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A B S T R A C T

A better understanding of factors associated with bicycle crashes can inform future efforts to limit crash
risks. Many previous studies have analysed crash risk based on crash databases. However, these can only
provide conditional information on crash risks. A few recent studies have included aggregate flow measures
in their crash risk analyses. This study incorporates detailed bicycle flow to investigate factors related to
bicycle crashes. Specifically, the study assesses the relative crash risk given various conditions by applying
Palm distributions to control for exposure.

The study specifically investigates the relationship between weather and time conditions and the relative
risk of bicycle crashes at a disaggregate level. The study uses bicycle crash data from police reports of bicycle
crashes from 2017–2020 in the greater Copenhagen area (N = 4877).

The relations between the bicycle crash risk and the air temperature and wind speeds are found to be
highly non-linear. The relative risk of bicycle crashes is elevated at low and high temperatures (0 ◦C > x, x
> 21 ◦C). The results also show how decreasing visibility relates to increasing bicycle crash risk. Meanwhile,
cycling during the early morning peak (7–8) and afternoon peak hours (15–18) is related to an increased risk
of bicycle crashes. While some of the effects are likely spurious, they highlight specific conditions associated
with higher relative risk. Finally, the results illustrate the increased risk at weekend night times when cyclists
are likely to bike under the influence of alcohol.

In conclusion, the analysis confirms that visibility, slippery surfaces, and intoxication are all factors
associated with a higher risk of bicycle crashes. Hence, it is relevant to consider how infrastructure planning
and preventive measures can modify the bicycle environment to minimise these risks.
1. Introduction

The bicycle, as a means of urban transport, is receiving increased
attention due to its appealing benefits of improved urban livability and
physical health of the users (Infrastructures, 2015; Mueller et al., 2015;
Useche et al., 2018a). Yet, a continuously reported barrier to increasing
the number of cyclists is the growing number of crashes along with fear
of crashes (Horton, 2016; Transport for London, 2014; Vejdirektoratet,
2018). A better understanding of the factors associated with bicycle
crashes can help inform future efforts to limit the crash risk and support
the promotion of bicycling.

Traditionally, investigations of factors surrounding any type of road
traffic crash are based on records of traffic crashes. Such records pro-
vide information on conditions such as weather, road surface, and time
of the day, as well as information on the crash itself, e.g. the number
of casualties, type of crash, and the crash mechanics. Based on this
information, various statistical methods have been employed to identify
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significant factors related to road traffic crashes (Mannering and Bhat,
2014; Lord and Mannering, 2010). Meanwhile, the significance of a
statistical analysis of the crash distribution alone is limited because it
provides no information about the normal state of the world outside the
crash times (Norros et al., 2016). In the realm of cycling crash analysis,
little research has been conducted analysing crash circumstances in
light of the cycling traffic/exposure (Dozza, 2017; Vanparijs et al.,
2015). One reason could be the limited availability of bicycle volume
data (Vandenbulcke et al., 2014). While the discussion above focuses
on studies based on police reports, there are other factors that influence
bicycle crash risk, e.g. bicycle experience and risk-seeking behaviour.
These factors have been studied using other survey instruments. How-
ever, independent of survey instrument exposure is fundamental for
understanding crash risk since without bicyclists there would be no
crashes. Additionally, not accounting for exposure among cyclists can
lead to biased results, as it will be unclear if an increase in accidents
vailable online 18 August 2023
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https://doi.org/10.1016/j.aap.2023.107226
Received 3 January 2023; Received in revised form 26 May 2023; Accepted 14 Jul
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

y 2023

https://www.elsevier.com/locate/aap
http://www.elsevier.com/locate/aap
mailto:mskyum@dtu.dk
mailto:smab@dtu.dk
https://doi.org/10.1016/j.aap.2023.107226
https://doi.org/10.1016/j.aap.2023.107226
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aap.2023.107226&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Accident Analysis and Prevention 192 (2023) 107226M.S. Myhrmann and S.E. Mabit

c
(
p
r

w
d
v
a
s

𝑃

𝑀

w
𝑡

𝐶
t

o
𝑥

𝑁

w
t

2

b
t
h
o
5
i
b
e

d
w

T
w
l
r
d
b

t
r
c

i
b

should be attributed to a specific factor or is the result of more cyclists
being on the road (Dozza, 2017).

The technologies necessary for detailed measurement of bicycle
exposure are increasingly available via systems such as instrumented
cyclists (Gustafsson and Archer, 2013; Roos and Lindqvist, 2020; von
Stülpnagel et al., 2022), they are still not widespread enough to give
representative data for larger urban networks. Various studies have
overcome this by using aggregate exposure measures for a limited
number of locations, e.g. Miranda-Moreno et al. (2011), who use peak
hour aggregates for some intersections to investigate the bicycle crash
risk at those locations. Whereas von Stülpnagel et al. (2022) use cycling
activities tracked via a smartphone app over a short period to provide
relative traffic estimates. A few studies on bicycle risk use more ad-
vanced statistical methods, specifically case-control methods, to cover
more extensive networks. Vandenbulcke et al. (2014) use a census
gathered data to establish the Potential Bicycle Traffic, while Williams
(2015) and Aldred et al. (2018) use model-generated aggregate cycling
volumes across their respective networks. These studies present some
of the most novel research on bicycle crash risk analysis but are reliant
on some level of aggregated measures of bicycle traffic and are thus
prone to potential aggregation biases.

