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R E S U M É

Både lineære og ikke-lineære spektroskopier er blevet implementeret og
anvendt. Størstedelen af arbejdet omhandler fænomenet cirkulær dikro-
isme (CD), dvs. den differentielle absorption af venstre– og højrecirkulært
polariseret lys.

Den enkleste manifestation af CD er elektronisk cirkulær dikroisme
(ECD). ECD er en lineær egenskab, der kun forekommer for chirale
molekyler. I dette arbejde er implementeringen af ECD blevet anvendt
til at undersøge elektroniske excitationer for en række små til mellem-
store molekyler i både UV-Vis– og røntgenregionerne, hvor sidstnævnte
også udforsker virkningen af spin–orbit kobling. I forbindelse med im-
plementeringen af ECD er optisk rotation også blevet gjort tilgængelig
sammen med dens komplekse formulering, hvorfra ECD-tværsnittet kan
beregnes.

Magnetisk cirkulær dikroisme (MCD) og kernespin-induceret cirkulær
dikroisme (NSCD) er de to ikke-lineære dikroismer, der behandles i
dette arbejde. De er perturbationsinducerede egenskaber; MCD stam-
mer fra det elektroniske systems interaktion med et eksternt magnetfelt,
mens NSCD induceres af det magnetiske felt, der opstår fra kernernes
spin.

Derudover er den såkaldte “core–valence separation and uncoupled
valence singles”-tilnærmelse blevet udledt for beregning af røntgentofo-
tonsabsorption (X2PA) og undersøgt for et sæt af små testmolekyler.

Arbejdet er baseret på coupled cluster (CC) metoden, inden for hvilken
“coupled cluster singles and doubles” (CCSD) og “second-order cou-
pled cluster singles and doubles” (CC2) modellerne er blevet anvendt.
ECD, optisk rotation, og X2PA er blevet implementeret for CCSD i Q-
Chem, mens CC2 blev anvendt i implementeringerne af MCD og NSCD
i TURBOMOLE. En intern python-kode til prototypeimplementering af
CC-baserede molekylære egenskaber, pyCCRSP, er blevet udvidet og an-
vendt i forbindelse med CCSD-arbejdet.
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S U M M A RY

Linear and nonlinear spectroscopies have been implemented and ap-
plied. Most of the efforts revolve around the phenomenon of circular
dichroism (CD), i. e., the differential absorption of left and right circu-
larly polarized light.

The simplest manifestation of CD is electronic circular dichroism (ECD).
ECD is a linear property only occurring for chiral molecules. In this
work, it has been applied to a variety of small to medium-sized molecules,
to investigate electronic excitations in the UV-Vis and X-ray regimes, the
latter also exploring the effects of spin–orbit coupling in the latter. In
relation to the implementation of ECD, optical rotation has also been
made available along with its damped formulation from which the ECD
cross section can be obtained.

Magnetic circular dichroism (MCD) and nuclear spin-induced circu-
lar dichroism (NSCD) are the two nonlinear dichroisms treated in this
work. They are perturbation-induced dichroisms; MCD originates from
the interaction of the electronic system with an external magnetic field,
while NSCD is induced by the magnetic field arising from the spin of
the nuclei.

Furthermore, the core–valence separation and uncoupled valence sin-
gles approximation has been derived for computing X-ray two-photon
absorption (X2PA) and investigated for a set of small benchmark molecules.

The developments rely on the ab initio coupled cluster (CC) method
within which the coupled cluster singles and doubles (CCSD) and the
second-order coupled cluster singles and doubles (CC2) models have
been applied. ECD, optical rotation, and X2PA have been implemented
for CCSD in Q-Chem, while the CC2 framework was employed for the
implementations of MCD and NSCD in TURBOMOLE. An in–house
python code for prototyping implementations of CC-based molecular
properties, pyCCRSP, has been extended and applied in connection with
the CCSD work.
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Part I

I N T R O D U C T O RY M AT T E R

This part contains an introduction to the thesis (Chapter 1),
a summary of relevant theoretical aspects (Chapter 2), and a
description of the spectroscopies under investigation (Chap-
ter 3). Elaborations upon the theoretical aspects and working
equations for the properties of interest can be found in the
respective manuscripts (Part II, Chapter 5).





1I N T R O D U C T I O N

Technological and scientific advances arise from an increased under-
standing of how the world around us functions. This, in itself, argues
the value of pursuing a both broad and deep understanding of the sci-
entific principles governing our surroundings.

Chemistry as a natural science aims at understanding the macroscopic
behaviour of matter in terms of the properties of the individual molecules.
In its youth, chemistry was a purely experimental science. However, it
reached a point of advancement where inconsistencies with the predic-
tions of classical physics were observed. From the interplay of experi-
ments and physics, quantum mechanics arose during the 20th century.
In its description of nature at the atomic scale, quantum mechanics pre-
dicted that atoms and molecules take only discrete energies. This predic-
tion provides the basis for understanding spectroscopic properties [1].

Molecular response properties are manifestations of the response of a
molecule to electromagnetic fields. The interaction of matter with light
as the perturbing field gives rise to the phenomena studied in molecular
spectroscopy. Depending on the frequency of the light beam, different
responses are probed. With a radiation in the ultraviolet–visible (UV-Vis)
or X-ray regions of the spectrum, transitions of valence or core electrons,
respectively, are induced. By evaluating the responses of the atoms and
molecules based on the laws of quantum mechanics, it is possible to
gain insight into the electronic transitions that are convoluted in bands
of varying resolution in an experimental spectrum.

The experimental endeavours of scientists continue to increase our
abilities to probe highly sophisticated phenomena on the atomic level.
This focus on properties of individual molecules and atoms brings about
an emerging necessity for the development of robust theoretical models
to aid in the interpretation and analysis of the results obtained from such
advanced experiments.

This is where quantum chemistry enters the equation. While the ex-
act formulation of quantum mechanics is unfeasible for application to
molecular systems, quantum chemistry is, in principle, the application
of the laws of quantum mechanics by a collection of approximations.
These approximations make the theoretical description and investiga-
tion of experimental observables possible.

The methods embodied in quantum chemistry aim at approximately
solving the electronic Schrödinger equation and thereby provide a de-
scription of the electronic structure of a molecule and its properties. The
diverse quantum chemical methods offer different levels of theory in

3



4 introduction

terms of accuracy of the predictions and the computational cost of a cal-
culation. It is thus necessary for a computational chemist to take into
account both computational limitations and theoretical requirements be-
fore carrying out a quantum chemical calculation. The nature of the prob-
lem at hand, the property of interest, the computational resources avail-
able, and the level of accuracy required must all be carefully considered
when deciding on a theoretical model. Obtaining a good compromise
between accuracy and computational cost is, and will probably always
be, at the center of the work devoted to the development and implemen-
tation of quantum chemical methods for molecular properties.

A theory that over the last few decades has received increased atten-
tion and become widely employed is coupled cluster (CC) [2–5]. It is
a wavefunction-based theory which efficiently includes electron correla-
tion in the description of the wavefunction. It shows great robustness
and high accuracy for computing ground states for both closed– and
open-shell systems. Furthermore, the CC approximations constitute a
hierarchy of models with a systematic increase in accuracy.

Different theoretical methods for simulating spectroscopies are avail-
able to CC. The frameworks offered by coupled cluster response the-
ory [6, 7] and equation-of-motion coupled cluster (EOM-CC) [8–11] are
reliable, accurate, and popular. Over the last few decades, a vast port-
folio of spectroscopies that can be treated via these methods has been
developed and is expanding still [12]. Spanning properties in both the
linear and nonlinear regimes and across different frequency regions of
the probing light, the methods are now routinely applied and found
useful in the interpretation of spectroscopic measurements.

The work presented herein concerns the development of further ad-
ditions to the portfolio of spectroscopies described at the CC level of
theory. It extends the lists of both linear and nonlinear spectroscopies,
employing response theory as well as EOM-CC.

This thesis is article-based and the chapters are therefore formulated
in brevity. In the remainder of Part I, Chapter 2 touches upon the the-
oretical background of the CC model, response theory, and EOM-CC
as frameworks for calculating molecular response properties, and Chap-
ter 3 describes the spectroscopic properties of interest. Part II is initiated
by a synopsis in Chapter 4 introducing the different projects that consti-
tute the Ph.D. studies of the author. The articles are provided in full in
Chapter 5 and some unpublished content is presented in Chapter 6. The
thesis is rounded off with a conclusion and outlook in Chapter 7.



2T H E O R E T I C A L A S P E C T S

Quantum chemistry is born from the Schrödinger equation

ih̄
∂

∂t
Ψ = HΨ (1)

and the immense problem the equation represents. Its complexity makes
it impossible to solve for any practical purposes, and approximations
must be introduced to enable the treatment of molecules.

The first fundamental steps towards an applicable theoretical model
are to divide the Schrödinger equation into time-dependent and inde-
pendent parts, and then introduce the Born–Oppenheimer approxima-
tion to the time-independent equation for a further simplification. In this
way, the time-independent electronic Schrödinger equation is obtained

Hψ = Eψ (2)

where H is the electronic Hamiltonian, E is the energy of the system,
and ψ is the electronic wavefunction. In the Born–Oppenheimer approx-
imation the nuclei are “fixed” and their presence is experienced by the
electrons as a static external potential in the form of the electron–nuclear
attraction while the nuclear–nuclear repulsion energy is a constant and
independent of the position of the electrons. Solving Eq. (2) is the prob-
lem of interest in electronic structure theory. Unfortunately, even the
electronic Schrödinger equation cannot be solved (analytically) for more
than one electron, and more approximations are necessary. The various
electronic structure models offer different approaches to tackle this prob-
lem, targeting different aspects of describing the electronic structure of
atoms and molecules.

The simplest wavefunction model is the Hartree-Fock (HF) model. In
the HF approximation, the electrons are considered as independent par-
ticles each of them moving in an average electrostatic field of the static
nuclei and the charge distribution of the remaining electrons in the sys-
tem. In this way, HF reduces the electronic Schrödinger equation from
a many-body to a one-electron problem where the wavefunction is de-
scribed by a single Slater determinant.

By approximating the electron–electron interactions as one-electron in-
teractions with an average field, the HF model neglects what is known
as electron correlation. From this fact, the correlation energy of an elec-
tronic system is defined as the difference between the exact energy and
the HF energy of that system [13]

Ecorr = Eexact − EHF . (3)

5



6 theoretical aspects

Ecorr comprises the two types of electron correlation: dynamical and
static correlation. The former describes the correlated electronic motion
induced by the instantaneous interactions between the electrons, while
the latter is present in systems with near-degenerate configurations. It is
the aim of higher-level electronic structure methods to recover the corre-
lation lost in the HF approximation. While HF alone does not provide
a good approximation for studying properties, it serves as a convenient
starting point for more accurate wavefunction-based models.

One of the most successful models for including dynamical correlation
in the description of the wavefunction is CC; a method often employing
a HF determinant as the reference state.

2.1 the coupled cluster ansatz and approximations

Coupled cluster is an ab initio method providing a correlated description
of the electronic structure of a system. The CC wavefunction is typically
expressed as the exponential of a cluster operator operating on a HF
reference state [13, 14]

|CC〉 = eT |HF〉 . (4)

The cluster operator, T, is a sum of excitation operators τµ weighted by
their amplitudes tµ

T = ∑
µ

tµτµ (5)

where µ indicates the excitation level. The CC Schrödinger equation is
then constructed by inserting the CC wavefunction into the electronic
Schrödinger equation

HeT |HF〉 = E0 eT |HF〉 . (6)

Here, E0 is the optimized CC ground state energy. The expansion of the
exponential is nonlinear in the cluster amplitudes, and the wavefunction
must be solved in a nonvariational manner. This is carried out by project-
ing the CC Schrödinger equation onto the reference state and excitation
projection manifold, {〈HF| , 〈µ|}, giving rise to the CC equations

〈HF|HeT |HF〉 = E0 (7)

〈µ|H̄|HF〉 = 0 (8)

where we have introduced the similarity-transformed Hamiltonian
H̄ = e−T HeT and

〈µ| = 〈HF| τ†
µ . (9)
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Eq. (7) is often referred to as the CC energy equation and Eq. (8) as the
CC amplitude equations.

Solving Eqs. (7) and (8) with an untruncated cluster operator quickly
becomes an unfeasible problem. The different levels of truncation of the
cluster operator constitute a hierarchy of approximate CC models in
which a systematic increase in accuracy is achieved by moving up the
hierarchy

CCS < CC2 < CCSD < CC3 < CCSDT < · · · . (10)

The “S” indicates that single excitations are included in the excitation
manifold, “D” refers to doubles, and “T” to triples. The intermediate
CCn models can be viewed as approximations to the models one step
above in the hierarchy, with the value of n indicating which excitation
level has been approximated. Increasing the accuracy by moving up the
hierarchy does, however, come with a steep increase in computational
cost which scales exponentially with system size.

In this thesis, two CC models are employed: coupled cluster singles
and doubles (CCSD), which is the most widely used CC model, and the
intermediate second-order coupled cluster singles and doubles model
(CC2).

2.1.1 CCSD

Coupled cluster singles and doubles is an approximate CC method con-
structed by truncating the cluster operator after double excitations [15].
The CCSD wavefunction then reads

CCSD = eT1+T2 |HF〉 . (11)

In the CCSD projected equations, the projection space is restricted to
all singly and doubly excited determinants as well as the reference,
{〈HF| , 〈µ1| , 〈µ2|}, shaping the CCSD equations [13, 15]

〈HF|H̃(1 + T2 +
1
2

T2
1 )|HF〉 = ECCSD (12)

〈µ1|H̃ + [H̃, T2]|HF〉 = 0 (13)

〈µ2|H̃ + [H̃, T2] +
1
2
[[H̃, T2], T2]|HF〉 = 0 . (14)

H̃ is the T1-transformed Hamiltonian, H̃ = e−T1 HeT1 .
CCSD efficiently sums higher-order correlation effects as the expan-

sion of the exponential includes both (disconnected) triple and quadru-
ple excitations.
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2.1.2 CC2

In between CCS and CCSD in the hierarchy lies the second-order cou-
pled cluster singles and doubles model. It is formed by introducing an
approximation to the CCSD doubles amplitude equations (Eq. (14)) by
truncating the doubles at the lowest non-vanishing order in the fluctua-
tion potential [16]. The singles amplitude equations remain unchanged
compared with CCSD. The CC2 doubles equations then take the form

〈µ2|H̃ + [F, T2]|HF〉 = 0 (15)

where F is the Fock operator [16]. By comparing Eq. (15) with Eq. (14) it
is evident that the CC2 equations form a subset of the CCSD equations.

2.2 molecular properties with coupled cluster

There are two main approaches to describing molecular properties within
CC theory: response theory and equation-of-motion coupled cluster.

2.2.1 Response Theory

In response theory, time-dependence is reintroduced into the electronic
Schrödinger equation in order to determine the time development of the
electronic wavefunction in the presence of a time-dependent perturba-
tion

H |0〉 = i
∂

∂t
|0〉 . (16)

The electronic Hamiltonian now contains a time-independent part as
well as a time-dependent perturbation

H = H0 + V(t) . (17)

Response theory offers a convenient framework for treating the molec-
ular responses to such perturbations by providing a formalism for de-
riving response functions, from which an observable can be described.
From the perturbation expansion of the expectation value of an operator
V0 [7, 12]

〈V0〉(t) = 〈〈V0〉〉+ ∑
x

εx 〈〈V0; Vx〉〉ωx
e−iωxt

+
1
2! ∑

x,y
εxεy 〈〈V0; Vx, Vy〉〉ωx ,ωy

e−i(ωx+ωy)t

+
1
3! ∑

x,y,z
εxεyεz 〈〈V0; Vx, Vy, Vz〉〉ωx ,ωy ,ωz

e−i(ωx+ωy+ωz)t

+ · · · (18)
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we define the response functions as the expansion coefficients. The terms
included in Eq. (18) are referred to as the zero-order, linear, quadratic,
and cubic response functions, respectively. They describe the response
of the expectation value to different orders in the perturbation strengths
and do not depend on the representation of the wavefunction.

In the quasi-energy formulation, the response functions are then iden-
tified as the derivatives of the quasi-energy with respect to the pertur-
bation strengths. In the nonvariational CC theory, the quasi-energy is
used in its non-Hermitian form, i. e., the quasi-energy Lagrangian is
employed [7]. CC response functions are then equivalently obtained
as perturbation-derivatives of this Lagrangian. The CC quasi-energy La-
grangian has the form [7]

L = Re
{
〈HF|H|CC(t)〉+ ∑

µ

t̄µ 〈µ̄(t)|H − i
∂

∂t
|CC(t)〉

}
T (19)

with the Hamiltonian of Eq. (17) and

|CC(t)〉 = eT(t) |HF〉 , 〈µ̄(t)| = 〈µ| e−T(t) . (20)

The Lagrangian has variational properties with respect to the zero-
order (ground state) amplitudes and Lagrange multipliers. The CC am-
plitude equations are obtained from the stationary conditions for the
zero-order multipliers, and the zero-order multipliers are determined
from the stationary conditions for the zero-order amplitudes.

This formulation of CC response theory is applicable to all standard
CC models by introducing the appropriate truncations of the cluster op-
erator and excitation projection manifold. Meanwhile, the Lagrangian
must be explicitly modified for the intermediate CCn models to accom-
modate the artificial truncation of the amplitude equations. Nevertheless,
the modified CCn quasi-energy Lagrangians fulfill the same variational
properties as does the regular one, and response functions can thus be
derived also for the CCn models [16–19].

Dispersive observables are described directly from the response func-
tions. Meanwhile, information on resonant states of a system can be
obtained from their poles and residues. Considering, for example, the
sum-over-states (SOS) representation of the (exact) linear response func-
tion with general operators A and B and associated optical frequency
ωB [20]

〈〈A; B〉〉ωB
= ∑

k

〈0|A|k〉 〈k|B|0〉
ωB −ωk

−∑
k

〈0|B|k〉 〈k|A|0〉
ωB + ωk

(21)

it is seen that the poles of the linear response function correspond to
excitation energies, that is, when the optical frequency ωB equals ωk.
The excitation energies may be determined from the eigenvalues of the
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CC Jacobian, A [12]. Due to its non-Hermiticity, there are right and left
eigenvalue equations

ARk = ωkRk and LkA = ωkLk (22)

where ωk is the excitation energy of excited state k and Rk and Lk are its
associated eigenvectors that are orthogonal, but not each other’s adjoint.

From the residues of the linear response function,

lim
ωB→ωk

(ωB −ωk) 〈〈A; B〉〉ωB
, lim

ωB→−ωk
(ωB + ωk) 〈〈A; B〉〉ωB

(23)

the transition strength of an excitation may be determined. Other, non-
linear, transition properties can be obtained from the residues of the
higher-order response functions [12, 21].

With response theory it is thus possible to calculate excited state prop-
erties without an explicit excited state wavefunction.

The transition strengths from standard response theory, however, are
infinitely narrow absorption peaks, reflecting the infinite lifetime of the
excited states when determined from the poles of the response functions.
In reality, excited states have finite lifetimes.

Such finite lifetimes can be introduced by the application of a damp-
ing term making the response functions resonance-convergent. Different
approaches exist [22–26], all sharing the fundamental action of imposing
a finite lifetime by introducing an empirical damping parameter.

In damped response theory, the damping occurs in terms of a com-
plex excitation energy which is introduced directly into the response
functions by the substitution ωk → ωk − iγ [25]. By this substitution, the
SOS formulation of the damped linear response function becomes [12]

〈〈A; B〉〉ωB
= ∑

k

〈0|A|k〉 〈k|B|0〉
ωB − (ωk − iγ)

−∑
k

〈0|B|k〉 〈k|A|0〉
ωB + (ωk − iγ)∗

(24)

= ∑
k

〈0|A|k〉 〈k|B|0〉
(ωB + iγ)−ωk

−∑
k

〈0|B|k〉 〈k|A|0〉
(ωB + iγ) + ωk

. (25)

In Eq. (25), the damping term iγ is associated with the optical frequency
instead of the excitation energy. Thus, the damped response functions
are effectively constructed by introducing a complex optical frequency
according to

ωB → ωB + iγ . (26)

The advantage of damped response theory is that it allows the calcula-
tion of absorption and dispersion spectra without explicitly solving for
the excited states (Eq. (22)) and calculating their transition moments. In-
stead, a spectrum is obtained directly from the real (imaginary operator
combination) or imaginary (real operator combination) component of
the damped response function with a line-shape function superimposed
by construction [25].
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2.2.2 Equation-of-Motion Coupled Cluster

The equation-of-motion coupled cluster formalism offers an alternative
to response theory for calculating molecular response properties. In EOM-
CC theory, no time-dependence is introduced. Instead, CC theory is di-
rectly extended to describe excited states by applying a linear excitation
operator to a pre-optimized CC ground state, thus creating an excited
state wavefunction [8]. Due to the non-Hermitian nature of CC and, thus,
EOM-CC theory, there exists both right and left EOM states [27]

|k〉 = Rk |CC〉 , 〈k| = 〈CC| Lk (27)

which are biorthogonal and can be normalized to the condition
〈i|j〉 = δij. The EOM operators Rk and Lk are linear combinations of
excitation operators with associated amplitudes

Rk = ∑
µ

rk
µτµ , Lk = ∑

µ

lk
µτ†

µ . (28)

The excited states and their energies are the eigenfunctions and val-
ues of the energy-shifted (normal-ordered) Hamiltonian, and are thus
obtained by solving the EOM eigenvalue equations [27]

HN |k〉 = ωk |k〉 , 〈k|HN = ωk 〈k| (29)

with HN = H − E0. The solution with zero eigenvalue corresponds to
the CC ground state.

The EOM-CC formalism takes an expectation value approach and cal-
culates the transition moments of an observable as the matrix elements
of the operator between states i and j

〈A〉 = 〈i|A|j〉 . (30)

EOM-CC response functions are then constructed by inserting the
eigenstates, their energies, and the transition matrix elements into the
SOS expressions of the response functions derived for exact theory [28].

To summarize the two approaches, response theory derives approx-
imate response functions from a CC quasi-energy Lagrangian, while
EOM-CC inserts approximate states into the exact functions. For excita-
tion energies, identical results are obtained from the two methods, while
other molecular properties differ. All properties derived from the quasi-
energy formalism are size-intensive or extensive [12]. This is not the case
for EOM-CC [29, 30]. In practice, however, the differences between the
two are most often insignificant.
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Spectroscopic observables arise from the interaction of light and matter.
The light beam is typically linearly polarized light, and its frequency
determines what kind of properties will be observed, i. e., whether it will
be dispersive properties or properties related to electronic transitions.
The latter process occurs when the radiation is resonant with electronic
transitions in the system under investigation.

The effect of the light–matter interactions is often measured by inves-
tigating the light that passes through the sample, i. e., the absorption of
the incoming light, the rotation of the plane of polarization of the in-
coming light, or the differential absorption of the left (LCP) and right
circularly polarized (RCP) components. In the following sections, the
spectroscopies of interest to this thesis are recapitulated.

3.1 optical rotation and electronic circular dichroism

Optical rotatory dispersion and electronic circular dichroism (ECD) spec-
troscopy can be viewed as chiral variants of conventional refractive index
measurements and absorption spectroscopy. They arise from the interac-
tion of chiral matter with both the electric and magnetic fields of the
radiation [31]. ECD is an absorptive property occurring in regions of
electronic excitations, while optical rotatory dispersion is a dispersive
property, often measured in transparent regions [32]. Optical rotation
and ECD only occur for chiral species since these types of light–matter
interactions require the distribution of the electric charge to possess a
“handedness” [33].

The optical rotatory effect is measured as the rotation of the plane of
polarization of the incoming light beam. If measured over a range of
(transparent) frequencies, the optical rotatory effect is investigated as a
dispersion curve. If the experiment is carried out at a single wavelength,
the property manifests in a single angle of rotation which is a charac-
teristic quantity simply called the optical rotation. This angle can be
expressed as a molar property which will be a constant for a particular
chiral system, and it can thus be applied as a measure for characteriza-
tion [32].

Meanwhile, ECD is a spectroscopic technique that measures the differ-
ence in absorption of the LCP and RCP components of the light beam.
The effect arises from the fact that chiral species absorb the two compo-
nents to different extents. The bands measured in CD spectroscopy can

13
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take both positive and negative values due to its differential nature. The
signs of the dichroic bands will depend on the absolute configuration of
the sample. Thus, two mirror-image isomers will have exactly mirrored
ECD spectra.

Theoretically, optical rotation can be calculated from the electric dipole–
magnetic dipole (“length gauge”) and linear momentum–magnetic dipole
(“velocity gauge”) linear response functions

〈〈µ; m〉〉ω , 〈〈p; m〉〉ω (31)

and ECD from their residues or as the real (length gauge) or imaginary
(velocity gauge) component of the damped equivalents [34, 35].

3.2 magnetic circular dichroism

Magnetic circular dichroism (MCD) is a magneto-optic technique mea-
suring the same quantity as in ECD. However, the origin of MCD and
ECD are different; it is not a requirement for MCD that the molecular
structure is chiral [33].

In MCD spectroscopy, CD is induced by placing the sample in an ex-
ternal magnetic field with a component parallel to the propagation of the
light beam [33]. The MCD then arises from the magnetic perturbation of
the electronic states involved in the transitions induced by the absorp-
tion of the incoming light. It is thus a universal absorption property for
all matter.

The mathematical expression for MCD is traditionally divided into
three terms, each term conveniently describing the physical contribu-
tions to the observed spectrum. They are denoted the MCD A, B, and C
terms [33].

The presence of the external magnetic field induces Zeeman splitting
of degenerate states. This effect is contained in the A term. Ground state
degeneracy gives rise to the C term. It is temperature-dependent due to
the population difference in the degenerate ground states. Finally, the
B term describes the effect of the magnetic perturbation also on non-
degenerate states. The states experience field-induced mixing, the ex-
tent of which is inversely proportional to the energy splitting between
states [33].

The MCD A and B terms can be calculated from the residues of the
electric dipole–dipole–magnetic dipole quadratic response function

〈〈µ; µ, m〉〉ω,0 (32)

or as the real component of the corresponding damped response func-
tion [36].
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3.3 nuclear spin-induced circular dichroism

Nuclear spin-induced circular dichroism (NSCD) can be viewed as a
localized analogue of the classical MCD, with the nuclear magnetization
acting as the source of the magnetic field. NSCD is manifested in the
same quantity as the previously discussed CDs but requires the sample
to possess a macroscopic nuclear spin polarization parallel to the light
beam [37, 38]. The phenomenon involves optical excitations and local
hyperfine interactions within the molecule, and the method is therefore
expected to exhibit nucleus-specific features [37, 39].

By replacing the magnetic dipole operator in Eq. 32 with the hyperfine
interaction operator of nucleus K, hhf

K , the NSCD observable may also be
obtained from the residues of the quadratic response function [40, 41]

〈〈µ; µ, hhf
K 〉〉ω,0 (33)

or from the real component of the damped counterpart.

3.4 x-ray two-photon absorption

The absorption phenomenon is not limited to a single photon: multi-
photon processes such as two-photon absorption (2PA) can also occur. In
2PA, one electron is excited from an initial to a final state via an (artificial)
intermediate state by the simultaneous absorption of two photons with
frequencies summing to an excitation energy. Due to this intermediate
state, different selection rules apply to 2PA compared to regular one-
photon absorption [42].

In X-ray 2PA (X2PA), the final state of the system is a core-excited
state [43]. In the work presented herein, the two absorbed photons are
degenerate and thus have frequencies corresponding to half the value
of a core-excitation energy. Such energies will typically lie within the
extreme-UV (XUV) or soft X-ray regimes.

In response theory, the 2PA cross section observable is described by
the cubic response function, but the 2PA transition matrix elements may
be calculated from the single residue of the electric dipole–dipole–dipole
quadratic response function [44, 45]

〈〈µ; µa, µb〉〉ωa ,ωb
(34)

or from the damped cubic response function

〈〈µ; µa, µb, µc〉〉ωa ,ωb ,ωc
. (35)





Part II

W O R K

On the following pages, a synopsis of the work constituting
this thesis is provided (Chapter 4), followed by the publica-
tions and manuscripts (Chapter 5). Afterwards, some elab-
oration upon the work on X-ray two-photon absorption is
reported (Chapter 6). The thesis ultimately ends with a con-
clusion and outlook (Chapter 7).





4S Y N O P S I S

4.1 optical rotation and electronic circular dichroism

Optical rotation and ECD have been implemented in Q-Chem within
the EOM-CCSD approach in collaboration with Prof. A.I. Krylov and Dr.
K.D. Nanda.

Publication I (pp. 21) employs the new feature to calculate ECD spec-
tra in the UV-Vis and X-ray regimes for molecules in their ground and
excited states. Furthermore, the published work includes a proof-of-
principle calculation using the damped linear response approach to ob-
tain an ECD spectrum from an interpolation of cross section points.
Those results were produced with pyCCRSP, but the functionality is also
available in Q-Chem.

The implementation of optical rotation was carried out in close con-
nection to that of ECD but is unpublished.

4.2 x-ray two-photon absorption

Another collaboration with Prof. Krylov and Dr. Nanda concerned two-
photon absorption in the X-ray regime, and the outcome is presented
in Publication II (pp. 39). In this contribution to the Q-Chem package,
the so-called core–valence separation and uncoupled valence singles
(CVS-uS) approach is derived and implemented for computing EOM-
CCSD X2PA spectra. The frozen-core core–valence separation (fc-CVS)
scheme [46] is used to reach core excitations and subsequently the CVS-
uS approximate treatment is applied to the response space.

For initial prototyping and debugging, X2PA and the different levels
of approximation were implemented and tested in pyCCRSP. To docu-
ment the working equations as implemented in the python code, the
derivation of the CVS-uS approximation in an alternative notation is re-
ported in Section 6.1.
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4.3 magnetic circular dichroism

The project on MCD was carried out in TURBOMOLE employing the
resolution-of-identity (RI-) CC2 model [17] combined with response the-
ory in a collaboration with Prof. C. Hättig. It concerns two developments:
the implementation of the MCD A term for explicit excited states and
a generalization of the quadratic response function to the damped for-
mulation with complex frequencies. The addition of the A term to the
program makes it possible to investigate the MCD of molecules with
degenerate excited states.

The combination of the efforts in resonant and damped response the-
ory resulted in a protocol for calculating the MCD spectra of relatively
large molecules in a broad frequency range. In this protocol, the spec-
trum is calculated by explicit solution of the excited states in the low-
energy region with well-separated states, while higher-energy excita-
tions are covered by the damped approach which can be applied at any
given frequency.

The work is documented in Manuscript I (pp. 55) by application to
a showcase example for which also the relative performance of the res-
onant and damped approaches and the damped and regular quadratic
response functions was assessed by recording the timings of sample cal-
culations.

4.4 nuclear spin-induced circular dichroism

Another project in TURBOMOLE was carried out in collaboration with
Dr. P. Štěpánek and Prof. Hättig. Based on a pre-existing implementation
of the MCD B term, the computation of NSCD at the RI-CC2 level of
theory was facilitated by a generalization of the code.

In Manuscript II (pp. 91), the NSCD of three derivates of azobenzene
is investigated with the aim of uncovering correlations between the lo-
calization of the excited states, the character of the substituents, and the
strength of the NSCD signal.
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“Probing molecular chirality of ground and electronically excited states
in the UV–Vis and X-ray regimes: An EOM-CCSD study”
Josefine H. Andersen, K. D. Nanda, A. I. Krylov, and S. Coriani
J. Chem. Theory Comput. 2022, 18 (3), 1748–1764

Reprinted with permission from J. Chem. Theory Comput. 2022, 18, 3,
1748–1764. Copyright ©2022 American Chemical Society.
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ABSTRACT: We present several strategies for computing
electronic circular dichroism (CD) spectra across different
frequency ranges at the equation-of-motion coupled-cluster singles
and doubles level of theory. CD spectra of both ground and
electronically excited states are discussed. For selected cases, the
approach is compared with coupled-cluster linear response results
as well as time-dependent density functional theory. The extension
of the theory to include the effect of spin−orbit coupling is
presented and illustrated by calculations of X-ray CD spectra at the
L-edge.

1. INTRODUCTION

An object is chiral if its mirror images cannot be brought into
coincidence by rotation. In molecules, chirality typically arises
either due to the presence of chiral centers, i.e., asymmetrically
substituted tetrahedral centers, or due to the handedness of a
helical structure (axial chirality), which makes clockwise and
counterclockwise structures nonsuperimposable. The isomers
with nonsuperimposable mirror structures are called enan-
tiomers, whereas those that are nonsuperimposable and are not
mirror images are named diastereomers.1

Chirality is a common and important molecular property
with broad consequences. On a molecular level, many
biological objects, such as sugars, amino acids, and secondary
structures of proteins and nucleic acids, are chiral. Thus,
chirality makes living beings enantio-sensitive. This is critically
important for the pharmaceutical and food industry because
different enantiomers have drastically different biological
effects: e.g., left-handed sugars taste bitter; different
enantiomers of the same drug may have different pharmaco-
logical effects, the thalidomide tragedy2 being a never-fading
reminder. Any prospective new drug based on a chiral
structure must have clearly assigned absolute configuration.
Also fascinating, life is homochiralin living organisms,

chiral biological molecules exist almost exclusively as single
enantiomers. For example, all naturally occurring chiral amino
acids are left-handed and all naturally occurring sugars are
right-handed. The origin of the homochirality in life remains
an unsolved mystery: when synthesized in the lab, left- and
right-handed molecules of a compound most often form a
racemic mixture, implying that primordial processes in Nature
must have been driven by a directing (chiral) template.3

Opposite enantiomers have practically the same energy
spectrum; hence, they cannot be distinguished by simple

absorption of linearly polarized light. A pseudoscalar effect is
needed, such as the differential interaction with the left or right
circularly polarized components of linearly polarized light.
Differential transmission results in oppositely signed rotation
of the plane of polarization, which is exploited in optical
rotation (OR) measurements. Even more powerful is the
technique of measuring the differential absorption of the two
circularly polarized components, which is the basis of circular
dichroism spectroscopies.4 In electronic circular dichroism
(ECD),4,5 the probing light activates electronic transitions in
the sample, most typically in the UV−visible frequency region,
where valence excitations occur. X-ray radiation can also be
used, in principle, to probe chirality via excitations of core
electrons. In vibrational circular dichroism (VCD),1,4,6 infrared
light is used to probe dichroism effects in vibrational
transitions of the enantiomers in their ground states. An
emerging chiral rotational spectroscopy exploits dichroism
effects using microwave (MW-CD) radiation.7−9 Chirality can
also be probed by transitions to the continuum, as done in
photoelectron circular dichroism.10,11

The key step in contemporary use of spectroscopy for chiral
discrimination is the simulation of the spectra for an a priori
chosen absolute configuration of the chiral species.12,13 Indeed,
experimental measurements of optical activity alone are not
sufficient to establish the absolute configuration, since there is
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no direct correspondence between the enantiomer’s config-
uration and the measured sign of the chiroptical property.
However, if the simulated spectrum of the chosen config-
uration matches the sign pattern of the measured spectrum,
one can conclude that the experimental sample contains the
same enantiomer as in the simulation,5,12−14 provided, of
course, that the computational method is reliable.
The appeal of this strategy has stimulated the development

of reliable computational methods to simulate ORD, ECD, and
VCD spectra. Time-dependent density functional theory
approaches (TDDFT) are undoubtedly playing the leading
role in this endeavor,5,12 but the need for alternative, wave
function-based methods has been highlighted on many
occasionsat the very least, to provide a reliable benchmark
against which the validity and accuracy of TDDFT can be
checked.15−19

Equation-of-motion coupled-cluster theory (EOM-CC)20−23

and the closely related coupled-cluster response theory (CC-
RSP)18,24,25 are popular and robust theoretical frameworks for
simulating spectroscopy. The portfolio of spectroscopies that
can be treated using EOM-CC/CC-RSP methods is vast and
expanding. Spanning linear and nonlinear regimes, as well as
different frequency ranges of probing radiation, it comprises
UV−vis one- and two-photon absorption26−28 and dichro-
ism,29 magnetic circular dichroism,30,31 X-ray absorption,32

dichroism33 and photoemission,32,34 resonant inelastic X-ray
scattering,33,35,36 and many more. The non-Hermitian (bivaria-
tional) nature of the underlying formalism has initially posed
some complications (compared to Hermitian variational
methods) for modeling natural optical activity, but solutions
have been proposed for dealing with issues such as gauge-
invariance and gauge-origin dependency.37,38

In this work, we focus on EOM-CC theory, specifically, the
EOM-CC model with singles and doubles (EOM-CCSD),20 as
the theoretical framework for computing electronic circular
dichroism spectra. We consider the calculation of ECD both in
the UV−vis and in the X-ray frequency regimes. The latter
requires using specific techniques to treat the core-level
transitionsfor that purpose, we employ our frozen-core
core−valence-separated (fc-CVS) EOM-CC approach.32 In
addition to the ECD of molecules in their ground states, we
also simulate excited-state circular dichroism, i.e., the ECD
spectra of electronically excited species, needed for the
simulation of time-resolved/pump−probe experiments em-
ploying circular dichroism as the probe.39−43 So far, theoretical
studies of excited-state ECD have been limited to the
TDDFT43,44 and algebraic diagrammatic construction (ADC)
levels of theory.45

Although the fundamental equations for simulating ECD
using EOM-CCSD have been known for decades, only CC-
RSP appears to have been used,16,17,46−49 maybe because of a
fear of the “lack of size-intensivity” of the EOM-CCSD
transition moments.50,51 However, whether this trait of the
theory has any serious practical consequences in calculations of
ECD spectra has not been explored; we consider this issue
here by comparing EOM-CCSD with CC-RSP results. An
advantage of EOM-CC over CC-RSP is that EOM-CC does
not require solving additional response equations (for the
excited-state multipliers) and performing additional matrix
transformations, thus resulting in a computationally slightly
less expensive approach. As computing the extra response
amplitudes in the CC-RSP approach can become tricky,
especially in the high-energy regime, the EOM-CC approach is

less prone to divergences. Furthermore, the EOM-CC
approach avoids the spurious poles originating from the T-
amplitude response, which plague the transition and excited-
state properties computed with the CC-RSP approach.52

The paper is organized as follows. In the theory section, we
recapitulate the general definitions of the ECD spectroscopic
parameters and observables and then discuss strategies for
computing them within EOM-CCSD and CCSD-RSP. This
encompasses both the calculation of “stick spectra” (i.e.,
excitation energies and ECD rotatory strengths) and the direct
calculation of the ECD cross sections via damped response
theory. We then present illustrative results for ECD of ground
and excited states of methyloxirane, norcamphor, and binol.
We also discuss the exemplary X-ray CD results for
methyloxirane and L-alanine at the K-edge and chloroethanol
at the L-edge of chlorine, with and without the inclusion of
spin−orbit splitting. Concluding remarks are given at the end.

