 𝛼𝑘
s introduced to represent the average information for the occurrence
f each data point belonging to the corresponding cluster. Finally, the
pdated RL-FCM objective function is as follows:

(𝐔, 𝛼,𝐕) =
𝑐
∑

𝑘=1

𝑛
∑

𝑖=1
𝜇𝑖𝑘𝑑

2
𝑖𝑘 − 𝑟1

𝑐
∑

𝑘=1

𝑛
∑

𝑖=1
𝜇𝑖𝑘 ln 𝛼𝑘

+ 𝑟2
𝑐
∑

𝑘=1

𝑛
∑

𝑖=1
𝜇𝑖𝑘 ln𝜇𝑖𝑘 − 𝑟3𝑛

𝑐
∑

𝑘=1
𝛼𝑘 ln 𝛼𝑘

(1)

where 𝑟1, 𝑟2, 𝑟3 ≥ 0 for adjusting bias. As for the question of how to
study the values of the parameters 𝑟1, 𝑟2, and 𝑟3 for the three entropy
penalty terms ∑𝑐

𝑘=1
∑𝑛

𝑖=1 𝜇𝑖𝑘 ln 𝛼𝑘, ∑𝑐
𝑘=1

∑𝑛
𝑖=1 𝜇𝑖𝑘 ln𝜇𝑖𝑘 and ∑𝑐

𝑘=1 𝛼𝑘 ln 𝛼𝑘,
respectively, the original paper [38] had rigorous assumptions and
derivations, so particularly interested readers can view the detail pro-
cess. The results of 𝑟1, 𝑟2, and 𝑟3 are used as follows:

𝑟(𝑡)1 = 𝑒−𝑡∕10 (2)

𝑟(𝑡)2 = 𝑒−𝑡∕100 (3)

𝑟3 = min

⎛

⎜

⎜

⎜

⎝

∑𝑐
𝑘=1 exp

(

−𝜂𝑛 ||
|

𝛼(new)
𝑘 − 𝛼(𝑜𝑙𝑑)

𝑘
|

|

|

)

𝑐
,

1 − max1≤𝑘≤𝑐
(

1
𝑛

∑𝑛
𝑖=1 𝜇𝑖𝑘

)

(

−max1≤𝑘≤𝑐 𝛼
(𝑜𝑙𝑑)
𝑘

∑𝑐
𝑡=1 𝛼

(𝑜𝑙𝑑)
𝑡 ln 𝛼(𝑜𝑙𝑑)

𝑡

)

⎞

⎟

⎟

⎟

⎠

(4)

here 𝜂 = min
{

1, 2∕𝑡⌊𝑡∕2−1⌋
}

, the 𝑡 is the dimensions of the data and the
otation ⌊𝑔⌋ denotes the maximum integer that is less than or equal to
. The updating equation for the RL-FCM objective function in (1) with
espect to 𝑣𝑘 and 𝜇𝑖𝑘 are as Eqs. (5) and (6), respectively:

𝑘 =
∑𝑛

𝑖=1 𝜇𝑖𝑘𝑥𝑖
∑𝑛 (5)
6

𝑖=1 𝜇𝑖𝑘 i
𝜇𝑖𝑘 = exp

(

−𝑑2𝑖𝑘 + 𝑟1 ln 𝛼𝑘
𝑟2

)

∕
𝑐
∑

𝑡=1
exp

(

−𝑑2𝑖𝑘 + 𝑟1 ln 𝛼𝑡
𝑟2

)

(6)

Then the updating equation for 𝛼𝑘 can be obtained as follows:

(new)
𝑘 = 1

𝑛

𝑛
∑

𝑖=1
𝜇𝑖𝑘 +

𝑟3
𝑟1
𝛼(old)
𝑘

(

ln 𝛼(old)
𝑘 −

𝑐
∑

𝑡=1
𝛼(old)
𝑡 ln 𝛼(old)

𝑡

)

. (7)

To address the initialization problem, we assign all the data points
as initial clusters for the first iteration. Specifically, 𝑐(0) = 𝑛 and
𝛼(0)𝑘 = 1∕𝑐 = 1∕𝑛, 𝑘 = 1,… , 𝑐. Obviously, there is a comparison and
competition between the mixing proportions as in Eq. (7), which can
drive the iteration to proceed. In the course of the iteration, the RL-FCM
algorithm can discard illegitimate mixing proportion 𝛼(new)

𝑘 if 𝛼(new)
𝑘 <

1∕𝑛. Then, we can obtain the updated cluster 𝑐(new ) as

𝑐(new ) = 𝑐(old ) − |

|

|

{

𝛼𝑘
(new ) ∣ 𝛼𝑘(new ) < 1∕𝑛, 𝑘 = 1, 2,… , 𝑐(old )}|

|

|

(8)

where |{}| represents the cardinality of the set{}. After updating the
number of clusters 𝑐, the remaining mixing proportion 𝛼∗𝑘 and the
corresponding 𝜇∗

𝑖𝑘 is normalized by

𝛼∗𝑘 =
𝛼∗𝑘

∑𝑐new
𝑡=1 𝛼∗𝑡

(9)

𝜇∗
𝑖𝑘 =

𝜇∗
𝑖𝑘

∑𝑐new
𝑡=1 𝜇∗

𝑖𝑡

(10)

here are subject to ∑𝑐new
𝑡=1 𝛼∗𝑡 = 1 and ∑𝑐new

𝑡=1 𝜇∗
𝑖𝑡 = 1. Therefore, the

oncept of Eq. (8) can be used to evaluate the best number of clusters
∗.

