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Abstract

Adhesion G protein-coupled receptors (aGPCRs) constitute the second largest

subclass of the GPCR superfamily. Although canonical GPCRs are explored

pharmacologically as drug targets, no clinically approved drugs target the

aGPCR family so far. The aGPCR GPR56/ADGRG1 stands out as an especially

promising target, given its direct link to the monogenetic disease bilateral fron-

toparietal polymicrogyria and implications in cancers. Key to understanding

GPCR pharmacology has been mapping out intracellular signalling activity.

Detection of GPCR signalling in the Gαs/Gαi/Gαq G protein pathways is feasi-

ble with second messenger detection systems. However, in the case of Gα12/13-
coupled receptors, like GPR56, signalling detection is more challenging due to

the lack of direct second messenger generation. To overcome this challenge,

we engineered a Gαq chimera to translate Gα12/13 signalling. We show the abil-

ity of the chimeric GαΔ6q12myr and GαΔ6q13myr to translate basal Gα12/13 signal-
ling of GPR56 to a Gαq readout in transcription factor luciferase reporter

systems and show that the established peptide ligands (P7 and P19) function

to enhance this signal. We further demonstrate the ability to directly influence

the generation of second messengers in inositol-3-phosphate assays. In the

future, these chimeric G proteins could facilitate basic functional studies, drug

screenings and deorphanization of other aGPCRs.

KEYWORD S
drug discovery and development, G protein chimeras, G protein-coupled 7TM receptors,
outcome measures, Type II: adhesion GPCRs

1 | INTRODUCTION

With 33 members, the adhesion G protein-coupled recep-
tors (aGPCRs) constitute the second-largest subclass
(class B2) of endogenous GPCRs, only proceeded by
class A.1 aGPCRs share structural features with the other
GPCR families, including the seven transmembrane

spanning (7TM) helix core. Approximately 35% of all
approved drugs target GPCRs, typically the binding
pocket of the 7TM core, however despite growing interest
in also exploiting aGPCRs in a similar approach,2–4 cur-
rently no drugs have been approved for this subclass.
GPR56/ADGRG1 is especially intriguing, as it is one of
few aGPCRs with a known causative role in a
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monogenetic human disease, namely, bilateral frontopar-
ietal polymicrogyria (BFPP), an autosomal recessive dis-
order affecting brain development.5-8 Various GPR56
mutations that result in impaired receptor functionality,
including sub-cellular trafficking, protein expression and
auto-proteolysis have been associated with BFPP pathol-
ogy.6,7,9 Moreover, GPR56 is strongly associated with can-
cer and has been proposed as a novel immune checkpoint,
rendering it an attractive therapeutic target.10–12 Depen-
dent on the cancer type, GPR56 was described to be
tumour-suppressive or tumour-promoting.11 Although the
molecular mechanisms can be distinct in different cancers,
GPR56 activation, for example by collagen-III in breast
cancer metastasis or by progastrin in colorectal cancer was
described to induce tumour-promoting effects.13,14 On the
contrary, transglutaminase-2 (TG-2) binding to GPR56
stimulated receptor endocytosis and TG-2 degradation,
antagonizing melanoma cell metastasis.15 Based on the
distinct functions of GPR56 in cancer, the administration
of both agonistic and antagonistic ligands targeting recep-
tor interactions or receptor signalling capabilities could be
therapeutically relevant, dependent on the cancer type.
GPR56 contains an aGPCR proteolytic site (GPS) in its
extracellular GPCR autoproteolysis-inducing (GAIN)
domain, at which the receptor is autoproteolytically
cleaved into two fragments: the N terminal fragment
(NTF) and the C terminal fragment (CTF) that stay
non-covalently associated.7,16 The obligated cleaved
GPR56-CTF displays a considerably higher constitutive
activity compared to full-length (FL) GPR56, as it lacks
negative regulation by the NTF,17,18 and may resemble the
activated receptor construct.16,19

GPCRs can couple to the α subunit of the heterotri-
meric G protein from the four different subfamilies Gαs,
Gαi/o, Gαq/11 and Gα12/13, leading to the activation of dis-
tinct signalling pathways.20 Stimulation of the G protein
subunits Gαs, Gαi/o and Gαq/11 all influence the genera-
tion of second messengers (cAMP for Gαs and Gαi/o; IP3
and Ca2+ for Gαq/11), enabling a robust detection of
GPCR activity immediately downstream of the receptor
due to the strong and rapid signal amplification for Gαs
and Gαq, respectively and inhibition for Gαi/o.21 Activa-
tion of these second messengers can be detected using
cAMP bioluminescence resonance energy transfer-based
CAMYEL (cAMP sensor using YFP-Epac-Rluc) sensors
or protein/dye-based Ca2+ sensors,22 such as GCaMP or
Fura-2 which enable the detection of rapidly increasing
signals that gets highly amplified.23

