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Abstract

The present dissertation presents my Ph.D. research on inversion methods for fast-ion diagnostics
in fusion plasmas. This work is part of a collaboration between the Technical University of
Denmark and École Polytechnique Fédérale de Lausanne. My research focused on developing
mathematical methods for solving ill-posed inverse problems in velocity-space tomography applied
to synthetic and experimental data from projections of fast-ion velocities, ion cyclotron emission,
and fast-ion loss detectors.

A main objective in diagnostics of fusion plasmas is to determine the fast-ion velocity-
space distribution function. As part of my research, a technique called “slowing-down physics
regularization” was developed to determine the fast-ion velocity-space distribution function
throughout the fusion plasma from projections of velocities of the fast ions. This technique was
applied to synthetic data from the TCV tokamak and the W7-X stellarator.

Extensive modelling of the physical systems is required to determine the fast-ion velocity-space
distribution function. In fast-ion parlance, such models are built into a “weight function matrix”.
For point-wise determination of the velocities of the fast ions emitting ion cyclotron emission, 2D
weight functions and reconstruction techniques using them were developed.

The ill-posed inverse problem can be solved using regularization methods. Tikhonov regular-
ization has been the standard regularization method in velocity-space tomography for the past
decade. Other regularization techniques were investigated and evaluated. In particular, algebraic
iterative reconstruction techniques were applied to synthetic and experimental measurements from
fast-ion loss detectors and compared with Tikhonov regularization.

When diagnosing fusion plasmas, simulations are performed to model the physical processes.
Measurements from fast-ion loss detectors are simulated using a code called “FILDSIM”. A raised
cosine model was proposed as an alternative to the standard Gaussian model. The resulting
improvements in weight functions and reconstructions were obtained for the TCV tokamak. A
model based on these improvements achieves higher precision and faster calculations, making it
possible to compute reconstructions of measurements from fast-ion loss detectors between repeated
experiments.

In addition, neural networks were used to perform velocity-space tomography. Neural networks
were trained to suggest an optimal value of the regularization parameter for Tikhonov regularization
and to compute reconstructions directly from synthetic and experimental measurements from
fast-ion loss detectors. The neural networks provide instantaneous reconstructions of the fast-ion
velocity-space distribution function, which can supplement reconstruction methods for diagnostics
of fast ions in fusion plasmas and contribute to improved control of fusion plasmas.
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Resumé (Danish)

Nærværende afhandling præsenterer min ph.d.-forskning i inverse metoder til diagnostik af hurtige
ioner i fusionsplasmaer. Dette arbejde er en del af et samarbejdsprojekt mellem Danmarks
Tekniske Universitet og École Polytechnique Fédérale de Lausanne. Min forskning fokuserede
på at udvikle matematiske metoder til at løse ikke-velformulerede inverse problemer inden for
tomografi af hastighedsrum anvendt på syntetiske og eksperimentelle data fra projektioner af
hastigheder af hurtige ioner, ioncyklotronsemission og detektorer af undslupne hurtige ioner.

Et hovedformål inden for diagnostik af fusionsplasmaer er at bestemme hastighedsfordelings-
funktionen af hurtige ioner. Som led i min forskning blev udviklet en metode kaldet ”slowing-down
physics regularization” til at bestemme fordelingsfunktionen af rum og hastigheder i hele fusions-
plasmaet fra projektioner af hastigheder af de hurtige ioner. Denne metode blev anvendt på
syntetiske data fra TCV-tokamakken og W7-X-stellaratoren.

For at bestemme fordelingsfunktionen af de hurtige ioner kræves omfattende modellering af de
fysiske systemer. I hurtig-ion sprogbrug er sådanne modeller indbygget i en vægtfunktionsmatrix.
Til punktvis bestemmelse af værdierne af hastighederne af de hurtige ioner, der udsender ioncyk-
lotronsemission, blev udviklet 2D-vægtfunktioner samt rekonstruktionsmetoder, som anvender
disse.

Det ikke-velformulerede problem kan løses ved hjælp af metoder baseret på regularisering.
Tikhonov-regularisering har været standardregulariseringsmetoden inden for tomografi af hastighed-
srum i det seneste årti. Andre regulariseringsmetoder blev undersøgt og vurderet. Især blev
algebraiske iterative rekonstruktionsmetoder anvendt på syntetiske og eksperimentelle målinger
fra detektorer af undslupne hurtige ioner, og deres fordele og ulemper blev sammenlignet med
Tikhonov-regularisering.

Ved diagnostik af fusionsplasmaer udføres simuleringer til at modellere de fysiske processer.
Målinger fra detektorer af undslupne hurtige ioner simuleres med en kode kaldet FILDSIM.
En forhøjet cosinusfunktion blev foreslået som et alternativ til Gauss-modellen. Forbedringer i
vægtfunktioner og rekonstruktioner blev opnået for TCV-tokamakken. Med modellen baseret
på disse forbedringer opnås højere præcision og hurtigere beregninger, hvilket gør det muligt at
bestemme rekonstruktioner af målinger fra detektorer af undslupne hurtige ioner mellem gentagne
eksperimenter.

Desuden blev neurale netværk anvendt til at udføre tomografi af hastighedsrum. Neurale
netværk blev trænet til at foreslå en optimal værdi af regulariseringsparameteren til Tikhonov-
regularisering og til at beregne tomografiske rekonstruktioner direkte fra syntetiske og eksperi-
mentelle målinger fra detektorer af undslupne hurtige ioner. Herved opnås øjeblikkelige bestem-
melser af hastighedsfordelingsfunktionen af hurtige ioner, hvilket kan væsentligt supplere inverse
metoder til diagnostik af hurtige ioner i fusionsplasmaer samt bidrage til forbedret kontrol af
fusionsplasmaer.
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Chapter 1

Introduction

This Ph.D. dissertation contributes to nuclear fusion research aimed at making fusion energy a
viable energy source. The current climate crisis and the world’s increasing energy demand are
two major motivational factors. These two problems are briefly addressed, illustrating how fusion
energy can contribute to the solution.

1.1 General remarks
Alternative energy sources to fossil fuels are in high demand. According to the International Energy
Agency, the year 2021 added a record renewable electricity of 290 GW, and projected acceleration
of electricity production from solar panels, wind turbines, and other renewables.1 Additionally,
according to the International Labour Organisation, jobs related to renewable energy will grow
despite multiple crises.2 The current alternative energy sources can only operate intermittently,
and battery storage is insufficient.3 One alternative energy source to fossil energy that can provide
a continuous energy supply is fusion energy. Fusion reactions, such as those occurring in the Sun,
release energy due to the mass defect of the products relative to the reactants.4 This energy
release occurs for all fusion reactions for which the products have higher mass numbers A than
the reactants and when the mass numbers satisfy A ≤ 62.5 Since the 1950s, fusion research
has investigated ways to harness the energy of fusion reactions.6 While the Sun achieves its
thermonuclear fusion through gravitation, the two current approaches to achieving controlled
fusion energy on Earth are magnetic and inertial confinement fusion.

1.2 Global warming
Numerous scientific associations including the American Physical Society, the U.S. Global Change
Research Program, the American Geophysical Union, and the Intergovernmental Panel on Climate

1IEA (2021).
2ILO (2022).
3Cf. Section 1.3.
4The pp chain in the Sun can be summarized by the reaction

4H → 4He + 2e+ + 2νe. (1.1)

See, e.g., Adelberger et al. (2011).
5The nucleus with the highest mean binding energy per nucleon is 62Ni, not 56Fe as typically stated; see

Sree Harsha (2018), p. 1.
6ITER (2014).

1



Introduction 2

Figure 1.1: Temperature index for the land and ocean from 1880 to 2022. The base period is
1951-1980. The red line is obtained using locally weighted scatterplot smoothing (lowess). The
gray shading represents the total land surface air temperature (LSAT) and sea surface temperature
(SST) annual uncertainty at a 95% confidence interval.
Source: GISS, Global Annual Mean Surface Air Temperature Change dataset.16

Change (IPCC), have issued statements on the critical issue of Earth’s changing climate and the
significant evidence for the change being due to anthropogenic activities.7 IPCC, comprising more
than 1,000 independent scientific experts from countries all over the world, concluded in its Fifth
Assessment Report8 that there is a probability of more than 95% that the current climate change
is the result of human activities over the last 50 years. Further, out of 1,372 climate researchers,
97% support the tenets of anthropogenic climate change outlined by the IPCC.9

Measurements from ice cores, rocks, tree rings, and from satellites all indicate a changing
climate.10 Greenland and Antarctica are losing ice masses on average of more than a hundred
billion tonnes per year,11 the global sea level rises much faster, and the rate is increasing with a
probability of less than 1% that the acceleration is zero,12 each major ocean basin has warmed at
nearly all latitudes,13 and the global temperature is rising, with the past nine years being the
warmest years since recordkeeping began in 1880; see Fig. 1.1.14 Earth is now about 1.1 ◦C
warmer than the late 19th century average.15

The primary reason for global warming is human emission of greenhouse gases into the
atmosphere, intensifying the greenhouse effect,17 with carbon dioxide emission being the highest
on record in 2022.18 For the last 800,000 years, the carbon dioxide level has never been above
approximately 300 ppm, whereas the current level (2022) is close to 420 ppm.19 Further, the
correlation between the atmospheric carbon dioxide concentration and Earth’s surface temperature

7See, e.g., APS (2007), Reidmiller et al. (2018), AGU (2019), and IPCC (2022).
8IPCC (2022).
9Anderegg et al. (2010).

10NASA (2023a)
11Velicogna et al. (2020).
12Nerem et al. (2018).
13Levitus et al. (2012).
14NASA (2023c).
15NASA (2023c).
16Team (2023).
17NASA (2023c).
18Friedlingstein et al. (2022).
19Earth System Research Laboratories (2023).



3 Introduction

has been well-documented for the last 60 million years.20

The primary culprit for the increased atmospheric carbon dioxide levels is the burning of
fossil fuels such as coal and oil, where the burning process combines carbon from the fuel with
oxygen in the atmosphere to make CO2.21 Other industrial processes, such as the production of
cement, also contribute.22 The increased CO2 levels can be seen to be a result of human activity
due to the isotopic fingerprint left by the carbon from fossil fuels.23 Data also shows that the
variation in the Sun’s irradiance is not the cause of global warming.24

1.3 The need for energy
Global energy consumption has increased drastically since the beginning of the Industrial Revolu-
tion dominated by exploration of coal and iron in mid-18th century Great Britain.25 This increase
in demand is mainly due to economic and technological developments and a rising population.26

Projections from the International Energy Agency (IEA) include increased use of renewable energy
sources, improved energy efficiency, and a shift toward electric vehicles.27 However, the transition
to these energy sources is relatively slow, as evidenced by the IEA projection of an identical demand
for oil and natural gas in 2050 as today, with the demand for coal only decreasing slightly.28

Thus, clean energy generation is necessary. Currently, the two primary alternative energy
sources are wind and solar power; the most significant increase in electricity generation from 2021
to 2030 will come from an increase in solar and wind energy, and the primary investments in
renewables are directed toward improving these two technologies.29 However, solar and wind
technologies have several problems.

Due to changing weather, wind and solar power are currently backed up by fossil fuels. In 2021,
wind speeds were significantly milder than usual,30 leading to an increased demand for natural gas
for electricity production from thermal plants, significantly increasing electricity prices.31 Flexible
operation of power systems is necessary, as also stressed by IEA in their World Energy Outlook
2022 -report.32 Paradoxically, studies indicate that countries with modern fossil fuel capacity are
more likely to invest in renewable energy generation since modern fossil fuels provide a reliable
backup capacity to hedge against the variability of supply.33

The variability of wind power in, e.g., Germany is well-documented.34 Low wind power
events lasting half a day are relatively frequent, and low wind power events lasting up to 5 and
8 days occur every 5 and 10 years.35 The problem of intermittency is apparent. To compound
the problem, it seems that the use of batteries cannot resolve the intermittency issue; batteries
are currently able to supply 1.25 minutes of the world’s electricity requirements, and current

20Rae et al. (2021).
21NASA (2023d).
22Salewski (2019), p. 5.
23NASA (2023d).
24NASA (2023b).
25Our World in Data (2023).
26Internet Geography (2023).
27International Energy Agency (2022a).
28See International Energy Agency (2022b). The global oil demand grows by less than 1% before peaking in the

mid-2030s, depending on the scenario.
29International Energy Agency (2022b).
30Germany experienced a 16% drop in combined output from on and offshore wind farms, see Buli and Jacobsen

(2021).
31Buli and Jacobsen (2021).
32International Energy Agency (2022a), p. 30 f.
33Verdolini et al. (2018), p. 251 ff.
34See, e.g., Ohlendorf and Schill (2020).
35Ohlendorf and Schill (2020), p. 9 f.
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projections indicate that having ten times as many batteries in 2030 as today will supply 10.6
minutes.36 Sisternes et al. (2016) also concluded that substantial cost reductions in battery storage
are needed to justify large-scale deployment.

1.4 Fusion energy and fast ions
Fusion energy is a promising candidate for a sustainable and continuous energy source. One key
to realizing fusion energy is understanding fast ions. The fast ions carry a significant amount of
the energy of the plasma in fusion reactors, making them challenging to control. Understanding
what happens to the fast ions and why is crucial for fast-ion confinement and control of future
discharges. In particular, the fast-ion velocity space distribution function is of interest.

The fast-ion velocity-space distribution function can be obtained by modelling the physical
processes of various fast-ion diagnostics and subsequently solving inverse problems. Solving such
problems is typically not straightforward, with the primary complication being that the inverse
problem is ill-posed due to measurement noise. To compare the obtained distribution functions
with known physics, the results are compared with results from simulations using codes such as
TRANSP37, ASCOT38, and BEAMS3D39.

The forward problem for measurements of fast ions can be written as a Fredholm integral
equation of the first kind

s =
∫∫

wf dx dv, (1.2)

where s is the measurement, w a function describing the precise relation between s and f , and f
the fast-ion distribution function to be determined. The variable dependencies in Eq. (1.2) have
been omitted since it varies with the diagnostic. The inverse problem is to obtain f given s and
w. By discretizing the continuous spatial and velocity dimensions, the forward problem can be
written as the linear matrix-vector equation

s = Wf (1.3)

for W ∈ Rm×n, f ∈ Rn, and s ∈ Rm.40 The signal vector s contains the measured data, the matrix
W contains the physics of the problem, and the distribution function vector f is the solution,
either the velocity-space or phase-space distribution function to be determined.

Throughout this work, vectors and matrices are written in italics, with vectors written using
lower-case letters, and matrices using upper-case letters. A few exceptions are made such as when
discussing electric and magnetic fields, in which case they are written using boldface. Greek letters
are used to indicate scalars.

This work is concerned with ways to determine the distribution function f in Eq. (1.3).

36These estimates are made by Dr. Bjørn Lomborg, director of Copenhagen Consensus Center and visiting
professor at Copenhagen Business School, using data from Wood Mackenzie Global Energy Storage Outlook H2
2021, the U.S. Energy Information and Administration, and the IEA World Energy Outlook 2021; see his infographic
from 2022 at https://pbs.twimg.com/media/FJnv9NoX0AMqRZa?format=png&name=large. Accessed: 11-02-2023.

37See, e.g., Budny et al. (1995) for TRANSP simulations of alpha parameters (alpha heating, pressure, and
distributions in energy and pitch) in a TFTR DT supershot with high fusion power and Pankin et al. (2004) for a
description of the the NUBEAM module.

38Hirvijoki et al. (2014).
39See Lazerson et al. (2020) for validation of the BEAMS3D neutral beam deposition model on W7-X, and

Lazerson et al. (2021) for a comparison of the energetic particle slowing-down model in the BEAMS3D stellarator
neutral beam code to analytic models and experimental data from W7-X.

40The discretization is performed as described in Salewski et al. (2012), p. 3 ff.

https://pbs.twimg.com/media/FJnv9NoX0AMqRZa?format=png&name=large


5 Introduction

1.5 Definition of problems
This dissertation explores the following fast-ion diagnostic topics:

– Development of slowing-down physics regularization [2].

– Development of weight functions for ion cyclotron emission [1], [3].

– Application of algebraic iterative reconstruction techniques [4], [6].

– Characterization of fast ion loss detectors [4], [6].

– Application of deep neural networks [1], [5].

– Development of the raised cosine FILDSIM model [6].

– Investigation of the reconstruction error dependence on the forward and inverse grid
size [7].

The numbers refer to the papers indicated on the following page.
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The publications resulting from the research conducted during this Ph.D. are listed below.

First author:

[7] B. S. Schmidt et al. (2023): Grid-dependent reconstruction error for solving ill-posed
inverse problems in nuclear fusion science (to be submitted).

[6] B. S. Schmidt et al. (2023): A raised cosine FILDSIM model and faster tomographic recon-
structions of fast ion loss detector measurements for inter-shot analysis (to be submitted).

[5] B. S. Schmidt et al. (2023): Tomographic reconstructions of fast ion loss detector
measurements using deep neural networks (to be submitted).

[4] B. S. Schmidt et al. (2023): Reconstruction methods for velocity-space tomography of
fast-ion loss detectors (to be submitted).

[3] B. S. Schmidt et al. (2023): Velocity-space sensitivity and tomography of ion cyclotron
emission (submitted to Physics of Plasmas).

[2] B. S. Schmidt et al. (2023): 4D and 5D phase-space tomography using slowing-down
physics regularization, Nuclear Fusion, Volume 63, Issue 7, pp. 076016.

[1] B. S. Schmidt et al. (2021): Determining 1D fast-ion velocity distribution functions from
ion cyclotron emission data using deep neural networks, Review of Scientific Instruments,
Volume 92, Issue 5, pp. 053528

Coauthor:

– J. Galdon-Quiroga et al. (2023): Mitigation of TAE-induced ICRF fast-ion losses using
deuterium NBI in the ASDEX Upgrade tokamak, to be submitted.

– H. Järleblad et al. (2023): A Framework for Synthetic Diagnostics using Energetic-particle
Orbits in Tokamaks, submitted to Computer Physics Communications.

– J. Poley-Sanjuán et al. (2023): Simultaneous measurement of co- and counter-current ions
with a Fast Ion Loss Detector on the TCV tokamak, 5th European Conference on Plasma
Diagnostics (ECPD).

– Mencke, J. E. et al. (2022): Characterization of correlations of fast-ion H-alpha measurement
volumes in Wendelstein 7-X by particle tracking, Review of Scientific Instruments, Volume
93, Issue 12, pp. 123503.

– H. Reimerdes et al. (238 other authors) (2022): Overview of the TCV tokamak experimental
programme, Nuclear Fusion, Volume 62, Issue 4, pp. 042018.

– Järleblad, H. et al. (2022): Fast-ion orbit sensitivity of neutron and gamma-ray diagnostics
for one-step fusion reactions, Nuclear Fusion, Volume 62, Issue 11, pp. 112005.

– Moseev, D. et al. (2021): Development of the ion cyclotron emission diagnostic for the
W7-X stellarator, Review of Scientific Instruments, Volume 92, Issue 3, pp. 033546.

– Järleblad, H. et al. (2021): Fast-ion orbit sensitivity of neutron emission spectroscopy
diagnostics, Review of Scientific Instruments, Volume 92, Issue 4, pp. 043526.
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1.7 Relevance for the International Thermonuclear Experi-
mental Reactor (ITER)

The International Thermonuclear Experimental Reactor (ITER) will be the world’s largest tokamak
once construction is complete. It seeks to prove the feasibility of fusion energy as a safe and
environmentally friendly source of energy. A project of immense complexity, ITER’s construction
and operation hinge on the contributions of seven partners: the European Union, India, Japan,
China, Russia, South Korea, and the United States. The milestone of first plasma is anticipated
in the early 2030s.

The weight functions for ion cyclotron emission improve the understanding of the processes
generating the signal. Reconstruction techniques can be used to determine the emission location
in velocity space of the ions generating the ion cyclotron emission. Specifically, since one goal of
the ITER project is to achieve a D-T plasma sustained mostly by internal alpha particle heating41,
analysis of the behaviour of the alpha particles through their ion cyclotron emission signature
may provide useful insights.

Several projects are currently ongoing using slowing-down physics regularization to obtain
the phase-space distribution function of fast ions. This includes using slowing-down physics
regularization on neutron emission spectroscopy data and obtaining a spatially finer resolved fast
ion velocity-space distribution along injected neutral beams. The interpretation developed in this
dissertation solidifies the slowing-down physics regularization technique independent of modelling
dimensions, and the applications demonstrate its usefulness in obtaining 4D and 5D phase-space
distribution functions for both tokamaks and stellarators.

A fast-ion loss detector will be installed at ITER.42 The improved reconstruction techniques
for fast-ion loss detector measurements will improve their analysis, contributing to a better
understanding of fast-ion interactions with, e.g., MHD modes. Further, the velocity-space
sensitivity of the fast-ion loss detector probe(s) at ITER can be evaluated using the newly-
developed gross strike map and gross weight function ideas.

The faster algebraic iterative reconstruction techniques allow for faster reconstructions of
FILD signals with a detailed trade-off between reconstruction quality and computation time.
These signals can be used for fast analysis, potentially together with a trained neural network.

The demonstration of direct calculations of reconstructions using neural networks shows
that further development and application of neural networks can provide improved and faster
reconstructions when the training process of the neural network progresses. This prospect of
improved and fast reconstructions applies potentially to all diagnostics.

1.8 Remarks on used notation

Citations are included in footnotes indicated by numbered subscripts in the main text to comment
on and discuss the contents of the source without affecting the main text. Additional authors
are mentioned when citing a source if required to distinguish between sources with the same first
author published in the same year.

Petit sections are used to make the text more clear. These sections are reserved for examples,
considerations, and side notes not otherwise suitable for the main text or footnotes.

41ITER (2022d). See also McClements et al. (2015).
42See ITER (2022c) and Garcia-Munoz et al. (2016).
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1.9 Dissertation outline
The dissertation is structured as follows:

Chapter 2 introduces the necessary background theory in plasma physics and fusion energy related
to the research presented in this Ph.D. dissertation.

Chapters 3 to 9 contain the research papers produced during this Ph.D.

Chapter 3 presents slowing-down physics regularization and demonstrates the technique applied
to synthetic measurements from TCV and W7-X.

Chapter 4 presents 1D weight functions for ion cyclotron emission and reconstructions of fast ion
velocity distribution functions using deep neural networks.

Chapter 5 presents 2D ICE weight functions for LHD and three reconstruction techniques for
obtaining the location in velocity-space of the ions emitting the ICE.

Chapter 6 presents new ways to characterize a FILD based on FILDSIM-simulated weight functions
and strike maps and algebraic iterative reconstruction techniques to obtain the velocity-space
distribution function at the fast-ion loss detector pinhole.

Chapter 7 presents a raised-cosine FILDSIM model, applies it on synthetic and experimental data
from TCV, and develops an optimization framework for FILD reconstructions using algebraic
iterative reconstruction techniques.

Chapter 8 presents applications of deep neural networks to analyse measurements from fast ion
loss detectors by determining the optimal value of the regularization parameter for Tikhonov
regularization and by computing reconstructions of the fast ion velocity space distribution function.

Chapter 9 presents investigations of the dependence of the reconstruction error on the grid size in
ill-posed inverse problems.

Chapter 10 presents a conclusion and an outlook.



Chapter 2

Plasma physics and fusion energy

The following sections present relevant theory and select research results that this work extends.
Topics include magnetic confinement fusion, ion cyclotron emission, fast ion loss detectors, and
ill-posed inverse problems.

2.1 Magnetic confinement fusion
The fuel for future fusion reactors comprises deuterium (D) and tritium (T). The fusion of deuterium
and tritium produces an alpha particle and a neutron with kinetic energies of approximately 14.1
MeV and 3.5 MeV:

D + T →
3.5 MeV︷︸︸︷

4He +
14.1 MeV︷︸︸︷

n (2.1)

The total energy released of approximately 17.6 MeV is due to the mass defect ∆m ≈ 0.019mp.
D-T fuel is considered optimal for future fusion reactors for several reasons. One reason is

the availability of fuel. Since deuterium is an isotope of hydrogen, it is a constituent of water
molecules and can be extracted by electrolysis.1 Tritium is rarer than deuterium, but the neutrons
from the reaction in Eq. (2.1) can generate tritium from lithium through tritium breeding:

6Li + n →4 He + T. (2.2)

This breeding is accomplished by placing lithium, which exists in large reserves, in the blanket
of the fusion reactor.2 The neutrons generated from fusion reactions in the plasma are used
as reactants. Another reason for considering D-T the optimal fuel is that the reactivity of the
D-T reaction is several orders of magnitude above that of the other reactions for attainable
temperatures.3 The other possible fusion reactions are

D + D → 3He + n + 3.27 MeV (2.3a)
D + D → T + H + 4.03 MeV (2.3b)

D + 3He → 4He + H + 18.3 MeV (2.3c)
D + T → 4He + n + 17.6 MeV. (2.3d)

1The ratio of deuterium to hydrogen isotopes is 1:6,700 in nature; see Friedman (1953), p. 89. However, with
the abundance of water molecules on Earth, sufficient deuterium can easily be extracted; cf. ITER (2022a).

2ITER (2022b).
3Wesson (2004), p. 5 ff.

9
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Figure 2.1: (a) The toroidal magnetic field Bt and poloidal magnetic field Bp generated by the
toroidal current It. (b) A twisted field line from the sum of Bt and Bp. (c) Current in toroidal
field coils generate the toroidal magnetic field Bt. From Wesson (2004), p. 16.

2.1.1 Tokamaks
The temperatures sought for D-T fusion are around 10-20 keV corresponding to 100-200 × 106 ◦C.
Material walls cannot contain plasmas at such high temperatures, so other confinement methods
are needed. The tokamak is an example of such a confinement configuration.

A magnetic field confines the ions of the plasma to move in a toroidal region in a tokamak
plasma. The plasma pressure p = nT is immense due to the high temperatures, so a magnetic
pressure is required to balance it. This balance requires both a toroidal magnetic field Bt and a
poloidal magnetic field Bp; see Fig. 2.1(a). The magnetic field lines of the total magnetic fields
are twisted, as illustrated in Fig. 2.1(b). The poloidal magnetic field strength is typically an order
of magnitude smaller than the toroidal magnetic field strength.4 The toroidal magnetic field Bt

is generated by currents in coils wrapping around the toroidal vessel, and the poloidal field is
generated by a plasma current It. The plasma current is typically driven by a toroidal electric field
induced by a flux change through the torus center from a changing current through a coil called
“transformer action”. This configuration results in relatively good plasma confinement since the
axisymmetric magnetic field automatically confines collisionless particle orbits, but the transformer
action may induce current-driven instabilities and makes it challenging to operate steady state.
Other ways of generating the plasma current are expensive and limit plasma parameters.5

2.1.1.1 Confinement

A measure of the confinement of plasma pressure by the magnetic field is given by the ratio

β = p

B2/(2µ0) . (2.4)

Coulomb collisions give an upper bound on the confinement, but often the confinement is worse.
The particle and energy transport can be calculated classically, but the observed transport does
not agree with these calculations. This “anomalous transport” occurs due to plasma instabilities
causing particles and energy to escape at a higher rate.6 Thus, empirical methods have been used
to predict the confinement time by collecting data from various machines and using statistical

4Wesson (2004), p. 16. This strength difference is mainly due to stability reasons since increasing the poloidal
magnetic field strength too much causes the safety factor q to be too small, where q is the ratio of the number of
times a magnetic field line traverses around toroidally to the number of times it traverses poloidally.

5Helander (2014), p. 2.
6Wesson (2004), p. 150 f.
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methods to find the dependence between the confinement time and relevant parameters. This
approach allows for extrapolation to tokamaks with different parameter values.

Under certain conditions, a discontinuous improvement in confinement occurs as heating
power is increased. This regime is called “H-mode”, and the lower confinement level “L-mode”.
Typically, the confinement time increases by a factor of two.7

2.1.1.2 Tokamak à Configuration Variable

The Tokamak à Configuration Variable (TCV) is part of the Swiss Plasma Center at the École
Polytechnique Fédérale de Lausanne in Lausanne, Switzerland, and was built in 1992. The machine
has a rectangular vacuum vessel with a height-to-width ratio of 2.9 and 16 shaping coils. Further
details of the machine are given in Table 2.1. TCV has a large degree of flexibility in plasma
shaping and positioning and in high-power-density electron cyclotron resonance heating (ECRH)
and electron cyclotron current drive (ECCD) in addition to neutral beam injection (NBI).8

The scientific programme investigates the creation and control of plasmas with different shapes,
in particular highly elongated plasmas, investigating their confinement and MHD properties, with
many of the plasma shapes not able to be investigated in any other tokamak. Thus, research at TCV
contributes to optimizing tokamaks as a reactor concept and to preparing ITER operations.9 One
example is the knowledge gained about high-elongation plasmas. Such plasmas allow investigation
of large plasma currents since It ∝ (1 + κ2)/2, where κ is the elongation. Higher currents increase
the β limit and improve confinement, and a direct improvement in confinement has also been
observed with increasing elongation. A notable recent result includes Degrave et al. (2022) in
which a deep neural network trained using reinforcement learning autonomously commanded the
full set of control coils for different plasma shapes.

2.1.2 Ignition
Deuterium and tritium are positively charged, so the mutual electrostatic repulsion must be
overcome to induce fusion. Thus, the reaction cross-section is small at low temperatures but
increases with temperature. A positive total power balance can be attained if the ions at these
temperatures can react before they lose their energy.11 A positive total power balance occurs
when the sum of the externally supplied heating power PH and the alpha-particle heating power
Pα is greater than the power loss PL, i.e., PH + Pα > PL. This can be achieved by heating the
D-T fuel to sufficiently high temperatures.

The fraction of alpha particle heating increases as a function of the temperature. Ignition
happens when the plasma temperature can be sustained only by internal heating against the
energy losses. With total plasma energy E, the power loss PL is characterized by the energy
confinement time τE according to

PL = E

τE
. (2.5)

Let the energy of the alpha particles be Eα and ⟨σv⟩ the reactivity. Power balance considerations
show that the ignition condition is12

nτET >
12

⟨σv⟩
T 2

Eα
. (2.6)

7Wesson (2004), p. 152.
8SPC (2023a).
9Wesson (2004), p. 589 f.

10SPC (2023b).
11Wesson (2004), pp. 2 and 150 ff.
12Wesson (2004), p. 10 ff.



Plasma physics and fusion energy 12

Table 2.1: Parameters for TCV.
Source: SPC Wiki: Technical data.10

Operational parameter TCV
Major/minor plasma radius 0.89 m/0.25 m
First wall Graphite
Aspect ratio 3.5
Plasma elongation 0.9 - 2.8
Maximmal on axis magnetic field 1.54 T
Maximal plasma current 1.2 MA
Triangularity range -0.8 / +0.9
Pulse duration 2.6 s (ohmic)

4.0 s (ECCD)
Main ion component H, D, He
Core electron density 1-20 × 1019 m−3

Core electron temperature ≤ 1 keV (ohmic)
≤ 15 keV (ECRF)

Core ion temperature ≤ 1 keV
Current and field directions Both can be flipped between shots
ECRF 4.5 MW (6 × 0.5 MW + 3 × 0.5 MW)
NBI NBI-1: 23(28) keV, 1(1.3) MW H(D)

NBI-2: 46(47) keV, 900(900) kW H(D)
Diagnostic (DNBI): 50 keV, 80 kW

The graph of the product nτE as a function of temperature has a minimum at T ≈ 30 keV, but
the ignition temperature is somewhat lower at 10-20 keV. In this temperature range,

⟨σv⟩ ≈ 1.1 × 10−24 T 2 m3 s−1, (2.7)

with the temperature in keV. For flat density and temperature profiles, the ignition condition
becomes

nTτE > 3 × 1021 keV s m−3, (2.8)

whereas parabolic profiles give

nTτE > 5 × 1021 keV s m−3. (2.9)

Values that satisfy the criterion are, e.g., n = 1020 m−3, T = 10 keV, and τE = 5 s.

2.1.3 Ion motion
The motion of charged particles in electromagnetic fields is governed by the Lorentz equation of
motion:

m
dv

dt = q(v × B + E), (2.10)

where m is the mass of the particle, q the charge, v the velocity, and B and E the magnetic
and electric fields. The velocity components v∥ and v⊥ are the components of v parallel and
perpendicular to B. Thus, Lorentz’ equation for E = 0 and uniform B can be decomposed into
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the two equations

m
dv∥

dt = 0, (2.11)

m
dv⊥

dt = qv × B. (2.12)

Hence, v∥ is constant in a collisionless plasma, and the perpendicular motion is circular. Thus,
the ions in a plasma have a helical trajectory, gyrating around a magnetic field line with the
axis called the “guiding center”. From the harmonic solutions to Eq. (2.12), it follows that the
frequency of the oscillations of species s in the poloidal plane is the cyclotron frequency

Ωs = qB

m
. (2.13)

The radius of the gyromotion is
ρ = v⊥

Ωs
= mv⊥

qB
, (2.14)

also called the “Larmor radius”.

2.1.3.1 Ion drifts

A force F leads to a drift of the guiding center according to the equation13

v = 1
q

F × B

B2 . (2.15)

Thus, the ions drift perpendicularly to the force and the local magnetic field. In particular, the
following three drifts are relevant: the E × B-drift, the ∇B drift, and the curvature drift.

If there is an electric field E with associated force F = qE, then

vE×B = E × B

B2 , (2.16)

independent of the ion charge. This drift increases the gyroradius in half of the gyromotion and
decreases it in the other half, leading to a drift perpendicular to the local E and B fields.

Since ∇B ̸= 0 in a tokamak, in particular, Bt ∝ 1/R so ∇B points towards the center of the
torus, the ions experience the force

F = −µ∇B, (2.17)

where µ = IA is the magnetic moment associated with the gyromotion of the ion. Thus,

v∇B = mv2
⊥

2q
B × ∇B

B3 . (2.18)

The drift is perpendicular to the local magnetic field gradient and the local magnetic field and
depends on the charge, leading to opposite drifts for ions and electrons.

Finally, the magnetic field lines are curved in tokamaks and stellarators. Thus, the ions
following the magnetic field lines feel the centrifugal force

F = mv2
∥

R
R2 (2.19)

13Salewski (2022), p. 37.
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for the radius R of the field lines, leading to the drift

vc =
mv2

∥

qB2
R × B

R2 , (2.20)

where R points from the center of the radius of curvature towards the outside.
For a toroidal magnetic field satisfying Maxwell’s equations,14

∇B

B
= − R

R2 , (2.21)

so

v∇B + vc = m

q

R × B

R2B2

(
v2

∥ + 1
2v

2
⊥

)
. (2.22)

It follows that ions and electrons drift in opposite directions giving rise to an electric field E from
charge separation, resulting in an E × B-drift accelerating the plasma towards the walls. This
loss of confinement is why a poloidal magnetic field component Bp is needed.

2.1.3.2 Orbits

Under adiabatic conditions, i.e., when the spatial and temporal variation of the magnetic field are
small compared to the gyroradius and the gyrofrequency,

|∇B|
B

≪ ρ,
Ḃ

B
≪ Ωs, (2.23)

the magnetic moment

µ = mv2
⊥

2B (2.24)

is conserved. Thus, v⊥ must increase as the ion moves into a stronger magnetic field. Since the
energy

E = 1
2m

(
v2

∥ + v2
⊥

)
(2.25)

is conserved, v∥ decreases. For a strong enough magnetic field, v∥ decreases to 0, and the ion is
reflected from the high-magnetic field region towards the low-magnetic field region.

This effect is present in tokamaks due to the 1/R-gradient of the toroidal magnetic field from
the high-field side to the low-field side near the outer wall and leads to trapped orbits with a
typical banana shape for ions with sufficiently low initial v∥, corresponding to a large pitch angle
α defined according to

λ = cosα =
v∥

v
, (2.26)

and passing orbits whose parallel velocities are not reduced to zero at the high-magnetic field.
Examples of ion orbits are illustrated in Fig. 2.2. The magnetic axis is at R0 = 3.13 m and the
last closed flux surface at R = 4 m. Fig. 2.2(a) shows a passing orbit of an alpha particle with
a birth pitch angle of 54.8◦, and Fig. 2.2(b) a trapped orbit with birth pitch angle 55.2◦ with
maximum ion orbits intercepting R = 4 m.

14See, e.g., Chen (2016), p. 28 ff.
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Figure 2.2: Poloidal projectiosn of simulated ion orbits for 3.5 MeV alpha particles for D-T pulse
No. 26148 at JET related to the early investigations of ion cyclotron emission. The flux surface
geometry is from t = 13.2 s. From Cottrell et al. (1993), p. 1378 f.

2.1.4 Energetic particle physics
Fast ions, or energetic ions, are the superthermal ions in a plasma with energies of approximately
30 keV to several MeVs,15 significantly above the temperatures of the bulk plasma ions with
energies around 10 keV. The average energy of the bulk plasma is referred to as the ‘thermal
energy’ and is given by Es = 3Ts/2 with Ts = msv

2
ts/2, where the thermal velocity vts for species

s is determined by the collision frequency νs and mean free path λmfp,s by vts = λmfp,sνs.16

Three different energetic ion populations can be distinguished as generated (1) by injected
neutrals with energies approximately 30 keV - 1 MeV, (2) from electromagnetic wave heating in
the ion cyclotron range of frequencies (ICRF) with energies up to 2-3 MeVs, or (3) from fusion
reactions, where the alpha particles from D-T fusion reactions have birth energies of 3.5 MeV.17

The fast ions are essential to the operation of a future fusion power plant since they will provide
more than 2/3 of the total heating by transferring their energy to the bulk plasma.18

2.1.4.1 Neutral beam injection

Neutral beam injection (NBI) systems are used to heat the fusion plasma and to investigate
the behaviour of energetic ions in different plasma configurations and plasma devices. In NBI
systems, ions, typically hydrogen or deuterium, are accelerated to high energies, neutralized, and
subsequently injected into the plasma as neutrals. The neutral atoms ionize due to, e.g., impact
ionization or charge exchange. The ions then transfer energy to the bulk plasma through Coulomb
collisions. The type of collisions depends on the energies, where collisions with electrons dominate
at higher energies and collisions with ions at lower energies, resulting in pitch-angle scattering
processes. There is a crossover energy Ec between the two energies where the heating rate is
equal for electrons and ions. If the injection energy is above the crossover energy, more energy is
transferred to the electrons, and conversely, if the injection energy is below the crossover energy,
more energy is transferred to the ions.

The time it takes for the beam ions to slow down is called the “slowing-down time” and is

15Salewski, Geiger, et al. (2015), p. 1.
16Salewski (2022), p. 84 ff.
17Salewski, Geiger, et al. (2015), p. 1. See also Salewski et al. (2011).
18Salewski et al. (2011), p. 1.
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typically on the order of milliseconds. For ASDEX Upgrade, typical slowing-down times for 90
keV NBI ions are around 90 ms.19

Zhang et al. (2013) investigated the slowing-down times of neutral-beam injected energetic ions
in HL-2A plasmas with different electron temperatures Te and densities ne by use of 5 ms D-NBI
blips with an injection energy of 30 keV. The deuterium ions were injected into a deuterium
plasma at an angle of 32 ◦with respect to the plasma current at the magnetic axis, producing
2.45 MeV D-D fusion neutrons. TRANSP runs showed approximately 70% of the neutrons
produced by beam-target reactions and 30% by beam-beam reactions. As the energies of the
beam ions decrease, the reaction cross section falls, and hence the neutron emission decays.
The decay time is therefore related to the slowing-down time of the energetic ions. They found
slowing-down times around 12 ms and longer slowing-down times for lower-density plasmas
compared to higher-density plasmas as predicted by classical slowing-down physics.

The injection geometry of the beam and the magnetic equilibrium configuration determines
the NBI birth distribution function. The NBI distribution functions are typically anisotropic. A
more tangential injection will create more passing ions, and a more perpendicular injection will
create a larger fraction of trapped particles on the low-field side.20 On-axis injection refers to the
deposition of the energetic ions near the magnetic axis and off-axis deposition further from the
magnetic axis.

“Shine through” occurs when the injected neutrals travel through the plasma and hit the
opposite wall. This undesirable consequence is investigated at different machines.21

2.1.4.2 Electromagnetic wave heating in the ion cyclotron range of frequencies
(ICRF)

Due to the harmonic motion of the ion, an ion can gain energy by resonating with an electromagnetic
wave with frequency ω, if the resonance condition

ω = nΩ + k∥v∥ (2.27)

is satisfied. The parameter k∥ is the wavenumber parallel to the magnetic field, and n is a positive
integer. Such an electromagnetic wave can be generated by external antennae outside the reactor
vessel and propagate through the plasma. Since Ω = qB/m, the resonance occurs at radii with
specific values of B. Since Bt ∝ 1/R, the radial location of the ions to be heated can be determined.
Changing the frequency of the wave changes the resonance position in the plasma. The resonance
location is also referred to as a resonance layer since the radial location can be considered a 2D
plane.

The ions satisfying the resonance condition in Eq. (2.27) gain or lose energy as they pass
through the resonance layer multiple times during their orbit. Thus, ICRF-heated fast-ion
distributions gain energy over time, which can be up to MeVs.

Discharges #21011 and #21083 at ASDEX Upgrade investigated the behaviour of fast ions
during high-frequency MHD phenomena induced by ICRF heating.22 MHD-induced fast ion
losses with energies in the MeV range were observed using fast-ion loss detectors. The lost ions
were trapped protons with energies in the range 0.3-1.6 MeV heated using ICRF heating.

19Galdon-Quiroga (2018), p. 15 ff.
20Galdon-Quiroga (2018), p. 15 ff.
21Examples include Lazerson et al. (2020) discussing shine through related to the validation of the BEAMS3D

neutral beam deposition model on W7-X, and the presentation by Karpushov (2022) mentioning the first-wall
protection at TCV against overheating from shine through.

22Garcia-Munoz (2006), p. 73 ff, and Mantsinen et al. (2007).
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2.1.4.3 Fusion reactions

The reactions in modern experimental fusion plasmas depend on the species mix. The possible
reactions are given in Eqs. (2.3). These reactions can result from beam-target reactions, i.e.,
between NBI ions and the bulk plasma, beam-beam reactions, i.e., between ions from the beam, or
thermonuclear reactions, i.e., between ions from the bulk plasma. The birth profile distributions
from the thermonuclear reactions depend on the kinetic profiles of the plasma, and the beam-target
and beam-beam reactions depend on the NBI geometry.

2.1.5 Slowing-down physics
Fast ions partake in binary Coulomb collisions with the bulk plasma. The cross section of the
collisions is determined by the relative velocity of the scatterers. Since the fast ion velocity vf , in
general, satisfies vTh,e ≫ vf ≫ vTh,i, the Coulomb collision rate with thermal electrons is largely
determined by vTh,e and that with thermal ions by vf .

The fast ion energy at which the electron and ion friction is balanced is the crossover energy
Ec, which is given by23

Ec = 14.8Te

(
A3/2

ne

∑
i

niZ
2
i

Ai

)2/3

, (2.28)

where the sum is over the ion species of the plasma.24 Thus, when Ef > Ec, electron drag
dominates, and the fast ions transfer energy and momentum primarily to electrons, and, hence,
slow down due to electrons. Due to the mass difference, the ions decelerate without pitch-angle
scattering. When Ef < Ec, collisions with thermal ions dominate and the fast ions slow down
primarily due to collisions with thermal ions with appreciable pitch-angle scattering.

The slowing-down time τSD for a fast ion with energy Ef can be written as25

τSD = τse

3 log
(

1 +
(
Ef

Ec

)3/2
)
, (2.29)

with τse ∝ T 3/2/ne the slowing-down time for ions on electrons.26

2.2 Ion cyclotron emission
Experimentally, ion cyclotron emission (ICE) is identified as peaks at cyclotron harmonic frequen-
cies nΩs for a species s in a frequency spectrum; see Fig. 2.3 for an example of an ICE spectrum
measured at the Tokamak Fusion Test Reactor (TFTR). The frequencies of such measurements
provide information about the ICE-emitting species. For example, the radial location of the
energetic ions emitting the ICE can be determined by relating the measured frequencies to the
radial location corresponding to the correct magnetic field strength.27 Studies on ion cyclotron
emission in magnetically-confined fusion plasmas can roughly be categorized into three groups:
theoretical studies, experiments, and simulations.