Based on the above analysis, we can know that the total computa-
ional complexity for the RL-FCM algorithm is the same as that of the
onventional FCM, with O

(

𝑛𝑐2𝑡
)

, where 𝑛 is the total number of sample
ata points, 𝑐 is the number of clusters, and 𝑡 is the dimensionality
f the data. However, we observed that even though the RL-FCM
lgorithm uses the number of data points 𝑛 as the initial number of
lusters 𝑐 (i.e., 𝑐 = 𝑛) in the early stages of iterations, clusters with
𝑘 ≤ 1∕𝑐 = 1∕𝑛 can be ignored during subsequent iterations. This
llows for a significant reduction in the time per iteration after a few
terations, providing an advantage over the traditional FCM algorithm.
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Algorithm 1: Robust-learning Fuzzy c-Means clustering
Input : The total weekly consumption profile 𝑿 ← {𝑥1,⋯ , 𝑥𝑛}, the

households Id set, threshold 𝝐 ← 10−6

Output: 𝒌 representative load patterns sets 𝑿𝒌 and corresponding
centroid sets �̂�𝒌, the distribution matrix 𝒑𝒔𝒌

1 Initialize: 𝑐(0) ← 𝑛, 𝛼(0)
𝑘 ← 1∕𝑛, 𝑟(0)1 = 𝑟(0)2 = 𝑟(0)3 ← 1, 𝛼(0)

𝑘 ← 1∕𝑛,
𝑣(0)𝑘 ← 𝑥𝑖, t← 1, iteration times 𝑇 ← 100

2 Calculate the 𝜇(𝑡)
𝑖𝑘 by using the 𝑐(𝑡−1), 𝑟(𝑡−1)1 , 𝑟(𝑡−1)2 , 𝑣(𝑡−1)𝑘 , 𝛼(𝑡−1)

𝑘 as Eq. (6)
3 Update 𝑟(𝑡)1 and 𝑟(𝑡)2 according to Eqs. (2) and (3), respectively
4 Update 𝛼(𝑡)

𝑘 with 𝜇(𝑡)
𝑖𝑘 and 𝛼(𝑡−1)

𝑘 by Eq. (7)
5 Update 𝑟(𝑡)3 with 𝛼(𝑡)

𝑘 and 𝛼(𝑡−1)
𝑘 according to Eq. (4)

6 Update 𝑐(𝑡−1) to 𝑐(𝑡) by ignoring those clusters under 𝛼(𝑡)
𝑘 ≤ 1∕𝑛, then

normalize 𝛼(𝑡)
𝑘 and 𝜇(𝑡)

𝑖𝑘 by the Eqs. (9) and (10), respectively.
7 if 𝑡 ≥ 𝑇 and 𝑐(𝑡−𝑇 ) − 𝑐(𝑡) ← 0 then
8 𝑟(𝑡)3 ← 0

9 Update 𝑣(𝑡)𝑘 with 𝑐(𝑡) and 𝜇(𝑡)
𝑖𝑘 by Eq. (5)

0 Compare 𝑣(𝑡)𝑘 and 𝑣(𝑡−1)𝑘

1 if max1≤𝑘≤𝑐(𝑡−1)
‖

‖

‖

𝑣(𝑡)𝑘 − 𝑣(𝑡−1)𝑘
‖

‖

‖

< 𝜀 then
12 Record each profiles 𝑥𝑖 to corresponding �̂�𝒌;
13 �̂�𝒌 = 𝑣(𝑡)𝑘 ;
14 Compute the distribution of the number of each household 𝑠

profiles in 𝑘th cluster by corresponding Id as 𝒑𝒔𝒌;
15 Break;

6 else
17 t++, repeat to Step 1 for calculating the 𝜇(𝑡)

𝑖𝑘

8 return �̂�𝒌, �̂�𝒌, 𝒑𝒔𝒌

According to algorithm 1, the 𝑝𝑠𝑘 represents the proportion of con-
sumption profiles of household 𝑠 in the 𝑘th representative load pattern,
as expressed in Eq. (11). This value can provide insight into the elec-
tricity consumption habits of household 𝑠 across different load patterns.
Once the RL-FCM clustering is finalized, feature engineering techniques
will be implemented to discern subsets of features corresponding to
each clustering pattern.

𝑝𝑠𝑘 =
𝐴𝑙𝑙𝑠,𝑘
50

, (11)

here 𝐴𝑙𝑙𝑠,𝑘 presents the total of load profiles of customer 𝑠 in the 𝑘th
luster.