This study presents a method for the analysis of bicycle crash risk
at a more disaggregated level accounting for the ‘‘normal state’’ of
traffic, i.e. traffic when no crashes occur, namely the Palm distribution
of traffic conditions, pioneered by Norros et al. (2016), who applied
it to car crashes. To the best of our knowledge the method has only
previously been applied to model car crashes within transport research.
Contrasting the case-control method (Aldred et al., 2018; Williams,
2015; Vandenbulcke et al., 2014), which compares locations of crashes
with control points of no crashes, the Palm distribution method stems
from the theory of count processes. The method allows for the eval-
uation of various cycling conditions based on a comparison of the
distribution of conditions ‘seen’ by an arbitrary cyclist to that ‘seen’ by
the cyclists subject to a crash. In summary, the Palm approach allows us
to investigate whether the relative occurrence of crashes given certain
conditions is significantly different from the expected occurrences given
the relative volume of cyclists under the same conditions. The value
of this approach lies in its ability to tackle the role of exposure in crash
analysis and at the same time allow for the analysis to be done at any
desired level of disaggregation only restricted by data availability.

Considering the limited literature concerning the riskiness of bicycle
crashes given adverse weather (Vanparijs et al., 2015), this study addi-
tionally contributes by investigating the relation between bicycle crash
risk and weather conditions at a disaggregate level. As an extension to
previous literature, this study not only considers first-order effects but
also evaluates interactions of multiple factors often neglected in studies
applying parametric multivariate models.

Overall, the paper contributes by analysing bicycle crash risks con-
trolling for detailed flow, and consequently improving the knowl-
edge base necessary to counter bicycle crashes and aid the design of
preventive measures.

2. Methodology

2.1. Palm distributions for relative risk

The Palm distribution of traffic conditions is adapted from Norros
et al. (2016). We apply this approach to describe the relative difference
between a crash state, i.e. conditions seen from a bicycle crash, and a
normal state, i.e. conditions seen from a realised bicycle trip. For each
bicycle trip, we describe the context by a vector of observed conditions
𝑋 ∈ 𝐶 𝑡𝑜𝑡. A specific set of conditions 𝐶 ⊂ 𝐶 𝑡𝑜𝑡 consists of specific
ombinations of conditions, such as various weather characteristics
rain, snow, sun...), hours of the day, days of the week, and levels of
recipitation. An example could be the set of all combinations with
ain.
2

t

As the data used in this study are observed at discrete time points,
e use the discrete Palm distribution as described in Eq. (1). The Palm
istribution given a set of conditions 𝐶, where 𝑋𝑟,𝑡 ∈ 𝐶 is a specific
ector of observable conditions (various weather and road conditions)
t a discrete time step 𝑡 and road section 𝑟, describes how the conditions
een by a randomly picked cyclist are distributed.

0(𝐶) = 1
𝑀

∑

𝑟∈{1..𝑅}

∑

𝑡∈{1..𝑇 }
𝑀𝑟,𝑡1(𝑋𝑟,𝑡 ∈ 𝐶) where

=
∑

𝑟∈{1..𝑅}

∑

𝑡∈{1..𝑇 }
𝑀𝑟,𝑡

(1)

here 𝑟 ∈ {1..𝑅} is an index of the road section being considered,
∈ {1..𝑇 } is an index of the time interval being considered, and

1(𝑋𝑟,𝑡 ∈ 𝐶) is an indicator that conditions at road 𝑟 at time 𝑡 are part of
. Time intervals are assumed of equal size. 𝑀 is the total accumulated

raffic ‘‘mass’’ and 𝑀𝑟,𝑡 is the traffic mass at road section 𝑟 and time 𝑡.
For the later presentation of the results related to various weather and
time-dependent conditions, we consider the following notation: 𝑃 0(𝐶𝑥𝑘 )
will refer to the marginal Palm distribution related to specific weather
or time conditions, while 𝑃 0(𝐶𝑥𝑘=𝑥0 ) will refer to the Palm probability
f a weather or time-dependent condition 𝑥𝑘 taking on a specific value
0. As such 𝑥𝑘 could refer to an hour-of-the-day variable, and 𝑥𝑘 = 𝑥0

could refer to the hour of the day being seven in the morning.
Next, we define the empirical crash distribution in Eq. (2). The em-

pirical crash distribution describes a randomly chosen crashed cyclist’s
average probability of conditions 𝐶.

𝑃 𝑎𝑐𝑐 (𝐶) = 1
𝑁𝑎𝑐𝑐

∑

𝑟∈{1..𝑅}

∑

𝑡∈{1..𝑇 }
𝑘𝑟,𝑡1(𝑋𝑟,𝑡 ∈ 𝐶), where

𝑎𝑐𝑐 =
∑

𝑟∈{1..𝑅}

∑

𝑡∈{1..𝑇 }
𝑘𝑟,𝑡

(2)

here 𝑘𝑟,𝑡 is the number of crashes that occurred on road section 𝑟 in
ime interval 𝑡, while 𝑁𝑎𝑐𝑐 is the total amount of crashes.

.2. Relative risk and statistical analysis of risk factors

If each cyclist is assumed to have a constant stochastic intensity of
eing involved in a bicycle crash, then the crash risks would follow
he Palm distribution (Norros et al., 2016), specifically if every cyclist
as a constant stochastic intensity of being involved in a crash and 5%
f cyclist exposure coincides with snowy conditions, we would assume
% of bicycle crashes to occur under snowy conditions. Applying this
dea means that contrasting the circumstance distribution observed at
icycle crashes with the Palm distribution of circumstances hints at the
ffects of circumstances on crashes.

In this regard, if the variable (i.e. the condition) in question is
enoted by 𝐶𝑥𝑘 , for example the air temperature, then for each point
ith value of temperature 𝑥0, we can calculate

𝑃 𝑎𝑐𝑐 (𝐶𝑥𝑘=𝑥0 )
𝑃 0(𝐶𝑥𝑘=𝑥0 )

(3)

hese density ratios are estimates of the relative risk increase/decrease
hen variable (𝐶𝑥𝑘 ) takes the value 𝑥0, compared with the overall risk

evel given by 𝑃 0. A ratio of 1 would indicate no change in the relative
isk. In contrast, a ratio of 0.8% would indicate a 20% relative risk
ecrease, and one of 1.5 would indicate a 50% relative risk increase of
icycle crashes, given condition 𝑥𝑘 = 𝑥0.