2. THEORY
2.1. Definitions. For isotropic samples, CD spectra are

typically obtained by calculating the rotatory strengths Rnf for
the electronic transitions n → f (n = 0 for the ground state). In
the length gauge (labeled lg), these are defined as the scalar
products (Rosenfeld equation)

∑
∑

μ= ℑ⟨ | ̂ | ⟩⟨ | ̂ | ⟩

= ℑ⟨ | ̂ | ⟩⟨ | ̂ | ⟩
α

α α

α
α α

=

=

R n f f m n

n r f f L n
1
2

nf
x y z

x y z

lg

, ,

, , (1)

where ℑ stands for the imaginary part, and μ̂α and m̂α are the
Cartesian components of the electric dipole and magnetic
dipole operators, respectively. In atomic units (a.u.), μ̂ = −r ̂
and ̂ = − ̂m L1

2
, where r ̂ is the position operator, L̂ = r ̂ × p̂ =

−ir ̂ × ∇̂ is the orbital angular momentum, and p̂ = −i∇̂ is the
linear momentum. By exploiting Ehrenfest’s off-diagonal
hypervirial relationship (in a.u.)15,53,54

ω⟨ | ̂| ⟩ = ⟨ |[ ̂ ̂ ]| ⟩ = ⟨ | |̂ ⟩p r ri n f n H f n f, fn (2)

where ωfn = (Ef − En) is the energy difference between the two
states, one obtains the rotatory strength in the velocity gauge
(abbreviated vg)

∑
∑
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where ℜ indicates the real part.
The dipole oscillator strength f of one-photon absorption

(OPA) can also be expressed in different gaugeslength,
velocity, and mixed (mx):55

∑ω
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(6)
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2.2. EOM-CC Theory for Valence and Core-Level
States. The (ground-state) coupled-cluster wave function
(ΨCC) is given in terms of the exponential of the cluster
operator T̂ acting on the reference (usually, Hartree−Fock)
Slater determinant Φ0:

56

|Ψ ⟩ ≡ |Ψ ⟩ = |Φ ⟩̂eT
CC 0 0 (7)

At the CCSD level, the second-quantization form of T̂ reads

∑ ∑̂ = ̂ + ̂ ̂ = ̂ ̂ ̂ = ̂ ̂ ̂ ̂† † †T T T T t a a T t a a a a; ;
1
4ia

i
a

a i
ijab

ij
ab

a b j i1 2 1 2

(8)

where ti
a and tij

ab are cluster amplitudes associated with singles
and doubles excitations, and aî, aâ

† are (electron) annihilation
and creation operators, respectively. We adopt the standard
notation, where indices i, j, k, ··· refer to occupied, a, b, c, ··· to
virtual, and p, q, r, ··· to general molecular spin−orbitals; the
separation between the occupied and virtual orbital spaces is
determined by the choice of the reference determinant Φ0. The
cluster amplitudes satisfy the CC equations

⟨Φ | ̅ |Φ ⟩ =H 0v 0 (9)

where, for CCSD, Φv spans the singles and doubles excitation
manifold. H̅ = e−T̂ĤeT̂ is the similarity-transformed Hamil-
tonian.
The EOM-CCSD target state n is expressed using the (right)

EOM operator ̂ n acting on the CCSD wave function as
follows:

|Ψ ⟩ = ̂ Ψ = ̂ |Φ ⟩̂en
n n T

CC 0 (10)

The type of target states determines the choice of ̂ . ̂
accesses a specific sector of the Fock space defined by the set
of target determinants, relative to the reference determinant.
Within EOM-CCSD for excitation energies (EOM-EE-

CCSD), ̂ n accesses the reference and valence singly and
doubly excited configurations:

∑ ∑̂ = + ̂ ̂ + ̂ ̂ ̂ ̂† † †r r a a r a a a a
1
4ia

i
a

a i
ijab

ij
ab

a b j i0
(11)

where r0, ri
a, and rij

ab are the EOM-EE-CCSD amplitudes
satisfying the following eigenvalue equation:

̅ ̂ |Φ ⟩ = ̂ |Φ ⟩H E
n

n
n

0 0 (12)

The state with r0 = 1 and ri
a = rij

ab = 0 ∀{i,j,a,b} is the
reference CCSD state (n = 0, usually, but not always, the
ground state), and the rest (n > 0) are EOM-CC target states
(e.g., valence excited states). In a similar fashion, target core-
excited states can be computed from the EOM-CCSD
eigenvalue equation by restricting the EOM-CCSD operator
to only access the core-excited configurations.32,57 In the here-
adopted core−valence-separated EOM-EE-CCSD approach
with frozen−core approximation (fc-CVS-EOM-EE-CCSD),32

this corresponds to

∑ ∑ ∑̂ = ̂ ̂ + ̂ ̂ ̂ ̂ + ̂ ̂ ̂ ̂† † † † †r a a r a a a a r a a a a
1
2

1
4Ia

I
a

a I
Ijab

Ij
ab

a b j I
IJab

IJ
ab

a b J I

(13)

where capital labels I and J denote core orbitals. In contrast to
the CVS scheme employed by Coriani and Koch,57 in the fc-
CVS-EOM-EE-CCSD approach of Vidal et al.,32 the core

orbitals are frozen (uncorrelated) in the ground-state
calculation.
Within the non-Hermitian EOM-CC theory, the left and

right eigenfunctions of H̅ are not complex conjugates of each
other. The left eigenfunctions are obtained from the left EOM-
CC eigenvalue equation

⟨Φ | ̂ ̅ = ⟨Φ | ̂H E
n n

n0 0 (14)

where ̂ n is the left EOM-CC operator. The left EOM-EE-
CCSD and fc-CVS-EOM-EE-CCSD (de-excitation) operators
are defined according to

∑ ∑̂ = + ̂ ̂ + ̂ ̂ ̂ ̂† † †l l a a l a a a a
1
4ia

i
a

i a
ijab

ij
ab

i j b a0
(15)

and

∑ ∑ ∑̂ = ̂ ̂ + ̂ ̂ ̂ ̂ + ̂ ̂ ̂ ̂† † † † †l a a l a a a a l a a a a
1
2

1
4Ia

I
a

I a
Ijab

Ij
ab

I j b a
IJab

IJ
ab

I J b a

(16)

respectively. In the context of the left ground-state reference,
̂ is historically referred to as 1 + Λ̂ according to

∑ λ τ⟨Ψ̃ | = ⟨Φ | + Λ̂ Λ̂ = ̂
μ

μ μ
− ̂

≠Φ
†e(1 ) ;n

T
0

0 (17)

Note that l0 = 1 for the reference (n = 0) CCSD state and l0
= 0 for the EOM-CC states. In the literature, the ground-state
left amplitudes are also often denoted as tμ̅ to highlight that
they are Lagrangian multipliers of the right amplitudes tμ.

25

The EOM-CC left and right eigenvectors can be normalized

to form a biorthonormal set, such that δ⟨ ̂ | ̂ ⟩ =n m
nm, where

δnm is the Kronecker delta.
2.3. EOM-CCSD Rotatory Strengths: Density-Based

Implementation. Within the non-Hermitian CC theory, the

right (⟨ ̂ ⟩fn
) and left (⟨ ̂ ⟩nf

) transition moments between

different states are not equal; here, ̂ is a general operator. As a
result, the expressions for the rotatory strengths (as those for
the oscillator strengths) are explicitly symmetrized with respect
to complex conjugation (denoted by *)

{ }∑
∑

= ⟨ ̂ ⟩⟨ ̂ ⟩ + ⟨ ̂ ⟩*⟨ ̂ ⟩*

= {⟨ ̂ ⟩⟨ ̂ ⟩ − ⟨ ̂ ⟩⟨ ̂ ⟩}
α

α α α

α
α α α α

R r L L r

r L L r

1
2

1
2

( )

1
4

nf
nf fn

x
nf fn

nf fn nf fn

lg

(18)

∑
ω

= − {⟨ ̂ ⟩⟨ ̂ ⟩ + ⟨ ̂ ⟩⟨ ̂ ⟩}
α

α α α αR p L L p
1

4nf
nf

nf fn nf fnvg

(19)

The right and left transition moments can be computed as

∑ γ⟨ ̂ ⟩ = ⟨Φ ̂ | ̂ | ̂ Φ ⟩ =− ̂ ̂ ←e e
fn f T T n

pq
pq
f n

pq0 0
(20)

∑ γ⟨ ̂ ⟩ = ⟨Φ ̂ | ̂ | ̂ Φ ⟩ =− ̂ ̂ ←e e
nf n T T f

pq
pq
n f

pq0 0
(21)

where γf←n and γn←f are the right and left reduced transition
one-particle density matrices (1PDMs), respectively; pq is the
matrix representation of the operator in the MO basis (i.e.,
property integrals). The programmable expressions for the
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transition 1PDMs between different EOM-CCSD target states
used in this study are presented in the Appendix and also
reported elsewhere.20,32

2.4. EOM-CCSD Rotatory Strengths: Alternative
Implementation. Within CC-RSP theory, the transition
moments are often expressed as contractions of fundamental
CC building blocks24,25

∑ ξ⟨ ̂ ⟩ =
μ

μ μl
f f0

rsp
(22)

∑ ∑η ω ξ⟨ ̂ ⟩ = + ̅
μ

μ μ
μ

μ μr M ( )
f f f

f
0

rsp
,rsp

(23)

∑ ∑ ω ω ξ⟨ ̂ ⟩ = + ̅
μν

μ μν ν
μ

μ μl A r N ( , )
kj k j kj

k jrsp
,rsp

(24)

where

ξ = ⟨Φ | ̂ |Φ ⟩μ μ
− ̂ ̂e eT T

0 (25)

τ= ⟨Φ |[ ̂ ̂ ]|Φ ⟩μν μ ν
− ̂ ̂A e e ,T T,rsp

0 (26)

∑η τ= ⟨Φ |[ ̂ ]|Φ ⟩ + ̅μ μ
λ

λ λμ
− ̂ ̂e e t A,T T,rsp

0 0
,rsp

(27)

Above, M̅μ
f (ωf) and N̅μ

kj(ωk,ωj) are excited-state Lagrangian
multipliers.25 Greek indices refer to the excitation levels (here
either singles or doubles) and τ̂μ is the corresponding
excitation operator. Note the superscripts f and k to distinguish
between the excited state amplitudes rμ and lμ.
Analogous expressions can be written for the EOM-CCSD

transition moments35,50,58

∑ ξ⟨ ̂ ⟩ =
μ

μ μl
f f0

(28)
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f f0

(29)
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kj k j
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(30)

where the EOM-CCSD building blocks are35

∑
∑

η = ⟨Φ | ̂ |Φ ⟩ + ̅⟨Φ | ̂ |Φ ⟩ − ⟨ ̂ ⟩ ̅
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(32)

T T T T

T T

0 CC

0

δ= ⟨Φ | ̂ |Φ ⟩ − ⟨Φ | ̂ |Φ ⟩λμ λ μ λμ
− ̂ ̂ − ̂ ̂A e e e eT T T T
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and (∑ρtρ̅rρ
j ) = −r0j .

Simple manipulations connect the CC response and the
EOM building blocks35

∑ ∑η η τ ξ= + ̅ ⟨Φ | ̂ ̂ |Φ ⟩ − ̅ ̅μ μ
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μ μ ν
ρ

ρ ρ μ
>
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(34)

τ δ= + ⟨Φ | ̂ ̂ |Φ ⟩ −λμ λμ μ ν μν
− ̂ ̂A A e e (1 )T T,rsp

0 (35)

2.5. EOM-CCSD ECD Spectra from the Damped
Optical Rotation Tensor. CD spectra can also be obtained
directly from the absorbing component of the electric dipole−
magnetic dipole optical rotation tensor, Gαβ′ (g),1

ωμΔϵ ∝ − ′ααlNG g
1
3

( )0 (36)

Within damped linear response theory,33,35,49,59−63 the latter
corresponds, in the length gauge, to

ω ω μ′ − ∝ ℜ⟨⟨ ̂ ̂ ⟩⟩αβ α α ω γ+G m( , ) ; i
,lg

(37)

and to

ω′ ∝ ℑ⟨⟨ ̂ ̂ ⟩⟩αβ α α ω γ
−

+G g m p( ) ; i
,vg 1

(38)

in the velocity gauge; γ is the damping term, which can be
regarded as a common inverse lifetime of all excited states.
Note that the computation of the ECD spectrum from the
absorptive component of the complex optical rotation tensor
does not require the use of the modified velocity gauge,37 since
the imaginary part of the static correction term is trivially
zero.49

The general sum-over-states expression of a complex linear
response function (in a.u.) is61

∑
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ω γ
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In our present implementation, we adopted an asymmetric
form for the CC damped rotation tensor.25,49,64 In the vector−
matrix notation of Section 2.4, this reads

ω γ ξ η ω γ⟨⟨ ̂ ⟩̂⟩ = ̂ { ̅ + + + }ω γ
ω

+
±

x C t i t i;
1
2

( ) ( )i
x x

(40)

where the permutator Ĉ±ω only acts on the real frequency ω.
Note that, in Q-Chem’s notation from refs 65 and 66, tx(ω +

iγ) and t ̅x(ω + iγ) correspond to the response vectors
Xx(ω + iγ) and X̃x(ω + iγ) with the response intermediates ηx

and ξx given by

η⟨ |Φ ⟩ = ⟨ ̃ |Φ ⟩ − ⟨ ̃ |Φ ⟩⟨Λ̂|Φ ⟩ρ ρ ρD Dx x x
0 (41)

and

ξ⟨Φ | ⟩ = ⟨Φ | ⟩ρ ρ Dx x
(42)

Here, ⟨D̃x|Φρ⟩ = ⟨Φ0(1 + Λ̂)|e−T̂x̂eT̂|Φρ⟩ and ⟨Φρ|D
x⟩ = ⟨Φρ|

e−T̂x̂eT̂|Φ0⟩ (see eqs 31 and 25).
Equation 40 requires the solution of the damped linear

equations for the right response amplitudes, tx(ω + iγ), and the
left response multipliers t ̅x(ω + iγ) of the same operator x

ω γ ω γ ξ[ − + ] + = −i t iA ( )1 ( )x x (43)

ω γ ω γ η̅ + [ + + ] = −t i iA( ) ( )1x x (44)

where A is a sub-block of the similarity-transformed
Hamiltonian matrix, often referred to as the CC Jacobian
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(45)

Note that, in contrast to the case of CC linear response, the
EOM equations for the response multipliers are decoupled
from those for the response amplitudes.35 The damped
response equations (eqs 43−44) can be solved iteratively
using damped variants of standard procedures35,49,63 such as
the Direct Inversion in the Iterative Subspace (DIIS) or
generalized Davidson.

3. COMPUTATIONAL DETAILS
We implemented the above expressions for the calculation of
the electronic circular dichroism within the EOM-CCSD
approach in Q-Chem.67,68 The theory is applicable for valence
excitations (EOM-EE-CCSD) as well as core excitations (fc-
CVS-EOM-EE-CCSD32,69) of both ground and excited states.
py-CCRSP70 was used for code profiling and testing as well as
for the damped-response calculations. To illustrate the
methodology, we computed various CD spectra for the
following systems (shown in Figure 1): (R)-methyloxirane,
(1R)-norcamphor, Sa- and Ra-binol, L-alanine, and L-
chloroethanol.
(R)-Methyloxirane has previously been used as a model

system to computationally investigate excited-state CD (ES-
ECD) at the TDDFT level of theory by Rizzo and Vahtras.44

We use the same geometry as in ref 44. We investigated basis-
set effects by employing various correlation-consistent basis
sets71−73 with different augmentation and polarization levels, as
well as Pople’s 6-311++G** set. The EOM-CCSD results were
compared to LR-CCSD results obtained with Dalton.74 ES-
ECD spectra were computed with the d-aug-cc-pVDZ and
d‑aug‑cc‑pVTZ basis sets.
For consistency, we used the ground-state geometry of (1R)-

norcamphor optimized at the DFT/CAM-B3LYP/aug-cc-

pVTZ level from ref 45. Ground-state and S1 excited-state
absorption and CD spectra were simulated using the d-aug-cc-
pVDZ basis set.
For binol, we considered two structures, namely the S0

structure of the Sa-isomer from ref 43 and the S0 structure of
the Ra-isomer of ref 45 (including a symmetrized variant).
Calculations with the former structure were carried out using
the 6-31G* basis set, as was done in ref 43 at the TDDFT
level. The 20 lowest excitations in each irrep (A and B irreps of
Cs point group) were computed. The ES-ECD was calculated
for the La, Lb, and Bb states in each irrep. In the case of the
(symmetrized) Ra-isomer, we used the cc-pVDZ basis set, as
was done in ref 45 at the ADC(2) and TDDFT levels, and
computed the GS-ECD arising from the 20 lowest excitations
in each irrep, as well as the ES-ECD of the La, Lb, and Bb states.
For calculations in the C1 group, we used a single-precision
implementation of CCSD and EOM-CCSD equations.75

In the X-ray regime (XCD), we considered, once again,
methyloxirane, employing the same geometry for the R-isomer
as above, as well as a MP2/cc-pVTZ geometry from ref 76. We
considered different basis sets, namely, augmented Dunning
basis sets as well as standard and uncontracted variants of
Pople’s 6-311++G** set, which are well-suited for calculations
of XAS spectra.77 The core-excited states of the carbon K-edge
were computed using the fc-CVS-EOMEE-CCSD scheme in
Q-Chem. The linear response results were obtained with the
CVS-CCSD scheme in Dalton.57,74,78

The XCD of L-alanine was investigated with the d-aug-cc-
pVDZ basis set. We computed the K-edges of carbon, nitrogen,
and oxygen for the neutral and zwitterionic forms of the amino
acid. Coordinates for the neutral form were taken from ref 76;
the zwitterion structure was obtained from neutron diffraction
experiment in ref 79.
Finally, inspired by ref 80, we considered the chlorine L-

edge of chloroethanol. XAS and XCD spectra with and without

Figure 1. Structures of molecules considered in this work: (a) R-methyloxirane, (b) 1R-norcamphor, (c) Sa-binol, (d) Ra-binol, (e) L-alanine, and
(f) L-chloroethanol. Atom labeling is given when relevant for the discussion of the results.

Figure 2. (R)-Methyloxirane. EOM-CCSD (left) and CCSD-RSP (right) basis-set study of ground-state transition properties. ECD (top) and OPA
(bottom) spectra in length (solid line) and velocity (dashed line) gauges. Lorentzian broadening with HWHM = 0.124 eV. Note that all spectra are
based on 8 transitions except the RSP/dT one, which only includes 5 states.
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spin−orbit coupling (SOC) were computed with the 6-
311(2+,+)G** basis, specifically uncontracted to describe the
2p orbitals of the Cl atom.69

Unless otherwise specified, the gauge origin was located at
the center of charge, which is the default setup in Q-Chem.
RSP-CCSD and TDDFT/CAM-B3LYP results used for
comparison were obtained using Dalton.74,78 Most spectra
discussed in the following section were obtained by Lorentzian
broadening of the computed stick spectra (excitation energies,
oscillator and rotatory strengths), and are reported as decadic
molar extinction coefficient for OPA and as extinction
coefficient anisotropy for the CD.

4. RESULTS AND DISCUSSION

4.1. UV−vis ECD Spectra. 4.1.1. Methyloxirane. Meth-
yloxirane (also known as propylene oxide or 1, 2-
epoxypropane) is a popular test case for calculations of optical
activity in both the UV−vis and X-ray regimes. This chiral
organic molecule is small enough for high-level ab initio
calculations and is also manageable for experimental
absorption and circular dichroism studies available in the gas
phase.81,82

We investigated the basis-set dependence of the ground-
state OPA and ECD obtained from the EOM-CCSD and
CCSD-RSP calculations. The resulting spectra are shown in
Figure 2. See Table S1 for the underlying raw data.
We observe good agreement between the EOM-CCSD

rotatory and oscillator strengths obtained from the length and
the velocity formulations for all basis sets considered here. The
maximum absolute difference between the EOM rotatory
strength in the two gauges is 0.004 au for the Pople basis set,
0.003 au for aug-cc-pVDZ and d-aug-cc-pVDZ, and 0.002 au
for aug-cc-pVTZ and d-aug-cc-pVTZ. Increasing the basis-set
size does not seem to affect this difference, at least not within
the sequence of the bases investigated here. However, the
quality of the basis moderately affects the peak positions and
intensities, although the overall sign pattern is the same for all
basis sets. The EOM-CCSD and RSP-CCSD results are nearly
identical; the only noticeable difference seen for the d-aug-cc-
pVTZ case is due to the smaller number of roots computed in
the case of RSP-CCSD.

Next, we examined the performance of EOM-CCSD for
calculation of ES-ECD, using the d-aug-cc-pVDZ and d-aug-cc-
pVTZ sets, see Tables S2 and S3 in the SI, where transitions
from the ground state and from the first 8 excited states up to
the twentieth excited state were considered. We immediately
note larger differences between the two gauges, now up to 0.09
au in absolute values of the rotatory strength for d-aug-cc-
pVDZ and 0.04 au for d-aug-cc-pVTZ. In a few instances, a
negative value of the velocity-gauge oscillator strength is
obtained. The 6 → 7 transition is also accompanied by a
change in sign and magnitude of the rotatory strengths (see
Tables S2 and S3). It is important to note, however, that these
transitions fall significantly below 0.2 eV (IR-NIR region),
which means that numerical instability, resulting from the
corresponding small denominators of the order of 0.009
hartree in the vg expressions for oscillator and rotatory
strengths, cannot be discounted.
The simulated absorption and CD spectra of the ground

state (S0) and the first two excited states (S1 and S2) obtained
using the d-aug-cc-pVDZ set are shown in Figure 3, along with
the results of TDDFT/CAM-B3LYP/d-aug-cc-pVDZ calcu-
lations (the d-aug-cc-pVTZ results are reported in SI, see
Figure S2). The experimental spectra for the ground state
taken from ref 82 are also shown. The CAM-B3LYP excitation
energies are slightly lower than the CCSD ones for all three
cases; otherwise, the spectra are qualitatively rather similar. No
energy shift was applied. We refer to Tables S4 and S5 for the
CAM-B3LYP excitation energies and strengths the correspond-
ing spectra were obtained from. The S0 spectra agree
reasonably well with the available experimental results for R-
methyloxirane, at least up to 8 eV. Above 8 eV, both
computational methods yield a much more intense negative
peak than in the experiment, in line with previous findings.19

Adding Rydberg-type functions to the basis set partly
redistributes the intensity over several electronic transitions,
yet the third band remains more intense than observed
experimentally (see Figure S1 in the SI). Note that the first
ionization energy is 10.13 eV (EOM-IP-CCSD/d-aug-cc-
pVDZ).
Concluding this section, Figure 4 shows proof-of-principle

illustration of our damped-response implementation of the
ECD cross section. The trace of the real component of the

Figure 3. (R)-Methyloxirane. Absorption (bottom panel) and CD (upper panel) spectra for S0, S1, and S2. EOM-CCSD and TDDFT/CAM-
B3LYP (20 states in both cases) with the d-aug-cc-pVDZ basis set. Dashed line is velocity gauge. Experimental spectra (dotted line) were digitized
from ref 82. Lorentzian broadening with HWHM = 0.124 eV.
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optical rotation tensor in the length gauge was computed at the
frequency grid points indicated by the red X marks and then
splined to yield the cross section. The spectrum is practically
identical to the one obtained from a Lorentzian broadening of
individual rotatory strengths from standard EOM-CCSD
theory.
4.1.2. Norcamphor. Moving on to a larger organic

molecule, we considered the bicyclic ketone (1R)-norcamphor
(a.k.a., 2-norbornanone), which has also been investigated in
previous theoretical19,45,83 and experimental83 gas-phase
studies. The ground-state ECD spectra (see right panel of
Figure 5) from EOM-CCSD and TDDFT/CAM-B3LYP are
rather similar in peak positions, intensities, and sign patterns

up to 7.7 eV. Above 7.7 eV, CAM-B3LYP yields a strong
negative band, whereas CCSD has a weaker positive peak,
followed by a more intense negative one at around 8 eV. The
corresponding ADC(3) spectrum of ref 45, also shown in
Figure 5, is blue-shifted and has a negative peak centered at
around 7.8 eV. Most electronic transitions have been
previously assigned ns and np characters.83 When Rydberg-
type functions are included, the intensities are redistributed but
the overall spectrum remains the same, see Figure S3 and
Table S8. The experimental absorption spectrum of the ground
state83 also presents a very weak band centered just above 4
eV, previously assigned to an nπ* excitation, with a very small
positive rotatory strength. We obtain this band at 4.32 eV, with
a tiny positive rotatory strength in length gauge and negative
strength in velocity gauge. The same behavior was observed at
the ADC(3) level. The CAM-B3LYP rotatory strength of the
weak nπ* is positive in both gauges.
The shapes of the ECD spectra of the lowest electronic

excited state are again similar for all three methods up to 3.5
eV, with an overall blue shift of the ADC(3) spectrum. We
note here that we recomputed the CAM-B3LYP ES-ECD
spectrum and obtained intensity twice as large as the one
reported by Scott et al.45 Above 3.5 eV, the three methods
clearly differ, also because a different number of final states
were computed with the three methods (i.e., only 10 states
were reported in the ADC(3) study). CAM-B3LYP yields an
additional strong negative band and CCSD yields a weaker
positive one, reflecting the differences observed in the ground-
state spectrum. The raw data of Figure 5 are given in Tables S6
and S7 in the SI.

4.1.3. Binol. Binol (1,1′-bis-2-naphthol) is an axially chiral
compound composed of two naphthol moieties connected by a
single bond. The two atropoisomers are labeled either Ra/Sa or
P/M. Here, we considered two structures: the ground-state
optimized structure (S0) of the Sa enantiomer taken from ref
43, where the dihedral angle between the two moieties is ∼90°
(“orthogonal” conformation) and the S0 of the Ra enantiomer
taken from the recent computational study at the ADC level of
theory,45 which is a DFT/CAM-B3LYP/cc-pVTZ optimized
structure. A symmetrized version of the latter was also
employed for computational efficiency, after validating that
the two structures yield equivalent results. The steady-state and
time-resolved ECD spectra of binol have been measured by
Hache and co-workers in different solvents.39,43,84 Niezborala
and Hache report the steady-state spectrum of R-binol in
ethanol, whereas the one of S-binol in cyclohexane was
reported by Schmid et al.43

Electronic transitions in binol are often labeled using the
Platt nomenclature relative to the 2-naphthol precursor. The
first two bright transitions are called La and Lb, where La is the
more intense one (HOMO → LUMO character). The relative
ordering of the La and Lb transitions is method dependent. At
the EOM-CCSD/6-31G(d) level, the lowest excited state of
isolated 2-naphthol is Lb at 4.45 eV ( f lg = 0.02), whereas the
second, at 5.39 eV ( f lg = 0.06), is La. They are followed by a
third state at 6.28 eV ( f lg = 0.04). An intense B state
(according to Platt’s notation) comes as fourth at 6.60 eV ( f lg

= 1.29). With the cc-pVDZ basis, we obtain the excited states
at 4.40 eV ( f lg = 0.02); 5.26 eV ( f lg = 0.047); 6.19 eV ( f lg =
0.033); 6.49 eV ( f lg = 1.21). At the TDDFT level, the ordering
of the two states is reversed, with La dropping below Lb.
This different ordering carries over to binol. Exciton pairs

are obtained from the combination of the La and Lb states of

Figure 4. (R)-Methyloxirane. EOM-CCSD/aug-cc-pVDZ ground-
state ECD spectra obtained from a Lorentzian broadening (HWHM =
0.005 a.u.) of the rotatory strengths (dashed gray line, labelled ECD)
and from the damped response function (red grid points and red
cubic fit line, labelled CPP) in length gauge.

Figure 5. (1R)-Norcamphor. S1 excited-state (ES) and ground-state
(GS) ECD (upper panels) and absorption (bottom panels) spectra
from EOM-CCSD (this work, 20 states), TDDFT/CAM-B3LYP (this
work, 15 states), and ADC(3) (ref 45, 10 states) using the d-aug-cc-
pVDZ basis. Dashed lines correspond to velocity gauge. The
corresponding EOM-CCSD and TDDFT/CAM-B3LYP OPA and
ESA spectra are shown in the two bottom panels. Experimental
spectra (dotted line) from ref 83. Lorentzian broadening, HWHM =
0.124 eV.
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the two naphthol moieties. The lowest EOM-CCSD exciton
pair comprises the two states, respectively at 4.42 eV ( f lg =
0.052) and 4.44 eV ( f lg = 0.012) in the 6-31G(d) basis, which
are labeled Lb-1 (of B symmetry) and Lb-2 (of A symmetry).
The states of the second exciton pair, of La character, are at
5.29 eV ( f lg = 0.20, La-1, B symmetry) and 5.33 eV ( f lg =
0.012, La-2, A symmetry). At the TDDFT/CAM-B3LYP level,
the first exciton pair corresponds to La-1 (4.44 eV, f lg = 0.14)
and La-2 (4.48 eV, f

lg = 0.02); the second pair is Lb-1 (4.86 eV;
f lg = 0.10) and Lb-2 (4.86 eV; f

lg = 1.0 × 10−4). We summarize
in Table 1 our results for energies, oscillator strengths, and

rotatory strengths of the La and Lb states of the Ra and Sa
structures considered here, using EOM-CCSD and CAM-
B3LYP and two different basis sets.
Thus, in comparing the ES-ECD of the excited states of

binol for the two methods, one should keep in mind that the
character of the first excited state is different at the EOM-
CCSD and CAM-B3LYP levels.
Figure 6 shows the EOM-CCSD GS- and ES-ECD spectra

of Sa-binol, together with the experimental data from ref 43
(measured in cyclohexane). The ES-ECD were computed for
all four lowest excitations in Table 1, plus the 5A and 5B (Bb-1
and Bb-2) states. Raw data are given in Tables S9, S10, and
S11. Table S12 contains natural transition orbitals (NTOs)
and transition properties of the four lowest GS transitions. The
corresponding data for the Ra conformation are given in SI, see
Tables S14−S16.
The EOM-CCSD GS-ECD spectra of binol agree well with

the experimental results of refs 84 (Ra) and 43 (Sa), despite the
neglect of solvent effects. Curiously, the split band at 6 eV in
the experimental spectrum of Ra (reproduced by the
calculations) is absent in the experimental spectrum of Sa.
Both CAM-B3LYP (this work, as well as ref 43) and ADC(2)
(ref 45) also agree with the experimental data.
Turning our attention to the ES-ECD spectra, the first

general observation is that we could not reproduce the CAM-
B3LYP results for the ES-ECD of Sa-binol reported in the SI of
ref 43. Our CAM-B3LYP results are shown in Figure S4. Since

our results for methyloxirane and norcamphor are consistent
with CAM-B3LYP data reported by other authors, we suspect
there may be a problem in the results reported by Schmid et al.
According to our calculations, the A and B symmetry

excitation pairs have ES-ECD that are almost mirror images of
each other across the x-axis. In the lower-energy region, the
agreement between the length (origin at center-of-charge) and
velocity gauges becomes poorer, as it can be appreciated from
the results in Tables S10−S11 and from Figure S4. Our TD-
DFT results show the same trend, see Figure S5.
Given the differences between length and velocity ES

rotatory strengths at lower energies, we examined the gauge-
origin dependence of the ES-ECD of the Lb-1 and Lb-2 states
of Sa-binol. The gauge origin was manually located at an
arbitrary carbon atom. The data reported in Table S13 show
that it is only the rotatory strengths for transitions between
different symmetries that are affected by the change of gauge
origin. Overall, the effect of this shift of origin is fairly small,
and it did neither significantly improve nor worsen the
agreement between the two gauges. It could be interesting to
test the effect of locating the gauge origin at the center-of-mass
(or -charge) of the two naphthol moieties, respectively, but we
have not pursued it here.