.3. Feature selection process

In our study, we have collected socio-demographic information on
ouseholds from the survey. However, the smart meter data contain
utliers and irregularities, and the corresponding feature records have
ow accuracy and contain redundant and irrelevant information. To
ackle this issue, feature selection techniques based on feature en-
ineering will be employed to eliminate redundant features. Using
he clustering load patterns obtained via RL-FCM, the application of
ymmetric uncertainty methods will facilitate the selection of valuable
eatures from Table 2. This process will result in the extraction of
recise feature sets corresponding to each cluster profile �̂�𝒌. These
eature sets will subsequently play a pivotal role in predicting the con-
umption distribution for each household, a critical indicator for DSM.
irst, we introduce Mutual information (𝑀𝐼) [57]. Mutual information
𝐼(𝐹 , 𝑃 ) is a measure of how well two factors 𝐹 and 𝑃 are correlated.

t is defined as:

𝐼(𝐹 ;𝑀) =
∑

𝑓∈𝐹

∑

𝑝∈𝑃
𝑃 (𝑓, 𝑝) log

𝑃 (𝑓, 𝑝)
𝑃 (𝑓 )𝑃 (𝑝)

(12)

where 𝑃 (𝑓 ) and 𝑃 (𝑝) represent the marginal probabilities of the vari-
bles 𝑓 (𝑓 ∈ 𝐹 ) and 𝑝(𝑝 ∈ 𝑃 ), respectively. 𝑃 (𝑓, 𝑝) is the probability

of simultaneous occurrence of 𝑓 and 𝑝. The value of 𝑀𝐼(𝐹 , 𝑃 ) is
on-negative and the larger the value of 𝑀𝐼(𝐹 , 𝑃 ), the stronger the
7

Algorithm 2: The feature selection process
Input : The 𝐩𝐬𝐤 from Algorithm 1, total qualified feature set 𝐅 from

Table 3, a null set FF
Output: The 𝐾 selected feature subsets 𝐹 𝑗

1 for cluster 𝑗 ← 1 to 𝐾 do
2 Calculate the MI(𝐹 , 𝑝𝑠𝑗) by Eq. (12)
3 Calculate the SUnormalized(𝐹 , 𝑝𝑠𝑗 ):
4 for 𝑖 ← 1 to 12 do
5 𝑆𝑈normalized(𝐹𝑖, 𝑝𝑠𝑗 ) ←

𝑆𝑈 (𝐹𝑖 ,𝑝𝑠𝑗 )
∑12

𝑖=1 𝑆𝑈 (𝐹𝑖 ,𝑝𝑠𝑗 )
; // Normalize 12

socio-demographic features within a cluster

6 Pareto analysis:
7 𝐹 𝑗 ←

argmax
{

𝐶𝐷𝐹80% ranking set
{

𝑆𝑈normalized(𝐹𝑖, 𝑝𝑠𝑗 ) | 𝑖 = 1 to 12
}}

;
// CDF depicts the weight distribution

8 Record 𝐹 𝑗 to the FF

9 Return selected feature subsets FF for the k clusters

dependency between 𝑓 and 𝑝. However, using the results of 𝑀𝐼 directly
for feature selection can introduce bias [58]. Therefore, it is necessary
to normalize the results of 𝑀𝐼(𝐹 , 𝑃 ) to allow for comparison of the
correlation between 𝑓 and 𝑝 under unbiased conditions. One of the
common normalization methods for mutual information is symmetric
uncertainty (𝑆𝑈) [59], which allows the results of 𝑀𝐼 to be normalized
within the range [0, 1] and is defined as:

𝑆𝑈 (𝐹 , 𝑃 ) =
2 ×𝑀𝐼(𝐹 ;𝑃 )
𝐻(𝐹 ) +𝐻(𝑃 )

(13)

here 𝐻(𝑋) is the Shannon entropy for quantifying the information
egree of 𝑋 and is calculated using the marginal probabilities 𝑝(𝑥) as:

(𝑋) = −
∑

𝑥∈𝑋
𝑃 (𝑥) log𝑃 (𝑥) (14)

A value of 1 in 𝑆𝑈 (𝐹 , 𝑃 ) indicates that 𝑓 and 𝑝 are perfectly
orrelated, i.e., the value of one variable fully predicts the value of the
ther variable. However, a value of 0 indicates that the two features
re completely independent.

In this study, we use the results 𝒑𝒔𝒌 from Algorithm 1 and all
uantified socio-demographic feature sets 𝐹 𝑖(𝑖 ∈ 1,… , 12) from Table 3
o compute the 𝑆𝑈 (𝐹 , 𝑝𝑠𝑘) for each set 𝐹 𝑖 and 𝑝𝑠𝑘 in the 𝑘th cluster.

e apply Pareto analysis, a multi-objective optimization technique, to
elect the most important features for each cluster. For example, in
he 𝑗th cluster, we rank all of the computed results of the twelve 𝐹 𝑖
nd count a cumulative distribution function for the top 80%. Finally,
hese factors are considered as elements for the selected subsets 𝐹 𝑗 .

e summarize all of the steps in this subsection in Algorithm 2. The
selected feature subsets are obtained as 𝐹 𝑗 (𝐹 𝑗 ∈ FF, and 𝑗 ∈ 1, …,

) and will be used as vital indicators for predicting the consumption
attern distribution of all households within a given cluster.