Theoretical studies on ICE are primarily concerned with the magnetoacoustic cyclotron
instability (MCI) as the driver of ICE and investigate its growth rate.28 This is done by solving

23Heidbrink and Sadler (1994), p. 550.
24Only the temperature of the thermal electrons enter Eq. (2.28) due to the relative velocities of the species.
25Stix (1972), p. 374.
26Stix (1972), p. 374, cf. Spitzer (1962).
27See Cottrell and Dendy (1988), p. 33 ff., and Cottrell et al. (1993), p. 1373 ff.
28See, e.g., Dendy et al. (1994).
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for perturbative solutions of the dispersion relation by letting

ω = ω0 + δω, (2.30)

where ω0 is a real frequency and δω complex satisfying |δω| ≪ ω0. Positive values of the growth
rate γ ≡ Im(δω) indicate wave growth, and negative values wave damping.

Experiments have been performed on almost all tokamaks. In these experiments, ICE has
been found to originate from different plasma locations, primarily the plasma core and the edge
termed “core ICE” and “edge ICE”. ICE has been observed from fusion products, neutral-beam
injection, and ICRF heating.

Plasma simulations utilizing a particle-in-cell (PIC) code have investigated the linear and
non-linear saturated phases of the MCI using a fully kinetic and a hybrid approach. The plasma
simulation results support contemporary theory and agree with experiments, which provides
support for the plasma simulation assumptions and implementation.

2.2.1 Spectral characteristics
Ion cyclotron emission is characterized as radiation in the ion cyclotron range of frequencies. The
radiation is typically strongly superthermal since its intensity is several orders of magnitude above
the background radiation from the thermal ions.29 ICE is observed in narrow bands at integer
multiples of the fundamental cyclotron frequency

fs = Ωs

2π = ZseB

2πms
. (2.31)

A fundamental cyclotron frequency of 15 MHz is around the value expected for edge ICE from
protons, as the magnetic field is typically around 1 T near the edge. For core ICE, the fundamental
proton cyclotron frequency is closer to 40 MHz, as the on-axis magnetic field strength is typically
around 2.0-4.0 T.30 The fundamental deuterium cyclotron frequency is one-half of the fundamental
proton cyclotron frequency, for 3He it is two-thirds of the fundamental proton cyclotron frequency,
and for alpha particles one-half of the fundamental proton cyclotron frequency. Thus, the second
cyclotron harmonic of deuterium equals that of the fundamental cyclotron frequency of hydrogen.
This can give rise to degeneracy in the frequency spectra, as was observed in discharge #73255
at TFTR; see Fig. 2.3. Note the high intensity of the second deuterium harmonic and the third
tritium harmonic.

Since the toroidal field strength depends on the radial location in the machine, which to a
good approximation follows a 1/R-dependence for tokamaks,31 the frequencies of the cyclotron
harmonics depend on the radial location of the ions. Thus, depending on the experimental
conditions, the peaks of an ICE spectrum will occur at different frequencies. Typical frequencies
comprise the range 0-150 MHz.32

29Cottrell and Dendy (1988) report that the ICE from hydrogen NBI result in intensities up to 104 above the
background. See also the introduction in Chapman et al. (2020).

30Wesson (2011), pp. 14, 630, and 633 ff.
31See, for example, Wesson (2011), p. 13 ff., Cairns, 1985, p. 32, and Cottrell and Dendy (1988), p. 34, where

this assumption was made to determine the approximate radial locations of the ICE-emitting ions for the first four
hydrogen cyclotron harmonics.

32Cf. Cottrell et al. (1993), p. 1369, and Cauffman et al. (1995), p. 1598. See also Ochoukov, Bilato, Bobkov,
Chapman, et al. (2019), Ochoukov, McClements, et al. (2019), Thome et al. (2018), and Thome et al. (2019)
for measurements in the same frequency range. Lower frequencies of 2-3 MHz have been reported at NSTX and
NSTX-U; see Fredrickson et al. (2019) and Fredrickson et al. (2021). ICE chirping on sub-microsecond timescales
in the range 500-900 MHz have been measured at KSTAR; see Chapman et al. (2018).
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Figure 2.3: Spectrum showing ion cyclotron emission at harmonics of ΩD and ΩT observed in
discharge #73255 at t = 3.243 s at TFTR. From Cauffman and Majeski (1995), p. 818.

Cottrell et al. (1993) reported ICE data from the Preliminary Tritium Experiment (PTE) at
JET with spectral peaks at multiples of 17 ± 0.5 MHz. Matching the measured frequency with
the theoretically predicted value of the fundamental cyclotron frequency of the alpha particles
required approximately 1.2 T, corresponding to ICE originating from the edge at R ≈ 4.0 m.

Measurements of ICE at the fundamental hydrogen cyclotron frequency in the plasma
core at ASDEX Upgrade during discharge #34561 were reported in Ochoukov, Bilato, Bobkov,
Chapman, et al. (2019). A signal at 39.6 MHz matches the fundamental hydrogen cyclotron
frequency for a field of 2.6 T in the spectrogram in Fig. 2, where frequencies f/MHz ∈ {36, 42}
detected using B-dot probes are shown for the time interval t = 4.0 s to t = 5.0 s. This indicated
that the ICE originated from the core since the on-axis magnetic field strength was 2.6 T.

2.2.2 Line broadening
The peaks in ICE spectra are generally characterized by being narrow in frequency, typically
having a relative width of ∆f/f ≃ 0.1, where ∆f is the width of a peak at half of the maximal
intensity.33 The width of the peaks vary depending on the ion source, with fusion products
typically producing narrower peaks compared to beam-injected ions. This is seen particularly well
for ICE at JT-60U as reported by Ichimura et al. (2008), where modes at the fundamental and
second harmonic helium cyclotron frequencies from fusion-born 3He produce sharp peaks, and
perpendicularly-injected deuterium ions result in broad peaks at the fundamental, second, and
third harmonic deuterium cyclotron frequencies. Cottrell and Dendy (1988) also report peaks of
varying widths for the measured ICE during an ohmic-heating phase and a 58◦ NBI injection of
protons into a deuterium plasma, with the NBI-induced emission lines being much more sharply
peaked. The difference in relative width ∆f/f of the spectral peaks in the Ohmic-heating phase
and the NBI-heating phase was approximately a factor of two. This difference may be due to
the radial extent of the gyroradii of the ICE-emitting ions, where a relative width of ∆f/f ≲ 0.1
corresponds to a radial extent of ∆R ≃ 20 cm in JET. The Larmor radii of the energetic fusion
products (3.5 MeV α particles and 3.0 MeV protons) from the PTE discharge at the edge were
around 12 cm, so ∆R could hardly be any smaller.

33This was reported by Cottrell and Dendy (1988) and by Cottrell et al. (1993) for ICE at JET with the peaks
satisfying ∆f/f ≃ 0.1 ≪ a/R = 0.4. All other reports of ICE show similar ICE spectral widths.
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Several factors besides the width in the radial location from the gyroradius may contribute
to the width of the spectral peaks, including Doppler broadening, relativistic effects, collisions,
radiation damping, and quantum effects, but their contributions are all small.34 The contribution
to the spectral width from the Doppler effect depends on the angle of propagation of the ICE
defined by cos θ = k · B/kB with k the wave vector of the emission, where an estimate is

∆ωn ≈ nωc
vt

c
|N cos θ| ≲ 0.01ωc (2.32)

for perpendicular propagation and a velocity spread vt = 106 m s−1. Similarly, relativistic effects
contribute

∆ωn ≈ nωc

(vt

c

)2
≈ 10−4 ωc. (2.33)

Thus, relativistic effects are on the order of the Doppler effects if and only if |N cos θ| < vt/c,
which is only satisfied for propagation angles close to 90◦. Even in that case, the line broadening
is negligible. The line broadening due to collisions is on the order of the collision frequency, so

∆ωn ≈ ν ≈ ωp
ln Λ
Λ ≈ 10−4 ωc (2.34)

for ωp = 1010 Hz and Λ = 108 the number of particles in the Debye sphere. For radiation damping,
the line broadening is

∆ωn ≈ ωc

3π
ωc

ωp

1
Λ

(vth

c

)3
≈ 10−10 Hz. (2.35)

The line broadening contributed by quantum effects is even smaller.
In conclusion, the dominant line broadening effect is from the radial location dependence of

the toroidal field strength affecting the harmonic cyclotron frequencies.

2.2.3 Excitation mechanism
Ion cyclotron emission occurs when one or more of the following three conditions are satisfied: (i)
instabilities expel beam ions to the plasma edge, (ii) there is an anisotropic fast-ion population in
the plasma edge, and (iii) when initializing neutral-beam injection so the minority energetic ion
distribution function is non-monotonic with energy.35 Common to all three scenarios is either an
inversion in velocity space of the fast-ion distribution function, i.e., ∂f/∂v⊥ > 0, or anisotropies
from gradients in pitch, triggering the magnetoacoustic cyclotron instability (MCI), with the MCI
being the most likely mechanism for the generation of ICE.

2.2.3.1 The magnetoacoustic cyclotron instability

The suggested excitation mechanism for ICE has been the magnetoacoustic cyclotron instability
since the 1990s.36 The magnetoacoustic cyclotron instability excites fast Alfvén waves at multiple
cyclotron harmonics of a non-Maxwellian energetic ion population when in the presence of a more
numerous thermal ion species. The fast Alfvén waves are excited collectively through wave-particle
cyclotron resonance with the free energy available to excite the waves provided by anisotropy or
population inversion.

34See Bornatici et al. (1983) for the approximations of the line broadening effects for cyclotron emission from
electrons in fusion plasmas.

35W. W. Heidbrink et al. (2006), p. 324. See also Cottrell et al. (1993), p. 1380.
36See Dendy et al. (1992), Dendy et al. (1993), and Dendy et al. (1994). See also McClements et al. (2015) and

Dendy and McClements (2015).
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The MCI comprises fast Alfvén waves propagating at large angles (close to 90◦) to the
magnetic field at cyclotron harmonics of an energetic ion population with a non-Maxwellian
velocity-distribution.37 This results in an instability with growth rates at the cyclotron harmonic
frequencies. The MCI occurs at locations where an energetic ion population has an inverted
velocity gradient, i.e., ∂f/∂v > 0, where wave-particle cyclotron resonances may occur between
the energetic ions and waves on the compressional Alfvén branch, with the waves supported by the
bulk plasma and propagating close to perpendicular to the magnetic field. Furthermore, studies
suggest that ICE emission depends on the perpendicular fast-ion to local Alfvén speed ratio v⊥/vA,
where the MCI is more readily excited for super-Alfvénic energetic ion populations, i.e., when
v⊥/vA ≳ 1.38

At the early experiments at JET measuring ICE,39 distributions with such local inverted
gradients were detected from marginally-trapped alpha particles in the outer midplane plasma,
born from fusion reactions in the core, on trapped orbits just above the trapped-passing boundary,
whose drift orbits had large radial excursions to the edge; see Fig. 2.2.

These same experiments observed a linear relation between the measured ICE intensity PICE
and the neutron emission rate RN over six decades of intensity with a best fit of PICE ∝ R0.9±0.1

N .
This linear relation strongly indicates that the measured ICE was emitted by the alpha particles
from the fusion reactions in the core.

2.2.4 Ring beams

Models for velocity-space distributions containing non-Maxwellian features able to provide the
free energy to drive the MCI have, for the case of perpendicular propagation, included shells,
extended shells, and rings.40 The ring model was motivated by the velocity-space distribution of
the large-excursion trapped orbits observed at JET during the PTE, where only the trapped orbits
born in a narrow pitch range around 55◦ were able to make sufficiently large radial excursions to
emit ICE at the measured location.41

Since the details of the underlying velocity-space structure does not affect the underlying
character of the magnetoacoustic cyclotron instability in terms of excitation of fast Alfvén waves at
ion cyclotron harmonics, a velocity-space distribution of energetic ions with a drifting Maxwellian
distribution of velocities parallel to the magnetic field and a unique velocity perpendicular to the
magnetic field has typically been used.42 Such velocity-space distributions may be written as

f(v∥, v⊥) = 1
2π3/2uvr

exp
(

−
(v∥ − vd)2

v2
r

)
δ(v⊥ − u), (2.36)

where u is the unique perpendicular speed, vd the average parallel drift speed, and vr the parallel
velocity spread of the ions. Variations of Eq. (2.36) have been used in analytical investigations

37McClements et al. (1996), p. 546.
38See Carbajal et al. (2014).
39See, for example, the discharges mentioned in Cottrell and Dendy (1988), Dendy et al. (1992), and Cottrell

et al. (1993).
40Dendy et al. (1994), p. 1919. See also Belikov and Kolesnichenko (1975), Dendy et al. (1992), Dendy et al.

(1993), and McClements and Dendy (1993).
41Cottrell et al. (1993), p. 1379 f.
42Dendy et al. (1994), p. 1919. Drifting rings are also used as initial distributions for most PIC simulations.
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and PIC plasma simulations, such as

f(v∥, v⊥) ∝ exp
(

−
(v∥ − vd)2

v2
r

)
exp

(
(v⊥ − u)2

u2
r

)
, (2.37)

f(v∥, v⊥) ∝ δ(v∥ − vd)δ(v⊥ − u), (2.38)

sometimes with vd = 0.

Modelling the ICE measurements from KSTAR made during discharge #11513, Chapman
et al. (2017) argued that the fusion-born protons driving the ICE could be represented by a
delta-function ring distribution. Still, driving the MCI is possible only if v⊥ is comparable to
the local Alfvén velocity, as has been demonstrated by analytical and simulation studies, see,
e.g., Dendy et al. (1992), Dendy et al. (1993), Dendy et al. (1994), McClements et al. (1996),
Cook et al. (2013), Carbajal et al. (2014), and Carbajal et al. (2017). Thus, in their simulations,
initial v⊥ was chosen corresponding to an energy of 150 keV which was approximately 5% of the
birth energy at 3.0 MeV and comparable to the local Alfvén speed.

2.3 Fast-ion loss detectors

In a fast-ion loss detector (FILD), fast ions pass through a pinhole in a probe head, are collimated
by a slit, and impinge on a plate. FILDs are located in the far scrape-off layer and are positioned
at different toroidal and poloidal angles depending on the machine. FILDs with two different
working mechanisms exist: one is a Faraday cup FILD measuring the current from ions impacting
and passing through a stack of thin foils, and another is a scintillator FILD measuring photons
emitted by a scintillating material at the ion impact locations. Faraday cup FILDs are installed
at JET43 and W7-X44. Scintillator FILDs are installed at ASDEX Upgrade45, TCV46, and other
machines47. JET also has a scintillator FILD supplementing the data from the Faraday cup
fast-ion loss detector array.48 FILDs for ITER49, JT-60SA50, and W7-X51 are being designed.
The investigations contained in this dissertation concerns scintillator FILDs, so the Faraday cup
technique will not be discussed.

The scintillator FILD design dates back to 1987 at TFTR, and the working principle remains
the same.52 The strike position on the scintillator plate indicates the gyroradius ρ and pitch angle
α: ions with larger ρ impinge further away vertically from the pinhole, and a larger α further
away horizontally. Thus, the FILD measures 2D velocity-space, since the (α, ρ)-coordinates are

43Darrow et al. (2004) and Bonofiglo et al. (2020).
44Ogawa et al. (2019).
45Garcia-Munoz (2006), Garcia-Munoz et al. (2009), Garcia-Munoz et al. (2010), and Galdon-Quiroga, Garcia-

Munoz, Sanchis-Sanchez, et al., 2018.
46Stipani (2021) and Poley-Sanjuan et al. (2023).
47See Chapter 6, p. 88.
48Bonofiglo et al. (2020).
49Garcia-Munoz et al. (2016).
50Ayllon-Guerola et al. (2021).
51Jansen Van Vuuren et al. (2022).
52Zweben (1989) and Zweben et al. (1990).
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Figure 2.4: Working principle of a FILD. The blue trajectories pass through the pinhole, and
the red is blocked. From Poley-Sanjuan et al. (2023).

equivalent to (v∥, v⊥). This follows from the expressions

v⊥ = eB

m
ρ, (2.39a)

v∥ = v⊥
λ

(1 − λ2)1/2 , (2.39b)

E = eB

2m(1 − λ2)ρ
2, (2.39c)

where λ = cos(α) = v∥/v is the pitch. Depending on the local magnetic field strength, the gyroradii
of the ions are around 2-3 cm for TCV53, 3-6 cm for FILD1 at ASDEX Upgrade,54 and 7 cm for
fusion-born alpha particles at ITER55. An illustration of a FILD probe head is illustrated in Fig.
2.4.

After passing through the FILD pinhole, the lost fast ions are collimated to allow only ions
within a small range of gyrophases to pass through. The gyrophase interval of the ions able to
pass through the pinhole is called the “gyrophase acceptance cone” and is typically relatively
limited in width; see Fig. 2.5. The collimation minimizes the distribution in gyroradius and pitch
angle as a result of the ions having different gyrophases when entering through the FILD slit.

The width and length of the FILD probe head determines the gyroradius and the pitch angles
of the ions measurable by the FILD. The width of the pinhole determines the accepted gyroradii,
and the length determines the accepted pitch angles. A wider slit may also result in a larger
gyrophase acceptance cone and thus a lower resolution. Thus, designing a FILD requires careful
consideration of these factors.

Earlier FILDs were designed using a single slit that ions could pass through; see Fig. 2.6(a).
Newer models are equipped with a double-slit system to detect both co- and counter-going lost
fast ions. This is useful at TCV since ions can be injected from two NBIs pointing in opposite
directions. This principle is also used for the conceptual design of the scintillator-based FILD for

53Stipani (2021), p. 56.
54See Galdon-Quiroga, Garcia-Munoz, Sanchis-Sanchez, et al. (2018), p. 7 ff., where a study of reconstructions

for FILD1 using Tikhonov regularization was performed for lost fast ions with gyroradii of 3.1 cm, 4.3 cm, and 5.4
cm from NBI prompt losses.

55Garcia-Munoz et al. (2016), p. 2.
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(b)

Figure 2.5: A histogram of the markers’ initial gyrophase not blocked by the collimator in FILD1
at ASDEX Upgrade. Note that the gyrophase acceptance cone is unique to this FILD and is given
by its probe head and slit geometries. From Galdon-Quiroga (2018).

W7-X.56 The double-slit probe head configuration is illustrated in Fig. 2.6(b).
The probe head is oriented with the local magnetic field in the plane of the scintillator.

This avoids an angle between the local magnetic field and the scintillator plate, which results in
trajectories not representing the gyroradii and pitch angles. Perfect alignment is impossible in
practice and especially during a campaign, so the velocity space measurements are always based
on calibration using FILDSIM.

The scintillator plate is coated with a scintillating material emitting photons when impacted
by fast ions. The optimal choice of coating has been assessed to be TG-Green due to several
optimal properties such as high sensitivity to fast ions, low sensitivity to neutrons, electrons, and
gamma rays, reliable light emission of 540 nm in the required temperature range of 400-700 K
without quenching, fast response to identify MHD fluctuations, longer lifetime under intense ion
flux compared to other materials, and high saturation levels. The decay time for TG-Green is 490
ns, allowing for detection of photons from MHD activity with frequencies below 2 MHz.57 The
photon yield per unit length dY/dx of the TG-Green material has been determined experimentally
for protons, deuterium, and α particles at an acceleration facility for a 9 µm thick coating58 and
follows to a good approximation Birks’s model59 given by

dY

dx
=

ϵdE
dx

1 + k dE
dx

(2.40)

for (almost all) energies relevant for fast ions.60 The fraction dE/dx is the energy released per
unit length by the ion, ϵ is a measure of the material efficiency, and k is a measure of the material
quenching. If the quenching is low, the relation between the photon yield per unit length and
the energy deposition per unit length becomes linear. The relationship between the yield and the
energy of alpha particles for TG-Green is almost linear; see Fig. 2.7.

56Jansen Van Vuuren et al. (2022).
57Garcia-Munoz et al. (2009), p. 4.
58See Jiménez-Ramos et al. (2014), Rodriguez-Ramos et al. (2017), and Galdon-Quiroga, Garcia-Munoz, Salewski,

et al. (2018).
59Birks (1951).
60The yield per unit length is characterized for energies in the range 0.6 MeV to 3.0 MeV. Thus, the range does

not include 3.5 MeV alpha particles.
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Figure 2.6: (a) One slit and (b) double slit FILD probe head configurations. From Galdon-
Quiroga, Garcia-Munoz, Salewski, et al. (2018) and Jansen Van Vuuren et al. (2022).

Figure 2.7: The yield for protons (green), deuterium (red), and alpha particles (blue) for energies
in the range 0.6-3.0 MeV. Adapted from Galdon-Quiroga, Garcia-Munoz, Salewski, et al. (2018).
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Figure 2.8: Elements of a FILD diagnostic illustrated for FILD1 at ASDEX Upgrade: the FILD
probe head, the camera, and a fast acquisition system. Adapted from Galdon-Quiroga (2018).

The photons emitted by the scintillator material is imaged onto a charge-coupled device (CCD)
with high spatial resolution to image the measured velocity space and a photomultiplier tube
(PMT) array.61 The PMTs enable time-resolved measurements of fast-ion losses with bandwidth
of at least 1 MHz. The individual PMTs are distributed over the scintillator plate to observe
time-resolved events occurring at specific locations on the scintillator. Measurements from PMTs
can be Fourier transformed to obtain the frequency of the fast-ion losses.62 A schematic of the
FILD1 setup at ASDEX Upgrade is shown in Fig. 2.8.

The slit and scintillator plate are enclosed by a graphite shield. The graphite shield protects
against heat loads and must do so without blocking the ions with gyroradii and pitch angles in
the desired range. The latest estimates show that the same material as used in today’s FILDs is
sufficient for ITER operations with the detector aperture positioned approximately 11 cm outside
the diagnostic first wall, where the heat load is comparable to that in present devices.63

The measurement process adds a blurring effect to the true velocity space distribution function
of the fast ions. The velocity space distribution function of the fast ions passing through the
pinhole can be obtained by solving an inverse problem to be discussed in subsequent chapters.

61The FILD at TCV initially used a PMT setup, which has recently been changed to a 128 avalanche photodiode
matrix camera allowing for a temporal resolution up to 4 MHz; cf. Poley-Sanjuan et al. (2023).

62Garcia-Munoz et al. (2009) and Galdon-Quiroga (2018), p. 30 ff.
63Garcia-Munoz et al. (2016).
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A thorough understanding of fast-ion confinement is crucial to attain burning plasmas in the
future. Experiments investigating the behaviour of fast ions resulting from NBI, ICRH, and fusion
reactions provide information on fast-ion confinement for future operations, including planned
ITER operations. Scenarios resulting in fast-ion losses are important to understand since fast-ion
losses reduce a fusion reactor’s performance by reducing the internal heating power and cause
damage to plasma-facing components.

Damage to a FILD probe head in ASDEX Upgrade was reported by Galdon-Quiroga, Garcia-
Munoz, Sanchis-Sanchez, et al. (2018), where the FILD1 probe head was damaged during
discharge #30810 due to fast-ion losses from MHD activity. An automatic pneumatic positioning
system has been installed for the FILD at TCV allowing a positioning closer to the plasma and
automatic retraction to avoid heating past 300 ◦C.64 A similar retracting system is considered
in the conceptual design of the ITER FILD.65

2.4 Ill-posed inverse problems
The need to solve inverse problems arises in many different scientific disciplines and applications.
One example is image reconstruction from projections as done in medical imaging, geoscience, and
materials science. Another example is fault inspection of, e.g., pipes to detect defects and cracks
using X-ray scanning to compute cross-sectional images. To perform the reconstructions requires,
e.g., the physics of X-ray attenuation, the strength of the X-ray source, and a specification of the
geometry of the object. A third example is rotational image deblurring as used in star cameras
for satellite navigation, where the center of rotation and rotation angle is required to perform the
reconstruction.66 Common to the three examples is using a mathematical model to infer hidden
features from indirect measurements. This same approach can be used to obtain the velocity-space
distribution function of fast ions at specific locations in a magnetically confined fusion device
using a large range of fast ion diagnostics.67

Inverse problems belong to the class of ill-posed problems.68 A problem is ill-posed if it
violates at least one of three requirements: (i) existence, (ii) uniqueness, and (iii) stability. Thus,
a solution must exist, it must be unique, and the solution must depend continuously on the data.
Examples violating the three requirements are as follows:69

(i) The overdetermined system 1 1
1 2
1 3

x =

2.1
3.0
3.9

 (2.41)

has no solution, but the least-squares solution xLS = argminx ∥Ax− b∥2 = (1.2, 0.9)T can
be defined.

(ii) The system (
1 2
1 2

)(
x1
x2

)
=
(

3
3

)
(2.42)

64Stipani (2021), p. 63 ff. and Poley-Sanjuan et al. (2023).
65Garcia-Munoz et al. (2016).
66See Hansen (2019), p. 3 ff. for a brief description of these three examples.
67See, e.g., Salewski et al. (2011) describing analytically the first computation of weight functions for CTS.
68Hansen (2010), p. 2.
69Hansen (2019).
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has infinitely many solutions, but the minimum-norm solution x0 = (0.6, 1.2)T defined by
x0 = argminx ∥x∥2 subject to Ax = b can be defined.

(iii) The unperturbed system Ax = b with

A =

1.0 2.1 3.0
4.0 5.0 5.9
7.0 8.0 9.0

 , x =

1
1
1

 , and b = Ax =

 6.1
14.9
24.0

 , (2.43)

can be perturbed by adding a small “noise” component to b, so b̃ = b+ (0, 0.001, 0). The
naïve solution x̃ is then

x̃ = A−1b̃ =
(
0.927 1.171 0.904

)
, (2.44)

which is far from the original solution x = (1, 1, 1)T.

Inverse problems are always ill-posed.70 Therefore, as was done for the above three examples, the
problem can be reformulated so a solution can be found. In the case of the solutions sensitivity to
perturbations, the problem is regularized to stabilize the solution.

2.4.1 Fredholm integral equation of the first kind
The forward model typically used to model the signal containing information about the fast-ion
velocity-space distribution function in magnetically confined nuclear fusion has the general form
of a Fredholm integral equation of the first kind

s =
∫∫

Wf dx dv. (2.45)

Such integral equations have a smoothing effect on s, i.e., high-frequency components of f are
damped.71 It follows that the inverse problem, computing f from s and W , amplifies high-
frequency components, with higher-frequency components receiving more amplification. In fact,
the perturbation of f can be arbitrarily large if the perturbation δs has a sufficiently high frequency
component.

2.4.2 Degree of ill-posedness
The singular value decomposition (SVD) can provide useful insights into the characteristics of a
matrix. The SVD of W takes the form

W = UΣV T =
r∑

i=1
uiσiv

T
i , (2.46)

where r ≤ min(m,n) is the rank of W , U ∈ Rm×n consists of the left singular vectors U =
(u1, . . . , un), Σ ∈ Rn×n with Σ = diag(σ1, . . . , σn) and σ1 ≥ σ2 ≥ · · · ≥ σn, and V ∈ Rn×n

consists of the right singular vectors V = (v1, . . . , vn). The left and right singular vectors comprise
orthonormal sequencies {ui} and {vi} satisfying

Wvi = σiui, WTui = σivi, (2.47)
70Hansen (2019).
71This result follows from the Riemann-Lebesgue lemma. See Goldberg (1964), p. 370 ff.
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and σi are the singular values of Σ.72 The singular values decay towards zero with increasing i.
Thus, the right singular vectors vi contain information about the behaviour of the solution to
the inverse problem. Right singular vectors with higher indices correspond to higher frequency
components, which may be amplified when solving the inverse problem.

The degree of ill-posedness of Eq. (2.45) can be defined in terms of the singular values of W .
According to the Picard condition, the equation Wf = s is solvable if and only if73

∞∑
i=1

(
uT

i s
)2

σ2
i

< ∞, (2.48)

and the solution to the equation is

f =
∞∑

i=1

uT
i s

σi
vi. (2.49)

It follows that perturbing the signal s by sδ = s+ δvi, the solution is fδ = f + δσ−1
i ui. Hence∥∥fδ − f

∥∥
∥sδ − s∥

=
∥∥δσ−1

i ui

∥∥
∥δvi∥

= 1
σi
. (2.50)

Since σi tends to zero with increasing i, the ratio
∥∥fδ − f

∥∥ / ∥∥sδ − s
∥∥ can be made arbitrarily

large. The influence of noise in the data vector s in the solution is controlled by the rate of decay
to zero of the singular values. Thus, the slower the decay to zero, the less ill posed the equation.
The terminology is “mildly ill-posed” for slow decay to zero and “severely ill-posed” for very rapid
decay.74

Observe that for discrete ill-posed problems, the norm of the solution is always bounded due
to the sum being finite. Thus, there is, strictly speaking, no Picard condition. However, it is
possible to introduce a discrete Picard condition as follows.75 At some point, the numerical values
of the singular values reach the noise level or machine precision, typically 10−16, below which the
singular values cannot decay any further. Denote this level by τ . The discrete Picard condition is
then satisfied if, for all singular values larger than τ , the coefficients

∣∣uT
i s
∣∣ decay faster than σi on

average.76

A Picard plot illustrates the degree of ill-posedness by plotting the singular values σi,
∣∣uT

i s
∣∣,

and
∣∣uT

i s
∣∣ /σi. A Picard plot of a synthetic ICE measurement with 10% noise is shown in Fig.

2.9(c). Observe that the discrete Picard condition is satisfied for the first ∼ 30 components,
indicating a need for regularization when computing the location of the ions emitting the ICE in
velocity space to limit the influence of the components associated with small singular values. The
problem is mildly ill posed due to the slow rate of decay of the singular values.

The signal without noise is denoted sexact and the synthetic/measured signal thus s = sexact+e,
where Wf true = sexact. The noise and the exact measurement are assumed to be uncorrelated.
The influence from the noise on the SVD coefficients can be seen to be

uT
i s = uT

i (sexact + e) = uT
i s

exact + uT
i e, 1 = 1, . . . , n. (2.51)

72Some mathematical details in this exposition are omitted, cf. Kress (2014), p. 309 ff. See also Hansen (2010),
p. 28 ff.

73Kress (2014), p. 311 ff.
74Kress (2014), p. 312.
75Hansen (2008), p. 16 ff.
76Hansen (2008), p. 16 ff. and Hansen (2010), p. 37.
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Figure 2.9: (a) Location in velocity space of an energetic ion species at (v∥, v⊥) = (2.2 vA, 2.2 vA)
emitting ion cyclotron emission. (b) Normalized ion cyclotron emission spectrum with 10% noise
emitted by the ions at the velocity-space location in (a). (c) Picard plot for (a) and (b).

Depending on the size of either term, the SVD coefficients satisfy77

uT
i s ≈

{
uT

i s
exact,

∣∣uT
i s

exact
∣∣ > ∣∣uT

i e
∣∣ ,

uT
i e,

∣∣uT
i s

exact
∣∣ < ∣∣uT

i e
∣∣ . . (2.52)

Thus, the coefficients
∣∣uT

i s
∣∣ ≫ σ corresponding to larger singular values σi contain information

about the exact data sexact. The coefficients
∣∣uT

i s
∣∣ ≈ σ corresponding to smaller singular values

are influenced by the noise. Extremely large errors in the naïve solution f = W †s are a result
from the noisy SVD components. Thus, regularization is needed to obtain a useful solution.

2.4.3 Previously applied reconstruction techniques
This section summarizes the reconstruction techniques that have been applied to obtain velocity-
space distribution functions previously.78 These techniques comprise truncated SVD, zeroth and
first-order Tikhonov regularization, minimum Fisher information, and maximum entropy.79

2.4.3.1 Truncated singular value decomposition

From the above discussion, it is seen that the large errors in the naïve solution f = W †s is due to
the noisy SVD components of the form uT

i s/σi ≈ uT
i e/σi. Assuming the equation satisfies the

77See Hansen (2010), p. 41 ff. for a rigorous derivation.
78See Jacobsen et al. (2016a) and Jacobsen (2015), Chapter 4, for an investigation of these methods for velocity-

space tomography from FIDA measurements. The primary reconstruction method used prior to the publication
was the truncated singular value decomposition, cf. Salewski et al. (2013). Since then, the primary technique has
been Tikhonov regularization, cf. Salewski et al. (2017), Salewski, Geiger, Jacobsen, et al. (2018), Galdon-Quiroga,
Garcia-Munoz, Salewski, et al. (2018), Madsen, Salewski, et al. (2020), and Madsen, Huang, et al. (2020).

79These techniques were already considered for X-ray tomography in 1996, cf. Anton et al. (1996).
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Picard condition, the SVD components of the exact solution are those coefficients with small
indices i satisfying uT

i s/σi ≈ uT
i s

exact/σi. So, obtaining a solution close to the exact solution can
be obtained by truncating the solution in Eq. (2.49) after the first k components:

fk :=
k∑

i=1

uT
i s

σi
vi. (2.53)

The value of k is ideally chosen so all noise-dominated SVD components are removed. This can
typically be determined by an inspection of a Picard plot. Figure 2.10 shows the reconstructions
from synthetic CTS/FIDA data from four views as a function of including additional SVD
components.80 The reconstruction improves with an increasing number of SVD components until
noise becomes apparent at around 280 SVD components.

2.4.3.2 Tikhonov regularization

The problem formulation using Tikhonov regularization incorporates the regularity requirement of
the solution, defining the solution f∗ as

f∗ = argmin
f

{
∥Wf − s∥2

2 + λ2 ∥Lf∥2
2

}
, (2.54)

where L ∈ Rn×n is a regularization matrix chosen to specify which aspects of f should be
regularized. For L = I, which is zeroth-order Tikhonov regularization, the norm of f is controlled,
thereby suppressing the large noise components of f .

The first term in Eq. (2.54) controls how well the solution fits the data s. This term cannot
be too large, since f would not solve the problem in that case, but the term should also not be too
small, since then the solution fits to the noise. The balance between the goodness-of-fit and the
regularity of the solution is determined by the value of the regularization parameter λ. Smaller
values of λ give more weight to the goodness-of-fit term, whereas larger values of λ give more
weight to the regularity of the solution.

For first-order Tikhonov regularization, gradients of the solution are penalized. For velocity-
space tomography, a natural function to regularize is therefore

R = (∆v∥f)T(∆v∥f) + (∆v⊥f)T(∆v⊥f) (2.55)

=
∥∥fv∥

∥∥2
2 + ∥fv⊥∥2

2 , (2.56)

where ∆v∥ and ∆v⊥ represent the differential operators with respect to v∥ and v⊥, and fv∥ and
fv⊥ denotes differentiation of f with respect to v∥ and v⊥. Since ∥Lf∥2

2 = (Lf)TLf = fTLTLf ,
it follows that

LTL = ∇T
v∥

∇v∥ + ∇T
v⊥

∇v⊥ . (2.57)

Depending on the finite difference approximations chosen for the derivatives, different versions of
L are obtained.81

Since

∥a∥2
2 + ∥b∥2

2 = aTa+ bTb =
(
a
b

)T(
a
b

)
=
∥∥∥∥(ab

)∥∥∥∥2

2
, (2.58)

80Salewski et al. (2013), p. 6.
81See Jacobsen (2015), p. 51 ff., for an example using the backwards finite difference approximation ∂fi,j

∂v⊥
≃

fi,j −fi−1,j

∆v
.
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Figure 2.10: Reconstructions of a fast ion velocity space distribution function from noiseless
synthetic CTS/FIDA data from four views as a function of including additional SVD components.
From Salewski et al. (2013), p. 6.
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Eq. (2.54) can be written in the form

f∗ = argmin
f

∥∥∥∥(WλL
)
f −

(
s
0

)∥∥∥∥
2
, (2.59)

which is the most computationally efficient and numerically stable implementation.82 The normal
equations are (

W
λL

)T(
W
λL

)
f =

(
W
λL

)T(
s
0

)
, (2.60)

so the solution can be computed as

f∗ = (WTW + λ2LTL)−1WTs. (2.61)

To illustrate the effect of the regularization for zeroth-order Tikhonov regularization, inserting the
SVD of W in Eq. (2.61) for L = I gives83

f = V (Σ2 + λ2I)−1ΣUTs (2.62)

=
n∑

i=1
φ

[λ]
i

uT
i s

σi
vi, (2.63)

where

φ
[λ]
i = σ2

i

σ2
i + λ2 ≈

{
1, σi ≫ λ,

σ2
i /λ

2, σi ≪ λ,
(2.64)

are filter factors. It follows that the Tikhonov solution can be interpreted as a filtered solution
similar to the TSVD solution. The filter factors are close to one for singular values larger than λ,
and close to zero for singular values smaller than λ. Thus, λ controls the filtering.

2.4.3.3 Minimum Fisher information regularization

For the model Wf = s, minimum Fisher information regularization can be written as the solution
to the equation

f∗ = argmin
f

{
∥Wf − s∥2

2 + λI(f)
}
, (2.65)

similar to Tikhonov regularization with regularization term λI(f). The Fisher information I(f) is
defined as84

I(f) = E

[(
∂ log p (s | f)

∂f

)2
]
. (2.66)

Thus, minimum Fisher information regularization seeks the model with minimum Fisher infor-
mation fitting the data well. The exact form of Eq. (2.65) depends on the distributions of the
likelihood p(s | f) and the prior p(f). In some cases, it might even equal Tikhonov regularization
if I(f) takes a form similar to a squared norm.

Based on the characteristics of solutions with minimum Fisher information, Anton et al. (1996)
argue that minimum Fisher information regularization is suitable for soft x-ray tomography,
where low-emissivity regions are expected to be smooth, and less smoothness is expected in the
centre of the plasma where emissivity is high.

82Hansen (2010), p. 61.
83Hansen (2010), p. 62.
84See Frieden (1988), p. 1299 ff. and Fisher (1959).
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The MFI principle can be implemented as an iterative procedure with convergence after
just a few number of iterations.85 This is achieved by modifying the LTL term in Tikhonov
regularization with a diagonal weight matrix W [k], where k indicates the iteration number, so

LTL = ∆T
v∥
W [k]∆v∥ + ∆T

v⊥
W [k]∆v⊥ . (2.67)

The zeroth iteration is performed with W [0] = I, which is equivalent to first-order Tikhonov
regularization. Computations with k > 0 are then performed as for Tikhonov regularization with

W
[k]
ij =

{ 1
f

[k]
i

δij , f
[k]
i > 0,

Wmaxδij , f
[k]
i ≤ 0,

(2.68)

where Wmax is an upper bound for the weights. Note that this is no longer a linear algebra
problem. Typically, only a few iterations are needed for convergence. In this case, MFI enforces
smoothing similar to first-order Tikhonov regularization. Minimum Fisher regularization has been
implemented in this form for soft x-ray tomography on TCV86 and COMPASS87 and used for
velocity-space tomography88.

2.4.3.4 Maximum entropy regularization

Maximum entropy (ME) regularization can be formulated as the minimization problem

f∗ = argmin
f

{
∥Wf − s∥2

2 + λH
}
, (2.69)

similar to Tikhonov regularization and minimum Fisher information regularization, now regulariz-
ing the information entropy

H = −
N∑

i=1
(fi −mi − fi ln(fi/mi)) . (2.70)

ME algorithms find the solution maximizing the information entropy with respect to a default
model m = (mi). The default model can be chosen as some appropriate theoretical model, e.g.,
slowing-down distributions, or simply as some constant. The minimum of H is attained for fi = mi

for all i, i.e., when the solution is equal to the default model.
The motivation for maximum entropy regularization follows from the entropic prior

P (f | I) =
(
λ

2π

)n/2 1√∏
i fi

exp (λH) . (2.71)

being the most uninformative unbiased prior, where I is some a priori information.89 Regularizing
using this prior therefore imposes the least possible assumptions about the solution. It follows

85See Anton et al. (1996), p. 1857, where their iterative scheme is converged after two iterations, and Jacobsen
(2015), p. 55 ff., with convergence after at most four iterations. According to Anton et al. (1996), the iteration
scheme presented here minimizes the Fisher information of f .

86See Anton et al. (1996).
87See Loffelmann et al. (2016), where a fast implementation of a minimum Fisher Tikhonov regularization

algorithm suitable for real-time control of the plasma position is presented.
88Jacobsen (2015), p. 55 ff.
89Skilling (1989), p. 45 ff.
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that the posterior p(f | s, I) can be written as90

P (f | s, I) ∝ P (s | f, I)P (f | I) (2.72)
∝ exp (− ∥Wf − s∥) exp (λH) . (2.73)

The maximum of the posterior probability is therefore determined as the maximum of

ϕ(λ, f) = − ∥Wf − s∥2
2 + λH, (2.74)

where λ > 0 is a regularization parameter.

The five methods of truncated SVD, minimum Fisher regularization, maximum entropy regular-
ization, and zeroth and first-order Tikhonov regularization were compared by Jacobsen et al.
(2016a) applied to synthetic and experimental data of a sawtooth crash at ASDEX Upgrade.
Typically, zeroth and first-order Tikhonov regularization is used as the benchmark against which
other techniques are measured.91 Here, the reconstructions for a synthetic NBI distribution are
highlighted; see Fig. 2.11. Three different noise levels were investigated: k = 0.1, k = 0.5, and
k = 0.9, where k corresponds to η in Eq. (9.21). The NBIs comprise two co-current beams with
injection energies at 70 and 80 keV and one counter-current beam with injection energy at 70 keV.
Thus, the reconstructed distribution should have non-zero values at higher energies for positive
pitch compared to negative pitch. This is observed for most of the reconstructions irrespective
of method and noise level. The first-order Tikhonov solution and the minimum Fisher solution
result in smooth solutions. The truncated SVD and zeroth-order Tikhonov solutions are very
similar as expected from the above discussion. For k = 0.1, the truncated SVD, zeroth-order
Tikhonov regularization, and maximum entropy solutions distinguish between the full and half
injection energy peaks. The smooth solutions from first-order Tikhonov regularization and
minimum Fisher regularization do not. For first-order Tikhonov regularization, this is likely due
to the value of the regularization parameter being selected according to the L-curve criterion,
which tends to overregularize. Also, first-order Tikhonov regularization attenuates sharp NBI
peaks.92

2.4.4 Choosing the regularization parameter
The reconstructions computed using the above techniques are dependent on the value of the
regularization parameter. At present, there does not exist a general-purpose parameter-choice
algorithm to determine the optimal k for TSVD or λ for Tikhonov, MF, or ME.93 Different
methods exist which produce different values of λ, which, depending on W and s, may produce
good or bad results. Thus, typically, in practice, not a single method is used to determine the value
of the regularization parameter, but different values are tested and the best solution then chosen
based on a variety of factors. Such factors are both positive and negative, e.g., an important
criterion is if the solution looks real and if it has the characteristics expected of the solution as
computed by, e.g., simulation codes such as TRANSP, and if the solution does not have what are
clearly incorrect artefacts. For example, a reconstruction of the velocity-space distribution function
from neutral beam injection must have a peak at the injection energy, and it cannot have peaks at
higher energies.94 Reconstructions that do not satisfy such criteria can be disregarded immediately.

90See Anton et al. (1996), p. 1858 ff. for details. See also Salewski (2019), p. 61 ff.
91See, e.g., Galdon-Quiroga, Garcia-Munoz, Salewski, et al. (2018), Madsen, Salewski, et al. (2020), and Madsen,

Huang, et al. (2020).
92Salewski, Geiger, Jacobsen, et al. (2016), p. 6.
93Hansen (2010), p. 85 ff.
94See, e.g., Madsen, Salewski, et al. (2020), p. 5 f. where the value of the regularization parameter is chosen to

suppress “spurious features” without oversmoothing.
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Figure 2.11: The first row shows the true velocity distribution of NBI with two co-current beams
with injection energies at 70 and 80 keV and one counter-current beam with injection energy at 70
keV. Rows two to four show the reconstructions for different noise levels for the five regularization
techniques: truncated SVD, zeroth- and first-order Tikhonov, minimum Fisher regularization, and
maximum entropy. From Jacobsen et al. (2016a), pp. 5 and 9.
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The process for determining the optimal regularization parameter is therefore more heuristic than
quantitative. Still, the two methods called the “discrepancy principle” and the “L-curve” are most
commonly used as a guide in velocity-space tomography95 and for reconstructing velocity space
distributions96.