We would like to know whether the assertions, we make about
he impact of various conditions on the risk of bicycle crashes, could
esult from pure randomness. To check this, we test if the empirical
rash distribution 𝑃 𝑎𝑐𝑐 (𝐶𝑥𝑘 ) could be obtained by random sampling

from 𝑃 0(𝐶𝑥𝑘 ) with sample size 𝑁 equal to the total number of observed
crashes (𝑁 = 4487). If cyclists have a constant stochastic risk of being
n a crash, then we would expect the empirical crash probability could
e obtained by sampling from the Palm distribution. However, if condi-
ions are strongly associated with the risk of crashes, we would expect a
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significant difference between the Palm distribution and the empirical
crash distribution. We test whether this is the case, by checking if
specific condition values 𝐶𝑥𝑘=𝑥0 are observed in 𝑘 = 𝑁𝑃 0(𝐶𝑥𝑘=𝑥0 )
icycle crashes if bicycle crashes follows a Binomial distribution with
robability 𝑃 0(𝐶𝑥𝑘=𝑥0 ) (similar to Norros et al., 2016). If the value
𝑥𝑘=𝑥0 is observed in 𝑘 crashes, the upper and lower confidence bounds
𝑝𝑢, 𝑝𝑙] with significance 𝛼 are determined by Eq. (4) and computed
sing the Clopper–Pearson interval (Clopper and Pearson, 1934)
𝑁
∑

𝑗=𝑘

(

𝑛
𝑗

)

𝑝𝑗𝑙 (1 − 𝑝𝑙)𝑛−𝑗 =
𝑘
∑

𝑗=0

(

𝑛
𝑗

)

𝑝𝑗𝑢(1 − 𝑝𝑢)𝑛−𝑗 =
𝛼
2

(4)

We say that 𝑃 𝑎𝑐𝑐 (𝐶𝑥𝑘=𝑥0 ) is significantly different from 𝑃 0(𝐶𝑥𝑘=𝑥0 )
t the 𝛼 significance level, if 𝑃 𝑎𝑐𝑐 (𝐶𝑥𝑘=𝑥0 ) ∉ [𝑝𝑙 , 𝑝𝑢]. An example of this
s shown in the right plot in Fig. 2 at 𝑥0 = 21 ◦C, where the error bars
how the confidence interval [𝑝𝑙 , 𝑝𝑢], the blue dot is 𝑃 0(𝐶21 ◦C), and
he red dot is 𝑃 𝑎𝑐𝑐 (𝐶21 ◦C). If the dot is green, such as 𝑃 𝑎𝑐𝑐 (𝐶18 ◦C), it
eans that the crash probability is not significantly different from the
alm probability at the evaluated condition.

.3. Cycling volume estimation

The computation of the Palm distribution relies on accurate mea-
urements of the traffic flow 𝑀𝑟,𝑡. Concerning bicycle volume data
n Copenhagen, far from all bicycle links in the bicycle network are
onitored continuously. Hence, we cannot aggregate the monitored

bservations in a way similar to Dozza (2017). Therefore we use model-
enerated hourly bicycle volumes for this study. The model used to
roduce accurate hourly bicycle volume data for the Copenhagen area
etwork is the Long Short-Term Memory Mixture Density Network
LSTMMDN) proposed by Myhrmann and Mabit (2023). This method
s based on a mixture of the Mixture Density Network (MDN) pro-
osed by Bishop (1994), and a Long Short-Term Memory Network
LSTM) (Hochreiter and Schmidhuber, 1997). The model is built, cali-
rated and validated using bicycle count data from 45 separate bicycle
onitoring stations in Copenhagen, recorded from 2017–2020. The
odel is specifically designed to retrospectively estimate hourly bicycle

olume data conditional on the year-aggregated daily cycling traffic on
road section, weather data (such as precipitation volume, visibility,

emperature, etc.), and time related information. In total, the model is
alibrated using 42,265 hourly bicycle counts and validated on 19,399
ourly bicycle counts. For further information on the statistical model
nd calibration procedure, we refer to the work (Myhrmann and Mabit,
023).

For the purpose of deriving the Palm distribution we estimate
he cycling volume 𝑀𝑟,𝑡 at each index 𝑟, 𝑡. To do so, we need year-
ggregated daily cycling data for the sections 𝑟 ∈ 𝑅. The year ag-
regated data cycling volumes were provided by the PI of the arti-
le (Paulsen and Nagel, 2019). These volumes are derived using the
openhagen Model for Person Activity Scheduling (COMPAS) (Prato
t al., 2013). The COMPAS model produces daily activity plans for
synthetic population of the areal. Using the activity plans, a load-

ng model assigns agents on the cycling network in accordance with
aulsen and Nagel (2019), and the aggregated daily loading on each
ink is then fed into the previously described LSTMMDN to derive
ourly cycling flow reflecting external conditions and time effects.