.4. Analyzing the relationship between consumption patterns and selected
eatures

We have developed an analytical model based on Long Short-Term
emory (LSTM) to predict households’ consumption distributions using

he selected feature subset 𝐹 𝑗 . These feature subsets 𝐹 𝑗 for each cluster
oad profile were derived from the previously mentioned section on
ymmetric uncertainty. Subsequently, we construct 𝑘 distinct LSTM
odels with 𝐹 𝑗 as the input training data, and employ 𝒑𝒔𝒋 within the 𝑗

cluster as the predicted results for consumption distribution. The LSTM
analytical model comprises an LSTM layer, a fully connected layer, and
a softmax layer. The softmax layer serves for classification, mapping
the network output to the (0,1) range to predict the probability of
the consumption distribution for all users within each cluster. Taking
the 𝑗th LSTM as an example, in this model, our goal is to map the
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Fig. 2. The structure of LSTM model for forecasting the consumption distribution of each household in kth cluster.
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abeled values in subset 𝐹 𝑗 with several selected features 𝐹 𝑖 to the
onsumption distribution 𝒑𝒔𝒋 . The LSTM neural network at time 𝑡 is
efined as follows: 𝐡𝑡 = LSTM(𝐡𝑡 − 1, 𝐱𝑡)
𝐨𝑡 = ReLU(𝐖𝑜𝐡𝑡 + 𝐛𝑜)
𝐲𝑡 = Softmax(𝐖𝑦𝐨𝑡 + 𝐛𝑦) where 𝐡𝑡 is the hidden state of the LSTM

at moment 𝑡, 𝐱𝑡 is the input at moment 𝑡, 𝐨𝑡 is the output of the fully
connected layer, and 𝐲𝑡 is the predicted probability of the consumption
distribution of all users in the 𝑗th cluster. 𝐖𝑜 and 𝐖𝑦 are the weight
matrices, and 𝐛𝑜 and 𝐛𝑦 are the bias vectors. The ReLU and Softmax
functions are applied element-wise.

In our study, we employ the softmax function, a popular normal-
ization algorithm, to ensure that the prediction probabilities of each
household in the 𝑘 clusters sum to 1. The softmax function is defined
as:

𝑝∗𝑠𝑗 =
𝑒𝑝𝑠𝑗

∑𝑘
𝑗=1 𝑒

𝑝𝑠𝑗

This equation maps the predicted probability of household 𝑠’s con-
umption profile in the 𝑗th cluster to a nonlinear, non-negative value
ithin the interval [0, 1]. The resulting 𝑝∗𝑠𝑗 values are used to calculate

he loss function for each LSTM model. To evaluate the performance
f our proposed model, we conducted a comparative analysis with
hree baselines that represent different approaches to customer group
embership prediction:

• Baseline 1 is a supervised learning method that used the same
LSTM structures as our proposed model (see Fig. 2). The input for
this baseline was the full set of socio-demographic features from
Table 3. This baseline was used to evaluate the effects of feature
selection on prediction accuracy.

• Baseline 2 is an unsupervised learning method that used Ex-
treme Learning Machine (ELM) structures instead of LSTM struc-
tures. The input for this baseline was also a subset of socio-
demographic features selected by our proposed model. This base-
line was used to compare ELM and LSTM as methods for customer
group membership prediction.

• Baseline 3 is also an unsupervised learning method that used ELM
structures. However, unlike Baseline 2, this baseline used the full
set of socio-demographic features from Table 3 as input. This
baseline was used to evaluate the effects of feature selection on
ELM-based prediction.

The Root Mean Square Error (RMSE) is used as the performance
etric. This metric quantifies the deviation between the predicted
robabilities 𝑝∗𝑠𝑗 and the actual probabilities 𝑝𝑠𝑗 for each household 𝑠

in cluster 𝑗. The RMSE is calculated as follows:

𝑅𝑀𝑆𝐸𝑗 =

√

√

√

√
1
𝑆′

𝑆′
∑

𝑠=1

(

𝑝𝑠𝑗 − 𝑝∗𝑠𝑗
)2

, (15)

here 𝑆′ is the number of households used for training the model, and
s typically 30% of the total number of households 𝑆. The training
rocess stops when the RMSE falls below a certain threshold or the
umber of iterations exceeds a certain threshold.
8

d

Overall, our proposed model and the baselines will be trained and
valuated on the same data to provide a fair comparison of their
erformance. The results of this comparison will help us to understand
he effectiveness of LSTM, ELM, and feature selection in predicting the
onsumption distribution of households in different clusters.

. Experiments

The experimental results of this study were obtained using the
ommission for Energy Regulation (CER) dataset, which contains data
n 4232 residential households in Ireland. The dataset includes 536
aily consumption records at a semi-hourly interval, as well as pre- and
ost-trial surveys that provide socio-demographic information about
he households. To prepare the data for our experiments, we first
econstructed the consumption data in weekly format. Any null values
r consecutive zero values within a week’s time were deleted, along
ith the corresponding socio-demographic information. In addition,
ouseholds with incorrect or missing socio-demographic information
ere also removed from the dataset. After this preprocessing step, we
ere left with 50 weeks of consumption data from 1000 residential
ouseholds, along with their socio-demographic information. This data
as used to evaluate the proposed model.