2.4.4.1 Discrepancy principle

According to the discrepancy principle,97 the truncation parameter k and the regularization
parameter λ should be chosen such that the residual norm satisfies∥∥∥Wf [k] − s

∥∥∥
2

≥ νDP ∥e∥2 >
∥∥∥Wf [k+1] − s

∥∥∥
2
, (2.75)

where νDP is a safety factor ensuring that none of the noisy SVD components contaminate the
solution. The same equation applies for a Tikhonov solution or other regularization techniques
using λ as a regularization parameter with fλ replacing f [k]. By requiring the residual norm to
be above the norm of the error e, it is ensured that the solution does not fit the noise.

Truncated SVD was initially used for velocity-space tomography from CTS and FIDA measure-
ments with a manual search over the number of SVD components.98 Such a manual search has
likely identified a value of the truncation parameter close to that found from Eq. (2.75). One
reason for not using the discrepancy principle is the difficulty in estimating ∥e∥2. The solution
is very sensitive to the accuracy of ∥e∥2, where a too small estimate will lead to significant
oversmoothing.99 Later, Tikhonov-regularized solutions with an intuitive choice of λ were
preferred.100

2.4.4.2 L-curve

Information about the regularized solution f is contained in the quantities ∥Wf − s∥2 and ∥Lf∥2.
Thus, a plot of ∥Lf∥2 as a function of the residual norm ∥Wf − s∥2 computed for different values
of the regularization parameter shows information about the regularized solution. For any λ, the
plot shows the compromise between the minimization of the two quantities. The L-curve is then
defined as the continuous curve consisting of all points (∥Wf − s∥2 , ∥Lf∥2) for λ ∈ [0,∞).101 It
is possible to show that ∥Lf∥2 is a monotonically decreasing function of ∥Wf − s∥2.102 Thus, the
L-curve divides the first quadrant into two separate region where any regularized solution must lie
on or above it.

The L-curve has two distinctly different parts that, when plotted in double-logarithmic scale,
has the shape of an “L”. One part occurs for large values of the regularization parameter, where it
is possible to show that103

∥f∥2 ≈
∥∥f true∥∥

2 (a constant) and ∥Wf − s∥2 increases with λ. (2.76)

95Jacobsen (2015), p. 58 ff.
96See, e.g., Galdon-Quiroga, Garcia-Munoz, Salewski, et al. (2018), p. 8, where the L-curve criterion was used to

perform reconstructions of FILD measurements.
97Usually attributed to Morozov, cf. Hansen (1992), p. 570, cf. Morozov (1984).
98Salewski et al. (2013) and Salewski, Geiger, A. S. Jacobsen, et al. (2014).
99Hansen (2010), p. 90 f.

100Salewski, Geiger, Jacobsen, et al. (2016), p. 2 ff.
101Hansen (1992), p. 564 ff.
102Hansen (1992), p. 564, Theorem 1, and Hansen (2010), p. 71 ff.
103Hansen (2010), p. 73.
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This corresponds to the horizontal line of the L. For small values of the regularization parameter,
the solution is dominated by the errors from the noise, and

∥f∥2 increases with 1/λ and ∥Wf − s∥2 ≈ ∥e∥2 (a constant). (2.77)

This corresponds to the vertical line of the L. The corner of the line is roughly located at(
log ∥e∥2 , log

∥∥f true∥∥
2

)
. (2.78)

For very large values of the regularization parameter, the solution norm is forced toward zero, so
the L-curve bends towards the x-axis. For very small values of the regularization parameter, the
L-curve becomes less steep and bends towards the y-axis.

The properties of the L-curve can be illustrated by the following numerical example.104

Consider the discrete ill-posed problem obtained by discretizing a Fredholm integral equation of
the first kind given by ∫ b

a

K(s, x)f(x) dx = g(s), a ≤ s ≤ b, (2.79)

where K is the kernel, g are some measurements, and f is the sought solution. The problem
corresponds to a one-dimensional model problem in image reconstruction, where the desired
solution is

f(x) = 2 exp
(
−4(x− 0.5)2)+ exp

(
−4(x+ 0.5)2) , −π

2 ≤ x ≤ π

2 , (2.80)

and the kernel is
K(s, x) =

(
(cos s+ cosx) sinψs,x

ψs,x

)2
, −π

2 ≤ s ≤ π

2 , (2.81)

corresponding to an image blurred by a known point-spread function with ψs,x = π(sin s+ sin x).
The matrix W and true solution vector f true is derived by discretizing the interval [−π/2, π/2]
with n = 64 equidistantly spaced points. The exact measurement is then obtained by computing
sexact = Wf true. White noise is subsequently added.105 The L-curve for this problem can then be
computed for λ ∈ [0,∞) using a regularization matrix L equal to the second derivative operator,
L = tridiag(1,−2, 1) as illustrated in Fig. 2.12.

The L-curve criterion is to choose the value of the regularization parameter that corresponds to
the corner of the L-curve. This corner can be defined as the point with maximum curvature. Note,
however, that a discrete L-curve can have many small local corners, so it is not straightforward to
compute the location of the “true” corner of the L-curve.106 A numerical scheme for determining
the value of the regularization parameter at the true corner has been constructed using an adaptive
pruning algorithm.107

The L-curve criterion has been used to determine the optimal value of the regularization
parameter for velocity-space tomography108 and FILD reconstructions109 of both synthetic and
experimental data with good results. An example of a FILD reconstruction from FILD1 at
ASDEX Upgrade from discharge #32081 at t = 1.14s is shown in Fig. 2.13. In practice, the L-
curve criterion is known to produce overregularized solutions, and the value of the regularization
parameter from the L-curve criterion remains a guide. In Jacobsen et al. (2016a), the authors
mention that “different regularization levels were chosen rather than set by the L-curve method”

104See Hansen (1992), p. 574 ff.
105See Hansen (1992), p. 575, for details.
106Hansen (2010), p. 93.
107Hansen et al. (2007).
108Jacobsen et al. (2016a).
109Galdon-Quiroga, Garcia-Munoz, Salewski, et al. (2018).
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Figure 2.12: The L-curve for Tikhonov solutions (∥Wf − s∥2 , ∥Lf∥2) for an image deblurring
problem with white noise. The circles are truncated SVD solutions. Note that those solutions are
either on or above the L-curve. From Hansen (1992), p. 576.

Figure 2.13: (a) Velocity space of lost fast ions measured by FILD1 at ASDEX Upgrade from
discharge #32081 at t = 1.14 s. (b) Reconstruction of pinhole velocity space obtained using zeroth-
order Tikhonov regularization with the optimal value of the regularization parameter determined
using the L-curve criterion. From Galdon-Quiroga, Garcia-Munoz, Salewski, et al. (2018), p. 11.

for velocity-space tomography of experimental data from before and after a sawtooth crash in
ASDEX Upgrade discharge #31557 at t = 2.25 s.110

110Jacobsen et al. (2016a), p. 11.



Chapter 3

Slowing-down physics
regularization

This chapter presents the paper “4D and 5D phase-space tomography using slowing-down physics
regularization”, in press at Nuclear Fusion.

3.0 Abstract
We compute reconstructions of 4D and 5D fast-ion phase-space distribution functions in fusion
plasmas from synthetic projections of these functions. The fast-ion phase-space distribution
functions originating from neutral beam injection (NBI) at TCV and Wendelstein 7-X (W7-X)
at full, half, and one-third injection energies can be distinguished and particle densities of each
component inferred based on 20 synthetic spectra of projected velocities at TCV and 680 at W7-X.
Further, we demonstrate that an expansion into a basis of slowing-down distribution functions is
equivalent to regularization using slowing-down physics as prior information. Using this technique
in a Tikhonov formulation, we infer the particle density fractions for each NBI energy for each
NBI beam from synthetic measurements, resulting in six unknowns at TCV and 24 unknowns at
W7-X. Additionally, we show that installing 40 LOS in each of 17 ports at W7-X, providing full
beam coverage and almost full angle coverage, produces the highest quality reconstructions.

3.1 Introduction
A complete understanding of fast-ion distributions and fast-ion dynamics is imperative for future
operation of fusion reactors, thus necessitating the development of ways to diagnose fast ions
in both tokamaks and stellarators. Tomography is used in magnetic fusion plasma science to
obtain information about fast-ion distributions, typically visualized as cross-sectional images.
Assuming tokamaks to be toroidally symmetric, 3D position space (R, θ, Z) can be reduced to
two dimensions (R,Z). Similarly, the fast gyration of the ions leads to azimuthal symmetry in 3D
velocity space, since the gyroangle γ becomes ignorable, so the velocity space reduces to (v∥, v⊥).1
Here, v∥ is the magnitude of the velocity component parallel to the magnetic field and v⊥ the
magnitude of the velocity component perpendicular to the magnetic field. Hence, the 6D phase
space consisting of 3D position space and 3D velocity space is usually reduced to a 4D phase space,

1Moseev and Salewski (2019).

40
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as can be done in the TRANSP or ASCOT codes.2 Since stellarators do not possess toroidal
symmetry in position space, the phase space in stellarator plasmas can only be reduced to 5D, as
in the BEAMS3D code.3 Here, we consider 4D and 5D phase-space distributions at TCV and
W7-X as examples for tokamaks and stellarators.

Position-space tomography provides spatial information about fast-ion distributions. For
example, the spatial location of neutron emission has been reconstructed using the 19 available
neutron cameras at JET.4 During the last decade, fast-ion velocity-space tomography was developed,
which provides insight into the fast-ion velocity-space distribution functions from experimental
data. This technique has been applied to several diagnostics, including FIDA spectroscopy,5
collective Thomson scattering (CTS),6 neutron emission spectrometry (NES),7 γ-ray spectrometry
(GRS),8 and scintillator-based fast-ion loss detectors (FILDs)9 at the tokamaks ASDEX Upgrade,
JET, EAST, MAST, and DIII-D. Velocity-space tomography has also been used to estimate 1D
velocity distribution functions10. While the 1D and 2D techniques infer velocity distribution
functions in a small volume in the plasma, orbit tomography infers a 3D phase-space distribution
of all fast ions in the plasma.11 This technique uses fast-ion orbits as prior information and exploits
that velocity distribution functions can, assuming toroidally symmetric plasmas, be parametrized
in terms of fast-ion drift orbits by three parameters: the energy, the magnetic moment, and the
canonical toroidal angular momentum. In this paper, we develop techniques to infer 4D and
5D phase-space distribution functions based on slowing-down physics regularization. The idea
is to use the known physics of the slowing-down process of fast ions in plasmas as a prior in
the ill-posed inference problem. This allows for reconstruction of the velocity space distribution
function for all spatial locations and not just a single diagnostic locations as has been the case for
previous tomographic and reconstruction techniques. This approach was demonstrated for 2D
velocity-space tomography12, which we here extend up to 5D.

Reconstructing 4D and 5D phase-space distribution functions in magnetically confined plasmas
has never been attempted. A standard 4D or 5D inference appears out of reach due to the large
number of unknowns, for example, discretizing each dimension by 30 points yields on the order
of 106 grid points in 4D and 107 in 5D. Standard regularization techniques, such as Tikhonov
regularization without additional prior information, can work in 1D, 2D, or 3D, but additional
prior information is needed at present to enable the inference of the larger number of parameters
in the 4D or 5D phase-space distributions. Here, we develop slowing-down physics regularization
in 4D and 5D based on projected velocity spectra to show that this technique can obtain the
4D and 5D fast-ion phase-space distribution functions for plasmas heated by NBI at TCV and
W7-X. Slowing-down physics regularization also works for other plasma heating schemes such as
ICRF. The slowing down of energetic ions by collisions always occurs in plasmas, irrespective of
any other processes occurring in addition to the slowing down. Thus, this project investigates
neoclassical slowing-down with the possibility of extending to non-neoclassical regimes.

In section 2, we describe the beam configurations at TCV and W7-X. In sections 3 and 4,
2Budny et al. (1995), Pankin et al. (2004), Hirvijoki et al. (2014), and Grierson et al. (2018).
3Lazerson et al. (2020) and Mencke et al. (2022).
4Moseev et al. (2018), Kazakov et al. (2020), Nocente, Kazakov, et al. (2020), and Nocente, Molin, et al. (2020).
5Salewski, Geiger, A. S. Jacobsen, et al. (2014), Jacobsen et al. (2016b), Salewski, Geiger, Jacobsen, et al. (2016),

Weiland et al. (2016), Weiland et al. (2017), Madsen et al. (2018), Madsen, Salewski, et al. (2020), and Madsen,
Huang, et al. (2020).

6Jacobsen et al. (2016b).
7Salewski et al. (2017) and Salewski, Nocente, Jacobsen, Binda, Cazzaniga, et al. (2018).
8Salewski et al. (2017) and Salewski, Nocente, Madsen, et al. (2018).
9Galdon-Quiroga, Garcia-Munoz, Sanchis-Sanchez, et al. (2018) and Galdon-Quiroga, Garcia-Munoz, Salewski,

et al. (2018).
10Salewski (2019) and Schmidt et al. (2021).
11Stagner et al. (2022).
12Madsen, Huang, et al. (2020).
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we describe the forward problem and the Tikhonov regularization approach typically used for
velocity-space tomography. In section 5, we develop the slowing-down physics regularization
technique. In section 6, we describe the synthetic dataset used for our investigations. In section 7,
we show and interpret the results from applying slowing-down physics regularization to synthetic
data from TCV and W7-X. In section 8, we present a conclusion and outlook.

3.2 NBI configurations at TCV and W7-X

NBIs inject energetic particles, typically hydrogen isotopes, which have been accelerated to energies
in the 10 - 100 keV range. In the acceleration stage, in addition to the neutral deuterium atoms,
deuterium dimers and trimers are formed. As all three species are accelerated in the same potential,
the energy of the injected dimers and trimers is the same as for the deuterium monomers. Hence,
the velocity is reduced by a factor of 1/

√
2 for the dimers and 1/

√
3 for the trimers. The dimers

and trimers are ionized as they exit the NBI beam and enter the plasma. Thus, when the dimers
and trimers split into single deuterium ions inside the plasma due to collisions, the resulting
deuterium monomers continue moving at lower velocities.

TCV has two NBIs positioned as shown in Fig. 3.1(a) for a top view of TCV. The NBIs are
oriented tangentially to the magnetic axis in the midplane (Z = 0). The diagnostic FIDA lines
of sight considered in this study are those used for shot 68407 consisting of 10 horizontal and
10 vertical FIDA views. A crucial parameter for the velocity-space sensitivity of diagnostics is
the viewing angle ϕ between the line of sight and the magnetic field. The viewing angle intervals
for the horizontal and vertical fans are ϕhor ∈ [45◦, 90◦] and ϕvert ∈ [75◦, 90◦]. The intersections
of the NBIs and the FIDA lines of sight are illustrated in Fig. 3.1(a) as the points where the
magenta lines meet the black and red lines and in Fig. 3.2 as the black dots. The nominal power
fractions of the injected deuterium species at full, half, and one-third injection energy for NB1
and NB2 at TCV are 0.73:0.22:0.05 and 0.59:0.33:0.08 at the nominal energies 25 keV and 47 keV.

W7-X is designed with two NBI boxes with four beams in each.13 The two NBI boxes are
positioned to achieve different injection angles for the eight beams with the local toroidal magnetic
field. Beams 2, 3, 6, and 7 are pointed more radially and beams 1, 4, 5, and 8 more tangentially.
The diagnostic FIDA lines of sight intersect beams 7 and 8 (Q7 and Q8); see Fig. 3.1(b) for an
illustration of the experimental setup. Each FIDA view is part of one of three fans, originating
from ports AEA21, AEM21, and AET21. We will refer to them as fans A21, M21, and T21 with
corresponding viewing angle intervals ϕA21 ∈ [2◦, 10◦], ϕM21 ∈ [125◦, 135◦], and ϕT21 ∈ [35◦, 45◦].
In addition to these three fans, we investigate how much information can be gained by installing
additional FIDA views. Seventeen ports located in the first- and second half-modules of the second
module are available for installing diagnostic FIDA views on Q7 and Q8. Figure 3.2 shows the
spatial fast-ion distribution at TCV and W7-X along with the measurement volumes. The possible
viewing angles for each port along NBI Q7 and Q8 are illustrated in Fig. 3.3. For a given port,
the median viewing angle is displayed as a circle and maximum and minimum viewing angles are
indicated by the top and bottom bars. Observe that with the 17 ports combined, coverage of all
viewing angles is attained except for the viewing angles between approximately 10◦ and 20◦. The
power fractions of the injected deuterium species at full, half, and one-third injection energy at
W7-X are 0.45:0.45:0.10 with full injection energy of 55 keV.

13McNeely et al. (2020) and Lazerson et al. (2021).
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Figure 3.1: Neutral beam (NB) locations at (a) TCV and (b) W7-X. For TCV, the black and
red lines indicate NB1 and NB2. The magenta lines indicate the lines of sight of the FIDA views.
For W7-X, Q7 and Q8 correspond to the 7th and 8th NBs out of eight in total. The three fans
‘A21’, ‘M21’, and ‘T21’ indicate FIDA lines of sight located in the first half-module of the second
module.
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Figure 3.2: Poloidal cross sections and simulated fast-ion density distributions in (a) TCV and
(b) W7-X at θ ≈ 90◦. The black dots indicate the measurement volumes. The green dots indicate
the locations for the distributions in Figs. 3.4 and 3.5.

3.3 Forward model
The goal in this study is to obtain the 4D and 5D fast-ion phase-space distribution function
from projections of the velocity distribution function. Such projections serve as a proxy for CTS
and FIDA spectra, since the projected velocity is proportional to the Doppler shift, which is the
key effect leading to the spectrum formation. However, other details such as Stark splitting are
neglected.

The projections s are obtained as the integral over phase-space of the product wf , where
w = w (λ1, λ2, ϕ,x,v) is the weight function and f = f (x,v) is the phase-space distribution
function.14. Hence,

s (λ1, λ2, ϕ) =
∫∫

w (λ1, λ2, ϕ,x,v) f (x,v) dxdv (3.1)

for a detected signal s(λ1, λ2, ϕ) in the wavelength bin λ1 < λ < λ2 with projection angle ϕ
originating from a small measurement volume. A weight function, the kernel in Eq. (3.1), indicates
the sensitivity of the given diagnostic at a specific location in phase-space for a projection angle ϕ
and a wavelength bin with lower wavelength λ1 and upper wavelength λ2. Such weight functions
have also been calculated for neutron emission spectroscopy,15 gamma-ray spectroscopy,16 fast-ion
loss detectors,17 ion cyclotron emission,18 and MeV-proton diagnostics19.

14W. W. Heidbrink et al. (2007), Heidbrink (2010), Salewski et al. (2011), and Salewski, Geiger, Moseev, et al.
(2014).

15Jacobsen et al. (2015), Jacobsen et al. (2017), Järleblad et al. (2021), and Järleblad et al. (2022).
16Salewski, Nocente, Gorini, et al. (2015) and Salewski, Nocente, Gorini, et al. (2016).
17Galdon-Quiroga, Garcia-Munoz, Sanchis-Sanchez, et al. (2018).
18Schmidt et al. (2021).
19W. Heidbrink et al. (2021).
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Figure 3.3: 17 diagnostic ports could be used for FIDA views at W7-X. The upper figure shows
the viewing angles ϕ of the lines of sight and the magnetic field for NBI Q7, and the lower for
NBI Q8. The circles represent the median viewing angle, and the vertical bar represents the angle
range.

Discretizing position and velocity space transforms the equation into the matrix-vector
equation

Wf = s, (3.2)

where f is the vector corresponding to the fast-ion phase-space distribution function and s the
measurement data vector corresponding to the projections. The problem formulation assumes
the underlying problem to be linear. Equation (3.2) for 4D and 5D phase space distributions is
the same as the 2D velocity-space tomography20 and 3D orbit tomography21 formulations. The
fast-ion distribution vector f has dimension n, the measurement data vector s has dimension m
and contains all spectral data from all lines of sight, and W has dimension m× n. The fast-ion
distribution function is obtained by solving the inverse problem given by Eq. (3.2), i.e., computing
f given s and W .

20Salewski et al. (2012) and Salewski et al. (2013).
21Stagner et al. (2022).
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3.4 Tikhonov regularization
The accuracy of the solution to the matrix equation Wf = s is bounded by its condition number
κ(W ) = σ1/σn defined as the ratio of the largest singular value σ1 to the lowest singular value σn.
The condition number expresses the maximum ratio of the relative error in f to the relative error
in s. Therefore, a large condition number implies that a small change in s can cause a large change
in f . For both TCV and W7-X, κ(W ) ≫ 1015, so even little noise in s can cause large changes in
f . Such large condition numbers result from the underlying continuous problems, described, e.g.,
by Eq. (3.1), being notoriously ill-posed inverse problems. Condition numbers on the order of 1015

are typical for such ill-posed problems. Well-conditioned problems typically have κ(W ) ≲ 104.
Meaningful solutions to such problems can be found by regularization, which penalizes

undesired features in f so that small changes in s lead to small changes in f . This can be achieved
by regularizing on f with a matrix L such that ∥Ls∥2 is a prior for the sought solution, e.g.,
smoothness by choosing L to be a gradient operator. With this approach, the inverse problem can
be written as the following minimization problem:

f∗ = argmin
f

∥Wf − s∥2
2 + λ2 ∥Lf∥2

2 . (3.3)

The value of the regularization parameter λ controls how well the solution fits the noisy data
and the degree to which the regularization influences the solution. To illustrate how Eq. (3.2) is
solved in practice, Eq. (3.3) can be written as

f∗ = argmin
f

∥∥∥∥(WλL
)
f −

(
s
0

)∥∥∥∥2

2
. (3.4)

This is the most stable formulation of the inverse problem and the best suited for numerical
computations22.

Typically, it is helpful to use additional prior information to find a better solution. Previous
work in velocity-space tomography in fusion plasmas has implemented non-negativity of the
fast-ion distribution function, penalty matrices with different properties, null-measurement regions,
specification of NBI locations, and numerical simulations as prior information.23 Here, we
implement prior information by constraining the solution to lie in the vector space spanned by
the expected 4D or 5D slowing-down distribution functions of fast ions assuming neoclassical
transport.

3.5 Slowing-down physics regularization
We reconstruct simulated fast-ion phase-space distribution functions from NBI at TCV and W7-X.
The ions are born by ionization of neutrals from the neutral beams at full, half, and one-third
injection energies. The fast-ion distribution in velocity space is anisotropic due to the narrow
pitch range of injected particles determined by the geometry of the NBI relative to the magnetic
field. The fast ions are assumed to follow neoclassical slowing down due to collisions with electrons
and ions in a thermal background plasma. In 2D velocity space assuming a spatially homogeneous
plasma, velocity distributions arising in these situations can be modeled as anisotropic slowing-
down velocity distributions24. Here, we use ASCOT25 and BEAMS3D26 to calculate 4D and 5D

22Hansen (2010) and Salewski, Geiger, Jacobsen, et al. (2016).
23Salewski, Geiger, Jacobsen, et al. (2016), Salewski, Geiger, Jacobsen, et al. (2018), Madsen et al. (2018),

Madsen, Salewski, et al. (2020), and Madsen, Huang, et al. (2020).
24Moseev and Salewski (2019).
25Hirvijoki et al. (2014).
26Lazerson et al. (2020) and Mencke et al. (2022).
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phase-space distribution functions assuming only the neoclassical slowing-down physics. In the
remainder of this paper, we will simply call them ‘slowing-down distributions’.

Thus, we postulate that the solution to Eq. (3.4) must be closely related to the anisotropic
slowing-down distributions from the NBI sources at full, half, and one-third injection energies.
Madsen et al. followed a similar approach for computing 2D fast-ion velocity distribution functions
resulting from co- and counter-current NBIs at EAST with good results27.

We denote the Nsd phase-space slowing-down distribution functions by ψ1, ψ2, . . . , ψNsd

defined for the 4D and 5D phase spaces at TCV and W7-X, where Nsd is the desired number of
vectors in the slowing-down physics basis. In slowing-down physics regularization, the phase-space
distribution function is assumed to lie in the space spanned by the set {ψj} , j = 1, 2, . . . , Nsd, so

f =
Nsd∑
j=1

cjψj , (3.5)

where cj ∈ R is the coefficient corresponding to the jth slowing-down distribution. Thus, we
enforce slowing-down physics on the regularized solution. The energy components of the neutral
beams at TCV are illustrated in Fig. 3.4. The full energy component of all eight beams at W7-X
is illustrated in Fig. 3.5. Observe the sign difference of the peaks in v∥ indicating the difference in
injection direction with respect to the local magnetic field. The spatial locations for the velocity
distributions are from the central locations marked by green dots in Fig. 3.2.

To enable the detection of anomalous phenomena based on experimental data, future work
will use thousands of slowing-down distribution functions. The greater flexibility of the model
should allow modelling anomalous transport. A single neutral beam injects fast ions with three
different energies. Thus, for TCV, two neutral beams result in 2 × 3 = 6 distinct slowing-down
basis functions ψj . For W7-X, eight neutral beams result in 8 × 3 = 24 distinct slowing-down
basis functions.

Let Ψ be a matrix containing sampled values of the slowing-down distribution functions as
column vectors, and let c be a column vector containing the coefficients cj corresponding to each
ψj . Then

f = Ψc, (3.6)

so

s = Wf = W (Ψc) = (WΨ) c. (3.7)

According to Eq. (3.7), we can calculate a synthetic measurement, given the coefficients c, using
the weight function matrix as always used in velocity-space tomography and the matrix containing
the slowing-down distribution basis functions as columns. Thus, to solve the original inverse
problem in Eq. (3.3), we need to determine the 6 and 24 slowing-down distribution function
coefficients for TCV and W7-X. Thus, our problem is to infer the densities of the NBI sources at
full, half, and one-third energies from projections in velocity space at the position-space locations
of the measurement volumes. These coefficients are found by solving the inverse problem in Eq.
(3.7), which is to determine the coefficient vector c given s and the matrix WΨ. This inverse
problem will be solved by regularizing the coefficient vector c for solutions f ∈ span {ψj} using
Tikhonov regularization. The underlying complexity of the modelled systems with dimensionality
of 4D or 5D for TCV and W7-X therefore does not affect the solution.

27Madsen, Huang, et al. (2020).
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Figure 3.4: 2D velocity distribution functions for the full, half, and one-third energy for NB1
(top row) and NB2 (bottom row) at TCV. The distributions originate from the green dot in Fig.
3.2(a).

Figure 3.5: 2D velocity distribution functions for the full energy neutral beam injections at
W7-X. The distributions originate from the green dot in Fig. 3.2(b).



49 Slowing-down physics regularization

3.6 Interpretation of the expansion in slowing-down func-
tions as slowing-down physics regularization

The traditional formulation of the problem with Tikhonov regularization, with a non-negativity
constraint on the solution, is

f∗ = argmin
f

{
∥Wf − s∥2

2 + λ2 ∥Lf∥2
2

}
subject to f ≥ 0. (3.8)

Here, the matrix L determines the type of regularization that is applied; L can be the identity
matrix or a discrete approximation to a derivative operator.28

We can expand the solution in terms of this basis and write f = Ψc. Here, Ψ ∈ Rn×Nsd is the
matrix whose Nsd columns are the discretized slowing-down functions, and c ∈ RNsd is a vector of
the coefficients in this basis. Thus, the problem in Eq. (3.8) can be reformulated as

c∗ = argmin
c

{
∥WΨc− s∥2

2 + λ2 ∥LΨc∥2
2

}
subject to Ψc ≥ 0. (3.9)

In this formulation, WΨ is the matrix connecting the coefficient vector c to the measurements,
and LΨ is the regularization matrix. The two formulations (3.8) and (3.9) are equivalent when
we set f = Ψc.

In this work, we take a different approach that utilizes the physics-informed basis vectors in Ψ
as a prior. Specifically, instead of enforcing regularization directly on f we regularize the coefficient
vector c via a regularization term ∥c∥2

2. This is needed since the problem min ∥WΨc− s∥2
2 is

ill-posed. Enforcing this regularization ensures that all the expansion coefficients are bounded
and that the solution expressed in the slowing-down basis is physically meaningful for the given
measurement scenario. The physics-informed Tikhonov regularization problem then takes the
form

c∗ = argmin
c

{
∥WΨc− s∥2

2 + λ2
c ∥c∥2

2

}
subject to Ψc ≥ 0. (3.10)

from which we determine the regularized 4D or 5D fast-ion phase-space distribution function f∗

from
f∗ = Ψc∗. (3.11)

The number of rows of the matrix WΨ is determined by the number of lines of sight and the
spectral resolution. For N = 250 lines of sight, each with a spectral resolution of 84 measurement
bins in a spectrum, WΨ has 21000 rows. Since the matrix Ψ with the slowing-down basis
consists of six simulated fast-ion phase-space slowing-down distribution functions for TCV, and 24
simulated fast-ion phase-space slowing-down distribution functions for W7-X, the matrix WΨ has
six columns for TCV and 24 columns for W7-X. The interpretation of the regularization procedure
by imposing the slowing-down basis prior depends on the dimension of the slowing-down basis
Nsd compared to the number of rows n of Ψ, i.e., how many grid points the slowing-down function
is resolved in.

First, consider the simplest case Nsd = n. This case appears when every grid point in the
discretization of phase-space is considered as a source for a slowing-down basis function. This is
the approach previously demonstrated in the 2D velocity-space tomography problem29. If Nsd = n,
the matrix Ψ is square, and numerical testing shows it has full rank. Then f = Ψc ⇔ c = Ψ−1f ,
and therefore Eqs. (3.10) and (3.11) are equivalent to the problem

f∗ = argmin
f

∥Wf − s∥2
2 + λ2

c

∥∥Ψ−1f
∥∥2

2 subject to f ≥ 0. (3.12)

28Hansen (2010) and Salewski, Geiger, Jacobsen, et al. (2016).
29Madsen, Huang, et al. (2020).
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A comparison of equations (3.12) and (3.3) shows that the expansion in slowing-down basis
functions can be interpreted as a regularizer L = Ψ−1 in the regularization term in Eq. (3.3). We
shall now demonstrate that the same interpretation holds when Nsd ̸= n.

We first consider the case Nsd > n where we use more slowing-down basis functions than
the number of grid points (an overcomplete system) we have chosen to discretize the distribution
function. In this case, numerical testing shows that the matrix Ψ has full row rank, i.e., the
n × Nsd matrix has rank n. We still assume that f = Ψc. Then it follows from the theory in
Section 8.4, case 2 in Hansen (2010) that the matrix L in (3.9) must satisfy L† = Ψ, where the
superscript † denotes the pseudoinverse. This, in turn, implies that L = Ψ†. Thus, regularizing on
the coefficient vector c can be interpreted as using the regularizer Ψ† for f in the regularization
term in the original problem formulation.

Next, consider the case Nsd < n where we use fewer slowing-down basis functions, and hence
fewer coefficients, than the number of grid points. In this case, numerical testing shows Ψ has
full column rank, i.e., the n×Nsd matrix has rank Nsd. To analyze this case, we cannot use the
theory in Hansen (2010) and instead we introduce the QR factorization

Ψ = (Q , Q0 )
(
R
0

)
= QR, (3.13)

where R is an upper triangular matrix, Q and Q0 have orthonormal columns, QTQ0 = 0, and
range (Q0) = range (Ψ)⊥ = null

(
ΨT). Let P = Q0Q

T
0 be the orthogonal projector on null

(
ΨT).

For a general f and some vector w of appropriate dimension, f = Ψc+Q0w, so

Ψc = QRc = f −Q0w ⇔ c = R−1QTf = Ψ†f. (3.14)

We want f ∈ range (Ψ), so Q0w = Pf = 0. Thus, the problem formulation becomes

f∗ = argmin
f

∥Wf − s∥2
2 + λ2 ∥∥Ψ†f

∥∥2
2 subject to Pf = 0. (3.15)

Again, regularization on the coefficient vector c can be interpreted as a regularizer L = Ψ† for f in
the regularization term in the original problem formulation with the additional requirement that
Pf = 0. This requirement corresponds to finding solutions in the vector space ψj described by
slowing-down physics. The requirement is automatically satisfied when we compute f = Ψc = QRc.

We have thus shown that we can interpret the regularization on the coefficient vector c
as regularization on f in terms of slowing-down physics for any combination of n and Nsd. In
reconstruction problems without using basis functions, we choose the number of grid points n
based on the number of available measurements. Specifically, n should be similar to the number
of measurements m. (It does not have to be the exact same number of unknowns as equations
since the regularization provides additional requirements on the solution.) Following the same
reasoning, we can choose the number of slowing-down basis functions to be similar to the number
of measurements (where the data points of a measured spectrum are counted individually). The
preceding analysis shows that we can choose the number of grid points in the basis functions as
we like. For any choice, finely resolved or coarsely resolved basis functions, our interpretation
of the expansion of the distribution function into slowing-down basis functions as slowing-down
physics regularization holds.

3.7 Generation of synthetic data based on the ground truth
The study of slowing-down physics regularization using Tikhonov regularization is performed on
synthetic measurement data based on ASCOT5 and BEAMS3D simulations for TCV and W7-X.
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In both simulations, particles slow down due to Coulomb collisions until they reach twice the
thermal energy. For TCV, phase space was discretized using a grid of size (50, 150, 40, 40)
for (R,Z, v∥, v⊥) with corresponding ranges ([0.62, 1.14] m, [−0.75, 0.75] m, [−1.8 × 106, 1.8 ×
106] m s−1, [0, 1.8 × 106] m s−1). For W7-X, phase space was discretized using a grid of size
(41, 34, 51, 32, 16) for (R, θ, Z, v∥, v⊥) with corresponding ranges ([4.5, 6.5] m, [0, 2π], [−1, 1] m, [−4×
106, 4 × 106] m s−1, [0, 4 × 106] m s−1). The synthetic measurement data is generated by computing
Wf = s for known f which we refer to as the ground truth. The fast-ion phase-space distribution
functions f are generated by specifying the values in the coefficient vector c and performing the
multiplication f = Ψc. Due to the generation mechanisms of the deuterium ions in the neutral
beams, the density fractions for the distribution functions of deuterium monomers, dimers, and
trimers are 0.73:0.22:0.05 and 0.59:0.33:0.08 for NB1 and NB2 at TCV at the nominal energies
25 keV and 47 keV and 0.45:0.45:0.10 for the NBIs at W7-X at the nominal energy 55 keV. The
values in c are generated with a 10% variation of these values for each energy beam coefficient.
This value for the variation was chosen since it is larger than the expected experimental error of
the injected density fractions of the NBIs and typical for experimental error. The projection data
comprise spectra from many lines of sight, and these are stacked in a single vector s. The values
of the sought coefficients and example spectra are illustrated in Fig. 3.6.

If the same model is used to compute the synthetic spectra and the inference of the distribution
function, the inference is unrealistically easy. This is sometimes called an ‘inverse crime’30. To
avoid committing an inverse crime when solving the inverse problem WΨc = s, the dimensions of
the weight function matrix used to solve the inverse problem must be different from the dimensions
of the weight function matrix used to generate the data. For TCV, the grid size used to generate
the data was [40, 40] and the inversion grid size [37,37]. For W7-X, the corresponding grid sizes
were [32, 16] and [33, 17]. Furthermore, noise is added to each measurement to simulate actual
measurements, such that the signal-to-noise ratio is up to 10%.

For W7-X, we investigate two scenarios: one with 250 lines of sight and one with 680 lines
of sight, with viewing angles calculated for FIDA views located in available ports. Each line
of sight passes through NBIs Q7 and Q8, so a spectrum measured by one spectrometer is the
sum of the signals from FIDA emission from its intersections with Q7 and Q8. Thus, the signal
si = W7f7 +W8f8 for the weight functions W7 and W8 associated with NBIs Q7 and Q8 for the
specific FIDA view i.

3.8 Simulation results
The difficulty of determining the correct coefficient vector c increases with the number of active
beams. Therefore, we show the reconstructions with all beams active: two at TCV and eight at
W7-X–and noting that reconstructions for fewer active beams are as accurate or better.

3.8.1 TCV with 20 lines of sight and W7-X with 250 lines of sight
The 4D and 5D phase-space distribution functions are determined by solving the equation

c∗ = argmin
c

{
∥WΨc− s∥2

2 +
∑

k

λ2
k ∥Lkc∥2

2

}
subject to Ψc ≥ 0 (3.16)

and subsequently computing f∗ = Ψc∗. With this notation, k ∈ {0, 1} corresponding to 0th-order
and 1st-order Tikhonov regularization. For all techniques, the optimal values of λ0 and λ1 are

30Hansen (2010).
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Figure 3.6: Essential aspects of the dataset for TCV (top row) and W7-X (bottom row). The
first column shows the values of the densities of each beam component with 10% variation in each
coordinate. The ’Index’ label refers to the energy beam components in each neutral beam injector.
The second column shows example data vectors s with all projected spectra ordered sequentially
in a single vector. The ’Index’ label here refers to each measurement bin in the projected spectra.
The third column shows a single spectrum illustrating the shape of the spectral peaks as a function
of the projected velocity u cut off at ±0.5 × 106 m s−1.
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determined by choosing the solution to Eq. (3.16) with the lowest mean 2-norm deviation

∆2 := 1
N

∥∥c∗ − cexact∥∥ , (3.17)

where cexact is the ground truth and N the number of coefficients; N = 6 for TCV and N = 24
for W7-X.

The case of k = 0 called ‘0th-order Tikhonov regularization’ corresponds to solving

c∗ = argmin
c

{
∥WΨc− s∥2

2 + λ2
0 ∥L0c∥2

2

}
subject to Ψc ≥ 0 (3.18)

with λ0 a scalar, and L0 = I. The reconstructions for TCV and W7-X using 0th-order Tikhonov
regularization are illustrated in Figs. 3.7 and 3.8. In a perfect reconstruction, the red circles
(reconstructions) enclose the black dots (ground truth). Note that the reconstruction is system-
atically biased: penalizing the 2-norm of the coefficient vector c tends to decrease the largest
values, here the half-energy beam component values of 0.45, and tends to increase the lowest
values. This is a deficiency that the 0th-order Tikhonov regularization always has. We can observe
this tendency in our inversions, though the regularization parameter can be so low that the data
dictates otherwise, as is the case for the one-third energy components. However, decreasing the
regularization parameter λ0 to allow more variation in the coefficient values decreases the accuracy
of the reconstruction further. To avoid this tendency of the 0th-order Tikhonov regularization, we
use prior information or 1st-order Tikhonov regularization.

We may use the prior information that the expected values of the nominal beam coefficients
are particle density fractions obtained by other means, e.g., by measurement of the beam emission
or physics of the acceleration phase of the atoms in the neutral beam injectors. In our numerical
test, we can use the ground truth. Note that this is not the ground truth of a given test case
since 10% noise is added to each coefficient before generating the signal. Thus, this prior has the
tendency to bias the solution towards this prior information. We view this as an advantage over
biasing larger values downwards.

Denote by c0 the vector with the values of the nominal beam coefficients for each beam
component. Then, the 4D and 5D phase-space distribution functions are determined by solving

c∗ = argmin
c

{
∥WΨc− s∥2

2 + λ2
0 ∥L0 (c− c0)∥2

2

}
subject to Ψc ≥ 0. (3.19)

We call this technique ‘0th-order Tikhonov regularization with prior’; see Fig. 3.7 and 3.8 for the
reconstructions for TCV and W7-X using this technique. The 0th-order Tikhonov regularization
with prior reconstructions is better than the one without prior for both TCV and W7-X. The
regularization strengths used for 0th-order Tikhonov regularization with and without prior
information are different due to the numerical differences of c and c− c0.

An alternative to the 0th-order Tikhonov regularization is 1st-order Tikhonov regularization
which, in general, penalizes differences between neighboring pixels. Here, our prior information is
that the NBI’s installed at W7-X are constructed and operated in the same way and, therefore,
have the same species mix, i.e., the full-energy coefficients are likely the same for all NBIs, as
are the half-energy coefficients, and the third energy coefficients. Since the two beams at TCV
have different particle density fractions for the full, half, and third energy components, this
regularization cannot be performed for the current beam setup at TCV.

Thus, a relevant prior for the 24 coefficients at W7-X is

c3n+1 ≈ c1, (3.20)
c3n+2 ≈ c2, (3.21)
c3n+3 ≈ c3, (3.22)
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for n = 1, 2, . . . , 7. This prior belief can be written as the penalty matrix

L1 =


1 0 0 −1 0 · · · 0
0 1 0 0 −1 · · · 0

. . . . . .
0 0 · · · 1 0 0 −1

 . (3.23)

Since this matrix penalizes differences between similar energy components among different beams,
we call this ‘1st-order Tikhonov regularization.’ Thus, for k = 1, the equation to be solved is

c∗ = min
c

{
∥WΨc− s∥2

2 + λ2
1 ∥L1c∥2

2

}
subject to Ψc ≥ 0 (3.24)

with λ1 a scalar.
The 1st-order Tikhonov regularization solution is much better than that found by 0th-order

Tikhonov regularization. The third energy components are determined almost perfectly, and the
full- and half-energy components from the solution are around the correct values. However, the
values of the solutions for the full- and half-energy beam components are biased in the direction
of the majority of the beam components. For example, if more than four of the true full-energy
beam component coefficients are larger than 0.45 due to noise, the 1st-order Tikhonov regularized
solution for the full-energy beam components will be greater than 0.45 for all beams. The situation
is the same for the half-energy beam component. However, this behavior could be an advantage
since the eight NBIs are assumed to be constructed identically and, therefore, any systematic
effects will be found by 1st-order Tikhonov regularization. See a reconstruction example for W7-X
in Fig. 3.8.

Further, a 0th-order Tikhonov prior can be imposed on the 1st-order Tikhonov regularization.
This corresponds to solving

c∗ = min
c

{
∥WΨc− s∥2

2 + λ2
0 ∥L0 (c− c0)∥2

2 + λ2
1 ∥L1c∥

}
subject to Ψc ≥ 0. (3.25)

The equation is implemented in the following form

c∗ = argmin
c

∥∥∥∥∥∥
WΨ
λ0I
λ1L

 c−

 s
λ0c0

0

∥∥∥∥∥∥
2

. (3.26)

See a reconstruction example for W7-X in Fig. 3.8. The prior improves the 1st-order Tikhonov
regularized solution by mitigating the bias in the solution: the amplitudes of the full- and half-
energy components are closer to the actual values, and the third-energy components are determined
perfectly.

The spatial and velocity distribution functions corresponding to the reconstructed coefficient
vectors are illustrated in Fig. 3.9 for 0th-order Tikhonov regularization. Observe that the
reconstructed distributions are almost identical to the true distributions, indicating the applicability
of the technique to determine coefficient vectors corresponding to the underlying true distributions.

3.8.2 W7-X with 680 lines of sight
Physical constraints such as port access and space for spectrometers within ports restrict the
available measurement volumes and the corresponding viewing angles. At W7-X, 17 ports located
in the first- and second half-modules of the second module are here considered suitable for the
installation of additional FIDA views. Thus, we investigate the maximal reconstruction quality
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Figure 3.7: Reconstructions from synthetic measurements from TCV. The black dots indicate the
actual densities (ground truth) for each beam energy component, and the red circles correspond
to the density computed using 0th-order Tikhonov with and without priors.

using all 17 ports with full beam coverage, i.e., the FIDA views in each port can span the full
length of the Q7 and Q8 NBIs. Each port is chosen to have 40 lines of sight. This corresponds to
17 × 40 = 680 spectra with a resolution of 84 measurement bins for a total of 57,120 measurement
points, a 270% increase in the amount of data available for reconstructions. We refer to Fig. 3.3
for the viewing angles of the 17 ports.

Tikhonov-regularized reconstructions from the data described above are illustrated in Fig.
3.10. Observe the significant improvement in the 0th-order regularized solution compared to that
in Fig. 3.8. Of all the reconstructions shown in this paper, the 0th- and 1st-order Tikhonov
reconstructions here produce the best results, as the values of the coefficients in the reconstructions
are the closest to the ground truth using no prior information.