. Empirical setting: Crash risk in greater Copenhagen

The empirical case examined in this paper relates to the bicycle
rash risk in the Copenhagen area in the period 2017–2020. The
icycle crash data are from police reports from the same period. The
ourly bicycle volume data are generated with the previously described
STMMDN model, using COMPASS generated mean day cycling traffic
nd weather data obtained from the Danish Meteorological Institutes
3

pen data API (DMI, 2021). r
.1. Crash data

To establish the empirical bicycle crash distribution 𝑃 𝑎𝑐𝑐 , we rely
n bicycle crash data obtained from police reports concerning crashed
icyclists in the Greater Copenhagen area from 2017–2020. The area is
ale blue in Fig. 1. A zoom-in on the map would show that accidents
re mainly along larger roads. Since we do not analyse the build
nvironment this does not affect our analyses. There are missing records
n the weather data, amounting to 316 missing hours in January, 586
n February, 597 on March, 19 in April, 177 in May, 607 on June,
7 on July, 25 in August, 571 in September, 432 in October, 220 in
ovember, and 372 in December. And therefore the same periods of
ourly bicycle volume estimates cannot be predicted by the LSTMMDN.
hese missing records result from missing complete months or weeks in
he weather data and imputing them is difficult and outside the scope
f this paper. Considering the Palm distribution in Eq. (1), using the
urrent bicycle volume data straightforwardly would result in skews
n the Palm distribution. This problem will need to be addressed, as
ot doing so could lead to biases in the computations of the relative
isk of bicycle crashes. In order to address this issue, we decided to
own-sample the data using bootstrapping with no re-sampling. This
ay we can ensure an even and more robust distribution of the bicycle
olume and weather data, similar to the distribution in a normal year.
pecifically as we are missing equivalents of one entire month for the
onths with the most missing data, we down-sample the weather and

icycle flow data to a three-year sample (∼26 280 h of bicycle counts per
oad section), conditional on the month, day of the week, and daytime
f the records. Comparing the mean traffic flow conditional on the
easons and daytime, with and without the bootstrapping procedure,
upports this.

Descriptive crash characteristics are shown in Table 1. We see that
f the total number of registered bicycle crashes (𝑁 = 4877), most of
he bicycle crashes are bicycle–motor-vehicle crashes (88.8%) and in
eclining order bicycle–bicycle, bicycle–pedestrian and single-bicycle
rashes. Of the crashes, 0.7% resulted in fatal injuries, 19.8% resulted
n severe injuries, 9.2% resulted in minor injuries and the remaining
0.3% resulted in ‘no evident injuries’. May, June, August, September,
ctober and November had the most crashes (9% − 10% of the crashes

espectively). The remaining months each accounted for 6%−7% of the
rashes. The crash locations are marked with red dots in Fig. 1. Based
n the time and place of a bicycle crash, the weather observations from
he nearest weather stations (marked with green in Fig. 1) are assumed
o be the weather conditions present during the crash.

The reason for considering a larger area for the crashes is to improve
he statistical power of the relevant analyses. Norros et al. (2016)
iscuss how the statistical power of the analysis is affected by the
umber of crashes in the study. Low crash numbers can affect the
nference regarding the significance of the difference in 𝑃 𝑎𝑐𝑐 and 𝑃 0

s small changes in an already low number of crashes can result in
otentially large relative changes. Meanwhile, the LSTMMDN is trained
o generate cycling flow dynamics for Copenhagen; the area outlined
n black in Fig. 1. However, we believe that the flow dynamics related
o changing weather conditions are similar between Copenhagen and
he surrounding area. Therefore, we consider the inclusion of the
rea surrounding Copenhagen reasonable. We also believe that many
ommuter cyclists travel to and from central Copenhagen and would
e included in the city bicycle flow, but potentially have a crash in the
reater Copenhagen area.

.2. Crash risk assessment

The bicycle crash risk associated with a specific dimension 𝐶𝑥𝑘 will
e evaluated by computing the density ratio between the empirical
rash distribution 𝑃 𝑎𝑐𝑐 (𝐶𝑥𝑘 ), and the Palm distribution 𝑃 0(𝐶𝑥𝑘 ). This

elation describes the relative risk profile of having a bicycle crash
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Table 1
Descriptive statistics of weather and bicycle data in the period 2017–2020.
Weather categories

Variable Frequency Variable Frequency

Precipitation
0 mm 0.957 0–0.1 mm 0.020
0.1–0.2 mm 0.011 0.2–0.3 mm 0.005
0.3–0.5 mm 0.004 0.5–1 mm 0.002
>1 mm 0.001

Wind strength
Calm 0.038 Fresh breeze 0.015
Gentle breeze 0.305 High winds 0.000
Light air 0.152 Light breeze 0.380
Moderate breeze 0.109 Strong breeze 0.001

Visibility (Fog density equivalent)
Clear (>10 km) 0.859 Light haze (4–10 km) 0.111
Haze (2–4 km) 0.021 Thin fog (1–2 km) 0.004
Light fog (0.5–1 km) 0.002 Moderate fog (0.2–0.5 km) 0.001
Thick fog (0.05–0.2 km) 0.001

Continuous variables Mean Std. Dev.
Temperature (◦C) 10.29 6.63

Crash types (N = 4877)

Variable Frequency Variable Frequency

Single-bicycle 0.019 Bicycle–bicycle 0.055
Bicycle–pedestrian 0.038 Bicycle–motor-vehicle 0.888
Fig. 1. Locations of the weather measuring stations (in green) and the bicycle crashes (in red). The grey area shows the capital region (greater Copenhagen) while the bounded
black section shows the municipality of Copenhagen. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
given conditions 𝐶 evaluated at specific values 𝐶𝑥𝑘=𝑥0 . The signifi-
cance of the risk change related to the specific values 𝐶𝑥𝑘=𝑥0 will be
assessed by establishing whether 𝑃 𝑎𝑐𝑐 (𝐶𝑥𝑘=𝑥0 ) falls within the 1 − 𝛼
central confidence intervals of 𝑃 0(𝐶𝑥𝑘=𝑥0 ) given 𝑁 observed crashes
as described in Section 2.1 using significance level 𝛼 = 5%. We use
the significance level 𝛼 = 5% for the remainder of the paper when
discussing significance.
4

The specific conditions investigated in the risk assessment are the
following: Air temperature (grouped into 3 ◦C increments starting at
0 ◦C), precipitation amount (in mm), wind speed (on the Beaufort
scale), visibility (in km), the hour of the day, day of the week. Mean-
while, previous research has pointed out that increased riskiness is
often not just the result of a single condition but the interaction of
several. Therefore, we will also investigate the relative risk change
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Fig. 2. Left: The relative bicycle crash risk profile given the air temperature as described by the density ratio between the empirical crash distribution and the Palm distribution
blue), line indicating no relative change (red). Right: The Palm distribution of air temperature (blue) and the empirical crash distribution of air temperature (red/green). (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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onditional on the interaction between the hour of the day and week-
nds as well as working weeks, respectively, precipitation and wind
peed, precipitation and seasons (astronomical seasons), and freezing
emperatures and precipitation.