4.2. X-ray Circular Dichroism. 4.2.1. Methyloxirane. The
experimental XCD spectrum at the carbon K-edge of
methyloxirane, measured in vapor phase, has been reported
by Turchini et al.85 and by Alberti et al.86 Computational
results at different levels of theory have also been
reported.33,87,88 A later study by Piancastelli et al.89 focused
on the nonchiral core-level photoelectron spectroscopy, the
XAS at both C and O K-shells, and on resonant and normal
Auger spectroscopies.
As explained by Turchini et al., a complicating factor in

XCD measurements is that, to the first approximation, the
magnetic dipole transition element of K-edge excitations is
zero, since magnetic dipole transitions arising from s orbitals
are forbidden. Consequently, the only possible source of
magnetic dipole intensity involves 1s−np (particularly, 1s−2p)
mixing. Theoretical studies87,90 had indicated that this mixing
could be sufficient to produce observable CD for simple
organic molecules.
In the experimental measurement of Turchini et al., a

nonlinear sloping background was present in the XCD of the
two isomers, as well as their racemate, indicated as [S(−) +
R(+)]. To obtain a monosignate signal, the measured spectra
of the two enantiomers were halved and algebraically
subtracted. This yielded the composite spectrum, labeled as
S(−)c, of S(−)-methyloxirane without the baseline back-
ground, since S(−)c = − − [ − + + ]S S R( ) ( ) ( )m m

1
2

=

[ − − + ]S R( ) ( )m m
1
2

(where the subscript m stands for

measured). Turchini et al. assigned the CD spectrum to the
methyne and methylene carbon atoms (i.e., the oxygen-bound
ones) and suggested that the methyl carbon’s CD signal would
essentially cancel out to zero because of the small energy
splitting and the resolution of the experiment. A photo-
emission experiment revealed three binding energies of 291.2,
292.2, and 292.6 eV. With the d-aug-cc-pVDZ basis set, the
three lowest ionization energies are 293.5, 294.8, and 294.9 eV,
whereas with the d-aug-cc-pVTZ basis set the IEs are 291.3,
292.6, and 292.7 eV.
The simulation of the XCD (and XAS) spectra of

methyloxirane proved to be rather challenging. We explored

Table 1. First Four Excited States of Binol According to
CCSD and CAM-B3LYP (Rotatory Strengths in 10−40 cgs)

E (eV) f
State/
Sym Label Rlg Rvg

Sa-binol/6-31G(d)
CCSD 4.42 0.05 1/B Lb-1 20.44 7.26

4.44 0.01 1/A Lb-2 −37.52 −20.21
5.29 0.20 2/B La-1 −0.86 1.32
5.33 0.01 2/A La-2 −25.95 −17.39

CAM-B3LYP 4.44 0.14 1/B La-1 33.91 31.46
4.48 0.02 1/A La-2 −80.89 −73.08
4.86 0.10 2/B Lb-1 4.11 2.83
4.86 0.00 2/A Lb-2 −0.835 −1.06

Ra-binol/cc-pVDZ
CCSD 4.42 0.06 1/B Lb-1 −16.93 −5.01

4.44 0.01 1/A Lb-2 37.49 21.55
5.22 0.18 2/B La-1 3.43 0.33
5.26 0.01 2/A La-2 18.69 12.63

CAM-B3LYP 4.42 0.15 1/B La-1 −23.27 −25.03
4.47 0.02 1/A La-2 66.62 71.98
4.85 0.09 2/B Lb-1 −1.05 −2.05
4.86 0.00 2/A Lb-2 0.43 0.31
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different basis sets, including d-aug-cc-pVDZ and d-aug-cc-
pVTZ on all atoms, aug-cc-pVTZ on the C and O atoms and
aug-cc-pVDZ on the H atoms, as well as Pople’s 6-311++G**
and 6-311(2+,+)G**, also uncontracting the inner functions.
Two different optimized structures were considered. Compar-
isons between EOM-CCSD and CCSD-RSP results were
carried out. Note that we report results for the R enantiomer,
whereas the XCD spectra of ref 11 refer to the S enantiomer.
The simulated spectra for two different structures (yielded

by EOM-CCSD and CC-RSP using the 6-311++G** basis set)
are shown in Figure 7, along with experimental results. EOM-
CCSD and CCSD-RSP results are consistent, though with a
few noticeable differences in the XCD intensity in the length
gauge. The moderate differences between velocity and length
XCD results depend, to a certain extent, on the absolute size of
the rotatory strength, as transitions with extremely small
rotatory strengths sometimes have oppositely signed strengths.
The spectra stem from a number of closely lying excitations,

whose rotatory strengths may significantly vary with the basis
set. The spectra computed for the two optimized equilibrium
geometries considered here show large differences. For the
structure labeled “Geometry 2” in Figure 7, which is the one
from ref 44 also used for ES-ECD, the excited states are less
clustered, so the XAS spectral features are more smeared out.
The most dramatic difference is, however, observed in the
XCD spectra, where the first negative and weak broad band is
replaced by a positive one, and the second negative one is far
more pronounced. Changing the basis also affects the spectra,
as illustrated in Figure 8 for “Geometry 1” (the MP2 optimized
structure from ref 76).
The computed XAS spectra agree with the experiments, with

overall energy shifts that vary between 0.06 and 2.3 eV,
depending on the basis set. The shifts were computed with
respect to the first peak of the spectrum of Piancastelli et al.
Clearly identifiable XCD spectral patterns are reproduced by

all basis sets and for both geometries, yet strikingly different
from the measured ones. Given the results, we cannot conclude
whether there is a problem with the measured XCD spectrum
or whether the differences are due to deficiencies in our
simulation. One possible reason for discrepancy is that our
calculations do not include dynamical sampling of the
structures. We note in passing, though, that the computed
rotatory strengths Turchini et al.85 report as taken from ref 88
do not appear to correspond to the values tabulated in ref 88.
Also, to the best of our understanding, the calculation of ref 88
was carried out on the R isomer and not the S one.
It is important to identify the origin of the main peaks in our

spectra. Inspection of the NTOs reveals that all three carbon
atoms are optically active, in agreement with ref 87. In the 6-
311++G** basis, the first XAS transition at Geometry 1 (287.5
eV) is due to the methyl C (“C3”), which is dark in XCD. The
second and third electronic transitions combine to form the
broad feature around 288.5 eV, which changes sign across the
two geometries. The two transitions originate both from C3.
Three excitations are responsible for the following (negative)
band, the one with the largest (negative) rotatory strength
coming from the nonchiral oxygen-bound C (“C2”). The next,
positive, peak (at around 289.5 eV) stems from two transitions,
both with positive rotatory strength, the first one from the
chiral center C (“C1”), and the next one from C3. The
following negative feature originates mainly from the net
balance of two closely lying and oppositely signed sticks at
Geometry 1, one positive from C2 and one negative from C1,
whereas at Geometry 2 this feature comes from two negative
sticks, the strongest due to C2. The positive band at around
290 eV is a convolution of several transitions, from all three
carbon atoms.
The first broad band in the XCD spectra of both geometries

is, as mentioned, due to two excitations from only the methyl
carbon. This is also the band that changes sign between the

Figure 6. Sa-binol. Ground-state (GS) and excited-state (La, Lb, and Bb states) absorption (bottom panels) and ECD (upper panels) spectra in the
length gauge computed at the EOM-CCSD/6-31G(d) level. Twenty excitations were considered in each irrep of the C2 point group. Experimental
values from ref 43. The CCSD energies have been shifted by −0.9 eV to align the main peaks in the experimental OPA spectrum. Lorentzian
broadening with HWHM = 0.2 eV.
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two geometries. It is therefore possible that a conformational
average, which takes into account the group’s free rotation,
would result in a net zero contribution from these C3
excitations. However, at higher energies, excitations from C3
do not appear to cancel out.
4.2.2. L-Alanine. The XCD of alanine has previously been

theoretically investigated using the STEX approach, the RPA
method, as well at the complex polarization propagator (CPP)
approach at the TDDFT/CAM-B3LYP level of theory.91−93 A
basis-set study92 highlighted a strong basis-set dependence of
the rotatory strengths, especially for the oxygen and nitrogen
K-edges.
We calculated the XAS and XCD spectra at all three edges

(carbon, oxygen, and nitrogen). The computed rotatory
strengths are in general small and therefore sensitive to the
convergence threshold adopted. Even with thresholds as tight
as 10−7 (or even 10−8), in particular, the oxygen-edge R values

showed some variations. The results obtained with 10−7 are
discussed below.
Our XAS and XCD spectra are illustrated in Figures 9 (C

and O) and 10 (N). Raw spectral data for all figures can be
found in Tables S27−S31 in the SI. NTOs of the main
transitions are shown in Tables S32 and S33.
The computed carbon XAS of the neutral structure shows

one dominating peak (third excited state) at 290.75 eV ( f lg =
0.076). This corresponds to a transition from the 1s orbital of
C2 into the π* of the carboxyl group (see Figure 1 for atom
labeling). The majority of the computed states are transitions
from the methyl carbon. It is the equivalent C 1s → π*
transition that dominates the carbon XAS spectrum of the
zwitterion at 291.18 eV ( f lg = 0.066).
The oxygen XAS spectrum of the neutral structure has a

simple profile with one major peak as the first transition at
536.45 eV ( f lg = 0.039) with the second transition at 3 eV
higher in energy. The lowest transition occurs between the 1s

Figure 7. (R)-Methyloxirane. Carbon K-edge XCD (upper panels) and XAS (bottom panels) spectra at two different ground-state optimized
geometries. Basis set 6-311++G**. Length gauge pictured in solid line, velocity in dashed. Experimental XAS85,86,89 and XCD85,86 are also shown.
The experimental XCD of the S enantiomer is here reported as its mirror image. Lorentzian broadening with HWHM = 0.2 eV.
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orbital of the doubly bonded oxygen (O2) into the πCOOH*
orbital. The corresponding transition from the protonated
oxygen atom (O1) gives rise to the third peak observed in the
spectrum. The second peak, i.e., the first in the split band, is
due to a 1s transition from O2 into a p-type oxygen orbital. In
the zwitterion, the carboxyl group is deprotonated, making the
two oxygen atoms nearly equivalent. The oxygen K-edge XAS
spectrum of the zwitterion shows two close-lying peaks of
equal magnitude belonging to the O 1s → πCOO−* transitions.
The first transition at 536.55 eV ( f lg = 0.029) is from the O1 1s
orbital, and the fourth transition (second peak) at 536.89 eV
( f lg = 0.029) originates from the O2 1s orbital. Two almost
dark excitations lie between the O 1s → πCOO−* transitions. The
first peak of the nitrogen XAS spectrum of both neutral and
zwitterionic L-alanine arises from a transition from the N 1s
into a diffuse orbital very localized around the N atom. For the
second spectral peak for both forms, the particle orbital is of
σN−H* character. For the neutral form, the trailing transitions are
weak and diffuse. The third peak in the zwitterion spectrum is

due to a transition into an orbital localized around the N atom
with slight σN−H* character. The feature in the high-energy
region arises from a transition into the σN−C* orbital.
The XCD results indicate that all carbon atoms are optically

active for both structures, where the majority of transitions are
from the methyl carbon 1s orbital. At this K-edge, length and
velocity gauge results are rather similar. At the nitrogen and
oxygen K-edges, pronounced disagreement between the two
gauges (length and velocity) is observed. In the nitrogen case,
for instance, the velocity-gauge rotatory strengths are orders of
magnitude smaller than the corresponding strengths in the
length gauge. The large difference could be due to strong
origin dependence of the rotatory strengths. To investigate this
further, we tried moving the gauge origin to different locations.
In the case of the N K-edge, we moved the origin on the
nitrogen atom. The XCD spectra at the default and shifted
origins are depicted in Figure 10. The effect of the origin shift
from the center of charge to the N atom is striking, leading to
almost complete overlap of the length and velocity gauge XCD

Figure 8. (R)-Methyloxirane. EOM-CCSD Carbon K-edge XCD (upper panels) and XAS (bottom panels) spectra with different basis sets
(Geometry 1). The short notation dD stands for d-aug-cc-pVDZ; aT/aD/aD means aug-cc-pVTZ on the C atoms and aug-cc-pVDZ on the
remaining atoms. Length gauge pictured in solid line, velocity in dashed. Experimental XAS85,86,89 and XCD85,86 are also shown. The experimental
XCD of the S enantiomer is here reported as its mirror image. Lorentzian broadening with HWHM = 0.2 eV.
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spectra. A closer look at the NTOs of the N 1s transitions
reveals that these transitions are highly localized on the N
atom. We note, however, that the rotatory strength values are
very small, so it remains a general concern whether the
agreement after the gauge-origin shift of the length gauge is the
mere consequence of having computed equally small residual
errors in the two gauges. As an additional test, we carried out
calculations on the neutral D-isomer (geometry produced by
mirroring the L-structure in the xy plane). This produced the
exact mirror image of the L-alanine N K-edge XCD spectra at
both gauge origins.
Two shifted origins were tested for the O K-edge of neutral

L-alanine: one at the doubly bonded oxygen atom and one at
the center of mass of the carboxyl moiety. While applying these
gauge shifts does have an impact on the oxygen K-edge XCD

spectrum, it is not as clear-cut as for the nitrogen K-edge XCD.
A nice overlap between the gauges was, however, obtained for
some of the bands, e.g., the first peak in the XCD spectrum,
when the origin is located at the doubly bonded oxygen atom.
XCD spectra from the gauge-dependence study are shown in
Figure S7.
Comparing the XCD spectra of this work with the ones

simulated with the CPP/CAM-B3LYP/d-aug-cc-pVDZ meth-
od reported in ref 93, we observe that the N K-edge spectra of
the neutral structures have similar features for the two
methods, if one considers the gauge-shifted EOM-CCSD
one. Meanwhile, the corresponding spectra of the zwitterion
are quite different, although slight similarity can be found
between the TD-DFT spectrum and the CCSD one with
center-of-charge origin. The computed XAS spectra are similar.
The oxygen XCD spectra of the zwitterionic structure are very
different at any gauge origins. Note that we here used the
structure of the Ala-I conformer fully optimized at the
CCSD(T) level from ref 94, whereas a B3LYP optimized
structure was used in ref 93.

4.2.3. Chloroethanol. Inspired by ref 80, where chlor-
oethanol was used as an illustrative case for XCD of larger
chloro-compounds, we considered the chlorine L2,3-edge XCD,
focusing on the effect of spin−orbit coupling.
At the L-edge, the core transitions occur from the 2p orbitals

of the targeted atom. The degeneracy of the three p-orbitals is
split by the SOC, which is clearly seen in the X-ray absorption
spectra. This splitting is expected to be observed in the XCD
spectra as well.
Some of us recently reported an extension of EOM-CCSD

for computation of L-edge XAS (and XPS) spectra,69

employing a state-interaction two-step scheme. First, a set of
nonrelativistic EOM-CC states is computed and used to
evaluate SOCs using Breit−Pauli operator and mean-field
approximation of the two-electron part, as described in refs 95
and 96. Then the resulting SOC-perturbed Hamiltonian matrix
is diagonalized, giving rise to SOC-mixed states. Using the
computed transformation between zero-order and SOC-
perturbed states, the non-Hermitian electric dipole transition
strengths are then transformed into a basis of SOC-split states,
according to

μ μ̅ = ⟨ ̂ ⟩⟨ ̂ ⟩α α α
†S U Unf nf fn

(46)

where the matrix U contains the eigenvectors of the spin−orbit
mean-field Hamiltonian matrix. In the present work, the
property of interest is the CD rotatory strength, so we
considered the (anti)symmetrized product of the electric
dipole and magnetic dipole transition moments (eq 18):

̅ = {⟨ ̂ ⟩⟨ ̂ ⟩ − ⟨ ̂ ⟩⟨ ̂ ⟩}α α α α α
†R r L L rU U

1
2

nf nf fn nf fn
(47)

and, likewise, for the velocity formulation (eq 19). Ten singlet
excited states were computed for nonrelativistic transition
properties, and equally many singlet and (spin-flip) triplet
states were computed for the SOC calculations.
As for the nitrogen and oxygen K-edge XCD signals of

alanine, we observe strong origin dependence of the L-edge
XCD spectrum of chloroethanol. The simulated signals in the
length gauge with gauge origin at the center of charge are an
order of magnitude larger than the velocity-gauge equivalents.
Shifting the origin from the center of charge to the chlorine
atom improves the agreement between the two gauges

Figure 9. L-Alanine in its neutral and zwitter-ionic forms. Carbon
(left, 12 states) and oxygen (right, 10 states) fc-CVS-EOM-CCSD/d-
aug-cc-pVDZ K-edge XAS (bottom panels) and XCD (upper panels).
Length gauge in solid lines; velocity in dashed. Lorentzian broadening
with HWHM = 0.2 eV.

Figure 10. L-Alanine in its neutral and zwitter-ionic forms. Nitrogen
K-edge fc-CVS-EOM-CCSD/d-aug-cc-pVDZ XAS (bottom panels)
and XCD (upper and middle panels) spectra. Length gauge in solid
lines; velocity in dashed. The top row shows the XCD with gauge
origin in the center of charge; the middle row the ones with gauge
origin at the position of the nitrogen atom. The spectra in gray (top
panels) have been magnified by 102. Lorentzian broadening with
HWHM = 0.125 eV.
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significantly. The numerical values of the computed signals are
very small, especially in the velocity gauge and in the length
gauge with origin on Cl. Figure 11 shows the nonrelativistic
and SOC spectra for gauge origin at the Cl atom. Figure S8 in
the SI illustrates the gauge effect. Raw data are given in Table
S31 in the SI.

The nonrelativistic XAS spectrum shows two peaks
separated by 1.3 eV. The first peak is a convolution of two
near-degenerate excited states at 201.68 eV of the same
magnitude. The NTOs reveal that these transitions are of
2p → σC−Cl* type for the 2p orbitals perpendicular to the C−Cl
bond (see Table S35). Their rotatory strengths have opposite
signs and nearly the same magnitude. The second peak
comprises three states: two near-degenerate at 202.97 eV, both
with weak CD signals (note the sign disagreement between
length and velocity gauge results for one of the transitions),
and a single state at 203.11 eV with a positive CD signal. The
near-degenerate states are transitions from the two perpendic-
ular 2p-orbitals into diffuse orbitals, and the single state is a
transition between the 2p orbital lying along the C−Cl bond
into diffuse orbitals.
The introduction of SOC splits the XAS spectrum into three

peaks, where the middle one contains contributions from both
the up-shifted splitting of the lowest NR peak and down-
shifted splitting from the highest NR peak. Introducing SOC
into XCD results in a richer (but slightly less intense)
spectrum, with the intense band at 204 eV in the NR
redistributing over several peaks. The individual transitions in
this region have both positive and negative rotatory strengths,
but the overall XCD cross section remains positive.

5. CONCLUSION
We implemented a computational scheme for simulating
optical rotation and circular dichroism spectra based on the
EOM-CCSD framework in the Q-Chem package. We applied
these new tools to calculate ground-state and excited-state

circular dichroism spectra of the selected compounds. The
circular dichroism spectra were computed for both valence
excitations and for core excitations at the K- and L-edges. In
the calculations of L-edge X-ray circular dichroism, spin−orbit
effects were included via the state-interaction procedure.
We observed generally good agreement between the

simulated spectra obtained from EOM-CCSD with those
from response theory at the CCSD level, and from TDDFT/
CAM-B3LYP calculations. The assessment of the accuracy of
the XCD results proved challenging. For methyloxirane, the
computed spectra at the C K-edge do not bear clear
resemblance with the experimental ones. A strong origin
dependence of the XCD in the length gauge was observed at
the oxygen and nitrogen K‑edges of L-alanine, as well as the
chlorine L2,3-edge in chloroethanol. When the transition is
highly localized, locating the gauge origin at the atom of
excitation improves the agreement between the spectra from
origin-dependent length gauge and those from the velocity
gauge. In the X-ray regime, all computed signals, especially for
the ones with strong gauge dependence, are extremely small
and possibly at the limit of what the methodology can reliably
reproduce. Also, without further studies, one cannot determine
whether the sign of the experimental spectrum is dominated by
vibronic effects, such as the Herzberg−Teller borrowing
mechanismsan aspect that goes beyond the present
approach.

■ APPENDIX: EXPRESSIONS FOR TRANSITION
1PDMS

For brevity, in the following subsections, the left and right
amplitudes of target EOM-EE-CCSD and fc-CVS-EOM-EE-
CCSD states do not carry the state indices n and f. The CCSD
Λ amplitudes do not carry the state index 0.
EOM-EE-CCSD State ← CCSD State Transition
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Figure 11. L-Chloroethanol. fc-CVS-EOM-CCSD/6-311(2+,+)G**
nonrelativistic (NR, 10 states) and SOC Cl L2,3-edge XAS (bottom
panels) and XCD (upper panels). Gauge origin on the Cl atom,
dashed lines are velocity gauge. Geometry from ref 80. Lorentzian
broadening with HWHM = 0.124 eV.
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ABSTRACT: Calculations of first-order response wave functions in the X-ray
regime often diverge within correlated frameworks such as equation-of-motion
coupled-cluster singles and doubles (EOM-CCSD), a consequence of the
coupling with the valence ionization continuum. Here, we extend our strategy of
introducing a hierarchy of approximations to the EOM-EE-CCSD resolvent (or,
inversely, the model Hamiltonian) involved in the response equations for the
calculation of X-ray two-photon absorption (X2PA) cross sections. We exploit
the frozen-core core−valence separation (fc-CVS) scheme to first decouple the
core and valence Fock spaces, followed by a separate approximate treatment of
the valence resolvent. We demonstrate the robust convergence of X-ray
response calculations within this framework and compare X2PA spectra of small
benchmark molecules with the previously reported density functional theory
results.

1. INTRODUCTION
Correlated electronic-structure methods, such as those based on
coupled-cluster (CC) theory, provide a robust platform for
computing ground and excited states in a variety of closed- and
open-shell systems. The scope of molecules that can be treated
by these high-level methods is expanding, thanks to advances in
algorithmic strategies and computing hardware. In the past three
decades, CC methods such as the equation-of-motion coupled-
cluster1−3 (EOM-CC) and the coupled-cluster response4,5 (CC-
RSP) theories have been vigorously developed to afford
computations of an ever-growing list of molecular properties,6

greatly enhancing our capabilities for reliable first-principles
modeling of spectroscopic experiments. These methods are now
routinely employed for computing ground- and excited-state
properties in linear and nonlinear regimes. Examples of
nonlinear properties include multiphoton absorption cross
sections,7−9 inelastic scattering cross sections,10−13 first and
second hyperpolarizabilities,14−17 excited-state polarizabil-
ities18,19 and multiphoton transition moments between excited
states,20 multiphoton and magnetic circular dichroism
strengths,21−24 and g-tensors,25 to mention just a few. In
addition, the high-level CC methods provide the gold standard
for benchmarking approximate and computationally less
expensive methods, such as those based on density functional
theory (DFT), which can treat much larger systems.
Concomitant developments of embedding schemes26−30 have
afforded robust CC condensed-phase modeling of molecular
processes and properties in solutions, protein environments, and
periodic systems. Further, advances in orbital concepts17,31−36

and wave function analysis tools37−40 have facilitated robust
molecular-level understanding of the molecular processes within
the framework of correlated methods.
The EOM-CC theory offers a powerful single-reference

framework for computing a variety of electronic states: excited
states, ionized states, electron-attached states, and so on. The
level of correlation treatment can be systematically improved
following the hierarchy of CC/EOM-CC approximations (CC2,
CCSD, CC3, CCSDT, ...) up to the exact limit. A crucially
important trait of this framework is its flexibility in the choice of
the EOM operators and the reference Slater determinant, which
are adapted to provide a balanced treatment of the set of target
states. EOM-CC and CC-RSP formalisms produce the same
excitation energies, but they can differ in their treatment of state
and transition properties.6,41 The EOM-CC framework allows
for the description of properties as generalized expectation
values that are obtained by parametrizing exact expressions
using eigenenergies and left and right eigenvectors of the (non-
Hermitian) similarity-transformed EOM-CC Hamiltonian.
EOM-CC response properties within this “expectation-value
approach” are identical to the response properties derived from
the coupled-cluster configuration interaction (CC-CI) model,
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where the time-dependent Schrödinger equation is solved using
an exponential parametrization to describe the unperturbed
system and a linear parametrization to describe the time
evolution of the unperturbed system.42

In CC (and CC-CI) response theory, the expressions for
properties are given by derivatives of appropriate (quasi)energy
Lagrangians with respect to the strength of the external
perturbation(s)6,7,20,43,44 or, equivalently, from the response of
a generalized time-dependent expectation value of a time-
independent one-electron operator.4 Note that properties
computed within the alternative analytic-derivative EOM-CC
approach, involving derivatives of (quasi)energy Lagrangians
with respect to the strength of the external perturbation(s), are
identical to those from CC-RSP.19,45,46 CC-RSP requires
additional response intermediates for computing multiphoton
absorptionmoments, relative to the EOM-CC expectation-value
approach.5,7 The EOM-CC expectation-value approach for
properties becomes exact in the limit of full configuration
interaction. This parametrization ensures that the pole
structures of frequency-dependent properties are not spoiled
by artificial poles, which may negatively impact higher-order
excited state properties computed with the CC-RSP approach.19

This paper presents a new extension of EOM-CC theory for
modeling two-photon absorption (2PA) cross sections in the X-
ray regime (X2PA). This development is motivated by the need
for robust and accurate tools for modeling X2PA processes,
which occur in experiments involving intense X-ray radiation
sources such as X-ray free-electron lasers47−52 (XFEL). Similarly
to the UV−vis domain, X2PA has different selection rules
compared to one-photon X-ray absorption (XAS) and could,
therefore, deliver complementary information. X2P techniques
combine the advantages of core−electron transitions with those
of standard 2P techniques: the quadratic dependence on
intensity endows 2P techniques with better spatial resolution,
whereas core-level transitions afford elemental and orbital
sensitivity to the local environment and oxidation states. On the
downside, in the high-intensity regime, X2PA is competing
against a slew of single-photon and sequential multiphoton
processes, such as core photoionization, stimulated emission,
and scattering, which complicates the interpretation of the
experimental observations.48,52 So far, the published exper-
imental papers have focused on transition metals.48,52

Competing processes such as photoionization and molecular
fragmentation have hampered experiments on small molecules.
In view of the high activity in experimental nonlinear X-ray

spectroscopies, the paucity of robust ab initio methods capable
of describing the underlying nonlinear properties limits the
potential impact of new experimental techniques, especially
given the above-mentioned contributions from competing
processes in the experimental signal. Being the simplest
higher-order process from the theoretical point of view, X2PA
can serve as a platform for future developments of theoretical
methods for modeling higher-order multiphoton processes, such
as X-ray sum-frequency generation53−55 and X-ray second-
harmonic generation.56,57

2PA cross sections can be computed using different
approaches. Formally, 2PA moments can be obtained from the
first residues of quadratic response functions (first electric-
dipole hyperpolarizability tensor) to build the 2PA strength
tensor and cross sections.7,58−60 Alternatively, elements of the
2PA strength tensor can be evaluated as first residues of the
cubic response functions (second electric-dipole hyperpolariz-
ability tensor).7,9,10,58−60 In practice, these relationships are

exploited in the resonance convergent complex polarization
propagator (CPP) approach61 and in damped response
theory.6,62 In these approaches, a phenomenological imaginary
inverse lifetime (damping) parameter is introduced to compute
the 2PA strengths from the imaginary part of the cubic response
function. The CPP approach has been exploited within the
framework of time-dependent DFT (TD-DFT) for computing
both valence 2PA63 and X2PA spectra.64 Reference 64 by
Fahleson et al. is the only published theoretical work on X2PA
until now. Here, we explore a computational strategy based on
the many-body EOM-CC framework.
CC-RSP7,8 and EOM-CC expectation-value9 frameworks

have also been developed for computing valence 2PA cross
sections; the latter employs first-order response wave functions
to compute the EOM-CC-parameterized exact sum-over-states
expressions for the 2PA moments.9 Within the EOM-CC
framework, an implementation based on damped response
theory also exists (unreported65), which computes complex-
valued 2PA moments following the introduction of the
phenomenological damping for avoiding divergences in
modeling doubly resonant 2PA processes. However, the
extension of the EOM-CC formalism for computing valence
2PA to X2PA is not straightforward.
In X2PA transitions (Figure 1), the final states are core-

excited states. Such states are high-lying and, therefore, difficult
to compute with standard numerical solvers. Moreover, these
states are Feshbach resonances embedded in the valence
ionization continuum. As a result, standard correlated methods
designed for computing electronically bound states cannot be
used for these resonances, whose wave functions are not L2-
integrable.66−69 Without special modifications, attempts to
compute core-excited states with these methods are plagued by
the erratic (often, divergent) behavior of solvers, a lack of
systematic convergence with basis-set increase, and, often,
unphysical solutions.12,13,70,71 This issue is effectively addressed
by the core−valence separation (CVS) approach72 in which the
core resonances are decoupled from the valence continuum by
removing the purely valence-excited determinants from the
EOM-CC configuration space. This pruning of the Fock space
makes the core-level states artificially bound in the computation,
leading to convergent results. The errors in energies introduced
due to the CVS dilution of dynamical correlation in methods
such as EOM-CC are typically of the order of less than 1 eV.73,74

The effect of the continuum can be reincorporated, e.g., via a
perturbative approach73,75 or via the Feshbach−Fano formal-
ism.76,77 Further, the CVS treatment is not state specific, so
multiple states can be computed simultaneously, just as in the
case of standard EOM-CC calculations; this feature is attractive
in the context of spectroscopy modeling.
Within the CC domain, the CVS scheme was pioneered by

Coriani and Koch73,75 for computing core-excitation energies
(and spectral intensities) as well as core-ionization energies.
Since then, the CVS strategy has been used in several CC-RSP
and EOM-CC frameworks,73,74,78,79 enabling the modeling of
XAS, XPS, XCD, and XES spectra.11,80−82 The theory was
further extended to higher-order properties such as resonant
inelastic X-ray scattering (RIXS) cross sections.11−13 Similar to
2PA, RIXS is a two-photon process; RIXS moments are also
formally given by sum-over-states (SOS) expressions within the
EOM-CC expectation-value framework. In practical calcula-
tions, the SOS expressions are recast into closed-form
expressions by using first-order response wave functions. The
RIXS response calculations for these wave functions are affected
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by their coupling with the continuum, and CVS has been
recently adapted to deal with this issue.11−13 The limitations of
straightforward application of CVS and possible extensions have
been discussed in ref 13, giving rise to series of approximations
such as CVS-0, CVS-uS, etc. (see section 2.3).
In this contribution, we explore the performance of the CVS-

uS approach for computing X2PA cross sections within the
EOM-CC singles and doubles framework for electronic
excitations (EOM-EE-CCSD). We compare the X2PA spectra
computed with the CVS-0 and CVS-uS approaches for small
benchmark molecules to highlight the importance of including
the valence contribution for modeling X2PA. We also compare
these computed X2PA spectra with those from ref 64.

2. THEORY
To distinguish between the canonical EOM-EE-CCSD and fc-
CVS-EOM-EE-CCSD methods, we use different symbols
below. The calligraphic symbols, , , , , , , and ,
are associated with the canonical EOM-EE-CCSD method, and
regular symbols, H, T, L, R, E, X, and G, are associated with the
fc-CVS-EOM-EE-CCSD method.
2.1. The CVS EOM-EE-CCSD Method. The EOM-EE-

CCSD method describes the right ( 0| ) and left ( 0| )
wave functions of target states according to the eigenvalue
equations

k
k

k
0 0| = | (1)

and
k k

k0 0| = | (2)

where e e= is the similarity-transformed EOM-EE-
CCSDHamiltonian, k is the energy of the target state k, and
is the CC operator satisfying the CC equations

; 00 0 0 0| | = | | = (3)

Here, 0 is the energy of the CCSD state defined by the
reference determinant Φ0, and Φν are the singly and doubly
excited determinants relative to Φ0. The operators , , and
are given in terms of creation (a†, b†) and annihilation (i, j)
operators as follows:

t a i t a b ji; ;
ia

i
a

ijab
ij
ab

1 2 1 2= + = =† † †

(4)

r

r a i r a b ji

;

;
ia
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1 2
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= =† † †

(5)

and

l

l i a l i j ba

;

;
ia

i
a

ijab
ij
ab

0 1 2

1 2

= + +
= =† † †

(6)

For the CCSD state, r 10= = and 1= + , where Λ̂ = Λ̂1
+ Λ̂2 is the CCSD lambda operator. For EOM-EE-CCSD target
states, l0 = 0.
The amplitudes of and in eqs 5 and 6 for target states are

computed by diagonalizing in the space of the reference,
singly excited, and doubly excited determinants using standard
techniques such as the generalized Davidson procedure.
Whereas such strategies are effective for computing low-lying
excited states, their straightforward application to obtain high-
lying core-excited states is impractical.83 Further, the presence of
the valence continuum and the diagonal preconditioner being
inappropriate for the doubles−doubles block of the Hamil-
tonian result in erratic behavior of such calculations of core-level
states. For computing core-excited states, the core-excited block

of , defined by omitting the reference and purely valence-
excited determinants from the configuration space, is diagon-
alized instead of . In ref 13 and this study, we call this block the
CVS-0 model Hamiltonian H

core
. Whereas only the couplings of

the core-excited configurations with the purely valence doubly
excited configurations are problematic from the convergence
viewpoint, the removal of the purely valence singly excited
determinants makes the spectrum of the CVS-0 Hamiltonian be
that of purely core-excited states. This is an attractive feature as it
enables direct calculations of the lowest core-excited states
without a significant loss of dynamical correlation. We denote
the EOM-EE-CCSD operators that diagonalize H

core
as R̂core

and L̂core.
Here, we compute the ground and valence-excited states with

(specific) core electrons frozen. Hence, these states (and,
therefore, CCSD T̂ and the corresponding EOM-EE-CCSD R̂val

and L̂val amplitudes) are computed in the configuration space
spanning the reference and purely valence-excited determinants
only. Therefore, in our frozen-core (fc) CVS-EOM-EE-CCSD
model, the valence-excitation space is uncoupled to the core-
excitation space by construction. This is in contrast to the CVS
model from ref 73, where the two spaces are decoupled by
applying dedicated projectors. Our strategy for computing
X2PA spectra is general and applicable to both of these variants
of CVS-EOM-EE-CCSD. We refer to the Hamiltonian block
defined by the reference and valence-excited determinants as

Figure 1. In X2PA, two X-ray photons of energies ω1 and ω2 are
coherently absorbed such that ω1 + ω2 equals the excitation energy Ef −
Eg of the final state f that is core excited relative to the initial state g. The
X2PA moments have contributions from all states of the system,
including the ground and bound valence-excited states (black lines),
core-excited states (blue lines), valence resonances (magenta lines),
and valence continuum states (ultrafine gray dashes).
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H
val
. The fc-CVS-EOM-EE-CCSD Hamiltonian, H , is then

block diagonal and made up of H
val

and H
core

blocks.
2.2. 2PA Moments within EOM-EE-CCSD Response

Theory. The right and left 2PA moments for transitions
between states g and f within exact theory are given by the
following sum-over-states expressions:
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and
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where ω1 and ω2 are the energies of the two photons absorbed
such that f g1 2+ = , Ψs are the zero-order wave
functions, and μ̂x (μ̂y) is the dipole-moment operator along the
Cartesian coordinate x (y) ∈ {x, y, z}. Within the EOM-EE-
CCSD expectation-value approach, eqs 7 and 8 are para-
meterized by EOM-EE-CCSD wave functions and energies by

replacing ⟨Ψk| with k k
0| |, |Ψk⟩ with

k k
0| | ,

and μ̂ with the similarity-transformed dipole operator . This
EOM-EE-CCSD approach, previously used to compute valence
2PA transitions,9 then recasts eqs 7 and 8 into closed-form
expressions using the first-order response wave function
( ( ) )x

k
x
k ,| | as follows:

M ( , ) ( )xy
f g f

y x
g f

x y
g

1 2
, ,1 2= | | + | | (9)

and

M ( , ) ( )xy
g f g
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f

1 2
, ,2 1= | | + | |

(10)

The first-order response wave functions can be expressed as

x
k

n

n
n

x
k

n k

,| = |
| |

(11)

In practice, they are computed by solving the following system of
linear equations:

( )k x
k

x
k,| | | = | |

(12)

Equations 11 and 12 are related by the EOM-EE-CCSD
resolvent ( ( )k ) expression

( ) ( )k
k

n

n n

n k

1= | |

=
| |

(13)

For EOM-EE-CCSD, Φν and Φρ in eqs 11−13 span the
reference, singly excited, and doubly excited determinant spaces;
terms with higher excited determinants do not survive.
Once the 2PA moments are computed, the 2PA strength

tensor is constructed according to

S M M

M M
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, 1 2 1 2 1 2
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+ * *
(14)

where “∗” denotes complex conjugation. The 2PA strength
tensor elements are then used for computing the microscopic
2PA cross section δ2PA (in atomic units (au)) as follows:

F
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G S H S
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,
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(15)

with F = G = H = 2 for parallel linearly polarized light. For
degenerate photons of frequencyω, δ2PA is then converted to the
macroscopic 2PA cross section σ2PA in GMs according to

a
c

( )
4

( ( ))2PA
2

0
5 2

2PA=
(16)

where c is the speed of light, a0 is the Bohr radius, α is the fine-
structure constant, and Γ is the phenomenological lifetime
broadening.
2.3. Dealing with the Continuum in the Response

Domain. For ω in the X-ray regime, computing first-order
response wave functions within standard EOM-CC (eq 12)
often results in erratic behavior of solvers.11−13 One reason for
this is similar to the case of computing core-level states with
standard EOM-CC. Since the response wave functions can be
expressed as a linear combination of all states of the system (eq
11) and the contribution of high-lying states to the response
states is often dominant due to the near-resonance condition,
the coupling of these response states to the valence continuum is
significant and leads to divergences.
This coupling can be omitted by using the CVS Hamiltonian

H , which is block diagonal in the core-excited and valence-
excited determinant spaces. However, simply using H instead of

for computing response wave functions in eq 12 is not
sufficient for fixing the erratic behavior of the solvers. The X-ray
response wave functions can include non-negligible contribu-

tions (coming from H
val
) from high-lying valence resonances,

which can also decay via the coupling to the valence doubly
excited determinants; this coupling contributes to the erratic
behavior of the valence doubly excited determinants in the
course of the iterative procedure. In addition, the diagonal
preconditioner associated with the doubles−doubles block of

H
val

is no longer a good approximation to it in the X-ray energy
range, crippling the convergence. As noted in refs 11, 12, and 13,
lower-level theories such as TD-DFT, CIS (configuration
interaction singles), CC2, and ADC(2) either do not have
doubly excited determinants (which are primarily responsible
for the erratic behavior of solvers) or include them in a
perturbative fashion with a diagonal doubles−doubles block
(the preconditioner is exact). Therefore, the decay channels are

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00541
J. Chem. Theory Comput. 2022, 18, 6189−6202

6192

5.2 publication ii 43



blocked and the response equations typically converge without a
problem.
References 11, 12, and 13 introduced the CVS-0 approach,

which simply substitutes with the CVS-0Hamiltonian H( )
core

in eq 12. Thus, the X-ray response wave functions are computed
within the configuration space of core-excited determinants
only, leading to convergent solutions. Note that, in contrast to
ref 13, refs 11 and 12 use a different nomenclature and refer to
H

core
as the CVS-CC-RSP and fc-CVS-EOM-CC Hamiltonian,

respectively. The use of the CVS-0 Hamiltonian effectively
replaces the sum over all states in the EOM-CC expectation-
value approach for computing 2P moments with a sum over just
the core-excited states; the contribution of valence-excited states
to the SOS moments is omitted. This is justified for most RIXS
transitions for which the dominant contribution to the moments
arises from nearly resonant core-excited states.36

In contrast to RIXS, in X2PA, the core-excitation energies can
be significantly different from the energies of the two absorbed
photons. Then, it is reasonable to assume that the near-
resonance contribution can arise from not only the core-excited
states but also from low-lying and high-lying valence states. For
such cases, the CVS-0 approach would miss important
contributions to the X2PA moments; therefore, approaches
that can include the valence contribution are desirable.
To recover the valence contribution to the SOS moments

without spoiling the convergence of X-ray response solutions, ref
13 introduced a hierarchy of approximations in which the fc-
CVS-EOM-CCSD resolvent ( )k was approximated as a sum
of a core fc-CVS-EOM-CCSD resolventGcore,k(ω) and a valence
resolvent Fval,k(ω) that approximates the valence fc-CVS-EOM-
CCSD resolvent Gval,k(ω), where