Although Gαi/o signalling can be monitored using
cAMP-dependent pathway readouts, advances have been
made to redirect Gαi/o to Gαq/11 signalling, enabling a
more refined activity assessment with an increased
dynamic range of detection.24 Research on the receptor-G

protein interaction has shown the C-terminal amino
acids and linker of the Gα subunits to be critical for cou-
pling specificity.25–27 These findings prompted the
creation of chimeric Gαqi proteins, in which the last six
C-terminal amino acids of Gαq, determining receptor
specificity, are substituted with those corresponding to
Gαi. Chimeric Gαqi proteins thereby effectively translate
Gαi signalling into a more robustly detectable Gαq read-
out due to the rapid and strong generation of the second
messengers IP3 and Ca2+.24,28,29 Subsequent successful
large-scale screenings and chimera generations allowed
for testing a panel of chimeras across different GPCRs.30

Contrarily to the other G protein pathways, Gα12/13 sig-
nalling is more challenging to detect because of the lack of
an immediate effect on second messenger generation.31

Gα12/13-mediated signalling regulates Rho GEF family pro-
teins, which triggers the activation of Rho family GTPases
mediating downstream signalling responses.31 Transcrip-
tion factors activated further downstream in Gα12/13 sig-
nalling, including serum response element (SRE) and
myocyte enhancer factor 2, have been exploited as path-
way activation readouts.32,33 SRE-based systems have pre-
viously been used to investigate GPR56 which is signalling
mainly through the Gα12/13 signalling pathways,34

amongst others by Stoveken et al. who identified an antag-
onist (dihydromunduletone) and a partial agonist (3-a-
acetoxydihydrodeoxygedunin) in an SRE transcription
factor-based screening.35,36 These compounds were used in
follow-up studies investigating GPR56 biology, highlight-
ing the potential use of the discovery of novel compounds
acting on this receptor.35,37,38 While SRE-based systems
offer a simple tool for screening for Gα12/13-mediated
receptor activity, they have the disadvantage of a lower sig-
nalling amplification compared to the highly amplifying
second messenger-based assay systems. Additionally, sec-
ond messengers are generated from precursor molecules
that are abundant in the cell. Thus, their generation is not
rate-limiting and can be performed in a shorter period.39

To overcome the limitations of SRE-based assay sys-
tems for GPR56, and inspired by previous work, we gen-
erated two novel chimeric G proteins by engineering the
Gαq subunit to include the receptor binding motif of Gα12
and Gα13, respectively, as well as a myristoylation site
(myr) to further enhance the membrane anchoring.24,30

With these chimeras (GαΔ6q12myr and GαΔ6q13myr), GPR56
signalling can be re-routed from Gα12/13 to Gαq signal-
ling, allowing a more robust signal amplification. Thus,
the co-transfection with the chimeric G proteins could
offer a benefit in enhancing a subtle receptor activity and
providing a more direct and upstream signalling readout,
since GPCR signalling is shown to involve crosstalk
downstream of second messengers between the different
G protein signalling pathways.40,41
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Because luciferase-based transcription factor assays
have been used to screen GPR56 in previous studies,35,36

we applied them in our initial assessments of the new
chimeras. We show the ability of GαΔ6q12myr and
GαΔ6q13myr to translate basal and peptide-induced GPR56
Gα12/13 activation to Gαq signalling readouts in nuclear
factor of activated T cells (NFAT) transcription factor
luciferase assay,42 and further to direct second messenger
generation in an IP3 accumulation assay.

A Gα12/13-to-Gαq readout assay could advance the
understanding of signalling and physiological functions
for Gα12/13 aGPCRs, and potentially improve pharmaceu-
tical screenings, and as such our approach adds another
option to the toolbox for testing both GPR56 signalling
and other adhesion GPCRs known to signal in the
Gα12/13 pathway.

2 | MATERIALS AND METHODS

The study was conducted in accordance with the Basic &
Clinical Pharmacology & Toxicology policy for experi-
mental and clinical studies.43

2.1 | Cell culture and transfection

HEK293T cells (ATCC #CRL-3216, HEKT), HEK293
parental cells (ATCC #CRL-1573, WT) and HEK293 G
protein KO cells44 (KO) that lack Gαs, Gαolf, Gαz, Gαq,
Gα11, Gα12 and Gα13—but not Gαi/o—were used in this
study. All cells were cultured in DMEM (1X)
+ GlutaMAX™-I (Gibco®), supplemented with 10% fetal
bovine serum (FBS, Sigma-Aldrich®) and 1% Penicillin
+ Streptomycin (P/S; Substrate department, University of
Copenhagen) at 5% CO2, 95% humidity, at 37�C. Trans-
fection of all cells was performed by lipofection using
Lipofectamine 2000® (Invitrogen, Carlsbad, CA) as
described previously.45