3.9 Conclusion and outlook
Reconstructing 4D and 5D fast-ion phase-space distribution functions at TCV and W7-X requires
an approach beyond traditional Tikhonov regularization used for velocity-space tomography. The
slowing-down physics regularized solution f∗ lies in the vector space spanned by slowing-down
distributions ψ1, ψ2, . . . , ψsd such that f∗ =

∑
j cjψj . The slowing-down distribution functions

are calculated using ASCOT5 for TCV and BEAMS3D for W7-X. The slowing-down distribution
functions ψj were calculated for the full, half, and one-third beam energy components for two
neutral beams at TCV and eight neutral beams at W7-X.

In slowing-down physics regularization, the sought quantity is the column vector c containing
the slowing-down distribution coefficients cj . This column vector was obtained using Tikhonov
regularization. We showed that for any number of grid points n and any number of slowing-
down distribution functions Nsd, the expansion in slowing-down basis functions is equivalent
to regularizing after slowing-down physics, i.e., using the regularizer Ψ† on f in Tikhonov
regularization.

Slowing-down physics regularization can be successfully applied to synthetic measurements
s to obtain the column vector c very close to the known ground truth. As a consequence, the
reconstructed fast-ion phase-space distribution functions f = Ψc are very similar to the ground
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Figure 3.8: Reconstructions from synthetic measurements from W7-X. The black dots indicate
the actual particle density fractions (ground truth) for each beam energy component, and the red
circles correspond to the particle density fractions computed using 0th-order Tikhonov with and
without priors (top row) and 1st-order Tikhonov with and without priors (bottom row).
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Figure 3.9: The first row contains spatial distributions for TCV (to the left of the dashed line)
and W7-X (to the right of the dashed line), and the second row contains velocity distributions.
The first and third columns show the actual distribution functions, and the second and fourth
columns show the reconstructed solutions from Tikhonov regularization.

truths. The best reconstructions are obtained with a larger amount of data. Therefore, we suggest
installing as many views as possible in the available ports.

The next step is to increase the number of simulated slowing-down distribution functions along
the neutral beam paths. Adding more slowing-down distribution functions corresponds to adding
additional basis vectors to Ψ, hence increasing the available fast-ion phase-space distribution
functions that can be reconstructed. A very large numbers of lines of sight are expected to be
crucial for this approach adding further support to the suggestion of installing as many views as
possible.
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Figure 3.10: Reconstructions for a diagnostic setup at W7-X with 680 lines of sight distributed
across 40 lines of sight in all 17 available ports in the first and second half-module of the second
module.



Chapter 4

1D ICE weight functions and
reconstructions using deep neural
networks

This chapter presents the paper “Determining 1D fast-ion velocity distribution functions from ion
cyclotron emission data using deep neural networks”, published in the journal Review of Scientific
Instruments.

4.0 Abstract

The relationship between simulated ion cyclotron emission (ICE) signals s and the corresponding
1D velocity distribution function f (v⊥) of the fast ions triggering the ICE is modelled using
a two-layer deep neural network. The network architecture (number of layers and number of
computational nodes in each layer) and hyperparameters (learning rate and number of learning
iterations) are fine-tuned using a bottom-up approach based on cross-validation. Thus, the optimal
mapping g (s; θ) of the neural network in terms of the number of nodes, the number of layers, and
the values of the hyperparameters, where θ is the learned model parameters, is determined by
comparing many different configurations of the network on the same training and test set and
choosing the best one based on its average test error. The training and test sets are generated by
computing random ICE velocity distribution functions f and their corresponding ICE signals s
by modelling the relationship as the linear matrix equation Wf = s. The simulated ICE signals
are modelled as edge ICE signals at LHD. The network predictions for f based on ICE signals
s are on many simulated ICE signal examples closer to the true velocity distribution function
than that obtained by 0th-order Tikhonov regularization, although there might be qualitative
differences in which features one technique is better at predicting than the other. Additionally,
the network computations are much faster. Adapted versions of the network can be applied to
future experimental ICE data to infer fast-ion velocity distribution functions.

59
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4.1 Introduction
In recent years, it has become possible to infer 2D fast-ion velocity distribution functions from fast-
ion measurement data in magnetically confined plasmas.1 This traditionally requires a formulation
of the diagnostic forward models in terms of so-called weight functions that have been developed
for collective Thomson scattering2, fast-ion D-alpha spectroscopy3, gamma-ray spectroscopy4,
neutron emission spectroscopy5, and fast-ion loss detectors6. Here, we apply this approach to
simulated ion cyclotron emission (ICE)7 data and formulate a 1D inversion problem to infer a 1D
fast-ion velocity distribution function. Further, we take an entirely new approach based on deep
neural networks.

A deep neural network is a computational model comprising a network of functions capable of
representing complex linear and non-linear relationships to translate input data into output data.
Such networks are well-suited for analysing data from experiments where the quantities of interest
are not directly measurable but must be inferred by modelling. The mathematical formulation of
the problem may introduce systematic bias, and the inherent noise of the measurements increases
the difficulty in obtaining a solution representative of the true solution by using traditional
mathematical methods. Specifically, the linear inverse problem Wf = s of finding a distribution
function f given a forward model encoded in W and the measurement data s, is ill-posed.
Regularization is needed in order to find an approximate solution. This is often done by Tikhonov
regularization.8

An alternative approach is to use deep neural networks to model the relationship between the
measured signal s and the distribution function f . The networks are trained using a supervised
training approach on datasets consisting of an input and known true solution such that the
predictions by the network g (s; θ) come as close as possible to the true solutions. The network
learns to predict f by optimizing its internal parameters θ. In effect, training a neural network is
a calibration of the network (the equipment) by comparing its output values (the measurements)
to known values (the calibration standard).

Deep neural networks can be applied to ICE data analysis to assist and improve current
analysis techniques for measurements of velocities, densities, and energies of fast ions. Such
analysis is of crucial importance for ITER.9 Further, such measurements require no additional
measurement equipment since the future ICRH antennas at ITER can be used as receivers to
measure ICE.10 Thus, the easy access to ICE data and the inclusion of such diagnostic systems in
ITER provide a strong incentive to develop ICE data analysis techniques.

Typically, fast ions drive instabilities at the ion cyclotron frequency and higher harmonics in
the 5−100 MHz range. Such instabilities occur when the distribution function f becomes inverted in
velocity space, i.e., when ∂f/∂v > 0, since free energy becomes available to drive the instabilities.11

The magnetoacoustic cyclotron instability (MCI) produces ICE12, and compressional Alfvén
1Salewski, Geiger, Moseev, et al. (2014), Salewski, Geiger, Jacobsen, et al. (2016), Weiland et al. (2016), Salewski

et al. (2017), Weiland et al. (2017), Madsen et al. (2018), Madsen, Salewski, et al. (2020), and Madsen, Huang,
et al. (2020).

2Salewski et al. (2011).
3W. W. Heidbrink et al. (2007), Stagner and Heidbrink (2017), and Salewski, Geiger, Moseev, et al. (2014).
4Salewski, Nocente, Gorini, et al. (2015) and Salewski, Nocente, Gorini, et al. (2016).
5Jacobsen et al. (2015) and Jacobsen et al. (2017).
6Galdon-Quiroga, Garcia-Munoz, Salewski, et al. (2018).
7McClements et al. (2015).
8Salewski, Geiger, Jacobsen, et al. (2016), Weiland et al. (2016), Salewski et al. (2017), Weiland et al. (2017),

Madsen et al. (2018), Madsen, Salewski, et al. (2020), and Madsen, Huang, et al. (2020).
9Donné et al. (2007) and Salewski, Nocente, Madsen, et al. (2018).

10Dendy et al. (1994).
11Ochoukov, McClements, et al. (2019)
12Ochoukov, McClements, et al. (2019) and Liu et al. (2021).
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eigenmodes (CAEs) and global Alfvén eigenmodes (GAEs) occur in the ion cyclotron frequency
range.13 Therefore, analysis of data from ICE is important since CAEs and GAEs may redistribute
the energy from fusion-born alpha particles to the bulk plasma faster than Coulomb collisions.
Furthermore, ICE may cause pitch angle scattering of beam ions when using NBI as heating
source.14

4.2 1D ICE weight functions
We calculate 1D ICE weight functions by running a hybrid particle-in-cell (PIC) self-consistent
Maxwell-Lorentz computation of the relaxation of an energetic ion population with given values
of v⊥ and v∥ in the presence of an MCI. The computations result in power spectra of the excited
fields in the non-linear saturated regime of the MCI. Each horizontal line in Fig. 4.1 constitutes
such a power spectrum for the specified value of v⊥ while v∥ is held constant. Thus, Fig. 4.1
illustrates the signal intensities for a given v⊥ and v∥ of the ions for the frequencies ω. 1D weight
functions for ICE appear as vertical lines in Fig. 4.1 and indicate the 1D velocity-space sensitivity
of the detector to ions at a given ω. The 1D weight functions are analogous to the 2D weight
functions for the previously mentioned fast-ion diagnostics. The data array W displayed in Fig.
4.1 provides a mapping from ICE signals to distribution functions on the basis that Wf = s,
where f is the distribution function and s the ICE signal. This approach assumes that the physics
embodied in the PIC-hybrid simulations dominates the generation of the observed ICE signals,
and this appears to be well grounded.15

The relationship between the distribution function and the ICE signal is modelled as follows.
Let f ∈ Rn be the distribution function and let s ∈ Rm be the signal. The relationship between f
and s is then given by the linear equation

Wf = s, (4.1)

where W ∈ Rm×n, m = 451, and n = 22. The matrix W contains the known physics of the
problem and is calculated numerically from the Maxwell-Lorentz system of equations as follows: A
non-linear 1D3V PIC-hybrid code follows the velocity-space trajectories (including the gyromotion
of fully kinetic energetic and thermal ions) together with the three components of the electric
and magnetic fields in an isothermal massless neutralising electron fluid. The kinetic ions, fluid
electrons, and fields are coupled self-consistently through the Lorentz force and Maxwell’s equations
in Darwin’s approximation.16 These simulations are followed through the linear phase of the MCI
and then deeply into its non-linear saturated phase.

The calculations are initialized with physical parameters representative of tokamak and
stellarator edge plasmas. In these simulations, we used parameters relevant for LHD. The
thermal deuterons are loaded using a quiet start method17 while the energetic protons are
initialised uniformly and randomly in space with velocities following a cold-ring distribution
nHδ

(
v∥
)
δ (v⊥ − u⊥) to generate the inversion.18 The background magnetic field B0 = 1.75T is

oriented at 89◦ with respect to the periodic simulation domain that consists of 2048 cells of length
∆x = 1.30rD, where rD is the deuteron Larmor radius. 500 macroparticles per energetic and per
thermal ion species are loaded in each cell and nH/ne = 0.002 to achieve a high signal-to-noise
ratio. The spatio-temporal fast Fourier transform of the perturbed magnetic field δBz (x, t)

13Fredrickson et al. (2001), W. W. Heidbrink et al. (2006), Appel et al. (2008), and Gorelenkov (2016).
14Ochoukov et al. (2020).
15Cook et al. (2013).
16Darwin (1920).
17Sydora (1999).
18Moseev and Salewski (2019).
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Figure 4.1: The weight function matrix W in the formulation Wf = s. VA is the Alfvén speed,
and ΩH is the proton cyclotron frequency.

provides the 2D dispersion relation δBz (k, ω), where k and ω are the wavenumber and frequency,
respectively. In this specific case, the relaxation of the energetic protons through the MCI generates
self-consistent excitations of the magnetic fields at multiple cyclotron harmonics on the fast-Alfvén
branch. Summing over wavenumber-space k yields the synthetic power spectra. Each simulation
corresponds to a different value of v⊥ ∈ [0VA, 2VA]. The power spectra are illustrated in Fig. 4.1.

4.3 Inversion by deep neural networks
We use a trained deep neural network to predict the distribution functions from simulated ICE
signals. Note that the simulated ICE signals closely mimic actual ICE signals from edge ICE
in LHD. The network is trained using a stochastic gradient descent method based on adaptive
estimation of first-order and second-order moments called Adam in the Keras API. The network is
trained on a large number of simulated datasets where each ICE spectrum is directly matched with
a distribution function. Gaussian noise is added to the measurements to obtain a signal-to-noise
ratio of 5% which is similar to the expected noise level in ICE measurements at LHD. Fig. 4.2
shows a simulated ICE signal and the corresponding distribution function.

The network performs its computations according to a predetermined architecture, initial
values of network parameters, and user-specified values of hyperparameters to produce the network
output. The network output is compared to the true solution, and the internal parameters are
updated by backpropagation. The network is then trained again on the same data with its updated
internal parameters. The number of times this is repeated is called the number of iterations.

The cost function that the network minimizes during training is chosen to be the mean
squared error

MSE = 1
N

N∑
i=1

(
fi − f̂i

)2
, (4.2)

where fi corresponds to the ith entry in the true solution f , and f̂i corresponds to the ith entry in
the network output vector f̂ . Letting pdata be the true data generating distribution, the problem
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Figure 4.2: An example of a simulated distribution function f (v⊥) along with its corresponding
simulated signal as measured by an ICE detector.

that the network solves is
g∗ = argmin

g
Es,f∼pdata ∥f − g(y)∥2 (4.3)

with the solution
g∗(s) = Ef∼pdata(f |s)(f), (4.4)

derived using calculus of variations19. This result shows that by training the network on infinitely
many samples from the true data generating distribution pdata by minimizing the MSE cost
function, the network prediction is the mean of f for each s. Other possible cost functions include
how well the predictions match the width and height of the peaks of the ice distribution or just
focusing on the location of the peaks. Such measures will be explored in future works.

The dataset used for training the network consists of 400.000 simulated ICE signal-distribution
function pairs. The dataset includes distribution functions with up to three normal distributions
with random center, width, and amplitude to mimic possible ICE distributions. As an example,
consider Fig. 4.2 but with three distributions with random locations, amplitude, and width.

The optimal network architecture is determined in a bottom-up manner by first comparing the
MSE loss for a network consisting of a single layer and an output layer using the default learning
rate of α = 0.0001 for the Adam optimizer. This comparison is made using K = 5 cross-validation,
thereby ensuring that the training and validation set is the same for all network models. The
performance of a specific network architecture is determined by the mean and standard deviation
of the MSE across the 5 tests. The number of nodes in the first layer is varied from 100 to 5000,
and the number of nodes in the best performing network is chosen as the number of nodes in the
first layer. A second layer is then added between the input and output layer and the optimal

19Goodfellow et al. (2016).
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Figure 4.3: MSE loss of the network for a different number of layers and nodes.

number of nodes determined in a similar manner. These calculations were performed for up to four
layers excluding the output layer. See Fig. 4.3 for the performance of each network architecture.
The optimal number of nodes in the input layer is 1300. Including a second layer improves the
model, and its optimal number of nodes is 500 or 2000. Here, 500 is chosen since the mean value
of the loss is slightly lower and to save computational resources. The model gets worse when
including additional layers.

Similar cross-validation investigations show that adding a dropout layer improves model
performance. The optimal choice of dropout fraction is 0.4 after the first layer and no dropout
after the second layer. The mean value of the loss in 5-fold cross-validation is improved from
7.6 × 10−3 to 4.0 × 10−3 corresponding to an improvement of approximately 52 %.

Finally, the learning rate α is optimized by performing the learning rate range test as described
by Smith20 and implemented by Wittmann.21 The learning rate range test determines the values
of the learning rate for which training improves the initial loss value. This range is then used to
implement a triangular cyclical learning rate policy to achieve better and faster convergence of
the model towards the optimal training state. The training for the range test is generally run for
a low number of iterations. Here a single iteration is used with a batch size of 500. The results
for the MSE loss is shown in Fig. 4.4. A good value of the learning rate occurs when the loss
decreases. This occurs approximately for any α ∈

[
10−5, 2 × 10−3], which is chosen to be the

lower and upper bounds for the learning rate in the cyclical learning rate policy. The cyclical
learning rate is implemented by using the code developed by Kenstler.22

20Smith (2017).
21Wittmann (2019).
22Kenstler (2016).
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Figure 4.4: MSE loss from the learning rate range test to determine the optimal minimum and
maximum values for the learning rate when employing a cyclical learning rate strategy.

Figure 4.5: The structure of the neural network to obtain distribution functions from simulated
ICE data.

4.4 Results and Discussion

Based on the investigation described in the previous section, the optimal network has the following
properties. The network has three layers: one layer with 1300 nodes, a second layer with 500
nodes, and an output layer with 22 nodes. A 40 % dropout layer is placed between the first and
second layer. Finally, the Adam optimizer is used in training the network with a cyclical learning
rate policy with α ∈

[
10−5, 2 × 10−3]. This network is illustrated in Fig. 4.5.

The network is trained for 1500 iterations as the network has converged to the best possible
model at this point. This is shown by the training loss curve, see Fig. 4.6. Two signals and
their distribution function predictions by the network, the best Tikhonov inversions, and the true
solutions are displayed in Fig. 4.7. The network finds a more accurate distribution function than
Tikhonov regularization as shown by the lower MSE value, although the distribution functions are
quantitatively similar.

The neural network is trained to analyse simulated ICE spectra from LHD. In order to apply
the trained neural network to other ICE spectra such as ICE spectra from JET and TFTR, the
neural network needs to be trained for these scenarios. Since the weight function matrix depends
on the ion species, the magnetic field, and other parameters, the weight function matrix for other
machines, and even for other discharges in LHD, will differ from the ones used here. However, we
expect the same methods to be applicable.

The computation speed of the network surpasses that of the Tikhonov inversions by at least
O
(
103): the neural network performs one prediction on the order of ms, and Tikhonov inversions

on the order of a second or slower. The problem with Tikhonov regularization is the need for
determining a value of the regularization parameter in order to obtain a good inversion. This
either costs extra computation time or must be done manually. Computation speed is relevant for
both on-site and off-site analyses since the data analysis speed is often a bottleneck in determining
how to proceed with a given experiment. Fast inversions for in-between shot analysis would be a
large advantage.
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Figure 4.6: Convergence of the network as a function of the number of training iterations for
the MSE loss using the cyclical learning rate policy.

4.5 Conclusion
A trained deep neural network can be used to model the relationship between simulated edge ICE
signals from LHD due to fast ions and their 1D velocity distribution function in v⊥. The network
is more accurate than Tikhonov regularization on many of the ICE signal validation examples.
Application of the neural network to ICE measurements and not simulated ICE data requires
specific training of the network and the sensitivity of how exactly the simulated training data
must mimic the measurement data has not been studied here. Thus, criteria for when a training
set is good enough needs to be investigated further. Future work also involves expanding the
neural network to predict the 2D velocity distribution in v⊥ and v∥ of fast ions, or even the 3D
phase-space distribution,23 from ICE signals.

23Järleblad et al. (2021).
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Figure 4.7: Two signals with the deep neural network (“NN”) and Tikhonov inversion (“Tikh”)
predictions compared to the true solutions (“True”). The MSE is indicated. Note that the signals
are normalized so that the y-axis is the normalized intensity in arbitrary units.



Chapter 5

2D ICE weight functions and
reconstruction techniques for ion
cyclotron emission

This chapter presents the paper “Velocity-space sensitivity and inversions of synthetic ion cyclotron
emission”, submitted to the journal Physics of Plasmas.

5.0 Abstract
This paper introduces a new model to find the velocity-space location of energetic ions generating
ion cyclotron emission (ICE) in plasmas. ICE is thought to be generated due to inverted gradients
in the v⊥ direction of the velocity distribution function or due to anisotropies, i.e., strong gradients
in the pitch direction. Here, we invert synthetic ICE spectra generated from first principles
PIC-hybrid computations to find the locations of these ICE-generating ions in velocity space in
terms of a probability distribution function. To this end, we compute 2D ICE weight functions
based on the magnetoacoustic cyclotron instability which reveals the velocity-space sensitivity
of ICE measurements. As an example, we analyze the velocity-space sensitivity of synthetic
ICE measurements near the first 15 harmonics for plasma parameters typical for the Large
Helical Device. Further, we investigate the applicability of a least-square subset search, Tikhonov
regularization, and Lasso regularization to obtain the locations in velocity space of the ions
generating the ICE.

5.1 Introduction
Ion cyclotron emission (ICE) refers to strongly superthermal radiation in the ion cyclotron range
of frequencies (ICRF), typically with well-defined power spectral peaks associated with harmonics
of the local cyclotron frequency of a minority energetic ion population within the plasma. ICE
has been detected using externally mounted antennas and probes, and also recently by internal
scattering.1 It can exhibit both predominantly electromagnetic or electrostatic characteristics;2
in both cases, it appears to be driven by collective relaxation of the energetic ions under the

1Crocker et al. (2022).
2Dendy et al. (1992) and Dendy et al. (1994).
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magnetoacoustic cyclotron instability (MCI). In tokamaks, MCIs can, for example, be driven by
marginally-trapped fusion products born in the center of the plasma with a radial drift to the
outer edge of the plasma.3 The velocity distribution of the fusion products from the location
emitting the ICE contains anisotropies or inverted gradients in the form of a local maximum in
pitch or energy. Such anisotropies and inverted gradients contain free energy to drive the MCI.

An ICE diagnostic is a passive non-invasive diagnostic. It is possible to measure characteristics
of fast ions and of phenomena producing signals in the ion-cyclotron frequency range such
as compressional Alfvén eigenmodes (CAEs) and global Alfvén eigenmodes (GAEs) with ICE
detectors.4 The diagnostic is compatible with high-radiation environments such as in ITER, e.g.,
by using the antennas for electromagnetic wave heating in the ion cyclotron range of frequencies
(ICRF) as receivers.5

ICE refers to the signal generated at integer multiples of the ion cyclotron frequency of the ion
species generating it. Including the Doppler shift, the resonance condition of the ICE-generating
ions is

ω = nΩs + v∥k∥, (5.1)

where n is a positive integer, Ωs is the cyclotron frequency for the ion species s, v∥ is the velocity
of the ions parallel to the magnetic field, and k∥ is the parallel wave number. Typically, the
frequency of the fundamental harmonic is around 10 MHz depending on the magnetic field and
species.6

Studies at JET in the early 1990s discovered a linear relationship between the ICE signal
intensity and the neutron emission rate from DT reactions by comparing ICE from DD and DT
plasmas heated using neutral beam injection (NBI).7 They concluded that fusion alpha particles
were responsible for providing the free energy to generate ICE localized at the outer midplane
edge of the plasma, near the last closed flux surface. Measurements at LHD also detected ICE
from lost ions at the plasma edge during perpendicular hydrogen NBI and from ions lost due to
toroidicity-induced Alfvén eigenmode (TAE) bursts.8 Recently, an ICE detector has been installed
at Wendelstein 7-X.9 Further, beam-heated plasmas on several tokamaks emit core ICE signals
generated by the MCI driven by the velocity-space inversion of sub-Alfvénic beam-injected ions.10

Thus, ICE signals provide helpful information for diagnosing fast-ion behavior.
We want to infer the location of the source of the ICE in velocity space from measured ICE

signals. Research over the last decade has inferred 2D fast-ion velocity distribution functions
for diagnostics such as FIDA spectroscopy11, collective Thomson scattering (CTS)12, neutron
emission spectrometry (NES)13, γ-ray spectrometry (GRS)14, and scintillator-based fast-ion loss
detectors (FILDs)15 at tokamaks such as ASDEX Upgrade, JET, EAST, DIII-D, and MAST. For
these diagnostics, the 2D fast-ion velocity distribution function is determined from measurements

3McClements et al. (1999).
4Cottrell et al. (1993), Fredrickson et al. (2001), W. W. Heidbrink et al. (2006), Appel et al. (2008), Saito et al.

(2013), Gorelenkov (2016), Ochoukov et al. (2020), and Ochoukov et al. (2023).
5Dendy et al. (1994) and McClements et al. (2015).
6Ochoukov, McClements, et al. (2019).
7Cottrell et al. (1993).
8Saito et al. (2013).
9Moseev et al. (2021).

10Ochoukov, McClements, et al. (2019), Liu et al. (2021), and Liu et al. (2023).
11Salewski, Geiger, Moseev, et al. (2014), Weiland et al. (2016), Salewski, Geiger, Jacobsen, et al. (2016), Weiland

et al. (2017), Madsen et al. (2018), Madsen, Salewski, et al. (2020), Madsen, Huang, et al. (2020), and Su et al.
(2021).

12Jacobsen et al. (2016b).
13Salewski et al. (2017) and Salewski, Geiger, Jacobsen, et al. (2018).
14Salewski et al. (2017) and Salewski, Geiger, Jacobsen, et al. (2018).
15Galdon-Quiroga, Garcia-Munoz, Sanchis-Sanchez, et al. (2018) and Galdon-Quiroga, Garcia-Munoz, Salewski,

et al. (2018).
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by solving an inverse problem. The technique is called ‘velocity-space tomography.’ In addition to
2D velocity distribution functions, velocity-space tomography has inferred 1D velocity distribution
functions of FIDA16 measurements, synthetic ICE measurements17, and 3D phase-space distri-
butions of all energetic particle orbits based on FIDA measurements.18 Such inversions require
knowledge of the velocity-space sensitivity of the diagnostics, which is encoded in weight functions.
Weight functions have been developed for most of the above-mentioned diagnostics, including
FIDA19, neutral particle analyzers (NPA)20, CTS21, FILDs22, GRS23, NES24, and 3 MeV proton
diagnostics25.

The conceptual framework, interpretation, and practical implementation of the 2D ICE weight
function formalism to obtain the locations of the ions generating the ICE in velocity space from
ICE signals are developed in this paper. In section 2, it is argued, based on results from ICE
experiments and simulations, that ICE weight functions can be computed for ICE arising from a
single ring-beam fast ion distribution function. In section 3, a new model for the inference of the
location of the ICE source is presented. In section 4, the generation of the 2D weight functions
is explained. In section 5, the velocity-space sensitivity quantified by ICE weight functions is
interpreted. In section 6, the locations of the ions generating the ICE in velocity space are obtained
by applying a subset search, Tikhonov regularization, and Lasso regularization to synthetic ICE
signals. In section 7, a conclusion and future outlook are given.

5.2 Modelling of ICE

ICE is thought to be generated by inverted gradients in velocity space or anisotropies. Often a
ring distribution is used to model ICE.26 It is then investigated if this ring distribution drives ICE
by solving a dispersion relation or Maxwell-Vlasov equations, and this rests on the identification
of a subset of energetic ions. This is the case for the analysis of ICE in JET27 and TFTR28 DT
plasmas, KSTAR29, ASDEX-U30, LHD31, JT-60U32, DIII-D33, and EAST34. Additionally, the
emission location or resonance condition needs to be identified. When several peaks are present,
this is usually inferred from the spectral spacing taken to correspond to the fundamental cyclotron
frequency of the emitting species under the assumption of drive by a single species at a given
location. Disambiguation of ICE has been achieved in the presence of one single spectral peak,35

16Salewski (2019).
17Schmidt et al. (2021).
18Stagner et al. (2022)
19W. W. Heidbrink et al. (2007) and Salewski, Geiger, Moseev, et al. (2014).
20W. W. Heidbrink et al. (2007).
21Salewski et al. (2011).
22Galdon-Quiroga, Garcia-Munoz, Sanchis-Sanchez, et al. (2018).
23Salewski, Nocente, Gorini, et al. (2015) and Salewski, Geiger, Jacobsen, et al. (2016).
24Jacobsen et al. (2015), Eriksson et al. (2019), Järleblad et al. (2021), and Järleblad et al. (2022).
25W. Heidbrink et al. (2021).
26Moseev and Salewski (2019).
27Cottrell et al. (1993)
28Cauffman et al. (1995)
29Thatipamula et al. (2016), Chapman et al. (2017), and Chapman et al. (2019).
30Ochoukov, McClements, et al. (2019) and Chapman et al. (2020).
31Saito et al. (2009), Veshchev et al. (2009), Bustos et al. (2011), Ozaki et al. (2012), Reman (2018), and Reman

et al. (2019).
32Sumida et al. (2017), Sumida et al. (2018), Sumida et al. (2021).
33Thome et al. (2019), Zalzali et al. (2021), and DeGrandchamp et al. (2022).
34Liu et al. (2023).
35See, for example, Ochoukov, McClements, et al. (2019) and Sumida et al. (2021).
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and in the presence of multiple energetic ion species.36 Once a likely emission location with an
inversion or a strong anisotropy has been identified, a particle-in-cell (PIC) simulation in the local
approximation can be set up to study the fast collisionless relaxation of energetic ions under the
MCI37 from which the linear phase is compared with theory38, synthetic spectra are calculated,
and the non-linear phase investigated by higher order spectral methods39.

Complementary to comparing measured ICE spectra to simulated ICE spectra, obtained in
the nonlinear saturated regime from PIC-type computations, one may also compare the time
evolution of measured ICE spectra to linear growth rates obtained from MCI theory. Such an
approach was first applied40 for TFTR (for sub-Alfvénic MCI with finite k∥) and more recently in
ASDEX Upgrade core ICE driven by sub-Alfvénic energetic deuterons in deuterium plasmas41

and by sub-Alfvénic fast hydrogen in helium plasmas42. In these studies at ASDEX Upgrade,
TRANSP simulations of NBI show three peaks at the full, half, and third of the injection energy.
In the modelling, the growth rates were evaluated using cold ring distributions located at the
full-energy beam peak in velocity space. The propagation angle of the ICE was constrained
by maximising growth rate and avoiding strong wave reabsorption in the plasma. Recent PIC
simulations have shown that several energetic ion populations can simultaneously drive the MCI
and also interact with it. This is true for beam-driven MCI and the beam ions interacting with
the MCI43 but also for beam ions driving the MCI interacting with an energetic thermal ion
population (100 keV helium ash α-particles).44 Therefore, this questions the relaxation of single
ring distributions for NBI studies. However, the beam deposition profile is energy dependent,
so two fast ion populations may not reach their maximum density at the same radial position,
thereby minimising such interactions.45 If one is interested in finding where in velocity space
instability occurs, it will usually be dictated by the maximum energy component, provided an
inverted gradient in velocity space exists in that region. Therefore, as indicated by simulations,
ICE in the presence of beam interaction will still be strongly driven, possibly affecting the spectral
properties, but not as much if the beam density profiles peak at different locations. This motivates
the calculation of weight functions arising from a single ring distribution of fast ions in this work.

The physical parameters correspond to those of the LHD edge given in Schmidt et al. (2021)
and Reman et al. (2022): the magnitude of the background magnetic field is B0 = 1.75 T, electron
density ne = 0.9 × 1019 m−3, and thermal electron and deuteron temperatures Te = 800 eV
and TD = 900 eV. The hybrid-PIC simulations initialise the background thermal deuterons and
ring distributed protons on a 1D grid consisting of 2048 cells using a quiet start for the thermal
deuterons. Each ion species is represented by 500 macroparticles per cell. The code follows the
velocity-space trajectories, including the gyromotion of the fully-kinetic energetic and thermal
ions, together with the three components of the electric and magnetic fields in an isothermal
massless neutralizing electron fluid. The three velocity components of ions are sampled randomly
(1D3V PIC simulations). This approach assumes that the physics embodied in the PIC-hybrid
simulations dominates the generation of the observed ICE signals, and this appears to be well
grounded46. These simulations are followed through the linear phase of the MCI and then deeply

36See, for example, Cauffman and Majeski, 1995, Ichimura et al. (2008), Sato et al. (2010), and L. N. Liu et al.
(2019).

37Cook et al. (2013) and Carbajal et al. (2014).
38Belikov and Kolesnichenko (1975) and Dendy et al. (1992).
39Carbajal et al. (2014) and Chapman et al. (2018).
40McClements et al. (1996).
41Ochoukov, McClements, et al. (2019).
42Liu et al. (2021).
43Reman (2018).
44Dendy et al. (2023).
45Wesson (2011).
46Cook et al. (2013).
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into its non-linear saturated phase. The energetic protons are initialized uniformly and randomly
in space with velocities following a cold ring distribution fCR(v∥, v⊥) = nHδ

(
v∥ − u∥

)
δ (v⊥ − u⊥)

to generate the inversion with u⊥ = [0.6 : 0.1 : 2.6] vA and u∥ = [−2.6 : 0.1 : 2.6] vA, where
vA = 0.9 × 107 m s−1 is the Alfvén speed at the emission location. Carrying out a full scan over
(u∥, u⊥) equates to scanning over (v∥, v⊥) and for convenience we use the latter variables from here
on. The calculations are carried over 60 proton gyroperiods, ensuring saturation of the MCI across
every simulation for a relative energetic proton density nH/ne = 1.75 × 10−3. The relaxation of
the energetic protons through the MCI generates excitations of the magnetic fields at multiple
cyclotron harmonics on the fast-Alfvén branch. The spatiotemporal fast Fourier transform of
the perturbed magnetic field δBz (x, t) calculated over the whole grid and simulation duration
provides the 2D dispersion relation δBz (k, ω) where k and ω are the wavenumber and frequency.
One-dimensional power spectra are obtained by summing over wavenumber-space. The power
spectra consist of 900 points spanning the first 15 hydrogen harmonics.

5.3 A model for finding probabilities of ICE emission in
velocity space

The relation between the signal s ∈ Rm as measured by a given diagnostic and the corresponding
velocity distribution f ∈ Rn in velocity-space tomography is typically modelled as the matrix-vector
equation

Wf = sexact + e (5.2)

for a weight function matrix W ∈ Rm×n unique for the diagnostic and Gaussian white noise vector
e. The signal vector sexact is the true signal, and s = sexact + e the measured signal including
noise. The weight function matrix contains the sensitivities of the diagnostic in velocity space for
every measured data point.

Previous work on ICE weight functions computed the 1D weight functions to find the location
of the source of the ICE described by the velocity distribution function f = f (v⊥) from ICE
signals by solving the inverse problem in Eq. (5.2).47 It has since been shown that the ICE signal
can be Doppler-shifted due to the parallel velocities of the ions48. Hence, we here include the
parallel velocities and compute the 2D weight functions used to obtain the locations of the ions
generating the ICE in velocity space under the same conditions.

5.3.1 The inverse problem for ICE
Typically, velocity-space tomography is viewed as the inference of a 2D velocity distribution function
f from a signal s. For example, consider a Maxwellian distribution f . The noise free signal of the
diagnostic is then s = Wf . However, a Maxwellian distribution has no inverted velocity-space
gradients or anisotropy, so it will not generate an ICE signal. ICE requires a highly non-Maxwellian
subpopulation often modelled as a cold ring distribution fCR(v∥, v⊥) = nHδ

(
v∥ − u∥

)
δ (v⊥ − u⊥)

corresponding to a single point in velocity space.49 The goal of ICE reconstructions is to infer
the location of the ICE-generating cold ring distribution from the ICE signal and not the entire
fast-ion velocity distribution function.

The probability density function p
(
v∥, v⊥ | ps(ω)

)
of the velocities of the ICE-generating ions

with velocity components (v∥, v⊥) is related to the probability that the source of the ICE occupied
a given location in velocity space at the time of emission. The latter probability is contained in

47Schmidt et al. (2021)
48Reman et al. (2022).
49Moseev and Salewski (2019).
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the ICE probability density function ps(ω). Thus, the question becomes: given a measured ICE
signal ps(ω), what is the probability that ps(ω) originated from certain v∥ and v⊥?

From Bayes’ theorem, the probability density function p
(
v∥, v⊥ | ps(ω)

)
satisfies

p
(
v∥, v⊥ | ps(ω)

)
=
p
(
ps(ω) | v∥, v⊥

)
p
(
v∥, v⊥

)
p (ps(ω)) , (5.3)

where | means ‘given’. The sought quantity is the posterior p
(
v∥, v⊥ | ps(ω)

)
giving the probability

of the source location being at the coordinates (v∥, v⊥) given the measured signal ps(ω). This,
in turn, is given by the product of the likelihood p

(
ps(ω) | v∥, v⊥

)
and the prior p

(
v∥, v⊥

)
. The

likelihood states the probability of observing such a signal ps(ω) given the signal originated from
ions at (v∥, v⊥). The prior states the probability of the signal being generated from this location
in velocity space before having any measurements (our prior belief). The occurrence of a specific
event given a point estimate of v∥ and v⊥ is obtained by maximizing the posterior p

(
v∥, v⊥ | ps(ω)

)
as determined by maximum a posteriori (MAP) estimation. Thus,

max
v∥,v⊥

p
(
v∥, v⊥ | ps(ω)

)
= max

v∥,v⊥

p
(
ps(ω) | v∥, v⊥

)
p
(
v∥, v⊥

)
p (ps(ω)) . (5.4)

Let f be the vector containing the locations of the ions generating the ICE in velocity space,
i.e., a 1D array reshaped from the 2D velocity distribution of the ions generating the ICE, and
s the measured ICE signal. Furthermore, assume the noise in s is independent and normally
distributed. Based on the forward model Wf = s, the likelihood then satisfies

p
(
ps(ω) | v∥, v⊥

)
∝ exp

(
−1

2 ∥Wf − s∥2
2

)
. (5.5)

Suppose the prior follows a multivariate Gaussian distribution, so

p
(
v∥, v⊥

)
∝ exp

(
−1

2λ ∥f∥2
2

)
, (5.6)

where λ > 0 is a width-scaling for the distribution. Substituting Eqs. (5.5) and (5.6) in Eq. (5.4),
we obtain

max
v∥,v⊥

p
(
v∥, v⊥ | ps(ω)

)
∝ max

f

[
exp

(
−1

2 ∥Wf − s∥2
2 − 1

2λ ∥f∥2
2

)]
(5.7)

Since the maximum is attained if and only if the negative logarithm is minimized, we may write

max
v∥,v⊥

p
(
v∥, v⊥ | ps(ω)

)
= min

v∥,v⊥

{
− log

(
p
(
ps(ω) | v∥, v⊥

))
− log

(
p
(
v∥, v⊥

))}
(5.8)

⇔

max
v∥,v⊥

p
(
v∥, v⊥ | ps(ω)

)
= min

f

{
1
2 ∥Wf − s∥2

2 + 1
2λ ∥f∥2

2

}
. (5.9)

Equation (5.9) is the 0th-order Tikhonov regularization formulation used to great success in
computing the 2D velocity distributions for the diagnostics mentioned in the introduction. Thus,
the interpretation of the velocity distribution of the ions generating the ICE as a probability
density function p

(
v∥, v⊥ | ps(ω)

)
given the ICE emission probability density function ps(ω) is

equivalent to solving the equation Wf = s using 0th-order Tikhonov regularization.
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Figure 5.1: (a) Power spectra computed for v∥ = 0 vA and v⊥ ∈ [0.6, 2.6] vA and combined into
one figure computed for an MCI at LHD. (b) An example power spectrum for v⊥ = 1.20 vA and
v∥ = 0 vA. (c) A 1D weight function in v⊥ for v∥ = 0 vA.

5.4 2D ICE weight functions
The physics relating an ICE signal to the location of its driving source in 2D velocity space is
contained in the weight function matrix W . The weight function matrix is obtained by computing
1D power spectra for a range of v∥ and v⊥ which are then subsequently combined appropriately
as explained in this section. Recall that a power spectrum contains the signal intensities for all
frequencies for a given v∥ and v⊥. Collecting the power spectra from low to high v⊥ for a given v∥
produces a set of 1D weight function as illustrated in Fig. 5.1 for v∥ = 0 vA computed for an ICE
detector at LHD, as was done in previous work.50 The 1D weight functions provide the detector
sensitivity at a given frequency for a given parallel velocity, which was assumed to be zero.

To obtain the weight function matrix to be used for reconstructions, the power spectra are
stacked as shown in Fig. 5.2. The result is the matrix Wijk. The i index corresponds to v∥, the j

50Schmidt et al. (2021).
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Figure 5.2: The 3D weight function matrix Wijk is obtained by stacking the 1D power spectra
according to the location of the ring distribution f(v∥, v⊥). The intersection of the black square
with the cube indicated by a dashed line is a cross section of the 3D matrix at a specific v∥. Each
vertical line corresponds to a power spectrum, as indicated by the vertical central line.

index to v⊥, and the k index to ω (not to be confused with the wavenumber k). Cross-sections
across the frequency dimension of Wijk result in 2D weight functions in v∥ and v⊥. The dashed
line in Fig. 5.2 indicates a cross-section of the 3D array for v∥ = 0 vA, showing the 1D power
spectrum from Fig. 5.1. The horizontal cross sections are the 2D weight functions.

The v∥-resolution is 0.1 vA, and the frequency resolution is ΩH/60 ≈ 0.6 MHz. The frequency
range of ω is 0 to 15 ΩH, where ΩH is the fundamental hydrogen cyclotron frequency. This
frequency range equals that used in prior work on ICE weight functions.51 Each signal peak
around the harmonics contains around 10-15 frequency measurements corresponding to 6 − 9 MHz.
This resolution is equal to that expected for ICE detectors at ITER.

5.5 Characteristics of 2D ICE weight functions in v∥ and v⊥

In this section we discuss the characteristics of the 2D ICE weight function formalism to infer
the probability density function of the ICE-generating ions in velocity space. This development
includes analysis of the characteristics of the 2D ICE weight functions in the spectral vicinity of
harmonics and for increasing harmonic number.

Figure 5.3 shows the 2D ICE weight functions at several frequencies close to the fourth
harmonic. ICE weight functions quantify the expected signal given an ion at a location (v∥, v⊥).
The high-sensitivity areas occur in bands wide in v∥ and narrow in v⊥. At 3.83 ΩH, the sensitivity
is largest for positive v∥. The closer the frequency is to the fourth harmonic, the smaller v∥ of the
most sensitive region, until right at the fourth harmonic where the sensitivity is largest for v∥ = 0.

51Schmidt et al. (2021).
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Figure 5.3: 2D weight functions in v∥ and v⊥ around the fourth hydrogen harmonic. The
high-sensitivity regions are indicated by a bright yellow colour. Note the movement of the center
of the highest sensitivity region for v⊥ ≈ 1.5 vA from around v∥ ≈ 2.0 vA at 3.83 ΩH to v∥ = 0 vA
at 4 ΩH to v∥ ≈ −1.5 vA at 4.17 ΩH. Note also how the second band occurs for progressively lower
v⊥ as the frequency increases.

Figure 5.4: 2D weight functions for the ω = 4 ΩH, 6 ΩH, and 8 ΩH. Note that the number of
sensitivity bands increases by one every second harmonics. The width of the bands in v⊥ decrease
for higher harmonics.
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The same pattern is seen for frequencies larger than the fourth harmonic, where v∥ of the most
sensitive region increases in the negative direction with the frequency shift. This is due to the
Doppler shift term k∥v∥ in the resonance condition

ω = nΩH + k∥v∥. (5.10)

The sensitivity patterns illustrated in Fig. 5.3 occur for every harmonic. Fig. 5.4 illustrates
examples of higher harmonics. For v⊥ ∈ [0.6 vA, 2.6 vA], the number of high-sensitivity bands
increases by 1 every second harmonic with no high-sensitivity band occurring at the first harmonic.
Thus, for lower frequencies, only specific v⊥ can contribute to the signal generation. For higher
frequencies, several bands in v∥ with different values of v⊥ can contribute to the signal generation.
Further, the width of the bands decreases with increasing harmonic number, and they occur for
lower values of v⊥.

5.6 Inversion methods for ICE
The goal of ICE reconstructions is to infer the velocity-space location of the ICE-generating
ions from an ICE signal. This is achieved by solving the inverse problem in W f = s, and the
resulting 2D probability distribution of the location of ICE emission f is called a ‘reconstruction’.
A regular least-square inversion fails since the problem is ill-posed. Here, we illustrate three
different techniques to compute reconstructions: (i) 0th-order Tikhonov regularization, (ii) a
least-square subset search, and (iii) Lasso regularization. In the following, we consider values of
v∥ ∈ [−2.6 vA, 2.6 vA] and v⊥ ∈ [0.6 vA, 2.6 vA]. The grid discretizes velocity space into single pixels
of size approximately 0.1 vA × 0.1 vA. To avoid performing inverse crime when reconstructing
the 2D velocity-space distributions of the ICE-generating ions, a finer grid is used to create the
ICE signals in the forward model; see Ref [80] p. 139 ff. for details. This grid is five times as fine,
i.e., 0.02 vA × 0.02 vA.