G H E( ) ( )k
k

core, core 1= | | (17)

and

G H E( ) ( )k
k

val, val 1= | | (18)

where Ek is the energy of the kth eigenstate of the fc-CVS-EOM-
CCSDHamiltonian. The approximate valence resolvent can, for
example, originate from lower-level methods (e.g., valence fc-
CVS-EOM-CCS, valence fc-CVS-EOM-CC2, etc.) for which
the valence response is restricted to the valence singly excited
determinant space and the doubly excited determinants are
either omitted or included in a perturbative fashion in the
response equations. An alternative approach involves approx-

imating the H
val

block of the fc-CVS-EOM-CCSD Hamiltonian
by its valence singles−singles block, omitting the problematic
coupling of the valence singly and doubly excited determinants
and the preconditioning of valence doubles−doubles block in
the X-ray regime. When the CVS-0 approach is augmented by
this latter approximate valence resolvent FuS,k(ω), the approach
is referred to as the CVS-uS (“uS” stands for “uncoupled valence
singles”) approach. In effect, such approaches only approximate
the intermediate states in the SOS expressions of two-photon
moments while still using the high-level correlated energies and
wave functions of the initial and final states. Further, since the
intermediate states in the SOS expressions dominated by doubly
excited valence determinants do not couple significantly with the
ground state via the one-electron dipole moment operator, the
impact of the omission (or perturbative inclusion) of valence
doubly excited determinants is primarily through the dilution of

dynamical correlation in the energies and wave functions of the
intermediate states involved in the valence resolvent.
Since the computedmultiphoton properties such as 2PA cross

sections can be strongly sensitive to the level of electronic
correlation,60 independent approximations to the valence and
core resolvents in our cherry-picking approach may lead to an
unbalanced treatment of the core and valence contributions to
the X2PA spectra. Therefore, different approximations of the
valence resolvent (fc-CVS-EOM-CCS, fc-CVS-EOM-CC2,
CVS-uS) may yield different X2PA spectra; similar differences
were noted in ref 13 in the context of RIXS. Here, we focus on
the CVS-uS approach and leave the search for the most balanced
approximation for modeling X2PA spectra for future studies as it
will require comparisons with experiments. On the basis of a
configurational analysis of 2PA channels in section 2.5, we
expect the CVS-uS approximation to give a fairly balanced
description of the valence and core contributions to the X2PA
spectra for the benchmark systems studied here.
2.4. 2PAMomentswithin the CVS-uSApproach.Within

the CVS-uS approach, the EOM-EE-CCSD-parameterized sum
over states for the 2PA moments is a combination of a sum over
valence-excited “uS” states plus the contribution from the CCSD
state as an intermediate and a sum over core-excited states as
follows:
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and
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Here, ⟨L0| and |R0⟩ correspond to the CCSD state; note that
often, for X2PA, the CCSD state is the initial state g. Ẽn and ⟨L̃n|
and |R̃n⟩ are the nth eigenenergy and left and right eigenvectors,

respectively, that diagonalize the H
uS
block, which is defined as

the H
val

block with singles−doubles, doubles−singles, and
doubles−doubles blocks zeroed out and the CCSD state
projected out. These sums in eqs 19 and 20 are separately
recast into closed-form expressions using response wave
functions that span separate determinant spaces as follows:

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00541
J. Chem. Theory Comput. 2022, 18, 6189−6202

6193

44 publications and manuscripts



M

L R L R

E E

L R L R

E E

L X L X

L X L X

( , )xy
f g

f
y x

g

g

f
x y

g

g

f
y x

g f
x y

g

f
y x

g f
x y

g

1 2

0 0

0 1

0 0

0 2

uS, , uS, ,

core, , core, ,

1 2

1 2

=

| | | | | | | |

| | | |

| | | | (21)
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The CVS-uS response equations are given by

H E X

R R L R

( )

; , ,

k x
k

x
k

x
k

i
a

uS uS, ,

0 0
0

| | |

= | | | | | { }
(23)

and
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Here, i, j, ... represent the valence occupied orbitals; I, J, ...
represent the core occupied orbitals; and a, b, ... represent the
unoccupied orbitals. The state index k in |Rk⟩ refers to either the
ground state g or the final state f. Note that we have projected out
the CCSD state in the right-hand side of eq 23 to account for its
omission in the sum over valence “uS” states in eqs 19 and 20.
2.5. Configurational Analysis of 2PA Channels. To

better understand the CVS-uS approximation to the fc-CVS-
EOM-EE-CCSD resolvent for computing X2PA moments and
to provide a rationale for it, here, we analyze contributions to the
2PA moments in terms of leading electronic configurations.
Tables 1 and 2 present the configurational channel analysis of
the X2PA moments between an initial (EOM-EE-)CCSD state
with frozen core and a final fc-CVS-EOM-EE-CCSD wave
function. We define these 2PA configurational channels as the
2PA coupling terms between Slater determinants involved in the
wave functions of the initial and final states through the Slater
determinants involved in the intermediate wave function. Here,
we neglect dynamical correlation effects arising from the cluster
operator T̂. Our aim is to understand which 2PA channels are
fully captured, approximated, or not captured by the CVS-uS
approximation to the fc-CVS-EOM-EE-CCSD resolvent. In
addition, the channel analysis can help us better understand the
impact of different types of bound and continuum intermediate
states on the 2PA moments.
First, we consider only the dominant electronic configuration

in the initial wave function such thatΨg ∼ Φ0 for the CCSD state
and Ψf ∼ ΦJ

b for the core-excited final state. Within this
simplified model, there are just four 2PA channels that need to
be considered: channels (1), (2), (21), and (22) in Tables 1 and

2. Channels (1) and (2) are captured exactly by the CVS-0
resolvent, relative to the fc-CVS-EOM-EE-CCSD resolvent, and
dominate the contributions of core-excited pre-edge states that
lie below the respective core-ionization energy. These channels
can also show resonance enhancement when one of the two
absorbed photons is in the infrared/UV−vis regime and the
other is an X-ray photon that is nearly resonant with a core-
excited state. Similarly, channels (21) and (22), which are only
approximated by the uS resolvent, relative to the fc-CVS-EOM-
EE-CCSD resolvent, can show resonance enhancement when
the infrared/UV−vis photon is nearly resonant with a valence-
excited state.
Next, if we include other core-excited determinants in the final

wave function, the CVS-uS approximation captures all channels
involving Φ0 (channels (1)−(4) and channels (21)−(23) in
Tables 1 and 2). Significantly, the couplings of Φ0 with the
dominant singly core-excited configurations (CV) of the final
wave function involve only the singly excited valence or core
excited determinants as intermediates, which are captured in the
CVS-uS approach.
CVS-uS, however, does not capture all the channels involving

the dominant configuration when Ψg ∼ Φi
a is an EOM-EE-

CCSD state (channels (30) and (31)). Unless enhanced by
near-resonance consideration, these channels only give small
contributions due to the small coefficients of the nondominant
COVV configurations in Ψf with which the dominant OV
configurations in Ψg couple. Further, when ω is an X-ray
frequency, the near-resonance conditions in these channels in
Table 1 (ϵb − ϵl ≈ ω and ϵc − ϵk ≈ ω in channels (30) and (31),
respectively) imply that the unoccupied orbitals b and c are high-
lying and highly oscillatory, resulting in negligible couplings in
the numerators of these channels. Similarly, for these missed
channels in Table 2, near-resonance conditions (ϵl − ϵJ ≈ ω) are
rare due to the sparsity of occupied and core orbitals in typical
molecular systems; therefore, these channels do not contribute
significantly in general.
Next, we analyze the couplings of different types of valence

and core states with the initial and final states involved in the
X2PA process within the uncorrelated picture. The valence
doubly excited determinants do not couple with the reference
and CV determinants through the dipole moment operator.
Within the fc-CVS-EOM-EE-CCSD framework, the final states
are predominantly singly excited with leading CV configurations
involving low-lying unoccupied orbitals. These states do not
couple through the dipole moment operator with the leadingOV
configurations in valence shape resonances in which the
unoccupied orbitals are high-lying continuum orbitals. On the
other hand, the leading OV configurations of valence Feshbach
resonances can couple to these leading CV configurations in the
final states through the one-electron operator (channels (22),
(24), and (28)). The 2PA channels corresponding to these
couplings are captured in the CVS-uS approach. Only the
couplings between the nondominant COVV configurations in
the final wave function and OOVV configurations in the
intermediate wave functions are omitted through the omitted
2PA channels (30)−(33), which can only be significant through
resonance enhancement.

3. COMPUTATIONAL DETAILS
The CVS-0 and CVS-uS resolvent approaches for X2PA cross
sections within the (fc-CVS-)EOM-EE-CCSD framework are
implemented in a development version of the Q-Chem
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electronic structure package.65 py-CCRSP84 was used for code
debugging and testing.
As application, we considered several small systems, namely

NH3, H2O, HF, Ne, benzene, and p-nitroaniline (pNA). Despite
the lack of published experimental studies on the X2PA spectra
of small molecules, these systems can serve as test cases for
various theoretical strategies, which can then be developed
further by including more (better) physics for tackling more
complex systems such as transition-metal compounds.
We use the following Abelian point groups in our calculations:

Cs for NH3; C2v for H2O, HF, and pNA; and D2h for Ne and
benzene. We follow Q-Chem symmetry notation (details can be
found in refs 45, 85, and 35) instead of Mulliken symmetry
notation.86 The geometries of HF and H2O were optimized at
the DFT/B3LYP87,88 level of theory with the t-aug-cc-pVTZ
basis set. For NH3, the CCSD/aug-cc-pVTZ optimized

geometry was used. The geometries of benzene and pNA were
taken from previous studies.12,13,89 All basis sets and geometries
used in this study are provided in the Supporting Information.
Core orbitals were frozen in all calculations as prescribed by

the (fc-CVS-)EOM-EE-CCSD framework, except for the N and
O K-edge calculations for pNA wherein the lowest four and two
core orbitals were frozen, respectively. The CVS-0 and CVS-uS
2PA cross sections with degenerate photons were computed
between the CCSD and core-excited states, with the latter
obtained within the fc-CVS-EOM-EE-CCSD framework. We
used the d-aug-cc-pVTZ basis set for NH3, t-aug-cc-pVTZ basis
set for H2O andHF, t-aug-cc-pCVTZ basis set augmented with s
and p Rydberg functions for Ne, uC-6-311(2+,+)G** for
benzene, and uC-6-311++G** basis set for pNA. For each
system, we considered all core-excited states below the
respective core-ionization energies, i.e., 10, 22, 24, 32, 65, and

Table 1. Configurational Analysis of the Leading Channels in X2PA Moment, Mf←g, Where Ψg = r0Φ0 + ∑ia riaΦi
a +

(1/4)∑ijab rijabΦij
ab Is theWave Function of the Initial State g andΨf =∑Ia lIaΦI

a + (1/2)∑Ijab lIjabΦIj
ab + (1/4)∑IJab lIJabΦIJ

ab Is theWave
Function of the Final State fa

(i) Channels captured by CVS 0

J
b

I
b

I
b

b I

0 J
b

J
a

J
a

a J

0 JK
bc

J
b

J
b

b J

0 Jk
bc

J
b

J
b

b J

0

(1) (2) (3) (4)

J
b

Ji
ba

Ji
ba

i
a

b J

J
b

Ji
ba

Ji
ba

i
b

a J

J
b

I
b

I
b

i
b

i I

J
b

J
a

J
a

i
a

i J

(5) (6) (7) (8)

Jk
bc

J
b

J
b

i
b

i J

JK
cb

Ji
cb

Ji
cb

i
b

c J

Jk
bc

J
b

J
b

i
b

i J

Jk
bc

Jl
bc

Jl
bc

l
c

b J

(9) (10) (11) (12)

Jk
bc

Lk
bc

Lk
bc

k
c

b L

Jk
bc

Jk
bd

Jk
bd

k
d

b J

Jk
bc

Jk
bd

Jk
bd

k
b

d J

J
b

Jk
bc

Jk
bc

lk
bc

l J

(13) (14) (15) (16)

JK
bc

Jl
bc

Jl
bc

il
bc

i J

Jl
bc

Jl
bd

Jl
bd

kl
bd

k J

Jl
bc

Kl
bc

Kl
bc

il
bc

i K

Jl
bc

Jk
bc

Jk
bc

ik
bc

i J

(17) (18) (19) (20)

(ii) Channels approximated by uS and the term with the CCSD state as intermediate
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(iii) Channels captured by the term with the CCSD state as intermediate but not by uS

Jk
bc

lk
bc

lk
bc

k
c

b l

Jk
bc

lk
bc

lk
bc

l
b

c k

Jl
bc

kl
bc

kl
bc

kl
bd

c d

Jl
bc

kl
bc

kl
bc

il
bc

i k

(30) (31) (32) (33)
aThe coefficients of the Slater determinants are omitted in the table.
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63 states for NH3, H2O, HF, Ne, benzene, and pNA,
respectively. The response equations were solved by using an
iterative Davidson-like subspace procedure. All spectra were
convoluted by using a Lorentzian broadening function with a
half-width at half-maximum of 0.3 eV. In the discussion below,
“X” labels the ground state and “c” is a core-excited state.

4. RESULTS AND DISCUSSION
The bottom panels of Figure 2(a)−(h) compare the
experimental and computed XAS spectra of our benchmark
systems. The computed XAS spectra are shifted to align with the
respective first experimental peak; the shifts are given in the
figure legends. These shifts are <1.1 eV and significantly smaller
than the corresponding shifts computed at the lower TD-DFT/
CAM-B3LYP100% level of theory in ref 64. The XAS spectra

yielded by (fc-CVS-)EOM-EE-CCSD show only small discrep-
ancies with respect to experimental spectra in terms of peak
positions and intensities of dominant peaks, compared to similar
discrepancies with the TD-DFT approach in ref 64, further
highlighting its robustness relative to TD-DFT in modeling
XAS. Below, all computed energy values are shifted values. The
nonshifted peak positions are reported in the Supporting
Information.
The top two panels in Figure 2(a)−(h) provide the X2PA

spectra computed, respectively, with the CVS-0 and CVS-uS
resolvents within the (fc-CVS-)EOM-EE-CCSD framework for
the benchmark systems (shifted similar to XAS). We note that
the CVS-0 results are not to be construed as an approximation to
the CVS-uS results; rather, the CVS-0 data provide separate
estimates of the core and valence contributions to the X2PA
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aThe coefficients of the Slater determinants are omitted in the table.
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cross sections. Compared to CVS-0, the intensities of the spectra
computed with CVS-uS are one order of magnitude smaller
across all systems. This is a consequence of cancellation of
contributions from the valence states as intermediates and the
core states as intermediates. Further, the shapes of these spectra
with the two approaches show significant differences. We also
note that the magnitudes of the X2PA cross sections (∼10−6) in
atomic units (au) are orders of magnitude smaller than typical

valence 2PA cross sections for these systems, a consequence of
small overlaps of core orbitals with unoccupied orbitals.
However, the X2PA moments used for computing the cross
sections are greater than the precision thresholds set in our
calculations and, therefore, these moments are numerically
reliable.
Response equations for all systems converge within our CVS-

0 and CVS-uS setups. Whereas the convergence is, in general,

Figure 2. fc-CVS-EOM-EE-CCSD with the d-aug-cc-pVTZ (NH3), t-aug-cc-pCVTZ (H2O, HF), t-aug-cc-pCVTZ+Rydberg (Ne), uC-6-311(2+,
+)G** (benzene), and uC-6-311++G** (pNA) basis sets. XAS and (CVS-0 and CVS-uS) X2PA spectra of (a) NH3, (b) H2O, (c) HF, (d) Ne, (e)
benzene, (f) pNA (C K-edge), (g) pNA (N K-edge), and (h) pNA (O K-edge). Experimental spectra from ref 90 (NH3 and H2O), ref 91 (HF), ref 92
(benzene), ref 93 (Ne), and ref 94 (pNA). Black vertical lines correspond to excited states that are dark in the given spectrum. Dark states are omitted
from the benzene spectra.
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quick for most systems, for pNA, a few “uS” response equations
take ∼80 iterations before convergence�a consequence of the
very diffuse basis set used for pNA and larger valence
contributions in pNA compared to other systems.
The XAS spectrum of NH3, discussed in depth in ref 74, is

dominated by the peak at 402.2 eV corresponding to the
degenerate XA′ → c2A′ and XA′ → c1A″ transitions, i.e., the 1s
→ 3p (XA1 → cE) transition, with smaller features around 400.5
eV (1s→ 3s), 402.8 eV, and 403.5 eV. In contrast, both the CVS-
0 and CVS-uS X2PA spectra are dominated by the XA′ → c1A′
(1s → 3s) transition at 400.5 eV. The 2PA cross section for the
XA′ → c2A′ transition is, in particular, negligible for the CVS-uS
approach. Small features at 402.8 eV and 403.5 eV are also
present in the CVS-uS spectrum.
Similar to NH3, the XAS spectrum for H2O is richer relative to

the X2PA spectra (from both the CVS-0 and CVS-uS
approaches) and dominated by the three features around
534.0 eV, 535.7 eV, and 537.0 eV. The first feature results from
the XA1 → c1A1 transition, the second results from the XA1 →
c1B1 transition, and the third results from XA1 → c1B2 and XA1→ c2A1 transitions; see also refs 74 and 95. The X2PA spectrum
for both CVS-0 and CVS-uS has a dominant peak corresponding
to the XA1 → c1A1 transition with a tail of small features
observed in the high-energy region. The CVS-uS X2PA
spectrum is also similar to the X2PA spectrum in ref 64.
The computed XAS spectrum for HF shows two dominant

peaks around 687.2 eV and 690.8 eV. The former peak arises
from the XA1 → c1A1 transition, while the latter originated from
the close-lyingXA1 → c2A1 and degenerateXA1 → c1B1 andXA1→ c1B2 transitions. Both CVS-0 and CVS-uS X2PA spectra are
dominated by the XA1 → c1A1 transition. However, whereas the
CVS-0 spectrum also shows a dominant XA1 → c2A1 peak, this
transition is not as important in the CVS-uS spectrum. The
CVS-uS spectrum instead features close-lying peaks around
692.4 eV and 692.8 eV, arising from the XA1 → c4A1 and XA1 →
c7A1 transitions, respectively. Although the shape of the CVS-uS
spectrum resembles the X2PA spectrum in ref 64, the smaller
features are slightly blue shifted in the former.
XAS and X2PA spectra for neon are complementary to each

other. The XAS spectrum, consisting entirely of Rydberg
transitions, is dominated by the 1s → 3p transition, peaked at
867.1 eV, followed by 1s→ 4p, 1s→ 5p and 1s→ 6p, as allowed
according to dipole selection rules.74,93,95 Relative to the shifts
applied to the XAS spectrum in ref 64, the shifts applied in this
study are much smaller. The CVS-0 X2PA spectrum has a
dominant 1s→ 3s (XAg → c1Ag) feature at 865.3 eV, along with
smaller features at 868.3 eV and 869.9 eV; the latter arises from
1s → 3d transitions. In contrast, the CVS-uS spectrum has a
dominant feature at 870.1 eV, arising from the XAg → c11Ag
transition, followed by a smaller peak at 869.9 eV corresponding
to the 1s → 3d transition. The CVS-uS spectrum resembles the
X2PA spectrum in ref 64, even though the 1s → 3d transitions,
which are indicated as the dominant ones in the case of X2PA
spectrum in ref 64, are no longer the most dominant. The
difference between the CVS-0 and CVS-uS spectra further
highlights the importance of including the valence resolvent for
computing X2PA cross sections.
Benzene’s XAS, also studied in refs 89 and 12, features a

dominant peak at 285.2 eV arising from the XAg → c2B1u
transition. Smaller features including the ones at 287.0 eV and
289.0 eV are also present, with the former originating from
degenerate XAg → c1B2u and XAg → c2B3u transitions and the
latter originating from degenerate XAg → c9B2u and XAg →

c12B3u transitions. Benzene is centrosymmetric, and its XAS and
X2PA are complementary to each other. Whereas the dominant
X2PA peak for both CVS-0 and CVS-uS approaches originates
from the same XAg → c2Ag transition at 287.1 eV, the shapes of
the two spectra are slightly different for the smaller features.
Among the smaller features for CVS-uS, the peak at 289.0 eV
arising from the XAg → c12Ag transition is dominant. The
complementary XAS and X2PA modeling augmented by the
corresponding orbital analysis can, in principle, provide rich
information on the electronic structure of this highly symmetric
molecule.
pNA has a large dipole moment and features numerous

charge-transfer valence excitations. The computed C K-edge
XAS spectrum is comparable with the experimental spectrum in
ref 94, although experimental features, except the ones around
285.0 eV and 287.5 eV and the shoulder around 286.0 eV, are
not well resolved. The dominant feature around 285.0 eV
originates from the XA1 → c1B2 and XA1 → c2B2 transitions,
both of 1sC → π* character. The former transition is
characterized by b1 → a2 and a1 → b2 orbital transitions with
the core hole delocalized over the two carbons at the meta
position relative to the nitro group (see the raw data in Table S7
and NTO analysis in Table S8 in the Supporting Information).
The latter transition is characterized by a b1 → a2 orbital
transition with the core hole delocalized over the two carbons at
the meta position relative to the amine group. The next two
features, one at ≈285.9 eV and the other at 286.5 eV, arise from
the XA1 → c3B2 and XA1 → c5B2 transitions, respectively. The
first one is due to 1s → π* transition from the carbon atom
bearing the nitro group. The second, also of 1s → π* type, is an
a1 → b2 transition with the core hole originating primarily from
the C atom bearing the amino group, with some delocalization
over the two nearest carbons. The computed XAS spectrum has
a few other relatively intense features such as XA1 → c1B1 at
287.0 eV, XA1 → c7B2 at 288.2 eV, XA1 → c13A1 at 289.5 eV,
XA1 → c11B2 at 289.5 eV, XA1 → c15B1 at 290.1 eV, and XA1 →
c20A1 at 290.3 eV. Their character (π*, σ*, Rydberg) becomes
apparent upon inspecting the NTOs in Table S8.
In the CVS-0 X2PA spectrum, many of these same transitions

are important along with XA1 → c1A1 at 287.0 eV, XA1 → c2A1
at 287.9 eV, XA1 → c5A1 at 288.7 eV, XA1 → c7A1 at 288.8 eV,
XA1 → c12A1 at 289.4 eV, XA1 → c2B1 at 287.9 eV, and XA1 →
c5B1 at 288.7 eV. The CVS-uS spectrum, in contrast, is less rich,
with only the XA1 → c1A1, XA1 → c2A1, XA1 → c5A1, XA1 →
c8A1 (at 288.9 eV), XA1 → c14A1 (at 289.6 eV), XA1 → c19A1
(at 290.3 eV), XA1 → c20A1, and XA1 → c15B1 transitions
dominant. pNA, therefore, represents yet another system that
features a large valence contribution to the X2PA cross sections,
highlighting the importance of including the valence resolvent in
our model. The dominant transitions in the CVS-uS spectrum,
XA1 → c1A1 andXA1 → c2A1, are characterized by different pairs
of a1 → a1 and b1 → b1 orbital transitions, and are of σ*/Rydberg
type. For the former, the core hole is delocalized on the carbons
meta to the amine group, whereas for the latter, the core hole is
predominantly centered on the carbons meta to the nitro group.
The next most intense peak is due to the XA1 → c20A1
transition, characterized by an a1 → a1 transition with the core
hole on the carbon atom connected to the nitro group; see Table
S8.
Compared to the C K-edge spectra, the N and O K-edge XAS

and X2PA spectra of pNA are not as rich, a direct consequence of
fewer N and O atoms. The computed N K-edge XAS spectrum,
which compares well with the experimental spectrum from ref

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00541
J. Chem. Theory Comput. 2022, 18, 6189−6202

6198

5.2 publication ii 49



94, is dominated by the XA1 → c2B2 (1s → π*) transition at
403.7 eV, which is also dominant in the CVS-0 spectrum. This
transition is characterized by the a1 → b2 orbital transition with
the core hole localized on the N atom of the nitro group and a
delocalized π* particle orbital (see the raw data in Table S7 and
NTO analysis in Table S8). The second dominant feature in the
XAS transition originates from two transitions: XA1 → c1B2 at
402.6 eV and XA1 → c1B1 at 402.8 eV. The former is also quite
strong in theCVS-0 spectrum and is characterized by the a1 → b2
orbital transition with the core hole localized on N atom of the
amine group and another delocalized π* particle orbital. In
contrast to the XAS and CVS-0 spectra, the CVS-uS spectrum
shows different dominant features arising from the XA1 → c1A1
and XA1 → c4A1 transitions at 401.8 eV and 405.0 eV,
respectively. Remarkably, in both these transitions, the core hole
is localized on the amine group’s N atom and the nitro group
does not participate in the particle orbital. The core transitions
from the N atom in the nitro group are basically quenched in the
XTPA CVS-uS spectrum.
The O K-edge XAS spectrum of pNA is even more featureless

than the N K-edge XAS spectrum and compares well with the
experimental spectrum from ref 94. The XAS spectrum has a
dominant feature at 531.1 eV originating from the XA1 → c1B2
transition, characterized by an a1 → b2 orbital transition with a
delocalized π* particle orbital and the core hole delocalized on
the two oxygen atoms (see the raw data in Table S11 and NTO
analysis in Table S12 in the Supporting Information). This
transition, along with the degenerate XA1 → c1A2 transition, is
also dominant in the CVS-0 spectrum but quenched in the CVS-
uS spectrum. These two transitions have the same characteristic
π* particle orbital, with the hole orbitals different (one is the
symmetric and the other the antisymmetric combination of the
oxygen 1s orbitals). Similar to the N K-edge CVS-uS spectrum,
theOK-edge CVS-uS spectrum is dominated by fully symmetric
transitions. In this case, the dominant transitions are XA1 →
c6A1, XA1 → c7A1, and XA1 → c1A1 at 538.1 eV, 538.8 eV, and
536.2 eV, respectively. Whereas the first two transitions feature
particle orbitals delocalized on the entire molecule, the third
transition features a particle orbital that is largely localized at the
nitro end of pNA. For details on the NTOs involved in the
smaller features, we refer to the tabulated raw data used to
construct the spectra shown in Figure 2 and the corresponding
NTO analyses in the Supporting Information.

5. CONCLUSIONS
We have presented an approach for computing X2PA spectra
within the EOM-EE-CCSD framework. Standard iterative
procedures for computing the X-ray response wave functions
diverge within the EOM-EE-CCSD framework; in this study, we
have extended our frozen-core CVS-based strategy of cherry-
picking resolvents, mitigating this issue in the computations of
X2PA cross sections. The fc-CVS scheme allows us to fragment
the EOM-EE-CCSD resolvent into a direct sum of independent
core (called “CVS-0”) and valence resolvents; X-ray response
wave functions in the core- and valence-excitation spaces can,
therefore, be computed separately. The valence resolvent is then
approximated using the valence singles−singles block of the fc-
CVS-EOM-EE-CCSD Hamiltonian, which is the “uS” approx-
imation. We also provided the configurational analysis of X2PA
channels to rationalize the CVS-uS approach and showed that
the approach captures the most important channels for the 2PA
transitions between the CCSD or singly excited valence-excited
states and singly excited core-excited states. The X2PA spectra

for small benchmark systems computed with this approach are
comparable in shape to those from the CPP-TD-DFT approach
in ref 64, yet with smaller discrepancies for the
(fc-CVS-uS-)EOM-EE-CCSD framework in the peak positions
relative to XAS experiments.We also highlighted the importance
of the valence contribution to the X2PAmoments by comparing
the CVS-0 and CVS-uS spectra.
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Abstract

Coupled-cluster response theory offers a path to high-accuracy calculations of spec-

troscopic properties, such as magnetic circular dichroism (MCD). However, divergence

or slow convergence issues or are often encountered for electronic transitions in high-

energy regions with a high density of states. This is here addressed for MCD by an

implementation of damped quadratic response theory for resolution-of-identity cou-

pled cluster singles-and-approximate-doubles (RI-CC2), along with an implementation

of the MCD A term from resonant response theory. Combined, damped and resonant

response theory provide an efficient strategy to calculate MCD spectra over a broad fre-

quency range and for systems that include highly symmetric molecules with degenerate

excited states. The protocol is illustrated by application to Zink Tetrabenzoporphyrin

in the energy region 2–8 eV and comparison to experimental data.

Timings are reported for the resonant and damped approaches, showing that the

greater part of the calculation time is consumed by the construction of the building
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blocks for the final MCD ellipticity. A recommendation on how to utilize the procedure

is outlined.
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1 Introduction

Magnetic circular dichroism (MCD) spectroscopy is a technique based on the measurement of

the differential absorption of left and right circular polarized light passing through a sample

immersed in a (relatively strong) magnetic field parallel to the direction of propagation of

the light.1 The frequency of the light is typically in a region of electronic absorption of the

sample, that is UV/vis, near IR or X-ray,1 but magnetic circular dichroism of vibrational

transitions can also be recorded.2 A recently proposed experimental protocol utilizes pulsed

vector beams, where the magnetic field generated by the vector beams replaces the external

static field applied in conventional MCD experiments.3 MCD has been applied with success

to molecular systems to gain insight into structural, electronic, and magnetic properties, and

experiments are moving into the investigation of nanosystems as well.4

Traditionally, the MCD signal is analyzed in terms of three characteristic band shapes,

whose underlying electronic-structure intensity descriptors are known as the Faraday A,

B, and C terms. The C term relates to the Zeeman splitting of degenerate ground states

due to the external field, and its absorption-shaped band is temperature dependent. Only

paramagnetic compounds exhibit C term signals.1,5,6 A and B terms have different physical

origins and are both independent of temperature. While the A term arises from the magnetic

field-induced Zeeman splitting of degenerate electronic states, the B term is the result of

mixing of non-degenerate states under the influence of the magnetic field. Thus, all molecules

exhibit B-type signals while only molecules with a three-fold or higher symmetry axis will

have nonzero A terms.1,5,6 A derivative line shape indicates the presence of an A term and,

thus, excited-state degeneracy, while a transition with only a B term contribution gives

rise to a Gaussian-shaped absorption feature. When present, the A term dominates the

spectrum.1,5,6

MCD experiments can help to deconvolute bands observed in a regular absorption spec-

trum. Since the MCD signals taking both positive and negative values, transitions can

be better distinguished and, as mentioned, (near-)degenerate states can be identified from
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derivative lineshapes. In the interpretation of experimental MCD spectra, computational

spectroscopy can provide valuable support. From quantum chemical calculation, it is pos-

sible to gain insight into the underlying electronic transitions, which in a spectrum are

convoluted in a band of varying resolution. Among the most recent developments of the-

oretical approaches targeting MCD are implementations based on response theory7 within

the algebraic diagrammatic construction (ADC) scheme,8 coupled cluster singles and dou-

bles (CCSD),9 and resolution-of-identity coupled cluster singles and approximate doubles

(RI-CC2)10, as well as the linear-response (LR-) time-dependent (TD-) density functional

theory (DFT) approach, in which excited states are calculated in a finite magnetic field.11

The calculation of the individual Faraday terms requires an explicit solution of the final

excited states. This approach is limited by the convergence of the excited state eigenvectors

and their derivatives which becomes increasingly difficult in regions with a high density of

states. Damped response theory and the complex polarization propagator framework offer

an alternative approach where the spectrum is computed directly as an interpolation of cross-

section grid points in any frequency region.12–14 Implementations of this type of approach

have been presented for various electronic-structure methods for the computation of linear

spectroscopies such as one-photon absorption and electronic circular dichroism (ECD),15–20 of

C6 dispersion coefficients,21–23 and of the nonlinear spectroscopies such as MCD,9,24 nuclear

spin-induced circular dichroism (NSCD),25 magneto-chiral dichroism (MChD) and magneto-

chiral birefringence dispersion,26 as well as resonant inelastic X-ray scattering (RIXS)27–31

and two-photon absorption.32–34

In this work we extend the RI-CC2 framework for MCD spectroscopy10 in TURBO-

MOLE35 to include the calculation of the A term. Moreover, we address the shortcomings

of the explicit calculation of the Faraday terms in regions where many close-lying electronic

states can be expected by presenting an RI-CC2 implementation of damped quadratic re-

sponse. The RI-CC2 method allows for applications to molecular systems of sizes that are

not amenable for CCSD and higher-order methods, while still producing reasonably accurate
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excitation energies and, thus, spectra.

Our protocol then combines the explicit calculation of individual A and B terms in regions

of well-separated electronic transitions with damped response calculations of the MCD signal

in dense spectral regions. This opens for the investigation of the MCD of molecules in

a broad frequency range including cases with degenerate excited states. Furthermore, the

implementation of damped quadratic response can straightforwardly be extended to compute

other perturbation-induced spectra such as NSCD and MChD.

To assess the time consumption of the resonant and damped pathways, we compare the

timings for converging the equations and computing the MCD ellipticities for two degenerate

resonant states and for one complex frequency.

2 Theory

For a randomly oriented sample in a static magnetic field placed along the z axis, the

ellipticity of plane-polarized light passing through the sample parallel to the field can be

determined as36

θ =
1

6
µ0c lNBz θMCD (1)

where µ0 is the permeability, c is the velocity of light, l is the path length through the

sample, N is the number density, and Bz is the strength of the external magnetic field along

the z axis.

The MCD ellipticity, θMCD, can be computed using different approaches. Within resonant

(standard) response theory, the traditional expression for the MCD ellipticity of a system

with a non-degenerate ground state takes the form (in atomic units)9,36

θMCD = −ω
∑

j

{
∂ g(ωj, ω)

∂ ω
A(0 → j) + g(ωj, ω)B(0 → j)

}
(2)
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where ω is the frequency of the incoming light, ωj is the excitation energy of the electronic

transition 0 → j, and g(ωj, ω) is a lineshape function, e.g., a Gaussian or a Lorentzian. We

refer to Section 3 for details on the type of lineshape function applied in the present work.

The exact sum-over-states (SOS) representation of the B term is37,38

B(0 → j) = εαβζIm


∑

k ̸=0

⟨k|mζ |0⟩
ωk

⟨0|µα|j⟩ ⟨j|µβ|k⟩ +
∑

k/∈Dj

⟨j|mζ |k⟩
ωk − ωj

⟨0|µα|j⟩ ⟨k|µβ|0⟩


 (3)

where µα and mα are Cartesian components of the electric dipole and magnetic dipole

operators, respectively, and εαβζ is the Levi-Civita tensor. Implicit summation for α, β,

and ζ is implied throughout. Dj is a set of degenerate states of which j is part (j ∈ Dj).

These degenerate states, if included in the sum over k, would make the second term of Eq. (3)

diverge and are therefore explicitly excluded from the sum. The MCD signal of the Dj set is

instead described via the non-divergent A term and the derivative of the lineshape function

(Eq. 2). Assuming a non-degenerate ground state, the exact SOS expression for the A term

of an excited state j within the degenerate set Dj is37,38

A(0 → j) =
1

2
εαβζ Im

∑

j′∈Dj

j′ ̸=j

⟨0|µα|j⟩ ⟨j|mζ |j′⟩ ⟨j′|µβ|0⟩ (4)

which can be recognized as the residue of the dispersive term of Eq. (3) in the limit of

(ωk − ωj) → 0.

In general, computing the Faraday terms from their SOS expressions is highly inefficient.

Instead, the A and B terms can be obtained, e.g., from the double and single residues of

appropriate quadratic response functions,36,39 or from the magnetic field-derivatives of the

excitation energy and the one-photon dipole transition strength.40–42
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2.1 Implementation of the Faraday A and B terms

In the work of Faber et al.,9 the expression for the MCD A term within CC theory was

derived from a residue analysis of the magnetic field-derivative of the dipole-dipole transition

strength. Following this derivation, we calculate the A term as

A(0 → j) = −1

4
εαβζ Im

∑

j′∈Dj

j′ ̸=j

(
T µα

0j′ T
mζ

j′j T
µβ

j0 + T µα

0j T
mζ

jj′ T
µβ

j′0

)
. (5)

T µ
0j and T µ

j0 are the CC one-photon dipole transition moments, whose computation has been

discussed several times elsewhere, see, e.g., Refs. 7,9. In general, the one-photon transition

moment for the magnetic dipole operator mζ between the degenerate states j and j′, T
mζ

jj′ ,

can be expressed in two ways,7

T
mζ

jj′ = Ēj(−ωj)(A
mζ + B tmζ(0))Ej′(ωj′) (6)

or

T
mζ

jj′ = Ēj(−ωj)A
mζEj′(ωj′) + N̄jj′(ωj, ωj′) ξ

mζ (7)

where the multipliers N̄jj′ are determined by solving the linear equation7

N̄jj′(−ωj, ωj′) (A + (ωj − ωj′)1) = −Ēj(−ωj)BEj′(ωj′) . (8)

In the equations above, Ēj and Ej are the left and right eigenvectors of the excited state j,

obtained by solving the CC eigenvalue equations

AEj(ωj) = ωjEj(ωj) and Ēj(−ωj)A = ωjĒj(−ωj) . (9)

The CC Jacobian matrix, A, as well as the matrices Am and B are partial derivatives of
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the CC Lagrangian,7 and we refer to Table S1 in the SI for a summary of the CC building

blocks. Additional definitions can be found in Refs. 7,9,40.

In order to apply Eq. (6), one must solve for the response amplitudes tmζ at zero frequency,

whereas solving for the N̄jj′ multipliers is necessary for Eq. (7). Since the tmζ(0) vectors

are also involved in the calculation of the B term (and do not scale with the number of

excited states), it is advantageous to use Eq. (6) to obtain the MCD A term. Details on the

implementation of the contractions needed to evaluate the above quantities for RI-CC2 in

TURBOMOLE can be found in Refs. 43,44.

Continuing to follow the derivations for CC methods of Ref. 9, the B term is calculated

as

B(0 → j) = −1

2
εαβζ Im

(⊥T µαmζ

0j T
µβ

j0 + T µα

0j
⊥T

µβmζ

j0

)
. (10)

⊥T
µα mζ

0j and ⊥T
µβ mζ

j0 are the (right and left) magnetic field-derivatives of the one-photon

dipole transition moments40

⊥T
µα,mζ

0j =
dT µα

0j

dBζ

∣∣∣∣
B=0

= [Gtmζ(0)tµα(−ωj) + Fmζ tµα(−ωj) + Fµαtmζ(0)]Ej(ωj)

+ M̄j(ωj) [Aµαtmζ(0) + Amζ(0)tµα(−ωj) + Btmζ(0)tµα(−ωj)]

+ ω
mζ

j [M̄j(ωj)t
µα(−ωj)]

+ ξ̄µα(−ωj)
⊥E

mζ

j (ωj, 0)

+ ξ̄mζ(0)Eµα

j (ωj,−ωj) (11)

and

⊥T
µα,mζ

j0 =
dT µα

j0

dBζ

= ⊥Ē
mζ

j (−ωj, 0)ξµα + Ēj(−ωj)A
µαtmζ(0) . (12)

As before, we refer to Refs. 7,9,45 for definitions of most of CC building blocks, and only
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draw attention to some of the relevant quantities for our discussion.