2.2 | Reagents

Human wild-type C-terminally Myc and FLAG-tagged
FL GPR56 cDNA was cloned into the expression vector
pCMV6. Generation of the N-terminal deletion mutant
GPR56-CTF (Δ2-382) was performed by GenScript
Europe (Rijswijk, Netherlands). The mutant GPR56-CTF
GPR56-A386M was generated using restriction cloning.
GPR56-A386M cDNA was amplified by PCR using the
primers 50-CATCATGGTACCATGGTGCTGATGGTCTC
CTCGGTG-30 and 50-ATATAAAGCGGCCGCGTACG
CGTGATG-30 containing a KpnI or NotI restriction site,

respectively. After digestion, cDNA was ligated into
pCMV6. The chimeric G protein GαΔ6qi4myr was kindly
provided by Evi Kostenis. Mutations of GαΔ6qi4myr were
carried out by GenScript (Rijswijk, Netherlands). For the
generation of GαΔ6q12myr, the last four C-terminal amino
acids of GαΔ6qi4myr (CGLF) were substituted with the last
four C-terminal amino acids corresponding to Gα12
(IMLQ). Similarly, for the generation of GαΔ6q13myr, the last
four C-terminal amino acids of GαΔ6qi4myr (CGLF) were
substituted with the last four C-terminal amino acids corre-
sponding to Gα13 (LMLQ). All mutations were verified by
sequencing performed by Eurofins Danmark (Galten,
Denmark). Luciferase reporter vectors pGL3-NFAT-Luc,
pGL3-SRE-Luc and pFA-CRE/pFR-Luc were purchased
from Stratagene (Amsterdam, Netherlands).

GPR56 peptide ligands were synthesized in the labo-
ratory of Katrine Qvortrup (Technical University of
Denmark) according to the sequences of P7 (TYFAVLM-
NH2) and P19 (TYFAVLMQLSPALVPAELL-NH2), previ-
ously published by Stoveken et al. and Wilde et al.35,46,47

Peptides were dissolved in dimethylsulfoxide (DMSO) to
a stock concentration of 10 mM.

2.3 | Luciferase transcription factor
reporter assays

For all luciferase assays, cells were seeded in poly-D-
Lysine-coated (Sigma-Aldrich) white 96-well plates,
3.5*104 per well (Greiner bio-one), incubated overnight
and transfected the next day using lipofection.45 For trans-
fection, gene doses (0–5 ng plasmid DNA) of the receptors
(GPR56-FL/GPR56-CTF) were transfected with 50 ng of
the respective luciferase reporter and with/without 15 ng
G protein chimera per well. For endothelin A (ETA),
0/30 ng of plasmid DNA were transfected with/without
15 ng G protein chimera per well. Five hours post-
transfection the medium was replaced with growth
medium and supplemented with 10% heat-inactivated FBS
and 1% P/S for NFAT and cAMP response element (CRE)
assays or serum-free growth medium with 1% P/S for SRE
assays and incubated for 18 h. For ligand stimulation
experiments of GPR56, 100 μL growth medium containing
20 μM of the respective peptide ligand was incubated for
2 h. After 2 h, 50 μL growth medium containing 20 μM
peptide ligand was added on top of the growth medium
and incubated for 4 h, as described in previous studies.35

For ligand stimulation experiments of ETA, 100 μL growth
medium containing 100 nM of endothelin-1 (ET-1) was
incubated for 6 h. The final DMSO concentrations did not
exceed 1% of the total medium volume. The culture
medium was aspirated 18 h post-transfection and each
well was washed with 100 μL phosphate-buffered saline
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(PBS). Subsequently, 100 μL of a 1:1 Steadylite plus sub-
strate (PerkinElmer®)-PBS solution was added and cells
were incubated in the dark for 30 min at room tempera-
ture. Luminescence was read with an EnVision Multilabel
reader (model 2104, PerkinElmer).