.1. Representative pattern identification

We use Algorithm 1 to cluster the weekly load profiles of house-
olds and obtain eight clusters shown in Fig. 3. Each cluster has a
istinctive distribution of consumption data and a unique consumption
attern. These patterns show different dynamics between weekdays and
eekends, which reveals the importance of analyzing household elec-

ricity consumption on a weekly basis. In this paper, we use the term
oad profile to refer to the electricity consumption data of a household
ver a period of time. We also use the term demand-side management
DSM) to describe the actions taken by consumers or utilities to modify
he electricity demand. The data we used for clustering is from the
ommission for Energy Regulation (CER) smart metering project in

reland.
The eight clusters (C1-C8) show different consumption patterns,

hich indicate that it is better to analyze household electricity on
weekly basis rather than daily. For example, C1 has totally flat

onsumption profiles, which means those households in C1 do not vary
heir electricity consumption according to time. C2 has dual peaks on
eekend mornings and evenings, while only having a relatively higher

onsumption on weekday evenings. C3 has a peak on weekday evenings
nd dual peaks on Saturday mornings and evenings. C4 has a stable
onsumption during weekday mornings and afternoons, but rapidly
ncreases to a peak in the evening, similar to Saturdays. However,
undays have lower consumption in the afternoon and a peak in the
vening. C5 has a relatively high level of consumption on weekdays
nd Saturdays, with obvious dual peaks in the morning and evening
n Saturdays. Sundays have the highest peak of consumption within
he cluster. C6 has a similar consumption pattern to C4, but with some

ifferences, such as a small peak in the morning on weekdays and a
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Fig. 3. Eight typical load patterns.
relatively sharp consumption curve. C7 has a small peak in the morning
and a higher peak in the evening on weekdays. However, there is
only a single peak on weekends. C8 has relatively sharp consumption
dynamics and obvious dual peaks on Sunday mornings and evenings,
but the weekdays and Saturdays are not significant. The analysis of
the eight clusters reveals that the RL-FCM algorithm performs well
in clustering the CER data and can be used to make individual DSM
decisions based on the results of the clustering.
9

Fig. 4 shows the distribution of load profiles in each cluster, which
reflects the prevalence of each consumption pattern within the dataset.
The 𝑥-axis enumerates the eight clusters (C1 through C8), while the
𝑦-axis indicates the proportion (%) of load profiles that fall into each
cluster. Each cluster represents a group of households that share similar
electricity consumption patterns. For instance, Cluster C2, which has
the highest proportion of 21.42%, represents the most common con-
sumption pattern among the households in the dataset, while Cluster
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C7, which has the lowest proportion of 5.51%, represents the least
common one. This clustering result is significant as it enables indi-
vidualized DSM decisions. By understanding the distinct consumption
patterns in each cluster, we can tailor DSM strategies to effectively
manage energy use within each group. These clusters provide a solid
foundation for further exploration. The next step involves applying a
Long Short-Term Memory (LSTM) model to delve into the non-linear
relationship between socio-demographic information and household
consumption patterns. This approach promises to reveal nuanced in-
sights into how different socio-demographic factors influence energy
consumption within each cluster.

4.2. Features comparison and selection

In this subsection, we identify highly relevant socio-demographic
characteristics for each cluster (each representative loading pattern).
We perform a Pareto analysis of the eight patterns obtained using
Algorithm 2 to obtain the results in Fig. 5. We plot the cumulative
percentage lines and mark the features that exceed 80% with a red
vertical dashed line. According to the results, 𝐹5 has the highest sym-
metric uncertainty score in all loading models except C8, where 𝐹10 is
he highest. 𝐹5 represents the ‘‘number of adult residents’’, while 𝐹10
epresents the ‘‘number of bedrooms’’ (see Table 2). Thus, the number
f adults is the most important sociodemographic characteristic. In
ontrast, 𝐹11, 𝐹6 and 𝐹8 contribute the least to the eight representative
oading patterns, which are ’type of cooking facilities’, ’number of
hild residents’ and ’renting or owning’, respectively. According to the
esults, 𝐹2 is a highly influential characteristic, namely the retirement
tatus of the primary income earners. It can be seen that some sociode-
ographic information plays an important role and can be used to
redict the distribution of loading patterns of households. In addition,
earson correlation analysis was used to gain insight into the pairwise
orrelations between each socio-demographic characteristic, as well
s the correlations between these characteristics and the clustering
oading patterns. The scale of the coefficients indicates the strength
f the relationship, while the symbols indicate positive and negative
orrelations. The results are shown in Fig. 6, where the more red, the
ore positive the correlation, while the more purple, the more negative

he correlation. For example, 𝐹5, ‘‘number of adult residents’’, has a
ignificant negative correlation with 𝐹1 − 𝐹3, C1, and C2, indicating
hat it is difficult to conveniently identify adults with more complex
esident conditions, given their increasing age, retirement, and income
10

c

arner status. Furthermore, we can see that 𝐹11 is neutral for all socio-
emographic information as well as for all load patterns, suggesting
hat there is no significant relationship between the type of cooking
acilities and households’ electricity consumption patterns. This may
uggest that electricity use for cooking is not a major part of their elec-
ricity use, reflecting the diversity. The results obtained from Pearson
orrelation analysis serve as a robust validation of the symmetric uncer-
ainty and Pareto analysis techniques. Nevertheless, some variation is
bserved within our feature selection process. For instance, 𝐹4 pertains
o households living in the neighborhood, which logically aligns with
5 and 𝐹6, as indicated by the Pearson correlation analysis, given their

lear association with resident population. However, as outlined in our
pproach in Section 3.3, our objective is to minimize the presence of
edundant features while retaining the utmost relevant ones. Hence, a
eature selection method based on symmetric uncertainty remains an
ppropriate and prudent technique for our purposes.