The term in Eq. (11) involving ωm
j (i.e., the derivative of the excitation energy with

respect to the magnetic field) is only nonzero for a degenerate j, since ωm
j corresponds to the

definition of the excited-state expectation value T
mζ

jj of the imaginary angular momentum

operator.

The first-order responses of the eigenvectors are determined according to9,10,40

[A− (ωj − ωj)1]Eµα

j (ωj,−ωj) = [Aµα + Btµα(−ωj)]Ej(ωj) (13)
(
Pj[A− (ωj + 0)1]Pj

)
⊥E

mζ

j (ωj, 0) = −Pj[A
mζ + Btmζ(0)]Ej(ωj) (14)

⊥Ē
mζ

j (−ωj, 0)
(
Pj[A + (0 − ωj)1]Pj

)
= −Ēj(−ωj)[A

mζ + Btmζ(0)]Pj . (15)

The projector Pj removes singularities in the responses of the eigenvectors to the magnetic

field (⊥Ēm
j and ⊥Em

j ) by projecting onto the orthogonal complement of the undifferentiated

eigenvectors,9,10 as indicated by the ⊥ superscript:

⊥Em
j = PjE

m
j (16)

⊥Ēm
j = Ēm

j Pj . (17)

Generalized for a degenerate state j, Pj takes the form of the outer product of the eigen-

vectors summed over the set Dj:

Pj = 1 −
∑

j′∈Dj

Ej′ ⊗ Ēj′ . (18)

In the case where j is not degenerate, Dj is simply of size 1.

The implementation of the MCD B term for non-degenerate cases and of the deriva-

tive transition moments for RI-CC2 in TURBOMOLE have been reported in Refs. 10

and 46, respectively. This has now been generalized for degenerate states by adding the

ωm
j [M̄j(ωj)t

µ(−ωj)] contribution to B(0 → j) for j ∈ Dj, and by keeping the magnetic field-
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derivatives of the eigenvector of state j orthogonal to the entire set Dj according to Eq (18).

The calculation of the A term has also been added, together with an automated procedure

to detect degeneracies.

Thus, in resonant response theory, the A and B terms are computed separately for each

individual excited state and the ellipticity is put together according to Eq. (2).

2.2 Implementation of the quadratic response function

Alternative to the resonant approach, one can obtain the MCD ellipticity from damped

response theory, either as the real part of the dipole-dipole-magnetic dipole damped quadratic

response function24,36

θMCD = −ω ϵαβζ Re ⟨⟨µα;µβ,mζ⟩⟩ω+iγ,0 (19)

or, equivalently, as the magnetic field-derivative of the damped dynamic polarizability9

θMCD = −ω ϵαβζ Re

(
d⟨⟨µα;µβ⟩⟩ω+iγ

dBζ

)

B=0

. (20)

The final working equations are the same.

In damped response theory, a finite lifetime of the electronically excited states is im-

plemented by introducing a complex excitation energy. The generalization of standard to

damped response theory is effectively carried out by making the replacement12–14

ω → ω + iγ (21)

for all frequency-dependent components of the response functions. The damping factor γ

is the inverse lifetime and takes an empirical value. Contributions from both the A and B

terms are contained within the damped response function,47 where also the band profiles are

built into the formula in the form of Lorentzian broadening functions.13,48
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Within CC theory, the quadratic response function7 can be expressed as

⟨⟨A;B,C⟩⟩ω̄B ,ω̄C
=

1

2
Ĉ±ω

[
GtA(ω̄A) tB(ω̄B) tC(ω̄C)

+
1

2
P̂ABC t̄A(ω̄A)B tB(ω̄B) tC(ω̄C)

+
1

2
P̂ABC FA tB(ω̄B) tC(ω̄C)

+ P̂ABC t̄A(ω̄A)ABtC(ω̄C)
]

(22)

where ω̄A = −ω̄B− ω̄C , the permutation operator P̂ABC symmetrizes with respect to permu-

tations of the operators A, B, and C together with the accompanied frequencies, and Ĉ±ω

symmetrizes with respect to a change of sign of the real parts of the frequencies (denoted

by ωA, ωB, and ωC) followed by complex conjugation. While ω̄C is assumed to be real, the

frequencies ω̄A and ω̄B can be either real or complex. In the former case, the quadratic

response function is purely real or purely imaginary (depending on the combination of A,

B and C ), and the building blocks are computed according to standard response theory.

An example of an observable that can be calculated from the standard formulation of the

quadratic response function with real frequencies is the ground state hyperpolarizability.

For the case that ω̄A and ω̄B, on the other hand, are complex, we allow the replacement

of Eq. (21) and the response function becomes complex, i.e., damped. It follows that the

implementation of the damped quadratic response function of Eq. (19) is a (conceptually)

simple generalization of the implementation for real frequencies.

To compute the MCD ellipticity from the damped quadratic response function according

to Eq. (19) the frequencies are set to ω̄B = ω + iγ and ω̄C = 0, and we thus need both

damped response amplitudes and damped response multipliers. In other words, we must solve

the right and left linear response equations for the dipole moment operator with complex
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frequencies, i.e.

[
A− (ω + iγ)1

]
tµ(ω + iγ) = −ξµ (23)

t̄µ(−ω − iγ)
[
A− (ω + iγ)1

]
= −ηµ − F tµ(−ω − iγ) ≡ −ξ̄µ(−ω − iγ) . (24)

In the RI-CC2 implementation in TURBOMOLE, the above response equations are ef-

fectively solved only in the space of single excitations, i.e., only the singles components of

all vectors are explicitly computed and stored; contributions from the doubles are computed

on-the-fly. The derivation and implementation of Eq. (23) for (RI-)CC2 in TURBOMOLE

are described in detail in the work by Fedotov et al. 15 It boils down to iteratively solving

the effective linear CC2 response equations for the singles amplitudes



Aeff

SS − ω1SS −Γeff
SS + γ1SS

Γeff
SS − γ1SS Aeff

SS − ω1SS






tµR,S

tµI,S


 = −



ξµ,effR,S

ξµ,effI,S


 (25)

where the ω- and γ-dependent effective matrices are defined as

Aeff
SS(ω, γ) =ASS −ASD

∆

∆2 + γ2
ADS (26a)

Γeff
SS(ω, γ) = −ASD

γ

∆2 + γ2
ADS (26b)

with the diagonal matrix ∆ = ADD − ω1DD and the effective right hand sides (RHS)

ξµ,effR,S (ω, γ) = ξµR,S −ASD
∆

∆2 + γ2
ξµR,D + ASD

γ

∆2 + γ2
ξµI,D (27a)

ξµ,effI,S (ω, γ) = ξµI,S −ASD
∆

∆2 + γ2
ξµI,D −ASD

γ

∆2 + γ2
ξµR,D . (27b)

Above and in the following, indices R and I label the real and imaginary component of the

given vectors (e.g., t = tR + itI), and subscripts S and D refer to the singles and doubles

spaces, respectively.
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The corresponding derivation of the (RI-)CC2 response multiplier equations for complex

frequencies, Eq. (24), is discussed in detail in Section S5 in the SI. In compact matrix form,

the effective damped CC2 multiplier equations of Eq. (24) become

[ t̄µR,S t̄µI,S ]




Aeff
SS − ω1SS Γeff

SS − γ1SS

−Γeff
SS + γ1SS Aeff

SS − ω1SS


 = −[ ξ̄µ,effR,S ξ̄µ,effI,S

] . (28)

and the effective RHSs take the form

ξ̄R,eff
S = ξ̄RS − ξ̄RD

∆

∆2 + γ2
ADS + ξ̄ID

γ

∆2 + γ2
ADS , (29a)

ξ̄I,effS = ξ̄IS − ξ̄ID
∆

∆2 + γ2
ADS − ξ̄RD

γ

∆2 + γ2
ADS . (29b)

In connection with the current work, the convergence of the iterative solution of the CC2

response equations has been improved by determining the coefficients for the expansion of the

solution vectors on the basis of the trial vectors by the requirement that the residual in the

full space is minimized, instead of solving (as otherwise described in Ref. 15) the equations

projected to the subspace of trial vectors. For further details, we refer to Section S6 in the

SI.

After computation of the (singles only) complex response amplitudes and multipliers

via Eqs. (23) and (24), the damped response function for MCD is constructed. The first

term of Eq. (22) is the contractions of three response vectors with the G matrix: Gtµα(ω +

iγ)tµβ(−ω − iγ)tmζ(0). For details on the implementation of the G-matrix contractions, see

Section S7. The contraction of the B matrix with one (complex) vector from the left and

two from the right in the second term of Eq. (22) is evaluated analogously to the F-matrix

contractions described in Ref. 49. There, the singles components of σ(t̄x, ty) are contracted

with the singles components of the tz amplitudes, whereas the contraction of the doubles

is evaluated directly from the intermediates for constructing σ(t̄x, ty)D, thereby avoiding

the storage of any doubles intermediates. For the B-matrix contractions, the unperturbed
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Lagrange multipliers are replaced by response multipliers, and a contribution that originates

from the projection onto the Hartree-Fock state is skipped.

The last two terms of Eq. (22) are rewritten as contractions between complex perturbed

one-particle densities and one-electron integrals49:

Fµαtµβ(−ω − iγ)tmζ(0) = ĥµαDF (tµβ , tmζ) , (30)

t̄µα(ω + iγ)Aµβ tmζ(0) = ĥµβDA(t̄µα , tmζ) . (31)

The generalization of the implementation for the damped quadratic response function

entailed generalizing the construction of the RHS for the response multiplier equations, the

G-matrix contraction routines to handle two complex vectors, the B-matrix contraction rou-

tines to handle complex vectors from the left, the DF density to handle complex amplitudes,

and the DA density to handle complex multipliers. The generalization of the latter also

involved the on-the-fly evaluation of the doubles parts of the complex response vectors.

3 Computational details

To illustrate the results, we examined the Zink Tetrabenzoporphyrin (ZnTBP) complex in

a planar geometry of D4h symmetry, sketched in Figure 1. A DFT-optimized geometry

was obtained from Ref. 50 and reoptimized at the MP2/cc-pVTZ level of theory. The MCD

spectra were computed with both resonant and damped response using a development version

of TURBOMOLE 7.6.35,51 The molecule was treated in its largest Abelian point group, D2h,

and the aug-cc-pVDZ basis set52,53 was applied as orbital and auxiliary basis for H, C, and

N. The energy-consistent pseudo potential (ECP) for Zn from Figgen et al. 54 was used in

combination with the aug-cc-pVDZ-PP basis set55 for both the orbital and auxiliary basis.

In the resonant response calculations, the MCD B terms were computed with the preex-

isting implementation,10 whereas the A terms were obtained using our new contribution to

the program.
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Lorentzian broadening functions were applied to the resonant results such that

g(ω, ωj) =
1

π

γ

(ω − ωj)2 + γ2
(32)

∂ g(ω, ωj)

∂ ω
= − 2

π

(ω − ωj)γ

[(ω − ωj)2 + γ2]2
. (33)

By setting the half-width-at-half-maximum (HWHM) in the lineshape functions equal to the

damping factor applied in damped calculations, one obtains identical spectra from resonant

and damped response, provided the latter is multiplied by a factor of π−1. A damping factor

of 4.5563 ·10−3 au (≈ 1000 cm−1), as often used in the literature, was applied. The stick

spectra were broadened with an HWHM of the same value, unless otherwise stated.

The 18 lowest electronically excited states were converged for resonant response; 8 of B2u,

8 of B3u, and 2 of B1u symmetries. Oscillator strengths were calculated for all 18 states,

while the MCD terms were calculated for the lowest 15 states. With the damped approach,

the high-energy spectrum was initially built between 0.15 and 0.30 a.u. with a distance of

0.01 a.u. between the grid points. To obtain a higher resolution of some spectral features,

additional grid points were calculated in the ranges 0.145–0.18 a.u. and 0.19–0.23 a.u., such

that the separation between points in these intervals was 0.005 a.u. The damped spectrum

was drawn by cubic interpolation of the grid points. The absorption and MCD spectra

Figure 1: Zinc Tetrabenzoporphyrine (ZnTBP).
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obtained from interpolation of the coarse grid are depicted in Figure S1. All raw data are

available in the SI.

All calculations were carried out with the frozen core approximation. For the damped

calculations, a convergence threshold of 10−4 was applied for both the linear equations and

the numerical Laplace transformation; the qualitative results were found to be rather in-

sensitive to the threshold. In the resonant case, the residuals of the eigenvalue and linear

equations were converged below thresholds of 10−8 and 10−6, respectively.

4 Results and discussion

4.1 Absorption and MCD Spectra

The ZnTBP molecule was chosen as an illustrative example due to the availability of an

experimental MCD spectrum reaching energies as high as 8 eV (65 000 cm−1),56 covering

what is referred to as the Q- (15 800–18 000 cm−1), B- (23 500–29 000 cm−1), N-, L-, and X-

band (28 000–65 000 cm−1) regions.56,57 The experimental measurements were carried out in

an Argon matrix. It is noted that in the experiment, several nonequivalent sites in the Argon

matrix together with crystal field (CF) splitting result in absorption and MCD spectra with

a rich structure.56 This is not reproduced by the calculations carried out in gas phase. The

Q- and B-band regions also reveal vibrational overtones in the experimental measurements.56

The simulated absorption and MCD spectra in the full energy range are depicted in

Figure 2, where the broadened stick spectra cover the Q-, B-, N-, and L-bands, while the N-,

L-, C-, and X-bands are covered by the damped results. An overlap between the resonant

and damped spectra ensures a complete description.

While the electronic transitions of the Q- and B-bands are well separated, the spectrum

above 4 eV convolutes more close-lying states. Especially the C- and X-band regions contain

a high density of states stemming from the large aromatic system of the TBP ligand. In the

absorption spectrum of Figure 2, it is seen that the B-band has much higher intensity than
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Figure 2: ZnTBP. Absorption (lower panel) and MCD (upper panel) spectra from standard
(blue) and damped (red) response in the energy region 2–8 eV (15 000–65 000 cm−1. Energies
have been shifted by −0.349 eV (−2818 cm−1).

the Q-band, consistent with previous findings.56 The MCD spectrum is predominantly given

by A terms, occurring in all bands except the X-band. The A terms are positive, as it can

be seen from the negative wing at lower energies.

Experimental absorption and MCD spectra in three energy ranges are shown alongside

the theoretical ones in Figures 3 and 4, respectively. The broadening factors of the stick

spectra in the low- and mid-energy panels have been reduced to the values indicated in the

figure captions to be comparable to experiment which reports very high resolution of the Q-

and B-bands.56

All theoretical spectra have been red-shifted by 0.35 eV (2818 cm−1) to align the first

absorption peak with the corresponding peak of the major matrix site of the Q-band in
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the experimental absorption spectrum (Figure 3, upper left panel). The size of this shift

is considered to be within what can be attributed to environmental effects, the deviation

between computed vertical excitation energies and experimental band maxima in addition

to the general overestimation of excitation energies within CC2.58,59 The shift also aligns

the maxima of the C- and X-bands in the high-energy region fairly well with experiment,

although the separations between the spectral features in the simulated spectrum are slightly

larger. Nevertheless, the features are well reproduced by our calculations. The MCD in the

N-band region is, however, far more pronounced in the simulated spectrum. A better fit could

be brought about by increasing the damping factor, i.e., the broadening of the spectrum.

The (shifted) B-band is located approximately 0.12 eV (994 cm−1) to the red of the

corresponding peak in experiment, indicating that the computed energy gap between the

first and second peak is too small. This is again within the error of CC2. If we align the

spectra according to the B-band instead of the Q-band, the overall red shift is reduced to

0.23 eV (1825 cm−1). However, this worsens the alignment of the high-energy region. Spectra

shifted to align with the B-band are available in Figures S2 and S3 in the SI.

While the spectrum that convolutes the excitations underlying the X-band in the ab-

sorption spectrum is of similar intensity as the C-band, the MCD spectrum above 6 eV has

a much lower intensity and is less rich in features. Looking at the lower panel in Figure 4,

we see that a flattening of the spectrum in the X-band region is also observed experimen-

tally. This observation suggests that this part of the spectrum is made of B terms, i.e., the

convoluted states are non-degenerate, as the B terms are usually (much) smaller than the A

terms, as previously mentioned. Figure 5 shows separate broadened A- and B-term spectra

to illustrate this point. Note that the spectra are plotted on individual y axes. Interest-

ingly, the B term spectrum reveals two oppositely signed terms of same magnitude between

4–4.5 eV (N-band region), a phenomenon referred to as a pseudo-A term.60 It has here its

origin in two 1Eu states that contribute to the N-band which are only separated by ≈ 0.1 eV

and coupled with a non-vanishing transition moment for the z component of the magnetic
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Figure 3: ZnTBP. Absorption spectra in three energy regions with experimental spectra
from Ref. 56. Theoretical energies have been shifted by −0.349 eV (−2818 cm−1). HWHMs
of 7 cm−1 (Q-band, upper left), 20 cm−1 (B-band, upper right), and 1000 cm−1 (N-X region,
lower panel). The experimental spectra are presented without ε values.

dipole operator.

In the experiment, it is reported that the zero-crossings of the MCD spectra do not fully

coincide with the maxima in the absorption spectra, as is exhibited by true A terms.56 The

observed shift is attributed to symmetry-lowering effects arising from Jahn-Teller effects and

CF splitting. The lowering of symmetry lifts the degeneracy between the pairs, which now

instead appear as close-lying B terms of equal magnitude and opposite sign, i.e., as pseudo-

A terms. Meanwhile, the splitting of the degenerate pair affects the absorption spectrum

by resulting in two transitions with oscillator strengths that are likely to be different. This
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Figure 4: ZnTBP. MCD spectra in three energy regions with experimental spectra from Ref.
56. Theoretical energies have been shifted by −0.349 eV (−2818 cm−1). HWHMs of 7 cm−1

(Q-band, upper left), 20 cm−1 (B-band, upper right), and 1000 cm−1 (N-X region, lower
panel). The experimental spectra are presented without θ values.

alters the position of the absorption maxima compared to the fully symmetric structure.

Also, the superposition of nearby bands with different intensities in absorption and different

ellipticities for MCD contributes to shifts between the maxima in the absorption and zero-

crossings in the MCD spectra. All in all, one cannot, even at the most accurate theoretical

level, expect a complete agreement with the experimental spectra used for comparison in the

current work, since the experimental measurements do not reflect the perfectly symmetric

molecule applied in the calculations. That the zero-crossing of the pseudo-A term feature

under the (shifted) N-band (∼ 4.1 eV) in the calculated spectrum aligns almost perfectly
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with the experimental one is mostly coincidental.

Since this is a showcase example, and ZnTBP is a well-studied system,50,61–64 we will not

go further into analyzing the spectra.

4.2 Timings

For the evaluation of the time consumption of the two approaches, a damped calculation

was carried out with a real frequency of 0.20 a.u. and a damping factor of 4.5563·10−3 a.u. .

The frequency of 0.20 a.u. lies in the upper L-band region, right “at the border” with the

spectrally dense region. The resonant calculations were carried out for the lowest-energy

degenerate set consisting of the first transitions of B2u and B3u symmetry.

These calculations were carried out in shared-memory (OpenMP) parallel modality on

40 cores of two Intel Xeon Gold 6230 CPUs running at 2.1 GHz.
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4.2.1 Calculation of the quadratic response function

Table 1 summarizes the timings of a calculation of the quadratic response function with

one complex frequency as well as a calculation with only a real frequency. Two RHSs, two

sets of linear equations, four types of densities, and two types of matrix contractions are

involved, see the table for details. The ground state amplitudes, multipliers, and densities,

the RHSs and linear solvers for the static magnetic perturbation, and the densities only

perturbed by the magnetic dipole are all independent of the number of complex frequencies.

The remaining components scale linearly.

It is clearly seen that the most time-consuming steps are the computation of the densities

and matrix-vector contractions for building the quadratic response function: more than 70%

of the total wall time was spent by those operations in both the real and complex cases. From

the timings it is observed that the RHSs and matrix-vector contractions take roughly twice

as long for the complex response function, while the left- and right-hand transformations are

faster when the frequency is complex. We note that the linear solver required nearly twice

as many iterations for converging the response equations without a damping factor.

For an approximate evaluation of the time demand per frequency, we subtract from the

total wall time the frequency-independent steps mentioned previously. This amounts to

almost 35 hours per complex frequency and 24 hours per real frequency. There is thus

only a 50% increase in the time consumption from regular to damped quadratic response,

demonstrating the efficiency of the implementation of damped response theory.

4.2.2 State-by-state calculation

The timings from the resonant calculation are summarized in Table 2. Note that no timings

for the CC eigenequations are reported; in the setup, these were solved in a sequence of a

CCS pre-optimization, a quasi-linear CC2 pre-optimization, and a final DIIS eigensolver for

the non-linear eigenvalue problem for Aeff
SS.

In a resonant calculation, four sets of linear equations are solved and their respective
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Table 1: ZnTBP. Timings from a regular and damped quadratic response calculation with
ω = 0.20 au and γ = 4.5563 · 10−3 au. Data for right-hand sides (RHS), right- and left-
hand transformations (RHTR, LHTR), densities, and contractions, along with the number
of vectors, densities, or contractions of the given ‘Type’, as well as the scaling of the number
of ‘Types’ with the number of frequencies, nfreq. Times are normalized over all symmetries
and/or permutations; “int.” = intermediate(s).

Type Time (damped) Time (regular) Unit # Scaling

RHS (tA) 363.58 175.00 sec/vec 9 3 + 6nfreq

RHS (t̄A) 471.26 234.39 sec/vec 9 3 + 6nfreq

RHTR (tA) 37.69 62.59 sec/iter/vec 18 2nRHS

LHTR (t̄A) 37.22 42.28 sec/iter/vec 18 2nRHS

Dη(t̄, tA) + int. for DF 814.60 506.93 sec/dens 9 3 + 6nfreq

DF (t̄, tA, tB) 0.24 0.11 sec/dens 18 18nfreq

Dξ(t̄A, t) + int. for DA 1392.87 806.60 sec/dens 9 3 + 6nfreq

DA(t̄A, tB) 1651.43 1226.67 seco/dens 36 36nfreq

t̄A B tB tC 1114.67 586.21 sec/contr 18 18nfreq

G tA tB tC 123.83 67.67 sec/contr 6 6nfreq

RHSs are built. For putting together the MCD ellipticity, 10 densities are computed and four

matrix-vector contractions are carried out, see Table 2 for details. Besides the calculations

related to just the ground state, only the RHS and linear solver for the magnetic field-

perturbed amplitudes are state-independent. All remaining steps scale linearly with the

number of excited states.

Again, the computation of the property building blocks takes up a large part of the

total wall time, amounting to 50% of the total wall time in the presented case. This is 20

percentage points less than observed for the quadratic response function and is a reflection of

the substantial amount of additional linear equations that are required for the state-by-state

approach, besides, of course, the lower computational cost and scaling of the densities.

The time required per resonant state was approximately 9 hours. This measure represents

a lower limit for the cost of the resonant approach. As the number of requested states

increases, so will the number of iterations required before reaching convergence in the eigen-

and linear solvers.
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Table 2: ZnTBP. Timings from a resonant response calculation of the MCD of the first
degenerate set of excited states. Data for right hand sides (RHS), right- and left hand trans-
formations (RHTR, LHTR), densities and contractions, along with the number of vectors,
densities, or contractions of the given ‘Type’. Times are normalized over all symmetries
and/or permutations. “int.” = intermediate(s)

Type Time Unit #

RHS (M̄j) 115.44 seconds/vector 2
RHS (tA) 194.25 seconds/vector 7
RHS (EA

j ) 956.55 seconds/vector 8
RHS (ĒA

j ) 309.58 seconds/vector 4
LHTR (M̄j) 53.37 seconds/iteration/vector 2
RHTR (tA) 80.61 seconds/iteration/vector 7
RHTR (EA

j ) 360.03 seconds/iteration/vector 12
LHTR (ĒA

j ) 25.45 seconds/iteration/vector 8
Dξ(Ēj, t) + int. for DA(Ēj, t

A) 47.70 seconds/density 2
Dξ(M̄j, t) + int. for DA(M̄j, t

A) 50.10 seconds/density 2
Dη(t̄, EA

j ) 1381.28 seconds/density 8
Dη(t̄, Ej) + int. for DF (t̄, Ej, t

A) 85.80 seconds/density 2
Dη(t̄, tA) + int. for DF (t̄, Ej, t

A) 691.89 seconds/density 7
DA(Ēj, t

A) 697.50 seconds/density 4
DA(M̄j, t

A) 699.90 seconds/density 8
DA(Ēj, Ej′) 103.20 seconds/density 2
DF (t̄, Ej, t

A) 0.11 seconds/density 8
Dξ(ĒA

j , t) 1040.70 seconds/density 4
M̄jB tA tB 428.86 seconds/contraction 4
FEA

j tB 530.28 seconds/contraction 8
Ēj B tA Ej′ 233.74 seconds/contraction 6
GEj t

A tB 105.50 seconds/contraction 4

5 Concluding remarks

We have presented the implementation of the MCD A term and of the quadratic response

function for real and complex frequencies to include the damped response case for MCD at

the (RI-)CC2 level of theory in Turbomole.35,51 We applied them to the highly symmetric

ZnTBP molecule to show how a combination of resonant and damped response theory can be

used to compute efficiently MCD spectra for relatively large chromophores. By combining

the resonant and damped response results, the absorption and MCD spectra have been

simulated in the region 2–8 eV (16 000–65 000 cm−1) and compared to experimental data
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from the literature. Good agreement was found between the theoretical and experimental

spectra, where the errors of the computed excitation energies were assigned to the neglect

of environmental effects, deviations between vertical excitations and band maxima, as well

as the general error of CC2.

Timings have been reported for a resonant calculation of a set of degenerate states and

for a damped calculation with one complex frequency. It was found that the computation

of the building blocks of the final property is by far the most time-consuming for both the

resonant and damped case, although the former spends thrice the amount of percentage

points on the construction of RHSs compared to the damped approach.

The final recommendation for the application of our procedure is to use the resonant

approach for the low-energy region of the MCD spectrum, where the density of states is

typically low and the resonant approach is expected to be the most efficient one. The

spectrum is then extended to higher energies by producing a grid of cross sections with

damped calculations. An overlap with the low-energy spectrum is advised for a complete

description of the spectrum. The damping factor can be chosen based on the resolution of

an experimental spectrum. If no experiment is available, or if no resolution is reported, a

factor of 1000 cm−1 typically gives a reasonable theoretical spectrum. The step size should

roughly correspond to the damping factor. In the current work, this was the case in regions

with stronger spectral features, while less rich regions were treated with a step twice this

size.

For the damped spectrum, an initial calculation with larger damping factor and smaller

basis can be used to identify important regions in the spectrum that need a denser grid or

smaller damping factor. At least, it is beneficial to first produce a coarse grid and then

supplement it with more points in regions where more pronounced spectral features are

expected.

Furthermore, it should be exploited that the damped approach can be used at any fre-

quency interval (including the X-ray regime), meaning that several batches of, e.g., four
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complex frequencies each, can be carried out simultaneously, thereby scanning a large fre-

quency range in a (relatively) short amount of time. It is our experience that a cubic spline

provides the best interpolation of the data points with respect to reproducing a broadened

stick spectrum and avoiding an overfitting of the parameters.
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Nuclear spin-induced circular dichroism (NSCD) is a molecular effect of differen-

tial absorption of left- and right-circularly polarized light due to nuclear spins in

the molecule. In this work, new tools for its calculation are presented. Analytic

expressions for the computation of the BK term of NSCD have been derived and

implemented for the second-order coupled cluster singles and doubles (CC2) model.

NSCD results obtained thereby for three derivatives of azobenzenes have been com-

pared with results from time-dependent density functional theory (TD-DFT). The

complementary information that could be obtained from NSCD measurements com-

pared to NMR for these three species is discussed.
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I. INTRODUCTION

Nuclear magneto-optic (NMO) effects are molecular properties that arise as a consequence

of the simultaneous interaction of the molecular electronic cloud with a beam of light and

with the nuclear magnetic moments. They manifest as a change in the polarization state of

the probing beam of light as it passes through a sample with anisotropically oriented nuclear

magnetic moments.1–21

The character of the change of the polarization induced in the light beam depends on the

NMO effect. Nuclear spin-induced optical rotation (NSOR) is a circular birefringence that

rotates the plane of polarization of the light beam.1,4,14,19 The nuclear Cotton-Mouton-like

effects are linear birefringences and cause the linearly polarized beam to acquire an elliptic-

ity.2,5,10–12 Nuclear spin-induced circular dichroism (NSCD) is the differential absorption of

the left- and right-circularly polarized (LCP, RCP) components.15,17

NSCD is particularly different from the other NMO effects mentioned above in that it is a

property that only occurs when the wavelength of the light beam corresponds to the energy

of a transition between two electronic states. In other words, NSCD only appears in the

energy region of electronic absorption bands, which is usually in the visible or near ultraviolet

(UV/vis) frequency range. In contrast, the other known NMO effects are birefringences and

are also present in dispersive regions.

Broadly speaking, NSCD can be seen as a localized version of classical magnetic circular

dichroism (MCD).22–27 In MCD the sample exhibits different coefficients of molar absorption

for the LCP and RCP components of light when it is placed in a magnetic field with a

component parallel to the path of the propagation of the beam.26 In NSCD, the magnetic

field perturbation is not introduced from the outside, but from within the molecule by the

individual nuclear magnetic moments. In analogy to MCD, NSCD is then observed when

the average magnetization of the sample from the nuclear magnetic moments is at least

partially aligned with the direction of the light beam.15

Since NSCD arises from differential absorption coefficients for RCP and LCP, a proper

characterization of the excited states is important for its faithful description. In addition,

since it also involves interactions with the nuclear magnetic moments via a hyperfine inter-

action operator (ĥhf), capturing the electronic properties near the nucleus is also essential.

This places a high demand on the basis set as well as on the computational method.
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The calculation of NSCD spectra has so far only been implemented within the framework

of time-dependent (TD-) density functional theory (DFT).15,20 One TD-DFT protocol for

NSCD is based on the complex polarization propagator (CPP) method.28,29 This approach

allows to simulate directly the absorption spectra with broadened bands and to investigate

regions of arbitrary energy without the explicit need to calculate all excited states of lower

energy. However, it partly obscures the contributions of individual excited states as the re-

sulting spectrum is a sum of all contributions that are implicitly convoluted with Lorentzian

broadening bands. More recently, a TD-DFT quadratic-response-based approach has been

developed for calculating the NSCD strengths of individual transitions.20 This approach

produces NSCD data in the form of “stick spectra”, i.e., NSCD strengths of a particular

nucleus K over a given set of excited states, known as NSCD BK terms.

(TD-)DFT methods depend on the choice of functional, which is still often designed

in a semi-empirical way for specific properties and/or molecular systems, and, as such, it

is hard to improve in a systematic way. The reliable performance of a certain functional

for new properties is therefore not assured. Oftentimes, (TD-)DFT methods need to be

benchmarked against high-end methods, such as those based on the coupled cluster (CC)

ansatz.30 The fully ab initio CC methods do not contain or require a priori assumptions

about the nature of the studied system, which are common in the construction of many

DFT functionals. Thus, CC methods treat different molecules on more equal footing and

provide less biased results compared to DFT, which on the other hand can be sensitive to

particular combinations of molecules and functionals. The CC ansatz also offers a clear and

systematic path toward the full theoretical limit, though at the price of a steep increase

in the computational costs moving up the hierarchy of CC approximations. However, the

CC model only provides a good approximation when the system can be well described by a

single determinant.

Among the CC approximations, the second-order approximate coupled cluster singles and

doubles model (CC2)31–33 has emerged as a cost-effective and relatively accurate approach for

a variety of molecular properties and UV/vis spectra of medium-to-large molecular systems.

It is our goal here to present a method to calculate stick spectra of NSCD based on the CC

ansatz, with a specific implementation at the CC2 level. The approach gives access to NSCD

values for specific excited states, and it can be used for direct investigation of moderately-

sized molecules and as a first benchmark for DFT models. It is based on a generalization
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of the resolution-of-identity CC2 (RI-CC2)32,33 implementation of the MCD B term34 in

Turbomole35 to the computation of the NSCD BK term. The new RI-CC2 protocol is

applied to a selection of para-substituted azobenzenes and its results are compared to those

obtained with TD-DFT using the BH+HLYP functional.36,37

II. THEORY

Since NSCD can be considered as magnetic circular dichroism induced by the nuclear

spin, the mathematical expressions for its fundamental molecular descriptors can be derived

along the lines of the derivation of conventional circular dichroism induced by an external

(static) magnetic field. Buckingham and Stephens22 were first to obtain the sum-over-states

(SOS) expressions for the Faraday A, B, and C terms of MCD. For closed-shell molecular

systems with no degenerate ground or excited states, only the B term is of relevance.22–25,27

Early attempts to compute the MCD terms were based on such SOS expressions. It was

later shown38 that the B term can be obtained from the first-order residues of a quadratic

response function involving the electric dipole operator (µ̂) and, in a non-relativistic context,

the orbital Zeeman interaction operator (relative to a common origin O), ĥOZ = e
2me

∑
i l̂iO

(l̂iO being the angular momentum operator relative to the origin O). For a given electronic

transition from state 0 to state f with an excitation energy of frequency ωf , this is expressed

as follows:

B(0 → f) = iεαβγ lim
ω→ωf

(ω − ωf )⟨⟨µ̂α; µ̂β, ĥ
OZ
γ ⟩⟩ω,0 . (1)

An alternative, yet equivalent, computational route is to express it as the magnetic field-

derivative of the one-photon dipole transition strength, S0f
αβ(B), in the presence of the mag-

netic field39

B(0 → f) =
1

2
εαβγ Im

dS0f
αβ(B)

dBγ

∣∣∣∣∣
B=0

, (2)

where S0f
αβ = ⟨0|µ̂α|f⟩⟨f |µ̂β|0⟩. In the equations above, ω is the frequency of the external

electric field (the incident light beam), εαβγ is the Levi-Civita tensor, and implicit summation

over repeated indices is implied, where indices α, β, and γ run over the three Cartesian

coordinates x, y, and z.
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In analogy with the case of MCD, and inspired by the CPP formulation of NSCD by

Vaara et al.,15 an SOS expression for the NSCD BK term of nucleus K and its connection to

the residues of a quadratic response function has been derived.18,20 The approach used a non-

relativistic formulation where the orbital hyperfine interaction operator of nucleus K, a.k.a.

the paramagnetic (nuclear) spin-(electron) orbit (PSO) operator, ĥpso
K = eℏ

me

µ0γK
4π

∑
i
l̂iK
r3iK

,

replaces the orbital Zeeman interaction operator in Eq. (1)

BK(0 → f) ∝ iεαβγ lim
ω→ωf

(ω − ωf )⟨⟨µ̂α; µ̂β, ĥ
pso
K,γ⟩⟩ω,0 . (3)

The NSCD equivalent of the derivative expression, Eq. (2), is

BK(0 → f) =
1

2
εαβγ Im

dS0f
αβ(IK)

dIK,γ

∣∣∣∣∣
IK=0

(4)

where IK is the nuclear spin.

As in the case of MCD, the NSCD signal of a molecule with no degenerate ground and

excited states is solely determined by the BK term. The total NSCD ellipticity spectrum of

nucleus K can then be computed as20

ηK(ω) = ωLK

∑

f

BK(0 → f)gf (ω, ωf ) (5)

where LK is a product of physical constants, and gf (ω, ωf ) is a broadening function. The

ellipticity in Eq. (5) is given per unit path length, unit of spin polarization, and unit concen-

tration of the nucleus. The numerical values of LK used in the current study are reported

in the ESI.

Within CC response theory, computational expressions for the B term of MCD are most

conveniently obtained using the derivative approach.34,39,40 Following a similar strategy, we

can formulate the BK term as

BK(0 → f) = −1

2
ϵαβγ

(
⊥T

µα,Kγ

0f T
µβ

f0 + T µα

0f
⊥T

µβ ,Kγ

f0

)
(6)

where T µ
0f and T µ

f0 are the left and right one-photon transition moments,41 and ⊥T µ,K
0f and

⊥T µK
f0 are the nuclear spin-derivatives of the one-photon dipole transition moments; note

the use of the compact notation Kγ in place of ĥpso
K,γ. The CC response expressions for these
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transition moment derivatives are promptly derived in analogy with the MCD B term34,39,40

⊥T µ,K
0f =

dT µ
0f

dIK
=

[
GtK(0)tµ(−ωf ) + FKtµ(−ωf ) + FµtK(0)

]
Ef (ωf )

+ M̄f (ωf )
[
AµtK(0) + AK(0)tµ(−ωf ) + BtK(0)tµ(−ωf )

]

+ ωK
f [M̄f (ωf )tµ(−ωf )]

+ ξ̄µ(−ωf ) ⊥EK
f (ωf , 0)

+ ξ̄K(0)Eµ
f (ωf ,−ωf ) (7)

and

⊥T µ,K
f0 =

dT µ
f0

dIK
= ⊥ĒK

f (−ωf , 0)ξµ + Ēf (−ωf )AµtK(0) . (8)

Note that, in Equation (7), ωK
f =

dωf

dIK
= Ēf (−ωf )[AK + BtK(0)]Ef (ωf ), which is the

definition of the excited-state expectation value TK
ff of the operator ĥpso

K,γ. Since ĥpso
K,γ is

imaginary, ωK
f is zero, unless the final state f is degenerate.