In the following calculations, it is assumed that ICE is likely to be generated at only one or a
few locations in velocity space. This is well motivated, as current theory suggests the primary
generation mechanism of ICE is given by a cold ring distribution52, cf. the discussion in Section
5.2.

5.6.1 Tikhonov regularization
As shown above in Eq. (5.9), 0th-order Tikhonov regularization solves the problem

f∗ = argmin
f

∥Wf − s∥2
2 + λ ∥f∥2

2 (5.11)

for some non-negative value of the regularization parameter λ, where the factors of 1/2 have
been removed. The noise e in the measured signal s = sexact + e influences the accuracy of the
reconstruction f∗. The weight function matrix W determines how much the noise affects the
reconstruction. An upper bound on the error in the reconstruction is

∥δf∥2
∥f∥2

≤ κ (W ) ∥δs∥2
∥s∥2

, (5.12)

where κ(W ) = s1/sn is the condition number defined in terms of the largest and smallest singular
values s1 and sn of W . For our weight function matrix, κ(W ) ≈ 104, so the problem is not

52Dendy et al. (1995).
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well-conditioned, but it is also not terribly ill-conditioned. For other inverse problems such as
velocity-space tomography of CTS or FIDA signals, κ(W ) > 1015 indicating a significant need for
regularization. However, in the case of ICE generated by an MCI at LHD, observation-relevant
noise levels of around 10% might not impact the reconstruction f∗ to a significant degree due to
the relatively low value of κ(W ). The insignificant influence of the noise in the reconstruction is
reflected in some synthetic signals having λ ≈ 10−7 as the optimal regularization parameter.

Characteristics of the solution are reflected in the singular vectors vi of the singular value
decomposition (SVD) of W .53 For any matrix W ∈ Rm×n, the SVD can be written as

W = UΣV T =
r∑

i=1
uiσiv

T
i , (5.13)

where r ≤ min(m,n) is the rank of W , U ∈ Rm×m and V ∈ Rn×n are unitary matrices, and
Σ ∈ Rm×n is a rectangular matrix with positive real numbers σi, i = 1, . . . , r, on the diagonal
(m = n). These numbers, called the ‘singular values’, satisfy σ1 ≥ σ2 ≥ · · · ≥ σr. The matrices U
and V contain the left and right singular vectors,

U = (u1, u2, . . . , um) , V = (v1, v2, . . . , vn) . (5.14)

Without any regularization, the naïve solution to Eq. (5.2) can be written in terms of the SVD
components as

f = W †s =
n∑

i=1

uT
i s

σi
vi, (5.15)

where W † is the Moore-Penrose pseudo-inverse of W . Several regularization methods can be
written as a filtered SVD expansion of the form

freg =
n∑

i=1
φi
uT

i s

σi
vi, (5.16)

where φi are the filter factors of the given regularization method. For 0th-order Tikhonov
regularization, the filter factors in terms of the regularization parameter λ are

φ
[λ]
i = σ2

i

σ2
i + λ2 ≈

{
1, for σi ≫ λ,

σ2
i /λ

2, for σi ≪ λ.
(5.17)

Thus, for all i such that the singular values σi are larger than λ, the SVD components contribute
almost fully to the solution. For all i such that the singular values σi are much smaller than λ,
the SVD components are damped and do not contribute as much to the solution. Hence, the
right singular vectors vi corresponding to the largest singular values contribute the most to a
Tikhonov-regularized solution. The characteristics of these vectors will therefore be reflected in
the solutions found.

The first nine right singular vectors are shown in Fig. 5.5. Observe that the first five have
areas spanning a wide range of v∥ and v⊥ with approximately equal intensity within the given
range. The right singular vectors numbered six to nine have clear bands in the v∥ direction for a
small range of v⊥. These properties indicate that the sensitivity in v⊥ is good and the sensitivity
in v∥ worse. Thus, we expect to do better in finding the location of the ICE-generating ions in the
v⊥-direction than in the v∥-direction.

53Hansen (2010)
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Figure 5.5: The first nine right singular vectors vi from the SVD of W . They reflect the
dominant components of the regularized solution found using Tikhonov regularization. Observe
the large areas with the same sensitivity for the first five vectors and the bands in the v∥-direction
for the singular vectors numbered six to nine. These properties reflect the sensitivity of the
regularized solutions in v∥ and v⊥.
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5.6.2 The least-square subset search
Since we are looking for a particular location in velocity space rather than for an entire distribution
function, it might be feasible to simply compare synthetic data from all possible locations in
velocity space with the actual data. For ICE-generating ions at any location in velocity space,
we can calculate the corresponding ICE signal using the forward model in Eq. (5.2). Thus, we
compute a signal σ[i] for every possible location of ICE emission in velocity space φ[i] (not to
be confused with the singular values and filter factors defined above) and store it in an array
Dσ = [σ[1], . . . , σ[N ]], where the superscript ‘[i]’ indicates the number in the array, while also
storing the corresponding velocity distributions in the array Dφ = [φ[1], . . . , φ[N ]]. The number
N is the total number of simulated ICE signals and velocity distributions. The elements in the
arrays satisfy Wφ[i] = σ[i].

Consider then the subset V ⊆ Dφ ⊕Dσ consisting of all physically relevant (σ[i], φ[i])-pairs.
A measured ICE signal s = sexact + e consisting of the underlying exact signal sexact and noise
vector e being additive white and Gaussian with e ∼ N

(
0, η2I

)
is then compared against the first

entry of all elements in V by calculating

∆2(s, σ[i]) ≡
∥∥∥s− σ[i]

∥∥∥2

2
(5.18)

for all i. The signal σ∗[i] with lowest ∆2 is chosen to be sexact. The corresponding distribution
φ∗[i] used to generate σ∗[i] is then considered to contain the location of the ions that generated
the signal. If the exact signal is not in the subset, the closest match is chosen by minimizing ∆2.

Several challenges are associated with this technique: (i) the noise e may corrupt the measured
signal s so the best-fitting signal σ∗[i] suggested by the least-square subset search is incorrect, (ii)
if ICE originates from more than one location, the subset may be too large to be stored on a
server, and (iii) computations may take too long due to the large size of the subset. We suggest
ways to overcome these challenges below.

For the least-square subset search, it is impractical to assign locations in velocity space
continuous probabilities. Thus, we need only consider a subset. Since the primary goal of ICE
reconstructions is to infer the location of the ions generating the ICE in velocity space, we may
assume that the values of a pixel are binary: ‘0’ indicates that no part of the ICE signal was
generated from this location in velocity space, and ‘1’ indicates that this location of velocity space
generated part of or all of the ICE signal.

To avoid dependency of the synthetic ICE signals σ[i] and measured ICE signals s on the
intensity of the pixels in discretized velocity space, σ[i] and s are normalized before being stored.
This also removes any experimental calibration errors. Thus, in the synthetic data generation, a
power spectrum σ[i] = Wφ[i] is first generated using the fine discretization of velocity space, then
noise added, and the spectrum normalized.

5.6.3 Lasso regularization
Letting the regularization term in Eq. (5.9) be the one-norm instead of the Euclidean norm, we
obtain the so-called ‘Lasso’ regularization54,

f∗ = argmin
f

1
2 ∥Wf − s∥2

2 + 1
2λ ∥f∥1 . (5.19)

Note that Eq. (5.19) is a MAP estimate with a Laplace prior on f , so the model for finding
probabilities of ICE emission in velocity space derived in Section 5.3 holds. If the regularization

54Tibshirani (1996).
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parameter λ is sufficiently large, some of the entries in f are driven to zero. Thus, the Lasso
regularization promotes sparsity in the solution. This is especially desirable when reconstructing
ICE-generating distributions localized to a single pixel. This regularization method sometimes
avoids the jitter in the Tikhonov-regularized solutions, as shown below. Lasso-regularized solutions
are determined using the implementation of Lasso in matlab.

5.7 Reconstructions of the locations of the ions generating
the ICE in velocity space

To generate the arrays for one ring beam least-square subset searches, a single non-zero pixel with
a value of 1 was placed at each grid point in velocity space. The corresponding signal was then
generated by computing Wφ[i] = σ[i] and the normalized φ[i] and σ[i] stored in Dφ and Dσ.

We want to determine how well the least-square subset search, Tikhonov regularization, and
Lasso regularization can reconstruct a given one ring beam distribution for a synthetic ICE signal
with 10% noise. The reconstructions found by the three different techniques are compared to the
ground truth source location of ICE emission. Further, they are multiplied with W to obtain the
signal for the reconstructed solution to locate deviations from the noise-free signal corresponding
to the ground truth distribution.

We begin by considering a velocity distribution consisting of a single pixel in velocity space;
see the first row in Fig. 5.6 for an example of a ground truth and the corresponding ICE signal.
Ten percent noise is added to the ICE signal. The three techniques are then used to determine
the locations of the ions generating the ICE in velocity space.

From the ICE signal with added noise, the least-square subset search is able to perfectly
reconstruct the ground truth; see the second row in Fig. 5.6. The small differences in the database
solution compared to the ground truth occur due to the different grid sizes used to generate the
signals in the database compared to the grid used to generate the ground truth signal to avoid
performing inverse crime.

The optimal reconstruction from 0th-order Tikhonov regularization is also close to the ground
truth distribution. A few non-zero pixels with low intensities adjacent to the correct location
in velocity space which should not be a part of the velocity distribution occur. However, the
correct location of the ground truth distribution is found and clearly indicated in the figure by
the high-intensity pixel; see the third row of Fig. 5.6. The occurrence of a number of pixels with
low intensities, which we call ’jitter’, occurs for all ICE Tikhonov reconstructions to a smaller or
larger degree. The amount of jitter depends on the complexity of the ground truth distribution
as demonstrated below. However, as is clear from Fig. 5.6, the signal corresponding to the
reconstruction found using Tikhonov regularization is almost identical to the ground truth.

The optimal reconstruction using Lasso regularization is quite similar to the Tikhonov or the
least-square subset reconstructions: for a sufficiently large value of λ, only the true location in the
velocity distribution remains. However, it is clear that the Lasso solution is more sparse than the
Tikhonov solution.

5.7.1 Noise investigation
Two investigations were performed to identify the impact of different noise levels in the signal
on the accuracy of the reconstructions: for a ring distribution of size 0.5 × 0.2 vA, (i) 0th-order
Tikhonov regularization and Lasso regularization were performed for the corresponding ICE signal
with 1-10% noise added, and (ii) reconstructions with all three methods for 0-100% noise added;
see Figs. 5.7 and 5.8.
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Figure 5.6: The velocity-space distribution of ICE-generating ions shown to the left in the first
row was used to generate the ICE signal to its right. The same signal with 10% noise was then
used to compute the reconstructions using the least-square subset search (second row), 0th-order
Tikhonov regularization (third row), and Lasso regularization (fourth row). The signals for the
three different techniques are plotted in the second column as a grey signal on top of the black
ground truth signal.
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Figure 5.7: The least-square subset search is superior to Tikhonov and Lasso regularization for
up to around 60% noise and is able to find the exact locations of the ions generating the ICE for
at least up to 10% noise in the ICE signal. The reconstructions found using 0th-order Tikhonov
regularization and Lasso regularization are almost identical up to 30% noise as indicated by the
almost identical value of ∆2 for 0-30% noise. Lasso regularization remains the worst technique for
all other noise levels.

Figure 5.8: The reconstructions from the ground truth ICE emission location shown in Fig. 5.7
using 0th-order Tikhonov regularization as a function of the noise percentage in the signal (1-10%).
Lasso regularization produces almost identical reconstructions and are therefore not illustrated.

Fig. 5.7 shows the investigated ground truth signal and the ∆2 value for Tikhonov regular-
ization, the subset search, and Lasso regularization as a function of the noise percentage. The
subset Dφ consists in this case of every one ring distribution in velocity space with size 0.5 × 0.2
vA. The subset search is the preferred reconstruction method up to around 60% noise, where it
then remains on par with Tikhonov regularization. The correct central locations are found by the
subset search for at least up to 10% noise. The best reconstructions found using Tikhonov and
Lasso regularization for 1-5% noise compare to the reconstruction found using the subset search
with around 30% noise.

As shown in Fig. 5.8, close to perfect reconstructions with a small amount of jitter are
found for the lowest levels of noise, whereas more jitter occurs for 10% noise, indicating a larger
uncertainty of the extent of the velocity distribution. Note that only Tikhonov solutions are
shown, as the Lasso solutions are almost identical; see also the ∆2 values for both methods in Fig.
5.7. The jitter is mostly spread in v∥, which is in line with the interpretation from the SVD; see
Fig. 5.5. The central location of the distribution in velocity space is clear for all noise levels in
the range of 1-10% indicated by the highest intensity pixels.
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Figure 5.9: The subset least-square search (top row), 0th-order Tikhonov regularization (middle
row), and Lasso regularization (bottom row) solutions for a Gaussian distribution. The ground
truths are shown on the left, the reconstructions in the middle, and the signals for the recon-
structions on the right. The subset search finds the correct central location of the Gaussian blob.
Tikhonov and Lasso regularization also finds the correct location of the distribution with some
jitter.

5.7.2 Reconstructions of Gaussian distributions in v∥ and v⊥

A natural follow-up to the above investigations is how well distributions with shapes other than
rectangular and no longer binary but with values in the interval [0, 1] can be reconstructed by the
subset search, Tikhonov regularization, and Lasso regularization. Here, we consider distributions
with Gaussian blobs specified by a central location (µv∥ , µv⊥) in velocity space and the standard
deviations σv∥ and σv⊥ . Further, the quality of the reconstructions from each method for Gaussian
distributions indicates the quality of reconstructions of other shapes.

The Gaussian blob shown in Fig. 5.9 has standard deviations of σv∥ = 0.2 vA and σv⊥ = 0.1 vA.
A 1-pixel subset search can identify the central location of a single Gaussian distribution; see
the top row in Fig. 5.9. The subset search can identify the correct central location for such a
distribution anywhere in velocity space. Also, the distribution can be of any size, and the subset
search correctly finds the location in velocity space. A solution found using Tikhonov regularization
produces results similar to those shown above for rectangular signals; see the middle row of Fig.
5.9. In the Tikhonov solution, the highest intensity pixels are located at the central locations of
the Gaussian blob with jitter mostly within the original distribution. The dominant error in the
solution is in the v∥ direction as predicted from the SVD; see Fig. 5.5. The same conclusions hold
for the solution found using Lasso regularization. In conclusion, all three techniques successfully
identify the location of the ions generating the ICE in all velocity space for a single Gaussian blob
of any size.

We conclude that the solutions from the subset search, Tikhonov regularization, and Lasso
regularization behave similarly, independent of the shape of the velocity-space distributions of
the ions generating the ICE: the subset search finds the pixel at the central locations of the
distributions, and similarly for Tikhonov regularization and Lasso regularization but with small
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amounts of erroneously placed jitter.

5.8 Discussion and conclusion
Prior work has computed and validated the weight functions needed to reconstruct the 2D fast-ion
velocity distribution function for measurements from diagnostics such as CTS, FIDA, GRS, NES,
and FILDs. However, the recently developed weight functions and reconstructions for ICE were
limited to 1D in v⊥, assuming v∥ = 0.

In this study, we computed the 2D weight functions for edge ICE caused by the MCI for
conditions at LHD using a non-linear 1D3V PIC-hybrid code. We compute power spectra for
a specific value of v∥ in the range -2.6 to 2.6 vA and v⊥ in the range 0.6 to 2.6 vA. The weight
functions are obtained by stacking the power spectra appropriately to obtain ascending values of
v⊥ and v∥ in the first and second dimensions and the angular frequency ω in the third dimension.
The result is a 3D array with 2D weight functions for every frequency.

The weight functions exhibit a particular pattern for frequencies close to the cyclotron
harmonics. For frequencies below the harmonics, the highest signal sensitivities occur for positive
v∥. Conversely, for frequencies above the harmonics, the highest signal intensities occur for
negative v∥. At the frequency of the harmonic, ions with v∥ = 0 have the highest sensitivity. This
effect is due to the Doppler shift. Also, the sensitivities occur in horizontal bands in v⊥ so only
some specific values of v⊥ contribute to the measured signal. Tikhonov and Lasso-regularized
reconstructions have good resolution in v⊥ for this reason.

Reconstructions can be performed for synthetic velocity distributions for the ions generating
the ICE using a least-square subset search, 0th-order Tikhonov regularization, and Lasso regular-
ization for noise realizations at least up to 10%. The least-square subset search is able to correctly
identify the central locations of the distributions independent of the level of noise added, but
the drawback is the requirement of large storage space if the subset is to consist of anything but
single-pixel functions generating the ICE.

Tikhonov and Lasso reconstructions are accurate for localized distributions in velocity space.
With increasing size of the distributions, the reconstructions are corrupted by erroneous jitter
occurring at incorrect locations in velocity space. Still, Tikhonov and Lasso reconstructions have
high resolution in v⊥ and contain high-intensity pixels in the signal locations of the distributions
in velocity space.

We performed our simulations for edge ICE at LHD. Thus, extending the results to other
machines requires new simulations to obtain the 2D weight functions. Therefore, future work
should investigate whether it is possible to reproduce the results of this study for synthetic ICE
signals at other machines. However, this study indicates the feasibility of the ICE diagnostic for
use at both current and future machines to diagnose fast-ion behaviour. Thus, our results support
the proposal to include the ICE diagnostic at ITER, where it could contribute to integrated data
analysis for alpha particle distribution functions.55

55Salewski, Nocente, Madsen, et al. (2018).



Chapter 6

Reconstruction methods for
velocity-space tomography of
fast-ion loss detectors

This section presents the paper “Reconstruction methods for velocity-space tomography of fast-ion
loss detectors”, submitted to the journal Plasma Physics and Controlled Fusion.

6.0 Abstract
This paper proposes a new way to characterize different fast-ion loss detectors (FILDs) in terms of
a gross weight function and a gross strike map for the pinhole-scintillator relation computed from
the FILDSIM-modeled weight function matrix. We show that the gross weight function and gross
strike map indicate the largest sensitivities to ions with pitch around 30-45◦ at 6-8 cm gyroradius
for the FILD detector FILD1 at ASDEX Upgrade. Furthermore, we introduce three algebraic
iterative reconstruction techniques to obtain reconstructions of velocity distributions in the pinhole
of the FILD detector close to the plasma edge. We show that they perform as well as Tikhonov
regularization and highlight characteristics that make them preferable to Tikhonov regularization.
We also show that the current FILD model for FILD1 at ASDEX Upgrade computes low resolution
pinhole reconstructions for ion velocity-space distribution functions with values of the gyroradius
above 6 cm.

6.1 Introduction
Ions with superthermal energies are an essential ingredient of fusion plasmas as they heat the
plasma. They are generated by neutral beam injection (NBI), electromagnetic wave heating in the
ion cyclotron range of frequencies (ICRF), and alpha particles from DT-reactions. Such ions are
called ‘fast ions’ and typically have energies spanning from few tens of keVs to several MeVs. The
alpha particles from DT-reactions will be the source of energy to keep a self-sustaining burning
plasma. However, uncontrolled fast ions may present a risk if lost to the walls: the efficiency
of plasma heating is reduced and plasma-facing components damaged.1 Such radial transport

1Duong et al. (1993) and Fasoli et al. (2007).
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can occur due to fast-ion interactions with magnetohydrodynamic (MHD) activity.2 In present
devices, the radial transport of fast ions is intensely studied.3

Thus, it is essential to understand the mechanisms resulting in fast-ion losses to reduce their
negative impact on the performance of fusion devices. A clear picture of the velocity space of the
lost fast ions is helpful to gain this understanding since their orbits may be obtained by backward
modelling to identify what caused them to be lost. Local information of the velocity space of lost
fast ions can be obtained from measurements at the plasma edge using fast-ion loss detectors
(FILDs).4 FILDs work as magnetic spectrometers by dispersing the lost fast ions onto a plate
with the impact locations depending on the pitch angle and gyroradius of the ion. Faraday-cup
measure the current induced by fast ions impinging on a conductive plate, and scintillator FILDs
measure the light emitted from a scintillating material on a plate.5

FILDs are installed at several machines, including ASDEX Upgrade6, DIII-D7, JET8, NSTX9,
MAST-U10, EAST11, KSTAR12, LHD13, and TCV14. FILDs for ITER15 and JT-60SA16 are being
designed. FILD data is supposed to represent the velocity-space distribution of the ions passing
through the pinhole of the FILD. This is obtained by measuring the pitch angles α and gyroradii
ρ of the ions passing through the pinhole of the FILD, which can be translated to, e.g., v∥ and v⊥,
from the relations

α = cos
v∥

v
, and (6.1)

ρ = mv⊥

ZeB
, (6.2)

where v =
√
v2

∥ + v2
⊥. However, ion trajectories with specific values of pitch and gyroradius have a

distribution of strike-points on the FILD scintillator plate since ions passing through the pinhole
may occupy different positions in the pinhole and have different gyrophases. Thus, the measured
velocity distribution is a blurred version of the actual velocity distribution of the ions passing
through the pinhole.

An approximate pinhole velocity distribution can be obtained by performing velocity-space
tomography on a measured scintillator velocity distribution. Zeroth-order Tikhonov regularization
has been used previously with good results.17. Here, we use algebraic iterative reconstruction
techniques (ART) to compute the fast-ion velocity-space distribution function in the pinhole and
compare them to the distributions obtained using zeroth-order Tikhonov regularization. ARTs may
provide equal or better results for faster computation times compared to zeroth-order Tikhonov
regularization. Furthermore, our invesgitations show that using ARTs to compute the tomographic
reconstructions removes the need to determine an optimal regularization parameter due to the
robustness of the solutions around the point of semi-convergence.

2Garcia-Munoz et al. (2010) and Heidbrink and White (2020).
3Garcia-Munoz et al. (2013).
4Zweben (1989) and Garcia-Munoz et al. (2009).
5Jansen Van Vuuren et al. (2022).
6Garcia-Munoz et al. (2009), Gonzalez-Martin et al. (2018), and Gonzalez-Martin et al. (2019).
7Fisher et al. (2010).
8Baeumel et al. (2004).
9Darrow (2008)

10Rivero-Rodriguez et al. (2018) and Rivero-Rodriguez et al. (2019).
11Chang et al. (2016).
12Kim et al. (2012).
13Nishiura et al. (2004).
14Poley-Sanjuan et al. (2023).
15Garcia-Munoz et al. (2016).
16Ayllon-Guerola et al., 2021.
17Galdon-Quiroga, Garcia-Munoz, Sanchis-Sanchez, et al. (2018) and Galdon-Quiroga, Garcia-Munoz, Salewski,

et al. (2018).
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Figure 6.1: Illustration of a scintillator FILD: (a) FILD probe head (dark gray) and scintillator
(green). The red fast-ion orbit is blocked by the collimator and the blues are not. The white
strike map is overlaid on the scintillator. (b) and (c) show detailed views of the collimator. From
Galdon-Quiroga, Garcia-Munoz, Sanchis-Sanchez, et al. (2018).

This paper has the following aims: (i) to derive and explain a novel way to characterize
FILDs from a FILDSIM-modeled weight function matrix, (ii) to introduce the algebraic iterative
reconstruction techniques, and (iii) to prove their usefulness for performing FILD velocity-space
tomography. Section 2 defines the model for the relation between the velocity distribution at the
pinhole and the measured velocity distribution on the scintillator. Section 3 derives a gross strike
map and gross weight function characterizing the pinhole-scintillator relation in any FILD. Section
4 introduces three algebraic iterative reconstruction techniques with mathematical formulas for
each iteration. Section 5 investigates tomographic reconstructions on synthethic data relevant for
ASDEX Upgrade using the ARTs. Section 6 concludes and presents an outlook.

6.2 Forward model: the pinhole-scintillator relation
In a scintillator FILD, ions pass through a pinhole with a collimator in a probe placed near the
plasma, in the far scrape-off layer, to impact on a scintillator plate. This setup measures the
velocity space of the lost fast ions through an estimate of their gyroradii and pitch angles. See
Fig. 6.1 for a schematic of a scintillator FILD.

Traditionally, FILD measurements are given in gyroradius ρ and pitch angle α. Pinhole
velocity space will be distinguished from scintillator velocity space by adding a subscript p. The
FILD signal s(α1, α2, ρ1, ρ2) in the pitch angle range [α1, α2] and gyroradius range [ρ1, ρ2] is the
number of photons measured at a given location on the scintillator plate. The velocity-space
distribution function of the ions passing through the pinhole is f(αp, ρp) for a given pitch angle
αp and gyroradius ρp with units [ions ◦−1 cm−1]. The relation between the measured signal and
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the velocity distribution of the pinhole ions is then18

s(α1, α2, ρ1, ρ2) =
∫ ∞

0

∫ π

0
w(α1, α2, ρ1, ρ2, αp, ρp)f(αp, ρp) dαp dρp, (6.3)

where w(α1, α2, ρ1, ρ2, αp, ρp) is the weight function for the signal in the specified velocity-space
ranges on the scintillator given some location (αp, ρp) in pinhole velocity space. The units of w are
[photons per ion]. The weight function w for a given range of scintillator velocity-space coordinates
(α1, α2, ρ1, ρ2) indicates the velocity-space coordinates of the ions able to produce a signal at this
location in scintillator velocity space. The weight function can be written as the product of a
probability function Pr(α1, α2, ρ1, ρ2 | αp, ρp) of an ion located at (αp, ρp) producing a signal in
the interval (α1, α2, ρ1, ρ2) and the yield of the scintillator ϵ(ρp) for an ion with gyroradius ρp.
Similar decomposition has been performed for FIDA,19 NES,20 and GRS21. Thus,

w(α1, α2, ρ1, ρ2, αp, ρp) = Pr(α1, α2, ρ1, ρ2 | αp, ρp) ϵ(ρp). (6.4)

The probability function is obtained by modeling a large number of orbit trajectories initiated
in the pinhole with random position and gyrophase for a predetermined range in pitch angle
and gyroradius using the FILDSIM code22. For each initial pitch angle, i.e., the value of the
pitch angle of the ions initialized in the pinhole, the gyroradius strike-point distributions can
be modelled as skew Gaussians with mean ρ0 and standard deviation σ0. The skew Gaussian is
a Gaussian multiplied by an error function with a factor βρ controlling the skewness. For each
initial gyroradius, the pitch-angle strike-point distributions can be modelled as Gaussians with
mean α0 and standard deviation σα. Thus, the probability function becomes

Pr(α1, α2, ρ1, ρ2 | αp, ρp) = fcol

2πσασρ
exp

(
− (α0 − α)2

2σ2
α

− (ρ0 − ρ)2

2σ2
ρ

)
×
(

1 + erf
(
βρ

ρ0 − ρ√
2σρ

))
(6.5)

for α0 ∈ [α1, α2] and ρ0 ∈ [ρ1, ρ2], where fcol = N/Np is the number of markers reaching the
scintillator N divided by the number of markers initialized at the pinhole Np for fixed values of
pitch angle and gyroradius in pinhole velocity space. The dependence of αp and ρp is through the
estimates of α0, ρ0, σα, and σρ.

Measurements in an accelerator facility were performed to obtained the yield as a function of
energy for protons, deuterium, and α-particles23. The relation between the photon yield per unit
length dY/dx and the stopping power of the incident particles dE/dx follows Birks’s model24

dY
dx =

S dE
dx

1 + k dE
dx

, (6.6)

where S and k are constants related to the scintillator efficiency and the degree of quenching.
FILDSIM computes values of α0, ρ0, σα, σρ, and fcol for all (αp, ρp). The probability function

can then be computed for all scintillator velocity-space ranges (α1, α2, ρ1, ρ2) using Eq. (6.5).
18W. W. Heidbrink et al. (2007) and Salewski, Geiger, Moseev, et al. (2014).
19Salewski, Geiger, Moseev, et al. (2014).
20Jacobsen et al. (2015).
21Salewski, Nocente, Gorini, et al. (2015) and Salewski, Nocente, Gorini, et al. (2016).
22Galdon-Quiroga et al. (2019).
23Galdon-Quiroga, Garcia-Munoz, Sanchis-Sanchez, et al. (2018).
24Galdon-Quiroga, Garcia-Munoz, Sanchis-Sanchez, et al. (2018).
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Combining the probability functions with the yield function for all velocity-space ranges gives the
weight functions at all locations in velocity space. The chosen velocity-space ranges are determined
by the scintillator velocity-space discretization used. Scintillator velocity space is discretized with
resolution ∆α and ∆ρ, and pinhole velocity space is discretized with resolution ∆αp and ∆ρp .
The discretization of Eq. (6.3) yields

s = Wf, (6.7)
where s ∈ Rm, f ∈ Rn, and W ∈ Rm×n. The values of m and n depend on the discretizations
chosen for the pinhole and scintillator velocity spaces.

Equation (6.7) describes the inverse problem we wish to solve: given a measured signal s
and the weight function matrix W , determine f . However, since the condition number κ(W ) =
σ1/σn ≫ 1015, the problem is very ill-posed. Thus, noise e in the signal s = sexact + e may result
in large errors in the solution f as shown by the bound25

∥f − f true∥2
∥f∥2

≤ κ(W )∥e∥
∥s∥

. (6.8)

An approximate solution for f can be found by using, e.g., Tikhonov regularization or ARTs.

6.3 Characterization of FILDs

6.3.1 Gross strike map
Consider ions at a specific location in pinhole velocity space, so f = δ(αp, ρp) for some αp and
ρp. Due to differences in gyroangle and the location of the ions in the pinhole, such ions may
impact the scintillator at different locations resulting in a spread of locations in velocity space.
We call this a ‘strike map’; see Fig. 6.2(a) for an example. The black cross in the figure indicates
the pinhole velocity-space location of the ions being considered, and the colored areas indicate
the possible strike locations on the scintillator. A strike map is obtained by letting f be a delta
function corresponding to a single column of the weight function matrix, so f = δ(αp, ρp). To
see where, on average, ions will strike the scintillator, strike maps for all pinhole velocity-space
locations can be summed, which is equivalent to letting f = 1. Thus, the gross strike map is

Wstrike(α1, α2, ρ1, ρ2) =
∫ ∞

0

∫ π

0
w(α1, α2, ρ1, ρ2 | αp, ρp) dαp dρp. (6.9)

An illustration of the gross strike map is given in Fig. 6.2(b).

6.3.2 Gross weight function
The pinhole velocity distribution is blurred when measured on the scintillator since ions with a
given pitch angle and gyroradius in pinhole velocity space impact on the scintillator as given by
the strike map. Knowing the strike maps of all positions in the pinhole, we can determine which
positions in the pinhole can reach a given position on the scintillator. This is reflected in a weight
function. The weight function for the location (57◦, 5.3 cm) is illustrated in Fig. 6.3(a). Ions at
non-zero locations can impact the scintillator at the black cross. As the units of a weight functions
are [photon per ion], the weight function indicates the sensitivity of a specific pixel measurement
on the scintillator.

In the equation s = Wf , each row of W is a weight function containing information about
the sensitivity of a measurement point with coordinates (αs, ρs) on the scintillator plate. For

25Hansen (2010).
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Figure 6.2: (a) Strike map for the location (57◦, 5.3 cm). (b) Gross strike map for FILD1 at
ASDEX Upgrade.

Figure 6.3: (a) The weight function for the location (57◦, 5.3 cm) in scintillator velocity space
indicating all locations in pinhole velocity-space that can impinge the scintillator at the black
cross in scintillator velocity space. (b) The gross weight function for FILD1 at ASDEX Upgrade.
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Figure 6.4: The collimator factor map for FILD1 at ASDEX Upgrade. The pitch angle and
gyroradius coordinates are in pinhole velocity space. From Galdon-Quiroga, Garcia-Munoz,
Sanchis-Sanchez, et al. (2018).

example, the first row of W corresponds to the bottom left corner of the scintillator. The weight
function for this location indicates which parts of pinhole velocity space can produce a signal at
this location, and how much signal each position in the pinhole velocity space produces on that
measurement position on the scintillator plate. The same interpretation can be made for each
row of W . This sensitivity is unique to a specific FILD. Taking the sum of all weight functions
produces the ‘gross weight function’ matrix. See Fig. 6.3(b) for the gross weight function for
FILD1 at ASDEX Upgrade for the weight functions computed for discharge #38017. It indicates
the total amount of photons generated per ions per location in pinhole velocity space. The largest
amount of photons are generated from ions with gyroradii of 6-8 cm for all pitch angles, and there
are regions where no photons are generated.

The gross weight function matrix is related to the 2D collimator factor map, which provides a
map of the ratio N(αp, ρp)/Np(αp, ρp) for the entire pinhole velocity space, where N is the number
of ions impacting the scintillator and Np the number of ions initialized in the pinhole. See Fig. 6.4
for the collimator factor map for FILD1 at ASDEX Upgrade. The areas with largest collimator
factor occur for pitch angles of 30-50◦ and gyroradii of 5-8 cm. Combining the information from
the collimator factor map and the gross weight function matrix may be used to construct FILDs
with high sensitivities in specific velocity-space regions.

The high-sensitivity areas in pinhole and scintillator velocity space for Wgross and Wstrike
are similar. This is a result of the individual weight functions and strike maps being similar as
illustrated in Figs. 6.3(a) and 6.2(a). However, the two matrices provide different information,
since the gross weight function indicates the total sensitivity of a point in pinhole velocity space
for all measurement locations on the scintillator, and the gross strike map indicates the scintillator
measurement for a uniform distribution.

6.4 Tikhonov regularization and algebraic iterative recon-
struction techniques

The inverse problem s = Wf is severely ill-posed due to the large condition number. One approach
to mitigate this problem is Tikhonov regularization where the inverse problem is the minimization
problem26

f∗ = argmin
f

∥Wf − s∥2
2 + λ2 ∥Lf∥2

2 . (6.10)

26Salewski, Geiger, Jacobsen, et al. (2016) and Galdon-Quiroga, Garcia-Munoz, Salewski, et al. (2018).
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The matrix L ∈ Rp×n for p ∈ N can be any matrix such that different aspects of the solution are
regularized, e.g., smoothness by choosing L to be a gradient operator. The value of the regular-
ization parameter λ controls the weighting between the data fidelity term and the regularization
term.

Prior information can also be implemented to find a better solution. Examples include non-
negativity of the distribution function, penalty matrices, null-measurement regions, specification
of NBI locations, and numerical simulations27. Here, we only use non-negativity.

Algebraic iterative reconstruction techniques are used in computed tomography to reconstruct
an image from measurement data. ARTs are particularly suited for solving systems such as Wf = s,
where W is a sparse matrix. The weight function matrix W is sparse for FILDs, indicating that
the techniques may be suitable. Given W and s, different ARTs compute the iterative solutions
in different ways. Here, we focus on one row-action method, one column-action method, and one
simultaneous iterative reconstruction technique. First, we introduce some notation. Denote all
rows of W by ri = (rij) and all columns by cj = (cij) so

W =


r1
r2
...
rm

 =

 | | |
c1 c2 · · · cn

| | |

 . (6.11)

Further, let W = (wij), f = (fj), and s = (si), so

Wf =


w11f1 + w12f2 + · · · + w1nfn

w21f1 + w22f2 + · · · + w2nfn

...
wm1f1 + wm2f2 + · · · + wmnfn

 =


s1
s2
...
sm

 . (6.12)

The solution to the system of equations can be interpreted as the intersection of all hyperplanes
contained in Eq. (6.12).

All of the iterative methods exhibit semi-convergence for noisy measurements S. Thus, the
reconstruction error initially decreases for some iterations k ≤ k0 but increases for k > k0. The
solutions for k < k0 are overly smooth distributions, and the k > k0 solutions are overly noisy
distributions due to overfitting the data. The iteration number can therefore be thought of as
a regularization parameter. Thus, it is important to implement a stopping criterion that best
estimates k0. However, in the case of FILD data, this is not a problem as shown below.

6.4.1 A row-action method
As an example of a row-action method, we consider Kaczmarz’s method. In Kaczmarz’s method,
every iteration vector f (k) for the kth iteration satisfies one of the m equations in Eq. (6.12), i.e.,
rif

(k) = si, where k ≡ i (mod m). If ∆f is the next step in the iterations such that equation i is
satisfied, then si − ri(f (k) + ∆f) = 0, so

∆f = r†
i

(
si − rif

(k)
)

= si − rif
(k)

∥ri∥2
2

rT
i . (6.13)

We consider only cyclic control, i.e., the rows are selected in a cyclic manner, e.g., i = 1, 2, . . . ,m, 1, 2, . . .
Furthermore, a non-negativity constraint to the solution is applied by projecting each iteration

27Salewski, Geiger, Jacobsen, et al. (2016), Madsen et al. (2018), Madsen, Salewski, et al. (2020), and Madsen,
Huang, et al. (2020).
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onto C = Rn
+. One iteration corresponds to cycling through all rows once. Letting ω(k) be the

relaxation parameter satisfying 0 < ω(k) ≤ 1, the iterations are

f (k) = PC

(
f (k) + ω(k) si − rif

(k)

∥ri∥2
2

rT
i

)
(6.14)

for k ≡ i (mod m).
Each iteration in Kaczmarz’s method divides by the row norm ∥ri∥2

2. Some rows have either
zero or very small but nonzero norm which may result in noise amplification. To avoid this
problem, a small damping parameter t(k) is added to the denominator such that the division in
each iterative step is ∥ri∥2

2 + t(k). This damping parameter is dependent on the iteration step k,
but we choose t(k) = 0.1 for all k for simplicity.28

Algorithm 1 Kaczmarz’s method
Initialization: f (0) ∈ Rn is arbitrary
for k = 0, 1, 2, . . . do
k ≡ i (mod m)

f (k) = PC

(
f (k) + ω(k) si − rif

(k)

∥ri∥2
2 + t(k)

rT
i

)
end for

6.4.2 The column-action method
The column-action method operates on the columns cj and not the rows. The column-action
method used here performs each iteration step cyclically in the direction of the unit vectors ej .
The unit vector ej has a 1 at the jth location and 0s elsewhere. The function to minimize is
g(f) = ∥Wf − s∥2

2. At each iteration, we update f (k+1) = f (k) + αkej with j ≡ k (mod n). The
step length αk should be chosen to give the maximum reduction in g(f). Thus,

αk = argmin
α

∥∥∥W (
f (k) + αej

)
− s
∥∥∥2

2
(6.15)

= argmin
α

∥∥∥α(Wej) − (s−Wf (k))
∥∥∥2

2
(6.16)

= argmin
α

∥∥∥αcj − (s−Wf (k))
∥∥∥2

2
, (6.17)

where cj is the jth column of W . The minimizer is

αk =
cT

j (s−Wf (k))
∥cj∥2 . (6.18)

Thus, with projection onto Rn
+ and relaxation parameter ωk, the iterations are

f (k+1) = PC

(
f (k) + ω(k) c

T
j (s−Wf (k))

∥cj∥2 ej

)
. (6.19)

In each iteration, the updating term divides by the norm of column j, so care must be taken here
as for Kaczmarz’s method. The same approach by adding a damping parameter t(k) = 0.1 was
used.

28This approach is validated in Andersen and Hansen (2014).
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Algorithm 2 A column-action method
Initialization: f0 ∈ Rn is arbitrary
for k = 0, 1, 2, . . . do
j ≡ k (mod n)

f (k+1) = PC

(
f (k) + ω(k) cT

j (s−W f(k))
∥cj∥2

2+t(k) ej

)
.

end for

Note a significant difference between Kaczmarz’s method and the column-action method:
Kaczmarz’s method updates the solution vector each iteration such that one of the m equations
in s = Wf is satisfied and subsequently dividing by a measure of the total photons per ion at
the corresponding location in scintillator velocity space. Conversely, the column-action method
updates the solution vector each iteration such that the maximum reduction in the equation
∥s−Wf∥2

2 is obtained for the unit vectors ej and subsequently dividing by the total photons per
ion for an ion at a given location in pinhole velocity space. Thus, Kaczmarz’s method finds the
optimal solution considering the total photons per ion at locations in scintillator velocity space,
and the column-action method finds the optimal solution considering the total photons per ion
generated per ion at locations in pinhole velocity space.

6.4.3 A simultaneous iterative reconstruction technique
Convex optimization involves minimizing convex functions over convex sets. As before, let
g(f) = ∥s−Wf∥2

2. Then ∇g(f) = −2WT (s − Wf). Then g(f) is a convex function since the
Hessian Hg(f) = 2WTW is positive semi-definite on Rn. Hence, argminf g(f) is an unconstrained
convex optimization problem that can be solved by the method of steepest descent by performing
the iterations

f (k+1) = f (k) − ω(k)∇g(f) = f (k) + ω(k)WT (s−Wf (k)). (6.20)
This method called the Landweber iteration29 is a specific case of a larger part of ARTs called
simultaneous iterative reconstruction techniques (SIRT) since the iterations operate on the rows
and the columns simultaneously. General SIRT methods have a diagonal matrix D ∈ Rn×n and a
weighting matrix M ∈ Rm×m with iterative steps

f (k+1) = f (k) + ω(k)DWTM(s−Wfk). (6.21)

For simplicity, we choose D = In×n. To obtain faster convergence, we use a SIRT with

M = diag
(

1
m ∥ri∥2

2

)
(6.22)

instead of Landweber iterations. This method is called Cimmino’s method. It can be shown
that the Landweber solution approaches the Tikhonov solution for increasing k.30 Since we are
interested in ART solutions different from the Tikhonov solution, we choose Cimmino’s method
instead.
We project onto C = Rn

+, so the iterations for Cimmino’s method are

f (k+1) = PC

(
f (k) + ω(k)WTM(s−Wf (k))

)
. (6.23)

29Hansen (2010).
30Hansen (2010).
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Algorithm 3 Cimmino’s method
Initialization: f0 ∈ Rn is arbitrary
for k = 0, 1, 2, . . . do
f (k+1) = PC

(
f (k) + ωkW

TM(s−Wf (k))
)
.

end for

Figure 6.5: (a) Synthetic pinhole distribution consisting of three monoenergetic distributions
centralized around a pitch angle of 55◦. (b) Corresponding synthetic scintillator measurement.

6.5 Tomographic reconstructions on synthetic data

The three ARTs are tested on a synthetic measurement identical to that used in Galdon-Quiroga,
Garcia-Munoz, Sanchis-Sanchez, et al. (2018). This is done since the measurement represents
expected FILD measurements at ASDEX Upgrade and to make it possible to compare the
results obtained using the ARTs with the results obtained using Tikhonov regularization given
in Galdon-Quiroga, Garcia-Munoz, Sanchis-Sanchez, et al. (2018). The synthetic measurement
represents expected first-orbit NBI losses for the full, half, and one-third energy components.
The synthetic pinhole distribution has three monoenergetic distributions, at ρ = 3.1, 4.3, and
5.4 cm, with a Gaussian distribution in pitch angle with σα = 7◦. The intensity of each
monoenergetic distribution is weighed with the corresponding NBI power fraction, which can be
set to approximately 70/20/10% at ASDEX Upgrade31. See Fig. 6.5 for an illustration of the
pinhole distribution and the corresponding scintillator signal.

In studies reconstructing known functions based on synthetic signals, it is crucial to use
different numerical grids for calculating the synthetic signal and the inversion. If not, this produces
an artificially good solution due to inverse crime. Using a different discretization of velocity space
for the reconstruction prevents ‘perfect’ reconstructions, i.e., an error-free reconstruction of the
original pinhole distribution. For the computations shown here, the discretization of velocity space
used to compute the synthetic signal s from Wf = s is 51 × 56, and the discretization used to
reconstruct the pinhole distributions f from s is 50 × 55. The effect of change of discretization is
significant and corresponds to adding an average of 15% noise in the signal. Reconstructions of
the signal using all three techniques with inverse crime are illustrated in Fig. 6.6. The visible
errors disappear for k → ∞.

31Hopf (2013).
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Figure 6.6: Reconstructions using (a) Kaczmarz’s method, (b) the column-action method,
and (c) Cimmino’s method for k = 105 iterations and committing inverse crime. Note that the
reconstructions approach the ground truth for k → ∞, i.e., the small visible errors are removed
for larger k.