2.4 | IP3 accumulation assay

For all IP3 accumulation assays, cells were seeded in
poly-D-Lysine-coated (Sigma-Aldrich) clear 96-well
plates, 3.5*104 per well (Greiner bio-one), incubated over-
night and transfected the next day using lipofection.45

For transfection, gene doses (0–5 ng plasmid DNA) of the
receptors (GPR56- FL/GPR56-CTF) were transfected
with/without 15 ng G protein chimera per well. For ETA,
0/30 ng of plasmid DNA were transfected with/without
15 ng G protein chimera per well. The IP3 accumulation
assays were performed as described previously.48 Briefly,
the culture medium was aspirated 24 h post-transfection
and replaced with 100 μL growth medium containing
0.5 μL of 1 mCi/mL myo-[2-3H(N)]-inositol
(NET114A005MC, PerkinElmer) and incubated overnight
at 5% CO2, 95% humidity, at 37�C. After 24 h incubation,
the medium was aspirated and wells were washed twice
with Hanks’ Balanced Salt Solution (HBSS, Gibco). For
GPR56/chimera co-expression experiments, 100 μL HBSS
assay buffer containing 10 mM LiCl was added to each
well and incubated for 90 min. For ligand stimulation
experiments of ETA, 100 μL assay buffer containing
100 nM of the ET-1 was incubated for 90 min. The final
DMSO concentrations did not exceed 1% of the total
medium volume. After the incubation, plates were put on
ice, assay medium was aspirated and cells were lysed
using 40 μL of 10 mM formic acid for 30–60 min. Hereaf-
ter, 35 μL of the lysate were transferred to a new white
96-well plate and 60 μL of 12.5 mg/mL SPA-YSi
(PerkinElmer) bead solution was added. Plates were
sealed and shaken thoroughly for 30 min. Afterwards,
plates were spun down at 1500 rpm for 5 min and radio-
activity was measured using MicroBeta2® (2450-0060,
PerkinElmer) with an 8 h delay.

2.5 | Quantification and statistical
analysis

For all signalling assays, three to seven independent
experiments were performed each in triplicates. Data are
depicted as the mean of the replicates ± standard error of
means (SEM). All data analysis was performed using
GraphPad Prism version 9.4.1 using t-test or ANOVA.
p values < 0.05 were considered statistically significant.

3 | RESULTS

3.1 | Generation of GαΔ6q12myr and
GαΔ6q13myr chimeras

The two chimeric G proteins, GαΔ6q12myr and GαΔ6q13myr,
were generated on the basis of the chimeric G protein
GαΔ6qi4myr. GαΔ6qi4myr is a Gαi-to-Gαq G protein chimera,
which has the last six Gαq residues deleted and the
binding-determining Gαi residues (CGLF) inserted,
harbours a myristoylation (G201-R208; sequence
GGQRSERR),49 and has been widely used in redirecting
G protein signalling.24,28,29 For the Gα12-to-Gαq signalling
re-directing GαΔ6q12myr, the last four C-terminal amino
acids of GαΔ6qi4myr (CGLF) were substituted with the cor-
responding four C-terminal amino acids of Gα12 (IMLQ)
(Figure 1A). Accordingly, for Gα13 the last four
C-terminal amino acids of GαΔ6qi4myr (CGLF) were
substituted with the corresponding four C-terminal
amino acids of Gα13 (LMLQ) to obtain the chimeric G
protein GαΔ6q13myr (Figure 1A).

24,30 These C-terminal resi-
dues of the Gα subunits have previously been reported to
be significant for receptor specificity and G protein activa-
tion.25,26,50–52 The expected outcome of the substitutions
was a redirection of the canonical Gα12/13 signalling to
Gαq signalling for Gα12/13-coupled GPCRs (Figure 1B).

3.2 | GPR56-CTF, but not GPR56-FL
activates NFAT signalling pathway

We first assessed the signalling of FL human GPR56
(GPR56-FL) and GPR56-CTF (Δ2-382), a receptor con-
struct truncated at the GPS-cleavage site and thus lacking
the entire NTF.46 For a handful of receptors, it has previ-
ously been established that truncating aGPCRs at the
GPS site led to enhanced signalling activity17,53 and that
the peptide stretches directly following the GPS site
towards the TM1 region can act as a tethered agonist to
activate the receptor,19 thus the CTF construct may
resemble an activated receptor construct.16,19

To test that both FL and CTF constructs were func-
tional, we assessed the signalling in HEK293T cells using
a panel of transcription factor luciferase assays as done
previously.17,53 We used NFAT which is reported to read
out mainly in Gαq, SRE which is reported to read out
mainly in Gα12/13, and CRE which is reported to readout
mainly in Gαs/i/q, (Figure 1C–E).48

While no significant basal NFAT activity was
observed for GPR56-FL, increasing concentrations of
GPR56-CTF receptor cDNA resulted in signalling activity
in NFAT, reaching a maximum of 1.8-fold over the cellu-
lar baseline (Figure 1C). In SRE, expression of FL and
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CTF constructs resulted in increased signalling activity
with GPR56-FL reaching a maximum of 1.5-fold and
GPR56-CTF reaching a maximum of 4-fold over the cel-
lular baseline (Figure 1D). As expected, no significant sig-
nalling activity in CRE was observed for GPR56-FL or
GPR56-CTF (Figure 1E), showing that both FL and CTF
constructs are functional and suitable for testing the G
protein chimeras.