In the equations above, Ef (ωf ) and Ēf (−ωf ) are the right and left CC excited state

vectors, obtained by solving the right and left eigenvalue equations

[A− ωf1]Ef (ωf ) = 0 (9)

Ēf (−ωf ) [A− ωf1] = 0 (10)

and EO
f (ωf , ωO) and ĒO

f (−ωf , ωO) are their first-order responses to a general operator Ô,

with associated frequency ωO. The eigenvector responses are obtained from solving the

linear equations

[A− (ωf + ωO)1]EO
f (ωf , ωO) = −

[
BtO(ωO) + AO]Ef (ωf ) (11)

ĒO
f (−ωf , ωO) [A + (ωO − ωf )1] = −Ēf (−ωf )

[
BtO(ωO) + AO] . (12)

When ωO = 0 (as is the case for Ô = ĥpso
K ) Equations (11) and (12) may diverge in the case

where [A− ωf1] is singular, i.e., if the solution vector has a component in the direction

of the right and left eigenvectors. To avoid these unphysical divergences, the eigenvector

derivatives EK
f (ωf , 0) and ĒK

f (−ωf , 0) are projected onto the orthogonal complement of the

undifferentiated eigenvectors, as indicated by the superscript ⊥.34,39,40 Definitions of the

remaining CC building blocks can be found, e.g., in Refs. 31, 34, 39, and 41.

6

5.4 manuscript ii 97



Since it will be relevant for the discussion of the results in the next sections, we also

report here the exact sum-over-states expression for the BK term

BK ∝ ϵαβγ

[∑

k ̸=m

⟨0|µ̂α|k⟩⟨k|ĥpso
γ |m⟩

Em − Ek

−
∑

k ̸=0

⟨0|ĥpso
γ |k⟩⟨k|µα|m⟩
Ek − E0

]
⟨m|µ̂β|0⟩ (13)

which in CC theory is explicitly symmetrized as follows

BK ∝ −1

2
ϵαβγ

[{∑

k ̸=m

⟨0|µ̂α|k⟩⟨k|ĥpso
γ |m⟩

Em − Ek

−
∑

k ̸=0

⟨0|ĥpso
γ |k⟩⟨k|µ̂α|m⟩
Ek − E0

}
⟨m|µ̂β|0⟩

− ⟨0|µ̂β|m⟩
{∑

k ̸=m

⟨m|ĥpso
γ |k⟩⟨k|µ̂α|0⟩
Em − Ek

−
∑

k ̸=0

⟨m|µ̂α|k⟩⟨k|ĥpso
γ |0⟩

Ek − E0

}]
(14)

Eq. (14) can be further split into dispersive (BK,d) and absorptive (BK,a) components18

BK,d = −1

2
ϵαβγ

∑

k ̸=m

{
⟨0|µ̂α|k⟩⟨k|ĥpso

γ |m⟩
Em − Ek

⟨m|µ̂β|0⟩ − ⟨0|µ̂β|m⟩⟨m|ĥpso
γ |k⟩⟨k|µ̂α|0⟩
Em − Ek

}
(15)

BK,a = −1

2
ϵαβγ

∑

k ̸=0

{
⟨0|ĥpso

γ |k⟩⟨k|µ̂α|m⟩
Ek − E0

⟨m|µ̂β|0⟩ − ⟨0|µ̂β|m⟩⟨m|µ̂α|k⟩⟨k|ĥpso
γ |0⟩

Ek − E0

}
(16)

As discussed in the literature,18 the importance of each contribution to the total NSCD

is modulated by the size of the energy denominators. The denominators in the BK,a SOS

are never smaller than the relative energy of the first excited state, and will progressively

increase as energetically higher excited states are considered in the SOS. On the other hand,

the energy difference between two excited states in the denominator of the dispersive terms

can become very small and result in a very large contribution from this type of term, even

dominant in the case of very close-lying excited states. Also, since the BK term is a scalar

triple product, i.e., it contains the Levi-Civita tensor, and the PSO operator is imaginary,

the dispersive contributions from a pair of excited states k and m to each other’s NSCD

signal will be identical in magnitude but of opposite sign. Thus, energetically close pairs

of excited states may contribute to the NSCD spectrum with a bisignate feature if the

contribution to BK,d due to the interaction of the two states is dominant in the SOS. In

MCD, this feature is referred to as a pseudo-A term.42

Since ĥpso and µ̂ are one-electron operators, their matrix elements between two excited

states, ⟨k|Ô|m⟩, approximately become

⟨k|Ô|m⟩ ≈ ⟨ϕh
k|Ô|ϕh

m⟩⟨ϕp
k|ϕp

m⟩ +
〈
ϕp
k|Ô|ϕp

m

〉 〈
ϕh
k|ϕh

m

〉
(17)
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where ϕh
i and ϕp

i indicate the occupied (also called hole) and virtual (also called particle)

natural transition orbital (NTO) of state i. Therefore, we can expect these matrix elements

to be sizable only if the states k and m have either similar occupied or virtual NTOs.

III. COMPUTATIONAL DETAILS

Three para-substituted azobenzenes were chosen for investigation as systems of both ex-

perimental interest and computational feasibility: 4-hydroxyazobenzene (AZO-1, a.k.a. 4-

phenylazophenol or p-(phenylazo)phenol), 4-aminoazobenzene (AZO-2, a.k.a. p-Aminoazo-

benzene or aniline yellow), and 4-amino-4’-nitroazobenzene (AZO-3). Figure 1 shows the

azobenzene molecules with numbered atoms for later reference. The geometries were op-

timized at the MP2/cc-pVTZ level using Turbomole35 and Cartesian coordinates can be

found in the ESI.

The effects of solvation in dimethyl sulfoxide (DMSO), CHCl3, and C6H12 were examined

for AZO-3 using the COSMO model.43 Dielectric constants and refractive indices of the

solvents are provided in the ESI.

The NSCD ellipticities were calculated with RI-CC2 and TD-DFT using the weighted

core-valence correlation-consistent aug-cc-pwCVDZ basis set44 and development versions of

Turbomole35 and Dalton,45 respectively. For the TD-DFT calculations, the BH+HLYP36,37

functional was applied. The spectra were generated by broadening the stick spectra with a

Lorentzian band of half-width-at-half-maximum of 1000 cm−1.

IV. RESULTS AND DISCUSSION

Our discussion will cover several aspects of the results, and revolve around the character

of the considered excited states (ESs), the NSCD spectra, difference densities, and the signs

of the individual BK terms. Before moving into the analysis, some background on the

relation between NSCD and NMR is provided. Then, for each azobenzene species, the CC2

results are considered first. Second, comparisons between CC2 and TD-DFT are carried

out. For additional investigation of the origin of conspicuous observations, an SOS study

and examination of the natural transition orbitals (NTOs) are carried out. Solvent effects

on selected excited-state NSCD terms are also discussed.
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FIG. 1. Molecular structures and atom numbering schemes for 4-hydroxyazobenzene (AZO-1),

4-aminoazobenzene (AZO-2), and 4-amino-4’-nitroazobenzene (AZO-3).

A. Equivalence of nuclei in NSCD

Experimentally, the NSCD requires the presence and proper orientation of the bulk mag-

netization of the nuclear spins (M). This magnetization emerges as the population average

of individual nuclear magnetic moments46 and its evolution in time is the basis for nuclear

magnetic resonance (NMR) spectroscopy. Since the presence of NSCD requires that this nu-

clear magnetization vector has a component parallel with the light beam, manipulating the

direction of M is essential for the observation of NSCD. In other words, the time evolution

of M will directly influence the time evolution of the NSCD.

From a semi-classical point of view, the magnetization vector from an ensemble of iden-

tical nuclear spins K precesses around the direction of the magnetic field present at the

position of the nuclei at a well-defined frequency, called Larmor frequency. This Larmor

frequency is proportional to the magnetic field Bloc experienced locally by the nucleus. Bloc

is determined by the external magnetic field (B0), modified due to the local electronic struc-

ture around the nucleus, imparting nuclei in different local environments different Larmor

frequencies. These small local differences in Bloc and, hence, the Larmor frequencies are

observed in NMR spectroscopy as nuclear shielding, a fundamental NMR property used to

distinguish different nuclei in molecules.

The instantaneous local magnetic fields depend on the conformation and surroundings
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of the molecule and can change in fluids very rapidly due to the molecular motions. How-

ever, the nuclear precession frequencies are usually much slower (∼ 101–102 MHz) than the

molecular tumbling. As a consequence, the observed Larmor frequencies are an average

of the Larmor frequencies that the nucleus experiences during one period of its precession

motion. This means that results of the quantum chemical calculations for properties, whose

observation is associated with the precession of magnetization, need to be averaged for the

nuclei that can, on the time scale of an NMR experiment, explore different conformations

and hence different Bloc and Larmor frequencies.

For the molecules here considered, this is the situation of the carbon and hydrogen atoms

that are attached in positions equivalent with respect to the N––N bridge. As an example, the

hydrogen nuclei H2 and H4 can, on the timescale of the NMR experiment, exchange their

positions due to the rotation of the phenyl ring along the N–C2 bond. This is reflected

experimentally in the NMR spectrum of azobenzene, which shows a single peak at identical

frequencies for these nuclei.47,48 As noted above, since NSCD is modulated by the time

evolution of the magnetization the same way as NMR, the same effect will also apply here.

This means that although the calculated results will show different NSCD for these nuclei

in the presented static structure, the more appropriate interpretation of the results from

the experimental point of view is to average these NSCD signals. This is analogous to a

common practice applied in the analysis of calculated NMR chemical shifts. For this reason,

the sum of NSCD for nuclei considered as NMR-equivalent is also reported as this is more

relevant to the experimental measurements than the individual, practically unobservable,

contributions from an instantaneous structure.

B. Similarities between the excited states of the three systems

The three investigated azobenzenes differ in the substituents in para positions with respect

to the carbons bound to the azo (N––N) group: AZO-1 has the electron-donating hydroxy

group (–OH) on one of the phenyl rings, whereas AZO-2 has an electron-donating amino

group (–NH2) in the same position; AZO-3 contains both the electron-donating amino group

on one ring and the electron-withdrawing nitro group (–NO2) on the other ring. AZO-1 and

AZO-2 are sometimes referred to as electron-donating azobenzenes; AZO-3 is a prototypical

push-pull system (electron donor-acceptor azobenzene).

10
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TABLE I. Excitation energies En (eV), oscillator strengths f, character, and localization of the

electronic transitions under investigation. The aug-cc-pwCVDZ basis set was used at both levels

of theory. Figures S1, S2, S3, and S4 (ESI) collect the NTOs.

RI-CC2 Character (localization) TD-DFT/BH+HLYP

State n En f CC2/TD-DFT En f

AZO-1

1 2.959 0.000 nπ∗ (azo) 3.015 0.000

2 3.796 0.868 ππ∗ (deloc.) 3.790 0.822

3 4.508 0.008 ππ∗ (left) 4.748 0.012

4 4.549 0.018 ππ∗ (right) 4.838 0.003

AZO-2

1 2.964 0.000 nπ∗ (azo) 3.031 0.000

2 3.589 0.919 ππ∗ (deloc.) 3.657 0.894

3 4.437 0.028 ππ∗ (right) 4.720 0.010

4 4.528 0.008 ππ∗ (left) 4.781 0.014

AZO-3

1 2.866 0.000 nπ∗ (azo) 2.956 0.000

2 3.339 1.043 ππ∗ (deloc.) 3.426 1.067

3 3.854 0.000 nπ∗ (nitro) 4.155 0.000

4 4.352 0.004 ππ∗ (right) / ππ∗ (left) 4.535 0.017

5 4.430 0.011 ππ∗ (left) / nπ∗ (nitro) 4.587 0.000

6 4.441 0.001 nπ∗ (nitro) / ππ∗ (right) 4.607 0.001

Table I collects information on the excited states considered for the three azobenzenes.

The first excited state (ES1) of all three molecules has nπ∗ character, with the hole orbital

localized on the azo group. ES1 is dark in optical absorption in all three azobenzenes. The

second state, ES2, is a delocalized ππ∗ electronic state, where the π∗ involves the azo group.

This is the bright state in optical absorption, which has a distinct charge-transfer character

in AZO-3. In AZO-1, ES3 is a ππ∗ state mainly localized on the unsubstituted (left) phenyl

ring, and ES4 is a ππ∗ state mainly localized on the substituted (right) phenyl. In AZO-2,
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ES3 is dominantly on the substituted ring (similar to ES4 of AZO-1), and ES4 is on the

unsubstituted one (similar to ES3 of AZO-1). Both ES3 and ES4 are almost dark in optical

absorption in AZO-1 and AZO-2. CC2 and TD-DFT yield equivalent descriptions of the

characters of the four excited states of AZO-1 and AZO-2. In AZO-3, ES3 is a dark nπ∗

state at both levels of theory, with the hole localized on the nitro group. The remaining

three states of AZO-3 have different energetic ordering for CC2 and TD-DFT. ES4 at CC2

level corresponds to ES6 at TD-DFT level, and ES5 at CC2 level to ES4 at TD-DFT level.

Both states have ππ∗ character, with noticeable localization on either one or the other of

the phenyl rings. Finally, ES6 at CC2 level corresponds to ES5 at TD-DFT level; it is of

nπ∗ character and originates from the nitro group with the π∗ orbital strongly localized on

the phenyl linked to the nitro group.

C. NSCD spectra: observed trends

We will now analyze the CC2 NSCD BK data and corresponding spectra for the carbon

(K = C) and hydrogen (K = H) nuclei of the three compounds. Note that in the plots

discussed in the following, the spectra of the various nuclei have been color-coded such that

pairs of NMR-equivalent atoms are colored identically.

The BC terms and corresponding NSCD spectra of the carbon atoms in AZO-1 are shown

in Figure 2; those of the hydrogen nuclei are in Figure 3. The corresponding raw data are

provided in Table S5 (ESI).

At the CC2 level, the first excited state of AZO-1 is NSCD dark at all nuclei, except for

C2 and C7—that is, the nuclei connected to the azo group. This is explained by the fact that

ES1 is an n → π∗ excitation with the hole orbital localized at the azo group, whose transition

dipole moment (entering the BK expression) is only non-zero in the direction perpendicular

to the molecular plane. At C2, BC is positive, whereas it is negative at C7. We attribute

the non-negligible NSCD at C2 and C7 to the fact that ES1 is strongly localized on the azo

group, see Figure 5.

The BC term and the corresponding spectral band of ES2 are positive for all carbons,

except C2 and C7, yet with varying intensities. For ES3 and ES4, all carbons on the

unsubstituted phenyl ring have two negative BC terms, and a resulting negative band. For

all carbons of the right ring, ES3 has negative BC whereas ES4 has a positive, and larger,
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FIG. 2. AZO-1. NSCD spectra of the carbon nuclei. RI-CC2 (colored) and TD-DFT/BH+HLYP

(grey) results with the aug-cc-pwCVDZ basis set. Vertical dotted lines mark the excitation energies.

TD-DFT energies have been shifted by −0.055 eV to align the first transition with RI-CC2. The

sticks have been scaled for visibility.
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FIG. 3. AZO-1. NSCD spectra of the hydrogen nuclei. RI-CC2 (colored) and TD-DFT/BH+HLYP

(grey) results with the aug-cc-pwCVDZ basis set. Vertical dotted lines mark the excitation energies.

TD-DFT energies have been shifted by −0.055 eV to align the first transition with RI-CC2. The

sticks have been scaled for visibility.

BC value. The resulting convoluted band is positive.

All in all, the NSCD spectra of the C atoms on the left ring have similar positive/negative

bisignate shape, with the exception of C7, featuring instead three negative peaks. On the

right ring, the unsubstituted carbons (C1, C3, C4, and C6) also have similar spectral shapes
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FIG. 4. AZO-1. Combined NSCD spectra of NMR-equivalent atoms. RI-CC2 and TD-

DFT/BH+HLYP results with the aug-cc-pwCVDZ basis set. Vertical dotted lines mark the exci-

tation energies of the excited states. TD-DFT energies have been shifted by −0.055 eV to align

the first transition with RI-CC2. The sticks have been scaled for visibility.

with two positive peaks. C5, the –OH substituted carbon, also shows two positive NSCD

bands, though with much lower intensity.

Turning our attention to the (CC2) hydrogen NSCD spectra of AZO-1 in Figure 3, we

observe that ES1 is completely dark for all hydrogens. All hydrogens on the right ring have

oppositely signed BH for ES3 and ES4, and the resulting band is negative. All hydrogens

on the left ring have two positive BH for ES3 and ES4 and an overall positive band. The

overall spectra of H5, H6, H7, H8 (left ring) are similar, yet modulated; the spectra of the

right ring hydrogens are more dissimilar from each other as could be expected due to their

different local environment.

When computing the total NSCD spectra of the NMR-equivalent nuclei, we note that
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all carbon pairs combine in a constructive way, see Figure 4. Summing the spectra of the

NMR-equivalent H1+H3, however, yields an almost quenched ES2 signal, whereas ES3 and

ES4 combine into a stronger negative band. The NSCD signals of H2+H4 and H5+H9 also

partly cancel out for ES2, and constructively add up for ES3 and ES4; the NSCD of H6+H8

are combined constructively for all excited states.

In an attempt to identify any peculiar sign patterns of the NSCD and possible connection

between the NSCD and the localization of the difference density of the excited states, we

plot in Figure 5 the difference densities of the four excited states of AZO-1 together with a

signed measure of the LKBK term for each nucleus. Different from the results of previous

studies on other molecules,20 the NSCD intensities of AZO-1 do not appear to clearly connect

to the regions of significant change in electronic density, and moderate NSCD signals can

be seen at some distance from the main change in the electron density. Nevertheless, it is

observed that in all cases the largest NSCD signal does appear in the regions where the

density changes are localized the most. It should also be noted that in the previous study,20

the NSCD signal “leaked” outside of the regions of high difference densities up to a distance

of few bonds, which in the present case represents a significant fraction of the total molecule.

For ES3, we note that the NSCDs of all carbons are negative and those of all hydrogens are

positive, independent of where the electronic density is concentrated (i.e., on the left ring).

In ES4, the difference density is localized on the right ring, and the signs of the carbon and

hydrogen BK are flipped compared to ES3. We will return to this observed behavior in a

following section.

The NSCD spectra of AZO-2 are shown in Figures 6 and 7 for carbon and hydrogen,

respectively. The underlying raw data can be found in Table S6 (ESI).

Starting from the carbons’ spectra, it is seen that ES1 is clearly visible (at the CC2 level)

on C2 (negative) and C7 (positive), and only slightly discernible on some of the others. For

ES2, all carbons on the left ring have positive NSCD, except for C7. On the right ring,

the NMR-equivalent C1 and C3 have both positive NSCD, whereas C6+C4 have oppositely

signed NSCD for ES2. The substituted C2 and C5 both have negative BC(0 → 2). ES3 and

ES4 are slightly more energetically separated than in AZO-1. All carbons on the left ring

have oppositely signed BC terms for these two states. In a few cases, the resulting band is

bisignate, yet weak, otherwise it is negative. On the right ring, the NMR-equivalent pairs

C1+C3 and C4+C6 have oppositely signed BC for ES3, whereas, for ES4, all carbons on the
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FIG. 5. AZO-1. RI-CC2 and TD-DFT/BH+HLYP (aug-cc-pwCVDZ basis set) difference densities

for the four lowest excited states (ES) with the sign (+/−) of the nuclei’s LKBK terms. The size of

the sign indicates the magnitude (magnified by 1000) of the signal (smallest for 1 < |NSCD| < 10,

middle size for 10 < |NSCD| < 100 and largest for |NSCD| > 100. NSCD signals with absolute

values < 1 are not shown).

right ring have positive NSCD.

Looking at the hydrogen NSCD of AZO-2 in Figure 7, we note that ES1 is dark in NSCD,

as also observed for ES1 in AZO-1. For ES3, all hydrogens have negative BH ; for ES4, on

the other hand, the hydrogens on the left ring have positive BH while those on the right ring

maintain their negative signal. As a result, the spectral shape of the ES3-ES4 band for the

left ring hydrogen atoms resembles a pseudo-A term.

The combined NSCD of the NMR-equivalent atoms in AZO-2 is shown in Figure 8. Partial

cancellation occurs for ES2 on C4+C6. All other carbon pairs have NSCD terms of the same

sign and their signals combine constructively. The NMR-equivalent amino hydrogens, H10

and H11, as well as the H6+H8 pair on the left ring have almost identical spectra with only
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FIG. 6. AZO-2. NSCD spectra of the carbon nuclei. RI-CC2 (colored) and TD-DFT/BH+HLYP

(grey) results with the aug-cc-pwCVDZ basis set. Vertical dotted lines mark the excitation energies

of the excited states. TD-DFT energies have been shifted by −0.071 eV to align the first transition

with RI-CC2. The sticks have been scaled for visibility.
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FIG. 7. AZO-2. NSCD spectra of the hydrogen nuclei. RI-CC2 (colored) and TD-DFT/BH+HLYP

(grey) results with the aug-cc-pwCVDZ basis set. Vertical dotted lines mark the excitation energies

of the excited states. TD-DFT energies have been shifted by −0.071 eV to align the first transition

with RI-CC2. The sticks have been scaled for visibility.
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FIG. 8. AZO-2. Combined NSCD spectra of NMR equivalent atoms. RI-CC2 and TD-

DFT/BH+HLYP results with the aug-cc-pwCVDZ basis set. Vertical dotted lines mark the exci-

tation energies of the excited states. TD-DFT energies have been shifted by −0.071 eV to align

the first transition with RI-CC2. The sticks have been scaled for visibility.

minor modulation in intensity, and thus combine constructively in the summed spectra.

The NMR-equivalent H5+H9 on the left ring, as well as the pairs H1+H3 and H2+H4

on the right ring have oppositely signed BH for ES2, resulting in partial quenching of the

NSCD of ES2 in the combined spectra. The two summed spectra of the left-ring carbons

both exhibit a positive/negative spectral shape, and the right-ring combined spectra share

a strong positive peak at higher frequencies, thus making the carbons on the two rings

20

5.4 manuscript ii 111



FIG. 9. AZO-2. RI-CC2 and TD-DFT/BH+HLYP (aug-cc-pwCVDZ basis set) difference densities

for the four lowest excited states (ES) with the sign (+/−) of the nuclei’s LKBK terms. The size of

the sign indicates the magnitude (magnified by 1000) of the signal (smallest for 1 < |NSCD| < 10,

middle size for 10 < |NSCD| < 100 and largest for |NSCD| > 100. NSCD signals with absolute

values < 1 are not shown).

distinguishable. This also applied to the hydrogens, where the three right-ring spectra have

the same positive/negative feature and the left-ring pairs have negative/pseudo-A spectral

shape.

As noted for AZO-1, when considering the density difference vs signed measure of the

NSCD in Figure 9, no straightforward connection between the density change and the NSCD

emerges. In a cross-comparison between ES3 of AZO-1 and ES4 of AZO-2, the sign pattern

of the left ring (where the density difference is dominant) is preserved, whereas it is reversed

on the right ring. Conversely, the sign pattern on the left ring of ES3 in AZO-2 is opposite

to the one of ES4 in AZO-1. As for the right ring, all hydrogen NSCD signals are negative

for both molecules, whereas the carbon NSCD of AZO-2 breaks the pattern with respect to

AZO-1.
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Finally, we analyze the CC2 NSCD results for AZO-3, illustrated in Figure 10 (carbon)

and Figure 11 (hydrogen). Corresponding numerical values are found in Table S7 (ESI).

As in the two azobenzenes previously discussed, ES1 is NSCD-dark at most carbons,

except C2 (negative) and C7 (positive); the signs of the NSCD terms on these two atoms

are opposite to what we saw in AZO-1 and AZO-2. The BC terms of ES2 are positive for the

NMR-equivalent pairs C1+C3, C8+C12, and C9+C11. C4 and C6 have oppositely signed

BC for ES2 (C6 is positive). At the remaining carbon nuclei, BC of ES2 is negative. ES3

is dark to NSCD for all carbons. The BC terms of the closely spaced ES4, ES5, and ES6

combine to give one spectral band at higher energy. For the left-ring carbons, except C7,

the NSCD BC of ES5 and ES6 are oppositely signed and of comparable magnitude. The BC

terms of ES5 and ES6 of the carbon atoms on the right ring, on the other hand, are more

dissimilar: C1 has relatively small, oppositely signed BC for the two states whereas the BC

of ES6 at its NMR-equivalent C3 is almost quenched, as it is for C4 and C6.

At the hydrogens, see Figure 11, ES1 and ES3 are NSCD-dark. Weak and all-negative

NSCD is obtained for ES4 for the left-ring hydrogens. For this state, all NMR-equivalent

hydrogens on the right ring have oppositely signed NSCD, although the amino hydrogens are

almost dark. All right-ring hydrogens have negative NSCD for ES5 and are nearly dark in

ES6. As for the left-ring hydrogens, ES5 and ES6 have oppositely signed BH . The spectral

band convoluting ES4-ES6 is always negative. The hydrogens for ES2 have both positive

and negative NSCD of medium to high intensities.

Altogether, the NSCD signals of the NMR-equivalent left-ring pairs C8+C12, and

C9+C11 are very similar and both combine constructively for all excited states, see Fig-

ure 12. Upon convolution of the terms of ES4, ES5 and ES6, an asymmetric bisignate

spectral feature emerges for C9+C11, whereas a positive band characterizes this spectral

region for C8+C12. On the right ring, C4+C6 combine destructively for ES2 and ES4, and

constructively for ES5, which results in two positively signed bands. The combination of

the NSCDs of C1+C3 enhances the signal of ES2 and partly quenches the NSCD of ES4,

yielding a total positive band for ES4-ES6 which is less intense than the one for ES2. All

NMR-equivalent hydrogen pairs have oppositely signed BH for at least one excited state in

AZO-3. Thus, the summed spectra of the pairs H1+H3, H2+H4, and H5+H8 appear with

a damped signal of ES2; ES4 is canceled out for H1+H3, H2+H4, and H9+H10, and the

intensities of ES5 and ES6 are reduced in the combined H6+H7 spectrum.
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FIG. 10. AZO-3. NSCD spectra of the carbon nuclei. RI-CC2 (colored) and TD-DFT/BH+HLYP

(grey) results with aug-cc-pwCVDZ basis set. Vertical dotted lines mark the excitation energies of

the excited states. TD-DFT energies have been shifted by −0.090 eV to align the first transition

with RI-CC2. The sticks have been scaled for visibility.
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FIG. 11. AZO-3. NSCD spectra of the hydrogen nuclei. RI-CC2 (colored) and TD-

DFT/BH+HLYP (grey) results with aug-cc-pwCVDZ basis set. Vertical dotted lines mark the

excitation energies of the excited states. TD-DFT energies have been shifted by −0.090 eV to

align the first transition with RI-CC2. The sticks have been scaled for visibility.

Looking at the density difference plots for AZO-3 in Figure 13, we note that for CC2 in

ES6 (ES5 for TD-DFT), where the density change is localized almost entirely on the nitro

group, the NSCD of the left-ring carbons (and hydrogens for CC2) is rather strong, while

the NSCD on the right ring is almost quenched. Relatively large NSCD is also observed for
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FIG. 12. AZO-3. Combined NSCD spectra of NMR-equivalent atoms. RI-CC2 and TD-

DFT/BH+HLYP results with the aug-cc-pwCVDZ basis set. Vertical dotted lines mark the exci-

tation energies of the excited states. TD-DFT energies have been shifted by −0.090 eV to align

the first transition with RI-CC2. The sticks have been scaled for visibility.

ES5 on some of the carbons of the left ring, where the density difference is localized, versus

smaller NSCD on the right ring. These are the clearest instances observed in this study

suggesting a relationship between the size of the NSCD signal and the difference density of

the excited state.
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FIG. 13. AZO-3. RI-CC2 and TD-DFT/BH+HLYP (aug-cc-pwCVDZ basis set) difference densi-

ties for the six lowest excited states (ES) with the signed (+/−) measure of the LKBK terms.

The size of the sign indicates the magnitude (magnified by 1000) of the signal (smallest for

1 < |NSCD| < 10, middle size for 10 < |NSCD| < 100 and largest for |NSCD| > 100. NSCD

signals with absolute values < 1 are not shown).

D. CC2 vs DFT

We now move on to compare TD-DFT with CC2, looking at the spectra as well as

the density difference plots. The TD-DFT NSCD spectra are provided as grey graphs in

Figures 2, 3 and 4 for AZO-1, Figures 6, 7 and 8 for AZO-2, and Figures 10, 11 and 12 for

AZO-3. Before comparing the NSCD spectra obtained from CC2 and TD-DFT, it is worth

noting that the energy splittings of the electronic excitations are different, see Table I. This
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can result in the NSCD spectra appearing to be more different than what the numerical

results for the BK term indicate.

The first observation when comparing CC2 and TD-DFT for AZO-1 is that the spectral

shapes are not strikingly different for most nuclei. The most noticeable differences are

the all-zero TD-DFT NSCD signals for the first excited state (C7 is just small here) and

the much smaller NSCD for C6 and much larger NSCD of C5 for ES2 at TD-DFT level

compared to CC2. Interestingly, as can be seen from Fig. 5, the difference densities of

ES2 differ quite significantly between the CC2 and DFT near the C5 and C6, suggesting a

possible connection. In all other spectra, TD-DFT and CC2 yield the same sign of the signal

of ES2, most often also producing similar intensities. All atoms of the left ring (C7-C12,

H5-H8) have the same spectral feature arising from the convolution of ES3 and ES4 when

comparing the methods, but closer inspection of the underlying sticks reveals that, at the

TD-DFT level, the intensity is almost exclusively in ES3 while with CC2 it is split between

the two states. Meanwhile, for all right-ring atoms (C1-C6, H1-H4, H10), the two methods

both give NSCD intensities of opposite sign for ES3 and ES4. At the carbon atoms, their

convolution yields a single band. Bisignate features are seen for all right-ring hydrogens at

TD-DFT level.

Turning our attention to AZO-2, and comparing the CC2 NSCD spectra with the TD-

DFT ones (in grey) in Figures 6 and 7, the overall impression is again that the two methods

are in qualitative agreement, albeit with more differences than found for AZO-1. Also for

this molecule, TD-DFT yields a first excited state with vanishing NSCD signals, whereas at

the CC2 level several atoms have visible spectral transitions. Looking at ES2, TD-DFT BK

terms of opposite sign compared to CC2 are obtained for C6, H1, and H7; C5 has a very

strong negative peak in the CC2 spectrum versus no observable strength for TD-DFT. In

general, the spectra for the –NH2 substituted C5 strongly differ between TD-DFT and CC2.

C6 has also nearly zero NSCD at the TD-DFT level for ES2. It is interesting to note here

again that the ES2 difference densities in the surroundings of C5 and C6 noticeably differ

between the DFT and CC2, similarly as in the case of AZO-1. At the right ring, TD-DFT

and CC2 produce equivalent relative NSCD intensities (and sign) for the third and fourth

excitation, except for C1, C5, and C6 for which the two methods yield opposite signs of

the NSCD BC term of ES3. On the left ring, both methods similarly give oppositely signed

BC terms for ES3 and ES4, yet with different relative intensities. This results, at TD-DFT
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level, in one intense convoluted band (negative for carbon and positive for hydrogen), versus

a weaker bisignate spectral band at CC2 level.

Considering the summed spectra of AZO-2 in Figure 8, there is a good overlap of the CC2

and TD-DFT spectra for all right-ring nuclei. For the left right the weak bisignate feature

predicted by CC2 around ES3 and ES4 for the individual carbon nuclei combines to an over-

all negative band. As a result, the two methods predict the same positive/negative spectral

shape for those nuclei. On the other hand, the combined NSCD for left-ring hydrogens in

energy region of ES3 and ES4 provides different signatures, bisignate for CC2 and strong

positive for TD-DFT, due to relative intensities of the two transitions.

AZO-3 is the system where CC2 and TD-DFT differ the most, starting already from

the ordering of the excited states. Opposite to what we observed for AZO-1 and AZO-2,

TD-DFT yields stronger NSCD signals than CC2 for ES1, mainly at C2 and C7 but also

at some of the other carbon nuclei (Figure 10). The NSCD of ES2 also shows noticeable

differences for C7 as well as the right ring carbons C2, C4, C5, and C6, and for H8, which

is basically zero for TD-DFT (Figure 11). ES3 is completely NSCD dark at both levels of

theory. ES4-ES6 are closely spaced for both methods, yet differently ordered, as previously

mentioned. Because of this, one should take care when comparing the spectral features

convoluting those three transitions. In the summed spectra (Figure 12), all peaks at ES2

exhibit the same sign for CC2 and TD-DFT, except for H2+H4. All in all, the combined

TD-DFT NSCD spectra appear rather different from the CC2 ones in correspondence with

the higher transitions.

Looking at the density difference plots in Figure 13, we note that, despite the similar

density difference distributions between ES4 (CC2) and ES6 (TD-DFT), there are noticeable

differences in the NSCD sign patterns yielded by the two methods. Comparing ES5 (CC2)

with ES4 (TD-DFT), we observe that the left-ring nuclei have similar NSCD with the sole

exception of H6. The right-ring nuclei, on the other hand, have reversed sign trends (except

for the almost dark C5). ES6 (CC2) and ES5 (TD-DFT) have basically identical NSCD sign

patterns on the left ring, on which the density difference is concentrated.
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E. Rationalizing trends: a sum-over-states analysis

To rationalize some of the observed trends, we carried out an SOS decomposition of the

CC2 BK term (cf. Eqs. (15) and (16)) of selected carbon nuclei over a small number of

excited states (twice the number of states under investigation). Bar plots of the SOS terms

of the selected nuclei are provided in Figures S6-S8 (ESI).

Starting from AZO-1 and AZO-2, the results for excited state m = 1 (ES1, nπ∗) are

dominated by the BC,d contribution arising from the interaction with state k = 2 (ES2, ππ∗).

This can be easily rationalized since: i) the contribution from ⟨1|µ̂|k⟩ will only be sizeable

when state k also has nπ∗ character, so the BC,a should be small when k corresponds to

a π → π∗ transition, as in this case; ii) ϕp
2 is very similar to ϕp

1, which should lead to a

sizeable
〈
ϕh
k|ĥpso|ϕh

m

〉
(and hence PSO transition moment between excited states), for those

atoms where the occupied NTOs of both states are sizeable, as it happens here around

C2 and C7, see Figure S1 (ESI). For state 2 of AZO-1, we see in the right phenyl ring

(C2) strong interactions with state 4, and in the left ring (C9, C12) strong interactions

with state 3. This can also be understood, since state 4 is localized mainly on the right

ring, and state 3 is mainly on the left ring. For AZO-2, the situation is turned around,

consistent with the fact that the characters of ES3 and ES4 of AZO-2 are flipped with

respect to AZO-1. At C5, which is the atom bound to the (different) substituents, the

situation is more complicated. Here, the BK term comprises significant contributions from

several intermediate states including, for AZO-2, a coupling to the ground state (k = 0).

Especially C5 of AZO-1 has strong contributions from higher-lying states, and it is noted

that the small number of states included in the SOS does not produce an NSCD signal of

any likeness to the analytic value (Table S9 (ESI).

For state 3 in AZO-1, the most important contributions are of BK,d type and come from

states 2 and 4. Those from state 2 dominate on the left ring (C9 and C12), and those from

state 4 dominate on the right ring (C2 and C5). If we compare the SOS for ES3 of AZO-1

with the SOS terms of ES4 for AZO-2 (∼ES3 of AZO-1), we see that on the left ring (C9,

C12) the dominating SOS contributions from state 2 to the respective states of the two

azobenzenes have the same sign. Meanwhile, the smaller contributions on the right ring

from state 4 to state 3 (AZO-1) and state 3 to state 4 (AZO-2) flip sign. This is because

the energy denominator (Em − Ek) changes sign. The dominating contribution from state
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3 to state 4 on the right ring (C2 and C5) in AZO-1 also changes sign compared to the

contribution from state 4 to state 3 in AZO-2, again because of the energy denominator.

For state 4 in AZO-1, we have again that the BK,d term from state 2 dominates on the

right ring (C2, C5), while the BK,d term from state 3 dominates on the left ring (C9, C12).

Conversely, in ES3 of AZO-2, the dominating BK,d contributions are also from state 2 in the

right ring, and keep their sign compared to AZO-1, while the dominating contributions in

the left ring of AZO-2 (coming now from state 4) flip sign.

As partly anticipated in Section IV B, the first two excited states in AZO-3 are similar

to the first two states in AZO-1 and AZO-2, apart from some additional charge-transfer

into the –NO2 group in ES2. ES4 and ES5 are similar to the third and fourth states in

AZO-2 up to two small differences: in state 4 the nodal planes are slightly rotated and in

state 5 there is some additional charge-transfer to the –NO2 group; states 3 and 6 are local

excitations at the –NO2 group.

The SOS NSCD of AZO-3 ES1 is dominated by the BK,d contributions from state 2, but

its sign is reversed compared to the corresponding contribution in AZO-1 and AZO-2. For

state 2, the contributions are similar to those for state 2 in AZO-2, but with a sign flip for the

contribution from state 1 and larger contributions from higher states as well as the ground

state, due to the larger ground state dipole moment. Because of its strong localization on

the –NO2 group and the nπ∗ character, ES3 cannot strongly interact with any other state,

and the BK,d and BK,a terms are negligible. In ES4, the contributions arising from states

2 and 5 have some similarity to the corresponding contributions in AZO-2, but in AZO-3

there are significant additional contributions from higher states. Due to the similarity of

their virtual NTOs and the small energy gap, states 5 and 6 strongly interact. This gives

rise to large (pseudo-A) BK terms in the left ring where the occupied NTOs of the two states

are localized.

From the above analysis, we, therefore, conclude that for the valence excitations of these

azobenzene compounds in the gas phase, NSCD essentially probes
⟨k|ĥpso|m⟩
Ek−Em

, i.e., the tran-

sition densities between excited states. Where the result is dominated by one or two states

that are energetically close to the probed states, we can understand some of the sign patterns,

e.g., when states interchange.
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F. Substituent effects

The substituted carbon atoms counts C2, C7, and C5 in all three azobenzenes, as well as

C10 in AZO-3.