. Results

To find crash risks, we calculate the density ratio 𝑃 𝑎𝑐𝑐

𝑃 0 for various
conditions 𝐶𝑥𝑘 . The results are presented for specific conditions using
visual approaches as shown in Fig. 2. On the left plot of the figure, we
see the density ratios marked with blue dots describing the relative risk
profile, 𝑃 𝑎𝑐𝑐 (𝐶𝑥𝑘=𝑥0 )

𝑃 0(𝐶𝑥𝑘=𝑥0 ) , given the dimension 𝐶𝑥𝑘 . In Fig. 2, 𝐶𝑥𝑘 is related
o air temperatures. The blue dots show the relative risk to the specific
ir temperatures in the left plot. For reference, a red dashed line is
lotted, indicating a relative risk ratio of 1. In the right plot, we show
he difference in 𝑃 𝑎𝑐𝑐 (𝐶𝑥𝑘=𝑥0 ) and 𝑃 0(𝐶𝑥𝑘=𝑥0 ) for the specific values (air
emperatures). The blue dots show the Palm probabilities and the red
nd green dots show the empirical crash probability. The error bars
ndicate the confidence interval associated with overall risk given each
onditional value 𝑥𝑘 = 𝑥0. The colour of the crash probability marker is
here to aid in assessing whether or not the empirical crash probability
s significantly different than the Palm probability. I.e. the red dots in
he right plot is outside the error bars. In that case, we assess there
o be a significant difference between 𝑃 𝑎𝑐𝑐 (𝐶𝑥𝑘=𝑥0 ) and 𝑃 0(𝐶𝑥𝑘=𝑥0 ),
nd hence the change in relative risk at value 𝑥0 will be considered
ignificant.

.1. Air temperature

The relative risk of bicycle crashes given changing air temperature
s described for temperature groupings of 3 ◦C degree increments as
een in Fig. 2. The density ratio on the left of Fig. 2 reveals a non-
inear relation between the relative risk of bicycle crashes and air
emperature. We find that temperatures ≤0 ◦C and ≥21 ◦C are related
o increases in the risk of bicycle crashes of ≥10%. Examining the right
lot of Fig. 2, we see the Palm distribution with confidence intervals
error bars) for the air temperature in blue and the empirical crash
istribution as red/green dots. If the dot is red, it lies outside error bars,
ither above or below, we assert that the empirical crash probability
nd Palm frequency at this point are significantly different. As such, we
ssert that the temperatures −3 ◦C, 0 ◦C, 21 ◦C, and 24 ◦C are related
o significant increases in the risk of bicycle crashes. More extreme
emperatures have similarly elevated risk levels but are not found to be
ignificant. We speculate that this is probably due to the lower number
5

f observations in these conditions.
.2. Precipitation

The average 10-min intensity of precipitation is grouped to investi-
ate the impact on the relative bicycle crash risk. The profile visualising
he relative bicycle crash risk given the precipitation intensity is shown
n Fig. 3. No rain is left out of the visualisation as the Palm frequency
as 90% (i.e. 90% of bicycle flow occurred in no rain).

The only specific grouping of 10-min average rain intensity in Fig. 3
elated to a significant change in the relative risk of bicycle crashes is
0−0.1]mm of rain. While there is a relative increase in the crash risk of
icycle crashes observed at (0.1−0.3] mm, and (0.5−1] mm of rain also,
hese are not significantly different from the Palm distribution. While
ot shown in Fig. 3, grouping all rain intensities, comparing cycling in
ain with no rain also shows that cycling in rain overall is related to a
ignificant increase in the risk of bicycle crashes.

.3. Wind speed

Similar to the relative risk profile of air temperature, the relative
isk profile related to wind speed exhibits a highly non-linear relation
o the wind speed. This is clearly visible by the bathtub shape of the rel-
tive risk profile shown in the left-side plot in Fig. 4. With the exception
f Light breeze and fresh breeze all grouped wind conditions are related
o significant changes in the relative risk of bicycle crashes. Specifically
e see that light wind conditions, Calm (<0.2 m/s) and Light air
0.2 m/s−1.5 m/s), as well as Strong breeze (10.7 m/s−13.8 m/s) are
elated to increased crash risk, while Gentle breeze (3.3 m/s−5.4 m/s)

and Moderate breeze (5.4 m/s−7.9 m/s) are related to decreased crash
risk.

4.4. Visibility

The average 10-min visibility is grouped to investigate the impact of
decreasing visibility on the relative bicycle crash risk. This variable is
of considerable importance, as it is one of the weather conditions that
most likely affects car drivers and cyclists similarly.