3.3 | GαΔ6q12myr and GαΔ6q13myr redirect
GPR56 signalling through Gα12/13 to a Gαq
readout

The ability of GαΔ6q12myr and GαΔ6q13myr to redirect
signalling was first verified using a HEK293 knockout
(KO) cell line lacking Gαs, Gαolf, Gαz, Gαq, Gα11, Gα12
and Gα13—but not Gαi/o—using the class A ETA

F I GURE 1 Generation of chimeric G proteins GαΔ6q12myr and GαΔ6q13myr for redirecting GPR56 signalling. (A) Sequence alignment of

the N-terminal, linker, and C-terminal amino acid sequences of wild-type (black) and mutant (red) Gα subunits. Gaps (���) were introduced
for optimal sequence alignment. GαΔ6qi4myr, GαΔ6q12myr and GαΔ6q13myr denote mutant Gαq constructs in which the four C-terminal amino

acids are replaced with the corresponding Gαi (GαΔ6qi4myr), Gα12 (GαΔ6q12myr) or Gα13 (GαΔ6q13myr) sequence, respectively, with substituted

residues being highlighted bold. The single-letter amino acid code is used. Structure of Gαq from AlphaFold with denoted N and C-terminus.

(B) Cartoon outlining the principle of the Gα12/13-to-Gαq signalling redirection of a Gα12/13-coupled G protein-coupled receptor (GPCR)

using the chimeric G proteins. Image created with BioRender.com. (C–E) Gene dose-dependent basal signalling of GPR56-full-length
(GPR56-FL) and GPR56-C terminal fragment (GPR56-CTF) in (C) nuclear factor of activated T cells (NFAT), (D) serum response element

(SRE) and (E) cAMP response element (CRE) luciferase reporter assays in HEK293T cells (HEKT). Data in (C–E) represent means

normalized as fold change over baseline (empty vector) ± standard error of means (SEM) of five to six independent experiments, each

performed in triplicates.
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receptor (Figure 2A–D).44,54 We chose ETA as a control
because it displayed a strong ligand-dependent Gα12/13
signalling activation in previous studies using a similar
approach.55 In the KO cell line, lacking the relevant
Gα subunits, we observed robust ligand-dependent
ETA signalling in both SRE transcription and IP3 accu-
mulation readouts (Figure 2B,D) only in conditions

with GαΔ6q12myr and GαΔ6q13myr co-transfection, estab-
lishing that both chimeras were able to redirect
signalling.

Having established that GαΔ6q12myr or GαΔ6q13myr

functioned to generate a Gαq rerouting signalling
response, we next tested the signalling redirection for
GPR56-FL and GPR56-CTF in HEK293T cells using a

F I GURE 2 Signalling redirection using chimeric G proteins. (A–B) Basal (light grey) and endothelin-1 (ET-1) agonist-induced (dark

grey) signalling of endothelin A (ETA) in serum response element (SRE) in (B) HEK293 wild type (WT) cells and (B) HEK293 G protein

knockout (KO) cells without/with GαΔ6q12myr/GαΔ6q13myr/Gαq as fold change over baseline (empty vector). n = 7. (C–D) Basal (light grey)
and ET-1-induced (dark grey) effect of ETA on IP3 turnover in (C) HEK293 WT cells and (D) HEK293 G protein KO cells without/with

GαΔ6q12myr/GαΔ6q13myr/Gαq as fold change over baseline (empty vector). n = 4–6. (E–G) Gene dose-dependent signalling of GPR56-full-
length (GPR56-FL) without (grey circles) or with (light orange circles) GαΔ6q12myr and of GPR56-C terminal fragment (GPR56-CTF) without

(black triangles) or with (dark orange triangles) GαΔ6q12myr in (E) nuclear factor of activated T cells (NFAT), (F) SRE and (G) cAMP response

element (CRE) luciferase reporter assays in HEK293T cells (HEKT). (H–J) Gene dose-dependent signalling of GPR56-FL without (grey

circles) or with (light blue circles) GαΔ6q13myr and of GPR56-CTF in without (black triangles) or with (dark blue triangles) GαΔ6q13myr in

(H) NFAT, (I) SRE and (J) CRE luciferase reporter assays in HEK293T cells (HEKT). (E–J) Depicted basal signalling profiles for GPR56-FL