For the bridged atoms C2 and C7 we make the same (CC2) observations in both AZO-1

and AZO-2, namely that they are bright in ES1, they exhibit similar signals for ES2, where

the transition is localized around the N––N group, while at higher energies their respective

signals resemble more the ones of their neighbouring carbon nuclei. In AZO-3, on the other

hand, the two atoms do not follow each other at ES2. In this case, C2 has a strong signal

for ES2 and weaker signals for ES3 and ES4 while the opposite is true for C7, looking at

the CC2 results only.

With respect to C5 in AZO-1, the (CC2) signals are significantly damped compared to

all other spectra, although the sign pattern follows that of its neighbouring C4+C6 pair.

Comparing with TD-DFT, the two methods produce the same signed features in the C5

spectrum and damped NSCD around ES3 and ES4, but here TD-DFT suggests a much

stronger ES2. Meanwhile, C5 in AZO-2, compared to the aggregated C4+C6 spectrum,

has a significantly different CC2 spectrum with a strong, negative NSCD of ES2 and a

weak negative convolution of ES3 and ES4. We note that on the TD-DFT level, ES2 is

completely NSCD-dark for C5 (AZO-2) and the spectrum at higher energies shows a weak,

positive feature, which is more consistent with a hypothesis of the substituent having a

damping effect on the NSCD compared to the carbon nuclei in the local environment.

These observations sum up to the following: CC2 and TD-DFT do not predict similar

spectra for C5, and the –OH and –NH2 substituents seem to influence the carbon atom to

which they are bound, differently. These substituents do not seem to affect the surrounding

atoms.

AZO-3, as AZO-2, has an amino group attached to C5. In fact, the two molecules’ C5

have in common the over-all spectral features (for CC2) with two negative features and ES2

being stronger than the (very weak) high-energy region. However, C5 in AZO-2 is visible in

ES1, and ES2 is much stronger compared to C5 in AZO-3 which generally has a spectrum

of very low intensity.

At the CC2 level, C10, which has no substituent for AZO-2, exhibits a spectrum different

from and much weaker than its nearest neighbours while the TD-DFT results indicate similar
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spectra for all left ring nuclei except C7. Possibly, this carbon (C10) experiences some

influence from the N––N group which, in turn, is affected by the amino group in para position

on C5, where the two methods produce rather different spectra. It could be that TD-DFT

fails to capture some effects arising from the –NH2 nitrogen atom which, on the other hand,

are captured by the correlated CC model. This propagation of perturbation along the chain

C5-C2-C7-C10 could also be an explanation for the quite different NSCD of all of these

atoms between AZO-2 and AZO-3 and between TD-DFT and CC2. The difference between

TD-DFT and CC2 appear to be enhanced, especially along C5-C2-C7, when comparing

AZO-3 to AZO-2, suggesting that the combination of an electron-donating and electron-

withdrawing group challenges the suitability of TD-DFT/BH+HLYP for this application.

By adding a nitro group to C10 (AZO-3), stark effects are observed. Firstly, the high-

energy states are convoluted by the strongest peak observed for all other nuclei in all three

molecules. The increase of BC value also applies to the other carbon atoms in the left phenyl

ring, especially in the transitions that are localized on the nitro group. The hydrogens seem

to be unaffected by the electron-withdrawing group. TD-DFT and CC2 produce similar

spectra for C10 but not for C5.

G. Solvent effects

COSMO calculations were carried out for the second excited state of AZO-3 (the charge-

transfer transition). The effect of three solvents was examined; C6H12, CHCl3, and DMSO.

These solvents represent both polar and nonpolar ones. The NSCD signals from gas-phase

and COSMO calculations are plotted in Figure 14. The results are plotted as bars in the

order of increasing polarity, i.e., gas phase < C6H12 < CHCl3 < DMSO. Numerical data are

collected in Table S8 and NTOs can be found in Figure S5 (ESI).

The most striking observation is the very strong (and oppositely signed) NSCD of C2

and C7 in DMSO. In the other three environments, those same nuclei have signals that are

among the weakest calculated for the carbon nuclei.

With respect to the effect of increasing polarity, we observe in several cases, especially

for the hydrogens, a systematic increase or decrease in the NSCD strength with increasing

polarity. However, there does not appear to be a trend related to molecular structure and

to which nuclei exhibit increasing or decreasing NSCD signals.
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FIG. 14. AZO-3. NSCD of excited state 2. RI-CC2/aug-cc-pwCVDZ results from gas phase and

COSMO calculations in C6H12, CHCl3, and DMSO.

For most nuclei, the NSCD has the same sign in all environments, with modulation of

intensities. The exceptions for hydrogen are H3, H7, and the amino hydrogens H9 and

H10. In all mentioned cases, it is either the results obtained in gas-phase or DMSO that

deviate from the others. For the amino hydrogens the NSCD is positive in gas phase, C6H12,

and CHCl3 with a systematic and striking decrease in intensity. Meanwhile, the signals are

negative in DMSO. For these hydrogens, one should note that they can form hydrogen bonds

to the oxygens in DMSO and to other AZO-3 molecules if the concentration is high. These

effects are not captured by COSMO. Nevertheless, for all cases, the NSCD intensity has a

monotonic increase or decrease with the increasing polarity of the solvent. There are three

exceptions for the carbon nuclei with respect to producing the same sign in all environments:

C2, C4, and C5. For C2 the trend is a monotonic increase in NSCD, while for C4 and C5

there is no clear trend. Both C4 and C5 have very weak signals, which makes them more

susceptible to switching signs with even small perturbations of intensities, compared to, e.g.,

similar fluctuations in C1 which has a stronger overall signal.

All in all, the starkest contrast to the signals computed in gas phase is obtained with the

very polar DMSO solvent. The solvent effects seem to be most pronounced on the carbons

bound to the N––N group, and the amino hydrogens for which proper description of hydrogen

bonding between the molecule and the solvent can be of importance.
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V. CONCLUDING REMARKS

We have presented a computational approach for the calculation of the nuclear spin-

induced circular dichroism property at the RI-CC2 level of theory. The implementation was

demonstrated on a set of derivates of azobenzene, and the results were compared with the

NSCD obtained from TD-DFT (BH+HLYP).

Comparing TD-DFT and CC2, a main observation is that the former seems to be less

sensitive to the substituents. The spectra of the substituted C5 nucleus differed between

the two methods for all three compounds, and for TD-DFT these spectra were similar in

features to the neighboring, non-substituted carbon atoms. Furthermore, the discrepancies

between the correlated and density-based methods have been found to follow the substituent

character, especially for the chain of substituted atoms C5-C2-C7-C10. While –OH only

influenced C5, the perturbative effect of –NH2 propagated along the chain of substituted

atoms. This propagation of discrepancies was amplified when adding a nitro group to C10.

This has implications for the selection of the computational method. Previous theoretical

studies of NSCD, which were so far limited to the TD-DFT method, adopted the BH+HLYP

functional since this had been proven to provide good results for the related NSOR effect,8,21

and therefore considered to be also suitable for NSCD. However, our study suggests that the

functional does not provide a sufficiently good description of the substituent effects and/or

the excited states. With the new implementation of CC2, it is possible to benchmark

different functionals for this property, keeping in mind that CC2 is not suited for strongly

correlated systems.

The substituent effects were found to be pronounced on the carbon nuclei only. While

electron-donating groups appear to have little effect on the NSCD of the neighboring nuclei,

the introduction of an electron-withdrawing group (strongly) enhances the strength of the

NSCD of the carbon atoms in the local environment. This is especially observed when

the transition is localized on the electron-withdrawing group. This relation, if proven more

general, might have the potential to enable the experimental identification of the localization

of a transition in a molecule with an electron-withdrawing group. The carbons with an

electron-donating group exhibit in all cases damped signals at higher energies.

Compared to a previous study,20 no clear cases of the NSCD-bright nuclei following

the localization of the excitation were observed, although no strong NSCD was computed
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for nuclei without any difference density either. ES6 of AZO-3 (at CC2 level) offered the

clearest example of this trend, a transition with a density difference strongly localized on

the electron-withdrawing nitro group.

Relating our CC2 findings to an expected experiment for these systems, the results for

AZO-1 and AZO-2 show that it is possible to distinguish the carbon atoms from the left and

right rings based on the spectral shape. The carbons with an electron-donating group can

be identified from damped signals, and the atoms connected by the N––N bridge can also be

identified and assigned to the left or the right ring based on spectral shape. Distinguishing

left from right did not prove to be straightforward for AZO-3.

The solvation study suggests that a solvent has the potential to strongly alter the NSCD

of certain nuclei. In the presented case, DMSO enhances the NSCD signals of the bridged

C2 and C7 significantly while C6H12 and CHCl3 did not bring about any striking changes

compared to the gas phase calculations. It is interesting to note that previous studies of

the influence of implicit solvent49,50 on the related NSOR effect showed only quantitative

difference, affecting proportionally the strength of the signal, but not its sign. This suggests

a larger importance of solvent effects for NSCD than for NSOR.

A major finding is that the ordering of the excited states can directly influence the

predictions of the NSCD. From the SOS study it was illustrated how, in some situations,

the sign of the BC term can flip by interchanging two strongly coupled states. As a result, the

predicted NSCD can depend on the ordering of the transitions predicted by the theoretical

model which, in turn, depends on the chosen combination of method and basis set. This

effect resulted in opposite signs of the NSCD in an entire phenyl group between the equivalent

excitations of AZO-1 and AZO-2 and between CC2/ES5 and TD-DFT/ES6 of AZO-3.

From this observation, it can be argued that if the sign of the NSCD depends on the

localization of the excited states on the left or right ring as well as their energy order, NSCD

can give an idea about the (relative) order of the (left/right localized) excitations. Although

this would indeed require further analysis of the NTOs in combination with the NSCD

to obtain a well-founded understanding of the observations, the insight into the nature of

the excited states obtained from such investigations might provide valuable information in

efforts devoted to the development of materials with tailored photophysical properties (e.g.,

for applications such as organic LEDs, artificial photosynthesis, organic photovoltaic cells,

or photocatalysts).
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21P. Štěpánek and A. M. Kantola, “Low-concentration measurements of nuclear spin-induced

optical rotation using SABRE,” J. Phys. Chem. Lett. 10, 5458–5462 (2019).

37

128 publications and manuscripts



22A. D. Buckingham and P. J. Stephens, “Magnetic optical activity,” Ann. Rev. Phys. Chem.

17, 399–432 (1966).

23P. N. Schatz and A. J. McCaffery, “The Faraday effect,” Q. Rev. Chem. Soc. 23, 552–584

(1969).

24P. J. Stephens, “Theory of magnetic circular dichroism,” J. Chem. Phys. 52, 3489–3516

(1970).

25P. J. Stephens, “Magnetic circular dichroism,” Ann. Rev. Phys. Chem. 25, 201–232 (1974).

26W. R. Mason, A practical guide to magnetic circular dichroism spectroscopy (John Wiley

& Sons, Ltd, 2007).

27T. Kjærgaard, S. Coriani, and K. Ruud, “Ab initio calculation of magnetic circular dichro-

ism,” WIREs Comput. Mol. Sci. 2, 443–455 (2012).

28P. Norman, D. M. Bishop, H. J. A. Jensen, and J. Oddershede, “Near-resonant absorption

in the time-dependent self-consistent field and multiconfigurational self-consistent field

approximations,” J. Chem. Phys. 115, 10323–10334 (2001).

29P. Norman, D. M. Bishop, H. J. A. Jensen, and J. Oddershede, “Nonlinear response theory

with relaxation: The first-order hyperpolarizability,” J. Chem. Phys. 123, 194103 (2005).

30T. Helgaker, P. Jørgensen, and J. Olsen, Molecular electronic-structure theory (John Wiley

& Sons Ltd, 2000).

31O. Christiansen, H. Koch, and P. Jørgensen, “The second-order approximate coupled

cluster singles and doubles model CC2,” Chem. Phys. Lett. 243, 409–418 (1995).

32C. Hättig and F. Weigend, “CC2 excitation energy calculations on large molecules using

the resolution of the identity approximation,” J. Chem. Phys. 113, 5154–5161 (2000).
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6E L A B O R AT I O N S

The published work covering our procedure for computing X2PA with fc-
CVS-EOM-CCSD [47] provides the derivations of the CVS-uS approach
in the classical EOM notation. The theoretical strategy in a notation re-
sembling the one adopted for response theory in Ref. [7] is presented in
the following.

6.1 the cvs-us approximation in an alternative notation

The two-photon transition tensor elements for the transition between the
ground state 0 and an excited state f with excitation energy ω f can in
exact theory be represented by a SOS [44, 48, 49]

Mxy
0 f =

1
h̄ ∑

k∈0, f

[
〈0|µx|k〉

〈
k|µy| f

〉

ωk −ω1
+

〈
0|µy|k

〉
〈k|µx| f 〉

ωk −ω2

]
(36)

where ω1 +ω2 = ω f and µx (µy) is a Cartesian component of the dipole-
moment operator with x(y) ∈ {x, y, z}.

Since CC theory is non-Hermitian, the 0 → f and f → 0 transition
moments are not the same. We translate the above SOS expression to CC
formalism in terms of the CC one-photon transition moments [50]

Mxy
0 f = − ∑

k∈0, f

[
Tx

0kTy
k f

ωk −ω2
+

Ty
0kTx

k f

ωk −ω1

]
(37)

and

Mxy
f 0 = − ∑

k∈0, f

[
Ty

f kTx
k0

ωk −ω1
+

Tx
f kTy

k0

ωk −ω2

]
. (38)

For EOM-CC, the general two-photon right and left transition mo-
ments take the form

Mxy
f 0(ω1, ω2) =− Pxy

{
L f

[
Axty(ω2)− (t̄ · ξx)ty(ω2)

− (t̄ · ty(ω2))ξ
x
]}

(39)

and

Mxy
0 f (ω1, ω2) =− Pxy

{[
t̄y(−ω2)Ax − (t̄ · ξx)t̄y(−ω2)

]
R f

− (t̄ · R f )t̄y(−ω2) · ξx
}

(40)
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where Pxy permutes the operator components and their associated fre-
quencies. The response amplitudes and multipliers are solved from the
expressions

(A−ω1) tx(ω) = −ξx (41)

t̄x(ω)
(
A−ω1

)
= −ηx . (42)

The details and definitions of the matrices and vectors are unimportant
to the purpose of this evalutation; the interested reader is referred to,
e. g., Ref. [11]. We recall that we are working within the CCSD approxi-
mation, that is, there are only singles and doubles indices.

If we now consider the case where the final state is a core-excited
state F, we can imagine splitting the SOS transition moments in valence
(lower-case k) and core (capital K) spaces

Mxy
0F =−∑

0,k

[
Tx

0kTy
kF

ωk − 1
2 ωF

+
Ty

0kTx
kF

ωk − 1
2 ωF

]
(43)

−∑
K

[
Tx

0KTy
KF

ωK − 1
2 ωF

+
Ty

0KTx
KF

ωK − 1
2 ωF

]
(44)

where the two incoming photons are now degenerate and equals half
the energy it takes to promote the core electron from its ground state to
the excited state F

ω1 = ω2 = 1
2 ωF . (45)

By exploiting the fc-CVS framework for computing core-excited states,
the constraints to the ground and excited states set the following condi-
tions

• The ground state amplitudes have no core components:
taI = taIbj = taibJ = taIbJ = 0

• The ground state multipliers have no core components:
t̄aI = t̄aIbj = t̄aibJ = t̄aIbJ = 0

• The eigenvectors R and L have no valence components:
Rai = Raibj = 0 and Lai = Laibj = 0

• The Jacobian is blocked:
Aµc ,νv = Aνv ,µc = 0

where indices i, j refer to occupied and a, b to virtual molecular spin-
orbitals. I, J refer specifically to core occupied orbitals. The subscripts c,
v denote general core and valence indices, respectively.
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Since A is blocked, we have decoupled the core and valence response
amplitudes. In compact notation, the response amplitude equations then
take the form

[
Acc − 1

2 ωF1cc 0

0 Avv − 1
2 ωF1vv

] [
tx
c

tx
v

]
= −

[
ξx

c

ξx
v

]
. (46)

Thus, we have two separate equations for the core and valence compo-
nents of the response amplitudes

(Acc − 1
2 ωF1cc) tx

c (
1
2 ωF) = −ξx

c (47)

(Avv − 1
2 ωF1vv) tx

v(
1
2 ωF) = −ξx

v . (48)

This also applies to the response multipliers

t̄x
c (

1
2 ωF)

(
Acc − 1

2 ωF1cc
)
= −ηx

c (49)

t̄x
v(

1
2 ωF)

(
Avv − 1

2 ωF1vv
)
= −ηx

v . (50)

In the spirit of the partitioned SOS expression in Eq. (43), we may
then calculate the transition moments in Eqs. (39) and (40) from separate
valence and core terms.

In practice, however, the condition of Eq. (45) causes problems. Half
the value of a core excitation frequency lies above the ionization limit of
valence electrons, i.e., in an area with many close-lying excitations. As a
result, (A− 1

2 ω f 1) can become divergent, leading to convergence issues
in the response equations. Closer inspection reveals that the divergences
occur only in the valence space; the diagonal of the Jacobian in the core
space contains (much) larger values than half a core excitation energy. It
is thus in the same mindset as in the fc-CVS approximation that we intro-
duce further constraints on the valence response equations by removing
all doubles components such that

Avnvm = 0 for n, m = 2 (51)

tx
vn = 0 for n = 2 (52)

t̄x
vn = 0 for n = 2 (53)

where n,m indicate the excitation level. By doing so, we remove unphys-
ical states that are resonant with the photon frequency, and the valence
response equations exhibit robust convergence.

Ultimately, the transition moments are put together from terms col-
lecting the core indices and terms collecting the singles-only valence in-
dicies, hence the name of the approximation: “core–valence separation
and uncoupled valence singles”.





7C O N C L U S I O N A N D O U T L O O K

A variety of spectroscopies have been made available for calculation with
coupled cluster theory, specifically EOM-CCSD and RI-CC2 response
theory. Several techniques probing different molecular responses of both
core and valence electrons have been implemented: (damped) ECD, opti-
cal rotation, (damped) MCD, NSCD, and X2PA. Each of those techniques
provides different insights into the system under investigation.

Based on the new implementation of ECD within the EOM-CCSD
framework, the ground and excited state ECD of various chiral molecules
was investigated in the regimes of valence and core excitations (Publica-
tion I). The studies in the X-ray region revealed interesting connections
between the gauge origin and spectral shapes when the transitions are
particularly localized.

From the combination of resonant and damped response calculations,
a methodology for computing an MCD spectrum in a broad frequency
range was developed (Manuscript I). Among future prospects is the
generalization of the implementation of damped quadratic response for
MCD in TURBOMOLE to include damped NSCD and magneto-chiral
circular dichroism. Furthermore, an extension of the damped quadratic
response function to include solvent effects is within immediate reach.

A localized equivalent of MCD, NSCD, was studied for a small set
of substituted azobenzenes (Manuscript II). Connections were made be-
tween the NSCD and the effects of substituents and solvents, and the
possible identification of the nuclei based on spectral shapes was dis-
cussed. Measuring NSCD experimentally continues to be a challenging
work in progress.

With a starting point in the divergence issues of the response equa-
tions when computing X2PA with the EOM-CCSD method, approxima-
tions to the response space was introduced. The efforts resulted in an
implementation showing robust convergence while including significant
contributions from the valence singles space (Publication II). This work
offers a platform for future developments within higher-order multipho-
ton processes as well as a basis for benchmarking this, at present, much
unexplored property. The X2PA of molecules of the modest sizes consid-
ered in this study remains experimentally unfeasible to date. However,
when the experimental facilities are mature, the theory is ready to pro-
vide insight and support.

The diversity of spectroscopies that can be simulated using coupled
cluster theory has thus been demonstrated. The various properties are,
or will soon be (relative to the time of writing), released to the entire
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138 conclusion and outlook

scientific community in two major quantum chemistry codes, Q-Chem
and TURBOMOLE. They open the door for further investigations of the
phenomena, some of which are still sparsely investigated theoretically
and/or experimentally. Hopefully, (parts of) this work will act as plat-
form and/or inspiration for future studies, continuing the expansion of
humanity’s shared knowledge base.



Part III

A P P E N D I X
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S1 Relevant CC building blocks

Table S1: Definition of the relevant CC building blocks. L is the time-averaged quasi-energy
Lagrangian, T is the cluster operator, τµ is an excitation operator (for excitation level µ),
and ϵX is the strength of the perturbation associated with operator X. For additional
information, see, e.g., Ref. S1.

|CC⟩ = exp(T )|HF⟩
⟨Λ| = (⟨HF| +

∑
µ t̄µ⟨µ|) exp(−T )

Matrix elements Derivative formulation Explicit expression

Aµν = ∂2L
∂t̄µ∂tν

⟨µ| exp(−T )[H, τν ] exp(T )|HF⟩
Bµνγ = ∂3L

∂t̄µ∂tν∂tγ
⟨µ| exp(−T )[[H, τν ], τγ] exp(T )|HF⟩

Fµν = ∂2L
∂tµ∂tν

⟨Λ|[[H, τµ], τν ]|CC⟩
Gµνγ = ∂3L

∂tµ∂tν∂tγ
⟨Λ|[[[H, τµ], τν ], τγ|CC⟩

ξXµ = ∂2L
∂tµ∂εX

⟨µ| exp(−T )X exp(T )|HF⟩
AX

µν = ∂3L
∂t̄µ∂tν∂εX

⟨µ| exp(−T )[X, τν ] exp(T )|HF⟩
ηXµ = ∂2L

∂t̄µ∂εX
⟨Λ|[X, τµ]|CC⟩

FX
µν = ∂3L

∂tµ∂tν∂εX
⟨Λ|[[X, τµ], τν ]|CC⟩

S2

supporting information : manuscript i 143



S2 Coordinates

In Angstrom and xyz format. 61 atoms.

H 4.4937189 -6.2352038 0.0000000

N 1.4527967 1.4527967 0.0000000

N -1.4527967 1.4527967 0.0000000

N -1.4527967 -1.4527967 0.0000000

N 1.4527967 -1.4527967 0.0000000

C -0.0000000 3.4285263 0.0000000

C -3.4285263 0.0000000 0.0000000

C -0.0000000 -3.4285263 0.0000000

C 3.4285263 0.0000000 0.0000000

C 1.2418640 2.8101113 0.0000000

C -2.8101113 1.2418640 0.0000000

C -1.2418640 -2.8101113 0.0000000

C 2.8101113 -1.2418640 0.0000000

C 2.8101113 1.2418640 0.0000000

C -1.2418640 2.8101113 0.0000000

C -2.8101113 -1.2418640 0.0000000

C 1.2418640 -2.8101113 0.0000000

C 2.5101122 3.5058807 0.0000000

C -3.5058807 2.5101122 0.0000000

C -2.5101122 -3.5058807 0.0000000

C 3.5058807 -2.5101122 0.0000000

C 3.5058807 2.5101122 0.0000000

C -2.5101122 3.5058807 0.0000000

C -3.5058807 -2.5101122 0.0000000

C 2.5101122 -3.5058807 0.0000000

C 2.8511067 4.8602058 0.0000000

C -4.8602058 2.8511067 0.0000000

C -2.8511067 -4.8602058 0.0000000

C 4.8602058 -2.8511067 0.0000000

C 4.8602058 2.8511067 0.0000000
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C -2.8511067 4.8602058 0.0000000

C -4.8602058 -2.8511067 0.0000000

C 2.8511067 -4.8602058 0.0000000

C 4.2000838 5.1940575 0.0000000

C -5.1940575 4.2000838 0.0000000

C -4.2000838 -5.1940575 0.0000000

C 5.1940575 -4.2000838 0.0000000

C 5.1940575 4.2000838 0.0000000

C -4.2000838 5.1940575 0.0000000

C -5.1940575 -4.2000838 0.0000000

C 4.2000838 -5.1940575 0.0000000

H 2.0940270 5.6341683 0.0000000

H -5.6341683 2.0940270 0.0000000

H -2.0940270 -5.6341683 0.0000000

H 5.6341683 -2.0940270 0.0000000

H 5.6341683 2.0940270 0.0000000

H -2.0940270 5.6341683 0.0000000

H -5.6341683 -2.0940270 0.0000000

H 2.0940270 -5.6341683 0.0000000

H 4.4937189 6.2352038 0.0000000

H 6.2352038 4.4937189 0.0000000

H -6.2352038 -4.4937189 0.0000000

H -4.4937189 -6.2352038 0.0000000

H -6.2352038 4.4937189 0.0000000

H -4.4937189 6.2352038 0.0000000

H 6.2352038 -4.4937189 0.0000000

H 0.0000000 -4.5117982 0.0000000

H -4.5117982 0.0000000 0.0000000

H 4.5117982 0.0000000 0.0000000

H 0.0000000 4.5117982 0.0000000

Zn 0.0000000 0.0000000 0.0000000
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S3 Raw data

Table S2: ZnTBP. Excitation frequency ωj (au and eV), oscillator strength fj , MCD Bj and
Aj terms for the j states of indicated symmetry (Irrep) in the D2h and D4h point groups. The
molecule’s “true” point group is D4h, the computations were done in D2h.

Irrep. D2h Irrep. D4h Band ωj/au ωj/eV fj Bj Aj

B2u
}

Eu Q
0.0872 2.37 0.1524 120.5239 −3.3266

B3u 0.0872 2.37 0.1524 120.5239 −3.3266

B2u
}

Eu B
0.1209 3.29 1.3578 −63.3364 −4.1220

B3u 0.1209 3.29 1.3578 −63.3364 −4.1220

B2u
}

Eu

0.1496 4.07 0.0246 −15.7819 0.0525
B3u 0.1496 4.07 0.0246 −15.7819 0.0525

B2u
}

Eu

0.1528 4.16 0.0050 16.7140 0.0318
B3u 0.1528 4.16 0.0050 16.7140 0.0318

B2u
}

Eu N
0.1638 4.46 0.0597 −285.9130 −0.0427

B3u 0.1638 4.46 0.0597 −285.9130 −0.0427

B1u A2u 0.1665 4.53 0.0016 −8.3996 0.0000

B2u
}

Eu N
0.1673 4.55 0.1510 271.3286 −0.2376

B3u 0.1673 4.55 0.1510 271.3287 −0.2376

B2u
}

Eu

0.1741 4.74 0.0018 – –
B3u 0.1741 4.74 0.0018 – –

B2u
}

Eu L
0.1863 5.07 0.1990 – –

B3u 0.1863 5.07 0.1990 – –

B1u A2u 0.1870 5.09 0.0052 – –

S5

146 supporting information : manuscript i



Table S3: ZnTBP. Damped absorption and MCD signals at frequency ω (au).

ω Abs. MCD

0.145 133.54 6534.19
0.150 139.13 −7713.47
0.155 126.38 −29 517.01
0.160 169.86 −99 212.61
0.165 296.00 −75 991.06
0.170 246.98 118 076.25
0.175 154.68 31 567.15
0.180 177.63 1115.78
0.185 −327.24 −11 332.57
0.190 311.13 −4226.40
0.195 367.01 −305.34
0.200 480.70 −108 838.34
0.205 638.34 −188 948.44
0.210 945.05 −138 535.01
0.215 670.33 214 749.28
0.220 441.63 80 876.68
0.225 279.47 6755.28
0.230 245.02 31 014.91
0.240 218.25 −46 897.86
0.250 265.45 −38 354.63
0.260 619.71 −34 339.19
0.270 467.79 −1419.03
0.280 288.17 13 537.87
0.290 151.33 8400.66
0.300 179.63 13 245.31
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S4 Additional figures
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Figure S1: ZnTBP. Absorption (upper) and MCD (lower) spectra from standard and damped
response at the RI-CC2/aug-cc-pVDZ level of theory. The interpolated spectrum is built on a
uniform coarse grid with energy steps of 0.01 au throughout.
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Figure S2: ZnTBP. Absorption spectra in three energy regions with experimental spectra from
Ref. S2. RI-CC2/aug-cc-pVDZ results. All theoretical energies have been shifted by −0.226 eV
(−1824.6 cm−1) to align with the absorption peak of the B-band. HWHMs of 7 cm−1 (Q-
band, upper left), 20 cm−1 (B-band, upper right), and 1000 cm−1 (N–X region, lower panel). The
experimental spectra are presented without ε values.
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Figure S3: ZnTBP. MCD spectra in three energy regions with experimental spectra from Ref.
S2. RI-CC2/aug-cc-pVDZ results. All theoretical energies have been shifted by −0.226 eV
(−1824.6 cm−1) to align with the absorption peak of the B-band. HWHMs of 7 cm−1

(Q-band, upper left), 20 cm−1 (B-band, upper right), and 1000 cm−1 (N–X region, lower panel).
The experimental spectra are presented without θ values.
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S5 Detailed derivation of the linear response equations

for the perturbed Lagrange multipliers with com-

plex frequencies

This derivation closely resembles the derivation of the equivalent equations for the complex

perturbed amplitudes from the work of Fedotov et al. S3 In the following, the perturbed

multipliers (t̄X) are referred to as L, while the perturbed amplitudes tX are referred to as

R. The reason for this change of notation is that this is how they write it in the Turbomole

manual.

The linear equation(s) for the perturbed multipliers with a complex frequency, ω + iγ,

can be written in block notation

[
LS LD

]






ASS ASD

ADS ADD


 +




1SS 0

0 1DD


 (ω + iγ)


 = −

[
ξS ξD

]
(S1)

where subscripts S, D refer to the singles and doubles excitation components of the vec-

tor/matrix, and both L and ξ are frequency dependent. Note that in this notation, ξ is

used as a general notation for the right-hand-side (RHS) and is not the CC (right) response

vector ξX .

The RHS of Eq. (S1) is

ξ = ηX + FR . (S2)

Remember here that R is a perturbed amplitude.

From the matrix/vector form, we separate the linear equations into one for singles and

one for doubles (with respect to the RHS):

LSASS + LDADS + (ω + iγ)LS = −ξS (S3a)

LSASD + LDADD + (ω + iγ)LD = −ξD . (S3b)
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The L vectors are complex and can be written as

LS = LR
S + iLI

S, LD = LR
D + iLI

D . (S4)

We insert the above into Eqs. (S3a) and (S3b), which are then each split into two, by

collecting separately the real and imaginary parts. With respect to the singles of the RHS,

this gives first

(LR
S + iLI

S)ASS + (LR
D + iLI

D)ADS + (LR
S + iLI

S)(ω + iγ) = −ξRS − iξIS

which further becomes

LR
SASS + LR

DADS + LR
Sω − LI

Sγ = −ξRS (S5a)

LI
SASS + LI

DADS + LI
Sω + LR

Sγ = −ξIS . (S5b)

For the doubles, we get

(LR
S + iLI

S)ASD + (LR
D + iLI

D)ADD + (LR
D + iLI

D)(ω + iγ) = −ξRD − iξID (S6a)

which becomes

LR
SASD + LR

DADD + LR
Dω − LI

Dγ = −ξRD (S6b)

LI
SASD + LI

DADD + LI
Dω + LR

Dγ = −ξID . (S6c)

The above equations are rewritten to isolate either the singles or doubles on the left hand
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side:

LR
S (ASS + ω1SS) − LI

Sγ = −ξRS − LR
DADS (S7a)

LI
S(ASS + ω1SS) + LR

Sγ = −ξIS − LI
DADS (S7b)

LR
D(ADD + ω1DD) − LI

Dγ = −ξRD − LR
SASD (S7c)

LI
D(ADD + ω1DD) + LR

Dγ = −ξID − LI
SASD . (S7d)

We now introduce the matrix

∆ = ADD + ω1DD (S8)

and isolate LR
D and LI

D in Eqs. (S7c) and (S7d), respectively

LR
D∆ = −ξRD − LR

SASD + LI
Dγ (S9a)

⇒LR
D = −

(
ξRD + LR

SASD − LI
Dγ

) 1

∆
(S9b)

LI
D∆ = −ξID − LI

SASD − LR
Dγ (S9c)

⇒LI
D = −

(
ξID + LI

SASD + LR
Dγ

) 1

∆
. (S9d)

We insert Eq. (S9c) into (S9a) to obtain an expression for the doubles multipliers in terms

of the singles:

LR
D = −

{
ξRD + LR

SASD −
[
−
(
ξID + LI

SASD + LR
Dγ

) 1

∆

]
γ

}
1

∆

= −
(
ξRD + LR

SASD

) 1

∆
−

(
ξID + LI

SASD + LR
Dγ

) γ

∆2
. (S10)

We collect the terms involving LD on the left hand side and simplify as follows

LR
D + LR

D

γ2

∆2
= LR

D

∆2

∆2
+ LR

D

γ2

∆2
= LR

D

∆2 + γ2

∆2
(S11)
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and obtain

LR
D =

[
−
(
ξRD + LR

SASD

) 1

∆
−

(
ξID + LI

SASD

) γ

∆2

]
∆2

∆2 + γ2
(S12)

= −
(
ξRD + LR

SASD

) ∆

∆2 + γ2
−

(
ξID + LI

SASD

) γ

∆2 + γ2
. (S13)

With the exact same procedure, we obtain for LI
D the expression

LI
D = −

(
ξID + LI

SASD

) ∆

∆2 + γ2
+
(
ξRD + LR

SASD

) γ

∆2 + γ2
. (S14)

We now return to the linear equations (S7a) and (S7b). In Eq. (S7a) we substitute LR
D with

the expression obtained in (S12):

LR
S (ASS + ω1SS) − LI

Sγ = − ξRS −
[
−
(
ξRD + LR

SASD

) ∆

∆2 + γ2
−

(
ξID + LI

SASD

) γ

∆2 + γ2

]
ADS

= − ξRS + ξRD
∆

∆2 + γ2
ADS + LR

SASD
∆

∆2 + γ2
ADS

+ ξID
γ

∆2 + γ2
ADS + LI

SASD
γ

∆2 + γ2
ADS . (S15)

The above equation is then rearranged to collect all singles multipliers on the left of the

equal sign:

LR
S (ASS + ω1SS) − LI

Sγ − LR
SASD

∆

∆2 + γ2
ADS − LI

SASD
γ

∆2 + γ2
ADS

= LR
S

(
ASS + ω1SS −ASD

∆

∆2 + γ2
ADS

)
− LI

S

(
ASD

γ

∆2 + γ2
ADS + γ

)

= −ξRS + ξRD
∆

∆2 + γ2
ADS + ξID

γ

∆2 + γ2
ADS . (S16)
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We now introduce the effective matrices

Aeff
SS = ASS −ASD

∆

∆2 + γ2
ADS (S17)

Γeff
SS = ASD

γ

∆2 + γ2
ADS (S18)

and write the effective linear equation

LR
S (Aeff

SS + ω1SS) − LI
S(Γeff

SS + γ) = −ξR,eff
S (S19)

where the (real) effective RHS is

ξR,eff
S = ξRS − ξRD

∆

∆2 + γ2
ADS − ξID

γ

∆2 + γ2
ADS . (S20)

Again, we do the same for the imaginary counterparts (Eqs. (S7b) and (S14)) and arrive

at the equation

LI
S

(
ASS + ω1SS −ASD

∆

∆2 + γ2
ADS

)
+ LR

S

(
ASD

γ

∆2 + γ2
ADS + γ

)

= −ξIS + ξID
∆

∆2 + γ2
ADS − ξRD

γ

∆2 + γ2
ADS (S21)

which abbreviates to

LI
S(Aeff

SS + ω1SS) + LI
R(Γeff

SS + γ) = −ξI,effS (S22)

with

ξI,effS = ξIS − ξID
∆

∆2 + γ2
ADS + ξRD

γ

∆2 + γ2
ADS . (S23)

In compact matrix-vector form, we thus have
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[ LR
S LI

S
]




Aeff
SS + ω1SS (Γeff

SS + γ1SS)

−(Γeff
SS + γ1SS) Aeff

SS + ω1SS


 = −[ ξR,eff

S ξI,effS
] . (S24)

SS5.1 The RHS of the complex perturbed multipliers

The right-hand-side of the perturbed multipliers equations is

ξ = ηX + FR . (S25)

As for the complex solution vectors, the RHS can be written in matrix/vector form and split

into real and imaginary components




ξRS

ξRD

ξIS

ξID




T

=




ηX,R
S

ηX,R
D

ηX,I
S

ηX,I
D




T

+







FSS FSD

0
FDS 0

0
FSS FSD

FDS 0







RR
S

RR
D

RI
S

RI
D







T

(S26)

where also we used the fact that FDD = 0 for CC2. The above corresponds to the four

equations

ξRS = ηX,R
S + FSSR

R
S + FSDR

R
D (S27a)

ξRD = ηX,R
D + FDSR

R
S (S27b)

ξIS = ηX,I
S + FSSR

I
S + FSDR

I
D (S27c)

ξID = ηX,I
D + FDSR

I
S . (S27d)

The R vectors are the complex perturbed amplitudes and there will thus always be both a

real and an imaginary contribution to the RHS.
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S6 Minimization of the residual for the CPP response

equations in RI-CC2

SS6.1 Theory

If the approximate solution of a (real-valued) linear equation Mx = −y is expanded in a set

of orthonormal basis vectors bi, the coefficients ci for the solution
∑

i cibi which minimize

the squared norm ||R||2 of the residual R = Mx + y are determined by the condition:

0 =
d||R||2

dck
∀ck . (S28)