The profile visualising the relative bicycle crash risk given decreas-
ing visibility is shown in Fig. 5. Clear visibility is left out as the
Palm frequency was 88% (i.e. 88% of bicycle flow occurred in clear
visibility). The results reveal a monotonous increase in the risk of
bicycle crashes as the visibility decreases. The visibility being below
2 km is related to a risk increase of ∼125% and the visibility being
<0.5 km is related to a risk increase of ∼300%, compared to the Palm
distribution. Inspecting the significance by the right plot in Fig. 5, we
find that the relative risk increases are significant for all inspected

visibility values.
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Fig. 3. Left: The relative risk profile of bicycle crashes given varying levels of precipitation. Right: Significance testing of the impact of various precipitation levels.
Fig. 4. Left: The relative risk profile of bicycle crashes given the wind speed. Right: Significance test of the impact of wind speed.
Fig. 5. Left: The relative risk profile of bicycle crashes given decreasing visibility. Right: Significance test of the impact of impaired vision.
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4.5. Time of day

Fig. 6 shows the relative risk profile and significance tests associated
with the hours of the day when averaged over the whole data collection
period. The hour of the day values in Fig. 6 are presented as the
intervals (ℎ−1, ℎ], i.e. the relative risk for the hour 22–23 is denoted 23.
In the left plot in Fig. 6, we see that cycling during evening is related to
a significant decrease in the relative risk of bicycle crashes. Meanwhile,
peak hours, specifically 7−8 (i.e. the early morning peak) and 15−18,
re related to significant increases in the relative risk of bicycle crashes.
he increased risk of bicycle crashes in the early morning peak amounts
o around 30%. The afternoon peak hours are related to a crash risk
ncrease of 20−30%, relative to the Palm distribution. Inspecting the
ight plot in Fig. 6, we find that the empirical crash probability 𝑃 𝑎𝑐𝑐 is
lightly higher in the period 7–8 than the period 8–9. Meanwhile, the
ycling exposure 𝑃 0 is higher 8–9 than 7–8.

.6. Day of the week

Fig. 7 shows the relative risk of bicycle crashes for each day of the
eek. We see a slight increase in the relative crash risk on Tuesdays and
ednesdays and a slight decrease on Mondays and Thursdays. How-

ver, no significant change is associated with the differences in 𝑃 𝑎𝑐𝑐

nd 𝑃 0 for the days being Monday, Tuesday, Wednesday or Thursday.
6

i

eanwhile, the results show that cycling on Fridays is related to a
ignificant increase in the risk of a crash and weekends are related to
significant decrease in the risk of a crash.

.7. Time of the day vs. weekday and weekend

Inspired by the analysis in Dozza (2017), we also investigate the
elative risk of bicycle crashes as a function of the daytime conditional
n weekdays/weekends. The results for weekday daytime riskiness and
eekend daytime riskiness are shown in Figs. 8 and 9, respectively.

From the left plot of Fig. 8, we see that the weekday relative risk
elated to time of day increases at peak hours and presents a different
isk profile than the previous average week, see Fig. 6. The increased
isk of bicycle crashes in the weekday afternoon peak surpasses that
f the morning peak and is related to an approximate increase of 40%
etween 16 and 17.

The relative risk of bicycle crashes during weekend night time,
hown in Fig. 9, is much different from the previous average week
hown in Fig. 6. Cycling between midnight and 5 during weekends is
elated to an increased risk of bicycle crashes compared to the expected
isk. However, only the weekend times 0–1 and 3–4 have a significantly

ncreased relative risk of bicycle crashes.
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Fig. 6. Left: The relative risk profile of bicycle crashes for the hour of the day, with intervals presented as (ℎ− 1, ℎ]. Right: Significance test of the impact of the hour of the day.
Fig. 7. Left: The relative risk profile of bicycle crashes for the day of the week. Right: Significance test of the impact of the day of the week.
Fig. 8. Left: Relative risk profile for bicycle crashes for the weekday hour of the day. Right: Significance test of the impact related to the weekday hour of the day.
Fig. 9. Left: Relative risk profile for bicycle crashes for the weekend hour of the day. Right: Significance test of the impact related to the weekend hour of the day.
4.8. Further interactions and second-order effects

The Palm distribution for bicycle crash risk can easily investigate
potential second-order effects related to interactions between condi-
tions. Therefore we investigate the relative change in bicycle crash
risk given interacting weather conditions. Specifically, we investigate
the relative risk of bicycle crashes associated with the interactions be-
tween astronomical seasons and precipitation, wind speeds of moderate
strength or higher (windy conditions) and precipitation, and freezing
7

temperatures and precipitation. Table 2 shows the results for various
interactions.

Concerning the seasons, we find that only winter and spring have
significant impacts on the relative risk of bicycle crashes. Windy con-
ditions are related to a non-significant relative risk decrease. However,
when it is simultaneously raining, the interaction of windy conditions
and precipitation results in a significant risk increase of 30%, compared
to the Palm distribution. The results reveal that the interaction of
freezing temperatures and precipitation is another highly non-linear



Accident Analysis and Prevention 192 (2023) 107226M.S. Myhrmann and S.E. Mabit
Table 2
Results of the various interacting conditions. Bold relative densities indicate a
significant difference between the accident and Palm probability.

Palm frequency Relative density

No precipitation 0.914 0.981
Precipitation 0.086 1.200
Autumn 0.261 1.072
Spring 0.251 1.015
Summer 0.297 0.980
Winter 0.192 0.912
Autumn & No precipitation 0.231 1.046
Autumn & Precipitation 0.030 1.278
Spring & No precipitation 0.240 1.019
Spring & Precipitation 0.011 0.945
Summer & No precipitation 0.276 0.960
Summer & Precipitation 0.021 1.229
winter & No precipitation 0.167 0.872
Winter & Precipitation 0.025 1.193
Not windy 0.840 1.011
Windy 0.160 0.943
Not windy & No precipitation 0.766 0.994
Not windy & Precipitation 0.074 1.181
Windy & No precipitation 0.148 0.913
Windy & Precipitation 0.012 1.299
Not freezing 0.955 0.990
Freezing 0.045 1.211
Not freezing & No precipitation 0.871 0.975
Not freezing & Precipitation 0.084 1.146
Freezing & No precipitation 0.043 1.101
Freezing & Precipitation 0.003 2.870

interaction. The combined effect of precipitation and freezing temper-
atures results in a risk increase of ∼187%. Meanwhile, the average
marginal increase of the relative risk of bicycle crashes related to either
freezing temperatures or precipitation are ≈20%.