6.5.1 Number of iterations
The first question to answer is how many iterations should be performed for each technique. The
answer is: it depends on the complexity of the signal, the locations of the signals in velocity
space, the grid resolution, and the noise level. Thus, it is not possible to give a general answer.
However, different stopping criteria have been developed to determine the optimal k̃ such that
the reconstruction f (k) achieves semi-convergence at iteration k̃, i.e., the iteration stops such
that f (k̃) is as close to the ground truth f true as possible. However, for the synthetic FILD
measurements considered here, the reconstructed pinhole distribution f (k) does not change much
from one iteration to the next around the semi-convergence point, as illustrated by the flat error
histories

∥∥f true − f (k)
∥∥

2 in Fig. 6.7. Thus, implementing a stopping criterion is not likely to make
a difference, and computing the optimal reconstruction becomes a matter of choosing a sufficiently
large iteration number.

The next question becomes how well the pinhole distribution can be reconstructed for a noisy
signal without committing inverse crime. Thus, we add 10% Gaussian noise to the scintillator signal
and use a different grid size for the weight function matrix to perform the reconstructions. First,
we investigate the reconstructions depending on the complexity of the synthetic measurement, i.e.,
how many different monoenergetic distributions are measured on the scintillator. Including just
the ρ = 5.4 distribution is called ‘One peak,’ both ρ = 4.3 cm and ρ = 5.4 cm ‘Two peaks,’ and all
three ρ = 3.1 cm, ρ = 4.3 cm, and ρ = 5.4 cm ‘Three peaks.’ The error histories are shown in Fig.
6.7. Observe that for one, two, and three peaks, only small improvements occur after k ≈ 1000
for all methods. This is because the signal is dominated by the full-energy beam component at
ρ = 5.3 cm. The column-action method achieves convergence the fastest at k = 1000 iterations.
The corresponding reconstructions for the one, two, and three peaks are shown in Fig. 6.8. The
reconstructions have the correct values of the pitch angle and gyroradius and also the relative
intensities for all monoenergetic distributions. Some artefacts cause the signals at ρ = 3.1 and 4.3
cm to be partitioned in the pitch direction, but reconstructions have the correct width in pitch
angle.

6.5.2 Velocity-space sensitivity
Noise prevents perfect reconstructions of the ground truth pinhole velocity-space distribution
functions. The question is how this affects the sensitivity of the reconstructions when different
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Figure 6.7: The error histories
∥∥f true − f (k)

∥∥
2 for Kaczmarz’s method, the column-action

method, and Cimmino’s method for (a) one, (b) two, and (c) three monoenergetic distributions
in pinhole velocity space populated by fast ions. Observe that semi-convergence seems to occur
around k = 105 iterations with no risk of divergence for iterations k > 105. The fastest convergence
occurs for the column-action method around k = 1000 iterations.
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Figure 6.8: Reconstructions of 1-3 signals using the column-action method for k = 1000 iterations.
The ground truths are shown in subfigures (a), (c), and (e), and the reconstructions in subfigures
(b), (d), and (f). Observe that the signal in the reconstruction has the correct location in both
pitch and gyroradius, the correct spread in pitch angle, and the correct relative intensities between
all signals.



Reconstruction methods for velocity-space tomography of fast-ion loss detectors 100

distributions are separated by just a few degrees in pitch angle and a few millimeters in gyroradius.
We investigate the same monoenergetic distributions as above without the third energy component
at ρ = 3.1 cm, so only the two distributions at ρ = 4.3 and 5.4 cm are included. Their intensities
are both normalized to one.

The results are illustrated in Fig. 6.9. To achieve separation of the signals in the reconstruction,
a greater number of iterations are now required, exacerbating the artefacts. The artefacts are small
‘blobs’ in the reconstructed distributions in pitch angle instead of a continuous signal. This effect
is caused by the noise; without noise in the signal, the reconstructions do not contain any blobs;
see Fig. 6.6. The spread in gyroradius of the blobs is caused by the overlap of the skew-Gaussian
distributions in gyroradius in the model of the forward problem.

To investigate the gyroradius and pitch angle resolution of the current model, we computed
reconstructions of two distributions with different distances in gyroradius and pitch angle between
their central locations. For the gyroradius resolution, the distributions were assumed to be
monoenergetic. For the pitch angle resolution, the assumption of monoenergetic distributions was
dropped and distributions with a spread in gyroradius considered. The results are shown in Figs.
6.9 and 6.10. The lowest possible resolution at a gyroradius of ρ ≈ 5 cm is δρ = 0.8 cm. For the
same gyroradius value, the pitch angle sensitivity is δα = 4◦.

6.5.3 Resolution dependent on location in velocity space

The ability to distinguish between two peaks in the pinhole distribution separated by just a few
millimeters or degrees depends on the locations of the signals in velocity space. The sensitivity in
velocity space is, in turn, dependent on the FILD geometry, as characterized by its gross weight
function as shown in Fig. 6.3(b).

The gross weight function shows that the sensitivity depends on both the pitch angle and the
gyroradius. Where the sensitivity is high in the gross weight function, the gyroradius resolution
is low. This is because near high-sensitivity regions, ions can impact this location from many
different locations in pinhole velocity space. Thus, it is difficult to determine where in pinhole
velocity space a given scintillator measurement came from at high-sensitivity locatioins. Thus,
the reconstructions with the worst gyroradius resolution occur for distributions at ρ ≈ 8 cm at
α = 40 − 60◦. The best gyroradius resolution occurs for ρ < 3 cm for all α.

This effect occurs since ions with smaller gyroradii can impact locations on the scintillator
corresponding to higher gyroradii. This effect is slightly increased by the skew-Gaussian model
in FILDSIM modelling the weight functions, where the upper tails overestimate the strike point
locations; see Fig. 6.11(a).

The reconstruction resolution in pitch angle is better for the smallest possible pitch angles.
This effect cannot be seen directly from the gross weight function matrix since it is dominated
by the skewness effect in the gyroradius direction. However, in the forward model, the width of
the fitted Gaussian distributions to the FILDSIM data increases in width with increasing pitch
angle independent of the gyroradius; see Fig. 6.11(b). Reconstructions of distributions at 70◦

have a resolution of approximately 5◦, whereas distributions at 35◦ have a resolution below 2◦;
see Fig. 6.12 for an illustration of such reconstructions. The error histories associated with these
reconstructions are shown in Fig. 6.13. Note that reconstructions of signals with good resolution
also achieve semi-convergence much faster.

It follows, therefore, that when constructing FILDs, it is necessary to consider the locations
of the signals in velocity space that will be measured if detailed pinhole velocity-space distribution
functions are desired. To obtain detailed tomographic reconstructions, FILDs optimized for
different parts of velocity space could be constructed.
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Figure 6.9: Reconstructions of two separate ion locations with decreasing distance in gyroradius
between their central locations. The ground truths are shown in subfigures (a), (c), and (e), and
the reconstructions are shown in subfigures (b), (d), and (f).
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Figure 6.10: Reconstructions of two separate ion locations with decreasing pitch angle between
their central locations. The ground truths are shown in subfigures (a), (c), and (e), and the
reconstructions are shown in subfigures (b), (d), and (f).



103 Reconstruction methods for velocity-space tomography of fast-ion loss detectors

Gyroradius = 4 cm

Pitch angle (º)
20 40 60 80

C
o
u
n
ts

 (
x
1
0
³
)

0

2

4

6

8

10
(a)

Figure 6.11: (a) Impact locations in gyroradius for ions initialized with gyroradii ρ = 2, 3, 4, 5, 6,
and 7 cm and α = 60◦ in the FILD pinhole. The fits of the skew-Gaussian models are indicated.
(b) Impact locations in pitch angle for ions initialized with pitch angles α = 30◦, 40◦, 50◦, 60◦, 70◦,
and 80◦ in the FILD pinhole. The fits of the Gaussian models are indicated. From Galdon-Quiroga,
Garcia-Munoz, Salewski, et al. (2018), p. 3.

6.6 Conclusion and outlook

The pinhole-scintillator relation for a specific FILD can be modeled as Wf = s for a weight
function matrix W , pinhole velocity distribution f , and scintillator velocity distribution s. The
weight function matrix W characterizes the FILD. From W , it is possible to compute a gross
strike map indicating the highest probabilities of impinging ions for a uniform distribution in
scintillator velocity space and a gross weight function indicating the how many ions at a given
position in pinhole velocity space impinge somewhere on the detector. The highest sensitivities
for FILD1 at ASDEX Upgrade occur for pitch angles 30 − 45◦ and gyroradii of 6 − 8 cm.

The algebraic iterative reconstruction techniques Kaczmarz’s method, the column-action
method, and Cimmino’s method can find high quality reconstructions of pinhole velocity distribu-
tions for FILD1 at ASDEX Upgrade. Since the only requirements to perform the reconstructions
are weight functions output from FILDSIM computations, the techniques can be used to perform
reconstructions of pinhole velocity distributions for all FILDs. In fact, the techniques can be
applied to any problem of the form s = Wf and may, therefore, also be suitable to obtain
reconstructions for other fast-ion diagnostics that can be modeled in this manner. The techniques
provide different solutions than Tikhonov regularization, which is the primary technique that has
been used to obtain reconstructions in the fast-ion community.

Tikhonov regularization and ARTs can compute perfect reconstructions when committing
inverse crime. However, artefacts occur due to noise in the signal for both techniques in the form
of localized blobs instead of a single continuous signal.

The flat error histories for reconstructions of velocity distributions relevant for prompt
NBI losses at ASDEX Upgrade indicate that increasing the number of iterations improves the
reconstructions. However, other signals may not have the same behavior; error histories depend
on the signal complexity and the signal locations in velocity space. Thus, if other synthetic
measurements lead to semi-convergence after which the reconstructions may be worsened by
additional iterations needs to be investigated. In this case, implementing optimal stopping criteria
should be considered.

Furthermore, the step size ω(k) for each iteration k has been set to 1 for simplicity in these
investigations. This value of ω(k) seemed to be sufficient for our investigations. However, the exact
value of ω(k) may be important for optimal convergence. Future work should consider optimal
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Figure 6.12: Subfigures (a), (c), and (e) show the ground truth, scintillator measurement, and
tomographic reconstruction for a location in velocity space for FILD1 at ASDEX Upgrade with
resolution below 2◦ in pitch angle. Subfigures (b), (d), and (f) show the ground truth, scintillator
measurement, and tomographic reconstruction for a location in velocity space for FILD1 at ASDEX
Upgrade with resolution below 0.4 cm in gyroradius.
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Figure 6.13: The error histories showing the semi-convergence of Kaczmarz’s method, the column-
action method, and Cimmino’s method for locations in velocity space where the reconstructions
have the resolution below (a) δρ = 0.4 cm and (b) δα = 2◦. The reconstructions are almost
identical to the ground truth.

choices of ω(k) for each iteration k.
Finally, the three ARTs studied here are just a small subset of the current existing number of

ARTs. Other techniques can be studied to investigate their applicability to obtain reconstructions.



Chapter 7

Neural networks for
reconstructions

This chapter presents the paper “Tomographic reconstructions of fast-ion loss detector measure-
ments using deep neural networks”, to be submitted.

7.0 Abstract
This paper applies a deep learning approach to solve ill-posed inverse problems in nuclear
fusion science, particularly inverse problems for data analysis of fast-ion loss detector (FILD)
measurements in tokamaks. First, we develop a deep neural network to determine the numerical
value of the regularization parameter required for performing zeroth-order Tikhonov regularization.
We show that the regularization parameter values provided by a trained deep neural network
produce high-quality tomographic reconstructions on both synthetic and experimental FILD
measurements. Second, a different deep neural network is trained to directly compute tomographic
reconstructions of the lost fast-ion velocity-space distribution function from FILD measurements,
eliminating the need for regularization. The tomographic reconstructions produced by the deep
neural network are superior to those obtained using zeroth-order Tikhonov regularization.

7.1 Introduction
Deep learning and neural networks have shown potential in addressing complex problems. The
ability of deep neural networks (DNNs) to model nonlinear relationships, manage high-dimensional
data, and generalize from training sets has proven beneficial.

When analysing physical systems, it is sometimes necessary to solve inverse problems. These
inverse problems are typically ill-posed, meaning noise in the measurements prevents a stable
solution. One typical approach to mitigate this issue is to regularize the problem by applying
Tikhonov regularization. The choice of an appropriate value of the regularization parameter is
then crucial, as it directly affects the balance between fitting the data and imposing constraints
on the solution, ultimately influencing the accuracy and reliability of the recovered solution.

In nuclear fusion science, measurements of lost fast ions play an important role in understanding
their general behaviour and their role in sustainable energy production. The analysis of such data
requires robust and accurate computational techniques to interpret the underlying physics.

In this paper, we present a DNN-based approach for determining the optimal regularization
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parameter value when using Tikhonov regularization, and we demonstrate its effectiveness in
improving the tomographic reconstructions of fast-ion loss detector (FILD) measurements. Further,
we investigate applying trained DNNs to perform tomographic reconstructions of synthetic and
experimental data from FILD measurements. Our objective is to develop a data-driven approach
that can accurately process the FILD measurements to retrieve information about the lost fast-ion
velocity distribution function in fusion plasmas. This information is essential for understanding
and optimizing the performance of fusion devices.

We begin by providing an overview of the inverse problem for FILD measurement data
analysis and discuss the challenges associated with traditional tomographic reconstruction tech-
niques. Subsequently, we introduce the proposed DNN-based method for determining the optimal
regularization parameter and for computing tomographic reconstructions directly, detailing its
architecture, training process, and evaluation metrics. We also present a comparison of the
DNN-based method with Tikhonov regularization, the current standard used in velocity-space
tomography in nuclear fusion science, demonstrating the improvements that can be achieved using
our approach.

The effectiveness of the trained DNN is demonstrated by applying it to experimental data
from FILD2 at ASDEX Upgrade. The results showcase the ability of the neural network to
accurately recover the lost fast-ion velocity-space distribution function from FILD measurements,
outperforming current implementations using Tikhonov regularization.

Section 2 describes fast-ion loss detectors and the physical model resulting in having to
solve an inverse problem. Section 3 explains Tikhonov regularization and its application to
velocity-space tomography. Section 4 details the evaluation metrics for the trained neural networks,
the details of the training dataset generation, and determines the optimal network architectures
for a feedforward neural network and a convolutional neural network to predict the regularization
parameter for zeroth-order Tikhonov regularization. Section 5 applies the best of the two trained
neural networks to predict the regularization parameters for experimental data from ASDEX
Upgrade. Section 6 investigates using a trained deep neural network to compute tomographic
reconstructions on the same experimental data from Section 5 and compares the two approaches.
Section 7 provides a discussion and conclusion.

7.2 Fast-ion loss detectors
Superthermal ions play an important role in key aspects of magnetically confined fusion plasmas.
The ions are termed ‘fast ions’ and are characterized by having energies larger than the bulk
plasma, typically on the order of tens of keVs to MeVs. Their confinement is crucial for the
optimal operation of fusion devices since fast-ion losses may lead to irreversible damage to the
plasma-facing components.

One way to investigate the mechanisms leading to fast-ion losses is using FILDs. Several
types of FILDs exist. This study considers scintillator FILDs, but the results are independent of
the exact type. Scintillator FILDs consist of a scintillator plate mounted in a probe head placed
near the plasma. During their motion, the lost fast ions may reach the pinhole in the probe head
and pass through a collimator filtering the ions. These measurements are used to determine the
velocity-space distribution function of the lost fast ions. See Fig. 7.1 for an illustration of the
working mechanism of a scintillator FILD.

The forward model of the FILD instrument can be formulated as an integral equation relating
the fast-ion velocity-space distribution function to a FILD measurement through a weight function.
The integral is over gyroradius ρ and pitch angle α, two variables that can describe the velocity
space of ions in a plasma. Typically, the variables v∥ and v⊥ are used, where v∥ is the velocity of
the ions along the magnetic field and v⊥ the velocity perpendicular to the magnetic field. The
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Figure 7.1: A typical FILD probe head (dark gray) and the scintillator (green). fast-ion orbits
shown in blue pass through the collimator and fast-ion orbits in red are blocked. From Poley-
Sanjuan et al. (2023).

four variables are related by the equations

cosα =
v∥

v
, (7.1)

ρ = mv⊥

ZeB
, (7.2)

where v =
√
v2

∥ + v2
⊥. The forward problem can be expressed as

s(ρ1, ρ2, α1, α2) =
∫ π

0

∫ ∞

0
w(ρ1, ρ2, α1, α2, ρ, α)f(ρ, α) dρdα, (7.3)

where s(ρ1, ρ2, α1, α2) is the FILD measurement in the gyroradius range [ρ1, ρ2] and pitch angle
range [α1, α2], f the velocity-space distribution function of the lost fast ions, and w(ρ1, ρ2, α1, α2, ρ, α)
the weight function modelling the detector characteristics for scintillator measurements in the
specific gyroradius and pitch angle ranges. Since the weight function w can be obtained by
computational modelling, and the FILD measurements s are obtained through experiments, the
objective is to solve Eq. (7.3) for f given s and w. This is an inverse problem.

The inverse problem of obtaining f given s and W is ill-posed. Ill-posed inverse problems are
sensitive to perturbations in the measurements resulting in the lack of unique and stable solutions,
i.e., small perturbations in the measurement can produce large perturbations in the reconstructed
solutions. Typically, regularization techniques are applied to address the ill-posed nature of the
problem by introducing additional penalties on undesired features of the reconstructed solution.
In the subsequent sections, we explore the use of deep neural networks to determine the value of
the optimal regularization parameter and to solve the inverse problem directly.
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7.3 Tikhonov regularization
Solving the ill-posed inverse problem in Eq. (7.3) in practice requires discretizing velocity space.
This turns the equation into the matrix-vector equation

Wf = s, (7.4)

where W ∈ Rm×n is the weight function matrix, s ∈ Rm is the measurement vector, and f ∈ Rn is
the desired solution. Regularization is needed to compute a stable solution. Typically, Tikhonov
regularization is used to determine the velocity-space distribution functions in velocity-space
tomography. This section gives a brief overview of Tikhonov regularization and the associated
challenges in selecting an appropriate regularization parameter.

Tikhonov regularization is a widely used technique for regularizing ill-posed inverse problems.
The ill-posed inverse problem is regularized by adding a regularization term to the objective
function, penalizing different aspects of the solution as defined by the regularization operator L.
Mathematically, Tikhonov regularization can be expressed as:

f∗ = argmin
f

∥Wf − s∥2
2 + λ∥Lf∥2

2, (7.5)

where L is a linear operator promoting desired properties in the solution, and λ is the regularization
parameter. The regularization parameter determines the trade-off between fitting the measured
data and the operator penalty. A larger value results in a solution emphasizing the operator
penalty with less emphasis on fitting the data, while a smaller value prioritizes fitting the data at
the expense of the penalty. The choice of the value of the regularization parameter can therefore
impact the solution’s accuracy, reliability, and interpretability.

Determining the optimal regularization parameter is not straightforward, since it depends on
the specific problem, the noise in the data, and the desired properties of the solution. Several
methods exist to select the value of the regularization parameter, including the discrepancy
principle, the L-curve, and generalized cross-validation. However, these methods usually determine
values of the regularization parameter within an order of magnitude but systematically different,
so the solutions systematically have higher or lower noise levels depending on the method used.
Therefore, the choice of regularization parameter is typically left to the user’s intuition, which
results in better reconstructions. We propose to teach a deep neural network to choose the optimal
value of the regularization parameter.

7.4 Determining the optimal regularization parameter
In this section, we present the results of our DNN-based approach for determining the optimal
regularization parameter for zeroth-order Tikhonov regularization applied to synthetic and experi-
mental scintillator FILD measurements. The performance of the networks on synthetic data is
evaluated using the R2 coefficient and the slope α of the straight line ℓ fitted to data containing
the DNN predictions for the optimal value of the regularization parameter λDNN vs. the true
optimal values λtrue. The line ℓ models the relationship between the predicted regularization
parameter values and the true optimal regularization parameter values. Ideally, the line has slope
α = 1 and intercept 0. The R2 coefficient is defined as

R2 = 1 −
∑n

i=1 (λDNN,i − ℓ (λtrue,i))2∑n
i=1 (λDNN,i − µDNN)2 , (7.6)
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Figure 7.2: (a) The curved shape of g(λ) = ∥f true − f(λ)∥2
2 for a scintillator FILD measurement

indicating the optimal choice of λ at the minimum. (b) The optimal choice of λ as a function of
the normalized standard deviation σ/σnn of the scintillator FILD measurement.

where n is the size of the dataset, and µDNN is the mean of the DNN predictions. The numerator
is the sum of squared residuals, since λDNN,i − ℓ (λtrue,i) is the ith residual for the DNN-predicted
regularization parameter values relative to the model ℓ. The sum of squared residuals measures
the discrepancy between the predicted regularization parameter values and the model ℓ. The
denominator is the total sum of squares and is proportional to the variance of the predictions.
The fraction can be interpreted as the fraction of unexplained variance since the variance of the
model errors is compared with the total variance of the data. The sum of squared residuals is
zero for a perfect match between the model ℓ and the predictions, and R2 = 1. Here, we call a
model always predicting the mean µDNN the ‘baseline model’ with R2 = 0. A model worse than
the baseline model has R2 < 0.

We compare the performance of a feedforward neural network (FFNN) and a convolutional
neural network (CNN) to assess the effectiveness of different network architectures. Furthermore,
we apply the best trained neural network as determined by its performance on the synthetic
scintillator FILD measurements to experimental FILD measurements from discharge #34559 at
ASDEX Upgrade and illustrate the reconstructions computed using the regularization parameter
values suggested by the network.

7.4.1 Details of the training dataset generation
The DNNs are trained and validated on synthetic FILD measurements. The inputs are synthetic
FILD measurements, and the training targets are the optimal value of the regularization parameter.
The optimal value is determined as follows. Tomographic reconstructions are computed using
non-negative zeroth-order Tikhonov regularization for a wide range of regularization parameter
values. The function g(λ) := ∥f true − f(λ)∥2

2 then has a minimum for the optimal value of the
regularization parameter, where f true is the known ground truth and f(λ) the tomographic
reconstruction. The curved shape is illustrated in Fig. 7.2(a).

The synthetic FILD measurements s are generated by computing s = Wf for a physically
relevant pinhole velocity-space distribution function f . Normally-distributed noise with 10%
standard deviation is added to the synthetic FILD measurements. Let the noise level be represented
by its standard deviation σ, and let σnn be the standard deviation of all pixels of the synthetic
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Figure 7.3: Dataset 1: Example fast-ion velocity-space distribution functions for (a) σ/σnn = 1
and (b) σ/σnn = 8.
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Figure 7.4: Dataset 2: The fast-ion velocity-space distribution function (a) at the pinhole and
(b) on the scintillator.

measurement. The parameter σnn is estimated for the whole synthetic measurement and is used
to normalize the noise level relative to the standard deviation of the measurement. See Fig. 7.2(b)
for a plot of the numerical value of the optimal regularization parameter λ as a function of σ/σnn
for dataset 1, to be described below. The optimal value of the regularization parameter increases
with the noise level, as it should. Note that for large noise levels σ/σnn ≳ 3, the method used to
determine the optimal numerical value of λ identifies different λs for the same noise level, with the
range of λs increasing as the level of noise increases. This spread in λ occurs since different noise
realizations for the same σ result in different values of the regularization parameter being optimal.

Three different datasets consisting of 1000 measurements each, to be referred to as ‘dataset
1’, ‘dataset 2’, and ‘dataset 3’, are generated with an increasing number of velocity-space locations
populated by lost fast ions. Examples of synthetic FILD measurements from each dataset are
illustrated in Figs. 7.3, 7.4, and 7.5. Measurements in dataset 1 consist of a single Gaussian
distribution in a region of velocity space that has previously been observed to contain measurements
in experiments at ASDEX Upgrade. The noise added to dataset 1 ranges from no noise, i.e.,
σ/σnn = 0, to a very high level of noise, i.e., σ/σnn = 8, where the measurement becomes
indistinguishable from the noise; see Fig. 7.3. Including such extreme measurements are thought
to improve the robustness of the DNNs and their generalizability to unknown data. Dataset 2
consists of Gaussian distributions in two locations in velocity space with noise with 10% standard
deviation; see Fig. 7.4. Dataset 3 consists of Gaussian distributions in nine locations in velocity
space also with noise with 10% standard deviation; see Fig. 7.5.

FILD measurements are collected in an array with the ith row corresponding to a specific
value of the gyroradius and the jth column to a specific value of the pitch angle. The matrix
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Figure 7.5: Dataset 3: The fast-ion velocity-space distribution function (a) at the pinhole and
(b) on the scintillator.

dimensions are 91 × 81. As input for the FFNN, the matrix is transformed to a 1D vector with
7371 entries. The 2D array is used as input to the CNN.

7.4.2 Network architectures
Deep neural networks with architectures corresponding to a feedforward neural network (FFNN)
and a convolutional neural network (CNN) were trained on the three datasets with the optimal
values of the regularization parameter as training targets. We used an 80/20 split for training and
validation for all three datasets. To evaluate the performance of the DNNs, the predictions of
the regularization parameter values are plotted as data points (λtrue, λpred). A linear regression
is then performed with the correlation coefficient R2 and the slope α of the fitted line used as
evaluation metrics. Both R2 and α equal one for 100% accurate predictions.

The architectures of the DNNs are optimized in terms of several parameters evaluated by their
effect on the resulting predictive performance of the DNNs according to the evaluation metrics R2

and α. These parameters are
• Number and type of layers
• Number of nodes
• Activation function
• CNN kernel size
• Max pooling
• Stride length
• Dropout layers
• Padding

The activation functions considered are ReLU and tanh to account for non-linearities, where

ReLU(x) =
{
x if x > 0,
0 otherwise,

(7.7)

tanh x = sinh x
cosh x = ex − e−x

ex + e−x
= e2x − 1

e2x + 1 . (7.8)

Max pooling is used and preferred over average pooling since max pooling works as a noise
reduction and dimensionality reduction mechanism, which is helpful for better predictions with
noisy and high-dimensional data. The size of the CNN kernel is important. Dropout is used to
avoid possible overfitting. Different padding schemes may affect the predictions as the array is
processed differently by the kernel of the CNN for different padding schemes. Finally, we use the
‘Adam’ optimizer and the mean squared error as loss function.
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Figure 7.6: Training histories of (a) the FFNN and (b) the CNN on dataset 1 for the first 1000
epochs.

Architecture Baseline Ideal 6 layers 10 layers 11 layers 12 layers
R2 0 1 0.8478 0.8966 0.9012 0.9012
α 0 1 0.8382 0.8606 0.9655 0.8660

Table 7.1: The performance of the FFNN as a function of the number of layers. The best
performance is achieved for 11 layers with 1024 nodes in the input layer.

7.4.3 Feedforward neural network
The optimal architecture for the FFNN was determined by testing the number of dense layers and
the number of nodes in each layer resulting in improvements in the two evaluation metrics R2 and
α compared to a baseline model always predicting the mean µDNN, so R2 = 0. A model worse than
the baseline model has R2 < 0. This can happen, e.g., if the model predicts a decreasing relation,
whereas the relation should be increasing. This testing was performed on all three datasets. A
batch size of 20 and 100 epochs were used in the training. The neural networks had almost
converged after 100 epochs with only minor improvements to be gained by additional epochs as
indicated by the training history of the FFNN on dataset 1; see Fig. 7.6(a). With a loss value of
10−6 after 100 epochs, no further optimization is needed since a deviation of the numerical value
of the regularization parameter on the order of 10−3 or less for λ values around 10−1 does not
result in any appreciable changes in the recovered solution to the ill-posed tomography problem.
There seems to be some overfitting indicated by the decreasing training error compared to the
almost constant validation error. However, the performance is high on the experimental data set
evidenced by the improved tomographic reconstructions, as discussed in Section 7.5.

The same performance increases occurred for the same architectural changes across all three
datasets. The number of nodes in each layer was chosen as 2n for n = 0, 1, 2, . . . counting from
the output layer. The performance of the network was found to be the best for 11 layers with
R2 = 90.12% and α = 0.9655; see Table 7.1. Note that the R2 are comparable for most tests, but
the accuracy of the prediction as given by α is best for 11 layers. The choice of activation function
makes no appreciable difference. Implementing dropout layers with 10% dropout increases R2,
but the value of the slope deviates more from one; see Table 7.2. Thus, no dropout layers were
used. The architecture is illustrated in Fig. 7.7(a). The predictions of the optimal FFNN vs. the
true values for dataset 1 are illustrated in Fig. 7.8(a) with the R2 and the slope of the fitted line
indicated.

The FFNN performs worse on datasets 2 and 3. The correlation coefficient is R2 = 9.285%
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Dropout Baseline Ideal 0 layers 1 layer 2 layers 4 layers 6 layers
R2 0 1 0.9012 0.9110 0.9045 0.9221 0.9314
α 0 1 0.9655 0.8658 0.8652 0.8156 0.7053

Table 7.2: The performance of the FFNN with the indicated number of dropout layers with 10%
dropout. The dropout layers are implemented after layers 1-6. Note that R2 improves slightly,
but α decreases significantly with more dropout layers.

Figure 7.7: The architectures of the (a) feedforward neural network and (b) convolutional neural
network used to determine the optimal value of the regularization parameter for zeroth-order
Tikhonov regularization on scintillator FILD measurements.

and α = 0.5674 for dataset 2 and R2 = 57.02% and α = 0.7856 for dataset 3; see Table 7.5. The
reason for the large performance drop for dataset 2 is unknown. However, the maximal deviation
from the true optimum λ is approximately 0.004, which is not a sufficiently large deviation to
cause the tomographic reconstructions to worsen significantly. Therefore, although the FFNN
scores poorly on our chosen evaluation metrics, the suggested regularization parameters are still
useful. The predictions of the optimal FFNN vs. the true values for dataset 2 are illustrated in
Fig. 7.9(a). The large spread in the data around the fitted line results in the low value of R2.
The significant underregularization gives the value of the slope far from one.

7.4.4 Convolutional neural network
Similar testing strategies as was used to find the FFNN architecture were used to find the optimal
CNN architecture. The architecture was then tested for different kernels, padding, max pooling
sizes, stride length, and dropout layers. See Table 7.3 and 7.4 for the specific performance
evaluations for stride length and padding. The final architecture is illustrated in Fig. 7.7(b). The
optimal CNN has a (2, 2) kernel size, no padding, a (2, 2) max pooling size, a stride length of (1,
1), and no dropout layers. The CNN was trained using a batch size of 10 and for 100 epochs, as
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Figure 7.8: The deep neural network predictions of the numerical value of the regularization
parameter λ in zeroth-order Tikhonov regularization vs. the true optimal value of λ for (a) a
feedforward neural network and (b) a convolutional neural network on dataset 1.

Figure 7.9: The deep neural network predictions of the numerical value of the regularization
parameter λ in zeroth-order Tikhonov regularization vs. the true optimal value of λ for (a) a
feedforward neural network and (b) a convolutional neural network on dataset 2.
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shown in Fig. 7.6(b). The training was terminated at 100 epochs for the same reasons as given
for the FFNN. See Table 7.5 for the performance evaluation for the CNN on datasets 1, 2, and 3.
The predictions of the CNN vs. the true optimum λ are illustrated for datasets 1 and 2 in Figs.
7.8(b) and 7.9(b).

Note that α < 1 for both the FFNN and CNN on all three datasets and for all investigated
network parameter values. This indicates that the networks tend to underregularize compared to
the optimum.

Stride length (1, 1) (2, 1) (1, 2) (2, 2)
R2 0.9523 0.9270 0.9334 0.9385
α 0.9624 0.9077 0.9185 0.9342

Table 7.3: CNN performance as a function of the stride length.

Padding None (“valid”) Keep size (“same”)
R2 0.9523 0.9436
α 0.9624 0.9323

Table 7.4: CNN performance as a function of the padding.

7.5 Optimal regularization parameter estimation for exper-
imental FILD measurements

Since the trained CNN outperforms the trained FFNN on both evaluation metrics by having a
value of R2 and α closer to one, we use the CNN in the following. The CNN was applied to
experimental FILD measurements from FILD2 at ASDEX Upgrade during discharge #34559. The
time resolution of FILD2 is 20 ms. The measurements are made for three seconds resulting in 150
measurements. Discharge #34559 investigated the impact of magnetic perturbations generated by
magnetic perturbation coils on fast-ion losses. The magnetic activity is measured using a magnetic
probe, and a FILD measures the lost fast ions. Using the measurements from the photomultiplier
tubes (PMTs) in the FILD, it is possible to compare the frequency of the lost fast ions with the
frequencies measured by the magnetic probes.The frequency of the measurements of the magnetic
probe and the PMTs are illustrated in Fig. 7.10. The magnetic perturbations around 100 kHz

FFNN Dataset 1 Dataset 2 Dataset 3
R2 0.9012 0.09285 0.5702
α 0.9655 0.5674 0.7856
CNN Dataset 1 Dataset 2 Dataset 3
R2 0.9460 0.3891 0.3215
α 0.9608 0.9587 0.8814

Table 7.5: Performance of the FFNN and CNN.
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Figure 7.10: Measurements of magnetic activity from a (a) magnetic probe and (b) FILD
photomultiplier tubes during discharge #34559 at ASDEX Upgrade. The white line in (b)
indicates the current in the the magnetic perturbation coil. Provided by Joaquín Galdon-Quíroga.

correspond to Alfvén eigenmodes transporting ions outward toward the low field side. The 10-20
kHz signals are low-frequency modes likely to be neoclassical tearing modes. The white line is the
magnetic perturbation coil current. The interactions observed between modes and fast ions occur
primarily during the time interval when the magnetic perturbation coil was turned on at t = 1.5 s.

When reconstructing the velocity-space distribution function, a single value of the regular-
ization parameter is typically used to compute reconstructions of a full discharge. This is done
because the value of the regularization parameter has to be chosen specific to a given measure-
ment, which is impractical for an entire discharge. Thus, an average value of the regularization
parameter is used, which works approximately well for all measurements. This, however, does not
produce optimal reconstructions for each measurement. For example, for discharge #34559, the
FILD measurements vary significantly during the discharge due to the current in the magnetic
perturbation coil. To evaluate the performance of the CNN, we compare tomographic reconstruc-
tions computed using zeroth-order Tikhonov regularization with λ = 0.1 and λ = 0.05 to the
tomographic reconstructions computed using the regularization parameter value suggested by the
CNN. The CNN provides the optimal regularization parameter values for zeroth-order Tikhonov
regularization for individual measurements to reconstruct the pinhole velocity-space distribution
function of the lost ions for all 150 measurements.

Tomographic reconstructions of the FILD measurement at t = 0.9403 s using the values
λ = 0.1, λ = 0.05, and the value suggested by the trained CNN are shown in Fig. 7.11. A timeline
of the discharge is indicated at the top of the figure showing the power of the NBI (horizontal black
line) and when the magnetic perturbation coils are active (blue line). The vertical black line on the
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timeline indicates the time of the measurement. Figure 7.12 shows the values of the regularization
parameter suggested by the neural network as a function of time with the magnetic perturbation
coil current overlaid and the user-defined λ values of 0.1 and 0.05 indicated. Note that the values
suggested by the neural network remain far from the user-defined values throughout the discharge.

The CNN suggests an optimal value of the regularization parameter of λ = 0.0115 for the
FILD measurement at t = 0.9403 s. The reconstruction using the value suggested by the CNN
indicates an improvement over the two user-defined values. It must be stressed here that if a
human were to perform tomographic reconstructions on just this one measurement, he would be
able to choose an optimal value of the regularization parameter such as that suggested by the CNN.
The strength of the CNN approach is that the CNN can provide an approximate optimal value
of the regularization parameter for hundres of measurements and adjust the lambda accordingly
and do it automatically. For the user, the value of the regularization parameter supplied by the
CNN also suggests an approximate range for the regularization parameter, so the user does not
have to investigate many reconstructions computed using different values of the regularizatoin
parameter. In fact, the CNN could suggest a single regularization parameter value that could
be used to perform reconstructions for an entire discharge. The values of the regularization
parameter suggested by the CNN for discharge #34559 do not deviate much from measurement
to measurement, and an average value would produce useful tomographic reconstructions.

The tomographic reconstruction obtained using λ = 0.0115 produces a more localized pinhole
velocity-space distribution function, which better reflects the pinhole velocity-space distribution
function of the lost fast ions. This can be seen both qualitatively by the shape of the high-intensity
locations in velocity space and by the values of the colorbar: the signal intensities in the CNN-
assisted reconstruction are higher by an order of magnitude than the manually chosen value. The
integral of the reconstructions over all of velocity space are identical, but the number of ions is
more localized in the CNN-assisted reconstruction. Further, the tails occurring in the gyroradius
direction do not appear in the CNN-assisted reconstruction, and these ions are instead at the
center of the distribution. The tails are erroneous artefacts introduced in the reconstruction, as
can be seen by comparison with the FILD measurement. The larger values of the regularization
parameter better suppress the noise in the FILD measurement; see, e.g., the higher intensity dot
at around (38◦, 2 cm) in the reconstruction using the CNN-suggested value of the regularization
parameter.

The CNN finds a good balance between under- and overregularizing. Overregularizing
produces solutions that are too smooth, indicate velocity-space locations of the fast ions that are
too large, and contain artefacts such as the tails in Fig. 7.11(b). A lower value of the regularization
parameter by a factor of 10, λ = 0.001, significantly amplifies the noise in the reconstruction,
which is undesirable; see Fig. 7.13.

The CNN is trained to predict the optimal value of the regularization parameter based on
the noise in the measurement and the complexity of the measurement. That the regularization
parameter is relatively constant throughout the discharge, as indicated by the timeline in Fig.
7.12, makes sense since the noise can be assumed to not deviate much from a given mean value
during the discharge, and the complexity, as understood by the trained neural network, also does
not change. However, the number of different velocity-space locations indicating lost fast ions as
measured on the scintillator changes from 0 to 3, with the intensity of the losses highest during
the second interval the magnetic perturbation coil current was turned on around 1.5 s. See Fig.
7.14 for an illustration of the different measurement complexity and relatively constant noise level.
In the same figure, tomographic reconstructions obtained using the values suggested by the CNN
are illustrated. The reconstructions do not indicate more localized distributions in pinhole velocity
space as expected. However, noise is reduced. Note the constancy of the regularization parameter
around λ = 0.0120 for all five reconstructions.
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Figure 7.11: (a) The scintillator velocity-space distribution at t = 0.9403 s as measured by
FILD2 during discharge #34559 indicated by the vertical black line in the time bar at the
top of the figure. (b)-(c) Tomographic reconstructions using the manually chosen value of the
regularization parameter λ = 0.1 and λ = 0.05. (d) Tomographic reconstruction using the value of
the regularization parameter suggested by the trained DNN.
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Figure 7.12: The values of the regularization parameter for zeroth-order Tikhonov regularization
suggested by a trained deep neural network (DNN) as a function of time during discharge #34559.
The blue line indicates the current in the magnetic perturbation coil (MPC current). ‘0’ indicates
the current is off, and ‘1’ indicates it is on. The two red dots indicate the smallest and largest
values of the regularization parameter suggested by the trained DNN.

Figure 7.13: Tomographic reconstruction using a value of the regularization parameter smaller
than the DNN-suggested value of the regularization parameter by a factor of 10, which significantly
amplifies the noise in the reconstruction.
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Figure 7.14: (a-e) FILD measurements at different times throughout the discharge normalized to
the same colorbar values illustrating the different complexities and approximately constant noise
level. (f-j) Tomographic reconstructions computed using the indicated values of the regularization
parameter suggested by the trained deep neural network. (k-o) Tomographic reconstructions
computed directly by a trained deep neural network different from that used in (f-j).
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Figure 7.15: The FILD measurements from discharge #34559 with the (a) smallest regularization
parameter predicted by the DNN at t = 2.2203 s and (b) the largest regularization parameter
predicted by the DNN at t = 2.4003 s. The DNN downregulates the value of the regularization
parameter when it detects what corresponds to actual lost ion measurements, and upregulates the
value when it detects noise.

The explanation for the constancy of the optimal value of the regularization parameter is
the following: the trained CNN can interpret what a measurement of lost fast ions is and what
noise is, even for faint measurements with intensities comparable to the noise. The CNN then
suggests the value of the regularization parameter accordingly: if it interprets a given input as
signal, it suggests a smaller value of the regularization parameter to better fit the measured data,
and if it interprets the input as noise, it provides a larger value of the regularization parameter to
reduce the fit to the data. This effect is illustrated in Fig. 7.15. The FILD measurement shown in
Fig. 7.15(a) was made at t = 2.2203 s and corresponds to the CNN-prediction with the smallest
value of λ, and that in Fig. 7.15(b) at 2.4003 s and corresponds to the CNN-prediction with the
largest value of λ. These times are indicated by the two red dots in Fig. 7.12. In (a), the two
faint spots at around (28◦, 2.8 cm) and (55◦, 2.5 cm) are noticeable, whereas in (b), only the one at
(28◦, 2.8 cm) remains. Where there is a spot indicating lost fast ions in (a), there is noise in (b).
With other parts of the measurement remaining almost identical, this difference between an actual
measurement and noise leads the trained CNN to predict an upregulated value of the regularization
parameter to suppress the noise. This capability likely comes from the training on dataset 1,
where some training examples have noise levels making the signal almost indistinguishable from
the noise.

7.6 DNNs for direct tomographic reconstructions
In this section, we use trained DNNs to directly perform tomographic reconstructions of velocity-
space distribution functions of lost fast ions. This is achieved by training a DNN on synthetic
FILD measurements with known velocity-space distribution functions of lost fast ions as targets.

Similar investigations as described in the previous section show that a CNN is superior to
an FFNN for computing tomographic reconstructions of synthetic FILD measurements. The
details of this investigation are not given here as it closely mimics that of the previous section.
The resulting CNN architecture employed for direct tomographic reconstructions consists of six
CNNs with 64 nodes with 50% dropout layers between each CNN. The kernel size used was (3, 3).
The training set consisted of 10,000 input-target pairs with a batch size of 100 used in training.
Similar to the previous section, the ‘Adam’ optimizer was used and the mean squared error as loss
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Figure 7.16: Training history of a convolutional neural network to compute tomographic
reconstructions of the velocity-space distribution function of lost fast ions.

function. The training was run for 100 epochs; see Fig. 7.16.
The training set contains synthetic measurements similar to experimental FILD measurements

measured at ASDEX Upgrade and TCV. Some deviations from experimental measurements are
purposefully introduced to allow for greater generalization capabilities of the DNN. The training
set consists of 10,000 pinhole-scintillator velocity distribution function pairs with single Gaussian
distributions with varying standard deviation in gyroradius and pitch angle centered at different
gyroradii ρ0 ∈ [1, 6] cm and pitch angles α0 ∈ [20◦, 80◦]. These ranges cover the measurable
velocity space for FILD2 at ASDEX Upgrade and the FILD at TCV. The equation for the Gaussian
distributions used to generate the data is

f(α, ρ) = 1
2πσασρ

exp
(

−1
2

(
ρ0 − ρ

σρ

)2
− 1

2

(
α0 − α

σα

)2
)

(7.9)

with appropriate values of σρ and σα chosen randomly. The single Gaussian distributions were
positioned uniformly all over the measurable velocity space. The input and target distributions
were all normalized to be independent of the actual photon counts to allow for tomographic
reconstructions of measurements from different FILDs at different machines. Five examples
of these 10,000 input-target training pairs are shown in Fig. 7.17. These examples showcase
velocity-space distribution functions of lost ions measured at TCV and ASDEX Upgrade.