Inserting the expansion of the solution vector x in the basis vectors

R =
∑

i

ciMbi + y =
∑

i

ciσi + y (S29)

with the transformed basis vectors σi = Mbi, we obtain the condition for optimal coefficients

ci:

0 =
d

dck

(∑

i

ciσi + y
)
·
(∑

j

cjσj + y
)

(S30)

= σk ·
(∑

j

cjσj + y
)

+
(∑

i

ciσi + y
)
· σk (S31)

The first and the second term give identical results so that the latter equations can be written

in matrix-vector form as:

Mredc = −yred , (S32)
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with

Mred
ij =(Mbi) · (Mbj) = σi · σj , (S33)

yred
i =(Mbi) · y = σi · y . (S34)

With the solution vector in the reduced space, c, the squared norm of the remaining residual

can be expressed as:

||R||2 = ctMredc + 2c · yred + ||y||2 (S35)

For the linear equations in damped CC2 response theory in its partitioned doubles-direct

form:



Aeff

SS(ω, γ) − ω1SS −Γeff
SS(ω, γ) + γ1SS

Γeff
SS(ω, γ) − γ1SS Aeff

SS(ω, γ) − ω1SS






tRS

tIS


 = −



ξR,eff
S (ω, γ)

ξI,effS (ω, γ)


 , (S36)

with use of the following ansatz for the solution vector

tRS =
∑

i

cRi bi and tIS =
∑

i

cIibi , (S37)

and of the following short-hand notation for the linearly transformed basis vectors

σR
i = Aeff

SS(ω, γ)bi and σI
i = Γeff

SS(ω, γ)bi , (S38)

the residual vector is thus given by:

R =



∑

i c
R
i

(
σR

i − ωbi

)
−∑

i c
I
i

(
σI

i − γbi

)

∑
i c

R
i

(
σI

i − γbi

)
+
∑

i c
I
i

(
σR

i − ωbi

)


 +



ξR,eff
S (ω, γ)

ξI,effS (ω, γ)


 (S39)
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We split the squared norm into two contributions:

||R||2 = ||RR||2 + ||RI ||2 , (S40)

and introduce the auxiliary reduced space quantities:

Ared
ij = bi · σR

j and Γred
ij = bi · σI

j (S41)

gred,Ri = bi · ξR,eff
S (ω, γ) and gred,Ii = bi · ξI,effS (ω, γ) (S42)

as well as:

Bred =



Bred,RR Bred,RI

Bred,IR Bred,II


 with Bred,KL

ij = σK
i · σL

j , (S43)

hred =



hred,RR hred,RI

hred,IR hred,II


 with hred,KL

i = σK
i · ξL,effS (ω, γ) . (S44)
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The first contribution is given by:

||RR|| =
(∑

i

cRi
(
σR

i − ωbi

)
−

∑

i

cIi
(
σI

i − γbi

)
+ ξR,eff

S (ω, γ)
)

(S45)

·
(∑

j

cRj
(
σR

j − ωbj

)
−

∑

j

cIj
(
σI

j − γbj

)
+ ξR,eff

S (ω, γ)
)

=
∑

ij

cRi
(
σR

i − ωbi

)
·
(
σR

j − ωbj

)
cRj −

∑

ij

cRi
(
σR

i − ωbi

)
·
(
σI

j − γbj

)
cIj (S46)

−
∑

ij

cIi
(
σI

i − γbi

)
·
(
σR

j − ωbj

)
cRj +

∑

ij

cIi
(
σI

i − γbi

)
·
(
σI

j − γbj

)
cIj

+
∑

i

cRi
(
σR

i − ωbi

)
ξR,eff
S (ω, γ) −

∑

i

cIi
(
σI

i − γbi

)
ξR,eff
S (ω, γ)

+
∑

j

cRj
(
σR

j − ωbj

)
ξR,eff
S (ω, γ) −

∑

j

cIj
(
σI

j − γbj

)
ξR,eff
S (ω, γ) + ||ξR,eff

S (ω, γ)||2

=

[
cR cI

]t


(
Bred,RR − ωAred − ω(Ared)t + ω21

)
−
(
Bred,RI − ωΓred − γ(Ared)t + ωγ1

)

−
(
Bred,IR − ω(Γred)t − γAred + ωγ1

) (
Bred,II − γΓred − γ(Γred)t + γ21

)






cR

cI




+

[
cR cI

]t


hred,RR − ωgred,R

−hred,IR + γgred,R


 +

[
hred,RR − ωgred,R −hred,IR + γgred,R

]t


cR

cI




+ ||ξR,eff
S (ω, γ)||2
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The second contribution is given by:

||RI || =
(∑

i

cRi
(
σI

i − γbi

)
+
∑

i

cIi
(
σR

i − ωbi

)
+ ξI,effS (ω, γ)

)
(S47)

·
(∑

j

cRj
(
σI

j − γbj

)
+
∑

j

cIj
(
σR

j − ωbj

)
+ ξI,effS (ω, γ)

)

=

[
cR cI

]t



(
Bred,II − γΓred − γ(Γred)t + γ21

) (
Bred,IR − ω(Γred)t − γAred + ωγ1

)

(
Bred,RI − ωΓred − γ(Ared)t + ωγ1

) (
Bred,RR − ωAred − ω(Ared)t + ω21

)






cR

cI




+

[
cR cI

]t


hred,II − γgred,I

hred,RI − ωgred,I


 +

[
hred,II − γgred,I hred,RI − ωgred,I

]t


cR

cI




+ ||ξI,effS (ω, γ)||2

The stationarity condition for ||R||2 leads to the linear equation:



Mred,RR Mred,RI

Mred,IR Mred,II






cR

cI


 = −



yred,R

yred,I


 (S48)

with

Mred,RR = Bred,RR + Bred,II − ω[Ared + (Ared)t] − γ[Γred + (Γred)t] + (ω2 + γ2)1 (S49)

Mred,II = MRR = (MRR)t (S50)

Mred,RI = Bred,IR −Bred,RI − ω[(Γred)t − Γred] − γ[Ared − (Ared)t] (S51)

Mred,IR = −Mred,RI = (Mred,RI)t (S52)

and

yred,R = hred,RR − ωgred,R + hred,II − γgred,I (S53)

yred,I = −hred,IR + γgred,R + hred,RI − ωgred,I (S54)
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As above, the squared norm of the total residual can be calculated from the solution vector in

the reduced space, c, with Mred, yred and ||ξeffS ||2. Alternatively, one can calculate separately

the squared norms of the real and imaginary parts of the residual vector with the reduced

space quantities:

M̃R,red =



(
Bred,RR − ωAred − ω(Ared)t + ω21

)
−
(
Bred,RI − ωΓred − γ(Ared)t + ωγ1

)

−
(
Bred,IR − ω(Γred)t − γAred + ωγ1

) (
Bred,II − γΓred − γ(Γred)t + γ21

)




(S55)

ỹR,red =



hred,RR − ωgred,R

−hred,IR + γgred,R


 (S56)

and

M̃I,red =




(
Bred,II − γΓred − γ(Γred)t + γ21

) (
Bred,IR − ω(Γred)t − γAred + ωγ1

)

(
Bred,RI − ωΓred − γ(Ared)t + ωγ1

) (
Bred,RR − ωAred − ω(Ared)t + ω21

)




(S57)

ỹI,red =



hred,II − γgred,I

hred,RI − ωgred,I


 (S58)

as:

||RR||2 = ctM̃R,redc + 2c · ỹR,red + ||ξR,eff
S ||2 (S59)

||RI ||2 = ctM̃I,redc + 2c · ỹI,red + ||ξI,effS ||2 (S60)

SS6.2 Comparison with the limit γ = 0

In the limit γ = 0, the quantities Γeff
SS(ω, γ) and ξI,effS (ω, γ) and thus also σI

i , Γ
red, gred,I , BIR,

BRI , II, hred,IR, hRI , hII , MRI , MIR, and yI vanish. The minimization condition reduces,
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in this limit, to:



Bred,RR − ω[Ared + (Ared)t] + ω21 0

0 Bred,RR − ω[Ared + (Ared)t] + ω21






cR

cI


 (S61)

= −



hred,RR − ωgred,R

0




From the block-diagonal form, it follows that cI = 0, and the coefficients for the real part

of the solution vector are determined by the equation:

[
Bred,RR − ω[Ared + (Ared)t] + ω21

]
cR = −

[
hred,RR − ωgred,R

]
(S62)

The last equation is used by the solver for the non-CPP response equations.

S7 Implementation of the G-matrix contractions

For CC2 only the following two terms contribute to the G-matrix contractions:

Gµ1ν1γ1 = ⟨t̄1|[[[Ĥ, τµ1 ], τν1 ], τγ1 ]|HF⟩ + ⟨t̄2|[[[Ĥ, τµ1 ], τν1 ], τγ1 ]|HF⟩ (S63)

where t̄ are the unperturbed ground-state CC Lagrange multipliers. For the quadratic re-

sponse function, only contractions of G with three vectors are needed, which can be written

as:

GXY Z =
∑

µνγ

Gµνγt
X
µ t

Y
ν t

Z
γ = Gt̄1

XY Z + Gt̄2
XY Z , (S64)

where Gt̄1
XY Z comprises the contributions from the singles part of the Lagrange multipliers t̄

and Gt̄2
XY Z those from the doubles part of the Lagrange multipliers. We use in the following

the convention that the indices i, j, k, and l run over active occupied and the indices a, b,
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c, and d over active virtual orbitals. The indices p, q, r, and s are used to denote the union

of active occupied and virtual orbitals and α, β, κ, and λ for atomic orbitals.

The first contribution to the G-matrix contraction is evaluated as:

Gt̄1
XY Z =

∑

ck

ζY Z
ck FX

ck +
∑

ck

ζXZ
ck F Y

ck +
∑

ck

ζXY
ck FZ

ck (S65)

with the intermediates:

ζXY
ck = −

∑

bj

t̄bj

(
tXcjt

Y
bk + tYcjt

X
bk

)
= −

∑

j

(∑

b

tYbk t̄bj

)
tXcj +

∑

j

(∑

b

tXbk t̄bj

)
tYcj (S66)

and the singly dressed Fock matrices:

FX
pq = hX

pq +
∑

j

[
2(pq̂|jj)X − (jq̂|pj)X

]
(S67)

hX
pq =

∑

αβ

[
Λp,X

pα Λh
qβ + Λp

pαΛh,X
qβ

]
hαβ (S68)

(pq̂|rs)X =
∑

αβ

[
Λp,X

αp Λh
βq + Λp

αpΛ
h,X
βq

]∑

κλ

(αβ|κλ)Λp
κrΛ

h
λs (S69)

+
∑

αβ

[
Λp,X

αr Λh
βs + Λp

αrΛ
h,X
βs

]∑

κλ

(αβ|κλ)Λp
κpΛ

h
λq

Λp,X = −C(tX1 )T (S70)

Λh,X = +CtX1 (S71)

The two-electron repulsion integrals are evaluated within the RI approximation.

The second contribution, Gt̄2
XY Z , is evaluated as:

Gt̄2
XY Z = −

∑

dl

HY Z
dl tXdl −

∑

dl

HXZ
dl tYdl −

∑

dl

HXY
dl tZdl (S72)

with

HXY
dl =

∑

Qi

Y̆ Y
QdiB̂

X
Qli +

∑

Qi

Y̆ X
QdiB̂

Y
Qli (S73)
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where

Y̆ X
Qdi =

∑

ck

t̄cdkiB̂
X
Qck (S74)

B̂X
Qpq =

∑

P

∑

αβ

[
Λp,X

αp Λh
βq + Λp

αpΛ
h,X
βq

]
(αβ|P )[V−1/2]PQ (S75)

Algorithm for G-matrix contractions:

• compute Lambda matrices dressed with amplitude responses (X, Y , and Z):

– read tX1 from file

– compute Λp,X
µa = −∑

i Cµit
X
ai and Λh,X

µi = +
∑

a Cµat
X
ai

• compute 3-index integrals dressed with amplitude responses (X, Y , and Z):

B̂X
Qai =

∑

Pµν

V
−1/2
QP (P |µν)Λp

µaΛ̄
h,X
νi − B̂Qjit

X
aj (S76)

B̂X
Qji =

∑

Pµν

V
−1/2
QP (P |µν)Λp

µjΛ̄
h,X
νi (S77)

• compute FX
ia (for X, Y , and Z):

– calculate iXQ =
∑

ai BQiat
X
ai

– calculate FX
ia = 2

∑
QBQiaī

X
Q −∑

Qk BQkaB̄
X
Qik

• compute Y̆ X
Qai:

Y̆ X
Qai =

∑

bj

t̄abij B̄
X
Qbj (S78)

• for all pairs (XY , XZ, and Y Z) compute:

ζXY
ck = P̂XY

∑

jb

tXbk t̄bjt
Y
cj (S79)
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• compute the t̄1 contribution to the G-matrix contraction:

Gt̄1 =
∑

ck

(
ζXY
ck F̄Z

ck + ζXZ
ck F̄ Y

ck + ζY Z
ck F̄X

ck

)
(S80)

• for all pairs (XY , XZ, and Y Z) compute:

HXY
ck = P̂XY

∑

Qi

Y̆ X
QciB̄

Y
Qki (S81)

• compute the t̄2 contribution to the G matrix contraction:

Gt̄2 = −
∑

ck

(
HXY

ck tZck + HXZ
ck tYck + HY Z

ck tXck

)
(S82)
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S1. PHYSICAL CONSTANTS

NSCD prefactors

For carbon (LC) and hydrogen (LH):

LC = 1.3125973044

LH = 5.2189931889

Solvents

TABLE S1. Dielectric constants ϵr and refractive indices ηD for the three solvents.

Solvent ϵr ηD

DMSO 46.45 1.479

C6H12
1 2.023 1.4264

CHCl32 4.8069 1.4459

S2. TRANSITION STRENGTHS

TABLE S2. AZO-1. aug-cc-pwCVDZ. Transition strength components Sαα
0f = Tα

0fT
α
f0 for α ∈

x, y, z. The molecule lies (roughly) on the xy plane, with the long axis along y.

State n En f Sxx
0f Syy

0f Szz
0f

1 2.959 0.000 0.0000 0.0000 0.0000

2 3.796 0.868 0.0366 9.2925 0.0000

3 4.508 0.008 0.0698 0.0010 0.0000

4 4.549 0.018 0.0087 0.1515 0.0000

TABLE S3. AZO-2. aug-cc-pwCVDZ. Transition strength components Sαα
0f = Tα

0fT
α
f0 for α ∈

x, y, z. The molecule lies (roughly) on the xz plane, with the long axis along z.

State n En f Sxx
0f Syy

0f Szz
0f

1 2.964 0.000 0.0000 0.0000 0.0000

2 3.589 0.919 0.0298 0.0001 10.4251

3 4.437 0.028 0.0141 0.0000 0.2459

4 4.528 0.008 0.0637 0.0000 0.0065
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TABLE S4. AZO-3. aug-cc-pwCVDZ. Transition strength components Sαα
0f = Tα

0fT
α
f0 for α ∈

x, y, z. The molecule lies (roughly) on the xz plane, with the long axis along z.

State n En f Sxx
0f Syy

0f Szz
0f

1 2.866 1.12 · 10−6 0.0000 0.0000 0.0000

2 3.339 1.043 0.0252 0.0001 12.7198

3 3.854 3.05 · 10−10 0.0000 0.0000 0.0000

4 4.352 0.004 0.0000 0.0000 0.0407

5 4.430 0.011 0.0941 0.0000 0.0049

6 4.441 0.001 0.0002 0.0057 0.0000

S3. NSCD INTENSITIES

TABLE S5. AZO-1. aug-cc-pwCVDZ.

RI-CC2 DFT/BH+HLYP

Atom ES1 ES2 ES3 ES4 ES1 ES2 ES3 ES4

E (eV) 2.959 3.796 4.508 4.549 3.015 3.790 4.748 4.838

ω (a.u.) 0.109 0.140 0.166 0.167 0.111 0.139 0.175 0.178

f 0.000 0.868 0.008 0.018 0.000 0.822 0.012 0.003

Atom# NSCD (LKBK × 1000)

C1 −2.57 235.83 −75.99 148.82 −0.38 139.88 −28.42 51.03

C2 51.02 −318.52 −109.29 201.89 5.74 −139.57 −35.97 56.83

C3 4.71 50.43 −95.07 259.93 0.55 71.24 −40.82 99.75

C4 −0.57 58.04 −67.64 151.45 −0.04 62.88 −29.86 51.19

C5 −3.26 14.97 −37.41 53.91 −0.35 109.02 −11.36 19.72

C6 −4.38 68.22 −80.65 146.64 −0.46 9.62 −34.48 64.00

C7 −40.25 −111.27 −27.46 −71.77 −4.82 −50.78 −131.43 −8.27

C8 4.09 245.35 −41.59 −58.78 0.51 180.70 −112.76 −6.99

C9 2.39 117.22 −76.92 −63.95 0.28 80.70 −183.47 −10.35

C10 3.13 66.04 −14.09 −66.29 0.37 73.77 −98.53 −8.26

C11 0.36 155.70 −58.70 −61.68 0.03 139.55 −151.54 −7.94

C12 −4.79 92.05 −114.41 −80.22 −0.57 106.55 −259.41 −15.13

H1 −0.95 −23.53 85.51 −144.19 −0.09 −11.67 37.87 −47.25

H2 −0.33 226.24 94.42 −179.60 −0.06 161.96 46.65 −63.37

H3 −0.16 40.33 80.73 −176.71 −0.01 23.65 38.31 −56.56

H4 −0.41 −53.08 109.84 −126.35 0.08 −150.61 40.45 −39.59

H5 −1.08 −250.94 53.20 37.11 −0.15 −217.89 124.26 0.76

H6 0.07 −168.79 64.75 61.27 0.00 −135.76 158.23 5.23

H7 0.31 −89.18 70.36 67.57 0.05 −24.17 172.59 7.25

H8 0.62 −127.98 51.92 64.05 0.06 −106.13 146.90 3.96

H9 0.63 46.40 72.67 58.19 0.12 54.28 192.75 3.60

H10 −0.62 92.10 60.08 −103.19 −0.06 89.39 24.90 −36.35
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TABLE S6. AZO-2. aug-cc-pwCVDZ.

RI-CC2 DFT/BH+HLYP

Atom ES1 ES2 ES3 ES4 ES1 ES2 ES3 ES4

E (eV) 2.964 3.589 4.437 4.528 3.031 3.657 4.720 4.781

ω (a.u.) 0.109 0.132 0.163 0.166 0.111 0.134 0.173 0.176

f 0.000 0.919 0.028 0.008 0.000 0.894 0.010 0.014

Atom# NSCD (LKBK × 1000)

C1 −3.25 311.97 −12.27 35.86 0.03 197.83 7.09 48.20

C2 86.44 −305.82 136.18 38.27 0.14 −139.39 79.59 42.52

C3 7.74 91.72 344.45 44.08 0.02 89.07 196.44 92.41

C4 −0.94 −122.20 258.29 42.86 0.00 −83.76 146.87 79.42

C5 −6.02 −113.85 −19.57 6.46 0.01 −0.57 3.62 12.37

C6 −8.21 88.08 −11.17 35.24 0.00 −4.20 31.64 69.04

C7 −57.34 −108.88 37.37 −33.59 −0.20 −67.20 42.86 −109.98

C8 5.77 175.98 33.26 −53.22 0.02 143.69 30.86 −101.41

C9 3.46 63.23 31.77 −80.66 0.01 51.04 40.84 −171.49

C10 4.78 6.01 27.28 −19.15 0.01 24.31 30.56 −82.05

C11 0.44 102.04 30.86 −62.77 0.00 110.72 34.21 −137.05

C12 −7.18 49.84 38.67 −136.85 −0.03 74.24 56.38 −251.69

H1 −1.86 −12.39 −36.40 −29.32 0.00 6.37 −35.92 −41.57

H2 −0.39 272.84 −142.58 −28.76 0.00 207.37 −97.35 −43.66

H3 −0.35 115.35 −225.26 −36.09 0.00 86.22 −128.26 −56.74

H4 0.11 −147.41 −32.98 −26.89 0.00 −148.73 −37.49 −18.86

H5 −2.07 −187.65 −40.59 30.71 −0.01 −185.37 −36.05 94.99

H6 0.06 −106.36 −44.88 59.22 0.00 −99.59 −44.49 133.50

H7 0.54 −33.85 −35.67 65.22 0.00 11.87 −39.51 151.34

H8 0.88 −68.78 −41.11 51.13 0.00 −70.38 −43.54 122.62

H9 1.72 79.74 −36.84 55.91 0.00 83.95 −49.55 160.50

H10 −0.83 90.06 −42.85 −15.92 0.04 115.47 −38.07 −27.91

H11 −0.99 115.40 −66.82 −26.12 0.00 110.54 −40.90 −26.91
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TABLE S7. AZO-3. aug-cc-pwCVDZ.

RI-CC2 DFT/BH+HLYP

ES1 ES2 ES3 ES4 ES5 ES6 ES1 ES2 ES3 ES4 ES5 ES6

E (eV) 2.866 3.339 3.854 4.352 4.430 4.441 2.956 3.426 4.155 4.535 4.587 4.607

ω (a.u.) 0.105 0.123 0.142 0.160 0.163 0.163 0.109 0.126 0.153 0.167 0.169 0.169

f 0.000 1.043 0.000 0.004 0.011 0.000 0.000 1.067 0.000 0.017 0.000 0.000

Atom# NSCD (LKBK × 1000)

C1 1.30 323.72 0.00 −30.64 81.12 −45.71 12.14 227.75 0.02 −63.31 −7.78 60.06

C2 −33.90 −144.08 0.00 −15.02 51.61 1.14 −208.71 73.98 −0.08 −84.01 6.27 76.33

C3 −2.86 206.39 0.00 51.90 59.84 −0.34 −17.52 204.19 0.00 −85.72 1.51 89.77

C4 0.30 −20.31 0.00 27.55 41.48 2.66 1.06 7.16 0.01 −66.63 0.49 62.80

C5 2.42 −35.48 0.00 −4.47 −5.95 6.57 13.10 62.80 0.00 −8.02 3.50 8.69

C6 3.31 129.92 0.00 −36.96 41.22 1.18 19.82 53.57 0.02 −64.70 −3.61 67.29

C7 18.66 −16.36 0.00 25.58 94.16 28.11 118.68 51.32 0.03 22.71 20.17 2.30

C8 −2.02 204.87 0.00 39.29 −631.14 663.89 −13.38 229.81 0.17 −202.03 127.96 17.57

C9 −1.08 125.98 0.00 −0.36 2454.17 −2372.76 −5.79 189.49 0.11 463.36 −379.53 −98.41

C10 −2.25 −242.08 0.00 −40.75 120.38 −781.70 −13.69 −205.94 −0.02 18.89 −430.57 11.68

C11 −0.10 146.01 0.00 22.90 2235.44 −2184.57 −0.62 210.13 −0.18 564.01 −559.69 −59.05

C12 2.62 146.28 0.00 6.46 −231.58 240.60 16.44 205.83 −0.15 −189.23 61.01 0.41

H1 0.70 −45.34 0.00 20.17 −40.92 −2.44 4.01 −40.30 0.00 62.84 −0.48 −59.26

H2 −0.09 201.63 0.00 −14.17 −47.84 6.35 0.46 119.59 0.00 71.63 −0.03 −73.13

H3 0.11 31.83 0.00 −25.53 −47.51 0.13 0.56 12.98 0.00 65.12 0.14 −63.44

H4 −0.03 −157.05 0.00 17.57 −41.05 −3.43 −0.92 −166.58 0.00 57.35 −1.76 −52.31

H5 1.09 −154.32 0.00 −17.05 100.84 −149.35 6.83 −205.99 −0.03 72.00 −23.31 −13.73

H6 0.02 −47.26 0.00 −6.84 −44.14 5.22 0.11 −70.79 0.06 76.85 −2.80 −1.00

H7 −0.27 −38.52 0.00 −20.10 77.96 −111.16 −1.21 −73.38 −0.04 92.02 −5.32 −7.92

H8 −0.68 38.42 0.00 −3.78 59.43 −105.90 −7.39 −0.62 0.03 107.38 −32.83 −8.72

H9 0.39 40.37 0.00 6.39 −25.17 0.44 1.56 61.49 0.00 33.69 0.23 −34.68

H10 0.32 57.99 0.00 −1.99 −24.85 0.17 1.84 59.33 0.00 36.11 −0.07 −35.02
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TABLE S8. AZO-3. Excited state 2. COSMO-RI-CC2/aug-cc-pVDZ.

DMSO C6H12 CHCl3

E (eV) 2.918 3.110 3.019

ω (a.u.) 0.107 0.114 0.111

f 1.134 1.134 1.134

Atom# NSCD (LKBK values)

C1 350.02 392.98 388.71

C2 1,752.74 -41.93 98.17

C3 429.66 278.82 304.37

C4 42.04 25.32 44.30

C5 -46.51 31.86 54.86

C6 9.34 179.03 176.89

C7 -610.94 -32.52 -69.60

C8 278.74 227.72 223.27

C9 177.03 151.74 149.31

C10 -67.72 -176.31 -159.86

C11 163.43 171.20 167.29

C12 35.00 146.38 132.83

H1 -137.25 -80.72 -91.58

H2 173.76 201.58 191.73

H3 -62.10 -22.35 -37.87

H4 -247.00 -223.36 -230.24

H5 -224.79 -177.28 -176.97

H6 -23.25 -34.73 -28.56

H7 3.88 -16.65 -9.50

H8 123.77 53.29 59.35

H9 -28.95 15.68 2.29

H10 -15.58 32.91 17.61
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S4. NATURAL TRANSITION ORBITALS

AZO-1

ES1

ES2

ES3

ES4

AZO-2

ES4

ES3

ES2

ES10.998

0.973

0.797

0.195

0.577

0.413

0.998

0.9730.973

0.584

0.410

0.770

0.223

FIG. S1. RI-CC2/aug-cc-pwCVDZ. Natural transition orbitals for the first four electronic transi-

tions of AZO-1 (left) and AZO-2 (right). Isosurface value 0.015.
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0.17

AZO-1 AZO-2

FIG. S2. TD-DFT/BH+HLYP/aug-cc-pwCVDZ. Natural transition orbitals for the first four elec-

tronic transitions of AZO-1 (left) and AZO-2 (right). Isosurface value 0.015.
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AZO-3  (aug-cc-pwCVDZ)

ES1

ES2

ES3

ES4

0.998

ES5

ES6

0.969

0.998

0.572

0.413

0.773

0.210

0.992

FIG. S3. RI-CC2/aug-cc-pwCVDZ. Natural transition orbitals for the first six electronic transitions

of AZO-3. Isosurface value 0.015.
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FIG. S4. TD-DFT/BH+HLYP/aug-cc-pwCVDZ. Natural transition orbitals for the first six elec-

tronic transitions of AZO-3. Isosurface value 0.015.
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AZO-3 (aug-cc-pwCVDZ) – ES2

FIG. S5. COSMO-CC2/aug-cc-pwCVDZ. Natural transition orbitals for the second electronic

transitions of AZO-3. Isosurface value 0.015.
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S5. SUM-OVER-STATES ANALYSIS

The CC sum-over-states expression for the BK term is

BK ∝ −1

2
ϵαβγ

[{∑

k ̸=m

⟨0|µ̂α|k⟩ ⟨k|ĥpso
γ |m⟩

Em − Ek

−
∑

k ̸=0

⟨0|ĥpso
γ |k⟩ ⟨k|µ̂α|m⟩
Ek − E0

}
⟨m|µ̂β|0⟩ (S1)

− ⟨0|µ̂β|m⟩
{∑

k ̸=m

⟨m|ĥpso
γ |k⟩ ⟨k|µ̂α|0⟩
Em − Ek

−
∑

k ̸=0

⟨m|µ̂α|k⟩ ⟨k|ĥpso
γ |0⟩

Ek − E0

}]
. (S2)

We split the SOS expression into dispersive and absorptive components3

BK,d = −1

2
ϵαβγ

∑

k ̸=m

{
⟨0|µ̂α|k⟩ ⟨k|ĥpso

γ |m⟩
Em − Ek

⟨m|µ̂β|0⟩ − ⟨0|µ̂β|m⟩ ⟨m|ĥpso
γ |k⟩ ⟨k|µ̂α|0⟩
Em − Ek

}
(S3)

BK,a = −1

2
ϵαβγ

∑

k ̸=0

{
⟨0|ĥpso

γ |k⟩ ⟨k|µ̂α|m⟩
Ek − E0

⟨m|µ̂β|0⟩ − ⟨0|µ̂β|m⟩ ⟨m|µ̂α|k⟩ ⟨k|ĥpso
γ |0⟩

Ek − E0

}
. (S4)

The atoms selected for the SOS study are C2, C5, C9, and C12. The number of states in-

cluded in the sum is twice the number of states under investigation (as specified in captions).

Tables S9, S10, and S11 show the exact (analytic) and SOS NSCD values for AZO-1, AZO-2

and AZO-3, respectively. The values of the BK,d and BK,a terms are plotted separately as

bar plots in Figures S6 (AZO-1), S7 (AZO-2), and S8 (AZO-3). Note that the numbers are

scaled by 1000 but not multiplied by the unit prefactor LC .
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AZO-1

TABLE S9. AZO-1. RI-CC2/aug-cc-pwCVDZ. Exact and sum-over-states (nk = 8) BK × 1000 of

C2, C5, C9, and C12..

ES# 1 2 3 4

C2
Exact 38.87 −242.66 −83.27 153.81

SOS 34.01 −105.17 −79.82 145.61

C5
Exact −4.59 −86.73 −14.91 4.92

SOS −2.59 6.66 −31.07 70.40

C9
Exact 1.82 89.31 −58.60 −48.72

SOS 1.54 118.68 −22.22 −47.46

C12
Exact −3.65 70.13 −87.17 −61.12

SOS −2.76 90.44 −18.83 −47.06
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FIG. S6. AZO-1. RI-CC2/aug-cc-pwCVDZ. Bar plots of BC,d(k → m) (red) and BC,a(k → m)

(blue) of C2, C5, C9, and C12 for the four lowest excited states. Number of intermediate states

nk = 8. Note the offset of the y-values given above the axes.
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AZO-2

TABLE S10. AZO-2. RI-CC2/aug-cc-pwCVDZ. Exact and sum-over-states (nk = 8) BK × 1000 of

C2, C5, C9, and C12.

ES# 1 2 3 4

C2
Exact 65.86 −232.98 103.75 29.15

SOS 59.74 −107.89 99.82 33.12

C5
Exact −4.59 −86.73 −14.91 4.92

SOS −4.84 −86.67 23.05 11.15

C9
Exact 2.63 48.17 24.20 −61.45

SOS 2.24 70.27 22.26 −24.55

C12
Exact −5.47 37.97 29.46 −104.26

SOS −4.34 52.19 27.21 −23.12
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FIG. S7. AZO-2. RI-CC2/aug-cc-pwCVDZ. Bar plots of BC,d(k → m) (red) and BC,a(k → m)

(blue) of C2, C5, C9, and C12 for the four lowest excited states. Number of intermediate states

nk = 8. Note the offset of the y-values given above the axes.
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AZO-3

TABLE S11. AZO-3. RI-CC2/aug-cc-pwCVDZ. Exact and sum-over-states (nk = 12) BK × 1000

of C2, C5, C9, and C12.

ES# 1 2 3 4 5 6

C2
Exact −25.83 −109.76 0.00 −11.44 39.32 0.87

SOS −24.75 27.09 −0.00 −19.13 40.90 −11.71

C5
Exact 2.85 −27.03 0.00 −3.41 −4.54 5.01

SOS 1.86 −53.28 0.00 −2.08 6.17 4.88

C9
Exact −0.82 95.97 0.00 −0.28 1869.70 −1807.68

SOS −1.06 107.66 0.00 −0.15 1920.39 −1844.30

C12
Exact 1.99 111.45 0.00 4.92 −176.43 183.30

SOS 1.62 107.98 0.00 6.06 −100.84 170.87
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FIG. S8. AZO-3. RI-CC2/aug-cc-pwCVDZ. Bar plots of BC,d(k → m) (red) and BC,a(k → m)

(blue) of C2, C5, C9, and C12 for the six lowest excited states. Number of intermediate states

nk = 12. Note the offset of the y-values given above the axes.
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S6. CARTESIAN COORDINATES

The coordinates are provided in Angstrom and .xyz format.

AZO-1

C 1.0357887 -2.0353758 0.0006766

C -0.2565927 -1.4965821 0.0002726

C -1.3626410 -2.3515573 -0.0003573

C -1.1934234 -3.7282563 -0.0005237

C 0.0947305 -4.2615577 -0.0002036

C 1.2055258 -3.4107999 0.0004448

N -0.5548141 -0.1172454 0.0003184

N 0.4705064 0.6310168 0.0004193

C 0.1659645 2.0145128 0.0003292

C -1.1304066 2.5443198 0.0006897

C -1.3020669 3.9220753 0.0003706

C -0.1953763 4.7755535 -0.0002874

C 1.0931160 4.2454362 -0.0006321

C 1.2732546 2.8658121 -0.0002831

O 0.2118701 -5.6195230 -0.0005667

H 2.2035091 -3.8333257 0.0007386

H 1.8852879 -1.3687292 0.0011038

H -2.0390292 -4.4008634 -0.0008599

H -2.3508346 -1.9127315 -0.0008502

H 2.2600432 2.4235006 -0.0005380

H 1.9512518 4.9031105 -0.0012208

H -0.3401306 5.8472298 -0.0005037

H -2.3008539 4.3370765 0.0005835

H -1.9734575 1.8697411 0.0011645

H 1.1487778 -5.8428373 -0.0002853

AZO-2

C 1.0527302 0.0325583 1.8403427

C -0.2366122 0.0222357 1.2903279

C -1.3445158 0.0230522 2.1420936

C -1.1777059 0.0341979 3.5187191

C 0.1060409 0.0479658 4.0764812

C 1.2149219 0.0428400 3.2141678

N -0.5282765 0.0124603 -0.0870202

N 0.4996235 0.0111704 -0.8339255

C 0.1964631 0.0015885 -2.2174378

C -1.0991601 0.0010802 -2.7494077
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C -1.2697246 -0.0084430 -4.1273553

C -0.1624559 -0.0176988 -4.9799709

C 1.1254203 -0.0171661 -4.4482717

C 1.3040921 -0.0072797 -3.0684584

N 0.2859971 -0.0071984 5.4555693

H 2.2117720 0.0455223 3.6379429

H 1.9068110 0.0325888 1.1793613

H -2.0421990 0.0306114 4.1704887

H -2.3318231 0.0156988 1.7007928

H 2.2905099 -0.0065954 -2.6252640

H 1.9843511 -0.0243526 -5.1049532

H -0.3061530 -0.0252178 -6.0517891

H -2.2682373 -0.0087672 -4.5431717

H -1.9426921 0.0081521 -2.0754755

H 1.1626942 0.3725353 5.7753286

H -0.4872619 0.3551849 5.9901982

AZO-3

C 1.0578959 0.0033142 1.8459808

C -0.2289174 -0.0045857 1.2885601

C -1.3429169 -0.0137353 2.1333649

C -1.1843443 -0.0151715 3.5101324

C 0.0965083 -0.0106374 4.0760544

C 1.2112028 0.0026930 3.2199706

C 0.2077954 0.0017575 -2.2148239

C -1.0907427 -0.0082698 -2.7401938

C -1.2798329 -0.0086591 -4.1138518

C -0.1623482 0.0012050 -4.9442103

C 1.1349826 0.0115116 -4.4502403

C 1.3107029 0.0116291 -3.0720006

H 2.2052834 0.0140889 3.6498178

H 1.9170276 0.0097096 1.1915797

H -2.0528152 -0.0183976 4.1564187

H -2.3275405 -0.0205797 1.6862017

H 2.3000522 0.0194317 -2.6364233

H 1.9684946 0.0191423 -5.1346279

H -2.2657581 -0.0162560 -4.5516676

H -1.9304564 -0.0155677 -2.0619480

H 1.1493368 -0.2992726 5.7863350

H -0.5064157 -0.2993101 5.9919319

N -0.5127848 -0.0056434 -0.0869416

N 0.5161518 0.0027739 -0.8321503

N 0.2672165 0.0535821 5.4522322

N -0.3640701 0.0006728 -6.3995285

O -1.5219277 -0.0111654 -6.8107910
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O 0.6381130 0.0120177 -7.1103172
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32. Urbanová, M. & Maloň, P. in Analytical Methods in Supramolecular
Chemistry 337–369 (John Wiley & Sons, Ltd, 2012).

33. Mason, W. R. A Practical Guide to Magnetic Circular Dichroism Spec-
troscopy (John Wiley & Sons, Ltd, 2007).

34. Crawford, T. Ab initio calculation of molecular chiroptical proper-
ties. Theor. Chem. Acc. 115, 227–245 (2006).

35. Crawford, T. D., Tam, M. C. & Abrams, M. L. The Current State of
Ab Initio Calculations of Optical Rotation and Electronic Circular
Dichroism Spectra. J. Phys. Chem. A 111, 12057–12068 (2007).

36. Kjærgaard, T., Coriani, S. & Ruud, K. Ab initio calculation of mag-
netic circular dichroism. WIREs Comput. Mol. Sci. 2, 443–455 (2012).

37. Vaara, J., Rizzo, A., Kauczor, J., Norman, P. & Coriani, S. Nuclear
spin circular dichroism. J. Chem. Phys. 140 (2014).

38. Chen, F., Yao, G.-h., Zhang, Z.-l., Liu, F.-c. & Chen, D.-m. Nuclear-
Spin-Induced Circular Dichroism in the Infrared Region for Liq-
uids. ChemPhysChem 16, 1954–1959 (2015).
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