(grey circles) and GPR56-CTF (black triangles) are reprinted data from Figure 1. Data in (A–J) represent means normalized as fold change

over baseline (empty vector) ± standard error of means (SEM) of 4–7 independent experiments, each performed in triplicates. Unpaired t-

tests were performed for comparison of experimental conditions with baseline signalling control (empty vector). (*p ≤ 0.005; **p ≤ 0.002;

***p ≤ 0.0001; ****p < 0.0001).

FAAS ET AL. 383

 17427843, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/bcpt.13935 by D

anish T
echnical K

now
ledge, W

iley O
nline L

ibrary on [10/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



panel of transcription factor luciferase assays
(Figure 2E–J). Increasing concentrations of GPR56-FL
co-transfected with GαΔ6q12myr resulted in a significant
increase of NFAT activity, reaching a maximum of
2.8-fold over baseline (Figure 2E). For GPR56-CTF, co-
transfection with GαΔ6q12myr also resulted in a significant
increase in NFAT activity, reaching a maximum of
5.2-fold over baseline (Figure 2E). In SRE (Figure 2F)
and CRE (Figure 2G), neither co-transfection of
GPR56-FL nor GPR56-CTF with GαΔ6q12myr had a signifi-
cant effect on signalling.

GPR56-FL co-transfection with GαΔ6q13myr, resulted
in a significant increase in NFAT activity with increasing
receptor cDNA, reaching a maximum of 1.8-fold over cel-
lular baseline (Figure 2H), whereas co-transfection of
GPR56-CTF displayed only a tendency for an increase.
While co-transfection of GPR56-FL with GαΔ6q13myr had
no measurable effect in SRE, a significant signalling
increase mediated by the chimeras was observed for
increasing receptor amounts of GPR56-CTF with
GαΔ6q13myr (Figure 2I). No strong signalling-enhancing
effect was observed in CRE. However, in the presence of
GαΔ6q13myr, GPR56-FL signalling was kept at a constant
level above cellular baseline signalling, while basal
GPR56-FL signalling in the absence of the chimeras was
decreasing (Figure 2J).

In summary, the two chimeras increased the NFAT
activity of both GPR56-FL and GPR56-CTF. In both
cases, GαΔ6q12myr elicited a greater increase over control
than GαΔ6q13myr. Signalling in SRE was not altered for
GPR56-FL, while it was significantly enhanced
for GPR56-CTF with GαΔ6q13myr, demonstrating the feasi-
bility of redirecting GPR56-FL and CTF Gα12/13 activity
to Gαq signalling using chimeric G proteins.

Next, we examined the ability of peptide ligands to
further enhance the GαΔ6q12myr/GαΔ6q13myr signalling
redirection in NFAT using the HEK293 G protein KO
cells. Previous studies established the synthetic
GPR56-activating peptide ligands P7 (TYFAVLM-NH2),
mimicking the GPR56 tethered agonist (Figure 3A),35,46,47

and P19 (TYFAVLMQLSPALVPAELL-NH2) which origi-
nally was developed for activating GPR114/ADGRG5, but
shares the conserved tethered agonist sequence with
GPR5647 and displayed greater GPR56-CTF receptor acti-
vation compared to P7.35

For GPR56-FL, stimulation with 20 μM P7 and P19 in
the presence of GαΔ6q12myr and GαΔ6q13myr resulted in a
receptor-dependent increase over the vehicle-treated
baseline (Figure 3B). For GPR56-CTF, we observe a simi-
lar trend for P19 treatment with GαΔ6q12myr (Figure 3C).
In the controls without receptor co-transfection treat-
ment with 20 μM P7 or P19 did not result in an increase
for GαΔ6q12myr, while P19 showed a slight increase in the

presence of GαΔ6q13myr (Figure 3D). Ratio paired t-tests
were performed on the raw NFAT data (data not shown)
and showed a significant signal increase upon peptide
stimulation for GPR56-FL with both GαΔ6q12myr with P7
(p = 0.0246), or P19 (p = 0.0133), and GαΔ6q13myr with

F I GURE 3 Legend on next page.
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P7 (p = 0.0427), or P19 (p = 0.0133). For GPR56-CTF
and the no receptor control, the observed differences
were not statistically significant. For all receptors and
treatments, no signal activation was observed in any of
the conditions co-transfected with Gαq, indicating
GαΔ12/13-chimera specificity.