We have applied the trained DNN to the experimental data from FILD2 at ASDEX Upgrade
measured during discharge #34559. The tomographic reconstruction produced by the DNN
for t = 0.9403 s is shown in Fig. 7.19(b). This reconstruction is a large improvement over
the tomographic reconstruction obtained using zeroth-order Tikhonov regularization for several
reasons. Firstly, lost fast ions are expected to originate from a precise location in velocity space,
i.e., the high-intensity location in the pinhole velocity-space distribution function should be
localized without much width. The pinhole velocity-space distribution function provided by the
DNN is significantly more localized than that obtained using Tikhonov regularization, cf. Fig.
7.11(c). Secondly, the high-intensity noise in the scintillator measurements is removed by the
DNN, and only the correct measurement appears in the reconstruction. However, the DNN misses
the faintest of the three peaks in the scintillator measurement as shown in Figs. 7.14(c) and (m),
and the faintest of the two peaks in Figs. 7.14(d) and (n). This is reasonable since the training
set only includes synthetic scintillator measurements of one peak. In fact, that the DNN is able to
reconstruct two peaks shows the DNN can generalize well from its training and go beyond the
contents of its training set.

Additional tomographic reconstructions of the discharge computed using the trained DNN
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Figure 7.17: The left column shows five examples of pinhole velocity-space distribution func-
tions (‘ground truth’) in the training set for CNN-based tomographic reconstructions of FILD
measurements. The right column illustrates the corresponding scintillator measurements.
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Figure 7.18: Subfigures (a) and (b) show two pinhole velocity-space distribution functions.
Subfigures (c) and (d) show the corresponding scintillator measurements for the pinhole velocity-
space distribution functions shown in (a) and (b). Subfigures (e) and (f) show the neural network
reconstructions based on the synthetic scintillator data.
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Figure 7.19: (a) Scintillator velocity-space distribution function measured by FILD2 during
discharge #34559 at t = 0.9403 s. (b) Tomographic reconstruction obtained from the trained deep
neural network.

are illustrated in Fig. 7.14(k-o). The trained DNN predicts pinhole velocity-space distribution
functions of the lost fast ions that are much more localized than those obtained using Tikhonov
regularization. This is in accordance with the expectations of the pinhole velocity-space distribution
functions. Further, the network removes the noise almost entirely.

7.7 Discussion and conclusion
This paper investigates the capability of deep neural networks to invert fast-ion loss detector
measurements in two distinct ways. One is to predict the optimal numerical value of the
regularization parameter used in zeroth-order Tikhonov regularization. The other is to perform
direct tomographic reconstructions of experimental fast-ion loss detector measurements. For
the regularization parameter prediction, a feedforward neural network and a convolution neural
network are optimized in terms of their architectures and relevant training parameters. The
performance of the networks is evaluated by plotting the neural network predictions vs. the known
true optimal regularization parameters for three different synthetic datasets and evaluated by how
close the correlation coefficient R2 and the slope α of the line fitted to the data points are to 1.

Both networks perform well on dataset 1. The CNN outperforms the FFNN by a small
margin, achieving R2

CNN = 0.9523 vs. R2
FFNN = 0.9012, and αCNN = 0.9624 vs. αFFNN = 0.9655.

The values of R2 and α close to 1 indicate the networks’ capacity to model the relation between the
input data and the value of the optimal regularization parameter. Dataset 1 contains measurements
with both low and high levels of noise. Therefore, the good performance indicates that neural
networks can be trained to identify a large range of noise levels in FILD measurements. The
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network performance is worse on datasets 2 and 3. This is expected since the datasets are more
complex. The exact reason for this performance drop needs to be investigated further. Perhaps it
can be remedied by training the network on additional data.

Since the CNN outperforms the FFNN, the CNN was used to predict the optimal value of
the regularization parameter for zeroth-order Tikhonov regularization for 150 experimental FILD
measurements made using FILD2 at ASDEX Upgrade during discharge #34559. Typically, when
processing an entire discharge using Tikhonov regularization, a single value of the regularization
parameter is used. The CNN suggests an optimal value for the regularization parameter for each
measurement. The regularization parameter predicted by the CNN provides a good trade-off
between under- and overregularizing. The network detected the presence of two loss regions in
an image and selected a low regularization parameter. In another image, the network detected a
large amount of noise and accordingly selected a high regularization parameter.

Furthermore, we train a CNN to perform tomographic reconstructions directly, which does
not require explicit regularization altogether to compute tomographic reconstructions from FILD
measurements. The CNN is trained on synthetic data consisting of scintillator velocity-space
distribution functions obtained from FILD measurements as input and pinhole velocity-space
distribution functions as output. The trained CNN was applied to the 150 experimental measure-
ments from FILD2 during discharge #345559. The tomographic reconstructions provided by the
CNN have a more precise velocity-space location of the lost fast ions compared to those obtained
using zeroth-order Tikhonov regularization, and measurement noise is suppressed. The CNN is
able to compute accurate reconstructions of scintillator measurements containing several peaks,
which shows its capacity to generalize beyond its training set. This capability can potentially
enhance the quality and interpretability of FILD measurements, thereby contributing to a better
understanding of complex plasma phenomena.

In conclusion, feedforward and convolutional neural networks can be trained to predict
values of the regularization parameter for zeroth-order Tikhonov regularization to reconstruct
the lost fast-ion velocity-space distribution function from synthetic and experimental scintillator
FILD measurements. Furthermore, convolutional neural networks can be trained to compute
tomographic reconstructions of synthetic and experimental scintillator FILD measurements, with
significant improvements over tomographic reconstructions computed using zeroth-order Tikhonov
regularization.



Chapter 8

FILDSIM model improvements
and computation speed
optimization

This chapter presents the methods developed in the paper “FILDSIM model improvements and
faster tomographic reconstructions of fast-ion loss detector measurements”, to be submitted.

8.0 Abstract
This paper presents FILDSIM model improvements, enabling more accurate modelling of the ion
trajectories as they pass from the pinhole in the probe head of a fast-ion loss detector to the scin-
tillator plate. The weight functions generated by the improved FILDSIM model are more accurate
than the present standard FILDSIM model. They produce superior tomographic reconstructions
of fast-ion velocity-space distribution functions from fast-ion loss detector measurements. We
showcase this improvement for the FILD currently installed at TCV on synthetic and experimental
data from discharge #75620. We also demonstrate that the improved FILDSIM model can be
used to optimize a balance between computation time and reconstruction quality using algebraic
iterative reconstruction techniques. We argue this optimization technique can provide inter-shot
FILD data tomographic reconstructions and analysis.

8.1 Introduction
The presence of superthermal ions is crucial for plasma heating in fusion plasmas. These ions are
called ‘fast ions’ and are generated by injection of high-energy neutrals (NBI), ion cyclotron range
of frequencies (ICRF) heating, and alpha particles from DT reactions. Fast ions are characterized
by their relatively high energies, from tens of keVs to several MeVs. In nuclear fusion experiments,
fast ions can escape confinement and interact with the plasma-facing components of the device,
causing damage and reducing the efficiency of the reactor. Such undesirable radial transport can
occur, e.g., due to fast-ion interactions with magnetohydrodynamic (MHD) activity. Current
fusion devices utilize fast ions generated via NBI and ICRF heating to study radial transport
resulting from MHD activity, such as edge-localized modes (ELMs). We need accurate estimates
of the fast-ion velocity-space distribution function to understand and mitigate these effects.
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To improve the performance of fusion devices, it is crucial to understand the mechanisms
leading to fast-ion losses. fast-ion loss detectors (FILDs) provide information on the velocity space
of lost fast ions through measurements at the plasma edge. This information is typically given in
terms of the pitch angle α and gyroradius ρ given by

α = cos
v∥

v
, (8.1)

ρ = mv⊥

ZeB
, (8.2)

where v∥ is the ion velocity parallel to the magnetic field, v⊥ the ion velocity perpendicular to the
magnetic field, and v =

√
v2

∥ + v2
⊥. Thus, FILDs work as magnetic spectrometers by dispersing

the lost fast ions onto a plate since the gyroradius is determined by the magnetic field. The
information from FILD measurements can aid in identifying the causes of losses of fast ions
and enable researchers to mitigate their negative impact on fusion device performance. FILDs
are installed at several fusion devices, including ASDEX Upgrade (AUG), DIII-D, JET, NSTX,
MAST-U, EAST, KSTAR, LHD, and TCV. Additionally, FILDs are currently being designed for
ITER and JT-60SA, highlighting the importance of the diagnostic.

Since a FILD can measure some of the lost fast ions from MHD activity, a FILD can be used as
a direct measure of MHD activity. However, due to the blurring effect of the fast-ion velocity space,
FILD measurements do not indicate the fast ions’ exact locations. Such information is valuable
when seeking to optimize experimental conditions between subsequent discharges. Therefore, it is
desirable to compute an accurate estimate of the lost fast-ion velocity-space distribution function.
In this paper, we propose reconstruction techniques optimized in terms of reconstruction quality
and computation time that can perform FILD velocity-space tomographic reconstructions fast
enough for intra-shot analysis.

The paper is structured as follows. Section 2 presents the forward model for the pinhole-
scintillator relation and the working principles of the FILD simulation code FILDSIM. Section 3
explains our proposed optimization of the model distributions and illustrates the improvements for
simulated FILD impact distributions in gyroradius (energy) and pitch angle. Section 4 illustrates
the present standard and new weight functions produced by running the present standard and
new FILDSIM models, computes tomographic reconstructions of synthetic and experimental data,
and characterizes the FILD TCV in terms of its gross strike map and gross weight function.
Section 5 presents previous techniques for inverting the scintillator velocity space to obtain the
pinhole velocity space and also presents the fast algebraic iterative reconstruction techniques for
tomographic reconstructions. Section 6 applies the algebraic iterative reconstruction techniques to
data from discharge #35336 at ASDEX Upgrade. Section 7 presents the computation speed and
optimization framework in terms of quality and computation time for the fast algorithms. Section
8 discusses the results and concludes.

8.2 FILDSIM
In a scintillator-based FILD, ions pass through a pinhole in the probe head of the FILD equipped
with a 3D collimator. The probe head is placed close to the plasma, in the far scrape-off layer.
After passing through the pinhole, the collimated ions impact on a scintillator plate, where the
scintillating material emits photons subsequently captured by a camera setup. The spatial locations
on the scintillator plate of the emitted photons can be converted to velocity-space coordinates
through FILDSIM modelling. This will be briefly described in the following. See Fig. 8.1 for an
illustration of the working principle for the FILD installed at TCV.
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Figure 8.1: The blue trajectories illustrate collimated lost fast ions passing through the FILD
pinhole and hitting a plate coated with a scintillating material (green). Photons (yellow) are
emitted at the impact locations. The red trajectory of a lost fast ion impacts the collimator and
does not pass through the pinhole. From Poley-Sanjuan et al. (2023).

A FILD measurement is a smeared representation of the lost fast-ion velocity-space distribution
function of the ions passing through the pinhole. The sought velocity distribution is that of the
ions passing through the pinhole, to be denoted “pinhole velocity space”. The measured velocity
space will be denoted “scintillator velocity space”.

The pinhole and scintillator velocity-space distribution functions can be modelled using
FILDSIM. FILDSIM simulates ion trajectories through a FILD’s pinhole and detects collisions
with 3D elements of the FILD detector. The ion trajectories are assumed to be helical since
assuming a constant local magnetic field is a reasonable approximation. For example, in tokamaks
such as ASDEX Upgrade, the magnetic field variation is less than 1% across the FILD probe
head. Consequently, it is unnecessary to solve the Lorentz equation of motion to obtain the
ion trajectories, and the analytical solution for ion orbits in a constant magnetic field is used.
FILDSIM initializes N ions with fixed gyroradius ρ and pitch angle α with random positions in
the FILD pinhole and random gyrophases in the interval [0, 2π]. Only the few ions within the
gyrophase acceptance cone passes through the collimator. The number of ions N is chosen to be
large enough to achieve good statistics.

Typically, the gyroradius and pitch angle are used as velocity-space variables for FILD
measurements. The velocity-space distribution function as a function of v∥ and v⊥ can then be
calculated from the relations

v⊥ = Ωρ, (8.3)

v∥ = λ√
1 − λ2

v⊥, (8.4)

where Ω is the ion cyclotron frequency, and λ = v∥/v is the pitch. The perpendicular energy can
also be used instead of the gyroradius, since

E⊥ = 1
2m

Ω2ρ2

1 − λ2 . (8.5)

The gyroradius and pitch angle variables are used to describe velocity-space distribution functions
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from ASDEX Upgrade, and energy and pitch are used for the same functions at TCV.
The random initial location of a lost fast ion in the FILD pinhole and its random initial

gyrophase result in a distribution of impact locations for ions initialized with the same gyroradius
and pitch angle (or energy and pitch). It is possible to identify all possible locations on the
scintillator plate that ions with a specific gyroradius and pitch angle can hit by modelling a
sufficiently large number of ions and collecting their impact locations on the scintillator plate. The
centroid of the resulting distribution is used as the location on the scintillator corresponding to
that exact gyroradius and pitch angle. Repeating such modelling for all gyroradii and pitch angles
under consideration produces a strike map. The strike map for a specific FILD, its vessel location,
and the plasma conditions is then used to map spatial locations on the FILD to scintillator velocity
space.

The FILD signal s measured in the gyroradius range [ρ1, ρ2] and pitch angle range [α1, α2],
with the ranges determined by the spatial resolution of the FILD camera, can be modelled as the
integral equation

s(ρ1, ρ2, α1, α2) =
∫ π

0

∫ ∞

0
w (ρ1, ρ2, α1, α2, αp, ρp) f(αp, ρp) dρp dαp, (8.6)

where (αp, ρp) are the velocity-space coordinates of the pinhole, w is a weight function, and f is the
velocity-space distribution function of the ions passing through the pinhole. Scintillator velocity-
space coordinates will be written without a subscript, and pinhole velocity-space coordinates with
a subscript ‘p’. Weight functions have units of [photons per ion] and indicate if an ion at a given
location in pinhole velocity space can produce a signal at a given location in scintillator velocity
space. The units of f are [ions rad−1 m−1], and s is measured in photons.

With a suitable discretization of the gyroradius and pitch angle, the integral equation (8.6)
can be transformed to the matrix-vector equation

Wf = s. (8.7)

Thus, having a FILD measurement s and the FILDSIM-modelled weight function matrix W , it is
possible to obtain f by solving the inverse problem in Eq. (8.7).

8.3 FILDSIM model improvements
As described above, the specific location of the ion in the pinhole and its gyrophase result in a
distribution of impact locations on the scintillator of ions with the same gyroradius and pitch angle
and hence also a distribution of locations in velocity space. FILDSIM outputs these distributions
in gyroradius (or energy) and pitch angle (or pitch). See Figs. 8.2 and 8.3 for examples for FILD1
at ASDEX Upgrade and the FILD at TCV. Distributions for the specific pitch angle α = 60◦ and
different gyroradii overlap. The overlap increases with increasing gyroradius. As illustrated in Fig.
8.2(a), ions with a gyroradius of 5-7 cm can impact the scintillator at the same location as ions
with a gyroradius of 4 cm. The distributions in pitch angle for a specific gyroradius for FILD1 at
ASDEX Upgrade are better separated as illustrated in Fig. 8.3(a). The overlap is more extreme
in both energy and pitch for the FILD at TCV; see Figs. 8.2(b) and 8.3(b).

These simulations show that the blurred scintillator velocity-space distribution function is not
generated by ions at the same locations in pinhole velocity space due to the different ion locations
and gyroangles. With knowledge of the discharge conditions, it is possible to guesstimate the
locations in pinhole velocity space of the lost ions when interpreting FILD measurements. For
example, during a discharge with NBI aroud 30 keV, measurements at 30 and 15 keV are expected
as prompt losses from the first and half energy components. However, this remains a guess, and a
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Figure 8.2: FILDSIM gyroradius distributions for N markers initiated at the pinhole with different
gyroradii (energy) for (a) FILD1 at AUG and (b) the FILD at TCV. From Galdon-Quíroga et al.
(2018c) and Stipani (2021).

Figure 8.3: FILDSIM pitch angle distributions for N markers initiated at the pinhole with
diferrent pitch angles for (a) FILD1 at AUG and (b) the FILD at TCV. From Galdon-Quíroga et
al. (2018c) and Stipani (2021).

much more reliable inference can be made by computing the pinhole velocity space by solving the
inverse problem in Eq. (8.7). This also assumes that the mechanisms resulting in the lost fast
ions are known or can be guessed, which might not be the case.

The centroids of the simulated distributions are used to indicate the location on the scintillator
corresponding to a specific value in pinhole velocity space. Current FILDSIM modelling uses a
skew-Gaussian distribution to fit the distributions in gyroradius and a Gaussian for the pitch
angle, i.e.,

fρ(ρ, ρ0) = 1√
2πσρ

exp
[
− (ρ0 − ρ)2

2σ2
ρ

] [
1 + erf

(
βρ
ρ0 − ρ√

2σρ

)]
, (8.8)

fα(α, α0) = 1√
2πσα

exp
[
− (α0 − α)2

2σ2
α

]
, (8.9)

where ρ0 and α0 are the initialized parameter values of the fast ions in the pinhole. The combined
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model therefore becomes

f(ρ, α, ρ0, α0) = fρ(ρ)fα(α)

= fcol
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, (8.10)

where fcol = Ns/Np is the collimator factor giving the number of ions impacting the scintillator
Ns divided by the number of ions initialized at the pinhole Np. The full model for a weight
function is a product of the above distribution and a yield function describing the number of
photons emitted as a function of the energy of the impacting ion.

The parameters ρ0 and α0 are the centroids of the distributions, and σρ and σα control the
width of the distribution. The function ‘erf’ is the error function that, when multiplied with a
Gaussian distribution, produces a skew-Gaussian distribution, with βρ controlling the skewness of
the distribution. When computing the weight functions, these parameters are estimated from the
lost fast-ion trajectory simulations.

8.3.1 Skewness and kurtosis
The distributions described above have some insufficiencies when modelling the impact distributions
in the velocity space of the ions initialized in the pinhole. For the gyroradius distributions, there is
a gap in the upper tail between the model and the true ion counts, indicating an overestimation of
the fit at higher gyroradii and energies; see Fig. 8.2. The gap increases with increasing gyroradius
and energy. For the pitch angle distributions, the tails of the Gaussians severely overestimate the
true width of the simulated distributions; see Fig. 8.3. Furthermore, the Gaussians are too narrow
at the top of the distribution. As we now show, other distributions can model the gyroradius and
pitch angle distributions more precisely. Modifying the FILDSIM model to these distributions
increases the accuracy of the FILD weight functions, improving the accuracy of the tomographic
reconstructions of pinhole velocity-space distribution functions.

Distributions are typically characterized in terms of their mean µ and the standard deviation
σ, i.e., the zeroth and first moment. It is possible further to characterize them by their third and
fourth moments called the skewness and kurtosis. For univariate data, the skewness s and kurtosis
k is given by1

s =
E
[
(x− µ)3]
σ3 , (8.11a)

k =
E
[
(x− µ)4]
σ4 . (8.11b)

Skewness is a measure of the lack of symmetry in the distribution, and kurtosis is a measure of
how much data is in the tails of the distribution. Distributions with heavier tails have a larger
value of kurtosis.

Thus, desirable modifications to the current FILDSIM model in gyroradius is the same
skewness and slightly less kurtosis. For the pitch angle distributions, the improved model needs a
skewness of zero and significantly less kurtosis. Possible distributions for the gyroradius include a
raised cosine distribution f , a Cauchy distribution g, and a logistic distribution h, described by

1“Measures of Skewness and Kurtosis” in NIST/SEMATECH e-Handbook of Statistical Methods.
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Figure 8.4: The (a) raised cosine, (b) Cauchy, and (c) logistic distribution functions plotted with
a skew-Gaussian distribution function. Subfigure (d) shows the distribution functions in the same
plot. Observe that the raised cosine distribution function has the shortest upper tail of the four
distributions.

the probability density functions

f(x;µ, σ) = 1
2σ

[
1 + cos

(
x− µ

σ
π

)]
(8.12)

g(x;µ, γ) = 1
πγ

1

1 +
(

x−µ
γ

)2 , (8.13)

h(x;µ, σ) =
exp

(
− x−µ

σ

)
σ
(
1 + exp

(
− x−µ

σ

))2 , (8.14)

where f(x;µ, σ) is supported on [µ− σ, µ+ σ], and γ is the half width at half-maximum of the
Cauchy distribution. See Fig. 8.4 for an illustration of the three distributions. The distributions
are all multiplied by the skewness parameter function

Φ(x;µ, σ) = 1 + erf
(
βs
x− µ√

2σ

)
(8.15)

to model the skewness as seen in the output from the FILDSIM simulations, as was done for the
Gaussian distribution in Eq. (8.8).

Numerical testing shows the best fit to the FILDSIM simulated distributions to be the raised
cosine distribution. The skewness and kurtosis of the distributions are displayed in Table 8.1.
As desired, the raised cosine has the same skewness as the skew-Gaussian and slightly smaller
kurtosis.

A suitable probability distribution function modelling the pitch angle distributions is Wigner’s
semicircle

W (α) = 2
πR2

√
R2 − α2 (8.16)

for pitch angles satisfying −R ≤ α ≤ R, and W (α) = 0 if α > R. This function has the desirable
qualities required to properly model the pitch angle distributions: short tails and a greater width
near the top of the distribution.
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Figure 8.5: Wigner’s semicircle distribution function with a Gaussian distribution function. Note
the significantly greater FWHM and the shorter tails of Wigner’s semicircle.

Table 8.1: Values of skewness and kurtosis for the improved gyroradius and pitch angle models
for the 1D models displayed in Figs. 8.4 and 8.5.

Gyroradius Pitch angle
Skew-Gaussian Raised cosine Gaussian Wigner’s semicircle

s 1.8 1.8 0 0
k 4.8 4.7 4.1 2.6

8.4 TCV implementation
We have implemented the improved FILDSIM models as detailed in the previous subsection
in FILDSIM at TCV. The 1D distributions in gyroradius and pitch resulting from the skew-
Gaussian/Gaussian model and the skew raised cosine/Wigner’s semicircle model are illustrated in
Fig. 8.6. From here on, we will refer to these models as the ‘standard Gaussian model’, abbreviated
as SGM, and the ‘raised cosine model’, abbreviated as RCM, respectively. The fit of the raised
cosine model for the 1D distributions is significantly better than the fit made using the standard
Gaussian models. The gap at the upper tails is no longer apparent for the gyroradius distributions,
ensuring improved resolution in gyroradius. Similarly, the tails of the Gaussian distributions for
the pitch distributions are completely removed, ensuring improved resolution in pitch. In the
following, we consider the standard Gaussian model and the raised cosine model weight functions
and their role in computing tomographic reconstructions of FILD measurements.

8.4.1 Weight functions
An ion initialized at a specific location (α, ρ) in velocity space can be modelled as a delta function
f = δ(α, ρ). Computing all possible impact locations from ions at this location in velocity space
produces a strike map. With strike maps of all positions in pinhole velocity space, it is possible
to compute which positions in pinhole velocity space can impact a given position in scintillator
velocity space. This is a weight function. To each location in scintillator velocity space corresponds
a weight function indicating the pinhole velocity-space locations able to impact the scintillator at
that specific location. Weight functions have units [photons per ion]. Thus, the weight function
shows the sensitivity in pinhole velocity space for a given measurement on the scintillator: how
many photons an ion at a given position in pinhole velocity space can produce at a given position
on the scintillator.

In the following, we investigate the standard Gaussian model and the raised cosine model
weight functions resulting from the improved FILDSIM model for the FILD installed at TCV. In



FILDSIM model improvements and computation speed optimization 136

Figure 8.6: (a) The standard Gaussian model and (b) the raised cosine model for the 1D
gyroradius distributions implemented at TCV for λ = 0.6. (c) The standard Gaussian model and
(d) the raised cosine model for the 1D pitch distributions implemented at TCV for E = 25 keV.

particular, we consider the weight function corresponding to the scintillator velocity-space location
ρ = 25 keV and λ = 0.59. The true weight function as simulated by FILDSIM is illustrated in Fig.
8.7(a), the standard Gaussian model weight function in 8.7(b), and the raised cosine model weight
function in 8.7(c). The new weight function is much more accurate in both pitch and energy; the
cut-off in pitch is now as sharp as the simulated weight function, and the upper and lower tails
resemble the tails of the simulated weight function.

The precision of the model can be quantified and illustrated by considering the residual weight
function wR calculated as

wR = wsim − wmodel, (8.17)
where wsim is the simulated weight function and Wmodel the weight function modelled using the
standard Gaussian model or the raised cosine model. The residual weight functions are denoted
by a lowercase w to avoid risking confusing them with the weight function matrix W .

The residual weight function matrix for the standard Gaussian model wR,SGM is illustrated in
Fig. 8.7(d) and for the raised cosine model in Fig. 8.7(e). The erroneous larger width in pitch and
the long tails in the standard Gaussian model are evident. To further characterize the deviation
from the simulated weight function, the absolute error

EA,k ≡
∑

i

∑
j

|wR,k| (8.18)
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can be computed for each residual matrix wR,SGM and wR,RCM, where the sum runs over the rows
i and columns j, and k indicates either the standard Gaussian model or the raised cosine model.
The result is

EA,SGM = 186, (8.19)
EA,RCM = 95. (8.20)

According to this measure, the raised cosine model is a 49% improvement over the standard
Gaussian model.

Some features in the simulated weight function are not captured by the raised cosine model.
The highest intensity of the simulated weight function occurs at λ = 0.59 and E = 25 keV, but this
is not the center of the weight function. Instead, the parts of pinhole velocity space able to impact
at this location in scintillator velocity space occur predominantly for ions with smaller pitch values.
Thus, it seems that the distribution is skewed towards lower pitch values. This asymmetry is the
feature that creates most of the deviation in wR,RCM as illustrated in Fig. 8.7(e).

8.4.2 Tomographic reconstruction comparison
With a FILD measurement s and the FILDSIM-modelled weight function matrix W , it is possible
to compute f by solving the inverse problem in Eq. (8.7). Since the problem is ill-posed,
regularization is required to produce a meaningful solution. Tikhonov regularization is typically
used to regularize the problem in velocity-space tomography. For the inverse problem in Eq. (8.7),
the solution found using Tikhonov regularization can be written as

f∗ = argmin
f

∥Wf − s∥2
2 + λ∥Lf∥2

2, (8.21)

where L is the regularization matrix promoting desired properties in the solution, and λ is the
regularization parameter. The value of the regularization parameter determines the emphasis on
the operator penalty and the emphasis on fitting the data. The choice of the numerical value of
the regularization parameter is, therefore, crucial, as the accuracy, reliability, and interpretability
of the solution are affected by it.

8.4.3 Reconstructions of synthetic FILD measurements
We investigate the effects of the improved weight functions in the tomographic reconstructions for
synthetic and experimental data. An example of a synthetic pinhole velocity-space distribution
function is shown in Fig. 8.8(a). The corresponding scintillator measurement according to the
standard Gaussian model is illustrated in Fig. 8.8(b) and according to the raised cosine model
in Fig. 8.8(c). The raised cosine model produces measurements that are much more like actual
measurements: the width in pitch seen in the standard Gaussian model is not seen in experiments
and is not prevalent in the synthetic measurements of the raised cosine model, and the long tail
in energy is also not seen in experiments. The tomographic reconstructions using the standard
Gaussian model and the raised cosine model are shown in Fig. 8.8(d) and 8.8(e), respectively.
Both reconstructions are excepted to be good since the same model was used to generate the data,
so this particular example does not show much improvement in the tomographic reconstructions
using the standard Gaussian model or the raised cosine model.

Since the tomographic reconstructions were computed for synthetic data, it is important to
note that no inverse crime were committed when computing them. If the same grid is used to
compute the tomographic reconstruction as was used to generate the synthetic measurements, the
problem becomes artificially easy for the computer algorithm to solve. Thus, we note here that
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Figure 8.7: (a) FILDSIM simulation of the weight function at ρ = 25 keV and λ = 0.59.
Subfigures (b) and (c) illustrate the standard Gaussian model and the raised cosine model weight
functions obtained using the modelling described in the previous sections. Subfigures (d) and
(e) illustrate the residual weight functions wR,SGM and wR,RCM corresponding to the difference
between the simulated weight function and the model-fitted weight functions.
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the forward grid size used to generate the synthetic measurements was [150, 150] in energy and
pitch, and the inversion grid size was [100, 100].

8.4.4 Reconstructions of experimental FILD measurements: discharge
#75620

Next, we compute tomographic reconstructions using the standard Gaussian model and the raised
cosine model weight functions on experimental FILD measurements from the TCV FILD. We
consider the FILD measurement at t = 1.005 s during discharge #75620 illustrated in Fig. 8.9.
The illustration in Fig. 8.9(a) shows the FILD measurement in (x, y)-coordinates before mapping
it to velocity space. The raised cosine strike map is overlaid in white. The scintillator velocity
space is shown in Fig. 8.9(b). This is the signal to invert.

The reconstruction results are shown in Fig. 8.10. To investigate the behaviour of the
reconstructions, reconstructions of what is thought to be underregulatization, a good reconstruction,
and overregularization are computed. The good reconstruction using the standard Gaussian model
identifies a large (∼ 8) number of isolated locations in pinhole velocity space, whereas the good
reconstruction using the raised cosine model contains around 4 isolated locations in pinhole
velocity space and is more smooth. This is surprising since the raised cosine model provides clearer
distinctions between both gyroradius and pitch distributions.

To compare and interpret the tomographic reconstructions, we ran an ASCOT simulation for
the discharge conditions at t = 1.005 s to obtain the velocity space of the lost fast ions at the FILD
probe head. The simulation was run as a full orbit simulation with Coulomb collisions and a 5 ms
simulation duration. The result is shown in Fig. 8.11(a). Some features seen in the reconstructions
are in the pinhole velocity-space distribution function produced by ASCOT, and some are not.
First, observe the smoothness of the ASCOT simulation, indicating that the smoothness of the
raised cosine model is preferable to the standard Gaussian model. Second, high intensities are
found at energies around 13-14 keV and pitch around 0.7 in both the reconstructions and the
ASCOT simulation and at energies of 11-12 keV and 0.58 pitch. The faint circular populated area
in the reconstruction using the raised cosine model is also in the ASCOT simulation. The most
intense location in the ASCOT simulation at 27 keV and 0.7 pitch is not in the reconstructions.
The ions from the NBI are injected with energies of 27 keV, which is likely the reason for the
high-intensity area in the ASCOT simulation. They were not measured by the FILD, however.

The FILD measurement corresponding to the ASCOT simulation can be computed from the
forward model Wf = s. The result using the standard Gaussian model is shown in Fig. 8.11(b)
and using the raised cosine model in Fig. 8.11(c). The differences in the two forward models are
reflected in a more narrow measurement with energies extending to around 38 keV in the raised
cosine model compared to the standard Gaussian model. These aspects are closer to the actual
scintillator measurement shown in Fig. 8.9(b). This indicates that the raised cosine model is
favourable to the standard Gaussian model.

8.4.5 TCV FILD characterization: gross strike map and gross weight
function

The FILDSIM model improvements refine the characterization of FILDs by improving the precision
of the computation of the gross strike map and gross weight function. Letting f = δ(α, ρ) ions
keV−1 in Eq. (8.6) produces a strike map. A gross strike map showing where, on average, ions
will strike the scintillator, can be computed by setting f = 1 ions keV−1. The interpretation is
as follows: “Initializing the same amount of ions at all locations in pinhole velocity space, where
are the ions most likely to impact the scintillator?” The answer is given by the gross strike map,
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Figure 8.8: (a) Example synthetic pinhole velocity-space distribution function. The corresponding
scintillator measurement generated using (b) the standard Gaussian model weight functions and
(c) the raised cosine model weight functions. The tomographic reconstruction computed using (d)
the standard Gaussian model weight functions and (e) the raised cosine model weight functions.



141 FILDSIM model improvements and computation speed optimization

Figure 8.9: (a) The FILD measurement in (x, y)-coordinates with the FILDSIM-modelled strike
map overlaid computed using the raised cosine model for discharge #75620 at t = 1.005 s at a
radial distance of r = −17 mm from the plasma. (b) Scintillator velocity space mapped from the
FILD measurement.

which is determined by the FILD geometry, the characteristics of the machine, and the location of
the detector.

A weight function for a specific scintillator velocity-space location shows which parts of
pinhole velocity space can impact the scintillator at this scintillator velocity-space location. The
intensity of the weight function indicates the number of photons each position in pinhole velocity
space produces at that measurement position. Summing all weight functions produces a gross
weight function. The gross weight function shows the average number of photons generated per
ion in pinhole velocity space. Again, this number is unique to a specific FILD depending on the
FILD geometry, the characteristics of the machine, and the location of the detector.

Since these constructions depend on the weight functions and hence on the FILDSIM modelling,
the two characterizations of a FILD using the standard Gaussian model and the raised cosine
model are different. Here, we highlight the differences in the gross strike map and the gross
weight function between the two models for the TCV FILD. The gross strike map and and the
gross weight function of the TCV FILD are illustrated in Fig. 8.12 computed using the standard
Gaussian model and the raised cosine model. The gross strike maps are shown in the first column,
and the gross weight functions in the second column.

According to the gross strike map of the standard Gaussian model, the most impacts on the
scintillator occur at 45 keV and 0.45 pitch. According to the gross strike map of the raised cosine
model, the most impacts on the scintillator occur at 38 keV and 0.73 pitch. The reduction in
energy occurs since the overestimation of the upper tails of the gyroradius distributions with the
standard Gaussian model is corrected with the raised cosine model. Furthermore, the standard
Gaussian model makes a worse overestimation of the tails of the pitch distributions for low values
of the pitch compared to larger values of pitch; see Fig. 8.6. This correction decreases the number
of impacts that occur at lower pitch values in the strike map, so the relative value of larger pitch
values increases.

According to the gross weight function of the standard Gaussian model, ions at 35 keV and
0.45 pitch generate the most photons by a significant margin. On the other hand, according to
the gross weight function of the raised cosine model, the number of photons generated per ion is
close to independent of the pitch and occurs for energies around 30-35 keV, with a slight increase
from low to high pitch. The number of photons emitted by ions at energies above 35 keV is also
significantly reduced in the raised cosine model compared to the standard Gaussian model.

The increase in intensity from lower to higher energies in both the gross strike map and the
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Figure 8.10: Tomographic reconstructions of the FILD measurement at t = 1.005 s during
discharge #75620 computed using the standard Gaussian model in the left column and the
raised cosine model in the right column. The reconstructions are computed using the values
of the regularization parameter indicated above each figure. The chosen values correspond to
underregularization (top row), a good reconstruction (middle row), and overregularization (bottom
row).
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Figure 8.11: (a) ASCOT simulated pinhole velocity space for discharge #75620 at t = 1.005 s.
See the main text for further details of the simulation. (b) Scintillator velocity space computed
using the forward model Wf = s using the standard Gaussian model weight functions. (c)
Scintillator velocity space computed using the raised cosine model weight functions.
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Figure 8.12: For the TCV FILD: (a) The gross strike map using the standard Gaussian model
and (b) using the raised cosine model. (c) The gross weight function using the standard Gaussian
model and (d) using the raised cosine FILDSIM model.

gross weight function is expected in both models since the number of ions passing through the
collimator increases with the energy, see Fig. 8.6.

8.5 Tomographic reconstructions using algebraic iterative
reconstruction techniques

The pinhole velocity-space distribution function is obtained by solving the inverse problem in
Eq. (8.7). This problem is ill-posed, meaning noise in the measurement can produce large,
unphysical values in the reconstruction. Thus, regularization is needed to stabilize the problem.
Previously, zeroth and first order Tikhonov regularization has been applied to obtain tomographic
reconstructions of pinhole velocity-space distribution functions. Using Tikhonov regularization,
the solution f∗ is found by solving

f∗ = argmin
f

∥Wf − s∥2 + λ∥Lf∥2, (8.22)

where W is the weight function matrix, s the data vector, L is a linear operator that promotes
desired properties in the solution, such as smoothness by penalizing gradients, and λ is the
regularization parameter.

The regularization parameter determines the trade-off between the goodness-of-fit (Wf ≈ s)
and imposing the constraint (Lf) on the solution. For an operator L imposing smoothness, a
larger value of λ results in a smoother solution, while a smaller value fits the data better at
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the expense of the smoothness of the solution. Thus, the value of the regularization parameter
significantly impacts the recovered solution, and determining the value of the regularization
parameter producing the solution closest to the ground truth when reconstructing velocity-space
distribution functions from experimental data becomes crucial.

Determining the optimal value of the regularization parameter is challenging, and the choice
is typically made based on intuition: different reconstructions are computed, and the one thought
to be most correct by the user is chosen. To avoid the arbitrary choice made by selecting the
regularization parameter based on intuition, several methods have been proposed for selecting the
optimal value of the regularization parameter, including the discrepancy principle, the L-curve,
and generalized cross-validation2. However, these methods rarely give the same value of the
regularization parameter since the methods emphasize different aspects of the solution. Thus,
there is no consistent way of obtaining optimal results for experimental data.

Recent results indicate the applicability of algebraic iterative reconstruction techniques (ART)
for reconstructions of FILD data3. Typically, ARTs exhibit semi-convergence, where the optimal
reconstruction is found for a specific iteration number k∗. Reconstructions stopping at iteration
numbers k < k∗ do not fit the data optimally, and reconstructions stopping at larger iteration
numbers k > k∗ overfit the noise in the data. However, for FILD data, the optimal reconstruction
f∗ is approached asymptotically as k → ∞, where additional iterations keep improving the
reconstruction by a smaller and smaller margin. Thus, optimal reconstructions can be performed
by choosing a sufficiently large iteration number. This removes the need to determine an optimal
regularization parameter when performing tomographic reconstructions of FILD measurements.

Another advantage of ARTs, which we highlight in this paper, is the fast convergence and
computation time of the iterative techniques. The fast computation time combined with the
improved quality reconstructions from the FILDSIM model improvements described in the previous
sections opens the doors to optimizing the tomographic reconstructions in terms of their quality
and computation time. Performing one iteration with the current matlab implementation on a
modern laptop takes approximately 10 ms. Thus, the algebraic techniques can produce up to 100
frames per second depending on the desired reconstruction quality.

The ARTs considered in this work are Kaczmarz’ method, the column-action method, and
Cimmino’s method. We briefly describe each of the three ARTs in the following.

For each iteration k in Kaczmarz’s method, each row ri of W is cycled through. Therefore,
every iteration performs m steps. Every step satisfies one of the m equations in the forward model
Wf = s. For the ith row, rif

(ki) = si. The update to the solution vector is

∆f = si − rif
(k)

∥ri∥2
2

rT
i . (8.23)

Each iteration is projected onto C = Rn
+ to apply a non-negativity constraint. For a relaxation

parameter ω(k) satisfying 0 < ω(k) ≤ 1, steps are

f (ki) = PC

(
f (ki−1) + ω(ki) si − rif

(ki−1)

∥ri∥2
2 + t(k)

rT
i

)
(8.24)

for i = 1, . . . ,m. Note that each step in Kaczmarz’s method divides by the row norm ∥ri∥2
2. Some

rows have either zero or very small but nonzero norm which may result in noise amplification.
To avoid this problem, a small damping parameter t(k) is added to the denominator such that
the division in each iterative step is ∥ri∥2

2 + t(k). This damping parameter is dependent on the
iteration step k, but we choose t(k) = 0.1 for all k for simplicity.4

2Hansen (2010), p. 89 ff.
3Schmidt et al. Reconstruction methods for velocity-space tomography of fast-ion loss detectors (to be submitted).
4This approach is validated in Andersen and Hansen (2014).
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Instead of the rows, the column-action method operates on the columns cj . Similar to
Kaczmarz’s method, the column-action method operates cyclically now in the direction of the unit
vectors ej , where ej has a 1 at the jth location and 0s elsewhere. At each iteration, we update
f (k+1) = f (k) + αkej with j ≡ k (mod n) for

αk =
cT

j (s−Wf (k))
∥cj∥2 . (8.25)

Projecting onto Rn
+ and with relaxation parameter ωk, the iterations are

f (k+1) = PC

(
f (k) + ω(k) c

T
j (s−Wf (k))
∥cj∥2 + t(k)

ej

)
. (8.26)

Similar to Kaczmarz’s method, a damping parameter t(k) = 0.1 was used.
General simultaneous iterative reconstruction techniques (SIRT) have a diagonal matrix

D ∈ Rn×n and a weighting matrix M ∈ Rm×m with iterative steps

f (k+1) = f (k) + ω(k)DWTM(s−Wfk). (8.27)

For simplicity, we choose D = In×n. To obtain faster convergence, we use a SIRT with

M = diag
(

1
m ∥ri∥2

2

)
. (8.28)

This method is Cimmino’s method. Again, we project onto C = Rn
+.

All three methods start with an initial guess for the solution, denoted f (0), which can be
the zero vector or a guess based on prior information. The methods terminate when a stopping
criterion is met, in our case when a maximum number of iterations is met, as indicated in the
discussion below.

To illustrate the applicability of the iterative techniques to experimental data and their
convergence properties, we apply the reconstruction techniques to data from FILD1 at ASDEX
Upgrade from discharge #35336. Afterward, we describe how to optimize the tomographic
reconstruction using these techniques in terms of the reconstruction quality and computation time.

8.6 Discharge #35336 at ASDEX Upgrade
Discharge #35336 at ASDEX Upgrade concerns actuation of toroidal Alfvén eigenmodes (TAEs)
using electron cyclotron current drive (ECCD). Localized ECCD modifies the local magnetic shear
causing TAEs not to develop if the plasma pressure gradient exceeds a critical value5. The plasma
was heated using ICRF heating and a combined NBI power of 5 MW. The measurements are from
FILD1 at ASDEX Upgrade. The scintillator measurements appear around ρ = 2 cm to ρ = 8 cm
for pitch angles around 65◦. See Fig. 8.13 for the scintillator measurement at t = 1.7328 s.

First, we investigate the convergence rate of the three different ARTs by visual inspection of
the tomographic reconstructions of the pinhole velocity-space distribution functions. This shows
the number of iterations required for a reconstruction produced by a specific method to show the
details in pinhole velocity space, indicating the precise locations of the lost fast ions. Zeroth-order
Tikhonov regularization is used as a benchmark for comparison.

5Galdon-Quíroga et al. (2019).
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Figure 8.13: The scintillator measurement t = 1.7328 s in FILD1 during discharge #35336 at
ASDEX Upgrade.

The tomographic reconstructions of the scintillator measurement shown in Fig. 8.13 for
t = 1.7328 s for the iteration numbers k = 5, 10, 20, and 50 are shown in Fig. 8.14. The four
numbers for k were chosen to be representative of fast convergence (k ≤ 10), medium-speed
convergence (k ≈ 20), and slow convergence (k ≥ 50).

All methods reconstruct five high-intensity regions with approximate velocity-space coordinates

(67◦, 2.5 cm), (65◦, 4 cm), (62◦, 7 cm), (64◦, 7 cm), (43◦, 2.5 cm) (8.29)

for sufficiently large k’s. The high-intensity region at (43◦, 2.5 cm) is an artefact and can be
disregarded.

Of the three different methods, Kaczmarz’s method converges the fastest. The reconstructions
using Kaczmarz’s method indicate precise velocity-space locations for k = 5, whereas this is not
the case for Cimmino’s method nor the column-action method. Note that the location of the
high-intensity regions around 7 cm in gyroradius occurs for lower gyroradii in the Kaczmarz
reconstruction than in the Tikhonov reconstruction. The column-action method converges slower
than Kaczmarz’s method but faster than Cimmino’s. Cimmino’s method converges slowly and
requires around 500 iterations to converge.

All three methods have artefacts at ρ = 2 cm for all pitch angles. These occur after the very
first iteration and persist for all iterations. The artefacts occur due to the large gradient at ρ = 2
cm, where the weight functions drop to zero. Since they are known to be artefacts, they can be
disregarded.

In the next section, we optimize the quality of the reconstruction in terms of the computation
time.

8.7 Optimized tomographic reconstructions in terms of qual-
ity and computation time

Knowledge of the lost fast-ion velocity-space distribution functions is highly desirable for discharge
analysis when FILD measurements are relevant. The distribution functions may provide evidence
of fast-ion interactions with particular modes or prompt losses from NBI. In particular, it is highly
desirable to have the fast-ion velocity-space distribution functions between discharges to optimize
discharge conditions. Due to the improved reconstruction quality from the FILDSIM model
improvements described in Section 8.3, it is possible to compute an optimized reconstruction
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Figure 8.14: The reconstructions for each method as a function of the iteration number. The
Tikhonov reconstruction is calculated for λ = 0.5.
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Figure 8.15: The computation times for each method as a function of iteration number k for
t = 1.7328 s in discharge #35336.