.3. Prediction performance and compare with baselines

Based on the correlations in Fig. 5, we determine the
ocio-demographics as features and the corresponding consumption
atterns as the labels. We randomly select 70% of the households as
raining and the remaining 30% as testing. The model uses the RMSE
n Eq. (15) as the cost function with optimized hyperparameters. Fig. 7
hows the prediction results compared to the ground truth with 8
lusters, which shows that our model can achieve favorable prediction
erformance.

To evaluate our method, a comparison is made against three base-
ines, as discussed in Section 3.4, and Eq. (15) is employed to quantify
he error for all methods. The results are presented in Table 4. Baseline
exhibits relatively strong performance using our predictions without

he feature selection process. In the prediction models corresponding to
arious cluster loads, such as C4, C5, and C7, our model demonstrates
imilar performance. However, baseline 2, which incorporates the ELM
rediction model along with our proposed feature selection process,
erforms notably worse than baseline 1. Moreover, baseline 3, which
elies on the ELM prediction model without taking feature selection
nto account, displays inferior performance. Our model achieves a
ubstantial reduction in the average RMSE of 52.5287%, 85.5859%,
nd 86.0828% when compared to baselines 1, 2, and 3, respectively.
cross the eight clusters, it is evident that our model more effectively
aptures the nonlinear relationship between cluster patterns and the

orresponding socio-demographic characteristics.
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Fig. 5. The eight selected feature subsets.
Table 4
The RMSE comparison of our model and other baselines.

Cluster RMSE comparison Improvement of proposed model (%)

Our model Baseline1 Baseline2 Baseline3 Baseline1 Baseline2 Baseline3

C1 0.0684 0.1865 0.3270 0.3255 63.3480 79.0948 79.0034
C2 0.0476 0.2518 0.3476 0.2864 81.1006 86.3107 83.3874
C3 0.0676 0.1510 0.6250 0.4491 55.2295 89.1845 84.9487
C4 0.1415 0.1645 0.3599 0.4954 13.9609 60.6783 71.4335
C5 0.0228 0.0657 0.6447 0.6656 65.2937 96.4618 96.5727
C6 0.0799 0.1224 0.5243 0.4882 34.7272 84.7640 83.6363
C7 0.0537 0.0817 0.6026 0.6749 34.3389 91.0946 92.0485
C8 0.0176 0.0634 0.6068 0.7435 72.2305 97.0986 97.6321

Average 0.0624 0.1359 0.5047 0.5161 52.5287 85.5859 86.0828
4.4. Customer group membership prediction for DSM

The provided household characteristics have been employed as
input variables for the prediction of group membership within the
context of Demand-Side Management (DSM). In this evaluation, a
11
random selection of four households, specifically labeled as #2093,
#2270, #2333, and #2491, has been utilized as the test dataset. The
socio-demographic attributes of these selected households are compre-
hensively outlined in Table 5 for reference.
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Fig. 6. The Pearson correlation coefficient between the features and patterns.

Fig. 7. The eight test results for validating our model.
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Table 5
The socio-demographic information of four selected households.

ID F1 F2 F3 F4 F5 F6 F7 F8 F10 F9 F11 F12

2093 2 1 1 2 2 2 4 4 2 1 2 4
2270 6 3 2 2 2 2 2 3 4 3 2 5
2333 6 6 4 1 1 1 4 2 3 3 2 3
2491 3 1 3 2 3 3 2 4 4 3 1 4
Fig. 8. Comparison of our model and other baselines in four real households consumption.
In general, there is a difference in twelve sociodemographic charac-
teristics among the four households. Next, we performed the customer
group membership prediction using our proposed model and compared
it with the other three baselines. The prediction accuracy is presented in
the form of radar plots in Fig. 8. It can be observed that our proposed
model achieved the highest prediction accuracy for the four selected
households, i.e., the red dashed line (our proposed model) is closest
to the green one (ground truth), compared to the yellow, purple, and
cyan dashed lines (baselines 1–3) in each radar plot. Baselines 2 and
3, however, showed poor prediction accuracy, as evidenced by the
large gaps between their lines and the ground truth in the four radar
plots. After conducting an exploration of the mapping relationship
from household socio-demographic information to the primary load
pattern, insights and recommendations can be offered to utilities for
the development of more refined DSM services.
13
4.5. Insights load patterns-based for DSM

As mentioned earlier, DSM strategies can be classified into EE, ToU,
SR and DR. By carefully planning and implementing these activities,
these strategies can help smooth the load demand curve, making it
easier for utilities to meet their customers’ energy needs without strain-
ing their networks. By sublimating customer behavior and promoting
energy-efficient technologies, DSM can also help reduce the environ-
mental impact of electricity generation and consumption. As various
power system and communication system infrastructure components
are concerned in the implementation of DSM principles to enable fast
and efficient marketing operation in addition to flexibility within their
framework of operation [60], several programmatic strategies have
been developed in our case study based on the perspectives of the
load patterns of households in the clustering. In addition, according
to the resuls of Table 5 and the selected feature sets in Fig. 5, we give
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•

•

Table 6
The potential DSM strategies for individual cases.