Finally, we sought to establish whether the chimeras
directly affect the second messenger generation. We
assessed the basal effect of GPR56 co-transfection with
GαΔ6q12myr in IP3 accumulation assays in HEK293 G pro-
tein KO cells (Figure 4A). Since GαΔ6q12myr displayed a
greater increase in the transcription factor assays, we
decided to focus on this chimera for investigating IP3
accumulation. Increasing concentrations of GPR56-FL
co-transfected with GαΔ6q12myr resulted in a significant
increase in IP3-turnover, reaching a maximum of 1.3-fold
over baseline (Figure 4B). Additionally, we tested the
basal IP3 accumulation of GPR56-CTF and
GPR56-A386M. GPR56-A386M resembles a CTF con-
struct where the first three residues of the tethered ago-
nist (T, Y, F) are deleted, and A386 is substituted for an
initiator methionine. This construct shows particularly
low constitutive activity as previously described by
Stoveken et al.35,46

While the absence of exogenous G proteins did not
induce an immediate IP3 response (Figure 4C), co-
transfection of GPR56-CTF with GαΔ6q12myr resulted in a

significant increase in IP3 accumulation compared to no
receptor control and low activity GPR56-A386M
(Figure 4D). Co-transfection with GαΔ6q13myr or Gαq did
not induce any significant IP3 responses (Figure 4E,F),
indicating that for GPR56 the GαΔ6q12myr chimera is more
suited for detection of IP3 generation. These results con-
firm the direct Gα12/13-to-Gαq signalling redirection of
GαΔ6q12myr, for GPR56 and GPR56-CTF. In the future,
experiments are required to explore the more acute
effects and kinetics of the ligand-activated receptor sig-
nalling on IP3 turnover in the presence of G protein
chimeras.

4 | DISCUSSION

By developing and studying the two novel chimeric G
proteins GαΔ6q12myr and GαΔ6q13myr, we here highlight
their use in fundamental receptor research for Gα12/13-
coupled adhesion GPCRs. We were focusing on GPR56
which resembles an attractive therapeutic target given its
association with cancer and its causative role in the
brain-affecting disorder BFPP.6,11,56 Previous studies eval-
uating GPR56 signalling have used SRE and NFAT-based
luciferase reporters, GTPγS binding assays, Rho-
pulldown assays and β-arrestin assays.16,46,53,57,58 Espe-
cially SRE reporter assays have proven useful for the
identification of GPR56-targeting small molecules.35,36

Since luciferase reporter gene assays provide a feasible
and scalable tool for GPCR activity detection with docu-
mented success in compound discovery, they were used
in this study as a first step to evaluate chimeric G protein
signalling-redirection. When we applied GαΔ6q12myr and
GαΔ6q13myr to transcription factor luciferase assays with
the Gα12/13-coupled adhesion receptor GPR56-FL and the
truncated GPR56-CTF, we were able to demonstrate their
Gα12/13-to-Gαq signalling-redirecting.

Gαqs/i/o chimeric G proteins have been used in adhe-
sion GPCR research for a handful of receptors.47,59–65

However, to date, no screenings for class B2 GPCRs with
G protein chimeras have been performed using Gα12/13-
to-Gαq chimeras. We showed the basal signalling redirec-
tion for GPR56-FL and GPR56-CTF in NFAT, where
GαΔ6q12myr displayed a stronger redirection capability
than GαΔ6q13myr. Interestingly for the ETA receptor, both
chimeras displayed comparable re-routing abilities in
SRE, suggesting that the effect of the chimeric G proteins
on signalling redirection could vary across different
Gα12/13-coupled receptors.

While previous studies have evaluated the effect of
stimulating GPR56 with peptide agonists predominantly
in GTPγS binding assays and SRE-based transcription
factor assays,35,46 we demonstrated their effect using the

F I GURE 3 Peptide-activated signalling redirection.

(A) Schematic of the tethered agonist region (bold black) of

GPR56-full-length (GPR56-FL) and GPR56-C terminal fragment

(GPR56-CTF) in comparison with the synthetic peptide ligands P7

and P19. Displayed is the amino acid sequence between N terminal

fragment (NTF) and transmembrane helix 1 (TM1). The arrow

indicates the GPCR proteolytic site (GPS) of GPR56-FL and the

artificially inserted methionine for GPR56-CTF is displayed in red.

(B) Bar charts represent the difference (Δ) of nuclear factor of
activated T cells (NFAT) signalling activation of GPR56-FL

compared to vehicle (Veh; circles) for 20 μM P7 (triangles) or

20 μM P19-treated (squares) conditions in the presence of

GαΔ6q12myr (orange), GαΔ6q13myr (blue) or Gαq (cyan). (C) Bar charts
represent the difference (Δ) of NFAT signalling activation of