Iterations Kaczmarz Cimmino Column-action Tikhonov

35336

k = 5
k = 10
k = 20
k = 50

0.3854
0.5842
0.9813
2.2331

0.4288
0.4807
0.5827
0.8922

0.3442
0.5610
0.8400
1.4973

5.3368

Table 8.2: Computation times in seconds for each method for the number of iterations indicated.

in terms of both reconstruction quality and computation time. This optimization can produce
optimized videos of entire discharges available within minutes.

The three iterative techniques are applied to compute reconstructions of 100 FILD1 mea-
surements from discharge #35336 at ASDEX Upgrade from t = 1.700 s to t = 1.800 s. The
reconstruction computation time is computed as the average computation time for all 100 frames for
a given iteration number k. The computation time for the most efficient non-negative zeroth-order
Tikhonov regularization matlab routine lsqlin as it is currently implemented in matlab is given
for comparison since it is currently the standard technique used for computing reconstructions.
We set the regularization parameter λ = 0.5 since that produces a good reconstruction and use
that as the comparison value. The computation times are illustrated in Fig. 8.15 for each method
as a function of k, and the exact numerical values for specific iteration numbers are displayed in
Table 8.2.

Kaczmarz’s method is the fastest of the four methods for few iteration numbers (k < 5).
The method even produces a good reconstruction after the second iteration. Fig. 8.16 shows
the tomographic reconstruction using Kaczmarz’s method for k = 2 compared to the optimal
Tikhonov reconstruction. The tomographic reconstruction from Kaczmarz’s method correctly
identifies the two high-intensity locations around 6-7 cm in gyroradius and 62◦ and 64◦ in pitch
angle. It takes Cimmino’s method several iterations to find the distinction in pitch angle. The
total computation time was 0.2748 s, around 20 times as fast as the Tikhonov reconstruction.
Note that the locations of the high-intensity regions around 6-7 cm in gyroradius are slightly lower
in gyroradius in the Kaczmarz reconstruction than in the Tikhonov reconstruction. The reason
for this is unknown.

The computation time increases linearly for all three techniques. The computation time for
the first 100 iterations for all three methods is shown in Fig. 8.15. Kaczmarz’s method and the
column-action method are the slowest after k ≈ 5, after which Cimmino’s method is the fastest.
Cimmino’s method is faster than Kaczmarz’s method and the column-action method but converges
much slower. The first iteration requires initializing the algorithm, which is why the curves in Fig.
8.15 do not intersect (0, 0). The time for an additional iteration for all methods is on the order of
10 ms.
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Figure 8.16: Tomographic reconstructions for k = 2 using Kaczmarz’s method and λ = 0.5 for
Tikhonov regularization.

8.7.1 Reconstruction quality vs. computation time

In this section we develop a figure of merit to optimize the reconstruction quality and the
computation time. The description here is kept brief. See the appendix for additional details.

Define the residual matrix R(k) ≡ ŝ− Ŵf (k) for the kth iteration with entries
(
r

(k)
ij

)
, where a

hat indicates normalization. When applying ARTs to FILD data, the better the reconstruction, the
closer R(k) is to 0. One way to measure the goodness of a reconstruction is the number of entries
with

∣∣∣r(k)
ij

∣∣∣ > τ for some threshold τ , where τ is a non-negative scalar. Since ŝ and Ŵf (k) are
normalized, τ can be interpreted as a lower bound on the percentage point deviation of the actual
measurement from the measurement corresponding to the reconstruction computed as Wf (k).
Let mi denote the ith method used for performing the reconstruction, and let π

(
R(k) | mi, τ

)
be a counting function for the kth iteration of method mi and threshold τ counting the number
of entries with values above τ . Let T (k | mi) be the computation time for k iterations for the
ith method. Then, it takes method mi the time T (k | mi) to produce a reconstruction with
π
(
R(k) | mi, τ

)
entries deviating by τ percentage points from the measurement. Let Kaczmarz’s

method, Cimmino’s method, and the column-action method be numbered 1-3.
The counting function π as a function of the iteration number is illustrated in Fig. 8.17 for

the tomographic reconstruction using the column-action method and a threshold τ = 0.1. The
lower bound is π

(
Rk | m3, 0.1

)
= 28 for k ≥ 35. Thus, the tomographic reconstruction obtained

using the column-action method will have at least 28 entries with a deviation above 10 percentage
points from the measurement entries and does not improve beyond k = 35.

Numerical testing shows the functional relation between T and π follows a power expression
of the form

π = bT a + u0 (8.30)

with a < 0, b > 0, and u0 is a non-negative constant representing the lower bound on π as k → ∞.
For example, for t = 1.7328 s during discharge #35336, a fit using Eq. (8.30) gives R2 = 0.8517,
indicating a relatively good model.

Define u(T, π) ≡ π − bT a. Optimizing the tomographic reconstruction in terms of reconstruc-
tion quality and computation time can then be formulated as the optimization problem

E(α, β, u) = min
T,π

αT + β (N − π) subject to u(T, π) = u. (8.31)
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Figure 8.17: The counting function π
(
R(k) | m3, 0.1

)
computed for tomographic reconstructions

obtained using the column-action method with threshold τ = 0.1 for the scintillator measurement
at t = 1.7328 s during discharge #35536.

The solution function h∗(α, β, u) is

h∗(α, β, u) =
((

α

−abβ

)1/(a−1)
, b

(
α

−abβ

)a/(a−1)
+ u

)
. (8.32)

See the appendix for a derivation.

8.7.2 Optimized tomographic reconstructions for discharge #35336
The optimal combination of computation time and the corresponding number of entries in the
residual matrix above τ can be computed after having estimated values for α and β. The optimal
iteration number k∗ follows from the linearity between the computation time and the number of
iterations.

A power regression for π as a function of k for the column-action method for the scintillator
measurements at t = 1.7324 s during discharge #35336 gives

π = 7.073T−1.892 + 649 with R2 = 0.8517. (8.33)

Note that the number of significant digits does not reflect physical uncertainties. The coefficients
are a = −1.892, b = 7.073, and u = 649.

Suppose the value one puts on obtaining a good reconstruction compared to faster computation
time is 100 : 1. Then α = 100 and β = 1, and

h∗(100, 1, 649) = (0.4988 s, 675.4), (8.34)

The linearity between the computation time and the number of iterations for the column-action
method is T = 0.0114k + 0.3482 with R2 = 0.9837. Thus, k = 87.72T − 3.054, and k∗ = 41. For
this particular case, R(k) does not improve for k ≥ 35, so a ratio of 100 : 1 overestimates the
number of iterations needed to obtain the optimal tomographic reconstruction. A ratio of 200 : 1
for α : β gives T ∗ = 0.3925 s, so k∗ = 31 with π∗ = 690. A ratio of 300 : 1 gives T ∗ = 0.3412 s,
so k∗ = 27 with π∗ = 703. The decrease in computation time from the ratio 100 : 1 to the ratio
200 : 1 is around 20 % and from 200 : 1 to 300 : 1 around 10 %. It is possible to determine an
optimal ratio by considering many frames from different discharges and finding a common ratio
that produces optimal reconstructions. This remains to be investigated.
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8.8 Conclusion
This paper presents advancements in FILDSIM modelling and execution of tomographic recon-
structions. The FILDSIM model improvements include more accurate models of the 1D FILDSIM
distributions in energy for a given pitch and the distributions in pitch for a given energy. The
improvements are made by implementing a skewed raised cosine distribution in gyroradius and
Wigner’s semicircle distribution in pitch. The weight functions resulting from the FILDSIM
improvements more accurately model the upper tail and width of simulated weight functions.
The improved weight functions generate synthetic data that are more like experimental FILD
measurements. Furthermore, we show a significant improvement in the characterization of the
TCV FILD in terms of its gross strike map and gross weight function using the updated FILDSIM
model.

This paper also presents a way to utilize algebraic iterative reconstruction techniques to
compute tomographic reconstructions optimized in terms of the reconstruction quality and
computation time. This allows faster tomographic reconstructions of entire discharges completed
within minutes. Thus, this optimization strategy is particularly valuable for inter-discharge FILD
data tomographic reconstructions and analysis.

Appendix
In this section, we derive the solution as given in Eq. (8.32) to the optimization problem in Eq.
(8.31).

Let Kaczmarz’s method, Cimmino’s method, and the column-action method be numbered 1-3.
Note that as k increases, R(k) should decrease. This is indeed the case. For example, the counting
function π as a function of the iteration number is illustrated in Fig. 8.17 for the tomographic
reconstruction using the column-action method and a threshold τ = 0.1. The lower bound,
and hence the best the reconstruction can do, is π

(
Rk | m3, 0.1

)
= 28 for k ≥ 35. Thus, the

tomographic reconstruction obtained using the column-action method will have at least 28 entries
with a deviation above ten percentage points from the measurement entries and does not improve
beyond k = 35. Therefore, one termination criterion for the algebraic iterative reconstruction
techniques is when reaching the situation for k = 35 in the above example. Determining when this
situation occurs can be accomplished by, e.g., computing the slope of an interpolated spline of the
points (π, k) and terminating the algorithm when the slope is zero for a pre-specified number of
iterations. This presents a way to avoid running the iterative algorithms for a larger number of
iterations.

However, a priori, it is impossible to say for which iteration number this termination criterion
is satisfied. Terminating the iteration algorithms at an earlier iteration number may also be
desirable if another appropriate figure of merit is satisfied. This may result in a reconstruction of
equal quality with a faster computation time. The counting function π can be used for this.

Let T (k | mi) be the computation time for k iterations for the ith method. Then, it takes
method mi the time T (k | mi) to produce a reconstruction with π

(
R(k) | mi, τ

)
entries deviating

by τ percentage points from the measurement. Let N be the total number of entries in s. Then it
is possible to determine a maximum value M such that

αT (k | mi) + β
(
N − π

(
R(k) | mi, τ

))
≤ M (8.35)

for some α, β ∈ R+. The parameter α represents the cost of a higher computation time and β the
cost of obtaining a better reconstruction as measured as the number of entries in the reconstruction
not deviating by more than τ from the measurement. Note that as the tomographic reconstruction
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improves, π decreases, so N −π increases and β can be correctly interpreted as the cost of a better
reconstruction.

Numerical testing shows that the functional relation between T and π follows a power
expression of the form

π = bT a + u0 (8.36)

with a < 0 since the number of error above the threshold τ decreases as the computation time
increases, b > 0 since the number of errors for T ≥ 0 is positive, and u0 is a non-negative
constant representing the lower bound on π as k → ∞. This model is appropriate for tomographic
reconstructions of experimental FILD data. For example, for t = 1.7328 s during discharge #35336,
a fit using Eq. (8.30) produces R2 = 0.8517, indicating a relatively good model.

Define u(T, π) ≡ π − bT a. Given a method mi and a measurement s, a value u = u0 is
uniquely determined such that all possible values of (T, π) must lie on the curve u0 = π − bT a.
The optimal combination (T ∗, π∗) makes M a minimum. In this case, the cost for both the
reconstruction quality and the computation time is minimized. Thus, optimizing the tomographic
reconstruction in terms of reconstruction quality and computation time can be formulated as the
optimization problem

E(α, β, u) = min
T,π

αT + β (N − π) subject to u(T, π) = u. (8.37)

The solution function h∗(α, β, u) can be determined as follows. Write the Lagrangian function L
as

L(T, π, λ) = αT + β(N − π) + λ (u− (π − bT a)) . (8.38)

Then

∂L
∂T

= α+ λabT a−1 = 0, (8.39)

∂L
∂π

= −β + λ = 0, (8.40)

∂L
∂λ

= u− π + bT a = 0. (8.41)

Thus,
α

β
= −abT a−1, (8.42)

so

T =
(

α

−abβ

)1/(a−1)
, (8.43)

and

π = bT a + u = b

(
α

−abβ

)a/(a−1)
+ u. (8.44)

Therefore,

h∗(α, β, u) =
((

α

−abβ

)1/(a−1)
, b

(
α

−abβ

)a/(a−1)
+ u

)
. (8.45)

Note that since a < 0 and b, α, and β are all positive, (T, π) ∈ R2 and is well-defined. The
behaviour of T ∗ and π∗ can be interpreted in terms of the cost of T and π. It follows from Eq.
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Figure 8.18: A graphical interpretation of the minimization problem to determine the optimal
parameters (T ∗, π∗) and consequently the optimal number of iterations k.

(8.45) that

T ∗ ∼
(
α

β

)1/(a−1)
, (8.46a)

π∗ ∼
(
α

β

)a/(a−1)
. (8.46b)

Since a < 0, the fraction 1/(a − 1) < 0, so the optimal computation time T ∗ decreases with
increasing α. This behaviour occurs because having a higher computation time is more costly.
The optimal computation time increases with increasing β since having the same number of errors
becomes more expensive, so the computation time must increase to reduce the number of entries
in the residual matrix with values below τ .

The optimal error count π∗ increases with increasing α, since when computation time cost
increases, it becomes more expensive to reduce the reconstruction error to reduce π. The optimal
error count π∗ decreases with increasing β because it becomes more expensive to have more errors
in the reconstruction.

Graphically, obtaining this solution corresponds to determining the point of tangency between
the curve αT + β (N − π) = M and the function u = π − bT a. This occurs exactly when

α

β
= −∂u/∂T

∂u/∂π
= dπ

dT = abT a−1. (8.47)

This point of tangency and the optimal values of T and π are illustrated in Fig. 8.18.



Chapter 9

Grid dependence in Tikhonov
regularization

This chapter presents the paper “Dependence of the reconstruction error on the grid size in
ill-posed inverse problems”, to be submitted.

9.0 Abstract
In this paper, we investigate how the discretization of the domain of a linear operator A impacts
the solution of an ill-posed inverse problem. We model a physical system via a matrix-vector
relationship Ax = b and solve it using zeroth- and first-order Tikhonov regularization. Our findings
show that an increase in the number of grid points correlates with a reduction in both the optimal
value of the regularization parameter and the reconstruction error of the solution.

The results apply to the specific model of determining fast-ion velocity-space distribution
functions from projections of fast-ion velocities in fusion plasmas. In this case, our results show
that the dependence of the reconstruction error on the grid discretization depends almost entirely
on the grid resolution in the parallel-velocity direction.

9.1 Introduction
Inverse problems occur in various scientific disciplines and involve the process of deduction from
effect to cause. In mathematical parlance, modelling an inverse problem can be written in the
general form

Ax = b, (9.1)

where A is a matrix representing the physical system, b is a data vector obtained from measurements,
and x is the unknown vector to deduce.

Inverse problems often present issues of ill-posedness. The ill-posedness arises when small
changes in b lead to large changes in x, making the solution unstable. This occurs when a
measurement contains noise. It could also be that no solution exists, or multiple distinct x could
correspond to a given b, making the solution non-unique. Therefore, challenges when dealing with
inverse problems comprise obtaining existence, uniqueness, and stable solutions. Regularization
methods are used to constrain the solution space to obtain such solutions.

Solving inverse problems involves discretizing a continuous model to solve it on computers.

155
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The resolution of the discretization is determined by the grid size, which determines the level of
detail in the discrete model. A smaller grid size, with a larger number of grid points, provides
higher resolution, potentially resulting in computing more accurate solutions. However, the size
of the system matrix A grows with the number of grid points, so the higher resolution comes
at the cost of increased computational time. A larger grid size, with fewer grid points, reduces
computational requirements. However, this coarser representation can lead to a loss in accuracy,
as less detail from the original continuous problem is captured in the discretized version.

In this paper, we investigate the impact of the grid size on the reconstruction. The data
considered arise from projections of fast-ion velocities in fusion plasmas. Section 2 describes how
regularization is used to solve ill-posed inverse problems and the concept of inverse crime. Section
3 presents the physical model of projections. Section 4 details our investigations, including the
generation of the synthetic measurement used to compute reconstructions and how we compute
the optimal value of the regularization parameter. Section 5 investigates the grid dependence
when using zeroth- and first-order Tikhonov regularization. Section 6 provides a conclusion.

9.2 Solving ill-posed inverse problems
An approximate solution to the ill-posed inverse problem can be computed using regularization
techniques. One such regularization technique is Tikhonov regularization. Tikhonov regularization
introduces a penalty term that penalizes undesirable characteristics of the solution. This problem
can be formulated as

x∗ = argmin
x

(
∥Ax− b∥2

2 + λ ∥Lx∥2
2

)
, (9.2)

where L is a linear operator, and λ is the regularization parameter. A wide range of regularization
can be computed using different Ls. The corresponding normal equations are(

ATA+ λLTL
)
x = AT b, (9.3)

with solution
x∗ =

(
ATA+ λLTL

)−1
AT b. (9.4)

9.2.1 Inverse crime
An inverse crime is committed when the same discretization of the mathematical model is used
to generate the synthetic measurement and to compute the subsequent reconstruction. For the
system matrix A, we generate a synthetic measurement b by computing

b = Axtrue, (9.5)

where xtrue is the ground truth. If we compute xtrue from b using the same system matrix A
and the same discretization, we are committing an inverse crime. Committing an inverse crime
results in an over-optimistic assessment of the reconstruction method’s performance, and the
reconstruction will seem more accurate than it otherwise would be on experimental data. Avoiding
committing an inverse crime requires using different grid sizes for the forward and inverse problems.
This notion forms the bedrock of this paper.

Note that all computations in this paper are performed using “synthetic data”. This term
refers to data used for method development, testing, and to indicate the viability of a specific
reconstruction approach.

When modelling a physical system to generate synthetic data, we must discretize the physical
domain, creating a grid that spans the region of interest. Call this grid the ‘forward grid’ and
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denote the corresponding system matrix Acont. The abbreviation ‘cont’ is short for ‘continuous’,
since the forward grid represents the continuous physical process. Let the number of grid points in
each direction of the grid be [N1, N2]. To solve the inverse problem using synthetic data generated
using the forward grid, we use the same system matrix discretized on the same domain, but with a
different grid size with the number of grid points [n1, n2]. This translates into A having a different
number of columns but the same number of rows as the number of measurements remains the
same. This grid is called the ‘inverse grid’ and is denoted Ainv.

9.3 The physical model: projections
In plasma physics, the term ‘projections’ refers to an analytical methodology used to infer the
velocity-space distribution function of fast ions along a particular direction of observation called the
‘line of sight’. The velocity of any particle within a plasma system is three-dimensional. However,
the experimental ability to directly measure this velocity is limited. We rely on measurements
along a specific line of sight and extract the projection of the velocity vector along this line. These
projections are used to infer the fast-ion velocity-space distribution function. The task involves
solving an inverse problem.

In a magnetically confined fusion plasma, fast ions gyrate around magnetic field lines. Their
velocity can be described in terms of a parallel velocity v∥ and a perpendicular velocity vector
v⊥. The velocity component v∥ is the velocity of the ion parallel to the magnetic field, and
v⊥ = (v⊥,1, v⊥,2) are the ion velocities perpendicular to the magnetic field. In cylindrical
coordinates, it is possible to write v = (v∥, v⊥, γ), where

v⊥,1 = v⊥ cos γ, (9.6)
v⊥,2 = v⊥ sin γ, (9.7)

as illustrated on Fig. 9.1(a), and
v⊥ =

√
v2

⊥,1 + v2
⊥,2. (9.8)

The parameter γ is called the gyroangle, indicating the angle between v⊥ and v̂⊥,1. The fast
gyration around the magnetic fields lines results in azimuthal symmetry in 3D velocity space. The
gyroangle γ therefore becomes ignorable, and velocity space reduces to (v∥, v⊥).1

An expression for the projected velocity u = uû onto a line of sight of a diagnostic, where û
is a unit vector in the direction of the line of sight, can be obtained as follows. Define a coordinate
system with ion velocity

v = v∥B̂ + v⊥ cos γ v̂⊥,1 − v⊥ sin γ v̂⊥,2. (9.9)

Let ϕ be the angle between B and u, so

û = cosϕ B̂ + sinϕ v̂⊥,1. (9.10)

The projected velocity u is then

u = v · û = v∥ cosϕ+ v⊥ sinϕ cos γ. (9.11)

See Fig. 9.1(b) for an illustration of the geometry.

1Moseev and Salewski (2019).
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Figure 9.1: A geometric description of the projection of the 3D ion velocities v =
(v∥, v⊥ cos γ, v⊥ sin γ) onto the velocity u in the direction of the line of sight of the diagnos-
tic. Subfigure (a) shows the projection onto the v⊥1-axis, and (b) the projection in the direction
of u. Adapted from Salewski et al. (2011) and Salewski, Geiger, Moseev, et al. (2014).

9.3.1 The system matrix
The system matrix consists of so-called “weight functions”. Weight functions provide the relation
between a detected signal s and the 2D velocity-space distribution function f . In velocity space,
the weight functions are defined as the kernel of the equation

s(u1, u2, ϕ) =
∫ ∞

−∞

∫ ∞

0
w(u1, u2, ϕ, v∥, v⊥)f(v∥, v⊥) dv⊥ dv∥ (9.12)

for a projected velocity range u1 to u2 and viewing angle ϕ. Thus, the weight functions w =
w(u1, u2, ϕ, v∥, v⊥) depend on the projected velocity range u1 to u2, the viewing angle ϕ, and the
location in velocity space (v∥, v⊥). The weight function w represents the relative contributions
of different areas of velocity space to the detected signal s for a given projected velocity range
u1 to u2 and a given viewing angle ϕ. Areas where the weight functions are positive are called
‘observable regions.’

Weight functions contain the probabilities that a given projected velocity is within the
projected velocity range u1 to u2. Thus, to obtain the system matrix, we need the probability
prob(u1 < u < u2 | ϕ, v∥, v⊥) that the projected velocity of the fast ion is between u1 and u2.
Given that v⊥ ̸= 0 and the projection angle ϕ ̸= 0, solving Eq. (9.11) for the gyroangle γ gives

γ = arccos
u− v∥ cosϕ
v⊥ sinϕ . (9.13)

One solution γ is found for 0 < γ < π, and a second solution for π < γ′ < 2π given by γ′ = 2π− γ.
The total probability is therefore

prob
(
u1 < u < u2 | ϕ, v∥, v⊥

)
= prob

(
γ1 < γ < γ2 | ϕ, v∥, v⊥

)
+ prob

(
γ′

1 < γ < γ′
2 | ϕ, v∥, v⊥

)
, (9.14)

where γ1, γ2, γ
′
1, and γ′

2 correspond to the limits u1 and u2. Assuming a uniform probability
density, which is a valid assumption due to the fast gyromotion of the ions, we get

prob
(
u1 < u < u2 | ϕ, v∥, v⊥

)
= γ1 − γ2

2π + γ′
2 − γ′

1
2π = γ1 − γ2

π
. (9.15)
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Figure 9.2: Projection weight functions in (v∥, v⊥) coordinates for u = 6 × 106 m s−1 and (a)
ϕ = 10◦, (b) ϕ = 45◦, and (c) ϕ = 85◦. Adapted from Salewski et al. (2011).

Substituting γ from Eq. (9.13) gives

prob
(
u1 < u < u2 | ϕ, v∥, v⊥

)
= 1
π

(
arccos

u1 − v∥ cosϕ
v⊥ sinϕ − arccos

u2 − v∥ cosϕ
v⊥ sinϕ

)
. (9.16)

We use this expression to calculate the weight functions. Note that the equation is singular for
v⊥ = 0 or ϕ = 0. In those cases,

prob(u1 < u < u2 | ϕ, v∥, v⊥ = 0) =
{

1 for u1
cos ϕ < v∥ <

u2
cos ϕ ,

0 otherwise,
(9.17)

and

prob(u1 < u < u2 | ϕ = 0, v∥, v⊥) =
{

1 for u1 < v∥ < u2,

0 otherwise.
(9.18)

The weight functions have a characteristic triangular structure in (v∥, v⊥) coordinates indicat-
ing the observable and unobservable regions in velocity space for a given viewing angle. Example
weight functions for ϕ = 10◦

, 45◦, and 85◦ are illustrated in Fig. 9.2.

9.4 Data generation
Discretizing Eq. (9.12) as done in Salewski et al. (2012), we obtain a matrix-vector equation of
the form

Wf = s, (9.19)
where W is the system matrix containing the weight functions, s is a vector containing the
projected velocities, and f the velocity-space distribution function. The objective is to compute
the velocity-space distribution function f given W and s.

For all synthetic measurements, the noise e is assumed to be added noise, so an observation
si can be written as

si = sexact
i + ei, (9.20)

where sexact is the exact data without noise. A noise level of 10% is added to all synthetic
measurements, approximating the noise levels of experimental diagnostic equipment used in fusion
experiments. To incorporate a background level of noise, a synthetic noisy data vector s is
generated as

s = sexact + η
〈
sexact〉N

[
0,max

(
σmin,

√
sexact

)]
. (9.21)
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Figure 9.3: Three synthetic spectra generated using different sizes of the forward grid. The
black line corresponds to [Nv∥ , Nv⊥ ] = [1001, 500], the red line [101, 50], and the blue line [51, 25].
The inset highlights the peak of the spectrum.

The parameter η controls the noise level, and N [0,max (σmin, s
exact)] is a normal distribution with

mean 0 and standard deviation equal to the maximum of either σmin, mimicking the background
noise, or

√
sexact. Thus, the noisy synthetic data have a background noise or a noise dependent

on the measurement.
The system matrix Wcont was computed using a grid of size [Nv∥ , Nv⊥ ] = [1001, 500] on the

domain v∥/[106 m s−1] ∈ [−4, 4] and v⊥/[106 m s−1] ∈ [0, 4]. This number of grid points in the
forward model represents a fine approximation of the continuous physical process generating the
measurements. The number of grid points Nv∥ in the v∥-direction was chosen to be an odd number
to include 0 m s−1 in the discretization. Generating the synthetic spectra using coarser grids such
as [51, 25] and [101, 50] results in a loss of details at the peaks; see Fig. 9.3.

For the projected velocities, u/[106 m s−1] ∈ [−5, 5] with resolution 0.1 × 106 to obtain 101
points in the measured spectra. In this study, we investigate the reconstructions using five lines of
sight with viewing angles ϕ = 10◦, 20◦, 40◦, 70◦, and 85◦. The weight functions are computed for
each line of sight using Eq. (9.16) for the given range of projected velocities and combined in the
matrix Wcont.

The Maxwellian 3D velocity-space distribution function

f3D
(
v∥, v⊥,1, v⊥,2

)
= ne

π3/2vth,∥v
2
th,⊥

exp
(

−
(
v∥ − vd

vth,∥

)2
−
(

v⊥

vth,⊥

)2
)

(9.22)

is used to model a velocity-space distribution function relevant for fusion-plasma conditions. Here,

vd = 0.5 × 106 m s−1, (9.23)
vth,∥ = 0.8 × 106 m s−1, (9.24)
vth,⊥ = 0.8 × 106 m s−1. (9.25)

The corresponding 2D velocity-space distribution function is obtained by integrating over the
gyroangle γ, giving

f2D
(
v∥, v⊥

)
= 2πv⊥f3D

(
v∥, v⊥,1, v⊥,2

)
. (9.26)

Using the modelled weight function matrix, we obtain the synthetic measurements by first
computing the noise-free signal s = Wcontf and subsequently adding noise as described above.
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Figure 9.4: (a) Ground truth fast-ion velocity-space distribution function. (b) Synthetic spectra
from five lines of sight with viewing angles ϕ = 10◦, 20◦, 40◦, 70◦, 85◦. (c) A single spectrum with
10% noise with the projected velocity on the x-axis.

The 2D velocity distribution and the corresponding synthetic measurements are illustrated in Fig.
9.4. The system matrix Winv used to compute the reconstructions are computed as Wcont but
with a coarser grid. The exact grids used will be indicated where relevant. Lastly, Winv and s are
normalized before computing the reconstructions.

9.5 Computing the optimal value of the regularization pa-
rameter

This investigation considers the dependence of the optimal value of the regularization parameter
and the resulting reconstruction error ∥f true − f∥2

2 on the grid size when computing solutions to
the inverse problem in Eq. (9.1) using zeroth- and first-order Tikhonov regularization. A range of
the regularization parameter λ ∈ [10−6, 106] was used for all investigations. Within this range, 50
linearly log-spaced values were used to compute a solution as given in Eq. (9.4). All 50 solutions
were then compared to the ground truth. The solution with minimum squared error defined as

∆ :=
∑

i

(
f true

i − fi

)2
, (9.27)

was then determined as the solution corresponding to the optimal value of the regularization
parameter. We denote this search the “first iteration”. A second iteration was then conducted
around this optimum value of the regularization parameter. This search includes 50 values spaced
linearly between the two points closest to the optimum value in the previous search grid. This
ensures that the minimum occurs for values included within the second iteration. Furthermore, the
second search is sufficiently fine that any discrepancy between the actual true optimum value of
the regularization parameter and that found by the search deviates by less than 10−3. This minor
discrepancy does not result in any significant changes to the reconstruction error of the optimal
solution. As for the first iteration, the solution with minimum ∆ was chosen as the solution
corresponding to the optimum value of the regularization parameter. We call ∆ the reconstruction
error. Examples of the results of such a search of the optimum λ are illustrated in Fig. 9.5(a) and
(b).

When conducting such a search for the optimum value of the regularization parameter, the
reconstructed solution f needs to be compared with the ground truth f true. This comparison
requires that the two arrays have the same dimensions. This is not the case initially due to the
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different grid sizes of the forward and inverse grid. The ground truth was computed using the
forward grid with [Nv∥ , Nv⊥ ] = [1001, 500] number of grid points, and the reconstruction using
the inverse grid [nv∥ , nv⊥ ] with a significantly smaller number of grid points. There are then
three choices: either the reconstruction is interpolated onto the finer grid of the ground truth, the
ground truth is interpolated onto the coarser grid of the reconstruction, or both the ground truth
and the reconstruction are interpolated onto some other grid, e.g., grid sizes halfway between the
larger and smaller grid-size values.

Interpolating one way or the other results in radically different values of the optimal reg-
ularization parameter and, therefore, different solutions. The differences are illustrated in Fig.
9.5. Interpolating the ground truth onto the coarser inverse grid produces the results for the
regularization parameter search and corresponding reconstruction shown in subfigures (a) and
(c). Interpolating the reconstruction onto the fine forward grid produces the results shown in
subfigures (b) and (d). The optimal values of the regularization parameter using each method is
λopt = 0.0097 and λopt = 0.5756 when interpolating the fine ground truth onto the coarse grid and
when interpolating the coarse reconstruction onto the fine grid, respectively. Thus, an erroneous
artificial smoothing is applied on the reconstructed solution when interpolating from coarse to fine.
Compared to the ground truth illustrated in Fig. 9.4(a), the solution found when interpolating
the ground truth onto the coarse inverse grid is preferable.

The significantly larger value of the optimal regularization parameter when interpolating the
reconstructed solution onto the fine grid occurs since array entries with wrong values on the finer
pixels are more likely to be introduced when interpolating the coarse reconstruction onto a finer
grid. This is not the case when interpolating a fine solution onto a coarse grid. Only some details
that can be captured on a finer grid might be lost, but no erroneous array entries are introduced.
This is reflected in the larger value of the optimal regularization parameter when interpolating onto
the fine grid: the optimal value of the regularization parameter is larger compared to interpolating
the ground truth onto the coarse grid, indicating a solution with more smoothing and less details
is better, i.e., the erroneous pixels are penalized.

Alternatively, the ground truth and the reconstruction could both be interpolated onto some
other grid of choice, e.g., grid sizes halfway between the larger and smaller grid size values.
However, our investigations show that such interpolation produces the same results as when the
reconstruction is interpolated onto the fine grid. This is because of the above-mentioned effect
from interpolating a coarse reconstruction onto a finer grid.

Thus, our investigations are performed by interpolating the fine ground truth onto the coarse
inverse grid to determine the optimal value of the regularization parameter and the corresponding
solution with lowest reconstruction error.

9.6 Grid-dependence in zeroth- and first-order Tikhonov
regularization

This section investigates how the number of grid points used in the inverse grid [nv∥ , nv⊥ ] influences
the optimal value of the regularization parameter and the reconstruction error.

We compute the optimal value of the regularization parameter and the reconstruction error
for different grid sizes, where the number of grid points in one dimension is kept constant and the
other varied. One-dimensional plots of the optimal value of the regularization parameter and the
reconstruction error can then be plotted as a function of the variable number of grid points. The
results are shown in Fig. 9.6.

In subfigures (a) and (b), nv∥ is kept constant at the values indicated and nv⊥ varied from 10
to 51. The optimal value of the regularization parameter decreases with an increasing number of
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Figure 9.5: (a) The optimal regularization parameter for the synthetic measurement shown in
Fig. 9.4(b) computed using zeroth-order Tikhonov regularization by interpolating the ground
truth onto the dimensions of the inverse grid with [nv∥ , nv⊥ ] = [101, 50], and (b) by interpolating
the reconstruction onto the grid dimensions of the ground truth with [Nv∥ , Nv⊥ ] = [1001, 500].
Subfigures (c) and (d) illustrate the normalized reconstructions computed using the optimal values
of the regularization parameters as determined by the minima of the curves in (a) and (b).

grid points, indicating a reduced need for regularization, i.e., the data-fitting term ∥Wf − s∥2
2 is

valued higher in the trade-off between the data-fitting and the regularization term when discretizing
using more grid points. This decrease continues until nv⊥ ≈ 30, after which the optimal value of
the regularization parameter and the reconstruction error remain constant. The same effect is
observed when keeping nv⊥ constant and varying nv∥ . The cases with nv⊥ = 25, 40, and 50 and
nv∥ varied from 10 to 101 are illustrated in subfigures 9.6(c) and (d).

Typically, including additional measurements in the signal data vector s improves the computed
reconstruction and reduces the reconstruction error.2 To ensure that the effect observed in Fig.
9.6 results from the grid discretization and an insufficient amount of data, we perform the same
computations with ten spectra, i.e., an increase of 100% in the amount of data. The additional
data results in an improved solution, as seen by its lower reconstruction error; see Fig. 9.7. The
discretization effect is still prevalent with a constant value of the optimal regularization parameter
and reconstruction error occurring for grid sizes with nv⊥ ≈ 30.

Next, we illustrate the above results in two dimensions. The optimal value of the regularization
parameter and the reconstruction error for all grid sizes nv∥ , nv⊥ ∈ [10, 51] are plotted in Fig. 9.8.
Again the trend of a decreasing optimal value of the regularization parameter and a decreasing
value of the reconstruction error with an increasing number of grid points is apparent. From
Fig. 9.8(b), we see that the number of grid points in v∥ plays a significantly larger role than the

2Schmidt et al. (2023).
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Figure 9.6: (a) Optimal value of the regularization parameter and (b) reconstruction error for
nv∥ = 51, 81, and 101 as a function of nv⊥ . (c) Optimal value of the regularization parameter and
(d) reconstruction error for nv⊥ = 25, 40, and 50 as a function of nv∥ .

Figure 9.7: (a) Optimal value of the regularization parameter and (b) reconstruction error for
nv∥ = 51 as a function of nv⊥ for measurements consisting of 5 and 10 spectra.
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Figure 9.8: (a) Optimal value of the regularization parameter and (b) reconstruction error for
nv∥ and nv⊥ in the range [10, 51]. The three black crosses at (12, 12), (25, 20), and (45, 45)
indicate the locations used for Fig. 9.9. The dashed line indicates the locations used for Figs. 9.11
and 9.12.

number of grid points in v⊥. Only increasing nv∥ reduces the reconstruction error considerably. A
small effect is seen for nv⊥ ≳ 10, where the grid is so coarse that increases in nv⊥ also improves
the reconstruction error.

Figure 9.9 provides example reconstructions at different grid sizes. The figure shows the
ground truth interpolated to grids of different sizes in the first column, the corresponding optimal
reconstruction in the second column, and the normalized absolute residual matrix R in the third
column. The normalized absolute residual matrix is computed as

R ≡ |f true − f |
max(|f true − f |) . (9.28)

The matrix R illustrates the locations in velocity space where the reconstruction deviates from
the ground truth. For the coarse grid [12, 12] in the top row of Fig. 9.9, the solution significantly
overestimates the extent of the distribution in v⊥. Increasing the resolution in v⊥ by adding
additional grid points does not improve the reconstruction, as can be seen from Fig. 9.8(b). Thus,
the number of grid points is too low in v∥ for the solution to improve the coverage in v⊥. The
explanation for this is the discretization of the weight functions.

Inspection of the weight functions shows that the sensitivities of the weight functions in the
system matrix modelling the physical system depend primarily on the number of grid points in v∥,
and not v⊥. For example, consider the weight function for ϕ = 10◦ and u = 0 m s−1 illustrated
in Fig. 9.10. The weight function is computed using a different number of grid points. The
observable region of this weight function is centered at u = 0 m s−1 and extends into v⊥. Using
a coarse grid, the weight function loses its sensitivity for v⊥ ≤ 1.8 × 106 m s−1. Increasing the
number of grid points in v⊥ does not improve this sensitivity. Instead, an increas in the number of
grid points in v∥ is required to improve the sensitivity in v⊥. This effect is what gives rise to the
phenomenon in Fig. 9.8: for a given nv∥ , the reconstruction error remains the same independent of
nv⊥ . The details of the weight function increases when increasing the number of grid points in v∥.

Thus, one reason for the poor reconstructions is a loss of detail in the weight functions of the
system matrix.

Thus, as the number of grid points in v∥ increases, the detail and information carried in the
inverse grid increases. When nv∥ is sufficiently large, which occurs around nv∥ ≈ 30, the edges
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Figure 9.9: Subfigures (a), (d), and (g) illustrate the ground truth for the grid sizes [12, 12], [25, 20],
and [45, 45]. The locations of these grid sizes are indicated on the 2D reconstruction error plot on
Fig. 9.8(b). Subfigures (b), (e), and (h) illlustrate the reconstruction using these grid sizes as the
inverse grid. Subfigures (c), (f), and (i) illustrate the normalized residual matrix.
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Figure 9.10: Subfigures (a), (b), and (c) illustrate the weight function for ϕ = 10◦ and u = 0 m
s−1 computed using the number of grid points indicated, with an increasing number of grid points
in v⊥ from left to right. Subfigures (d), (e), and (f) illustrate the weight function for ϕ = 10◦ and
u = 0 m s−1 computed using the number of grid points indicated, with an increasing number of
grid points in v∥ from left to right. The colorbar is removed for simplicity, but the same colorbar
as shown in Fig. 9.9 was used.
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Figure 9.11: Zeroth-order Tikhonov regularization: Reconstructions of the ground truth in Fig.
9.4(a) computed using the grid size indicated above each subfigure. The colorbar used is identical
to that in Fig. 9.9.

of the observable regions of the weight functions have a significantly higher sensitivity than the
centers of the observable regions. When v∥ is too coarse, the weight functions do not indicate this
difference, and detail is lost in the system matrix.

The solutions computed using zeroth-order Tikhonov regularization as a function of the
number of grid points are illustrated in Fig. 9.11. The grid sizes were chosen along the dashed
diagonal indicated in Fig. 9.8 to produce solutions with a high to low reconstruction error. The
increasingly detailed weight functions with coverage closer to v⊥ = 0 m s−1 allows the solution to
extend less into high values of v⊥.

The same effect as described above occurs for first-order Tikhonov regularization. In this
case, the operator L is chosen such that

LTL = ∇T
v∥

∇v∥ + ∇T
v⊥

∇v⊥ , (9.29)

where ∇v∥ and ∇v⊥ are first-order finite-difference approximations of the partial derivatives with
respect to v∥ and v⊥.3 The solutions computed in this manner as a function of the number of grid
points are very similar to those computed using zeroth-order Tikhonov regularization. See Fig.
9.12 for the solutions computed using first-order Tikhonov regularization for the same grid sizes
as in Fig. 9.11.

3Jacobsen (2015).
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Figure 9.12: First-order Tikhonov regularization: Reconstructions of the ground truth in Fig.
9.4(a) computed with the grid size indicated above each subfigure. Axes are not of equal length
for illustration purposes. The colorbar used is identical to that used in Fig. 9.9.
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9.7 Conclusion
In this work, we have systematically investigated the influence of the grid discretization on the
optimal value of the regularization parameter and the reconstruction error for an ill-posed inverse
problem, specifically in the context of projections of fast-ion velocities in fusion plasmas.

When investigating a reconstruction approach to solve an ill-posed inverse problem using
synthetic data, reconstructions computed using said approach must be compared with a ground
truth. The reconstructions and the ground truth are typically not of the same dimensions. The
decision on whether to interpolate the reconstructed solution onto the fine grid of the ground
truth or to interpolate the fine ground truth onto the coarse grid of the reconstructed solution
significantly affects the optimal value of the regularization parameter and the solution deemed to
be optimal. Our study suggests that interpolating the fine ground truth onto the coarse grid of
the reconstructed solution results in solutions closer to the ground truth.

The discretization of the domain of the matrix used to solve the inverse problem is important
when investigating the performance of a reconstruction method. Specifically for reconstructing fast-
ion velocity-space distribution functions using projections of fast-ion velocities in fusion plasmas,
a coarse grid with less than 30 grid points in the v∥-direction produces solutions with increasing
reconstruction error the smaller number of grid points used in the discretization. The number of
grid points in the v⊥-direction does not play a large role in the value of the reconstruction error.

The poor reconstruction error results from loss of significant detail in the weight functions
of the system matrix. An insufficient number of grid points in the v∥-direction results in loss of
weight function sensitivity in v⊥. The weight functions discretized using around ten points in
v∥ are zero up to v⊥ = 1.8 × 106 m s−1. Thus, sensitivities of a large region of velocity space
is neglected. Furthermore, weight functions on coarse grids lose their high sensitivities near the
boundaries of the observable regions and instead have a constant value for a wide interval in v∥.



Chapter 10

Conclusion and outlook

The research during this Ph.D. has contributed to advancements in fast-ion diagnostics in fusion
plasmas, providing new methodologies and strategies to address ill-posed inverse problems in
velocity-space tomography.

The research has successfully developed and applied the technique of slowing-down physics
regularization to obtain fast-ion phase-space distribution functions of fast ions from projected
velocities. The technique will be developed further to provide additional details of the fast-ion
behaviour, with significant research effort already being devoted to this by the fast-ion group at
the Plasma Physics and Fusion Energy section at DTU Physics. Therefore, the research in this
Ph.D. has laid the foundation for future developments of the technique.

The 2D ion cyclotron emission weight functions developed provide improved fast-ion analysis
and are the first of their kind. Notably, the weight functions and the associated reconstruction
methods can be used to determine the velocity-space location of ions emitting ion cyclotron
emission.

This research has explored alternative regularization methods to Tikhonov regularization,
assessing their potential application in determining the fast-ion velocity-space distribution function
in fusion plasmas. Iterative algebraic reconstruction techniques were evaluated and compared
with Tikhonov regularization, providing insights into their relative strengths and weaknesses.

The raised cosine model for FILDSIM provides more accurate modelling of the pinhole-
scintillator relation in a FILD. With its ability to facilitate enhanced precision and increased
computational speed, this model could pave the way for efficient inter-shot reconstructions of
FILD measurements from full discharges. Further testing at other FILDs besides the FILD at
TCV should be performed to investigate the performance improvement using the raised cosine
model compared to the standard Gaussian model.

The potential of the application of deep neural networks in velocity-space tomography was
investigated. The research indicates a significant potential for applying deep neural networks,
with significant improvements in the reconstruction capability of a trained deep neural network
on experimental FILD measurements. This also provides instantaneous reconstructions of the
fast-ion velocity-space distribution function, both supplementing current reconstruction methods
and paving the way for improved control of fusion plasmas using fast-ion diagnostics.

It is important to note that while these advancements offer promising avenues for future work,
further investigations are required to validate these methods on a broader scale and in different
fusion reactors. The findings of this research form the foundation for these future explorations
and pave the way for continued innovations in the realm of fast-ion diagnostics in fusion plasmas.
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