Id Patterns Strategies Categorization

#2093 C4 Install solar PV; Increase tariffs during peak periods, i.e.,
weekday evenings

EE and ToU, Technical and
pricing levels

#2270 C3, C2 Decorate rooms with warm and insulating materials; Use
energy storage, e.g., storage electric boilers

EE, Technical level

#2333 C7 Replace low-efficiency appliances with efficient ones.,
e.g., light bulb; Use IBR for the varying consumption

EE, DR and ToU, Technical and
incentive levels

#2491 C1 Install solar PV; Use highly energy-efficiency appliances;
Use dynamic RTP for household’s tariffs

EE and pricing time-based levels
explanations for the potential strategies and the recommendation for
the four studied households in Table 6:

• The #2270 household’s main membership was found to be C4, and
the corresponding symmetric uncertainty features in decreasing order
are 𝐹5, 𝐹2, 𝐹3, 𝐹1, 𝐹12, 𝐹10, 𝐹9, 𝐹7, and 𝐹8. The #2093 has two
adults aged 18-25, a house built within the last five years, with two
bedrooms and about three-quarters of a light bulb. On the other hand,
as the shape of Fig. 3 (C4), we can see a small spike in consumption
in the morning and the consumption on weekdays shows relatively
steady, in contrast to weekend which is higher. For the purpose of
peak shaving, we recommend that the household installs PV projects
to implement net metering and reduce demand on the power grid
during peak periods. Additionally, since there is an obvious peak
in consumption during weekday evenings, we suggest considering
pricing-based tariffs to make the household more aware of reducing
unnecessary power consumption during those hours.
The #2270 household consists of two adults and one child. The chief
earner is a retired person over the age of 65, and the household lives
in a four-bedroom home with energy-efficient light bulbs. The age
of the house is over 10 years. Based on the consumption patterns
of the household, which are shown in Fig. 3 (C2, C3), there is a
peak on weekday evenings and dual peaks on Saturday mornings
and evenings. This indicates that the house may be poorly insulated
and that the chief earner may not be using modern energy storage
tools, such as storage electric boilers. Therefore, we strongly recom-
mend that this customer replaces the insulation with new materials
where available and uses energy storage appliances to reduce peak
consumption.
The household #2333 is a retired elderly person living alone in a
three-bedroom home that uses half energy-efficient light bulbs. As
shown in Fig. 3 (C7), there is a rapid increase in consumption after the
afternoon every day. This indicates that the household may have high
and low consumption levels. Furthermore, it is likely that the retired
person does not use energy-saving electrical devices. Therefore, we
propose a series of personalized services for this household, including
increasing the proportion of energy-efficient appliances used and
using an inclining block rate (IBR) [61] for varying consumption. The
IBR grants incentives to customers based on distributing their usage
towards other periods of the day to avoid higher tariffs, eventually
reducing the grid system’s peak-to-average ratio (PAR). We also
suggest using energy storage tools such as electric boilers.
The #2491 household, which consists of three adults and two chil-
dren, lives in a four-bedroom house that is over 10 years old. The
chief earner of the household is self-employed and middle-aged. Their
consumption patterns, Fig. 3 (C1), are relatively cluttered throughout
the day and are not regular, which may be attributed to the number
of household members. Therefore, we recommend that this household
should install PV projects and use more energy-saving appliances. In
addition, we recommend using a dynamic real-time pricing strategy
(RTP) [62], also known as a dynamic pricing strategy, which prede-
termines different tariffs based on hourly or daily usage patterns. This
will help reduce the household’s irregular consumption and establish
14

good electricity consumption habits.
5. Discussion

In this paper, we have presented a novel approach for identifying
customer groups for personalized DSM services using household socio-
demographic data. Our approach aims to address the challenge of
providing targeted DSM services in scenarios where smart meter data
are not available or reliable, which is a common situation in many
regions. By using a machine learning model that can predict the likeli-
hood of DSM membership for households based on their characteristics,
our approach can help utilities to offer customized DSM services from
the first day of customer engagement, regardless of the availability of
their energy consumption data. We have evaluated our approach on a
real-world dataset from Ireland and demonstrated its effectiveness and
potential for targeted DSM strategies.

Our approach has several implications for both research and prac-
tice. For research, our approach can provide a new perspective for
understanding the relationship between residential energy consump-
tion and household characteristics, and can inspire further studies on
how to leverage socio-demographic information for DSM purposes. For
practice, our approach can enable utilities to better manage energy
demand and design tailored DSM strategies that are aligned with the
specific needs and preferences of different customer groups. However,
our approach also depends on several factors that may affect the
energy consumption and load patterns of households, which we have
not considered in this paper. These factors include the technical and
environmental constraints that may influence the actual energy usage
and demand of customers, as well as their willingness and ability to
participate in DSM programs. In this section, we briefly discuss these
factors and their implications for our approach.