5. Discussion and conclusion

This paper presents the results of applying a Palm distribution
approach for weather and traffic conditions to evaluate bicycle crash
risk. Contrasting earlier work regarding bicycle crash risk (Aldred
et al., 2018; Williams, 2015; Vandenbulcke et al., 2014), this study use
model-based hourly bicycle volume data to overcome the insufficient
monitoring of bicycle traffic while addressing the potential biases
associated with using aggregated cycling data. In light of the possible
confounding effects of weather and time on bicycle ridership and the
risk of crashes, the model for bicycle volume generation reflects the
ridership as a function of weather and various time-dependent events.
In combination with the Palm distribution for risk assessment, this al-
lows us to provide evidence of several external factors being associated
with changes in the relative crash risk of cyclists. In this section, we
will in turn discuss the most interesting results: first the specific results
on weather effects, second the specific results on time effects, third the
results on interactions, and finally we make an overall conclusion on
the results. While many of the results could be transferable to other
countries, it is important to note that our data stem from a highly
developed bicycle culture that is furthermore supported by good bicycle
infrastructure in the study area. Therefore some conclusions could be
context specific and even though we do find similarities in results with
a neighbouring country in Dozza (2017), other countries have less
similarity to our Copenhagen case.

5.1. Weather effects

Some of the results on weather effects align with existing literature,
e.g. temperature and precipitation. Concerning precipitation, previous
findings tie slippery road surfaces to an increase in the number of bicy-
cle crashes (Vanparijs et al., 2016) and car crashes (Malin et al., 2017).
8

The non-linear relation between bicycle crash risk and temperature is
in line with previous findings concerning car crashes. Malyshkina et al.
(2009) found that extreme temperatures (i.e. cold and warm) correlated
with more car crashes. The colder weather could impact the breaking
ability of both cars and cyclists and impair cyclist mobility. The relative
risk change, given air temperature, seems to align with the findings
by Dozza (2017), showing an increased risk of bicycle–motor-vehicle
crashes in the winter months.

The reason for the observed increase in the relative risk of bicycle
crashes at higher wind speeds could be tied to a plethora of reasons.
High wind speeds could impact cyclists’ ability to control their bicycles,
making uncontrolled interactions with motorised traffic more likely.
Meanwhile, the increased risk at low wind speeds is much more difficult
to explain. The elevated risk in these conditions might be tied to
self-selection because less experienced bikers decide to bike in calm
weather, and these riders are more prone to accidents.

Notably, the Palm distribution allows for the identification of an
increased bicycle crash risk given ever-decreasing visibility. The results
related to visibility show that ever-decreasing visibility leads to an
increased relative crash risk. This finding indicates a need for improved
street lighting and making cyclists visible (reflective wear) to avoid the
high risk of collisions in adverse visibility. It is in line with previous
findings suggesting visibility as a significant risk driver in rainy condi-
tions (Andrey and Yagar, 1993). However, it is questionable whether
it is a direct effect of visibility less than 10 km or 4 km that causes
the higher relative risk or whether, the lower visibility is associated,
e.g. with rain, causing more slippery road surfaces. Beyond visibility’s
impact on cyclists’ ability to detect objects and avoid crashes, car
drivers’ ability to see cyclists could be equally impaired. This has also
previously been tied to a higher likelihood of car crashes (Norros et al.,
2016; Yu et al., 2013), as well as more severe injuries (Abdel-Aty et al.,
2011). A recent study also connects low visibility with an increased risk
of severe cyclist injuries in crashes with motorised vehicles (Asgarzadeh
et al., 2018).

5.2. Time effects

Car traffic in Copenhagen peaks in the period 7–9 (TomTom Inter-
national BV, 2021). Meanwhile, cycling traffic peaks at 8–9 (see Fig. 8).
Hence the increased riskiness of bicycle crashes from 7 to 8 that is not
present from 8 to 9 could illustrate safety in numbers (Elvik, 2009; Elvik
and Bjørnskau, 2017). This theory describes the decreasing likelihood
of bicycle crashes involving motorised vehicles when the number of
cyclists increases relative to the number of cars. This effect is nicely
visualised in Aldred et al. (2018). The increased relative risk of bicycle
crashes during the afternoon peak could be related to people being tired
and unfocused on their way home after work, as being tired and sleepy
has previously been linked to increased crash risk (Heaton, 2009; Pack
et al., 1995).

Similar to the results in Dozza (2017), the results in Fig. 7 indicate
vastly different risk profiles when comparing the weekday and weekend
profiles. Therefore, we investigate the relative risk of bicycle crashes as
a function of the daytime conditional on weekdays/weekends. Interest-
ingly, the result on relative risk for weekends (see Fig. 9) correlates
with the times at which the typical Danish bars and bodegas close. As
such, the increase in risk at these hours of the weekend potentially
captures people on their way home from bars being possibly intoxi-
cated. This assessment seems to align with previous findings, relating
intoxication to an increased frequency of bicycle crashes (Møller et al.,
2021; Næss et al., 2020).

Overall, the separation of weekday and weekend provides relevant
insights into cycling riskiness that would easily be overlooked in studies
using aggregated exposure. Comparing the separation of weekday and
weekend risk profiles to the average daytime risk profile highlights
how aggregating our data, as in Fig. 6, can lead to an inference that
hides the heterogeneity seen in the more disaggregate case. As such,
the results concerning the relative risk changes given the hour of the
day on weekdays and weekends illustrate the possible knowledge loss

that can occur when only considering marginal effects.
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5.3. Interactions

The final consideration of the interacting effects is motivated by
bicyclists being more exposed to the environment than cars. Hence,
many potential interaction effects could be present. Exposure to precip-
itation on a bicycle not only impairs visibility and surface grip but also
impairs the cyclist’s mobility. Like cycling in cold weather, cyclists in
rainy weather might take a more compact position on the bike, limiting
their mobility. Several interesting interaction patterns are revealed
in Table 2. For example, cycling in no precipitation during spring is
related to an increased relative risk of bicycle crashes. In contrast,
cycling in precipitation during spring is related to a decreased relative
risk of bicycle crashes. Indeed, this is unexpected if we only consider
the first-order effects of each condition separately. At its core, it is a
rather curious finding that could reflect that many people start cycling
again in the spring, but only in the dry (‘‘good weather’’). Meanwhile,
the more experienced cyclists, who cycle in the winter, will also cycle
in the wet. Hence the lower relative risk of bicycle crashes in spring
and precipitation.