GPR56-CTF compared to vehicle (Veh; circles) for 20 μM P7

(triangles) or 20 μM P19-treated (squares) conditions in the

presence of GαΔ6q12myr (orange), GαΔ6q13myr (blue) or Gαq (cyan).
(D) Bar charts represent the difference (Δ) of NFAT signalling

activation of the no receptor control compared to vehicle (Veh;

circles) for 20 μM P7 (triangles) or 20 μM P19-treated (squares)

conditions in the presence of GαΔ6q12myr (orange), GαΔ6q13myr

(blue) or Gαq (cyan). Data in (B–D) represent means normalized as

difference (Δ) to baseline (respective vehicle treatment) ± standard

error of means (SEM) of three independent experiments, each

performed in triplicates.
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chimeric G proteins in NFAT-based assays. For
GPR56-FL with GαΔ6q12myr, we observe a signalling
increase over receptor control that is slightly higher for
P19 compared to P7. The stronger activation of
GPR56-CTF with P19 is in line with previous work by
Stoveken and colleagues that showed a roughly 1.5-fold
increase of P19 stimulation over P7 stimulation for the
related GPR56 A386M CTF construct.35 While GPR56-FL
was lacking the ability to be activated on membranes
using P7 in GTPγS binding assays, other studies have

reported signalling activation of GPR56-FL by the P7 pep-
tide in BRET-based assays in HEK293 cells,66 and activa-
tion of Ca2+ signalling in MIN6 mouse pancreatic beta
cells.67 Additionally, murine GPR56-FL could be acti-
vated by the GPR56/GPR114 peptide ligand P19,68 and
administration of P7 or P19 resulted in GPR56-mediated
antidepressant-like effects in mice and upregulated
related signalling pathways.69

Interestingly, treatment with P19 in GαΔ6q13myr-
transfected cells resulted in a slight signalling activation in

F I GURE 4 Redirection of GPR56 signalling to an IP3 readout. (A) Schematic principle of GPR56 signalling redirection to IP3
accumulation assay using GαΔ6q12myr. (B) Gene dose-dependent IP3 turnover of GPR56-full-length (GPR56-FL) in the absence (grey circles)

or presence (orange circles) of GαΔ6q12myr normalized to the no receptor control. Data represent means normalized as fold change over

baseline (empty vector) ± standard error of means (SEM) of four independent experiments, each performed in triplicates. (C–F). Bar charts
represent the difference (Δ) of counts to (C) baseline (light grey) IP3 turnover of no receptor (dark grey), GPR56-A386M (A386M; blue) and

GPR56-CTF (CTF; orange) for (C) no G protein, (D) GαΔ6q12myr, (E) GαΔ6q13myr and (F) Gαq. (C–F) Data represent means normalized

difference (Δ) of counts to baseline (empty vector with no G proteins) ± SEM of three independent experiments, each performed in

triplicates. (B–F). Unpaired t-tests were performed for comparison of experimental conditions. (*p ≤ 0.005; **p ≤ 0.002; ***p ≤ 0.001;

****p < 0.0001).
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the absence of GPR56. The peptide ligands used in this
study resemble the tethered agonist sequence that is
highly conserved across the whole aGPCR family, with
the amino acid consensus sequence being
TXFAVLMXX.46,70 GPR56 shares the tethered agonist
sequence with GPR114 (TYFAVLM) and displays strong
sequence homology with GPR128, LPHN1, LPHN3 (all
TNFAVLM), LPHN2 (TNFAILM), and CELSR2
(TSFAVLM).70 Peptide stimulation of aGPCRs was
reported to activate receptors in the same subfamily, as
well as across subfamilies.61 While HEK293 aGPCR
expression studies found no endogenous expression of
GPR56, a slight expression of GPR114 and expression
of CELSR2, LPHN2 and LPHN3 was detected.71 Therefore,
we speculate that the P7/P19 peptides could be able to
activate related aGPCRs in HEK239 G protein KO cells.

Finally, we show GPR56 signalling redirection for IP3
second messenger accumulation for GPR56-FL and
GPR56-CTF. Here, GαΔ6q12myr displayed a more robust
signalling redirection, indicating that this chimera is
more efficient in the signalling rerouting and could be
more feasible for investigating GPR56 signalling.

In luciferase assays the expression of the reporter
gene may be affected by various upstream signalling cas-
cades that can result in a high baseline noise. To substan-
tially enhance the signal-to-noise ratio, Gαq-re-routing
and more upstream and direct readouts could be used,
such as IP3 detection systems or Ca2+-sensors.23 Our
results on IP3 accumulation with GPR56-FL and
GPR56-CTF hint at the feasibility and applicability of
using the chimeric G protein GαΔ6q12myr to redirect
Gα12/13 signalling to a direct second messenger readout.
Further studies using these chimeras should evaluate the
effect on IP3/Ca

2+ levels and demonstrate the kinetics of
GPR56 activation through the chimeric G proteins. They
could also explore the combination of G protein chimeras
with the available upstream Gαq signalling sensors aim-
ing to develop a technique for screening activation of
Gα12/13-coupled adhesion GPCRs.
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