• Technical constraints: The type and efficiency of appliances, light-
ing, heating, cooling, and ventilation systems in households can
have a significant impact on their energy consumption and load
patterns. For instance, households with smart thermostats or en-
ergy management systems may be able to adjust their temperature
settings or switch off unnecessary devices to reduce their peak
demand or participate in DSM programs. Therefore, it is impor-
tant to consider the technical characteristics and capabilities of
households when designing and implementing DSM strategies.

• Environmental constraints: The weather conditions, such as tem-
perature, humidity, wind, and solar radiation, can also influence
the energy consumption and load patterns of households. For
example, households may consume more electricity for heating
or cooling during extreme weather events or they may generate
more electricity from rooftop solar panels during sunny days.
Therefore it is essential to take into account the environmen-
tal factors and variations when planning and evaluating DSM
strategies.

There are also some limitations and challenges that need to be
addressed in future work. First, our approach relies on the availability
and quality of household socio-demographic data, which may not be
easily obtained or updated in some cases. Therefore, more efforts are

needed to explore alternative ways of collecting and maintaining such
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data. Second, our approach assumes that household characteristics
remain relatively stable over time, which may not hold true in some
situations. Therefore, more robust methods are needed to handle the
dynamics and uncertainties of household characteristics and consump-
tion patterns. Third, our approach does not consider the feedback
effects of DSM interventions on household behavior and consumption,
which may affect the performance and validity of our model. Therefore,
more sophisticated methods are needed to incorporate the feedback
mechanisms and evaluate the long-term impacts of DSM programs.

Moreover, our approach relies on hypothetical queries based on
household characteristics, such as age, income, and cooking facilities,
which may not reflect the actual energy usage patterns of customers, as
these factors may change over time due to technological advancements
or other reasons. However, we argue that our approach is still useful
and applicable in many scenarios where the data-driven strategy is
desirable. First, our approach does not rely on the exact values of
the household characteristics, but rather on their relative importance
and correlation with the DSM membership. Therefore, as long as the
underlying relationship between the household characteristics and the
DSM membership remains stable, our approach can still provide ac-
curate predictions. Second, our approach can be easily updated and
retrained with new data as they become available, which can improve
the performance and adaptability of our model over time. Third, our
approach can be combined with other methods that can capture the
temporal dynamics and variations of the residential customer data, such
as time series analysis or recurrent neural networks, which can further
enhance the robustness and generalizability of our model.

Additionally, while the data in this study were acquired in the Euro-
pean Ireland region, the methodology presented herein holds potential
applicability to any region equipped with a smart meters network.
The significance of smart meters in the future is discernible, with
benefits accruing to both households and stakeholders in the electricity
service supply chain. It is, however, essential to acknowledge that the
availability of data encompassing smart meter usage alongside com-
prehensive sociodemographic information about households remains a
rare commodity and introduces concerns regarding the protection of
personal privacy. Furthermore, the implementation of DSM strategies
must take into account various factors, such as market tariff rules,
geographic distribution of households, the level of competition in the
electricity market, and the presence of taxes or other policies that may
affect the cost of electricity. In the context of our case study, we have
delineated several programmatic strategies based on market dynamics
and household load patterns, which can contribute to optimizing the
application of DSM principles. However, it is imperative that these
recommendations undergo rigorous evaluation by the pertinent utility
company to ascertain their suitability and feasibility within the specific
operational context.

In summary, the results of our analyses can serve as a first step
for utilities to explore electricity demand shifts resulting from intra-
household peaking and market segmentation. These insights, based on
a socio-demographic perspective, are essential for developing enhanced
electricity services.

6. Conclusion and future work

In this paper, we have addressed the problem of delivering targeted
Demand-Side Management (DSM) services to new customers within
smart energy systems. Motivated by the lack or unreliability of smart
meter data in many scenarios, we have proposed a novel data-driven
approach that leverages household socio-demographic data to identify
customer groups for personalized DSM services. Our approach consists
of three main steps: (1) applying a robust and flexible clustering
algorithm to identify representative electricity consumption patterns
from historical smart meter data; (2) employing a comprehensive fea-
15

ture selection method to select highly correlated subsets of household
characteristics for each clustering load pattern; (3) developing a state-
of-the-art forecasting model to estimate customer groups eligible for
DSM services based on their household characteristics.

We have evaluated our approach on a real-world dataset from Ire-
land and demonstrated its effectiveness and potential for targeted DSM
strategies. The results have shown that our approach can achieve high
prediction accuracy and outperform three baseline methods in uncover-
ing nonlinear relationships between household characteristics and DSM
membership. Moreover, we have conducted a specific case study to
illustrate how our approach can help utilities to design customized DSM
strategies for four individual households, factoring in their electricity
consumption patterns and socio-demographic information.

In our future endeavors, we intend to delve into factors such as
seasonal fluctuations, holiday-related patterns, and the influence of
tiered electricity tariff structures and time band charging. Additionally,
our focus will encompass privacy preservation for occupants through
the implementation of federated learning techniques.
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