5.4. Conclusion

The Palm approach offers a novel approach to include exposure
into the analysis of bicycle crash risk. It has been previously used on
car crashes. However, the paper illustrates that through proper use of
various data sources, it is possible also to apply the approach to bicycle
crashes. The non-parametric nature of the Palm distribution approach
allows us to identify non-linear effects taking exposure into account.
Finally, it provides a straightforward evaluation of various conditions’
first- and second-order effects on bicycle crash risk. The results show
how various weather and time conditions are significantly associated
with variations in the risk of bicycle crashes. The results related to
the interaction of several conditions reveal the potential of the Palm
distribution to explore interactions. Overall, the non-parametric nature
of the Palm provides a valuable complement to established analysis
methods through its application ease and visual inspection ability
and should be considered for the potential screening of variables and
interaction terms due to its ability to identify non-linear effects in the
exposure-response relations.

Concerning the identified risk changes given time and weather, it is
clear that politicians and city planners cannot influence these circum-
stances directly. However, they can influence the built environment,
lighting, and create awareness campaigns. Like cars having to turn
on their lights in rainy conditions, so could street lamps. The lack
of street lighting has previously been linked to more severe injury
outcomes from bicycle–motor-vehicle crashes (Kim et al., 2007; As-
garzadeh et al., 2018). Resurfacing bicycle lanes could improve braking
ability and friction under wet and freezing conditions. Campaigns for
high-visibility clothing could potentially mitigate the risk of bicycle–
motor-vehicle crashes related to impaired visibility. However, this is
speculation on our part and has not been confirmed in any research
that we know. Vanparijs et al. (2015) notes that earlier studies did not
find any reduction in relative risk from visible clothing. Furthermore,
a reduction of car speed limits under inclement weather (rain, low
visibility) and peak traffic hours could potentially help mitigate the
risk of crashes and has previously been linked to a lower cycling injury
risk (Aldred et al., 2018).

6. Limitations and future work

6.1. Heterogeneity

Previous research on accident risks has analysed several important
dimensions related to bicycle crash risk, e.g. age and gender (Dozza,
2017; Useche et al., 2018b). However, our bicycle flow data do not
include these dimensions, making it impossible to analyse this type of
9

heterogeneity in the present research, similarly for unobserved hetero-
geneity. The Palm distribution is not set up to account for heterogeneity
arising from unobserved differences in cyclists. An example of such
unobserved heterogeneity could be heterogeneous ridership. Adverse
weather not only impacts the ridership levels but potentially also the
composition of the ridership in terms of age and gender distribution,
experience, and risk-seeking behaviour. Using the current approach for
estimating bicycle volumes does not control for these variations. This
connects to the general issue of self-selectivity, as the relative risk pro-
files might change with the composition of the ridership. For example,
the riskiest riders could continue riding in adverse weather. As such,
the increased risk at low temperatures is potentially not only due to
weather effects (decreased friction, impaired cyclists) but due to the
riders in cold weather having fundamentally higher crash rates relative
to the overall riding population (Mannering et al., 2020). Meanwhile,
the cyclists cycling in the colder weather could equally be the riders
who ride all year and are, therefore, the most proficient cyclists. Also,
almost 90% of the crashes occur in collision with motorised vehicles,
which are the specific transport being discussed in Mannering et al.
(2020) and the increased crash risk in adverse weather, could be
entirely the fault of risky motorised vehicle drivers. For example, the
increased riskiness of bicycle crashes in adverse weather such as <0 ◦C
is most likely a combination of factors like decreased friction, lower
rider performance and the increased proportion of risky drivers and
cyclists. Similarly, self-selection could play a role in the results related
to the Spring season, calm wind conditions, and weekend nights at 1
and 4.

6.2. Police recorded bicycle crashes

The use of police records for performing the risk analysis of bi-
cycle crashes leaves much to be desired in reporting. Police records
are severely prone to under-reporting of bicycle crashes (Janstrup
et al., 2016). The under-reporting is especially severe for single-bicycle
crashes, which is important as these tend to make up 50% or more
of the bicycle crashes recorded at emergency departments in Den-
mark (Myhrmann et al., 2021; Danmarks Statistik, 2021). When com-
paring the crash risk patterns for single-bicycle crashes and collisions
with motorised vehicles, it becomes clear that there are different crash-
time distributions. Hence, future studies should consider other more
representative data sources, e.g. emergency department data.

6.3. Further research

The limitations above highlight relevant topics for further research.
The first topic would be to include rider heterogeneity in the modelling.
Here it will be a barrier that bike flow data is necessary to correct for
exposure. These flow data will be difficult to collect together with socio-
demographic information and indicators of risky cyclists. Therefore
it necessitates a combined effort of modelling and data collection
advances to gain knowledge about heterogeneity in the bike flows.
However, given heterogeneous flow data, the Palm approach would
allow for the inclusion of additional dimensions into the analysis of
factors leading to higher bicycle crash risk. Other factors that more
easily could be included in future studies would be information on
bicycle infrastructure. In the current data, these were not available,
but it should be possible to include them in future work, which would
allow for an investigation of interaction effects between infrastructure
and weather.
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